Notes on Differential Forms

Ivan Avramidi

New Mexico Institute of Mining and Technology
Socorro, NM 87801

December 2003

1 Tensor Algebra

1.1 Manifolds and Local Coordinates

Let M be an n-dimensional smooth orientable manifold without boundary. Then locally, at any point $x_{0} \in M$, there is a neighborhood such that it can be diffeomorphically mapped to a region in the Euclidean n-dimensional space \mathbb{R}^{n} with the coordinates x^{μ}, where $\mu=1, \ldots, n$. What follows is a list of useful formulas in that local coordinate chart with these local coordinates.

1.2 Tangent and Cotangent Spaces

The tangent space $T_{x_{0}} M$ at the point x_{0} is a vector space spanned by the basis

$$
\begin{equation*}
e_{\mu}=\partial_{\mu}=\partial / \partial x^{\mu} \tag{1}
\end{equation*}
$$

(coordinate basis). A tangent vector v can be represented by a n-tuple v^{μ}, i.e.

$$
\begin{equation*}
v=v^{\mu} e_{\mu} \tag{2}
\end{equation*}
$$

The cotangent space $T_{x_{0}}^{*} M$ at the point x_{0} is a vector space of linear maps

$$
\begin{equation*}
\alpha: T_{x_{0}} M \rightarrow \mathbb{R}, \quad v \mapsto\langle\alpha, v\rangle, \tag{3}
\end{equation*}
$$

spanned by the basis

$$
\begin{equation*}
\omega^{\mu}=d x^{\mu} \tag{4}
\end{equation*}
$$

(coordinate basis). This basis is dual to the basis e_{ν} in the sense that

$$
\begin{equation*}
\left\langle\omega^{\nu}, e_{\mu}\right\rangle=\delta_{\mu}^{\nu} \tag{5}
\end{equation*}
$$

A cotangent vector α can be represented by a n-tuple α^{μ}; then

$$
\begin{equation*}
\alpha=\alpha_{\mu} \omega^{\mu} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle\alpha, v\rangle=\alpha_{\mu} v^{\mu} . \tag{7}
\end{equation*}
$$

(Recall that a summation over repeated indices is performed.)

1.3 Tensors of Type (p, q)

A tensor of type (p, q) is a real valued multilinear map

$$
\begin{equation*}
A: \underbrace{T_{x_{0}}^{*} M \times \cdots \times T_{x_{0}}^{*} M}_{p} \times \underbrace{T_{x_{0}} M \times \cdots \times T_{x_{0}} M}_{q} \rightarrow \mathbb{R} . \tag{8}
\end{equation*}
$$

A basis in the vector space of tensors of type (p, q) can be defined by

$$
\begin{equation*}
e_{\mu_{1}} \otimes \cdots \otimes e_{\mu_{p}} \otimes \omega^{\nu_{1}} \otimes \cdots \otimes \omega^{\nu_{q}} \tag{9}
\end{equation*}
$$

Then a tensor of the type (p, q) is represented by the components

$$
\begin{equation*}
A_{\nu_{1} \ldots \nu_{q}}^{\mu_{1} \ldots \mu_{p}} \tag{10}
\end{equation*}
$$

so that

$$
\begin{equation*}
A=A_{\nu_{1} \ldots \nu_{q}}^{\mu_{1} \ldots \mu_{p}} e_{\mu_{1}} \otimes \cdots \otimes e_{\mu_{p}} \otimes \omega^{\nu_{1}} \otimes \cdots \otimes \omega^{\nu_{q}} \tag{11}
\end{equation*}
$$

1.4 Riemannian Metric

A Riemannian metric is a symmetric tensor of the type $(0,2)$ whose components $g_{\mu \nu}$ are given by a symmetric nondegenerate positive definite matrix $g_{\mu \nu}$. The Euclidean metric is given just by the Kronecker delta symbol, i.e.

$$
g_{\mu \nu}=\delta_{\mu \nu}= \begin{cases}1 & \text { if } \mu=\nu \tag{12}\\ 0 & \text { if } \mu \neq \nu\end{cases}
$$

The Riemannian metric defines an inner product of vectors by

$$
\begin{equation*}
(v, w)=g_{\mu \nu} v^{\mu} w^{\nu} \tag{13}
\end{equation*}
$$

and one-forms

$$
\begin{equation*}
(\alpha, \beta)=g^{\mu \nu} \alpha_{\mu} \beta_{\nu} \tag{14}
\end{equation*}
$$

where $g^{\mu \nu}$ is the matrix inverse to the matrix $g_{\mu \nu}$. It establishes an isomorphism between the tangent vectors and the covectors (one-forms) by

$$
\begin{equation*}
\alpha_{\mu}=g_{\mu \nu} v^{\nu}, \quad v^{\mu}=g^{\mu \nu} \alpha_{\nu} \tag{15}
\end{equation*}
$$

Similarly, one defines the operation of raising and lowering indices of any tensor of type (p, q).

1.5 Differential Forms

A tensor α of type $(0, s)$ is called skew-symmetric or (anti-symmetric) if it changes sign when the order of any two of its arguments is reversed, i.e.

$$
\begin{equation*}
\alpha_{\ldots \mu_{i} \ldots \mu_{j} \ldots}=-\alpha_{\ldots \mu_{j} \ldots \mu_{i} \ldots} \tag{16}
\end{equation*}
$$

The skew-symmetric tensors of type $(0, p)$ (called p-forms or differential forms) form a subspace of

$$
\begin{equation*}
\underbrace{T_{x_{0}}^{*} M \otimes \cdots \otimes T_{x_{0}}^{*} M}_{p} \tag{17}
\end{equation*}
$$

For simplicity we will denote it by Λ_{p}.
Let S_{p} be the permutation group of integers $(1, \ldots, p)$. The signature $\operatorname{sgn}(\sigma)($ or $\operatorname{sign})$ of a permutation $\sigma=\left(\begin{array}{ccc}1 & \ldots & p \\ \sigma(1) & \ldots & \sigma(p)\end{array}\right) \in S_{p}$ is defined to be +1 if σ is even and -1 if σ is odd. Then for any p-form α there holds

$$
\begin{equation*}
\alpha_{\mu_{\sigma(1) \cdots} \ldots \mu_{\sigma(p)}}=\operatorname{sgn}(\sigma) \alpha_{\mu_{1} \cdots \mu_{p}} . \tag{18}
\end{equation*}
$$

Therefore, a p-form α is given by its components $\alpha_{\mu_{1} \cdots \mu_{p}}$ where

$$
\begin{equation*}
1 \leq \mu_{1}<\mu_{2}<\cdots<\mu_{p-1}<\mu_{p} \leq n . \tag{19}
\end{equation*}
$$

The other components are given by symmetry, and symmetry gives no relations among the components with increasing indices. From this it is evident that the dimension of the space of p-forms in an n-dimensional manifold M is

$$
\begin{equation*}
\operatorname{dim} \Lambda_{p}=\binom{n}{p} \tag{20}
\end{equation*}
$$

for any $0 \leq p \leq n$ and is zero for any $p>n$. In other words, $\Lambda_{p}=\{0\}$ if $p>n$. In particular, Λ_{0} is one-diemsnional for $p=0$ and $p=n$.

1.6 Exterior Product

For any tensor T of type ($0, p$) we define the alternating (or anti-symmetrization) operator Alt. In components the antisymmetrization will be denoted by square brackets, i.e.

$$
\begin{equation*}
(\operatorname{Alt} T)_{\mu_{1} \cdots \mu_{p}}=T_{\left[\mu_{1} \cdots \mu_{p}\right]}=\frac{1}{p!} \sum_{\sigma \in S_{p}} \operatorname{sgn}(\sigma) T_{\mu_{\sigma(1)} \cdots \mu_{\sigma(p)}} \tag{21}
\end{equation*}
$$

where the summation is taken over the p ! permutations of $(1, \ldots, p)$.
Since the tensor product of two skew-symmetric tensors is not a skewsymmetric tensor to define the algebra of antisymmetric tensors we need to define the anti-symmetric tensor product called the exterior (or wedge) product. If α is an p-form and β is an q-form then the wedge product of α and β is an $(p+q)$-form $\alpha \wedge \beta$ defined by

$$
\begin{equation*}
\alpha \wedge \beta=\frac{(p+q)!}{p!q!} \operatorname{Alt}(\alpha \otimes \beta) \tag{22}
\end{equation*}
$$

In components

$$
\begin{equation*}
(\alpha \wedge \beta)_{\mu_{1} \ldots \mu_{p+q}}=\frac{(p+q)!}{p!q!} \alpha_{\left[\mu_{1} \ldots \mu_{p}\right.} \beta_{\left.\mu_{p+1} \ldots \mu_{p+q}\right]} . \tag{23}
\end{equation*}
$$

The wedge product has the following properties

$$
\begin{array}{ll}
(\alpha \wedge \beta) \wedge \gamma=\alpha \wedge(\beta \wedge \gamma) & \text { (associativity) } \\
\alpha \wedge \beta=(-1)^{\operatorname{deg}(\alpha) \operatorname{deg}(\beta)} \beta \wedge \alpha & \text { (anticommutativity) } \tag{24}\\
(\alpha+\beta) \wedge \gamma=\alpha \wedge \gamma+\beta \wedge \gamma & \text { (distributivity) }
\end{array}
$$

where $\operatorname{deg}(\alpha)=p$ denotes the degree of an p-form α.
A basis of the space Λ_{p} is

$$
\begin{equation*}
\omega^{\mu_{1}} \wedge \cdots \wedge \omega^{\mu_{p}}, \quad\left(1 \leq \mu_{1}<\cdots<\mu_{p} \leq n\right) \tag{25}
\end{equation*}
$$

An p-form α can be represented in one of the following ways

$$
\begin{align*}
\alpha & =\alpha_{\mu_{1} \ldots \mu_{p}} \omega^{\mu_{1}} \otimes \cdots \otimes \omega^{\mu_{p}} \\
& =\frac{1}{p!} \alpha_{\mu_{1} \ldots \mu_{p}} \omega^{\mu_{1}} \wedge \cdots \wedge \omega^{\mu_{p}} \\
& =\sum_{\mu_{1}<\cdots<\mu_{p}} \alpha_{\mu_{1} \ldots \mu_{p}} \omega^{\mu_{1}} \wedge \cdots \wedge \omega^{\mu_{p}} . \tag{26}
\end{align*}
$$

The exterior product of a p-form α and a q-form β can be represented as

$$
\begin{equation*}
\alpha \wedge \beta=\frac{1}{p!q!} \alpha_{\left[\mu_{1} \ldots \mu_{p}\right.} \beta_{\left.\mu_{p+1} \ldots \mu_{p+q}\right]} \omega^{\mu_{1}} \wedge \cdots \wedge \omega^{\mu_{p+q}} \tag{27}
\end{equation*}
$$

1.7 Volume Element

The n-form

$$
\begin{equation*}
\varepsilon=\omega^{1} \wedge \cdots \wedge \omega^{n} \tag{28}
\end{equation*}
$$

is called the volume element. The components of the volume form denoted by

$$
\begin{equation*}
\varepsilon_{\mu_{1} \ldots \mu_{n}} \tag{29}
\end{equation*}
$$

are given by so called completely anti-symmetric Levi-Civita symbol (or alternating symbol)

$$
\varepsilon_{\mu_{1} \ldots \mu_{n}}=\left\{\begin{align*}
+1 & \text { if }\left(\mu_{1}, \ldots, \mu_{n}\right) \text { is an even permutation of }(1, \ldots, n) \tag{30}\\
-1 & \text { if }\left(\mu_{1}, \ldots, \mu_{n}\right) \text { is an odd permutation of }(1, \ldots, n) \\
0 & \text { otherwise }
\end{align*}\right.
$$

Furthermore, the space of n-forms Λ_{n} is one-dimensional. Therefore, any n-form α is represented as

$$
\begin{equation*}
\alpha=f \omega^{1} \wedge \cdots \wedge \omega^{n} \tag{31}
\end{equation*}
$$

with some scalar f. The n-form

$$
\begin{equation*}
\sqrt{|g|} \omega^{1} \wedge \cdots \wedge \omega^{n} \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
|g|=\operatorname{det} g_{\mu \nu} \tag{33}
\end{equation*}
$$

and $g_{\mu \nu}$ is the Riemannian metric, is called the Riemannian volume element.

1.8 Interior Product

The interior product of a vector v and a p-form α is a ($p-1$)-form $i_{v} \alpha$ defined by

$$
\begin{equation*}
\left(i_{v} \alpha\right)_{\mu_{1} \ldots \mu_{p-1}}=\frac{1}{(p-1)!} v^{\mu} \alpha_{\mu \mu_{1} \ldots \mu_{p-1}} \tag{34}
\end{equation*}
$$

One can prove the following useful formula for the interior product of a vector v and the wedge product of a p-form α and a q-form β

$$
\begin{equation*}
i_{v}(\alpha \wedge \beta)=\left(i_{v} \alpha\right) \wedge \beta+(-1)^{p} \alpha \wedge\left(i_{v} \beta\right) \tag{35}
\end{equation*}
$$

1.9 The Star Operator (Duality)

The star operator $*$ maps any p-form α to a $(n-p)$-form $* \alpha$ defined by

$$
\begin{equation*}
(* \alpha)_{\mu_{p+1} \ldots \mu_{n}}=\frac{1}{p!} \varepsilon_{\mu_{1} \ldots \mu_{p} \mu_{p+1} \ldots \mu_{n}} \sqrt{|g|} g^{\mu_{1} \nu_{1}} \cdots g^{\mu_{p} \nu_{p}} \alpha_{\nu_{1} \ldots \nu_{p}} \tag{36}
\end{equation*}
$$

The operator $*$ satisfies an important identity: for any p-form α there holds

$$
\begin{equation*}
*^{2} \alpha=(-1)^{p(n-p)} \alpha . \tag{37}
\end{equation*}
$$

Notice that if n is odd then $*^{2}=1$ for any p.

1.9.1 Examples $\left(\mathbb{R}^{3}\right)$

In the case of three-dimensional Euclidean space the metric is $g_{\mu \nu}=\delta_{\mu \nu}$, the bases of p-forms are:

$$
\begin{equation*}
1, \quad d x, \quad d y, \quad d z, \quad d x \wedge d y, \quad d x \wedge d z, \quad d y \wedge d z, \quad d x \wedge d y \wedge d z \tag{38}
\end{equation*}
$$

The star operator acts on this forms by

$$
\begin{gather*}
* 1=d x \wedge d y \wedge d z \tag{39}\\
* d x=d y \wedge d z, \quad * d y=-d x \wedge d z, \quad * d z=d x \wedge d y \tag{40}\\
*(d x \wedge d y)=d z, \tag{41}\\
*(d y \wedge d z)=d x, \quad *(d x \wedge d z)=-d y \tag{42}\\
*(d x \wedge d y \wedge d z)=1
\end{gather*}
$$

So, any 2-form

$$
\begin{equation*}
\alpha=\alpha_{12} d x \wedge d y+\alpha_{13} d x \wedge d z+\alpha_{23} d y \wedge d z \tag{43}
\end{equation*}
$$

is represented by the dual 1 -form

$$
\begin{equation*}
* \alpha=\alpha_{12} d z-\alpha_{13} d y+\alpha_{23} d x \tag{44}
\end{equation*}
$$

that is

$$
\begin{gather*}
(* \alpha)_{\mu}=\frac{1}{2} \varepsilon_{\mu \nu \lambda} \alpha^{\nu \lambda} \tag{45}\\
(* \alpha)_{1}=\alpha_{23}, \quad(* \alpha)_{2}=\alpha_{31}, \quad(* \alpha)_{3}=\alpha_{12} \tag{46}
\end{gather*}
$$

and any 3-form α

$$
\begin{equation*}
\alpha=\alpha_{123} d x \wedge d y \wedge d z \tag{47}
\end{equation*}
$$

is represented by the dual 0 -form

$$
\begin{equation*}
* \alpha=\frac{1}{3!} \varepsilon_{\mu \nu \lambda} \alpha^{\mu \nu \lambda}=\alpha_{123} . \tag{48}
\end{equation*}
$$

Now, let α and β be two 1 -forms

$$
\begin{equation*}
\alpha=\alpha_{1} d x+\alpha_{2} d y+\alpha_{3} d z, \quad \beta=\beta_{1} d x+\beta_{2} d y+\beta_{3} d z \tag{49}
\end{equation*}
$$

Then

$$
\begin{equation*}
* \beta=\beta_{1} d y \wedge d z+\beta_{2} d z \wedge d x+\beta_{3} d x \wedge d z \tag{50}
\end{equation*}
$$

and
$\alpha \wedge \beta=\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right) d x \wedge d y+\left(\alpha_{1} \beta_{3}-\alpha_{3} \beta_{1}\right) d x \wedge d z+\left(\alpha_{2} \beta_{3}-\alpha_{3} \beta_{2}\right) d y \wedge d z$,

$$
\begin{equation*}
\alpha \wedge(* \beta)=\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3}\right) d x \wedge d y \wedge d z \tag{51}
\end{equation*}
$$

Therefore,

$$
\begin{gather*}
*(\alpha \wedge \beta)=\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right) d z-\left(\alpha_{1} \beta_{3}-\alpha_{3} \beta_{1}\right) d y+\left(\alpha_{2} \beta_{3}-\alpha_{3} \beta_{2}\right) d x \tag{53}\\
[\alpha \wedge(\beta)]=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3} \tag{54}
\end{gather*}
$$

or

$$
\begin{equation*}
*(\alpha \wedge \beta)=\alpha \times \beta \tag{55}
\end{equation*}
$$

$$
\begin{equation*}
[\alpha \wedge(\beta)]=\alpha \cdot \beta . \tag{56}
\end{equation*}
$$

2 Tensor Analysis

3 Exterior Derivative (Gradient)

The exterior derivative of a p-form is a $(p+1)$-form with the components

$$
\begin{align*}
(d \alpha)_{\mu_{1} \ldots \mu_{p+1}} & =(p+1) \partial_{\left[\mu_{1}\right.} \alpha_{\left.\mu_{2} \ldots \mu_{p+1}\right]} \\
& =\sum_{q=1}^{p+1}(-1)^{q-1} \partial_{\mu_{q}} \alpha_{\mu_{1} \ldots \mu_{q-1} \mu_{q+1} \ldots \mu_{p+1}} \tag{57}
\end{align*}
$$

It is a linear map satisfying the conditions:

$$
\begin{gather*}
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{\operatorname{deg}(\alpha)} \alpha \wedge d \beta \tag{58}\\
d^{2}=0 \tag{59}
\end{gather*}
$$

For any n-form α (a p-form with rank equal to the dimension of the manifold $p=n$) the exterior derivative vanishes

$$
\begin{equation*}
d \alpha=0 \tag{60}
\end{equation*}
$$

One can prove the following important property of the exterior derivative of the wedge product of a p-form α and a q-form β (product rule)

$$
\begin{equation*}
d(\alpha \wedge \beta)=(d \alpha) \wedge \beta+(-1)^{p} \alpha \wedge(d \beta) \tag{61}
\end{equation*}
$$

3.1 Examples in \mathbb{R}^{3}

Zero-Forms. For a 0 -form f we have

$$
\begin{equation*}
(d f)_{\mu}=\partial_{\mu} f \tag{62}
\end{equation*}
$$

so that

$$
\begin{equation*}
d f=\operatorname{grad} f \tag{63}
\end{equation*}
$$

One-Forms. For a 1-form

$$
\begin{equation*}
\alpha=\alpha_{1} d x+\alpha_{2} d y+\alpha_{3} d z \tag{64}
\end{equation*}
$$

we have

$$
\begin{equation*}
(d \alpha)_{\mu \nu}=\partial_{\mu} \alpha_{\nu}-\partial_{\nu} \alpha_{\mu} \tag{65}
\end{equation*}
$$

that is

$$
\begin{equation*}
d \alpha=\left(\partial_{1} \alpha_{2}-\partial_{2} \alpha_{1}\right) d x \wedge d y+\left(\partial_{2} \alpha_{3}-\partial_{3} \alpha_{2}\right) d y \wedge d z+\left(\partial_{3} \alpha_{1}-\partial_{1} \alpha_{3}\right) d z \wedge d x \tag{66}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
(* d \alpha)^{\mu}=\varepsilon^{\mu \nu \lambda} \partial_{\nu} \alpha_{\lambda}, \tag{67}
\end{equation*}
$$

so that

$$
\begin{equation*}
* d \alpha=\left(\partial_{2} \alpha_{3}-\partial_{3} \alpha_{2}\right) d x+\left(\partial_{3} \alpha_{1}-\partial_{1} \alpha_{3}\right) d y+\left(\partial_{1} \alpha_{2}-\partial_{2} \alpha_{1}\right) d z \tag{68}
\end{equation*}
$$

We see that

$$
\begin{equation*}
* d \alpha=\operatorname{curl} \alpha . \tag{69}
\end{equation*}
$$

Two-Forms. For a 2-form β there holds

$$
\begin{equation*}
(d \beta)_{\mu \nu \lambda}=\partial_{\mu} \beta_{\nu \lambda}+\partial_{\nu} \beta_{\lambda \mu}+\partial_{\lambda} \beta_{\mu \nu} \tag{70}
\end{equation*}
$$

or

$$
\begin{equation*}
d \beta=\left(\partial_{1} \beta_{23}+\partial_{2} \beta_{31}+\partial_{3} \beta_{12}\right) d x \wedge d y \wedge d z \tag{71}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
* d \beta=\frac{1}{2} \varepsilon^{\mu \nu \lambda} \partial_{\mu} \beta_{\nu \lambda}=\partial_{1} \beta_{23}+\partial_{2} \beta_{31}+\partial_{3} \beta_{12} . \tag{72}
\end{equation*}
$$

Now let α be a 1 -form

$$
\begin{equation*}
\alpha=\alpha_{1} d x+\alpha_{2} d y+\alpha_{3} d z \tag{73}
\end{equation*}
$$

Then

$$
\begin{equation*}
* \alpha=\alpha_{1} d y \wedge d z-\alpha_{2} d x \wedge d z+\alpha_{3} d x \wedge d y \tag{74}
\end{equation*}
$$

and

$$
\begin{equation*}
d * \alpha=\left(\partial_{1} \alpha_{1}+\partial_{2} \alpha_{2}+\partial_{3} \alpha_{3}\right) d x \wedge d y \wedge d z, \tag{75}
\end{equation*}
$$

or

$$
\begin{equation*}
* d * \alpha=\partial_{1} \alpha_{1}+\partial_{2} \alpha_{2}+\partial_{3} \alpha_{3} . \tag{76}
\end{equation*}
$$

So,

$$
\begin{equation*}
* d * \alpha=\operatorname{div} \alpha \text {. } \tag{77}
\end{equation*}
$$

3.2 Coderivative (Divergence)

Given a Riemannian metric $g_{\mu \nu}$ we also define the co-derivative of p-forms by

$$
\begin{equation*}
\delta=*^{-1} d *=(-1)^{p n+p+1} * d * \tag{78}
\end{equation*}
$$

That is the coderivative of a p-form α is the $(p-1)$-form

$$
\begin{align*}
(\delta \alpha)_{\mu_{1} \ldots \mu_{p-1}}= & \frac{1}{(n-p+1)!} \varepsilon_{\mu_{1} \ldots \mu_{p-1} \mu_{p} \ldots \mu_{n}} \sqrt{|g|} g^{\nu \mu_{p}} g^{\nu_{p+1} \mu_{p+1}} \cdots g^{\nu_{n} \mu_{n}} \\
& (n-p+1) \partial_{\nu}\left(\frac{1}{p!} \varepsilon_{\nu_{1} \ldots \nu_{p} \nu_{p+1} \ldots \nu_{n}} \sqrt{|g|} g^{\nu_{1} \lambda_{1}} \cdots g^{\nu_{p} \lambda_{p}} \alpha_{\lambda_{1} \ldots \lambda_{p}}\right) \tag{79}
\end{align*}
$$

It is easy to see that, since $*^{2}= \pm 1$ and $d^{2}=0$, the coderivative has the following property

$$
\begin{equation*}
\delta^{2}=0 \tag{80}
\end{equation*}
$$

From this definition, we can also see that, for any 0 -form f (a function) $* f$ is an n-form and, therefore, $d * f=0$ i.e. a coderivative of any 0 -form is zero

$$
\begin{equation*}
\delta f=0 . \tag{81}
\end{equation*}
$$

For a 1 -form $\alpha, \delta \alpha$ is a 0 -form

$$
\begin{equation*}
\delta \alpha=\frac{1}{\sqrt{|g|}} \partial_{\mu}\left(\sqrt{|g|} g^{\mu \nu} \alpha_{\nu}\right) . \tag{82}
\end{equation*}
$$

More generally, one can prove that for a p-form α

$$
\begin{equation*}
(\delta \alpha)_{\mu_{1} \ldots \mu_{p-1}}=g_{\mu_{1} \nu_{1}} \ldots g_{\mu_{p-1} \nu_{p-1}} \frac{1}{\sqrt{|g|}} \partial_{\nu}\left(\sqrt{|g|} g^{\nu \lambda} g^{\nu_{1} \lambda_{1}} \cdots g^{\nu_{p-1} \lambda_{p-1}} \alpha_{\lambda \lambda_{1} \ldots \lambda_{p-1}}\right) . \tag{83}
\end{equation*}
$$

4 Integration of Differential Forms

Any differential n-form α can be integrated over the n-dimensional manifold M. One needs to introduce an atlas of local charts with local coordinates that cover the whole manifold. For simplicity, we will describe the integrals over a single chart only. That is we have local coordinates x^{μ} that map a region in the manifold M to a bounded region U in the Euclidean space \mathbb{R}^{n}. This region is supposed to have some nice boundary ∂U. The the integral

$$
\begin{equation*}
\int_{U} \alpha=\int_{U} \alpha_{1 \ldots n} d x^{1} \wedge \cdots \wedge d x^{n} \tag{84}
\end{equation*}
$$

is just an ordinary multiple integral over the coordinates x^{1}, \ldots, x^{n}, in the usual notation

$$
\begin{equation*}
\int_{U} \alpha=\int_{U} \alpha_{1 \ldots n}(x) d x^{1} \cdots d x^{n} \tag{85}
\end{equation*}
$$

More generally, any differential p-form α can be integrated over a p dimensional submanifold N of an n-dimensional manifold M. Since N itself is a manifold this case reduces to the case of integration of a n-form over a n-diemsnional manifold. Clealy, it depends on the embedding of the submanifold N in the manifold M. If $x=\left(x^{\mu}\right)=\left(x^{1}, \ldots, x^{n}\right), \mu=1, \ldots, n$,
are the local coordinates on the manifold M and $u=\left(u^{1}, \ldots, u^{m}\right)=\left(u^{j}\right)$, $j=1, \ldots, p$, are the local coordinates of the submanifold N, then

$$
\begin{equation*}
\int_{N} \alpha=\int_{N} \alpha_{\mu_{1} \ldots \mu_{p}}(x(u)) \frac{\partial x^{\left[\mu_{1}\right.}}{\partial u^{1}} \cdots \frac{\partial x^{\left.\mu_{p}\right]}}{\partial u^{p}} d u^{1} \wedge \cdots \wedge d u^{p} \tag{86}
\end{equation*}
$$

The general Stokes Theorem states that for any smooth ($n-1$)-form α defined over a bounded region U of a n-dimensional manifold M (in particular, of \mathbb{R}^{n}) with a piecewise simple (no self-intersection) smooth boundary ∂U the following formula holds

$$
\begin{equation*}
\int_{U} d \alpha=\int_{\partial U} \alpha \tag{87}
\end{equation*}
$$

Here it is assumed that the orientation of ∂U is consistent with the orientation of U. The same formula holds for orientable manifolds with boundary.

4.1 Examples

One-forms. If $\alpha=\alpha_{\mu} d x^{\mu}$ is a one-form and U is a curve $x^{\mu}=x^{\mu}(t)$, $a \leq t \leq b$, then

$$
\begin{equation*}
\int_{U} \alpha=\int_{a}^{b} \alpha_{\mu}(x(t)) \frac{d x^{\mu}(t)}{d t} d t \tag{88}
\end{equation*}
$$

Two-forms. If $\alpha=\frac{1}{2} \alpha_{\mu \nu} d x^{\mu} \wedge d x^{\nu}$ is a two-form and U is a surface $x^{\mu}=$ $x^{\mu}(u), u=\left(u^{1}, u^{2}\right) \in U$, then

$$
\begin{equation*}
\int_{U} \alpha=\int_{U} \frac{1}{2} \alpha_{\mu \nu}(x(u)) J^{\mu \nu}(x(u)) d u^{1} \wedge d u^{2} \tag{89}
\end{equation*}
$$

where

$$
\begin{equation*}
J^{\mu \nu}=e_{1}^{\mu} e_{2}^{\nu}-e_{1}^{\nu} e_{2}^{\mu} \tag{90}
\end{equation*}
$$

where e_{1} and e_{2} are tangent vectors to the surface defined by

$$
\begin{equation*}
e_{j}^{\mu}=\frac{\partial x^{\mu}}{\partial u^{j}} \tag{91}
\end{equation*}
$$

In three dimensional Euclidean space \mathbb{R}^{3} one can represent the 2 -forms α and J by their duals. The dual to the 2 -form J is a one-form

$$
\begin{equation*}
* J=e_{1} \times e_{2}=n \sqrt{|g|} \tag{92}
\end{equation*}
$$

where n is the unit vector (normal to the surface since it is normal to both vectors e_{1} and e_{2}), $|g|=\operatorname{det} g_{i j}$ and $g_{i j}$ is the induced Riemannian metric on the surface defined as

$$
\begin{equation*}
\sum_{1}^{3}\left(d x^{\mu}\right)^{2}=g_{i j}(u) d u^{i} d u^{j} \tag{93}
\end{equation*}
$$

Therefore, the above formula simplifies to

$$
\begin{equation*}
\int_{U} \alpha=\int_{U}(* \alpha) \cdot n \sqrt{|g|} d u^{1} \wedge d u^{2} \tag{94}
\end{equation*}
$$

