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Abstract

Combining a Lie algebraic approach that is due to Wei and Nor-
man (J. Math. Phys., 1963, 4, 475) and the ideas suggested by
Drach (Comptes Rendus, 1919, 168, 337) we have constructed sev-
eral classes of systems of linear ordinary differential equations that
are integrable by quadratures. Their integrability is ensured by in-
tegrability of the corresponding stationary cubic Schrodinger, KdV
and Harry-Dym equations. Next, we obtain a hierarchy of integrable
reductions of the Dirac equation of an electron moving in the exter-
nal field. Their integrability is shown to be in correspondence with
integrability of the stationary mKdV hierarchy.

I. Introduction

The object of the study in the present paper is the system of first-order
ordinary differential equations (ODEs) of the following structure:
dip

— + L{a) =0, (1)

Here t(z) is an n-component real-valued function column and L(z) is an
n X n matrix function taking values in some real r-dimensional matrix Lie
algebra g, namely

L) = 3 A 2)
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where ()i are constant n x n matrices fulfilling the commutation relations

[Qi, Q5] = Z (3)

The general Lie algebraic approach to integrating systems of ordinary dif-
ferential equations having the structure (1) has been developed by WEI and
NORMAN [1, 2]. The principal idea of their approach is a proper utilization
of the Baker-Campbell-Hausdorff formula in order to represent the general
solution of (1) in the form

) = exp {z zm)c)i} . ()

where x is an arbitrary constant n component column.

However, with all its elegance and simplicity the approach is still too
general and gives a kind of an existence theorem of a special representation
of the general solution. The principal problem is that after representing the
general solution of (1) in the form (4) we have to integrate a system of non-
linear ODEs for unknown functions (), ..., [.(z). On the other hand, there
is the well-known inverse scattering method which reduces a problem of find-
ing special solutions of nonlinear partial differential equations to an auxiliary
linear problem (see, e.g., [3]-[5]). So it is only natural to make an attempt
of combining both approaches in order to develop a routine for choosing spe-
cial subclasses of ODEs (1) that can be reduced to solving some nonlinear
(stationary) solitonic equations. Namely, we pick out specific subclasses of
equations of the form (1) such that their integrability by quadratures is en-
sured by integrability of the corresponding stationary solitonic equations. To
this end we consider systems of ODEs of the following special form:

Ly = (d + \F(z )+G(a:)>z/):0, (5)

where F(x),G(x) are matrix-functions taking values in a real r-dimensional
matrix Lie algebra g. The parameter A may be thought of as an auxiliary
independent variable, i.e. 1 = ¢(z, ). Note that the functions F(x), G(x)
are independent of A.

Systems of ODEs (1) are of utmost importance for separation of variables
in systems of partial differential equations (say, in the Dirac equation of



an electron). This is due to the fact that after separating variables in a
given system of partial differential equations we have to integrate separated
equations which are exactly of the form (1).

Since we deal with more specific models as compared with ones considered
by WEI and NORMAN, it is possible to input more information into the
Ansatz (4). To this end we make use of its "infinitesimal analogue” in the
form of Lie symmetry of system of ODEs (5), whose coefficients are required
to be polynomials in A. The last restriction is crucial and provides a link of
the system of ODEs (5) to stationary solitonic equations whose integrability
is ensured by the inverse scattering method. As we learned recently, a similar
idea was used about eighty years ago by DRACH [6] in order to integrate by
quadratures the one-dimensional stationary Schrodinger equation

"= A+ V() =0.

He had made an Ansatz for a solution of the above equation by a proper
fixing its dependence on A. As a result, he discovered a remarkable class
of integrable stationary Schrodinger equations. Namely, it had been proved
that, provided V() is a solution of the nonlinear ODE called now the equa-
tion of the stationary KdV hierarchy, the stationary Schrodinger equation is
integrable by quadratures. Moreover, DRACH, in fact, suggested the method
for integrating the stationary KdV hierarchy and discovered on this way the
basics of the theory of the finite-gap solutions of the KdV equation. As
shown in [7] the results of [6] can be obtained with the use of Lie symmetry
of the stationary Schrodinger equation. One of the aims of the present pa-
per is developing a technique that is a proper synthesis of the methods by
DrAcH and WEI & NORMAN in order to reduce the problem of integrability
by quadratures of systems of ODEs (5) to integrable solitonic hierarchies. A
principal tool to be used in this respect is the Lie symmetry of (5).

The paper is organized as follows. The second section is devoted to de-
scription of our approach to integrating systems of ODEs of the form (5).
The approach is based on utilization of symmetry properties of these systems
within the class of Lie symmetries which are spanned by the basis elements
of the Lie algebra g with coefficients being polynomials in parameter A\. The
problem of constructing such Lie symmetries is shown to be reduced to inte-
grating some systems of nonlinear ODEs. Remarkably, for many interesting
cases these ODEs are nothing else than equations of the stationary solitonic



hierarchies (which is not unexpected in view of what was said above). Uti-
lizing this approach we give in Section III a systematic treatment of the case
when the Lie algebra g is three-dimensional. On this way we find a number
of linear systems of ODEs integrable in quadratures due to integrability of
the stationary cubic Schrodinger, KdV and Harry-Dim equations. Section IV
is devoted to an analysis of a reduction of the Dirac equation for a particle
moving in a specific electric field that is integrable with the help of the sug-
gested procedure. It occurs that the reduced system of ODEs is integrable
provided the non-zero component of the electro-magnetic field satisfy one of
the equations of the stationary mKdV hierarchy. The last section contains a
brief discussion of the results of the paper.

II. The general scheme

We remind that a Lie vector field
d
X =&z, \)— T, A
S(T’ )d?? + n(Tﬂ )1

where £ is a smooth scalar function and 7 is an n X n matrix whose entries
are smooth functions of z, is called the (Lie) symmetry of system (5) if X
transforms the set of its solutions into itself, i.e.

LY =0= LX9Y=0.
The above relation can be represented in the form [8]
£, X]= R(z, ML, (6)

where R is some n X n matrix function. This operator equality is to be un-
derstood in the following way: the operators on the left- and right-hand sides
should give the same result when acting on any continuously differentiable
function.

Making use of the formula (6) it is easy to become convinced of the fact
that if X is a symmetry of the system of ODEs (5), then X + Z(z, \)£ with
an arbitrary smooth function = is a symmetry as well. Consequently, without
loss of generality we can restrict our considerations to symmetries of the form

X =n(x,N). (7)

4



Importantly, operator (7) is the symmetry of the system (5) if and only if in
(6) R =0, i.e.
£, X]=0 (8)

(this is proved by direct computation).

The key idea of our approach is to fix a priori dependence of a symmetry
on the parameter A and to consider the case when 7 is a polynomial in A of
the order N with matrix coefficients.

So a Lie symmetry of system (5) is looked for as a polynomial in A which
coefficients are linear combinations of the basis elements @y,...,Q, of the
Lie algebra g

N r
X = Z Z Skl(l‘)Qk}\l, (9)
I=1 k=1
where sp;(z) are sufficiently smooth functions. From the invariance criterion
(8) we get the following relation:

N r N r
Z Z S;Cle)\l + Z { Z (flgleZk]Qk + )\gﬁ]lC’nyk) } A= 0.

=1 k=1 1=1 |i;j,k=1

Splitting it with respect to the powers of \ yields

)\N+] . Z (]75]]\707’3 = 0, (10)
3,7=1
Ao+ Y (fisi+ gisi1)Cl =0, (11)
i,7=1
A ot DD fispCl =0, (12)
i,j=1

where k=1,...,r,1=1,...,N.

Equations (10) are purely algebraic. Solving these we obtain recursively
from equations (11) the remaining coefficients of the symmetry operator X.
Inserting the obtained results into (12) we get a system of relations for func-
tions f;, g; that form a system of nonlinear ODEs. The structure of this
system is determined both by the form of the initial system of ODEs and by
the form of the commutation relations of the Lie algebra g.

The next step depends on the kind of the problem we are dealing with. If
the problem is to check whether a given system of ODEs is integrable within



the framework of our approach, then the only thing to be done is to verify
whether the obtained system of ODEs is identically satisfied by the coeffi-
cients of system (5). If, on the contrary, we have to solve a classification
problem, i.e. the one of describing functions f;, g; such that system (5) is
integrable, then we have to find (general or particular) solution of the men-
tioned system of nonlinear ODEs. What makes the whole procedure efficient
it is the fact that the nonlinear ODEs obtained are often the well studied
stationary solitonic equations.

Now with a Lie symmetry of system of ODEs (5) in hand we can integrate
it with the use of the following procedure. We diagonalize of the operator
X with the help of a properly chosen linear transformation of the dependent
variables. The initial system of ODEs (5) being transformed in this way
simplifies substantially and can be integrated by quadratures (at least, for
the low dimensional Lie algebras).

The above procedure proves to be efficient not only for integrating specific
ODEs but also for classification of systems of ODEs integrable by quadra-
tures.

I1I. Integrable ODEs

We apply the above described method to classify integrable systems of ODEs
of the form
d 3
L= (44 3 ((o) + Al 0 =0, 13
a=1
where @)1, (2, Q3 are basis elements of a real three-dimensional Lie algebra g.
It is not difficult to show that if a three-dimensional Lie algebra ¢ is a direct
sum of the lower dimensional Lie algebras, then the corresponding system
of ODEs (13) is integrated by quadratures. According to [9] the list of real
inequivalent Lie algebras of the dimension three which are not direct sums
of lower dimensional Lie algebras is exhausted by the following algebras:

Ay [QQ, Q3] =0,

Ay 0 [Q, Q3] =@, Q2 Qs3] = Q1 + Qo
Az [Ql; Q3] = Q1, [Q2, Q3] = (2,

Ay [Qh Q3] = G, [QQ, Q3] = —Qy,



As 1 [Q1, Q3] =Q1, [Qo, @3] =aQy, (0<]al <1),

Ag [Qh Q3] = —Qy, [QQ, Q3] = G,

Az o [@Q, Q3] =aQr — Qy,  [Q2, Q3] = Q1 +0aQs, (a>0),
Ag [Ql; QQ] = —Qs, [Ql; Q3] = —Qq, [Q2, Q3] = @,
Ag [Qh QZ] = @3, [QQ, Q3] = G, [Qs’, Q]] = @y,

the remaining commutation relations being zero.

For all the algebras A; A7 system of ODEs (13) is integrated by quadra-
tures with arbitrary f,, g,- This is due to the fact that making a transfor-
mation

Y = ¢ = exp{F(2)Q1 + G(2)Q,}

with properly chosen functions F, G we can always reduce (13) to the system
of ODEs of the form

o aNQsb =0
X

whose general solution is given by the quadrature

d=exp{-Qs [ flo Ndr}x,

where x is an arbitrary constant column.

To complete the classification of systems of ODEs (13) integrable by
quadratures within the framework of the above suggested approach we have
to consider the two remaining algebras Ag = so(2,1) and Ay = so(3). Both
algebras lead to non-trivial results even if we restrict our considerations to
Lie symmetries which are second-order polynomials in .

We consider first the case when coefficients of system (13) take values in
the so(2,1) algebra. Using a sequence of transformations

¥ = = exp{a()Q}, (14)

where () is one of the operators ()i, ()2, @3, together with a transformation
of the independent variable

v = f(a)



we can reduce (13) to the form L1 = 0 with
£+ Vo(2) Qs + Va(2)Qs + AQ1, it A >0,
L=3 £+ Vi(2)Q: + Va(2)Qa + AQs, if A <0,
LV (2)Q1 + V() (Qa + Qs) + A(@Qa — Qs), if A=0.

Here A stands for V2 + Vi — V2.

We restrict our analysis of symmetries of the above enumerated systems to
the class of the second-order polynomials in A. This means that symmetries
of the systems of ODEs in question are looked for in the form (9) under
N = 2. Omitting the details of calculations we present below the explicit

forms of symmetries and corresponding nonlinear ODEs for the ‘potentials’
Vi(z), Va(x).

Case 1. £ = L 4 Va(2)Qs + V3(2)Q3 + AQ1.
In this case the symmetry X reads
X = N0iQs+ ) CyQy + \C, (Va(2)Qo + V3(2)Q3)
1 ! !
+ (50] (VE V) + 03) Q1 + (C1V] + CoVa) Qs + (V] + CyVa) Qs

and what is more the functions V3, Vj satisfy the hyperbolic stationary cubic
Schrodinger equation

1

LV + GV + (501(1/; )+ 03> V, = 0.
1

L+ GV + (5Ci(VE = V) +Ca) V=0,

As usual, when talking about stationary solitonic equations we mean the
ODEs obtained from standard (1+1)-dimensional solitonic equations via the
Ansatz u(t, z) = u(x + Ct), C = const.

Case 2. £ = £ + Vi(2)Q1 + Va(2)Q2 + AQs.
In this case the operator X has the form
X = NCiQ1 + MXC1ViQy + AC1Va(2) Qs + ACyQs + (—C1 V5 + C5 V1)@
, 1
HOW +C1)@Q + (3G07 +V2) + Gy ) s
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and what is more the functions V;, V; satisfy the stationary cubic Schrodinger
equation

1
iV + CyVy — <501(V12 +V3) + C3> Vi =0,

1
CVY — CyV! — (501 (V24 12) + 03> V, = 0.

Case 3. L = % + Vi(2)Q1 + Va(2)(Q2 + Q3) + AMQ2 — Q3).

Provided V5 = 0 the corresponding system of ODEs is integrable by
quadratures with an arbitrary Vi. If V5 # 0, then we can transform the
operator £ to obtain

d

dr + Vi(2)(Q2 + Q3) + Va(2)(Q2 — Q3) + AM(Q2 — Q3).

We have not succeeded in constructing the general form of V;, V5 and
therefore restrict our considerations to the particular cases (i) V3 = const,
(i) V5 = 0.

Subcase 3.1. Vi(z) = a = const.

The Lie symmetry for this case reads
1
X = M(Qy— Q3)C1 + MaCy + Cy + 5C1V2)@e
1 1
AMaCy = Cy — 501‘/2)623 + 501‘/2@1
1 1 1
(aCs + (Cy = 5aCy)Vs = 5Clvf + %OIVQ")QQ
1 1 1
+(aCy — (Cy + =aCy) Vo + =C1 V3 + —C1 V) Qs,
2 2 2a
the function V;(z) being a solution of the stationary KdV equation
1 n !/ !/
2—01‘/2 - 301‘/2‘/2 + 202‘/2 = 0.
!

Subcase 3.2. V;(z) = 0.

The Lie symmetry for this case is of the form

- 1 o
X = \OV, ”Q(QQ—Q?,HEAOMV; 52Q,
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+A(Cox + C3 + C’1VI1/2)Q2 — AMCyz + Cy — C Vf/Q)Qg
1 - —
+CoQy + {(Cox + C5)Vy + §C1 V"V, 3/2 3(V)2V; 5/2)}622

1 "y ,—: / ¢
+H{(Coz + C3)V; + 501(2‘/1 v, 3(V)*V, 5/2)}623;

the function V;(z) satisfying the nonlinear ODE

1 a2 9 s, 15 .
SOV OV VIV O V)Y P 2 Gt Ca) V4GV = 0.

With C5 = 0 the above equation is nothing else than the stationary Harry
Dym equation

0, (me)m 20,V = 0

which is known to be integrable by quadratures and, furthermore, under
C3 = 0 possesses solutions in terms of elementary functions

Vi(7) = (2” + ar + a3) 2,
where aq, as, a3 are arbitrary real constants.
Now we turn to the case of the algebra Ag = so(3) and consider system
of ODEs (13), where @1, Q)2, Q3 are constant matrices satisfying the commu-
tation relations

[Qa: Q] = Qe (a,b,c) =cycle(1,2,3).

Using a sequence of transformations (14), where @ is one of the operators
Q1,Q2,Qs, we can substantially simplify system (13) and reduce it to the
following equivalent form:

4

L= (di V()@ + Va(2) Qs + AQg) W= 0. (15)

As above, a Lie symmetry X of system (15) is looked for as a second-order
polynomial in A with matrix coefficients. Inserting X into the invariance cri-
terion [£, X| = 0 yields a system of determining equations for its coefficients.
Having solved these we obtain the explicit form of the Lie symmetry admitted
by system of ODEs (15)

X = N0iQs+ O, (ViQ1 + VaQs) + AC2Q3 + (—C1 Vi + CoV1)Q:
, 1
+(C1 V] 4+ CoV) Qs + (5(‘/12 + V22) + C3)Qs,

10



where Vj(z), Vo(z) are solutions of the stationary cubic Schrodinger equation
1
VY = CoVi = (CHVE + Vi) + Ca) Vi =0,
1
Ci1Vy + Gy — <501(V12 +V3) + 03> Vo =0

and Cy, Cy, C3 are arbitrary constants.

In what follows we will briefly discuss a method for integrating systems
of ODEs (13), (15) based on their symmetry properties. Generally speaking,
information about a Lie symmetry admitted by a system of ODEs is not
sufficient to provide its integrability by quadratures within the Lie group ap-
proach (for more details see, e.g. [10] [13]). However, due to the remarkable
algebraic structure of the ODEs under study knowledge of a Lie symme-
try makes it possible to construct their general solutions by quadratures.
Namely, the following assertions hold true.

Lemma 1 Let the system of ODFEs

d

Ly = (d— s fam)cga) =0, (16)

where Qq, 2, Q3 are constant matrices forming a basis of the Lie algebra
s0(2,1), admit a Lie symmetry

X = Z ga(‘r)Qa' (17)

Then it is integrable by quadratures.

Lemma 2 Let the system of ODEs (16), where Q1, Q2, Q3 are constant ma-
trices forming a basis of the Lie algebra so(3), admit a Lie symmetry (17)
Then it is integrable by quadratures.

We adduce the proof of Lemma 2 (the first lemma is proved in a similar
way). Making a change of dependent variables

¢ BV V) = eSS R
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we can always transform the operator X to become
X=V'XV=g(2)Q g(z)#0

and what is more this transformation preserves the structure of system (16).
The invariance criterion [£, X] = 0, where

- d 3. .
ﬁ - Vi]ﬁv - d_ + Z fa(m)Qaa
Z a=1

implies that i
9(f2Qs — f3Q2) — g'Q1 = 0.
As the matrices (1, ()2, (3 are linearly independent, hence it follows that

fo=0, f3=0, g¢=const.

Consequently, the transformed system of ODEs necessarily takes the form
d -
T + f1Q1 | =10

and is evidently integrable by quadratures. Lemma 2 is proved.
Consequently, all the systems of linear ODEs considered in Section 3 pos-
sessing non-trivial symmetries of the form (9) can be integrated by quadra-
tures with the use of the algebraic procedure described above. This is due
to the well-known fact that the stationary solitonic equations arising as the
invariance conditions are integrable by quadratures (see, e.g. [14, 15]).

IV. The hierarchy of integrable reductions of
the Dirac equation

The technique developed above applies straightforwardly to systems of ODEs
having complex-valued coefficients. In this section we use this technique for
obtaining integrable reductions of the Dirac equation of an electron

3 3
0> Yuths, — (e > AR+ m) Y =0, (18)
n=0

=0
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moving in the electric field
A[]:A(](.’Eg), A1:A2:Ag:0

In the formulae (18) ~, are 4 x 4 Dirac matrices, ¢ = ¢(zg, x1, T2, x3) is a
four-component complex-valued function and e, m are constants.

The form of the vector-potential A, imply the following Ansatz for the
spinor field ¥(x):

Y(x) = p(x3).

Inserting this expression into the Dirac equation (18) yields a system of
ordinary differential equations for the four-component function p(z3)

@' — (ieysyAo — imys)p = 0. (19)
Denoting

r=2x3, V(r)=-eA(xs),
1 1

1
1 270, 2 273, 3 2'73%

we rewrite (19) in the following form:

d

Lo= (D, V(x)Js—my)p=0, D,= e
x

(20)
Note that the 4 x 4 matrices Ji, Jo, J3 satisfy the commutation relations
of the Lie algebra so(3). Consequently, we can apply the routine developed
in Section 2 in order to construct a Lie symmetry admitted by (20).
First we consider the case when coefficients of a Lie symmetry () are
third-order polynomials in m and choose:

3

X = Z(ak(T) + br(z) m + cp(x) m® + di(z) m*) Jy, (21)

where ay, by, ¢, di are some smooth complex-valued functions.
Inserting the expression for X into the invariance criterion [£, X] = 0 and
splitting with respect to the powers of m and then with respect to linearly
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independent matrices Ji, Jo, J3 we get the system of determining equations
for the functions ay, b, ¢k, dg

d =0, dy=0
dy—Vdy =0, d\+Vdy—c3=0, dy—c; =0,
y—Ver =0, f+Vea—0b3=0, dy—b =0,
by— Vb =0, bi+Vby—a3=0, c4—a; =0,

!

ay—Va, =0, a)+Vay=0, a;=0.
Integrating the above system of ODEs yields

di =0, do=0Cy, d3=0,
c1 =0, =0y e3=0V,

1
b] - C]V’, bg - 50] V2 —|— Cg, bg - 02‘/,
1 1
a); = CQV’, o = ECQVQ + 04, a3 = Cl(V” + 5‘/%) + 03V,

where C;, Cy, C3,C, are arbitrary constants and furthermore the potential
V' (z) has to satisfy the following nonlinear ODEs

3 1
Ci (V" + 5vQV’) +C3V' =0, Cy(V"+ 5v3) +C,V = 0.

Thus we have established that if the function V(z) is a solution of the
stationary mKdV equation

C (V" + gVQV’) + CsV' =0, (22)
then the initial system of ODEs (20) admits the Lie symmetry
Q = Cuhm + OV Iym? + OV Jym + (SCV7 4 C5) Jym
H(O 4 v+ eV ) s

This symmetry solves the problem of integrability of system of ODEs (20)
by quadratures due to Lemma 2. Hence, we conclude that provided V' (z) is

14



a solution of the stationary mKdV equation (22), then system of ODEs (20)
is integrable by quadratures.

Now we turn to the case when a Lie symmetry is looked for as a polyno-
mial in m of an arbitrary order n

X =
k

> fEa)Jym™ k.

n 3
=0 a=1

The invariance criterion [£, X| = 0 yields the following system of deter-
mining equations for the coefficients of the operator ():

=0, fi=0

(F) = f*" =0, () -V =0,
(FB)+VH -7 =0, k=0,...,n-1,

(f) =0, () =V =0 (1) +Vf=0.

We have obtained the two classes of solutions of the above system of
ODEs which are given below

1. n=2N+1, NeN,

=0 f=1f=0

fH#E2 =0, k=0,...,N—1

2k+1 __ £2k+1 __ k+1 __ _
1 — 2 *O, 3 *Rk’ k*]_’...,N’
2k+2 __ 2k+1 1y,

and the equation
D,Ry =0 (23)
holds.

2. n=2N+2 NeN

=0, f=1f=0

]2k+1: 22’”]:0, §+1:Rk’ k=1,...,N,
12k+2 — Da: Rk, 12k+1 — (V o D;IV’) Rk,
f#2 =0, k=0,...,N
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and the equation
Ry =0

holds.

In the above formulae we make use of the following notations

k
Re=> Cy(D2+V?*=VDJVVV, k=0,...N+1,
§=0
where Cy,...,Cyy1 are arbitrary real constants and D' is the inverse of

D,.

A reader familiar with the soliton theory will immediately recognize the
operator X = D2+ V2 —V D'V, as the recursion operator for the mKdV
equation [5, 11]

3

Acting repeatedly with the operator X on the trivial conserved density I, =
V' we get the whole set of conserved densities of the mKdV equation. Next,
the operator

Y=D,XD,'=D2+V*+V,D,'V

is the second recursion operator for the mKdV equation. Its repeated action
on the trivial Lie symmetry Sy = V, yields the whole hierarchy of the higher
symmetries of the mKdV equation. Hence it follows, in particular, that
condition (23) is rewritten in the form

N
Y CySp =0, Sp=Y"V". (24)
k=0

The above equation is nothing else than the higher stationary mKdV
equation. Provided N = 1 it reduces to the standard stationary mKdV
equation (22).

Hence, due to Lemma 2 it follows the validity of the following assertion.

Theorem 1 Let the function V (x) satisfy the higher stationary mKdV equa-

tion (24) with some fized N and Cy, ...,Cy. Then, the system of ODEs (20)
15 1ntegrable by quadratures.
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It is a common knowledge that the stationary mKdV hierarchy is reduced
to the stationary KdV hierarchy with the help of the Miura transformation
(see, e.g. [4, 5]). Furthermore, the latter are integrated in terms of f-functions
[6, 15]. Consequently, the system of ODEs (19) is also integrable by quadra-
tures thus giving rise to exact solutions of the initial Dirac equation (18).

V. Conclusions

Here we have demonstrated how one can make use of powerful ideas and
methods developed in the theory of solitons in order to integrate systems of
ODEs of the form (5). Here we have to give its due to the paper by DRACH [6],
where almost all the principal ideas necessary for consistent implementation
of the technique described in Section 2 can be found (though DrRACH did not
use Lie symmetries explicitly).

One more important remark is that the Lie symmetries of the reduced
Dirac equation (19) constructed in Section 4 have nothing to do with the
maximal symmetry group C(1,3) ® U(1) admitted by the initial Dirac equa-
tion. This means that they can not be obtained by an appropriate reduction
of the group C(1,3) ® U(1). These symmetries correspond to conditional
symmetry of the Dirac equation (for more details about conditional symme-
tries of linear and nonlinear Dirac equations, see [16]). We believe that there
exist numerous reductions of the Dirac equations that could be integrated in
the way described in Section 4 thus giving principally new exact solutions
to (18) with specific electro-magnetic fields. A further possible application
of the results of the paper is integrating systems of ODEs obtained after
separating variables in the Dirac equation (18).

The next remark concerns with the restriction of our considerations to
the case of three-dimensional Lie algebras. This restriction is not at all
essential and it is quite clear how to include into considerations the higher
dimensional Lie algebras. The peculiarity of the three-dimensional case is
that all the systems of ODEs of the form (13) possessing a Lie symmetry
(7) are integrable by quadratures. For the case of a higher dimensional Lie
algebra this might not be the case.
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