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These are lecture notes based on the course given by the first coauthor in
SISSA in Spring 2000. The potential reader could be a graduate student with
a reasonable level of the mathematical culture and without any preliminary
knowledge on Control Theory.

The main topics in Part I of the lecture notes are controllability and the
equivalence of smooth systems under state and feedback transformations. The
central result here is the Orbit Theorem of Nagano and Sussmann.

Part II is devoted to Optimal Control; the principal result is the Pontryagin
Maximum Principle.

Geometric Control Theory is now a broad subject and many important topics
are not even touched in our lecture notes. In particular, we do not study the
feedback stabilization problem and the huge theory of control systems with
outputs including fundamental concepts of observability and realization. For
this and other material, see books [8], [9], [10], [11], [16].

The second author thanks SISSA, Trieste, Italy, and Program Systems In-
stitute of Russian Academy of Sciences, Pereslavl-Zalessky, Russia, for support
during the work on these lecture notes.
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Chapter 1

Vector fields and control
systems on smooth
manifolds

We give just a brief outline of basic notions related to the smooth manifolds.
For a consistent presentation, see an introductory chapter to any textbook on
analysis on manifolds, e.g. [17].

In the sequel, “smooth” (manifold, mapping, vector field etc.) means C'™.

1.1 Smooth manifolds

Definition 1.1. A subset M C R" is called a smooth k-dimensional submani-
fold of R™, k < n, if any point x € M has a neighborhood O, in R" in which
M is described in one of the following ways:

(1) there exists a smooth vector-function
' F
F : 0, sR"F, rank —| =n—k
x

such that
0, N M = F~0);
(2) there exists a smooth vector-function
f:Vo—-R"
from a neighborhood of the origin 0 € V; C RF with

_ df _
f0) ==z, rank e O—k
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such that
O.NM = f(W)

and f : Vo = O, N M is a homeomorphism.

(3) there exists a smooth vector-function
®: 0, =0y CR"*

onto a neighborhood of the origin 0 € Og C R with

rank —| =n

dx

T

such that
®(0, N M) =R N Oy.

Exercise 1.1. Prove that three local descriptions of a smooth submanifold giv-
en in (1)—(3) are mutually equivalent.

Remarks. (1) There are two topologically different one-dimensional manifolds:
the line R! and the circle S'. The sphere S? and the torus 72 = S! x S! are
two-dimensional manifolds. The torus can be viewed as a sphere with a handle.
Any compact orientable two-dimensional manifold is topologically a sphere with
p handles, p=0,1,2,... .

(2) Smooth manifolds appear naturally already in the basic analysis. For
example, the circle S' and the torus 72 are natural domains of periodic and
doubly periodic functions respectively. On the sphere S?, it is convenient to
consider restriction of homogeneous functions of 3 variables.

So a smooth submanifold is a subset in R” which can locally be defined by a
regular system of smooth equations and by a smooth regular parametrization.

In spite of the intuitive importance of the image of manifolds as subsets of
a Euclidean space, it is often convenient to consider manifolds independently of
any embedding in R". An abstract manifold is defined as follows.

Definition 1.2. A smooth k-dimensional manifold M is a Hausdorff paracom-
pact topological space endowed with a smooth structure: M is covered by a
system of open subsets

M =U,0,

called coordinate neighborhoods, in each of which is defined a homeomorphism
®, : O, » RF
called a local coordinate system such that all compositions
Do, 08, 1 ®4,(0a, NO4y) CRY = &4, (04, N Oy,) C R

are diffeomorphisms.
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Remark. For a smooth submanifold in R™, the abstract definition holds.

Conversely, any connected smooth abstract manifold can be considered as
a smooth submanifold in R™. Before precise formulation of this statement, we
give two definitions.

Definition 1.3. Let M and N be k- and [-dimensional smooth manifolds re-
spectively. A mapping

f:M—-N
is called smooth if it is smooth in coordinates. That is, let M = U,0O, and
N = UgVjs be coverings of M and N by coordinate neighborhoods and

D, 1 Op >R, U V3o R
the corresponding coordinate mappings. Then all compositions
Ugofod ' :+ &, (0aN f 1 (Vs) CRY = ¥s(f(0n)NVs) CR
should be smooth.

Definition 1.4. A smooth manifold M is called diffeomorphic to a smooth
manifold N if there exists a homeomorphism

f:M—-N

such that both f and its inverse f~! are smooth mappings. Such mapping f is
called a diffeomorphism.

The set of all diffeomorphisms f : M — M of a smooth manifold M is
denoted by Diff M.

A smooth mapping f : M — N is called an embedding of M into N if
f: M — f(M) is a diffeomorphism. A mapping f : M — N is called proper
if f~1(K) is compact for any compactum K € N.

Theorem 1.1 (Whitney). Any smooth connected k-dimensional manifold can
be properly embedded into R**+1,

Summing up, we may say that a smooth manifold is a space which looks
locally like a linear space but without fixed linear structure, so that all smooth
coordinates are equivalent. The manifolds, not linear spaces, form an adequate
framework for the modern nonlinear analysis.

1.2 Vector fields on smooth manifolds

The tangent space to a smooth manifold at a point is a linear approximation of
the manifold in the neighborhood of this point.

Definition 1.5. Let M be a smooth k-dimensional submanifold of R” and z €
M its point. Then the tangent space to M at the point x is a k- dimensional
linear subspace

T.M CR"

defined as follows for cases (1)—(3) of Definition 1.1:
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dF

1 T M = Ker —
(1) er ——

1 4f
(2) T.M=Im 2

)
T

’
0

-1
> R".
x

Remark. The tangent space is a coordinate-invariant object since smooth chan-
ges of variables lead to linear transformations of the tangent space.

de

3) T.M = <dw

In an abstract way, the tangent space to a manifold at a point is the set of
velocity vectors to all smooth curves in the manifold that start from this point.

Definition 1.6. Let y(-) be a smooth curve in a smooth manifold M starting
from a point x € M:

v : (—¢,e) = M a smooth mapping, ~7(0) = x.

The tangent vector

dy

27 = 4(0

atl,_, 7(0)

to the curve y(-) at the point z is the equivalence class of all smooth curves in
M starting from z and having the same 1-st order Taylor polynomial as 7(-),
for any coordinate system in a neighborhood of z.

Definition 1.7. The tangent space to a smooth manifold M at a point x € M
is the set of all tangent vectors to all smooth curves in M starting at z:

dy

T,M =
‘ {dt

|y : (—&,e) = M smooth,v(0) = m} .
t=0

Exercise 1.2. Let M be a smooth k-dimensional manifold and z € M. Show
that the tangent space T, M has a natural structure of a linear k-dimensional
space.

Definition 1.8. A smooth vector field on a smooth manifold M is a smooth

mapping
reMw—V(z)eT,M

that associates to any point z € M a tangent vector V(z).

In the sequel we denote by Vec M the set of all smooth vector fields on a
smooth manifold M.

Definition 1.9. A smooth dynamical system, or an ordinary differential equa-
tion (ODE), on a smooth manifold M is an equation of the form

dz
_— =
77 V(x), € M,
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or, equivalently,

& =V(x), x € M,

where V() is a smooth vector field on M. A solution to this system is a smooth

mapping
vy:1I—= M,

where I C R is an interval, such that

Z_Z =V(y(t) Vtel

Definition 1.10. Let & : M — N be a smooth mapping between smooth
manifolds M and N. The differential of ® at a point z € M is a linear mapping

D,® : T,M — Ty N

) _ 4
YT

v :(—e,6) CR— M, ¥(0) =z,

is a smooth curve in M starting at x.

defined as follows:

o(v(1)),

t=0

dy
D,® | =
‘ <dt

where

Now we apply smooth mappings to vector fields. Let V' € Vec M be a vector
field on M and

& =V(z) (1.1)
the corresponding ODE. To find the action of a diffeomorphism
®: M— N, Sz y=2(x)

on the vector field V' (z), take a solution z(¢) of (1.1) and compute the ODE
satisfied by the image y(t) = ®(x(¢)):
y(t) = %‘1’(35(75)) = (D ®) &(t) = (D:®) V(2(t)) = (Da-1()®) V(27" (y(t)))-
So the required ODE is

§ = (Dar()®) V(@1 (1). (1.2)

The right-hand side here is the transformed vector field on N induced by the
diffeomorphism ®:

(®.V)(y) E (Dgp-10)®) V(@ (1))

The notation ®.,, is used, along with D, ®, for differential of a mapping ®
at a point x.
Remark. In general, a smooth mapping ® induces transformation of tangent

vectors, not of vector fields. In order that D® transform vector fields to vector
fields, ® should be a diffeomorphism.
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1.3 Smooth differential equations and flows on
manifolds
Theorem 1.2. Consider a smooth ODE
& =V(z), zreMCR", (1.3)

on a smooth submanifold M of R™. For any initial point xo € M, there exists
a unique solution

x(t, z), te€ (a,b), a<0<b,

of equation (1.3) with the initial condition
z(0, z0) = xo,
defined on a sufficiently short interval (a,b). The mapping
(t,z0) — x(t, zo)

is smooth. In particular, the domain (a,b) of the solution (-, zo) can be chosen
smoothly depending on xg.

Proof. We prove the theorem by reduction to its classical analog in R™.
The statement of the theorem is local. We rectify the submanifold M in the
neighborhood of the point z¢:

®: 0, CR" > 0Oy CR",
®(0,, N M) =R,

Counsider the restriction ¢ = ®|5s. Then a curve z(t) in M is a solution to (1.3)
if and only if its image y(t) = ¢(z(¢)) in R* is a solution to the induced system:

y=o.V(y), y e RF.

Theorem 1.3. Let M C R™ be a smooth submanifold and let

& =V(x), z € R?, (1.4)
be a system of ODEs in R™ such that

r€e€M = V(z)e T, M.

Then for any initial point xo € M, the corresponding solution x(t,zo) to (1.4)
with x(0,x9) = zo belongs to M for all sufficiently small |t|.
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Proof. Consider the restricted vector field:
f=Vlu.
By the existence theorem for M, the system
& = f(z), x €M,
has a solution x(¢,zo), (0, o) = xg, with
x(t,x9) € M for small |¢|. (1.5)

On the other hand, the curve z(t, z¢) is a solution of (1.4) with the same initial
condition. Then inclusion (1.5) proves the theorem. O

Definition 1.11. A vector field V' € Vec M is called complete, if for all zy € M
the solution z(t,xo) of the Cauchy problem

& =V(x), z(0,z0) = zo (1.6)
is defined for all t € R.

Example 1.1. The vector field V(z) = z, ¢ € R, is complete, but the vector
field V(z) = 2%, © € R, is not complete.

Proposition 1.1. Suppose that there exists € > 0 such that for any ©o € M the
solution x(t, o) to (1.6) is defined for t € (—e,e). Then the vector field V (x) is
complete.

Remark. In this proposition it is required that there exists € > 0 common for
all initial points zy € M. In general, € may be not bounded away from zero for
all zp € M. E.g., for the vector field V(z) = z? we have ¢ — 0 as zy — oo.

Proof. Suppose that the hypothesis of the proposition is true. Then we can
introduce the following family of mappings in M:

Pt M — M, t € (—e,¢),
P! xg > x(t, 20).
Pt(zp) is the shift of a point o € M along the trajectory of the vector field
V(z) for time t.
By Theorem 1.2, all mappings P! are smooth. Moreover, the family { P? |
t € (—e,¢) } is a smooth family of mappings.
A very important property of this family is that it forms a local one-para-
meter group, i.e.,

PY(P%(z)) = P*(P'(z)) = P"**(z), x €M, t, s, t+sé€(—¢,¢).
Indeed, the both curves in M:

t— PY(P*(z)) and t+~ P'"%(z)
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satisfy the ODE & = V(z) with the same initial value P°(P?%(z)) = P'"%(z) =
P*(x). By uniqueness, P!(P*(z)) = P'™%(z). The equality for P*(P%(x)) is
obtained by switching ¢ and s.

So we have the following local group properties of the mappings P!:

Plo P¥ = P%o Pt = P+, t, s, t+s € (—¢,e),
P’ =1d,

P lopPi=pPlopt=1d, t € (—¢,¢),

Pt = (Pt)f1 , t € (—¢,e).

In particular, all P! are diffeomorphisms.
Now we extend the group properties of P! for all t € R. Any t € R can be
represented as

t:§K+T, 0§7‘<%, K=0,£1,%£2,....

We set
Pt déf PTOPE/QO---OP€/2.
—
K times
Then the curve
t'—)Pt(Z’O), tE]R,
is a solution to Cauchy problem (1.6). O

Definition 1.12. For a complete vector field V' € Vec M, the mapping
t — Pt teR,
is called the flow generated by V.

Remark. 1t is useful to imagine a vector field V' € Vec M as a field of velocity
vectors of a moving liquid in M. Then the flow P? takes any particle of the
liquid from a position x € M and transfers it for a time ¢ € R to the position
Pt(z) e M.

Simple sufficient conditions for completeness of a vector field are given in
terms of compactness.

Proposition 1.2. Let K C M be a compact subset, and let V € Vec M. Then
there exists exg > 0 such that for all 9 € K the solution x(t,z¢) to Cauchy
problem (1.6) is defined for allt € (—ek,eK)-

Proof. By Theorem 1.2, domain of the solution z(¢,z¢) can be chosen contin-
uously depending on zy. The diameter of this domain has a positive infimum
2e i for xg in the compact set K. O

Corollary 1.1. If a smooth manifold M is compact, then any vector field V €
Vec M is complete.
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Corollary 1.2. Suppose that a vector field V € Vec M has a compact support:

supp V def {z e M |V(x)#0} is compact.
Then V' is complete.

Proof. Indeed, by Proposition 1.2, there exists € > 0 such that all trajectories
of V' starting in supp V' are defined for ¢ € (—¢,¢). But V|ansuppv = 0, and
all trajectories of V' starting outside of supp V' are constant, thus defined for all
t € R. By Proposition 1.1, the vector field V' is complete. O

Remark. If we are interested in the behavior of (trajectories of) a vector field
V € Vec M in a compact subset K C M, we can suppose that V is complete.
Indeed, take an open neighborhood Ok of K with the compact closure Ox. We
can find a function a € C*°(M) such that

a(w) = 1, reK,
10, zeM\Ok.

Then the vector field a(z)V (z) € Vec M is complete since it has a compact
support. On the other hand, in K the vector fields a(z)V (z) and V(z) coincide,
thus have the same trajectories.

1.4 Control systems

For dynamical systems, the future z(t,zo), t > 0, is completely determined by
the present state £ = (0, z9). The law of transformation zo — z(t,zo) is the
flow P?, i.e., dynamics of the system

& =V(z), x €M, (1.7

it is determined by one vector field V().
In order to be able to affect dynamics, to control it, we consider a family of
dynamical systems

& = Vy(z), reM, uel, (1.8)

with a family of vector fields V,, parametrized by a parameter u € U. A system
of the form (1.8) is called a control system. The variable u is a control parameter,
and the set U is the space of control parameters. A priori we do not impose any
restrictions on U, it is an arbitrary set, although, typically U will be a subset
of a smooth manifold. The variable x is the state, and the manifold M is the
state space of control system (1.8).

In control theory we can change dynamics of control system (1.8) at any
moment of time by changing values of w € U. For any u € U, the corresponding
vector field V,, € Vec M generates the flow, which is denoted by P.

A typical problem of control theory is to find the set of points that can be
reached from an initial point o € M by choosing various values of u € U and
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switching from one value to another time to time (for dynamical system (1.7),
this reachable set is just the semitrajectory z(t,zo) = Pt(xg), t > 0). Suppose
that we start from a point 29 € M and use the following control strategy for
control system (1.8): first we choose some control parameter u; € U, then we
switch to another control parameter us € U. Which points in M can be reached
with such control strategy? With the control parameter u;, we can reach points
of the form

{ P} (o) | t1 >0},

and the whole set of reachable points has the form

{Pi2oPyi(wo) [ t1,t2 >0},
a piece of a 2-dimensional surface.

A natural next question is: what points can be reached from zy by any kind
of control strategies?

Before studying this question, consider a particular control system that gives
a simplified model of a car.

Example 1.2. We suppose that the state of a car is determined by the position
of its center of mass z = (z!,2%) € R? and orientation angle § € S! relative to
the positive direction of the axis z'. Thus the state space of our system is a

nontrivial 3-dimensional manifold, a solid torus
M={qg=(z,0)|z€R, e S} =R xS"

Suppose that two kinds of motion are possible: we can drive the car forward
and backwards with some fixed linear velocity u; € R, and we can turn the car
around its center of mass with some fixed angular velocity us € R. We can
combine these two kinds of motion in an admissible way.

The dynamical system that describes the linear motion with a velocity u; €
R has the form

' = uq cosé,
%% = u; siné, (1.9)

6 =0.

Rotation with an angular velocity us € R is described as

il =0,
i =0, (1.10)
0= Ua.

The control parameter u = (u1,us) can take any values in the given subset
U C R2. If we write ODEs (1.9) and (1.10) in the vector form:

¢ =u1Vi(q), q = u2Va(q),
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where
cos b 0
Vi(q) = sinf |, Va(q) = 01, (1.11)
0 1

then our model reads
¢ =Vu(q) =wVi(q) +u2Valq), qgeM, uel.
This model can be rewritten in the complex form:

z=a' +iz? € C,
é:ulew,

92“2;

(u1,us2) €U, (2,0) € C x S*.

Remark. Control system (1.8) is often written in another form:
z = f(x,u), zeM, uel.

We prefer the notation V,(z), which stresses that for a fixed u € U, V, is a
single object — a vector field on M.

Now we return to the study of the points reachable by trajectories of a
control system from an initial point.

Definition 1.13. The attainable set (or reachable set) of control system (1.8)
with piecewise-constant controls from a point zg € M for a time t > 0 is defined
as follows:

k
Aso(t) ={Pj¥o...0P]!(z0) | 7: 20, Y 7=t u; €U, k€ N}

i=1

The attainable set from z( for arbitrary nonnegative time of motion has the
form

Awo = UtZO'Awo (t)

For simplicity, consider first the smallest nontrivial space of control param-
eters consisting of two indices:

U=1{1,2}

(even this simple case shows essential features of the reachability problem).
Then the attainable set for arbitrary nonnegative times has the form:

Apy = {PJ* o P™* " 0...0 PP 0 P/ (o) | 7 > 0, k € N}.

This expression suggests that the attainable set A,, depends heavily upon com-
mutator properties of the flows P and Pj.
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Consider first the trivial commutative case, i.e., suppose that the flows com-

mute:
PltOP;:stOPf Vi, s € R

Then the attainable set can be evaluated precisely: since

Pl o P[*"'o .. o P?o Pt = Pttt ple-ttdn

)

then
Az ={ P50 P{(x0) |, s >0}

So in the commutative case the attainable set by two control parameters is a
piece of a smooth two-dimensional surface, possibly with singularities. It is easy
to see that if the number of control parameters is k¥ > 2 and the corresponding
flows Pltl, cey P,?“ commute, then A, is, in general, a piece of a k-dimensional
manifold, and, in particular, dim A,, < k.

But this commutative case is exceptional and occurs almost never in real
control systems.

Example 1.3. In the model of a car considered above the control dynamics is
defined by two vector fields (1.11) on the 3-dimensional manifold M = R2 x Sj.
It is obvious that from any initial configuration qo = (zo,00) € M we can
drive the car to any terminal configuration ¢; = (z1,61) € M by alternating
linear motions and rotations (both with fixed velocities). So any point in the
3-dimensional manifold M can be reached by means of 2 vector fields Vi, V5.
This is due to noncommutativity of these fields (i.e., of their flows).

Given an arbitrary pair of vector fields V;, V5 € Vec M, how can one recog-
nize their commuting properties without finding the flows Pf, P5 explicitly, i.e.,
without integration of the ODEs & = Vi (z), & = Va(z) ?

If the flows P{, P§ commute, then the curve

Y(s,t) = Pl "o Py o Pi(z) = Pi(x), t, s€ER (1.12)

does not depend on ¢. It is natural to suggest that a lower-order term in the
Taylor expansion of (1.12) at ¢ = s = 0 is responsible for commuting properties
of flows of the vector fields Vi, V5 at the point z. The first-order derivatives

0y
ot

oy

=0, 0s

s=t=0

= V2 (:L‘)

s=t=0

are obviously useless, as well as the pure second-order derivatives

o o
’ 0s2 o Os

0%y

o Va(P (@),

s=0

s=t=0 s=t=

The required derivative should be the mixed second-order one
0%y
Otds

s=t=0
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It turns out that this derivative is a tangent vector to M. It is called the Lie
bracket of the vector fields V1, V3 and is denoted by [V, V2](z):

der 0"
[‘G:VZ](x) - OtOs t=5=0

P "o PjoPl(z) € T, M. (1.13)
The vector field [V1, V2] € Vec M determines commuting properties of V5 and
Vo (it is often called commutator of vector fields V;, V5).

An effective way to compute Lie bracket of vector fields in local coordinates
is given in the following statement.

Proposition 1.3. Let M = R" and V;,V5 € Vec M. Then

dVs
= — - — . 1.14
Vi, al(e) = T2Vi(@) - SV (e) (114
The proof is left to the reader as an exercise.
Another way to define Lie bracket of vector fields Vi, V5 is to consider the
path
v(t) :P27t°P17t°P2t°P1t(5U)-

Exercise 1.3. Show that
Y(t) =z + [V, Va](2)t* + o(t?), t—0,

i.e., [Vi,V5](z) is the velocity curve of the C' curve vy(v/). In particular, this
proves that [Vi, V5](z) is indeed a tangent vector to M:

V1, Va(x) € T M.

Later we will develop an efficient algebraic way to do similar calculations without
any coordinates.

In the commutative case, the set of reachable points does not depend on the
number of switches of a control strategy used. In the general noncommutative
case, on the contrary, the greater number of switches, the more points can be
reached.

Suppose that we can move along vector fields +V; and £V5. Then, infinites-
imally, we can move in the new direction £[V, V5], which is in general linearly
independent of the initial ones £V;, V5. Using the same switching control
strategy with the vector fields +V; and £[V1, V3], we add one more infinitesimal
direction of motion £[Vi,[V1,V2]]. Analogously, we can obtain +[Vs, [Vi, V2]].
Iterating this procedure with the new vector fields obtained at previous steps,
we can have a Lie bracket of arbitrarily high order as an infinitesimal direction
of motion with a sufficiently large number of switches.

Example 1.4. Compute the Lie bracket of the vector fields

cosf 0 T
V= sin6 |, =0, q¢={w |cr

L1 ,zz) X S;
0 1 0
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appearing in the model of a car. Recall that the field V; generates the forward
motion, and V5 the counterclockwise rotation of the car. By (1.14), we have

0 0 —siné 0
d Vs d Vi
Vi, Vel(g) = d—2V1(q)—d—1V2(q):— 0 0 cosf 0
1 q 00 0 1
sin @
= —cosf
0

The vector field [Vi, V2] generates the motion of the car in the direction perpen-
dicular to orientation of the car. This is a typical maneuver in parking a car:
the sequence of 4 motions with the same small amplitude of the form

motion forward — rotation counterclockwise — motion backward —

— rotation clockwise

results in motion to the right (in the main term).
We show this explicitly by computing the Lie bracket [Vi, V3] as in Exam-
ple 1.3:

x x1 + t(cosf — cos(d + t))
PytoPtoPloPl | 2o | = | w2+t(sind —sin(d +1¢))

0 0

T sin 6

= z |+ —cosh | +o(t?), t—0,
0 0
and we have once more
sin 6
[V1,V2](¢) = | —cosé |. (1.15)
0

Of course, we can also compute this Lie bracket by definition as in (1.13):

x x1 + t(cosf — cos(f + s))
Pi'oPjoPl| x | = | x2+t(sinf —sin(d + s))
0 0+s
T 0 sin 6
= 2 | +s| O | +ts| —cosf | +0O( —|—52)3/2, t,s — 0,
0 1 0

and the Lie bracket (1.15) follows.



Chapter 2

Elements of Chronological
Calculus

We introduce an operator calculus that will allow us to work with nonlinear
systems and flows as with linear ones, at least at the formal level. The idea
is to replace a nonlinear object, a smooth manifold M, by a linear, although
infinite-dimensional one: the commutative algebra of smooth functions on M
(for details, see [1], [2]). For basic definitions and facts of functional analysis
used in this chapter, one can consult e.g. [14].

2.1 Points, diffeomorphisms, and vector fields

In this section we identify points, diffeomorphisms, and vector fields on the
manifold M with functionals and operators on the algebra C*°(M).

Addition, multiplication, and product with constants are defined in the al-
gebra C*°(M), as usual, pointwise: if a,b € C*°(M), g € M, a € R, then

(@ +0)(q) = alg) + b(q),
(a-0)(q) = alq) - bg),
(a-a)(q) = a-a(q).
Any point ¢ € M defines a linear functional
qg: C®(M)—>R, ga = a(q), a € C*(M).
The functionals g are homomorphisms of the algebras C*>°(M) and R:

g(a +b) = qa + @b, a, be C*(M),

qa-b) = (@) @), a beC=(M),

gla-a) =a-qa, a€R, a€C®(M).

So to any point ¢ € M, there corresponds a nontrivial homomorphism of alge-
bras g : C*(M) — R. It turns out that there exists an inverse correspondence.

15
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Proposition 2.1. Let ¢ : C*(M) — R be a nontrivial homomorphism of
algebras. Then there exists a point ¢ € M such that p = q.
We prove this proposition in Appendix A.

Remark. Not only the manifold M can be reconstructed as a set from the algebra
C>(M). One can recover topology on M from the weak topology in the space
of functionals on C*°(M):

lim ¢, =¢q ifandonlyif lim g,a=ga Vae C>®(M).
n—o0 n—o0

Moreover, the smooth structure on M is also recovered from C°° (M), actually,
"by definition”: a real function on the set {¢ | ¢ € M} is smooth if and only if
it has a form ¢+ ga for some a € C*°(M).

Any diffeomorphism P : M — M defines an automorphism of the algebra
C>®(M):
P : C®(M) = C®(M), P e Aut(C™(M)),
(Pa)(@) = a(P(q), g€ M, a€C™(M),

ie., P acts as a change of variables in a function a. Conversely, any automor-
phism of C*°(M) has such a form.

Proposition 2.2. Any automnorphism A : C®(M) — C*(M) has a form of
P for some P € Diff M.

Proof. Let A € Aut(C*°(M)). Take any point ¢ € M. Then the composition
GgoA :C®(M)—-R

is a nonzero homomorphism of algebras, thus it has the form ¢1, ¢ € M. We
denote ¢; = P(g) and obtain

QoA:]g@?):qu]/5 Vq e M,

ie., N
A=P,

and P is the required diffeomorphism. O

Now we characterize tangent vectors to M as functionals on C*°(M). Tan-
gent vectors to M are velocity vectors to curves in M, and points of M are
identified with linear functionals on C°°(M); thus we should obtain linear func-
tionals on C*° (M), but not homomorphisms into R. To understand, which func-
tionals on C*°(M) correspond to tangent vectors to M, take a smooth curve

—_

q(t) of points in M. Then the corresponding curve of functionals g(t) = ¢(t) on
C*° (M) satisfies the multiplicative rule

q(t)(a-b) =q(t)a-qt)b,  a, be C=(M).
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We differentiate this equality at ¢ = 0 and obtain that the velocity vector to the
curve of functionals

def 4G
é._dt 9

t=0

£:C®(M) >R,

satisfies the Leibniz rule:

§(ab) = £(a)b(q(0)) + a(q(0))€(b)-

Consequently, to each tangent vector v € T, M we should put into corre-
spondence a linear functional

E:0®(M) =R
such that

§(ab) = (€a)b(q) + alq)(£D),  a, be CT(M). (2.1)

But there is a linear functional £ = v naturally related to any tangent vector
v € Ty M, the directional derivative along v:

d

Po= g5l ala®) @ =g 0=,

and such functional satisfies Leibniz rule (2.1).
Now we show that this rule characterizes exactly directional derivatives.

Proposition 2.3. Let £ : C®(M) — R be a linear functional that satisfies
Leibniz rule (2.1) for some point ¢ € M. Then & = U for some tangent vector
veTyM.

Proof. Notice first of all that any functional £ that meets Leibniz rule (2.1) is
local, i.e., it depends only on values of functions in an arbitrarily small neigh-
borhood O, of the point ¢:

a|Oq:a = £&a = a, a, a € C*(M).

So the statement of the proposition is local, and we prove it in coordinates.
Let (z1,-..,2y) be local coordinates on M centered at the point ¢g. We have
to prove that there exist ay,...,a,; € R such that

First of all,
§(1) =¢(1-1) = (£1) -1+ 1- (1) = 2¢(1),
thus £(1) = 0. By linearity, £(const) = 0.
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In order to find the action of £ on an arbitrary smooth function, we expand
it by Hadamard Lemma:

T

n 1 n
a(z) = a(0) + Z/ ga (tx)z; dt = a(0) + Z bi(x)x;,
i=1 70 i i=1
where
L' da

bi(z) = s (tz)dt

are smooth functions. Now

=3 l0ur) = 3 (€0)5i0) + B(O)(En) = Y i (0),

i=1 i=1

where we denote a; = £x; and make use of the equality b;(0) =

So tangent vectors v € Ty M can be identified with directional derivatives
v : C®(M) — R, ie., linear functionals that meet Leibniz rule (2.1).

Now we characterize vector fields on M. A smooth vector field on M is a
family of tangent vectors vy € T, M, g € M, such that for any a € C*°(M) the
mapping q — vqa, ¢ € M, is a smooth function on M.

To a smooth vector field V' € Vec M there corresponds a linear operator

Vi C®(M) - C®(M)
that satisfies the Leibniz rule
V(ab) = (Va)b+a(Vh),  a, be C®(M),

the directional derivative (Lie derivative) along V.

A linear operator on an algebra meeting the Leibniz rule is called a derivation
of the algebra, so the Lie derivative V is a derivation of the algebra C'>°(M). We
show that the correspondence between smooth vector fields on M and deriva-
tions of the algebra C'°°(M) is invertible.

Proposition 2.4. Any derivation of the algebra C*° (M) is the directional de-
rivative along some smooth vector field on M.

Proof. Let D : C®(M) — C*°(M) be a derivation. Take any point ¢ € M.
We show that the linear functional

d, & GoD : C®(M) >R
is a directional derivative at the point g, i.e., satisfies Leibniz rule (2.1):

dg(ab) = q(D(ab)) = q((Da)b + a(Db)) = q(Da)b(q) + a(q)q(Db) =
(dga)b(q) + alq)(dyd), a, be C®(M).
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So we can identify points ¢ € M, diffeomorphisms P € Diff M, and vector
fields V' € Vec M with nontrivial homomorphisms ¢ : C*(M) — R, auto-
morphisms P : C*®(M) — C*®(M), and derivations Vo C*®(M) = C>*(M)
respectively. R

For example, we can write a point P(gq) in the operator notation as g o P.
Moreover, in the sequel we omit hats and write ¢ o P. This does not cause
ambiguity: if ¢ is to the right of P, then ¢ is a point, P a diffeomorphism, and
P(q) is the value of the diffeomorphism P at the point g. And if ¢ is to the left of
P, then ¢ is a homomorphism, P an automorphism, and go P a homomorphism
of C*°(M). Similarly, V(q) € T,M is the value of the vector field V" at the point
g,and goV : C*°(M) — R is the directional derivative along the vector V(q).

2.2 Seminorms and C*(M)-topology

We introduce seminorms and topology on the space C*(M).

By Whitney’s Theorem, a smooth manifold M can be properly embedded
into a Euclidean space RN for sufficiently large N. Denote by h;, i =1,..., N,
the smooth vector field on M that is the orthogonal projection from RY to M
of the constant basis vector field 8in € Vec(RY). So we have N vector fields
hi,...,hn € Vec M that span the tangent space Ty M at each point ¢ € M.

We define the family of seminorms || - ||s,x on the space C*°(M) in the

following way:

llal|s,x = sup {|hiy o---ohsa(q)| | g€ K, 1 <iy,...,i5i <N, 1<1<s},
aeC®(M), s>0, KeM,

This family of seminorms defines a topology on C*®(M). A local base of this
topology is given by the subsets

1
{occ=an llalr, <2}, nen

where K,,, n € N, is a chained system of compacta that cover M: K, C K1,
U, K, =M.
This topology on C>(M) does not depend on embedding of M into RV .
It is called the topology of uniform convergence of all derivatives on compacta,
or just C*°(M)-topology. This topology turns C*°(M) into a Fréchet space
(a complete, metrizable, locally convex topological vector space).
A sequence of functions a; € C*°(M) converges to a € C*°(M) as k — oo if
and only if
lim |jay —alls;k =0 Vs>0, K @M.
k—o00

For vector fields V' € Vec M, we define the seminorms

VIls,xe = sup{[[Valls.x [ lalls41,x =1}, >0, K&M.
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One can prove estimates of the action of a vector field V' € Vec M and a
diffeomorphism P € Diff M on a function a € C*°(M):

IValls,x < Cq vllallstr,x,
|Palls,x < C2pllalls,p(x),  $>0, K&M.

Thus vector fields and diffeomorphisms are linear continuous operators on the
topological vector space C*(M).

2.3 Families of functionals and operators

In the sequel we will often consider one-parameter families of points, diffeo-
morphisms, and vector fields that satisfy various regularity properties (e.g. dif-
ferentiability or absolute continuity) with respect to the parameter. Since we
treat points as functionals, and diffeomorphisms and vector fields as operators
on C*° (M), we can introduce regularity properties for them in the weak sense,
via the corresponding properties for one-parameter families of functions

t— ay, ar € C°(M), teR

So we start from definitions for families of functions.

Continuity and differentiability of a family of functions a; w.r.t. parameter
t are defined in a standard way since C*° (M) is a topological vector space. A
family a; is called measurable w.r.t. ¢ if the real function ¢ — a;(q) is measurable
for any ¢ € M. A measurable family a; is called locally integrable if

t1
/ l|atlls,x dt < oo Vs>0, K& M, ty t1 €R
to
A family a; is called absolutely continuous w.r.t. t if
t
ay = G, +/ b-,-d’l'
to

for some locally integrable family of functions b;. A family a; is called Lipshizian
w.r.t. tif

llat — ar||s,x < Cs k|t — 7| Vs>0, KeM, t TeR,
and locally bounded w.r.t. t if
||at||S7K§CS7K7[, Vs>0, KeM, TeR, tel,

where C; g and Cs 1 are some constants depending on s, K, and I.
Now we can define regularity properties of families of functionals and oper-
ators on C*°(M). A family of linear functionals or linear operators on C*° (M)

t— A, t € R,
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has some property (i.e., is continuous, differentiable, measurable, locally inte-
grable, absolutely continuous, Lipschizian, locally bounded w.r.t. t) if the family

t»—)Ata, tE]R,

has the same property for any a € C*°(M).
A locally integrable w.r.t. ¢ family of vector fields

t— Vi, Vi€ VecM, teR,

is called a nonautonomous vector field, or simply a field, on M. An absolutely
continuous w.r.t. ¢ family of diffeomorphisms

t— Pt P! e Dif M, teR,

is called a flow on M. So, for a nonautonomous vector field V;, the family of
functions ¢ — V;a is locally integrable for any a € C*°(M). Similarly, for a flow
Pt the family of functions (Pfa)(q) = a(Pt(q)) is absolutely continuous w.r.t. ¢
for any a € C*°(M).

Integrals of measurable locally integrable families, and derivatives of differ-
entiable families are also defined in the weak sense:

tl tl
Ardt :a— (Ata) dt, a € C®(M),

t() tO
—A ‘ai—)i(A a) a€C™®(M)
et de '

One can show that if A; and B; are continuous families, which are differen-
tiable at tp, then the family A; o By is continuous, moreover, differentiable at
A OB = _—
(Ar o By) (dt

to, and satisfies the Leibniz rule:
d
Ay ) o By + Aggo | | Bi,

t dtf,

0 0
see the proof in Appendix A.

If families A; and B; are absolutely continuous, then the composition A; o By

is absolutely continuous as well. For an absolute continuous family of functions

at, the family A;a; is also absolutely continuous, and the Leibniz rule holds for
it as well.

4
dt

d

to

2.4 Chronological exponential

In this section we consider a nonautonomous ODE of the form

where V; is a locally bounded nonautonomous vector field on M, and study the
flow determined by this field.
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2.4.1 ODEs with discountinous right-hand side

To obtain local solutions to Cauchy problem (2.2) on a manifold M, we reduce
it to a Cauchy problem in a Euclidean space. For details about nonautonomous
differential equations in R™ with right-hand side discontinuous in t, see e.g. [7].

Choose local coordinates * = (z!,...,2") in a neighborhood O,, of the
point qo:

®: 0, CM—= 0O, CR?, d gz,
®(q0) = wo.

In these coordinates, the field V; reads

~ n o
(®,V1) (z) = Vi(z) = ;vi(t,m)ami, r€0,, tcR, (2.3)

and problem (2.2) takes the form
i=Vi(x), x(0)= o, x € Oy, CR™. (2.4)

Since the nonautonomous vector field V; € Vec M is locally bounded, the
components v;(t,z), i = 1,... ,n, of its coordinate representation (2.3) are:

(1) measurable and locally integrable w.r.t. ¢ for any fixed = € O,,,
(2) smooth w.r.t. z for any fixed ¢t € R,

(3) differentiable in x with locally bounded partial derivatives:

(t,z)

o v; .
‘ Y < Crk, telER, €K E0y,, i=1,...,n.

or

By the classical Carathéodory Theorem, Cauchy problem (2.4) has a unique
solution, i.e., a vector-function z (¢, zo), Lipshizian w.r.t. ¢ and smooth w.r.t. zo,
and such that:

(1) ODE (2.4) is satisfied for almost all ¢,
(2) initial condition holds: (0, zo) = =o.

Then the pull-back of this solution from R™ to M

(I(ta qO) = (}_l(m(tv mO)))

is a solution to problem (2.2) in M. The mapping ¢(¢, go) iz Lipshizian w.r.t. ¢
and smooth w.r.t. qg, it satisfies almost everywhere the ODE and the initial
condition in (2.2).

For any gy € M, the solution ¢(t,qo) to Cauchy problem (2.2) can be con-
tinued to a maximal interval ¢ € J,, C R containing the origin and depending
on qo-
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We will assume that the solutions ¢(¢,qo) are defined for all g € M and all
teR, ie., Jy, =R for any go € M. Then the nonautonomous field V; is called
complete. This holds, e.g., when all the fields V;, ¢t € R, vanish outside of a
common compactum in M (in this case we say that the nonautonomous vector
field V; has a compact support).

2.4.2 Definition of the right chronological exponential

Equation (2.2) rewritten as a linear equation for Lipshizian w.r.t. ¢ families of
functionals on C*°(M):

q(t) =q(t)o Vi,  q(0) = qo, (2.5)
is satisfied for the family of functionals
q(t,q) : C*°(M) = R, g €M, teR

We prove later that this Cauchy problem has no other solutions (see Proposi-
tion 2.5). Thus the flow defined as

Pt qo — q(t, q0) (2:6)

is a unique solution of the operator Cauchy problem
Pt=PtoV,,  P’°=1d, (2.7)
(where Id is the identity operator) in the class of Lipshizian flows on M. The

flow P? determined in (2.6) is called the right chronological exponential of the
field V; and is denoted as

t
pt :e;f)/ V. dr.
0

Now we develop an asymptotic series for the chronological exponential, which
justifies such a notation.

2.4.3 Formal series expansion

We rewrite differential equation in (2.5) as an integral one:
¢
dt) =+ [ ooV (28)
0

then substitute this expression for ¢(t) into the right-hand side

t T1
=qo+ / <qo + / q(m2) 0 Vo, dTg) oV, dn
0 0

¢
=qyo (Id+/ Vi dt) +// q(m2) o Vo o Vi dro dry,
0 0<m2<1 <t
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repeat this procedure iteratively, and obtain the decomposition:

t
q(t) = qoo<Id+/ VTdT-l-// Vi o Vo drodr + ...+
0 0<m2 <1 <t
// V-,—nO"'OV-,—ldTn---dTl>+
0<7, <...<11 <t

// Q(Tn+1)°V‘rn+1O"'OV‘rldTnJrl---dTl-
0<7n41<.. <711 <t

Purely formally passing to the limit n — oo, we obtain a formal series for the
solution ¢(t) to problem (2.5):

Id + / / Tno---oVTldTn...dT y
( Z 0<m, <...<71 <t 1)

thus for the solution P! to problem (2.7):

Id+ / / V. ooV, dry ... dn. 2.9
Z 0< 70 <. <71 <t e ' (29)

We obtained the previous series expansion under the condition ¢ > 0, al-
though the chronological exponential is defined for all values of ¢. But the flow
Pt is a solution to the Cauchy problem

dpP—t _ _
dat =P "o (=), P t|t:0:Id7
thus .
Pl=éxp | (-V_,)dr
0
So

t —t
e;f)/ VTdT:eT(f)/ (=V_,)dr, t<0,
0 0

whence one can easily obtain the series expansion for the flow e?f) fot V. dr,
t<O0:

Id—l—Z/---/ (=V;)o---o(=Vy)dr, ...dr.
n—=1 < <...<711 <~

This series is similar to (2.9), so in the sequel we restrict ourselves by the study
of the case t > 0.

2.4.4 Estimates and convergence of the series

Unfortunately, these series never converge on C'*°(M) in the weak sense (if
Vi £ 0): there always exists a smooth function on M, on which they diverge.
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Although, one can show that (2.9) is an asymptotic series for the chronolog-

ical exponential P! =exp f(f V, dr. There holds the following bound of the
remainder term: denote the m-th partial sum of series (2.9) as

_Id_|_ / / Tno---oV.,- dr, ...dT1,
Z 0<7, <...<71 <t ' "

then for any a € C*°(M),s>0, K € M

t
H(Qp/ VTdT—Sm(t)>a
0 s, K

¢ m
S CleCZ fgt IlV‘rlls,K/ dr (/ ||VT||s+m—1,K' d7-> ||af||s+m,K’
0

(2.10)

=0(t™), t— 0,

where K' € M is some neighborhood of compactum K. Moreover, it follows
from estimate (2.10) that

t
H(e?p/ 6VTdT—an(t)>a
0

where S, (t) is the m-th partial sum of series (2.9) for the field eV;.
Thus we have an asymptotic series expansion:

exp/ VdT~1d+Z/ / V,, 0---0 Vi dry, ... dr.
0<r, <...<11 <t

(2.11)

s, K

In the sequel we will use terms of the zeroth, first, and second orders of the
series obtained:

t t
e?f)/VTdeId—%/ VTd7-+// Vy, o Vy drydry + - - -
0 0 0<m2 <1<t

We prove that the asymptotic series converges to the chronological exponen-
tial on linear functions in the case when M = R™ and V; is a linear vector field,
i.e., the space of linear functions R** C C°°(R™) is invariant for the family of
operators V;. Fix any norm || - || on R™. For any ¢ the linear operator on a
finite-dimensional vector space Vi|g.. is bounded. The norm of the operator
Vi|gn« is defined as usual:

Vel = sup {[[Via[| [ @ € R™, |la|| <1}.

We apply operator series (2.11) to any a € R™ and bound terms of the series
obtained:

Id + / / Vi, ooV, dr,...dn |a. 2.12
( Z 0<T, <. < <t ' 1) ( )
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We have
H// Vi o---oVidr, ...dn a
0<7, <...<m1 <t
<[] WVeull - IValldry ... dry - al
0<r, <...<11 <t
by symmetry w.r.t. permutations of indices ¢ : {1,...,n} = {1,... ,n}
=[] WVeill -+ - WVnlldr ... dry - al
0<To(n) <o+ S70(1) St
passing to the integral over cube
1 t t
= L [V Wl d
n! Jo 0

I "
= ([ ) gl

So series (2.12) is majorized by the exponential series, thus the operator se-
ries (2.11) converges on R™*.

Series (2.12) can be differentiated termwise, thus it satisfies the same ODE
as the function Pla:

a; = Viayg, ap = a.

Consequently,

Pla — Id+2/.../ V. owoVedr ... dn | a
n=1 0<, <...<1 <t

So in the linear case the asymptotic series converges, moreover, there holds the
bound

|Ptal| < els IV-147|1q)|, 0 € R™.

Notice that this bound and convergence hold not only on R™*, but also on any
invariant for V; subspace of C*°(R"™) where V; is bounded with respect to some
norm (and V; is not necessarily linear). Moreover, the bound and convergence
hold not only for a locally bounded, but also for integrable on [0, ] vector fields:

t
/ V2|l dr < oo,
0

If M and V; are real analytic, then series (2.11) converges for sufficiently
small ¢ (we leave this without proof).
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2.4.5 Left chronological exponential

Consider the inverse operator Q* = (Plt)_1 to the right chronological exponential
P! =exp f(f V,dr. We find an ODE for the flow Q! by differentiation of the
identity

PloQ! =1d.

Leibniz rule yields )
PloQ' +Plol =0,
thus, in view of ODE (2.7) for the flow Pt
PtoV,oQt+Plo@! =0.
We multiply this equality by Q! from the left and obtain
0oQ'+ Q" =0.
That is, the flow Q! is a solution of the Cauchy problem

d
SQ' = Ve,  Q"=1d (2.13)

which is dual to Cauchy problem (2.7) for Pt. The flow Q! is called the left
chronological exponential and is denoted as

t
Q' =ép [ (=V;)dr.
0

We find an asymptotic expansion for the left chronological exponential in the
same way as for the right one, by successive substitutions into the right-hand
side:

t
Q' :Id+/ (~V;) o Q" dr
0

t
_Id+/( V)dT+// (_VTl)o(_VTz)OQT2dTZdT1:'--
0<m2 <1 <t
—1d+ / / (—Vi) 0.0 (=V; )dr ... dr
Z 0<r, <--- <11 <t ) ( ) '

+// (=Vi)o -0 (=Vy. )0 Q™ dr ... dm
0< <oy <t

For the left chronological exponential holds an estimate of the remainder term
as (2.10) for the right one, and the series obtained is asymptotic:

éxp [ (=Vy)dr
0

~1d+ / / (=Vi) oo (=V; )dry ... dn.
Z 0<7,<...<11 <t 1) ( ) !
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Remarks. (1) Notice that the reverse arrow in the left chronological exponential
é?p corresponds to the reverse order of the operators (—V;,) o---o (=V, ),
Tn <...<T.

(2) The right and left chronological exponentials satisfy the corresponding
differential equations:

d t t
—e;f)/VTdT:e;f)/VTdTOVYta
0 0

dt
d — (! — (!
— exp (=V.)dr ==V, o exp (=V;)dr.

The directions of arrows correlate with the direction of appearance of operators
Vi, =V in the right-hand side of these ODEs.

(3) If the initial value is prescribed at a moment of time ¢y # 0, then the
lower limit of integrals in the chronological exponentials is ¢y.

(4) There holds the following obvious rule for composition of flows:

_ t1 N to _ to
exp / V,dro exp / V,dr = exp / V. dr.

to t1 to
Exercise 2.1. Prove that

t1 to -1 to
&f)/ V, dr = (e?fa/ V. dr) & [ (v (2.14)
t

to 1 t1

2.4.6 Uniqueness for functional and operator ODEs

We saw that equation (2.5) for Lipshizian families of functionals has a solution

q(t) = qoo e?fa fot V- dr. We can prove now that this equation has no other
solutions.

Proposition 2.5. Let V; be a complete locally bounded nonautonomous vector
field on M. Then Cauchy problem (2.5) has a unique solution in the class of
Lipshizian families of functionals on C*°(M).

Proof. Let a Lipshizian family of functionals ¢; be a solution to problem (2.5).
Then

d _ d
E(Qto(Pt) 1):E(QtOQt)ZQtOVtOQt—(ItOVZOQt:O-

thus g; o @t = const. But Qo = Id, consequently, q; o Q¢ = qo, hence

¢
QtZQOOPtZ(IOOGJ;lg/ Vrdr
0

is a unique solution of Cauchy problem (2.5). O

Similarly, the both operator equations P! = PtoV; and Q' = —V; o Q* have
no other solutions in addition to the chronological exponentials.
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2.4.7 Autonomous vector fields

In the special case of autonomous vector fields,
Vi=V € Vec M,

the flow generated by a complete field is called the ezponential and is denoted
as etV'. The asymptotic series for the exponential takes the form

v ", t2
tV V4.
e NE n!V _Id+tV+2Vo + ,

n=0

i.e, it is the standard exponential series.
The exponential of an autonomous vector field satisfies the ODEs

d

tV _ tV _ tv tV _
Ee =e"" oV =Voe", e |t:0—Id.

We apply the asymptotic series for exponential to find the Lie bracket of
autonomous vector fields VW € Vec M. We compute the first nonconstant
term in the asymptotic expansion at ¢ = 0 of the curve:

¢t) = qoeV oW otV ootV
t2 2
= qo(Id+tv+;v2+--->O<Id+tW—f—5W2+...>

t2 t2
° (Id—tV+5V2+---> o (Id—tW+5W2+--->

2
qo(Id+t(V+W)+%(V2+2VoW+W2)+--->

t2
° (Id—t(V+W)+5(V2+2V0W+W2)+--->
= qo(Id+t*(VoW —WoV)+-..).
So the Lie bracket of the vector fields as operators (directional derivatives) in
C>®(M) is
[V,W]=VoW -WoV.
This proves the formula in local coordinates: if

"9
V:Zaia—xi, 144

i=1 =1

[
(=
&
(o5l
S
&
m
Q
8

then

[V,W]:Z<aj7 b ) - = V——W

ij=1
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Similarly,
qoetvoeswoeftv = gqo(Id+tV+---)o(Id+sW+---)o(Id =tV +---)
go (Id+sW +ts[V, W]+ ---),
and
9 tV o sW | —tV
qO[V,W]—mS:tZOqOe oe® oe .

2.5 Action of diffeomorphisms on vector fields

We have already found counterparts to points, diffeomorphisms, and vector
fields among functionals and operators on C*°(M). Now we consider actions of
diffeomorphisms on vector fields.

Take a tangent vector v € T, M and a diffeomorphism P € Diff M. The
tangent vector P.v € Tp, M is the velocity vector of the image of a curve
starting from ¢ with the velocity vector v. We claim that

Pov=wvoP, vel,M, P eDiff M, (2.15)

as functionals on C*°(M). Take a curve

d
t=0
then
Poa = gl arao)= (g aw)ora
* dt|,_, dt|,_,
= wo Pa, a € C®(M).

Now we find expression for PV, V € Vec M, as a derivation of C*°(M). We
have

qoPoP,V = P(qoP.V=(PV)(P(q)=P.(V(g) =V(g)o P
= qoVoP q€M,

thus
PoP,V =VoP,

ie.,
P,V =P 'oVoP, P € Diff M, V € Vec M.

So diffeomorphisms act on vector fields as similarities. In particular, diffeomor-
phisms preserve compositions:

P,(VoW)=P 'o(VoW)oP = (P oVoP)o(P'oWoP)=PVoPW,
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and Lie brackets of vector fields:
P V,W]=P,(VoW -WoV)=PV o P W —-PWoPV =[P.V,PW].
If B: C®(M)— C*®(M) is an automorphism, then the standard algebraic
notation for the corresponding similarity is Ad B:

def

(AdB)V & BoVoB™h

That is,
P, =Ad P!, P ¢ Diff M.

Now we find an infinitesimal version of the operator Ad. Let P! be a flow
on M,

Po1d, | Ptoveveel
dt|,_
Then y
a2 ey =
dt),_,
80
d t d t ty—1
— (AdPHYW = — (PPoWo(P) )=VoW-WoV
dt|,_o dt|,_q
= [V, V], W € Vec M.
Denote p p
adV:ad(— Pt> et 2| AdP,
dtf,_g dt],_g
then

(ad V)W = [V, W], W € Vec M.
Differentiation of the equality

AdP![X,Y] = [AdP' X,Ad P'Y] X,Y € Vec M,
at t = 0 gives Jacobi identity for Lie bracket of vector fields:
(adV)[X,Y] =[(ad V)X, Y] + [X, (ad V)Y,
which may also be written as
V,[X,Y]] =V, X], Y]+ [X,[V,Y]], V,X,Y € Vec M,
or, in a symmetric way
X, [V, Z|+ Y, [Z, X]|+[Z,[X,Y]] =0, X,Y,Z € Vec M. (2.16)

The set Vec M is a vector space with an additional operation — Lie bracket,
which has the properties:
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(1) bilinearity:

[aX + BY, Z] = a[X, Z] + BY, 2],

[X,aY +BZ] = o[X,Y]+B[X,Z], X,Y,Z€VecM, a,fB€R,
(2) skew-symmetry:

[X,Y]=—[V,X], X,Y € VecM,

(3) Jacobi identity (2.16).
In other words, the set Vec M of all smooth vector fields on a smooth manifold

M forms a Lie algebra.
t

Consider the flow P! :er) / V, dr of a nonautonomous vector field V;.

0
We find an ODE for the family of operators Ad P* = (P?)! on the Lie algebra
Vec M.

d ¢ _od oy t\—1
dt(AdP)X = dt(P oX o (P") )

= Pttho)(o(Pt)_l—Pto)(tho(Pt)_1
= (AdPY[V;, X] = (Ad P adV; X, X € Vec M.

Thus the family of operators Ad P? satisfies the ODE

%AdPt = (AdPY) oadV, (2.17)

with the initial condition
AdP° =1d. (2.18)
So the family Ad P? is an invertible solution for the Cauchy problem
A=A 0adV;, Ay=1d

for operators A; : Vec M — Vec M. We can apply the same argument as for
the analogous problem (2.7) for flows to derive the asymptotic expansion

t
AdPt%Id—k/ adV.dr +---

0
+// adV, o---oadV, dr, ...dm +--- (2.19)
0<7, <. <711 <t

then prove uniqueness of the solution, and justify the following notation:

t t
e?p/ ad V. dr € Ad P! = Ad (&f)/ VTdT>.
0 0
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Similar identities for the left chronological exponential are

t t
é;[)/ ad(=V,)dr ¥ Ad (&13/ (—V-,-)dT)
0 0

zId+Z/---/ (—adV;)o---o(—adV;, )dr, ... dn.
n—=1 0<7, <...<711 <t

For the asymptotic series (2.19), there holds an estimate of the remainder
term similar to estimate (2.10) for the flow P'. Denote the partial sum

m—1
Tm:Id+Z/---/ adV,, o---0adV,, dry, ... dr,
n=1 0<7, <...<71 <t

then for any X € VecM, s >0, K e M

t
H(Ad e?p/ VTdT—Tm>X
0

¢ m
< C3€C4 Jo Wells 1,50 dT (/ ||V-r||s+m,K’ d7-> ||X||s+m,K’
0
(2.20)

s, K

=0(™), t—0,

where K' € M is some neighborhood of compactum K.
For autonomous vector fields, we denote

def
etadV 4ol AotV

thus the family of operators ef2dV

the problem

: Vec M — Vec M is the unique solution to
Ay =Aj0adV, Ay =1d,
which admits the asymptotic expansion

t2
etV nId+tadV + Ead2V+ e
In the sequel we will need the following properties of the operator Ad and
its infinitesimal version ad.

Exercise 2.2. Let X,Y € VecM, a € C*(M), P € Diff M, and let V; be a
nonautonomous vector field on M. Prove the equalities:

(ad X)(aY) = (Xa)Y +a(ad X)Y,
t t

Po eﬁﬁ/ V,dro P! :&f)/ (AdPV;) dr, (2.21)
0 0

(Ad P)(aX) = (Pa) AdP X.
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2.6 Commutation of flows

Let V; € Vec M be a nonautonomous vector field and Pt =exp fot V- dr the
corresponding flow. We are interested in the question: under what conditions
the flow P! preserves a vector field W € Vec M:

PrLW =W Vt,

or, which is equivalent,
(PHYT'W =W vt

Proposition 2.6.
P'W=W Vvt & [V;,W]=0 Vi

Proof. We have

%(Pt):IW = %AdPtW: <% ?ﬁ/otadmr)vv
= <e¥f>/tadVTdroadVT>W: (e_)cﬁ/tadVTdT) Vi, W]
= (Pt):l[ovt,W], 0

thus (P)7'W = W if and only if [V;, W] = 0. O

In general, flows do not commute, neither for nonautonomous vector fields
‘/ta Wt:

ta

t1
W, dro e;f)/ V., dr,

ta
W, dr #exp
0 0

t1
e?p/ VTdToe;f)
0 0

nor for autonomous vector fields V, W:

etlv ° etzW # et2W ° et1V'

In the autonomous case, commutativity of flows is equivalent to commutativity
of vector fields:

etV oet2W = et2tW otV ¢ 4, € R, & [V,W]=0.

We already showed that commutativity of vector fields is necessary for commu-
tativity of flows. Let us prove that it is sufficient. Indeed,

(Ade"V) W = etV =W,
Taking into account equality (2.21), we obtain

t1V toW —t1V — et2(Adei1V)W toW

e o e o e =€



2.7. VARIATIONS FORMULA 35

2.7 Variations formula
Consider an ODE of the form

¢ =Vi(q) + Wi(q)- (2.22)
We think of V; as an initial vector field and W; as its perturbation. Our aim
is to find a formula for the flow Q! of the new field V; + W; as a perturbation

of the flow P! =exp fot V. dr of the initial field V;. In other words, we wish to
have a decomposition of the form

t
Qt:eﬁ’a/ (V; + W,)dr = Cy o Pt
0

We proceed as in the method of variation of parameters; we substitute the
previous expression to ODE (2.22):

d

EQt = Q'o(Vi+Wy)
= C,oP'+C,oPtoV,
= C’toPt+Qto‘/t,

cancel the common term Q! o V;:
QtOWtZCtOPt,
and write down the ODE for the unknown flow C;:
Ot = Q'oW;o (Pt)_l

= CyoP'oW,o (P
= CtO(AdPt)Wt

t
= cto<e?p/ adVTdT>Wt,
0

Co = Id.

-1

This operator Cauchy problem is of the form (2.7), thus it has a unique solution:

t T
ct:e?p/ <e?p/ adV9d9> W, dr.
0

0

Hence we obtain the required decomposition of the perturbed flow:

t t T t
e?p/ (VT+WT)dT:e?p/ <e¥f>/ adng0> W, dro &f)/ V, dr.
0 0 0 0
(2.23)
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This equality is called the variations formula. It can be written as follows:
— t — t
exp / (V: + W;)dr =exp / (AdPT)W,dr o P
0 0

So the perturbed flow is a composition of the initial flow P! with the flow of the
perturbation W; twisted by P?.

Now we obtain another form of the variations formula, with the flow P! to
the left of the twisted flow. We have

t t
e¥f>/ (VT+WT)dT:e¥f>/ (Ad PT)W, dr o P*
0 0
t
— Plo(P) "o e?p/ (Ad P7) W, dr o P*
— t ’ 1
= Plo exp/ (Ad (P")" OAdPT) W, dr
0
t
:Pto?/ Ad((P) o P)) W, dr.
Xp . ( (( ) )) T

Since .
(P) "o PT :&;3/ Vy d,
t

we obtain

t t T
e¥f>/ (V; + W,)dr = Po e¥f>/ (eﬁ’a/ adV9d0> W, dr
0 0

t

t t T
:eﬁﬁ/ V, dro eﬁ’a/ <e¥f>/ adV9d0> W, dr.
0 0 t
(2.24)

For autonomous vector fields V, W € Vec M, the variations formulas (2.23),
(2.24) take the form:

t t
— — _
VW) —exp / e 2V Wdroet =etVo exp [ 7DV gr,
0 0

In particular, for t = 1 we have

1
—
eV+W:exp/ e 2V droe.
0

2.8 Derivative of flow with respect to parameter

Let Vi(s) be a nonautonomous vector field depending smoothly on a real pa-
rameter s. We study dependence of the flow of V;(s) on the parameter s.
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We write
t t
e?p/ Vi(s +¢) dT:e?p/ (Vi(s) + 0y, (s,€)) dr (2.25)
0 0

with the perturbation dv, (s,e) = V(s + ) — V;(s). By the variations formu-
la (2.23), the previous flow is equal to

t T t
exp (e?p/ ad Vy(s) d9> dv. (s,e)dro (3}(7)/ V:(s)dr.
0 0

0

Now we expand in €:

dv.(s,e) = 5%%(3) +0(e%), e—0,

Wolse) (?p /Tadms)de)av,(s,a)

0

= 5<e¥f)/ adVg(s)d0> %VT(S)+O(82), e—0,
0

thus

t t
eﬁﬁ/ Wo(s,e)dr = Id+/ W, (s, ) dr + O(2)
0 0

t T
Id+s/ <e?p/ adVg(s)d9> %VT(S)dT+O(62).
0

0

Finally,
— t — t — t
exp/ Vi(s+e¢) drzexp/ Ws.r(e)dro exp/ Vi (s)dr
0 0 0
t
—exp / Vi(s)dr
0
t

T t
+5/ <e¥f>/ adVg(s)d0> %VT(s)dTo e;f)/ Vi (s) dr + O(e2),
0 0

0
that is,

ie?/tV(s)dT
68 p o T
t

= [(& [[aavi ) Zviare & [Veisrarn @29

0

Similarly, we obtain from the variations formula (2.24) the equality
a t
52 exp /0 Vi(s)dr
t

:e?p/o VT(s)dTO/Ot <&I’>/Tadvg(s)do> %VT(s)dr. (2.27)

t
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For an autonomous vector field depending on a parameter V(s), formu-
la (2.26) takes the form

)

t
ietV(s) — / eT ad V(s) 8_V dr o etV(s)
0 a

Os s
and at t = 1:
%ev(s) = /01 e 2dV(s) %—‘: droeV(®, (2.28)
Proposition 2.7. Assume that
t
{/0 V;dr, Vt] =0 V. (2.29)

Then .
e?p/ Vedr =eloVrim g
0

That is, we state that under the commutativity assumption (2.29), the

chronological exponential exp fot V, dr coincides with the flow Qt = efo V- a7
defined as follows:

0=
t t
%:/0 V,droQl, Q) —1Id.

Proof. We show that the exponential in the right-hand side satisfies the same
ODE as the chronological exponential in the left-hand side. By (2.28), we have

d t 1 t t
EefoV.,.d‘r: eradfngdGV'thoefoV.,.dT.
0

In view of equality (2.29),
eradf(;ngG‘/t =V,

thus

iefotv.,—dT :%OefoiV,.dT-
dt

By equality (2.29), we can permute operators in the right-hand side:

iefot Vrdr = efl)t Vrdr o ‘/t
dt

Notice the initial condition

t
elo V- dr =1d.
t=0
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Now the statement follows since the Cauchy problem for flows
Ay = A0V, Ao =1d

has a unique solution:

t
Ay = elo Ve dr :er)/ V. dr.
0
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Chapter 3

Linear systems

Linear control systems have the form

m
b=Av+ct+ ub, R, u=(u,... ,upn) €R™, (3.1)

i=1
where A is a constant real n X n matrix and ¢, by, ..., b, are constant vectors

in R™.

3.1 Cauchy’s formula for linear systems

Let u(t) = (ui(t),... ,un(t)) be locally integrable functions. Then the solution
of (3.1) corresponding to this control and satisfying the initial condition

.'17(0, 'TO) = o

is given by Cauchy’s formula:

t m
z(t,zo) = et (mo +/ e T4 (Z ui(1)b; + cd7'>> , teER
0 i=1

Here we use the standard notation for the matrix exponential:
t2 "
e =Td+tA+ = A2+ + —A"+--- .
2! n!
Cauchy’s formula is verified by differentiation. In view of uniqueness, it gives

the solution to the Cauchy problem.
Linear system (3.1) is a particular case of an affine in control system:

T =uxo (f() + ZUU%) s (32)
i=1

41
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in order to obtain (3.1) from (3.2), one should just take

fo(z) = Az + ¢, file)=0b;y, i=1,... ,m. (3.3)

Let us show that Cauchy’s formula is actually a special case of the general

variations formula. We restrict ourselves with the case ¢ = 0.
The variations formula for (3.2) takes the form

exp/ <f0+2uz ) dr
t m t
=7 ((e‘xﬁ/0 adfode)o;ui(r)fi> aro e [ fodr
—éxp (Zu Tadfoﬁ) droetfo. (3.4)

We assume that ¢ = 0, i.e., fo(z) = Az. Then
zoetf =iy, (3.5)

Further, since (ad fo) fi = [fo, fi] = [Az,b] = —Ab then

e fy = fi+7(ad fo)fi + Z—T(adfo)Zfi +- %T,L(adfo)”fi +
7_2 T
= b= A+ T (AP ()
= e ™,

In order to compute the left flow in (3.4), recall that the curve

t m
Tpo exp/ (Zu erddfof ) dr = xgo exp/ (Zui(T)eTAbi> dr
0 i=1

is the solution to the Cauchy problem
= Zui(T)e_TAbi, z(0) = zo,

thus (3.6) is equal to

z(t) = xo +/0 (eTA ZuZ(T)bl> dr
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Taking into account (3.5), we obtain Cauchy’s formula:

a(t) = 37006;13/0 <f0+zui(7')fi> dr
o t e T4 3 u; (7)b; ] oetfo
(o (1 5mom) )
= ¢4 (a:o + /t (eTAiui(T)bZ) d7'> .

Notice that in the general case (¢ # 0) Cauchy’s formula can be written as
follows:

t m t
x(t, o) tA tA / 74 Z wi(T)b; dr + et / e " Aedr
0 P 0

I
®
8
o
+
o

A A ! A - ett —1d
= ¢t ;L’O—l—et /0 e T ;uz(’l')bl dT-f—TC, (37)

where A ) 5
d . t t 9 t" n_1i

3.2 Controllability of linear systems
Cauchy’s formula (3.7) yields that the mapping
u() = :L’(t, Lo, u()):

which sends a locally inegrable control to the endpoint of the corresponding
trajectory, is affine. Thus the attainable set A, (t) of linear system (3.1) for a
fixed time ¢ > 0 is an affine subspace in R"”.

Definition 3.1. A control system on a state space M is called completely con-
trollable for time ¢t > 0 if

Ao (t) =M Vo € M.

This definition means that for any pair of points zq,z; € M exists an ad-
missible control u(-) such that the corresponding solution z(-,zo,u(-)) of the
control system steers xg to x; in ¢ units of time:

(0,20, u(")) = xo, x(t,xo,u(-)) = 1.

The study of complete controllability of linear systems is facilitated by the
following observation. The affine mapping

etd 1

t m
— dc + et / e ™4 Z wi(T)bs dr
0 i=1

u(-) — etay +
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is surjective if and only if its linear part
t m
u(:) — etA/ e ™4 Zui(T)bi dr (3.8)
0 i=1
is onto. Moreover, (3.8) is surjective iff the following mapping is:
t m
u(-) i—)/ e " ui(r)b; dr. (3.9)
0 i=1

Theorem 3.1. The linear system (3.1) is completely controllable for a time
t > 0 if and only if
span{Ab; | j=0,...,n—1,i=1,...,m} =R". (3.10)

Proof. Necessity. Assume, by contradiction, that condition (3.10) is violated.
Then there exists a covector p € R**, p # 0, such that

pAIib; =0, j=0,....,n—1,i=1,...,m. (3.11)

By Cayley theorem,

n—1
A" =)oy A7
j=0

for some real numbers «g, ..., a,_1, thus
n—1
k _ k Aj
A¥ = E By A
=0

for any k£ € N and some ﬁf € R. Now we obtain from (3.11):

n—1
pA*b; = BipAib; =0,  k=0,1,...,i=1,..,m.
j=0

That is why
pe TAb; =0, i1=1,...,m,

and finally

t m t m
p/ e~ ™A Zui(T)bi dr = / Zui(T)pe_TAbi dr =0,
0 i=1 0 =1

i.e., mapping (3.9) is not surjective. The contradiction proves necessity.

Sufficiency. By contradiction, suppose that mapping (3.9) is not surjective.
Then there exists a covector p € R™* ) p # 0, such that

tm-Te_TA'T— w(-) = (w1 (- U (-
p/o ;um bidr =0 Vu() = (i (), um())- (3.12)
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Choose a control of the form:
u(r) = (0,...,0,vs(7),0,...,0),
where the only nonzero i-th component is

1, 0<7<s,

vs(7) = { 0, > s

Then equality (3.12) gives
s
p/ e~ dr =0, seER, i=1,...,m,
0

thus
pe”*4b; =0, seR, i=1,...,m.

We differentiate this equality repeatedly at s = 0 and obtain
pAkb; =0, k=0,1,...,i=1,...,m,

a contradiction with (3.10). Sufficiency follows. O
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Chapter 4

State linearizability of
nonlinear systems

The aim of this chapter is to characterize nonlinear systems
m
0= fola)+ > uifile)y w=(us,...,up) ER™, geM  (41)
i=1

that are equivalent, locally or globally, to controllable linear systems. That is,
we seek conditions on vector fields fy, fi, .., fim that guarantee existence of a
diffeomorphism (global ® : M — R™ or local ® : Oy C M — Op C R™) which
transforms nonlinear system (4.1) into a controllable linear one (3.1).

4.1 Local linearizability

We start with the local problem. A natural language for conditions of local
linearizability is provided by Lie brackets, which are invariant under diffeomor-
phisms:

. [V,W]=[D.V,®. W], V,W € Vec M.

The controllability condition (3.10) can easily be rewritten in terms of Lie
brackets: since

(—=A)b; = (ad fo)’ fi = [fo,[. - - [fo, fi] - --]]
———
j times
for vector fields (3.3), then the controllability test for linear systems (3.10) reads
span{zg o (ad fo)i f; | j=0,...,n—1,i=1,... ,m} = T,,R".

Further, one can see that the following equality is satisfied for linear vector
fields (3.3):

[(ad fo)™ fiy, (ad fo)”? fi,] = [(—A)7 by, (—A)72b;,] = 0,
0<j1, j2, 1<, i2<m.

47
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It turns out that the two conditions found above give a precise local charac-
terization of controllable linear systems.

Theorem 4.1. Let M be a smooth n-dimensional manifold, and let fy, fi, ...,
fm € Vec M. There exists a diffeomorphism

(I):Oqo—)OO

of a neighborhood O, C M of a point gy € M to a neighborhood Oy C R of
the origin 0 € R™ such that

(@ fo)(x) = Az + ¢, xz € Oy,
(@ fi)(z) = by, €0y, i=1,...,m,

for some n x n matriz A and ¢, by, ..., by € R" that satisfy the controllability
condition (3.10) if and only if the following conditions hold:

span{go o (ad fo)’ f; | 7=10,...,n—1,i=1,... ,m} =T, M. (4.2)
g o [(ad fo)7' fi,, (ad fo)”* fi,] = 0, (4.3)
g€ 0y, 01, j2<n, 1<, s <m.

Remark. In other words, the diffeomorphism ® from the theorem transforms a
nonlinear system (4.1) to a linear one (3.1).

Before proving the theorem, we consider the following proposition, which we
will need later.

Lemma 4.1. Let M be a smooth n-dimensional manifold, and letYy, ..., Y} €
Vec M. There exists a diffeomorphism

<I>:00—>Oq0

of a neighborhood Oy C R™ to a neighborhood O, C M, qo € M, such that

¢I>*<8>:Yi i=1,... .k,

dx;
if and only if the vector fields Y1,... ,Y, commute:
Y;,Y;]=0, i, j=1,...,k
and are linearly independent:
dimspan(gp o Y1,...,q0 0 Y%) = k.

Proof. Necessity is obvious since Lie bracket and linear independence are in-
variant with respect to diffeomorphisms.

Sufficiency. Choose Yi41,...,Y, € Vec M that complete Y7,...,Y; to a
basis:
Spa‘n(qoyla"'aqoy’n):TqMa qeoqo'
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The mapping
®(s1,...,50) =qpoe’ Y o...0esN

is defined on a sufficiently small neighborhood of the origin in R". We have
0 0 0

@@y¥¢*< ):__

s—0 Oe

Hence ®.|,_, is surjective and ® is a diffeomorphism of a neighborhood of 0 in

R™ and a neighborhood of gy in M, according to the implicit function theorem.
Now we prove that ® rectifies the vector fields Y7, ... ,Y}. First of all, notice

that since these vector fields commute, then their flows also commute, thus

goe =qoY;.
e=0

s=0

eSe Yk o ..o es1Y1 — il siYi

and

k . .
D(s1,...,8,) =¢qoo e5nYn o ..o Skt Yht1 o p2lim1 SiYi

Then fori=1,... ,k

0 0
(P* <a— 6_ @(81,...,81'-{—5,...,8”)
S B(s) €le=0
9 snY, Sk41 Y Sk s;Y; eY;
- R qooe""o...oek+1 k+10€ j=1%1%3 o g1t
66 e=0
K
= qo eSn¥n o ... 0 eSkt1Yit1 o er:1 s;Y; i eYi
de e=0

O

Now we can prove Theorem 4.1 on local equivalence of nonlinear systems
with linear ones.

Proof. Necessity is obvious since Lie brackets are invariant with respect to dif-
feomorphisms, and for linear systems conditions (4.2), (4.3) hold.

Sufficiency. Select a basis of the space T,,M among vectors of the form
(ad fo)’ fi(qo):
Y, =(ad fo)* fi,, a=1,...,n, 0<ja<n—1, 1<i,<m,
span(go o Y1,... ,go o Yy) = Ty M.

By Lemma 4.1, there exists a rectifying diffeomorphism:

0

T 0z,

® : Oy — Oy, ®,.Y, a=1,...,n.

We show that ® is the required diffeomorphism.
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(1) First we check that the vector fields @, f;, i = 1,... ,m are constant. That
is, we show that in the decomposition

0= Y B i=1....m
a=1
the functions 3% (z) are constant. We have
0 " é
5, @il = Z : (4.4)
on the other hand
0 .
[ @il = [8.Ya, . fi] = 2u Yo, fi] = Bul(ad fo) = fi,, fi] =0 (45)

by hypothesis (4.3). Now we compare (4.4) and (4.5) and obtain

ap: o ; .
aiof(‘)m =0 = pf,=const, i=1,...m, a=1,...,n,
i %
ie, ®,.f;,i=1,...,m, are constant vector fields b;, i = 1,... ,m.

(2) Now we show that the vector field ®.fy is linear. We prove that in the

decomposition
" 0
O.fo= Bilx)
i=1

all functions g;(x), i =1,... ,n are linear. Indeed,
923 0 0 0
2::1 o0z 0w e la2; x5 2ol

= [D.Y4,[R.Y5, @i fo]] = ulYa, [Y5, fol]
= ,[(ad fo)’* fi..[(ad fo)** fi,, fol]
= —9.[(ad fo)’* fi.., [fo, (ad fo)’® fi,]]
= —.[(ad fo)’* fi., (ad fo)"**' fi,]
= 0, a, B=1,...,n,
by hypothesis (4.3). Thus

0%*6; 0
O0zq0xp 0 x;

0, i, a, B=1,...,n,

i.e., . fo is a linear vector field Az + c.
For the linear system & = Az + ¢+ Y ;- u;b;, hypothesis (4.2) implies the
controllability condition (3.10) O
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4.2 Global linearizability

Now we prove the following statement on global equivalence.

Theorem 4.2. Let M be a smooth connected n-dimensional manifold, and let
fo, fis-, fmn € Vec M. There exists a diffeomorphism

M TFxR"E

of M to the product of a k-dimensional torus with R*=* for some k < n such
that

(. fo)(z) = Az + ¢, reTkx RF,
(@ fi) (@) = bs, zeTF xR  i=1,...,m,

for some n x n matriz A with zero first k rows:
Ae; =0, i=1,...,k, (4.6)

and ¢,by, ... by € R™ that satisfy the controllability condition (3.10) if and only
if the following conditions hold:

(ad fo)’ fi, j=0,1,....,n—1, i=1,...,m,

are complete vector fields (4.7
span{go (ad fo)/f; |j =0,...,n—1,i=1,... ,m} =T,M. (4.8)
g o [(ad fo)™* fiy, (ad fo)” fi,] = O,

geM, 0<ji, ja<n, 1<iy, iz <m. (4.9)

Remarks. (1) If M is additionally supposed simply connected, then it is diffeo-
morphic to R”, i.e., K =0.

(2) If, on the contrary, M is compact, i.e., diffecomorphic to T™ and m < n,
then there are no globally linearizable controllable systems on M. Indeed, then
A =0, and the controllability condition (3.10) is violated.

Proof. Sufficiency. Fix a point gy € M and find a basis in T;;; M of vectors of
the form

Y, = (ad fo)’= fi., a=1,...,n,
span(go o Y1, ... ,qo 0 Yy) = T, M.

(1) First we show that the vector fields Yi,...,Y; are linearly independent
everywhere in M. The set

O={q€e M |span(goYi,...,qoY,)=T,M}
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is obviously open. We show that it is closed. In this set we have a decomposition

qO(adfg)jfi:qOZagYa, qeO, j=0,...,n—-1, i=1,...,m,
a=1
(4.10)

for some functions a¥/ € C*°(0). We prove that actually all a¥¥ are constant.
We have

0 = [YB’ZaffYa]
a=1
(by Leibniz rule [X,aY] = (Xa)Y + a[X,Y])
= Zai{[Yg,Ya]+Z(YBa§)Ya
a=1 a=1
= Y (Vpal)a, B=1,...,n, j=0,...,n-1, i=1,...,m,
a=1
thus

Yzai =0 = afj|O:const,
a=1,...,n, j=0,...,n—=1, ¢1=1,...,m.

That is why equality (4.10) holds in the closure O. Thus the vector fields
Yi,...,Y, are linearly independent in O (if this is not the case, then the whole
family (ad fo)'fi;, 5 = 0,...,n — 1,4 = 1,... ,m, is not linearly independent
in O). Hence the set O is closed. Since it is simultaneously open and M is
connected,

0 =M,
i.e., the vector fields Y7, ... ,Y,, are linearly independent in M.
(2) We define the “inverse” ¥ of the required diffeomorphism as follows:
U(21,...,7,) = qooe® ¥ o-..o0en¥n

(since the vector fields Y,, commute)
o 0 eXa=1%aYa, x=(x1,...,2,) € R,

(3) We show that the (obviously smooth) mapping ¥ : R® — M is regular, i.e.,
its differential is surjective. Indeed,

ov d
52 (z) = Ie U(x1,... ,Ta +E-vn,Tp)
@ e=0
d S h_izYz+eY,
= JR— gooe p=1Lp1p a
de|._o

= qo eXp=126Ys o Y,

= U(x)oVY,, a=1,... n,
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thus
v..(R") = Ty)M.

The mapping ¥ is regular, thus a local diffeomorphism. In particular, ¥(R") is
open.

(4) We prove that U(R") is closed. Take any point ¢ € ¥(R"?). Since the vector
fields Y1,...,Y,, are linearly independent, the image of the mapping

(yl,‘_"yn)'_)qoezg=lyayfl’ y:(y17"'7yn)€Rn

contains a neighborhood of the point g. Thus there exists y € R™ such that
gocTiarte € B(RY),

ie.,
qo ezazl YaYa =qpo ezazl To Yo

for some © = (z1,...,2,) € R*. Then
q — qo © 622:1 Tao Yo oe” 22:1 Yo Ya =gqpo ezzzl(za_ya)ya
= Y(z—y).

In other words, ¢ € ¥(R™).
That is why the set U(R") is closed. Since it is open and M is connected,

T(RY) = M.

(5) It is easy to see that the preimage
U (qo) = {z € R" | ¥(x) = qo}
is a subgroup of the Abelian group R". Indeed, let
U(z) = go 0 e>a=1*2 ¥ = Y(y) = g 0 eXa=1 VT = gy,
then
U(z +y) = go 0 eZa=1TatvalYe = g o eliami TaYa o plami Voo = ¢4
Analogously, if
W(r) = g0 eZhm Ve = g,

then
() = gpoe Tim e = g,

Finally,
¥(0) = go-
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(6) Moreover, ¥ ~1(gp) is a discrete subgroup Gy of R", i.e., there are no nonzero
elements of ¥ !(g) in some neighborhood of the origin in R", since ¥ is a local
diffeomorphism.

(7) The mapping ¥ is well-defined on the quotient R” /Gy. Indeed, let y € Gj.
Then

¥(z+y) = @o e2a=1(@atva)Vo — g5 2o VaYa o 20— TaVa
= goeZiaTeYe = U(a).
So

T : R"/Gy — M. (4.11)

(8) The mapping (4.11) is one-to-one: if

then

Yo =qpo ezazl Ya

.
go 0 e2a=1 e Y,

thus
qo © eZazl(Iafya)Ya = qo,

ie., z —y € Go.

(9) That is why mapping (4.11) is a diffeomorphism. By Lemma 4.2 (see below),
the discrete subgroup Go of R" is a lattice:

k
Gy = {anel | n; EZ},

i=1
thus the quotient is a cylinder:
R" /Gy = T* x R**.
Hence we constructed a diffeomorphism
=01 M-TFxR"F,

Equalities (4.8) and (4.9) follow exactly as in Theorem 4.1.
The vector field ®, fo = Az + ¢ is well-defined on the quotient T* x R*—*,
that is why equalities (4.6) hold.

Necessity. For a linear system on a cylinder 7% x R"~*  conditions (4.7)
and (4.9) obviously hold. If a linear system is controllable on the cylinder,
then it is also controllable on R™, thus the controllability condition (4.8) is also
satisfied. O
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Lemma 4.2. Let " be a discrete subgroup in R™. Then it is a lattice, i.e., there
exist linearly independent vectors ey, ... ,ex € R* such that

k
I'= {anez“’h EZ}.
i=1

Proof. We prove by induction on dimension n of the ambient group R”.

(1) Let n = 1. Since the subgroup I' C R is discrete, it contains an element
e1 # 0 closest to the origin 0 € R. By the group property, all multiples +e; +
egEt---+e = =£ne;,n=0,1,2,..., are also in I'. We prove that [' contains
no other elements.

By contradiction, assume that there is an element = € I' such that ne; <
x < (n+ 1)er, n € Z. Then the element y = x —ne; € T is in the interval
(0,e1) C R So y # 0 is closer to the origin than e;, a contradiction. Thus
I'=Ze = {ne; | n €%}, qed.

(2) We prove the inductive step: let the statement of the lemma be proved for
some n — 1 € N, we prove it for n.

Choose an element e; € I'; e; # 0, closest to the origin 0 € R™. Denote by [
the line Re; , and by I'y the lattice Ze; C I'. We suppose that I # I'; (otherwise
everything is proved).

Now we show that there is an element e; € I'\ IT'; closest to I:

dist(es,!) = min{dist(z,!) | z € T\ 1}. (4.12)

Take any segment I = [ney,(n + 1)e;] C I, and denote by # : R* — [ the
orthogonal projection from R™ to [ along the orthogonal complement to [ in R™.
Since the segment I is compact and the subgroup I is discrete, the n-dimensional
strip #—(I) contains an element ey € I" \ [ closest to I:

dist(ez, I) = min{dist(z,I) |z € (T \ ) N7 *(I)}.

Then the element e, is the required one: it satisfies equality (4.12) since any
element that satisfies (4.12) can be translated to the strip 7~ 1(I) by elements
of the lattice I';.

That is why a sufficiently small neighborhood of ! is free of elements of I'\ T’y .
Thus the quotient group I'/T; is a discrete subgroup in R* /[ = R*~!. By the
inductive hypothesis, I'/T'; is a lattice, hence T is also a lattice. O
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Chapter 5

The Orbit Theorem and its
applications

5.1 Formulation of the Orbit Theorem

Let F C Vec M be any set of smooth vector fields. In order to simplify notations,
we assume that all fields from F are complete. Actually, all further definitions
and results have clear generalizations to the case of noncomplete fields; we leave
them to the reader.

We return to the study of attainable sets: we study the structure of the
attainable sets of F by piecewise constant controls

Ago = {qooetlf1 0---o0eltfr |t; >0, fi € F, k€ N}, qo € M.
But first we consider a greater set — the orbit of the family F through a
point:
Op ={woefto-oe |t;eR fieF, keN}, g€ M.
In an orbit Oy, it is allowed to move along vector fields f; both forward and
backwards, while in an attainable set 4,, only the forward motion is possible.
Although, if the family F is symmetric: F = —F (i.e,, f € F = —f € F),
then attainable sets coincide with orbits: Oy = Ay, g0 € M.

In general, orbits have more simple structure that attainable sets. It is
described in the following fundamental proposition.

Theorem 5.1 (Orbit Theorem, Nagano—Sussmann). Let F C Vec M and
qo € M. Then:

(1) Oy, is an immersed submanifold of M.
(2) T,O0q, =span{go (AdP)f [P €P, f€F}, q€ O
Here we denote by P the group of diffeomorphisms of M generated by flows
in F:
P={efro...oeft|t; € R, f; € F, k€ N} C Diff M.

o7
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5.2 Immersed submanifolds

Now we discuss an important notion that appears in the Orbit Theorem.

Definition 5.1. A subset W of a smooth n-dimensional manifold is called an
immersed k-dimensional submanifold of M, k < n, if there exists a one-to-one
immersion

®: N— M, Ker®,, =0 Vz€eN

of a k-dimensional smooth manifold N such that
W = ®(N).

Remark. An immersed submanifold W of M can also be defined as a manifold
contained in M such that the inclusion mapping

1 W —> M, i q—q

is an immersion.

Sufficiently small neighborhoods O, in an immersed submanifold W of M
are submanifolds of M, but the whole W is not necessarily a submanifold of
M in the sense of Definition 1.1. In general, the own topology of W can be
stronger than the topology induced on W by the topology of M.

Example 5.1. Let ® : R — R? be a one-to-one immersion of the line into the
plane such that lim¢ ;o ®(t) = ®(0) = 0 € R?, Then W = ®(R) is an im-
mersed one-dimensional submanifold of R?. The own topology of W (inherited
from R) is stronger than the topology induced by R?. The intervals ®(—¢,¢),
€ > 0 small enough, are open in the first topology, but not open in the second
one.

The notion of immersed submanifold appears inevitably in the description
of orbits of families of vector fields. Already the orbit of one vector field (i.e.,
its trajectory) is an immersed submanifold, but may fail to be a submanifold in
the sense of Definition 1.1.

Example 5.2. Oscillator with 2 degrees of freedom is described by the equa-
tions:

F+alr =0, r €R,
j+By=0, yeR

In the complex variables
z=z—it/a, w=y—iy/p
these equations read

Z =iaz, z€C,

w = ifw, weC, (5.1)
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and their solutions have the form

z(t) = ei"’tz(O),
w(t) = e®lw(0).

Any solution (2(t),w(t)) to equations (5.1) belongs to an invariant torus
T? = {(2,w) € C* | |2| = const, |w| = const}.

Any such torus is parametrized by arguments of z, w, thus it is a group: T? ~
R?/Z2.

We introduce a new parameter 7 = «t, then trajectories (z,w) become
images of the line {(7, (8/a)7) | T € R} under the immersion

(r,(B/e)7) = (1 + Z, (/)T + Z) € R? | Z7,

thus immersed submanifolds of the torus.
If the ratio 8/« is irrational, then trajectories are everywhere dense in the
torus: they form the irrational winding of the torus. In this case, trajectories,

i.e., orbits of a vector field, are not submanifolds, but just immersed submani-
folds.

Remark. Immersed submanifolds inherit many local properties of submanifolds.
In particular, the tangent space to an immersed submanifold W = Im ® C M,
® an immersion, is given by

T@(x)W = Im ‘P*z.
Further, it is easy to prove the following property of a vector field V' € Vec M:
V(g eT,W VqeW = qoeVeW VqgeW,

for all ¢ close enough to 0.

5.3 Corollaries of the Orbit Theorem

Before proving the Orbit Theorem, we obtain several its corollaries.

Let Oy, be an orbit of a family F C Vec M.

First of all, if f € F, then f(q) € T4Oq, for all ¢ € O, . Indeed, the
trajectory g oe!/ belongs to the orbit O, thus its velocity vector f(q) is in the
tangent space Ty, .

Further, if f1, fo» € F, then [fi1, f2](q) € T,0,, for all ¢ € O,,. This follows
since the vector [f1, f2](q) is tangent to the trajectory

tsqoeftoet2oe thoe 2 c 0.

Given three vector fields fi, f2, f3 € F, we have [f1,[f2, f3]](q) € TyOq,,
q € Oy, - Indeed, it follows that [f2, f3](¢) € T4Oy,, ¢ € Oy, , then all trajectories
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of the field [f2, f3] starting in the immersed submanifold O,, do not leave it.
Then we repeat the argument of the previous items.
We can go on and consider Lie brackets of arbitrarily high order

[fro [ U= fi] - 1))

as tangent vectors to Oy, if f; € F. These considerations can be summarized
in terms of the Lie algebra of vector fields generated by F:

Lie F = span{[f1,[.--[fe-1, fx]--- 1] | fi € F, k € N} C Vec M,
and its evaluation at a point q¢ € M:
Lie, F={qoV |V € LieF} C T, M.
We obtain the following statement.
Corollary 5.1.
Lieq F C T4 Oy, (5.2)
for all g € Oy .

Remark. We show soon that in many important cases inclusion (5.2) turns into
equality. In the general case, we have the following estimate:

dim Lie, ' < dim Oy, q € Oy

Another important corollary of the Orbit Theorem is the following proposi-
tion often used in control theory.

Theorem 5.2 (Rashevsky—Chow). Let M be a connected smooth manifold,
and let F C Vec M. If the family F is completely nonholonomic:

Lie, F =T,M Vqge M, (5.3)
then
Op =M Vgo€M. (5.4)

Definition 5.2. A family 7 C Vec M that satisfies property (5.3) is called
completely nonholonomic or bracket-generating.

Proof. By Corollary 5.1, equality (5.3) means that any orbit Oy, is an open set
in M.
Further, consider the following equivalence relation in M:

@ ~q & qc0,, q, q2 € M. (5.5)

The manifold M is the union of (naturally disjoint) equivalence classes. Each
class is an open subset of M and M is connected. Hence there is only one
nonempty class. That is, M is a single orbit O,. O

For symmetric families attainable sets coincide with orbits, thus we have the
following statement.

Corollary 5.2. Symmetric bracket-generating families are completely control-
lable on connected manifolds.
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5.4 Proof of the Orbit Theorem

Introduce the notation:

(AdP)F ¥ ((AdP)f|P€P, f€F}C Vec M.

Consider the following subspace of T, M:

II, L span{q o (AdP)F}.

This space is a candidate for the tangent space 7,0, .
Lemma 5.1. dim I, = dimII,, for all g € Oy, qo € M.

Proof. If g € Oy, then g = gy o Q for some diffeomorphism @) € P.
Take an arbitrary element go o (Ad P)f in II,,, P € P, f € F. Then

Q*(QO o (Adp)f)

10 (AdP)foQ=gpoPofoP loQ
= (qooQ)o(Q_loPofoP_loQ)
= @oAd(Q "o P)fell,

since Q"o P € P.
We have Q,I1,, C II;, thus dim I, < dimII,. But gy and ¢ can be switched,
that is why dimII, < dimII,,. Finally, dimII, = dimII,. g

Now we prove the Orbit Theorem.

Proof. The manifold M is divided into disjoint equivalence classes of rela-
tion (5.5) — orbits O,. We introduce a new “strong” topology on M in which
all orbits are connected components.

For any point ¢ € M, denote m = dimIl, and pick elements V;,...,V,, €
(AdP)F such that

span(Vi(q), ..., Vin(q)) =TIy, (5.6)
Introduce a mapping;:
Gy (ti,-.. tm) > qoetV1o...oglmVm, t; € R
We have
%iq = Vi),

thus in a sufficiently small neighborhood Oq of the origin 0 € R™

0G, ., 9G,
oty D tm

#0,

Oo

i.e., Gglp, is an immersion.
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The sets of the form G4(0y), ¢ € M, are candidates for elements of a topol-
ogy base on M. We prove several properties of these sets.

(1) Since the mappings G, are regular, the sets G4(0Op) are m-dimensional
submanifolds of M, may be, for smaller neighborhoods Oy.

(2) We show that G4(Op) C O4. Any element of base (5.6) has the form
Vi=(AdP,)f;, P, € P, fi € F. Then

Vi = tAAP)fi — ptPiofioPT _ P ot oPleP,

thus
G,(t)=qoeVi €O,  teO,.

(3) We show that G« (T;R™) = lg), t € Op. Since rank Gu|o, = m and

dim Pgy) |O0 = m, it remains ro prove that %C;_" ‘t € llg, () for t € Op. We have

8 Gq(t) _ 8 t1V1 o-- tm V;

= goe -oemm™

ot; ot;
:qoetlvlo‘_‘oetiviOI/Z,oeti+1Vi+lo‘_‘oethm
:qoetlvl O___OetiVi Oeti+1Vi+1 O___oethm

o e—thm 0--+0 e—ti+1Vi+1 oV;o eti+1Vi+1 0-.+0 ethm

(introduce the notation @ = eti+1Vi+1 o... 0 etmVm € P)

=Gy(t)oQ o VioQ =Gy(t) o AdQV; € g, ().

(4) We prove that sets of the form G4(0Oy), ¢ € M, form a topology base in M.
It is enough to prove that any nonempty intersection G;(Og) NG3(0p) contains

a set of the form Gq(ao).
Let a point ¢ belong to G4(Op). Then dimII; = dimII, = m. Consider the

mapping

Gy @ (b1, tm) — GoeltVio...oglmVm,
span(Go Vi, ... ,Go Vi) = IIy.
It is enough to prove that for small enough (¢1,... )

Gi(t1,... ,tm) € G4(Oo),

then we can replace G4(Op) by Gq(@o). We do this step by step. Consider the
curve t; — goettVr. By property (3) above, Vi(q) € II, for ¢ € G(0Op) and
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sufficiently close to g. Since G4(0p) is a submanifold of M and I, = T,G,(0y),

the curve g o ef'"1 belongs to G (Oy) for sufficiently small [t;].
We repeat this argument and show that

(o etlvl) oef2V2 ¢ G4(0p)
for small |¢1], |t2|. We continue this procedure and obtain the inclusion

(E]\O et1‘71 0-.-0 etm—lvm—l) ° etm"}m c Gq(OO)

for (t1,...,ts) sufficiently close to 0 € R™.

Property (4) follows, and the sets G,(Oo), ¢ € M, form a topology base on
M. We denote by M7 the topological space obtained, i.e., the set M endowed
with the “strong” topology just introduced.

(5) For any go € M, the orbit O, is connected, open, and closed in the “strong”
topology.

Connectedness: all mappings t — q o e/, f € F, are continuous in the
“strong” topology, thus any point ¢ € Oy, can be connected with go by a path
continuous in M7,

Openness: for any g € Oy, a set of the form G;(Op) C Oy, is a neighbour-
hood of the point ¢ in M7

Closedness. Let a sequence of points ¢, € Oy, n = 1,2,..., converge in
M7 to a point ¢ € M. We have to show that the limit ¢ is in the orbit Oy, .
Fix a base neighbourhood G4(Oq), then it contains a point of the sequence gy,
for a sufficiently large n. We have:

an € Oy, an €0, = q € Oy,

and the closedness follows.
So each orbit O, is a connected component of the topological space M 7.

(6) A smooth structure on each orbit O, is defined by choosing G,(Op) to
be coordinate neighborhoods and Gq_1 coordinate mappings. Since G| 0, are
immersions, then each orbit O, is an immersed submanifold of M. Notice that
dimension of these submanifolds may vary for different go.

(7) By property (3) above, T,Oy, =II;, ¢ € Oy, .
The Orbit Theorem is proved. O

The description of the tangent space of an orbit given by the Orbit Theorem:
T,04 = qo (AdP)F,

is rather implicit since the structure of the group P is quite complex. However,
we already obtained the lower estimate

Lie, F C span(q o (AdP)F). (5.7)
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from the Orbit Theorem. Notice that this inclusion can easily be proved directly.
We make use of the asymptotic expansion of the field Ad etl f = etadf f Take
an arbitrary element ad f; o ---oad f. f € Lie F, fi, f € F. We have Ad(e!*/1 o
---oelfi)f e (AdP)F, thus

ak

—— | Ad tifi 4. .. tefe)F
qoatl"‘atk (e ° oe )f

0

k -~
—9° Bt ?._.8tk (enedfio . ogtadli)f
0

=qoadfio---oadfi f € span(qgo (AdP)F).

Now we consider a situation where inclusion (5.7) is strict.

Example 5.3. Let M = R*, F = {;2;, a(z')52:}, where the function a €
C*(R), a # 0, has a compact support.
It is easy to see that the orbit O, through any point z € R? is the whole

plane R2. Indeed, the family F U (—F) is completely controllable in the plane.

Given an initial point xo = (x},#3) and a terminal point #; = (x],2?), we can

steer o to x1: first we go from o by a field +5%+ to a point (#',23) with
a(z') # 0, then we go by a field +a(z') 52> to a point (&', 2?), and finally we
reach (z},2?) along +52+.

On the other hand, we have

1, z!¢suppa,
2, a(z')#£0.

That is, z o (AdP)F = T, R? # Lie, F if 2! ¢ suppa.

Although, such example is essentially non-analytic. In the analytic case,
inclusion (5.7) turns into equality. We prove this statement in the next section.

dim Lie(m1’z2) (.7:) = {

5.5 Analytic case

The set Vec M is not just a Lie algebra (i.e., a vector space close under the
operation of Lie bracket), but also a module over C*°(M): any vector field
V' € Vec M can be multiplied by a function a € C*° (M), and the resulting vector
field aV' € Vec M. If vector fields are considered as derivations of C*°(M), then
the product of a function a and a vector field V is the vector field

@b=a-(Vh), beC®M).

In local coordinates, each component of V' at a point ¢ € M is multiplied by

a(q)-
A submodule V C Vec M is called finitely generated over C* (M) if it has a
global basis of vector fields:

k
AVi,...,V&x € VecM such that V= {ZaiVi | a; € C’°°(M)}.

i=1
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Lemma 5.2. Let V C Vec M be a finitely generated submodule over C*°(M).
Assume that

(adX)V={(adX)V |V eV}CV
for a vector field X € Vec M. Then
Ade*y =V,
Proof. Let Vi,...,Vy be a basis of V. By the hypothesis of the lemma,

k
(X, Vi] = Z a;;Vj (5.8)

for some functions a;; € C°°(M). We have to prove that the vector fields
Vi(t) = (Ade"™)V; = "XV, teR,

can be expressed as a linear combination of the fields V; with coefficients from
C>(M).
We define an ODE for V;(¢):

k
Vz(t) — etadX[X, Vz] — etadX Zaijvj
j=1
k
= Z (etxaij) V}(t)
j=1

For a fixed ¢ € M, define the k x k matrix:
A(t) = (a’lj(t))7 al](t) = etXaij’ i: .] = 17 .. 7k'

Then we have a linear system of ODEs:
) k
Vi(t) = Y aii (t)V;(#). (5.9)
j=1

Find a fundamental matrix I' of this system:
L=A@r, T(0)=Id.
Since A(t) smoothly depends on ¢, then I' depends smoothly on ¢ as well:
L(t) = (v (1)), vii(t) € C¥(M), i, j=1,...,k, teR

Now solutions of the linear system (5.9) can be written as follows:
k
Vi(t) = > i (0)V;(0).
j=1

But V;(0) = V; are the generators of the module, and the required decomposition
of V;(t) along the generators is obtained. O
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A submodule V C Vec M is called locally finitely generated over C*° (M) if
any point ¢ € M has a neighborhood O C M in which the restriction F|, is
finitely generated over C*°(0), i.e., has a basis of vector fields.

Theorem 5.3. Let F C Vec M. Suppose that the module Lie F is locally finitely
generated over C®°(M). Then

T,04 = Lie, F,  a €0y (5.10)
for any orbit Oy, qo € M, of the family F.

We prove this theorem later, but now obtain from it the following conse-
quence.

Corollary 5.3. If M and F are real analytic, then equality (5.10) holds.
Proof. In the analytic case, LieF is locally finitely generated. Indeed, any

module generated by analytic vector fields is locally finitely generated. This is
No6therian property of the ring of germs of analytic functions. O

Now we prove Theorem 5.3.
Proof. By the Orbit Theorem,

T,0, = span{qud (fio.oe ) F| fi, fEF, theR, ke N} .
(5.11)

By definition of the Lie algebra Lie F,
(ad f)LieF C LieF VYV feF.

Apply Lemma 5.2 for the locally finitely generated C*°(M)-module V = Lie F.
We obtain

(Ade)LieF CLieF VYV feF.

That is why
Ad (etlf1 o:-:0 et’“f’“) f: Adel'f1o.. 0 Adet’“f’“fe Lie F
for any f;, fe F, ti, € R. In view of equality (5.11),
T40q, C Lieg F.
But the reverse inclusion (5.7) was already obtained. Thus T,0,, = Lie, F.

Another proof of the theorem can be obtained via local convergence of the
exponential series in the analytic case. O



5.6. FROBENIUS THEOREM 67

5.6 Frobenius Theorem

We apply the Orbit Theorem to obtain the classical Frobenius Theorem as a
corollary.

Definition 5.3. A distribution A C T'M on a smooth manifold M is a family of
linear subspaces A, C T, M smoothly depending on a point ¢ € M. Dimension
of the subspaces Ay, ¢ € M, is assumed constant.

Geometrically, at each point ¢ € M there is attached a space A, C T, M,
i.e., we have a field of tangent subspaces on M.

Definition 5.4. A distribution A on a manifold M is called integrable if for
any point ¢ € M there exists an immersed submanifold N, C M, ¢ € Ny, such
that

Tq/Nq:Aq/ Vq' € N,.

The submanifold N, is called an integral manifold of the distribution A through
the point g.

In other words, integrability of a distribution A C 7'M means that through
any point ¢ € M we can draw a submanifold IV, whose tangent spaces are
elements of the distribution A.

Remark. If dim A, = 1, then A is integrable by Theorem 1.2 on existence and
uniqueness of solutions of ODEs. Indeed, in a neighborhood of any point in M,
we can find a base of the distribution A, i.e., a vector field V' € Vec M such
that A, = span(V(q)), ¢ € M. Then trajectories of the ODE ¢ = V(q) are
one-dimensional submanifolds with tangent spaces A,.

But in the general case (dim A, > 1), a distribution A may be nonintegrable.
Indeed, consider the family of vector fields tangent to A:

A={VeVecM|V(g)eA, Vqge M}

Assume that the distribution A is integrable. Any vector field from the family A
is tangent to integral manifolds N, thus the orbit O, of the family A restricted
to a small enough neighborhood of ¢ is contained in the integral manifold IV,.
Moreover, since dim Oy > dim A, = dim Ny, then locally O, = N,: we can go in
N, in any direction along vector fields of the family A. By the Orbit Theorem,
T,0, D Lie, A, that is why

Lie, A = A,.

This means that
Vi,V € A YV Vi, Vo €A. (5.12)

Let dim A, = k. In a neighborhood Oy, of a point ¢y € M we can find a base
of the distribution A:

Ay =span(fi(q),..., fu(@)) V¥ aq€O.
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Then condition (5.12) reads as Frobenius condition:

k
(i fi1 =D cifi ¢y € CF(0y,). (5.13)
=1

We have shown that integrability of a distribution A implies Frobenius condition
for its base.
Conversely, if condition (5.13) holds in a neighborhood of any point ¢o € M,

then Lie(A) = A. Thus Lie(A) is a locally finitely generated module over
C*°(M). By Theorem 5.3,

T404, = Lieg A, q € Oy
So
T40q4, = Ay, q € O,
i.e., the orbit Oy is an integral manifold of A through go. We proved the

following proposition.

Theorem 5.4 (Frobenius). A distribution A C T M is integrable if and only
if Frobenius condition (5.13) holds for any base of A in a neighborhood of any
point qo € M.

Remarks. (1) In view of the Leibniz rule

[f,ag] = (fa)g+alf,g],  f, g€ VecM, a€C®(M),

Frobenius condition is independent on the choice of a base f1,... , fi: if it holds
in one base, then it also holds in any other base.

(2) One can prove analogously the generalized Frobenius theorem for “distribu-
tions with variable dim A,”. If we do not demand that dim A, is constant, then
Frobenius condition implies integrability; but dimension of integrable manifold-
s becomes, in general, different, although it stays constant along orbits of A.
This is a generalization of phase portraits of vector fields. Although, notice once
more that in general distributions with dim A, > 1 are nonintegrable.

5.7 State equivalence of control systems

In this section we consider one more application of the Orbit Theorem — to the
problem of equivalence of control systems (or families of vector fields).
Let U be an arbitrary index set. Consider two families of vector fields on
smooth manifolds M and N parametrized be the same set U:
fo=AfulueU} C VecM,
gu ={gu|u€e U} C VecN.

Take any pair of points g € M, yo € N, and assume that the families fy, g
are bracket-generating;:

Liey, fu = Ty M, Liey, gu = Ty, N.
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Definition 5.5. Families fy and gy are called locally state equivalent if there
exists a local diffeomorphism

®: 0y CM— 0Oy CN,
P Zo — Yo,

that transforms one family to another:
D fu=9gu Vuel.

Notation: (fu,zo) ~ (gu,Y0)-

Remark. Here we consider only smooth transformations of state z — y, while
the controls u do not change. That is why this kind of equivalence is called
state equivalence. We already studied state equivalence of nonlinear and linear
systems, both local and global, see Chapter 4.

Now, we first try to find necessary conditions for local equivalence of systems
fu and gy. Assume that

fu = gu.

By invariance of Lie bracket, we get

(}*[fulafuz] = [q)*fula(ﬁ*fuz] = [gu17gu2]) Uy, U2 € U)

i.e., relations between Lie brackets of vector fields of the equivalent families fi;
and gy must be preserved. We collect all relations between these Lie brackets
at one point: define the systems of tangent vectors

ful...uk = [fula[--- afuk] .

]( o)ETzOM,
Nuy..owe = [gula[ 7guk] ]

T
(yO) € TyoN'
Then we have

<I>*|m0 Cunoy = Mg ooug Uiy---,up €U, k€N

Now we can state a necessary condition for local equivalence of families fir
and gy in terms of the linear isomorphism

'I)*|I0 =A: TpyyM < Ty, N.
If fy ~ gy, then there exists a linear isomorphism
ATy, M & TyN

that maps the configuration of vectors {&y, ..., } to the configuration {ny, . ., }-
It turns out that in the analytic case this condition is sufficient. IL.e., in the
analytic case the combinations of partial derivatives of vector fields f,, u € U,
that enter {£,,.., }, form a complete system of state invariants of a family fir.
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Theorem 5.5. Let fy and gy be real analytic and bracket-generating families
of vector fields on real analytic manifolds M and N respectively. Let o € M,
Yo € N. Then (fu,zo) =~ (gu,yo0) if and only if there exists a linear isomorphism

A TpoM & Ty N
such that
Al e} =My oun Yug,...,up, €U, keN. (5.14)
Remark. If in addition M, N are simply connected and the fields fi7, gy are

complete, then we have the global equivalence.

Before proving Theorem 5.5, we reformulate condition (5.14) and provide a
method to check it.
Let a family fy be bracket-generating:

span{&u, ..u, | U1,...,ux €U, k€ N} =T, M.
We can choose a basis:
span(&a,,- .- ,&a,) = Tug M, a; = (Ug, ... ,ugi), t=1,...,n, (5.15)

and express all vectors in the configuration & through the base vectors:

gul...uk = ZCZI,,,ukfai- (516)

i=1

If there exists a linear isomorphism A : Ty M < T, N with (5.14), then the
vectors
Na; 1=1,...,n,

should form a basis of Ty, V:
Span(’?au--- 77751n) = TyoN7 (517)

and all vectors of the configuration n should be expressed through the base
vectors with the same coefficients as the configuration &, see (5.16):

n

77u1---uk = Zcitl...uknai' (5'18)

i=1

It is easy to see the converse implication: if we can choose bases in T, M
and Ty, N from the configurations ¢ and n as in (5.15) and (5.17) such that
decompositions (5.16) and (5.18) with the same coefficients ¢} . hold, then
there exists a linear isomorphism A with (5.14). Indeed, we define then the

isomorphism on the bases:

A &a, = Nay, 1=1,...,n.
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We can obtain one more reformulation via the following agreement. Con-
figurations {&u,..u,} and {nu,...,} are called equivalent if the sets of rela-
tions K(fy) and K(gy) between elements of these configurations coincide:
K(fu) = K(gu). We denote here by K(fy) the set of all systems of coeffi-
cients such that the corresponding linear combinations vanish:

Then Theorem 5.5 can be expressed in the following form.

Nagano Principle. All local information about bracket-generating families of
analytic vector fields is contained in Lie brackets.

Notice, although, that the configuration &,, . ., or the system of relation-
s K(fu) are, in general, immense and cannot be easily characterized. Thus
Nagano Principle cannot usually be applied directly to describe properties of
control systems, but it is an important guiding principle.

Now we prove Theorem 5.5.

Proof. Necessity was already shown. We prove sufficiency by reduction to the
Orbit Theorem. For this we construct an auxiliary system on the Cartesian
product

M x N ={(z,y) |z €M, ye N}

For vector fields f € Vec M, g € Vec N, define their direct product f x g €
Vec(M x N) as the derivation

(7 %)y = (G200 ) + (5200 ) (5.19)

so projection of f X g to M is f, and projection to N is g. Finally, we define
the direct product of systems fy and gy as

fo xgu ={fuxgu|ueU} C Vec(M x N).

We suppose that there exists a linear isomorphism A : Ty M < Ty, N that
maps the configuration £ to 1 as in (5.14), and construct the local equivalence
fu~gu.

In view of definition (5.19), Lie bracket in the family fy x gy is computed

as
[fur X Guys fus X Gus] = [furs fua] X [Gurs Gus]s uy, uy €U,
thus
[fu1 Xgun["' 7ka ngc]"'](x();yo)
= [fula["' 7fuk]"'](w0) X [gula["' 7gUk]"'](y0)

= ful...uk X 77u1...uk = é.ul...uk X Agul...ttka ula st 7U’k E U7 k e N
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That is why
dim Lie(zmyo)(fU X gu) = n,

where n = dim M. By the analytic version of the Orbit Theorem (Corollary 5.3)
for the family fy X gy C Vec(M x N), the orbit O of fy x gy through the point
(0, Yo) is an n-dimensional immersed submanifold (thus, locally a submanifold)
of M x N. The tangent space of the orbit is

szmyMC) = Span(&uulm X‘AguLuUk)
= span{v x Av | v € Ty, } C Tggyo)M x N = TypeM x Ty, N,

i.e., the graph of the linear isomorphism A. Consider the canonical projections
onto the factors:

m : M xN — M, m(z,y) =z,
m : M xN— N, m(z,y) = y.

The restrictions |y, 72|y are local diffeomorphisms since the differentials

Tl ooy © (1 AV) 20, v ET,M,

Tox : (v, Av) — Av, v €Ty M,

|(I07y0)

are one-to-one.
Now & = 73 0 (m1],) " is a local diffeomorphism from M to N with the

graph O, and

(}*:WQ*O(W”O):l : fu'_>gu7 UEU-

Consequently, (fu, 7o) =~ (gu, Yo)- O



Chapter 6

Rotations of the rigid body

In this chapter we consider rotations of a rigid body around a fixed point. That
is, we study motions of a body in the three-dimensional space such that:

e distances between all points in the body remain fixed (rigidity), and

e there is a point in the body that stays immovable during motion (fixed
point).

We consider both free motions (in the absence of external forces) and controlled
motions (when external forces are applied in order to bring the body to a desired
state).

Such system is a very simplified model of a satellite in the space rotating
around its center of mass.

For details about ODEs describing rotations of the rigid body, see [3].

6.1 State space

The state of the rigid body is determined by its position and velocity.

We fix an orthonormal frame attached to the body at the fixed point (the
moving frame), and an orthonormal frame attached to the ambient space at
the fixed point of the body (the fixed frame). The set of positions of the rigid
body is the set of all orthonormal frames in the three-dimensional space with
positive orientation. This set can be identified with SO(3), the group of linear
orthogonal orientation-preserving transformations of R?, or, equivalently, with
the group of 3 x 3 orthogonal unimodular matrices:

SOB) = {Q: K =R |(Qr,Qy) = (z,y), detQ =1}
= {Q B 5R|QQ =1d, detQ = 1}.

The mapping @ : R? — R3 transforms the moving frame to the fixed frame.

73
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Remark. We denote above the standard inner product in R® by (-,-). If a pair
of vectors =,y € R® have coordinates = = (z1,Z2,73), ¥ = (y1,¥Y2,¥3) in some
orthonormal frame, then (z,y) = z1y1 + T2y2 + T3y3.

Notice that the set of positions of the rigid body SO(3) is not a linear space,
but a nontrivial smooth manifold.

Now we describe velocities of the rigid body. Let Q: € SO(3) be position
of the body at a moment of time ¢. Since the operators Q; : R® — R?® are
orthogonal, then

(Qt'raQty) :(may)’ €T, yE]R?)a teR

We differentiate this equality w.r.t. ¢ and obtain

(Qez, Quy) + (Quz, Quy) = 0. (6.1)
The matrix )
O =Q; '
is called the angular velocity of the body in the moving frame. Since
Qr = Qi

then equality (6.1) reads
(QeQz, Qry) + (Qrz, Q1 Qry) = 0,
whence by orthogonality
(Qz,y) + (z,Qy) =0,

ie.,

QF = —Qy,
the matrix € is antisymmetric. So velocities of the rigid body have the form
Qt = Qi Q; = -
In other words, we found the tangent space
ToSO(3) ={Q | Q" = -0}, Q € SO(3).

The space of antisymmetric 3 x 3 matrices is denoted by so(3), it is the tangent
space to SO(3) at the identity:

50(3) = {0 : B > B | Q" = —Q} = T1q SO(3).

The space so(3) is the Lie algebra of the Lie group SO(3).
To each antisymmetric matrix 0 € so(3), we associate a vector w € R?:

0 —Ws3 W w1
O~ W, 0= W3 0 —W1 5 w = W2 - (62)
—Ws w1 0 w3
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Then the action of the operator 2 on a vector x € R® can be represented via
the cross product in R3:

Qr =w X x, z € R

Let = be a point in the rigid body. Then its position in the ambient space R? is
Q:x. Further, velocity of this point is

Qtw = Qtﬂtl’ = Qt(wt X :L‘)

wy is the vector of angular velocity of the point = in the moving frame: if we fix
the moving frame @); at one moment of time ¢, then the instantaneous velocity
of the point z at the moment of time ¢ in the moving frame is Q;thm =Wz =
wy X z, i.e., the point x rotates around the line through w; with the angular
velocity [|wel|-

Introduce the following scalar product of matrices © = (£2;;) € so(3):

(QI,QZ> _ _2 QlQQ Z Ql QZ Zﬂl QZ
t,j=1 1<j

This product is compatible with identification of 3 x 3 antisymmetric matrices
and 3-dimensional vectors (6.2):

(@8, 9%) = ('),
O ~ Wi, Q' eso(3), weR, i=1,2
Moreover, this product is invariant in the following sense:
(AdQ)Q', (AdQ)Q?) = (01,02, Q €S0(3), Q' Q?€s0(3), (6.3)
ie, AdQ@ : so(3) = so(3) is an orthogonal transformation w.r.t. (-,-). Indeed:
tr((Ad Q)2 (Ad Q)0?) = tr(QQIQT'QN2Q ™) = (QQ2Q ) = (1 0?)

by invariance of trace.
Now we derive the infinitesimal version of invariance (6.3). Take an arbitrary
Q € s0(3) and consider a smooth curve ; € SO(3) that starts from identity
with the velocity 2: )
Qo =, Qo =1d.

Then

d
L AdQ; =adQ
dto th ad )

and differentiation of (6.3) w.r.t. ¢ at ¢ = 0 yields the equality:
((ad Q)Q4, Q%) + (Q, (ad Q)Q?) = 0, Q, O Q2 € 50(3),

ie, ad : so(3) — so(3) is antisymmetric w.r.t. {-,-).
Equality (6.4) can be rewritten in terms of cross product:

(wx whw?) + (Whw xw?) =0, w, whw? e R3, (6.4)
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6.2 Euler equations

We derive equations of motion of the rigid body from the least action principle.

Let the distribution of mass in the rigid body have density p(z), where
p : R® = R, is an integrable nonnegative function with compact support. Let
Q: € SO(3) be position and Q; € so(3) angular velocity of the body so that

Qr = Q. (6.5)

Take a point z in the body. Then position of this point in the ambient space is
Q:x, and velocity of this point is Q.. Distribution of the kinetic energy in the
body has density %p(m)(th, th), thus the total kinetic energy of the body at
a moment of time ¢ is

J(Q) = 1/]Rg p(2)(QeQsx, Q:yx) do = %/ p(x)(Qex, W) dr,

2 .

i.e., a quadratic form j = j(€;) on the space so(3). The corresponding bilinear
form can be written as

/ p(x)(Qrz, O%z) de = (AQ', Q?), O, 0% €50(3)
R3

for some linear symmetric positive definite operator
A : s0(3) = so(3), A=A4">0,

called inertia tensor of the rigid body. Finally, the functional of action has the
form

b 1 [t
J(Q.)z/0 §(Q) dt = 5/0 (AQy, Q) dt,

where 0 and ¢; are the initial and terminal moments of motion.

Let Qo and @y, be the initial and terminal positions of the moving body.
By the least action principle, the motion Q¢, ¢t € [0,¢1], of the body should be
an extremal of the following problem:

J(2.) = min,

Qr = QY Qo, Q4 fixed. (6.6)

We find these extremals.
Let Q; be angular velocity along the reference trajectory Q¢, then

t1
Qo' o Qi =exp Qy dt.
0

Consider an arbitrary small perturbation of the angular velocity:

O +eUs + O(e%), e—0.
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In order that such perturbation was admissible, the starting point and endpoint
of the corresponding trajectory should not depend on e:

t1
Qal OQtl :er)/ (Qt +5Ut+0(82)) dt,
0

thus

t1
exp [ (Q+elU+0(?) dt. (6.7

e=0 0

0

0
— —1 —
0=5_| @ °Qu=5-

e=0

By formula (2.26) of derivative of a flow w.r.t. parameter, the right-hand side
above is equal to

t1 t t1
/ Ad(@/mm)mdtoeﬁ O dt
0 0 0
t1
:/ Ad (Q7' 0 Q) Urdt 0 Q51 0 Qy,
0

t1
:Qal AthUt dtOQtl.
0
Taking into account (6.7), we obtain

t1

AdQ.U; dt = 0.
0

Denote
t
v, = / AdQ, U, dr, (6.8)
0

then admissibility condition of a variation U; takes the form
Vo=V, =0. (6.9)

Now we find extremals of problem (6.6).

9 t
0= 52| s :/0 (AQ,, U,) dt
by (6.3)
_ /tl (A Q) AR, (Ad Q)U,) dt
0
by (6.8)

t1
- /0 (Ad Q) A, Vi) di
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integrating by parts with the admissibility condition (6.9)

t1
_ _/0 <%(Ath)AQt,V;> dt.

So the previous integral vanishes for any admissible operator V;, thus

d
E(Ad Q:)AQ =0, t € [0,t1].
Hence )
Ad Qt([ﬂt; AQt] + AQt) = 0, t e [O,tl],
that is why

AQ = [AQ,Q,), te[0,t]. (6.10)
Introduce the operator
Mt == AQt,

called kinetic momentum of the body, and denote
B=A"1

We combine equations (6.10), (6.5) and come to Euler equations of rotations of
a free rigid body:

{ Mt = [Mt,BMt], Mt S 50(3),
Qt = QeBM;, Q: € SO(3).

Remark. The presented way to derive Euler equations can be applied to the
curves on the group SO(n) of orthogonal orientation-preserving n x n matrices
with an arbitrary n > 0. Then we come to equations of rotations of a generalized
n-dimensional rigid body.

Now we rewrite Euler equations via isomorphism (6.2) of so(3) and R, which
is essentially 3-dimensional and does not generalize to higher dimensions. Recall
that for an antisymmetric matrix

0 —pz e
M= 143 0 —p1 | €s0(3),
—p2 0

the corresponding vector p € R? is

151
p=1{ p2 |, M ~ p.
H3

Now Euler equations read as follows:

{ fu = pe X B, e € B,
Qr = Q¢ B, Q: € SO(3),
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where 8 : B3 — R® and B : R® — so(3) are the operators corresponding to
B : s0(3) — so(3) via the isomorphism so(3) <> R® (6.2).

Eigenvectors of the symmetric positive definite operator 3 : R® — R® are
called principal axes of inertia of the rigid body. In the sequel we assume that
the rigid body is asymmetric, i.e., the operator g has 3 distinct eigenvalues
A1, A2, A3. We order the eigenvalues of 3:

AL > Ao >)\3,

and choose an orthonormal frame e, e, e3 of the corresponding eigenvectors,
i.e., principal axes of inertia. In the basis ey, es, e3, the operator § is diagonal:

M1 Al M1
Bl w2 | =] Xap2 |,
"3 /\3u3

and the equation ji; = py X S reads as follows:

fu = (As = A2)paps,
frz = (A1 — As)paps, (6.11)
fr3 = (A2 — A )pa o

6.3 Phase portrait

Now we draw the phase portrait of the first of Euler equations:
it = pe X B, pe € R?. (6.12)
This equation has two integrals: energy
(¢, 1) = const

and moment of momentum

(e, Bug) = const .

Indeed:
d
E(Mt,l«tt) = 2(pt X B, ) = —2(Bpt, pe X pae) = 0,
d
E(Utaﬂﬂt) = (e X Bpae, Bue) + (pae, Bpe X Bpae)) = 2(pe X B, Biae)

= —2(put, Bpe x Bue) =0

by the invariance property (6.4) and symmetry of 3.
So all trajectories p; of equation (6.12) satisfy the restrictions

2 2 2 _ ¢
{,Ul + p3 + p3 = const, (6.13)

ALi + Aops + Azp3 = const,
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i.e., belong to intersection of spheres with ellipsoids. Moreover, since ODE (6.12)
is homogeneous, we draw its trajectories on one sphere — the unit sphere

o+ s+ ey =1, (6.14)

and all other trajectories are obtained by homotheties.
First of all, intersections of the unit sphere with the principal axes of inertia,
i.e., the points
:i:el, :|:62, :*:63

are equilibria, and there are no other equilibria, see equations (6.11).

Further, the equilibria +e;, +e3 corresponding to the maximal and minimal
eigenvalues A1, A3 are stable, more precisely, they are centers, and the equilibria
+es, corresponding to A, are instable — saddles. This is obvious from the
geometry of intersections of the unit sphere with ellipsoids

M3+ Aol + Agpi = C.

Indeed, for C < A3 the ellipsoids are inside the sphere and do not intersect
it. For C' = A3, the ellipsoid touches the unit sphere from inside at the points
+e3. Further, for C > A3 and close to A3, the ellipsoids intersect the unit
sphere by 2 closed curves surrounding es and —es respectively. The behavior
of intersections is similar in the neighborhood of C' = A;. If C' > A, then the
ellipsoids are big enough and do not intersect the unit sphere; for C' = A;, the
small semiaxis of the ellipsoid becomes equal to radius of the sphere, so the
ellipsoid touches the sphere from outside at £eq; and for C < Ay and close to
A1 the intersection consists of 2 closed curves surrounding +e;. If C' = Ag, then
the ellipsoid touches the sphere at the endpoints of the medium semiaxes +es,
and in the neighborhood of each point ez, —es, the intersection consists of four
separatrix branches tending to this point. Equations for the separatrices are
derived from the system

(i +ps 4+ g =1,
AT + Aapis + A3z = Ao

We multiply the first equation by As and subtract it from the second equation:
(A = A2)pf = (Ao = Ag)p3 = 0.
Thus the separatrices belong to intersection of the unit sphere with two planes

M S {(pr, o, p3) € B | VA = ha pir = /A0 — A3 pis ),
thus they are arcs of great circles.

It turns out that separatrices are the only planar curves (i.e., curves be-
longing to intersection of the unit sphere with affine planes in R®) in the phase
portrait of Euler equation (6.12) on the sphere. Moreover, all other trajectories
(excluding equilibria) satisfy the following condition:

pE e, pgRe; = pApAj#0. (6.15)
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Indeed, take any trajectory p; on the unit sphere. All trajectories homothetic
to the chosen one form a cone of the form

C(pi + 13 + 13) = A i + Aoty + Asp3, Az S C < A (6.16)

But a second-order cone in R? is either degenerate or elliptic. The conditions
p Iy, pu ¢ Re; mean that C' # A, i = 1,2,3, i.e., cone (6.16) is elliptic and
not circular, thus strongly convex. Thus inequality (6.15) follows.

In view of ODE (6.12), the convexity condition (6.15) for the cone generated
by the curve is rewritten as follows:

pE e d Rey = A (e B) A ((px Br) x B+ p x B x Bp)) #(2-17)

The planar separatrix curves in the phase portrait are regular curves on the
sphere, hence
well, u¢ Reo = puAp#0,
or, by ODE (6.12),

p €y, u ¢ Rey = A (ux ) #0. (6.18)

6.4 Controlled rigid body: orbits.

Assume that we can control rotations of the rigid body by applying a torque
along a line that is fixed in the body. We can change the direction of torque to
the opposite one in any moment of time.

Then the control system for the angular velocity is written as

[t = e X Bpe £ 1, e € R, (6.19)
and the whole control system for the controlled rigid body is
{ l'{t:lltiﬂlltila pe € R3, (6.20)
Qt = QtBpe, Q: € SO(3), .

where [ # 0 is a fixed vector along the chosen line.
Now we describe orbits and attainable sets of the 6-dimensional control sys-
tem (6.20). But before that we study orbits of the 3-dimensional system (6.19).

6.4.1 Orbits of the 3-dimensional system

System (6.19) is analytic, thus dimension of the orbit through a point u € R3
coincides with dimension of the space

Liey (% Bpu£1) = Lie,(u x Bp,1).
Denote the vector fields:

flw) =pxBp,  glp) =1,
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and compute several Lie brackets:

[9, fl() = %g(u) - Z—Z (1) =1x Bu+px pl,
(9,9, [ll(p) =1 x Bl +1x Bl =2l x B,

Lo, 1, 71l g, 7l =1 (X B1) + (1 x 1) x .

We apply (6.17) with I = p and obtain that three constant vector fields g, [g, f],
g, 19, f1l, g, f]] are linearly independent:

9(0) A 5l 7100) A 5119. T, 71 o, £
= IALxBIA((Ix Bl x BlL+1x B x Bl)) #0

ifl ¢ Ily, ¢ Re;.
We obtain the following statement for the generic

Case 1. [ ¢ 11, | ¢ Re;.

Proposition 6.1. Assume that | ¢ Iy, | ¢ Re;. Then Lie,(f,g) = R® for any
p € R3. System (6.19) has one 3-dimensional orbit, R3.

Now consider special dispositions of the vector [.

Case 2. Let ! € II;, | ¢ Rey. Since the plane II; is invariant for the free
body (6.12) and [ € II;, then the plane Il is also invariant for the controlled
body (6.19), i.e., the orbit through any point of II is contained in II;. On the
other hand, implication (6.18) yields

LA (I x Bl) # 0.

But the vectors [ = g(u) and I x Bl = %[g,[9g, f]](1) form a basis of the plane
I, thus II; is in the orbit through any point u € II. Consequently, the plane
I, is an orbit of (6.19). If an initial point po ¢ II;, then the trajectory pu:
of (6.19) through pg is not flat, thus

(e X Bue) NUA (1% BL) # 0.

So the orbit through pg is 3-dimensional. We proved the following statement.

Proposition 6.2. Assume that | € I} \ Res. Then system (6.19) has one
2-dimensional orbit, the plane 11}, and two 3-dimensional orbits, connected
components of R3 \ IL,..

The case I € TI_ \ Res is completely analogous, and there holds a similar
proposition with I, replaced by II_.

Case 3. Now let [ € Re; \ {0}, i.e., I = cey, ¢ # 0. First of all, the line Re; is
an orbit. Indeed, if u € Rey, then f(u) =0, and g(u) =1 is also tangent to the
line Re; .
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To find other orbits, we construct an integral of the control system (6.19)
from two integrals (6.13) of the free body. Since g(p) =1 = ce1, we seek for a
linear combination of the integrals in (6.13) that does not depend on p;. We
multiply the first integral by A1, subtract from it the second integral and obtain
an integral for the controlled rigid body:

(A = A)pz + (M = A3)pz = C. (6.21)

Since A; > A2 > As, this is an elliptic cylinder in R3.

So each orbit of (6.19) is contained in a cylinder (6.21). On the other hand,
the orbit through any point py € R? \ Re; must be at least 2-dimensional.
Indeed, if 1o ¢ Rea, Res, then the free body has trajectories not tangent to
the field g; and if uy € Res or Reg, this can be achieved by a small translation
of po along the field g. Thus all orbits outside of the line Re; are elliptic
cylinders (6.21).

Proposition 6.3. Letl € Rey \ {0}. Then all orbits of system (6.19) have the
form (6.21): there is one 1-dimensional orbit — the line Re; (C = 0), and an
infinite number of 2-dimensional orbits — elliptic cylinders (6.21) with C > 0.

The case | € Rez \ {0} is completely analogous to the previous one.

Proposition 6.4. Let! € Rez\ {0}. Then system (6.19) has one 1-dimensional
orbit — the line Res, and an infinite number of 2-dimensional orbits — elliptic
cylinders

(A1 = Xa)pi + (Ao — Ag)ps = C, ¢ >0.

Case 4. Finally, consider the most complicated case: let [ € Res \ {0}. As
above, we obtain an integral of control system (6.19):

(M= A)pf — (Ao = A3)pz = C. (6.22)

If C # 0, this equation determines a hyperbolic cylinder. By an argument
similar to that used in Case 3, we obtain the following description of orbits.

Proposition 6.5. Let [ € Rey \ {0}. Then there is one 1-dimensional orbit —
the line Res, and an infinite number of 2-dimensional orbits of the following
form:

(1) connected components of hyperbolic cylinders (6.22) for C # 0;
(2) half-planes — connected components of the set (Il UIL_) \ Re.
So we considered all possible dispositions of the vector [ € R® \ {0}, and

in all cases described orbits of the 3-dimensional system (6.19). Now we study
orbits of the full 6-dimensional system (6.20).
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6.4.2 Orbits of the 6-dimensional system
The vector fields in the right-hand side of the 6-dimensional system (6.20) are

rew=( 2% ). sew=(1).  @mwesox=.

Notice the commutation rule for vector fields of the form that appear in our
problem:

~

@ = (90900 ) € Veo(s0(3) x ),

i(1)
Q[Ewl, sz]so@) + QE (8 e w Uz)

ont " ou
[fl:f?](Q:/J’):
ovy - Ou,
o ! ou 2

We compute first the same Lie brackets as in the 3-dimensional case:

_ QB
- 11= ( X Bu+ px Bl )

1 0

§[ga[gaf]]:<lx/8l>’

) 0
Sllg:lg, Il lg, fl1 = < I x B x Bl) + (I x Bl) x Bl ) '

Further, for any vector field X € Vec(SO(3) x R?) of the form

X = ( 2 ) , x — a constant vector field on R?, (6.23)

we have
X, f]= ( Qfx ) (6.24)

To study the orbit of the 6-dimensional system (6.20) through a point
(Q,p) € SO(3) x R3, we follow the different cases for the 3-dimensional sys-
tem (6.19) in Subsec. 6.4.1.

Case 1. 1 ¢TI, | ¢ Re;. We can choose 3 linearly independent vector fields
in Lie(f, g) of the form (6.23):

1

Y=g, X=3l0lefl X =390 /L0 )

By the commutation rule (6.24), we have 6 linearly independent vectors in
Lieq,u (£, 9):

X1 A Xy AXs A Xy, f]A[Xo, fIA[Xs, f] £ 0.
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Thus the orbit through (Q, 1) is 6-dimensional.
Case 2. 1 € II1 \ Res.

Case 2.1. p ¢ II. First of all, Lie(f, g) contains 2 linearly independent
vector fields of the form (6.23):

Xlzg) XZZE[ga[g)f]]

2
Since the trajectory of the free body in R? through p is not flat, we can assume
that the vector v = p x S is linearly independent of [ and I x $I. Now our aim
is to show that Lie(f, g) contains 2 vector fields of the form

Y1:<QM1>, Y2:<QM2>, My A M #0, (6.25)

U1 V2

where the vector fields v; and vs vanish at the point p. If this is the case, then
Lie(g,u)(f,g) contains 6 linearly independent vectors:

X1(Q,p), X2(Q,p),  f(Q,m),
n@m={( %" ). new=( %",

vl = (P )

and the orbit through the point (@, 1) is 6-dimensional.

Now we construct 2 vector fields of the form (6.25) in Lie(f,g). Taking
appropriate linear combinations with the fields X7, X5, we project the second
component of the fields [g, f] and %[f, [9,[g, f]] to the line Rv, thus we obtain
the vector fields

( QB ) ’ ( QB( % BI) ) € Lie(f, g). (6.26)

kl’U kz’U

If both k; and ko vanish at u, these vector fields can be taken as Y7, Y5 in (6.25).
And if k; or k2 does not vanish at p, we construct such vector fields Y7, Y5 taking
appropriate linear combinations of fields (6.26) and f with the fields g, [g, [g, f]]-
So in Case 2.1 the orbit is 6-dimensional.
Case 2.2. p € 1. There are 5 linearly independent vectors in Lie(g ) (f, 9):

1
X1 =y, X2:§[ga[g>f]]7 [Xlaf]v [X27f]7 [[Xlaf]v[X2>f]]
Since the orbit in R?® is 2-dimensional, the orbit in SO(3) x R?® is 5-dimensional.
Case 3. [ € Re; \ {0}.
Case 3.1. u ¢ Re;. The argument is similar to that of Case 2.1. We can
assume that the vectors [ and v = u x Bu are linearly independent. The orbit
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in R? is 2-dimensional and the vectors I, v span the tangent space to this orbit,
thus we can find vector fields in Lie(f, g) of the form:

lflz[gaf]_clg_CZf: ( Qﬂl+§3QBM>)

Y, = [Ylaf] — < Q[ELBU]J‘ C4QB\U )

for some real functions C;, ¢ = 1,... ,4. Then we have 5 linearly independent
vectors in Liecg ) (f, 9):

g, f7 }/17 Y27 [}/7173/2]

So the orbit of the 6-dimensional system (6.20) is 5-dimensional (it cannot have
dimension 6 since the 3-dimensional system (6.19) has a 2-dimensional orbit).
Case 3.2. u € Re;. The vectors

f(Q,u)=<Q§“), [g,f](Q,u)=<Q§l>,

are linearly dependent, thus dim Lie(g ,(f,g) = dim span(f, g)|(Q,u) = 2. So
the orbit is 2-dimensional.

The cases | € Re; \ {0}, i = 1,2, are similar to Case 3.

We completed the study of orbits of the controlled rigid body (6.20) and
now summarize it.

Proposition 6.6. Let (Q,u) be a point in SO(3) x R®. If the orbit O of the
3-dimensional system (6.19) through the point u is 3- or 2-dimensional, then the
orbit of the 6-dimensional system (6.20) through the point (Q, ) is SO(3) x O,
i.e., respectively 6- or 5-dimensional. If dim O = 1, then the 6-dimensional
system has a 2-dimensional orbit.

We will describe attainable sets of this system in Section 7.3 after acquiring
some general facts on attainable sets.



Chapter 7

Attainable sets

Let M be a smooth manifold and F C Vec M a bracket-generating family of
vector fields on M:

Lie, F=T,M ¥V qe M. (7.1)

If a family F C Vec M is not bracket-generating, and M and F are real analytic,
we can pass from F to a bracket-generating family F|.,, where O is an orbit of
F (see the analytic version of the Orbit Theorem, Corollary 5.3). Thus in the
analytic case requirement (7.1) is not restrictive in essence.

7.1 Krener’s theorem

The following proposition describes important properties of attainable sets Ay,
qo € M, for arbitrary nonnegative time.

Theorem 7.1 (Krener). Let F C Vec M be a bracket-generating system. Then
Ago Cint Ay, for any qo € M.

Remark. In particular, attainable sets for arbitrary time have nonempty interi-
or:

int Ag, # 0.
Attainable sets may be:
e open sets,
e manifolds with smooth boundary,
e manifolds with boundary having singularities (corner or cuspidal points).

One can easily construct control systems (e.g. in the plane) that realize these
possibilities.

On the other hand, Krener’s theorem prohibits an attainable set 4,4, of a
bracket-generating family to be:

87
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e a lower-dimensional subset of M,
e 3 set where boundary points are isolated from interior points.
Now we prove Krener’s theorem.
Proof. Fix an arbitrary point go € M and take a point ¢’ € A,,. We show that
q' € int Ag,. (7.2)

(1) There exists a vector field f; € F such that fi(¢') # 0, otherwise Liey (F) =
0 and dim M = 0. The curve

51+ ¢ oestf1, 51 € (0,¢) (7.3)

is a 1-dimensional submanifold of M for small enough £ > 0.
If dim M = 1, then ¢’ o e®tft € int A,, for sufficiently small s; > 0, and
inclusion (7.2) follows.

(2) Assume that dim M > 1. Then arbitrarily close to ¢’ we can find a point
g1 on curve (7.3) and a field fo € F such that f2(q1) is not tangent to mani-
fold (7.3):

¢ =q oehtft, t7 sufficiently small,

(@10 f1) Aqre f2) #0,
otherwise dim Lie; F = 1 for ¢ on curve (7.3) with small s;. Then the mapping

(s1,52) — ¢ o et oes2f2, (7.4)

(81,82) EO(t%,O), 51 >0, s0 >0,
is an immersion in a small neighborhood O(t},0) C RZ ,,, thus its image is a
2-dimensional submanifold of M.
If dim M = 2, inclusion (7.2) is proved.

(3) Assume that dim M > 2. We can find a vector f3(q), f3 € F, not tangent to
surface (7.4) sufficiently close to ¢': there exist t3,#2 > 0 and f3 € F such that
the vector field f3 is not tangent to surface (7.4) at a point go = ¢’ o et2/1 o etaf2,
Otherwise the family F is not bracket-generating.

The mapping

(81,82,83) N ql o 681f1 o eSzfz o esafa’

(81782)33) EO(t%)t%)O)a $;>0,i=1,23,
is an immersion in a small neighborhood O(t1,¢3,0) C RS ., thus its image
is a smooth 3-dimensional submanifold of M.

If dim M = 3, inclusion (7.2) follows. Otherwise we continue this procedure.
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(4) For dim M = n, inductively, we find (tL_,,#2_,,... ,#"7]) e R 1 1 | >
0, such that the mapping

(51,...,8n) = ¢ 0esT1 o oesnin

(51; R ;Sn) € O(titht%zfl: e 7tz:%)0)7

is an immersion. The image of this immersion is an n-dimensional submanifold
of M, thus an open set. This open set is contained in A, and can be chosen
as close to the point ¢’ as we wish. Inclusion (7.2) is proved, and the theorem
follows. O

We obtain the following proposition from Krener’s theorem.

Corollary 7.1. Let F C Vec M be a bracket-generating system. If Ay (F) = M
for some qo € M, then Ay (F) = M.

Proof. Take an arbitrary point ¢ € M. We show that ¢ € Ay (F).
Consider the system

- F={-V|VeF}CVecM.
This system is bracket-generating, thus by Theorem 7.1
A (=F) Cint Ay (—F) Vg e M.

Take any point ¢ € int A,(—F) and a neighborhood of this point Oz C A4 (—F).
Since Ay, (F) is dense in M, then

Ay (F)N Oz # 0.
That is why Ay, (F) N A (=F) # 0, i.e., there exists a point
q € Ay (F)N Ay(—F)
Thus the point ¢’ can be represented as follows:
¢ =qoeNooek  fieF, 4 >0,
¢ =qoe 9 0.0 9, gi € F, 5; > 0.

We multiply both decompositions from the right by %9 o --- 019 and obtain
g=qopo elitfi g .. 0etkfk gesi9lio... 0 es191 je., q€ Aqo(]:)' 0

The sense of the previous proposition is that in the study of controllability,
we can replace the attainable set of a bracket-generating system by its closure.
Further, now we try to add new vector fields to a system so that the closure of
its attainable set do not change.

Definition 7.1. A vector field f € Vec M is called compatible with a system
F C Vec M if

A (FU f) C Ay(F) Vg € M.
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Easy compatibility condition is given by the following statement.

Proposition 7.1. Let F C Vec M. For any vector fields fi, fo € F, and any
functions ai,as € C®°(M), a1,as > 0, the vector field ay f1 + as fo is compatible
with F.

In view of Corollary 5.2, the following proposition holds.

Corollary 7.2. If F C VecM is a bracket-generating system such that the
positive convex cone generated by F

k
cone(F) = {Zaifi | fi e F, a; € C°(M), a; >0, kEN} C Vec M

i=1
1s symmetric, then F is controllable.
Proposition 7.1 is a corollary of the following general and strong statement.

Theorem 7.2. Let X,;,Y;, 7 € [0,t1], be nonautonomous vector fields, which
are bounded w.r.t. T and have a compact support. Let 0 < a(r) < 1 be a
measurable function. Then there exists a sequence of nonautonomous vector
fields Z € {X;,Y;}, i.e., Z' = X, or Y, for any T and n, such that the flow

t t
exp / Zrdr — exp / (a(r)X; + (1 — a(r))Y;) dr, n — 00,
0 0

uniformly w.r.t. (t,q) € [0,t1] x M and uniformly with all derivatives w.r.t.
qgEM.

Now Proposition 7.1 follows: in the case a;(x) + az(z) = 1 it is a corollary
of Theorem 7.2, for the case a1 (), as(x) > 0 we generalize by multiplication of
control parameters by arbitrary positive function (this does not change attain-
able set for all nonnegative times), and the case a;(z),az(z) > 0 is obtained by
passage to limit.

Theorem 7.2 follows from the next two lemmas.

Lemma 7.1. Under conditions of Theorem 7.2, there exists a sequence of non-
autonomous vector fields Z7 € {X.,Y:} such that

/ Zn dr —>/ (1) Xs + (1 — a(r)Y,) dr
0 0

uniformly w.r.t. (t,q) € [0,t1] x M and uniformly with all derivatives w.r.t.
qgEM.

Proof. Fix an arbitrary positive integer n € N. We can choose a covering of the
segment [0, ¢1] by subsets

N
[0, tl] = U Et
i=1
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such that

1 1

Vi=1,...,N3X;,Y; € VecM st [|X;—Xillern <=, [|¥Y:=Yilecn < —.
n

n
Indeed, the fields X,, Y, are bounded in C™t!-topology, thus they form a
precompact set in C"-topology.

Then divide E; into n subsets of equal measure:

1 ..
Ei:U?ZIEij, |E’”|:E|Ez|’ Z,]ZI,... , .
In each E;; pick a subset Fj; so that
Fi'CEi]‘, |Fl]|:/ a(T)dT.
E

ij

Finally, define the following vector field:

mn X‘r; TE Fij:
T Y., TEEU\FZ']‘.
Then the sequence of vector fields Z is the required one. O

Now we prove the second part of Theorem 7.2.

Lemma 7.2. Let Z", n = 1,2,..., and Z,, 7 € [0,t1], be nonautonomous
vector fields on M, bounded w.r.t. T, and let these vector fields have a compact
support. If
t t
/Zde—)/ZTdT, n — oo,
0 0
then

t t
e?f)/Zde—)er)/ZTdT, n — 0o,
0 0

the both convergences being uniform w.r.t. (t,q) € [0,t1] X M and uniform with
all derivatives w.r.t. ¢ € M.

Proof. (1) First we prove the statement for the case Z, = 0. Denote the flow

t
Pl =éxp / ZMdr.
0
Then

t
Pt”:Id+/ ProZMdr
0

integrating by parts

t t T
=I1d+F] O/ Zrdr — / <Pf oZ" O/ Zy d0> dr.
0 0 0
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t
Since / Z%dr — 0, the last two terms above tend to zero, thus
0

P — 1d,

and the statement of the lemma in the case Z, = 0 is proved.

(2) Now we consider the general case. Decompose vector fields in the sequence
as follows:

¢
It =Z, + V", / Vidr — 0, n — 00.
0

t
Denote P* = exp / V! dr. From the variations formula, we have
0

t t t
e?p/ Zﬁdfze?p/ (V" + 2,) dT:e?p/ AdP? Z, dro PP,
0 0 0

Since P* — Id by part (1) of this proof and thus Ad P* — Id, we obtain the
required convergence:

t t
e;f)/ Zde—>e¥f)/ Z.dr.
0 0

So we proved Theorem 7.2 and thus Proposition 7.1.

7.2 Poisson stability and compatibility of vector
fields

Now we return to the study of controllability.

Definition 7.2. Let f € Vec M be a complete vector field. A point ¢ € M is
called Poisson stable for f if for any ¢t > 0 and any neighborhood O, of ¢ there

exists a point ¢’ € O, and a time ' > ¢ such that ¢’ o e*'/ € O,.

In other words, all trajectories cannot leave a neighborhood of a Poisson sta-
ble point forever, some of them must return to this neighborhood for arbitrarily
large times.

Remark. If a trajectory q o e/ is periodic, then ¢ is Poisson stable for f.

Definition 7.3. A complete vector field f € Vec M is Poisson stable if all
points of M are Poisson stable for f.

The condition of Poisson stability seems to be rather restrictive, but never-
theless there are surprisingly many Poisson stable vector fields in applications,
see Poincaré’s theorem below.

But first we prove a consequence of Poisson stability for controllability.
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Proposition 7.2. Let F C Vec M be a bracket-generating system. If a vector
field f € F is Poisson stable, then the field — f is compatible with F.

Proof. Choose an arbitrary point g € M and a moment of time ¢ > 0. To prove
the statement, we should approximate the point gy o e~ */ by reachable points.
Since F is bracket-generating, we can choose an open set W C int Ay, (F)
arbitrarily close to gy. Then the set W o e tf is close enough to g o e */.
By Poisson stability, there exists ¢’ > ¢ such that

O£ (Woe ') o' TAWoe tf =Woel =0/ AW oe /.
But W o e 9/ ¢ A, (F), thus
Ay (FYNWoe t £,

So in any neighborhood of gyoe~*/ there are points of the attainable set A,, (F),

ie, goe N € Ay (F). O

Theorem 7.3 (Poincaré). Let M be a smooth manifold with a volume form
Vol. Let a vector field f € Vec M be complete and its flow !’ preserve volume.
Let W C M, W Cint W, be a subset of finite volume, invariant for f:

Vol(W) < oo, Woellf cW Vit>0.
Then all points of W are Poisson stable for f.

Proof. Take any point ¢ € W and any its neighborhood O C M of finite volume.
The set V' = WNO contains an open nonempty subset int W NO, thus Vol(V') >
0. In order to prove the theorem, we show that

Voel/ NV #£0 for some large t'.
Fix any ¢ > 0. Then all sets
Voet! n=20,1,2,...,
have the same positive volume, thus they cannot be disjoint. Indeed, if
Voe nVoe™ =¢  VYn, m=0,1,2,...,

then Vol(W) = oo since all these sets are contained in . Consequently, there
exist nonnegative integers n > m such that

Voe NV oe™f £,
We multiply this inequality by e~/ from the right and obtain
Voem=mtiny £,

Thus the point ¢ is Poisson stable for f. Since ¢ € W is arbitrary, the theorem
follows. O
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A vector field that preserves volume is called conservative.
Remark. Recall that on M = R* = {(21,...,7,)}, a flow €'/ is conservative,
i.e., preserves the standard volume Vol(V') = fv dzy ... dz, iff the field f =
Sy fizs- is divergence-free:

divmf:i:%:().

0 x;
i=1 v

7.3 Controlled rigid body: attainable sets

We apply preceding general results on controllability to the control system that
governs rotations of the rigid body, see (6.20):

<§>=f(62,u)ig(@,u), f=</ﬁ<3gu>’ 92(?)’ (7.5)

(Q,n) € SO(3) x R*.

The vector field f = %(f +9)+ %(f — g) is compatible with system (7.5).

We show now that the field f is Poisson stable on SO(3) x R3.

Counsider first the vector field f(@Q, u) on the larger space ]R9Q X ]Ri, where ]R9Q
is the space of all 3 x 3 matrices. Since div(g, ,) f = 0, the field f is conservative
on RY, x R} .

Further, since the first component of the field f is linear in (), it has the
following right-invariant property in Q:

A()-(8) = (F)-(2) oo
t n Ht
Q> Qt; PE]RZ), M, /JztE]Ri.

In view of this property, the field f has compact invariant sets in ]R9Q X ]Ri of
the form

W=K-SO0@3)x{(u,pu) <C}, KEeR), KCintK, C >0,
so that
W CintW.

By Poincaré’s theorem, the field f is Poisson stable on all such sets W, thus on
R?, x R? . In view of the invariance property (7.6), the field f is Poisson stable
on SO(3) x R3.

Since f is compatible with (7.5), then —f is also compatible. The vector
fields +g = (f £ g) — f are compatible with (7.5) as well. The vector fields
f £ g are contained in the convex hull of the compatible vector fields found:
span(f,g), a symmetric system. Thus if system (7.5) is bracket-generating, then
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its attainable set coincides with the orbit, i.e., the whole state space SO(3) x R3.
So in the bracket-generating case system (7.5) is completely controllable.

In the non-bracket-generating cases, the structure of attainable sets is more
complicated. If [ is a principal axis of inertia, then the orbits of system (7.5)
coincide with attainable sets. If I € I \ Res, they do not coincide. This is easy
to see from the phase portrait of the vector field f(u) = pu x Bu in the plane
ITi: the line Rey consists of equilibria of f, and in the half-planes Iy \ Rey
trajectories of f are semicircles centered at the origin.
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Chapter 8

Feedback and state
equivalence of control
systems

8.1 Feedback equivalence
Consider control systems of the form
¢=flgu), qeM,uel. (8.1)

We suppose that not only M, but also U is a smooth manifold. For the right-
hand side, we suppose that for all fixed u € U, f(q,u) is a smooth vector field
on M, and, moreover, the mapping

(u,q) = f(q,u)
is smooth. Admissible controls are measurable locally bounded mappings
t—u(t)eU

(for simplicity, one can consider piecewise continuous controls). If such a control
u(t) is substituted to control system (8.1), one obtains a nonautonomous ODE

¢ = f(g,u(t)), (8.2)

with the right-hand side smooth in ¢ and measurable, locally bounded in t.
For such ODEs, there holds a standard theorem on existence and uniqueness of
solutions, at least local. Solutions ¢(-) to ODEs (8.2) are Lipschitzian curves in
M.

In Section 5.7 we already considered state transformations of control systems,
i.e., diffeomorphisms of M. State transformations map trajectories of control

97



98 CHAPTER 8. FEEDBACK AND STATE EQUIVALENCE

systems to trajectories, with the same control. Now we introduce a new class
of feedback transformations, which also map trajectories to trajectories, but
possibly with a new control. ~

Denote the space of new control parameters by U. We assume that it is a
smooth manifold.

Definition 8.1. Let ¢ : M x U — U be a smooth mapping. A transformation
of the form

flg,u) = f(q,(q,u)), geM, uwelU, uel,

is called a feedback transformation.

Remark. A feedback transformation reparametrizes control u in a way depend-
ing on gq.

It is easy to see that any admissible trajectory ¢(-) of the system ¢ =
f(q,p(q,u)) corresponding to a control u(-) is also admissible for the system

~

G = f(g,u) with the control u(-) = ¢(q(-),u(+)), but, in general, not vice versa.

In order to consider feedback equivalence, we consider invertible feedback
transformations with

U=U, ¢l €DiffU.

Such mappings ¢ : M x U — U generate feedback transformations
flg,u) = f(g,0(q,u))-
The corresponding control systems
¢=f(g,u) and ¢= f(q,¢(qu))

are called feedback equivalent.
Our aim is to simplify control systems with state and feedback transforma-
tions.

Remark. In mathematical physics, feedback transformations are often called
gauge transformations.

Consider affine in control systems

k
q':f(q)+2uigi(q), w=(uy,...,u) ER* qge M. (8.3)
i=1

To such systems, it is natural to apply feedback transformations affine in control:

SOZ(QOI,---,QOIQ) : MX]Rk _>]Rk7

k
‘Pi(qau) = Ci(‘]) + Zdij(q)uja i=1,... k. (8'4)
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Our aim is to characterize affine in control systems (8.3) which are locally
equivalent to linear controllable systems w.r.t. state and feedback transfor-
mations (8.4) and to classify them w.r.t. this class of transformations.

First we consider linear controllable systems

k
:i::Aa:+Zuibi, z€RY, u=(up,...,u) € RE, (8.5)
i=1
where A is an n X n matrix and b;, ¢ = 1,... , k, are vectors in R”. We assume
that the vectors by, ... , by are linearly independent:

dim span(by, ... ,b;) = k.

If this is not the case, we eliminate some b;’s. We find normal forms of linear
systems w.r.t. linear state and feedback transformations.

To linear systems (8.5) we apply feedback transformations which have the
form (8.4) and, moreover, preserve the linear structure:

ci(z) = (ci,z), ceR™, i=1,...,k,

dij(x) =di; €R,  i,j=1,... k. (8.6)

Denote by D : span(by, ... ,b;) — span(by, ... ,by) the linear operator with the
matrix (d;;) in the base b1,. .. ,b. Linear feedback transformations (8.4), (8.6)
map the vector fields in the right-hand side of the linear system (8.5) as follows:

k
(AJT, bi,... ,bk) — (AZC + Z(Ci, :c)bz, Dby, ... ,Dbk> . (87)
i=1

Such mapping should be invertible, so we assume that the operator D (or,
equivalently, its matrix (d;;)) is invertible.
Linear state transformations act on linear systems as follows:

(Az,bi,... ,bx) = (CAC™'2,Cby,...,Cby), (8.8)
where C' : R® — R” is an invertible linear operator. State equivalence of linear

systems means that these systems have the same coordinate representation in
suitably chosen bases in the state space R™.

8.2 Linear systems with scalar control

Consider a simple model linear control system — scalar high-order control:

n—1
2™+ aie =u,  u€R zeR, (8.9)
=0
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where ag,...,a, 1 € R. We rewrite this system in the standard form in the
variables z; = ("1 i =1,... ,n:
j;.l = T2,

. u€eER, = (z1,...,7,) ER". (8.10)
ITpn—1 = Tn,

. -1

Tn ==Yy QiTip1 + U,

It is easy to see that if we take — Z:le a;T;+1 + u as a new control, i.e., apply

the feedback transformation (8.4), (8.6) with
k=1, c¢c=(-ag,...,—ap_1), d=1,

then system (8.10) maps into the system

jfl = T2,

) veR z=(x1,...,z,) € R, (8.11)
Tpn—1 = Tn,

Tn = u,

which is written in the scalar form as
2™ =y, uweER, zeR (8.12)

So system (8.10) is feedback equivalent to system (8.11).

It turns out that the simple systems (8.10) and (8.11) are normal forms of
linear controllable systems with scalar control under state transformations and
state-feedback transformations respectively.

Proposition 8.1. Any linear controllable system with scalar control
T = Az + ub, u€eR, zeR?, (8.13)
span(b, Ab, ... , A" 1b) = R, (8.14)

is state equivalent to a system of the form (8.10), thus state-feedback equivalent
to system (8.11).

Proof. We find a basis ey, ... , e, in R" in which system (8.13) is written in the
form (8.10). Coordinates yi, ... ,y, of a point € R" in a basis ey, ... ,e, are
found from the decomposition

n
r = E Yi€i.
i=1

In view of the desired form (8.10), the vector b should have coordinates b =
(0,...,0,1)*, thus the n-th basis vector is uniquely determined:

en = b.
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Now we find the rest basis vectors eq,...,e,_1. We can rewrite our linear
system (8.13) as follows:
= Ax mod Rb,

then we obtain in coordinates:

n n
T = Zylel = ZyiAei mod Rb,
i=1

i=1
thus
n—1 n—1
Z yi€; = Z yir1Aeir1 mod Rb.
i=1 =0

The required differential equations:

yi:yiJrl: i=1,...,n—1,

are fulfilled in a basis ey, ... ,e, if and only if the following equalities hold:
Aeiy1 = e; + Bib, 1=1,...,n—1, (8.15)
A€1 = Bob (816)
for some numbers fy, ..., 8,1 € R
So it remains to show that we can find basis vectors ey,...,e,_1 which

satisfy equalities (8.15), (8.16). We rewrite equality (8.15) in the form
€ :Aei_H —Bib, 1= 1,... ,n—l, (817)

and obtain recursively:

en = b,
€n—1 = Ab — anlba
€n—2 = A2b — ﬂnflAb - ﬂnfgb, (818)
e = Ar—lp — Bn_lAn_2b — = Blb
So equality (8.16) yields
A61 =A"b — anlAnilb — = BlAb = ﬂob
The equality
n—1 )
A" =" BiAD (8.19)
=0
is satisfied for a unique n-tuple (B, ... , Bn_1) since the vectors b, Ab, ... , A"~ 1b

form a basis of R (in fact, §8; are coefficients of the characteristic polynomial
of A).

With these numbers 3;, the vectors ey,... ,e, given by (8.18) form the re-
quired basis. Indeed, equalities (8.15), (8.16) hold by construction. The vectors
e1,-.. ey, are linearly independent by the controllability condition (8.14). O
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Remark. The basis ey, ... ,e, constructed in the previous proof is unique, thus
the state transformation that maps a controllable linear system with scalar
control (8.13) to the normal form (8.10) is also unique.

8.3 Linear systems with vector control parame-
ters

Now consider general controllable linear systems:

k
j::Aa:-i—Zuibi, T ERY, u=(ug,...,uy) €RF, (8.20)
i=1

span{A7b; | j =0,...,n—1,i=1,...,k} =R". (8.21)

Recall that we assume vectors by, ... , by linearly independent.

In the case k£ = 1, all controllable linear systems in R" are state-feedback
equivalent to the normal form (8.11), thus there are no state-feedback invariants
in a given dimension n.

If £ > 1, this is not the case, and we start from description of state-feedback
invariants.

Consider the following subspaces in R":

D™ =span{Aib; | j=0,...,m—1,i=1,... k}, m=1,...,n. (822)

Invertible linear state transformations (8.8) preserve dimension of these sub-
spaces, thus the numbers

dim D™, m=1,...,n,

are state invariants.

Now we show that invertible linear feedback transformations (8.7) preserve
the spaces D™, m = 1,... ,n. Any such transformation can be decomposed
into two feedback transformations of the form:

k

(Az,by,... b)) = (Az + Y (ci,)bs, bi,... ,bg), (8.23)
i=1

(Aa:,bl,... ,bk) — (Aa:,Dbl,... ,Dbk) (824)

Transformations (8.24), i.e., changes of b;, obviously preserve the spaces D™.
Counsider transformations (8.23). Denote the new matrix:

k
Az = Az + Z(ci,m>bi.
i=1
We have: N . .
Ale = Az mod D7, j=1,...,n—1.
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But D™ ' C D™, m =2,... ,n, thus feedback transformations (8.23) preserve
the spaces D", m =1,... ,n.

So the spaces D™, m = 1,...,n, are invariant under feedback transforma-
tions, and their dimensions are state-feedback invariants.

Now we express the numbers dim D™, m = 1,... ,n, through other integers
— Kronecker indices. Construct the following n x k matrix:

by by
Aby S Aby,
. . . (8.25)
An—lbl . An—lbk
Replace each vector A7b;, j = 0,...,n—1,i =1,...,k, in this matrix by a

sign: cross X or circle o, by the following rule. We go in matrix (8.25) by raws,
i.e., order its elements as follows:

bi,... bk, Aby, ..., Abg, ... ,An_lbl, - ,An_lbk. (8.26)
A vector A7b; in matrix (8.25) is replaced by x if it is linearly independent of

the previous vectors in chain (8.26), otherwise it is replaced by o. After this
procedure we obtain a matrix of the form:

X X X X X
X ¢} X X [¢]
E_ X o o X o
[e] o o X [e]

Notice that there are some restrictions on appearance of crosses and circles in
matrix ¥. The total number of crosses in this matrix is n (by the controllability
condition (8.21)), and the first row is filled only with crosses (since by, ... ,bg
are linearly independent). Further, if a column of ¥ contains a circle, then all
elements below it are circles as well. Indeed, if a vector A7b; in (8.25) is replaced
by circle in ¥, then

A¥b; € span{A7b, | @ < i} +span{A°b, | B <j, a=1,... k}.

Then the similar inclusions hold for all vectors A7*t'b;, ..., A" 1b;, i.e., below
circles are only circles. So each column in the matrix ¥ consists of a column of
crosses over a column of circles (the column of circles can be absent).

Denote by n; the height of the highest column of crosses in the matrix 3, by
no the height of the next highest column of crosses, ..., and by ny the height
of the lowest column of crosses in ¥. The positive integers obtained:

Ny 2Ny 2 2N
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are called Kronecker indices of the linear control system (8.20). Since the total
number of crosses in matrix X is equal to dimension of the state space, then

k
Zni =n =dimR".

i=1
Moreover, by the construction, we have
span(by, Aby, ..., A" by .. by, Abg, ..., A™ b)) = R (8.27)

Now we show that Kronecker indices n; are expressed through the numbers
dim D*. We have:

dim D* = k = number of crosses in the first row of %,

dim D? = number of crosses in the first 2 rows of X,

dim D® = number of crosses in the first i rows of X,
so that

A(i) = dim D* — dim D*"! = number of crosses in the i-th row of X.

Permute columns in matrix X, so that the first column become the highest one,
the second column becomes the next highest one, etc. We obtain an n x k-matrix
in the “block-triangular” form. This matrix rotated at the angle 7/2 gives the
subgraph of the function A : {1,...,n} — {1,...,k}. It is easy to see that the
values of the Kronecker indices is equal to the points of jumps of the function
A, and the number of Kronecker indices for each value is equal to the height of
the corresponding jump of A.

So Kronecker indices are expressed through dim D?, i = 1,... ,k, thus are
state-feedback invariants.
Now we show that the set of Kronecker indices n;, 72 = 1,... ,k, is a complete

set of state-feedback invariants of controllable linear systems (8.20).
We show first that any linear controllable system (8.20) can be written, in
a suitable basis in R":

et ek i sek ek (8.28)
in the following canonical form:
.1 ko

gt = ys, g =ys,

-1 _ 1 -k _ .k

ynl—l - yn17 ynk—l - ynk’

-1 ni—1 1.1 ko ng—1 k. k

Yni = — Zi:o O Y1 T U, Ynp = — Zi:o Q7 Y1+ Uk,
(8.29)
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where

— i
x = E yes.

1<i<k
1<j<n;

(8.30)

We proceed exactly as in the scalar-input case (Section 8.2). The required
canonical form (8.29) determines uniquely the last basis vectors in all k groups:

eill =by,... ,eflk = by.
Denote the space B = span(by,...,b;). Then our system

¢ =Ar mod B

reads in coordinates as follows:

. ii_ iqi
= E yje; = E y;Ae; mod B.
1<i<k 1<i<k
1<5<n; 1<j<n;
In view of the required equations

y;:y;‘+1, 1<i<k, 1<j<mny,

we have ' ' o
2. Yn¢= D, vjA¢ mod B,
1<i<k 1<i<k
1<j<n; 1<5<n;
or, equivalently,
> yiel = > yidel mod B.
1<i<k 1<i<k
2<j<n; 1<i<n;
So the following relations should hold for the required basis vectors:

Aeg-:e;-fl mod B, 1<i<k, 2<j<n,
Ael =0 mod B, 1<i<k.

We resolve equations (8.32) recursively starting from (8.31), for all i = 1,

€, = bi:

ng
n
1 _ [e%
€ni—1 — Ab; — E :Bi,ni—lba’
a=1

n n

i A2y, e _ e

€, = A°b; E Bi,ni—lAbOé E :Bi,nl——2ba>
a=1 a=1

n n
i Ani—1g . o n; —2 o
eg =4 bi — E Bimi—14 bo — - — E Biiba,
a=1

a=1

(8.31)

(8.33)

ke
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while (8.33) yields
n
Ael = B2oba
a=1

for some constants
equation

1<i<k 0<j<n;l<a<n Weobtain the

@,
4,77

n

Anip; = ZﬂgniflAm_lba 4o Zﬂgoba,
a=1

a=1

which has a unique solution in 3; in view of (8.27).

So we proved that there exists a unique linear state transformation that
maps a linear controllable system (8.20) to the canonical form (8.29).

Choosing — Z:Zgl agygﬂ +u;, 5 =1,...,k, as new controls, we see that
each of the k subsystems in (8.29) is feedback equivalent to a system of the
form (8.11), or, equivalently, (8.12).

Thus the whole system (8.20) is state-feedback equivalent to the following
normal form:

y§n1) = u1,

(8.34)

y™ = u,

called Brunovsky normal form.
We proved the following statement.

Theorem 8.1. Any controllable linear system (8.20), (8.21) with k control pa-
rameters is state equivalent to a system of the form (8.29) and state-feedback
equivalent to a system in Brunovsky normal form (8.34), wheren;, i =1,... ,k,
are Kronecker indices of system (8.20).

So the action of the group of invertible state-feedback transformations on
controllable linear systems with k control parameters has only discrete invariants
— Kronecker indices ng,... ,ng.

8.4 State-feedback linearizability

Consider a nonlinear affine in control system:
k
g=f(@)+ > ugi(a), u=(u,...,ux) €R*, g€ M. (8.35)
j=1

We are interested, when such a system is locally state-feedback equivalent to a
controllable linear system.
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Definition 8.2. System (8.35) is called locally state-feedback equivalent to a
linear system (8.20) in a neighborhood of a point gy € M, if there exist a state
transformation — a diffeomorphism

®:0,20CR"

from a neighborhood Oy, of gp in M onto an open subset O cC R™, and a
feedback transformation

@ Oy x RY - RE

a1(q)
o(q,u) = e + D(q)u, (8.36)
ar(q)

with an invertible and smooth in ¢ matrix

D(q):(dij(Q))v i jzl,...,k},

such that the state-feedback transformation (®, ¢) maps system (8.35) restricted

~

to Oy, to a linear system (8.20) restricted to O.

We can generalize the construction of the subspaces D™ (8.22) for the case
of nonlinear systems (8.35): consider the families of subspaces

D;”:span{(adf)jgi(q) |j=0,...,m—1,i=1,... k} C T,M.

Notice that, in general, dim D" # const, thus D™ is not a distribution.
Observe that for controllable linear systems (8.20), the following properties
hold for the family D* = D™, x € R™:

1. dim D}* = const,
2. D} =T,R",

3. the distributions D™, m = 1,... ,n, are integrable (since they are spanned
by the constant vector fields A7b;).

Before formulating conditions for state-feedback linearizability of nonlinear
systems, which are given in terms of the families Dj", we prove the following
property of these families.

Lemma 8.1. If the families D™, m = 1,... ,n, are involutive, then they are
feedback-invariant.

Proof. Notice first that feedback transformations (8.36) can be decomposed into
transformations of the two kinds:

(f7gl7"'7gk)’_>(f+ajgj7gl7"'7gk)7 (837)
(f),gl)"'?gk)’_)(f?Dgl)"'7ng)7 (838)
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where D(q) = (dij(q)), ¢,j = 1,... ,k, is invertible and smooth w.r.t. g. We
prove the lemma by induction on m.
Let m = 1. The family

D' =span{g; |i=1,...,k}

is obviously preserved by the both transformations (8.37) and (8.38).
Induction step: we assume that the statement is proved for m — 1 and prove
it for m. The family

D™ ={[f,X]| X eD" '} + D"
is preserved by transformation (8.38). Consider transformation (8.37). We have
[f + ajg;, X] = [f, X] = [X, a;9;] = [f, X] = (Xa;)g; — a;[X, g;]-
Further:

XeD™! = [f,X]eD™,
(Xaj)g; € D' ¢ D™,
XeDm™ ! gieD'c D™ = [X,g;]e D"t Cc D™,
thus
[f +ajg;,X]€D™ VX eDm™ L
So D™ is preserved by feedback transformation (8.37). O

Theorem 8.2. Systemn (8.35) is locally state-feedback equivalent to a control-
lable linear system (8.20) if and only if:

(1) dim Dj*, m = 1,... ,n, does not depend on g, i.e., D™ are distributions,
(2) D =T, M,
(3) the distributions D™, m = 1,... ,n, are involutive.

Conditions (1)—(3) are necessary for local state-feedback linearizability, see
discussion before Lemma 8.1.

We prove sufficiency in Theorem 8.3 below only in the case of scalar control
parameter. For £ = 1 we have the system

q=f(g) +ugla), uweER qeM, (8.39)
and the corresponding families of subspaces
Dyt = span{(ad f)’g(q) | i =0,1,... ,m — 1}, m=1,...,n, g € M.

In this case it happens that involutivity of D™"~! implies involutivity of D™ with
smaller m.
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Theorem 8.3. System (8.39) is locally state-feedback equivalent to a control-
lable linear system (8.13) if and only if:

(1) Dy =T,M,

(2) the distribution D™1 is involutive.

First we prove the following proposition of general interest: integral mani-
folds of integrable distributions can be smoothly parametrized.

Lemma 8.2. Let A = span{Xy,..., X} be an integrable distribution on a
smooth n-dimensional manifold M, dim A, = k. Then for any point qo € M
there exist a neighborhood qo € Oy C M and a smooth vector-function

@ Oy — RF

such that:

(1) rankp.g =n —k, g € Oy, and

(2) ¢ (y) is an integral manifold of A for any y € ¢(Oy,), or, equivalently,

(2") kerpug = Ag, ¢ € Oy, .
Proof. Complete the vector fields Xy, ..., X} to a basis:

span{Y1,... , Yo_p, X1,..., X} = Vec Oy,

for a sufficiently small neighborhood ¢y € 04, C M. Consider the mapping

1/) . (t, S) — qo © et1Y1 0-.+0 etnfkynfk ° 631X1 0-.+0 eSka’
t

:(tl,...,tnfk)ERn_k,S:(Sl,...,Sk)ERk.
We have
0
¢ _}/;7 ZZI,. 7n_k7
at: |,
0
U)X, i=lek,
Si o

thus 9 is a local diffeomorphism in a neighborhood of 0 € R™.
Further, for fixed ¢t = t°, the set

{9 5) | s € R}

is an integral manifold of A.
Finally, locally, by the implicit function theorem, there exists a well-defined
smooth mapping

© : Y(t,s) >t

It is the required vector-function. O
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Now we prove Theorem 8.3.

Proof. Necessity is already known since for linear controllable systems both
conditions (1), (2) hold, see discussion before Lemma 8.1.

To prove sufficiency, we construct coordinates in which our system (8.39) is
simplified, and then apply a feedback transformation which maps this system
to the normal form (8.11).

Since the distribution D™ ! is integrable, then by Lemma, 8.2 there exists a
smooth function

©1 Oqo - R

such that
dypr #0, (dgp1, Dy~ ") =0, g€ Og. (8.40)
Define the following functions in the neighborhood O,:

w2 = fo1 = (de, f),
@3 = fio2 = fo1,

on = fon—1=f"""o1

(iterated directional derivatives along the vector field f).
We claim that the functions ¢, ... ,¢, (which will be the coordinates that
simplify (8.39)) have the following property:

j+l<n,

. 0,
(ad f)gor = { +(ad f) g1 £0, itl=n. (8.41)

First of all, notice that b = (ad f)" gy |qu # 0. Indeed, we have

Dy ' =span{g(q),. .., (ad f)" ?g(q)},
T,M = span{g(q),... , (ad f)""'g(q)} = span{Dy~", (ad f)" " g(q)},
thus the equality (ad f)"~'gp1(g) = 0 is incompatible with properties (8.40).

Now we prove (8.41) by induction on I. If [ = 1, there is nothing to prove.
Assume that equality (8.41) is proved for I — 1 and prove it for [. We have

(ad f) g1 ((ad f)go f) @1
= ((@df)Ygof—fo(adf)g+ fo(adf)g) i
(—[f, (ad £ g + f o (ad ) g) 11
= (=(ad )" g+ fo(adf)g) i1

If j+1 < n, then j+I—1 < n, and (ad f)? g¢,—1 = 0 by the induction assumption.
Thus

(ad fY g1 = —(ad fY gpr1 for j+1<n,
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and equality (8.41) for ! follows from this equality for { — 1.
So equality (8.41) is proved for all [. Since the vectors g(q), ... , (ad f)"1g(q)
span the tangent space T, M for ¢ € O,,, the mapping

Y1
b= --- : Og = R*
Pn
is a local diffeomorphism: the differentials dy¢p1, ... , dypn form a basis of T; M

dual to g(q),...,(ad f)"tg(q) € T,M.
Take & as a coordinate mapping, then coordinates of a point ¢ € M are
ml:SOl(q)) l:]-)"'an'

Now we write our system ¢ = f(q) +ug(q) in these coordinates: we differentiate
x; with respect to this system.

d d

pra E@z(q(t)) = (f +ug)pi = for +ugepr.

If I < n, then g¢; = 0 by equality (8.41), thus

d
El’l:f@l:@ﬂrl:xﬂrla l=1,...,n—-1

And if I = n, then

d
—Zpn = fon +ugpn = fon £ ub, b= gp, #0.

dt
So in coordinates 1, ... ,z, our system (8.39) takes the form
jf.l = T2,
Tp_1 = Tn,
Tn = fin £ ubd.

Now consider the feedback transformation

fon —u

u F

After this transformation the n-th component of our system reads

. n— U
mn:fgon:t<:|:MT>b:f<pn—fgpn+u:u,

i.e., the whole system takes the required form (8.11). O
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Chapter 9

Optimal control problem

9.1 Problem statement

Consider a control system of the form
G = fulq), geM, uelUCR™. (9.1

Here M is, as usual, a smooth manifold, and U an arbitrary subset of R™. For
the right-hand side of the control system, we suppose that:

q — fu(q) is a smooth vector field on M for any fixed u € U, (9.2)
(g,u) = fu(q) is a continuous mapping for ¢ € M, u € U,

and moreover, in any local coordinates on M

(q,u) — %(q) is a continuous mapping for ¢ € M, u € U. (9.4)

dq
Admissible controls are measurable locally bounded mappings
uw: t—ut) eU.

Substitute such a control u = u(t) for control parameter into system (9.1), then
we obtain a nonautonomous ODE ¢ = f,(q). By the classical Carathéodory’s
Theorem, for any point gg € M, the Cauchy problem

has a unique solution, see Subsec. 2.4.1. We will often fix the initial point gq
and then denote the corresponding solution to problem (9.5) as g, (t).

In order to compare admissible controls one with another on a segment [0, 1],
introduce a cost functional:

J(w) = / " o(qu(t), u(t)) dt (9.6)

113
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with an integrand
p: MxU—=R
satisfying the same regularity assumptions as the right-hand side f, see (9.2)—
(9.4).
Take any pair of points gg,q1 € M. We consider the following optimal control
problem:

MINIMIZE THE FUNCTIONAL J AMONG ALL ADMISSIBLE CONTROLS u = u(t),
t € [0,¢;], FOR WHICH THE CORRESPONDING SOLUTION ¢, (t) OF CAUCHY
PROBLEM (9.5) SATISFIES THE BOUNDARY CONDITION

We study two types of problems, with fixed ¢; and free ¢;. A solution u of this
problem is called an optimal control, and the corresponding curve g, (t) is the
optimal trajectory.

So the optimal control problem is the minimization problem for J(u) with
constraints on u given by control system and the fixed endpoints conditions (9.5),
(9.7). These constraints cannot usually be resolved w.r.t. u, thus solving opti-
mal control problems requires special techniques.

9.2 Reduction to study of attainable sets

Fix an initial point go € M. Attainable set of control system (9.1) for time ¢t > 0
from gy with measurable locally bounded controls is defined as follows:

Ago (1) = {qu(®) | u € L=([0,t],U)} .
Similarly, one can consider the attainable sets for time not greater than ¢:
A= | Au(
0<7<t
and for arbitrary nonnegative time:
Aw= |J Aw()
0<1T<00

It turns out that optimal control problems on the state space M can be
essentially reduced to the study of attainable sets of some auxiliary control
systems on the extended state space

M=RxM={G=(y,q)|y€R, g€ M}.

Namely, consider the following extended control system on M:

i - o
d—z:fu@, GelM, uel, (9.8)
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with the right-hand side

ﬁ@=<ﬁ%?) JeM. uel

where ¢ is the integrand of the cost functional J, see (9.6). Then solutions g, (t)
of the extended system (9.8) with the initial conditions

wo-(19)-(2)

are expressed through solutions ¢, (t) of the original system (9.1) as
~ Jt(u) >
ult) = )
Qu(®) ( u(t)

&wzéwmmmmMr

Thus attainable sets of the extended system (9.8) from the point (0,¢go) have
the form

where

A\(O,qo)(t) = {(Jt(u))qu(t)) | u € Loo([o)t])U)} .

Let ¢(t), t € [0,¢1], be an optimal trajectory for the optimal control problem
in M. Consider the corresponding trajectory

0= () telal

of the extended control system in M. The endpoint ¢(¢;) must belong to the
boundary of the attainable set ,Zl\(07q0) (t1); moreover, this set should not intersect
the ray .

{(y @) € M |y < Jy, }-

Indeed, if there exist points

(y,q) € A\(O,qo)(tl)a y < Ju,

then the trajectory of the extended system

~ J!

() = t

q ( ) ( ql(t) )
that steers (0,qo) to (y,q1):

10=(p) dw=(2)

gives a trajectory ¢'(t), ¢'(0) = qo, ¢'(t1) = q1, with a smaller value of the cost
functional:
Jtll =y < Jt17
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a contradiction with optimality of g(-).
So optimal trajectories (more precisely, their lift to the extended state space

]/\/I\) must come to the boundary of the attainable set ,Zl\(07q0)(t1). In order to

find optimal trajectories, we find those coming to the boundary of ﬁ(quo)(tl),
and then select optimal among them. The first step is much more important
than the second one, so solving optimal control problems essentially reduces to
the study of dynamics of boundary of attainable sets.

9.3 Compactness of attainable sets

Due to the reduction of optimal control problems to the study of attainable sets,
existence of optimal solutions to these problems is reduced to compactness of
attainable sets.

For control system (9.1), sufficient conditions for compactness of the attain-
able sets Ay, () for time ¢ and Af_ for time not greater than ¢ are given in the
following proposition.

Theorem 9.1 (Filippov). Let the space of control parameters U € R™ be
compact. Let there ezist a compact K € M such that fu,(q) = 0 for q ¢ K,
u € U. Moreover, let the velocity sets

folg) ={fu(q) |lue U} CTM, q€ M,

be convex. Then the attainable sets Ay, (t) and Aflo are compact for all g9 € M,
t>0.

Remark. The condition of convexity of the velocity sets fi;(g) is natural in view
of Theorem 7.2: the flow of the ODE

§=al)fu(g+ 1 -al)fule), 0<alt) <1,

can be approximated by flows of the systems of the form

¢ = fu(q), where wv(t) € {u1(t), ua(t)}.
Now we give a sketch of the proof of Theorem 9.1.

Proof. Notice first of all that all nonautonomous vector fields f,(¢) with admis-
sible controls u have a common compact support, thus are complete. Further,
under hypotheses of the theorem, velocities f,(¢), ¢ € M, u € U, are uniform-
ly bounded, thus all trajectories ¢(t) of control system (9.1) starting at go are
Lipschitzian with the same Lipschitz constant. Thus the set of admissible tra-
jectories is precompact in the topology of uniform convergence. (We can embed
the manifold M into a Euclidean space RY, then the space of continuous curves
q(t) becomes endowed with the uniform topology of continuous mappings from
[0,%1] to RY.) For any sequence ¢, (t) of admissible trajectories:

Qn(t) :fun(‘Jn(t))a 0<t<t, Qn(o) = qo,
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there exists a uniformly converging subsequence, we denote it again by g, (t):
gn(-) = ¢(*) in C[0,¢;] as n — oo.

Now we show that ¢(t) is an admissible trajectory of control system (9.1).
Fix a sufficiently small € > 0. Then

1 1 [t
E(Qn(t+5) _Qn(t)) = g fun(Qn(T))dT
t
econv | J fulg(r)) Cconv ] fule)
TE[t, t+¢] g€O0 (1) (ce)

where ¢ is the doubled Lipschitz constant of admissible trajectories. Then we
pass to the limit n — oo and obtain

%(q(t-{-s)—q(t))Econv U -

qqu(i) (CE)

Now let ¢ — 0. If ¢ is a point of differentiability of ¢(t), then

q(t) € fulq)

since fy(g) is convex.

In order to show that ¢(¢) is an admissible trajectory of control system (9.1),
we should find a measurable selection u(t) € U that generates g(t). We do this
via the lexicographic order on the set U = {(u1,... ,un)} C R™.

The set

Vi={veU|q) = fu(a(t)}

is a compact subset of U, thus of R™. There exists a vector vyi,(t) € V;
minimal in the sense of lexicographic order: to find vmin(t), we minimize the
first coordinate v; among all v = (v, ... ,vy) € V4, then minimize the second
coordinate vs on the compact set found at the first step, etc. The control
u(t) = vmin(t) is measurable, thus ¢(t) is an admissible solution of control
system (9.1).

The proof of compactness of the attainable set Ay, (t) is complete. Com-
pactness of AZO is proved by a slightly modified argument. [l

Remark. In Filippov’s theorem, the hypothesis of common compact support
of the vector fields in the right-hand side is essential to ensure the uniform
boundedness of velocities and completeness of vector fields. On a manifold,
sufficient conditions for completeness of a vector field cannot be given in terms of
boundedness of the vector field and its derivatives: a constant vector field is not
complete on a bounded domain in R™. Nevertheless, one can prove compactness
of attainable sets for many systems without the assumption of common compact
support. If for such a system we have a priori bounds on solutions, then we can
multiply its right-hand side by a cut-off function, and obtain a system with
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vector fields having compact support. We can apply Filippov’s theorem to the
new system. Since trajectories of the initial and new systems coincide in a
domain of interest for us, we obtain a conclusion on compactness of attainable
sets for the initial system.

For control systems on M = R", there exist well-known sufficient conditions
for completeness of vector fields: if the right-hand side grows at infinity not
faster than a linear field, i.e.,

[fule)] <C(A+z]), 2z€R*, wel, (9.9)

for some constant C, then the nonautonomous vector fields f,(x) are complete
(here |z| = \/x? 4+ --- + 22 is the norm of a point * = (z1,... ,z,) € R").

These conditions provide an a priori bound for solutions: any solution x(t)
of the control system

& = fu(z), reR*, wel, (9.10)
with the right-hand side satisfying (9.9) admits the bound
2(t)] < ' (lz(0)] +1),  t>0.

So Filippov’s theorem plus the previous remark imply the following sufficient
condition for compactness of attainable sets for systems in R™.

Corollary 9.1. Let system (9.10) have a compact space of control parameters
U @ R™ and convex velocity sets fu(x), x € R*. Suppose moreover that the
right-hand side of the system satisfies a bound of the form (9.9). Then the
attainable sets Ay, (t) and AL are compact for all zo € R™, t > 0.

9.4 Time-optimal problem

Given a pair of points qo € M, q1 € Ay, the time-optimal problem consists in
minimizing the time of motion from ¢y to g; via admissible controls of control
system (9.1):

muin {t1 | qu(t1) = @1 }- (9.11)

That is, we consider the optimal control problem described in Sec. 9.1 with the
integrand ¢(q,u) = 1 and free terminal time ;.

Reduction of optimal control problems to the study of attainable sets and
Filippov’s Theorem yield the following existence result.

Corollary 9.2. Under hypotheses of Theorem 9.1, time-optimal problem (9.1),
(9.11) has a solution for any points qo € M, q1 € Ay, .
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9.5 Relaxations

Counsider a control system of the form (9.1) with a compact set of control param-
eters U. There is a standard procedure called relazation of control system (9.1),
which extends the velocity set fi/(q) of this system to its convex hull conv fy(q)-

Recall that the conver hull conv.S of a subset S of a linear space is the
minimal convex set that contains S. A constructive description of convex hull
is given by the following classical proposition: any point in the convex hull of a
set S in the n-dimensional linear space is contained in the convex hull of some
n + 1 points in S.

Lemma 9.1 (Carathéodory). For any subset S C R, its convex hull has the

form
n n
conv S = {Zaixi | z; €S, a; >0, Zai = 1}.
i=0 =0

For the proof of this lemma, one can consult e.g. [13].

Relaxation of control system (9.1) is constructed as follows. Let n = dim M
be dimension of the state space. The set of control parameters of the relaxed
system is

V=A"xUx---xU,
n+1 times

where

n
An = {(Oéo,... 7an) | a; Z 07 Zai = 1} C ]RTH_I
=0
is the standard n-dimensional simplex. So the control parameter of the new
system has the form

v = (a,ug,... ,uy) €V, a=(ag,...,q,) €A™ u; € U.

If U is compact, then V is compact as well.
The relazed system is

q:gv(q):Zaifui(q), v=(a,up,...,up) €V, g€ M. (9.12)
=0

By Carathéodory’s lemma, the velocity set gy (q) of system (9.12) is convex,
moreover,
gv(q) = conv fu(q).

If all vector fields in the right-hand side of (9.12) have a common compact
support, we obtain by Filippov’s theorem that attainable sets for the relaxed
system are compact. By Theorem 7.2, any trajectory of relaxed system (9.12)
can be uniformly approximated by families of trajectories of initial system (9.1).
Thus attainable sets of the relaxed system coincide with closure of attainable
sets of the initial system.
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Chapter 10

Elements of Exterior
Calculus and Symplectic
Geometry

In order to state necessary conditions of optimality for optimal control problems
on smooth manifolds — Pontryagin Maximum Principle, see Chapter 11 — we
make use of some standard technique of Symplectic Geometry. In this chapter
we develop such a technique. Before this we recall some basic facts on calculus
of exterior differential forms on manifolds. The exposition in this chapter is
rather explanatory than systematic, it is not a substitute to a regular textbook.
For a detailed treatment of the subject, see e.g. [17], [3], [5].

10.1 Differential 1-forms

10.1.1 Linear forms

Let E be a real vector space of finite dimension n. The set of linear forms on
E, i.e., of linear mappings ¢ : E — R, has a natural structure of a vector space
called the dual space to E and denoted by E*. If vectors eq,...,e, form a
basis of E, then the corresponding dual basis of E* is formed by the covectors
ej,...,e} such that

(ej,ej) = dij, i,j=1,...n
(we use the angle brackets to denote the value of a linear form £ € E* on a

vector v € E: (§,v) = £(v)). So the dual space has the same dimension as the
initial one:

dmE* =n=dmE.

121
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10.1.2 Cotangent bundle

Let M be a smooth manifold and Tj, M its tangent space at a point ¢ € M. The
space of linear forms on T,M, i.e., the dual space (T, M)" to T, M, is called the
cotangent space to M at q and is denoted as T/ M. The disjoint union of all
cotangent spaces is called the cotangent bundle of M:

«qy def .
M = | Ty M.
€M
The set T*M has a natural structure of a smooth manifold of dimension 2n,
where n = dim M. Local coordinates on T*M are constructed from local coor-

dinates on M.
Let O C M be a coordinate neighborhood and let

®:0 R ={(z1,...,2,)}

be a local coordinate system. Let ej,...,e, € VecR"™ be the standard basis
vector fields on R":
0
0
e; = 1
0
0

with the only identity in the i-th row. Then the pull-back vectors

9
o le,eT,M, i=1,....n, q€O,
8:ri

q

form a basis of the tangent space T;M, ¢ € O.
Recall that if F' : M — N is a smooth mapping between smooth manifolds,
then the differential
F, : TqM — TF(q)N

has the adjoint mapping
% def * * *
F* = (F)* TF(q)N—>TqM
defined as follows:

F'¢=¢oF,  £eTp,N,
(F*£7v> = <£aF*'U>, v E TqM

A vector v € T, M is pushed forward by the differential F, to the vector F,v €
T'r(q)N, while a form £ € T;(q)N is pulled back to the form F*§ € Ty M.
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The linear forms

f .
dri|, € ®*e; € T)M, i=1,...,n, q€O,

make up the basis in the cotangent spaces Ty M, ¢ € O, dual to the basis

g =2 in the tangent spaces T, M:

Oz’ " 20z,

<M“§%>:&ﬁ i j=1,...,n

Any linear form § € T/ M can be decomposed via the basis forms:

§= Z &i d;.
i=1

So any covector £ € T*M is characterized by n coordinates (z1,... ,x,) of
the point ¢ € M where ¢ is attached, and by n coordinates (&1,...,&,) of the
linear form £ in the basis dz1, ... ,dz,. Mappings of the form

é.'_) (517"' :fn: T1y--- ,an)

define local coordinates on the cotangent bundle. Consequently, T*M is an
2n-dimensional manifold. Coordinates of the form (&, z) are called canonical
coordinates on T* M.

10.1.3 Differential 1-forms

A differential 1-form on M is a smooth mapping
q— wy € T] M, q€e M,

ie, a family w = {w;} of linear forms on the tangent spaces T,M smoothly
depending on the point ¢ € M. The set of all differential 1-forms on M has a
natural structure of an infinite-dimensional vector space denoted as A'(M).

Like linear forms on a vector space are dual objects to vectors of the space,
differential forms on a manifold are dual objects to smooth curves in the man-
ifold. The pairing operation is the integral of a differential 1-form w € A'(M)
along a smooth oriented curve 7 : [tg,t1] = M, defined as follows:

t1
ef .
/ w / (wr (> ¥(8) dt.
¥ to

The integral of a 1-form along a curve does not change under orientation-
preserving smooth reparametrizations of the curve and changes its sign under
change of orientation.
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10.2 Differential k-forms

A differential k-form on M is an object to integrate over k-dimensional surfaces
in M. Infinitesimally, a k-dimensional surface is presented by its tangent space,
i.e., a k-dimensional subspace in T, M. We thus need a dual object to the set
of k-dimensional subspaces in the linear space. Fix a linear space E. A k-
dimensional subspace is defined by its basis vy,... ,vx € E. The dual objects
should be mappings

(01, 08) = w(vg,...,v) ER
such that w(vy, ... ,v) depend only on the linear hull span{vy,... ,v;} and the
oriented volume of the k-dimensional parallelepiped generated by vy, ... ,vy.

Moreover, the dependence on the volume should be linear. Recall that the ra-
tio of volumes of the parallelepipeds generated by vectors w; = Ele Q;;05,
t=1,...,k, and the vectors v, ... , v, equals det(aij)i{j:l, and that determi-
nant of a k X k matrix is a multilinear skew-symmetric form of the columns of
the matrix. This is why the following definition of the “dual objects” is quite
natural.

10.2.1 Exterior k-forms

Let E be a finite-dimensional real vector space, dim E = n, and let £k € N. An
exterior k-form on E is a mapping

w:FEx---xE—=R,
N————

k times
which is multilinear:
1 2
wvr,. .. ,000; + 27, ..., V)
1 2

= w1, V5, ) F aaw (U1, ... 05, ... V), ar, as € R,
and skew-symmetric:
WU,y Uiy, Uy, ) = —W(U1, .00 U, e, U5y, Uk), 4, §=1,... k.

The set of all exterior k-forms on E is denoted by A*E. By the skew-symmetry,
any exterior form of order k > n is zero, thus A¥E = {0} for k > n.

Exterior forms can be multiplied by real numbers, and exterior forms of the
same order can be added one with another, so each A*E is a vector space. We
construct a basis of A*E after we consider another operation between exterior
forms — the exterior product. The exterior product of two forms w; € AM E,
wo € A*2 F is an exterior form wy A wo of order k; + k».

Given linear 1-forms w;,w,; € A'E, we have a natural (tensor) product for
them:

w1 Qws : (v1,v2) = wi(v1)wa(va), v1,v2 € E.
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The result is a bilinear but not a skew-symmetric form. The exterior product is
the anti-symmetrization of the tensor one:

w1 ANws (’1)1,1)2) = wl(vl)wg(vg) — wl(vz)wg(vl), V1,V € E.

Similarly, the tensor and exterior products of forms wy € A¥1E and ws € A*E
are the following forms of order ki + ko:

w1 ®wsy : (Ul,... ;Uk1+k2) b—)ml(vl,... ,’l}kl)wg(’l}k1+1,... ,’l}k1+k2),
wy Aws (’Uly"' 7vk1+k2) =

1 v(o
W Z(_l) ( )wl (va(1)> o >Ua(k1))w2(va(k)1+1)7 v 7va(k1+k2))7 (101)

where the sum is taken over all permutations o of order k; + k2 and v(o) is
parity of a permutation 0. The factor ;= normalizes the sum in (10.1) since
it contains ki!ks! identically equal terms: e.g., if permutations o do not mix
the first k; and the last ko arguments, then all terms of the form

(=1 D01 (Vg(1)s -+ Vo (k) W2 Vo (k1 +1)5 - - - > Vo (ks +ha))
are equal to

W1 (U1, Uk, ) w2 (Vky 41y - -+ > Uy tko)-
This guarantees the associative property of the exterior product:
w1 A (w2 Awg) = (w1 Awsa) A ws, wi € AFME,
Further, the exterior product is skew-commutative:
wy Awy = (—l)klkzwl A wa, w; € AME.

Let eq,...,e, be a basis of the space E and ej,... ,e;, the corresponding
dual basis of E*. If 1 < k < n, then the following (Z) elements form a basis of
the space AFE:

61(/\"'/\62;’ 1<4; <ip <---<ip <n.

11

The equalities

(ei, Ao Nej e, .. ,eq) =1,

(6:1 /\.../\6:’6)(6]'1,... ,€jk) =0, if (il,... ,ik) 75 (jl;--- ;jk)
for 1 < iy < iy < --- < i < n imply that any k-form w € A¥E has a unique
decomposition of the form

w= Z Wiy .iney N Nej,
1<41 <ia < <ip <n

with
Wiy i — w(eil,. .. ,eik).
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Exercise 10.1. Show that for any 1-forms wi,...w, € A'E and any vectors
v1,...,Vp € E there holds the equality

(w1 A Awp)(vr, ... ,vp) = det ((wi, Uj>)f,j:1 : (10.2)

Notice that the space of n-forms of an n-dimensional space E is one-dimen-
sional. Any nonzero n-form on E is a volume form. For example, the value of

the standard volume form ef A ... A ef on an n-tuple of vectors (vq,... ,vy,) is
(eI A ... Aep)(vr,... o) =det ((e],v5))] iy
the oriented volume of the parallelepiped generated by the vectors vy,... ,v,.

10.2.2 Differential k-forms
A differential k-form on M is a mapping
w:quqEAkTqM, q € M,

smooth w.r.t. ¢ € M. The set of all differential k-forms on M is denoted by
A¥M. Tt is natural to consider smooth functions on M as 0-forms, so A°M =
C>®(M).

In local coordinates (1, ... , ) on a domain O C M, any differential k-form
w € A¥M can be uniquely decomposed as follows:

we= Y ai.i(@)dz, A Adr, €0, a;._ €C(0). (10.3)

iy <<l

Any smooth mapping
F:M-—N

induces a mapping of differential forms
F* i AFN - AF M

in the following way: given a differential k-form w € A*N, the k-form F*w €
A¥M is defined as

(F*w)q(v1, ... ,0) = wp(g) (Fyvi, ..., Fooyg), qge M, v; e T,M.
For 0-forms, pull-back is a substitution of variables:
F*a = Fa, ae€C®(M).
The pull-back F* is linear w.r.t. forms and preserves the exterior product:
F*(w; Awy) = F*wy A F*ws.
Exercise 10.2. Prove the composition law for pull-back of differential forms:
(Fy o F)* = F} o Fy, (10.4)

where Fy : My — M> and F5 : My — Mj are smooth mappings.
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Notice that in our notation (when points are written to the left of mappings
as go F') the star does not reverse the order of mappings Fi, F» in composition,
unlike the classical notation F(q).

Now we can define the integral of a k-form over an oriented k-dimensional
surface. Let II C R¥ be a k-dimensional open oriented domain and

®: 11— &I C M

a diffeomorphism. Then the integral of a k-form w € A¥M over the k-dimensi-
onal oriented surface ®(II) is defined as follows:

/ w /<I>*w,
&(IT) Il

it remains only to define the integral over II in the right-hand side. Since
®*w € A¥(R¥) is a k-form on R* | it is expressed via the standard volume form
dl’l VANIRAN dl’k- S Ak(Rk)

(®*w), = alx)dzy A -+ ANdxy, z €Il

/<I>*w déf/a(a:)dxl...da:k,
i I

a usual multiple integral.
The integral |, a(1m) W is defined correctly with respect to orientation-preser-

We set

ving reparametrizations of the surface ®(II). Although, if a parametrization
changes orientation, then the integral changes sign.

The notion of integral is extended to arbitrary submanifolds as follows. Let
N C M be a k-dimensional submanifold and let w € A*M. Consider a covering
of N by coordinate neighborhoods O; C M:

N={JNnoy.

Take a partition of unity subordinated to this covering:

a; € C®(M), suppa; CO;, 0<a; <1,

Zai =1.
i

/ def
w = E aW.
N i NNO;

The integral thus defined does not depend upon choice of partition of unity.

Then

Remark. Another possible approach to definition of integral of a differential
form over a submanifold is based upon triangulation of the submanifold.
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10.3 Exterior differential

Exterior differential of a function (i.e., a O-form) is a 1-form: if a € C*°(M) =
AYM, then its differential

dga € T; M
is the functional (directional derivative)
(dqa,v) = va, v €T M, (10.5)
S0
da € A* M.

By the Newton-Leibniz formula, if ¥ C M is a smooth oriented curve starting
at a point ¢y € M and terminating at q; € M, then

ﬁ da = alqr) — alao).

The right-hand side can be considered as the integral of the function a over the
oriented boundary of the curve: 0y = q1 — qo, thus

Ada = /87 a. (10.6)

In the exposition above, Newton-Leibniz formula (10.6) comes as a consequence
of definition (10.5) of differential of a function. But one can go the reverse way:
if we postulate Newton-Leibniz formula (10.6) for any smooth curve v C M and
pass to the limit ¢; — qo, we necessarily obtain definition (10.5) of differential
of a function.

Such approach can be realized for higher order differential forms as well. Let
w € A¥M. We define the exterior differential

dw € AF1 M

as the differential (k + 1)-form for which Stokes formula holds:

/Ndw = /an (10.7)

for (k+ 1)-dimensional submanifolds with boundary N C M (for simplicity, one
can take here N equal to a diffeomorphic image of a (k + 1)-dimensional poly-
tope). The boundary ON is oriented by a frame of tangent vectors e, ...ex €
T,(ON) in such a way that the frame ey, e1,...,ex € TyN define a positive
orientation of N, where e, is the outward normal vector to N at q.

The existence of a form dw that satisfies Stokes formula (10.7) comes from
the fact that the mapping N +— faN w is additive w.r.t. domain: if N = N;UN3,
N1 N N2 = (3N1 N (9N2, then

/ w:/ w+/ w
ON ANy ON>
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(notice that orientation of the boundaries is coordinated: dN; and 0N, have
mutually opposite orientations at points of their intersection). Thus the integral
faN w is a kind of measure w.r.t. N, and one can recover (dw), passing to limit
in (10.7) as the submanifold N contracts to a point q.

We recall some basic properties of exterior differential. First of all, it is
obvious from the Stokes formula that d : A¥M — A¥*1M is a linear operator.
Further, if F : M — N is a diffeomorphism, then

dF*w = F*dw, w e AFN. (10.8)
Indeed, if W C M, then

/ w:/ F*w, we A*N,
F(W) w

/dF*w = / F*w:/ w:/ w:/ dw
w ow F(OW) OF (W) F(W)

F*dw,
w

thus

and equality (10.8) follows.
Another basic property of exterior differential is given by the equality

dod=0,

which follows since d(ON) = ) for any submanifold with boundary N C M.
Exterior differential is an antiderivation:

d(w1 AN CUZ) = (dwl) N wo + (—l)klwl A dLUz, w; € AkiM.
In local coordinates exterior differential is computed as follows: if
w = Z ail___ikda:il A...A da:ik, iy .. € Coo,
i1 < <ig

then
do=>" (daj, i) Adwi, A...Adzg,.
i1 <o <dp

10.4 Lie derivative of differential forms

The “infinitesimal version” of the pull-back P* of a differential form by a flow
P is given by the following operation.

Lie derivative of a differential form w € A¥ M along a vector field f € Vec M
is the differential form Ljw € A*M defined as follows:

def d *
Liw = — (esf) w. (10.9)
de e=0
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Since
()" (w1 Aws) = (') wi A (e7) wo,
Lie derivative Ly is a derivation of the algebra of differential forms:
Lf(w1 /\OJQ) = (wal) Nws +wi A wag.

Further, we have
()" od=do ()",

thus
Liod=dolLjy.

For 0-forms, Lie derivative is just the directional derivative:
L¢a = fa, a € C®(M),

since
(etf)*a =etla

as substitution of variables.

Now we obtain a useful formula for the action of Lie derivative on differential
forms of an arbitrary order.

Consider, along with exterior differential

d: APM — AFTIM
the interior product of a differential form w with a vector field f € Vec M:
i+ ARM — AR,
(tpw)(ve,. .. ,v6—1) def w(f,vry. .. ,05-1), weAM, v e T,M,

which acts as substitution of f for the first argument of w. By definition, for
0-order forms
tya =0, a€ A°M.

Interior product is an antiderivation, as well as the exterior differential:
if(wl/\wg) :(ifwl)/\wQ+(—1)k1w1 AifOJQ, wiEAkiM.

Now we prove that Lie derivative of a differential form of an arbitrary order
can be computed by the following formula:

Li=doif+isod (10.10)

called Cartan’s formula, for short “L = di + id”. Notice first of all that the
right-hand side in (10.10) has the required order:

doif+ifod: A*M — ARM.
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Further, doiy + iy od is a derivation as it is obtained from two antiderivations.

Moreover, this derivation commutes with differential:
do(doip+ifod)=doifod,
(doif+ifod)od=doisod.

Now we check formula (10.10) on 0-forms: if a € A°M, then

(doif)a=0,

(if od)a = (da, f} = fa = Lya.
So equality (10.10) holds for O-forms. The properties of the mappings Ly and
dois+iysod established and the coordinate representation (10.3) reduce the
general case of k-forms, k > 0, to the case of O-forms. Formula (10.10) is proved.

The differential definition (10.9) of Lie derivative can be integrated, i.e.,
there holds the following equality on A¥M:

t * t
<e¥f>/ der> :&;3/ Ly, dr, (10.11)
0 0

in the following sense. Denote the flow

t1
—
Pft =exp frdr.
to

The family of operators on differential forms
(PH* : AFM — AFM
is a unique solution of the Cauchy problem

d . . *
SR = (R oLpy  (RY)

o =14, (10.12)

compare with Cauchy problems for the flow P} (2.7) and for the family of
operators Ad P} (2.17), (2.18), and this solution is denoted as

t t *
eﬁ’)/ Ly dr < (&f)/ deT> .
0 0

In order to verify the ODE in (10.12), we prove first the following equality
for operators on forms:

d

I (PIT)*w=Lpw, weA*M. (10.13)

e=0

This equality is straightforward for 0-order forms:

d

de

d

(P a= o

e=0

Pi*“a=fua=Lya,  a€C™(M).
e=0
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Further, the both operators |E:0 (P/™%)* and Ly, commute with d and satisfy
the Leibnitz rule w.r.t. product of a function with a differential form. Then
equality (10.13) follows for forms of arbitrary order, as in the proof of Cartan’s

formula.
Now we easily verify the ODE in (10.12):

d, . d

SRy =1 (Pyo P

e=0

d
Pt+5 * 7
( 0 ) dE

e=0
by the composition rule (10.4)

_4
S del_,
=(Py)* o Ly,.

(B o (P = (B o -

Pt+€*
7z &)

e=0

Exercise 10.3. Prove uniqueness for Cauchy problem (10.12).
For an autonomous vector field f € Vec M, equality (10.11) takes the form
(etf)* 2
Notice that the Lie derivatives of differential forms L; and vector fields

(—ad f) are in a certain sence dual one to another, see equality (10.14) below.
That is, the function

(W, X) : g (wg, X(q)), q€M,
defines a pairing of A'(M) and Vec(M) over C*°(M). Then the equality
(P*w,X) = P(w, P, X), P e Diff M, X € Vec M, w € AY(M),
has an infinitesimal version of the form

(Lyw, X) =Y (w, X) — (w, (ad V) X}, X, Y eVecM, weA'(M).
(10.14)

Taking into account Cartan’s formula, we immediately obtain the following
important equality:

dw(Y,X) =Y(w,X) - X(w,Y) — (w, [}, X]), X, Y e€VecM, weA'(M).

10.5 Elements of Symplectic Geometry

We have already seen that the cotangent bundle T*M = UjenmT; M of an n-
dimensional manifold M is a 2n-dimensional manifold. Any local coordinates
z = (x1,...,2Z,) on M determine canonical local coordinates on T*M of the
form (¢,2) = (1,.-.,&n; T1,. .., @) in which any covector A € Ty M has the
decomposition A = Y7, & duif, .
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The “tautological” 1-form (or Liouville 1-form) on the cotangent bundle
s € ANT*M)

is defined as follows. Let A € T*M be a point in the cotangent bundle and
w € Th(T*M) a tangent vector to T*M at A. Denote by 7 the canonical
projection from T*M to M:

m:T"M — M,
T A, AeT;M.

Differential of 7 is a linear mapping
T+ IN(T*M) - T, M, qg=m(\).
The tautological 1-form s at the point A acts on the tangent vector w in the

following way:

def ¢

(sx,w) A, Tw).

That is, we project the vector w € T\(T*M) to the vector m.w € T,M, and
then act by the covector A € Ty M. So

def
Sy = AOTm,.

The title “tautological” is explained by the coordinate representation of the
form s. In canonical coordinates (£, x) on T*M, we have:

A= &da, (10.15)
i=1

n
0 0
w = Qi + Pi7—-
; 0& g 3
The projection written in canonical coordinates
m: ()

is a linear mapping, its differential acts as follows:

0 .
7r*<6&>—0, 1=1,...,n,

0 )_2 i=1
T r T =1,...,n.

TxW = z;ﬂzaimza

Thus
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consequently,
(s, w) = (A, maw) = _ &b
i=1

But 8; = (dz;,w), so the form s has in coordinates (§,z) exactly the same
expression

sy = &da; (10.16)
i=1

as the covector A, see (10.15). Although, definition of the form s does not
depend on any coordinates.

Remark. In mechanics, the tautological form s is denoted as pdg.
Consider the exterior differential of the 1-form s:

def
o = ds.

The differential 2-form o € A?(T* M) is called the canonical symplectic structure
on T*M. In canonical coordinates, we obtain from (10.16):

o= d& Adz;. (10.17)
i=1

This expression shows that the form o is nondegenerate, i.e., the bilinear skew-

symmetric form
ox T)\(T*M) X T)\(T*M) - R

has no kernel:
olw,)=0 = w=0, w € Th(T*M).
In the following basis in the tangent space T (T*M)

9 9 9 9
02, 0& 7 dan 0,

the form o) has the block matrix

The form o is closed:
do =0

since it is exact: 0 = ds, and dod = 0.
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Remarks. (1) A closed nondegenerate exterior differential 2-form on a 2n-dimen-
sional manifold is called a symplectic structure. A manifold with a symplectic
structure is called a symplectic manifold. The cotangent bundle T*M with the
canonical symplectic structure ¢ is the most important example of a symplectic
manifold.

(2) In mechanics, the 2-form o is known as the form dp A dg.

Due to the symplectic structure o € A%(T*M), we can develop the Hamil-
tonian formalism on T*M. A Hamiltonian is an arbitrary smooth function on
the cotangent bundle:

heC>®(T*M).

To any Hamiltonian h, we associate the Hamiltonian vector field
h € Vec(T* M)
by the rule:
ox(h) =d\h, A€ T*M. (10.18)

In terms of the interior product i,w(:,-) = w(v,-), the Hamiltonian vector field
is a vector field h that satisfies

Z'E(T = —dh.
Since the symplectic form o is nondegenerate, the mapping
w = ox(,w)

is a linear isomorphism
T\(T*M) = Tx(T*M),

thus the Hamiltonian vector field & in (10.18) exists and is uniquely determined
by the Hamiltonian function h.
In canonical coordinates (£, ) on T*M we have

“~ (Oh Oh
dh = —d& + —dz; |,
;(3& : +333i a:)
then in view of (10.17)
5 = (0h O Oh 0
h = — 10.19
So the Hamiltonian system of ODEs corresponding to h

A=h(\), AeT*M,
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reads in canonical coordinates as follows:

i =2 —1...m
Z_afi’ — Ly s 19y
: oh

;= — p=1,...,n.
fl al’i’ 3 ) 1

The Hamiltonian function can depend on a parameter: h;, t € R Then the
nonautonomous Hamiltonian vector field h:, ¢ € R is defined in the same way
as in the autonomous case.

The flow of a Hamiltonian system preserves the symplectic form o.

Proposition 10.1. Let i_it ba a nonautonomous Hamiltonian vector field on
T*M. Then . .
<e§f)/ ﬁTdT> o =o.
0

Proof. In view of equality (10.11), we have

t * t
<e¥f> / By dr) =exp / L; dr,
0 0 T
thus the statement of this proposition can be rewritten as
Lﬁta =0.

But this Lie derivative is easily computed by Cartan’s formula:

L 0c=iz o do +do iz 0 = —dodh; =0.
h h h
t t \:?.-/ t
=—dh;

O

Moreover, there holds a local converse statement: if a flow preserves o, then
it is locally Hamiltonian. Indeed,

t *
<e;f)/frd7'> c=0 <& Lyo=0,
0

further
LftU =iy, O do -I—dOZ'ftU,
=0
thus

LftUZO < dOiftU'ZO.

If the form iy, o is closed, then it is locally exact (Poincaré’s Lemma), i.e., there
exists a Hamiltonian h; such that locally f; = Ht.

Essentially, only Hamiltonian flows preserve o (globally, “multi-valued Ha-
miltonians” can appear). If a manifold M is simply connected, then there holds
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a global statement: a flow on T*M is Hamiltonian if and only if it preserves the
symplectic structure.
The Poisson bracket of Hamiltonians a,b € C*°(T*M) is a Hamiltonian

{a,b} € C=(T* M)

defined in one of the following equivalent ways:

-

{a,b} = @b = (db,@) = o(@,b) = —o(b,a) = —ba.
It is obvious that Poisson bracket is bilinear and skew-symmetric:

{a,b} = —{b,a}.

In canonical coordinates (§,x) on T*M,
" (da Ob da 0b
b} = — |- 10.20
Leibniz rule for Poisson bracket easily follows from definition:

{a,bc} = {a,b}c+ b{a,c}

(here be is the usual pointwise product of functions b and c).
Moreover, there holds Jacobi identity for Poisson bracket.

Proposition 10.2.
{a,{b,c}}+ {b,{c,a}} + {c,{a,b}} =0, a,b,c € C®(T*M). (10.21)

Proof. Tt is easy to see from the coordinate representation (10.20) that each
iterated bracket {a, {b, c}}, {b, {c,a}}, {c, {a,b}} is a sum of products of second-
and first-order derivatives of the functions a,b,c. Now we compute all terms
in the left-hand side of (10.21) that contain second-order derivatives of a. The
bracket {a, {b,c}} contains only first-order derivatives of a, so remain the last
two brackets:

{b,{c,a}} + {c,{a,b}} = {b,{c,a}} — {¢,{b,a}} =boGa—Eoba = [b,da.

The Lie bracket [b, @] is a first-order differential operator, thus [b,a does not
contain second-order derivatives of a. So the sum in the left-hand side of (10.21)
contains no second-order derivatives of a. Similarly, it contains no second-order
derivatives of b and ¢. Jacobi identity (10.21) follows. O

So the space of all Hamiltonians C*°(T* M) forms a Lie algebra with Poisson
bracket as a product. The correspondence

av @ aecC®T*M), (10.22)

is a homomorphism from the Lie algebra of Hamiltonians to the Lie algebra of
Hamiltonian vector fields on M. This follows from the next statement.
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— —
Corollary 10.1. {a,b}= [d,b] for any Hamiltonians a,b € C*(T*M).

Proof. Jacobi identity can be rewritten as

{{a'7 b}v C} = {a'7 {bv C}} - {bv {a'7 C}},

ie.,
-

— - —
{a,b} c=dobc—bodc=][a,b]c, ce C®(T"M).
O
Symplectomorphisms of cotangent bundle preserve the Lie algebra of Hamil-
tonian vector fields; the action of a symplectomorphism P € Diff(T*M) on a
Hamiltonian vector field h reduces to the action of P on the Hamiltonian func-
tion as substitution of variables:
o —
(AdP)h =Ph.
This follows from the chain
o (X, (Ad P)ﬁ) - (X, P;li'i) = (P*0) (X, P;lﬁ) = Po (P*X, E)
= P(dh, P, X) = X(Ph), X € Vec(T*M).

In particular, the action of a Hamiltonian flow on a Hamiltonian vector field
gives another Hamiltonian vector field

‘ _
<e;f) / ar dT>
0 *

with the Hamiltonian function

t
Ct = <e;f)/ (_i‘,—d’l'> bt.
0

Corollary 10.1 can be viewed as an infinitesimal version of equality (10.23).

It is easy to see from the coordinate representation (10.19) that the kernel of
the mapping a — @ consists of constant functions, i.e., this is isomorphism up
to constants. On the other hand, this homomorphism is far from being onto all
vector fields on 7" M. Indeed, a general vector field on T* M is locally defined by
arbitrary 2n smooth real functions of 2n variables, while a Hamiltonian vector
field is determined by just one real function of 2n variables, a Hamiltonian.

Theorem 10.1 (N6ther). A functiona € C*(T*M) is an integral of a Hamil-
tonian system of ODEs

1 t
b, = <e?p/ add, dT> by =& (10.23)
0

A=h(\), AeT*M, (10.24)
i.e., .
eha =a teRR,
if and only if it Poisson-commutes with the Hamiltonian:

{a,h} = 0.
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Proof. etha=as0=ha= {h,a}. O

Corollary 10.2. ethh = h, i.e., any Hamiltonian h € C*(T*M) is an integral
of the corresponding Hamiltonian system (10.24).

Further, Jacobi identity for Poisson brackets implies that the set of integrals
of the Hamiltonian system (10.24) forms a Lie algebra with respect to Poisson
brackets.

Corollary 10.3. {h,a} = {h,b} =0 = {h,{a,b}} =0.

Remark. The Hamiltonian formalism developed generalizes for arbitrary sym-
plectic manifolds.

Now we introduce a construction that works only on 7M. Given a vector
field X € Vec M, we define a Hamiltonian function

X* e C®(T*M),
which is linear on fibers T;7 M, as follows:
X*(A) = (N X(g)), AeT*M, q=mx(N).

In canonical coordinates (£, z) on T*M we have:

X* =

2

This coordinate representation implies that
{X*,Y*} =[X,Y]", X,Y € Vec M,

i.e., Poisson brackets of Hamiltonians linear on fibers in 7*M contain usual Lie
brackets of vector fields on M.

—

The Hamiltonian vector field X*€ Vec(T*M) corresponding to the Hamil-
tonian function X* is called the Hamiltonian lift of the vector field X € Vec M.
It is easy to see from the coordinate representations (10.25), (10.19) that

—
T <X*> = X.

Now we pass to nonautonomous vector fields. Let X; be a nonautonomous
vector field and

t
P, =éxp / Xy df
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the corresponding flow on M. The action of this flow on covectors defines the
flow Py, : T*M — T*M. Let V; be the nonautonomous vector field on T M
that generates the flow P;;:

d
Vi=— e
t= 7 bt
Then J J
1t = e rite = e Piyeo Pl =Vio Pl
e=0 e=0
so the flow P, is a solution to the Cauchy problem
d * * *
EPTJ :VZOPTJ’ P‘r,‘r :Id7

i.e., it is the left chronological exponential:

t
P;t:e?p/ Vy db.

T

It turns out that the nonoautonomous field V; is simply related with the
Hamiltonian vector field corresponding to the Hamiltonian X/:

—
Vi =—-X/. (10.26)
Indeed, the flow Py, preserves the tautological form s, thus
LVtS =0.

By Cartan’s formula,
i%U = —d(S,W),

i.e., the field V; is Hamiltonian:

—

Vi =(s,V4) .
But 7.V; = — X}, consequently,
(s, Vo) = = X[,

and equality (10.26) follows. Taking into accound relation (2.14) between the
left and right chronological exponentials, we obtain

t — T
Pit:e‘?p/ - X; d@:eﬁ’a/ X; df.
T t

T

We proved the following statement.

Proposition 10.3. Let X; be a complete nonautonomous vector field on M.

Then . .
T —
<e?p/ X9d9> =exp | X db.
T t



Chapter 11

Pontryagin Maximum
Principle

In this chapter we prove the fundamental necessary condition of optimality for
optimal control problems — Pontryagin Maximum Principle (PMP). In order
to obtain a coordinate-free formulation of PMP on manifolds, we apply the
technique of Symplectic Geometry developed in the previous chapter. The first
classical version of PMP was proved for optimal control problems in R™ by
L.S. Pontryagin and his collaborators [12].

11.1 Geometric statement of PMP and discus-
sion

Consider the optimal control problem stated in Sec. 9.1 for a control system

q= fule), qgeEM, ueUCR", (11.1)
with the initial condition

q(0) = qo- (11.2)
Define the following family of Hamiltonians:
ha(X) = (N, fu(q)), ANeT;M, ge M, ueUl.
In terms of the previous section,
hu(A) = fu(N).

Fix an arbitrary instant ¢; > 0.

In Sec. 9.2 we reduced the optimal control problem to the study of bound-
ary of attainable sets. Now we give a necessary optimality condition in this
geometric setting.

141
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Theorem 11.1 (PMP). Let a(t), t € [0,t1], be an admissible control and
G(t) = qa(t) the corresponding solution of (11.1), (11.2). If

q(tl) € a'Aqo (tl)v
then there exists a Lipschitz curve in the cotangent bundle

)\teTg(t)M, OStStl,

such that
Ae # 0, (11.3)
A = Bag (M), (11.4)
h&(t)o\t) = Ilfleaéi hau(A) (11.5)

for almost all t € [0,t1].

If u(t) is an admissible control and A; a Lipschitz curve in T*M such that
conditions (11.3)—(11.5) hold, then the pair (u(t), A) is said to satisfy PMP. In
this case the curve \; is called an ezxtremal, and its projection ¢(¢t) = w(A\¢) is
called an extremal trajectory.

Remark. If a pair (@(t), A\¢) satisties PMP, then
ha) (A¢) = const, t €[0,t]. (11.6)

Indeed, since the admissible control 4(t) is bounded, we can take maximum
in (11.5) over the compact {@(t) | t € [0,¢1]} = U. Further, the function

p(N) = max hu (M)
uelU

is Lipschitzian w.r.t. A € T*M. We show that this function has zero derivative.
For any admissible control u(t),

p(Ae) > hu(‘r) (M), p(Ar) = hu(‘r) (Ar)s

thus N \ , \
e(Ae) — (A7) > u(r) (At) = hay(r) ( r)’ bs
t—T t—7
Consequently,
d
74 (p(At)Z{hurahur}:o
dt|,_, () bu(r)
if 7 is a differentiability point of ¢(A;). Similarly,
- hu T At) — hu T >\‘r
P —e(Ar) P X) — hun)
t—T1 t—T1
thus
4 (M) <0
dt t:T‘P t) S U.
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So y
E@(At) = 0>

and identity (11.6) follows.
The Hamiltonian system of PMP

-

A = Bty (M) (11.7)

is an extension of the initial control system (11.1) to the cotangent bundle.
Indeed, in canonical coordinates A = (§,z) € T*M, the Hamiltonian system

yields
. Ohyy
T = 8—£ = fu(t)(m)'

That is, solutions A; to (11.7) are Hamiltonian lifts of solutions ¢(t) to (11.1):
T(At) = qu(t).

Before proving Pontryagin Maximum Principle, we discuss its statement.
First we give an euristic expalantion of the way the covector curve A; appears
naturally in the study of trajectories coming to boundary of the attainable set.
Indeed, let
q1 = (t1) € 0Ag (t)-

Consider a local convex approximation of the attainable set Ay (¢1) in the neigh-
borhood of the point ¢;, which is a convex cone in Ty, M. Then 0 € T}, M must
belong to the boundary of the convex approximation of Ay, (¢1). Thus the con-
vex approximation has a hyperplane of support at ¢; determined by a covector
At, € T*M, A\, # 0 (the covector Ay, is an analog of Lagrange multipliers). In
order to construct the whole curve A\, t € [0, 1], consider the flow generated by

the control @(-):
t1

Pﬁl :e;f) fﬂ(t) dt7 TE [Oatl]

-
It is easy to see that

P (A (7)) C Ay (1), 7 €[0,t1].

Indeed, if a point ¢ € Ay (7) is reachable from gy by a control u(¢), t € [0, 7],
then the point P! (q) is reachable from go by the control

o(t) = { u(t), teo,r],

a(t), temt].
Further, the flow P!* : M — M satisfies the condition
P (g(r)) =q(th) =q,  7€E[0,h]
Thus if §(7) € int Ay, (7), then ¢; € int Ay, (¢1). By contradiction, we obtain

G(r) € 0 Ay (1), T € [0,t1].
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Consequently, we can find a hyperplane of support to the convex approximation
of A;(go) and the corresponding covector at any instant 7:

/\TequT), 7 € [0, 1]

The covectors A; are defined up to nonzero factors. They can be renormalized
so that satisfy the Hamiltonian system A; = hg(s)(A).

So the covector curve A; in Pontryagin Maximum Principle appears naturally
from hyperplanes of support to convex approximations of attainable sets.

Now we show the power of PMP by the following statement.

Proposition 11.1. Assume that the mazimized Hamiltonian of PMP

H()\) = max ha(N), AeT*M,
is defined and C?-smooth on T*M.
If a pair (4(t), A), t € [0,t1], satisfies PMP, then

M=HO), tel0,t] (11.8)

Conversely, if a Lipshitzian curve Ay # 0 is a solution to the Hamiltonian
system (11.8), then one can choose an admissible control G(t), t € [0,t1], such
that the pair (u(t), \t) satisfy PMP.

That is, in the favorable case when the maximized Hamiltonian H is C2-
smooth, PMP reduces the problem to the study of solutions to just one Hamil-
tonian system (11.8). From the point of view of dimension, this reduction
is the best one we can expect. Indeed, for a full-dimensional attainable set
(dim Ay, (t1) = n) we have dimdAy (t1) = n — 1, ie.,, we need an (n — 1)-
parameter family of curves to describe the boundary 0Ag, (t1). On the other
hand, the family of solutions to Hamiltonian system (11.8) with the initial con-
dition 7(Ag) = qo is n-dimensional. Taking into account that the Hamiltonian
H is homogeneous:

H(c)) =cH(N), c>0,
thus
etﬁ(c)\o) = cetﬁ()\o), o etﬁ(c)\g) =T7o €tﬁ()\0),

we obtain the required (n — 1)-dimensional family of curves.
Now we prove Proposition 11.1.

Proof. We show that if an admissible control @ (¢) satisfies the maximality con-
dition (11.5), then

haiyN) = HO),  t€[0,t]. (11.9)
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By definition of the maximized Hamiltonian H,
H(A) = ha@y (M) >0 AeT*M, te]|0,t].

On the other hand, by the maximality condition of PMP (11.5), along the
extremal \; this inequality turns into equality:

H()‘t) - hﬁ(t) ()‘t) =0, te [Ovtl]'

That is why
d}\tH = d)\t h“il(t): te [07 tl]

But a Hamiltonian vector field is obtained from differential of the Hamiltonian
by a standard linear transformation, thus equality (11.9) follows.

Conversely, let Ay # 0 be a trajectory of the Hamiltonian system N =
H (At). In the same way as in the proof of Filippov’s theorem, one can choose
an admissible control 4(t) that realizes maximum along A;:

H(Ae) = hag (M) = max b (A).

ue

As we have shown above, then there holds equality (11.9). So the pair (4(t), A¢)
satisfies PMP. O

11.2 Proof of PMP

We start from two auxiliary propositions.
Denote the positive orthant in R™ as

RY = {(z1,... ,2m) €ER™ |2; >0, i =1,... ,m}.

Lemma 11.1. Let a vector-function F : R™ — R"™ be Lipshitzian, F(0) = 0,
and differentiable at 0:
dF
IF) = —| .
0 dz |,

Assume that
Fi(RD) = R,

Then for any neighborhood of the origin Oy C R™
0 € int F(Op NRY").

Remark. The statement of the previous lemma holds if the orthant R is re-
placed by an arbitrary convex cone C' C R™. In this case the proof given below
works without any changes.
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Proof. Choose points yg, ... ,y, € R that generate an n-dimensional simplex

centered at the origin:
1 n
n+1 Z b =0.
=0

Since the mapping Fy : R — R" is surjective and the positive orthant R7"
is convex, it is easy to show that restriction to the interior F6|intR$ is also

surjective:

Jv; € intRY"  such that Fyo; =y;, i=0,...,n.
The points yo,...,y, are affinely independent in R™, thus their preimages
vg, - - - ,Up are also affinely independent in R™. The mean

1 &
U= n+1 ; vi
belongs to int R} and satisfies the equality
Fiv=0.
Further, the subspace
W =span{v; —v |i=0,... ,n} CR™

is n-dimensional. Since v € int R}*, we can find an n-dimensional ball Bs C W
of a sufficiently small radius § centered at the origin such that

v+ Bs Cint RY".
Since Fj(v; —v) = Fjv;, then F§WW = R™, i.e., the linear mapping Fj) : W — R"”
is invertible.
Consider the following family of mappings:
G, : Bs — R”, a €10, a9),
1
Go(w) = aF(a(v +w)), a >0,
Go(w) = Fyw.

By the hypotheses of the proposition,
F(z) = Fjz + o(z), re€R™, x—0,
thus

Go(w) = Fyw + o(1), a—0, wée By. (11.10)
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Since the mapping F' is Lipschitz, all mappings G, are Lipschitz with a common
constant. Thus the family G, is equicontinuous. Equality (11.10) means that

Go — Go, a— 0,

pointwise, thus uniformly.
But 0 € int GoBs, and it is easy to show that 0 € int G, Bs, a > 0. Indeed,
the mapping

Go(w)
W ——— w € 0B; (11.11)
|G a(w)ll
from the n — 1-dimensional sphere &B; to the unit sphere S®~! has degree 1
for « = 0, thus for small & > 0. Then 0 € int G,B;s, @ > 0. Consequently,
0 € int F'(aBs) for small o > 0. O

Now we start to compute a convex approximation of the attainable set
Ago (t1) at the point ¢1 = ¢(t1). Take any admissible control u(t) and express
the endpoint of a trajectory via Variations Formula (2.24):

t1

t1
oo exp Ju(r) dT = qoo exp fary + (fur) — fa)) dr
0 0

qu (tl)

t1

t1
= qooexp | fa(rdro e;f)/ (P1), (fury — fa(r) dr
0 0
— b
= qpo eXp/ (P), (fu(r) = fa(r)) dr.
0
Introduce the following vector field depending on two parameters:

gr = (P2, (fu = fa(r)s r€[0,t1], wueUl. (11.12)

We showed that

t1
qu(tl) =q° e;f) / 9r,u(r) dr. (1113)
0

Notice that
ra(r) = 0, TE [Oatl]

Lemma 11.2. Let T C [0,t1] be the set of Lebesgue points of the control a(-).
If
Ty, M = cone{g,; w(q1) | TET, ue U},
then
q1 € int AIIO (tl)

Remark. The set cone{gru(q1) | 7 € T, u € U} C T,; M is a local convex
approximation of the attainable set Ay, (¢1) at the point g;.
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Recall that a point 7 € [0,¢;] is called a Lebesgue point of a function u €
LY0,t] if

. 1
lim
t—T1 |t — ’r|

/ lu(6) — u(r)| 6 = 0.

t
At Lebesgue points of u, the integral / u(0) df is differentiable and
0

% (/Otu(ﬁ) d9> = u(t).

The set of Lebesgue points has the full measure in the domain [0, ¢1]. For details
on this subject, see e.g. [15].
Now we prove Lemma 11.2.

Proof. We can choose vectors
Griui (@) € Ty M, neT, uelU, i=1,...,k
that generate the whole tangent space as a positive convex cone:
cone {gr, uw;(q1) |i=1,... ,k} =T, M,

moreover, we can choose points 7; distinct: 7 # 75, i # j. Indeed, if 7; = 7; for
some i # j, we can find a sufficiently close Lebesgue point T]’- # 7 such that the
difference griu; (@1) = 97;,u; (q1) is as small as we wish. This is possible since for
any 7 € 7 and any € > 0

ﬁ meas{t' € [r,4] | |u(t') —u(r)| <&} = Las t — 7.
We suppose that 71 <19 < - < 7.

We define a family of variations of controls that follow the control @(-) ev-
erywhere except neighborhoods of 7;, and follow u; near 7; (such variations are
called needle-like). More precisely, for any s = (s1,...,8;) € H&ﬁ consider a
control of the form

_Joui, teln, T+ sl
us(t) = { a(t), t&UE [r,7+ si] (11.14)

For small s, the segments [7;, 7; + s;] do not overlap since 7; # 7, @ # j. In view
of formula (11.13), the endpoint of the trajectory corresponding to the control
constructed is expressed as follows:

t1
—
Qu, (tl) = {o©° €xp fus (t) dt
0

N T1+81 _ To+ 52
q10 exp / Gt,uy dt o exp / Gtus dt 0« -+
T

1 T2

T+ Sk
°© exp / Gty dt.
T

k
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The mapping
F : s=(s1,...,8) qu,(t1)

is Lipschitz, differentiable at s = 0, and

oOF
8si 5=0

= 9ri,ui (ql)'
By Lemma 11.1,
F(0)=q €int F(Op NRY)

for any neighborhood Og C R*. But the curve g, (t), t € [0,#;], is an admissible
trajectory for small s € RE | thus F(OoNRY ) C Ay (t1) and g1 € int Ag, (¢1). O

Now we can prove the geometric statement of Pontryagin Maximum Princi-
ple, Theorem 11.1.

Proof. Let the endpoint of the reference trajectory
q1 = (j(tl) S 8Aq0 (tl)

By Lemma 11.2, the origin 0 € T, M belongs to the boundary of the convex
set cone{gs,,(q1) |t € T, u € U}, so this set has a hyperplane of support at the
origin:

I € Tq*lM, At, #0,
such that

<)\t1;gt,u(q1)> S 0 V a.e. t € [O,tl], u € U

Taking into account definition (11.12) of the field g;,,,, we rewrite this inequality
as follows:

Atys (PEfu) (@) < Qs (B fawy) (@),

ie.,

(P A £ul@(®)) < ((B) My Fan (@(8)-
The action of the flow Pf* on covectors defines the curve in the cotangent bundle:

A (P N, € TryM,  te[0,t].

In terms of this covector curve, the inequality above reads

(Ae, fu(@(8))) < (At faqe (4(2)))

Thus the maximality condition of PMP (11.5) holds along the reference trajec-
tory:
hu(At) S hﬂ(t) (>\t) YVueU Vae te [O,tl]
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By Proposition 10.3, the curve \; is a trajectory of the nonautonomous Hamil-
tonian flow with the Hamiltonian function f;(t) = hg():

t1

* t
A=Ay o (e?ﬁ fao) de) = X0 exp | ) b,

t t1

thus it satisfies the Hamiltonian equation of PMP (11.4)
Ae = hay (M)

O

11.3 Geometric statement of PMP for free time

In the previous section we proved Pontryagin Maximum Principle for the case
of fixed terminal time ¢;. Now we consider the case of free ¢;.

Theorem 11.2. Let a(-) be an admissible control for control system (11.1) such
that

G(t1) € 8 (U< Ag (1)

for some t; > 0 and € € (0,t1). Then there exists a Lipschitz curve

METM, \N#0, 0<t<t,
such that

At = hay (M),
hﬂ(t) (>\t) = rlILlea(}( hu(At),

hay(Ae) =0 (11.15)
for almost all t € [0,¢].

Remark. In problems with free time, there appears one more variable, the ter-
minal time t;. In order to eliminate it, we have one additional condition —
equality (11.15). This condition is indeed scalar since the previous two equali-
ties imply that hy(s)(A¢) = const, see remark after formulation of Theorem 11.1.

Proof. We reduce the case of free time to the case of fixed time by extension
of the control system via substitution of time. Admissible trajectories of the
extended system are reparametrized admissible trajectories of the initial system
(the positive direction of time on trajectories is preserved).

Let a new time be a smooth function

p:R=R ¢>0.
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We find an ODE for a reparametrized trajectory:

d

27 2u(P(0) = &) fuo) (au(p (1)),

so the required equation is
G = @) fuo) (@)-
Now consider along with the initial control system

¢=fule)y wel,
an extended system of the form
¢=vfule), uwel, Jv-1] <4,
where § =¢/t; € (0,1). Admissible controls of the new system are

w(t) = (v(t), u(t)),

151

(11.16)

and the reference control corresponding to the control 4(-) of the initial system

18

w(t) = (L, a(t)).

It is easy to see that since G(t1) € 0 (Ujt—t,|<=Ag, (t)), then the trajectory of
the new system through the point go corresponding to the control @(-) comes
at the moment ¢; to the boundary of the attainable set of the new system for
time ¢;. Thus w(t) satisfies PMP with fixed time. We apply Theorem 11.1 to
the new system (11.16). The Hamiltonian for the new system is vh,(A). Then

the maximality condition (11.5) reads

L by (M) = ueUH\lgfﬂq vhu(Ar).

We take u = 4(t) under the maximum and obtain
ha@y (M) = 0,
then we restrict the maximum to the set v =1 and come to

hﬂ(t) (>\t) = 2[1635( hu(>\t)-

The Hamiltonian systems along @(-) and 4(-) coincide one with another, thus

the proposition follows.

O
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11.4 PMP for optimal control problems

Now we apply PMP in geometric form to optimal control problems, starting
from problems with fixed time.
For a control system

q=fule), q€M, uel, (11.17)
with the boundary conditions

q(0) =qo, q(t1)=aq1, ¢o,q1 € M fixed, (11.18)
t, > 0 fixed, (11.19)

and the cost functional
t1
Jw = [ plau®.u) di (11.20)
0
we consider the optimal control problem

J(u) — min. (11.21)

We transform the problem as in Sec. 9.2. We extend the state space:
q= < g ) €Rx M,

define the extended vector field f, € Vec(R x M):

7oy —  elaw) )
fulq) < fu(q) )
and come to the new control system:

dqg _ ¢ ¥ = ¢(q, u),
=fule) & {q':fu(q) (11.22)

with the boundary conditions

i0=a=(p) aw=("").

If a control @(-) is optimal for problem (11.17)—(11.21), then the trajectory gz (t)
of the extended system (11.22) starting from ¢y satisfies the condition

Ga(t1) € 0Ag (1),

where le\qu (t1) is the attainable set of system (11.22) from the point go for time
t1. So we can apply Theorem 11.1.
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But the geometric form of PMP applied to the extended system (11.22)
does not distinguish minimum and maximum of the cost J(u). In order to have
conditions valid only for minimum, we introduce a new control parameter v and
consider a new system of the form

i =elau)+o, v>0, uel. (11.23)
q = fula),

Now the trajectory of system (11.23) corresponding to the controls o(t) = 0,
@(t), comes to the boundary of the attainable set of this system at time ¢;. We
apply Theorem 11.1 to system (11.23). We have

Ty (R x M) =R ® T, M,

7, (R x M) = R®&T; M = {(1,\)}.

The Hamiltonian function for system (11.23) has the form

Bioay (5 A) = (A, fu) + (i + 0),

and the Hamiltonian system of PMP is

v = % = O’
¥ = (g, u), (11.24)
A= hﬂ(t) (v, At).

Here K, (v, ) is the Hamiltonian vector field with the Hamiltonian function
ha(v, A) = (X, fu) + v
The first of equations (11.24) means that
v = const

along the reference trajectory.
The maximality condition has the form

O fat) +v0(@(0,20) = | max_ (. £) +v(d(0), 1) +v0)

Since the previous maximum is attained, we have

r<o0

)

thus v = 0 and

s o) + vp(@(t), 5(t)) = max (O, fu) + vp(a(t), )

So we proved the following statement.
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Theorem 11.3. Let 4(t), t € [0,t1], be an optimal control for problem (11.17)-
(11.21):
J(@) = min{J(u) | qu(t1) = q1}-

Define a Hamiltonian function
hr(A) = (\, fu) + ve(q,u), ANeET;M, uvelU, vekR
Then there exists a nontrivial pair:
(v, At) #0, veR, X\ eTj,M,
such that the following conditions hold:
A = Rt (),
Ray(Ae) = max hi(At) Y a.e. t€[0,t1],
v <0.

Remarks. (1) If we have a maximization problem instead of minimization prob-
lem (11.21), then the preceding inequality for v should be reversed:

v >0.

(2) For the problem with free time #;: (11.17), (11.18), (11.20), (11.21),
necessary optimality conditions of PMP are the same as in Theorem 11.3 plus
one additional scalar equality hf, (A) = 0.

There are two distinct possibilities for the constant parameter v in Theo-
rem 11.3:

(a) if v # 0, then the curve \; is called a normal extremal. Since the pair (v, \;)
can be multiplied by any positive number, we can normalize v < 0 and assume
that ¥ = —1 in the normal case;

(b) if » = 0, then A; is an abnormal extremal.

So we can always assume that v = —1 or 0.
Now consider the time-optimal problem:

q:fu(Q)a quﬂ UEUa
q(o) = qo, q(tl) ={q1, 4qo,q1 ﬁxed:
t1
t1 :/ 1dt — min.
0
For the time-optimal problem, Pontryagin Maximum Principle takes the
following form.

Corollary 11.1. Let an admissible control u(t), t € [0,t1], be time-optimal.
Define a Hamiltonian function

he) =\ fu),  AETIM, uwel.
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Then there exists a Lipschitz curve
M ET* M, M\ #0, t € [0,t4],
such that the following conditions hold for almost all t € [0,t]:

Ae = hawy (M),
hiy(Ae) = max hu (X)),
hﬁ(t) (M) > 0. (11.25)

Proof. Apply Theorem 11.3 and the second remark after it, taking ¢ = 1. Then
the Hamiltonian system and the maximality condition follow. Inequality (11.25)
is equivalent to conditions hg()(A¢) + v =0 and v < 0.

The inequality A; # 0 is obtained as follows: if A; = 0, then hg)(As) = 0,
thus » = 0. But the pair (v, \;) must be nontrivial, consequently, A; # 0. |

In all previous problems, boundary conditions for a trajectory ¢(t) were of
the form ¢(0) = qo, ¢(t1) = ¢1. Consider more general boundary conditions:

q(0) € Ny, qu(t1) € Ny,

where No, Ny C M are smooth submanifolds. It is easy to see that optimal
solutions in the new problem are optimal for the problem with fixed ¢(0), q(¢1)
as well. So all conditions of Pontryagin Maximum Principle should be satisfied.
In addition to them, we need (dim N; + dim N») extra conditions for the initial
and terminal points. They are called transversality conditions: the adjoint
covector \; must be orthogonal to the submanifolds Ny and N; at the moments
of time to and ¢; respectively:

X LTyuNo & (Mo, TyyNo) =0,
Ay LTy Ny @ </\t17TII1N1> =0.

We leave this statement without proof.
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Chapter 12

Examples of optimal control
problems

In this chapter we apply Pontryagin Maximum Principle to solve concrete opti-
mal control problems.

12.1 The fastest stop of a train at a station

Consider a train moving on a railway. The problem is to drive the train to a
station and stop it there in a minimal time.

Describe position of the train by a coordinate x; on the real line; the origin
0 € R corresponds to the station. Assume that the train moves without friction,
and we can control acceleration of the train by applying a force bounded by
absolute value. Using rescaling if necessary, we can assume that absolute value
of acceleration is bounded by 1.

We obtain the control system

j}l =u, Ty € ]R, |U| S ]-7

or, in the standard form,

T = @I
T e={ ") eR, Ju<l.
T2 = U, T2

The time-optimal control problem is

z(0) =2°, xz(t;) =0,

t1 — min.

First we verify existence of optimal controls by Filippov’s theorem. The set
of control parameters U = [—1, 1] is compact, the vector fields in the right-hand
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side

faw=( ). <t

u

are linear, and the set of admissible velocities at a point

fl@,U) ={f(z,u) | |lu] <1}

is convex. By Corollary 9.2, the time-optimal control problem has a solution if
the origin 0 € R? is attainable from the initial point z°. We will show that any
point = € R? can be connected with the origin by an extremal curve.

Now we apply Pontryagin Maximum Principle. Introduce canonical coordi-
nates on the cotangent bundle:

M =R,
11“.(]\4271*]R2 :]RQ* XR2 = {A: (5,5[3) |.27: < o )’ §: (51552)}'

T2

The control-dependent Hamiltonian function of PMP is

hu(f,l’) = (51752) ( '2;2 > = £1$2 +£2U,

and the corresponding Hamiltonian system has the form

. Oh
=S¢

5__é&
- dx

In coordinates this system splits into two independent subsystems:

1..1 = T2, é:l =0, (121)
T2 = U, & =—&.
By PMP, if a control @(-) is time-optimal, then the Hamiltonian system has a
nontrivial solution (&(t), z(t)), £(t) Z 0, such that

B (€(0),2(2)) = masx h(€(2),2(0) > 0
From this maximality condition, if &(t) # 0, then @(t) = sgn&;(¢). Notice that
the maximized Hamiltonian

max h, (&, z) = &1x2 + |62
[u|<1

is not smooth. So we cannot apply Proposition 11.1, but we can obtain descrip-
tion of optimal controls directly from Pontryagin Maximum Principle, without
preliminary maximization of Hamiltonian.
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Since

then & is linear:
&(t) = a+ Bt a, 3 = const,

hence the optimal control has the form
u(t) = sgn(a + Gt).

So u(t) is piecewise constant, takes only the extremal values £1, and has not
more than one switching (discontinuity point).

New we find all trajectories z(¢) that correspond to such controls and come
to the origin. For controls u = +1, the first of subsystems (12.1) reads

jf.l = T2,
Ty = £1.
Trajectories of this system satisfy the equation
dil?l
— = +uxo,
dl‘z 2

thus are parabolas of the form
2
xlzﬂ:?2+0, C = const.

First we find trajectories from this family that come to the origin without
switchings: these are two semiparabolas

2
z2

9 2 <0, x>0, (122)

T =
and
T =—-2 Ty >0, @9 <0, (12.3)
for u = +1 and —1 respectively.
Now we find all extremal trajectories with one switching. Let (x4, Z2s) €

R? be a switching point for anyone of curves (12.2), (12.3). Then extremal
trajectories with one switching coming to the origin have the form

—r5/2+ 3, /2 + 115, Tz > Tas, T2 <0,
xy = (12.4)
x3/2 0> xy > x5, a2 >0,
and
r5/2 — x5,/2 + 215, T2 < T2s, T2 >0,
xy = (12.5)

—:L‘%/2 0< a9 <Tas, a2 <0.
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It is easy to see that through any point (z1,z2) of the plane passes exactly
one curve of the forms (12.2)—(12.5). So for any point of the plane there exists
exactly one extremal trajectory steering this point to the origin. Since optimal
trajectories exist, then the solutions found are optimal.

12.2 Control of a linear oscillator

Consider a linear oscillator whose motion can be controlled by force bounded in
absolute value. The corresponding control system (after appropriate rescaling)
is

I+ 21 = u, lul <1, =z €R,

or, in the canonical form:

T =T
T lu| < 1, <”“°1 )e]RiQ.
Ty = —T1 +u, T2

We consider the time-optimal problem for this system.

By Filippov’s theorem, optimal control exists. Similarly to the previous
problem, we apply Pontryagin Maximum Principle: the Hamiltonian function
is

hy(§,7) = &2 — Lam1 + 21, (&2) e TR = R* x R?,

and the Hamiltonian system reads

i?l = T2, éfl 2525
Ty = —31 +u, & = =&

The maximality condition of PMP yields

E(t)a(t) = max &2 (t)u,

thus optimal controls satisfy the condition

a(t) =sgnéo(t)  if &(t) #0.

For the variable & we have the ODE

& = =&,

hence
& = asin(t + B), «, 3 = const.

Notice that a # 0: indeed, if & = 0, then & = —&(t) = 0, thus £(t) =
(&1(t), & (t)) = 0, which is impossible by PMP. Consequently,

a(t) = sgn(asin(t + B)).
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This equality yields a complete description of possible structure of optimal con-
trol. The interval between successive switching points of 4(t) has the length .
Let 7 € [0,7) be the first switching point of 4(¢). Then

alt) = sgn @(0), te[0,7)U[r+m,7+2m)U[r+3n,7+4m)U...
| —sgna(0), te[r,r+mU[r+2m,7+3m)U...

That is, @(t) is parametrized by two numbers: the first switching time 7 € [0, 7)
and the initial sign sgn@(0) € {£1}.

Optimal control 4(t) takes only the extremal values +1. Thus optimal tra-
jectories (z1 (), z2(t)) consist of pieces that satisfy the system

{{”1 -t (12.6)

Tog = —X1 + ].,
i.e., arcs of the circles
(x1 £1)* + 23 =C, C = const,

passed clockwise.

Now we describe all optimal trajectories coming to the origin. Let v be any
such trajectory. If v has no switchings, then it is an arc belonging to one of the
semicircles

(x; —1)* + 23 =1, x5 <0, (12.7)
(x1 + 1) + 23 =1, x3 >0 (12.8)

and containing the origin. If 7 has switchings, then the last switching can occur
at any point of these semicircles except the origin. Assume that v has the last
switching on semicircle (12.7). Then the part of  before the last switching and
after the next to last switching is a semicircle of the circle (z; + 1) + 23 = C
passing through the last switching point. The next to last switching of v occurs
on the curve obtained by rotation of semicircle (12.7) around the point (—1,0)
in the plane (1, z2) by the angle 7, i.e., on the semicircle

(x, +3)%+22=1, x,>0. (12.9)

To obtain the geometric locus of the previous switching of v, we have to rotate
semicircle (12.9) around the point (1, 0) by the angle ; we come to the semicircle

(1‘1—5)24‘%’%:1, Z’QSO
The previous switching of 7 takes place on the semicircle
(1 +7)>+a23=1,  a2>0,

and so on.
The case when the last switching of v occurs on semicircle (12.8) is obtained
from the case just considered by the central symmetry of the plane (z1,z2)
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w.r.t. the origin: (z1,z2) — (—z1,—z2). Then the successive switchings of 7y
(in the reverse order starting from the end) occur on the semicircles

(x1 +1)* +23 =1, x>0,
(1 —3)? + 23 =1, z2 <0,
(z1+5)? + 235 =1, xs >0,
(21 = 7)* +a3 =1, z2 <0,

etc. We obtained the switching curve in the plane (z1, z2):

(#1— (2k-1))2+23 =1, 23 <0, k€N,
N 3 (12.10)
(1 +(2k—1))" +25=1, 22 >0, kel
This switching curve divides the plane (z1,22) into two parts. Any extremal
trajectory (z1(t),z=2(t)) in the upper part of the plane is a solution of ODE (12.6)
with —1 in the second equation, and in the lower part it is a solution of (12.6)
with +1. For any point of the plane (z1,z2) there exists exactly one curve of
this family of extremal trajectories that comes to the origin (it has the form of
a “spiral” with a finite number of switchings). Since optimal trajectories exist,
the constructed extremal trajectories are optimal.

The time-optimal control problem is solved: in the part of the plane (z1,x2)
over the switching curve (12.10) the optimal control is & = —1, and below this
curve @ = +1. Through any point of the plane passes one optimal trajectory
which corresponds to this optimal control rule. After finite number of switch-
ings, any optimal trajectory comes to the origin.

Now we consider optimal control problems with the same dynamics as in the
previous two sections, but with another cost functional.

12.3 The cheapest stop of a train

As in Section 12.1, we control motion of a train. Now the goal is to stop the
train at a fixed instant of time with a minimum expenditure of energy, which is
assumed proportional to the integral of squared acceleration.

So the optimal control problem is as follows:

{3.31:3:27 m:<x1>€R2, UER,
Ty = U, I

z(0) = a”, x(t1) =0, t; fixed,

1 [

—/ u?dt = min.
2 /o

Filippov’s theorem cannot be applied directly since the right-hand side of
the control system is not compact. Although, one can choose a new time ¢ —
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%fot u?(7)dr + C and obtain a bounded right-hand side, then compactify it
and apply Filippov’s theorem. In such a way existence of optimal control can
be proved. See also the general theory of linear quadratic problems below in
Chapter 14.

To find optimal control, we apply PMP. The Hamiltonian function is

he (&, x) :§1$2+§2u+gu2, (&, x) € R*>* x R2.

Along optimal trajectories
v <0, v=const.

From the Hamiltonian system of PMP, we have

él = 0>
> 12.11
{fz = —{1. ( )

Consider first the case of abnormal extremals:
v=0.
The triple (&1, &2, V) must be nonzero, thus

&(t) Z0.
But the maximality condition of PMP yields

a(t)&(t) = rggﬁ(u&(t). (12.12)

Since & (t) # 0, the maximum above does not exist. Consequently, there are no
abnormal extremals.

Consider the normal case: v # 0, we can take v = —1. The normal Hamil-
tonian function is

hu(€,2) = byt (€, 7) = w2 + Eou — %u?

Maximality condition of PMP is equivalent to 88'2; =0, thus

u(t) = &(t)

along optimal trajectories. Taking into account system (12.11), we conclude
that optimal control is linear:

a(t) = at + B, a, 3 = const.
The maximized Hamiltonian function

H(E, ) = maxhu(6,) = bus + 563



164 CHAPTER 12. EXAMPLES OF OPTIMAL CONTROL PROBLEMS

is smooth. That is why optimal trajectories satisfy the Hamiltonian system

1 = T2,
Ty = &,
& =0,

b =-&.

For the variable z; we obtain the boundary value problem

21(0) =2, #(0) =29, z1(t1) =0, @y(t;)=0. (12.13)

For any (z0,z9), there exists exactly one solution x;(t) of this problem — a
cubic spline. The function z2(t) is found from the equation xo = .

So through any initial point 2° € R? passes a unique extremal trajectory
arriving at the origin. It is a curve (21 (t), z2(t)), t € [0, #1], where z; (¢) is a cubic
polynomial that satisfies the boundary conditions (12.13), and z2(t) = Z1(¢). In
view of existence, this is an optimal trajectory.

12.4 Control of a linear oscillator with cost
We control a linear oscillator, say a pendulum with a small amplitude, by an

unbounded force u, but take into account expenditure of energy measured by
the integral % fotl u?(t) dt. The optimal control problem reads

T = T
e r=( "1 )eR, uekR,
Ty = —T1 tu, T2

z(0) =2° =(t;) =0, ¢t fixed,

1 [t
5/ u?dt = min.
0

Existence of optimal control can be proved by the same argument as in the
previous section.
The Hamiltonian function of PMP is
v vV oo
hy (& 2) = &1e — Sy + Sou+ U

The corresponding Hamiltonian system yields

éfl 2527
&2 = &1
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In the same way as in the previous problem, we show that there are no ab-
normal extremals, thus we can assume v = —1. Then the maximality condition
yields

a(t) = &(1)-

In particular, optimal control is a harmonic:
@(t) = asin(t + B3), a, B = const.

The system of ODEs for extremal trajectories

T Z2,
o = —x1 + asin(t + 5)
is solved explicitly:

x1(t) = —gtcos(t + ) + asin(t + b),
o2 N (12.14)
xo(t) = Et sin(t + B) — 5 cos(t+ B) + acos(t+b), a, beR.

Exercise 12.1. Show that exactly one extremal trajectory of the form (12.14)
satisfies the boundary conditions.

In view of existence, these extremal trajectories are optimal.

12.5 Dubins car

Consider a car moving in the plane. The car can move forward with a fixed
linear velocity and simultaneously rotate with a bounded angular velocity. Given
initial and terminal position and orientation of the car in the plane, the problem
is to drive the car from the initial configuration to the terminal one for a minimal
time.

Admissible paths of the car are curves with bounded curvature. Suppose that
curves are parametrized by length, then our problem can be stated geometrically.
Given two points in the plane and two unit velocity vectors attached respectively
at these points, one has to find a curve in the plane that starts at the first point
with the first velocity vector and comes to the second point with the second
velocity vector, has curvature bounded by a given constant, and has the minimal
length among all such curves.

Remark. If curvature is unbounded, then the problem, in general, has no solu-
tions. Indeed, the infimum of lengths of all curves that satisfy the boundary
conditions without bound on curvature is the distance between the initial and
terminal points: the segment of the straight line through these points can be
approximated by smooth curves with the required boundary conditions. But
this infimum is not attained when the boundary velocity vectors do not lie on
the line through the boundary points and are not collinear one to another.
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After rescaling, we obtain a time-optimal problem for a nonlinear system:

%1 = cosf,
&y = sin 6, (12.15)
0 =u,

1’:(1‘1,$2)€R2, 96517 |U|S17
z(0), 6(0), z(t1), 6(t1) fixed,

t1 — min.

Existence of solutions is guaranteed by Filippov’s Theorem. We apply Pon-
tryagin Maximum Principle.

We have (z1,22,0) € M = R2 x S}, let (&,&,pn) be the corresponding
coordinates of the adjoint vector. Then

A= (x,0,&pn) € T*M,
and the control-dependent Hamiltonian is
hy(X) = & cosf + & sin 6 + pu.
The Hamiltonian system of PMP yields
£=0, (12.16)
=& sinf — &5 cos b, (12.17)

and the maximality condition reads

w(t)u(t) = ngu(t)u. (12.18)

Equation (12.16) means that £ is constant along optimal trajectories, thus the
right-hand side of (12.17) can be rewritten as

& sinf — & cosf = asin(f + ), a, B =const, a=/&+& >0.
(12.19)

So the Hamiltonian system of PMP (12.15)—(12.17) yields the following system:

{uzasinww),

0 =u.
Maximality condition (12.18) implies that

u(t) =sgnpu(t) if u(t) #0. (12.20)

If @ =0, then (£,&) =0 and p = const # 0, thus u = const = +1. So the
curve z(t) is an arc of a circle of radius 1.
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Let a # 0, then in view of (12.19), we have > 0. Conditions (12.16),
(12.17), (12.18) are preserved if the adjoint vector (£, ) is multiplied by any
positive constant. Thus we can choose (€, ) such that a = /¢ + & = 1. That
is why we suppose in the sequel that

a=1.

Condition (12.20) means that behavior of sign of the function p(t) is crucial
for the structure of optimal control. We consider several possibilities for u(t).

(0) If the function p(t) does not vanish on the segment [0,¢;], then the
optimal control is constant:

u(t) = const = £1, t € 10,t1], (12.21)

and the optimal trajectory z(t), t € [0,¢1], is an arc of a circle. Notice that
an optimal trajectory cannot contain a full circle: a circle can be eliminated
so that the resulting trajectory satisfy the same boundary conditions and is
shorter. Thus controls (12.21) can be optimal only if t; < 2.

In the sequel we can assume that the set

N ={re0,t] | u(r) = 0}

is nonempty. Since N is open, it is a union of open intervals in [0, ¢;1], plus, may
be, semiopen intervals of the form [0, 71), (72, 1]
(1) Suppose that the set N contains an interval of the form

(r1,72) C[0,t], 7 <7 (12.22)
We can assume that the interval (71, 72) is maximal w.r.t. inclusion:
u(ri) = p(r2) =0, 1] (ry 7y # O
From PMP we have the inequality
oy (M) = cos(8(t) + ) + u(tyu(t) > 0.

Thus
cos(f(m) + ) > 0.

This inequality means that the angle

0=0(r)+5
satisfies the inclusion
oe 0.3]u |5 ).
Consider first the case ~ -
0e (0.5]
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Then fi(m) = sinf > 0, thus at 7, control switches from —1 to +1, so
O(t) = u(t) = 1, t € (m,m).

We evaluate the distance 7 — 7. Since

w(me) = / sin(§+ T—1)dr =0,

1

~

then 75 — 7 = 2(w — 0), thus

T — T € [7m,2m). (12.23)

fe {%,271’)

inclusion (12.23) is proved similarly, and in the case 8 = 0 we obtain no optimal
controls (the curve z(t) contains a full circle, which can be eliminated).

Inclusion (12.23) means that successive roots 7, 72 of the function u(t)
cannot be arbitrarily close one to another. Moreover, the previous argument
shows that at such instants 7; optimal control switches from one extremal value
to another, and along any optimal trajectory the distance between any successive
switchings 7;, 7;+1 is the same.

So in case (1) an optimal control can only have the form

In the case

€, t € (Tor—1,T2k),
u(t) = { . te ETz:;%j’l“; (12.24)
€ = =£1,
Ti+1 — T; = const € [m,27), i=1,...,N—-1, (12.25)
1 € (0,27),

here we do not indicate values of u in the intervals before the first switching,
t € (0,71), and after the last switching, ¢ € (7n,¢1). For such trajectories,
control takes only extremal values £1 and the number of switchings is finite on
any compact time segment. Such a control is called bang-bang.

Controls u(t) given by (12.24), (12.25) satisfy PMP for arbitrarily large ¢,
but they are not optimal if the number of switchings is V > 3. Indeed, suppose
that such a control has at least 4 switchings. Then the piece of trajectory
x(t), t € [11,74], is a concatenation of three arcs of circles corresponding to the
segments of time [11, 2], [2, 73], [73, T4] With

Ty —T3=T3—Ty =Ty — T €[m,2m).
Draw the segment of line

w0, telntm/nmem, |51
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the common tangent to the first and third circles through the points z ((71 + 72)/2)
and  ((13 + 74)/2). Then the curve

_{ (), t ¢ [(m+7)/2 (5 +7)/2],
y() { &(t), Le [(n +12)/2, (72 +72)/2],

is an admissible trajectory and shorter than x(¢). We proved that optimal
bang-bang control can have not more than 3 switchings.

(2) It remains to consider the case where the set N does not contain intervals
of the form (12.22). Then N consists of at most two semiopen intervals:

N =1[0,71) U (72, t], 1 < T2,

where one or both intervals may be absent. If 71 = 73, then the function u(t)
has a unique root on the segment [0,%], and the corresponding optimal control
is determined by condition (12.20). Otherwise

7 < Ty,

and

,U|[07T1) # 0, M|[T17T2] = 0, 'U|(T27t1] # 0. (1226)

In this case the maximality condition of PMP (12.20) does not determine op-
timal control u(t) uniquely since the maximum is attained for more than one
value of control parameter u. Such a control is called singular. Nevertheless,
singular controls in this problem can be determined from PMP. Indeed, the
following identities hold on the interval (71, 72):

p=sin@+p5)=0 = 6#+p8=7mk = 6H=const = wu=0.

Consequently, if an optimal trajectory z(t) has a singular piece, which is a
line, then 7 and 7 are the only switching times of the optimal control. Then

ul(g ,,y = const = £1, w|,, = const = 1,

72,61

and the whole trajectory z(¢), t € [0,¢;], is a concatenation of an arc of a circle
of radius 1
xz(t), wu(t)==x1, t € [0,m],

a line
1‘(t), U(t) :0, te [Tl,’l'g],

and one more arc of a circle of radius 1
x(t)a U(t) = :tlv te [TQatl]'

So optimal trajectories in the problem have one of the following two types:
(1) concatenation of a bang-bang piece (arc of a circle, u = £1), a singular
piece (segment of a line, v = 0), and a bang-bang piece, or
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(2) concatenation of bang-bang pieces with not more than 3 switchings, the
arcs of circles between switchings having the same central angle € [r, 27).

If boundary points z(0), z(t1) are sufficiently far one from another, then
they can be connected only by trajectories containing singular piece. For such
boundary points, we obtain a simple algorithm for construction of an optimal
trajectory. Through each of the points z(0) and z(¢;), construct a pair of circles
of radius 1 tangent respectively to the velocity vectors ©(0) = (cos6(0),sin 6(0))
and &(t;) = (cosf(t1),sinf(¢1)). Then draw common tangents to the circles
at z(0) and x(t;) respectively, so that direction of motion along these tangents
was compatible with direction of rotation along the circles determined by the
boundary velocity vectors #(0) and #(¢1). Finally, choose the shortest curve
among the candidates obtained. This curve is the optimal trajectory.



Chapter 13

Linear time-optimal
problem

13.1 Problem statement
In this chapter we study the following optimal control problem:

z = Ax + Bu, z€e€R*, weUCR",
z(0) = zo, x(t1) =x1, w0, 1 € R™ fixed, (13.1)
t; — min,

where U is a compact convex polytope in R, and A and B are constant matrices
of order n xn and n x m respectively. Such problem is called linear time-optimal
problem.
The polytope U is the convex hull of a finite number of points a1, ... ,a in
R™:
U = conv{ay,...,ar}.

We assume that the points a; do not belong to the convex hull of all the rest
points a;j, j # i, so that each a; is a vertex of the polytope U.

In the sequel we assume the following General Position Condition:

For any edge [a;, a;] of U, the vector e;; = a; — a; satisfies the equality

span(Be;j, ABe;j, . .. ,A”_lBeij) =R". (13.2)

This condition means that no vector Be;; belongs to a proper invariant
subspace of the matrix A. By Theorem 3.1, this is equivalent to controllability
of the linear system & = Ax 4+ Bu with the set of control parameters u € Re;;.
Condition (13.2) can be achieved by a small perturbation of matrices A, B.

We already considered examples of linear time-optimal problems in Sec-
tions 12.1, 12.2. Here we study the structure of optimal control, prove its
uniqueness, evaluate the number of switchings.
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Existence of optimal control for any points xg, z; such that z; € A(zp) is
guaranteed by Filippov’s theorem. Notice that for the analogous problem with
an unbounded set of control parameters, optimal control may not exist: it is
easy to show this using linearity of the system.

Before proceeding with the study of linear time-optimal problems, we recall
some basic facts on polytopes.

13.2 Geometry of polytopes

The convex hull of a finite number of points aq,... ,ar € R™ is the set

k k
U = conv{ay,...,a;} def {Zaiai | a; >0, Zai = 1}-
i=1 i=1

An affine hyperplane in R™ is a set of the form
II={ueR™|{u)=c}, EeR™\ {0}, ceR
A supporting hyperplane to a polytope U is a hyperplane II such that
(Eu)y<e YueU

for the covector ¢ and number ¢ that define II, and this inequality turns into
equality at some point v € U, i.e., INU # (.
A polytope U = conv{ay, ... ,a} intersects with any its supporting hyper-

plane IT = {u | (£, u) = ¢} by another polytope:

UNII = conv{ai,...,ai},

<§7ai1> == <£,ail> =,

<§7aj> <ec, J¢{117 7il}~
Such polytopes U N1I are called faces of the polytope U. Zero-dimensional and
one-dimensional faces are called respectively vertices and edges. A polytope has
a finite number of faces, each of which is the convex hull of a finite number
of vertices. A face of a face is a face of the initial polytope. Boundary of a

polytope is a union of all its faces. This is a straightforward corollary of the
separation theorem for convex sets (or the Hahn-Banach Theorem).

13.3 Bang-bang theorem

Optimal control in the linear time-optimal problem is bang-bang, i.e., it is piece-
wise constant and takes values in vertices of the polytope U.

Theorem 13.1. Let u(t), 0 <t < t1, be an optimal control in the linear time-
optimal control problem (13.1). Then there exists a finite subset

T C[0,t], #T < o0,
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such that
u(t) € {ag,... ,ar}, tef0,t1]\ 7, (13.3)
and restriction u(t)|,cpo 4,7 @ locally constant.

Proof. Apply Pontryagin Maximum Principle to the linear time-optimal prob-
lem (13.1). State vector and adjoint vector are

T
r=| 1 |e€R,  £=(&,... &) €R™,

Tp
and a point in the cotangent bundle is
A=(§z) e R xR* =T*R".
The control-dependent Hamiltonian is
hu(§, @) = EAz + EBu

(we multiply raws by columns). The Hamiltonian system and maximality con-
dition of PMP take the form:

£ = ¢4,
£(t) #0,
&(t)Bu(t) = Iq?eaécf(t)Bu. (13.4)

{:i::A:U+Bu,

The Hamiltonian system implies that adjoint vector

E(t) =€0)e™™,  £(0) #0, (13.5)

is analytic along the optimal trajectory.
Counsider the set of indices corresponding to vertices where maximum (13.4)
is attained:

J(t) = {1 <j<kl|&t)Ba; = gleagf(t)Bu =max{{(t)Ba; |i=1,... ,k}}

At each instant ¢ the linear function £(¢)B attains maximum at vertices of the
polytope U. We show that this maximum is attained at one vertex always
except a finite number of moments.
Define the set
T ={tel0,t;]| #J() > 1}.

By contradiction, suppose that 7 is infinite: there exists a sequence of distinct
moments

{Tl,...,Tn,...}CT.
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Since there is a finite number of choices for the subset J(7,) C {1,...,k}, we
can assume, without loss of generality, that

J(r) =J(r) == J(rn) =+

Denote J = J(1;).
Further, since the convex hull

conv{a; | j € J}

is a face of U, then there exist indices ji, jo € J such that the segment [a;,, aj,]
is an edge of U. We have

&(m)Baj, = &(1;)Baj,, i=1,2,....
For the vector e = aj, — aj, we obtain
&(r;)Be =0, i=1,2,....
But &(1;) = £(0)e~ ™4 by (13.5), so the analytic function
t— £(0)e " Be
has an infinite number of zeros on the segment [0, ¢1], thus it is identically zero:
£(0)e™ 4 Be = 0.
We differentiate this identity successively at ¢ = 0 and obtain
€(0)Be =0, &(0)ABe=0, ..., €£(0)A™ 'Be=0.

By General Position Condition (13.2), we have £(0) = 0, a contradiction to (13.5).
So the set 7T is finite.

Out of the set T, the function £(¢)B attains maximum on U at one vertex
aj(e), 17(t)} = J(t), thus the optimal control u(t) takes value in the vertex a;.
Condition (13.3) follows. Further,

¢(t)Bajgy > €(t)Bai, i # j(t).

But all functions ¢ — £(t) Ba; are continuous, so the preceding inequality preser-
ves for instants close to ¢. The function ¢ — j(t) is locally constant on [0, #1]\ 7,
thus the optimal control u(t) is also locally constant on [0,%]\ 7. O

In the sequel we will need the following statement proved in the preceding
argument.

Corollary 13.1. Let £(t), t € [0,t1], be a nonzero solution of the adjoint equa-

tion £ = —EA. Then everywhere in the segment [0,11], except a finite number of

points, there exists a unique control u(t) € U such that {(t)Bu(t) = ma[)ff(t)Bu.
ue
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13.4 Uniqueness of optimal controls and extre-
mals

Theorem 13.2. Let the terminal point x1 be reachable from the initial point
ZTo-

x1 € A(xg).
Then linear time-optimal control problem (13.1) has a unique solution.

Proof. As we already noticed, existence of an optimal control follows from Fil-
ippov’s Theorem.

Suppose that there exist two optimal controls: wi(t), us(t), t € [0,%1]. By
Cauchy’s formula:

t1
z(t)) = et (mg +/ e " Bu(t) dt> ,
0

we obtain

tl tl
etrd (a:g + / e " Buy (t) dt) = eht4 <x0 + / e " Buy(t) dt> :
0 0

thus
tl tl
/ e~ Buy (1) di = / e~ Busy (1) dt. (13.6)
0 0

Let & (1) = & (0)e 4 be the adjoint vector corresponding by PMP to the control
u1(t). Then equality (13.6) can be written in the form

" 61 (t)Bu1 (t) dt = " 51 (t)BUZ (t) dt. (137)

By the maximality condition of PMP
§1(t)Bui () = max &1 (t) Bu,

thus
1(t)Buy (t) > & (t) Bua(t).

But this inequality together with equality (13.7) implies that almost everywhere
on [0, 1]
51 (t)Bu1 (t) = 51 (t)BU2 (t)
By Corollary 13.1,
Uy (t) = Uy (t)

almost everywhere on [0, ¢1]. O
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So for linear time-optimal problem, optimal control is unique. The standard
procedure to find the optimal control for a given pair of boundary points xg, 21
is to find all extremals (£(t), z(t)) steering xo to x; and then to seek for the best
among them. In the examples considered in Sections 12.1, 12.2, there was one
extremal for each pair zg, 1 with z; = 0. We prove now that this is a general
property of linear time-optimal problems.

Theorem 13.3. Let x; = 0 € A(zg) and 0 € U \ {a1,...,ar}. Then there
exists a unique control u(t) that steers o to 0 and satisfies Pontryagin Mazimum
Principle.

Proof. Assume that there exist two controls
Ul(t), t e [O,tl], and U,Q(t), t e [O,tg],

that steer zy to 0 and satisfy PMP.
If t; = t2, then the argument of the proof of preceding theorem shows that
u1(t) = ua(t) a.e., so we can assume that

t1 > to.

Cauchy’s formula gives

t1
et <a:0 +/ et Bu, (t) dt)
0

to
et24 <:v0 +/ e~ Buy(t) dt) =0,
0

0,

thus
tl t2
/ e~ Buy (1) di = / e~ Busy (1) dt. (13.8)
0 0
According to PMP, there exists an adjoint vector & (¢), t € [0,¢;], such that
&(t) = &(0)e 4, &(0) #0, (13.9)
&1(t)Buy (t) = max &1(t)Bu. (13.10)
Since 0 € U, then
61 (t)BUl (t) Z 0, t e [O,tl]. (1311)
Equality (13.8) can be rewritten as
tl t2
51 (t)BUq (t) dt = 51 (t)BUQ (t) dt. (1312)
0 0

Taking into account inequality (13.11), we obtain

h 61 (t)BUl (t) dt S h 61 (t)BUZ (t) dt. (1313)
0 0
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But maximality condition (13.10) implies that

& (t)Buy () > & () Bua(t), t €1[0,1s]. (13.14)
Now inequalities (13.13) and (13.14) are compatible only if

& () Buy(t) = & (H)Bua(t),  te[0,],
thus inequality (13.13) should turn into equality. In view of (13.12), we have

to
. & (8)Buy (t) dt = 0.
Since the integrand is nonnegative, see (13.11), then it vanishes identically:
& (t)Buy () = 0, t € [t1,1a].

By the argument of Theorem 13.1, the control u, () is bang-bang, so there exists
an interval I C [t1,t2] such that

uy (t)]; = a; # 0.

Thus
& (t)Ba; =0, tel.

But & ()0 = 0, this is a contradiction with uniqueness of the control for which
maximum in PMP is obtained, see Corollary 13.1. (|

13.5 Switchings of optimal control

Now we evaluate the number of switchings of optimal control in linear time-
optimal problems. In the examples of Sections 12.1, 12.2 we had respectively
one switching and an arbitrarily large number of switchings, although finite on
any segment. It turns out that in general there are two cases: non-oscillating and
oscillating, depending on whether the matrix A of the control system has real
spectrum or not. Recall that in the example with one switching, Section 12.1,
we had

4= ( 01 ) Sp(4) = {0} C R,
0 0
and in the example with arbitrarily large number of switchings, Section 12.2,
0 1 .
A= ( ool ) Sp(4) = {+i} ¢ R
We consider systems with scalar control:

& = Ax + ub, uelU=[a,f]CR, zeR",
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under the General Position Condition
span(b, Ab, ... ,A""'b) = R".

Then attainable set of the system is full-dimensional for arbitrarily small times.
We can evaluate the minimal number of switchings necessary to fill a full-
dimensional domain. Optimal control is piecewise constant with values in
{a,}. Assume that we start from the initial point zy with the control a.
Without switchings we fill a piece of a 1-dimensional curve e(A%+eb)tg  with
1 switching we fill a piece of a 2-dimensional surface e(Az+5b)t2 o (Aztab)tyy
with 2 switchings we can attain points in a 3-dimensional surface, etc. So the
minimal number of switchings required to reach an n-dimensional domain is
n—1.

We prove now that in the non-oscillating case we never need more than n—1
switchings of optimal control.

Theorem 13.4. Assume that the matriz A has only real eigenvalues:
Sp(4) C R

Then any optimal control in linear time-optimal problem (13.1) has no more
than n — 1 switchings.

Proof. Let u(t) be an optimal control and £(t) = ¢ (0)e~t4 the corresponding
solution of the adjoint equation £ = —£A. The maximality condition of PMP
reads

E(t)bu(t) = max &(t)bu,
u€la,B]

thus

u(t) = {5 if £(t)b > 0,

a if £(¢)b < 0.

So the number of switchings of the control u(t), t € [0, 1], is equal to the number
of changes of sign of the function

y(t) = g(t)b> te [Ovtl]'

We show that y(t) has not more than n — 1 real roots.
Derivatives of the adjoint vector have the form

¢W (1) = £(0)e (- A)k,
By Cayley Theorem, the matrix A satisfies its characteristic equation:
A"+ A" e, Id =0,

where
det(tId —A) = t" + 1" + - 4 ¢y,
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thus

(—A)" —ci (A" o (=), Id = 0.
Then the function y(t) satisfies an n-th order ODE:

y () — ey V(@) + -+ (=1)eny(t) = 0. (13.15)

It is well known (see e.g. [4]) that any solution of this equation is a quasipoly-
nomial:

k
y(t) =Y e M Pi(t),
i=1
P;(t) a polynomial,
)\17&)\] fOI“i;éj,

where A; are eigenvalues of the matrix A and degree of each polynomial P; is
less than multiplicity of the corresponding eigenvalue \;, thus

k
ZdegPi <n-—k.

i=1
Now the statement of this theorem follows from the next general lemma. O

Lemma 13.1. A quasipolynomial

k k
y(t)=S"NP(), S degP <n—k, (13.16)
i=1

— i=1
N # N fori# .
has no more than n — 1 real roots.

Proof. Apply induction on k.
If £ =1, then a quasipolynomial

y(t) =eMP(t), degP <n-—1,

has no more than n — 1 roots.
We prove the induction step for £ > 1. Denote

ni:degPi, izl,...,k).
Suppose that the quasipolynomial y(¢) has n real roots. Rewrite the equation

k—1
y(t) =DM Pi(t) + M P(t) =0

i=1
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as follows:

k—1
Z e TP (1) + Py (t) = 0. (13.17)

i=1

The quasipolynomial in the left-hand side has n roots. We differentiate this
quasipolynomial successively (ng + 1) times so that the polynomial Py (t) disap-
pear. After (nj + 1) differentiations we obtain a quasipolynomial

k—1
D M), degQ; < deg P,
i=1

which has (n — ng — 1) real roots by Rolle’s Theorem. But by induction as-
sumption the maximal possible number of real roots of this quasipolynomial
is

k—1
Zni+k—2<n—nk—1.
i=1

The contradiction finishes the proof of the lemma. O

So we completed the proof of Theorem 13.4: in the non-oscillating case an
optimal control has no more than n — 1 switchings on the whole domain (recall
that n — 1 switchings are always necessary even on short time segments since
the attainable sets Ag, (¢) are full-dimensional for all ¢ > 0).

For an arbitrary matrix A, one can obtain the upper bound of (n — 1)
switchings for sufficiently short intervals of time.

Theorem 13.5. Consider the characteristic polynomial of the matriz A:
det(tId—A) = t" +c1t" ' + -+ ¢c,,
and let

¢ = max |c;|.
1<i<n

Then for any time-optimal control u(t) and any t € R, the real segment

ien ()]

contains not more than (n — 1) switchings of an optimal control u(t).

In the proof of this theorem we will require the following general proposition,
which we learned from S. Yakovenko.

Lemma 13.2. Consider an ODE

y™ e )y 4 ey (t)y =0



13.5. SWITCHINGS OF OPTIMAL CONTROL 181

with measurable and bounded coefficients:

C; = tel’[Itl%i(J] |Ci (t)|
If
ch— <1, (13.18)

then any nonzero solution y(t) of the ODE has not more than n — 1 roots on
the segment t € [t,t + 4].

Proof. By contradiction, suppose that the function y(t) has at least n roots on
the segment ¢ € [¢,7 + d§]. By Rolle’s Theorem, derivative y(t) has not less than
n — 1 roots, etc. Then y(™ Y has a root t,, | € [t,f + 6]. Thus

= [y

tn—1

Let t,,_» € [£,+ 6] be a root of y(™~2)(t), then

t T1
y(n—2)(t):/ dn/ y(”)(Tz)de-

th_2 tn—1

We continue this procedure by integrating y "=+ (t) from a root t,_; € [t,1+0]
of y(»=9(t) and obtain

Ti—1
(n— ’) / drm, / / y(”)(n) dr;, i=1,...,n.
tn— i+1 tn—1

There holds a bound:

Ti—1
[ ] ]

th—it1 tn—1

t+6 Ti—1
/ dTl/ dT2 /
t t t

y(n) (Ti)

IN

‘Z/(n g )‘ dr;

5k
dr; < — sup ‘y(”)(t)‘ .
- te[L,I+9]

y™ (r:)

IN

Then

n

> ety

i=1

<Z|cz Oy < ch supy*)(1)],

te[t i+6]

ie.,

)| < ch sup |y 1)

te[t i+6]

a contradiction with (13.18). The lemma is proved. O
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Now we prove Theorem 13.5.

Proof. As we showed in the proof of Theorem 13.4, the number of switchings of
u(t) is not more than the number of roots of the function y(t) = £(¢)b, which
satisfies ODE (13.15).

We have
Z |ck|ﬁ <c(e? —1) V6> 0.
k=1 ’

By Lemma 13.2, if
cle® —1) <1, (13.19)

then the function y(¢) has not more than n — 1 real roots on any interval of
length 0. But inequality (13.19) is equivalent to the following one:

6§ln<1+1>,
¢

. 1
s0 y(t) has not more than n—1 roots on any interval of the length In (1+21). O



Chapter 14

Linear-quadratic problem

14.1 Problem statement and assumptions

In this chapter we study a class of optimal control problems very popular in
applications, linear-quadratic problems. That is, we consider linear systems
with quadratic cost functional:

i = Ax + Bu, reR*, weR™", (14.1)
z(0) = o, w(t) =21, To, x1,t; fixed,
T = 5 [t ue) + (Pa(t) u(e) + (Qa(t) o)) dt  min.

Here A, B, R, P, are constant matrices of appropriate dimensions, R, Q are
symmetric:

R*=R, Q"=Q,

and angle brackets (-, -) denote the standard inner product in R™ and R™.

One can show that the condition R > 0 is necessary for existence of optimal
control. We do not touch here the case of degenerate R and assume that R > 0.
The substitution of variables v — v = R'/?u transforms the functional .J(u)
to a similar functional with the identity matrix instead of R. That is why we
assume in the sequel that R = Id. Another change of variables kills the matrix
P (exercise: find this change of variables). So we can write the cost functional
as follows:

LM
T =5 [ O + Qa0 a(e) .

For dynamics of the problem, we assume that the linear system is control-

lable:

rank(B, AB,... ,A"'B) =n. (14.2)

183
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14.2 Existence of optimal control

Since the set of control parameters U = R™ is noncompact, Filippov’s Theorem
does not apply, and existence of optimal controls in linear-quadratic problems
is a nontrivial problem.

In this chapter we assume that admissible controls are square-integrable:

u e LT[0, 1]

and use the LJ* norm for controls:
1/2

||u|| = (/Otl |u(t)|2dt> = (/Otl ui(t) + -+ ud (t) dt>1/2.

Consider the set of all admissible controls that steer the initial point to the
terminal one:

U(zg,z1) = {u € LT[0,t1] | z(t1,u,x0) = 1} .

We denote by z(t,u,xo) the trajectory of system (14.1) corresponding to an
admissible control uw € LI* starting at a point xp € R”. By Cauchy’s formula,
the endpoint mapping

t1
u s z(ty,u, z0) = etz +/ eM=DABy(r) dr
0

is an affine mapping from L3'[0,%;] to R™. Controllability of the linear sys-
tem (14.1) means that for any zop € R®, ¢t; > 0, the image of the endpoint
mapping is the whole R™. Thus

U(JT(), 561) C LQ"[O, tl]

is an affine subspace,
U(0,0) C L3[0, 4]

is a linear subspace, and
U(xo,z1) =u+ U(0,0) for any u € U(xo,x1)-

Thus it is natural that existence of optimal controls is closely related to behavior
of the cost functional J(u) on the linear subspace U(0, 0).

Proposition 14.1. (1) If there exist points xo,z1 € R™ such that

inf  J(u) > —o0, 14.3
uEUl(Ialto,zl) (U) > ( )

then
J(u) >0 VYueU(0,0).
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(2) Conwversely, if
J(u) >0 VueU(0,0)\0,

then the minimum is attained:

3 min J(u) Vzo, z; € R".
uw€eU(zo,z1)

Remark. That is, the inequality

I (0,0) 2 0
is necessary for existence of optimal controls, at least for one pair (xo, 1), and
the strict inequality

Iu (0,000 >0
is sufficient for existence of optimal controls for all pairs (zg, z1).

In the proof of Proposition 14.1, we will need the following auxiliary propo-
sition.
Lemma 14.1. If J(v) > 0 for all v € U(0,0) \ 0, then
J(w) > alv|? for some a > 0 and all v € U(0,0),
or, which is equivalent,
inf{J(v) | ||v]| =1, ve U(0,0)} > 0.

Proof. Let v, be a minimizing sequence of the functional J(v) on the sphere
{Jlv]| = 1} N U(0,0). Closed balls in Hilbert spaces are weakly compact, thus
we can find a subsequence weakly converging in the unit ball and preserve the
notation v, for its terms, so that

v, — U weakly as n — oo, o] <1, ©e€U(0,0),
J(vn) = inf{J(v) | o]l =1, v € U(0,0)}, n—o0. (14.4)

We have

1 1

J(vp) = 3 + 3 /0 I(an(r),mn(r)) dr.

Since the controls converge weakly, then the corresponding trajectories converge
strongly:

xn() — Z’ﬁ('), n — 00,
thus
o1/
J(vp) = 3 + 5/ (Quz(7), 25(7)) dT, n — oo.
0

In view of (14.4), the infimum in question is equal to

1M 1 2 .

3+3 ) @) dr =5 (1= [51F) + IG) > 0.
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Now we prove Proposition 14.1

Proof. (1) By contradiction, suppose that there exists v € U(0,0) such that
J(v) < 0. Take any u € U(zg,z1), then u + sv € U(xg, 1) for any s € R.
Let y(t), t € [0,11], be the solution to the Cauchy problem

y=Ay+Bv, y(0)=0,

and

T = 3 [ ()00 + (Qer).u(r) ar

Then the quadratic functional J on the family of controls u + sv, s € R, is
computed as follows:

J(u+ sv) = J(u) + 257 (u,v) + s*J(v).

Since J(v) < 0, then J(u + sv) — —oo as s — oo. The contradiction with
hypothesis (14.3) finishes the proof of item (1) of this proposition.
(2) We have

T = gl + 5 [ (@atr). o) o

The norm ||u|| is lower semicontinuous in the weak topology on L3*, and the
functional f(f YQux(7),z(7)) dr is weakly continuous on L5*. Thus J(u) is weakly
lower semicontinuous on L5*. Since balls are weakly compact in L3* and the
affine subspace U (zg, z1) is weakly compact, it is enough to prove that J(u) —
oo when u — oo, u € U(zg, z1).

Take any control u € U(zg,z1). Then for any v € U(0,0) \ 0, the control
u + v belongs to U(zg,z1) and

T(u+v) = J(u) + 2|[v||J <u L) + J().

vl

Denote J(u) = Cy. Further, ‘J (u,ﬁ)‘ < Cy = const for all v € U(0,0) \

0. Finally, by Lemma 14.1, J(v) > al|v||?, @ > 0, for all v € U(0,0) \ 0.
Consequently,

J(u+v) > Cy —2||v]|Cy + a|v|]* = oo, v — o0, v € U(0,0).
Item (2) of this proposition follows. O

So we reduced the question of existence of optimal controls in linear-qua-
dratic problems to the study of the restriction J |U(0 0)° We will consider this
restriction in detail later.
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14.3 Extremals

Now we write PMP for linear-quadratic problems. The control-dependent Ha-
miltonian is

hul€ @) = €Az + EBu— S(Jull’ + (Qu,2), @ €R", € € RY.
Consider first the abnormal case:
v =0.

By PMP, adjoint vector along an extremal satisfies the ODE £ = —£A, thus
£(t) = £(0)e 4. The maximality condition

&(t)Bu(t) = max &(t)Bu (14.5)

implies that
0=¢(t)B =¢£(0)e ™ B.

We differentiate this identity n — 1 times, take into account the controllability
condition (14.2) and obtain £(0) = 0. This contradicts PMP, thus there are no
abnormal extremals.

In the sequel we consider the normal case: v # 0, thus we can assume

v=1.

Then the control-dependent Hamiltonian takes the form
1
hu(gax) = fAl‘ + £BU - 5(”“‘”2 + (QZ’,Z’>), re ]Rna g € R™.

The term {Bu — i||ul|* depending on u has a unique maximum in v € R™ at
the point where

0 hy
—¢(B—u"=0
8u é. u b
thus
u = B*¢*.
So the maximized Hamiltonian is
1 1 * %2

€Az — 2(Qu,2) + 5| Bl

The Hamiltonian function H (€, z) is smooth, thus extremals are solutions of the
corresponding Hamiltonian system

& = Az + BB*¢”,
§=a"Q—¢A.
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14.4 Conjugate points

Now we study conditions of existence and uniqueness of optimal controls depend-
ing upon the terminal time. So we write the cost functional to be minimized as
follows:

5w = 5 [ WP + (@a(),a(r)
Denote

Ut(0,0) = {u € Lgn[ovt] | Z’(t,u,l‘o) = ml})
u(t) = inf{Jy(u) | u € U(0,0), flull = 1}. (14.6)

We showed in Proposition 14.1 that if x(¢) > 0 then the problem has solution
for any boundary conditions, and if u(t) < 0 then there are no solutions for any
boundary conditions. The case pu(t) = 0 is doubtful. Now we study properties
of the function p(t) in detail.

Proposition 14.2. (1) The function t — u(t) is monotone nonincreasing and
continuous.

@)
13 2u) > 1- LB (14.7)

(3) If 1 > 2u(t), then the infimum in (14.6) is attained, i.e., it is minimum.

Proof. (3) Denote

1

W) = 5 [ @a(r),a(nyar,

the functional I;(u) is weakly continuous on L. Notice that

1
Ji(u) = 5 + Ii(u) on the sphere [[uf| = 1.

Take a minimizing sequence of the functional I;(u) on the sphere {||lu|| = 1} N
U:(0,0). Since the ball {|lu|| < 1} is weakly compact, we can find a weakly
converging subsequence:

un — U weakly as n — oo, llu]] <1, u e U0,0),

Li(uy) = Ii(0) = inf{I;(u) | |Jul]| = 1, w € Ux(0,0)}, n — 00.
If @ = 0, then I,(@) = 0, thus pu(t) = 3, which contradicts hypothesis of item
(3)-

So @ # 0, I,(@) < 0, and I, (ﬁ) < I,(@). Thus |[d]] = 1, and J;(u) attains

minimum on the sphere {||u]| = 1} N U(0,0) at the point u.
(2) Let |Ju|| =1 and zy = 0. By Cauchy’s formula,

t
x(t) :/ e(t_T)ABu(T) dr,
0
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thus

t
hﬁﬂs/e“ﬂmwaw&ﬂw
0

by Cauchy-Schwartz inequality

t 1/2
§|h4|<j€ e“-fﬂ”A”uBHer)
t 1/2
_ </ =214l B2 dT) _
0

We substitute this estimate of x(¢) into J; and obtain the second inequality
in (14.7).

The first inequality in (14.7) is obtained by considering a weakly converging
sequence u, — 0, n — oo, in the sphere |ju,|| = 1, u, € U(0,0).

(1) Monotonicity of u(t). Take any # > t. Then the space U;(0,0) is isomet-
rically embedded into U;(0,0) by extending controls u € U;(0,0) by zero:

v e U(0,0) = we UiH(0,0),

~ u(7), T <1,
u(T):{O() T>1t.
Moreover,
Ji(w) = Ji(u).
Thus

() = inf{Je(u) | u € Uy(0,0), lufl = 1}
> inf{J;(w) | w € U(0,0), |lull = 1} = pu(h).

Continuity of u(t): we show separately continuity from the right and from
the left.

Continuity from the right. Let ¢, N\, t. We can assume that p(t,) < %
(otherwise i(t,) = p(t) = 3), thus minimum in (14.6) is attained:

1
:u(tn) = 5 +Itn (un)) Up € Utn (0)0)7 ||un|| =1

Extend the functions u,, € L3'[0,t,] to the segment [0,¢] by zero. Choosing a
weakly converging subsequence in the unit ball, we can assume that

u, — u weakly as n — oo, u € U(0,0), Junll <1,
thus

Iy, (un) = Li(u) > nf{L;(v) [ v € U:(0,0), |lofl =1}, tn it
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Then .
w(t) < 3 + hm I, (up) = thr{l w(ty).

By monotonicity of u,

p(t) = thrgtu( n);

i.e., continuity from the right is proved.
Continuity from the left. We can assume that pu(t) < 1 (otherwise p(r) =
pu(t) = 3 for 7 < t). Thus minimum in (14.6) is attained:

1 I ~ ~
/“L(t) = 5 +It(u)7 u € Ut(ovo)) ||u|| =1

For the trajectory

we have i
Z(r) = / e~ Bu(6) db.
0
Denote
a(e) = ||l |
and notice that
ale) = 0, e — 0.

Denote the ball
Bs={ue Ly |||lu|| <6, uelU(,0)}.

Obviously,
z(g, Ba(e),0) 3 Z(e).

The mapping v — z(e,u(-),0) from LT to R™ is linear, and the system & =
Az + Bu is controllable, thus z(e, By(:),0) is a convex full-dimensional set in
R™ such that the positive cone generated by this set is the whole R”. That is
why

z(e, 2Ba(5),0) = 2%(6,3(1(5),0) D Oz(E7Ba(e)70)

for some neighborhood O, (., s
an instant . > ¢ such that

a(e)0) Of the set z(g, By(s),0). Further, there exists

z(t.) € z(e, 2Ba(5) ,0),

consequently,
z(t:) = x(e,ve,0), l|ve]] < 2af(e).

Consider the following family of controls that approximate u:

_ (), 0< 1<,
“E(T)_{ At +t.—e), t.<t<t+e—t..
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We have
te € Upg2—.(0,0),
|z — uc|| = 0, e —0.

But t +¢ —t. <t and p is nonincreasing, thus it is continuous from the left.
Continuity from the right was already proved, hence p is continuous. [l

Now we prove that the function p can have not more than one root.
Proposition 14.3. If u(t) =0 for some t > 0, then u(r) < 0 for all T > t.

Proof. Let u(t) =0, t > 0. By Proposition 14.2, infimum in (14.6) is attained
at some control u € U(0,0), ||u]| = 1:

pt) = min{Ji(u) | u € U(0,0), ||ul| =1}
= Ji(@)=0.

Then
Jt(u) Z Jt(il) =0 Yue Ut(0,0),

i.e., the control u is optimal, thus it satisfies PMP. There exists a solution
(&(),z(7)), T €0, ¢t], of the Hamiltonian system

£=1"Q €A,
i = Az + BB*¢,

with the boundary conditions

and
u(r) =B (1),  T€[0,1]

We proved that for any root ¢ of the function u, any control u € U(0,0),
[|lul]| = 1, with J;(u) = 0 satisfies PMP.

Now we prove that u(7) < 0 for all 7 > ¢. By contradiction, suppose that
the function p vanishes at some instant ¢’ > ¢. Since p is monotone, then

flin =0

Consequently, the control

satisfies the conditions:

Ul € Ut’(070)7 ||U’I|| = la
Jt/(u') =0.
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Thus u' satisfies PMP, i.e.,
J (1B (), Teo,t],

is an analytic function. But u' |[t’t,] = 0, thus v’ = 0, a contradiction with
[|u'|| = 1. O
It would be nice to have a way to solve the equation u(t) = 0 without

performing the minimization procedure in (14.6). This can be done in terms of
the following notion.

Definition 14.1. A point ¢ > 0 is conjugate to 0 for the linear-quadratic prob-
lem in question if there exists a nontrivial solution ({(7),z(7)) of the Hamilto-
nian system

§=12"Q — ¢4,
i = Az + BB*¢

such that z(0) = z(t) = 0.

Proposition 14.4. The function p vanishes at a point t > 0 if and only if t is
the closest to 0 conjugate point.

Proof. Let u(t) =0, ¢t > 0. First of all, ¢ is conjugate to 0, we showed this in
the proof of Proposition 14.3.

Suppose that ¢’ > 0 is conjugate to 0. Compute the functional .Ji- on the
corresponding control u(r) = B*¢*(7), T € [0,t']:

1

Jetw) = 5 [ BB ) + (Qa(r).alr)dr

- . / (BB (r),€(r)) + (Qu(r), x(r)) dr

2 0
= 3 €O~ e + o ()@l dr
= %/0 (§a§+fa:)d7’
= EW)alt) —£(0)2(0) =0.

Thus u(t') < Jy (ﬁ) = 0. Now the result follows since p is nonincreasing. O

The first (closest to zero) conjugate point determines existence and unique-
ness properties of optimal control in linear-quadratic problems.

Before the first conjugate point, optimal control exists and is unique for any
boundary conditions (if there are two optimal controls, then their difference
gives rise to a conjugate point).

At the first conjugate point, there is existence and nonuniqueness for some
boundary conditions, and nonexistence for other boundary conditions.
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And after the first conjugate point, the problem has no optimal solutions for
any boundary conditions.
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Chapter 15

Sufficient optimality
conditions, Hamilton-Jacobi
equation, and Dynamic
Programming

15.1 Sufficient optimality conditions

Pontryagin Maximum Principle is a universal and powerful necessary optimality
condition, but the theory of sufficient optimality conditions is not so complete.
In this section we consider an approach to sufficient optimality conditions that
generalizes fields of extremals of the Classical Calculus of Variations.

Consider the following optimal control problem:

q¢=fulg), qe€eM, uel, (15.1)

q(o) = qo, (I(tl) = {1, q0, (I1,t1 ﬁxed; (152)
t1

| eta®),uey) dt - min. (15.3)
0

The control-dependent Hamiltonian of PMP corresponding to the normal case
is
hu(A):<)‘7fu(Q)>_(p(Q7u), AGT*M, q:’lT(A) eEM,uel.

Assume that the maximized Hamiltonian

H(\) = Tg&(hu()\) (15.4)

is defined and smooth on T*M. We can assume smoothness of H on an open
domain O C T*M and modify respectively the subsequent results. But for

195



196 CHAPTER 15. SUFFICIENT OPTIMALITY CONDITIONS

simplicity of exposition we prefer to take O = T*M. Then trajectories of the
Hamiltonian system )

A=H(\)
are extremals of problem (15.1)—(15.3). We assume that the Hamiltonian vector

field H is complete.
Fix an arbitrary smooth function

a € C™®(M).
Then the graph of differential da is a smooth submanifold in 7 M :
Lo={da|qe M} CT"M,
dim Ly = dim M = n.
Translations of Ly by the flow of the Hamiltonian vector field
Ly = et (L)

are smooth n-dimensional submanifolds in 7% M, and the graph of the mapping
t— ,Ct,
L={Nt)| el 0<t<t} CT*"M xR

is a smooth (n + 1)-dimensional submanifold in 7*M x R.
Consider the 1-form

s— Hdt € A" (T*M x R).

Recall that s is the tautological 1-form on T*M, sy = Ao, and its differential
is the canonical symplectic structure on T*M, ds = o. In mechanics, the form
s— H dt = pdq— H dt is called the integral invariant of Poincare-Cartan on the
extended phase space T*M x R.

Proposition 15.1. The form (s — H dt)|, is exact.

Proof. First we prove that the form is closed:
0=d(s—Hdt)|, = (0 —dH Adt)|,. (15.5)

(1) Fix £; = LN {t = const} and consider restriction of the form o —dH A dt
to L£;. We have
(0 —dH Adb)|,, = o,

since dt|,, = 0. Recall that (etﬁ) o = o, thus

o= (1) 7).

But s[, = d(aom)|. , hence

= 0’|£0 = ds|£0.
0

ds|;, = dod(aom)|, =0.
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We proved that (o0 — dH Adt),, = 0.
(2) The manifold £ is the image of the smooth mapping

(A, ) = (etﬁA, t) ,

thus the tangent vector to £ transversal to £; is

- 0
H(\) + 91 € T()\7t)£.

a 0
T()\7t)£ = T()\’t)ﬁt @ ]R <H()\) + a) .

To complete the proof, we insert the vector H(\) + % as the first argument to
o — dH A dt and show that the result is equal to zero. We have:

zﬁa:—dH i%O’ZO,
ig(dH A dt) = (izdH) Adt — dH A (izdt) =0,
N—_—— N——
=0 =0

io (dH Adt) = (gd )Aﬁ—dHA(%yﬁ):—dE

N—_—— N—_——
=0 =1
consequently,
iy o (0 —dHAdt) = —dH +dH = 0.

We proved that the form (s — H dt)|, is closed.
(3) Now we show that it is exact, i.e.,

/S—Hm:o (15.6)
-
for any closed curve
v s (A(s),t(s)) € L, s €[0,1].
The curve ~ is homotopic to the curve
Yo : s+ (A(s),0) € Lo, s €10,1].

Since the form (s — H dt)|, is closed, Stokes’ theorem yields that

/S—Hdt:/ s — Hdt.
Y Yo

But the integral over the closed curve vg C Ly is easily computed:

/S—Hdt:/ :/da
Yo Yo Yo

Equality (15.5) follows, i.e., the form (s — H dt)|, is exact. O
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Now we prove a statement that gives sufficient conditions for optimality in
problem (15.1)—(15.3).

Theorem 15.1. Assume that the restriction of projection 7r|£t is a diffeomor-
phism for any t € [0,t1]. Then for any Ao € Lo, the normal extremal trajectory

qit) =moetA(ny), 0<t<t,

realizes a strict minimum of the cost functional fotl w(q(t),u(t)) dt among all
admissible trajectories q(t), 0 < t < t1, of system (15.1) with the same boundary
conditions:

q(0) = q(0), q(t) = q(t1). (15.7)

Remarks. (1) Under the hypotheses of this theorem, no check of existence of
optimal control is required.

(2) If all assumptions (smoothness of H, extendibility of trajectories of H to
the time segment [0,#;], diffeomorphic property of |, ) hold in a proper open
domain O C T*M, then the statement can be modified to give local optimality
of () in 7(O). These modifications are left to the reader.

Now we prove Theorem 15.1.
Proof. The curve q(t) is projection of the normal extremal
/)\\t = €tﬁ()\0).

Let u(t) be an admissible control that maximizes the Hamiltonian along this
extremal: R R
H(\t) = hge)(Mr).

On the other hand, let ¢(t) be an admissible trajectory of system (15.1) generat-
ed by a control u(t) and satisfying the boundary conditions (15.7). We compare
costs of the pairs (q,u) and (g, u).

Since m : Ly — M is a diffeomorphism, the trajectory {q(¢) | 0 <t <t} C
M can be lifted to a smooth curve {A(¢) |0 <t <t} CT*M:

Vi€ [0,t1] 3 A(t) € Ly such that 7w(\(t)) = ¢(¢t).

Then
/0 (), u(t) dt = / ), Fuiy @(1)) — gy (A(D) dt
> / ), 4(0) — HO®) dt (15.8)
0
- / (50, A(D)) — HA(1)) dt

= /S—Hdt,
-
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where
v ot (A(E),t) € L, t € [0,t1].

By Proposition 15.1, the form (s — H dt)|  is exact. Then integral of (s — H dt)| .
along a curve depends only upon endpoints of the curve. The curves v and

it Mt eL, A=el(),  telot]

have the same endpoints, thus

/vs—Hdt - /As—Hdt:/Otl(Xt,ﬁ(t))—H(Xt)dt

5

/0 e Fate @) — gy (o) dt

/0 (@), a(t)) dt.

So
/0 o), u(t)) dt > / (@), at)) dt, (15.9)

i.e., the trajectory ¢(t) is optimal.

It remains to prove that the minimum of the pair (q(¢),u(t)) is strict, i.e,
that inequality (15.9) is strict.

For a fixed point ¢ € M, write cotangent vectors as A\ = (p,q), where p
are coordinates of a covector A in Ty M. The control-dependent Hamiltonians
hy(p, q) are affine w.r.t. p, thus their maximum H (p, q) is convex w.r.t. p. Any
vector § € Ty M such that

(p,&) = gl&}((p, fu(@))

defines a hyperplane of support to the epigraph of the mapping p — H(p,q).
Since H is smooth in p, such a hyperplane of support is unique and maximum
in (15.4) is attained at a unique velocity vector:

H(p,q) = hu(p,q) at unique vector ¢ = f,(q)-

If q(t) # q(t), then inequality (15.8) becomes strict, as well as inequality (15.9)
(for details on convex functions, see e.g. [13]). The theorem is proved. O

Sufficient optimality condition of Theorem 15.1 is given in terms of the man-
ifolds £;, which are in their turn defined by a function a and the Hamiltonian
flow of H. One can prove optimality of a normal extremal trajectory ¢(t),
t € [0, 1], if one succeeds to find an appropriate function a € C*° (M) for which
the projections 7 : Ly — M, t € [0, 1], are diffeomorphisms.

For t = 0 the projection w : Ly — M is a diffeomorphism. So for small ¢ > 0
any function a € C*°(M) provides manifolds £; well projected to M, at least
if we restrict ourselves by a compact K € M. Thus the sufficient optimality
condition for small pieces of extremal trajectories follows.
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Corollary 15.1. For any compact K € M that contains a normal extremal
tragectory

qt)=moe(N), 0<t<t,
there exists t € (0,t1] such that the trajectory
q(t), 0<t<ty,
is optimal w.r.t. all trajectories contained in K.

In many problems, one can choose a sufficiently large compact K D g such
that the functional J is separated from below from zero on all trajectories leaving
K (this is the case, e.g., if ¢(g,u) > 0). Then small pieces of g are globally
optimal.

15.2 Hamilton-Jacobi equation

Suppose that conditions of Theorem 15.1 are satisfied. As we showed in the
proof of this theorem, the form (s — H dt)|, is exact, thus it coincides with
differential of some function:

(s — Hdt)|, = dyg, g: L->R (15.10)

Since the projection 7 : £; — M is one-to-one, we can identify (\,t) € L; xR C
L with (¢,t) € M x R and define g as a function on M x R:

g=9(q1).

In order to understand the meaning of the function g for our optimal control
problem, consider an extremal

)\t = €tHA0

and the curve

~

:)\/C’Ca A tH(Xht):
as in the proof of Theorem 15.1. Then

/As—Hdt:/Olw(a(T),a(T))dT, (15.11)

where q(t) = W(Xt) is an extremal trajectory and #(¢) is the control that max-
imizes the Hamiltonian h,(A) along A;. Equalities (15.10) and (15.11) mean
that

9@, ) = 9(a0,0) + / (@), a(r)) dr,

ie., g(g,t) — g(qo,0) is the optimal cost of motion between points go and ¢ for
the time ¢. Initial value for g can be chosen of the form

9(00,0) = al), ¢ € M. (15.12)
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Indeed, at ¢t = 0 definition (15.11) of the function g reads
dgl,_g = (s — Hdt)|£0 = s|£0 = da,

which is compatible with (15.12).
We can rewrite equation (15.10) as a partial differential equation on g. In
local coordinates on M and T* M, we have

g=z €M, A=({x)eT"M, g=g(z,t).
Then equation (15.10) reads

(fdﬂ? —H(f,ﬂf) dt)|£ = dg(CC,t),

ie.,
7e =&,
% = _H(§7 ZC)
This system can be rewritten as a single first order nonlinear PDE:
99 99
JaglzZ =0 15.13
9., ( am”f) , (15.13)

which is called Hamilton-Jacobi equation. We showed that the optimal cost
g(x,t) satisfies Hamilton-Jacobi equation (15.13) with initial condition (15.12).
Characteristic equations of PDE (15.13) have the form

_ _0H
— dx
i(art ty=¢& —H
dtg L) = .

The first two equations form the Hamiltonian system A = H()) for normal
extremals. Thus solving our optimal control problem (15.1)—(15.3) leads to the
method of characteristics for the Hamilton-Jacobi equation for optimal cost.

15.3 Dynamic programming

One can derive the Hamilton-Jacobi equation for optimal cost directly, without
Pontryagin Maximum Principle, due to an idea going back to Huygens and
constituting a basis for Bellman’s method of Dynamic Programming, see [6].
For this, it is necessary to assume that the optimal cost g(g,t) exists and is
C'-smooth.

Let an optimal trajectory steer a point go to a point ¢ for a time ¢. Apply
a constant control u on a time segment [¢,¢ + Jt] and denote the trajectory
starting at the point ¢ by q,(7), 7 € [t,t + dt]. Since g, (t + 6t) is the endpoint
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of an admissible trajectory starting at qg, the following inequality for optimal
cost holds:

t+o0t
o(qult +5),¢ + 61) < gla, ) + / o(qu(r), ) dr.

Divide by 6t:

1 t+0t

S0t +00.t+60 ~g@) < % [ planwdr
and pass to the limit as ¢t — 0O:

<g—‘z,fu(q)> ? < (g, u).

So we obtain the inequality

dg 0g
- - < . .
6t+h <6q’q>_0’ ueU (15.14)

Now let (G(t),a(t)) be an optimal pair. Let ¢ > 0 be a Lebesgue point of
the control @. Take any 6t € (0,t). A piece of an optimal trajectory is optimal,
thus ¢(t — dt) is the endpoint of an optimal trajectory, as well as ¢(t). So the
optimal cost g satisfies the equality:

9(d(0),6) = g((t — 5t),t — bt) + / lir).a(r) dr.

We repeat the above argument:

5000 =gl =t =50) =5 [ pla(r).a(r)ar,

take the limit ¢ — O:

dg dg \ _
ot + hag) <6_q’q> =0. (15.15)

This equality together with inequality (15.14) means that

99 \ _ dg

H(&, q) = maxhu (¢, q)

and write (15.15) as Hamilton-Jacobi equatlon.

% 11 (20.0) =0

We denote

dq

0
Thus derivative of the optimal cost 79 is equal to the impulse ¢ along the

dq
optimal trajectory ¢(t).
We do not touch here a huge theory on nonsmooth generalized solutions of
Hamilton-Jacobi equation for smooth and nonsmooth Hamiltonians.
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Lemma A.1. On any smooth manifold M, there exists a function a € C*®°(M)
such that for any N > 0 ezists a compact K € M for which

a(q) > N Vge M\ K.

Proof. Let ey, k € N, be a partition of unity on M: the functions e, € C*° (M)
have compact supports supp e, € M, which form a locally finite covering of M,
and ) -, ex = 1. Then the function ) ;- | kej can be taken as a. O

Now we recall and prove Proposition 2.1.

Proposition 2.1. Let ¢ : C®(M) — R be a nontrivial homomorphism of
algebras. Then there exists a point ¢ € M such that p = q.

Proof. For the homomorphism ¢ : C®°(M) — R, the set
Kerp = {f € C™(M) | ¢f =0}
is a maximal ideal in C*° (M ). Further, for any point ¢ € M, the set of functions
I, ={f € C=(M)| f(q) = 0}
is an ideal in C*°(M). To prove the proposition, we show that
Keryp C I, (A1)

for some ¢ € M. Then it follows that Kery = I, and ¢ = q.
By contradiction, suppose that Kerp ¢ I, for any ¢ € M. This means that

VgeM 3b,eKerp s.t. by(q) #0.
Changing if necessary the sign of b,, we obtain that

VgeM 3b,eKerp, O,CM s.t. bq|oq>0. (A.2)

Fix a function a given by Lemma A.1. Denote ¢(a) = a, then p(a —a) =0,
ie.,
(a — a) € Kerp.
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Moreover,
IKeEM s. t. alg)—a>0 Vge M\K.

Take a finite covering of the compact K by the neighborhoods O, as in (A.2):

K C LnJOqi,

i=1

and let eg,eq,...,e, € C°°(M) be a partition of unity subordinated to the
covering of M:
M\ K,O,...,0,,.

Then we have a globally defined function on M:

c=-¢ep(a—a) +Zeiblh’ > 0.

i=1
Since ) )
1=<p<c-—> 290(0)-90(—),

c c
then

¢(c) # 0.
But ¢ € Ker ¢, a contradiction. Inclusion (A.1) is proved, and the proposition
follows. O

Now we formulate and prove the theorem on regularity properties of com-
position of operators in C*° (M), in particular, for nonautonomous vector fields
or flows on M.

Proposition A.1. Let A; and By be continuous w.r.t. t families of linear con-
tinuous operators in C°°(M). Then the composition As o By is also continuous
w.r.t. t. If in addition the families A; and By are differentiable at t = to, then
the family A; o By is also differentiable at t = to, and its derivative is given by

th,e Lelbnlz 7ule:
(A o B ) - . A ¢} B + A ¢} . B
t t l " t to to l " t .

Proof. To prove the continuity, we have to show that for any a € C*°(M), the
following expression tends to zero as ¢ — 0:

d

dt

to

(At+s oBiye — Ao Bt) a=Apco0 (Bt+s - Bt) a+ (At+s - At) o Bia.

By continuity of the family A;, the second term (A;1. — A;)oBia — 0 ase — 0.
Since the family B, is continuous, the set of functions (Biy. — By) a lies in any
preassigned neighborhood of zero in C*°(M) for sufficiently small e. For any
€0 > 0, the family A¢y ¢, || < €0, is locally bounded, thus equicontinuous by the
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Banach-Steinhaus theorem. Consequently, Ay, o (B4 — By)a — 0 ase — 0.
Continuity of the family A; o B; follows.
The differentiability and Leibniz rule follow similarly from the decomposition

1 1 1
g (At+s oBiye — Ao Bt) a=Apco0 g (Bt+s - Bt) a+ g (At+s - At) o Bia.

O
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