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1 Tensor Algebra

1.1 Manifolds and Local Coordinates

Let M be an n-dimensional smooth orientable manifold without boundary.
Then locally, at any point xy € M, there is a neighborhood such that it
can be diffeomorphically mapped to a region in the Euclidean n-dimensional
space R™ with the coordinates x*, where p = 1,...,n. What follows is a list
of useful formulas in that local coordinate chart with these local coordinates.

1.2 Tangent and Cotangent Spaces

The tangent space T,,M at the point z( is a vector space spanned by the
basis
e, =0, = 0/0z" (1)

(coordinate basis). A tangent vector v can be represented by a n-tuple v#,
ie.
v =1'e,. (2)

*

The cotangent space T M at the point zg is a vector space of linear maps

a: T,y M — R, v — (,v), (3)

spanned by the basis
wh = dx* (4)

(coordinate basis). This basis is dual to the basis e, in the sense that
(W' en) = 0y, (5)
A cotangent vector a can be represented by a n-tuple o/; then
a = auwt (6)

and
(a,v) = a,v". (7)

(Recall that a summation over repeated indices is performed.)
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1.3 Tensors of Type (p, q)

A tensor of type (p, q) is a real valued multilinear map

ATy M x - x Ty M x Ty M x - xT,yM — R, (8)
v a

p

A basis in the vector space of tensors of type (p,q) can be defined by
6“1®---®6up®wyl®---®qu. (9)

Then a tensor of the type (p, q) is represented by the components

Aplle, (10)
so that
A = Aﬁll_‘:_'ﬁqpeﬂl ® e ® eﬂp ® CL)Vl ® . ® wl/q . (11)

1.4 Riemannian Metric

A Riemannian metric is a symmetric tensor of the type (0,2) whose compo-
nents g,, are given by a symmetric nondegenerate positive definite matrix
Ju- The Euclidean metric is given just by the Kronecker delta symbol, i.e.

=t ={ 0 ftnrr a2
The Riemannian metric defines an inner product of vectors by
(v, 0) = guv'w”, (13)
and one-forms
(a, B) = "By, (14)

where ¢g"” is the matrix inverse to the matrix g,,. It establishes an isomor-
phism between the tangent vectors and the covectors (one-forms) by

a, = guv”, vt = g"a, . (15)

Similarly, one defines the operation of raising and lowering indices of any
tensor of type (p, q).
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1.5 Differential Forms

A tensor « of type (0,s) is called skew-symmetric or (anti-symmetric) if it
changes sign when the order of any two of its arguments is reversed, i.e.

g = X g (16)

The skew-symmetric tensors of type (0,p) (called p-forms or differential
forms) form a subspace of
T;OM®---®T;OJ\/{. (17)

-~

p

For simplicity we will denote it by A,,.

Let S, be the permutation group of integers (1,...,p). The signature
sgn(o) (or sign) of a permutation o = (0(11) N Uf’p)> € S, is defined to be +1
if o is even and —1 if ¢ is odd. Then for any p-form « there holds

Vi 1yt = SEN(T) Qo - (18)
Therefore, a p-form « is given by its components a,,...,, where
L<p <po<- < ppqg <pp<n. (19)

The other components are given by symmetry, and symmetry gives no rela-
tions among the components with increasing indices. From this it is evident
that the dimension of the space of p-forms in an n-dimensional manifold M

: dim A, — (") (20)

p

for any 0 < p < n and is zero for any p > n. In other words, A, = {0} if
p > n. In particular, Ay is one-diemsnional for p = 0 and p = n.

1.6 Exterior Product

For any tensor T of type (0, p) we define the alternating (or anti-symmetrization)
operator Alt . In components the antisymmetrization will be denoted by
square brackets, i.e.

1
(AT sy = Ty sy = lj Z Sgn(U)Tua(nmua(p) ’ (21)

T oeS,
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where the summation is taken over the p! permutations of (1,...

Since the tensor product of two skew-symmetric tensors is not a skew-
symmetric tensor to define the algebra of antisymmetric tensors we need
to define the anti-symmetric tensor product called the exterior (or wedge)
product. 1f « is an p-form and (3 is an g-form then the wedge product of «

and 3 is an (p + g)-form a A 3 defined by

anf= (pT?ﬂAlt(a@ﬂ).
plq!

In components

(p+q)!

(A ﬁ)m-#mq = plg!

a[N1~~~NPﬁﬂp+1-~NP+q} :

The wedge product has the following properties

(aANB)ANy=aA(BA7) (associativity)
aAf=(—1)del@deB 3 A q (anticommutativity)
(a+B)ANy=aAy+ B Ay (distributivity),

where deg(«) = p denotes the degree of an p-form a.
A basis of the space A, is

Ld'ul/\"'/\wup, (1§u1<<up§n)
An p-form « can be represented in one of the following ways

a = a/ﬂ...upwul K Q& whr
1 H1 Hp
= ao‘m---upw ANEEAN

— M1 I Hp
= E Oy pipyW™ A AW,
H1<<fip

(22)

(23)

(24)

(25)

(26)

The exterior product of a p-form « and a ¢g-form [ can be represented as

1
alAf= p'—q'a[#l...upﬁupﬁ_lmﬂpﬂ}wm Ao At

(27)
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1.7 Volume Element
The n-form

e=w A AW (28)
is called the volume element. The components of the volume form denoted
by

are given by so called completely anti-symmetric Levi-Civita symbol (or al-
ternating symbol)

+1 if (pq,...,uy) is an even permutation of (1,...,n),
Epmpopm = § —1 if (1,..., pn) is an odd permutation of (1,...,n),
0 otherwise.
(30)
Furthermore, the space of n-forms A,, is one-dimensional. Therefore, any
n-form « is represented as

a=fw A AW, (31)
with some scalar f. The n-form

VIglw! A A, (32)

where

|g| = det g, , (33)

and g, is the Riemannian metric, is called the Riemannian volume element.

1.8 Interior Product

The interior product of a vector v and a p-form « is a (p—1)-form i, defined

by
) 1
(Zva)#l-n#p*l - mvuauﬂl..-#pfl : <34)

One can prove the following useful formula for the interior product of a
vector v and the wedge product of a p-form o and a g-form 3

(@A) = () A B+ (=1)Pa A (i) - (35)
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1.9 The Star Operator (Duality)

The star operator * maps any p-form « to a (n — p)-form *a defined by

1
(*a>up+1..~un = €Ut Hplip g1 in |g’gmlll e 'g“pypaldml/p . (36)
p'

The operator * satisfies an important identity: for any p-form « there holds
wPo = (=1)PnPg (37)
Notice that if n is odd then ** = 1 for any p.

1.9.1 Examples (R?)

In the case of three-dimensional Euclidean space the metric is g, = 0,,, the
bases of p-forms are:

1, dx, dy, dz, dxANdy, deANdz, dyANdz, dxANdyAdz. (38)

The star operator acts on this forms by

x1 = dx ANdy Ndz, (39)
xdr = dy Ndz, xdy = —dx Ndz, =dz=dzx Ady, (40)
x(de Ndy) =dz, *(dy Ndz) =dz, *(dxAdz)=—dy, (41)
x(de Ndy Ndz) = 1. (42)
So, any 2-form
a = appdr A dy + agzde A dz + aszdy A dz (43)

is represented by the dual 1-form
xq = 1odz — ai3dy + aosdx (44)

that is .
(k) = 55/111)\&”)\

(*ar)1 = Quag, (xa)e = gy , (xar)3 = 2, (46)
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and any 3-form «
a = aqo3dr A dy N dz (47)

is represented by the dual O-form

1
*xQ = geuw\a’“”\ = (X123 - (48)

Now, let o and 3 be two 1-forms
a = ardr + aody + azdz 0 = frdx + Body + [sdz . (49)

Then
x(3 = Oidy A dz + Badz A\ dx + Psdx A dz (50)

and

aAB = (of2 —axf)dr ANdy + (o B3 — asfr)dr A dz 4 (s — asfa)dy Ndz,

(51)
a A (x0) = (a101 + afly + agfs)dx ANdy N dz. (52)

Therefore,
*(a A B) = (1B — azfi)dz — (183 — asf)dy + (a3 — azBa)dr,  (53)
Kl A (x0)] = a1fr + aofs + asf, (54)

or

s(a A B) =ax 8], (55)
sl A (x0)] = a- B (56)

2 Tensor Analysis

3 Exterior Derivative (Gradient)

The exterior derivative of a p-form is a (p + 1)-form with the components

(da)ul-“#erl = (p+1) a[mauz...upH]
p+l

- Z(_1)qilaﬂqaﬂl~--#q—ll‘q+1"'“1’+1 ’ (57)

g=1
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It is a linear map satisfying the conditions:
dlaNB)=da B+ (—1)*>aAdb, (58)
d=0. (59)

For any n-form « (a p-form with rank equal to the dimension of the manifold
p = n) the exterior derivative vanishes

da=0. (60)

One can prove the following important property of the exterior derivative
of the wedge product of a p-form « and a g-form [ (product rule)

d(a A B) = (do) A B+ (—1)Pa A (dB) . (61)

3.1 Examples in R?

Zero-Forms. For a O-form f we have

(df)u = Ouf | (62)

=g )

so that

One-Forms. For a 1-form
a = a1dr + asdy + asdz (64)

we have

(da) = Oy, — Opay, (65)
that is
do = (01cie— Doy )dz Ady—+ (O3 — O3ci0)dy ANdz 4+ (03001 — 013 )dz Adx . (66)

Therefore
(xda) = "0, ay (67)

so that
xdo = (62043 — 830ég)dl’ + (83(1/1 — ﬁlag)dy + (61a2 — 82011)d2’ . (68)
We see that

|*da = curla]. (69)
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Two-Forms. For a 2-form [ there holds

(dﬁ)uu)\ = a,uﬂu)\ + auﬁ)\u + a)\ﬁ;w ) (70)
or
df = (0123 + 02051 + O3012)dx AN dy A dz . (71)
Hence,
1
*d 3 = Eg/“//\auﬁw\ = 01823 + 02331 + 0312 . (72)
Now let a be a 1-form
a = apdx + asdy + azdz . (73)
Then
xa = ondy A dz — asdx A dz + agde A dy, (74)
and
d*xa = ((9loq + 820z2 + 83053)6113 N dy VAN dZ, (75)
or
*d * o = 81061 -+ 82(){2 + 83053 . (76)
So,
[sxd * o = diva|. (77)

3.2 Coderivative (Divergence)

Given a Riemannian metric g,, we also define the co-deriative of p-forms
by

§=*"tdx = (—1)P"PH s d % (78)
That is the coderivative of a p-form « is the (p — 1)-form
1 14 1% 1%
(5()‘)#1---;@4 - mgﬂl..-upaup---un |g|g"tr gtrtitest ... gtnbn
1 1% 1%
(n - p + 1)81/ (]?Elll...ljpljp_,.l...l/n V ’g’g 1M te g p)\pa)\l...)\p)
(79)

It is easy to see that, since *> = £1 and d?> = 0, the coderivative has the

following property
62 =0. (80)
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From this definition, we can also see that, for any 0-form f (a function)
xf is an n-form and, therefore, d * f = Oi.e. a coderivative of any 0-form is
Zero

0f=0. (81)
For a 1-form «, da is a 0-form
1 »
doo = —=0, ( lglg 04,,) : (82)
Vgl

More generally, one can prove that for a p-form «

1 1% 1% V.
(6a>l$1-..up71 = Guivy - - 'g/ip711/p71 \/ﬁay < |g|g ’\g AL g p—1>\p—1a>\)\1m/\p71> .

(83)

4 Integration of Differential Forms

Any differential n-form « can be integrated over the n-dimensional manifold
M. One needs to introduce an atlas of local charts with local coordinates
that cover the whole manifold. For simplicity, we will describe the integrals
over a single chart only. That is we have local coordinates x* that map a
region in the manifold M to a bounded region U in the Euclidean space R"™.
This region is supposed to have some nice boundary 0U. The the integral

/ o= / ay pdzt Ao Adz" (84)
U U

is just an ordinary multiple integral over the coordinates z!,..., 2", in the

usual notation
/ o= / oy n(z)dot - da" (85)
U U

More generally, any differential p-form « can be integrated over a p-
dimensional submanifold N of an n-dimensional manifold M. Since N itself
is a manifold this case reduces to the case of integration of a n-form over
a n-diemsnional manifold. Clealy, it depends on the embedding of the sub-
manifold N in the manifold M. If z = (z*) = (z},...,2"), p = 1,...,n,
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are the local coordinates on the manifold M and v = (u',... ,u™) = (u),
j=1,...,p, are the local coordinates of the submanifold N, then
ax[ﬂl oxtel
/Oz—/om1 iy ( 0u1.”8up du” A--- ANduP. (86)

The general Stokes Theorem states that for any smooth (n — 1)-form «
defined over a bounded region U of a n-dimensional manifold M (in partic-
ular, of R") with a piecewise simple (no self-intersection) smooth boundary
OU the following formula holds

/Udoz:/aUa. (87)

Here it is assumed that the orientation of QU is consistent with the orientation
of U. The same formula holds for orientable manifolds with boundary.

4.1 Examples

One-forms. If o = a,dz" is a one-form and U is a curve z# = a#(t),
a <t<b, then
d m(
/a—/ a,(x ’ )dt. (88)

Two-forms. If o = —a,wda: A dx” is a two-form and U is a surface z# =
"(u), u = (u',u?) € U, then

/a—/ — v (z(w) I (z(u)) du' A du?, (89)

where
JH = eley —elely, (90)
where e; and ey are tangent vectors to the surface defined by
ozt
wo_
6] au] ' (91)

In three dimensional Euclidean space R? one can represent the 2-forms «
and J by their duals. The dual to the 2-form .J is a one-form

xJ = e X ea =ny/|g|, (92)
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where n is the unit vector (normal to the surface since it is normal to both
vectors ey and es), |g| = det g;; and g;; is the induced Riemannian metric on
the surface defined as

> (dxt)? = gij(u)du'du’ . (93)

1

Therefore, the above formula simplifies to

/Ua—/U(*a).n\/@dulAduz. (94)



