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COHOMOLOGIES OF THE LIE ALGEBRA OF VECTOR FIELDS ON

A LINE

V. V. Zharinov1

Providing adequate mathematical tools, we find cohomologies of the Lie algebra of smooth vector fields on

a line with coefficients in the trivial, natural, and adjoint representations. We construct the generalized

series of complexes and calculate the corresponding cohomologies.

The recent development of theoretical and mathematical physics is intrinsically related to geometric and
algebraic formulations. An unsophisticated observer would say that contemporary mathematical physics is a
mixture of special branches of geometry and algebra spiced with analysis and the theory of partial differential
equations. Lie algebras play a central role in this pattern because the whole historical development of
classical and quantum physics is intrinsically related to symmetries, which are mathematically described by
Lie groups and algebras. Currently, finite-dimensional Lie algebras related to symmetries in isotopic and
physical spaces are being replaced as the main object of investigation by infinite-dimensional algebras, which
are intrinsic to modern quantum theories including string and gauge theories. Mathematical constructions
supply physics with their specific objects and methods of investigation. This provides a common base
for describing otherwise unrelated physical phenomena. One of the many examples is the classification of
elementary particles based on Lie group representations.

A convenient language for describing a number of objects related to Lie algebras and their representa-
tions is provided by the method of cohomologies of Lie algebras [1]. This language yields adequate tools for
investigating, classifying, and finding natural relations between the physical quantities under investigation.
This method becomes especially useful in an infinite-dimensional case [2], [3], where standard methods fail
(see [4] and the references therein regarding the modern trends in using the cohomologies of Lie algebras in
physics). The growing number of publications involving Lie algebra cohomologies in electronic archives and
physical journals indicates that their applications in theoretical and mathematical physics are increasing.

Constituents of the theory of Lie algebra cohomologies important for applications are the calculation
apparatus and the assortment of completely calculated typical examples (see [2], [3] and references to the
original papers therein for the known results). One of the most important classes of infinite-dimensional
Lie algebras are Lie algebras of vector fields on manifolds, of which the Lie algebras on the unit circle and
on the line are the simplest examples. The former algebras, being algebras of fields on a compact manifold,
have been more thoroughly studied because the invariant integration technique [5] is available in this case
(see [2], [3] and the references therein). The most complete results were obtained with coefficients in the
trivial representation.

In this paper, we calculate the cohomologies of the Lie algebra of smooth vector fields on the line with
coefficients in the three most important representations: the trivial, the natural (fundamental), and the
adjoint representations. As a by-product, we develop an adequate mathematical apparatus, which reduces
calculations to elementary algebra and admits generalizations to more involved cases. We basically give
algebraic, combinatorial arguments, which are specific to the problem under investigation, leaving aside the
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analytic part, which is standard and does not contain new knowledge.

1. Definitions and formulation of results

1.1. Cohomologies of Lie algebras. Let F be a field of characteristic zero, let A be the Lie algebra
over F with the bracket [ · , · ], let K be a module over A, i.e., K is the linear space over F, and let a
representation ρ of the Lie algebra A in K be given:

ρ : A → HomF(K; K), a �→ ρ(a) : K → K ∀a ∈ A.

This representation must obey the commutation rule

ρ([a, b]) = [ρ(a), ρ(b)] ≡ ρ(a) ◦ ρ(b) − ρ(b) ◦ ρ(a) ∀a, b ∈ A,

where the symbol ◦ denotes the composition of mappings.
Let

∧A =
⊕
q≥0

∧q
A

be an external algebra of the linear space A over F, and let

C(A; K) =
⊕
q≥0

Cq(A; K)

be a linear space over F of all cochains on A with values in K, where Cq(A; K) = HomF(∧qA; K) are linear
spaces of all q-linear skew-symmetric mappings from A to K. An external differential d on C(A; K) is
determined by the rule

(dω)(a0, . . . , aq) =
1
q + 1

{ ∑
0≤α≤q

(−1)αρ(aα)(ω(a0, . . . , ǎα, . . . , aq)) +

+
∑

0≤α<β≤q

(−1)α+βω([aα, aβ ], . . . , ǎα, . . . , ǎβ , . . . , aq)
}

for ω ∈ Cq(A; K) and a0, . . . , aq ∈ A (the argument under the haček is omitted); hence, d : Cq(A; K) →
Cq+1(A; K), q ∈ Z+ = {0, 1, . . .}. Because of the Jacobi identity and the commutation rule, the composition
d ◦ d = 0 and the complex {C(A; K); d} with the cohomologies

H({C(A; K); d}) = H(A; K) =
⊕
q≥0

Hq(A; K)

are well defined.

1.2. Lie algebra of smooth vector fields on the line. Let F = C, let E be an associative
commutative algebra over C of all smooth (i.e., having continuous derivatives of all orders) complex-valued
functions on the line R with the standard pointwise operations, and let A be the Lie algebra of all smooth
vector fields (i.e., all smooth differentiations of the algebra E) on the line. In detail,

A =
{
u = u(x)

d

dx
; u(x) ∈ E , x ∈ R

}
,
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the Lie bracket is [u, v] = w, where w = w(x)d/dx, and

w(x) = u(x)v′(x) − v(x)u′(x) =W2[u, v](x)

is the Wronskian of two functions u(x), v(x) ∈ E calculated at the point x ∈ R (the prime denotes the
derivative w.r.t. x ∈ R). In particular, supplying the linear space E with the Lie bracket defined by the
Wronskian, we can identify the Lie algebras A and E .

The most important representations of the Lie algebra A are

a. the trivial representation in which K = C and ρ(u) = 0, u ∈ A,
b. the natural representation in which K = E and ρ(u) = u(x)d/dx, u ∈ A, and
c. the adjoint representation in which K = A and ρ(u) = [u, · ], u ∈ A.

We note that any Lie algebra has the trivial and adjoint representations, while the natural representation
is intrinsic for any Lie algebra of differentiations of an associative algebra.

1.3. Cohomologies: Formulating the results. In the case of cochains with coefficients in the
trivial representation, the external differential acts as

(dω)(u0, . . . , uq) =
1
q + 1

∑
0≤α<β≤q

(−1)α+βω([uα, uβ ], u0, . . . , ǔα, . . . , ǔβ , . . . , uq)

for all ω ∈ Cq(A; C), u0, . . . , uq ∈ A, and q ∈ Z+.

Theorem 1. The cohomologies of the Lie algebra A of smooth vector fields on the line with coefficients

in the trivial representation, i.e., the cohomologies of the complex {C(A; C); d}, are

Hq(A; C) =


C, q = 0,

C ·W3(0), q = 3,

0, q �= 0, 3,
where W3[u, v, w](0) is the Wronskian of three functions u, v, w ∈ E calculated at the point 0 ∈ R.

In the case of cochains with coefficients in the natural representation, the external differential acts as

(dω)(x;u0, . . . , uq) =
1
q + 1

{ ∑
0≤α≤q

(−1)αuα(x)(ω(x;u0, . . . , ǔα, . . . , uq))′x +

+
∑

0≤α<β≤q

(−1)α+βω(x; [uα, uβ], u0, . . . , ǔα, . . . , ǔβ, . . . , uq)
}

for all ω ∈ Cq(A; E), u0, . . . , uq ∈ A, and q ∈ Z+.

Theorem 2. The cohomologies of the Lie algebra A of smooth vector fields on the line with coefficients

in the natural representation, i.e., the cohomologies of the complex {C(A; E); d}, are

Hq(A; E) =


C, q = 0,

C · d
dx
, q = 1,

0, q ≥ 2.
In the case of cochains with coefficients in the adjoint representation, the external differential acts as

(dω)(x;u0, . . . , uq) =
1
q + 1

{ ∑
0≤α≤q

(−1)αW2[uα, ω(u0, . . . , ǔα, . . . , uq)](x) +

+
∑

0≤α<β≤q

(−1)α+βω(x; [uα, uβ], u0, . . . , ǔα, . . . , ǔβ, . . . , uq)
}

for all ω ∈ Cq(A; A), u0, . . . , uq ∈ A, and q ∈ Z+.
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Theorem 3. The cohomologies of the Lie algebra A of smooth vector fields on the line with coefficients

in the adjoint representation, i.e., the cohomologies of the complex {C(A; A); d}, are trivial,

Hq(A; A) = 0, q ∈ Z+.

The remainder of the paper describes the adequate mathematical apparatus and contains the proofs
of the above theorems.

2. The mathematical apparatus

2.1. The exponential transformation. We establish a correspondence between ξ ∈ C and the
functions eξ ∈ E , where eξ(x) = exξ, x ∈ R, while [eξ, eη] = (η − ξ)eξ+η for all ξ, η ∈ C.

We now briefly describe several definitions and results in distribution theory needed in what follows.
Let E(Rq) be a linear locally convex space of all smooth functions on Rq with the topology of uniform
convergence on compact sets in Rq together with partial derivatives of any given order. Its conjugate space
E ′(Rq) (in the strong sense) is the linear locally convex space of all distributions with a compact support in
R

q with the topology of uniform convergence on bounded subsets of E(Rq). Let Exp(Cq) be the linear space
of all entire functions of the exponential type on Cq. The Laplace transformation L : E ′(Rq) → Exp(Cq),
ω �→ L[ω], is L[ω](ξ1, . . . , ξq) = ω(eξ1 , . . . , eξq) for all ω ∈ E ′(Rq) and ξ = (ξ1, . . . , ξq) ∈ Cq. The linear
mapping L is injective; its image L[E ′(Rq)] ⊂ Exp(Cq) comprises all entire functions on Cq that grow not
faster than an exponential of a linear function in real directions and not faster than a powerlike function
in imaginary directions. The linear space L[E ′(Rq)] is endowed with the locally convex topology induced
from E ′(Rq) such that we can define the isomorphism of linear locally convex spaces L : E ′(Rq) � L[E ′(Rq)]
(see, e.g., [6]).

By construction, the linear space of q-cochains Cq(A; C) is the subspace in E ′(Rq) that consists of all
skew-symmetric distributions with a compact support in R

q, i.e.,

Cq(A; C) = {ω ∈ E ′(Rq) : π∗ω = sign(π)ω ∀π ∈ Σq},

where Σq is the set of all permutations of the indices {1, . . . , q}, sign(π) is the signature of a permutation
π ∈ Σq, (π∗ω)(u1, . . . , uq) = ω(uπ(1), . . . , uπ(q)). Endowing the image Φq = L[Cq(A; C)] ⊂ L[E ′(Rq)]
with the locally convex topology induced from L[E ′(Rq)], we obtain the isomorphism of linear spaces
L : Cq(A; C) � Φq. We note that C0(A; C) = Φ0 = C. For q = 1, 2, . . . , the linear locally convex space Φq

consists of all skew-symmetric entire functions on Cq that grow not faster than an exponential of a linear
function in real directions and not faster than a powerlike function in imaginary directions and is endowed
with the topology induced from E ′(Rq). Therefore, the isomorphism L : C(A; C) � Φ, where Φ =

⊕
q≥0 Φq,

is well defined.
Further, the linear space of q-cochains Cq(A; E) = E ⊗̂ Cq(A; C), where ⊗̂ denotes the closure of the

tensor product in an appropriate topology, which is not important at the moment (we note that E = E(R1)).
Using the identification L = idE ⊗L, we can continue the Laplace transformation to Cq(A; E) and obtain
the isomorphism L : Cq(A; E) � Fq, where Fq = E ⊗̂ Φq. We now introduce a “twisted” transformation
Λ: Cq(A; E) � Fq, where

Λ[ω](x; ξ1, . . . , ξq) = exp
(
−x

∑
1≤α≤q

ξα

)
L[ω](x; ξ1, . . . , ξq)

for all ω ∈ Cq(A; E), x ∈ R, and ξ = (ξ1, . . . , ξq) ∈ Cq. We have thus defined the isomorphism of linear
spaces Λ: C(A; E) � F , where F =

⊕
q≥0 Fq and C0(A; E) = F0 = E .

As mentioned, the linear spaces A and E coincide and the isomorphism of linear spaces Λ: C(A; A) � F
is therefore well defined.
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Proposition 1. We have the isomorphism of complexes

L : {C(A; C); d} � {Φ; dC},

where the differential dC = L ◦ d ◦ L−1 : Φ → Φ acts as

(dCφ)(ξ0, . . . , ξq) =
1
q + 1

∑
0≤α<β≤q

(−1)α+β−1(ξα − ξβ)φ(ξα + ξβ , ξ0, . . . , ξ̌α, . . . , ξ̌β , . . . , ξq)

for all φ ∈ Φq, ξ0, . . . , ξq ∈ C, and q ∈ Z+.

Proposition 2. We have the isomorphism of complexes

Λ: {C(A; E); d} � {F ; dE},

where the differential dE = Λ ◦ d ◦ Λ−1 : F → F acts as

(dEf)(x; ξ0, . . . , ξq) =
1
q + 1

{ ∑
0≤α≤q

(−1)α

(
∂x +

∑
0≤β≤q

ξβ − ξα
)
f(x; ξ0, . . . , ξ̌α, . . . , ξq) +

+
∑

0≤α<β≤q

(−1)α+β−1(ξα − ξβ)f(x; ξα + ξβ , ξ0, . . . , ξ̌α, . . . , ξ̌β , . . . , ξq)

}

for all f ∈ Fq, ξ0, . . . , ξq ∈ C, and q ∈ Z+.

Proposition 3. We have the isomorphism of complexes

Λ: {C(A; A); d} � {F ; dA},

where the differential dA = Λ ◦ d ◦ Λ−1 : F → F acts as

(dAf)(x; ξ0, . . . , ξq) =
1
q + 1

{ ∑
0≤α≤q

(−1)α

(
∂x +

∑
0≤β≤q

ξβ − 2ξα

)
f(x; ξ0, . . . , ξ̌α, . . . , ξq) +

+
∑

0≤α<β≤q

(−1)α+β−1(ξα − ξβ)f(x; ξα + ξβ , ξ0, . . . , ξ̌α, . . . , ξ̌β , . . . , ξq)

}

for all f ∈ Fq, ξ0, . . . , ξq ∈ C, and q ∈ Z+.

The proofs of Propositions 1–3 are elementary calculations.

2.2. Operations in the space Φ. In the spaces Φq, q ∈ Z+, we now segregate the subspaces

of homogeneous polynomials Φp,q = {φ(ξ) =
∑

|n|=p φnξ
n ∈ Φq},

of complementary functions Φq
�=p = {φ(ξ) =

∑
|n|�=p φnξ

n ∈ Φq}, and

of the residues Φq
≥p = {φ(ξ) =

∑
|n|≥p φnξ

n ∈ Φq},
where the order p ∈ Z+, the argument ξ = (ξ1, . . . , ξq) ∈ Cq, the multi-index n = (n1, . . . , nq) ∈ Z

q
+, its

absolute value |n| =
∑

1≤α≤q nα, the coefficient φn ∈ C, and the monomial ξn = ξn1
1 · · · ξnq

q .
The functions φ ∈ Φq, q ∈ Z+, are skew-symmetric by construction, i.e., π∗φ = sign(π)φ for all π ∈ Σq,

where (π∗φ)(ξ1, . . . , ξq) = φ(ξπ(1), . . . , ξπ(q)), ξ1, . . . , ξq ∈ C. This results in the following assertion.
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Proposition 4. If φ ∈ Φq, q ∈ Z+, then φ(ξ) = Vq(ξ) · ρ(ξ), where

Vq(ξ) =
∏

1≤α<β≤q

(ξβ − ξα)

is the Vandermonde determinant, ρ(ξ) is a symmetric entire function with the same estimates as the function
φ(ξ), and ξ = (ξ1, . . . , ξq) ∈ Cq. In particular, Φp,q = 0 for p < degVq = q(q − 1)/2.

We note that L−1[Vq] = Wq[· · · ](0) is the Wronskian calculated at the point 0 ∈ R and that the
Wronskian Λ−1[Vq](x) =Wq[· · · ](x) is calculated at the point x ∈ R.

We now introduce several operations on the space Φ.
• The linear mappings ∇k

l : Φ → Φ, k, l ∈ Z+, are

(∇k
l φ)(ξ1, . . . , ξq) =

1
l!

∑
1≤α≤q

ξkα∂
l
αφ(ξ1, . . . , ξq)

for all φ ∈ Φq and ξ1, . . . , ξq ∈ C, where the partial derivatives ∂α = ∂/∂ξα. In particular, we have
∇k

l : Φp,q → Φp+k−l,q, while

∇0
0

∣∣
Φp,q= q idΦp,q , ∇1

1

∣∣
Φp,q= p idΦp,q

for all p, q ∈ Z+.
• The linear mappings λk : Φ → Φ, k ∈ Z+, are

(λkφ)(ξ0, . . . , ξq) =
1
q + 1

∑
0≤α≤q

(−1)αξkαφ(ξ0, . . . , ξ̌α, . . . , ξq)

for all φ ∈ Φq and ξ0, . . . , ξq ∈ C. In particular, we have λk : Φp,q → Φp+k,q+1 for all p, q ∈ Z+.
• The linear mappings ιk : Φ → Φ, k ∈ Z+, are

(ιkφ)(ξ1, . . . , ξq−1) =
q

k!
(
∂k
0φ(ξ0, ξ1, . . . , ξq−1)

)∣∣
ξ0=0

for all φ ∈ Φq and ξ1, . . . , ξq−1 ∈ C. In particular, we have ιk : Φp,q → Φp−k,q−1 for all p, q ∈ Z+.

Proposition 5. For all k, l,m, n ∈ Z+, we have the following equalities:

1. [∇k
l ,∇m

n ] =
∑

1≤r≤l

[
k,m

l, n

]
r

∇k+m−r
l+n−r ,

where

[
k,m

l, n

]
r

=
(
m

r

)(
l + n− r
n

)
−

(
k

r

)(
l + n− r

l

)
and

(
k

l

)
=

k!
(l!(k − l)!) ;

2. [∇k
l , λ

m] =
(
m

l

)
λk+m−l;

3. [ιm,∇k
l ] =

(
m+ l − k

l

)
ιm+l−k;

4. {λk, λl} = 0;

5. {λk, ιl} = δkl idΦ, where δ
k
l is the Kronecker symbol;

6. {ιk, ιl} = 0.
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Here, [X,Y ] = X ◦ Y − Y ◦X is the commutator, and {X,Y } = X ◦ Y + Y ◦X is the anticommutator of

the mappings X,Y : Φ → Φ.

The proofs of all these formulas are direct calculations. We introduce additional operations on the
space Φ.

• The linear mapping δ : Φ → Φ is

(δφ)(ξ0, . . . , ξq) =
1
q + 1

∑
0≤α<β≤q

(−1)α+β−1(ξα − ξβ)φ(ξα + ξβ , ξ0, . . . , ξ̌α, . . . , ξ̌β , . . . , ξq)

for all φ ∈ Φq and ξ0, . . . , ξq ∈ C. In particular, we have δ : Φp,q → Φp+1,q+1 for all p, q ∈ Z+.
• The linear mappings δk : Φ → Φ, k ∈ Z, are δk = δ − kλ1. In particular, δk : Φp,q → Φp+1,q+1 for all

p, q ∈ Z+.

Proposition 6. We have the following equalities:

1. δ ◦ δ = 0;
2. {λi, δ} = λi+1 ◦ λ0, i = 0, 1;
3. {ιk, δ} = ∇0

k−1 −∇1
k, k ∈ Z+, in particular, {ι0, δ} = −∇1

0 and {ι1, δ} = ∇0
0 −∇1

1;
4. [∇1

0, δ] = 0;
5. {λi, δk} = λi+1 ◦ λ0, i = 0, 1, in particular, λ0 ◦ δk + δk+1 ◦ λ0 = 0 for k ∈ Z;
6. δk ◦ δk = −kλ2 ◦ λ0, k ∈ Z.

These equalities can be proved by direct calculation.
We now define two more operations on the space Φ.
• The linear mappings Rk : Φ → Φ, k ∈ Z, are Rk = ∇0

0 −∇1
1 − k idΦ. In particular, Rk : Φp,q → Φp,q,

while Rk

∣∣
Φp,q = (q − p− k) idΦp,q , whence kerRk ∩ Φq = Φq−k,q , q ∈ Z.

• The linear mappings ρk : kΦ → kΦ, k ∈ Z, where

kΦ =
⊕
q≥0

Φq
�=(q−k),

are

(ρkφ)(ξ1, . . . , ξq) = −
∫ 1

0

tk−q−1φ(tξ1, . . . , tξq) dt

for all φ ∈ Φq
≥p, p > q − k, ξ1, . . . , ξq ∈ C, and

ρk

∣∣
Φp,q = (q − p− k)−1 idΦp,q

for p �= q − k. We can easily verify that these formulas are mutually consistent and indeed determine the
series of linear mappings on kΦ, k ∈ Z.

Proposition 7. The isomorphisms of linear locally convex spaces

Rk : kΦ � kΦ, (Rk)−1 = ρk, k ∈ Z,

are well defined.

For the proof, it suffices to consider the action of the above mappings on the homogeneous components
Φp,q.
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Proposition 8. We have the following equalities:

1. λl ◦Rk = Rk+1−l ◦ λl, l, k ∈ Z;
2. λl ◦ ρk = ρk+1−l ◦ λl, l, k ∈ Z;
3. [δ,Rk] = 0, k ∈ Z;
4. [δ, ρk] = 0, k ∈ Z;
5. {ι1, δk} = Rk, k ∈ Z.

These equalities can be proved by restricting the mappings to homogeneous components using Propo-
sitions 5 and 6.

2.3. Auxiliary complexes. It follows from assertions 4 and 6 in Proposition 5 that the linear
mappings λ0, ι0 : Φ → Φ satisfy the equalities λ0 ◦ λ0 = ι0 ◦ ι0 = 0; therefore, the complexes {Φ;λ0} and
{Φ; ι0} are defined. We now set Ψ = kerλ0 = {φ ∈ Φ: λ0φ = 0} and Ω = ker ι0 = {φ ∈ Φ: ι0φ = 0}. The
homotopical formula {λ0, ι0} = idΦ (see assertion 5 in Proposition 5) then implies the following proposition.

Proposition 9. We have the following statements:

1. we have the decomposition Φ = Ψ ⊕ Ω (φ = φΨ + φΩ, where φΨ = λ0(ι0φ) and φΩ = ι0(λ0φ));
2. the complex {Φ;λ0} has trivial cohomologies;
3. the complex {Φ; ι0} has trivial homologies.

By virtue of assertion 5 in Proposition 6, we have δk : Ψp,q → Ψp+1,q+1, where Ψp,q = Φp,q ∩Ψ, for all
p, q ∈ Z+. By virtue of assertion 6 in Proposition 6, δk ◦ δk|Ψ = 0. The complexes {Ψ; δk} are therefore
well defined for all k ∈ Z.

In addition to the above spaces kΦ, we introduce the spaces kΦ =
⊕

q≥0 Φq−k,q such that

Φ = kΦ⊕ kΦ ∀k ∈ Z.

Analogously setting kΨ = kΦ∩Ψ and kΨ = kΦ∩Ψ, we obtain Ψ = kΨ⊕ kΨ for all k ∈ Z. By construction,
δk : kΨ → kΨ and δk : kΨ → kΨ. The complexes {kΨ; δk} and {kΨ; δk} are therefore well defined, and

{Ψ; δk} = {kΨ; δk} ⊕ {kΨ; δk} ∀k ∈ Z.

Lemma 1. The complexes {kΨ; δk} have trivial cohomologies. We therefore have the equality of

cohomologies

Hq({Ψ; δk}) = Hq({kΨ; δk}), q ∈ Z+, k ∈ Z.

By virtue of Proposition 7 and assertions 2, 4, and 5 in Proposition 8, the homotopical formulas
{Sk, δk} = id, where Sk = Rk ◦ ι1, are defined on the spaces kΨ, which implies that these complexes are
exact (by virtue of assertions 1 and 2 in Proposition 8, we have Rk, ρk : Ψ → Ψ).

Lemma 2. The linear spaces kΨ = 0 and the complexes {kΨ; δk} in particular are null spaces for

k ≥ 2.

By virtue of Proposition 4, Φq−k,q = 0 for q− k < q(q− 1)/2, i.e., for q2 − 3q+2k > 0, while the latter
inequality is valid for all q ∈ Z as soon as k ≥ 2.

Lemma 3. The cohomologies of the complex {0Ψ; δ0} are

Hq({0Ψ; δ0}) =


C · λ0ξ2, q = 2,

C · λ0χ, q = 3,

0, q �= 2, 3,
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where (λ0ξ2)(ξ1, ξ2) = (ξ22−ξ21)/2 and χ(ξ1, ξ2) = 3(ξ2−ξ1)ξ1ξ2 (we note that λ0χ = V3 is the Vandermonde

determinant of the third order).

By virtue of Propositions 4 and 10, we have (0Ψ)q = Ψq,q = λ0Φq,q−1 = 0 for q �= 2, 3, while Φ2,1 = C·ξ2
and Φ3,2 = C · χ. By virtue of assertion 5 in Proposition 6, we have δ0(λ0ξ2) = −λ0(δ−1ξ

2) = 0 because
δ−1ξ

2 = −λ0ξ3.

Lemma 4. The cohomologies of the complex {1Ψ; δ1} are

Hq({1Ψ; δ1}) =


C · λ01, q = 1,

C · λ0ξ, q = 2,

0, q �= 1, 2,

where (λ01)(ξ) = 1, λ0ξ = V2/2, and V2 is the Vandermonde determinant of the second order.

By virtue of Propositions 4 and 10, we have (1Ψ)q = Ψq−1,q = λ0Φq−1,q−1 = 0 for q �= 1, 2, while
Φ0,0 = C and Φ1,1 = C · ξ. By assertion 5 in Proposition 6, δ1(λ01) = −λ0(δ01) = 0 because δ01 = −λ0ξ.

Combining Lemmas 1–4, we obtain the following theorem.

Theorem 4. The cohomologies of the complexes {Ψ; δk} are

Hq({Ψ; δk}) = C · λ0Qq
k, q, k ∈ Z+,

where

Qq
k = δ0k(δq2ξ

2 + δq3χ) + δ1k(δq11 + δq2ξ) ∈ Ωq−1,

δqk is the Kronecker symbol, and χ(ξ1, ξ2) = 3(ξ2 − ξ1)ξ1ξ2.

2.4. Operations in the space F . As in Sec. 2.2, in the spaces Fq = E ⊗̂ Φq, we segregate the
subspaces Fp,q = E ⊗̂ Φp,q, Fq

�=p = E ⊗̂ Φq
�=p, and Fq

≥p = E ⊗̂ Φq
≥p, p, q ∈ Z+. Identifying φ = 1 ⊗ φ, φ ∈ Φ,

we obtain the inclusion Φ ⊂ F . In turn, using the identification X = idE ⊗X , we can extend a mapping
X initially defined on the space Φ to the space F such that all operations in Sec. 2.2 are defined on F .
In particular, the linear mappings λ0, ι0 : F → F are defined, and we can set K = kerλ0 = E ⊗̂ Ψ and
M = ker ι0 = E ⊗̂Ω. All calculations in Sec. 2.3 obviously hold when K is substituted for Ψ, M for Ω, and
E for C.

We introduce the proper operation on the space F .
• The linear mapping dx : F → F is dx = ∂x ◦ λ0, where ∂x = ∂/∂x is the partial derivative w.r.t. x.

In particular, dx : Fp,q → Fp,q+1 for all p, q ∈ Z+.

Proposition 10. We have the following equalities:

1. dx ◦ dx = 0;
2. dx ◦ δk + δk+1 ◦ dx = 0, k ∈ Z;
3. {dx, λ

k} = 0, k ∈ Z+.

By virtue of assertion 1 in Proposition 10, we can define the complex {F ; dx}.

Proposition 11. The complex {F ; dx} has the cohomologies

Hq({F ; dx}) = Ωq, q ∈ Z+.

If φ ∈ Ω, then the formula [φ] = φ + dxF determines the cohomology because dxφ = λ0φ
′
x = 0, while

[φ] = 0, i.e., φ = dxg = λ0g′x iff φ = 0 by virtue of assertion 1 in Proposition 9. On the other hand, given
the cohomology [f ], where dxf = λ0f ′x = 0, we can use Proposition 9 to verify that f = φ + dxg, where
φ = ι0(λ0f(0)) ∈ Ω, g = ι0F , and F ′

x = f (we recall that f(0)(ξ) = f(0; ξ), ξ ∈ C
q).
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3. Proofs of Theorems 1–3

3.1. The proof of Theorem 1. By virtue of Proposition 1, it suffices to calculate the cohomologies
of the complex {Φ; dC}, i.e., the complex {Φ; δ0}, because dC = δ = δ0 by definition (δ0 ◦ δ0 = δ ◦ δ = 0; see
assertion 1 in Proposition 6). The calculations are similar to those in Sec. 2.3.

By construction, Φ = 0Φ⊕ 0Φ, while δ0 : 0Φ → 0Φ and δ0 : 0Φ → 0Φ, and we have the decomposition
into the direct sum of complexes

{Φ; δ0} = {0Φ; δ0} ⊕ {0Φ; δ0}.

For the complex {0Φ; δ0}, we have the homotopic formula {S0, δ0} = id, where S0 = R0 ◦ ι1. Hence, the
cohomologies of this complex are trivial, and we must calculate the cohomologies of the complex {0Φ; δ0}.
By definition, (0Φ)q = Φq,q, q ∈ Z+. By virtue of Proposition 4, Φq,q = 0 for q < q(q − 1)/2, i.e., for
q > 3. In turn, simple calculations yield Φ0,0 = C, Φ1,1 = C · ξ, Φ2,2 = C · δξ, and Φ3,3 = C · V3, where
V3 is the Vandermonde determinant of third order. Because δ = 0 for Φ0 = C, we conclude that the
cohomologies Hq({0Φ; δ0}) = 0 for q �= 0, 3, while H0({0Φ; δ0}) = C and H3({0Φ; δ0}) = C · V3, and, as
before, L−1[V3] =W3(0). Theorem 1 is thus proved.

3.2. The generalizing series of complexes. We now introduce several operations in the space F .
• The linear mappings ∆k : F → F , k ∈ Z, are ∆k = δk + ∇1

0 ◦ λ0.
• The linear mappings dk : F → F , k ∈ Z, are dk = dx + ∆k.

Proposition 12. For all k ∈ Z, we have the following equalities:

1. ∆k ◦ ∆k = 0;
2. δk ◦ λ0 + λ0 ◦ ∆k = 0, in particular, δk ◦ dx + dx ◦ ∆k = 0;
3. {ι0,∆k} = 0;
4. dk ◦ dk = 0.

The proofs are direct calculations using formulas in Sec. 2.2 and assertion 1 in Proposition 10.

Remark. In general, we can introduce the linear mappings ∆km = δ − kλ1 +m∇1
0 ◦ λ0 with some

k,m ∈ C. In this case, the composition ∆km ◦ ∆km = 0 iff m = 1, k ∈ C.
We have thus defined the series of complexes {F ; dk}, k ∈ Z; we now calculate the corresponding

cohomologies.

Lemma 5. The equation λ0 ◦ ∆kf = 0, f ∈ Fq, k, q ∈ Z+, admits the general solution

f = aQq+1
k + λ0g + ∆kh, a ∈ E , g, h ∈ Fq−1,

where the function Qq
k is determined in Theorem 4.

Every such function Qq
k is a solution of the equation above. On the other hand, if f ∈ Fq and

λ0 ◦ ∆kf = 0, then it follows from assertion 2 in Proposition 12 that δk(λ0f) = 0, while λ0f ∈ Kq+1.
Hence, by virtue of Theorem 4, λ0f = aλ0Qq+1

k + δkh̃, where a ∈ E , h̃ ∈ Kq. By virtue of assertion 2 in
Proposition 9, h̃ = −λ0h, where h ∈ Fq−1. Therefore,

λ0(f − ∆kh− aQq+1
k ) = 0,

whence, by virtue of assertion 2 in Proposition 9, we have f = λ0g + ∆kh+ aQq+1
k , g ∈ Fq−1.
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Lemma 6. The equation dx ◦ ∆kf = 0, f ∈ Fq, k, q ∈ Z+, admits a general solution

f = aQq+1
k + dxg + ∆kh+ φ, a ∈ E , g, h ∈ Fq−1, φ ∈ Ωq,

where the function Qq
k is determined in Theorem 4.

The proof can be obtained by a slight modification of the previous reasonings. Namely, if f ∈ Fq and
dx ◦ ∆kf = 0, then by virtue of assertion 2 in Proposition 12, δk(dxf) = 0, while dxf ∈ Kq+1. Hence, by
Theorem 4, we have dxf = a′xλ0Qq+1

k + δkh̃ with some a ∈ E , h̃ ∈ Kq. By assertion 2 in Proposition 9, we
can set h̃ = −λ0h′x, h ∈ Fq−1, whence

dx(f − aQq+1
k − ∆kh) = 0.

By virtue of Proposition 11, f − aQq+1
k − ∆kh = dxg + φ with some g ∈ Fq−1 and φ ∈ Ωq.

Lemma 7. The function Qq
k determined in Theorem 4 has the properties

1. λ0Qq
k = 0 for those and only those k, q ∈ Z+ for which Qq

k = 0 and

2. ∆kQ
q
k = 0 for all k, q ∈ Z+.

By construction, the function Qq
k ∈ Ωq−1, and by virtue of assertion 1 in Proposition 9, we obtain

λ0Qq
k = 0 only if Qq

k = 0. Furthermore, by construction, δk(λ0Qq
k) = 0, and assertion 2 in Proposition 12

yields λ0(∆kQ
q
k) = 0. Hence, by virtue of assertion 2 in Proposition 9, ∆kQ

q
k = λ0P , where we have

P = ι0(∆kQ
q
k) = −∆k(ι0Q

q
k) = 0 by assertion 3 in Proposition 12 and assertion 1 in Proposition 9.

Theorem 5. The cohomologies of the complexes {F ; dk}, k ∈ Z+, are

Hq({F ; dk}) = C ·Qq+1
k , q ∈ Z+,

with the function Qq
k determined in Theorem 4.

Let f ∈ Fq and dkf = 0. Then ∆kf = −dxf = −λ0f ′x, whence we have λ0 ◦ ∆kf = 0 by virtue of
assertion 4 in Proposition 5. By Lemma 5, we then have f = aQq+1

k + λ0g + ∆kh with some a ∈ E and
g, h ∈ Fq−1, while

0 = dkf = dk(aQq+1
k ) + ∆k(λ0g) + dx(∆kh).

Furthermore, using assertion 2 in Lemma 7, we obtain

dk(aQq+1
k ) = a′xλ

0Qq+1
k + a∆kQ

q+1
k = a′xλ

0Qq+1
k ,

while using assertion 2 in Proposition 12, we have

∆k(λ0g) + dx(∆kh) = δk(λ0(g − h′x)).

Therefore,

a′xλ
0Qq+1

k = −δk(λ0(g − h′x)).

By virtue of Theorem 4, we have a′x = 0 and δk(λ0(g−h′x)) = 0. Hence, a ∈ C ⊂ E , and λ0 ◦∆k(g−h′x) = 0.
Using Lemma 5, we obtain

g − h′x = b′xQ
q
k + λ0r + ∆ks

′
x
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with some b ∈ E and r, s ∈ Fq−2. Substituting g = h′x + b′xQ
q
k + λ0r+ ∆ks

′
x in the above representation for

f and taking assertion 2 in Lemma 7 and assertion 1 in Proposition 12 into account, we obtain

f = aQq+1
k + λ0(h′x + b′xQ

q
k + λ0r + ∆ks

′
x) + ∆kh =

= aQq+1
k + dkh+ dx(bQq

k) + dx(∆ks) + ∆k(bQq
k) + ∆k(∆ks) =

= aQq+1
k + dk(h+ bQq

k + ∆ks).

We thus obtain the cohomology [f ] = aQq+1
k with some complex constant a.

3.3. Proofs of Theorems 2 and 3. The above mathematical apparatus and, in particular, Proposi-
tions 2 and 3 and Theorem 5 make the proofs of these theorems an elementary verification of the equalities
dE = d1 and dA = d2.

4. Discussion

The cohomologies of Lie algebras of vector fields on the line with coefficients in the trivial representation
were essentially known [2], [3], although a concrete formulation was lacking. We provide this formulation
in Theorem 1 and show its place in the general scheme using a general method of proof. In the cases
where the coefficients are in the natural and adjoint representations, there are general results concerning
cohomologies with nontrivial coefficients [7]–[9] from which explicit expressions for the cohomologies under
consideration can be derived. However, the necessary calculations are substantially more difficult than our
direct calculations. In any case, it is useful to have elementary proofs for basic model examples. Moreover,
it is probable that the developed technique can be generalized to actual situations of physical importance.
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