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Abstract.
This is a very terse development of differential geometry, written for the author’s benefit. The point
is to gather all of the basic constructions together with consistent sign and other conventions.

1 Conventions

M is a smooth (C∞) manifold. All maps, curves, etc. are smooth unless otherwise specified. E,
F and G are vector bundles over M . We use Penrose’s abstract notation [6], as described in [1],
with shape symbols for E, F and G being ♥, � and ��, respectively. We use capital greek indices
for E and capital roman indices for F , the indices appearing as superscripts. We use subscripts for
E∗ and F ∗. We will not need index symbols for G. A section of a tensor product of copies of TM
and T ∗M will sometimes be called a world-tensor. A metric is a (not necessary positive definite)
nondegenerate symmetric element of S��. Our notational and sign conventions follow Penrose.

2 The Exterior Derivative of a Function

If X ∈ S� then X is a derivation on functions, X : S → S. For given f ∈ S, the map X �→ X(f)
is S-linear in X, so is induced by an element of S�. We call this tensor the differential (or exterior
derivative) of f and denote it df . In terms of it we have

X(f) = (df)aX
a

for all f ∈ S, X ∈ S�.
The map f �→ df is a derivation: First, for all X ∈ S�, we have

X(f + g) = X(f) + X(g),

so
(d(f + g))aX

a = (df)aX
a + (dg)aX

a.

Since X is arbitrary, we have (d(f + g))a = (df)a + (dg)a, so d(f + g) = df + dg. Second, for all
X ∈ S� we have

X(fg) = X(f)g + fX(g)

because X is a derivation. That is,

(d(fg))aX
a = g(df)aX

a + f(dg)aX
a.

Since X is arbitrary, this implies d(fg) = (df)g + f(dg), so d : S → S� is a derivation. See
section 8 for a generalization of the operator d.
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3 Connections on Vector Bundles

A connection on E is a map ∇ : S♥ → S�♥ satisfying the conditions ∇(S + T ) = ∇S + ∇T and
∇(fS) = df⊗∇S+f∇S for all f ∈ S and S, T ∈ S♥. ∇ is sometimes called a covariant derivative
operator. If E = TM then we sometimes call ∇ an affine connection. We use the conventions of
[1] for attaching indices to operators, so that ∇a, ∇b, etc. are maps on SΓ, S∆, etc.

If X ∈ S� and S ∈ S♥ then the tensor Xa∇aSΓ is called the covariant derivative of SΓ along
X. We say that S is (covariantly) constant along X if this vanishes; if this holds for all X ∈ S�

(so that ∇S = 0) then we say that S is (covariantly) constant.
Suppose γ is a smooth embedded curve in M with nowhere vanishing tangent vector γ̇ and S

is a smooth section of E defined over the image of γ (that is, S ◦γ is a smooth map). Lemma 5.1of
[5] and the discussion following it assures us that there is a smooth vector field X (resp. a section
S′ of E) whose restriction to the image of γ is γ̇ (resp. S). Furthermore, the covariant derivative
of S′ along X, at points in the image of γ, depends only on the values of X and S′ on this image.
Thus we may speak unambiguously of the covariant derivative of S along γ even though S is only
defined on the image of γ.

If ∇ is an affine connection then a geodesic in M (with respect to ∇) is a smooth curve γ
whose tangent vector γ̇ is covariantly constant along γ. That is, γ̇a∇aγ̇b = 0. We will say more
about geodesics in section 14.

We note that if ∇ is any connection on E then the identity map 1♥♥ on E is annihilated
by ∇. To see this, let eα be a basis of sections of E and let Eα be the dual basis for E∗. Then
1Γ

∆ =
∑

α(Eα)Γ(eα)∆. For any β, γ we have

(Eβ)Γ(eγ)∆∇a1∆
Γ =

∑
α

(Eβ)Γ(eγ)∆∇a

[
(Eα)∆(eα)Γ

]
=
∑
α

(Eβ)Γ(eγ)∆
[∇a(Eα)∆(eα)Γ + (Eα)∆∇a(eα)Γ

]
= (eγ)∆∇a(Eβ)∆ + (Eβ)Γ∇a(e∆)Γ

= ∇a((eγ)∆(Eβ)∆) = 0.

Since β and γ are arbitrary, this implies that ∇1 = 0.

Theorem 3.1. There exists a connection ∇ on E.

Proof: Suppose U ⊆ M is a coordinate neighborhood in M over which E is trivial. Let
σ1, . . . , σdim E be a basis of sections of E over U and let x1, . . . , xdim M be coordinates on U . We
will define a connection U∇ on E|U . If S is any section of E over U then there are unique sβ ∈ S

such that S =
∑dim E

β=1 sβσβ. For such S, define

U∇S =
dim M∑
α=1

dim E∑
β=1

∂sβ

∂xα
(dxα) ⊗ σβ .

It follows from the additivity and product rule for partial derivatives that U∇ is a connection on
E|U . Suppose sets Uγ form a locally finite cover of M and that for each γ, hγ is a smooth function
supported in Uγ , with

∑
γ hγ = 1. Then for S ∈ S♥ we define

∇S =
∑

γ

(hγ)
(
Uγ∇ (S|Uγ

))
.
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It is easy to check that ∇ is a connection on E.
It will sometimes be useful for computation with bundles over M besides TM to introduce

an arbitrary affine connection; at the end of section 5 we introduce a notation for reflecting such
a choice.

4 The Torsion of an Affine Connection

Let ∇ be an affine connection. A computation using the axioms for ∇ shows that for all f, g ∈ S,
we have

(∇a∇b −∇b∇a)(fg) = g(∇a∇b −∇b∇a)f + f(∇a∇b −∇b∇a)g,

showing that for all X,Y ∈ S�, the operator XaY b(∇a∇b −∇b∇a) on S is a derivation and thus
a vector field. Since the assignment of this vector field to X and Y is obviously S-linear in X and
Y , we see that there is a tensor field T ∈ S��� such that

(∇a∇b −∇b∇a)f = T ab
c∇cf

for all f ∈ S. T is called the torsion of ∇. Since the left hand is obviously antisymmetric in a and
b, T ��� is antisymmetric in its lower indices.

5 New Connections Derived from Old

Given a connection ∇ : S♥ → S�♥ on E there are several ways to extend it. First is a trivial
extension to S, by

∇f = df.

As shown in section 2, ∇ is a derivation and thus a connection on S.
A second sort of extension is less trivial: ∇ induces a natural connection ∇̃ : S♥ → S�♥ on

E∗, as follows. (After this section, we will regard ∇̃ as an extension of ∇ and suppress the tilde.)
For any X ∈ S♥, consider the map S♥ → S� defined on Y ∈ S♥ by

Y Γ �→ ∇a(XΓY Γ) − XΓ∇aY Γ.

Note that we have used the extension of ∇ to S in the first term on the right hand side. Straight-
forward computation reveals that this map is S-linear in Y . Therefore it is given by contraction
with a unique element of SaΓ. We define ∇̃ : S♥ → S�♥ by means of this map. That is, we define
∇̃X by requiring that

(∇̃aXΓ)Y Γ = ∇a(XΓY Γ) − XΓ∇aY Γ (5.1)

hold for all Y ∈ S♥. Now we check that ∇̃ is a connection. If X,Z ∈ S♥ and f ∈ S then it is
straightforward to check that for all Y ∈ S♥ we have

Y Γ∇̃a(XΓ + ZΓ) = Y Γ(∇̃aXΓ) + Y Γ(∇̃aZΓ)

and
Y Γ∇̃a(fXΓ) = (∇af)Y ΓXΓ + fY Γ(∇̃aXΓ).

Since Y was arbitrary, we see that ∇̃a(XΓ + ZΓ) = ∇̃aXΓ + ∇̃aZΓ and ∇̃a(fXΓ) = (df)aXΓ +
f∇̃aXΓ. Therefore ∇̃(X + Z) = ∇̃X + ∇̃Z and ∇̃(fX) = df ⊗ X + f∇X, which is to say that ∇̃
is a connection on E∗. As mentioned above, we will henceforth regard ∇̃ as an extension of ∇ and
suppress the tilde. Observe that (5.1) can be expressed

∇a(XΓY Γ) = ∇aXΓY Γ + XΓ∇aY Γ, (5.2)
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which is sort of a Leibniz rule.
Now suppose that E and F are vector bundles over M and that E∇ : S♥ → S�♥ and

F∇ : S� → S�� are connections on them. Define a map EF∇ : S♥� → S�♥� by

EF∇a(XΓY A) = (E∇aXΓ)Y A + XΓ(F∇aY A).

The verification that this map is well-defined, that is that the identitities

EF∇(fX ⊗ Y ) = EF∇(X ⊗ fY ),
EF ((X + X ′) ⊗ Y ) = EF (X ⊗ Y ) + EF (X ′ ⊗ Y ), and

EF (X ⊗ (Y + Y ′)) = EF (X ⊗ Y ) + EF (X ⊗ Y ′)

hold, is easy. Furthermore, in the process of checking these identities one verifies that EF∇ is a
connection, sometimes called the tensor product connection or the composite connection.

Suppose E, F and G are three vector bundles over M , with connections E∇, F∇ and G∇,
so that E∇ : S♥ → S�♥, F∇ : S� → S�� and G∇ : S�� → S���. Then applying the above
construction to E∇ and F∇ we obtain a connection EF∇ : S♥� → S�♥�. We can then use EF∇
and G∇ to obtain a connection (EF )G∇ : S♥��� → S�♥���. Alternately, by first using F∇ and
G∇ and then using E∇ we can construct another connection E(FG)∇ : S♥��� → S�♥���. It is
easy to check that (EF )G∇ = E(FG)∇. Therefore inductive application of this construction yields
exactly one connection on each bundle which is expressed as a tensor product of some number of
copies (in some order) of E, F and G.

In particular, taking F = E∗ and ignoring G, we may take F∇ to be the connection on E∗

induced by E∇, as above. Thus E∇ induces a connection on E ⊗ E, E ⊗ E∗ ⊗ E. etc., so we
have covariant derivative operators S♥♥ → S�♥♥, S♥♥♥ → S�♥♥♥, and so on. We will usually
denote all of these operators by the same symbol as that of the original operator on S♥, in this
case E∇. By definition, these connections satisfy the Leibniz rule

E∇a

(
SΓ...∆

Θ...ΛTΞ...Π
Σ...Φ

)
=
(
E∇aSΓ...∆

Θ...Λ

)
TΞ...Π

Σ...Φ + SΓ...∆
Θ...Λ

(
E∇

aTΞ...Π
Σ...Φ

)
.

if no repeated indices are present. However, in light of (5.2) this rule applies even if repeated
indices are present.

In section 3 we stated that for some computations we would introduce an arbitrary affine
connection; if ∇ is a connection on E then the affine connection together with ∇ define connections
on every bundle expressed as a tensor product of TM , T ∗M , E and E∗. We will denote these
connections by .∇ or similar notation, placing a dot at the center of the symbol for the given
connection.

6 The Difference Between Two Connections

We show here that if ∇ and ∇̃ are two connections on E then their difference is described by a
tensor field Q ∈ S�♥♥. For all f ∈ S and X ∈ S♥ we have

(∇̃a −∇a)(fXΓ) = (df)aX
Γ + f∇̃aXΓ − (df)aX

Γ − f∇aX
Γ

= f(∇̃a −∇a)XΓ.

Therefore there is a tensor field Q�♥♥ such that

(∇̃a −∇a)XΓ = Qa∆
ΓX∆
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for all X ∈ S♥. Conversely, if ∇ is any connection on E and Q ∈ S�♥♥ then the map ∇̃ : S♥ →
S�♥ defined by

∇̃aXΓ = ∇aXΓ + QaΓ
∆XΓ,

is also a connection on E. (The computations are easy.) Thus, we know what all of the connections
on E are, in terms of any given one.

We now investigate how changing the connection ∇ on E changes the connection induced by
∇ on E∗ (see section 5). Suppose ∇, ∇̃ : S♥ → S�♥ are connections, with Q�♥♥ such that

(∇̃a −∇a)XΓ = Qa∆
ΓX∆

for all X ∈ S♥. The connections induced by ∇ and ∇̃ on S♥ also have a tensor as their “difference”.
We compute it as follows. Let Z ∈ S♥ be fixed and let Y ∈ S♥ vary arbitrarily. By definition of
the induced connections, we have

Y Γ∇̃aZΓ = ∇̃a(ZΓY Γ) − ZΓ∇̃aY Γ. and

Y Γ∇aZΓ = ∇a(ZΓY Γ) − ZΓ∇aY Γ

Subtracting and using the fact that ∇ and ∇̃ agree on S, we find

Y Γ(∇̃a −∇a)ZΓ = −ZΓ(∇̃a −∇a)Y Γ

= −ZΓQa∆
ΓY ∆

= −Z∆QaΓ
∆Y Γ,

so (∇̃a −∇a)ZΓ = −QaΓ
∆Z∆. Thus, the action of ∇̃ −∇ on S♥ is given by contraction with the

negative of the tensor that describes the difference ∇̃ − ∇ on S♥.
Now we investigate the effect of simultaneous change of connections on E and F on the induced

connection (section 5) on E ⊗ F . Suppose that ∇ and ∇̃ are connections on E and ∇′ and ∇̃′ are
connections on F . Suppose

(∇̃a −∇a)XΓ = Qa∆
ΓX∆

and
(∇̃′

a −∇′
a)Y A = Q′

aB
AY B

for all X ∈ S♥ and Y ∈ S�. As in section 5, we build the connections ˜ and on E ⊗ F by
defining ˜(XΓY A) = ∇̃XΓY A + XΓ∇̃′Y A and

(XΓY A) = ∇XΓY A + XΓ∇′Y A.

Then we have
(˜a − a)(XΓY A) = Qa∆

ΓX∆Y A + Q′
aB

AXΓY B

= (Qa∆
C1B

A + 1∆
ΓQ′

aB
A)X∆Y B .

Applying this result inductively, we obtain

(˜a − a)SΓ1...ΓkA1...A� =
k∑

i=1

Qa∆
ΓiSΓ1...Γi−1∆Γi+1...ΓkA1...A�

+
�∑

i=1

Q′
aB

AiSΓ1...ΓkA1...Ai−1BAi+1...A� , (6.1)
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which completely describes the difference between the two composite connections ˜ and . Taking
F = E∗, so that indices for F are written as capital greek subscripts, and ∇′ (resp. ∇̃′) derived
from ∇ (resp. ∇̃) by duality, we have Q′

a∆
Γ = −Qa∆

Γ and so

(∇̃a −∇a)SΓ1...Γk
∆1...∆�

=
k∑

i=1

QaΦ
ΓiSΓ1...Γi−1ΦΓi+1...Γk

∆1...∆�

−
�∑

i=1

Qa∆i

ΦSΓ1...Γk
∆1...∆i−1Φ∆i+1...∆�

. (6.2)

If S has a repeated index, so that Γi and ∆j are the same letter, then the ith term of the first sum
cancels with the jth term of the second. A convenient way to express this fact is that each sum
need only extend over nonrepeated indices of S.

Finally, there is a relation between the difference of two affine connections and the difference
of their torsion tensors:

Theorem 6.1. Suppose ∇ and ∇̃ are affine connections on M with torsion tensors T and T̃
respectively, and (∇̃a −∇a)Xc = Qab

cXb for all X ∈ S�. Then

(T̃ − T )ab
c = −2Q[ab]

c.

Proof: For any f ∈ S,

T̃ ab
c∇̃cf = (∇̃a∇̃b − ∇̃b∇̃a)f

= ∇̃a(df)b − ∇̃b(df)a

= ∇a(df)b − Qab
c(df)c −∇b(df)a + Qba

c(df)c

= (∇a∇b −∇b∇a)f − 2Q[ab]
c(df)c

= T ab
c∇cf − 2Q[ab]

c(df)c

= T ab
c∇̃cf − 2Q[ab]

c∇̃cf.

The theorem follows because f was arbitrary.

Corollary 6.2. On any manifold M there exists a torsion-free affine connection.

Proof: Let ∇ be any affine connection on M ; such exists by theorem 3.1. Suppose ∇ has
torsion T . Let ∇̃ be defined by (∇̃a − ∇a)Xb = Qab

cXb for all X ∈ S�, where Q = T/2. By
theorem 6.1, the torsion of ∇̃ vanishes.

7 Lie Brackets and Lie Derivatives

Suppose X,Y ∈ S�. Computation reveals that their commutator [X,Y ] = XY − Y X, considered
as an operator on S, is a derivation and thus a vector field. Taking ∇ to be an affine connection
with torsion T , we can find an expression for [X,Y ] in terms of ∇.

Theorem 7.1. With notation as above,

[X,Y ]b = Xa∇aY b − Y a∇aXb + XcY dT cd
b.

Proof: For arbitrary f ∈ S we have

[X,Y ](f) = X(Y (f)) − Y (X(f)),
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which is to say
[X,Y ]b∇bf = Xa∇a(Y b∇bf) − Y a∇a(Xb∇bf).

After applying the Leibniz rule and the definition of T , and renaming some of repeated indices, we
see that

[X,Y ]b∇bf = (Xa∇aY b − Y a∇aXb + XcY dT cd
b)∇bf,

which proves the theorem.

The Lie derivative operator with respect to a vector field X, denoted LX(S), is discussed in [2,
§§3.6–3.7]. LX maps the tensors of any given shape to each other and has the following properties:

1. LX(S + T ) = LXS + LXT .
2. LX(S ⊗ T ) = (LXS) ⊗ T + S ⊗ (LXT ).
3. LXS = [X,S] if S ∈ S�.
4. LXf = X(f) if f ∈ S.
5. LX(SaTa) = (LXS)aTa + Sa(LXT )a if S ∈ S� and T ∈ S�.

It follows from property 1 that LX is determined by its action on simple world-tensors, then from
property 2 that it is determined by its actions on S� and S�, and from properties 4 and 5 that it
is determined by its action on S�. Finally, condition 3 shows that this action is given in terms of
any affine connection ∇ by theorem 7.1. We will use the conventions of [1] for attaching indices
to the operator LX , which is to say that we will regard each operator LX as a map on the tensor
spaces Sabc

d
e etc. as well as on the spaces like S�����.

Now we work out explicit formulas for Lie derivatives. If V1, . . . , VA ∈ S� then

LX((V1)a1 · · · (VA)aA) =
A∑

α=1

(LX(Vα)aα)
A∏

β=1
β �=α

(Vβ)aβ

=
A∑

α=1

[
Xc∇c(Vα)aα − (Vα)c∇cX

aα + Xc(Vα)dT cd
aα

] A∏
β=1
β �=α

(Vβ)aβ

= Xc∇c((V1)a1 · · · (VA)aA)

−
A∑

α=1

∇cX
aα(V1)a1 · · · (Vα−1)aα−1(Vα)c(Vα+1)aα+1 · · · (VA)aA

+ Xc
A∑

α=1

T cd
aα(V1)a1 · · · (Vα−1)aα−1(Vα)d(Vα+1)aα+1 · · · (VA)aA .(7.1)

For W ∈ S� we compute LXW as follows: for any V ∈ S� we have

V bLXWb = LX(V bWb) − (LXV b)Wb

= Xc∇c(V bWb) −
(
Xc∇cV

b − V c∇cX
b + XcV dT cd

b
)

Wb

= XcV b∇cWb + V cWb∇cX
b − XcV dT cd

bWb.

After relabelling some of the repeated indices we may use the fact that V was arbitrary to deduce

LXWb = Xc∇cWb + Wc∇bX
c − XcT cb

dWd.
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By a derivation similar to that of (7.1) we deduce

LX ((W1)b1 · · · (WB)bB
) = Xc∇c ((W1)b1 · · · (WB)bB

)

+
B∑

β=1

(∇bβ
Xc
)
(W1)b1 · · · (Wβ−1)bβ−1(Wβ)c(Wβ+1)bβ+1 · · · (WB)bB

− Xc
B∑

β=1

T cbβ

d(W1)b1 · · · (Wβ−1)bβ−1(Wβ)d(Wβ+1)bβ+1 · · · (WB)bB
. (7.2)

Finally, it follows from (7.1), (7.2) and properties 1, 2 and 5 of L that the Lie derivitive of a general
world-tensor S is given by

LX Sa1···aA

b1···bB
= Xc∇cS

a1···aA

b1···bB

−∇cX
a1Sc···aA

b1···bB
− · · · − ∇cX

aASa1···c
b1···bB

+ ∇b1X
cSa1···aA

c···bB
+ · · · + ∇bB

XcSa1···aA

b1···c

+ Xc
[
T cd

a1Sd···aA

b1···bB
+ · · ·T cd

aASa1···d
b1···bB

−T cb1

dSa1···aA

d···bB
− · · · − T cbB

dSa1···aA

b1···d
]
. (7.3)

Of course, this expression simplifies dramatically if ∇ is torsion-free.

8 Differential Forms

A differential p-form on M is a totally antisymmetry tensor θa1...ap
∈ S�···�, which is to say a

section of ∧p(T ∗M). We call p the degree deg θ of θ. If θ and ξ are differential forms then we
define their exterior (or wedge) product to be

(θ ∧ ξ)a1...apb1...bq
= θ[a1...aq

ξb1...bq].

The exterior product is associative and satisfies the “commutativity” relation

θ ∧ ξ = (−1)(deg θ)(deg ξ)ξ ∧ θ.

We sometimes denote the space of all p-forms on M by Ωp(M). Some references, such as [3], use
a different definition of θ ∧ ξ—one differeing by a factor of (deg θ)!(deg ξ)!. This changes some of
the formulas (notably (8.6)), but not the mathematics.

Section 4.3 of [2] describes an operator d : Ωp(M) → Ωp+1(M) called exterior differentiation.
It is characterized by the following properties:

1. d behaves on Ω0(M) = S as in section 2,
2. d(θ ∧ ξ) = dθ ∧ ξ + (−1)pθ ∧ dξ if θ ∈ Ωp(M).
3. d(dθ) = 0 for all forms θ.
4. d(θ + ξ) = dθ + dξ.

One checks that with respect to the covariant derivative operator ∂ of a coordinate system, the
map

θa1...ap
�→ ∂[a0θa1...ap] (8.1)

has these properties and thus provides a way to compute exterior derivatives: (dθ)a0...ap
is given

by the right hand side. Furthermore, if ∇ is any torsion-free affine connection them in fact we have

∇[a0θa1...ap] = ∂[a0θa1...ap] (8.2)
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for any θ ∈ S�···� (i.e., θ need not be a form). This holds because with (∂a −∇a)Xc = Qab
cXb for

all X ∈ S�, we have Qab
c = Qba

c because ∇ and ∂ have the same torsion. Then by (6.2) we have

(∂a0 −∇a0)θa1...ap
= −Qa0a1

bθba2...ap
− · · · − Qa0ap

bθa1...ap−1ap
.

Antisymmetrizing both sides over a0, . . . ap, the right side vanishes, proving (8.2). Thus we can
compute exterior derivatives as in (8.1), with any torsion-free affine connection in place of ∂.

If Φ : M → N is a smooth map of manifolds then we’ll denote by Φ∗ the pullback opera-
tors (T ∗N)⊗p → (T ∗M)⊗p, and we will also write Φ∗θ for the section of (T ∗M)⊗p obtained by
composing a section θ of (T ∗N)⊗p with Φ∗. A basic functorality property of pullbacks is that if
θ and ξ are covariant tensors on M then Φ∗(θ ⊗ ξ) = Φ∗θ ⊗ Φ∗ξ. It follows immediately that
Φ∗(θ ∧ ξ) = Φ∗θ ∧ Φ∗ξ. In light of this it follows by induction from the fact that Φ∗(df) = d(Φ∗f)
for f ∈ C∞(N) that Φ∗(dθ) = d(Φ∗θ) for any differential form θ on N . That is, the exterior
derivative commutes with pullbacks.

A computation reveals that if X ∈ S� then LX preserves each of the spaces Ωp(M). If
θ ∈ Ωp(M) then by (7.3) we have

(LXθ)a1...ap
= Xb∇bθa1...ap

+ ∇a1X
bθba2...ap

+ · · · + ∇ap
Xbθa1...ap−1b,

by (7.3). We study what happens when indices ai and ai+1 are exchanged on the right hand side.
Each term except for the (i +1)st and (i + 2)nd remain as they were except with its sign reversed,
by the antisymmetry of θ. After the index exchange, the remaining two terms become

∇ai+1X
bθa1...ai−1bai...ap

+ ∇ai
Xbθa1...ai+1bai+2...ap

;

applying the antisymmetry of θ, we see that this is just the negative of sum of the two terms we
started with. This proves that LXθ is a p-form. A less computational way to see this is to define
(as in [2]) the Lie derivative LX in terms of the limit of pullback maps along the flow of X. In
terms of this definition, the above result and the one below follow from the naturality properties
of pullbacks.

Finally, we show that LX(dθ) = d(LXθ) for all θ ∈ Ωp(M). This is easy if θ is a function:

(d(LXθ))a = (d(Xb∇bθ))a

= ∇a(Xb∇bθ)

= ∇aXb∇bθ + Xb∇a∇bθ

= ∇aXb∇bθ + Xb∇b∇aθ

= LX(∇aθ) = (LX(dθ))a,

where we have used the fact that ∇ is torsion-free. The result for general θ follows by induction;
given the result for θ and ξ we prove it for θ ∧ ξ (with θ a p-form):

d(LX(θ ∧ ξ)) = d(LXθ ∧ ξ + θ ∧ LXξ)
= dLXθ ∧ ξ + (−1)pLXθ ∧ dξ + dθ ∧ LXξ + (−1)pθ ∧ dLXξ

= LXdθ ∧ ξ + dθ ∧ LXξ + (−1)pLXθ ∧ dξ + (−1)pθ ∧ dLXξ

= LX(dθ ∧ ξ) + (−1)pLX(θ ∧ dξ)
= LX(d(θ ∧ ξ)).
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A fact useful for work with differential forms is that

(p + 1)θ[ab1...bp] = θa[b1...bp] − θ[b1|a|b2...bp] + − + − · · · + (−1)pθ[b1...bp]a (8.3)

for all θ ∈ Ωp(M). Given a vector field v, we define the inner derivative ivθ of a form θ ∈ Ωp(M)
for p > 0 as

(iv(θ))a2...ap
= va1θa1...ap

; (8.4)

we set ivf = 0 for f ∈ Ω0(M) = S. Note that iv ◦ iv vanishes. We call iv a derivation because
when θ ∈ Ωp(M) and ξ ∈ Ωq(M) we have

(p + q)iv(θ ∧ ξ) = p iv(θ) ∧ ξ + (−1)pq θ ∧ iv(ξ), (8.5)

which follows from (8.3) and some calculations. This allows us to prove Cartan’s “magic formula”,

Lvθ = p divθ + (p + 1)ivdθ (8.6)

for θ ∈ Ωp(M). Checking it for the cases p = 0 and 1 is an easy computation, and for general p
the result follows by induction using the product rules for the Lie, exterior and inner derivatives.

The main theorems concerning differential forms are the Poincare lemma and its inverse, the
theorem of Stokes and the theory of de Rham cohomology. Frobenius’s theorem also has a nice
interpretation in terms of differential forms. For these topics we refer to [9].

9 The Curvature Tensor

Given X ∈ S� and a connection ∇ on E, we define the operator ∇
X

: S♥ → S♥ by Y Γ �→ Xa∇aY Γ.

For given X,Y ∈ S�, we define an operator on S♥ by

Z �→
(
∇
X
∇
Y
−∇

Y
∇
X
− ∇

[X,Y ]

)
Z.

We claim that this operator is S-linear in each of X, Y and Z. The computations are facilitated
by choosing an arbitrary affine connection on M (with torsion denoted T ) and letting .∇ denote
the resulting connection on the tensor products of copies of E and TM .

We will find an expression for this operator, which will make obvious the S-linearity in X and
Y . We have(

∇
X
∇
Y
−∇

Y
∇
X
− ∇

[X,Y ]

)
ZΓ = Xa∇a(Y b∇bZ

Γ) − Y b∇b(Xa∇aZΓ) − [X,Y ]c∇cZ
Γ

= Xa .∇a(Y b .∇bZ
Γ) − Y b .∇b(Xa .∇aZΓ) − [X,Y ]c .∇cZ

Γ

= Xa( .∇aY
b)( .∇bZ

Γ) + XaY b .∇a
.∇bZ

Γ − Y b( .∇bX
a)( .∇aZ

Γ)

− Y bXa .∇b
.∇aZΓ − (Xa .∇aY c − Y a .∇aXc + XaY bT ab

c
) .∇cZ

Γ

= XaY b( .∇a
.∇b − .∇b

.∇a)ZΓ − XaY bT ab
c .∇cZ

Γ,

proving linearity in X and Y . Now we show linearity in Z; let D : S♥ → S��♥ be the operator
defined by

DabZ
Γ = ( .∇a

.∇b − .∇b
.∇a − T ab

c .∇c)ZΓ. (9.1)

By the discussion above, D is independent of our choice of affine connection. We have

Dab(fZΓ) = .∇a
.∇b(fZΓ) − .∇b

.∇a(fZΓ) − T ab
c .∇c(fZΓ).
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After expanding using the Leibniz rule and then cancelling some terms and using the definition of
T , the right hand side reduces to fDabZ

Γ, as desired. The additivity is trivial, showing S-linearity
in Z.

Therefore there is a tensor K��♥♥ such that

DabZ
Γ = Kab∆

ΓZ∆

and (
∇
X
∇
Y
−∇

Y
∇
X
− ∇

[X,Y ]

)
ZΓ = XaY bKab∆

ΓZ∆

for all Z ∈ S♥ and X,Y ∈ S�. Since the operator at the left is antisymmetric in X and Y , we
have Kab∆

Γ = −Kba∆
Γ. Since D is independent of the choice of affine connection in the above

computations, so is K. K is called the curvature tensor of ∇. We say that ∇ is flat if its curvature
vanishes.

Following the argument in section 3.2 of [8], and taking intoa ccount the fact that Wald
follows the opposite sign conventions for curvature than we, we can relate K to the failure of
parallel propagation around closed paths to preserve tensors. Suppose p ∈ M , that S, T ∈ TpM
and that s, t are part of a coordinate system centered at p such that the coordinate vector field
∂/∂s (resp. ∂/∂t) is S (resp. T ) at p. For each ∆s,∆t > 0 we define γ to be the path beginning
at p, lying in the s-t coordinate plane, with its s-coordinate increasing from 0 to ∆s, then its t-
coordinate increasing from 0 to ∆, then its s-coordinate decreasing to 0,a nd finally its t-coordinate
decreasing to 0. (We also assume that only one of the s and t coordinates of γ is changing at any
given point along γ.) If Z ∈ S♥ then we set Zp to be the value of Z at p, Z ′

p to be the element of
the fiber of E over p obtained by parallel-propagating Zp arounf γ, and ∆Z to be Z ′

p − Zp. Then
to first order in ∆s and ∆t, we have

(∆Z)Γ = ∆s∆tSaT bKabΦ
ΓZΦ.

When ∇ is an affine connection then the curvature is usually denoted R rather than K, in
honor of Riemann. In this case, we define the Ricci curvature tensor by

Rac = Rabc
b.

Because both the Riemann and Ricci tensors are denoted by R there is potential for confusion.
When necessary we will make explicit which tensor is meant by using R�� or R���� or somesuch.

Now we investigate the behavior of the operator D on sections of tensor bundles on which exist
connections by virtue of the constructions of section 5. Direct computation using the definition of
T shows that Dabf = 0 for all f ∈ S. Suppose E∇ (resp. F∇) is a connection on E (resp. F ),
EF∇ denotes the induced connection on E ⊗ F , and .∇ is defined using EF∇ and the arbitrary
affine connection. Then

Dab(SΓUA) = ( .∇a
.∇b − .∇b

.∇a − T ab
c .∇c)(SΓUA);

after expanding the derivative operators using the Leibniz rule and cancelling like terms, one
obtains

Dab(SΓUA) = Dab(SΓ)UA + SΓDab(UA). (9.2)

Thus if K��♥♥ and L���� are the respective curvatures of E∇ and F∇ then

Dab(SΓUA) = Kab∆
ΓS∆UA + LabB

ASΓUB

= (Kab∆
Γ1B

A + LabB
A1∆

Γ)S∆UB , (9.3)
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The expression in parentheses being an expression for the curvature tensor of EF∇.
This allows us to compute the action of D on S♥. For all S ∈ S♥ and U ∈ S♥ we have

0 = Dab(SΓUΓ) = Kab∆
ΓS∆UΓ + S∆DabU∆.

Since S was arbitrary we deduce DabU∆ = −Kab∆
ΓUΓ. Together with (9.2) this describes the

action of D on any bundle on which we have defined a connection. A special case is for sections of
S♥···♥♥···♥, where we have

DabS
Γ1···Γm

∆1···∆n
= KabΦ

Γ1SΦΓ2···Γm

∆1···∆n
+ · · · + KabΦ

ΓmSΓ1···Γm−1Φ
∆1···∆n

− Kab∆1

ΦSΓ1···Γm

Φ∆2···∆n
− · · · − Kab∆n

ΦSΓ1···Γm

∆1···∆n−1Φ.

As in (7.3), if there are repeated indices present, so that aα = bβ for some α and β, then the αth
term of the second line cancels with the βth term of the third, and the αth term of the fourth line
cancels with the βth term of the fifth. That is, one may restrict each sum in this formula to vary
over just the nonrepeated indices of S.

10 Change of Curvature Under a Change of Connection

Suppose ∇ and ∇̃ are connections on E and that (∇̃a − ∇a) = Qa∆
ΓS∆ for all S ∈ S♥. Then

their respective curvature tensors K̃ and K are related. For the computation, it helps to choose
an arbitrary affine connection (we’ll call its torsion T ) and denote the resulting connections on
TM ⊗ E by .∇ and .̃∇.

For any S ∈ S♥ we have

(K̃ − K)ab∆
ΓS∆ =

(
D̃ab −Dab

)
SΓ

=
(
2 .̃∇[a

.̃∇b] − T ab
c .̃∇c − 2 .∇[a

.∇b] + T ab
c .∇c

)
SΓ

= 2 .̃∇[a( .̃∇b]S
Γ) − 2 .∇[a( .∇b]S

Γ) − T ab
c(∇̃c −∇c)SΓ

= 2 .̃∇[a( .∇b]S
Γ + Qb]∆

ΓS∆) − 2 .∇[a( .∇b]S
Γ) − T ab

cQc∆
ΓS∆

= 2( .̃∇[a − .∇[a)( .∇b]S
Γ) + 2 .̃∇[a(Qb]∆

ΓS∆) − T ab
cQc∆

ΓS∆

= 2Q[a|∆|
Γ .∇b]S

∆ + 2 .∇[a(Qb]∆
ΓS∆) + 2Q[a|Φ|

ΓQb]∆
ΦS∆ − T ab

cQc∆
ΓS∆

= 2Q[a|∆|
Γ .∇b]S

∆ + 2 .∇[aQb]∆
ΓS∆ + 2 .∇[aS

∆Qb]∆
Γ

+ 2Q[a|Φ|
ΓQb]∆

ΦS∆ − T ab
cQc∆

ΓS∆.

Cancelling the first and third terms and using the fact that S was arbitrary, we deduce

(K̃ − K)ab∆
Γ = 2 .∇[aQb]∆

Γ + 2Q[a|Φ|
ΓQb]∆

Φ − T ab
cQc∆

Γ. (10.1)

The expression on the right hand side involves ∇; sometimes it is convenient to express it in terms
of ∇̃ instead. Expressing .∇ in terms of .̃∇, cancelling like terms and exchanging indices a and b in
one term, (10.1) becomes

(K̃ − K)ab∆
Γ = 2 .̃∇[aQb]∆

Γ − 2Q[a|Φ|
ΓQb]∆

Φ − T ab
cQc∆

Γ. (10.2)

Finally, we treat the case in which both ∇ and ∇̃ are affine connections, with curvatures R and
R̃ and torsions T and T̃ respectively. Then the choice of an additional arbitrary affine connection
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is somewhat artificial, since we can choose one of ∇ or ∇̃. If we take the arbitrary connection to
be ∇ then (10.1) becomes

(R̃ − R)abc
d = 2∇[aQb]c

d + 2Q[a|e|
dQb]c

e − T ab
eQec

d, (10.3)

because .∇ is now just ∇ and T refers to the torsion of ∇. If we take the arbitrary affine connection
to be ∇̃ then (10.2) becomes

(R̃ − R)abc
d = 2∇̃[aQb]c

d − 2Q[a|e|
dQb]c

e − T̃ ab
eQec

d, (10.4)

where .̃∇ is now just ∇̃ and T̃ is the torsion of ∇̃.

11 The Bianchi Identities

Theorem 11.1 (Bianchi’s first identity). If ∇ is an affine connection with curvature R and
torsion T then

R[abc]
d + ∇[aT bc]

d + T [ab
eT c]e

d = 0.

Proof: Assume first that T = 0. Then for any f ∈ S we have

∇[[a∇b]∇c]f = ∇[a∇[b∇c]]f,

which is to say R[abc]
d∇df = ∇[a(T bc]

d∇df) = 0, as desired. Now if ∇ has torsion T then let ∇̃
be the connection defined by (∇̃a − ∇a)Xb = T ac

bXc/2 for all X ∈ S�. By theorem 6.1, ∇̃ is
torsion-free, so by the above computation we see that its curvature R̃ satisfies R̃[abc]

d = 0. Applying
(10.3) we see that

(R̃ − R)abc
d =

2
2
∇[aT b]c

d +
1
2
T [a|e|

dT b]c
e − 1

2
T ab

eT ec
d

and so
R[abc]

d = −∇[aT bc]
d − 1

2
T [a|e|

dT bc]
e +

1
2
T [ab

eT |e|c]
d.

Applying the symmetries
T [a|e|

dT bc]
e = T [bc

eT a]e
d = T [ab

eT c]e
d

and
T [ab

eT |e|c]
d = −T [ab

eT c]e
d

to the last two terms, we see that

R[abc]
d = −∇[aT bc]

d − T [ab
eT c]e

d,

proving the theorem.

Corrollary 11.2. The curvature tensor R of a torsion-free affine connection satisfies the identify

Rabc
d + Rbca

d + Rcab
d = 0.

Proof: Immediate from the symmetries Rabc
d = −Rbac

d and R[abc]
d = 0.
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Theorem 11.3 (Bianchi’s second identity). Suppose ∇ is a connection on E with curvature
K, is an arbitrary affine connection with torsion T , and .∇ denotes the composite connection
derived from ∇ and . Then

.∇[aKbc]∆
Γ + T [ab

dKc]d∆
Γ = 0.

Proof: This is very similar to the proof of theorem 11.1. Suppose first that ˜ is an affine
connection with curvature R̃ and vanishing torsion and that .̃∇ denotes the composite connection
built from ˜ and ∇. Then for all S ∈ S♥ we have

.̃∇[[a
.̃∇b]

.̃∇c]S
Γ = .̃∇[a

.̃∇[b
.̃∇c]]S

Γ,

which is to say
−R̃[abc]

d .̃∇dS
Γ + K [ab|∆|

Γ .̃∇c]S
∆ = .̃∇[a(Kbc]∆

ΓS∆).

Applying the first Bianchi identity to the left and expanding the right side using the product rule,

K [ab|∆|
Γ .̃∇c]S

∆ = .̃∇[aKbc]∆
ΓS∆ + .̃∇[aS∆Kbc]∆

Γ.

The last terms of each side cancel (after rearranging a, b and c by an even permutation), so we see
that .̃∇[aKbc]∆

ΓS∆ = 0 for all S. Therefore .̃∇[aKbc]∆
Γ = 0, as desired.

Now suppose that is an affine connection with torsion T and that ˜ is defined by (˜a −
a)Xb = T ac

bXc/2 for all X ∈ S�. Then by theorem 6.1, ˜ is torsion-free. Let .∇ be as in the
statement of the theorem. Then

.̃∇aKbc∆
Γ = .∇aKbc∆

Γ − 1
2
T ab

dKdc∆
Γ − 1

2
T ac

dKbd∆
Γ.

Antisymmetrizing over a, b and c and using the known result for the operator .̃∇, we find

0 = .∇[aKbc]∆
Γ − 1

2
T [ab

dK |d|c]∆
Γ − 1

2
T [ac

dKb]d∆
Γ.

Applying the relations
T [ab

dK |d|c]∆
Γ = −T [ab

dKc]d∆
Γ

and
T [ac

dKb]d∆
Γ = −T [ab

dKc]d∆
Γ

to the last two terms on the left, we obtain the result.

12 Affine Connections from Fields of Frames

Suppose e1, . . . , edim M form a basis of vector fields on M , and that E1, . . . , Edim M are the dual 1-
forms. We may define an affine connection ∂ on M as follows. Any vector field S may be expressed
as a sum, S =

∑
β sβeβ, with each sβ ∈ S. (This sum and all others of this section runs from 1

through dim M .) We define
∂S =

∑
α,β

eα(sβ)Eα ⊗ eβ.
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(This is similar to the connections introduced in the proof of theorem 3.1.) It is easy to see that
this defines a connection: the additivity is trivial and we have

∂(fS) =
∑
α,β

ea(fsβ)Eα ⊗ eβ

=
∑
α,β

(
eα(f)sβ + feα(sβ)

)
Eα ⊗ eβ

=

⎛⎝∑
α

eα(f)Eα

⎞⎠⊗
⎛⎝∑

β

sβeβ

⎞⎠+ f
∑
α,β

eα(sβ)Eα ⊗ eβ

= df ⊗ S + f∂S.

Note that we have ∂eα = 0 for all α, and thus also ∂Eα = 0 for all α. This implies that if
U =

∑
β uβEβ is a one-form (with uβ ∈ S for all β) then

∂U =
∑
α,β

eα(uβ)Eα ⊗ Eβ .

Now we compute the torsion T̃ of ∂. For any f ∈ S we have

T̃ ab
c∂cf = 2∂[a∂b]f

= 2∂[a(df)b]

= ∂a

∑
β

eβ(f)(Eβ)b − ∂b

∑
β

eβ(f)(Eβ)a

= 2
∑
α,β

eα(eβ(f))(Eα)[a(Eβ)b]

= 2
∑
α,β

[eα, eβ](f)(Eα)a(Eβ)b

= 2
∑
α,β

(Eα)a(Eβ)b[eα, eβ ]c∂cf.

Since f was arbitrary, we deduce

T̃ ab
c = 2

∑
α,β

(Eα)a(Eβ)b[eα, eβ]c.

In particular, if the eα are a basis of coordinate vector fields then ∂ is torsion-free.
Next we show that the curvature R̃ of ∂ vanishes. For any S ∈ S�, say S =

∑
γ sγeγ , we

perform a computation similar to that above:

R̃abc
dSc = (2∂[a∂b] − T̃ ab

c∂c)Sd

= 2
∑

α,β,γ

[eα, eβ](sγ)(Eα)a(Eβ)b(eγ)d − T̃ ab
c∂cS

d

=

⎛⎝2
∑
α,β

[eα, eβ]c(Eα)a(Eβ)b

⎞⎠⎛⎝∑
γ

∂c(sγ)(eγ)d

⎞⎠− T̃ ab
c∂cS

d

= T̃ ab
c∂cS

d − T̃ ab
c∂cS

d = 0.
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If ∇ is some fixed affine connection on M then there is a tensor field Q��� such that (∂a −
∇a)Xc = Qab

cXb for all X ∈ S�. (This is as in section 6, with ∂ in place of ∇̃.) In this context
Q is usually renamed −Γ and called the Christoffel symbol(s), with respect to the given basis of
vector fields:

(∇a − ∂a)Xc = Γab
cXb

for all X ∈ S�. We can use this formula and (10.4) to compute the curvature tensor R of ∇ from
the Christoffel symbols and the torsion of ∂. Replacing ∇̃ with ∂ in (10.4), and using R̃ = 0 and
Γ = −Q, we have

Rabc
d = 2∂[aΓb]c

d + 2Γ[a|e|
dΓb]c

e + 2

⎛⎝∑
α,β

(Eα)a(Eβ)b[eα, eβ ]c

⎞⎠Γec
d. (12.1)

Of course, if ∂ is the connection derived from a basis of coordinate vector fields then the last term
vanishes and then in components we have

Rαβγ
δ =

∂Γβγ
δ

∂xα
− ∂Γαγ

δ

∂xβ
+
∑

ε

(
Γαε

δΓβγ
ε − Γβε

δΓαγ
ε
)

. (12.2)

13 The Levi-Civita Connection

Theorem 13.1. On a (pseudo-)Riemannian manifold M with metric tensor g, there is a unique
torsion-free affine connection ∇ such that ∇g = 0.

Proof: By theorem 6.2, there exists a torsion-free affine connection on M , say ∇̃. We seek
Q ∈ S��� such that the operator ∇ defined by (∇̃a −∇a)Xb = Qac

bXc (for all X ∈ S�) is torsion-
free and annihilates g. Since ∇̃ is torsion-free, by theorem 6.1 the requirement that ∇ also be
torsion free is the requirement that Qac

b = Qca
b. We will solve for Q.

Since (∇̃a −∇a)gbc = −Qab
dgdc − Qac

dgbd and we require ∇agbc = 0, after lowering indices
on the right hand side we find that we need to solve

∇̃agbc = −Qabc − Qacb. (13.1)

Cyclically permuting the indices a, b and c we find the additional equations

∇̃bgca = −Qbca − Qbac (13.2)

and
∇̃cgab = −Qcab − Qcba. (13.3)

Adding equations (13.1) and (13.3), subtracting (13.2), and using the symmetry of Q, we find

∇̃agbc + ∇̃bgca − ∇̃cgab = 2Qabc,

or in other words,

Qab
c = − (g−1)cd

2
(∇̃agbd + ∇̃bgad − ∇̃dgab). (13.4)

This proves both existence and uniqueness.
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Unless otherwise specified, on a Riemannian manifold ∇ will always denote this connection,
called the Levi-Civita connection. Note that for all X ∈ S� or S� we have

∇dXa = ∇d(gabX
b) = ∇dgabX

b + gab∇dX
b = gab∇dX

b,

so that we see that ∇ commutes with the raising and lowering of indices.
A special case of (13.3) is when ∇̃ is the connection ∂ defined by a coordinate system x1, . . . ,

xdim M (see section 12). Then with Γ = −Q, we have

Γab
c =

(g−1)cd

2
(∂agbd + ∂bgad − ∂dgab) , (13.5)

or in components

Γαβ
γ =

1
2

∑
δ

(g−1)γδ

(
∂gβδ

∂xα
+

∂gαδ

∂xβ
− ∂gαβ

∂xδ

)
. (13.6)

This provides a means for computing Γ if g is given in terms of the coordinates. The curvature is
given in terms of the Christoffel symbols in (12.1) and (12.2).

The curvature of the Levi-Civita connection is antisymmetric in its last two indices: we have

0 = ∇[a∇b]gcd = −Rabc
eged − Rabd

egce

and so Rabcd = −Rabdc. Coupled with the first Bianchi identity and the antisymmetry of Rabcd in
a and b, we also obtain the “interchange” symmetry Rabcd = Rcdab:

2Rabcd = Rabcd + Rbadc

= Rcabd − Rbcad − Rdbac − Radbc

= (Rcadb + Radcb) + (Rbcda + Rdbca)
= −Rdcab − Rcdba

= Rcdab + Rcdab = 2Rcdab.

This symmetry implies the symmetry of the Ricci tensor:

Rac = Rabc
b = Rabcdg

bd = Rcdabg
db = Rca.

We define the scalar curvature R by R = Ra
a = Rabg

ab. Another important tensor is the
Einstein tensor

Gab = Rab − 1
2
Rgab. (13.7)

G is obviously symmetric, and by twice contracting the second Bianchi identity we find that its
divergence ∇aGab vanishes.

14 Geodesics

In section 3 we defined the notion of a geodesic with repect to an affine connection. Suppose
∇ is the connection, with Christoffel symbols Γ with respect to a connection ∂ derived from a
coordinate system x1, . . . , xn. Then if a curve with coordinates xi(t) is a geodesic, with tangent
vector v(t) =

∑n
i=1 ẋi(t)(∂/∂xi) then we have

0 = va∇avb = va
(
∂avb + Γac

bvc
)

.
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In coordinates this is the assertion that for all β = 1, . . . ,N we have

0 =
∑
α

ẋα
∂

∂xα
ẋβ +

∑
α,γ

Γαγ
βẋαẋγ

or alternately
0 = ẍβ +

∑
α,γ

Γαγ
βẋαẋγ . (14.1)

This is known as the geodesic equation. Note that because the sum is symmetric in α and γ, only
the symmetric part of the Christoffel symbols enters the geodesic equation. That is, if ∇̃ is the
torsion-free connection obtained from ∇ as in the proof of theorem 6.2, then ∇ and ∇̃ have the
same geodesics.

The basic results concerning geodesics are below; the basic tool used in their proofs is the
fundamental theorem on the existence and uniqueness of solutions to ordinary differential equations
(see [7]), together with the smooth dependence of the solutions on initial conditions. (The ODE
theorem is applied to an appropriate flow on TM .)

Theorem 14.1. For any p ∈ M there is a nonempty open set Up of TpM , starshaped about 0 and
maximal with respect to the property that for all v ∈ Up there is a unique geodesic γ : [0, 1] → M
with γ(0) = p and γ̇(0) = v. The map assigning to each v ∈ Up the other endpoint γ(1) of this
geodesic is a smooth map to M .

We call the map Up → M described in the theorem the exponential map at p, and denote it expp.
(A subset U of a vector space is called starshaped around one of its points of the segment joining
that point to any other point of U lies entirely in U .)

Theorem 14.2. For any p ∈ M there is an open set V ⊆ Up containing 0 such that expp |V is
a diffeomorphism onto its image. For any p ∈ M there is a fiberwise convex neighborhood W of
(p, 0) in TM such that for all (q, v) ∈ W we have v ∈ Uq, and that the map (q, v) �→ (q, expq v) is
a diffeomorphism of W onto a neighborhood of (p, p) in M × M .

The image in M of a set V as in the theorem and starshaped about 0 is called a normal neighborhood
of p. It is obvious that if Y is a normal neighborhood of p then there is a unique geodesic in Y
joining p to any other given point of Y . One can do even better:

Theorem 14.3. For all p ∈ M there is a normal neighborhood of p which is also a normal
neighborhood of each of its points.

Such a set is called (geodesically) convex.
If ∇ is derived from a metric g then the condition that a path γ be a geodesic is precisely the

condition that for each interval [a, b] in the domain of γ, the integral
∫ b

a
gabγ̇

aγ̇bdt is extremized
among nearby (in the C∞ sense, and probably in weaker senses too) smooth paths. The Euler-
Lagrange equations derived from the Lagrangian gabγ̇

aγ̇b are just the equations (14.1). Deriving
the Euler-Lagrange equations is sometimes the best way to compute the Christoffel symbols.

15 Geodesic Deviation

Suppose we have a family γs(t) of geodesics such that the map (s, t) �→ γs(t) is a smooth embedding
of its domain onto its image S in M . We denote the image of ∂/∂t (resp. ∂/∂s) by γ̇ (resp. γ′).
By hypothesis, γ̇a∇aγ̇b = 0. After extending γ̇ and γ′ to a neighborhood of S, we can consider the
Lie bracket of the extensions. The restriction of this vector field to S depends only on the values
of γ̇ and γ′ on S. Since they Lie-commute there, we have γ̇a∇aγ′b = γ′a∇aγ̇b on S.
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One should interpret γ′ as the separation between neighboring geodesics and γ̇a∇aγ′ as the
relative velocity of the geodesics. Thus a = γ̇a∇a(γ̇b∇bγ

′) represents the relative acceleration of
nearby geodesics. We can find an explicit formula for a:

ac = γ̇a∇a(γ̇b∇bγ
′c)

= γ̇a∇a(γ′b∇bγ̇
c)

= γ̇a∇aγ′b∇bγ̇
c + γ̇aγ′b∇a∇bγ̇

c

= γ′a∇aγ̇b∇bγ̇
c + γ̇aγ′bRabd

cγ̇d + γ̇aγ′b∇b∇aγ̇c

= γ̇aγ̇dγ′bRabd
c + γ′a [0 − γ̇b∇a∇bγ̇

c
]
+ γ̇aγ′b∇b∇aγ̇c

= γ̇aγ̇dγ′bRabd
c.

If ∇ is the Levi-Civita connection for a metric g on M , then we can also conclude that the
inner product of γ̇ and γ′ is constant along the geodesics γs. To prove this we first note that

γ̇b∇aγ̇b = ∇a(γ̇bγ̇b) − γ̇b∇aγ̇b

= 0 − γ̇b∇aγ̇b

and so γ̇b∇aγ̇b = 0. Then we have

γ̇a∇a(γ̇bγ′
b) = γ̇a∇aγ̇bγ′

b + γ̇aγ̇b∇aγ′
b

= 0 + γ′aγ̇b∇aγ̇b

= 0.

16 Killing Forms and Vector fields

If ∇ is any affine connection then a Killing form is a totally symmetric element of S�···� which
satisfies Killing’s equation

∇(aKbc...d) = 0.

The quantity Ka1...ak
γ̇a1 · · · γ̇ak is constant along γ, if γ is a geodesic in M with tangent vector γ̇

and K is a Killing form. . The proof is easy:

γ̇b∇b(Ka1...ak
γ̇a1 · · · γ̇ak) = γ̇a1 · · · γ̇ak γ̇b∇bKa1...ak

+
k∑

i=1

γ̇a1 γ̇ai−1 γ̇ai+1 γ̇akKa1...ak
γ̇b∇bγ̇

ai

= γ̇(a1 γ̇ak γ̇b)∇bKa1...ak

= γ̇a1 γ̇ak γ̇b∇(bKa1...ak)

= 0.

If ∇ is torsion free and K is a Killing one-form then by repeatedly using the symmetry
∇(aKb) = 0, the definition of the Riemann tensor, and the first Bianchi identity, we find that K
satisfies the equation

∇a∇bKc = Rbca
dKd.

Killing forms of higher degree similar but more complicated equations; more complicated still are
the analogues of these equations when ∇ has torsion.
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Finally, if M is equipped with a metric then the condition that the flow of a vector field K�

preserve the metric, that is, that LKg = 0, is just the condition that K� be a Killing one-form.
The proof is easy:

0 = (LKg)bc

= Ka∇agbc + ∇bK
agac + ∇cK

agba

= ∇bKc + ∇cKb = 2∇(bKc).

In this case, K is called a Killing vector field. It follows from considerations earlier in this section
that a geodesic in M has constant inner product with any Killing field.

17 Change of Levi-Civita Connection with Change of Metric

Let g and g̃ be metrics on M , with Levi-Civita connections ∇ and ∇̃. Suppose (∇̃a − ∇a)Xb =
Qab

cXb for all X ∈ S�. Then by (13.4) we have

Qab
c = − (g−1)cd

2

(
∇̃agbd + ∇̃bgad − ∇̃dgab

)
.

Now suppose that gab = g̃cdT a
cT b

d for some bundle automorphism T of TM . Let T̄ be the inverse
of T , so that T a

bT̄ b
c = T̄ a

bT b
c = 1a

c. Then (g−1)cd = (g̃−1)ef T̄ e
cT̄ f

d.
We can now compute Qab

c; because ∇̃g̃ = 0 we have

Qab
c = −1

2
(g−1)cdg̃ef

(
∇̃a(T b

eT d
f ) + ∇̃b(T a

eT d
f − ∇̃d(T a

eT b
f )
)

= −1
2
(g̃−1)ijT̄ i

cT̄ j
dg̃efT d

f (∇̃aT b
e + ∇̃bT a

e)

− 1
2
(g−1)cdg̃ef (T b

e∇̃aT d
f + T a

e∇̃bT d
f )

+
1
2
(g−1)cdg̃ef (T b

f∇̃dT a
e + T a

e∇̃dT b
f ).

In the first term, the g̃’s and most of the T ’s cancel out. The term in the last pair of parenthe-
ses is obviously invariant under simultaneous interchange of a with e and b with f . Since both
terms are contracted over e and f with the symmetric tensor g̃, the last term is actually equal to
(g−1)cdg̃efT a

e∇̃dT b
f . Thus we have

Qab
c = −T̄ e

c∇̃(aT b)
e − (g−1)cdg̃efT (a

e∇̃b)T d
f + (g−1)cdg̃efT (a

e∇̃d)T b
f .

By virtue of gabT̄ c
a = g̃caT b

a this simplifies to

Qab
c = −T̄ e

c∇̃(aT b)
e − (g−1)cdge(aT̄ |f |

e∇̃b)T d
f + (g−1)cdgeaT̄ f

e∇̃dT b
f

= −T̄ e
c∇̃(aT b)

e − (g−1)cdT̄ f
e(ge(a∇̃b)T d

f − gea∇̃dT b
f ). (17.1)

18 Conformal Transformations

A special case of two metrics being related as in section 17 is when T = Ω1, so that g = Ω2g̃,
where Ω ∈ S. We say that g and g̃ are conformally equivalent metrics. As a special case of (17.1)
we find

Qab
c = −Ω−11

E
c∇̃(aΩ1b)

e − (g−1)cdΩ−11d
ege(a∇̃b)Ω1d

f

+ (g−1)cdΩ−11f
egea∇̃dΩ1b

f

= −1(b
c∇̃a) ln Ω − 1(a

c∇̃b) lnΩ+(g
−1)cdgab∇̃d ln Ω

= −2 1(a
c∇b ln Ω + gab(g−1)cd∇d ln Ω, (18.1)
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where we have used the facts that ∇ and ∇̃ agree on S and both annihilate 1.
Using (18.1) we can compute the difference of the curvatures of ∇ and ∇̃. Lengthy calculation

reveals
(R̃ − R)abc

d = 1[a
d∇b]∇c ln Ω + (g−1)dfgc[b∇a]∇f ln Ω

+ 1[a
d∇b] ln Ω∇c ln Ω − 1[a

dgb]c(g
−1)ef∇e ln Ω∇f ln Ω

+ ∇[a ln Ωgb]c(g
−1)de∇e ln Ω.

Contraction on b and d yields

(R̃ − R)ac = gac(g−1)ef∇e∇f ln Ω

+ (n − 2)
(
gac(g−1)ef∇e ln Ω∇f ln Ω −∇a∇c ln Ω −∇a ln Ω∇a ln Ω

)
.

This allows one to compute the scalar curvatures R̃ = R̃ab(g̃−1)ab and Rab(g−1)ab and compare
them. The result is

Ω−2R̃ = R − 2(n − 1)(g−1)ab∇a∇b ln Ω

+ (n − 2)(n − 2)(g−1)ab∇a ln Ω∇b ln Ω.

These computations set the stage for the Weyl conformal tensor C����, which is defined for
n > 2 by

Cabc
d = Rabc

d − 1
n − 2

g[a|[cRe]|b](g
−1)de +

2
(n − 1)(n − 2)

Rga[cge]b(g
−1)de.

Computations reveal that C���� has all the symmetries of R����, and that in addition C���� is trace-
free on any pair of its indices. Since in dimension 3 the map S[��]

[��] → S�� given by Sab
cd �→ Sab

cb

is an isomorphism (proof: count dimensions and check surjectivity), the Weyl tensor vanishes on
any 3-dimensional manifold. (We use the fact that Cab

cd = 0 if and only if Cab
cb = 0, which holds

because of the trace-free property of C.)
Naturally one makes the analogous definition for C̃, using g̃ and R̃ in place of g and the various

curvature tensors R. The big surprise is that C̃ = C. That is, the Weyl tensor is an invariant of the
conformal class of g. The proof is a very lengthy computation, best performed in the diagrammatic
notation described in the appendix of [6].

Finally, there is a differential relation between the Weyl and Ricci tensors. The second Bianchi
identity may be written

0 = ∇eRabc
d + ∇bReac

d + ∇aRbec
d.

After contracting on d and e one obtains

∇dRabc
d = 2∇[bRa]c. (18.2)

Raising c and then contracting on c and a yields

∇dRb
d =

1
2
∇bR. (18.3)

These equations allow us to compute the divergence of the Weyl tensor in terms of the Ricci tensor.
The result is

∇dCabc
d = 2

n − 3
n − 2

(
∇[bRa]c +

1
2(n − 1)

∇[aRgb]c

)
(18.4)
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19 Volume and the Hodge Star Operator

A volume form on an N -dimensional real vector space V is a nonzero element of ∧N (V ∗). An
orientation is an equivalence class of volume forms, two such forms being equivalent if they differ
by multiplication by a positive number. There are two orientations on V . A basis f1, . . . , fN is said
to be compatible with an orientation if for some (hence for any) representative ω of that orientation
we have

ωa1...aN
(f1)a1 · · · (fN )aN > 0.

V is called oriented if one of its orientations is distinguished. In this case we say that a basis is
positively oriented (or just oriented) if it is compatible with that orientation.

If V is equipped with a metric g then g induces an inner product on ∧N (V ∗). If f1, . . . , fN

is an orthonormal basis and F 1, . . . , F N are a dual basis, then the norm of F 1 ∧ · · · ∧ F N equals
(−1)σ, where σ is the number of the fi with negative norm. Thus, given g there is a canonical
choice e of volume form for each orientation—the unique representative of that orientation with
norm ±1. Furthermore, because we have

(F 1 ∧ · · · ∧ F N)(f1, . . . , fN ) = 1 > 0,

we see that e = F 1∧· · · ∧F N if f1, . . . , fN is positively oriented. If f ′
1, . . . , f

′
N are another oriented

basis for V , with dual basis F ′1, . . . , F ′N and T ∈ Aut V such that T (fi) = f ′
i , then we have

(F 1 ∧ · · · ∧ F N )(f ′
1, . . . , f

′
N ) = (F 1 ∧ · · · ∧ F N )(Tf1, . . . , T fN )

= (T †F 1 ∧ · · · ∧ T †F N )(f1, . . . , fN )

= T †(F 1 ∧ · · · ∧ F N )(f1, . . . , fN )
= detT.

Here T † stands for the adjoint map on V ∗ and the map it induces on ∧N (V ∗). We have also used
the definition of the determinant. Since both bases are oriented, we know that detT > 0. Since
we have (F ′1 ∧ · · ·F ′N )(f ′

1, . . . , f
′
N ) = 1, we therefore have

(detT )(F ′1 ∧ · · · ∧ F ′N ) = F 1 ∧ · · · ∧ F N .

Writing elements of V as column vectors with respect to the primed basis, if x, y ∈ V then
their inner product is x†G′y, where G′ is the matrix of inner products of the f ′

i . Since we have
G′ = T †GT , where G is the matrix of inner products with respect to the unprimed basis, we have
detG′ = (detT )2(detG). Since detG and detG′ have the same sign, we know that |det G| = 1
and detT > 0, we conclude that detT = +

√|det G′|. Therefore

e =
√

|detG′|F ′1 ∧ · · · ∧ F ′N .

This allows one to express the natural volume form conveniently in any basis, given the matrix of
inner products.

The Hodge star operator ∗ is a map from ∧p(V ∗) to ∧N−p(V ∗) for each p = 0, . . . ,N . It is
given by the map

(∗θ)a1...aN−p
= ea1...aN−pb1...bp

θb1...bp .

We now work out the action of ∗ explicitly in terms of a basis. Suppose f1, . . . , fN is an orthonormal
bais of V , with the square norm of fi being εi = ±1, so that (F α)a = εα(fα)a. Suppose that
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i1 < · · · < ip and j1 < · · · < jq are two disjoint sets whose union is {1, . . . ,N}. Let π be the sign
of the permutation that carries (1, 2, . . . ,N) to (i1, . . . , ip, j1, . . . , jq). Let A = F i1 ∧ · · · ∧ F ip and
B = F j1 ∧ · · · ∧ F jq . Let εA (resp. εB) be the number of fik

(resp. fjk
) of norm −1. Then

(∗B) = (−1)εB(F 1 ∧ · · · ∧ F N )(fj1 , . . . , fjq
)

= (−1)εBπ(F i1 ∧ · · · ∧ F ip ∧ F j1 ∧ · · · ∧ F jq )(fj1 , . . . , fjq
)

= (−1)εBπF i1 ∧ · · · ∧ F ip

= π(−1)εBA

and
(∗A) = (−1)εA(F 1 ∧ · · · ∧ F N)(fi1 , . . . , fip

)

= (−1)εAπ(F i1 ∧ · · · ∧ F ip ∧ F j1 ∧ · · · ∧ F jq)(fi1 , . . . , fip
)

= (−1)εA(−1)p(N−p)π(F j1 ∧ · · · ∧ F jq ∧ F i1 ∧ · · · ∧ F ip)(fi1 , . . . , fip
)

= π(−1)εA(−1)p(N−p)B.

So
∗∗A = π(−1)εA(−1)p(N−p)π(−1)εB

A = (−1)σ+p(N−p)A.

The exponent can be simplified because p2 ≡ p (mod 2), so ∗∗A = (−1)σ+p(n−1)A. These
computations also provide an algorithm for computing the dual of a form F i1 ∧ · · · ∧ F ip , which
may be summed up as follows. (i) write down the form F 1 ∧ · · · ∧F N . (ii) permute the factors so
that F i1 ∧ · · · ∧ F ip is “at the right hand end”; this may introdue a sign depending in the parity
of the permutation used. (iii) ‘cancel’ the factor F i1 ∧ · · · ∧ F ip . (iv) multiply what’s left by the
product of the norms of the fik

; this may introduce another sign.
All of these constructions apply to manifolds, by applying them pointwise. A volume form on

M is a nonvanishing element of ΩN (M). M is said to be orientable if it admits a volume form;
henceforth we will assume M to be orientable. An orientation on M is an equivalence class of
volume forms, two being equivalent if they differ by multiplication by a positive element of S. If
M is connected the there are exactly two orientations on M . If one of these is distinguished then
we say that M is oriented. If M is oriented and equipped with a metric then it admits a natural
volume form e, obtained by applying the above constructions pointwise. To check that this yields
a volume form, all we have to do is check that e is a smooth section of ∧N (T ∗M). This is easy
because in local coordinates x1, . . . , xN an expression for e is

e =
√
|det g| dx1 ∧ · · · ∧ dxN

where det g is the determinant of the inner product matrix of the coordinate vector fields. The
Hodge star operator is then a map Ωp(M) → ΩN−p(M) for each p = 0, . . . ,N . It satisfies the same
relation

∗ ∗ θ = (−1)σ+p(N−1)θ

for θ ∈ Ωp(M) as we met above.
The volume form e is covariantly constant on M : let X be a vector field, let p ∈ M and let

f1, . . . fN be an orthonormal basis parallel-transported along the flow line of X through p. Then
ea1...aN

= ±(f1)[a1 · · · (f|N |)aN
, and since Xa∇a(fα)b = 0 for all α we have Xa∇aea1...aN

= 0 along
the flow line of X through p. Since p and X were arbitrary, we must have ∇e = 0.
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20 The Method of Moving Frames

This is a technique due to Cartan for computing the curvature of the Levi-Civita connection ∇ of a
metric g. Suppose that e1, . . . , eN are a basis of vector fields and that E1, . . . , EN are a dual basis.
We define the functions hαβ = gab(eα)a(eβ)b; these are the entries in the matrix of inner products
of the basis elements with each other. Let (h−1)αβ be the functions such that

∑
β hαβ(h−1)βγ = 1

or 0 according as α = γ or α �= γ. Then we have

(Eµ)a =
∑

α

(h−1)αµ(eα)a

for each µ. If our basis is orthogonal, then of course the sum simplifies to a single term. We define
the Ricci spin coeffiencients ωaµν ∈ S� by

ωaµν = (eµ)b∇a(eν)b.

Since ∇ annihilates g we have

ωaµν = (eµ)b∇a(eν)b

= ∇ ((eµ)b(eν)b

)− (eν)b∇a(eµ)b

= ∇a(hµν) − (eν)b∇a(eµ)b

= (dhµν)a − ωaνµ. (20.1)

In particular, if the functions hαβ are constant then the we have ωaµν = −ωaνµ. At the end of this
section we show that if (20.1) holds then ∇ annihilates g.

A characterization of the fact that ∇ is torsion-free is the identity ∇[a(eν)b] = ∂[a(eν)b], where
∂ is any coordinate connection and we adopt the convention that greek indices are not subject to
symmetrization operators. (If this holds for all ν then we have

0 =
(∇[a − ∂[a

)
(eν)b] = −Γ[ab]

c(eν)c

for all ν, so the Christoffel symbols are symmetric, so ∇ is torsion-free.) This provides a way to
write down equations for the spin coefficients. We have

∇a(eν)b =
∑

µ

(Eµ)bωaµν

for all ν, as can be verified by (for each λ) contracting both sides with (eλ)b and using the definition
of the spin coefficients. Thus

∂[a(eν)b] =
∑

µ

(Eµ)[bωa]µν

=
∑
µ,α

(h−1)αµ(eα)[bωa]µν (20.2)

Now we can compute the Riemannian curvature. We have

Rαβγδ = Rabcd(eα)a(eβ)b(eγ)c(eδ)d

= −(eα)a(eβ)b(eγ)c(∇a∇b −∇b∇a)(eδ)c. (20.3)
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We also have

(eγ)c∇a∇b(eδ)c. = ∇a ((eγ)c∇b(eδ)c) −∇a(eγ)c∇b(eδ)c

= ∇a ((eγ)c∇b(eδ)c) −∇a(eγ)c1c
d∇b(eδ)d

= ∇aωbγδ −
∑

µ

∇a(eγ)c(Eµ)c(eµ)d∇b(eδ)d

= ∇aωbγδ −
∑

µ

∇a(eγ)c

(∑
ν

(h−1)µν(eν)c

)
ωbµδ

= ∇aωbγδ −
∑
µ,ν

(h−1)µνωaνγωbµδ.

Antisymmetrizing and plugging into (20.3) we find

Rabγδ = −∂[aωb]γδ + 2
∑
µν

(h−1)µνω[a|νγωb]µδ. (20.4)

If we suppress the abstract indices, so that the spin coefficients and the components Rabγδ of the
curvature are considered as differential forms, then we can rewrite this as

Rγδ = −dωγδ + 2
∑
µ,ν

(h−1)µνωνγ ∧ ωµδ .

We show below that (20.1) implies ∇g = 0. In light of this and the fact that (20.2) characterizes
∇ as torsion-free, we see that together (20.1) and (20.2) specify ∇ the spin coefficients completely.
So suppose (20.1) holds. Then we have, for each µ and ν,

ωaµν = (eµ)b∇a(eν)b

= (eµ)b∇a (gbc(eν)c)
= (eµ)bgbc∇a(eν)c + (eµ)b(eν)c∇agbc (20.5)
= gbc∇a

[
(eµ)b(eν)c

]− gbc(eν)c∇a(eµ)b + (eµ)b(eν)c∇agbc (20.6).

Reversing the roles of µ and ν in (20.5) we obtain

ωaνµ = (eν)bgbc∇a(eµ)c + (eν)b(eµ)c∇agbc.

Exchanging the roles of b and c, we find

ωaνµ = (eν)cgbc∇a(eµ)b + (eν)c(eµ)b∇agbc.

Adding this to (20.6) we obtain

ωaµν + ωaνµ = gbc∇a

[
(eµ)b(eν)c

]
+ 2(eµ)b(eν)c∇agbc.

By (20.1) and the definition of hµν , this implies

∇a

[
gbc(eµ)b(eν)c

]
= gbc∇a

[
(eµ)b(eν)c

]
+ 2(eµ)b(eν)c∇agbc.

Applying the Leibniz rule to the left and cancelling terms ,we are left with

0 = (eµ)b(eν)c∇agbc.

Since µ and ν were arbitrary we must have ∇g = 0.
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