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Introduction

These notes are based on the course “Dynamical Systems” given by Dr. C. Baesens in
Cambridge in the Lent Term 1998. These typeset notes are totally unconnected with
Dr. Baesens. The recommended books for this course are discussed in the bibliography.

Other sets of notes are available for different courses. At the time of typing these
courses were:

Probability Discrete Mathematics
Analysis Further Analysis
Methods Quantum Mechanics
Fluid Dynamics 1 Quadratic Mathematics
Geometry Dynamics of D.E.’s
Foundations of QM Electrodynamics
Methods of Math. Phys Fluid Dynamics 2
Waves (etc.) Statistical Physics
General Relativity Dynamical Systems

They may be downloaded from

http://home.arachsys.com/˜pdm/ or
http://www.cam.ac.uk/CambUniv/Societies/archim/notes.htm

or you can email soc-archim-notes@lists.cam.ac.uk to get a copy of the
sets you require.
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Chapter 1

Basic concepts

1.1 What is a dynamical system?

A dynamical system is a system whose evolution in time is uniquely determined by its
current state. Time can be discrete or continuous, and in this course we concentrate
almost entirely on discrete time, in which the interesting ideas are reached more eas-
ily. Also, some continuous time dynamical systems can be reduced to discrete time
dynamical systems.

Discrete time dynamical systems are generated by the iteration of maps. Let X be a
topological space and f : X �→ X be continuous. Then xn+1 = f(xn) is a dynamical
system, where n is the time and xn is the state at time n. X is called state space or (for
historical reasons) phase space.

For n > 0 define the nth iterate of f , fn as

fn =

n times︷ ︸︸ ︷
f ◦ · · · ◦ f .

We also define f 0 ≡ id, and so xn = fn(x0). If f is invertible then we can also
define f−n =

(
f−1

)n
.

A more sophisticated view is that a dynamical system is an action of a semigroup
or a group on a topological space. We have

φ : G × X �→ X

φ(g, x) �→ φg(x) such that

φg(φh(x)) = φgh(x),

where G = (R, +), (R+, +), (Z, +) or (Z+, +) X is a topological space and φ

is continuous. Then the discrete time dynamical system is the map φ : Z

Z+
× X �→ X

such that φ(n, x) = fn(x).

Definition 1.1. The forward orbit of x ∈ X , which is denoted O+(x) is the sequence
x, f(x), f2(x), . . . , that is (fn(x))n∈Z+

. If f is invertible we can define the (full) orbit
of x as O(x) = (fn(x))n∈Z

. We can also define the backwards orbit of x in the obvious
way.

1



2 CHAPTER 1. BASIC CONCEPTS

In one dimension there is a graphical representation of iteration.

x0 x1x2 X

f

The apparent generalisation xn+k = F (xn+k−1, . . . , xn) can also be viewed as a
dynamical system by putting X = Rk and

f

⎛
⎜⎜⎜⎝

x(1)

x(2)

...
x(k)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x(2)

...
x(k)

F (x(k−1), . . . , x(1))

⎞
⎟⎟⎟⎠ .

1.2 Dynamical systems viewpoint

We do not aim to find explicit formulae but instead to understand the “qualitative fea-
tures” of the dynamical system, e.g. fixed points, periodic orbits.

We say that x is a fixed point of f if f(x) = x and x is a periodic point of (least)
period q if f q(x) = x and fn(x) �= x for 0 < n < q.

More thoroughly, by “qualitative features” we mean properties which are preserved
under change of co-ordinates by homeomorphism. 1 We say that f : X �→ X and
g : Y �→ Y are topologically conjugate if there exists a homeomorphism h : X �→ Y
such that g ◦ h = h ◦ f (h is called the conjugacy). Then the qualitative features of f
and g are the same, for instance if f has a fixed point x̄ then g has a fixed point h(x̄).

1.3 Asymptotic behaviour

The most interesting qualitative features are those to do with the behaviour of orbits
when t → ±∞.

Definition 1.2. The ω-limit set of x ∈ X , ω(x) is the set

ω(x) = {y ∈ X : ∃(ni) → ∞ such that fni(x) → y}.
If f is invertible then we can define the α-limit set by replacing ∞ with −∞. Note

that ω(f(x)) = ω(x).

For instance, if x̄ is a fixed point or periodic point of f then ω(x̄) = O+(x̄).2

1homeomorphism: continuous map with continuous inverse
2Abuse of notation: O+(x) is now {fn(x) : n ∈ �+}.
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1.4 Homeomorphisms of the interval

The simplest class of dynamical system is that of homeomorphisms of a closed interval
I ⊂ R. There are two possible cases

• f is orientation preserving. Then the only possible ω (resp. α) -limit sets are
fixed points.

Proof. Take x ∈ I . If f(x) = x there is nothing to prove so assume f(x) > x, so
by orientation preservation (f n(x))n is an increasing sequence, bounded above
and so tends to a limit x̄, which by the continuity of f must be a fixed point.

We have obtained a complete description of the dynamics. There is a closed set
of fixed points and in each complementary interval the orbits move either to the
right (f(x) > x) or to the left (f(x) < x).

• f is orientation reversing. Then the only possible ω (resp. α) -limit sets are
fixed points or period 2 points. To prove this, simply note that f 2 is orientation
preserving.

To get more exciting ω-limit sets we can consider maps of the circle or add non-
invertibility in one dimension, or we can go to higher dimensions.
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Chapter 2

Maps of the circle

2.1 Generalities

We consider continuous maps of the circle S 1 into itself. There are two ways of repre-
senting S1,

1. S1 = {(x, y) ∈ R2 : x2 + y2 = 1}, or equivalently S1 = {z ∈ C : |z| = 1}.
This is the multiplicative notation.

2. S1 = R/Z, the quotient of the reals by integer translation. This is additive
notation.

Additive notation will be more useful for our purposes. log establishes the isomor-
phism between the two representations.

We can represent circle maps graphically by cutting the circle at one point and
regarding it as an interval.

0 1
0

1

The simplest example of circle map is rotation by angle β 1, rβ . In multiplicative
and additive notation respectively we have

1. rβz = e2πıβz

2. rβx = x + β (mod 1).

1β ∈ �...

5



6 CHAPTER 2. MAPS OF THE CIRCLE

We can find the iterates of rβ in both additive and multiplicative notation:

1. rn
βz = e2πınβz

2. rn
βx = x + nβ (mod 1).

Represented graphically this is

0 1
0

1

There is a crucial distinction between β ∈ Q and β ∈ R \ Q. If β is rational with
β = p

q , q > 0 and p and q coprime then rq
βx = x for all x and all points are periodic

with least period q. When β is irrational things are a little more complicated.

Definition 2.1. A subset S ⊂ X is invariant under f if fS = S. It is positively
invariant if fS ⊂ S and negatively invariant if f −1S ⊂ S.

Definition 2.2. A minimal set S ⊂ X for f is a closed f -invariant subset of X with
no proper closed invariant subsets. Equivalently, a minimal set is a closed invariant
subset of X in which O+(x) is dense in S for all x ∈ S.

For instance, a periodic orbit is a minimal subset.

Proposition 2.3. If β ∈ R \ Q then the orbit of every point x ∈ S 1 under rotation rβ

is dense in S1.

Proof. Given β ∈ R\Q, x ∈ S1 and ε > 0, the points rn
βx, n ∈ Z+ (or Z) are distinct,

else rm
β x = rn

βx for some m, n and (m − n)β ∈ Z (contradiction).

As S1 is compact, ∃n �= m such that 0 < d(rm
β x, rn

βx) < ε. Let N = |n − m| and
βN = d(rm

β x, rn
βx). Now rβ preserves orientation and length on S 1, so that rN

β is just
a rotation by βN . Thus the points{

rjN
β x : j = 0, 1, . . . ,

[
β−1

N

]}
are equally spaced and come within ε of every point of the circle.

Do we have similar properties for more general orientation preserving homeomor-
phisms of S1?
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2.2 Lift and degree

Define π : R �→ S1 by π(x) = x (mod 1). Then given a continuous function f : S 1 �→
S1 there exists a (nonunique) continuous function F : R �→ R such that fπx = πFx.
π is not a topological conjugacy — it is not invertible.

F is called a lift of f .

Lemma 2.4 (Properties of lifts).

1. If Fi : R �→ R, i = 1, 2 are lifts of the same continuous map f then ∃k ∈ Z such
that F1x − F2x = k ∀x.

2. Given a continuous function f : S 1 �→ S1 there exists d such that for all lifts F
and for all x ∈ R such that F (x + 1) = F (x) + d. d is called the degree of f
and written deg f .

3. If F is a lift of f then F n is a lift of fn for all n ∈ Z.

4. deg fn = (deg f)n.

We will prove 1 and 2 leaving 3 and 4 as exercises.

Proof.

1. Take x ∈ R. Then fπx = πF1x = πF2x and so F1x − F2x ∈ Z. Thus
F1x − F2x is constant (by connectedness of R and continuity of F1 − F2).

2. π(x + 1) = πx and so πF (x + 1) = fπ(x + 1) = fπx = πFx. Thus
F (x + 1) − Fx = d ∈ Z for all x (argue as before). Let F̄ be another lift. Thus
F̄ = F + k and hence F̄ (x + 1) − F̄ x = d.

0 1
0

1

deg f = 1

Intuitively, |deg f | measures how many times the circle is mapped around itself by
f .

If f is a homeomorphism then deg f = ±1. If f is orientation preserving then
deg f = 1 and if f is orientation reversing deg f = −1.

The rotation map rβ has deg rβ = 1. If we take lifts Rβ,k : R �→ R, x �→ x+β +k
with k ∈ Z then we see that
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lim
n→∞

Rn
β,kx − x

n
== lim

n→∞
n(β + k)

n
= β + k.

We want to generalise this concept to degree 1 maps of the circle. We restrict to
degree 1 maps from now on.

2.2.1 Properties of degree one continuous circle maps

Lemma 2.4 gives that if f is a degree 1 circle map with lift F ,

F (x + 1) = F (x) + 1

F k(x + 1) = F k(x) + 1 k ∈ N

F k(x + m) = F k(x) + m m ∈ Z

F (x) − x is periodic with period 1,

F k(x) − x is periodic with period 1.

(2.1)

2.3 Rotation number

Definition 2.5. Let f : S1 �→ S1 be a degree 1 continuous map and F be a lift of f .
Then the rotation number of x ∈ S1 under F is

ρ̄(F, x) = lim
n→∞

Fn(x) − x

n
if this limit exists.

Theorem 2.6.
Let f : S1 �→ S1 be an orientation preserving homeomorphism. Then:

1. For x ∈ R, ρ̄(F, x) exists and is independent of x. (Denoted ρ̄(F ).)

2. ρ(f) := ρ̄(F ) (mod 1) does not depend on the lift used.

3. ρ(f) depends continuously on f .

ρ(f) is called the rotation number of f . Before we prove 2.6 we need two lemmas.

Lemma 2.7. Given x, y ∈ R, n ∈ N and F a lift of an orientation preserving homeo-
morphism of S1,

Fn(x) − x − 1 < Fn(y) − y < Fn(x) − x + 1.

Proof. ∃m ∈ Z such that x ≤ y + m < x + 1. Then F n is monotone (as F is), and

Fn(x) ≤ Fn(y + m) < Fn(x + 1).

Using (2.1) freely,

Fn(x) − x − 1 ≤ Fn(y + m) − (x + 1)
< Fn(y + m) − (y + m) < Fn(x + 1) − x = Fn(x) − x + 1.

Now note that F n(y + m) − (y + m) = Fn(y) − y.
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Lemma 2.8. Let F be a lift of an orientation preserving homeomorphism f : S 1 �→ S1

and n ∈ N. Then ∃k(n) ∈ Z such that

k − 1 < Fn(x) − x < k + 1 ∀x ∈ R.

The proof of lemma 2.8 is left as an exercise.

Proof of theorem 2.6. We first prove that ρ̄(F, 0) exists. For n, k ∈ N,

Fnk(0) =
(
Fnk(0) − Fn(k−1)(0)

)
+
(
Fn(k−1)(0) − Fn(k−2)(0)

)
...

+
(
F 2n(0) − Fn(0)

)
+ (Fn(0) − 0) .

Using lemma 2.7 with x = 0 and y = F n(m−1)(0) for m = 1, . . . , k gives the
inequality

k (Fn(0) − 1) < Fnk(0) < k (Fn(0) + 1) .

Thus ∣∣∣∣Fnk(0)
nk

− Fn(0)
n

∣∣∣∣ <
1
n

.

However, we can exchange the rôles of n and k and using the triangle inequality,∣∣∣∣F k(0)
k

− Fn(0)
n

∣∣∣∣ <
1
k

+
1
n

.

Hence the sequence
(

F n(0)
n

)
n∈N

is Cauchy and so converges to a limit ρ̄(F, 0).

Now by lemma 2.7 we have

Fn(0) − 1
n

<
Fn(x) − x

n
<

Fn(0) + 1
n

for all x ∈ R and so ρ̄(F, x) exists and equals ρ̄(F, 0) for all x ∈ R.
Now assume that F1 and F2 are two lifts of f . Then ∃k ∈ Z such that F2(x) =

F1(x) + k and so F n
2 (x) = Fn

1 (x) + nk. Therefore

lim
n→∞

Fn
2 (x) − x

n
= k + lim

n→∞
Fn

1 (x) − x

n
as required.

We finally need to prove continuous dependence on f . Let F be a lift of f . Lemma
2.8 implies that given n, ∃k such that k−1 < F n(x)−x < k+1 for all x ∈ R. Given
ε > 0 choose n ∈ N such that 2

n < ε.
For g close enough to f in the C 0 topology2 we can choose a lift G of g such that

k − 1 < Gn(x) − x < k + 1 ∀x (same k, n as for F ).

2d(f, g) = supx∈S1 |f(x) − g(x)|
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Now

Fnl(0) − 0 =
l−1∑
j=0

(
Fn(j+1)(0) − Fnj(0)

)

and so

l(k − 1) < Fnl(0) < l(k + 1).

We can do the same thing for G, and we find that

k − 1
n

≤ ρ̄(F ) ≤ k + 1
n

k − 1
n

≤ ρ̄(G) ≤ k + 1
n

and thus |ρ̄(F ) − ρ̄(G)| ≤ 2
n < ε.

The rotation number of an orientation preserving homeomorphism is a topological
invariant.

Proposition 2.9. Suppose f : S 1 �→ S1 and g : S1 �→ S1 are orientation preserving
homeomorphisms and there exists an orientation preserving homeomorphism h such
that h ◦ g = f ◦ h. Then ρ(f) = ρ(g).

The proof is left as an exercise.

2.4 Orientation preserving homeomorphisms with ra-
tional rotation number

Proposition 2.10. Let f be an orientation preserving homeomorphism of S 1. Then
ρ(f) ∈ Q iff f has a periodic point. In fact, ρ(f) = p

q with p, q ∈ Z coprime and
q > 0 iff f has a point of least period q.

Proof. ⇐ Suppose f has a periodic point x0 with least period q and let F be a lift of
f . Then ∃k ∈ Z such that F q(x0) = x0 + k. Then F nq(x0) − x0 = nk, so

ρ(F ) = lim
n→∞

Fnq(x0) − x0

nq
=

k

q
.

Thus ρ(f) = k (mod q)
q .

⇒ Assume ρ(f) = p
q (in lowest terms). Let F̄ be a lift of f , so ∃k ∈ Z such that

ρ(F̄ ) = k + p
q . Then F (x) = F̄ − k is another lift of f with ρ(F ) = p

q . Also,

ρ(F q − p) = ρ(F q) − p = qρ(F ) − p = 0.

Let G(x) = F q(x) − p — it is enough to prove that G has a fixed point in R. We
consider G(0), and there are three cases.

1. G(0) = 0 — trivial.
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2. G(0) > 0. G is increasing, so 0 < G(0) < · · · < Gn(0) < . . . . This has two
subcases:

(a) 0 < Gn(0) < 1 for all n. We have an increasing sequence, bounded above.
Thus Gn(0) converges to a limit point which by the continuity of G is a
fixed point.

(b) ∃k > 0 such that Gk(0) > 1. Then

G2k(0) = Gk(Gk(0)) > Gk(1) = Gk(0) + 1 > 2.

By induction, Gjk(0) > j and Gjk(0)
jk > 1

k . Thus the rotation number is
bounded away from zero and we have a contradiction.

3. G(0) < 0. Similar reasoning applies.

We can now describe the dynamics of an orientation preserving homeomorphism
of S1 with the following theorem.

Theorem 2.11. Let f : S1 �→ S1 be an orientation preserving homeomorphism with
rational rotation number p

q in lowest terms. Then every orbit is either periodic of
period q or forward asymptotic to a period q orbit and backward asymptotic to a period
q orbit.

Proof. f q can be identified with an orientation preserving homeomorphism of the
closed interval by cutting S1 at a fixed point of f q. Then section 1.4 applies.

The periodic orbits of an orientation preserving homeomorphism of S 1 are ordered
on S1 like those of a rigid rotation with the same rotation number. That is, if y is a
periodic point and ρ(f) = p

q that the ordering of (y, f(y), . . . , f n(y), . . . ) is the same
as (0, p

q , . . . , np
q , . . . ).

2.5 Orientation preserving homeomorphisms with ir-
rational rotation number

Theorem 2.12. Assume f : S1 �→ S1 is an orientation preserving homeomorphism
and ρ(f) ∈ R \ Q. Then

1. ω(x) is independent of x.

2. E = ω(x) is the unique minimal set of f .

3. E is either S1 or a Cantor subset of S1.

Proof.

1. Take any two points x, y ∈ S1. We wish to show that ω(x) ⊆ ω(y). Since S1

is compact, ω(x) is non-empty and since ρ(f) ∈ R \ Q, all points in O+(x) are
distinct. Take z ∈ ω(x), so ∃ni → ∞ such that |fni(x) − z| → 0. Given ε > 0
we can find nk > nj > 0 such that

|fni(x) − z| < ε for i = k, j, and

|fnk(x) − fnj (x)| < ε.
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Let I be the closed interval of length < ε with endpoints f nk(x) and fnj (x) and
N = nk − nj . Now fN(fnj (x)) = fnk(x) and f−N(fnk(x)) = fnj (x) and
so f−N (I)∩ I = {fnj(x)}. Arguing similarly,

(
f−mN(I)

)
m∈Z+

is a sequence

of closed intervals joined end to end. Either f −mN(I) accumulates to some
point p, which must by continuity satisfy f −N (p) = p — a fixed point, giving
a contradiction (by proposition 2.10) or they cover S 1. Thus for all y ∈ S1,
∃l ∈ Z+ such that y ∈ f−lN (I) and so f lN (y) ∈ I and

∣∣f lN (y) − z
∣∣ < ε. Thus

ω(x) ⊆ w(y) and by symmetry ω(x) = ω(y).

2. E is closed and invariant (by construction). Let A ⊆ S 1 be a non-empty, closed
invariant set and x ∈ A. Then O+(x) ⊆ A and so E = ω(x) ⊆ A as A is
closed. Thus any non-empty closed invariant subset of S 1 contains E and E is
thus the unique minimal set.

3. A Cantor subset of Rn is a compact, totally disconnected set with no isolated
points. On S1 we can replace “totally disconnected” with “empty interior”.

We know that ∅ and E are the only closed invariant subsets of E and as the
boundary ∂E is a closed invariant subset of E (exercise), ∂E = ∅ (and E = S 1)
or ∂E = E.

If ∂E = E then E has an empty interior. It remains to show that E has
no isolated point. Take x ∈ E. Since E = ω(x), ∃kn → ∞ such that
limn→∞ fkn(x) = x. As f has no periodic point f kn(x) �= x for all n, and
so x is an accumulation point of E as f kn(x) ∈ E by invariance.

We have seen examples of maps with E = S 1 (rβ , β ∈ R \ Q), but do maps exist
with E �= S1?

Theorem 2.13. Assume f : S1 �→ S1 is a C2 diffeomorphism and β = ρ(f) ∈ R \ Q.
Then f is topologically conjugate to the rotation rβ .

It is actually sufficient to have f ′ of bounded variation. In any case the proof is
technical and omitted. In this case, E = S 1 and all orbits are dense in S1.

Proposition 2.14. Let β ∈ R \ Q. Then there exists a C 1 orientation preserving dif-
feomorphism f of S1 such that ρ(f) = β and E �= S1.

Sketch proof. We want to find a map with an orbit that is not dense in S 1, so that
E �= S1. The idea is to start from the rigid rotation rβ , β ∈ R \ Q and to choose
an orbit (xn)n∈Z of rβ and “blow it up” to an orbit of closed intervals (In)n∈Z with
lengths ln such that

∑
n∈Z

ln < ∞ to obtain a map on a new circle S 1′.

We extend rβ to a map f : S1′ �→ S1′ by choosing for each n ∈ Z an orientation
preserving homeomorphism mapping In onto In+1.

If we choose f : In �→ In+1 to be affine then we create a C 0 map, but to make f C1

we need f ′ = 1 at the endpoints of each In and maxx∈In |f ′(x) − 1| → 0 as n → ∞.
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We see that f has the same rotation number as rβ and that no point in In ever
returns to In under iteration. So if p ∈ Int In then fm(p) /∈ Int In for m �= 0 and so
O(p) is not dense in S1′.

Thus E is not the whole of S1′ and so by theorem 2.12 is a Cantor subset of S 1′.

In fact

E = S1′ \
⋃
n∈Z

Int In

and the open sets Int In are the gaps in the Cantor set.
E is nowhere dense since

⋃
n∈Z

Int In is dense in S1′.

Definition 2.15. An orbit O(x) is said to be homoclinic to an invariant set S ⊂ S 1 \
O(x) if α(x) = ω(x) = S.

Theorem 2.16. Let f : S1 �→ S1 be an orientation preserving homeomorphism with
ρ(f) ∈ R \ Q. Then every orbit is either:

1. dense in S1,

2. dense in a Cantor set or

3. homoclinic to a Cantor set.

2.6 Families of circle maps

Proposition 2.17. Let f : S1 �→ S1 be an orientation preserving homeomorphism with
lift F such that ρ(F ) = ρ(f) = p

q ∈ Q and suppose that the graph of F q−p has points
on either side of the diagonal. Then all small enough perturbations of f have rotation
number p

q .

This phenomenon is called frequency locking.

Proof. Now ∃x0 such that F q(x0)−x0−p > 0 and x1 such that F q(x1)−x1−p < 0.
Then for all small enough perturbations f̄ of f with corresponding lift F̄ , F̄ q(x0) −
x0 − p > 0 and F̄ q(x1) − x1 − p < 0. These inequalities give p

q ≤ ρ(F̄ ) ≤ p
q and the

result is thus true.

2.6.1 Monotonicity of rotation number

Let F1 and F2 be lifts of f1 and f2. If F1(x) < F2(x) for all x then ρ(F1) ≤ ρ(F2).
(Immediate.)

At irrational values the rotation number strictly increases.

Proposition 2.18. Let F1 and F2 be lifts of the orientation preserving homeomor-
phisms of S1, f1 and f2. If F1(x) < F2(x) for all x ∈ R then ρ(F1) < ρ(F2).

Proof. By continuity and periodicity, F2(x) − F1(x) > δ > 0 for all x ∈ R. Take
p
q ∈ Q such that

p

q
− δ

q
< ρ(F1) <

p

q
.



14 CHAPTER 2. MAPS OF THE CIRCLE

Then ∃x0 such that F q
1 (x0) − x0 > p − δ, because otherwise

ρ(F1) = lim
n→∞

Fnq
1 (x) − x

nq
≤ lim

n→∞
n(p − δ)

nq
=

p

q
− δ

q
.

Now

F q
2 (x0) = F2(F

q−1
2 (x0)) > F1(F

q−1
2 (x0)) + δ > F q

1 (x0) + δ > x0 + p

and so ρ(F2) ≥ p
q > ρ(F1).

2.6.2 The Arnold family

This is a 2 parameter family of circle maps fk,ω : S1 �→ S1 with lifts

Fk,ω : x �→ x + ω +
k

2π
sin 2πx.

• k = 0 : rigid rotation

• 0 ≤ k < 1 : diffeomorphism

• k = 1 : homeomorphism

• k > 1 : not invertible.

We consider k, ω ∈ [0, 1]. First, fix k and vary ω. If ω1 < ω2 then Fk,ω1(x) <
Fk,ω2(x) and so ρ(Fk,ω1 ) ≤ ρ(Fk,ω2 ). Hence ρ is a non-decreasing function of ω for
fixed k. It is also continuous (by theorem 2.6).

Definition 2.19. A monotone continuous function φ : [0, 1] �→ R is called a devil’s
staircase if there exists a collection {Iα}α∈A of disjoint closed intervals [0, 1] with
dense union such that φ takes distinct constant values on these intervals.

Proposition 2.20. For k ∈ [0, 1], φ : ω �→ ρ(fk,ω) is a devil’s staircase. φ−1
(

p
q

)
is

one of the intervals Iα for each rational p
q ∈ [0, 1].

The proof is left as an exercise.

In (k, ω) parameter space, ρ(Fk,ω) = 0 iff ∃x such that Fk,ω(x) = x. Thus
sin 2πx = 2πω

k and there exist fixed points if 2πω
k ≤ 1.



2.7. STABILITY, PERSISTENCE AND BIFURCATIONS 15

Similarly, ρ(Fk,ω) = 1 iff 2π(k−ω)
k ≤ 1. Regions in parameter space where ρ is

rational are called Arnold tongues.

We want to know what happens on the boundary of Arnold tongues.

2.7 Stability, persistence and bifurcations

Definition 2.21. In one dimension, a fixed point x∗ of a differentiable map f is hyper-
bolic if |f ′(x∗)| �= 1. The fixed point is stable/attracting/a source if |f ′(x∗)| < 1. It is
unstable/repelling/a sink if |f ′(x∗)| > 1.

A period q orbit (cycle) {x0, x1, . . . , xq−1} with xi = f i(x0) is stable if y is stable
as a fixed point of f q for y in the cycle. It is unstable if y is unstable as a fixed point of
f q for y in the cycle.

Note that the y in the cycle used does not matter, as

(f q)′(y) =
q−1∏
i=0

f ′ (f i(y)
)

=
q−1∏
i=0

f ′(xi) by the chain rule.

2.7.1 Persistence and bifurcation

Consider a 1 parameter family of maps f : R×R (or S 1×R) �→ R, (x, λ) �→ f(x, λ) :=
fλ(x).

We need the implicit function theorem, stated here in a weakened form (and not
proved).

Theorem 2.22. Let G : R �→ R be Cr, r ≥ 1, where

R := {(x, y) : a < x < b, c < y < d} ,

with (x0, y0) ∈ R. If G(x0, y0) = 0 and ∂G
∂y

∣∣∣
(x0,y0)

�= 0 then there exist open intervals

I � x0 and J � y0 with I×J ⊂ R and a Cr function p : I �→ J such that G(x, y) = 0
if I × J iff y = p(x).

We can now state conditions for the persistence of fixed points.

Theorem 2.23. Assume fλ is Cr, r ≥ 1 and fλ∗(x∗) = x∗ and f ′
λ∗(x∗) �= 1. Then

there exist open I � λ∗ and J � x∗ and a Cr function p : I �→ J such that p(λ∗) = x∗

and fλ(p(λ)) = p(λ). Moreover, fλ has no other fixed points in I .
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Proof. Apply the implicit function theorem to G(x, λ) = fλ(x) − x. Our hypotheses
give G(x∗, λ∗) = 0 and ∂G

∂x

∣∣
(x∗,λ∗)

�= 0.
Thus by the IFT ∃I � λ∗ and J � x∗ and a Cr function p : I �→ J such that

p(λ∗) = x∗, G(p(λ), λ) = 0 and G �= 0 in J × I unless x = p(λ).

We have a curve (or “branch”) of fixed points.

We can find dp
dλ by implicit differentiation:

dp

dλ
= −

∂G
∂λ
∂G
∂x

∣∣∣∣∣
(p(λ),λ)

= −
∂fλ

∂λ (p(λ))
f ′

λ(p(λ)) − 1
.

Intuitively, a bifurcation takes place at (x0, λ) when the topological nature of the
dynamics near x0 changes when λ passes through λ0.

Fixed points (dis)appear in a saddle-node/tangent/fold bifurcation.

Theorem 2.24. Assume fλ is Cr with r ≥ 2, fλ(x0) = x0, f ′
λ0

(x0) = 1, f ′′
λ0

(x0) �= 0

and ∂fλ

∂λ

∣∣∣
(x0,λ0)

�= 0. Then ∃J � x0, I � λ0 and a Cr function x �→ g(x) such that

g(x0) = λ0 and such that fλ(x) = x in J × I iff λ = g(x). Moreover g′(x0) = 0 and
g′′(x0) �= 0. The fixed points created are attracting on one side of x0 and repelling on
the other.

Proof. Let G(x, λ) = fλ(x) − x. Now G(x, λ) = 0 iff x is a fixed point of fλ.
∂G
∂x

∣∣
(x0,λ0)

= 0 and ∂G
∂λ

∣∣
(x0,λ0)

�= 0, and so, by the IFT, there exists a C r function

g : J �→ I satisfying G(x, g(x)) = 0.

Now 0 = ∂G
∂x + ∂G

∂λ
∂g
∂x and so g′ = −∂G

∂x

(
∂G
∂λ

)−1
. In particular, g ′(x0) = 0.

Differentiating again we get that

g′′(x0) = −
[

∂2G

∂x2

(
∂G

∂λ

)−1
]

(x0,λ0)

�= 0.

The sign of g ′′ determines the direction of the bifurcation. As for stability,

∂fλ

∂x
= 1 +

∂2fλ

∂x2
(x − x0) +

∂2f

∂x∂λ
(λ − λ0) + higher order

= 1 +
∂2fλ

∂x2
(x − x0)

as g(x) − λ0 = O(x − x0)2. Thus f ′
g(x)(x) − 1 takes opposite signs on either side of

x0.
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Bifurcation diagrams

As an example, consider the Arnold family of maps, fk,ω(x) = x + ω + k
2π sin 2πx.

We can generalise these results to periodic orbits of period q > 1 by applying
theorems 2.23 and 2.24 to f q

λ.
An an example consider the Arnold tongue about ω = p

q .

The boundaries of the Arnold tongues are lines of saddle-node bifurcation.
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Chapter 3

Chaos and non-invertible one
dimensional maps

3.1 Chaos

We start with an example. Consider f : S1 �→ S1 given by f : z �→ z2 in multiplicative
notation or f : x �→ 2x mod 1 in additive notation.

deg f = 2

We will write x as a binary expansion,

x =
∞∑

i=1

ai

2i
,

with ai ∈ {0, 1}.
Note that dyadic rationals m

2n have 2 expansions (although this will not bother us).
For instance,

1
2 = 0.1000 . . . = 0.0111 . . . .

It is easy to see what f(x) is. Using the binary expansion,

f(x) =
∞∑

i=1

ai+1

2i
.

We can write down a list of properties of f .

19
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1. If x ∈ Q, x is either a periodic point or eventually periodic.

Definition 3.1. A point x is eventually periodic of period n if x is not periodic,
but ∃k > 0 such that f k(x) is periodic of period n.

2. If x is irrational, x is neither periodic nor eventually periodic (as the binary
expansion never repeats itself).

3. Let Pn(f) be the number of periodic points of f with (not necessarily least)
period n. We can show that Pn(f) = 2n − 1. (Pn(f) is also the number of fixed
points of fn. We require z2n

= z, or z2n−1 = 1. There are 2n − 1 such.)

4. If x �= y then there exists n ≥ 0 such that |f n(x) − fn(y)| ≥ 1
4 .

Proof. Take x > y. If x − y ≥ 1
4 then we are done, else ∃n ≥ 1 such that

1
2n+2

< x − y <
1

2n+1
.

Now |f(x) − f(y)| = 2 |x − y| and so

1
4
≤ |fn(x) − fn(y)| ≤ 1

2
.

5. For every open interval J ⊂ S 1, ∃n ≥ 0 such that fn(J) = S1. (This follows
from property 4.)

6. Periodic points and eventually periodic points are dense in S 1.

Some of these properties are specific to this example, but it has two properties
which are of more general interest.

Definition 3.2. A map f : X �→ X is said to be topologically transitive on an invariant
set Λ ⊂ X if the forward orbit of some point x ∈ Λ is dense in Λ.

An equivalent (for most “reasonable” topological spaces) definition is:

Definition 3.3. A map f : X �→ X (X a topological space) is said to be topologically
transitive on an invariant set Λ ⊂ X if for any pair of open sets U , V ⊂ Λ ∃k > 0
such that f k(U) ⊂ V �= ∅.

The other interesting property is sensitive dependence on initial conditions (SDIC).

Definition 3.4. A map f : X �→ X (X a metric space) has SDIC on an invariant set Λ
if ∃δ > 0 such that for all x ∈ Λ and any neighbourhood U of x, ∃y ∈ U and n > 0
such that d(fn(x), fn(y)) > δ.

Definition 3.5. A dynamical system (f, X) is chaotic if it has a compact invariant
subset Λ on which f is both topologically transitive and has SDIC.

For another example take X = [−1, 1] and g : X �→ X such that g(x) = 2x2 − 1.
Then g is chaotic.
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Proof. Consider h : S1 �→ X , h(θ) = cos 2πθ. h is continuous and onto. Now

h(f(θ)) = h(cos 2θ) = cos 4πθ = 2 cos2 2πθ − 1 = g(h(θ)).

h is not one to one, but we don’t need that. We need to prove both topological
transitivity and SDIC. Given two open sets I , J ⊂ X . Now h−1(I) and h−1(J) are
open in S1 since h is continuous. Then ∃n > 0 such that

fn(h−1(I)) ∩ h−1(J) �= ∅,
and so gn(I) ∩ J �= ∅. To prove SDIC, given x ∈ X and open U � x, ∃n > 0 such
that gn(U) = X (as the same is true for f ). Now let y = 1 if gn(x) ≤ 0 and −1 if
gn(x) > 0. ∃z ∈ U such that gn(x) = y and so

|gn(x) − gn(y)| ≥ 1.

This proof has introduced an important notion.

Definition 3.6. Let f : X �→ X and g : Y �→ Y . Then h : X �→ Y is called a topolog-
ical semi-conjugacy from f to g if

1. h is continuous,

2. h is onto,

3. h ◦ f = g ◦ h.

We say that f is topologically semi-conjugate to g by h.

Semi-conjugacy means that the dynamics of f are at least as complicated as the
dynamics of g.

3.2 Sequence spaces

Let

ΣN = {a = (a0, a1, . . . ) : ai ∈ {0, . . . , N − 1} , i ∈ Z+} ,

a sequence space on n symbols. We make ΣN a metric space by defining a distance

d(a,b) =
∞∑

n=0

γ(an, bn)
3n

where γ(i, j) =

{
0 i = j

1 i �= j.

Two points in ΣN are close if they agree on a long initial segment, as follows.
Suppose a, b ∈ ΣN with ai = bi for i < m and am �= bm. Then

1
3m

≤ d(a,b) ≤
∞∑

n=m

1
3n

=
2

3m−1
.

ΣN is a Cantor set.1

1See example sheet.
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3.3 Shift map

We define σ : ΣN �→ ΣN by

σ(a0, a1, . . . ) = (a1, a2, . . . ).

Proposition 3.7.

1. σ is continuous

2. Pk(σ) = Nk

3. Per(σ) (the set of periodic points of σ) is dense in ΣN .

4. There exists a dense (forward) orbit in ΣN .

5. σ has SDIC.

Proof.

1. d(a,b) = γ(a0, b0) + 1
3d(σ(a), σ(b)) and so d(σ(a), σ(b)) ≤ 3d(a,b). Given

the usual ε, pick N such that 3−N < ε, and then δ = 3−(N+1).

2. σk(a) = a iff ak+j = aj for all j ≥ 0. Given k there are N k blocks of length k.

3. Given a ∈ ΣN and ε > 0 take n such that 1
2·3n−1 < ε and let b be a periodic

sequence of the form (a0, a1, . . . , an, a0, a1, . . . ). Then d(a,b) ≤ ε.

4. Let b be a sequence which lists all blocks of length n for each successive n ∈ N.
For instance, for N = 2,

b = (0 1 00 01 10 11 000 . . . ).

Then given a ∈ ΣN and k ∈ N, ∃n ∈ N such that σn(b) and a agree on the first
k places, and so d(σn(b), a) ≤ 1

2·3k−1 .

5. Given a ∈ Σ, choose b ∈ Σ such that ai = bi for i = 0, . . . , q but ai �= bi for
i > q. Then

d(a,b) <
1
3q

but d(σq(a), σq(b)) =
1
2
.

Properties 4 and 5 mean that σ is chaotic on ΣN .
As an example consider the map shown

Let

Λ = {x : fn(x) ∈ I0 ∪ I2 ∀n ≥ 0} .
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Then Λ is the middle third Cantor set,

Λ =

{
x ∈ [0, 1] : x =

∞∑
n=0

ai

3n+1
, ai ∈ {0, 2}

}
.

We claim that f |Λ is topologically conjugate to σ on Σ2, which we prove by ex-
hibiting the conjugacy,

h :
∞∑

n=0

an

3n+1
�→ (a0

2 , a1
2 , . . . ).

Thus f is chaotic on Λ.

3.4 Subshifts of finite type

The general setting is with f : I �→ I continuous, I ⊂ R or I ⊂ S 1.
Suppose that {I0, I1, . . . , IN−1} are disjoint closed intervals in I . We say that Ii

f -covers Ij (and write Ii → Ij or i → j) if Ij ⊂ f(Ii).
Let Γ be the directed graph with N vertices indicating the f -covering relations.

We see that I1 → I2, I2 → I1 and I2 → I2. The graph for this is 1
��
2�� ��

Let A be the N × N matrix defined by

Aij =

{
1 if i → j

0 otherwise.

A is called the transition matrix associated to {I0, . . . , IN−1}. For the example
above

A =
(

0 1
1 1

)
.

Let ΣN,A = {a ∈ ΣN : Aanan+1 = 1 ∀n ≥ 0}. Note that ΣN,A is closed and
invariant under σ.

Definition 3.8. The restriction σA = σ|A of σ to ΣN,A is called a subshift of finite
type or topological Markov chain.

Theorem 3.9. Let J =
⋃n−1

i=0 Iai . Then there exists a closed f -invariant set Λ ⊂ J
such that f |Λ is topologically semi-conjugate to σA.

Before proving this theorem we need two lemmas.
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Lemma 3.10. If L and M are closed intervals and L → M then there exists a closed
interval K ⊂ L such that f(K) = M .

Proof. Let M = [a, b]. Then f−1(a) and f−1(b) are closed and non-empty so we can
choose u ∈ f−1(a) and v ∈ f−1(b) such that

(u, v) ∩ (
f−1(a) ∪ f−1(b)

)
= ∅.

WLOG u < v. Set K = [u, v] and use the IVT.

Lemma 3.11. If Ia0 → Ia1 → · · · → Ian then
⋃n

i=0 f−i(Iai) contains an interval
Ia0a1...an such that fn(Ia0a1...an) = Ian and x ∈ Ia0a1...an implies that f i(x) ∈ Iai

for all 0 ≤ i ≤ n.

Proof. By lemma 3.10 there exists an interval Ia0a1 ⊂ Ia0 such that f(Ia0a1) = Ia0 .
Now ∃Ia1a2 ⊂ Ia2 such that f(Ia1a2) = Ia2 . Therefore ∃Ia0a1a2 ⊂ Ia0a1 such that
f(Ia0a1a2) = Ia1a2 and f 2(Ia0a1a2) = Ia2 . We continue inductively to get Ia0a1...an .

Proof of Theorem 3.9. We first obtain

Λ1 = {Ia0a1 ⊂ Ia0 : a0 → a1 and f(Ia0a1) = Ia1} .

We define Λn inductively, assuming that

Λn−1 =
{
Ia0a1...an−1 : a0 → a1 → · · · → an−1 and fn(Ia0...an−1) = Ian

}
.

For all allowed transitions an−1 → an define Ia0...an ⊂ Ia0...an−1 such that
fn−1(Ia0...an) = Ian−1an ⊂ Λ1. Thus

Λn = {Ia0a1...an : a0 → a1 → · · · → an and fn(Ia0...an) = Ian} .

Now define Λ =
⋃

n≥1 Λn. Λ is non-empty (as it is the intersection of a nested se-
quence of closed sets). The connected components of Λ are closed intervals or possibly
isolated points.

We can now define h : Λ → ΣN,A (the itinerary map) as

x → a where f i(x) ∈ Iai ∀i ∈ Z+.

h is continuous, as given M , ∃δ > 0 such that x, y ∈ Λ with d(x, y) < δ implies
that f i(x) and f i(y) are in the same Iai for 0 ≤ i ≤ M .

By construction, h is surjective and h ◦ f |Λ = σA ◦ h.

If f is monotone on each Ii then Λ is uniquely defined.
If f is expanding on J (∃λ > 1 such that for all i, x, y ∈ I i, d(f(x), f(y)) ≥

λd(x, y)) then h is a topological conjugacy.

3.4.1 Properties of σA

We call a finite string w = w0w1 . . . wk a word. Given a transition matrix A a word
is said to be allowed if the transition wi → wi+1 is allowed for all 0 ≤ i ≤ k − 1,
equivalently

Aw0w1Aw1w2 . . .Awk−1wk
= 1.
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Lemma 3.12. Let N
(n)
ij denote the number of allowed words of length n + 1 starting

in i and ending in j. Then

N
(n)
ij = (An)ij .

Proof. The productAiw1Aw1w2 . . .Awn−1j equals one if iw1 . . . wn−1j is allowed and
equals zero otherwise. Then

N
(n)
ij =

∑
w1,...,wn−1

Aiw1Aw1w2 . . .Awn−1j = (An)ij .

Proposition 3.13. Pn(σA) = TrAn.

Proof. Fixed points of σn
A are in one-to-one correspondance with allowed words of

length n + 1 with the same start and finish. Now use lemma 3.12.

We can compute TrAn by using the Cayley-Hamilton theorem, that a matrix sat-
isfies its own characteristic equation. For instance, for the A we considered earlier, we
find TrAn+2 − TrAn+1 − TrAn = 0, and imposing the initial conditions TrA = 1
and TrA2 = 3 we can find TrAn.

If Nq is the number of periodic cycles of least period n, then

Pn =
∑
q|n

qNq.

3.4.2 Chaos

Definition 3.14. A matrix A is irreducible if ∀i, j, ∃n such that (An)ij �= 0 (that is
there is an allowed path from i to j).

Proposition 3.15. If A is irreducible then σA is topologically transitive.

Proof. We need to find a dense orbit. We can do this by choosing a sequence which
contains every allowed word, with a proper choice of transition words between them.
(This is always doable as A is irreducible.)

Definition 3.16. A matrix A is non-trivial if ∃i, j1 �= j2 such that i → j1 and i → j2.

A permutation matrix (for instance) is trivial.

Proposition 3.17. If A is irreducible and non-trivial then σA is chaotic on ΣA.

Proof. By proposition 3.15 we just need to show SDIC. Given a = a0a1 . . . and M ∈
Z+ there exists an allowable word aMwM+1 . . . (wk = i) where i can be followed
by either j1 or j2 since A is non-trivial. If wM+1 . . . wk = aM+1 . . . ak then choose
b = a0a1 . . . bk+1 . . . where bk+1 �= ak+1 and let n = k.

If wM+1 . . . wk �= aM+1 . . . ak then choose n to be the index of the first non-
agreeing character and b = a0 . . . aM . . . anbn+1 . . . where bn+1 �= an+1. Then
d(a,b) ≤ 1

23n and d(σn+1
A (a), σn+1

A (b)) ≥ 1.
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If f |Λ is semi-conjugate to an irreducible, non-trivial subshift σA|ΣA
, can we de-

duce that f |Λ is chaotic?
This is not true. We need conjugacy to show that f |Λ is chaotic, although we can

show that if f |Λ is semi-conjugate to σA then f |Λ has at least as many periodic cycles
as σA.

Proposition 3.18. For every closed path a0a1 . . . (ak = a0) in Γ there exists a periodic
orbit for f in Λ, (x0 . . . xk−1)∞ such that xn ∈ Ian for all n ≥ 0.

We need a lemma before proving this.

Lemma 3.19. If the closed interval K f -covers itself then f has a fixed point in K .

Proof. Let K = [a, b]. Then K → K implies that ∃c, d ∈ K such that f(c) = a ≤ c
and f(d) = b ≥ d. Now apply the IVT.

Proof of proposition 3.18. From lemma 3.11 ∃Ia0...ak
⊂ Ia0 such that

fn(Ia0...ak
) ⊂ Ian and fk(Ia0...ak

) = Ia0 . (∗)

In particular Ia0...ak
→ Ia0...ak

and so (by lemma 3.19), f k has a fixed point x0

and by (∗) f k(x0) ∈ Ian for all n ≥ 0.

If the loop a0a1 . . . (ak = a0) is of least period then x0 has least period k.
If the In’s are not disjoint but have disjoint interiors then we can construct Γ the

same way. We cannot deduce semiconjugacy to σA, but we can still get lots of periodic
orbits for f |Λ as proposition 3.18 does not use semiconjugacy. The only problem is
that multiple paths in Γ give the same periodic orbit.

For instance, consider z �→ z2 (as a map of S1).

This has a graph:

1��
��
2�� ��

and the only problem is that 0∞ = 1∞.

3.5 Sharkovsky’s theorem

Our first proposition is the (famous?) “period 3 implies chaos” result of Li and Yorke.

Proposition 3.20. Suppose f : I �→ I is continuous and has a periodic point of period
3. Then f has periodic points of all least periods.

Proof. Let the period 3 cycle be x < y < z. Let I0 = [x, y] and I1 = [y, z]. Suppose
f(y) = z. Then f 2(y) = x and so we have the graph

I0
��
I1�� ��
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(If f(y) = x then just relabel I0 and I1.) Now for all n ∈ N there exists a loop

I0 → I1 → · · · → I1︸ ︷︷ ︸
n−1

→ I0,

a least period loop of period n. Proposition 3.18 gives a periodic point of exact
period n.

This is a special case of a more general result which describes in a precise way the
order in which periodic orbits of different periods appear. We first need to define the
Sharkovsky ordering on the natural numbers. This is given by

1 ≺ 2 ≺ 4 ≺ · · · ≺ 2n ≺ 2n+1 ≺ . . .

· · · ≺ 2n+1 · 9 ≺ 2n+1 · 7 ≺ 2n+1 · 5 ≺ 2n+1 · 3 ≺ . . .

· · · ≺ 2n · 9 ≺ 2n · 7 ≺ 2n · 5 ≺ 2n · 3 ≺ · · · ≺ 9 ≺ 7 ≺ 5 ≺ 3.

We can now state Sharkovsky’s theorem.

Theorem 3.21 (Sharkovsky’s theorem). Let I ⊂ R be a closed interval and f : I �→
R be a continuous map. If f has a periodic point of least period k then f has a periodic
orbit of least period n for all n ≺ k.

Proof is in a number of stages. We first prove the case k > 1, odd.

Lemma 3.22. If f : I �→ R is continuous and has a periodic point x of least period
k ≥ 3, odd, and no points of odd period n with 1 < n < k then f has a point of least
period n for all n > k and all even n < k and period 1.

Proof. Let J = [min θ(x), max θ(x)]. Make a partition of J by the element of θ(x) =
{p1 < p2 < · · · < pk}. We define intervals Ii of the form [pl, pl+1] for 1 ≤ i ≤ k − 1,
where l is not necessarily in the same order as i.

We aim to show that we can choose the labelling of the I i’s to obtain the following
directed graph (Stefan graph) for the f -covering relations.

I1
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���
��
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��
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����������
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���
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���
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Ik−2
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etc
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That is: a loop I1 → I2 → · · · → Ik−1 → I1, a loop I1 → I1 and directed edges
from Ik−1 to all odd vertices. Once this is established we just need to note that there
are distinct closed loops of period

• n > k : In−k+1
1 → I2 → · · · → Ik−1 → I1

• even numbers < k : Ik−1 → I2l+1 → I2l+2 · · · → Ik−2 → Ik−1

• 1 : I1 → I1.

We will prove this in a series of claims.
Claim 1: I1 → I1. Note that f(p1) > p1 and f(pk) < pk. Take a = max{y ∈

θ(x) : f(y) > y} (a �= pk). Now let I1 = [a, b], where b is the closest point of θ(x) to
the right of a. Then f(a) ≥ b and f(b) ≤ a since b > a. Thus f(I1) ⊃ I1 as required.

Claim 2: fk−2(I1) ⊃ J : i.e. there exists a path from I1 to any other vertex. To
prove this note that f(I1) ⊃ I1 with proper inclusion (else k = 2) and so f j+1(I1) ⊃
f j(I1) (nested iterates). There are k − 2 points in θ(x) \ {a, b} and so pk ∈ f j(I1)
for some 0 ≤ j ≤ k − 2 and by the nested property P − k ∈ f k−2(I1). Similarly
p1 ∈ fk−2(I1) and since I1 is connected f k−2(I1) ⊃ [p1, pk] = J .

Claim 3: ∃j �= 1 such that I1 ⊂ f(Ij) (that is Ij → I1). To prove this let
Bl = {y ∈ θ(x) : y ≤ a} and Br = {y ∈ θ(x) : y ≥ b}. Now k is odd, so that
#Bl �= #Br. Let B be the one of Bl and Br with more elements. Then ∃y1, y2 ∈ B
adjacent with f(y1) ∈ B and f(y2) ∈ θ(x)\B. Take Ij = [y1, y2], and so I1 ⊂ f(Ij).

Now label the intervals such that I1 → I2 → · · · → Il → I1 is the shortest loop
containing I1.

Claim 4: The shortest loop with l ≥ 2 has l = k − 1. There are only k − 1 distinct
intervals, so the shortest loop has l ≤ k − 1. Assume that l < k − 1. Let q be the odd
number out of {l, l + 1}. So 1 < q < k. Use the loop I1 → I2 → · · · → Il → I1

or I1 → I2 → · · · → Il → I1 → I1 depending on whether q = l or q = l + 1. By
proposition 3.18, ∃y ∈ I1 such that f q(y) = y. Now y /∈ ∂I1 since points on ∂I1 have
period k > q. Hence y has period q < k. This gives a contradiction: k is the smallest
odd number such that f has a periodic orbit of least period k.

Claim 5:

1. If f(Ii) ⊃ I1 then i = 1 or k − 1.

2. For j > i + 1, Ii �→ Ij .

3. I1 f -covers only I1 and I2.

Claim 4 implies 1 and the shortest loop property implies 2 and 3.
Claim 6: orderings (in terms of R) of the Ii’s and of θ(x) are either{
Ik−1 ≤ Ik−3 ≤ · · · ≤ I2 ≤ I1 ≤ I3 ≤ · · · ≤ Ik−2

fk−1(a) < fk−3(a) < · · · < f2(a) < a < f(a) < f3(a) < · · · < fk−2(a)

or the above exactly reversed. To prove this note that I 1 = [a, b] f -covers only I1 and
I2, so by connectedness I1 and I2 must be adjacent. Assume I2 ≤ I1 (the other case
gives the reversed order). Then we must have f(a) = b and f 2(b) the left point of I2.

Now f(a) = b and I2 �→ I1 (by claim 5.1) and so f(I2) ≥ a. Now I2 → I3 but
I2 �→ Ij for j > 3 (by claim 5.2) so that I3 is adjacent to I1. We obtain the claimed
order inductively.
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Claim 7: Ik−1 → Ij for j odd. To prove this note that Ik−1 = [fk−1(a), fk−3(a)]
and f(fk−1(a)) = a. Also fk−3(a) ⊂ Ik−3 so f(fk−3(a)) ⊂ Ik−2. Thus f(Ik−1) ⊃
[a, fk−2(a)] = I1 ∪ I3 ∪ · · · ∪ Ik−2.

We have finally proved the Stefan graph and we can now complete the proof of
lemma 3.22 by using proposition 3.18 on each least period loop in the Stefan graph to
get a periodic point of the same least period.

Lemma 3.23. If f has a periodic point of least period k = 2m, m ≥ 1 and no periodic
points of odd period greater than or equal to 3 then f has a fixed point and f 2 has two
periodic orbits of least period m. These are {p1, . . . , pm} and {pm+1, . . . , p2m}.
Proof. Define a and b and set I1 = [a, b] as before. Then I1 → I1 and there exists a
fixed point in I1.

In lemma 3.22 we used the fact that k was odd only in claim 3 to show that ∃I j ,
j �= 1 such that Ij → I1. If we have such a Ij then we get the Stefan graph as before
(but with k even) so there exists a loop of period k − 1, odd. This is a contradiction.
Hence only I1 f -covers I1.

Since f(a) ≥ b at least one point must change side with respect to I1, so that all
points in θ(x) must change sides: f(Bl) = Br and f(Br) = Bl. Hence f 2(Bl) = Bl

and f 2(Br) = Br — that is Bl and Br are permuted independently by f 2.

Proof of Sharkovsky’s theorem.

• If k is odd then we are done by lemma 3.22.

• If k = 2r, r odd then f has a period 1 orbit and f 2 splits the orbit into two
components by lemma 3.23, each of period r. Thus f 2 has a period r orbit, r
odd. Hence f has a period 2m orbit for all m ≥ r, a period 2p orbit for all even
p < r, a period 2 orbit and a fixed point.

• If k = 2lr, r odd, l > 1 just repeat the argument.

The converse of Sharkovsky’s theorem is true: there are examples of maps with
exactly the periodic orbits implied by the Sharkovsky ordering. For instance, consider
the following function.

As an exercise prove that this map has no period 3 point.
For all n ≥ 3 there exists a permutation of n elements such that there exists a

periodic orbit {p1 < p2 < · · · < pn} of least period n which realises the permutation
and forces the existence of periodic points of all periods.

The Sharkovsky theorem only happens on the line in one dimension: not on C or
S1. Consider the map of S1, r 1

3
: x �→ x + 1

3 mod 1, which has all orbits of period 3
and no orbits of other periods.
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3.6 The quadratic family

Consider

Fµ(x) = µx(1 − x) with µ > 1.

Note that:

1. Fµ(0) = Fµ(1) = 0,

2. Fµ(Pµ) = Pµ, where Pµ = µ−1
µ .

3. If x < 0 or x > 1 then F n(x) → ∞ as n → ∞.

3.6.1 1 < µ < 3

Proposition 3.24. If 1 < µ < 3 then

1. Pµ is attracting and the origin repelling.

2. if 0 < x < 1 then ω(x) = Pµ.

Proof. To prove the first part just calculate the derivative F ′
µ.

When 1 < µ ≤ 2 then if 0 < x < Pµ, Fµ(x) > x, Fµ(x) < Pµ. If Pµ < x < 1
then 0 < Fµ(x) < Pµ.

When 2 < µ < 3, F 2
µ([12 , Pµ]) ⊂ [12 , Pµ] and F 2

µ is monotone on [ 1
2 , Pµ].

Let P̂µ be the other preimage of Pµ. Now Fµ([P̂µ, 1
2 ]) = [12 , Pµ] and we can apply

the previous result.
If x0 ∈ [0, P̂µ], F j

µ(x0) is monotone so long as the iterates stay in [0, P̂µ]. When

the iterates leave [0, P̂µ] then enter [P̂µ, Pµ]. Now apply the previous results.

Finally, if x0 ∈ [Pµ, 1], Fµ(x0) ∈ [0, P̂µ].

3.6.2 µ = 4

g(x) = 2x2 − 1 is topologically conjugate to F4 = 4x(1 − x). Now g is chaotic (see
page 20), so that F4 is chaotic.
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3.6.3 µ > 4

I0 and I1 map on to I = [0, 1] so we have the graph

1��
��
2�� ��

Proposition 3.25. If µ > 2 +
√

5 then

Λµ = {x : Fn
µ (x) ∈ I ∀n ≥ 0}

is a Cantor set and Fµ|Λµ
is topologically conjugate to the shift map on Σ2.

Proof. Exercise (note that µ > 2 +
√

5 implies
∣∣F ′

µ

∣∣ > 1).

Proposition 3.25 is in fact true for µ > 4 (by negative Schwartzian derivative, not
included in course.)

3.6.4 3 ≤ µ ≤ 4

When µ increases through 3, Pµ becomes repelling and an attracting period 2 cycle
appears. As µ is increased further this period 2 cycle becomes unstable and a stable
period 4 cycle appears. There is a cascade of period-doubling bifurcations at µ 0 <
µ1 < . . . , where the period 2i cycle loses stability at µi and a stable 2i+1 cycle appears.

As n → ∞, µn → µ∞ = 3.569942 . . . and

lim
n→∞

µn − µ∞
µn+1 − µ∞

= 4.6692 . . . , the Feigenbaum constant.

3.6.5 Period doubling bifurcation

Let fλ : I �→ R be a Cr one-parameter family with r ≥ 3.

Theorem 3.26. Suppose that

1. fλ0(x0) = x0,
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2. f ′
λ0

(x0) = −1,

3. d
dλf ′

λ(P (λ))
∣∣
λ0

�= 0, or equivalently

α :=
(

∂f ′
λ

∂λ
+ 1

2

∂f ′′
λ

∂λ

)
�= 0.

4. the graph of f 2
λ0

has a non-zero cubic term in its tangency with the diagonal, or
equivalently

f2
λ0

(x) − x = −β(x − x0)3 + O(x − x0)4,

where

β := 1
3f ′′′

λ0
(x0) + 1

2

(
f ′′

λ0
(x0)

)2 �= 0.

Then there exists a period-doubling bifurcation at λ0, that is

• there exists a differentiable curve of fixed points P (λ) of fλ passing through
(x0, λ0), the stability of which changes at λ0, and

• there exists a differentiable curve γ which passes through (x0, λ0) such that
γ \ (x0, λ0) is the union of two hyperbolic period 2 orbits and γ is the graph of
a function λ = h(x), h′(x0) = 0 and h′′(x0) = − β

α �= 0.

If β > 0 then this period two cycle is stable and if β < 0 this period two cycle is
unstable.

Proof. f ′
λ0

(x0) �= 1, so that there exists P (λ) such that

P ′(λ0) = −
∂fλ

∂λ (p(λ))
f ′

λ(p(λ)) − 1
= 1

2

∂f

∂λ

∣∣∣∣
(x0,λ0)

.

We change co-ordinates such that the origin is a fixed point for all λ near λ 0. Let

g(y, λ) = f(y + P (λ)) − P (λ),

so that ∂ng
∂yn (0, λ) = f

(n)
λ

∣∣∣
P (λ)

and

∂2g

∂λ∂y

∣∣∣∣
(0,λ0)

=
d
dλ

f ′
λ(P (λ))

∣∣∣∣
λ0

= α �= 0.

Let G(y, λ) = g2(y, λ) − y so that when G(y, λ) = 0, y is either a fixed point or
a period two point. Note that ∂G

∂λ

∣∣
(0,λ0)

= 0 and so we cannot naively apply the IFT
directly to G.

Now if G(y, λ) = 0 and y �= 0 then y is a period two point. Define

H(y, λ) =

⎧⎨
⎩

G(y,λ)
y y �= 0

∂G
∂y

∣∣∣
(0,λ)

y = 0.

(Exercise: check H is C1) We want to apply the IFT to H , so we verify the condi-
tions of the IFT:
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• H(0, λ0) = ∂g2

∂y

∣∣∣
(0,λ0)

− 1 =
(
f ′

λ0
(x0)

)2 − 1 = 0.

• ∂H
∂λ

∣∣
(0,λ0)

=
(

∂
∂λ (g′(0, λ))2

)
λ=λ0

= 2g′(0, λ0) ∂
∂λg′(0, λ)

∣∣
λ=λ0

= −2α �= 0.

Thus we can use the IFT and so there exists a differentiable function h(y) with
H(y, h(y)) = 0. Now

h′(0) = −
∂H
∂y

∂H
∂λ

∣∣∣∣∣
(0,λ0)

= 0 and h′′(0) = −
∂2H
∂y2

∂H
∂y

∣∣∣∣∣
(0,λ0)

= −β

α
�= 0.

To prove the stability result we Taylor expand ∂g2(y,h(y))
∂y about y = 0. This gives

∂g2(y,h(y))
∂y = 1− 2βy2 +O(y3) and so this orbit is attracting if β > 0 and repelling if

β < 0.

We have the following pictures.

3.7 Accumulation of period-doublings

Suppose we have a continuous one parameter family of unimodal maps f µ : I �→ I ,
µ ∈ [µ0, µ1] with maximum at cµ and

f2(c) ≤ c < f(c)

f2(c) ≤ f3(c)

for all µ ∈ [µ0, µ1], with f 2
µ0

(c) = c. c is called a superstable period two point.
We also want f 3

µ1
(c) = f2

µ1
(c) and so c is eventually fixed (but unstable).

Then there exists an invariant interval J = [f 2(c), f(c)] ⊂ I and every orbit start-
ing outside J is either asymptotic to a fixed point or eventually enters J .
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Now the set of periods of fµ0 is {1, 2} and the set of periods of fµ1 is N.

As µ goes from µ0 to µ1 we get a subinterval [µ̃0, µ̃1] for which

f2(c) < c ≤ f4(c) < f3(c) ≤ f5(c) < f(c)

for all µ ∈ [µ̃0, µ̃1], with f 4
µ̃0

(c) = c (c superstable period 4) and f 5
µ̃1

(c) = f3
µ̃1

(c)
(c is eventually period 2).

Let J1 = [f2(c), f4(c)] and J0 = [f3(c), f(c)]. Then there exists a fixed point
in [f4(c), f3(c)] and everything in [f 4(c), f3(c)] is either asymptotic to a fixed point
or eventually enters J0. We also have f(J0) = J1 and f(J1) ⊂ J0 (f exchanges the
intervals J0 and J1) so that f 2(J0) ⊂ J0.

Thus the set of periods of fµ for µ ∈ [µ̃0, µ̃1] is {1}∪ 2N. Consider f̃ = f2
∣∣
J0

for
µ ∈ [µ̃0, µ̃1]. It is unimodal and satisfies our original conditions.

Repeat this process to get a nested sequence of subintervals [µ (i)
0 , µ

(i)
1 ].

Denote the infinite intersection of all these subintervals by L. For µ ∈ L the set of
periods is the set of all of the powers of 2.

Denote the interval obtained at the N th stage of this process by J0...0 (N zeroes),
so that

KN =
2N−1⋃
n=0

fn(J0...0)

is the union of 2N disjoint intervals which are cyclically permuted by f .
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Now K∞ =
⋂

N KN is an invariant subset of fµ and is a Cantor set if the maximum
lengths of the subintervals tends to zero as N → ∞.2

3.7.1 Dynamics on K∞
Label the images of J0...0 at level N by

fn(J0...0) = Jbase 2 representation of n mod 2N written backwards.

For all a0, a1, . . . , am we have Ja0,a1,...,am ⊂ Ja0,a1,...,am−1 .
Define h : K∞ �→ Σ2 by

h :
⋂

m>0

Ja0,...,am �→ a,

so that h ◦ f = A ◦ h, where A : Σ2 �→ Σ2 is the adding machine defined by

A(a0a1a2 . . . ) = (a0a1a2 . . . ) + (100 . . . )

with carrying to the right. h is a conjugacy if K∞ is a Cantor set, else h is a
semiconjugacy.

2This can be proved for the quadratic family using negative Schwartzian derivative.
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Chapter 4

Two dimensional invertible
maps

The main difference between one dimensional maps and higher dimensional maps is
the possibility of both expansion and contraction at the same points in higher dimen-
sions.

4.1 The horseshoe map

Consider a map f : R2 �→ R2 with the following geometric properties.

f(S)∩S = V0 ∪ V1. S is not mapped into itself so we extend the mapping outside
S by considering a stadium D = S∪E1∪E2. We take f to be a contraction on E1∪E2

such that f(D) ⊂ D. f is 1 − 1 but not onto, so that f −1 is not globally defined.

4.1.1 Dynamics on S

If x ∈ E1 then f(x) ∈ E1. Thus by the contraction mapping principle there exists a
unique attracting fixed point p ∈ E1. If x ∈ E2 then f(x) ∈ E1 and so fn(x) → p.
For any x ∈ E1 ∪ E2, ω(x) = p.

What are the sets remaining in S for all time? The points of S which are mapped
into S are in f−1(S ∩ f(s)) = S ∩ f−1(S) = H0 ∪ H1 (the union of two horizontal
strips).

37
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We want f |H0∪H1
to be affine with derivative(±λ 0

0 ±µ

)
with a + sign on H0 and a − on H1.

f−2(S ∩ f(s) ∩ f2(S)) is four horizontal strips Hij , i, j ∈ {0, 1}.

In general

f−n(S ∩ f(S) ∩ · · · ∩ fn(S)) =
⋂

−n≤j≤0

f j(S)

is 2n strips of thickness µ−n. Define

ΛH = {x ∈ S : fn(x) ∈ S ∀n ≥ 0} =
0⋂

j=−∞
f j(S)

is a Cantor set of horizontal lines. Similarly,
⋂

0≤j≤n f j(S) consists of 2n vertical
strips of thickness λn and

ΛV =
∞⋂

j=0

f j(S)

is a Cantor set of vertical lines. The set of points which remain in S for all positive
and negative times is

Λ =
∞⋂

n=−∞
fn(S)

is a Cantor set of points.
Introduce Σ2 = {0, 1}Z, the set of doubly infinite sequences of 0’s and 1’s with

metric

d(a,b) =
∑
i∈Z

γi

4|i|

with

γi =

{
0 ai = bi

1 ai �= bi.
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Two sequences are close if they agree on a long central block. We define the in-
tinerary map h : Λ �→ Σ2 by

h(x) = (ai)i∈Z
if f i(x) ∈ Hai ∀i.

Theorem 4.1. f |Λ is topologically conjugate to the two-sided shift σ|Σ2
by h.

Proof. Exercise.

The hypotheses we took are not the strongest ones possible:
If there exist disjoint horizontal strips Hi such that f(Hi) = Vi for i = 1, . . . , N , f

contracts vertical strips and f−1 contracts horizontal strips uniformly then f possesses
an invariant set Λ such that f |Λ is topologically conjugate to σ|ΣN

.
It is possible to have geometric horseshoes that are conjugate to two-sided subshifts

of finite type.

Λ =
∞⋂

n=−∞
fn(S1 ∪ S2) f |Λ ∼ σ|ΣA

A =
(

1 1
1 0

)
.

4.2 The Hénon map

This is an example of a nonlinear map with a horseshoe. 1

1A doubly invariant set on which the dynamics are conjugate to σ.
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fa,b :
(

x
y

)
�→

(
a − by − x2

x

)
.

Theorem 4.2. If b �= 0 and

a ≥
(
5 + 2

√
5
) 1 + |b|2

4
,

R =
1 + |b| +√

(1 + |b|)2 + 4a

2
,

S =
{
(x, y) ∈ R2 : |x| , |y| ≤ R

}
and

Λ =
⋂
j∈Z

f j(S),

then fa,b|Λ ∼ σ|Σ2
.

Proof. Omitted (very technical).

This theorem can be made plausible by considering the case when a = 5, b = 0.3
and letting S = {(x, y) : |x| , |y| ≤ 4}.

4.3 (Un)stable manifolds and homoclinic points

In this section we suppose that f is at least C1.

Definition 4.3. A fixed point p for f : R2 �→ R2 is hyperbolic if the Jacobian matrix
Df(p) has no eigenvalues on the unit circle.

A periodic point p of least period n is hyperbolic if Df n(p) has no eigenvalues on
the unit circle.

There are three types of hyperbolic fixed points.

• p is a sink (or attracting) if all the eigenvalues of Df(p) lie inside the unit circle.

• p is a source (or repelling) if all the eigenvalues of Df(p) lie outside the unit
circle.

• p is a saddle otherwise.
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The following theorem is not proven (but reasonably obvious).

Theorem 4.4. Suppose f has an attracting (repelling) fixed point p. Then there exists
an open set about p in which all points tend to p under forward (backward) iteration of
f .

The largest such open set is called the stable set / basin of attraction (unstable set
/ basin of repulsion) and is written W S(p) (W U (p)).

4.3.1 Saddle points

Theorem 4.5. Stable/unstable manifold theorem Suppose that f has a saddle point P .
Then ∃ε > 0 and a C1 curve γU : (−ε, ε) �→ R2 such that:

1. γU (0) = p,

2. γ ′
U �= 0,

3. γ′
U (0) is an unstable eigenvector of Df(p),

4. γU is invariant under f−1,

5. f−n(γU ) → p as n → ∞ and

6. if |f−n(Q) − p| < ε for all n ≥ 0 then Q = γU (t) for some t ∈ (−ε, ε).

γU is called the local unstable manifold.
The stable manifold theorem is the image of the above theorem under

U �→ S f−1 �→ f unstable �→ stable.

The local stable/unstable manifolds have global counterparts.

Definition 4.6. The unstable manifold of p is

WU (p) =
⋃
n≥0

fn(γU )

and the stable manifold of p is

WS(p) =
⋃
n≥0

f−n(γS).

WS(p) and W U (p) frequently cross each other.

A point q ∈ W S(p) ∩ WU (p) \ {p} is called a homoclinic point to p. q is a
transverse homoclinic point if W S(p) and W U (p) intersect transversely.
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Since W S(p) and W U (p) are invariant then the points

O(q) = {fn(q) : n ∈ Z}

are homoclinic. O(q) is a homoclinic orbit with ω(O(q)) = α(O(q)) = p.
This leads to very complicated behaviour for the stable and unstable manifolds.

4.4 Transverse homoclinics imply chaos

The next theorem (which we do not prove) states that the existence of a transverse
homoclinic point implies the existence of a horseshoe.

Theorem 4.7 (Smale-Birkhoff). Let f : R2 �→ R2 be a diffeomorphism with a hyper-
bolic fixed point p and suppose that there exists a transverse homoclinic point q to p.
Then ∃n > 0 such that f n has an invariant set Λ on which f n is conjugate to the
two-sided shift on Σ2.

The idea of the proof is to find a picture which looks like Smale’s horseshoe for
some iterate of f .

Take a square U � p. Since f i(q) → p as i → ∞, q ∈ f l(p) for some l > 0.
Similarly q ∈ f−k(U) for some k > 0. Let n = l + k so that f n maps f−k(U) to
f l(U).

4.5 The Melnikov method

We have seen that a horseshoe arises from a transverse homoclinic point to a hyperbolic
periodic point. We will now obtain a method to verify that certain classes of ODE’s
have transverse homoclinic points.
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Consider a Hamiltonian system and add a periodic perturbation.

ż = XH(z) + εY (z, t), z =
(

x
y

)
, XH =

( ∂H
∂y

−∂H
∂x

)
, Y (z, t + T ) = Y (z, t),

(4.1)

where x ∈ R or S1 and y ∈ R. Assume that ż = XH(z) has a saddle equilibrium
P0 and that ż = XH(z) has a homoclinic orbit Γ for p given by z0(t).

We can express (4.1) as an autonomous system on R2 × S1
T :

{
ż = XH(z) + εY (z, t)
ṫ = 1.

(4.2)

We can also consider the stroboscopic (or Poincaré) map Q : Σ �→ Σ given by
z(t) �→ z(t + T ), where Σ is a cross-section.

ε = 0

Choose a normal n̂ to Γ for (4.1) and let π be the corresponding plane for (4.2). The
unperturbed problem has a one parameter family of homoclinic orbits z τ (t) = z0(t +
τ): we choose the origin of time for z0 at its intersection with the plane π. We want to
find out which homoclinics survive perturbation — if any?

ε small

By the IFT a closed orbit γε persists in R2×S1
T which is close to γ0. This corresponds

to a hyperbolic saddle for Q.
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γε is hyperbolic and the surfaces W S(γε) and W U (γε) vary smoothly with ε, so
the surfaces W S(γε) and W U (γε) cross π transversely.

We want to measure the separation between W U and W S and see if it changes sign
as τ varies. H is a good thing to use to measure this.

∆H(τ, ε) = H(zU
ε (τ)) − H(zS

ε (τ))

=
∫ τ

τ−nT

d
ds

(
zU

ε (s)
)

ds + H(zU
ε (τ − nT ))

+
∫ τ+nT

τ

d
ds

(
zS

ε (s)
)

ds − H(zS
ε (τ + nT )).

As n → ∞, zU
ε (τ − nT ) and zS

ε (τ + nT ) both tend to γε(τ). So

∆H(τ, ε) = lim
n→∞

∫ τ+nT

τ−nT

d
ds

(H(z̃ε(s))) ds, z̃ε =

{
zU

ε s < τ

zS
ε s > τ.

Now

d
ds

H(z̃ε(s)) = DH · (XH + εY )(z̃ε(s), s) = εDH · Y (z̃ε(s), s),

and ε → 0, z̃ε(s) → z0(s + τ). We write ∆H = εG(τ, ε) and define the Melnikov
function: M(τ) = G(τ, 0). Then

∆H = εM(τ) + O(ε2).

Theorem 4.8. If M has a zero at τ = τ0 and ∂M
∂τ

∣∣
τ0

�= 0 then γε has a transverse
homoclinic orbit which is near z0(τ0).

Proof. We know ∆H(τ, ε) = εG(τ, ε) and that M(τ0) = G(τ0, 0) and ∂G
∂τ

∣∣
τ0

�= 0.
We can therefore apply the IFT to find a curve τ(ε) such that G(τ(ε), ε) = 0 (for small
ε).

In this case we have a horseshoe (by the Smale-Birkhoff theorem (4.7)) and so
chaos.

Concluding remarks

We have found sets (horseshoes) on which the dynamics are chaotic. However the
horseshoe is repelling. Proving the existence of chaotic attractors is one of the major
challenges of Dynamical Systems.
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