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Abstract

In this paper, a new fuzzy neural network (FNN) is presented for manufacturing process control. It is di3erent from the
conventional FNN in its structure, learning algorithm and stability analysis method. Firstly, it utilizes the input and output
layer to on-line 5ne-tune scaling factors. It can also use the hidden layers to realize the fuzzi5cation, fuzzy inference,
defuzzi5cation and tune parameters such as membership functions, fuzzy control rules dynamically. Secondly, a new
combining learning algorithm (CL) which combines the gradient-based error back-propagation algorithm (EBP) with similar
Newton (SN) algorithm is proposed in order to improve the convergence speed and release computational burden during the
learning process. Lastly, a convergence condition for determining the stability of FNN is established. Physical experiments
for manufacturing process control are implemented to evaluate the e3ectiveness of the proposed scheme. c© 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Recently, fuzzy neural network control systems
have been extensively studied [2,7,22,24,29] and suc-
cessfully used in manufacturing process control, such
as tool wear monitoring [21,30], multi-sensor integra-
tion for intelligent control of machining [20], etc.
In general, the design of FNN includes (1) the struc-

ture, (2) the learning algorithm and (3) the stability
analysis.

∗ Corresponding author. Fax: +86-27-8754-8737.
E-mail address: hadt@21cn.com (S. Li).

Many structures for FNN have been proposed. In
[31], a 5ve-layer FNN for learning rules of fuzzy
logic control systems was proposed and a two-phase
learning procedure was developed to delete redun-
dant rules for obtaining a concise fuzzy rule base. In
[4,7,10,22,39], a feedforward multilayer connection-
ist network is proposed to realize the fuzzi5cation,
fuzzy operator and defuzzi5cation. A class of adap-
tive FNN was developed in [3,13,21,26,35] to on-line
adjust membership functions, fuzzy logic rules and so
on. Unfortunately, most of these researchers have ig-
nored the scaling factors that may a3ect the dynamic
performance of FNN, so that the designed FNN cannot
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entirely replace the traditional control systems (i.e.,
PID control system).
A variety of e3ective learning algorithms based

on EBP were developed for FNN or neural net-
works [4,15,24,25,31]. For instance, a compensatory
learning algorithm in [4], a successive overrelax-
ation back-propagation algorithm in [23], a gener-
alized back-propagation algorithm in [18], a hybrid
linear=nonlinear training algorithm for training feed-
forward neural networks in [27] etc. However, these
works have not successfully solved an essential prob-
lem, which is that the EBP algorithm converges very
slowly near the point with extremum.
Some papers [5,6,8,9,12,15,16,19,28,30,32,40]

have studied the stability of FNN. In [19], the stabil-
ity can be analyzed by the Nyquist stability criterion.
In [32], the stability of the T–S model was studied
by using a fuzzy block diagram. In [16], an energetic
stability algorithm (ESA) was proposed to investigate
the local stability of a free dynamic system. In [28],
the author developed a numerical stability analysis
method, through which we can observe and study the
system behavior by a direct computation of the sys-
tem trajectory, etc. But, there have been few studies
on stability analysis by using the convergence of a
learning algorithm.
In this paper, a new FNN (shown in Fig. 1) is de-

signed to solve the above-mentioned problems.
Firstly, the proposed FNN can realize the fuzzi5-

cation, fuzzy inference, defuzzi5cation. The main dif-
ference between the proposed FNN and others lies in
the layer A and layer G where the scale conversion
can be 5nished dynamically.
Secondly, the SN algorithm is proved to con-

verge faster than gradient-based EBP algorithm
and has lighter computational burden than New-
ton method near the point with extremum. Based
on the SN algorithm, a new CL learning algorithm
is proposed to improve the convergence speed and
release computational burden during the learning
procedure.
Lastly, the fuzzy control rules have been embedded

in the neural network, so the stability of FNN can
be associated with the convergence of CL learning
algorithm used for training neural network. For this
reason, extending the work [7,18], we developed a
stability analysis method by using the convergence of
CL learning algorithm.

This paper is organized as follows. In Section 2, a
seven-layer feedforward FNN is presented. In Section
3, a combining learning algorithm (CL) is proposed.
A theorem and corollary are proposed and proved in
Section 4. In Section 5, physical experiments for man-
ufacturing process control are presented to illustrate
the performance of the new FNN. Conclusions are
given in Section 6.

2. Structure of the FNN

In this section, we will construct a feedforward
seven-layer fuzzy neural network to implement the
fuzzy control rules stated in (Eq. (1)). Shown as Fig. 1,
each neuron in layer A represents one input valuable.
Layer B realizes the fuzzi5cation and layer C can con-
struct membership functions. The links between layer
C and layer D are the antecedent links and those be-
tween layer E and layer F are the consequent links.
Defuzzi5cation can be realized in layer F. Layer G
can act as a proportion controller to implement scale
conversion and provide the actual control values for
plants.
The proposed FNN realizes the following fuzzy

control rules:

Rl: IF x1 is Al1 : : : xn is A
l
n;

THEN y1 is Bl1 : : : ym is Blm; (1)

where l=1; 2; : : : ; S and S denotes the sum of fuzzy
control rules.
If we use minimum operator and centroid defuzzi-

5er [36], the fuzzy control rules stated in (Eq. (1)) can
be implemented with the following nonlinear mapping
equation (from x∈Rn to y∈Rm).

yj =

∑S
l=1 �

l
j minn {�Ali (xi)}∑S

l=1 minn{�Ali (xi)}
; j = 1; 2; : : : ; m; (2)

where �lj implies the matching degree of lth fuzzy
control rule. Ali and B

l
i are fuzzy sets. The �Ali in Eq. (2)

is the membership function of fuzzy set Ali .
The semantic meaning and function of the neurons

in the proposed fuzzy neural network are as follows.
Layer A (input): Each neuron represents one input

variable. It just converts the input variable to the next
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Fig. 1. Structure of the proposed FNN.

layer directly, i.e.,

I ai; k = xi; k ;

Oai; k = I ai; k ;
i = 1; 2; : : : ; n; (3)

where I ai; k and O
a
i; k denote, respectively, the input and

output of ith neuron in layer A. In addition, k repre-
sents the training data number, i.e. (xi; k ; yi; k).
Layer B ( fuzzi7cation): Layer B realizes the fuzzi-

5cation. In this layer, the relation between the input
and output is represented as

I bi; k = wai; kO
a
i; k = wai; kxi; k ;

Obi; k = I bi; k ;
i = 1; 2; : : : ; n; (4)

where wai; k is the link weight (or scaling factor for
fuzzi5cation) of the ith neuron.
Layer C (membership function): In this layer, each

neuron represents the membership function of a lin-
guistic variable. The most commonly used member-

ship functions are in shape of triangle, trapezoid and
bell, etc. In this paper, seven fuzzy sets (NB, NM, NS,
ZO, PS, PM and PB) are used for the above-mentioned
fuzzy control rules, and the membership functions for
these seven fuzzy sets are all bell-shaped.
So the output of the jth term neuron associated with

Ob
i; k is

I cij; k = − (Obi; k − Cij; k)2

�2ij; k
;

Ocij; k = eI
c
ijk ;

i = 1; 2; : : : ; n; i = 1; 2; : : : ; 7;

(5)

where Cij; k and �ij; k are, respectively, the center and
the width of the bell-shaped membership function. In
addition, the link weight in layer C is assumed to be
unity by default.
Layer D (rule): In Eq. (2), we have assumed that

the minimum operator is adopted in FNN, so we can
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get

Idi; k = min{Oc1i1 ; k ; Oc2i2 ; k ; : : : ; Ocnin; k};
Odi; k = Idi; k ;

i = 1; 2; : : : ; S; S =
n∏
i=1

7 = 7n: (6)

As the layer C, the link weights of layer D are also
set to be unity by default.
Layer E (rule matching): This layer can calculate

the matching degrees of fuzzy control rules.

I ei; k = Odi; k

/
s∑
i=1

Odi; k ;

Oei; k = I ei; k ;

i = 1; 2; : : : ; S: (7)

Layer F (defuzzi7cation): The neurons in layer F
perform defuzzi5cation.

Ifi; k =
S∑
j=1

weij;kO
e
j; k ;

Ofi; k = Ifi; k ;

i = 1; 2; : : : ; m: (8)

Layer G (output): This is the output layer in the
proposed FNN. It holds the function of converting the
output of fuzzy control rules to actual control values
directly inputted into the plants.

I gi; k = wfi; kO
f
i; k ;

Ogi; k = I gi; k ;
i = 1; 2; : : : ; m: (9)

Therefore, layer G can be considered as a proportion
controller and the link weight wfi; k corresponds to the
scaling gain Kp.

3. A new combining learning (CL) algorithm

In this section, we will describe a new combining
learning (CL) algorithm. The objective of proposed
learning algorithm is to associate input–output train-
ing samples by properly tuning the weights and other
parameters of FNN, so that a speci5c error signal is
minimized.

3.1. Gradient-based EBP algorithm

AEBP learning algorithm based on gradient descent
is employed here to tune Cij; k ; �ij; k ; wai; k ; w

f
i; k .

The cost function we want to minimize is de5ned as

Jk =
1
2
E2
k ;

Ek =
1
2

m∑
i=1

(yi; k − Ogi; k)
2 =

1
2

m∑
i=1

e2i; k ;

k = 1; 2; : : : ; r; (10)

where m is the sum of neurons of output layer (i.e.,
layer G). The yi; k and O

g
i; k are, respectively, the target

and actual output of the ith neuron of output layer.
Note that r represents the sum of training samples,
which are used to train the FNN.
Next, we will derive the learning law for each layer

in feedbackward direction.
Layer G: From Eqs. (10) and (9), the error term to

be propagated is given as

%gi; k =− @Jk
@Igi; k

= − @Jk
@Ogi; k

= Ek(yi; k − Ogi; k) = Ekei; k ; i = 1; 2; : : : ; m: (11)

Layer F : Similarly to the above de5nition and from
Eqs. (11), (9) and (8), we have

%fi; k =− @Jk
@Ifi; k

= − @Jk
@Igi; k

@I gi; k
@Ofi; k

@Ofi; k
@Ifi; k

= %gi; kw
f
i; k ; i = 1; 2; : : : ; m: (12)

Layer E: Using Eqs. (12), (8) and (7), we can get

%ej; k =− @Jk
@I ej; k

= −
m∑
i=1

@Jk
@Ifi; k

@Ifi; k
@Oej; k

@Oej; k
@I ej; k

=
m∑
i=1

%fi; kw
e
ij;k ; j = 1; 2; : : : ; S: (13)

Layer D: Based on Eqs. (13), (7) and (6), error
term in this layer is computed as

%dj; k =− @Jk
@Idj; k

= − @Jk
@I ej; k

@I ej; k
@Odj; k

@Odj; k
@Idj; k
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= %ej; k

S∑
i=1
i �=j

Odi; k

/(
s∑
i=1

Odi; k

)2

j = 1; 2; : : : ; S:

(14)

Layer C: Considering the Eqs. (13), (6) and (5),
we can also derive the propagating error term of layer
C in the same way.

%cij;k =− @Jk
@I cij;k

= −
S∑
l=1

@Jk
@Idl; k

@Idl; k
@Ocij;k

@Ocij;k
@I cij;k

=−
S∑
l=1

%dl; k − e
(Obi; k−Cij;k )

2

�2ij;k Tij ;

i = 1; 2; : : : ; n; j = 1; 2; : : : ; 7; (15)

where Tij is an o3=on function and can be de5ned as
follows:

Tij =

@Idl; k
@Ocij; k

= 1 if Ocij; k

= min{Oc1i1 ;k ; : : : ; Ocnin;k};
Tij = 0 otherwise:

(16)

Layer B: Using Eqs. (15), (5) and (4), we have

%bi; k =− @Jk
@Ibi; k

= −
mj∑
j=1

@Jk
@I cij;k

@I cij;k
@Obi; k

@Obi; k
@I bi; k

=−2
mij∑
j=1

%ci; k
(Obi; k − Cij;k)

�2ij;k
; i = 1; 2; : : : ; n: (17)

In view of the above de5nitions, it is easy for us to
derive the partial derivative of Jk with respect to four
parameters (i.e., wai; k , �ij; k , Cij; k and w

f
i; k), respectively

@Jk
@wai; k

=
@Jk
@Ibi; k

@I bi; k
@wai; k

= −%bi; kxi; k

from Eqs: (17); (4); (18)

@Jk
@Cij;k

=
@Jk
@I cij;k

@I cij;k
@Cij;k

= −%cij;k
2(Obi; k − Cij;k)

�2ij;k

from Eqs: (15); (5); (19)

@Jk
@�ij;k

=
@Jk
@I cij;k

@I cij;k
@�ij;k

= −%cij;k
2(Obi; k − Cij;k)2

�3ij;k

from Eqs: (15); (5); (20)

@Jk
@wfi; k

=
@Jk
@Igi; k

@I gi; k
@wfi; k

= − %gi; kOfi; k

from Eqs: (11); (9): (21)

From Eqs. (18)–(21), the adaptive updated rules
for wai; k , �ij; k , Cij; k and w

f
i; k can be derived as follows:

wai;k+1 = wai; k − (ai
@Jk
@wai; k

;

wfi;k+1 = wfi; k − (7
@Jk
@wfi; k

;

Cij;k+1 = Cij;k − (cij
@Jk
@Cij;k

;

�ij;k+1 = �ij;k − (�ij
@Jk
@�ij;k

; (22)

where (ai ; (cij ; (�ij ; (7 denote the learning rates of
wai; k ; �ij; k ; Cij; k ; w

f
i; k , respectively.

3.2. Similar Newton (SN) algorithm

In order to use Newton method and release com-
putational burden near the point with extremum, we
proposed a similar Newton (SN) algorithm in this
subsection. This method is a slight modi5cation of the
method reported by [14] and we use it in the above-
mentioned FNN. The SN algorithm is employed
here to tune the link weights (weij; k , i=1; 2; : : : ; m;
j=1; 2; : : : ; S) of layer E.

In order to derive the SN learning algorithm simply,
we 5rstly make some changes for Eq. (10).

E =
m∑
i=1

Ei; r ;

Ei; r =
1
2

r∑
k=1

[yi; k − Ogi; k ]
2

=
1
2

r∑
k=1

e2i; k = Ei; r−1 +
1
2
e2i; r : (23)
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Based on Newton method, the weights can be tuned
as follows [14]:

We
i; r =W

e
i; r−1 − )H−1

i; r

∣∣∣∣
We

i=W
e
i; r−1

@Ei; r
@We

i

∣∣∣∣
We

i=W
e
i; r−1

;

(24)

whereWe
i; r = [wei1; : : : ; w

e
is]

T represents the weight vec-
tor of layer E and the learning rate ) is set to be unity
by default.
Next, we will use a similar method to derive

@Ei; r
@We

i

∣∣∣∣
We

i=W
e
i; r−1

; H−1
i; r

∣∣∣∣
We

i=W
e
i; r−1

and We
i; r

near the point with extremum.

3.2.1.
@Ei; r
@We

i

∣∣∣∣
We
i =W

e
i; r−1

Using Eq. (23) and vectorWe
i; r = [wei1; : : : ; w

e
is]

T, we
can get the following equation:

@Ei; r
@We

i
=
[
@Ei; r
@wei1

; : : : ;
@Ei; r
@weis

]T

=
r∑

k=1

ei; k

[
@ei; k
@wei1

; : : : ;
@ei; k
@weis

]T
(25)

From Eqs. (23) and (25), we have

@Ei; r
@We

i

∣∣∣∣
We

i=W
e
i; r−1

=
@Ei; r−1

@We
i

∣∣∣∣
We

i=W
e
i; r−1

+ ei; r

[
@ei; r
@wei1

; : : : ;
@ei; r
@weis

]T
: (26)

In [14], the following equation has been proved to
be true:

@Ei; r−1

@We
i

∣∣∣∣
We

i=W
e
i; r−1

= 0 when locating exactly

in the point with extremum;

@Ei; r−1

@We
i

∣∣∣∣
We

i=W
e
i; r−1

≈ 0 when near the point

with extremum:

(27)

Substituting Eq. (27) into Eq. (26), we can get the
following expression (near the point with extremum):

@Ei; r
@We

i

∣∣∣∣
We

i=W
e
i; r−1

≈ ei; r

[
@ei; r
@wei1

; : : : ;
@ei; r
@weis

]T
; (28)

3.2.2. H−1
i; r |We

i =W
e
i; r−1

.
Referring to the de5nition of Hesse matrix [14], and

with Eq. (23) we have

(Hi; r)pq =
@2Ei; r
@weip@w

e
iq

=
r∑

k=1

@ei; k
@weip

@ei; k
@weiq

+
r∑

k=1

ei; k
@2ei; k
@weip@w

e
iq
: (29)

Using ei; k =yi; k−Og
i; k and Eqs. (8), (9), we can arrive

at the following equation:

@ei; k
@weip

= −@O
g
i; k

@weip
= −@O

g
i; k

@I gi; k

@I gi; k
@Ofi; k

@Ofi; k
@wfip

= −wfi; kOep; k :

(30)

Similarly to Eq. (30), we can get

@ei; k
@weiq

= −wfi; kOeq; k : (31)

Using Eqs. (30) and (31), we have the following equa-
tion:

@ei; k
@weip

@ei; k
@weiq

= (wfi; k)
2Oep; kO

e
q; k : (32)

Based on Eq. (30), the following expression can be
obtained:

@2ei; k
@weip@w

e
iq

= −@[w
f
i; kO

f
p; k ]

@weiq
= 0: (33)

Substituting Eqs. (32), (33) into Eq. (29), we have

(Hi; r)pq =
r∑

k=1

@ei; k
@weip

@ei; k
@weiq

=
r∑

k=1

(wfi; k)
2Oep; kO

e
q; k ;

(34)
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Hi; r =
r∑

k=1

(wfi; k)
2PekP

e
k
T = Hi; r−1 + (wfi; k)

2PerP
e
r
T;

(35)

where Per = [Oe
1; r ; O

e
2; r ; : : : ; O

e
s; r]

T. Assuming Qi; r =
H−1
i; r and using Eq. (35), we can get

H−1
i; r

∣∣∣∣We
i=W

e
i; r−1

=Qi; r

∣∣∣∣
We

i=W
e
i; r−1

=Qi; r−1 − [Per
TQi; r−1Per ]

−1

Qi; r−1PerP
e
r
TQi; r−1: (36)

3.2.3. We
i; r

Substituting Eq. (30) or Eq. (31) into Eq. (28), we
have

@Ei; r
@We

i

∣∣∣∣
We

i=W
e
i; r−1

≈ −wfi; kei; rPer : (37)

Substituting Eqs. (36) and (37) into Eq. (24), we
can get the following learning algorithm with guaran-
teed stability:

We
i; k ≈We

i;k−1 + wfi; kei; kQi; kP
e
k ;

Qi; r =Qi; r−1 − [Pe
T

r Qi; r−1Per ]
−1Qi; r−1PerP

eT
r Qi; r−1;

k = 1; 2; : : : ; r; (38)

Qi;0 = I;

where Qi;0 ∈ S × S represents the initial matrix.

3.3. The combining learning (CL) algorithm

The EBP algorithm, which is used very widely in
feedforward neural network, is a standard learning al-
gorithm. EBP algorithm converges fast when far away
from the point with extremum, while it converges very
slowly near the point with extremum where the gra-
dient of error may be almost equivalent to 0 [14].
For the disadvantage of EBP, a similar Newton

(SN) algorithm is presented in Section 3.2 and used
near the point with extremum.

Therefore, a new learning algorithm that combines
the EBP algorithm with the SN algorithm can be es-
tablished. The basic idea of the coming learning (CL)
algorithm is that EBP algorithm is used far away from
the point with extremum, while SN algorithm is used
near the point extremum.
Next, we de5ne the stopping condition for the pro-

posed EBP and SN learning algorithm.

Jk 6 +ebp; the stopping condition for

EBP learning algorithm;

E 6 +sn; the stopping condition for

SN learning algorithm; (39)

where +ebp is the critical error near the point with ex-
tremum. The CL algorithm can be realized as follows:
Step A: Initialize variable:

(a1): Assign initial values to wai;0; (ai; w
f
i;0; (fi,

Cij;0; (cij; �ij;0; (�ij;We
i;0.

(a2): Set values for +ebp; +sn to give the stopping
condition.

Step B: Repeat the following procedure for
k =1; 2; : : : ; r:

(b1): Forward calculation: calculate inputs and
outputs of neurons for each layer using
Eq. (3)–(9), and Jk de5ned in Eq. (10).

(b2): Back-propagation: calculate the error term
to be propagated using Eq. (11)–(17),
and the most optimal learning rate using
Eq. (52)–(55).

(b3): Weights adjustment: update wai; k ; �ij; k ,
Cij; k ; w

f
i; k using Eq. (22).

(b4): Check whether the stopping condition
Eq. (39) is satis5ed. If Jk6+ebp is satis5ed,
go to step C.

Step C: Repeat step D for i=1; 2; : : : ; m.
Step D: Repeat the following procedure for

k =1; 2; : : : ; r:
(d1): Calculate the Og

i; k ; ei; k .
(d2): Update the weight vector We

i; k using
Eq. (38).
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(d3): Check whether the stopping condition is sat-
is5ed. If E6+sn is satis5ed, stop.

4. Stability analysis

Next, we will develop a convergence theorem to
guarantee the stability of the CL learning algorithm
used for the above-mentioned FNN.

Theorem 1. Let ( denotes the learning rate for the
arbitrary variable w of the above-mentioned FNN.
Then the convergence of the algorithm described in
Eq. (22) is guaranteed if

0¡ ( ¡
2

(@Ek=@w)2
: (40)

Proof. A Lyapunov energy function is de5ned as fol-
lows:

Vk = Jk = 1
2E

2
k : (41)

From Eq. (41), we can get

NV = Vk+1 − Vk = 1
2(E

2
k+1 − E2

k ): (42)

The error di3erence, NEk , can be de5ned as

NEk = Ek+1 − Ek =
@Ek
@w

Nw; (43)

where Nw=wk+1 − wk =−((@Jk=@w)=−(Ek
(@Ek=@w) can be derived from Eq. (22).
Using Eq. (42), we can get

NV = 1
2(Ek+1 − Ek)(Ek+1 + Ek)

= 1
2NEk(2Ek +NEk): (44)

Substituting Eq. (43) into Eq. (44), we have

NV =
1
2
@Ek
@w

(Ek
@Ek
@w

(
−2Ek +

@Ek
@w

(Ek
@Ek
@w

)

=
1
2

(
Ek
@Ek
@w

)2
[(

@Ek
@w

)2

(2 − 2(

]
: (45)

If NV¡0, the convergence of the algorithms de-
scribed in Eq. (22) can be guaranteed. Therefore, we
have(
@Ek
@w

)2

(2 − 2( ¡ 0: (46)

From Eq. (46), we can obtain

0¡ ( ¡
2

(@Ek=@w)2
: (47)

Corollary 2. The most optimal convergence of the
learning algorithms described in Eq. (22) can be
guaranteed if

(∗ai =

[
Ek

%bi; kxi; k

]2
; i = 1; 2; : : : ; n;

(∗fi =

[
Ek

%gi; kO
f
i; k

]2
; i = 1; 2; : : : ; m;

(∗cij =
1
4

E2
k �

4
ij; k

[%cij; k ]
2[Obi; k − Cij; k ]2

;

i = 1; 2; : : : ; n; j = 1; 2; : : : ; 7;

(∗�ij =
1
4

E2
k �

6
ij; k

[%cij; k ]
2[Obi; k − Cij; k ]4

;

i = 1; 2; : : : ; n; j = 1; 2; : : : ; 7;

where (∗ denotes the most optimal learning rate.

Proof. Let

f(() =
[
@Ek
@w

]2
(2 − 2(: (48)

Then we can get

f′(() = 2
(
@Ek
@w

)2

(− 2;

f′′(() = 2
(
@Ek
@w

)2

¿ 0: (49)

Let f′((∗) = 0, then we have

(∗ = 1

/[
@Ek
@w

]2
= [Ek ]2

/[
@Jk
@w

]2
: (50)

Seeing from Eq. (49), we can 5nd that f(() has a
minimum value at point (∗ because f′((∗)= 0 and
f′′((∗)¿0. In view of this case, an important conclu-
sion about Eq. (45) can be obtained as follows:

min NV = NV |(=(∗ : (51)
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Therefore, the most optimal convergence of the
learning algorithms described in Eq. (22) can be guar-
anteed if (= (∗.
Substituting Eq. (18) into Eq. (50), we have

(∗ai =
E2
k

[@Jk=@w]2
=

[
Ek

%bi; kxi; k

]2
; i = 1; 2; : : : ; n:

(52)

Substituting Eq. (21) into Eq. (50), we can get

(∗fi =
E2
k

[@Jk=@w]2
=

[
Ek

%gi; kO
f
i; k

]2
; i = 1; 2; : : : ; m:

(53)

Substituting Eq. (19) into Eq. (50), we have

(∗cij =
E2
k

[@Jk=@w]2
=

1
4

E2
k �

4
ij; k

[%cij; k ]
2[Obi; k − Cij; k ]2

;

i = 1; 2; : : : ; n; j = 1; 2; : : : ; 7: (54)

Substituting Eq. (20) into Eq. (50), we have

(∗�ij =
E2
k

[@Jk=@w]2
=

1
4

E2
k �

6
ij; k

[%cij; k ]
2[Obi; k − Cij; k ]4

;

i = 1; 2; : : : ; n; j = 1; 2; : : : ; 7: (55)

5. Manufacturing process control

Increasing the productivity of manufacturing pro-
cess is a principal concern for CNC machine tools.
Nevertheless, a common drawback of CNC machine
tools is that the part-programmer must prescribe con-
servative cutting parameters to avoid tool breakage
and excessive tool wear [33,34]. These conservative
cutting parameters will result in the machining time
increasing, so a new FNN controller for CNC machine
tools is required. The FNN controller should automat-
ically regulate the cutting parameters to maintain a
constant level of cutting force, so that the CNC ma-
chine tools can maintain the maximumworking ability
during machining.
In this section, we 5rstly describe how the above-

mentioned FNN acts as the intelligent controller for
the CNC machine tools, and then give the experiment
results in details.

5.1. Fuzzy-neural network control system and
experimental setup

Based on the above-mentioned FNN, an intelligent
controller is proposed to maintain a constant force
under varying cutting conditions with adjustable feed
rates.
Fig. 2 shows the block diagram of the intelligent

control system in milling operation. In Fig. 2, the sig-
nals that are fed into the FNN can be calculated as
follows:

ek = Fr − Fm;k ;

eck = Fm;k − Fm;k−1; (56)

where Fr and Fm; k denote, respectively, the reference
cutting force and the measured cutting force.
During the on-line learning process, the fuzzy con-

trol rules stated in (Eq. (1)) and the input command of
the plant (Vcom) have been tuned to get constant cutting
force. From Fig. 2, we have the following equation:

Vcom = Vk +NVk: (57)

The con5guration of the experimental setup is
shown in Fig. 3. The machine tool used in the ex-
periment is the commercial vertical-machining center
equipped with the FANUC CNC 15M. The cut-
ting force signal was obtained by using the Ampli-
5er (YE5850) and table-type dynamometer (Kistler
9257A), and then recorded on a Pentium-PC through
a data acquisition board (PCL818HG). The above-
mentioned CL learning algorithm is employed to tune
the feed rate command (Vcom). As a result, Vcom is
fed back into the FANUC CNC system to maintain a
constant level of cutting force.

5.2. Fuzzy sets and fuzzy control rules

Described as Section 2, seven fuzzy sets (labeled
as: NB, NM, NS, ZO, PS, PM and PB) are used for
fuzzy control rules and the membership functions for
these seven fuzzy sets are all in bell-shaped. Here, the
seven fuzzy sets for the input and output linguistic
variables of the FNN control system have both been
designed in the same range of [−6;+6] (Fig. 4).
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Fig. 2. Block diagram of the fuzzy neural network control system in milling.

Fig. 3. Experimental setup.
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Fig. 4. Seven fuzzy sets for the input and output linguistic variables of the FNN control system.
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Table 1
Fuzzy control rules for manufacturing process

V=ec

NB NM NS ZO PS PM PB

NB PB PB PB PB PM PS ZO
NM PB PB PM PM PS ZO NS
NS PB PM PM PS ZO NS NM
ZO PM PS PS ZO NS NS NM
PS PS PS ZO NS NM NM NB
PM PS ZO NS NM NM NB NB
PB ZO NS NM NB NB NB NB

Table 2
Detailed milling conditions

Machine center XHK
CNC system Fanuc CNC 15M
Workpiece material Ti6Al4V
Milling cutter Ball-end milling cutter
Spindle speed 1200 r=min
Table dynamometer Kister 9257A

5.3. First experimental results

Once the shape of the fuzzy sets is given by Fig. 4,
The 49 fuzzy control rules are formulated based on
the knowledge of well-experienced manufacturing en-
gineers (Table 1). With the defuzzi5cation method of
singleton, the 49 fuzzy control rules are assigned as
the initial values of connection weights, We

i;0
Sets of cutting tests have been performed to verify

the performance of the above-mentioned FNN control
system. Below, a typical milling experiment on a ti-
tanium alloy Ti6Al4V is given (Table 2 and Fig. 5).
Shown as Fig. 5, the axial depths of cut vary during
the manufacturing process. Therefore, the control sys-
tem should aim to get constant cutting force with the
varying axial depths of cut.
Fig. 6(a) shows the feed rate of ball-end milling

cutter with the varying axial depths of cut. Seeing from
Fig. 6(a) and (b), we can 5nd that the feed rate varies
with the varying axial depth and the cutting force can
keep constant (the cutting force= 750 N).
Fig. 7 shows the on-line learning procedure of CL

algorithm. From Fig. 7, we can conclude:

(1) The minimum feedback error and the feedback
error gain are, respectively, set as E= +sn=0:0001 and
Ke=0:015.

Fig. 5. Cutting geometry.

(2) When the cutter starts to engage the workpiece,
the EBP algorithm is used. At this time, the EBP algo-
rithm converges very fast. However, it converges very
slowly when the error signal reaches E= +ebp =0:01
(t1 = 70 ms).
(3) At this time, the SN algorithm is used. It is

seen that the SN algorithm converges very fast and
the error signal reaches E= +sn=0:0001 very quickly
(t2 = 90 ms).
(4) It is satisfactory in manufacturing process that

the total learning time of CL algorithm is 90ms before
the error signal reaches E= +sn=0:0001.

Before t=90 ms, we get the training data from ta-
ble dynamometer to tune the above-mentioned FNN.
After tuning, we can get the tuned fuzzy sets (or mem-
bership functions) of input linguistic variables (ec and
e) and fuzzy control rules, We

i; k .
Fig. 8 (a) and (b) shows, respectively, the tuned

seven fuzzy sets of e and ec. The tuned fuzzy control
rules (We

i; k) are shown in Table 3. From Fig. 8 and
Table 3, we can 5nd that fuzzy sets and fuzzy control
rules have been adaptive adjusted after the learning
process.

5.4. Second experimental results

5.5. Third experimental results

In order to test the e3ect=form of the trained fuzzy
partitioning strategy, the fuzzy control rules (Table
3) were used as the initial condition of the second
experiment. In the same way, the trained fuzzy control
rules in the second experiment were also used as the
initial condition of the third experiment.
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Fig. 6. (b) Feed rate.

From Figs. 7, 10 and 13, we can 5nd that the trained
fuzzy partitioning strategy can accelerate the learn-
ing process (t �=90⇒ 60⇒ 40ms). The average over-
shot of Figs. 6, 11 and 14 are, respectively, 16.7%,
11.5% and 8.3%. Therefore, we can also 5nd that the
trained fuzzy partitioning strategy can reduce the av-
erage overshot.

5.6. Comparison with other methods

Compared with conventional self-tuning PID con-
troller, the above-mentioned FNN is robust. The rea-
sons are that the CL algorithm often begins with the
fuzzy control rules and the trained fuzzy partitioning
strategy can reduce the average overshot.
Chen et al. [13] proposed a feedforward multilayer

connectionist network to realize the fuzzi5cation,
fuzzy operator and defuzzi5cation, but the scaling
factors (wai; k ; w

f
i; k) cannot be tuned. In our FNN, we

can tune the scaling factors (wai; k ; w
f
i; k).

Wang et al. [35] developed a class of adaptive
FNN to on-line tune the shape of membership func-
tions. Unfortunately, the tuning rules are pre-designed
based on the knowledge of well-experienced manu-
facturing engineers and cannot be adjusted according
to the manufacturing process. Our tuning method

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2  

0.01  

Learning algorithm 
changed

Error curve 

Fig. 7. Learning procedure of CL algorithm.

proposed in this paper can be adjusted by on-line
learning.
Lin et al. [24] proposed an e3ective learning algo-

rithm based on EBP for FNN. However, this paper
cannot solve two basic problems: (1) EBP algorithm
converges very slowly near the point with extremum;
(2) The stability of learning algorithm cannot be guar-
anteed. We have successfully solved these two diR-
cult problems with the above-mentioned CL learning
algorithm, Theorem 1 and Corollary 1.
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Fig. 8. Seven fuzzy sets for input linguistic variable (a) (ec) and (b) (e) after tuning.

Table 3
Fuzzy control rules for manufacturing process

e=V=ec NB NM NS ZO PS PM PB

NB PB PB PM∗ PB PB∗ PS∗ ZO
NM PB PM∗ PM PM PS PS ZO∗
NS PB PM PM PM∗ ZO NS NS
ZO PB∗ PS PS ZO NS NS NM
PS PM∗ ZO∗ ZO NM∗ NM NM NM∗
PM PS ZO NM∗ NM NB∗ NM∗ NB
PB ZO NS NM NB NB NB NB

∗: Fuzzy control rules after tuning.

Fig. 9. Cutting geometry.

Tarng et al. [33,34] proposed a new adaptive con-
trol system based on neural network and fuzzy logic
to maintain the constant cutting force. However, the

800 20 40 60
0

0.002  

0.004  

0.006  

0.008  

0.01  
Error curve 

Learning algorithm 
changed

Fig. 10. Learning procedure of CL algorithm.

overshot of cutting force is larger than that of our FNN
control system during the full immersion of cut.

6. Conclusions

In this paper we proposed a new FNN which can
be applied to manufacturing process control. The pro-
posed FNN has the following attractive features:

(1) It can automatically realize fuzzi5cation, fuzzy
inference, defuzzi5cation.
(2) The parameters of FNN, such as scaling factors,

membership functions and fuzzy control rules, etc. can
be dynamically tuned by learning.



214 Y. Zhou et al. / Fuzzy Sets and Systems 132 (2002) 201–216

0

400

800

1200

0 20 40 60 80 100 120 140 160 180 200 

t[s]

t[s] 

 

200  

150

100

50

0
0 20 40 60 80 100 120 140 160 180 200

F
m

,k
 [

N
]

V
co

m
 [m

m
/m

in
]

(a)

(b)

Fig. 11. (a) Cutting force; (b) feed rate.

Fig. 12. Cutting geometry.
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Fig. 13. Learning procedure of CL algorithm.

(3) The CL learning algorithm used in FNN is di-
vided into two phases. The 5rst one is an error back-
propagation (EBP) training phase, and the second one
is a similar Newton (SN) training phase. The SN learn-
ing algorithm has lighter computational burden than
Newton method.
(4) The CL learning algorithm makes it possible to

escape from the point with extremum.
(5) The theorem about the most optimal learning

rate based on Lyapunov’s direct method can guarantee
the stability of manufacturing process control system.
(6) The real-time control program can be given eas-

ily with the BOLAND C++ language.

From the above-mentioned experimental results, we
can 5nd that the proposed FNN and CL learning al-
gorithm are applicable to the manufacturing process
control. In the near future, we will focus on the fol-
lowing research work:

(1) Stopping condition: Selecting the stopping con-
dition +ebp for EBP learning algorithm is subjec-
tive. How to determine the stopping condition au-
tomatically is an important problem.

(2) Rule elimination: A drawback for FNN is that too
many rules are needed. It is necessary for us to
provide an algorithm to perform rule combination
like [4,31].
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