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General criterion of invariance of integro-differential equations under Lie symme-
try group of point transformations is derived. It is a generalization of the previous
form of the criterion to the case of a moving range of integration. This is the situa-
tion when a region of integration depends on external, with respect to integration,
variables which leads to its explicit dependence on a group parameter.
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1. Introduction

We present a general and direct method of determination of symmetry groups of point
transformations for integro-differential equations. The method is a natural generalization
of the Ovsiannikov method for differential equations [1]–[5]. We consider a system of inte-
gro-differential equations (IDE’s) of the form

F (x1, . . . , xn, y, y
1
, . . . , y

m
) +

∫
X(xl+1,...,xn)

dx
′1· · · dx

′lf(x
′1, . . . , x

′l, x1, . . . , xn, y, y
1
, . . . , y

k
) = 0, (1)

where n, m, k, l are arbitrary natural numbers (l ≤ n), x = (x1, . . . , xn), functions F and
f are arbitrary but sufficiently regular to secure the existence of solutions to (1), limits
of integrations (region X) are also arbitrary and can depend on external, with respect to
integration, variables xl+1, . . . , xn. The symbol y

m
denotes the set of all partial derivatives

of m-order:

y
m

=
{

∂my

∂xi1· · · ∂xim
≡ ∂xi1 · · · ∂xim y ≡ yi1···im

}
.

For f = 0 the equation (1) reduces to differential equation, thus our method contains
the Ovsiannikov method as a particular case.

The case of IDE’s with a region of integration independent on external variables
xl+1, . . . , xn was considered in [6, 7]. The aim of this work is to generalize the previous

[1]
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results to the case when the boundary ∂X of the region of integration X can move under
point transformations due to dependence on external variables xl+1, . . . , xn:

∂X 3 x = (x1, . . . , xl), xi = φi(xl+1, . . . , xn). (2)

The functions φi defining limits of integrations are arbitrary, sufficiently smooth, func-
tions.

In order to simplify the notation we restrict our considerations to the one scalar
equation of the type (1). This reduces a number of indices in subsequent formulae. For
a system of equations with p dependent variables y = (y1, . . . , yp) some minor changes
are evident and the resulting criterion is to be applied to each equation of the system.
Possible generalizations of the form of (1) are discussed in section 3.

We look for a Lie symmetry group of the point transformations

x̃i = eεGxi = xi + εξi(x, y) +O(ε2)

ỹ = eεGy = y + εη(x, y) +O(ε2),
(3)

with the infinitesimal generator (summation over repeated indices is assumed)

G = ξi(x, y)∂xi + η(x, y)∂y, (4)

admitted by the system of IDE’s (1). For dummy variables x
′1, . . . , x

′l of integration we
have the same law of transformation, the same functions ξi, as for variables x1, . . . , xl

x̃
′i = eεGx

′i = x
′i + εξi(x

′
, y) +O(ε2) for i = 1, . . . , l. (5)

Primed and unprimed variables are distinguished only by the value of a variable. All
points of the l-dimensional subspace of independent variables obey the same transforma-
tion law. This for instance, concerns points of the region X: inner points (dummy
variables) x ∈ X transform like boundary points x ∈ ∂X. Another possibility for
the boundary points appears only when they depend on external variables xl+1, . . . , xn.
Then, additional mechanism of a change of boundary points x comes through functions
φi (2). If we want to explicitly distinguish dummy variables of integrations in the law
of transformation (3), by adding the formula (5), we have to add to the definition (4) of
the infinitesimal generator the following term

l∑
i=1

ξi(x
′
, y)∂x′i . (6)

We do not use the summation convention when summation does not go over the whole
range of an index, here 1, . . . , l ≤ n only.

The determination of this group reduces to finding its algebra spanned by independent
generators of the form (4). As in the Ovsiannikov method we extend the group of point
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transformations (3) to a jet space of independent and dependent variables and derivatives
of dependent variables in the usual way [1]–[6]

x̃i = eεG(m)
xi = xi + εξi(x, y) +O(ε2)

ỹ = eεG(m)
y = y + εη(x, y) +O(ε2)

ỹi = eεG(m)
yi = yi + εηi(x, y, y

1
) +O(ε2)

...

ỹi1···im
= eεG(m)

yi1···im
= yi1···im

+ εηi1···im
(x, y, y

1
, . . . , y

m
) +O(ε2),

(7)

where the extended generator is of the form

G(m) = G + ηi∂yi
+ · · ·+ ηi1···im

∂yi1···im
. (8)

The coefficients ηi, . . . , ηi1···im , defining the extended group, are given by the recursion
relations:

ηi = Diη − yjDiξ
j

...

ηi1···im
= Dim

ηi1···im−1 − yi1···im−1jDim
ξj

(9)

and the total derivative Di is defined as follows

Di = ∂i + yi∂y + yij∂(yj) + · · ·+ yii1···in
∂(yi1···in ) + · · · .

The relations (9) follow from the requirement of preservation of the contact structure
of a jet bundle. Simply, we demand that the extended variables ∂iy ≡ yi, ∂i∂jy ≡ yij , . . .
now formally treated as independent variables, are transformed under the group action
(7) as ordinary derivatives of the function y. The above procedure of lifting the group
of point transformations (3) to a jet bundle is the essence of the Ovsiannikov method.
In terms of a jet space a differential equation is equivalent to an algebraic equation, and
thus is much easier tractable. In the case of the integro-differential equations (1) we use
the same method to deal with derivatives.

2. Criterion

Invariance of an equation means invariance of the space of its solutions. Thus, point
transformation (3) maps any solution y(x) of the equation (1) into another solution ỹ(x̃)
of the equation. New solutions of (1) can be constructed in this way. In our geometric
language solutions y(x) are represented by their graphs in a jet space. In terms of a jet
space the notion of the form of equation has the precise meaning [3], and the invariance
of the space of solutions is equivalent to the invariance of the form of the equation under
extended transformations (7). Thus, to obtain our criterion of invariance of IDE’s of
the type (1), we act on (1) by extended transformations (7) writing down explicitly
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only terms that are linear with respect to the group parameter ε. Next, by expanding
functions F , f , and φi in their Taylor series and changing variables in the integral, we
express the change of (1) in terms of the extended generator (8). This change must be
equal to zero for all values of ε.

The change ∆F of the differential term of (1) is calculated by expanding the function
F in a Taylor series and substituting the extended transformations (7)

∆F = F (x̃, ỹ, ỹ
1
, . . . , ỹ

m
)− F (x, y, y

1
, . . . , y

m
)

= F
(
x1 + εξ1 +O(ε2), . . . , xn + εξn +O(ε2), y + εη +O(ε2), y1 + εη1 +O(ε2),

. . . , yn + εηn +O(ε2), yi1...im
+ εηi1···im

+O(ε2)
)
− F (x, y, y

1
, . . . , y

m
)

= ε
[
ξi∂xiF + η∂yF + ηi∂yi

F + · · · ηi1···im
∂yi1

· · · ∂yim
F
]
+O(ε2).

Due to the definition of the extended generator (8) we can rewrite the above result in
the form

∆F = ε G(m)F (x, y, y
1
, . . . , y

m
) +O(ε2). (10)

Thus, the condition ∆F = 0 leads to the Ovsiannikov infinitesimal criterion of invariance
for differential equation G(m)F (x, y, y

1
, . . . , y

m
) = 0.

Let us consider the change of an integral term in the equation (1)

∆I =
∫
X̃(x̃l+1,...,x̃n)

dx̃
′1· · · dx̃

′lf(x̃
′
, x̃, ỹ, ỹ

1
, . . . , ỹ

k
) −

∫
X(xl+1,...,xn)

dx
′1· · · dx

′lf(x
′
, x, y, y

1
, . . . , y

k
)

under the extended transformations (7). To this end, we change variables in the first
integral according to this transformations (see (5))

{x̃
′1, . . . , x̃

′l} 7→ {x
′1, . . . , x

′l}.

By virtue of (5) the elements of Jacobi‘s matrix are equal

∂x̃
′i

∂x′j
= δij + ε

∂ξi

∂x′j
+O(ε2), i, j = 1, . . . , l.

Since the off-diagonal elements of the matrix are of the order O(ε2), the linear contribu-
tion to the Jacobian comes only from the product of the diagonal elements

∂(x̃
′1 · · · x̃′l)

∂(x′1 · · ·x′l)
=
(

1 + ε
∂ξ1

∂x′1

)
· · ·
(

1 + ε
∂ξl

∂x′l

)
+O(ε2) = 1 + ε

l∑
i=1

∂ξi

∂x′i
+O(ε2).
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Consequently, the change ∆I of the integral term is equal∫
X(x̃l+1,...,x̃n)

dx
′1· · · dx

′l

[(
1 + ε

l∑
i=1

∂ξi

∂x′i

)
f
(
x
′1 + εξ1 +O(ε2), . . . , x

′l + εξl +O(ε2),

x1 + εξ1 +O(ε2), . . . , xn + εξn +O(ε2),

y + εη +O(ε2), y1 + εη1 +O(ε2), . . . , yn + εηn +O(ε2),

. . . , yi1···ik
+ εηi1···ik

+O(ε2)
)]
−
∫
X(xl+1,...,xn)

dx
′1· · · dx

′lf(x
′
, x, y, y

1
, . . . , y

k
) +O(ε2).

Due to dependence of X on external variables we have X(x̃l+1, . . . , x̃n) 6= X(xl+1, . . . , xn),
contrary to the previous case [6]. We represent the region X(x̃l+1, . . . , x̃n) as an union of
the set X(xl+1, . . . , xn) and an oriented set ∆X(xl+1, . . . , xn) in the following way

X(x̃l+1, . . . , x̃n) = X(xl+1, . . . , xn) ∪∆X(xl+1, . . . , xn),

where the oriented set ∆X comes from the oriented boundary ∂X under the group
transformation (3). We assume standard orientation of the boundary ∂X: the direction
of the positive surface normal n is outward from the bounded volume X. Parts of the
region ∆X which are build from ∂X in direction of the positive normal to ∂X under
group action (3), that is the scalar product of the normal n and the vector ξξξ = (ξ1, . . . , ξl)
is greater than zero, are positive. They correspond to expansion of the region X and
do not intersect with it. The other parts of ∆X have negative sign and correspond to
shrinking of X. They are contained in X. The integral over oriented ∆X inherits the
signs of parts of ∆X. Thus, the integral over the set X(x̃l+1, . . . , x̃n) is equal to the sum of
integrals over X(xl+1, . . . , xn) and ∆X(xl+1, . . . , xn). For the integral over X(xl+1, . . . , xn)
we can proceed in the same way as in [6]. It leads to the change ∆I ′ of the integral term

∆I ′ =
∫
X(xl+1,...,xn)

dx
′1· · · dx

′l

[(
1 + ε

l∑
i=1

∂ξi

∂x′i

)
f
(
x
′1 + εξ1 +O(ε2), . . . , x

′l + εξl +O(ε2),

x1 + εξ1 +O(ε2), . . . , xn + εξn +O(ε2),

y + εη +O(ε2), y1 + εη1 +O(ε2), . . . , yn + εηn +O(ε2),

. . . , yi1···ik
+ εηi1···ik

+O(ε2)
)
− f(x

′
, x, y, y

1
, . . . , y

k
)

]
+O(ε2).

Expanding the function f into a Taylor series we obtain

∆I ′ = ε

∫
X(xl+1,...,xn)

dx
′1· · · dx

′l

[
l∑

i=1

ξi∂x′if + ξi∂xif + η∂yf + ηi∂yif + · · ·

+ηi1···ik
∂yi1

· · · ∂yik
f + f

l∑
i=1

∂ξi

∂x′i

]
+O(ε2).



6 [Author and title]

In view of the definition of the extended generator (8) with (4) and (6) we can rewrite
the above result as follows

∆I ′ = ε

∫
X(xl+1,...,xn)

dx
′1· · · dx

′l

[
G(k)f(x

′
, x, y, y

1
, . . . , y

k
)

+f(x
′
, x, y, y

1
, . . . , y

k
)

l∑
i=1

∂ξi

∂x′i

]
+O(ε2). (11)

Integration over ∆X(xl+1, . . . , xn) leads to the following change ∆I ′′ of the integral term

∆I ′′ =
∫

∆X(xl+1,...,xn)

dx
′1· · · dx

′l

[(
1 + ε

l∑
i=1

∂ξi

∂x′i

)
f
(
x
′1 + εξ1 +O(ε2), . . . , x

′l + εξl +O(ε2),

x1 + εξ1 +O(ε2), . . . , xn + εξn +O(ε2),

y + εη +O(ε2), y1 + εη1 +O(ε2), . . . , yn + εηn +O(ε2),

. . . , yi1···ik
+ εηi1···ik

+O(ε2)
)]

+O(ε2).

Integration over ∆X(xl+1, . . . , xn) can be split into integration over the boundary ∂X and
inner one-dimensional integration in perpendicular direction to ∂X along the normal n.
The integration range in this direction is infinitesimal and is equal to the projection of
the change of a boundary point

∆xi = x̃i − xi =
n∑

j=l+1

∂φi

∂xj
∆xj = ε

n∑
j=l+1

∂φi

∂xj
ξj(x, y) +O(ε2).

on the direction n. Applying the mean value theorem to this one-dimensional integral
over the infinitesimal range

l∑
i=1

ni∆xi

we express ∆I ′′ as a surface integral over ∂X

∆I ′′ = ε

∫
∂X

dσ
l∑

i=1

ni
n∑

j=l+1

∂φi

∂xj
ξj(x, y)f(x, x, y, y

1
, . . . , y

k
) +O(ε2),

where dσ denotes the measure on ∂X. By the use of the Gauss’s integral theorem we
obtain

∆I ′′ = ε

∫
X(xl+1,...,xn)

dx
′1· · · dx

′l
l∑

i=1

∂x′i

n∑
j=l+1

∂φi

∂xj
ξj(x

′
, y)f(x

′
, x, y, y

1
, . . . , y

k
) +O(ε2). (12)
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Combining the results (10)–(12) for ∆F and ∆I = ∆I ′ + ∆I ′′ we finally arrive at:

∆ = ∆F + ∆I = ε G(m)F (x, y, y
1
, . . . , y

m
)

+ ε

∫
X(xl+1,...,xn)

dx
′1· · · dx

′l

G(k)f(x
′
, x, y, y

1
, . . . , y

k
) + f(x

′
, x, y, y

1
, . . . , y

k
)

l∑
i=1

∂ξi(x
′
, y)

∂x′i

+
l∑

i=1

∂x′i

n∑
j=l+1

∂φi

∂xj
ξj(x

′
, y)f(x

′
, x, y, y

1
, . . . , y

k
)

+O(ε2)

By setting the total change ∆ of the equation (1) to zero we derive the following infinites-
imal criterion of invariance of integro-differential equations of the type of (1) under the
point transformations (3):

Theorem 1. Necessary condition for invariance of the integro-differential equation
of the type (1) under the point transformations (3) has the following form

G(m)F (x, y, y
1
, . . . , y

m
)

+
∫
X(xl+1,...,xn)

dx
′1· · · dx

′l

G(k)f(x
′
, x, y, y

1
, . . . , y

k
) + f(x

′
, x, y, y

1
, . . . , y

k
)

l∑
i=1

∂ξi(x
′
, y)

∂x′i

+
l∑

i=1

∂x′i

n∑
j=l+1

∂φi

∂xj
ξj(x

′
, y)f(x

′
, x, y, y

1
, . . . , y

k
)

 = 0 on solutions of (1). (13)

According to the criterion (13) we have to take into account the equation (1), which
is now a constraint on extended variables. Using this equation we can eliminate some
of them. Remaining variables are independent, thus the equation (13) must be satisfied
identically with respect to them. It means that the coefficients in front of independent ex-
pressions, involving these variables, must be equal to zero. This leads to the system of the
so called determining equations. They are homogeneous and linear integro-differential
equations for coefficients ξi, η determining the generator (4), and hence the point trans-
formations (3). In applications, we have additional information in each particular case.
Often, this information enables us to go to the integrands in the integral determining
equations by using the Lagrange lemma of variational calculus [8]. This leads to differ-
ential determining equations.

The criterion (13) is a necessary condition for finding a symmetry group of the equa-
tion (1), so it allows us to find all possible symmetry transformations of (1). The difficult
task is to find a sufficient condition for symmetry of an equation. To this end one needs
a theorem on global existence and uniqueness of the solutions of the equation (1). The
latter problem is far from being solved, see [9]. From a practical point of view the nec-
essary condition is more important and useful than the sufficient one as the main task is
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to find symmetry transformations. A possible symmetry transformation of the equation
(1) can be easily verified by inspection and this should be done anyway.

3. Discussion

The presented method can be easily generalized [7] to IDE’s of the form

W (F, I) = 0,

where F and I denote differential and integral parts of (1) respectively and W is an
arbitrary smooth function. Then, the criterion (13) takes the form

∂W

∂F
G(m)F +

∂W

∂I

∫
X(xl+1,...,xn)

dx
′1· · · dx

′l

G(k)f + f
l∑

i=1

∂ξi

∂x′i
+

l∑
i=1

∂x′i

n∑
j=l+1

∂φi

∂xj
ξjf

 = 0

on solutions of W (F, I) = 0. Generalization to the case of more than one integral term
is trivial [7]. The equation (1) corresponds to W = F + I.

As is shown in [10] dependent variable y can be complex and can contains functional,
for example delayed, arguments.

Other methods of investigations of symmetries of IDE’s can be found in [11], in CRC
Handbook [12], and in references therein. Indirect methods are based on a transformation
of a given set of IDE’s to an equivalent set of auxiliary equations for which symmetries
are known or can be found by known methods. Then symmetries of the initial system of
IDE’s can be reconstructed. Usually, this auxiliary set of equations consists of PDE’s as,
for example, in Taranov’s method [13] for Vlasov–Maxwell equations. Another indirect
approach is based on an extension of the Harrison and Estabrook method [14] to the
case of IDE’s. A given set of equations is transformed to an equivalent set of differential
forms.

General direct method is presented in [5] and in Vol. 3 of CRC handbook [12]. The
method makes use of the assumption that the derivative with respect to the group param-
eter of a transformed IDE vanishes at zero value of this parameter. This corresponds to
vanishing of a Lie derivative of the equation. When this condition is properly evaluated,
i.e. when the dependence of limits of an integral on the group parameter is taken into
account, it leads to our criterion of symmetry of IDE’s (1). However, this evaluation is
not easy even for constant limits and must be done each time when this condition is used.
This may be suitable for a computer (see [15]) but not for a man. The problem disap-
pears for Bäcklund symmetries in the canonical form of vertical transformations [12], but
only in the case of independence of integration limits on external variables. There is no
transformation of independent variables in that case. However, the equivalence criterion
(Vol. 3 of [12]) should be checked which is sometimes overlooked. The method was used
in [16, 17] for finding symmetries of the Boltzmann equation of a special kind.

The sophisticated method of Vinogradov and Krasilshchik [18, 19] has arisen from a
simple idea of elimination of integrals from IDE’s by virtue of the fundamental theorem
of calculus by prolongation to nonlocal variables: the primitive functions of dependent
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variables. This is natural for some types the of IDE’s, for example Volterra type .
However, the most important IDE’s in physics contain integrals with constant limits for
which this construction is somewhat artificial and complicated. The method becomes
indirect since it leads to the so called boundary-differential equations [19]. The method
requires advanced and sophisticated mathematics, for example the theory of coverings of a
system of differential equations and the prolongation procedure for boundary–differential
equations.

Another direct method of finding symmetries of Vlasov–Maxwell equations can be
found in papers [20, 21]. It consist in treating some integrals defining moments of the
distribution function as new variables. This is possible due to special form of the equa-
tions containing such quantities with the physical meaning of charge and current. By the
proper and consequent use of this idea mathematical tricks with Dirac’s δ made by the
authors can be avoided. Treating some terms as new variables even in final result change
an interpretation of a symmetry group. It may be interesting for parameters leading to
the so called renormalization group but it requires reconstruction of a symmetry group
corresponding to the standard variables.

The method presented in this paper is the most direct one and is a natural generaliza-
tion of the Ovsiannikov theory to the case of IDE’s. All local quantities in the equations,
such as derivatives or delayed arguments, are treated with the use of extension (prolon-
gation) procedure in the spirit of classical Lie theory. For nonlocal quantities (integrals)
such a procedure is ineffective so we leave them unchanged and look for a new form of
the criterion of invariance. In simple, one-dimensional special case with constant limits
of integration the criterion (13) appeared first in [22] for the Vlasov–Maxwell equations.
However the derivation of criterion making use of the parametrization of an integral was
not general and had a value of a mathematical trick. This was probably the reason why
this paper was overlooked or underestimated by the Lie-symmetry community [1]–[5],
[11, 12].

4. Conclusions

The criterion of invariance under a Lie symmetry group of point transformations
was derived for very general form integro-differential equations. This is an essential
generalization of the previous form of the criterion that has been successfully applied
to important integro-differential equations such as Vlasov–Maxwell for multi-component
plasma or nonlocal nonlinear Schrödinger (nNLS) equations. The present extension of the
theory provides means for much wider application range. The proposed theory is most
direct one, and more general and much easier to apply than so far proposed approaches.
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