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Abstract. The group method of solving ODEs without any quadrature goes back to Lie. In order to apply it, the
number of symmetries admitted by a given ODE has to be greater by one than the number of arbitrary constants
in the general solution of the equation. In this paper, we use the technique of canonical Lie–Bäcklund symmetries
that makes the proof of the statement concerning integrals of ODEs more evident. The method is extended to the
solution of system of ODEs with a small parameter of arbitrary order.
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1. Introduction

The symmetry properties provide different ways of finding the solution of a differential equa-
tion. If the number of admitted symmetries is sufficiently large, the solution of Ordinary
Differential Equation (ODE) can be found by means of only differentiation and algebraic
operations. It is well known that if the first-order ODE y′ = F(x, y) is invariant under Lie
point symmetry

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
,

then (η−Fξ)−1 is its integrating factor. The canonical Lie–Bäcklund operator corresponding
to X is

X − ξD = f (x, y)
∂

∂y
,

where D is a total derivative. The quotient of two integrating factors (η1 −Fξ1)/(η2 −Fξ2) =
C gives the solution of the equation [1, 2]. In terms of canonical symmetries, this solution has
the simple form f1/f2 = C.

Lie calculated integrals of nth-order ODE using determinants of coordinates of n + 1
admitted point symmetries. These formulas appear in [1] for a second-order ODE (see also
this result in [3]). As we have just noted for the first-order ODE, and this is valid for an ODE
of arbitrary order, consideration of canonical Lie–Bäcklund symmetries simplifies the form
of the obtained integrals. The technique of Lie–Bäcklund symmetries, developed in works of
Ibragimov (see, e.g., [4] and references therein), allows the evident extension of the method
in order to solve systems of ODEs. A similar approach based on approximate Lie–Bäcklund
symmetries (that were introduced in [5]) is applicable to equations with a small parameter.
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In this paper, we consider the system of nth-order ODEs, solved with respect to higher-
order derivatives

y
(n)

1 ≈ F1(x, y1, . . . , ym, . . . , y
(n−1)
1 , . . . , y(n−1)

m , ε),

y
(n)
2 ≈ F2(x, y1, . . . , ym, . . . , y

(n−1)
1 , . . . , y(n−1)

m , ε),

. . .

y(n)m ≈ Fm(x, y1, . . . , ym, . . . , y
(n−1)
1 , . . . , y(n−1)

m , ε). (1)

Here ε is a small parameter and the equality u ≈ v means that u = v + o(εp) with some
accuracy o(εp), p ≥ 0. Suppose that all functions to be considered are represented as series
in nonnegative powers of ε, e.g. in (1),

Fj = Fj,(0) + εFj,(1) + · · · + εpFj,(p) + o(εp), j = 1, . . . , m.

Approximate Lie–Bäcklund symmetry for system (1) is given by the operator [5]

X ≈
m∑
j=1

f j (x, y1, . . . , y
(n−1)
m , ε)

∂

∂yj
. (2)

Operator (2) is written in curtailed form (without prolongation to y′
j , y′′

j , . . . ) and the higher-
order derivatives are eliminated by means of system (1). The coordinates f j are defined by
determining equations [4]

X(y
(n)
j − Fj )

∣∣∣[y(n)≈F ]
≈ 0, j = 1, . . . , m, (3)

where [y(n) ≈ F ] denotes system (1) with its differential consequences. Operator (2) pro-
longed to the derivatives, has the form

X ≈
m∑
j=1

(
f j ∂

∂yj
+ Dxf

j ∂

∂y′
j

+ · · · +Dn
xf

j ∂

∂y
(n)
j

)
,

where

Dx = ∂

∂x
+

m∑
j=1

(
y′
j

∂

∂yj
+ · · · + y

(n)
j

∂

∂y
(n−1)
j

+ · · ·
)

is the operator of the total derivative.
For system (1), we prove that its integral can be found by means of differentiation and

algebraic operations from the coordinates of its mn + 1 Lie–Bäcklund symmetries. If one
has mn integrals constructed in this way, the general solution is a result of elimination of
lower-order derivatives.

2. Integrals of Systems of ODEs

The function ϕ(x, y1, . . . , ym, . . . , y
(n−1)
1 , . . . , y(n−1)

m , ε) is called an essential integral of sys-
tem (1), if
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1. ϕ is expanded into power series in ε with nonzero coefficient ϕ(0),
2. an approximate equality Dϕ ≈ 0 holds.

Here

D = ∂

∂x
+

m∑
j=1

(
y′
j

∂

∂yj
+ · · · + Fj

∂

∂y
(n−1)
j

)

is the operator of the total derivative by virtue of system (1). Using the operator D, determining
equations (3) take the form

Dnf j −
m∑
l=1

n−1∑
k=0

F
jy

(k)
l
Dkf l ≈ 0, j = 1, . . . , m. (4)

Let system (1) be invariant under r = mn + 1 approximate Lie–Bäcklund operators

Xi ≈
m∑
j=1

f
j

i (x, y1, . . . , y
(n−1)
m , ε)

∂

∂yj
, i = 1, . . . , r. (5)

We denote �i , i = 1, . . . , r, the determinant of the mn-dimensional matrix on coordinates of
prolonged operators (5), except for the operator Xi ,

�i ≈

∣∣∣∣∣∣∣∣∣∣∣∣

f 1
1 . . . f m

1 Df 1
1 . . . Dfm

1 . . . Dn−1f 1
1 . . . Dn−1f m

1
. . . . . . . . . . . .

f 1
i−1 . . . f m

i−1 Df 1
i−1 . . . Dfm

i−1 . . . Dn−1f 1
i−1 . . . Dn−1f m

i−1

f 1
i+1 . . . f m

i+1 Df 1
i+1 . . . Dfm

i+1 . . . Dn−1f 1
i+1 . . . Dn−1f m

i+1
. . . . . . . . . . . .

f 1
r . . . f m

r Df 1
r . . . Dfm

r . . . Dn−1f 1
r . . . Dn−1f m

r

∣∣∣∣∣∣∣∣∣∣∣∣
.

We deal with the operator D that implies all elements of this matrix depend only on x, y1, . . . ,
y(n−1)
m , ε.

PROPOSITION 1. If for r = mn + 1 operators (5) admitted by system (1), two determinants
�i1 , �i2 are such that �i1,(0) 
= 0, �i2,(0) 
= 0, then the quotient �i1/�i2 is an essential
integral of system (1).

Proof. Without loss of generality, we calculate only D�1. The derivative of the determ-
inant �1 is the sum of all mn successive determinants that are equal to �1 besides one of
the columns (from first to mnth), whose elements are changed by their derivatives. The first
m(n − 1) summands in this sum have two equal columns and are therefore equal to zero. In
the remaining expression

D�1 ≈
∣∣∣∣∣∣
f 1

2 . . . f m
2 . . . Dnf 1

2 Dn−1f 2
2 . . . Dn−1f m

2
. . . . . . . . .

f 1
r . . . f m

r . . . Dnf 1
r Dn−1f 2

r . . . Dn−1f m
r

∣∣∣∣∣∣
+
∣∣∣∣∣∣
f 1

2 . . . f m
2 . . . Dn−1f 1

2 Dnf 2
2 . . . Dn−1f m

2
. . . . . . . . .

f 1
r . . . f m

r . . . Dn−1f 1
r Dnf 2

r . . . Dn−1f m
r

∣∣∣∣∣∣+ · · ·

+
∣∣∣∣∣∣
f 1

2 . . . f m
2 . . . Dn−1f 1

2 Dn−1f 2
2 . . . Dnf m

2
. . . . . . . . .

f 1
r . . . f m

r . . . Dn−1f 1
r Dn−1f 2

r . . . Dnf m
r

∣∣∣∣∣∣
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we change Dnf
j

i according to (4). Since adding the linear combination of others to some
column does not effect the determinant,

D�1 ≈

∣∣∣∣∣∣∣
f 1

2 . . . f m
2 . . . F1y(n−1)

1
Dn−1f 1

2 Dn−1f 2
2 . . . Dn−1f m

2

. . . . . . . . .

f 1
r . . . f m

r . . . F1y(n−1)
1

Dn−1f 1
r Dn−1f 2

r . . . Dn−1f m
r

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
f 1

2 . . . f m
2 . . . Dn−1f 1

2 F2y(n−1)
2

Dn−1f 2
2 . . . Dn−1f m

2

. . . . . . . . .

f 1
r . . . f m

r . . . Dn−1f 1
r F2y(n−1)

2
Dn−1f 2

r . . . Dn−1f m
r

∣∣∣∣∣∣∣+ · · ·

+
∣∣∣∣∣∣
f 1

2 . . . f m
2 . . . Dn−1f 1

2 Dn−1f 2
2 . . . F

my
(n−1)
m

Dn−1f m
2

. . . . . . . . .

f 1
r . . . f m

r . . . Dn−1f 1
r Dn−1f 2

r . . . F
my

(n−1)
m

Dn−1f m
r

∣∣∣∣∣∣
≈ �1

m∑
j=1

F
jy

(n−1)
j

.

Similarly proceeding with other �i , we have

D�i ≈ �i

m∑
j=1

F
jy

(n−1)
j

, i = 1, . . . , r. (6)

Thus, by virtue of system (1), the derivative of �i1/�i2 equals

D

(
�i1

�i2

)
≈ �i2D�i1 −�i1D�i2

�2
i2

≈ �i2�i1 −�i1�i2

�2
i2

m∑
j=1

F
jy

(n−1)
j

≈ 0,

i.e. �i1/�i2 is an integral of system (1). This completes the proof. �
If all �1,(0), . . . ,�r,(0) are nonzero, we have mn integrals of system (1). After the elimination
of the m(n − 1) derivatives y′

1, . . . , y
′
m, . . . , y

(n−1)
1 , . . . , y(n−1)

m from the integrals

�1

�mn+1
≈ C1,

�2

�mn+1
≈ C2, . . . ,

�mn

�mn+1
≈ Cmn,

m relations between x, y1, . . . , ym, C1, . . . , Cmn remain. In this case, if

∂
(
�1,(0)

�r,(0)
,
�2,(0)

�r,(0)
, . . . ,

�mn,(0)

�r,(0)

)
∂(y1, . . . , ym, . . . , y

(n−1)
1 , . . . , y

(n−1)
m )


= 0,

the general solution of (1) is obtained without any quadrature.
Remark. In order to find integrals of the system of different order ODEs,

y
(nj )

j ≈ Fj (x, y1, . . . , y
(n1−1)
1 , . . . , ym, . . . , y

(nm−1)
m , ε), j = 1, . . . , m,

the number of admitted symmetries has to be equal to r = n1+· · ·+nm+1. The corresponding
(r − 1)-dimensional determinants �i , i = 1, . . . , r, consist of f j

k , Df j

k ,. . . , Dnj−1f
j

k , j =
1, . . . , m, k 
= i.
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The described method gives the solution of exact ODEs if we assume ε = 0 and consider
all equalities as exact.

EXAMPLE 1. The exact equation

y′′ = 1

2
(ae−2y − 1 − y′2), a = const, (7)

admits a Lie algebra generated by the operators

X1 = ∂

∂x
, X2 = sin x

∂

∂x
+ cos x

∂

∂y
, X3 = cos x

∂

∂x
− sin x

∂

∂y
.

The corresponding canonical Lie–Bäcklund operators have the form

X1 = y′ ∂
∂y

, X2 = (y′ sin x − cos x)
∂

∂y
, X3 = (y′ cos x + sin x)

∂

∂y
.

Here m = 1, n = 2, F = (1/2)(ae−2y − 1 − y′2) and

�1 =
∣∣∣∣ y′ sin x − cos x (1 + F) sin x + y′ cos x
y′ cos x + sin x (1 + F) cos x − y′ sin x

∣∣∣∣ = −1

2
(a e−2y + 1 + y′2),

�2 =
∣∣∣∣ y′ F

y′ cos x + sin x (1 + F) cos x − y′ sin x

∣∣∣∣ = y′ cos x − 1

2
(a e−2y − 1 + y′2) sin x,

�3 =
∣∣∣∣ y′ F

y′ sin x − cos x (1 + F) sin x + y′ cos x

∣∣∣∣ = y′ sin x + 1

2
(ae−2y − 1 + y′2) cos x.

One can express

y′ = C1 cos x + C2 sin x

C1 sin x − C2 cos x − 1

from the integrals �2/�1 = C1, �3/�1 = C2 and then obtain the general solution

y = ln(C1 sin x − C2 cos x − 1) − 1

2
ln

(
1 − C2

1 − C2
2

a

)

of Equation (7) from one of these integrals.

EXAMPLE 2. The system of two second-order ODEs

u′′ = 2u′2

u+ v
+ 4ε

βu′

u+ v
+ o(ε),

v′′ = 2v′2

u+ v
− 4ε

βv′

u+ v
+ o(ε), β = const, (8)

is invariant (with first-order precision) under the operators

X1 ≈ ∂

∂u
− ∂

∂v
, X2 ≈ ∂

∂x
, X3 ≈ (u+ εβx)

∂

∂u
+ (v − εβx)

∂

∂v
,
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X4 ≈ x
∂

∂x
− εβx

∂

∂u
+ εβx

∂

∂v
, X5 ≈ (u2 + 2εβxu)

∂

∂u
+ (2εβxv − v2)

∂

∂v
.

The canonical form of the operators X2, X4 is

X2 ≈ u′ ∂
∂u

+ v′ ∂
∂v

, X4 ≈ (xu′ + εβx)
∂

∂u
+ (xv′ − εβx)

∂

∂v
.

Since one of the corresponding determinants

�1 ≈ 2u′v′(u2v′ − v2u′) + 2εβ((uv′ + vu′)2 − u′v′(u2 + v2)+ 2xu′v′(uv′ + vu′)),

�2 ≈ −2u′v′(u+ v)2 + 2εβ(u′ − v′)(u+ v)2,

�3 ≈ −4u′v′(uv′ + vu′)+ 4εβ(vu′2 − uv′2 + 2u′v′(u − v)+ xu′v′(u′ − v′)),

�4 ≈ 0, �5 ≈ 2u′v′(v′ − u′)+ 2εβ(u′2 + v′2 − 4u′v′)

equals zero, there are only three integrals of system (8). The equations �1/�5 ≈ C1, �2/�5

≈ C2, �3/�5 ≈ 2C3 provide expressions for the derivatives

u′ ≈ C3 + u

C2
(u+ v)+ εβ

(
x

C2
(u + v)− 1

)
,

v′ ≈ C3 − v

C2
(u+ v)+ εβ

(
x

C2
(u+ v)+ 1

)

and a relation between u, v,

uv + C3(v − u)− C1 + εβx(v − u − 2C3)− εβC2 ≈ 0.

Hence the solution of system (8) is obtained by one quadrature (ω = ax + C4):

u ≈ −C3 −
(
C2a + εβ

2a

)
ctgω + ε

2
βx(ctg2ω − 1),

v ≈ C3 −
(
C2a + εβ

2a

)
tgω + ε

2
βx
(
1 − tg2ω

)

 if C1 − C2

3 = a2C2
2 ;

u ≈ −C3 −
(
C2a − εβ

2a

)
cthω − ε

2
βx(1 + cth2ω),

v ≈ C3 +
(
C2a − εβ

2a

)
thω + ε

2
βx(1 + th2ω)


 if C1 − C2

3 = −a2C2
2;

u ≈ −C3 + εβC4, v ≈ C3 + C2

x + C4
+ ε

3
β(2x − C4) if C1 − C2

3 = 0.

Remark. The statement immediately follows from relation (6).



Solution of ODEs with a Large Lie Symmetry Group 293

PROPOSITION 2. If system (1) is invariant under mn operators (5) and its right-hand side
satisfies

∑m
j=1 Fjy(n−1)

j
≈ 0, then the determinant

I ≈
∣∣∣∣∣∣
f 1

1 . . . f m
1 . . . Dn−1f 1

1 . . . Dn−1f m
1

. . . . . . . . .

f 1
mn . . . f m

mn . . . Dn−1f 1
mn . . . Dn−1f m

mn

∣∣∣∣∣∣ (9)

is an integral of system (1).

EXAMPLE 3. The system of two ODEs

u′′ = α

v − u

(
u′2 + 2εβu′)+ o(ε),

v′′ = −2α

v − u

(
u′v′ + εβ(u′ + v′)

)+ o(ε), α, β = const, (10)

satisfies the condition of Proposition 2 and admits (with an accuracy o(ε)) four operators

X1 ≈ ∂

∂u
+ ∂

∂v
, X2 ≈ (u+ εβx)

∂

∂u
+ (v + εβx)

∂

∂v
,

X3 ≈ ∂

∂x
, X4 ≈ x

∂

∂x
− εβx

∂

∂u
− εβx

∂

∂v
.

The canonical form of operators X3, X4 is

X3 ≈ u′ ∂
∂u

+ v′ ∂
∂v

, X4 ≈ x(u′ + εβ)
∂

∂u
+ x(v′ + εβ)

∂

∂v
.

According to (9) an integral of (10) is equal to

I ≈

∣∣∣∣∣∣∣∣
1 1 0 0
u+ εβx v + εβx u′ + εβ v′ + εβ

u′ v′ u′′ v′′
x(u′ + εβ) x(v′ + εβ) xu′′ + u′ + εβ xv′′ + v′ + εβ

∣∣∣∣∣∣∣∣
≈ (v − u)(u′′(v′ + εβ) − v′′(u′ + εβ)).

The substitution of u′′, v′′ from system (10) yields the following integral of (10)

I ≈ 3α(u′2v′ + εβ(u′2 + 2u′v′)).

3. Conclusion

In this work we show that the general solution of system (1) with mn + 1 Lie–Bäcklund
symmetries in some cases can be found without integration. For the particular type of system
(1), invariant under mn symmetries, its integral is also obtained by means of only algebraic
operations. Note that the symmetries are not required to span the Lie algebra. The method
is applicable, without much modification to ODEs with a small parameter, invariant under
approximate Lie–Bäcklund symmetries.
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