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Abstract

We review Cartan’s method for determining whether two G-structures arve locally
ecuivalent. This 11101111()(,1 is based on the reduction of the structure group to the iden-
tity, giving rise to a complete set of local invariants. There are several technigues
such as group reduction, prolongation. involutivity test. absorbtion ol torsion. and
normalization nceded in this procedurce. Next we introduce the equivalence problem
for first-order Lagrangians on the line. We apply this inethod to the solution of the
“equivalence problem for the first order Lagrangians under fiber-preserving transfor-
mations. point transformations, fiber-preserving transformations up to a divergence.
and point transformations up to a divergence, All the local invariants are explicitly

computed.



Résumé

Nous passons en revue la méthode de Cartan visant a déterminer si deux G-structures
sont localement équivalentes, Cette méthode est basée sun la réduction du groupe
structurel a Uidentité, donnant naissance a un enscimble complet dlinvariants lo-
caux. Diverses techniqnues telles que la réduction de groupes, la continnation. le test
drinvolutivité, 'absorbtion de torsion et la normalisation sont nécessaires a cette
procédure. Fusuite, nous introduisons le probleme d’équivalence pour les Lagrang-
iens de premicr order sur la drvoite. Nous ciiployons cette méthode a la résolution
du probleme d'équivalence pour les Lagranigiens de premier ovdre par des transfor-
mations qui présent les fibres, des transformations de points. des transformations
qui préservent les fibres a une divergence pres. Tous les invariants locanx sont

explicitement Calculés.
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Introduction

Broadly stated, the equivalence problem of Elie Cartan is to determine il two geo-
metrie structures defined by reductions of two frame bundle of a manifold are locally
isomorphic. Elie Cartan studied widely this problem and developed a method known
as Cartan’s equivalence method for solving it [2].

The modern formulation of the Cartan equivalence problem is given n terms of
(i-structure, Chern [3], Sternberg [12]. Gardner [5] has developed an algorithimic
implementation of the method ol equivalence through the formulation of the geo-
metric of absorbtion and normalization of torsion which were hmplicit in Cartan’s
work. One of Gardner’s aims was to apply the method of equivalence to problems of
feedback linearization in control theory. Other applications to ordinary differeutial
cquations and variational problems can be formed in Relerences [6]. [8]. and [10].
One of the main goals ol Cartan’s method is to coustruct a complete set local in-
variants of the G-structure. These invariants are then used to derive the necessary
andd sufficient conditions for local equivalence.

I Chapter 1. we introduce the Cartan equivalence problem.  We formudate the
structure equations satisfied by the tautological 1-form. The set of solutions of the
equivalence problem remains unchanged under group reduction. In order to solve
the Cartan equivalence problem, one has to carry out a sequence of reductions and
prolongations of the structure group. The involutivity test of Cartan, which experi-
cuces the Cartan-Kahler theorem, plays a critical role in the analysis.

In Chapter 2, we introduce the equivalence problem for the Lagrangians on the line,

We then apply the method of equivalence to find a complete set of local nvariants



for first order Lagrangians on the line, following the results of Reference [7]. We
explicitly derive the invariants under fiber-preserving transformations, point trans-
formations, and fiber-preserving transforinations up to a divergence. We also give
the main results on point transformations up to a divergence.

We also have to mention that all the results reviewed in this paper are local and
apply to smooth Lagrangians and maps, except for the case where the involutivity
test is heing applied. This requires the Cartan-Kachler theoram and is therefore a

result, aboul analytic Lagrangirans.



Chapter 1

The Cartan equivalence problem

1.1 Introduction

Elie Cartan developed a method in the carly of 20th centwry which makes it possible
to determine the invariants of many geometric structures. This method is called the

Method of Equivalence.

1.2 Formulation and solution in the case of {¢}-
structures

1.2.1 The coframe bundle

Let A be a smooth n-manifold. A colvame at @ € Al is a linear isomorphisin
w: T, M — R™ The set of such coframes based at .« will he denoted by I ). (or
simply ¥ when the manifold A is clear from the coutext.) The disjoint nnion of /-7
as @ varies on A/ will be denoted by FE(A) (or siiaply 7). and is called the space
ol colrames of A/, The hase point map 7 = I — A s defined by #(770) =00 The
group G L{n.R) acts on [ on the right by w.g = g 'wlorw € I and g € (/L{n.R).

Let U/ € A be an open set. Suppose that the n’s 7« = 1.0 are (smooth) lincarly
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independent, 1-forms on U. 1 = {m,...,n,} is called a (smooth) coframing ol {J.

Now, let @ U x GL(n,R) — I*(U) be defined by the formula

(I)<fl?, (]) == ,(]417],%-

16 is clear that

Olr.gh) = h'd(r.g) = O(r.g)h.
The base point map 7 : F* — A is then a smooth submersion since il ({7, 0) is a
chart al u, € I and (V,4)) is a chart al 7(u,) = v € M then wrg™! is a projection
map; on the other hand, il w is a (local) section of I then w is a coframing on
its domain. Let N be another smooth n-manifold and [ @ Al — N Dbe a local

ditfeomorphisin. We define a smooth bundle map [y : (M) — I(N) by

fi(w) = wo (f(m(u)))™". (1.1)

For the diffeomorphism f; the following diagram is commnutative:

M) P F (V)
Moo N

1.2.2 (-structures

Let M Dbe an m-manifold, and ¢ be a Lie subgroup of GL(n,R). A (smooth) -
structure on M is a (smooth) submanifold 13 C I7*(A) such that the restricted base
point map 7 : B — M is a surjective submersion whose fibers B, = BN I, are
(7-orhits.

Two G-structures B C I*(A1) and B C F*(A) are said to be equivalent if there ex-
ists a (local) diffeomorphism [ A — M so that [ (B) = i3 where [ is a (smooth)
bundle map defined by (1.1). By the equivalence problem for G-structures we mean
the method of determining whether or not two given G-structines arc equivalent

(and, if 80, in how many ways). Before discussing this method, we will illustrate its
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connections with geometry by the use ol several examples ol geometric structures

described in terms of G-structures.

Definition 1.2.1 [Sternberg, [12], p. 312] A manifold is said to have o complea

-

structure if the coordinales of the atlas (U, pq) are compler and the (ransilion [unc-

1 /7

< R A oL . JAL )t .
trons b (H{"(\'? s P Vo ooy U‘(.\’)'/ ¥ [/’)u‘ are complcx.

Definition 1.2.2 [Sternberg,[12], p. 312] Structure A is called almaost complea if

each tangent space is o vector space over C.

Note thal a complex structure is an almost complex structure. However, the converse

is notl (rue in general.
Example 1.2.1 [Sternberg,[12], p. 312] Suppose now thal n.= 2m. and lel

0 - [m
L 0

']m -

and define G° C GL{(2m,R) Lo be the subgroup of malrices thal commaule with .J,,.
One can identify R with C™ in such o way that .J,, becomes mulliplied by i and G
is then shoum to be isomorphic to GL{(m,C).

Suppose now that J is an almost complex structure on a manifold A" i.e.. J
TM — TM is o bundle map satisfying J*> = —id. Since m-dim complex veclor

spaces are unique up Lo isomorphism, then the sel
By ={ue F M) | wJ.0) = Jyu(v) forall ve T, M}

has the property that cach fiber (By), is o GL(m, C)-orbit in I77. Moreover, it is
not difficult to show that when J is smooth. then so is 13;. Conversely. given a
GL{m,C)-structure 3 C I"™(M), there is a unique almost complex slructure ) for

which 3 = B;. Thus, the two kinds of structures are equivalent.

=l



Definition 1.2.3 [Sternberg,[12], p. 312] (An almost complex) structure J on a
2m-manifold M s called a complete first-order invariant iof

i) for another almost complex structure N on a 2m-manifold N, there cvisls a dif-
Jeomorphism [ . U — N defined on an x-neighborhood U which satisfies [(.x) =y
where y € N, and

i) [*(K ;) vanishes to second order al x if and only if there exvists a lincar isomor-

phism L T, M — T,N which satisfies L*(K,) = J, and L*(N,) = N,.

Example 1.2.2 [Sternberg,[12], p. 312] Again. suppose thal n. = 2m and lel
Jin be defined as in the previous example. Now, however. consider the subgroup
Sp(m. R) € GL{(2m,R) consisting of those matrices A € GL2m.R) thal satisfy
A, A =0, This group is known as the symplectic group of rank m and is o ma-
iz group of dimension 2m?* +m. Given a Sp(m. R)-structure I3 on a 2m-manifold

M. one can define a non-degenerate, 2-form 0 on Al by the rule

Qv.w) = J,(u()) - wlw) for all v,w e T, M, we l3,.

Conversely, the uniqueness up Lo isormorphism of symplectic vector spaces of « given
dimension implies thal any non-degenerale 2-form on M corresponds Lo o unique
Splm, R)-structure via this construction.

The method of equivalence in this case will show thal dS) is a complete first-order
invariant of 2-forms, i.e., if Q and T are non-degenerate 2-forms on 2m-manifolds
M and N respectively, then for given points v € M and y € N, there exists o lo-
cal diffeomorphism [ . U — N where UV is an x-neighborhood salisfying [(1) =y
and [*T — Q wanishes to second order at x if and only if there ewists a linear map

LT A — TN satisfying L*(T,) =, and L*(dT) = d,.

As the last example in this section, we introduce the G-equivalence problem for the

Lagrangians.



Example 1.2.3 Let G be o Lie subgroup of GL(3.R). In R?, we lake lwo coordi-

nate systems (v, w,u'), and (T, 0, 7). Consider the following variational problems:

[LJu] = /L(.z:.,’u,.’z,/,/)(l.?;, (1.2)
¢

48
Irla] = / L(z.u.7)dz. (1.3)
JQ
where the Lagrangians are defined on JY (R, R), and 2, Q < R. and the dependent,
variables u and 7 are in R. We define the coframes as

who=du—dde, Wb = Llvou,dNde, Wb = du'l,
L s W ; e

(O = du—u'dr, Wh = L(T. u, w)dT, @)= du'}.

By the equivalence problem of a G-structure, we mean to find a map [ U — U/
such that f*(I17) = I,. In terms of coframes, this amounts to delermining
g~ ~7 J 1,
J Wy = _S_ VW (J-’J)

J

where v5 € (.

We consider the product U7 x ¢ and the vector valued 1-formn defined by w = ¢ on

U xaq
Wiag) = §0.. Ve el Vged, (1.5)
where 6, is a column vector (AL, ..., 67). G acts on {7 x (7 on the lelt by the action

defined by

hz,g)=(v.hf), Yeell, Yg, hed.

Theorem 1.2.1 [Kamran, [6], p. 31, Prop.3.1] A diffeomorphism [ : 1] — U/
satisfies (1.4) if and only if there ewists a diffeomorphism 7 U x (i — [ x
satisfying

I =w.
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i) the following diagram commutes:

1 I3 T
Ux (@ — Ux{

) S [
gl*(e h). Jor each x € U. and g, h € (.

iy I'(x,gh) =

Proof Suppose that f satisfies 140 = agofl, where gq is a G-valued humction on AL,
We define P U x G — U x G by Fle.g) = (f(x).995")

Then [ satisfies 41) and 7ii). Moreover,

o = Fr0) = (999 )70 = (990 Yo = g0 = w.

Conversely. suppose that F': U x G — U x (7 satisfies i) —ir). We define [ 1) —
and gg 0 U — G by Flur;e)

= ([(x). 957" (). where e is the identity of (7. Then
Fla.g) =gl (e, e) = ([(x),gg;5"). and i) implics that

g0 = I (02) = (990 ") /0.

Therelore, /*9 = gof.

Applying d to (1.5), we obtain

dw = dg N0 + gdb.

By substituting # = ¢~ - w, we obtain

dw = dgg™ Nw + gdb. (1.6)

10



Definition 1.2.4 [Sternberg, [12], p. 312] Let G = {¢} be the identily matyia in
GL{n.R). An {e}-structure on M is a submersion B C F*(M) that inlersecls cach

fiber at one point and projects onto M.

Hence, /3 is simply the image of a smooth global section of F*(A7), i.c.. a coframing
n={n . i=1,...,n}of M. Thus, an {c}-structure can be identified with a global

colvaming of M.

1.2.3 The tautological 1-form

For the colrame bundle ™ we can assign an R"-valued 1-form which has some impor-
tant functional propertics. This vector-valued 1-form is known as the tantological

I-form or the canonical 1-form. [Sternberg, [12], p. 294]

Definition 1.2.5 Suppose B C F*(M) is a G-slructure and w is a coframe. A

tautological 1-form w is defined by
w) =wor((w)y(v)) foral vel,B. (1.7)

On the other hand, a tautological 1-form w is defined by the composition of the

maps

B

7\'/(1/)\]/

oMl —— R”

Let 7 be a local section of G-structure B. Suppose @ U x G — 3 is defined by
P(a.g) =g 'n., where U C M. (1.8)
Therefore ®* is defined on T'13 by

O (w) =g 'y, where  w = {wy,....w,}. (1.9)

11



Note that the components w;’s are linearly independent, and their kernel is the vee-
tor v that is tangent to the 7m-fibers of 3. So *(w) = n for any local section n of B.
The following theorem shows that by having the tautological 1-form. one can deter-

mine how the method of equivalence works.

Theorem 1.2.2 [Sternberg, [12], pp. 313 — 314] Let B, and By be G-slruclures
over manifolds Ny and My, respectively. If f o My — My is a diffcomorphism

satisfying [T (By) = Ba. then [{{wy) = wy.

Proof The prool is achieved by applying the chain rule. The following diagram of

maps is comrmutative,

13 L. 135

My —L—

By starting with a vector v € T, 3, from (1.7) we have

filwa)(v) = walfi(u))(v)

|
Now we are able to verily whether or not two G-structures /3, and /35 are locally
equivalent by looking for integral manilolds of the ideal generated by the L-lorm
) = miw) — mwsy on the product manifold By x 3.
If we can find such an integral manifold I' C 13 x By that projects (diffcomorphi-
cally) onto eachi of the factors, then it will be the graph ol a smooth map ¢ : 13 — /3,
that satisfies g*(ws) = wy. Therefore, by the previous theorem. the diffeomorphisim

[ My — My induces an equivalence hetween the two G-structures.



1.3 Structure equations

The purpose of this scction is to show how to find a coframing on a (-structure /3.
Let V' obe an n-vector space with the standard basis v;, (i = 1,...,n). We denote the
basis elements of V* by vi’s. The tautological 1-form w on I7*(M) can be represented

as a vector-valued 1-form

where the w’’s are 1-forms on F7*(M).
Let ( he an s-dimensional Lic group and g C gl{n,R) = V& V* be the corresponding
Lie algebra. Let u,, I < a < s denote the hasis clements ol the Lic algebra g By

canonical inclusion g — V & V*, each 1, can be wrilten as
§ I | 0
Uy = Uy Vi RV

Let 7 = n'v; he a local section of B with domain [/ € M. There are unique unctions

1, = =1}, such that
i 1/ N2 7 k: 1
dny = él]-k’l/‘ AN (1.10)
By wriling
o 1, v, 5L k 1
/ :éljk'\ri 5oV AV, (lll)

3

and by considering 1" as a [unction from [/ to V 5 A2(V*), this can be written as a

vector equation in the form

1
iy = 5’/'(7}A/;). (1.12)

Consider & : [/ x (¢ — B detined by (1.8). Let 6 be a connection on 3. i.c. there
exists a g-valued 1-form 6y on {7 such that ®*(0) = ¢~ 'dg + ¢~ 'feg. On the other

hand, according to equation (1.9) we have ®*(w) = g~ 1.

15



Hence

O (dw)

d{g~"n)

, 1 ]
—gildg A g_l'r] + ¢! dn = —g"'(/g Aghy+ 5,{/7"/"(11 A1)

1
(=g~ 'dg — g " 0og) A (g7 ) + 97 (Bo A ) + 59"T(’// A1)

1
P (—ONwW)+g (g Ay + 57‘(7} ANY)

. 1,
P (=0 ANw + 51’(u) Aw)).

L

Therefore, the first structure equation of Elie Cartan holds

The [unction T = 1

2

1
dw=—0Nw+ 57‘(@! Aw).

Tipvi vt A vk is called the torsion function of the connection 6.

We can also represent the first structure equation by

dw’ = Z Z (/,"']‘»kﬂl“ Aw! + % Z Z “,w.;-,wj A (1.13)
ik A

Now consider the effect on T of changing the connection. For a connection  we

have 6(X,) = v for any v € ¢ (Here, X, denotes the vector field on /3). Now. let

f* be another connection on B. The difference 8% — 8 is a g-valued 1-form on /3

that vanishes on vectors tangent to the fibers of 7 : B — M. Ilence, there oxists a

unique function p: B — g & V* so that 0 = 0 + p{w).

On the other hand, for any G-cquivalent p: 3 — g x V* and any connection 1-lorm

0. the formula 6% = 6 + p(w) defines a connection 1-form on 3.

Therefore

where T

where

1, , 1.
dw=—0Nw+ 3']'(@ Aw)=—0"Nw+ ?l‘*(w Aw).

is the torsion function associaled to 8. It [ollows that

1

2 2

§ig e VT = Vi ANV

14

(T =TYHwAw)=(0"=0) Nw=plw) Ahw = =dp)(wAw).

(1.14)



is the G-equivalence linear map defined as the composition
gV = (Ve VeV — Vs A (V) (1.15)

where the first map is the tensor product with V* of the inclusion g — V o V™ and
the second map is skew symmetrization of the second two factors.
Therelore

T =1 = d(p).
This formula necessitates studying the kernel and co-kernel of the map o. Thesce
spaces have special notations and names

kers = ¢ and cokers =TI, (1.16)

The space gt is known as the first prolongation of g and the space I, is known as

the ntrinsic torsion space of

o
e

1.4 Reduction of the structure group
Now Consider the exact sequence constructed by (1.15) and (1.16)
0— W ogaV =V oA (V) -1, —0 (1.17)

Definition 1.4.1 [Kobayashi, [8], p. 16] The kernel o) is called the first pro-

longation of the Lie algebra g.

Let T be a [unction from {7 to V & A*(V*) as defined in (1.11). We define the
structure tensor Ty as the composition of the project map pr: U x ¢ — [/ and 1"
Therefore

=T opr. (1.18)
Therclore, (. gh) = plg)7(x, h), where pis the G-action in IT,. Now we define

Goy={ged| plg)r =71y}

15



as the stability group ol 7y for a fixed vector 7, € 7. (I x ().
The following theorem gives us a necessary condition for solving the G-equivalence

problem (1.4).

Theorem 1.4.1 [Sternberg, [12], p. 328] For the equivalence problem (1.4) lhe

Jollowing diagram is commutalive.

VxE=—UxC(

N

In practice one computes 7v and 7 hy choosing an cquivariant splitting of the

e

sequence (1.17). This procedure is known as absorbtion of torsion and is described
in the following.

Absorbtion of torsion

Consider the coframe

W = {(,u'[. -~--("/‘n}»

and the corresponding G-equivalence problem. To solve the equivalence problem,

we introduced the lifted coframe

1T
0, = Z(/;w, 1=1,...n
=1
We have
m
df; = Z(dg"; Aw; + gldw;).
j=1

By rewriting the above formula in terms of €;’s we obtain

e m m.

6, = Z 7; NG+ Z Z 7'}%,94, AN =1....m.

=1 =1 b

Note that the torsion coefficients, ~*

/3. are defined by the strucetnve gronp (Cwhichiis

evaluated by

5
i .
“,’j = E (,I,Jﬂk,(l;;g.

o= |

16



Rewriting the structure equations with respect to Maurer-Cartan forms,

m S (13 e

db, = Z Z (z/‘;ik(,vk ANO; + Z Z T;A,e.,' A by, i,j=1...,m.

j=1 k=1 =1 k=1
We recall that we are ultimately looking for I-forms that are invariant under the
action of the diffeomorphism ® : J' — J' such that ®*(L) = L. Suppose the
colrame corresponding to L is defined by @ and the corresponded lifted colrame is
0 =g, where g € G

The structure equations corresponding to the equivalence problem are given by

™m

([é,j = Z"‘TI/ A ‘9‘]' + ii?]/kgf A 9/;;- 7= 1‘, LM

j=1 j=1 k=1

Now, in order fo solve the G-equivalence problem. we reduce the problem to the
{¢}-equivalence case. This is done by absorbtion and normalization.

By absorbtion of torsion, we eliminate as many of the torsion coefficients as possible

by replacing the Maurer-Cartan coefficients oy, by

However, there might still be some un-normalized non-invariant components lelt.
We will repeat the absorbtion-normalization process [or the new colrame rebuilt by
the previous absorbtion-normalization process. Two cases might ocenr.

In the first case, we would be able to eliminate all torsion compounents, and all group
parameters would then be determined: this means that we could reduce the problem
to the {e}-equivalence case. Then we could easily find the invariants. In the second
case, there would be some torsion coefficients remaining which are acted on trivially
by the structure group. We would then need to prolong the group structure and at
each step of prolongation, apply the absorbtion and normalization method.

We now return to the main problem. Suppose I/ — R. We define the covariani

derivatives F'; ol function [ by
AP =Y Fwi. (1.19)

17



By cquation (1.10) we stated that

dw;, = 5’ZTEA;(~’I7I~ Ml AW (1.20)
dwly = 57‘_7.A,(f1....,;7”)@{7ij7. (1.21)

Therefore

Moreover

. . " =i . N p— o A - ~ b
Fherefore [*(17,) = 17,. Now, we define 75, , = X T}, where WXLy = o
Therefore

i

T o
d15, = Th e,

— i

g . ) —l
Al = Ty

The same argument will show that

i

./.*(T.jk-.l) - 7‘1;1;-‘/-

and in general
e , o
T y) = Tiy o, where L < job o, <o
Now. supposc {/y,.../; } is a maximal functionally independent set of functions

such that for any linear combination of 75,77, , ... T,

Lsay 17 we have [0 =
. ...,//p). Therelore cither [, = n or I, = I,y Similarly, we can get the same
maximal independent set of {75, ....7,,7} corresponding to the other coframe. By the
implicit function theorem, X (fy) = I = F(1, ..., [;,). Likewise. X (1) =14 =

F(TiTi,)-

Theorem 1.4.2 (Cartan’s theorem)[Sternberg, (12|, p. 344] Lel (p.g) € T'([f),

the graph of a diffeornorphism [ U — V. The formula

[\]
18]
~—
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18 satisfied if and only if

i) Ranks and labels match, i.e. | = 1.

i) Li(p) = 1,(q) for 1 <i <1,

iii) ' and F are the same functions of their respective arquments: i.e. (I, ... l,) =

Ly ).
We now state a key theorem which describes the above concept precisely.

Theorem 1.4.3 [Gardner, [5], p. 38] The Carlan equivalence problems

/‘* ~E o
. w‘/ —_ ;‘]'WU .
J

where (v9) € G, and
(1) () i (h
ey = E VoW
J
() :
where (“,; ) € Gy, have the same solulion.
, , o . g 1 ,
Proof Define the G-valued diffeomorphisms ffé,) ) — ( and (IS,> :Vo— (7 such

that
T H(1) WD 5
i g . i ~7 i
E oy, wy =wy . and g oy, Wy =@y
J

respectively. Now,

e 1) ~ g( x (1) % ) 1 o
JUaT = Qe el) = Qv )

Il
EN

O
\\
EY
i

Hence in order for [ to be a solution of the second equivalence problem, we need to

show that
TN I YA
STS (ot o e
koo
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is a G ovalued [unction.

Note that for all w € U/, 7 (. (78)(:1:)) is in 7 (U x (). On the other hand, by (1.18).

Ty = TU<;?I,(7[(})<;1!)) = (rv o ) (. 05,})(;1:)) =T (f(2), (f};”(.z:).ﬁx(.z:)*])
= 7 (f{v). (T,(/,l)(;l,').ﬁ,(]:>“1.((Ti‘p o)} (;z:).((rs}) o /()
= plof ()7 (2) ey o Sy @) e (fla) (ol o £)()

u
We can now apply the above theorems to show that the G-equivalence problem given
by (1.22) can be reduced to the G/j)-equivalence problem such that both have the
same solution.
The process of reducing an equivalence problem to a new one by reducing the struc-
ture group G to its stability group Gy is called a group reduction.
Note that in the case of {e}-structures, the equivalence problem reduces to finding

diffeomorphisms f: U/ — V such that

'@ = wis (1.23)

Theorem (1.4.3) in [act claims that we can reduce the initial G-equivalence problem

to the Gyy-equivalence problem by induction.

We keep reducing Gy until either Gy = {e} or Gy # {c}. though the Gy y-action
on I, 13 trivial. Tn the first case, we can solve the {e}-cquivalence problem by

using theorem 1.4.2.



1.5 Prolongation and involutivity test

The other case is when Gy # {e}, but the action is trivial.

Now we define the first prolonged group.

— 10 )
;Ei)) = { | v € kerd}
v 1

Recalling equation (1.16), Gl k is the first prolongation of the stability gronp (i,
Consider the tableau matrix [5] taken from the equation (1.13)
S =) alb).
1‘.

We define the reduced Cartan characters [5] o, ..., o4 by
a, = dim 2,

where

Y, =S Nspan({fp.....0,} x A2 (V).

Theorem 1.5.1 (Cartan’s involutivity test)[Gardner, [5], p. 74] The system is

in anvolution if and only if

dim, gé;)) = Z Ty

Theorem 1.5.2 [Kamran, [6], p. 47, Prop.3.8] The Carlan equivalence prob-

lems
% ~4 § PN
’\/ — /"]VJU’
j

where (v;) € G, and
*(!>~,(H ~ity )

AN iy Vi W( ® i
/\]'(I.') V([) 3 i .
where (7)€ Gy hove the same solulion.
On the other hand the solution of the initial equivalence prohlem and the equivalence
problem of the first prolonged group reduction are the same.
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1.6 Conclusion

We saw that the solution of the initial equivalence prohlem is the same as the
solution of the Gy-equivalence problem. We also showed that if Gy = {e}. then
by theorem (1.4.2) we can easily find the solution. On the other hand, if Gy # {¢}.
the group action is trivial, and the involutivity condition is not satisfied. we must

the prolong the system once to obtain the prolonged group GE;% By theorem (1.5.2)

we know that the solutions of the initial problems are the same as those of the (;’E/‘))-
: . : : J(1
equivalence problems. At this point we reduce the frst prolonged group to (,f,_))(,)

Again, if GE;"’))(/) = {e}, we can easily find the solutions, If ('VE;I;-))(/) £ {c}. the group
action is trivial, and the involutivity condition is not satisfied, we must then prolong
the group for the second time and we repeat the above algorithm. According to the
theorem Cartan-Kuranishi [1], we should obtain an involutive system after a finite

number of prolongations and reductions.

Theorem 1.6.1 [Kamran, [6], p. 46, Prop.3.7] If lhe inolulivily condilion is

crents aj,

satisfied and the cocffi and Ik are constant then the scl of self-cquivalence

forms a Lic pseudogroup of infinite type.

In this chapter, Cartan’s method was introduced to find the solutions of the cquiva-
lence problem. In the next chapter we apply Cartan’s equivalence method to find the
sohitions of a classical equivalence problemn in Caleulus of variations, first order La-
grangians on the line. Example (1.2.3) expressed the G-structure of the Lagrangians
equivalence problem; in the beginning of chapter 2, the equivalence problem for first
order Lagrangians on the line will be derived. Later on in the chapter we will show

how Cartan’s method gives rise to a solution to the Lagrangian equivalence probleni.
ol te) o

[N]
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Chapter 2

Equivalence of first order

Lagrangian on the line

2.1 Introduction

Given [unctionals [ [u], and [;[a] corresponding to the Lagrangians, the principal
question in equivalence of first order Lagrangians on the line is to know if there

exists a local diffeomorphism ¢ @ J" — J” such that
(T, [a]) = 1. [u]. 2.1)

Equivalently, given wy/, and @2} we would like to know if there exists any ® such that

J

| A
[\)
=

where

v; U — GL(n.R).

We consider the special case of equivalence of first-order Lagrangians on the line,

1.c.



where n =1, u € R, and € R. Hence the problem reduces to

I ju] = / L, u,u')da. (2.3)

JR
Definition 2.1.1 [Kamran, and Olver, [7], pp 33-34] There exisis al leasl six
versions of the equivalence problem for the Lagrangians on the line.
1.Standard fiber preserving map:
In this case, the two Lagrangians are related by

R

del.]

where J is the Jacobian of the matriz Dyl and & = o{x), i = v(x.u).
2. Standard general poinl lransformalions:
In this case, the relation between the two Lagrangians 1s the same as an the previous

case: but x and v are transformed by
T=plr.u), u=u{x.u).

3.Standard contact transformations:
In this case,
- 1
o=
del.]
and & = @(x,u,u’), @ =y, uu), @ = y(r,u. o)
4. Divergence equivalence problem for fiber-preserving map:
In this case,
L+ divF
det S

[, =

and T = @), w=1p(r,u).
5. Divergence equivalence for point transformations:

In this case,
. // + (]”'F
T detd

and T = (e, u), 1= v{r, u).

6. Divergence equivalence for contact transformations:
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In this case,
i L+ divl’
S deld

and & = (v u,u'), 0 =@, u,u), @ = (v, u, )

Theorem 2.1.1 [Kamran, and Olver, [7], p. 43, Prop.3.5] . and I, have the
same Buler-Lagrange equations if and only if

L+ divF

] =
detl ]

In the divergence equivalence problen, we are dealing with the Euler-Lagrange equa-

tions of the two Lagrangians instead of the Lagrangians, themselves.

Theorem 2.1.2 For the first order Lagrangian equivalence problem on the line, any

lwo Lagrangians I and I are divergence equivalent under contact lransformations.

Theorem 2.1.3 For the standard equivalence problem. contact and poinl lransfor-

malions are Lhe same.

Definition 2.1.2 [Kamran, and Olver, [7|, p. 35, Def.1.1] The Lagrangians
Loand L arve m-equivalent if L is mapped to L. by a

m =1 standard fiber-preserving map.

m = 2 : standard conlact transformations.

m =3 fiber-preserving map up to divergence.

m =4 poinl lransformations up Lo divergence.

2.2 Formulation of various notions of equivalence
Consider the basic coframe {wy, wa, ws. wy} defined by

wi = du — pdr. we = Ldv. wy = dp. wy = dw.
9 3



We detine [Kamran, and Olver,[7], p. 41] four Lie subgroups (/,,,, m = 1.2.3.1
of GL(3,R) and G'L(4.R) by

Gi={] 0 1 0 |:@eR, a.a5+#0}.

(]2 = { ,)2 1 0 . I),' € R, bl-b(i 7% ()}

] 0 e 00
Gy = { ce e R, C1.C3.C5 7é ()}

Cy s g O

Gy=1{| ' cd € R, dydydg £ 0}
(l4 (lr) (l(; 0

(17 ([;; —1 0 1

By the following theorem, we obtain the relationships between the equivalence of

two Lagrangians and the Lic groups (7,,.

Theorem 2.2.1 [Kamran, and Olver, 7|, p. 42, Prop.2.1] There cuisls a dif-
Jeomorphism

O:J' xR = J' xR

such that it satisfies (2.2) if and only if L and L are equivalent.

2.3 Inductive method

Before starting to explain this method. we should mention that solving the La-

grangian equivalence problem in general is not very easy. The task becomes easior
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il we use the solutions of the simpler case to attack the more complicated one.
Suppose we have two equivalence problems with the same coframe w.

Let (7, and H corresponding to the equivalence problems. be two ditferent strueture
eroups such that " C H. Suppose that we could solve the G-equivalence problem.
The inductive method suggests that instead of solving the H-cquivalence problemn.
which is more complicated, we use the solution of the G-equivalence problemn di-
rectly. Therefore, instead of solving the G-equivalence problem, by determining a
map gy : I/ — & such that

0 = go.w, (2.4)

we use the adapted coframe 1 = h.gg.w as the starting point.

2.4 The fiber preserving case

We consider the coordinates (@, w.u') on R* {or J'(R.R)). The basic coframe on

Q x R is given by
wl = du—pdy, wi = Ldv. W =dp. (2.5)

For our case, the standard fiber-preserving and point transformation equivalence
problems have the same colrame w given in (2.5). The appropriate gy € ' for
solving the (7 -equivalence problem is given by ) from the previous page. Now,
we can casily use this solution to derive the formulas for the invariants of the point
transformation problem. To do this, it is enough to assume that the lifted colrame

of the Ge-equivalence problem has the form
1= h.go.wo.

By absorbtion and normalization of torsion we can then explicitly find the parame-

ters of the lifted coframe 7. For the cases (73, and Gy, the dimension of the colrames
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is 4. So, we can add a component to the hasic colrame w of the standard fibor-
preserving equivalence problem so as to obtain a similar coframe for the (7). (/5.
and (/y-equivalence problems since Gy C (75 and Gy C Gy We can then apply the
method of induction to the case to find the adapted coframe which leads us to find

the invariants of the structure equations.

Standard Fiber Preserving Equivalence Problem:

This is the most elementary case. Lot wy, wo, wy denote the base frame and he
given by

wy = du — pdu,wy = Ldu,wy = dp.

Now, we define new variables

&1 = apw = aydu — aypdu,
&y = wy = Ldz, (2.6)

&y = aqwy + anwy + agws = agdu — agpdr — as Ldx + agdp.

By rewriting the above equations with respect to w;’s, we obtain

Wy = F};Elv
wo = &, (2.7)

1 a4 ¢ s ¢
Yoy = i e, e R — 22O,
“3 ) {‘S ﬂlﬂuél ﬂ(‘)gzl

We now compute the exterior derivative ol w;’s.

dwy = —dp N dv = —};wg A ws

dwy = dlL A du = (Ldv+ Lydu+ Lydp) A da = [;j’w; A woy -+ %w;g A wh

([Lu’;j = O



Determining the differentials d€; and rewriting the equations in terms of the &', we

obtain

A€y = day N ()& + FEa A ((,(fs =G = RO) = NG F TG A G+ b A,
dé, = L“( )51 NEy+ I’f’((l(fg — ol - (::50) A& = Taro€1 N o + Tom&a A &3

d&s = day N (;‘)& + FE A ((,75:; — B - B&) Hdas N + P falag A€y

aLag ay L
urI/ 5 5
J"(m £ — =8 = 2&) N + dag A ((, §— -0 — 2&) =

g NEL 4 vy AN &g+ i N &y A+ Ty1281 A Lo F Taoa8o N &

where
1 agday — agdag agdas — asdag g
3 = —, vy = —————, Qn = . v = B
a (g (g (i
4] ¥ (g //z/ — (g l/p 7///)
T2y = 7, Tno = —7, Toyo = , T3 =
L(l,f; (g L 1 I (i I,
2
ay + asagls, — agasl, ty — 51,
T312 = yo 323 = T
gL gl

As mentioned earlier, in this method we try to climinate as many 7,;;,’s as possible.
For example, by taking
= ay + 71282, (2.8)
we have
d&y = (@) + Ti10&o) A&+ Tiaslo A& + Tt A&
=W NG =T AN+ TS AG T T A
=y A&+ Tasde N &, (2.9)
A&y = 7212610 N &o + Too3éo A &3,
A&y = g N& Ay Ao 4 g A&+ Ta1280 AN So + Tl A &3,
where o, oy, 5. g form a basis for the right-invariant 1-forms on Lice group ¢

The only remaining 7,;,'s are

(1
Toy — /—(’—()
aglo, — agl.,
Tz _?l, 1 (g L
o = lr
a2 (g /. '



Normalization:

We suppose that L, # 0. We normalize 795, To12, Tooy to 1, 0. —1 by letting

) = //])‘

ag = L (2.10)
Ly

g = 7

By substituting the expressions (2.5) into the formulas of the lifted colrame, we

obtaim new expressions for the structure equations.

§1 = Wy
§o = wsy

{3 = (awy + asws T AW

By substituting the new values for a;’s. we obtain

:l = ]Jpwl

Lo,
E.‘%‘* 'l+”\W’+

Repeating the provious process. we fud new expressions for the d&;'s.
& <

d&y = dLy AN w + Lydw,
A&y = dwy

([5;;: /( )/\w1+ '(] 1+(](/ /\w)T(l (]w)+(/<[—/)/\w';;+(yl;/l“)(/w';),‘
where

/J.'[; - (13//2 + 7)//'1/
; §o + L&y

dl, =
Therelore
déy = d( L) = dl, A de = ((Lemlrlaye, 1 ey A (L)gy = —6 A &
dés = d(%‘) N (%) le &2 A ([,( — L~ Zj{z) +odag Ny — as60 N &y

g
Ly, a. as ¢
+(/< I> <n(é; (l]f‘l(fl__z_é 2>
= A& F an AN ag AL T8 A Qe Taasle ALy
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where

_ Lyl =pLagp—Lypy) . Lol
e = L T3 = s = das + PN

Now, we normalize 719 to 0 by choosing an appropriate as.

Lo(Luplipy — Lpw) + a5 121

Ty = 0= 1272 =
i/ /])],
Therefore
//p(l/,” — ])//,,,, - //p:l‘>
Iy = — 272 ’
l,—//,-),)
We now define the operator 7 by
. o . J
F=——-D,—.
ol p
where
. i) 3]

D, = — +p—.
‘ O / o
By substitution, we ohtain

F(L) =1Ly, — Lpe — plop.

Now, we substitule

('I__ — bl/pCQ
DT B 5
[12
(L
where () = /( ).
“pp
Therefore,
Dl
T = — JE
/1)

which is the first invariant.

The invariant coframe is now determined by

{1 =
{o = wo

{3 = Gy + apWs + gy,

31
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where

L L, L, _
ay = Ly, a4 = ) y = — ;122 ag = /j . (2.15)
[Hence
&1 = Lypdu —pldu
& = Ldue
&y = %((Z'u, — pda) — L%Q(ZJZ - %(/7’) = d(log L) — D, (log L)d.r.
where D, = - + /)()” + 2()])

We have
dgy = =L NG+ LN
dls = =& N &y (2.16)
dgy = 1§ A fz + 1380 N 3.
where the explicit forms ol the invariants Iy, [o. I3 will be given below,
The covariant derivatives ol 7 with respect to the coframe {&. &. &) will he de-
noted by [7¢, . I'¢,, [e,, vespectively. The explicit expression of the covariant deriva-

tives are easily computed. We have

df = foda + fodu+ fdp.

However,
1 n //,, Q
dv = —&, du = + =&y, dp = — L+ =&
L A //,f‘ I
Therefore
o /u 2 y . - .
{]F“ f 52+ [(I —,/1/,&2+ f; [;)Ei [ //)EI //)§>: F.&EI+]',£2£2+I'.£:;£3~
/ P P
(2.17)
So. we can easily obtain the explicit formulas for these derivatives.
1 r 1 otLLh
Fﬁl l‘/}'/“ /) 7—15(')(]) 1)
e, = fj+“/ +%~_%/),,.F (2.18)



For I = [, we obtain

o _ L Lwlyp
F«f] == L-f| = [—;" — i 0

AN _ pha QL L DAL
Fep=Le, = =
: — — Loy
]—“5_‘; —_— ]’.f,'; -— 77/‘).]/]) —_ L.
Now we can easily compute the invariants.
3 1
First we compute the exterior derivative of L, which is

dl/ - [1.5252 + [/f;{.

Hence

0= ([2 [ = f[/4{2{2A£2+//{2(]€3+(/L/\{5+L(]£; = (14752_51—‘—// /2){]/\£3+<*/{1£‘*

We can obtain the invariants [y and 73 [rom the above equation.
p) 3

- l/ W // 2.&3
[, = el £2.6

Lo .

To find [y, we compute d&; :

==

[431:)8

(2.19)

)&

A&y = dL,Ndu—d{pL,)Ndx
= (L,eé& + Lpgéa+ Lpe,dSs) A /J/,,él + %(3) — Lopp Noda = pdp Aode
- (ﬁ/'/”—{'m NEy — L/[)'&) ELNE — */i/&gil NEy — /)/‘/I){:s Eo N &y
[, . i ;
_l’f>(7%£5i‘;j—%{i + %52) A (%)52 — p(Lpe &1+ Lpeybo + Lpels) A

= =L NE+ & N s,

whore

=—== and L, =1L,
L, :

On the other hand, we know that

NE5.



By substituting L, [or I, we obtain

1 L, 1
TDoly = =Dl = L= Dil,

Lll-fz -

which is the FEuler-Lagrange equation and which [orms another invariant.
The Bianchi identities are obtained as [oliows.
We have
) . .
(lfg = —52 NEy = d &y = (152 NEy+Ex N (lé;;.
This equation gives a trivial case since
d€o = =& N &

Computing the differential of &

Ay = —LE NG+ LN =

A& = —dl NG NG = IdE N+ 1E AN dEs + déy NGy — & AdSy = 0.

Hence
—dly NENE — D NG N Es =0
On the other hand
dly =g &+ helo+ 1,8
Therefore
(=he& =Nl — NS NGNS — L NG NG =00
SO

e
[y = — L&
Il

Another invariant can be obtained by differentiating &,

A&y = 2§y N+ I3 N &y =

o

N

]

[N

By = dly A& N Eo+ [odSy N — To&) NdEa + d3E0 NEy + 13dEy Ny — 1460 A dEy = (.
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Hence

/_>£;+/|/2+/2+/;5| :() (

[S]
[N\
(8]
~—

Therefore

Logy + Iye, + (L + 1)1 = 0.
This is the [l set of Bianchi identities for the adapted colrame.,

2.5 Main results in the remaining cases

(@) Standard point transformations equivalence (case m = 2):

In this section, we try to obtain the invariants of the standard point transformations

equivalence problem.

As explained in Section 2.1, the general formula for the point translorinations case
; )

1%

In this section, we discuss the standard cquivalence problem which has the form

— /.
[, = .
det J

The colrame corresponding to the given ¢4-equivalence problem is given by
& S | ) }
9 - oW,

where w is the initial colrame.

We recall that the colrame expressions have the formn
& = Ly(du—pdr) = Lyw, = ajw,
& = Ldr = ws

& =d(log L) — /N),,.(log L)da = agwn + agws + agws.
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As mentioned carlier, the eroup element of ¢y has the matrix form

a0 0
gy = 0O 1 0

q Uz dg
and the lilted coframe has the form

by 0 0
ho= by 1 0

()4 {)5 [)6

Therefore, for the Gy-equivalence problem, the lifted colrame can be represented hy

m = b
= D&y + & (2.
N3 = ba&) + 05&0 + D&y,

[ O
[\
o
R

The differentials are

dny = dby A&+ bydéE,

dbo N &y + Dad&y + dEy

iy

iy = by NEy 4 dby A Ey 4 dbg A Ey + DydEy + bsdés.

By (2.21), we can obtain &'s in terms of 7;'s

_ 1,
§1 = 7-m

¢ ba. .
§o= =3

. babs =1, Dy .
G= (22 0m + (=2 + o

b bg
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By computing the differentials, we have

A€y = (B Ay + (S52)m A s + () A s

A€y = (— mb( Jm A+ ( e A+ (= )"/2 A

dgy = (W)z; At A (22 Angg + (= e By Ao

Following Cartan’s method, we can compute the differentials ot 1);'s.

diy = By Ay A Tt A s 4 Tiosne At F o A,

where
(N)l —*,[1 — [)2 ])] /] /),', + /),}
Al = — Ty = — . T2z = s T = — .
by be b bg
and
(17']2 = /'))2 A h + To13Th A 3 + T2127 A 2 -+ To231)2 A 3.
whare
(b —1Iiby + by — 3 [y bobs + Doby — by by — 1
ty = s T = - T2 = Toos = :
{)| [)| /)(; Z); /)(;
an

iy = Fy ANy = O Ao A Fa Ny A Tsioin Anja A+ Taostie A gy Ty A g

where
3 boclhy ~ Dobaclhs 4+ Dabsdby — by - hodbs — Dyl b o
T byby I b o be
{1050y + /)f“i — bybs + Ig/)é + I3h1be by — Dy + 30
T312 — N
])] Z)(; /)(;

—1')4]1 — ])Q{)_l + ])2/)5 - /)r_){)(;[;;

[)] [)(;

T313 =
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Note that L is not an affine function of p, L.e. 1. # ap+0b. Therefore /) # 0 (1, # 0).
We assume that 7, does not vanish on €.

Following a similar procedure as the one we used in the fiber-preserving case. we
can eliminate two of the torsion coefficients 7,5, by absorbtion of torsion. By using

the structure equations

dn, = Z l/’ Wl N T

Jk

we climinate as many 75’8 as possible.

dijy = 3y A+ Tiogi Ay
gy = 3y A1)y = oot A1y
Ay = 3, Ay + J5 A+ Fg A

The next step is to nonmalize the lifted colrame by the simplest normalization,

Normalization (phasel)

/) Tioy = 1 = b — 1 = b = bg.

be

i) Ty =0 =2l =0 = h=1

e bg

Therefore

——/ )+)]

iy = (’" A+ Loy Ay Ay 4L ITANTE
dijp = ,) Loy A s + [“’7/1 A 1)
(i')];; _ (/)[///)l—-lu(ll)r]j»br(/luv)u/)\ ) A 7 4 (),Ar//f_);l_)_(_/_i> A 1o + > A 0 + Ty 1)) A "

730370 AN 1)+ Targi A 1.

where
) /1[)51)1+1)f-—l},|/)r,v~§~lgl)f-I-/;/)1/)1
312 = 2

. o =bhily =ba+bs =Dy
313 = ])‘T)

by —bs+ 1301

1323 == b

At this stage, 70 = & + & Is an invariant.
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o =& + & = (L —ply)de + Lydu.

This is Hilbert's invariant integral. [Kamran, and Olver, [7], p. 5J]

Absorbtion
We can now apply the sccond step of absorbtion.

dny =3, ANy A

iy = —]’7},/“ A ghs + ’})‘[j”m A )
I l

dng =, N+ 35 A+ 3y A

The sccond step of normalization follows directly.
Normalization (phase 2)
To1p == 0 = [)5 = 0.

[, = b :i\/’/1‘ = iVl

n

I e V=40 = pi=
[)1 — [)(5 =k l[]'

Therefore, the differential structure equations of the lifted coframe is

dny, = PR A+ —h m AN+ Ayt b A1)

k(1)) (/1)) kNI

i = T A

b/ b —badikn/]1 kid(\/]1
= ’wl VIR A ot l(i‘lll]l) ANy A Taranhy N+ Taogtjo A s+ Tty A ).
3 ]

(h'/;; -
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wheore

- D34+ To| T [+ 1sbar/ |11}

T312 — 117]
by Tsky /N
Toog = ————F—
323 Wi
baly—ba—k/ 11|
Tapy — —————————
313 WA
71)_1[17/)47}17 ‘]j!]_';
7313 = I .

On the other hand,

1 (f]w’f ]\'," “]‘(lll«fl — /1_5,_)) — /)4/[.5.,,’ /|-£.‘s
R0 = —— (B A e+ &
VI 2 |11] 1]
Therefore
dm = if—j‘%@ V“"m A+ 10 A1y -+ (4'51"“ =D LYy A gy

A0 /]
dijy = (=<)m Ay
kdby

dns = N A Tarann A e+ Tasth A1z F Taagtis A 1.

where
Af‘fl):l[l,gz hi+[z‘]1‘+[:}]}‘1r\/l[”

T312

2““:;/2 IIL‘
- o EI\-E'g ])%+[:’;]i; I[L‘
323 = ST T T L
_KPebyl gy ken/IT(Tg) —Tiey)—sbady gy —baly =by=ky/I11 |14
Ty = : + :

21 |2 212 17

Absorbtion of torsion



For the third time. we apply the method ol absorbtion to climinate more torsion
cocflicients.

dns = 34 A+ Tagste A

Now. we normalize the remaining coefficients.

Normalization (Phase 3)

Taoz =0 = by = ~%/\'7[3\/m,

ekl ¢,

2/

By rewriting the differential structure equations of 7's, we obtain

Tiie = 0 = /)4 =

dny = —ekJyp A+ A,

where
1/21 ¢ 1?7 +1
J = / L& t/Ql * 1, (2,24)
]
and
g = —=i) A1,
[ order to compute dns, we first need to determine db,
(]/1 .
(]/),4 p— VL/ A/;—\'—/"—/ﬁ*l/2]w\/‘ ‘(/§‘|£l+li{)K2+l3{;&§)
]
& <k l;g/|g‘ +2/]/;g£,
e *—*‘(l /1{)+9l ]g{)l}l/\l]d - ( o A“)'],J/\I}:;
7] ’ Vi 1]
Therefore
dng = Jomy AN g+ ks A .
where
Jo = 1/2l, — 1/d13 + I, (2.23)
and
J:S _ [1-51 ~+ /1,/;;_5_,; - [r)/; + 1/2/;;/]@5. (22()>

3/2
I




Now we compute the Bianchi identity.

0= d2’1]f> = —<=d( A 3)

This is a trivial case.
0 = d%yy = —ck(dJOINOp Ags) —ckJid(ny Ans) +d(na Ans) = —2h( Sy Iy i Nap N

So
‘/[.’1[3 = _'/fi- (‘ ..

|87
|8}
1
—

Next, we evaluate the second derivative of 3.

0 = d®ny = (dJo) Ay Anga + Jo(dip) Ay — Jong A daps
dek(dds) Amy A+ chds{dn)) A g — sk gy A (digy)

= (=doyy F ek Jidy —chidy ) Ao Ny

Hence

vy 4 oy = Sy = 0. (2.28)

By computing the covariant derivative ol J with respect to the lifted colvame (2.21)
dJ = T+ e+ S = Je S0+ el + e 8

we obtain three more invariants.

Je
— ]1 ]

3 \/"_I—I"

() Fiber-preserving divergence equivalence (case m = 3):

We start with the coframe {&;, &. &} discussed in the fiber-preserving equivalence
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case and we then add the coframe component & to the previous colrame. In the
end, we apply the involutive method for ¢/ C (.

We evaluate the lifted coframe & for the (i-equivalence problemn.

G =&y

G2 = 302

G = &) + 58 + 6y
Go= c7&y + (g — )& + &,

where the new colrame can he obtained by

& =y = Lywy = Lpw, = L, (du — pdr)
{2 — Wo — L
£ = aqwy + azws + agwy = d(log L) — IA),,,,.(IOg L)dr

&y = duw.

By rewriting the equations and acting the differential operator « on them we obtain

dCy = dey NEL A+ o dE
([Q-’_) = (/(f;; VAN &2 -+ (,';;f[{g
f[(j{ = (](3,_1 A {1 -+ (’,‘4(]£| -+ (13(16_) -+ (/('3 AN {_) + /l('(; AN E;; + (,’(‘,(/S;;

ACy = des NE+ eqdEy + des N Ey + (o3 — 1)dés + dey.
Therefore

dACy = v NG A 11120 A G+ TiosCa A Gy + TisG A G

dCy = 73 AN G+ T212C1 A Q2 + Taz3Ca A Gy

ACy = v NG+ 7 A G+ 7% A G+ 73120 A G+ Taa3Ca A Gy + s A Gy
dCy = 2 NG+ 3 A Co A+ Tz A Cs A+ TaosCo A Gy + TapoC A G
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ey
6= . 7
I
—'/|(‘,1
T3y = ————
Creg

dey dey codey = cydeg codes — eqdeg
I e £ T £ T S £ Tl
&3] &5 1Cq
csly 4 ¢y Cy -1
Tile = X < Tiey = o T T
C3Cg CaCg Ci
—y —1
To1p = . Ty — ——
C1Cq 6
_ N /1('~1('5+(’4ﬁ("~|(5+("1('Ul3+/2(6 N Cy — C5 4 /;;(,ﬁ
Tylo = — T3y =
C1C3Cq
—lyey I—e3+0
Ty = T Tdey — . T412 =

C1Ce CaCg C1C3Cq

Absorbtion of torsion

[ycscr 4+ ¢y — ey + cuo

Similar to the previous case, we use the structure equations to absorb the torsion

coefficients.
ACi =%, NG + TiasCa A G
dCy =73 NG

Ay =7, NG+ s N Co T+ Vg NG

dACy = 7 NG+ (Fy = 21200 + 72230 A G+ TuisC A G+ TuosCGo A Gy + TG A Go.

where

Y= Y+ el + s,

Vi = T ToraC + ToosCa.

On the other hand,

ACy =72 NG+ Ty A G+ (=703 + 7o)€ A G,

where

Ao =
/

7
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Normalization (phasel)

We now apply the normalization method. The only remained terms are

— — ¢l — W —— e
T123 = en 1 = O = (3.
1 | —c3+cy
~Togy b Tazy = - =0 ==
Hence
] = 3¢, 07 = —1.
By evaluating the new version of the equations (2.31), we can obtain the new
Helents.
(/(] (3]J+(T4 4/|
o= T T = Tizs = | Ty = —
&) Cy Cy
oL )
- o {[((’U’) o —( 4 o ]
[ B o Tl = ———» 223 — T
@ Ci1Cq Co
Cy. Cg cedes — csdeg deg
Y4 = (/(f Ty Yy = T T =
Cg  Cy &) Cg
B [icqcs + ¢y — cacs + cacelds + lacg
32— 5
oy
(f,_l*(’,r]ﬁ—/;;(f(; k/J(-l
Tgoy — T . T3 T T
(651 C1Cq
]
I 1 —lycs o
vroo= 0, Ty = —— Taoy = == Td12 —
C1Cq Co €

Absorbtion of torsion

We now indicate the second step ol the absorbtion.

(K.l =NANGHOA Gy

(Mz - T:s e

dCs =7, NG+ T AN Co+ T A G

dCy = vy N Co A Tyin(y A G+ TaonCo A Gy + T2l A Go.
where

V3= Ve b TausCa — Ta2(y

45
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The remaining term is

—To19C) F Toos(y = —Tu12C) + TuosCs = Tojo = Typo.

Note that we have already shown that

Toos = T423.

Normalization (phase2)

Ty — — - = l = Cy = {7 or ¢ = -

Ty12 = T2 = Il(,,f;j =0 = Cr = 0.

Similar to the previous case, we can asswme that /[, # 0.

Again, by evaluating the equations (2.31). we can compute the coelficients.

Iy
R d(]) Cale B Iy
o= T T = T Ty = 1, My = ——
P l Ce
&3]
Iy
([(?) 4 l
73 = I, 7212—*/ ; /223—*(“
el 1 6
5
2 . . A
. Cyy G5 - deg B (cy + 1yc6)cq
4 = ‘{(‘f>~j_- =0, v = L /—
Ce | Ce I
2 o 23,2
N ) N <(/4 + (,4(,(;/;; + ]2(‘(3>(’(i o ()
T3 = T C4. T30 = 3 T =
I
: l —
Ty = b, Ty = —— = Tagg Ty = —— = Tun
C Il

Hence

(/Cvl = ANAGFTIRGA G+ TG A G F G A
ACy = 3 AN Co + o120 A Qo+ 113G A 3
ACs = Yy NGt Y6 A G+ TaogCo A Gy 4 Tyl A G+ T30 A G

ACy = v NG+ TaoC A Qo+ TaosCa A G+ G A G,
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whore

. 2 2
N o —1 » _ - (»"4(’6[1 e (.(;l|_52 N _II - []-fié
noo= TGk T = oy s T R
6763 ,[1 ll('(;
o ”‘2] oA . _(:4I1+IIA£\(3[)‘*/I.£-3(11 - Al|-f:’.7/i
iy Tl 2T, Teie 2 STy = -
Cg | II(Yi
9 )
W gy L deg - el £ Dy
4 = 'I“('(,“)-, 6= T T T Ty T Ty =
| Ce Ca /1
272 o 2 ‘
’ i (,(3((,,4 + 104 *Jr /;;(,U /_2) R 9~ 2
T2 — 72 cys = 2y = ——dc.
1 C
i /Ifl('l'(i — [1.5:;(14 - [](,14 . */1‘5.; e /|
Tye = /2 c Tary = 1 Ty = - 4 .
1 /1(,()-
Absorbtion of torsion (phase3)
dCr = NG+ QLA G
dCy =73 NG
([C:a — 74 AN+ :7(; A (3
dCy =73 NG+ G A G
wheoere
Y1 =71+ TG + Tsls.
V3 = Yy o TaeGr b Toos(s = Tooy = 2753 + |
Yy = v 73130+ 731000,
Y6 =TV — TawsCe = = = =7 — Ti2Ce — T3z = Ty = T

Normalization (phase3)
Let 7323 = i1,

This gives us the Bianchi identity which was obtained earlier.
/1.52 - */1 /:5'

Therefore this does not give us any new identity.

Lot



. Ty e

2713+ 1 = 7ona = Gy = Jf:'w‘+'2[| — 1.
Therelore

Ly,

Cg .
Lol

Ta12 = T212.

Tyo3 = Tooy = 2T)p3 + 1

Note that the latest equation gives us nothing new.

At this moment, we assume 1, does not vanish. Equivalently. ¢ is not zevo.
Note that if ¢5 does vanish we cannot evaluate any further group rednctions at this
step and we must prolong the system: This is becanse agy is not 1 in the [ollowing

agroup element.

) 0 0 0
0 e 0 0
¢y 5 0 0
e ocqa—1 0 1

So, now we assume that ¢g # 0. We rewrite equations (2.31).

dCy = A G+ 7120 A Co + T A G+ G A G

wheore
C ([]4 (,‘414/1 — [jlléz */12 — /]{_.€
= -, Ti19 = — . T 3=
q I, 112 ]f T113 1,
and

dCy = 3 N (o + 721200 A G + Top3C0 A Gs.

where

2 —‘(1_1[J+,IJ£2[4—(‘4[|£. _IIE‘ —/1
R — —*dl — 2’\ . T = u 1_ 3 . Ty = Rt .
i3 14 4 il 212 [f 1223 /1/71

and

ACy =y NG+ 7 A G+ Taonlo A G + T30 A Gy + 731000 A o
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where

/2 C dl,
T4 = ]I d( 14) e = /v: = =7 T3 = Oy,
i (4/4+[;14 [f((i+(4/4[;+/f/_>)
T3 = M/I— T312 = 2 .
|

and finally
dCs = v AN G+ TuroCi A Co + TuosCo A G+ G A G,

where

~ —

—2([/4 ! All.{;;_[l /]‘Ell4 (4]1&—(1/[

Tary = 1y Tyay = ——, Ty12 =

" T 8 11, - IE
The differentials of the lifted coframe are given by

j][lc

(ICL:(THQ ; )Q[AC2+Q2AC§ (

Liegr o o
I];g)(] A Gs

. Ue. 21, . Uienn o o
dCy = (Ta12 + ,ll,i“ €y — ;IEI 1G A Co + (793 + ,lf 2)Ca A (3

dCy = (%(1(‘4) NG+ (T30 + ﬂi)c R

7 )G A Gy (T +

Je ~I|C 2r|/1
A&y = Ty + —7=5 +

)/lés

/f )(' /\Qi

OGN +HUAG+ (T

Ly

Absorbtion of torsion (phased)

So far, everything has been absorbed except d¢;.
ACy =74 N+ 30300 A G,

where

~ o o —
a4 = T4+ T31080 + 731388

Normalization (phased)




The only remaining term is

. Tilag oy ly A+ I3 12 4 141, 6
IS o 4[4.52 _ G 4+ 13 ; + 1yl & _
1 1
Therefore
ey = —I3ly — lyg,. (2.33)

We now use the Bianchi identities and normalize the group paramcter ol transfor-
mations (2.29) to ohtain the structure equations explicitly.

Let

A¢, = —KiG NG+ G A G,
where
Note that

Also suppose that

whoere

From the structure equations, we know that

!
Torp = Toi2 +

- 7_4]})_*_‘)‘/)[4«5:% 2/1£|
) 2
e [1, /
where

Ty = T212

will be obtained by absorbtion of torsion and normalization. Next. we deal with the
differential of &;.
2

I Iilslye, .
A&y = %(”5 A G+ (1312 + 4—[21“{;)@1 A (o + (7303 +
: 1

1o AN Gy

l4lse,
|

/

+ (T;”;;—‘r——j{ >£| /\Q;; = I\;g@l /\Cz+ ]\4(,1 /\Q-'%A
!

o0



where

, By + T3Us Ty — Tag,) + 13012 + Il |
N, — glo + 4( 543 l{j) + 4( 5+ 1 4‘5«). (2“)
|

S
K, = _cl+_4g~, (2.39)
|

The last structure equation is
dC = (Th2)0 A G+ G A G+ (Thay) e A G,

where
205 ¢. ,
T/l';’.'i = Tyo3 + (;& =1-2A | .
I3

Therefore, the resulting structure equations are

ACy = = K\G NG+ G NG
(’/Cg = l‘ygcl A C‘Z -+ (J - 2,/\1)(2 A C:{

' (2.30)
dCy = K3C A G+ Ny A G
Ay = Waly NG+ G NG+ (1 —2R7)G A G
Note that
F Lo
Ty = T Upe
3 [‘]7 li
We now compute /. Take I = 7.
/. 70, L.l
[ = == 42 — 1= = 4+ 9] — ] = P
1 Iy /’/P /’/1/'
Hence
L.L ;
[y = % (2.37)
T Lo

At this stage, we compute the formulas for the derived invariants.

Take the covariant derivative of K.

AN = NG+ KO+ RNe,G+ Ko G= K&+ Neg,lo+ Ney&s + VG



We evaluate the derived invariants explicitly.

- P % Is 1o Ire
/\-(l = Tll/\f] — /Tl\‘gS + ﬁ/\fl

. I3 - Y
l\_<2 - T:-/\-EZ -+ (T: - l)]\.fl

Ny

/\ (s — '—'“[‘

A@l = K £
Bianchi’s identities:

0 = B¢ = —dNi NG NG+ NG AN NE = NG NG NG

= (Ko + Ko+ NG AGAG

Ky ey + Ko+ Ky = 0.
The next equation is
0 = d*G=dKsANGANC+ Ko(=KiGAG+HGAG) NG
— oG A (G A G+ (1 =200 )G A G) — 2dR T A G A G
H(1 = 2N ) (KoG NG+ (1 — 21{[)@ NSNS

(1 = 2K0)Co A (K3C A Go + Kl A G).

Therelore

Koco+ KKy = 2K ¢, + Ky =21, Ky = 0.
The last two cquations are
0=d* ¢ = Kyoy — Ky, — K /}’;; + (AR Ky — IW3) = 0.
0=d*C¢ = Kog, + K Ko — 2K ¢, + Ny — 2K, Ky = 0.
Therefore

Koer 4 2610+ Ky Iy + 2K Ny + (5K = 4K Ky 4+ AR,) = 0,

22



The other case to be considered is when Ly, = 0 f.e. [, = 0.
Now after phase 3 of the absorbtion of torsion process, the paramecter o is zero. We

should reduce the structure group Gy to Gy C Gy,

e 0 0 0
0 O3 0 0
0 0 0 0

Cr  Cy — 11
cr oc3—1 0 1

Modifying (2.29) we obtain

Al = =0 NG +GAG
dCy = =213 N (5

ACy = NG+ T A

dCy = =20 NG+ G NG,

where o and 3 are equivalent, modulo the hase colrame to (the right invariant
coframe) vy and v on (5. The action of the reduced group (/5 on the torsion is
trivial, since there is no non-constant torsion left in (2.38).

Therelore, there is no (urther possible group reduction.

0= =y + T2l = Y6 + TG + 713G

Hence
- - - J‘ - IR
O = T Tl Tyt =l — STl (2.41)
I - o 1 = v IS
Fo= e+ TeCe F Tl — 372|2Q|- (2.42)

Now we compiite the differentials and then absorb these two new structure equations,

dov = BG AN+ 2a A .

d3 = —a N
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By adding up the above equations to the previous structure equations obtained [rom
B O
(2.40), we reduce the prolonged system to an {¢}-structure.

If 13 =0 we obtain
]%]6~C2 - [2(1'

Otherwise, we can normalize B to 1, and obtain

cg = ly.

(¢) point transformation divergence equivalence (case m = 4):

The lifted coframe is given by
o o

01 = dyn
Oy = dorp + a1
B = dyn + dsrp + dgips

O, = deny + (dy — 1)1 + )4

where

m = hé

=& + &

Ny = 0a&h + by

ny = duw,
and

1
])[ = ])(’i = /i'\/ ’[;‘ /)4 = —5/\’/;;'\/ ‘/]‘,

So

dfy, = 0y A By 4 T30 A Os 4+ 71000 A Oy + a3, A Oy

A0y = 6o N O, -+ 05 A By -+ To100) A O + o130 A by + Toaslls A0y
dBy = 0y NGy + 05 A B + 74108, A Oy + 731300 A Oy Taosts A U,
dBy = 07 A0 4+ 045 A Oy -+ Ty100) A By + Tyosbo A Gy + 14360 A .

BE



where

g

,.\
I

T412

([(([']) —Sl\"llld;rg — ('1‘_) 5]&'(]5([;;,/1 + (l;;(h (/[
T Ty T T T & 3 Tioy = .
dy g dsdg oyl
dscd(dy) — dad(dy) d{dy) dydy
. 03 = Tooy = -
(1]([;; (l;; (/1(/;;(/(5
—chdsJyds — (1;3 — =d: shdydy Jy + dody -+ dsds,
To1o — R
dy iyl o y el
(]3(](([7) — (,]2.([((]3) ([(([;;) (f;; — (/-2([7
L0y = s Ty T ————
([J.([;; (];; ([](l;;dﬁ

('/\"([5(17,,11 + (13([5 — ({j + ([_1([77

fl](l;;([(j

The first three phases of absorbtion and normalization of torsion are as follows
Phase 1.

Tz = 1 =

Too3 =

N

Phase 2

Toro = T412 = ([,',:()
Toiy = T;J;—] = (/g:j
i
)
Phase 3.
Ty = Ty (This equation is always satisfied.)
2(:/1".]1
Tyoy = 2Ty = dv = ————.
3dg

The [ourth casc is

Tan = 1+ sigll,]4 = (s = f/ []4\

where & denotes the ambiguity in the sign, and

¢

. 2 2 .
J4 = € — 5(’/1"./1_,,]_{ - *le

9
Is not zero, otherwise we must prolong the system. The last phase is obtained by
Phase 5.

Tyoy =0 = ([_1 = —/‘A\B];]A,/._,.



After absorbtion of torsion, we can obtain the structure equations

Aty = —RMOL N Os 4y A Oy,

dfy = RMa0y Ny + 0y NGOy — 20004 N By,

dfs = N3b) A By + £ALE NG,

by = RMO, N Oy + (1 + )0 ANy — 200105 N 6y,

where

| .
3 Jl J4 - '—/4.7];;

1"/ =
I (/3
, 2 Sy i
My = =20 + 5000 = Jiday,) — 252220
3 gy
A /;; = ']j=]2 + '],_:':‘]4;712.7]37
‘\/4 - ‘]il.l“ + <]I <]4.1]-2 -+ ']4«712.7):), + '/.'5'/-1‘
We can now compute the derived invariants.
. 2 ] 2
1\ /_()J = f\"{tl;lj\ljil + g,]'] ,]41‘?\ /J]'_) + {ij-W‘_’ A/_,“ - 5:]1 ,/4;"\ /_,“ }
My, = .],;fj\/'ﬂ2 4+ (J7 = L)AL,
A,
/\/4()1 = /:',4'—“3
Jy
My, = M,
Therefore, the Bianchi identities are obtained.
J’\[L()_, -+ 1\/2 -+ 1’\/4 = (),
A /‘2.():; - 2/\/[_()1 - 1\/1(1\/2 + 21\/4) = (),
A [3.(7)3 - A /4‘()2 - ([\/] + l)’\[; = O
M, = 0 (which is always satisfied).

[n the phase 4, il J; = 0 we cannot obtain any more group reductions and we need
to prolong the system and then absorb and normalize the torsion coeflicients ot the

prolonged systein [7].



Conclusions

In this thesis, we reviewed the main steps in the solution of the cquivalence proh-
lem of Elie Cartan, and carried out an explicit. implementation of Cartan’s method
in the case of first order Lagrangians on the line. The sohition of the equivalence
problem is based on the construction of a complete set of local invariants. that were
first obtained in [7]. An obvious question that arises from this work is whether these
invariants have practical applications in other arcas of mathematics. The answer Lo .

this question is a clear 7yes”.

Indeed, the solution of the Lagrangian equivalence
problem reviewed in this thesis leads to a highly original approach to the classifica-
tion problem of binary forms in classical invariant theory. [10]. The local invariants
ol the equivalence problem for Lagrangians give rise to a complete set ol local invari-
ants for binary forms which can be used to derive necessary and sufficient conditions
for equivalence which would not have been readily attainable in the content of clas-

sical methods in invariant theory.

,.
|
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