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1 Tensor Algebra

1.1 Manifolds and Local Coordinates

Let M be an n-dimensional smooth orientable manifold without boundary.
Then locally, at any point x0 ∈ M , there is a neighborhood such that it
can be diffeomorphically mapped to a region in the Euclidean n-dimensional
space Rn with the coordinates xµ, where µ = 1, . . . , n. What follows is a list
of useful formulas in that local coordinate chart with these local coordinates.

1.2 Tangent and Cotangent Spaces

The tangent space Tx0M at the point x0 is a vector space spanned by the
basis

eµ = ∂µ = ∂/∂xµ (1)

(coordinate basis). A tangent vector v can be represented by a n-tuple vµ,
i.e.

v = vµeµ. (2)

The cotangent space T ∗x0
M at the point x0 is a vector space of linear maps

α : Tx0M → R, v 7→ 〈α, v〉 , (3)

spanned by the basis
ωµ = dxµ (4)

(coordinate basis). This basis is dual to the basis eν in the sense that

〈ων , eµ〉 = δνµ. (5)

A cotangent vector α can be represented by a n-tuple αµ; then

α = αµω
µ (6)

and
〈α, v〉 = αµv

µ. (7)

(Recall that a summation over repeated indices is performed.)
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1.3 Tensors of Type (p, q)

A tensor of type (p, q) is a real valued multilinear map

A : T ∗x0
M × · · · × T ∗x0

M︸ ︷︷ ︸
p

×Tx0M × · · · × Tx0M︸ ︷︷ ︸
q

→ R . (8)

A basis in the vector space of tensors of type (p, q) can be defined by

eµ1 ⊗ · · · ⊗ eµp ⊗ ων1 ⊗ · · · ⊗ ωνq . (9)

Then a tensor of the type (p, q) is represented by the components

Aµ1...µp
ν1...νq

, (10)

so that
A = Aµ1...µp

ν1...νq
eµ1 ⊗ · · · ⊗ eµp ⊗ ων1 ⊗ · · · ⊗ ωνq . (11)

1.4 Riemannian Metric

A Riemannian metric is a symmetric tensor of the type (0, 2) whose compo-
nents gµν are given by a symmetric nondegenerate positive definite matrix
gµν . The Euclidean metric is given just by the Kronecker delta symbol, i.e.

gµν = δµν =

{
1 if µ = ν,
0 if µ 6= ν .

(12)

The Riemannian metric defines an inner product of vectors by

(v, w) = gµνv
µwν , (13)

and one-forms
(α, β) = gµναµβν , (14)

where gµν is the matrix inverse to the matrix gµν . It establishes an isomor-
phism between the tangent vectors and the covectors (one-forms) by

αµ = gµνv
ν , vµ = gµναν . (15)

Similarly, one defines the operation of raising and lowering indices of any
tensor of type (p, q).
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1.5 Differential Forms

A tensor α of type (0, s) is called skew-symmetric or (anti-symmetric) if it
changes sign when the order of any two of its arguments is reversed, i.e.

α...µi...µj ... = −α...µj ... µi... . (16)

The skew-symmetric tensors of type (0, p) (called p-forms or differential
forms) form a subspace of

T ∗x0
M ⊗ · · · ⊗ T ∗x0

M︸ ︷︷ ︸
p

. (17)

For simplicity we will denote it by Λp.
Let Sp be the permutation group of integers (1, . . . , p). The signature

sgn(σ) (or sign) of a permutation σ =
(

1
σ(1)

...

...
p

σ(p)

)
∈ Sp is defined to be +1

if σ is even and −1 if σ is odd. Then for any p-form α there holds

αµσ(1)...µσ(p)
= sgn(σ)αµ1···µp . (18)

Therefore, a p-form α is given by its components αµ1···µp where

1 ≤ µ1 < µ2 < · · · < µp−1 < µp ≤ n . (19)

The other components are given by symmetry, and symmetry gives no rela-
tions among the components with increasing indices. From this it is evident
that the dimension of the space of p-forms in an n-dimensional manifold M
is

dim Λp =

(
n

p

)
(20)

for any 0 ≤ p ≤ n and is zero for any p > n. In other words, Λp = {0} if
p > n. In particular, Λ0 is one-diemsnional for p = 0 and p = n.

1.6 Exterior Product

For any tensor T of type (0, p) we define the alternating (or anti-symmetrization)
operator Alt . In components the antisymmetrization will be denoted by
square brackets, i.e.

(AltT )µ1···µp = T[µ1···µp] =
1

p!

∑

σ∈Sp
sgn(σ)Tµσ(1)···µσ(p)

, (21)
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where the summation is taken over the p! permutations of (1, . . . , p).
Since the tensor product of two skew-symmetric tensors is not a skew-

symmetric tensor to define the algebra of antisymmetric tensors we need
to define the anti-symmetric tensor product called the exterior (or wedge)
product. If α is an p-form and β is an q-form then the wedge product of α
and β is an (p+ q)-form α ∧ β defined by

α ∧ β =
(p+ q)!

p!q!
Alt (α⊗ β) . (22)

In components

(α ∧ β)µ1...µp+q =
(p+ q)!

p!q!
α[µ1...µpβµp+1...µp+q ] . (23)

The wedge product has the following properties

(α ∧ β) ∧ γ = α ∧ (β ∧ γ) (associativity)
α ∧ β = (−1)deg(α)deg(β)β ∧ α (anticommutativity)
(α + β) ∧ γ = α ∧ γ + β ∧ γ (distributivity) ,

(24)

where deg(α) = p denotes the degree of an p-form α.
A basis of the space Λp is

ωµ1 ∧ · · · ∧ ωµp , (1 ≤ µ1 < · · · < µp ≤ n) . (25)

An p-form α can be represented in one of the following ways

α = αµ1...µpω
µ1 ⊗ · · · ⊗ ωµp

=
1

p!
αµ1...µpω

µ1 ∧ · · · ∧ ωµp

=
∑

µ1<···<µp
αµ1...µpω

µ1 ∧ · · · ∧ ωµp . (26)

The exterior product of a p-form α and a q-form β can be represented as

α ∧ β =
1

p!q!
α[µ1...µpβµp+1...µp+q ]ω

µ1 ∧ · · · ∧ ωµp+q . (27)
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1.7 Volume Element

The n-form
ε = ω1 ∧ · · · ∧ ωn (28)

is called the volume element. The components of the volume form denoted
by

εµ1...µn (29)

are given by so called completely anti-symmetric Levi-Civita symbol (or al-
ternating symbol)

εµ1...µn =





+1 if (µ1, . . . , µn) is an even permutation of (1, . . . , n),
−1 if (µ1, . . . , µn) is an odd permutation of (1, . . . , n),

0 otherwise .
(30)

Furthermore, the space of n-forms Λn is one-dimensional. Therefore, any
n-form α is represented as

α = f ω1 ∧ · · · ∧ ωn , (31)

with some scalar f . The n-form

√
|g|ω1 ∧ · · · ∧ ωn , (32)

where
|g| = det gµν , (33)

and gµν is the Riemannian metric, is called the Riemannian volume element.

1.8 Interior Product

The interior product of a vector v and a p-form α is a (p−1)-form ivα defined
by

(ivα)µ1...µp−1 =
1

(p− 1)!
vµαµµ1...µp−1 . (34)

One can prove the following useful formula for the interior product of a
vector v and the wedge product of a p-form α and a q-form β

iv(α ∧ β) = (ivα) ∧ β + (−1)pα ∧ (ivβ) . (35)
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1.9 The Star Operator (Duality)

The star operator ∗ maps any p-form α to a (n− p)-form ∗α defined by

(∗α)µp+1...µn =
1

p!
εµ1...µpµp+1...µn

√
|g|gµ1ν1 · · · gµpνpαν1...νp . (36)

The operator ∗ satisfies an important identity: for any p-form α there holds

∗2α = (−1)p(n−p)α . (37)

Notice that if n is odd then ∗2 = 1 for any p.

1.9.1 Examples (R3)

In the case of three-dimensional Euclidean space the metric is gµν = δµν , the
bases of p-forms are:

1, dx, dy, dz, dx ∧ dy, dx ∧ dz, dy ∧ dz, dx ∧ dy ∧ dz . (38)

The star operator acts on this forms by

∗1 = dx ∧ dy ∧ dz, (39)

∗dx = dy ∧ dz, ∗dy = −dx ∧ dz, ∗dz = dx ∧ dy, (40)

∗(dx ∧ dy) = dz, ∗(dy ∧ dz) = dx, ∗(dx ∧ dz) = −dy, (41)

∗(dx ∧ dy ∧ dz) = 1 . (42)

So, any 2-form

α = α12dx ∧ dy + α13dx ∧ dz + α23dy ∧ dz (43)

is represented by the dual 1-form

∗α = α12dz − α13dy + α23dx , (44)

that is

(∗α)µ =
1

2
εµνλα

νλ (45)

(∗α)1 = α23 , (∗α)2 = α31 , (∗α)3 = α12 , (46)
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and any 3-form α
α = α123dx ∧ dy ∧ dz (47)

is represented by the dual 0-form

∗α =
1

3!
εµνλα

µνλ = α123 . (48)

Now, let α and β be two 1-forms

α = α1dx+ α2dy + α3dz , β = β1dx+ β2dy + β3dz . (49)

Then
∗β = β1dy ∧ dz + β2dz ∧ dx+ β3dx ∧ dz (50)

and

α∧β = (α1β2−α2β1)dx∧dy+ (α1β3−α3β1)dx∧dz+ (α2β3−α3β2)dy∧dz ,
(51)

α ∧ (∗β) = (α1β1 + α2β2 + α3β3)dx ∧ dy ∧ dz . (52)

Therefore,

∗(α ∧ β) = (α1β2 − α2β1)dz − (α1β3 − α3β1)dy + (α2β3 − α3β2)dx , (53)

∗[α ∧ (∗β)] = α1β1 + α2β2 + α3β3 , (54)

or
∗(α ∧ β) = α× β , (55)

∗[α ∧ (∗β)] = α · β . (56)

2 Tensor Analysis

3 Exterior Derivative (Gradient)

The exterior derivative of a p-form is a (p+ 1)-form with the components

(dα)µ1...µp+1 = (p+ 1) ∂[µ1αµ2...µp+1]

=

p+1∑

q=1

(−1)q−1∂µqαµ1...µq−1µq+1...µp+1 . (57)



Differential Forms 8

It is a linear map satisfying the conditions:

d(α ∧ β) = dα ∧ β + (−1)deg(α)α ∧ dβ , (58)

d2 = 0 . (59)

For any n-form α (a p-form with rank equal to the dimension of the manifold
p = n) the exterior derivative vanishes

dα = 0 . (60)

One can prove the following important property of the exterior derivative
of the wedge product of a p-form α and a q-form β (product rule)

d(α ∧ β) = (dα) ∧ β + (−1)pα ∧ (dβ) . (61)

3.1 Examples in R3

Zero-Forms. For a 0-form f we have

(df)µ = ∂µf , (62)

so that
df = grad f . (63)

One-Forms. For a 1-form

α = α1dx+ α2dy + α3dz (64)

we have
(dα)µν = ∂µαν − ∂ναµ (65)

that is

dα = (∂1α2−∂2α1)dx∧dy+(∂2α3−∂3α2)dy∧dz +(∂3α1−∂1α3)dz∧dx . (66)

Therefore
(∗dα)µ = εµνλ∂ναλ , (67)

so that

∗dα = (∂2α3 − ∂3α2)dx+ (∂3α1 − ∂1α3)dy + (∂1α2 − ∂2α1)dz . (68)

We see that
∗dα = curlα . (69)
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Two-Forms. For a 2-form β there holds

(dβ)µνλ = ∂µβνλ + ∂νβλµ + ∂λβµν , (70)

or
dβ = (∂1β23 + ∂2β31 + ∂3β12)dx ∧ dy ∧ dz . (71)

Hence,

∗dβ =
1

2
εµνλ∂µβνλ = ∂1β23 + ∂2β31 + ∂3β12 . (72)

Now let α be a 1-form

α = α1dx+ α2dy + α3dz . (73)

Then
∗α = α1dy ∧ dz − α2dx ∧ dz + α3dx ∧ dy , (74)

and
d ∗ α = (∂1α1 + ∂2α2 + ∂3α3)dx ∧ dy ∧ dz , (75)

or
∗d ∗ α = ∂1α1 + ∂2α2 + ∂3α3 . (76)

So,
∗d ∗ α = divα . (77)

3.2 Coderivative (Divergence)

Given a Riemannian metric gµν we also define the co-derivative of p-forms
by

δ = ∗−1d∗ = (−1)pn+p+1 ∗ d ∗ . (78)

That is the coderivative of a p-form α is the (p− 1)-form

(δα)µ1...µp−1 =
1

(n− p+ 1)!
εµ1...µp−1µp...µn

√
|g|gνµpgνp+1µp+1 · · · gνnµn

(n− p+ 1)∂ν

(
1

p!
εν1...νpνp+1...νn

√
|g|gν1λ1 · · · gνpλpαλ1...λp

)

(79)

It is easy to see that, since ∗2 = ±1 and d2 = 0, the coderivative has the
following property

δ2 = 0 . (80)
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From this definition, we can also see that, for any 0-form f (a function)
∗f is an n-form and, therefore, d ∗ f = 0i.e. a coderivative of any 0-form is
zero

δf = 0 . (81)

For a 1-form α, δα is a 0-form

δα =
1√
|g|
∂µ

(√
|g|gµναν

)
. (82)

More generally, one can prove that for a p-form α

(δα)µ1...µp−1 = gµ1ν1 . . . gµp−1νp−1

1√
|g|
∂ν

(√
|g|gνλgν1λ1 · · · gνp−1λp−1αλλ1...λp−1

)
.

(83)

4 Integration of Differential Forms

Any differential n-form α can be integrated over the n-dimensional manifold
M . One needs to introduce an atlas of local charts with local coordinates
that cover the whole manifold. For simplicity, we will describe the integrals
over a single chart only. That is we have local coordinates xµ that map a
region in the manifold M to a bounded region U in the Euclidean space Rn.
This region is supposed to have some nice boundary ∂U . The the integral

∫

U

α =

∫

U

α1...ndx
1 ∧ · · · ∧ dxn (84)

is just an ordinary multiple integral over the coordinates x1, . . . , xn, in the
usual notation ∫

U

α =

∫

U

α1...n(x) dx1 · · · dxn (85)

More generally, any differential p-form α can be integrated over a p-
dimensional submanifold N of an n-dimensional manifold M . Since N itself
is a manifold this case reduces to the case of integration of a n-form over
a n-diemsnional manifold. Clealy, it depends on the embedding of the sub-
manifold N in the manifold M . If x = (xµ) = (x1, . . . , xn), µ = 1, . . . , n,
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are the local coordinates on the manifold M and u = (u1, . . . , um) = (uj),
j = 1, . . . , p, are the local coordinates of the submanifold N , then

∫

N

α =

∫

N

αµ1...µp(x(u))
∂x[µ1

∂u1
· · · ∂x

µp]

∂up
du1 ∧ · · · ∧ dup . (86)

The general Stokes Theorem states that for any smooth (n − 1)-form α
defined over a bounded region U of a n-dimensional manifold M (in partic-
ular, of Rn) with a piecewise simple (no self-intersection) smooth boundary
∂U the following formula holds

∫

U

dα =

∫

∂U

α . (87)

Here it is assumed that the orientation of ∂U is consistent with the orientation
of U . The same formula holds for orientable manifolds with boundary.

4.1 Examples

One-forms. If α = αµdx
µ is a one-form and U is a curve xµ = xµ(t),

a ≤ t ≤ b, then ∫

U

α =

∫ b

a

αµ(x(t))
dxµ(t)

dt
dt . (88)

Two-forms. If α = 1
2
αµνdx

µ ∧ dxν is a two-form and U is a surface xµ =
xµ(u), u = (u1, u2) ∈ U , then

∫

U

α =

∫

U

1

2
αµν(x(u))Jµν(x(u)) du1 ∧ du2 , (89)

where
Jµν = eµ1e

ν
2 − eν1eµ2 , (90)

where e1 and e2 are tangent vectors to the surface defined by

eµj =
∂xµ

∂uj
. (91)

In three dimensional Euclidean space R3 one can represent the 2-forms α
and J by their duals. The dual to the 2-form J is a one-form

∗J = e1 × e2 = n
√
|g|, (92)
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where n is the unit vector (normal to the surface since it is normal to both
vectors e1 and e2), |g| = det gij and gij is the induced Riemannian metric on
the surface defined as

3∑

1

(dxµ)2 = gij(u)duiduj . (93)

Therefore, the above formula simplifies to

∫

U

α =

∫

U

(∗α) · n
√
|g|du1 ∧ du2 . (94)


