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Chapter 1

Introduction

Welcome to topology! Topology is a fundamental branch of mathematics in
that it depends on a relatively small amount of other mathematics, yet a rela-
tively large amount of mathematics requires topology to some degree (at least
implicitly). To be sure, this doesn’t imply that the study of topology is easier
(or harder) than other mathematical subjects! What this does imply is that a
smaller variety of prerequisite coursework is required. For any mathematics
course there are two types of prerequisite: coursework and “mathematical
maturity”. The first type is the requirement that the prospective student
has successfully taken courses in subjects that the prospective course builds
upon. The second type of prerequisite is harder to qualify and quantify.
In brief, it is clear that as one studies mathematics, one develops a greater
capacity and ability to deal with abstract ideas, and in a technical manner
(e.g. understanding definitions and theorems, proving theorems, general-
ization, etc.). This capacity and ability is what is meant by mathematical
maturity. Strictly speaking, no prerequisite coursework is required. Even
the necessary set theory and logic will be covered within the course, albeit
briefly. However, the minimum level of mathematical maturity required is
closely approximated by that of an average American undergraduate mathe-
matics major having successfully taken the standard calculus sequence, and 2
or more upper level courses requiring theorem proving (e.g. modern algebra,
linear algebra, or especially advanced calculus).

Topology plays a role in a majority of mathematical subjects, but it has
also played a major role in many of the most modern and innovative ideas
in other fields, such as physics (e.g. superstring theory) and biochemistry
(e.g. the structure of DNA). Topology is also a very interesting in its own
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CHAPTER 1. INTRODUCTION 8

right. For at least these reasons, it is becoming more and more important for
undergraduate mathematics majors to be introduced to this subject, whether
the student’s ultimate goal is mathematics education (at any level), graduate
school, or to provide support for a non-mathematical field.

The goal of this course is to provide a rigorous introduction to the basic
ideas of point-set topology. As such, there will be no discussion of the fasci-
nating topic of algebraic topology, as is often the case in more “conceptual”
undergraduate courses in topology that discuss, e.g., “knots”. A rigorous
course in algebraic topology best fits in the current mathematical curriculum
at the graduate level.

We will first cover the basic ideas in logic, set theory, and category the-
ory that will be important for the subsequent course material. Since the
“common denominator” of student mathematical background will include
calculus, we next motivate the study of topology by reexamining some key
results from calculus, such as the intermediate value theorem. At this stage
we will also single out familiar ideas about the real number line (e.g. inter-
vals) and functions (e.g. continuity), whose generalization leads directly to
abstract topology.

Many of these ideas from calculus, as we learned them, depend heavily
on the use of a metric, that is, a notion of “distance”. For example, the open
interval (−1, 1) may be described as the set of points on the real line whose
distance from 0 is less than 1. Recall that a function f(x) is continuous at
x0 if and only if

lim
x→x0

f(x) = f(x0),

and that this limit is defined in terms of the beloved ε’s and δ’s (cf. A.2)
that appear in inequalities (e.g. 0 < |x − x0| < δ) involving absolute values
of differences (that is distances, or a metric!). Therefore, in order to provide
a bridge from calculus to abstract topology, we next study metric topology.
Topology does not require a metric, but if, like the real number line R, there
is a metric available, we may define our topology in terms of the metric.
This is an advantage, since it allows us to take advantage of familiar calculus
notions.

After metric topology, we are finally primed for the abstract study of
topology. We first define the objects of the topological category: topological
spaces, a fundamental notion being the basic open set, which is the general-
ization of the open interval in R. In point-set topology, we wish to describe
sets of points in detail, and the rest of the chapter introduces definitions to
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accomplish this.
With the basic idea of a topological space and various types of subsets

of points, we finish off the basic description of the topological category by
defining the morphisms of the category, and by learning how to create new
topological spaces from given ones. These constructions are one of the most
important and useful parts of a first course in point-set topology.

The remaining chapters study the various properties of topological spaces
such as separation, compactness, and connectivity. Coverage of the remaining
chapters will depend largely on the pace of the course, whose length will be
assumed to be one semester. These topics are very important; they are
not optional to the study of point-set topology. Nevertheless, due to time
constraints, some portion will likely have to be left to a subsequent course.

Lastly, we note that there are appendices at the end that serve as a
workbook for you fill in, allowing you to summarize, sort, and digest material
as it is presented. Also, there is a list of symbols that will be used freely in
the course, along with some examples of their usage.



Chapter 2

Foundations

The only background material we need is the standard foundational material,
namely set theory and enough logic to communicate precisely. Additionally,
we will take the opportunity to learn the simplest ideas of category theory,
which, at the very least, will help us organize mathematical stuctures in
general, and topological structures in particular.

Although much of the logic and set theory may be familiar from other
coursework, it will be very important that this material is fresh in the mind.
Furthermore, it will provide an opportunity to point out the results that play
the most important role later on.

2.1 Logic

From logic, we will need only notation and implication.

2.1.1 Quantifiers

The symbol ∀ is a logical quantifier that is equivalent to any of the phrases
“for every”, “for each”, and “for all”. For example, we could write

“For every student, assign a grade of A”

as

“∀ student, assign a grade of A”.

10
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The important point is that ∀ strictly means for every, not “all but one”, or
“some”.

The existential quantifier ∃, on the other hand, is equivalent to either the
phrase “there exists” or “there is”. So,

“there is a future topologist among us”

may be written as

“∃ a future topologist among us”.

The important point here is that the statment says there is definitely one
potential topologist among us, maybe more, but definitely more than zero
potential topologists.

2.1.2 Implication

If P and Q are statements, then we write ”P implies Q” as

P ⇒ Q.

For example, “x = |x| implies x ≥ 0” could be written simply as

x = |x| ⇒ x ≥ 0.

Similarly, “P does not imply Q” is written as

P ; Q.

NOTE: If P ⇒ Q is a true statement, then the converse, Q ⇒ P, may or
may not be a true statement. In the absolute value example above, it is true
that Q ⇒ P, (that is, x ≥ 0 ⇒ x = |x|). In contrast, consider the statement

f(x) is a polynomial ⇒ f(x) is continuous.

However the converse is certainly not true:

f(x) is continuous ; f(x) is a polynomial.

For example, sin x is not a (finite order) polynomial, but it is continuous.
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In the case where P ⇒ Q and Q ⇒ P, we write either

P ⇔ Q or Q ⇔ P.

Another common notation for ⇔ is “iff”, both for which we say “if and only
if”. This is since for P ⇒ Q we may say “P only if Q,” and for Q ⇒ P we
may say “P if Q.”

Exercise 2.1.1 Come up with two implications P ⇒ Q from any previous
math course (e.g. calculus, algebra, etc.) such that the converses Q ⇒ P are
also true.

Exercise 2.1.2 Come up with two implications P ⇒ Q from any previous
math course such that the converses are false.

2.1.3 Negation

The negation ¬(P ⇒ Q) of a statement P ⇒ Q can be a subtle issue. Consider
the statement:

∀x ∈ [0, 1], f(x) > 0.

This says that f is a positive function on the closed unit interval. One
might think the negation of this statement may have something to do with
having a strictly negative function on [0, 1] or something else. Logically, the
negation is simply that “f is not a positive function on [0, 1]”. The symbolic
phrase changes more substantially then the english:

¬(∀x ∈ [0, 1], f(x) > 0.)

⇔

∃x ∈ [0, 1] 3 f(x) ≤ 0.

NOTE: that ∀ was replaced by ∃, and > was replaced by ≤ . These
“substitutions” happen quite often in these kinds of statements, but one
must check that the substitutions result in the desired statement. Making
substitutions blindly leads to logical errors.

Exercise 2.1.3 Write out the ε−δ definition of a limit symbolically. Negate
it.
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2.1.4 Contrapositive

Logically, the statement
P ⇒ Q

is equivalent to its contrapositive:

¬Q ⇒ ¬P.

The absolute value example above,

x = |x| ⇒ x ≥ 0,

has as contrapositive
x < 0 ⇒ x 6= |x|,

which is reasonable!
Suppose we wish to prove (or disprove) a mathematical statement P ⇒ Q.

It occasionally happens that it is easier to prove (disprove) the contrapositive.
Since the contrapositive of a statement is the same as the statement, we are
free to work with the contrapositive. This is a useful technique for proving
(disproving) theorems, along with proof by contradiction and disproof by
counterexample.

Exercise 2.1.4 Write out symbolically the polynomial/continuity example
above. Write out the contrapositive. Is it reasonable?

2.2 Sets

The basic notions and notations of set theory are likely familiar, and as a
result, our review will be rapid and nontrivial examples will be left to the
text. One can go deeper into set theory and the foundations of mathematics
in general. It is a very deep and interesting subject. However, we will not
concern ourselves with questions such as “is the set of all sets a set?” 1

1This is technically relevant, for example, in category theory, where we will consider
the class of all topological spaces. In fact, the answer is negative(!), which is why “the
set of all topological spaces” was avoided. We won’t go very deeply into category theory,
so we can safely use basic set theory. The interested reader is invited to read about the
Theory of Classes or the Gödel-Bernays axioms for set theory.
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2.2.1 Set

A set will be understood as a collection of objects (points, elements). In
particular, there needs to be enough data about the collection to determine
whether or not a given object is in the set or not. Thus,

“the collection of trees”

(written {trees}) is a set, while

“the collection of all trees of a certain type”

would not be a set. As stated, there is no way to tell if a particular tree is
in the collection or not. Two sets A and B are called equal, and we write
A = B, provided that they have the same elements:

s ∈ A ⇔ s ∈ B.

The standard set notation is of the form

{x ∈ R|0 < x < 1},

which, alternatively, can be written as (0, 1) in interval notation. The generic
format is

{element type | conditions on elements}.

In the (0, 1) example, the elements of the set x were of the real number type,
and the conditions on the real number elements were that they be greater
than 0 and less than 1.

NOTE: A set is defined by membership of its elements. There is no order
imposed on its elements. Thus, {1, 2, 3} = {2, 3, 1} = {3, 2, 1}. Imposing
some sort of ordering amongst the elements of a set would be additional
structure on the set. Furthermore, repetition of elements is not recognized,
so that {1, 2, 3} = {2, 3, 1, 1} = {3, 3, 1, 2, 2, 1, 2}.

2.2.2 Subset

Definition 2.2.1 Let A be a set. We say that B is a subset of A, B ⊂ A,
provided that b ∈ B ⇒ b ∈ A.
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Example 2.2.1

(0, 1) ⊂ [0, 1],

{f(x)|f is continuous} ⊂ {f(x)|f is differentiable}.

The empty set, ∅ := {}, is the set with no elements. It is a subset of
every set.

NOTE: Two sets A and B have the same set of elements iff

A ⊂ B and B ⊂ A.

This is provides a standard way to prove that two sets are equal.

2.2.3 Power Set

Definition 2.2.2 Let A be a set. The power set of A, 2A, is the set of all
subsets:

2A := {a | a ⊂ A}.

Example 2.2.2

A = {1, 2, 3} ⇒ 2A = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

NOTE: In this example, A has 3 elements, and 2A has 8 = 23 elements.
For sets having finitely many elements, this will always be true. This is
the origin of the notation 2A. Of course, in the case that A has infinitely
many elements (e.g. [0, 1]), the notation can no longer be connected to the
“number” of elements. We will take up the issue of “number” of elements in
a set properly in §2.4.

2.2.4 Operations on Sets

Complement

Definition 2.2.3 Let A and B be two sets. The complement of A in B,
written B − A, is obtained be removing those elements from B that are also
elements of A :

B − A := {b ∈ B | b /∈ A}.
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Example 2.2.3 We illustrate the definition of the complement with a trivial
example. Let

A = {1, 2, 3}, B = {2, 3, 4, 5}.

Then,
B − A = {4, 5}.

Union and Intersection

Definition 2.2.4 The union A
⋃

B of two sets is the set consisting of all
elements from A and B:

a ∈ C = A
⋃

B ⇔ a ∈ A or a ∈ B.

Example 2.2.4 Let A and B be as in example 2.2.3. Then,

A
⋃

B = {1, 2, 3}
⋃
{2, 3, 4, 5} = {1, 2, 3, 4, 5}.

Example 2.2.5 (slightly less trivial)

(0, 1)
⋃

(
1

2
, 12) = (1, 12).

Definition 2.2.5 The intersection A
⋂

B of two sets is the set consisting of
all elements common to A and B:

a ∈ C = A
⋂

B ⇔ a ∈ A and a ∈ B.

Example 2.2.6 Let A and B be as in example 2.2.3. Then,

A
⋃

B = {1, 2, 3}
⋂
{2, 3, 4, 5} = {2, 3}.

Example 2.2.7 (slightly less trivial)

(0, 1)
⋂

(
1

2
, 12) = (

1

2
, 1),

[0, 1]
⋂

[
1

2
, 2] = [

1

2
, 1].
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Exercise 2.2.1 Consider open, closed, half open/closed intervals on the real
line. Determine when intersection of a pair of these intervals results in an
open, closed, or half open/closed interval.

It is straightforward to generalize the definition of union and intersection
to an arbitrary number of sets as follows (see also the text). Let Aα be
some collection of sets indexed by α (we will treat index sets more carefully
later). For example, α may range over the integers Z, or some finite set:
α ∈ {1, 2, 3, 4}. Then, the union

⋃
α Aα is the set of all elements from each

of the sets Aα : ⋃
α

Aα = {a | ∃α 3 a ∈ Aα}.

Similarly, the intersection
⋂

α Aα is defined to be the set of elements
common to all of the Aα :⋂

α

Aα = {a | ∀α, a ∈ Aα}.

(looking ahead) We will see that a “topology” T (A) on a set A is, roughly,
the specification of which subsets τ ∈ 2A are to be considered the “open”
subsets of A. Therefore, T (A) ⊂ 2A.

For the standard topology on the real line R, a subset τ ∈ 2R is open iff
it is the union of arbitrarily many open intervals. If this is the case for some
subset τ, then τ ∈ T (A).

A closed set β ∈ 2R is, by definition, the complement of an open set:

∃ τ ∈ T (R) 3 β = R− τ.

NOTE: It is important to recognize that in general, a subset µ ∈ 2A

may be neither open nor closed. In particular, just because µ isn’t open (i.e.
µ ∈ T (A)) µ ∈ 2A − T (A), we cannot conclude that µ is closed. For R, the
interval notation makes this relatively obvious. As we will see later, a subset
can be open and closed!

Exercise 2.2.2 Characterize, in terms of the union, intersection, and inter-
val notation, those subsets a ∈ 2R that are open, and those that are closed.
Which subsets are neither open nor closed? Are there any subsets that are
open and closed? (Word to the wise: Make strict use of the definition.)
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The following theorem describes how union, intersection, and complement
behave with respect to one another. See the text for a partial, and slightly
incorrect, proof (can you find the error?).

Theorem 2.2.1 DeMorgan’s Laws
For each index α, let Sα ⊂ T. Then,⋃

α

(T − Sα) = T −
⋂
α

Sα

and ⋂
α

(T − Sα) = T −
⋃
α

Sα.

Cartesian Product

The Cartesian product of sets is a very fundamental and useful operation
in mathematics, and is present every time we see, for example, the real
plane R2. We will now view the basic definitions and examples, but further
investigation will have to wait for our study of functions in §2.3.2.

Definition 2.2.6 Let S be a set. The “Cartesian product” S × T of S with
T is the set whose elements consist of all ordered pairs of elements from S
and T :

{(a, b) | a ∈ S, b ∈ T}.

NOTE: Unlike for sets, the ordering of the entries in the pairs is impor-
tant, even in the case of S × S.

Example 2.2.8 Let (a, b) ∈ S × S. Then,

(a, b) 6= (b, a),

while
{(a, b), (b, a)} = {(b, a), (a, b)} ⊂ S × T.

Since S × S is a set, we may consider the product (S × S)× S. A typical
element of (S × S)× S has the form

((a, b), c), a, b, c ∈ S.
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Since all the information is in the ordering of the entries a, b, c, the inner pair
of parenthesis are superfluous, and we write

((a, b), c) = (a, b, c).

Continuing this way, we may conclude

(S × S)× S = S × S × S =: S3, (2.1)

S × S × S = S × (S × S) =: S3, (2.2)

(S × T )× U = S × (T × U) =: S × T × U. (2.3)

Similarly, we define Cartesian products with any number “factors” S1, S2, S3, . . .
as

S1 × S2 × S3 × · · · := {(a1, a2, a3, . . .) | ai ∈ Si ∀i = 1, 2, 3, . . .}.
NOTE: There are “projection” functions πi naturally defined on any

Cartesian product by

πi : S1 × S2 × S3 × · · · → Si (2.4)

: (a1, a2, a3, . . .) 7→ ai (2.5)

Example 2.2.9 Real 3-space and real n-space.

R3 := R× R× R = {(x, y, z) | x ∈ R, y ∈ R, z ∈ R} (2.6)

Rn := R× R× . . .× R = {(a1, a2, . . . , an) | a1, a2, . . . an ∈ R} (2.7)

π2 : R3 → R : (x, y, z) 7→ y (2.8)

πi : Rn → R : (a1, a2, a3, . . . , ai, . . . , an) 7→ ai. (2.9)

Example 2.2.10 Complex 2-space2 and complex n-space.

C2 := C× C = {(z, w) | z ∈ C, w ∈ C} (2.10)

Cn := C× C× . . .× C = {(z1, z2, . . . , zn) | z1, z2, . . . zn ∈ C} (2.11)

π2 : C2 → R : (z, w) 7→ w (2.12)

πi : Cn → C : (z1, z2, z3, . . . , zi, . . . , zn) 7→ zi. (2.13)

2We resist the terminology “complex plane” for C2 to avoid confusion with the “Argand
plane,” the latter being the representation of C as the real plane R2 via the identification
(x, y) 7→ z = x + iy.
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2.3 Relations and Functions

The notion of a relation may be thought of as a generalization of a function
f : S → T, which assigns a unique element f(s) = t ∈ T to each s ∈ S. The
presence of “unique” in this definition is crucial, that is, if t1 = f(s) and
t2 = f(s), then t1 = t2. Now, consider a typical calculus function such as

g : R → R : x 7→ g(x) = x2.

An equivalent (and currently more useful) definition of a function is as a
subset F ⊂ S × T, where the connection between the assignment f and the
subset F is given by:

F = {(s, f(s)) | s ∈ S} ⊂ S × T.

We then see that for a subset F to contain the same information as the
assignment f , the subset F must have the property that every s ∈ S must
appear as the first entry of a pair (s, t) ∈ F, and moreover, only in one such
pair. For the quadratic function above, we have

G = {(x, x2) | x ∈ R} ⊂ R× R = R2.

NOTE: Recall from calculus that the graph of a function f : R → R is the
one-dimensional subset of points in the real plane R2

graph(f) = {(x, f(x)) | x ∈ R} ⊂ R2.

Thus, the graph corresponds to the subset definition of a function and F =
graph(f).

Example 2.3.1 Consider the function/assignment f(x) = −1
2
x + 3

2
. The

elements of the subset F ⊂ R2 may be visualized by the graph of f :

-5 0 5

-5

0

5 t(2, 5) /∈ F

HHH
HHH

HHH
HHH

HHH

(5,−1) ∈ F
t

y

x



CHAPTER 2. FOUNDATIONS 21

2.3.1 Relations

A relation generalizes the subset definition of a function by removing all
restrictions on the subset f̃.

Definition 2.3.1 A relation between two sets S and T is simply a subset

R ⊂ S × T.

If (s, t) ∈ R, then we say that s and t are R-related.

NOTE: Since a relation is defined as a subset of a Cartesian product, the
order of the entries is important, as we shall see, even in relations between
S and S.

Example 2.3.2 All functions f : S → T are relations, however, the con-
verse is not true. The unit circle S1 = {(x, y) | x2 + y2 = 1} ⊂ R2 defines
a relation between R and R, but not a function. Using the vertical line test,
we note that the largest subsets of the unit circle that define functions are the
upper and lower closed semi-circles:

S1
+ := C

⋂
{(x, y) | y ≥ 0}

S1
− := C

⋂
{(x, y) | y ≤ 0}

NOTE: As in the above example, there are many relations that do not
define functions, but that can be naturally broken up into further subsets,
each of which define a function. This isn’t always the case, since the whole
of R2, being a subset of itself, defines a relation between R and R, and it is
completely unclear how to obtain a function from this relation.

Inverse relations

Associated with any relation R between S and T is a relation R−1 between
T and S, called the inverse relation:

R−1 := {(t, s) ∈ T × S | (s, t) ∈ R}.

Exercise 2.3.1 What is the inverse relation R−1 associated to R, if R is the
relation defining the unit circle (see example 2.3.2)? As always, justify your
answer with discussion.
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For our purposes, and with such a simple definition, there is not much
more to say about relations in general. However, as in the case of relations
that are also functions, if we are willing to impose conditions on the relations,
we obtain important kinds of relations.

Equivalence relations

By a relation on a set S, we mean a relation between S and S. An equiva-
lence relation abstracts the notion of ”=”, as in equality numbers. In many
contexts, including topology, it is useful to take a set and consider certain
elements to be ”equal”, even if they are distinct initially. A ready example
from algebra is integer modular arithmetic. Consider Z2, the integers modulo
2. In this case, all even integers are ”equal”, and all odd integers are ”equal”.
Thus, in Z2, there are only two elements, the even element [0] and the odd
element [1].

Definition 2.3.2 An “equivalence relation” R on a set S is a relation on S
satisfying the following conditions: ∀ x, y, z ∈ S,

1. xRx.

2. xRy ⇒ yRx.

3. xRy, yRz ⇒ xRz.

Example 2.3.3 Consider3 the relation = of equality in R

= “ = ” {(x, x) | x ∈ R} ⊂ R2.

It is trivial to see that definition 2.3.2 is satisfied, since the 3 conditions
amount to

x = x

x = x ⇒ x = x

x = x, x = x ⇒ x = x

This is certainly true for all real numbers x.

3Since we will be dealing with two different uses of the symbol =, we will add quotes
to the equality of sets symbol, and leave the equality of real numbers sign as is.
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The notion of a partition formalizes the idea of making elements of a set
equal.

Definition 2.3.3 A partition P ⊂ 2S of a S is a choice of disjoint subsets
of S (called “classes”) whose union is S :

P = {Pα},

where
Pα ∈ 2S, Pα

⋂
Pβ = ∅,

⋃
α

Pα = S.

An equivalence relation os S defines a partition of S. Roughly, s and t
belong to the same class Pα iff s ∼ t. In this case, the classes P are called
“equivalence classes”. It is also standard to denote the set of equivalence
classes of a set S and an equivalence relation ∼ as

P = S/ ∼ .

See the text for a partial proof.

Example 2.3.4 Z3

Consider the integers Z. We may use the division algorithm to express any
integer b as

b = 3n + a, a ∈ {0, 1, 2}.

That is, divide 3 into b, and denote the remainder by a. Since this remainder
is unique, we may define a relation ∼ on Z by relating integers that have the
same remainder upon division by 3.

In particular, ∀ b, b̂ ∈ Z, write b = 3n + a, b̂ = 3n̂ + â. Then we define

b ∼ b̂ ⇔ a = â.

1. b ∼ b since the remainder a is unique as we defined it.

2. Suppose b ∼ b̂. Then, a = â and since equality of integers defines an
equivalence relation, â = a, and it follows that b̂ ∼ b. Thus, b ∼ b̂ ⇒
b̂ ∼ b.

3. Suppose b ∼ b̂ and b̂ ∼ ˆ̂
b. This implies a = â and â = ˆ̂a. Again, since

= is an equivalence relation, we have a = ˆ̂a, and therefore, b ∼ ˆ̂
b.
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There are 3 equivalence classes determined by the three possible remainders
0,1,2. We denote these classes by [0], [1], [2], respectively. For example, 6 ∈
[0], 43 ∈ [1], 335 ∈ [2]. One can go on to define addition and multiplication
on the equivalence classes to make the ring Z3 = {[0], [1], [2]}.

Example 2.3.5 RP1

Define a relation ∼ on R2 − (0, 0) as follows.

(x1, y1) ∼ (x2, y2) ⇔ ∃λ ∈ R, λ 6= 0 3 λ(x1, y1) = (x2, y2).

Therefore, in terms of partitions, [(x, y)] = {(x̂, ŷ) ∈ R2 − (0, 0) | λ(x̂, ŷ) =
(x, y), λ 6= 0}. We can get a geometric picture of the equivalence classes as
follows. From elementary algebra, we know that a line l through the origin is
completely determined by its slope m = ∆y

∆x
, and the special case of a vertical

slope corresponds to m = 0 or m = “∞”. Given such a line l, its points
(x1, y1) are characterized by the property that the ratio of its coordinates
equals the slope of l :

(x1, y1) ∈ l ⇔ y1

x1

= m.

Now, suppose4 (x1, y1) ∈ l, m 6= 0 and m 6= ∞, so that y1

x1
= m. Consider

another point (x2, y2), x2 6= 0 6= y2. Set λ = y2

y1
6= 0,∞, so that y2 = λy1.

Then,

(x2, y2) ∈ l ⇔ y2

x2

= m =
y1

x1

(2.14)

⇔ x2 = λx1 (2.15)

⇔ λ(x1, y1) = (x2, y2) (2.16)

⇔ (x1, y1) ∼ (x2, y2). (2.17)

Therefore, an equivalence class [(x1, y1)] is a line through (but not including)
the origin. Thus,

RP1 := R2 − (0, 0)/ ∼ = {lines through the origin }.

NOTE: A line through the origin in R2 corresponds to exactly a pair of
points on the unit circle S1, namely the points on S1 that the line intersects.
We will later see that RP1 is in fact topologically indistinguishable from S1.

4The special cases m 6= 0 and m 6= ∞ are handled similarly and more simply.
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Example 2.3.6 On R, define the relation

x ∼ y ⇔ ∃ z ∈ Z 3 y = x + z.

This may be described as “integer translations”. This is an equivalence rela-
tion. We may consider the interval of representatives [0, 1], noting that the
only duplicate is 0 ∼ 1. Geometrically, R/Z, the space of equivalence classes,
can be thought of as the unit interval with the endpoints 0 and 1 “glued”
together. This is again the circle S1.

2.3.2 Functions

Inverse functions

Set morphisms

Inverse relations

Index sets

2.4 Cardinality

2.4.1 Cardinality

finite

Infinite Sets

countably/uncountably infinite

2.5 Categories

• category (object,morphism)

• mono/epi/isomorphism

• examples

• metric and topological categories
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Motivation for Abstract
Topology

3.1 Calculus

• Intermediate Value Theorem

• Maximum Value Theorem

• Uniform Continuity Theorem

3.2 The character of open and closed sets:

intervals

• open and closed intervals in R

• Euclidean metric

• unions and intersections

• continuity

• the strange from the familiar: the Cantor fractal set

26
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Metric Topology

• metric

• ε-ball (D − p neighborhood)

• d-open set

• d-closed set

• convergent sequence

• continuous function

Definition 4.0.1 Let f : (X, d) → (Y, d̃) be a map between metric
spaces. f is continuous if it satisfies one of the following equivalent
conditions.

Theorem 4.0.1 Let f : (X, d) → (Y, d̃) be a map between metric
spaces. The following are equivalent:

1. Let xo ∈ X be fixed but arbitrary. Let ε > 0 be given. There exists
δ > 0: d(x, xo) < δ ⇒ d̃(f(x), f(xo)) < ε

2. Let xo ∈ X be fixed but arbitrary. Let ε > 0 be given. There exists
δ > 0: x ∈ Bd

δ (xo) ⇒ f(x) ∈ Bd̃
ε (f(xo))

3. Let xo ∈ X be fixed but arbitrary. Let ε > 0 be given. There
exists δ > 0 such that f(Bd

δ (xo)) ⊂ Bd̃
ε (f(xo)), or equivalently,

Bd
δ (xo) ⊂ f−1(Bd̃

ε (f(xo))).

27
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4. U
op
⊂ Y ⇒ f−1(U)

op
⊂ X. (“Inverse images of open sets are open.”)

5. For each sequence xn → x ∈ X, f(xn) → f(x) ∈ Y.

Proof:

– (1 ⇔ 2 ⇔ 3):

Let xo ∈ X be fixed but arbitrary. Let ε > 0 be given.
Recall the definition of a δ-ball:

Bd
δ (xo) = {x ∈ X|d(x, xo) < δ},

and similarly for ε-ball.
Then:

“∃ δ > 0: d(x, xo) < δ ⇒ d̃(f(x), f(xo)) < ε”

is equivalent to:

“∃ δ > 0: x ∈ Bd
δ (xo) ⇒ f(x) ∈ Bd̃

ε (f(xo)), ”

which, since functions preserve inclusions, is equivalent to condi-
tion:

“∃δ > 0 : f(Bd
δ (xo)) ⊂ Bd̃

ε (f(xo)), ”

which, since inverses preserve inclusions, is equivalent to:

“∃ δ > 0: Bd
δ (xo) ⊂ f−1(Bd̃

ε (f(xo))).”

– (3 ⇒ 4)
Assume:

For xo ∈ X fixed but arbitrary, for any ε > 0, there exists δ > 0
such that Bd

δ (xo) ⊂ f−1(Bd̃
ε (f(xo))).

We need to show: U
op
⊂ Y ⇒ f−1(U)

op
⊂ X.
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To this end, let U
op
⊂ Y x ∈ f−1(U). Since U

op
⊂ Y, U contains

an ε-ball: ∃ε > 0 such that Bd̃
ε (f(x)) ⊂ U. By our assumption

∃δ > 0 :
Bd

δ (x) ⊂ f−1(Bd̃
ε (f(x))). (4.1)

But since f−1 preserves subsets, Bd̃
ε (f(x)) ⊂ U ⇒ f−1(Bd̃

ε (f(x)) ⊂
f−1(U), and so togeher with (4.1) we have Bd

δ (x) ⊂ U. In other
terms, for an arbitrary point x in f−1(U), we can always find
a δ-ball centered at x that is contained in f−1(U) — the very
definition that f−1(U) be an open set.

– (4 ⇒ 5)

Assume:

U
op
⊂ Y ⇒ f−1(U)

op
⊂ X.

We need to show:

For each sequence xn → x ∈ X, f(xn) → f(x) ∈ Y.

To this end, let xn → x ∈ X, so that for any δ-ball Bd
δ (x), a.b.f.m.

xn ∈ Bd
δ (x). We need to show that f(xn) → f(x) ∈ Y, i.e., that

for any ε-ball, a.b.f.m. f(xn) ∈ Bd̃
ε (f(x)). But, any such Bd̃

ε (f(x))

is an open set, and so by assumption, f−1(Bd̃
ε (f(x))) is open (and

therefore is a neighborhood of each of its points such as x). In
particular, there is a δ-ball Bd

δ (x) which, by assumption, must
contain a.b.f.m. xn. In other terms, S = {xn|xn ∈ Bd

δ (x)} ⊂ Bd
δ (x)

contains a.b.f.m. xn, and so f(S) ⊂ f(Bd
δ (x)) ⊂ f−1(Bd̃

ε (f(x)))
contains a.b.f.m. f(xn). That is, f(xn) → f(x) ∈ Y.

– (5 ⇒ 3)

Assume:

For each sequence xn → x ∈ X, f(xn) → f(x) ∈ Y.

We need to show:

For xo ∈ X fixed but arbitrary, for ε > 0, there exists δ > 0 such
that f(Bd

δ (xo)) ⊂ Bd̃
ε (f(xo)).

To this end, suppose by way of contradiction that ∃f(xo) ∈ Y and

ε > 0 such that ∀δ > 0, f(Bd
δ (xo)) * Bd̃

ε (f(xo)). We now build a
sequence xn → xo ∈ X, such that f(xn) 9 f(xo) ∈ Y, that gives
us the desired contradiction.
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For each n ∈ Z+, choose an element xn ∈ Bd
1
n

(xo) such that

f(xn) /∈ Bd̃
ε (f(xo)) 6= ∅. Then, xn → xo, yet f(xn) 9 f(xo).

Q.E.D.

• set distance

• closure of a set
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The Category of Topological
Spaces

Definition 5.0.2 The topological category, T OP, is the category whose ob-
jects are topological spaces and whose morphisms are continuous functions.
The equivalences are homeomorphisms.

5.1 Topologies and Topological Spaces

Definition 5.1.1 Let X be a set, a collection of subsets τ ⊂ 2X of X forms
a topology on X iff it satisfies the following 3 conditions:

1. X ∈ τ, ∅ ∈ τ.

2. Closure w.r.t. intersection:

U ∩ V ∈ τ whenever U, V ∈ τ.

3. Closure w.r.t. arbitrary unions:⋃
α∈I

Uα ∈ τ whenever ∀α ∈ I, Uα ∈ τ.

The pair (X, τ) is called a topological space.

5.1.1 Basic Examples

Lower limit topology, discrete, trivial topology, etc.

31



CHAPTER 5. THE CATEGORY OF TOPOLOGICAL SPACES 32

5.1.2 Bases

Ultimately, the key assumption used in proving the theorem that continuous
functions preserve convergent sequences is the existence of the countable
family

{D−B 1
n
(x)|n ∈ Z+}

of open sets about any point x in the metric space (X, D). In fact, no other
aspect of the metric D is required. This suggests that the assumption that
X and Y be metric spaces is stronger than necessary for the aforementioned
theorem. Thus, we abstract the salient property by defining the notion of a
“neighborhood basis”.

Definition 5.1.2 Neighborhood Basis
Let (X, τ) be a topological space. A neighborhood basis at x ∈ X” is a collec-
tion ηx ⊂ τ of open sets such that:

1. x ∈ U
op
⊂ X, ∀ U ∈ ηx.

2. ∀ V
op
⊂ X, x ∈ V, there is a member U ∈ ηx such that U ⊂ V.

Definition 5.1.3 A subcollection B ⊂ τ constitutes a basis for τ provided
every open set U ∈ τ is a union of basis elements:

∀ U ∈ τ, U =
⋃
α∈I

Bα for some {Bα |α ∈ I} ⊂ B.

In other terms, given U ∈ τ, we may associate a basis element Bx ⊂ U
with each x ∈ U, and then:

U =
⋃
x∈U

Bx (5.1)

Example 5.1.1 delta-balls form a basis.

Definition 5.1.4 The Countability Properties:

1. Let (X, τ) be a topological space. If each x ∈ X has a countable neigh-
borhood basis, then we say that X is first countable (written 1◦).

2. Let (X, τ) be a topological space. If each x ∈ X has a countable basis
for τ , then we say that X is second countable (written 2◦).
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Second countability is stronger than first countability. That is,

(X, τ) 2◦ ⇒ (X, τ) 1◦,

but not conversely. For suppose (X, τ) is 2◦ with countable basis B. Given
any point x ∈ X,

ηx = {U ∈ B|x ∈ U}

is a neighborhood basis for x (exercise). Thus, (X, τ) is 1◦. However, the
converse is false, as is proven by example 5.1.2.

Basis Recognition Theorem It is often the case that one starts not with
a topology, but with a collection of subsets that one would like to have as a
basis for a topology. For example, in the metric case, the δ-balls are a very
natural collection of subsets to work with. However, not any collection of
subsets may form a basis. For example, consider a basis B for a topology τ on
a set X. Since basis elements {Bα} are themselves open sets, an intersection
of basis elements must be open:

B, B̃ ∈ B ⇒ U := B ∩ B̃ ∈ τ,

and an arbitrary union of basis elements must be open:

{Bα|α ∈ I} ⊂ B ⇒ V :=
⋃
α∈I

Bα ∈ τ.

As with any open sets, U and V must, in turn, be expressible as a union
of basis elements. V is already expressed as a union of basis elements, but
for U, there must exist {Bα|α ∈ I} ⊂ B such that:

U := B ∩ B̃ =
⋃
α∈I

Bα.

It is this condition that is key to determining whether or not a collection B
of subsets will or will not determine a topology for which it will be a basis.
This is the content of the basis recognition theorem :

Theorem 5.1.1 Let X be a set, B a collection of subsets of X satisfying

1. B covers X : X =
⋃

B∈B B;
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2. ∀B, B̃ ∈ B, B ∩ B̃ =
⋃

α∈I Bα, for some {Bα ∈ B|α ∈ I}.

Then B is a basis for the topology defined by

τ = {U ⊂ X|U =
⋃
α∈I

Bα, for some{Bα ∈ B|α ∈ I}}.

Proof: Fill in.

Example 5.1.2 Consider the real line R together with the collection of “half-
open” intervals

Bll = {[a, b) ⊂ R | a < b}.

1. (a) Since

R =
⋃
n∈Z

[−n, n) ⊂
⋃

B∈Bll

B,

Bll is a cover for R.

(b) There are 4 cases for the intersection U := [a, b) ∩ [c, d) :

i. [a, b) ⊂ [c, d) ⇒ U = [a, b).

ii. [c, d) ⊂ [a, b) ⇒ U = [c, d).

iii. a < c, b < d ⇒ U = [c, b).

iv. a > c, b > d ⇒ U = [a, d). In each case U is again a half-
open interval. Thus, by the basis recognition theorem, Bll is
the basis for a topology, the lower limit topology τll.

2. (X, τll) is 1◦, since ∀x ∈ R,

{[x, x +
1

n
) | n ∈ Z+}

is a countable neighborhood basis for x.

3. Let B̃ be any basis for τll. For each x ∈ R, choose a basis element Bx

satisfying x ∈ Bx ⊂ [x, x + 1). If x 6= y, then Bx 6= By. Thus, B̃ must
be uncountable and (X, τ) is not 2◦.

Example 5.1.3 Consider (Rn, τ), where τ is the standard topology (e.g. de-
fined by the pythagorian metric). This space is 2◦ (hence 1◦), since τ has the
countable basis

B = {B 1
n
(P ) | n ∈ Z+, P ∈ Qn ⊂ Rn}.



CHAPTER 5. THE CATEGORY OF TOPOLOGICAL SPACES 35

5.1.3 Comparing Topologies

Definition 5.1.5 Let X be a set. Let τ and τ̃ be two (possibly different)
topologies on X. We call τ coarser than τ̃ iff τ ⊂ τ̃ . In the case that τ ( τ̃ ,
we call τ strictly coarser than τ̃ . Alternatively, we call τ̃ finer, respectively
strictly finer, than τ.

Example 5.1.4 Rn with trivial vs. standard vs. discrete topologies. In-
creasingly finer.

The next theorem provides a way to compare two topologies by comparing
their bases.

Theorem 5.1.2 Let B and B̃ be bases for topologies τ and τ̃ (respectively)
on a set X. Then, τ is coarser than τ̃ iff

∀B ∈ B,∀x ∈ B, ∃ B̃ ∈ B̃ 3 x ∈ B̃ ⊂ B.

Proof:
(⇒) Consider an arbitrary point x in an arbitrary basic open set B ∈ B. If
we suppose τ is coarser than τ̃ so that τ ⊂ τ̃ , we have that B ∈ τ̃ . It follows
that we may write (cf. equation 5.1)

B =
⋃
x∈U

B̃x,

Therefore, for each x ∈ B there exists B̃x ∈ B̃ so that x ∈ B̃ ⊂ B.
(⇐) Suppose that ∀x ∈ B ∈ B,∃ B̃ ∈ B̃ 3 x ∈ B̃ ⊂ B, and suppose that
U ∈ τ. We need to show U ∈ τ̃ . Since B generates τ, we may write

U =
⋃
x∈U

Bx

for some basis elements Bx ∈ B By assumption we may find B̃x ∈ B̃ for each
x ∈ U such that x ∈ B̃x ⊂ Bx. Then,

U =
⋃
x∈U

B̃x.

It follows that U ∈ τ̃ .
Q.E.D.
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Example 5.1.5 The lower limit topology τll on R is strictly finer than the
standard topology τ.

Consider the standard bases Bll (cf. example 5.1.2) and B for τll and τ. B
consists of all open intervals. Given such an open interval (a, b) and x ∈ (a, b),
we have [x, b) ⊂ (a, b) and [x, b) ∈ Bll. Therefore τll is finer than τ. In contrast,
given [x, y) ∈ Bll, any (a, b) ∈ B containing x must contain some c < x.
Therefore it must be that (a, b) * [x, y). Thus, τll is strictly finer than τ.

Consequences for continuity- fine domains and coarse codomains im-
prove “chances for continuity” and conversely: identity map on X - theorem.
Pictures of 2X , etc.

5.2 Derived sets

We now make some definitions in order to analyze subsets of points topolog-
ically derived from a given subset of a topological space. For the following
definitions, A is a subset of a topological space (X, τ). Each definition will
be followed by simple, illustrative examples involving the real line with the
standard open interval topology (R, τ).

Definition 5.2.1 The interior of A, denoted Å, is defined to be the union
of all open sets contained in A :

Å =
⋃

U, where U
op
⊂ X, U ⊂ A.

Example 5.2.1 Let A = (2, 3]. Then Å = (2, 3). Note that every open set
contained in A is contained in a basis element of the form (2+ 1

n
, 3− 1

n
), n ∈

Z+, n > 2 and

(2, 3) =
⋃

n∈Z+,n>2

(2 +
1

n
, 3− 1

n
).

Example 5.2.2 Let A = (2, 3] ∪ [4, 5] ∪ {8}. Then Å = (2, 3) ∪ (4, 5).

Definition 5.2.2 The closure of A, denoted Ā or ClA, is defined to be the
intersection of all closed sets containing A :

Ā =
⋂

F, where F
cl
⊂ X,A ⊂ F.
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Example 5.2.3 Let A = (2, 3]. Then Ā = [2, 3]. Note that every closed
set F 6= [2, b], [a, 3] containing A contains a basic closed set of the form
[2− 1

n
, 3 + 1

n
], n ∈ Z+, and

[2, 3] =
⋂

n∈Z+

(2− 1

n
, 3 +

1

n
).

Example 5.2.4 Let A = (2, 3] ∪ [4, 5] ∪ {8}. Then Ā = [2, 3] ∪ [4, 5] ∪ {8}.

Definition 5.2.3 A point x ∈ X is a limit point of A if and only if every
neighborhood U of x intersects A in a point other than x itself:

∀ U
op
⊂ X, x ∈ U, A ∩ (U − {x}) 6= ∅

The set of all limit points of A is denoted A′.

NOTE: A limit point of A may or may not be a point of A.

Example 5.2.5 Both 2 and 3 are limit poins of (1, 3). A′ = [1, 3] = Ā.

Example 5.2.6 Let A = { 1
n
| n ∈ Z+}. Then A′ = {0}, since every open set

containing 0 contains 1
n

for large enough n. More surprisingly, A′ ∩ A = ∅.
This is because for every 1

n
, there is an open set containing 1

n
but containing

no other point of A, for example

(
1

n
− ε,

1

n
+ ε),

where ε = 1
n
− 1

n+1
.

Definition 5.2.4 A is dense is X if and only if Ā = X.

Example 5.2.7 Let A = Q. Then Ā = R. That is, Q is dense in R.
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Derived Spaces and Morphisms

6.1 Subspaces

• subspace topology

• subspaces

6.2 Morphisms

• morphism/continuous map

• equivalence/homeomorphism

• open/closed map

6.3 Quotient spaces

• quotient map

• quotient topology

• quotient space

• projective spaces
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6.4 Product spaces

• projection maps

• product topology

• box topology

• product space



Chapter 7

Separation Axioms

7.1 Hausdorff spaces

• T0 space

• T1 space

• T2 (Hausdorff) space

• pseudometric space vs. metric space

• inheritance

7.2 Regular spaces

• T3 space

• regular space

• inheritance

7.3 Normal spaces

• T4 space

• normal space

• inheritance
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7.4 Function extensions

• Urysohn’s Lemma

• Tietze’s Extension Theorem



Chapter 8

Covering Properties and
Metrization

8.1 Countability and Metrization

• open cover

• subcover

• refinement (of an open cover)

• Lindelöf spaces

• 1st countability

• 2nd countability

• separability

• Urysohn Metrization Theorem

8.2 Compactness

• compact spaces

• compactness and the separation axioms

• compactness and derived spaces
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• compactness and morphisms

• local compactness

• compactness in Euclidean spaces

8.3 1-pt. Compactification



Chapter 9

Topological Connectivity

9.1 Connectedness

• connected sets

• path connected sets

• connectedness and derived spaces

9.2 Local connectedness

• locally connected sets

• connected components

44
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Notation

A.1 Glossary

SYMBOL MEANING
{} “the set of” (set braces)
∅ “the empty set”
∀ “for every”
∃ “there exists”
∃! “there exists a unique”
3 “such that”
⇒ “implies”
⇐⇒ “if and only if” or “is equivalent to”
∈ “is a member of”⋃

“intersection”⋂
“union”

⊂ “is a subset of”
∝ “is proportional to”
7−→ “maps to (the element...)”
−→ “maps into (the set...)”
R The set of real numbers.
R2 The set of ordered pairs of real numbers (i.e. the Cartesian x-y plane).
Rn The set of ordered n-tuples of real numbers.
C The set of complex numbers.
Mm×n The set of m× n matrices.
Q.E.D. End of proof.
(Latin: Quod Erat Demonstrandum) (lit. That which was to be shown)
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A.2 Examples

•R2 is the set of ordered pairs of real numbers:

R2 = {(x, y) |x ε R, y ε R }.

• A parametric equation for the unit circle:

α : R −→ R2 : t 7−→ (cos t, sin t).

• The definition of a limit of a function (real valued, one real variable):
The limit of f(x) as x approaches x) exists and equals L ⇐⇒

∀ ε > 0∃ δ > 0 3 |f(x)− L| < ε

whenever
0 < |x− x0| < δ.

• Interval notation:

(0, 1) = (−∞, 1)
⋂

(0,∞) = (0,
1

2
)
⋃

[
1

2
, 1).

• Existence and uniqueness of the standard matrix of a linear transfor-
mation:
∀ linear transformation T : Rp −→ Rn, ∃! A ∈ Mn×p 3 ∀ ~x ∈ Rp,
T (~x) = A~x.
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Exercises

Here are some hyperlinks to the exercises:

2.1.1 2.1.2 2.1.3 2.1.4
2.2.1 2.2.2
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Definitions

The remaining appendices form a workbook, wherein

the student can assemble and organize the many defi-

nitions, important examples, theorems, interrelatioin-

ships, that arise in point-set topology. It is basically

a skeleton outline of the (more than) the course, and

could therefore help organize any other items the stu-

dent finds noteworthy.

C.1 Foundations

etc.

C.1.1 Logic

• quantifiers (∀,∃)

• implication (⇒,⇐,⇔)
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• negation

• contrapositive

C.1.2 Sets

• set

• subset

• power set

• complement

• union

• intersection

• Cartesian product of sets

C.1.3 Relations

• relation

• inverse relation

• equivalence relation

• partition

• function

• restriction of a function
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• inverse function

• composition of functions

• injective/sujective/bijective

• indexing function

C.1.4 Cardinality

• cardinality

• finite

• countably infinite

• uncountably infinite

C.1.5 Categories

• category (object,morphism)

• mono/epi/isomorphism

• the category MET

• the category T OP
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C.2 Motivation for Abstract Topology

C.2.1 Calculus

C.2.2 The character of open and closed sets: intervals

• open/closed intervals in R

• Euclidean metric

• union

• intersection

• continuity

C.3 Metric Topology

• metric

• ε-ball (D − p neighborhood)

• d-open set

• d-closed set

• convergent sequence

• continuous function

• set distance

• closure of a set
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C.4 The Category of Topological Spaces

C.4.1 Topologies

• topological space

• basis

• fineness/coarseness of a topology

C.4.2 Derived sets

• closure

• interior

• frontier

• exterior

• derived set

• limit point

• dense set

C.4.3 Derived Spaces and Morphisms

C.4.4 Subspaces

• subspace topology

• subspace
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• open subspace

• closed subspace

• hereditary property

Definition C.4.1 Hereditary

Let P be a property of a topological space, such as

being a “Hausdorff” space. P is called a hereditary

property provided every subspace Y ⊂sspc X has the

property P whenever the “parent space” X does.

C.4.5 Morphisms

• morphism/continuous map

• equivalence/homeomorphism

• open/closed map

C.4.6 Quotient spaces

• quotient map

• quotient topology

• quotient space
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C.4.7 Product spaces

• projection map

• product topology

• box topology

• product space

C.5 Separation Axioms

C.5.1 Hausdorff spaces

• T0 space

• T1 space

• T2 (Hausdorff) space

C.5.2 Regular spaces

• T3 space

• regular space

C.5.3 Normal spaces

• T4 space

• normal space
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C.5.4 Function extensions

C.6 Covering Properties and Metrization

C.6.1 Countability and Metrization

• open cover

• subcover

• refinement (of an open cover)

• Lindelöf space

• 1st countability

• 2nd countability

• separability

C.6.2 Compactness

• compact spaces

• locally compact

C.6.3 1-pt. Compactification

• 1-pt. compactification



APPENDIX C. DEFINITIONS 56

C.7 Topological Connectivity

C.7.1 Connectedness

• disconnected set

• connected set

• path connected set

C.7.2 Local connectedness

• locally connected set

• connected component



Appendix D

Important Results

D.1 Foundations

etc.

D.1.1 Logic

• De Morgan’s Laws

D.1.2 Sets

D.1.3 Relations

D.1.4 Cardinality

• a countable union of sets is countable

• a finite product of countable sets is countable

• a countable product of countable sets is not count-

able
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• the power set of a countably infinite set is uncount-

able

D.1.5 Categories

D.2 Motivation for Abstract Topology

D.2.1 Calculus

• Intermediate Value Theorem

• Maximum Value Theorem

• Uniform Continuity Theorem

D.2.2 The character of open and closed sets: intervals
in the real line

• arbitrary unions and finite intersections of open sets

are open

• arbitrary intersections and finite unions of closed sets

are closed

• R and ∅ are both open and closed sets

• one-point sets are closed

• Q is neither open nor closed
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• the Cantor fractal set is uncountable yet has zero

length, has no isolated points yet contains no interval,

and is closed

D.3 Metric Topology

• ε-balls are open sets

• every open set is a union of ε-balls

• arbitrary unions and finite intersections of open sets

are open

• arbitrary intersections and finite unions of closed sets

are closed

• if xn → x, then every open set containing x contains

all but finitely many xn.

• sequence characterization of continuity: f : X →
Y is continuous iff f (xn) → f (x) is a convergent

sequence in Y whenever xn → x is a convergent

sequence in X.

• metric independent characterization of continuity: in-

verse images of open sets are open
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D.4 The Category of Topological Spaces

D.4.1 Topologies

•

D.4.2 Derived sets

•

D.4.3 Derived Spaces and Morphisms

D.4.4 Subspaces

•

D.4.5 Morphisms

•

D.4.6 Quotient spaces

•

D.4.7 Product spaces

•
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D.5 Separation Axioms

D.5.1 Hausdorff spaces

•

D.5.2 Regular spaces

•

D.5.3 Normal spaces

•

D.5.4 Function extensions

• Urysohn’s Lemma

• Tietze’s Extension Theorem

D.6 Covering Properties and Metrization

D.6.1 Countability and Metrization

• Urysohn Metrization Theorem

D.6.2 Compactness

•
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D.6.3 1-pt. Compactification

D.7 Topological Connectivity

D.7.1 Connectedness

•

D.7.2 Local connectedness

•



Appendix E

Subspace Inheritance

E.1 Metric Topology

• The restriction of a metric to a subset of a metric

space is a metric. The restricted metric endows the

subset with the structure of a metric space.

• A metric-open set restricted to a metric subspace is

open.

• A metric-closed set restricted to a metric subspace is

closed.

• Consider a metric subspace Y ⊂sspc X, and let Z be

any metric space. The restiction f |Y : Y → Z of a

continuous function f : X → Z is continuous.
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E.2 The Category of Topological Spaces

E.2.1 Topologies

• metric topology is inherited

• the restriction of basis elements to a subspace are

basis elements for the subspace topology

• the restriction of an open set to a subsapce is open

• the restriction of a closed set to a subspace is closed

E.2.2 Derived sets

E.2.3 Morphisms

• Consider a topological subspace Y ⊂sspc X, and let

Z be any topological space. The restiction f |Y :

Y → Z of a continuous function f : X → Z is

continuous.

E.2.4 Quotient spaces

E.2.5 Product spaces

E.3 Separation Axioms

E.3.1 Hausdorff spaces

• a subspace of a T0 space is T0
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• a subspace of a T1 space is T1

• a subspace of a T2 (Hausdorff) space is T2 (Hausdorff)

E.3.2 Regular spaces

• a subspace of a regular space is regular

E.3.3 Normal spaces

• only closed subspaces of normal spaces are normal

E.4 Covering Properties and Metrization

E.4.1 Countability and Metrization

• closed subspaces of Lindelöf spaces are Lindelöf

• subspaces of 1st countable spaces are 1st countable

• subspaces of 2nd countable spaces are 2nd countable

• open subspaces of separable spaces are separable

E.4.2 Compactness

• a closed subset of a compact space is compact

• only closed and bounded subsets of Rn are compact
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• every open or closed subspace of a locally compact

Hausdorff space is locally compact Hausdorff

E.4.3 1-pt. Compactification

• 1-pt. compactification

E.5 Topological Connectivity

E.5.1 Connectedness

• disconnected set

• connected set

• path connected set

E.5.2 Local connectedness



Appendix F

Special
examples/counterexamples

F.1 Foundations

etc.

F.1.1 Logic

• quantifiers (∀,∃)

• implication (⇒,⇐,⇔)

• negation

• contrapositive

F.1.2 Sets

• set

• subset

67



APPENDIX F. SPECIAL EXAMPLES/COUNTEREXAMPLES 68

• power set

• complement

• union

• intersection

• Cartesian product of sets

F.1.3 Relations

• relation

• inverse relation

• equivalence relation

• partition

• function

• inverse function

• composition of functions

• injective/sujective/bijective

• indexing function
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F.1.4 Cardinality

• cardinality

• finite

• countably infinite

• uncountably infinite

F.1.5 Categories

• category (object,morphism)

• mono/epi/isomorphism

• the category MET

• the category T OP

F.2 Motivation for Abstract Topology

F.2.1 Calculus

F.2.2 The character of open and closed sets: intervals

• open/closed intervals in R

• Euclidean metric

• union

• intersection
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• continuity

F.3 Metric Topology

• metric

• ε-ball (D − p neighborhood)

• d-open set

• d-closed set

• convergent sequence

• continuous function

• set distance

• closure of a set

F.4 The Category of Topological Spaces

F.4.1 Topologies

• topological space

• basis

• fineness/coarseness of a topology
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F.4.2 Derived sets

• closure

• interior

• frontier

• exterior

• derived set

• limit point

• dense set

F.4.3 Derived Spaces and Morphisms

F.4.4 Subspaces

• subspace topology

• subspace

F.4.5 Morphisms

• morphism/continuous map

• equivalence/homeomorphism

• open/closed map
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F.4.6 Quotient spaces

• quotient map

• quotient topology

• quotient space

F.4.7 Product spaces

• projection map

• product topology

• box topology

• product space

F.5 Separation Axioms

F.5.1 Hausdorff spaces

• T0 space

• T1 space

• T2 (Hausdorff) space
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F.5.2 Regular spaces

• T3 space

• regular space

F.5.3 Normal spaces

• T4 space

• normal space

F.5.4 Function extensions

F.6 Covering Properties and Metrization

F.6.1 Countability and Metrization

• open cover

• subcover

• refinement (of an open cover)

• Lindelöf space

• 1st countability

• 2nd countability

• separability
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F.6.2 Compactness

• compact spaces

• locally compact

F.6.3 1-pt. Compactification

• 1-pt. compactification

F.7 Topological Connectivity

F.7.1 Connectedness

• disconnected set

• connected set

• path connected set

F.7.2 Local connectedness

• locally connected set

• connected component
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