
ar
X

iv
:0

91
2.

18
69

v1
  [

m
at

h.
C

V
] 

 1
0 

D
ec

 2
00

9

FORMAL AND FINITE ORDER EQUIVALENCES

DMITRI ZAITSEV*

Abstract. We show that two families of germs of real-analytic subsets in Cn are formally equiv-
alent if and only if they are equivalent of any finite order. We further apply the same technique
to obtain analogous statements for equivalences of real-analytic self-maps and vector fields under
conjugations. On the other hand, we provide an example of two sets of germs of smooth curves
that are equivalent of any finite order but not formally equivalent.

1. Introduction

There are three basic equivalence relations between germs of real-analytic submanifolds in Cn.
The first is that of biholomorphic equivalence, the second of formal equivalence and the third of
equivalence of any finite order (see §2 below for precise definitions). In [BRZ01] Baouendi, Roth-
schild and the author proved that at points of general position, these three notions of equivalence
coincide (where an equivalence of order k was called a k-equivalence). Moser and Webster [MW83]
gave an example of two germs of surfaces in C2 (at their complex points) that are formally but
not biholomorphically equivalent. Thus, in general, biholomorphic and formal equivalences do not
coincide. It remained a question whether formal equivalence for real-analytic submanifolds always
coincides with their equivalence of any finite order.

The present paper answers the latter question affirmatively. In fact, the affirmative answer
is given even for (possibly singular) real-analytic subsets as well as for their arbitrary families
(Theorem 2.1). On the other hand, in §7 we provide an example showing that for countable
unions of smooth complex curves in C2, the notions of formal equivalence and equivalence of any
finite order do not coincide in general.

The technique used in the proof can be applied in other situations. In §6 we demonstrate it
for equivalence relations between real-analytic (in particular, also holomorphic) self-maps under
biholomorphic conjugations as well as for closely related equivalence relations between vector
fields.

2. Preliminaries

In the following we summarize the definitions for various equivalence relations. Let Φ: (Cn, 0) →
(Cn, 0) be a formal invertible map given by a power series in z = (z1, . . . , zn) ∈ Cn vanishing at 0.
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2 D. ZAITSEV

2.1. Equivalences for ideals and real-analytic sets. We write z = x + iy ∈ Rn + iRn and
denote by R[[x, y]] the ring of all formal power series in x and y. As customary, denote by m

k ⊂
R[[x, y]] the maximal ideal consisting or all power series vanishing at 0.

(1) Φ is said to be a formal equivalence between two subsets I, J ⊂ R[[x, y]] if f ◦ Φ ∈ I for
every f ∈ J and g ◦ (Φ−1) ∈ J for every g ∈ I.

(2) Φ is said to be an equivalence of order k between two subets I, J ⊂ R[[x, y]] if f ◦Φ ∈ I+m
k

for every f ∈ J and g ◦ (Φ−1) + m
k ∈ J for every g ∈ I.

(3) Φ is a said to be a formal equivalence (resp. equivalence of order k) between two germs at
0 of real-analytic subsets S, T ⊂ Cn if it is a formal equivalence (resp. equivalence of order
k) between their ideals in R[[x, y]]. We write Φ∗S = T (resp. Φ∗S ∼k T ).

(4) Φ is said to be a formal equivalence (resp. equivalence of order k) between two families
(Sα)α∈A and (Tα)α∈A of germs at 0 of real-analytic subsets in Cn if Φ∗Sα = Tα (resp.
Φ∗Sα ∼k Tα) for all α ∈ A.

(5) Φ is said to be a formal equivalence (resp. equivalence of order k) between two sets {Sα}α∈A

and {Tβ}β∈B of germs at 0 of real-analytic subsets in Cn if for every α ∈ A there exists
β ∈ B with Φ∗Sα = Tβ (resp. Φ∗Sα ∼k Tβ) and for every β ∈ B there exists α ∈ A with
(Φ−1)∗Tβ = Sα (resp. (Φ−1)∗Tβ ∼k Sα).

Similarly to (4) and (5) one defines formal equivalence and equivalence of order k for families
(Iα)α∈A and (Jα)α∈A of ideals in R[[x, y]] as well for sets of ideals {Iα}α∈A and {Jβ}β∈B.

We have the following result stating the coincidence of the two notions of equivalence for families
of ideals and real-analytic sets:

Theorem 2.1. Two families of ideals in R[[x, y]] are formally equivalent if and only if they are

equivalent of any finite order. In particular, two families of germs at 0 of real-analytic subsets of

Cn are formally equivalent if and only if they are equivalent of any finite order.

On the other hand, the corresponding notions of equivalence do not coincide in general for
(countable) sets of real-analytic sets (see §7).

Theorem 2.1 will be obtained as a direct consequence of the more precise Theorem 5.1 below
which gives a description of the set of all formal equivalences between two families of ideals (or
real-analytic subsets) as well as their relation with finite order equivalences.

3. Semi-algebraic sets and Nash groups

The first main ingredient is the theory of semi-algebraic sets and maps as well as of Nash
manifolds and Nash groups. For the reader’s convenience, we recall here the terminology. For the
proofs of the properties of semi-algebraic sets, we refer to Benedetti-Risler [BR90].

Definition 3.1. A subset V of Rn is called semi-algebraic if it admits some representation of the
form

V =

s⋃

i=1

ri⋂

j=1

Vij
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where, for each i = 1, . . . , s, and j = 1, . . . , ri, Vij is either {x ∈ Rn : Pij(x) < 0} or {x ∈ Rn :
Pij(x) = 0} for a real polynomial Pij.

As a consequence of the definition it follows that finite unions and intersections of semi-algebraic
sets are always semi-algebraic. Moreover, closures, boundaries, interiors and connected components
of semi-algebraic sets are semi-algebraic.

Proposition 3.2. Every semi-algebraic set in Rn admits a stratification into a finite disjoint

union of semi-algebraic subsets, each of which is a connected real-analytic submanifold of Rn.

In particular, a semi-algebraic set has finitely many connected components. The natural mor-
phisms in the category of semi-algebraic set are semi-algebraic maps:

Definition 3.3. Let X ⊂ R
n and Y ⊂ R

n be semi-algebraic sets. A map f : X → Y is called
semi-algebraic if the graph of f is a semi-algebraic set in Rm+n.

Theorem 3.4 (Tarski-Seidenberg). Let f : X → Y be a semi-algebraic map. Then the image

f(X) ⊂ Y is a semi-algebraic set.

Combining real-analytic manifolds with semi-algebraic sets we obtain the categories of Nash
manifolds and Nash groups:

Definition 3.5. (1) A Nash map is a real-analytic function f = (f1, . . . , fm) : U → Rm (where
U is an open semi-algebraic subset of Rn) such that for each of the components fk there is
a nontrivial polynomial P with P (x1, . . . , xn, fk(x1, . . . , xn)) = 0 for all (x1, . . . , xn) ∈ U .

(2) A Nash manifold M is a real analytic manifold with finitely many coordinate charts
ϕi : Ui → Vi such that Vi ⊂ Rn is open semi-algebraic for all i and the transition functions
are Nash (a Nash atlas).

(3) A Nash group is a Nash manifold with a group operation (x, y) → xy−1 which is Nash with
respect to every Nash coordinate chart.

Remark 3.6. For the classification of one-dimensional Nash groups, see [MS92].

Nash submanifolds and subgroups are defined in obvious manner:

Definition 3.7. A Nash submanifold in a Nash manifold is any real-analytic submanifold, which
can be defined locally in a neighborhood of each its point by Nash functions f1 = . . . = fm = 0
satisfying df1 ∧ . . . ∧ dfm 6= 0. A Nash subgroup H of a Nash group is any subset which is both
Nash submanifold and a subgroup.

In particular, Nash group is always a Lie group with finitely many connected components and
a Nash subgroup of a Nash group is always a real-analytic Lie subgroup.

Given a Nash manifold M , we call a subset S ⊂ M semi-algebraic if it has semi-algebraic
intersection with every Nash coordinate chart.

Lemma 3.8. Let H be a subgroup in a Nash group G. Assume that H is also a semi-algebraic

subset of G. Then H is a Nash subgroup of G.
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Proof. Consider a Nash coordinate chart ϕ : U → V ⊂ Rn in G around a point g0 ∈ H . Since H
is semi-algebraic, S := ϕ(H ∩ U) is semi-algebraic in Rn. By Proposition 3.2, S admits a finite
stratification into disjoint semi-algebraic sets which are real-analytic submanifolds. Let A ⊂ S be
one of these submanifolds of the highest dimension and choose a point a ∈ A. Then H is a Nash
submanifold of G in a neighborhood of a′ := ϕ−1(a). Since H is subgroup of G, it is also a Nash
submanifold in a neighborhood of its every point. Hence H is a Nash subgroup. �

Corollary 3.9. Let ϕ : G → G′ be a Nash homomorphism between two Nash groups. Then for

every Nash subgroup H ⊂ G, the image ϕ(H) is a Nash subgroup of G′.

Proof. By Theorem 3.4 applied in coordinate charts, ϕ(H) is a finite union of semi-algebraic subsets
of G′ and is therefore semi-algebraic. Then ϕ(H) is a Nash subgroup of G′ by Lemma 3.8. �

Lemma 3.10. Let (Hm) be a descreasing sequence of Nash subgroups of a Nash group G, i.e.

Hm ⊃ Hm+1. Then (Hm) stabilizes, i.e. Hm = Hm+1 for m sufficiently large.

Remark 3.11. Note that a decreasing sequence of Lie subgroups need not stabilize, e.g. take
Hm := mZ.

Proof of Lemma 3.10. Clearly the dimension dimHm stabilizes after some m = m0. Since for
m ≥ m0, every subgroup Hm ⊂ Hm0

has the same dimension, it must coincide with a union of some
of the connected components of Hm0

. Since Hm0
has only finitely many connected components,

it has only finitely many possible Nash sugroups of the same dimension. Hence the sequence Hm

must terminate. �

4. The formal division algorithm

The second main ingredient is the formal division algorithm. We closely follow the article [BM87]
of Bierstone and Milman, where the reader is referred for further details.

Let K be a field and K[[t]] the ring of all power series in t = (t1, . . . , tn). Consider the order on
the set of monomials ctα = ctα1

1 . . . tαn

n induced by the lexicographic order from the right on the
(n+ 1)-tuples (α1, . . . , αn, |α|).

Definition 4.1. For every power series f 6= 0, its initial exponent is the multi-index α of the
smallest nonzero monomial in the expansion of f . Given an ideal I ⊂ K[[t]], its diagram of initial

exponents N(I) is the set of all initial exponents of all nonzero elements f ∈ I.

Theorem 4.2 (Grauert, Hironaka). Let g1, . . . , gk ∈ K[[t]] be nonzero elements with initial expo-

nents α1, . . . , αk respectively and let f ∈ K[[t]] be another element. Then there exist q1, . . . , qk, r ∈
K[[t]] such that

f = q1g1 + . . .+ qkgk + r

and r has in its expansion no nonzero monomials cαz
α with

α ∈
k⋃

j=1

(αj + N
n).
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Since I is invariant under multiplication with monomials, it follows that N(I) = N(I)+Nn. We
have the following elementary lemma:

Lemma 4.3. Any increasing sequence N1 ⊂ N2 ⊂ . . . of subsets Nk ⊂ Nn satisfying Nk = Nk+Nn

terminates.

Proof. We proceed by induction on n. The statement is obvious for n = 1. Suppose it holds for
n = l and consider the case n = l + 1. Suppose by contradiction that (Nk) is a strictly increasing
sequence of subsets of Nl+1 satisfying the assumptions of the lemma. For each a ∈ N, set

N
a
k := {α ∈ N

l : (α, a) ∈ Nk}, N
a := ∪sN

a
s .

Since Nk = Nk + Nl+1, it follows that N
a
k ⊂ N

a+1
k and hence N

a ⊂ N
a+1. Then, by the induction

assumption, the sequence (Na) terminates for some a = a0. Using the induction assumption again
for each a = 0, . . . , a0, we conclude that there exists k0 such that each sequence (Na

k)k terminates
after k = k0. That is, assuming k > k0, we have N

a
k = N

a
k0

= N
a for all a = 0, . . . , a0. Furthermore,

with the same assumption, for every a > a0, we have

N
a
k ⊂ N

a = N
a0 = N

a0

k0
⊂ N

a
k0

proving that the sequence (Na
k)k terminates after k = k0. Thus N

a
k = N

a
k0

holds for every a, hence
Nk = Nk0

. That is, the sequence (Nk) terminates and the proof is complete. �

Corollary 4.4. Any subset N ⊂ Nn with N = N + Nn contains a finite subset B ⊂ N with

N = B + Nn.

The minimal subset B with that property is called the set of vertices in [BM87, 1.4].

Proof of Corollary 4.4. Assume by contradiction, that for any finite subset B ⊂ N, we have
N 6= B + Nn. Then we can construct iductively a sequence (βk) in N such that

βk+1 /∈ Nk := {β1, . . . , βk} + N
n

for every k. Hence the sequence (Nk) satisfy the assumptions of Lemma 4.3 but does not terminate,
which is a contradiction. �

Now given an ideal I ⊂ K[[t]], let B = {β1, . . . , βk} ⊂ N(I) be any finite subset satisfying the
conclusion of Corollary 4.4 and choose any g1, . . . , gk ∈ I whose initial exponents are β1, . . . , βk

respectively. Then Theorem 4.2 yields:

Corollary 4.5. Let I ⊂ K[[t]] be an ideal. Then for every f ∈ K[[t]], there exist g ∈ I and

r ∈ K[[t]] such that f = g + r and r has in its expansion no nonzero monomials cαt
α with

α ∈ N(I).

In the following we denote by m ⊂ K[[t]] the maximal ideal consisting of all formal power series
vanishing at 0.

Proposition 4.6. Let I ⊂ K[[t]] be an ideal and f ∈ K[[t]] a formal power series with f ∈ I + m
k

for every k. Then f ∈ I.
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Proof. In view of Corollary 4.5, we may assume that f has no monomials cαt
α in its expansion

with α ∈ N(I). Assume by contradiction that f 6= 0. Then choose any k with f /∈ m
k. By the

assumption, there exists g ∈ I with f − g ∈ m
k. Then f and g in their expansions have the same

monomials of order less than k. In particular, g in its expansion has a nonzero monomial of order
less than k but none of those monomials cαt

α satisfies α ∈ N(I). By Definition 4.1, the initial
exponent of g does not belong to N(I), which is a contradiction with the construction of N(I),
because g ∈ I. �

Proposition 4.6 can be restated as jkf ∈ jkI for all k implies f ∈ I. Here jkf is the k-jet of
f (at 0), which is the equivalence class of f , where two formal power series are equivalent if they
coincide up to order k. Furthermore, jkI := {jkg : g ∈ I}. We shall use the following consequence
of Proposition 4.6:

Corollary 4.7. Let Φ: (Km, 0) → (Kn, 0) be a formal map and I ⊂ C[[t1, . . . , tm]], I ′ ⊂
C[[t1, . . . , tn]] be two ideals. If Φ∗(jkI ′) ⊂ jkI for all k, then Φ∗I ′ ⊂ I.

Proof. Fix any g ∈ I ′. Then the assumption Φ∗(jkI ′) ⊂ jkI implies that g ◦ Φ ∈ I + m
k for

every k. By Proposition 4.6, we have g ◦ Φ ∈ I. Since g ∈ I ′ was arbitrary, we obtain the desired
conclusion. �

5. Formal and finite order equivalences

Here we give a proof of the main theorem describing the set of all formal equivalences between
two families of ideals in R[[x, y]], where z = x + iy ∈ Rn + iRn. We continue using the notation
jkf and jkI from the previous section for k-jets (at 0) of a formal power series f and an ideal I
respectively. (Note that k-jets here only make sense at 0.) We further denote by Gk the group of
all invertible k-jets of formal maps Φ: (Cn, 0) → (Cn, 0). It is easy to see that Gk has a natural
structure of a Nash group (see §3 for this notion). Given any k-jet Λ ∈ Gk, its l-jet jlΛ ∈ Gk for
l < k is defined in an obvious way by truncation.

Theorem 5.1. Let (Iα)α∈A, (I ′α)α∈A be two given families of ideals in R[[x, y]] that are equivalent

of any finite order. Then there exists a sequence of Nash subgroups Hk ⊂ Gk(Cn), k = 1, 2, . . .,
and of right Hk-cosets Rk ⊂ Gk(Cn) such that the following hold:

(i) jkHk+1 = Hk and jkRk+1 = Rk for all k;
(ii) a formal map Φ: (Cn, 0) → (Cn, 0) is a formal equivalence between (Iα) and (I ′α) if and

only if jkΦ ∈ Rk for all k;
(iii) for every k there exists l such that if Φ is an equivalence of order l between (Iα) and (I ′α),

then there exists a formal equivalence Φ̃ between (Iα) and (I ′α) with jkΦ̃ = jkΦ.

Proof of Theorem 5.1. For every integer k ≥ 1, consider k-jets jkIα, j
kI ′α ⊂ R[[x, y]]/mk, α ∈ A.

Let Gk ⊂ Gk(Cn) be the subgroup of all k-jets preserving each jkI ′α, α ∈ A. Then Gk is a real
algebraic subgroup of Gk(Cn). Let Jk ⊂ Gk(Cn) be the subset of all k-jets sending jkIα onto jkI ′α
for each α ∈ A. Note that, by definition, Φ is an equivalence of order k + 1 between the families
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(Iα) and (I ′α) if and only if jkΦ ∈ Jk. According to our assumption, Jk 6= ∅ for every k. Then Jk

is a right Gk-coset, i.e. Jk = Λ ·Gk, where Λ ∈ Jk is any element.
We next consider the truncation map Gl(Cn) → Gk(Cn), Λ 7→ jkΛ, for l ≥ k and the image

subgroups jkGl ⊂ Gk(Cn). By Corollary 3.9, each jkGl is a Nash subgroup of Gk(Cn). Furthermore,
if a l-jet Λ preserves each jlIα, α ∈ A, its k-truncation jkΛ preserves each jkIα. Hence jkGl ⊃
jkGl+1, i.e. (jkGl)l is a decreasing sequence of Nash subgroups of Gk(Cn). Similarly, (jkJ l)l is a
decreasing sequence of subsets. By Lemma 3.10, there exists l = l(k) ≥ k such that

(5.1) jkGl = jkGl′ for all l′ ≥ l.

Since the right Gl-action on Gl(Cn) commutes with truncation, every jkJ l ⊂ Gk(Cn) is a right
jkGl-coset. Since the sequence (jkJ l)l is decreasing, (5.1) implies

(5.2) jkJ l = jkJ l′ for all l′ ≥ l.

We now set

Hk := jkGl(k) =
⋂

l≥k

jkGl ⊂ Gk(Cn), Rk := jkJ l(k) =
⋂

l≥k

jkJ l ⊂ Gk(Cn).

Then each Hk is a Nash subgroup and each Rk is a right Hk-coset. We claim that Hk and Rk

satisfy the conclusions of the Theorem.
Indeed, choosing l = max(l(k), l(k + 1)) ≥ k + 1, we have Hk = jkGl and Hk+1 = jk+1Gl as

consequence of (5.1). Therefore,

jkHk+1 = jk(jk+1Gl) = jkGl = Hk

proving the first identity in (i). The proof of the second identity is completely analogous.
Now let Φ: (Cn, 0) → (Cn, 0) be a formal equivalence between (Iα) and (I ′α). Then we have

jkΦ ∈ Jk by the construction of Jk and therefore

jkΦ = jk(jl(k)Φ) ∈ jkJ l(k) = Rk.

Vice versa, let Φ be a formal map satisfying jkΦ ∈ Rk for all k. Since Rk ⊂ Jk, we also have jkΦ ∈
Jk, i.e. Φ is an equivalence of order k for every k. The latter property means that Φ∗(jkI ′α) = jkIα
for every k and α. Now Corollary 4.7 applied for Φ and Φ−1, implies that Φ∗I ′α = Iα for all α, i.e.
Φ is a formal equivalence between the families (Iα) and (I ′α). This proves (ii).

Finally to show (iii), for every k, choose l = l(k) as above with the property that Rk = jkJ l

and let Φ be an equivalence between (Iα) and (I ′α) of order l + 1. Then by our construction,
we have jlΦ ∈ J l and hence jkΦ ∈ Rk. In view of (i), we can construct inductively a sequence
Λm ∈ Rm, m ≥ k, satisfying Λk = jkΦ and Λm = jmΛm+1. Then the sequence (Λm)m≥k determines

a unique formal map Φ̃: (Cn, 0) → (Cn, 0) with jmΦ̃ = Λm for all m ≥ k. In particular, Φ̃ satisfies

jkΦ̃ = jkΦ and jmΦ̃ ∈ Rm for all m. In view of (ii), the latter property implies that Φ is a formal
equivalence between (Iα) and (I ′α) as desired. �
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6. Equivalences for self-maps and vector fields

We next consider the set En of all germs at 0 of real-analytic self-maps F of Cn preserving 0
and equivalence relations on En by conjugations. More precisely, let Φ: (Cn, 0) → (Cn, 0) be as
before a formal invertible map given by a power series in z = (z1, . . . , zn) ∈ Cn vanishing at 0.

(1) Φ is said to be a formal equivalence between two germs F,G ∈ En if G = Φ ◦ F ◦ Φ−1.
(2) Φ is said to be an equivalence of order k between two germs F,G ∈ En if G− Φ ◦ F ◦ Φ−1

vanishes of order at least k at 0, we write G ∼k Φ ◦ F ◦ Φ−1.
(3) Φ is said to be a formal equivalence (resp. equivalence of order k) between two families

(Fα)α∈A and (Gα)α∈A of germs in En if Gα = Φ ◦ Fα ◦ Φ−1 (resp. Gα ∼k Φ ◦ Fα ◦ Φ−1) for
all α ∈ A.

We have the following analogue of Theorem 2.1:

Theorem 6.1. Two families of germs of real-analytic self-maps of C
n preserving 0 are formally

equivalent if and only if they are equivalent of any finite order.

Theorem 6.1 is obtained as a direct consequence of the following analogue of Theorem 5.1 for
germs of real-analytic self-maps:

Theorem 6.2. Let (Fα)α∈A, (F ′
α)α∈A be two given families of germs at 0 of real-analytic self-

maps of Cn fixing 0 that are equivalent of any finite order. Then there exists a sequence of Nash

subgroups Hk ⊂ Gk(Cn), k = 1, 2, . . ., and of right Hk-cosets Rk ⊂ Gk(Cn) such that the following

hold:

(i) jkHk+1 = Hk and jkRk+1 = Rk for all k;
(ii) a formal map Φ: (Cn, 0) → (Cn, 0) is a formal equivalence between (Fα) and (F ′

α) if and

only if jkΦ ∈ Rk for all k;
(iii) for every k there exists l such that if Φ is an equivalence of order l between (Fα) and (F ′

α),

then there exists a formal equivalence Φ̃ between (Fα) and (F ′
α) with jkΦ̃ = jkΦ.

Proof. The proof follows closely the line of the proof of Theorem 5.1. We write jkEn for the
space of all k-jets (at 0) of elements in En. Then consider jkFα, j

kF ′
α ∈ jkEn and let Gk ⊂ Gk

be the subgroup of all k-jets Λ preserving each jkFα, i.e. such that Λ ◦ jkFα ◦ Λ−1 = jkFα for
all α. Let further Jk ⊂ Gk be the subset of all k-jets Λ sending jkFα to jkF ′

α, i.e. such that
Λ ◦ jkFα ◦Λ−1 = jkF ′

α for all α. As in the proof of Theorem 5.1, we note that Φ is an equivalence
of order k + 1 between (Fα) and (F ′

α) if and only if jkΦ ∈ Jk. Hence Jk 6= ∅ for all k and Jk is a
right Gk-coset.

Again, each Gk is a Nash subgroup of Gk. The rest of the proof repeats that of the proof of
Theorem 5.1. �

A closely related important situation is that of equivalences for vector fields. Here we regard
Φ as a change or coordinates, so that Φ is an equivalence between two vector fields ξ and ξ′ if
ξ′ = Φ∗(ξ ◦Φ−1). The notions of formal and finite order equivalences between real-analytic vector
fields are defined in an obvious fashion analogously to the case of real-analytic self-maps above.
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Now the study of equivalences for vector fields can be reduced to the case of equivalences for
self-maps by considering their flows.

Recall that the flow of a vector field ξ in C
n is a smooth one-parameter family of local self-maps

Ft of Cn such that F0 = id and d
dt
Ft = ξ ◦Ft. Since the equivalence problem for non-singular germs

of vector fields (i.e. those not vanishing at the reference point) is trivial, we restrict here only to
germs at 0 of singular real-analytic vector fields ξ, i.e. such that ξ(0) = 0. Then the local flow Ft

is defined for all t and consists of germs Ft ∈ En. Furthermore, by expanding Ft and ξ into power
series in z, it is easy to see that two germs of (real-analytic) vector fields are formally equivalent
(resp. equivalent of finite order) if and only if their flows are formally equivalent (resp. equivalent
of finite order). Hence we obtain the following direct corollary of Theorem 6.1:

Corollary 6.3. Two families of germs of singular real-analytic vector fields in Cn are formally

equivalent if and only if they are equivalent of any finite order.

7. Two sets of curves that are not formally equivalent but equivalent of any

finite order

Our discussion here over complex numbers can be repeated word for word for real numbers
without any change.

We shall consider complex plane curves in C2 passing through 0 and given in the coordinates
(z, w) by w = ϕ(z), where ϕ is a polynomial. Each of the two sets of such curves will be indexed
by two integers (m,n) ∈ N×Z. That is, we define two families {w = ϕm,n(z)} and {w = ψm,n(z)}.

We first construct inductively a sequence of integers cm, m ≥ 1, such that the subsets Sm :=
2mZ + cm ⊂ Z satisfy

(7.1) Sm ⊃ Sm+1,
⋂

m≥1

Sm = ∅.

We first put c1 := 1, so that S1 is the set of all odd integers. Suppose that we have already
constructed c1, . . . , ck with S1 ⊃ . . . ⊃ Sk. Then 0 /∈ Sk and hence Sk has the maximum negative
element ak < 0 and the minimum positive element bk > 0 such that bk − ak = 2k. We put
ck+1 := ak if |ak| > bk and ck+1 := bk otherwise. Obviously Sk ⊃ Sk+1. Furthermore, we have
2k−1 ≤ |ck+1| < 2k. Then it follows that |l| ≥ 2k−1 for any l ∈ Sk+1. Using the above procedure,
we construct cm inductively satisfying the first condition in (7.1) and such that |l| ≥ 2m−2 for any
l ∈ Sm. The latter property immediately implies the second condition in (7.1) as desired.

We now set
ϕm,n(z) := 2mnz + zm+1, ψm,n(z) := (2mn + cm)z + zm+1.

Our main conclusion of this section is the following:

Proposition 7.1. The sets of germs at 0 of the curves {w = ϕm,n(z)} and {w = ψm,n(z)} are

equivalent of any finite order but not formally equivalent.

Proof. As a consequence of the first inclusion property in (7.1), it is easy to see that for each k,
the map Φ: (z, w) 7→ (z, w + ckz) defines an equivalence between the two sets of order k + 2.
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Indeed, since ck ∈ Sm for each m ≤ k, the map l 7→ l + ck defines a bijection between 2mZ and
2mZ + ck = Sm. Therefore, for m ≤ k, Φ maps any curve w = ϕm,n(z) into w = ψm,n′(z) for
suitable n′ and Φ−1 maps any curve w = ψm,n(z) into w = ϕm,n′(z) for suitable n′.

On the other hand, if m > k, we have ϕm,n(z) = 2mnz + O(|z|k+2) and hence ϕm,n(z) =
ϕk,n′(z) + O(|z|k+2) for suitable n′. Therefore Φ maps w = ϕm,n(z) into w = ψk,n′′(z) up to order
k + 2 for suitable n′′. Vice versa, it follows from the inclusion property in (7.1) that for m > k,
ψm,n(z) = ψk,n′(z) + O(|z|k+2) for some n′. Hence Φ−1 maps w = ψm,n(z) into w = ϕk,n′′(z) for
suitable n′′.

We now show that the two sets are not formally equivalent. By contradiction, suppose that we
have a formal invertible map sending each w = ϕm,n(z) into some w = ψm′,n′(z). Consider the
curves w = ϕm,0(z), whose tangent spaces at 0 are all equal to {w = 0}. Therefore, the second set
of curves w = ψm,n(z) must contain an infinite collection of curves whose tangent spaces at 0 all
coincide. However, it follows from the second condition in (7.1) that the latter is impossible. �
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