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In all versions of the method of the inverse scattering problem (MISP), nonlinear inte- 
grable equations arise as compatibility conditions of an overdetermined system of linear 
equations. If one is concerned with the integration of evolution equations on a line (in 
two-dimensional space--time), the compatibility of the overdetermined linear system must be 
identical with respect to the complex parameter %, which, by analogy with the simplest ver- 
sion of the method (the Lax scheme) can be called the spectral parameter. 

In the simplest formulation of MISP ([I], cf. also [2-4]) the overdetermined linear 
system has the form 

~ = U ( x ,  t, X) T, ~t  = V ( x ,  t, ~)~, (1) 

where U and V are matrix rational functions with given disposition of a finite number of 
poles. 

The compatibility condition for (I), the equation 

Ut-- V~+[U, v] = 0  (2) 

f o r  a s u i t a b l e  number and d i s p o s i t i o n  o f  p o l e s  g i v e s  t he  m a j o r i t y  o f  n o n l i n e a r  s y s t e m s  which  
are integrable with the help of MISP. 

It seems quite natural to gene~ralize the scheme given in If], by saying that the func- 
tions U and V are rational functions on an arbitrary algebraic curve. The parameter here is 
the uniformization parameter, and the poles must be given in a fundamental domain of the cor- 
responding Fuchsian group. A conjecture about the possibility of constructing equations 
which are integrable in this way was made in [5]. For the simplest case when U and V are 
elliptic functions of % (the genus of the curve is one), an interesting example was given in 
this same paper. Other examples of integrable equations with "elliptic" spectral parameter 
(which are also of physical interest) were constructed in [6, 7]. For the effective inte- 
gration of these equations the development of the technique of the matrix Riemann problem on 
the torus is necessary. In application to the most interesting example [6] (the anisotropic 
Landau-Lifschitz equation), this was done recently in ~, 9]. An example of an integrable 
system with spectral parameter on an elliptic curve, constructively different from that men- 
tioned above, was constructed in [10]. In addition, there exists another approach which 
allows one to construct integrable systems with spectral parameter on an algebraic curve, 
whose central point is the construction of infinite-dimensional Lie algebras of strictly 
identical growth over the ring of rational functions on the curve. Investigations in this 
direction were carried out by one of the authors, and the results will be published quickly. 

The goal of the present paper is to present examples of integrable nonlinear equations, 
whose spectral parameter is situated on a curve of arbitrary genus (specifically on hyper- 
elliptic curves). Along with this we shall show that the transfer of the spectral parameter 
to curves of genus p~ i is associated with serious difficulties, the nature of which is 
clarified by the Riemann--Roch theorem. In the present paper we shall not use uniformization, 
but rather we represent algebraic curves by systems of quadrics. 

I. Construction of Integrable Systems with the Help 

of Quadrics 

In (I) let the functions U and V have simple poles %n (n = I, ..., N) (which may coin- 
cide). We represent U and V as sums of partial fractions 
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where 

N N v z ~  z 
(3) 

Z0 ~- I; Zn = 

Among the Zi there are N(N- I)/2 relations 

1 
• (4) 

Z~Z~=-- z0 (Z 5-Zd,  i , j ~0 ,  i ~ j .  (5) 
~ - -  ~j 

The r e l a t i o n s  (5) a r e  l i n e a r l y  i n d e p e n d e n t ,  any N -- I o f  them d e f i n e  i n  c o m p l e x - p r o j e c -  
t i v e  s p a c e  CP N a r a t i o n a l  c u r v e ,  whose e x p l i c i t  u n i f o r m i z a t i o n  i s  g i v e n  by ( 4 ) .  The r e m a i n -  
i n g  (N -- t ) ( N - -  2 ) / 2  q u a d r a t i c  c o n d i t i o n s  (5) t u r n  ou t  to  h o l d  a u t o m a t i c a l l y  on t h i s  c u r v e .  
I t  i s  e a s y  to  s ee  t h a t  i t  i s  i m p o s s i b l e  to  add any a d d i t i o n a l  e q u a t i o n s  wh ich  a r e  q u a d r a t i c  
i n  Z i ,  and which  a r e  l i n e a r l y  i n d e p e n d e n t  f rom the  e q u a t i o n s  o f  (5) b u t  c o m p a t i b l e  w i t h  them.  

To get equations which are integrable by means of (1), (3), it is necessary to substi- 
tute (3) into (2) and express all products ZiZj(i~ j) by (5). Setting the coefficients of 
Z~ and ZoZ i equal to zero gives 2N + I equations in 2N + 2 unknown functions Ui, Vi. The 

excess by one of the number of unknown functions over the number of equations explains the 
gauge freedom [2, ll] -- the possibility of performing the transformation 

~ '  = gT; U' = g~g-i @ gUg- l ; .V ,  = gtg-1 + gVg-t ,  (6) 

where g = g(x, t) is an arbitrary matrix function. 

It is easy to see that the general rational case does not differ from the one considered. 
If the degree of the divisor of poles of the functions U and V is N, then among the N partial 
fractions characterizing it there are N(N -- I)/2 linearly ~ndependent quadratic relations, 
which can actually be used to calculate the equations which are integrable by the scheme of 
[ 1 ] .  

We try to generalize the scheme given by saying that U and V are represented in the 
form (3) as before, while the Zi (i = 0, 1 .... , N) are linearly independent and subject to 
the system of quadratic, linearly independent relations (quadrics) 

N 

aijZiZ~-=O, l ~  1 . . . . .  M ,  (7) 

which intersect in a variety of dimensions one of which is an algebraic curveG. Then the Z i are 
rational functions on G; we require that they be linearly independent (if not one can pass to 
a smaller collection of the Zi). Now the compatibility condition (2) leads to a system of 
L = (N + l)(N + 2)/2 -- M nonlinear equations in 2N + 2 coefficient functions Ui, Vi. Taking 
account of the gauge invariance, this system will be completely determined if L = 2N + I, so 
that M = N(N -- I)/2. One has the following theorem. 

THEOREM I. Let the system of linearly independent quadrics of the form (7), where M = 
N(N -- I)/2, intersect in an irreducible algebraic curve G, where the Zi, as functions on this 
curve, are linearly independent. Then the curve G is rational. 

As V. V. Shokurov pointed out to us, Theorem I was already known to mathematicians of 
the last century, including Bertini. At the present time it is clear that this theorem has 
important applications to the method of the inverse scattering problem, including some which 
have no relation to the topic of this paper. Hence we consider it appropriate to give two 
proofs of Theorem I which we have found. 

The first proof is based on the Riemann--Roch theorem and requires additional a priori 
assumptions about the genus of the curve G. Let the curve G be realized by quadrics in N- 
dimensional space, and let its genus p satisfy the condition 2p + ! < N. We consider the 
quantities Yi = Zi/Zo. Due to the linear independence of the Zi these quantities are linearly 
independent on the curve G and form a basis for the space ~y of nonconstant functions which 
are multiples of their common divisor (y). The pairwise products YiYj are rational functions 
lying in the space ~2y of functions which are multiples of the divisor (2y). As shown in 
[12], for N > 2p + I any element of ~ 2y can be represented in the form ~aijyiyj@~Yi@c. 
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It follows from the Riemann--Roch theorem that the degree deg(y) of the divisor (y) is 

equal to deg(y) = N + ~. Hence the dimension of the space ~ 2y is equal to N~ = 2N + p. 

The quadrics are linear relations among the N(N + I)/2 elements of the form YiYj and N ele- 

ments of the form Yi. The total number of these relations is 

M = -  N ( N + t )  + N - - N ~ - -  N ( N - - ~ )  
2 P" (8)  

Thus, the value M = N(N- I)/2 is achieved only for p = 0. Actually, we have proved a 
more general assertion, getting for N > 2p + I the sharp estimate (8) for the maximal number 
of linearly independent quadrics which intersect in a curve of genus p. 

The second proof is more elementary, and it does not allow us to get (8), but makes it 
possible to construct an explicit uniformization of the rational curve G. 

Since the affine coordinates Yi = Zi/Zo (i = I, ..., N) on the curve are linearly inde- 
pendent, the curve cannot lie in a hyperplane of lower dimension. Let P be a point in gen- 
eral position on the curve. We carry the origin to P and we perform a linear orthogonal 
transformation to the moving frame of the curve so that the new coordinate X~ is directed 
along the tangent, X2 along the normal, etc. By dilation of axes one can arrange that 

X~ = X ~ + 0 ( X ~ + ~ ) ,  k = 2 , . . . , N .  

Passing to projective coordinates Xk = Wk/Wo, we note that in the new equations of the 
quadrics the monomials W~ and WoWi do not appear, so that the total number of monomials in 
the quadrics is equal to (N + I)(N + 2)/2 -- 2. We choose among them the 2N -- 1 basis mono- 
mials W~, W~Wi, W~, ..., WN-~WN, W~ and we expand the other monomials in terms of the basis. 
For the monomial WiW j we define the height to be h = i + j and we denote the basis monomials 

by ~h, 2 ~ h ~ i N .  

Expressing the remaining monomials in terms of the basis, we note that monomials of 
height ho can be expressed in terms of basis monomials of height h~ho only. We consider 
the collection of N -- 1 monomials WiWN, 0~ i~ N -- 2. The expansions of these monomials in 
terms of the basis completely determine the curve C. The inverse triangular transformations 

N 

of the form W N = WN; WN_ ~ = WN_ I" W i = W i + ~ c~Wk, 0~i~ N -- 2 allow us to reduce the 
' k = i + l  l 

T! I 

system of expansions mentioned to diagonal form WiW N = ~i+N" In this basis the entire col- 

lection of quadrics looks like this: 

(9) 
! V I I 

so t h a t  W k = (W1/wo)kwo, and  t h e  c u r v e  G i s  r a t i o n a l .  The o r i g i n a l  p r o j e c t i v e  c o o r d i n a t e s  
I I 

can be uniformized as polynomials of degree N in the parameter W~/Wo. 

Since (9) means that all monomials of given height are equal to one another, it is im- 
possible to add to the system (9) another quadric which is linearly independent from the 
preceding quadrics and the number N(N -- I)/2 is maximal. 

2. Case of a Hyperelliptic Curve 

We shall make the rest of the analysis on the concrete example when G is a hyperelliptic 
curve of genus n, defined by an equation 

y2 = Xi~ q_ ai~+lXi~-i v- • • • + a3X q- a~. (10 )  

Introducing projective coordinates y = Zo/ZI, X k = Zk+i/Zk, i ~ L ~ n , we represent the 
curve (10) as the intersection of quadrics 

~'02 : Zn+l~ 2 ~u' ( 1 2 r t + l Z n + l Z ~ z  - ~  . • • - ' -  ( 2 2 Z ~ ;  

Z J ~  = ZvZ~, cz q- ~ = ? - - 6 ,  I < c~, ~, ?, 6 .<~ n ÷ I. (I1)  

The genus of the curve (10) is equal to n- I, the number of quadrics in (II) is the 
maximum possible for a curve with this genus. 

The compatibility condition (2) leads to the following equations (N = n + I): 

OU ~ OV i 
at o~ = [ U ~ , V o ] - ,  [Uo, V~]; ( 1 2 )  
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OVo OVo _ Wo, Vo] = [u~+,, v~ , ] ;  (13) 
Ot Ox 

[Us, Wz]=a~[Un+~, Vn+~]; (14) 

The sys tems  (12 ) ,  (13) g ive  n + 2 d i f f e r e n t i a l s ,  and the  s y s t e m  (13) g i v e s  2n a l g e b r a i c  
e q u a t i o n s  i n  2n + 4 c o e f f i c i e n t  f u n c t i o n s  Ui,  Vi ( i  = O, 1, . . . ,  n + 1). I n  a l l  t h e r e  a re  
n -- 2 e q u a t i o n s  more than  f u n c t i o n s .  C o n s i d e r i n g  the  gauge f reedom t h i s  d i f f e r e n c e  c o i n c i d e s  
w i t h  the  genus ,  e q u a l  to  n ~ 1, and i s  i n  a c c o r d  w i t h  (8 ) .  System ( 1 2 ) - ( 1 4 )  can be c o n s i d e r e d  
on any m a t r i x  a l g e b r a .  Below we r e s t r i c t  o u r s e l v e s  to  the  case  o f  the  a l g e b r a  s l (2 ) .  In  o r d e r  
to c l a r i f y  the  q u e s t i o n  o f  the  c o n s i s t e n c y  o f  t h i s  s y s t e m ,  we n o t e  t h a t  i t  has  the  p a r t i c u l a r  
solution 

(15) 

and ~i, Bi are arbitrary complex constants. Further, considering Ui = ~i~3 + ~Ui, Vi = 
8ioa + 6Vi, we linearize the system (12)-(14), taking 6Ui, 6Vi small. The direct analysis 
which we made for the simplest nontrivial case n = 2, shows that for any choice of constants 
ai, Bi, the linearized system is consistent only in the trivial case when ~Ui, ~Vi commute 
with the matrix o3. This result can be explained as follows. In trying to effect the "dres- 
sing up" of the solution (15) in the spirit of [l], we are led to a matrix Riemann problem 
on an algebraic curve (for n = 2 on the torus), whose solvability requires additional condi- 
tions (cf., e.g., [13]), which can turn out to be unsatisfied identically in the variables x 
and t. 

3. Reduction and General Covariance 

We shall show that on the system of equations (12)-(14) one can impose additional condi- 
tions which guarantee its consistency. Let 

Uo = Uoa3; Vo = v0~a; a = (al, a2); 

U i = u i ~ ;  P ' i = v i a ;  ~ 1 = [ ~  ~] ;  a ~ =  [~ - - 0 ] .  (16) 

Here the two-dimensional vector a has components oi, o2. The restrictions (16) are con- 
sistent with the system (12)-(14) and have the meaning of reductions in it (cf. [1] and [4]). 
Now each of the algebraic equations (13) imposes only one condition on the two-dimensional 
vectors ui, vi. Hence system (12)-(14) now defines 4n + 3 scalar equations in 4n + 6 real 
functions. We note that under reduction of (16) gauge freedom is restricted by multiplica- 
tion of a simultaneous solution of (I), P, by a matrix of the form g(x, t) ~3 and allows us 
to decrease the number of unknown functions by one. Considering this circumstance indepen- 
dently from the genus of the curve the number of unknown functions is two more than the 
number of equations. This circumstance is explained by the general covariance of the system. 
In fact, in our case the linear system has the form (I) 

n@I 1 °Uo)~tf=EZiUilF; Zo ~ x - -  
i ~ l  
n + l  ( l 7) 

Zo ( - ~ - -  Vo) 'F = I ZY~ 'F.  

Under a change o f  c o o r d i n a t e s  x = x ( t ' ,  x ' ) ,  t = t ( t ' ,  x ' ) ,  d e p e n d i n g , o n  two a r b i t r a r y  
T 

f u n c t i o n s ,  (17) p r e s e r v e s  i t s  form,  w h i l e  the  s u b s t i t u t i o n  Ui ÷ U i ,  Vi ÷ V i o c c u r s ,  where 

, Ox at V "  ] 
U i ----- -~z' U ~ + -~x' ~' (18) l , 0 x  c~t 
Vi = - ~  U~ % -bY-V~. 

The g e n e r a l  c o v a r i a n c e  o f  the  c o n s i s t e n c y  c o n d i t i o n s  i s  a c h a r a c t e r i s t i c  f e a t u r e  o f  a l l  
n o n l i n e a r  e q u a t i o n s ,  which a re  c o n s i s t e n c y  c o n d i t i o n s  o f  sys t ems  o f  type  ( 1 ) ,  i f  the  d i v i s o r s  
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of poles of the functions U and V coincide. In particular, this is true on a rational curve 
also. 

Thus, after eliminating gauge and covariant freedoms, we have gotten a system in which 
the number of equations is equal to the number of unknown functions. Linearization of it 
near the particular solution ui = vi = 0, i~ uo = ~, Vo = ~ with ~, B arbitrary constants, 
obviously gives a consistent linear system. We note further that for a special choice of 
the coefficients ai the hyperelliptic curve (3) degenerates into a rational curve. In this 
case the system (12)-(14) under the condition (16) is a new type of reduction in problems 
with rational spectral parameter. In order to extract equations capable of having concrete 
physical applications from the system (12)-(14), it is necessary to solve the algebraic rela- 
tions (14) explicitly, to make a choice of curvilinear system of coordinates in the space x, 
t, and also to fix the gauge freedom (the latter operation is performed with a great degree 
of freedom). In the simplest rational case n = I there arise here in particular the sine- 
Gordon equation and the familiar Redzhe--Lund system [2]. We have seen that in case n = 2 
(p = I) the algebraic conditions (13) can be solvable explicitly but we are still unable to 
get equations having specific physic&l applications. Hence we do not give the explicit (and 
rather involved) expressions for the final equations which arise under several tested methods 
of eliminating the nonuniqueness. 

In conclusion, the authors thank B. B. Venkov and V. V. Shokurov for helpful discussions. 
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