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Abstract

Com bining a Lie algebraic approac h that is due to W ei and Nor-

man ( J. Math. Phys. , 1963, 4 , 475) and the ideas suggested b y

Drac h ( Comptes R endus , 1919, 168 , 337) w e ha v e constructed sev-

eral classes of systems of linear ordinary di�eren tial equations that

are in tegrable b y quadratures. Their in tegrabilit y is ensured b y in-

tegrabilit y of the corresp onding stationary cubic Sc hr• odinger, KdV

and Harry-Dym equations. Next, w e obtain a hierarc h y of in tegrable

reductions of the Dirac equation of an electron mo ving in the exter-

nal �eld. Their in tegrabilit y is sho wn to b e in corresp ondence with

in tegrabilit y of the stationary mKdV hierarc h y .

I. In tro duction

The ob ject of the study in the presen t pap er is the system of �rst-order

ordinary di�eren tial equations (ODEs) of the follo wing structure:

d 

dx

+ L ( x )  = 0 : (1)

Here  ( x ) is an n -comp onen t real-v alued function column and L ( x ) is an

n � n matrix function taking v alues in some real r -dimensional matrix Lie

algebra g , namely

L ( x ) =

rXk=1 f k ( x ) Q k ; (2)�e-mail: rzhdanov@apmat.freenet.kiev.ua
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where Q k are constan t n � n matrices ful�lling the comm utation relations

[ Q i ; Q j ] =

rXk=1 C

kij Q k : (3)

The general Lie algebraic approac h to in tegrating systems of ordinary dif-

feren tial equations ha ving the structure (1) has b een dev elop ed b y Wei andNorman [1, 2]. The principal idea of their approac h is a prop er utilization

of the Bak er-Campb ell-Hausdor� form ula in order to represen t the general

solution of (1) in the form

 ( x ) = exp

( rXi=1 l i ( x ) Q i) �; (4)

where � is an arbitrary constan t n comp onen t column.

Ho w ev er, with all its elegance and simplicit y the approac h is still to o

general and giv es a kind of an existence theorem of a sp ecial represen tation

of the general solution. The principal problem is that after represen ting the

general solution of (1) in the form (4) w e ha v e to in tegrate a system of non-linear ODEs for unkno wn functions l 1 ( x ) ; : : : ; l r ( x ). On the other hand, there

is the w ell-kno wn in v erse scattering metho d whic h reduces a problem of �nd-

ing sp ecial solutions of nonlinear partial di�eren tial equations to an auxiliary

linear problem (see, e.g., [3]{[5 ]). So it is only natural to mak e an attempt

of com bining b oth approac hes in order to dev elop a routine for c ho osing sp e-

cial sub classes of ODEs (1) that can b e reduced to solving some nonlinear

(stationary) solitonic equations. Namely , w e pic k out sp eci�c sub classes of

equations of the form (1) suc h that their in tegrabilit y b y quadratures is en-

sured b y in tegrabilit y of the corresp onding stationary solitonic equations. T o

this end w e consider systems of ODEs of the follo wing sp ecial form:L �  
d

dx

+ �F ( x ) + G ( x )

!
 = 0 ; (5)

where F ( x ) ; G ( x ) are matrix-functions taking v alues in a real r -dimensional

matrix Lie algebra g . The parameter � ma y b e though t of as an auxiliary

indep enden t v ariable, i.e.  =  ( x; � ). Note that the functions F ( x ) ; G ( x )

are indep enden t of � .

Systems of ODEs (1) are of utmost imp ortance for separation of v ariables

in systems of partial di�eren tial equations (sa y , in the Dirac equation of
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an electron). This is due to the fact that after separating v ariables in a

giv en system of partial di�eren tial equations w e ha v e to in tegrate separated

equations whic h are exactly of the form (1).

Since w e deal with more sp eci�c mo dels as compared with ones considered

b y Wei and Norman, it is p ossible to input more information in to the

Ansatz (4). T o this end w e mak e use of its "in�nitesimal analogue" in the

form of Lie symmetry of system of ODEs (5), whose co e�cien ts are required

to b e p olynomials in � . The last restriction is crucial and pro vides a link of

the system of ODEs (5) to stationary solitonic equations whose in tegrabilit y

is ensured b y the in v erse scattering metho d. As w e learned recen tly , a similar

idea w as used ab out eigh t y y ears ago b y Drach [6] in order to in tegrate b y

quadratures the one-dimensional stationary Sc hr• odinger equation

 

00 � ( � + V ( x ))  = 0 :

He had made an Ansatz for a solution of the ab o v e equation b y a prop er

�xing its dep endence on � . As a result, he disco v ered a remark able class

of in tegrable stationary Sc hr• odinger equations. Namely , it had b een pro v ed

that, pro vided V ( x ) is a solution of the nonlinear ODE called no w the equa-

tion of the stationary KdV hierarc h y , the stationary Sc hr• odinger equation is

in tegrable b y quadratures. Moreo v er, Drach, in fact, suggested the metho d

for in tegrating the stationary KdV hierarc h y and disco v ered on this w a y the

basics of the theory of the �nite-gap solutions of the KdV equation. As

sho wn in [7] the results of [6 ] can b e obtained with the use of Lie symmetry

of the stationary Sc hr• odinger equation. One of the aims of the presen t pa-

p er is dev eloping a tec hnique that is a prop er syn thesis of the metho ds b yDrach and Wei & Norman in order to reduce the problem of in tegrabilit y

b y quadratures of systems of ODEs (5) to in tegrable solitonic hierarc hies. A

principal to ol to b e used in this resp ect is the Lie symmetry of (5).

The pap er is organized as follo ws. The second section is dev oted to de-

scription of our approac h to in tegrating systems of ODEs of the form (5).

The approac h is based on utilization of symmetry prop erties of these systems

within the class of Lie symmetries whic h are spanned b y the basis elemen ts

of the Lie algebra g with co e�cien ts b eing p olynomials in parameter � . The

problem of constructing suc h Lie symmetries is sho wn to b e reduced to in te-

grating some systems of nonlinear ODEs. Remark ably , for man y in teresting

cases these ODEs are nothing else than equations of the stationary solitonic
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hierarc hies (whic h is not unexp ected in view of what w as said ab o v e). Uti-

lizing this approac h w e giv e in Section I I I a systematic treatmen t of the case

when the Lie algebra g is three-dimensional. On this w a y w e �nd a n um b er

of linear systems of ODEs in tegrable in quadratures due to in tegrabilit y of

the stationary cubic Sc hr• odinger, KdV and Harry-Dim equations. Section IV

is dev oted to an analysis of a reduction of the Dirac equation for a particle

mo ving in a sp eci�c electric �eld that is in tegrable with the help of the sug-

gested pro cedure. It o ccurs that the reduced system of ODEs is in tegrable

pro vided the non-zero comp onen t of the electro-magnetic �eld satisfy one of

the equations of the stationary mKdV hierarc h y . The last section con tains a

brief discussion of the results of the pap er.

I I. The general sc heme

W e remind that a Lie v ector �eld

X = � ( x; � )

d

dx

+ � ( x; � ) ;

where � is a smo oth scalar function and � is an n � n matrix whose en tries

are smo oth functions of x , is called the (Lie) symmetry of system (5) if X

transforms the set of its solutions in to itself, i.e.L = 0 = ) LX  = 0 :

The ab o v e relation can b e represen ted in the form [8]

[ L; X ] = R ( x; � ) L; (6)

where R is some n � n matrix function. This op erator equalit y is to b e un-

dersto o d in the follo wing w a y: the op erators on the left- and righ t-hand sides

should giv e the same result when acting on an y con tin uously di�eren tiable

function.

Making use of the form ula (6) it is easy to b ecome con vinced of the fact

that if X is a symmetry of the system of ODEs (5), then X + �( x; � ) L with

an arbitrary smo oth function � is a symmetry as w ell. Consequen tly , without

loss of generalit y w e can restrict our considerations to symmetries of the form

X = � ( x; � ) : (7)
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Imp ortan tly , op erator (7) is the symmetry of the system (5) if and only if in

(6) R = 0, i.e.

[ L; X ] = 0 (8)

(this is pro v ed b y direct computation).

The k ey idea of our approac h is to �x a priori dep endence of a symmetry

on the parameter � and to consider the case when � is a p olynomial in � of

the order N with matrix co e�cien ts.

So a Lie symmetry of system (5) is lo ok ed for as a p olynomial in � whic h

co e�cien ts are linear com binations of the basis elemen ts Q 1 ; : : : ; Q r of the

Lie algebra g

X =

NXl=1 rXk=1 s kl ( x ) Q k �

l
; (9)

where s kl ( x ) are su�cien tly smo oth functions. F rom the in v ariance criterion

(8) w e get the follo wing relation:NXl=1 rXk=1 s

0kl Q k �

l
+

NXl=18<: rXi;j;k=1 �f i s jl C

kij Q k + �g i s jl C

kij Q k�9=; �

l
= 0 :

Splitting it with resp ect to the p o w ers of � yields

�

N+1
:

rXi;j=1 g i s jN C

kij = 0 ; (10)

�

l
: f

0kl +

rXi;j=1( f i s jl + g i s jl � 1 ) C

kij = 0 ; (11)

�

0
: f

0k0 +

rXi;j=1 f i s j0 C

kij = 0 ; (12)

where k = 1 ; : : : ; r , l = 1 ; : : : ; N .

Equations (10) are purely algebraic. Solving these w e obtain recursiv ely

from equations (11) the remaining co e�cien ts of the symmetry op erator X .

Inserting the obtained results in to (12) w e get a system of relations for func-

tions f i ; g i that form a system of nonlinear ODEs. The structure of this

system is determined b oth b y the form of the initial system of ODEs and b y

the form of the comm utation relations of the Lie algebra g .

The next step dep ends on the kind of the problem w e are dealing with. If

the problem is to c hec k whether a giv en system of ODEs is in tegrable within
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the framew ork of our approac h, then the only thing to b e done is to v erify

whether the obtained system of ODEs is iden tically satis�ed b y the co e�-

cien ts of system (5). If, on the con trary , w e ha v e to solv e a classi�cation

problem, i.e. the one of describing functions f i ; g i suc h that system (5) is

in tegrable, then w e ha v e to �nd (general or particular) solution of the men-

tioned system of nonlinear ODEs. What mak es the whole pro cedure e�cien t

it is the fact that the nonlinear ODEs obtained are often the w ell studied

stationary solitonic equations.

No w with a Lie symmetry of system of ODEs (5) in hand w e can in tegrate

it with the use of the follo wing pro cedure. W e diagonalize of the op erator

X with the help of a prop erly c hosen linear transformation of the dep enden t

v ariables. The initial system of ODEs (5) b eing transformed in this w a y

simpli�es substan tially and can b e in tegrated b y quadratures (at least, for

the lo w dimensional Lie algebras).

The ab o v e pro cedure pro v es to b e e�cien t not only for in tegrating sp eci�c

ODEs but also for classi�cation of systems of ODEs in tegrable b y quadra-

tures.

I I I. In tegrable ODEs

W e apply the ab o v e describ ed metho d to classify in tegrable systems of ODEs

of the form L �  
d

dx

+

3Xa=1( f a ( x ) + �g a ( x )) Q a!  = 0 ; (13)

where Q 1 ; Q 2 ; Q 3 are basis elemen ts of a real three-dimensional Lie algebra g .

It is not di�cult to sho w that if a three-dimensional Lie algebra g is a direct

sum of the lo w er dimensional Lie algebras, then the corresp onding system

of ODEs (13) is in tegrated b y quadratures. According to [9] the list of real

inequiv alen t Lie algebras of the dimension three whic h are not direct sums

of lo w er dimensional Lie algebras is exhausted b y the follo wing algebras:

A 1 : [ Q 2 ; Q 3 ] = 0 ;

A 2 : [ Q 1 ; Q 3 ] = Q 1 ; [ Q 2 ; Q 3 ] = Q 1 + Q 2 ;

A 3 : [ Q 1 ; Q 3 ] = Q 1 ; [ Q 2 ; Q 3 ] = Q 2 ;

A 4 : [ Q 1 ; Q 3 ] = Q 1 ; [ Q 2 ; Q 3 ] = �Q 2 ;
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A 5 : [ Q 1 ; Q 3 ] = Q 1 ; [ Q 2 ; Q 3 ] = aQ 2 ; (0 < ja j < 1) ;

A 6 : [ Q 1 ; Q 3 ] = �Q 2 ; [ Q 2 ; Q 3 ] = Q 1 ;

A 7 : [ Q 1 ; Q 3 ] = aQ 1 � Q 2 ; [ Q 2 ; Q 3 ] = Q 1 + aQ 2 ; ( a > 0) ;

A 8 : [ Q 1 ; Q 2 ] = �Q 3 ; [ Q 1 ; Q 3 ] = �Q 2 ; [ Q 2 ; Q 3 ] = Q 1 ;

A 9 : [ Q 1 ; Q 2 ] = Q 3 ; [ Q 2 ; Q 3 ] = Q 1 ; [ Q 3 ; Q 1 ] = Q 2 ;

the remaining comm utation relations b eing zero.

F or all the algebras A 1 { A 7 system of ODEs (13) is in tegrated b y quadra-

tures with arbitrary f a ; g a . This is due to the fact that making a transfor-

mation

 ! ~

 = exp fF ( x ) Q 1 + G ( x ) Q 2g
with prop erly c hosen functions F ; G w e can alw a ys reduce (13) to the system

of ODEs of the form

d

~

 

dx

+ f ( x; � ) Q 3 ~

 = 0

whose general solution is giv en b y the quadrature

~

 = exp

��Q 3 Z f ( x; � ) dx

�
�;

where � is an arbitrary constan t column.

T o complete the classi�cation of systems of ODEs (13) in tegrable b y

quadratures within the framew ork of the ab o v e suggested approac h w e ha v e

to consider the t w o remaining algebras A 8 = so (2 ; 1) and A 9 = so (3). Both

algebras lead to non-trivial results ev en if w e restrict our considerations to

Lie symmetries whic h are second-order p olynomials in � .

W e consider �rst the case when co e�cien ts of system (13) tak e v alues in

the so (2 ; 1) algebra. Using a sequence of transformations

 ! ~

 = exp f� ( x ) Q g; (14)

where Q is one of the op erators Q 1 ; Q 2 ; Q 3 , together with a transformation

of the indep enden t v ariable

x ! ~x = f ( x )
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w e can reduce (13) to the form

~L ~

 = 0 with

~L =

8>>>><>>>>: ddx + V 2 ( x ) Q 2 + V 3 ( x ) Q 3 + �Q 1 ; if � > 0 ;ddx + V 1 ( x ) Q 1 + V 2 ( x ) Q 2 + �Q 3 ; if � < 0 ;ddx + V 1 ( x ) Q 1 + V 2 ( x )( Q 2 + Q 3 ) + � ( Q 2 � Q 3 ) ; if � = 0 :

Here � stands for V

21 + V

22 � V

23 .

W e restrict our analysis of symmetries of the ab o v e en umerated systems to

the class of the second-order p olynomials in � . This means that symmetries

of the systems of ODEs in question are lo ok ed for in the form (9) under

N = 2. Omitting the details of calculations w e presen t b elo w the explicit

forms of symmetries and corresp onding nonlinear ODEs for the `p oten tials'

V 1 ( x ) ; V 2 ( x ).

Case 1.

~L =

ddx + V 2 ( x ) Q 2 + V 3 ( x ) Q 3 + �Q 1 .

In this case the symmetry X reads

X = �

2
C 1 Q 3 + �C 2 Q 1 + �C 1 ( V 2 ( x ) Q 2 + V 3 ( x ) Q 3 )

+

�
1

2

C 1 ( V

22 � V

23 ) + C 3� Q 1 + ( C 1 V

03 + C 2 V 2 ) Q 2 + ( C 1 V

02 + C 2 V 3 ) Q 3
and what is more the functions V 2 ; V 3 satisfy the h yp erb olic stationary cubic

Sc hr• odinger equation

C 1 V

002 + C 2 V

03 +

�
1

2

C 1 ( V

22 � V

23 ) + C 3� V 2 = 0 ;

C 1 V

003 + C 2 V

02 +

�
1

2

C 1 ( V

22 � V

23 ) + C 3� V 3 = 0 :

As usual, when talking ab out stationary solitonic equations w e mean the

ODEs obtained from standard (1+1)-dimensional solitonic equations via the

Ansatz u ( t; x ) = u ( x + C t ) ; C = const .

Case 2.

~L =

ddx + V 1 ( x ) Q 1 + V 2 ( x ) Q 2 + �Q 3 .

In this case the op erator X has the form

X = �

2
C 1 Q 1 + �C 1 V 1 Q 1 + �C 1 V 2 ( x ) Q 2 + �C 2 Q 3 + ( �C 1 V

02 + C 2 V 1 ) Q 1
+( C 1 V

01 + C 2 V 2 ) Q 2 +

�
1

2

C 1 ( V

21 + V

22 ) + C 3� Q 3
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and what is more the functions V 1 ; V 2 satisfy the stationary cubic Sc hr• odinger

equation

C 1 V

001 + C 2 V

02 � � 1

2

C 1 ( V

21 + V

22 ) + C 3� V 1 = 0 ;

C 1 V

002 � C 2 V

01 � �
1

2

C 1 ( V

21 + V

22 ) + C 3� V 2 = 0 :

Case 3.

~L =

ddx + V 1 ( x ) Q 1 + V 2 ( x )( Q 2 + Q 3 ) + � ( Q 2 � Q 3 ).

Pro vided V 2 = 0 the corresp onding system of ODEs is in tegrable b y

quadratures with an arbitrary V 1 . If V 2 6= 0, then w e can transform the

op erator

~L to obtain

d

dx

+ V 1 ( x )( Q 2 + Q 3 ) + V 2 ( x )( Q 2 � Q 3 ) + � ( Q 2 � Q 3 ) :

W e ha v e not succeeded in constructing the general form of V 1 ; V 2 and

therefore restrict our considerations to the particular cases (i) V 1 = const ,

(ii) V 2 = 0.

Sub case 3.1. V 1 ( x ) = � � const .

The Lie symmetry for this case reads

X = �

2
( Q 2 � Q 3 ) C 1 + � ( � C 1 + C 2 +

1

2

C 1 V 2 ) Q 2
� ( � C 1 � C 2 � 1

2

C 1 V 2 ) Q 3 +

1

2

C 1 V

02 Q 1
( � C 2 + ( C 2 � 1

2

� C 1 ) V 2 � 1

2

C 1 V

22 +

1

2 �

C 1 V

002 ) Q 2
+( � C 2 � ( C 2 +

1

2

� C 1 ) V 2 +

1

2

C 1 V

22 +

1

2 �

C 1 V

002 ) Q 3 ;

the function V 1 ( x ) b eing a solution of the stationary KdV equation

1

2 �

C 1 V

0002 � 3 C 1 V

02 V 2 + 2 C 2 V

02 = 0 :

Sub case 3.2. V 2 ( x ) = 0.

The Lie symmetry for this case is of the form

X = �

2
C 1 V

� 1=21 ( Q 2 � Q 3 ) +

1

2

�C 1 V

01 V

� 3=21 Q 1
9



+ � ( C 2 x + C 3 + C 1 V

1=21 ) Q 2 � � ( C 2 x + C 3 � C 1 V

1=21 ) Q 3
+ C 2 Q 1 + f( C 2 x + C 3 ) V 1 +

1

8

C 1 (2 V

001 V

� 3=21 � 3( V

01 )

2
V

� 5=21 ) gQ 2
+ f( C 2 x + C 3 ) V 1 +

1

8

C 1 (2 V

001 V

� 3=21 � 3( V

01 )

2
V

� 5=21 ) gQ 3 ;

the function V 1 ( x ) satisfying the nonlinear ODE

1

2

C 1 V

0001 V

� 3=21 � 9

4

C 1 V

001 V

01 V

� 5=21 +

15

8

C 1 ( V

01 )

3
V

� 7=21 +2( C 2 x + C 3 ) V

01 +4 C 2 V 1 = 0 :

With C 2 = 0 the ab o v e equation is nothing else than the stationary Harry

Dym equation �C 1 �V

� 1=21 �
000

+ 2 C 3 V

01 = 0

whic h is kno wn to b e in tegrable b y quadratures and, furthermore, under

C 3 = 0 p ossesses solutions in terms of elemen tary functions

V 1 ( x ) = ( � 1 x

2
+ � 2 x + � 3 )

� 2
;

where � 1 ; � 2 ; � 3 are arbitrary real constan ts.

No w w e turn to the case of the algebra A 9 = so (3) and consider system

of ODEs (13), where Q 1 ; Q 2 ; Q 3 are constan t matrices satisfying the comm u-

tation relations

[ Q a ; Q b ] = Q c ; ( a; b; c ) = cycle (1 ; 2 ; 3) :

Using a sequence of transformations (14), where Q is one of the op erators

Q 1 ; Q 2 ; Q 3 , w e can substan tially simplify system (13) and reduce it to the

follo wing equiv alen t form:L �  
d

dx

+ V 1 ( x ) Q 1 + V 2 ( x ) Q 2 + �Q 3!  = 0 : (15)

As ab o v e, a Lie symmetry X of system (15) is lo ok ed for as a second-order

p olynomial in � with matrix co e�cien ts. Inserting X in to the in v ariance cri-

terion [ L; X ] = 0 yields a system of determining equations for its co e�cien ts.

Ha ving solv ed these w e obtain the explicit form of the Lie symmetry admitted

b y system of ODEs (15)

X = �

2
C 1 Q 3 + �C 1 ( V 1 Q 1 + V 2 Q 2 ) + �C 2 Q 3 + ( �C 1 V

02 + C 2 V 1 ) Q 1
+( C 1 V

01 + C 2 V 2 ) Q 2 + (

1

2

( V

21 + V

22 ) + C 3 ) Q 3 ;
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where V 1 ( x ) ; V 2 ( x ) are solutions of the stationary cubic Sc hr• odinger equation

C 1 V

001 � C 2 V

02 � � 1

2

C 1 ( V

21 + V

22 ) + C 3� V 1 = 0 ;

C 1 V

002 + C 2 V

01 � �
1

2

C 1 ( V

21 + V

22 ) + C 3� V 2 = 0

and C 1 ; C 2 ; C 3 are arbitrary constan ts.

In what follo ws w e will brie
y discuss a metho d for in tegrating systems

of ODEs (13), (15) based on their symmetry prop erties. Generally sp eaking,

information ab out a Lie symmetry admitted b y a system of ODEs is not

su�cien t to pro vide its in tegrabilit y b y quadratures within the Lie group ap-

proac h (for more details see, e.g. [10 ]{[13]). Ho w ev er, due to the remark able

algebraic structure of the ODEs under study kno wledge of a Lie symme-

try mak es it p ossible to construct their general solutions b y quadratures.

Namely , the follo wing assertions hold true.

Lemma 1 Let the system of ODEsL �  
d

dx

+ f a ( x ) Q a!  = 0 ; (16)where Q 1 ; Q 2 ; Q 3 are constant matrices forming a basis of the Lie algebra
so (2 ; 1) , admit a Lie symmetry

X =

3Xa=1 g a ( x ) Q a : (17)Then it is integrable by quadratures.
Lemma 2 Let the system of ODEs (16), where Q 1 ; Q 2 ; Q 3 are constant ma-trices forming a basis of the Lie algebra so (3) , admit a Lie symmetry (17)Then it is integrable by quadratures.

W e adduce the pro of of Lemma 2 (the �rst lemma is pro v ed in a similar

w a y). Making a c hange of dep enden t v ariables

 ! ~

 = V ( x )  ; V ( x ) = exp f 3Xa=1 h a ( x ) Q ag
11



w e can alw a ys transform the op erator X to b ecome

~

X = V � 1
X V = g ( x ) Q 1 ; g ( x ) 6= 0

and what is more this transformation preserv es the structure of system (16).

The in v ariance criterion [

~L;

~

X ] = 0, where

~L = V � 1LV =

d

dx

+

3Xa=1 ~

f a ( x ) Q a ;

implies that

g (

~

f 2 Q 3 � f 3 Q 2 ) � g

0

Q 1 = 0 :

As the matrices Q 1 ; Q 2 ; Q 3 are linearly indep enden t, hence it follo ws that

~

f 2 = 0 ;

~

f 3 = 0 ; g = const :

Consequen tly , the transformed system of ODEs necessarily tak es the form 
d

dx

+

~

f 1 Q 1!  = 0

and is eviden tly in tegrable b y quadratures. Lemma 2 is pro v ed.

Consequen tly , all the systems of linear ODEs considered in Section 3 p os-

sessing non-trivial symmetries of the form (9) can b e in tegrated b y quadra-

tures with the use of the algebraic pro cedure describ ed ab o v e. This is due

to the w ell-kno wn fact that the stationary solitonic equations arising as the

in v ariance conditions are in tegrable b y quadratures (see, e.g. [14, 15]).

IV. The hierarc h y of in tegrable reductions of

the Dirac equation

The tec hnique dev elop ed ab o v e applies straigh tforw ardly to systems of ODEs

ha ving complex-v alued co e�cien ts. In this section w e use this tec hnique for

obtaining in tegrable reductions of the Dirac equation of an electron

i

3X�=0 
 �  x
�

� 0@
e

3X�=0 
 � A

�
+ m

1A
 = 0 ; (18)

12



mo ving in the electric �eld

A 0 = A 0 ( x 3 ) ; A 1 = A 2 = A 3 = 0 :

In the form ulae (18) 
 � are 4 � 4 Dirac matrices,  =  ( x 0 ; x 1 ; x 2 ; x 3 ) is a

four-comp onen t complex-v alued function and e; m are constan ts.

The form of the v ector-p oten tial A � imply the follo wing Ansatz for the

spinor �eld  ( x ):

 ( x ) = ' ( x 3 ) :

Inserting this expression in to the Dirac equation (18) yields a system of

ordinary di�eren tial equations for the four-comp onen t function ' ( x 3 )

'

0 � ( ie
 3 
 0 A 0 � im
 3 ) ' = 0 : (19)

Denoting

x = 2 x 3 ; V ( x ) = eA 0 ( x 3 ) ;

J 1 =

1

2


 0 ; J 2 =

i

2


 3 ; J 3 =

i

2


 3 
 0
w e rewrite (19) in the follo wing form:L ' � ( D x � V ( x ) J 3 � mJ 2 ) ' = 0 ; D x =

d

dx

: (20)

Note that the 4 � 4 matrices J 1 ; J 2 ; J 3 satisfy the comm utation relations

of the Lie algebra so (3). Consequen tly , w e can apply the routine dev elop ed

in Section 2 in order to construct a Lie symmetry admitted b y (20).

First w e consider the case when co e�cien ts of a Lie symmetry Q are

third-order p olynomials in m and c ho ose:

X =

3Xk=1 ( a k ( x ) + b k ( x ) m + c k ( x ) m

2
+ d k ( x ) m

3
) J k ; (21)

where a k ; b k ; c k ; d k are some smo oth complex-v alued functions.

Inserting the expression for X in to the in v ariance criterion [ L; X ] = 0 and

splitting with resp ect to the p o w ers of m and then with resp ect to linearly

13



indep enden t matrices J 1 ; J 2 ; J 3 w e get the system of determining equations

for the functions a k ; b k ; c k ; d k
d 1 = 0 ; d 3 = 0 ;

d

02 � V d 1 = 0 ; d

01 + V d 2 � c 3 = 0 ; d

03 � c 1 = 0 ;

c

02 � V c 1 = 0 ; c

01 + V c 2 � b 3 = 0 ; d

03 � b 1 = 0 ;

b

02 � V b 1 = 0 ; b

01 + V b 2 � a 3 = 0 ; c

03 � a 1 = 0 ;

a

02 � V a 1 = 0 ; a

01 + V a 2 = 0 ; a

03 = 0 :

In tegrating the ab o v e system of ODEs yields

d 1 = 0 ; d 2 = C 1 ; d 3 = 0 ;

c 1 = 0 ; c 2 = C 2 ; c 3 = C 1 V ;

b 1 = C 1 V

0

; b 2 =

1

2

C 1 V

2
+ C 3 ; b 3 = C 2 V ;

a 1 = C 2 V

0

; a 2 =

1

2

C 2 V

2
+ C 4 ; a 3 = C 1 ( V

00

+

1

2

V

3
) + C 3 V ;

where C 1 ; C 2 ; C 3 ; C 4 are arbitrary constan ts and furthermore the p oten tial

V ( x ) has to satisfy the follo wing nonlinear ODEs

C 1 ( V

000

+

3

2

V

2
V

0

) + C 3 V

0

= 0 ; C 2 ( V

00

+

1

2

V

3
) + C 4 V = 0 :

Th us w e ha v e established that if the function V ( x ) is a solution of the

stationary mKdV equation

C 1 ( V

000

+

3

2

V

2
V

0

) + C 3 V

0

= 0 ; (22)

then the initial system of ODEs (20) admits the Lie symmetry

Q = C 1 J 2 m

3
+ C 1 V J 3 m

2
+ C 1 V

0

J 1 m +

�
1

2

C 1 V

2
+ C 3� J 2 m

+

�
C 1 ( V

00

+

1

2

V

3
) + C 3 V

�
J 3 :

This symmetry solv es the problem of in tegrabilit y of system of ODEs (20)

b y quadratures due to Lemma 2. Hence, w e conclude that pro vided V ( x ) is

14



a solution of the stationary mKdV equation (22), then system of ODEs (20)

is in tegrable b y quadratures.

No w w e turn to the case when a Lie symmetry is lo ok ed for as a p olyno-

mial in m of an arbitrary order n

X =

nXk=0 3Xa=1 f

ka ( x ) J a m

n� k
:

The in v ariance criterion [ L; X ] = 0 yields the follo wing system of deter-

mining equations for the co e�cien ts of the op erator Q :

f

01 = 0 ; f

03 = 0 ;

( f

k3 )

0 � f

k+11 = 0 ; ( f

k1 )

0 � V f

k2 = 0 ;

( f

k2 )

0

+ V f

k1 � f

k+13 = 0 ; k = 0 ; : : : ; n � 1 ;

( f

n0 )

0

= 0 ; ( f

n1 )

0 � V f

n2 = 0 ; ( f

n1 )

0

+ V f

n2 = 0 :

W e ha v e obtained the t w o classes of solutions of the ab o v e system of

ODEs whic h are giv en b elo w

1. n = 2 N + 1 ; N 2 N ,

f

01 = 0 ; f

02 = 1 ; f

03 = 0 ;

f

2k+11 = f

2k+12 = 0 ; f

k+13 = R k ; k = 1 ; : : : ; N ;

f

2k+21 = D x R k ; f

2k+11 = ( V � D

� 1x V

0

) R k ;

f

2k+23 = 0 ; k = 0 ; : : : ; N � 1

and the equation

D x R N = 0 (23)

holds.

2. n = 2 N + 2 ; N 2 N

f

01 = 0 ; f

02 = 1 ; f

03 = 0 ;

f

2k+11 = f

2k+12 = 0 ; f

k+13 = R k ; k = 1 ; : : : ; N ;

f

2k+21 = D x R k ; f

2k+11 = ( V � D

� 1x V

0

) R k ;

f

2k+23 = 0 ; k = 0 ; : : : ; N

15



and the equation

R N+1 = 0

holds.

In the ab o v e form ulae w e mak e use of the follo wing notations

R k =

kXj=0 C j ( D

2x + V

2 � V D

� 1x V

0

)

j
V ; k = 0 ; : : : N + 1 ;

where C 0 ; : : : ; C N+1 are arbitrary real constan ts and D

� 1x is the in v erse of

D x .

A reader familiar with the soliton theory will immediately recognize the

op erator X = D

2x + V

2 � V D

� 1x V x as the recursion op erator for the mKdV

equation [5, 11 ]

V t + V xxx +

3

2

V

2
V x = 0 :

Acting rep eatedly with the op erator X on the trivial conserv ed densit y I 0 =

V w e get the whole set of conserv ed densities of the mKdV equation. Next,

the op erator Y = D xX D

� 1x � D

2x + V

2
+ V x D

� 1x V

is the second recursion op erator for the mKdV equation. Its rep eated action

on the trivial Lie symmetry S 0 = V x yields the whole hierarc h y of the higher

symmetries of the mKdV equation. Hence it follo ws, in particular, that

condition (23) is rewritten in the formNXk=0 C k S k = 0 ; S k = Yk
V

0

: (24)

The ab o v e equation is nothing else than the higher stationary mKdV

equation. Pro vided N = 1 it reduces to the standard stationary mKdV

equation (22).

Hence, due to Lemma 2 it follo ws the v alidit y of the follo wing assertion.

Theorem 1 Let the function V ( x ) satisfy the higher stationary mKdV equa-tion (24) with some �xed N and C 0 ; : : : ; C N . Then, the system of ODEs (20)is integrable by quadratures.
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It is a common kno wledge that the stationary mKdV hierarc h y is reduced

to the stationary KdV hierarc h y with the help of the Miura transformation

(see, e.g. [4, 5]). F urthermore, the latter are in tegrated in terms of � -functions

[6, 15]. Consequen tly , the system of ODEs (19) is also in tegrable b y quadra-

tures th us giving rise to exact solutions of the initial Dirac equation (18).

V. Conclusions

Here w e ha v e demonstrated ho w one can mak e use of p o w erful ideas and

metho ds dev elop ed in the theory of solitons in order to in tegrate systems of

ODEs of the form (5). Here w e ha v e to giv e its due to the pap er b y Drach [6],

where almost all the principal ideas necessary for consisten t implemen tation

of the tec hnique describ ed in Section 2 can b e found (though Drach did not

use Lie symmetries explicitly).

One more imp ortan t remark is that the Lie symmetries of the reduced

Dirac equation (19) constructed in Section 4 ha v e nothing to do with the

maximal symmetry group C (1 ; 3) 
 U (1) admitted b y the initial Dirac equa-

tion. This means that they can not b e obtained b y an appropriate reduction

of the group C (1 ; 3) 
 U (1). These symmetries corresp ond to conditional

symmetry of the Dirac equation (for more details ab out conditional symme-

tries of linear and nonlinear Dirac equations, see [16]). W e b eliev e that there

exist n umerous reductions of the Dirac equations that could b e in tegrated in

the w a y describ ed in Section 4 th us giving principally new exact solutions

to (18) with sp eci�c electro-magnetic �elds. A further p ossible application

of the results of the pap er is in tegrating systems of ODEs obtained after

separating v ariables in the Dirac equation (18).

The next remark concerns with the restriction of our considerations to

the case of three-dimensional Lie algebras. This restriction is not at all

essen tial and it is quite clear ho w to include in to considerations the higher

dimensional Lie algebras. The p eculiarit y of the three-dimensional case is

that all the systems of ODEs of the form (13) p ossessing a Lie symmetry

(7) are in tegrable b y quadratures. F or the case of a higher dimensional Lie

algebra this migh t not b e the case.
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