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APPROXIMATE SYMMETRIES
UDC 517.958

V. A. BAlKOV, R. K. GAZIZOV, AND N. KH. IBRAGIMOV

ABSTRACT. A theory, based on the new concept of an approximate group, is developed
for approximate group analysis of differential equations with a small parameter. An
approximate Lie theorem is proved that enables one to construct approximate symme-
tries that are stable under small perturbations of the differential equations. The use
of the algorithm is illustrated in detail by examples: approximate symmetries of non-
linear wave equations are considered along with a broad class of evolution equations
that includes the Korteweg-de Vries and Burgers-Korteweg-de Vries equations.

Tables: 2. Bibliography: 4 titles.

Introduction

The methods of classical group analysis enable one to distinguish among all equa-
tions of mathematical physics the equations that are remarkable with respect to their
symmetry properties (see, for example, [1], [2], and [3]). Unfortunately, any small
perturbation of an equation disturbs the group admitted, and this reduces the prac-
tical value of these "refined" equations and of group-theoretic methods in general.
Therefore, it became necessary to work out group analysis methods that are stable un-
der small perturbations of the differential equations. In this article we develop such
a method that is based on the concepts of an approximate group of transformations
and approximate symmetries.

The following notation is used: ζ = ( ζ ' , . . . , z N ) is the independent variable; ε
is a small parameter; all functions are assumed to be jointly analytic in their argu-
ments; the vector expression ξ(θ jdz) is used, along with ξ]ί{β jdzk) for expressions
of the type γ^ξΙζ(δ/ΘζΙί). Everywhere below, θρ(ζ,ε) denotes an infinitesimally
small function of order ερ+\ ρ > 0, i.e., θρ(ζ,ε) = ο(ερ), where this equality (in the
case of functions analytic in a neighborhood of ε = 0) is equivalent to any of the
following conditions:

M
or there exists a constant C > 0 such that

\ep(z,e)\<C\e\"+l;

or there exists a function φ(ζ,ε) analytic in a neighborhood of ε = 0 such that

θρ(ζ,ε) = ερ+ιφ(ζ,ε). (0.1)
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Everywhere below, the approximate equality / « g means the equality /(ζ, ε) =
g{z, ε) + ο(ερ) for some fixed value of ρ > 0.

The following notation is also used in §5: t and χ are independent variables; u
is a differentiable variable with successive derivatives (with respect tox) u\, «2,.. -:
ua+\ = D(ua), wo = M, and Z> = d/dx + Y2a>oua+\d/dua; sf is the space of dif-
ferentiable functions, i.e., analytic functions of any finite number of variables t,x, u,
«!,...; also ft = d/dt, fx = d/dx, fa = df/dua, and /. = Ea>o fJ*·

Below we use the following variant of the theorem on continuous dependence of
the solution of the Cauchy problem on the parameters.

THEOREM 1. Suppose that the functions f{z,e) and g(z,s), which are analytic in
a neighborhood of the point (z0,0), satisfy the condition

and let ζ = z(t, ε) and ζ = z(t, ε) be the solutions of the respective problems

dz/dt = f(z,e), ζ | ί = ο = α(ε)

and
dz/dz = g(z,e), ζ\,=0 = β(ε),

where α(0) = β(0) = z0 and β (ε) = α(ε) + ο{ερ). Then

z{t,e) = ζ(ί,ε) + ο(ερ).

We consider the approximate Cauchy problem

dz/dtKf(z,e), (0.2)

z|,=o«a(e), (0.3)

which is defined as follows. The approximate differential equation (0.2) is understood
as a family of differential equations

dz/dt = g(z,S) withg(z,e)«/(z,e); (0.2')

the approximate initial condition (0.3) is understood similarly, namely,

z|,=0 = jff(e) with β(ε) « «(ε). (0.3')

The approximate equality in (0.2') and (0.3') has the same degree of accuracy ρ
as in (0.2) and (0.3). According to Theorem 1, the solutions of all the problems
of the form (0.2'), (0.3') coincide to within ο(ερ). Therefore, the solution of the
approximate Cauchy problem (0.2), (0.3) is defined to be the solution of any of the
problems (0.2'), (0.3'), considered to within ο(ερ). Theorem 1 gives us the uniqueness
(with the indicated accuracy) of this solution.

§1. One-parameter approximate groups

Let z' = g(z, ε, a) be given (local) transformations forming a one-parameter group
with respect to a, so that

g(z,e,0) = z, g(g(z^,a)^,b) = g(z,e,a + b), (1.1)

and depending on the small parameter ε. Suppose that /' « g, i.e.,

f(z,S,a) = g(z^,a) + o(En. (1.2)

Together with the points z' we introduce the "close" points ζ defined by

z = f(z,e,a). (1.3)
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It is easy to show by substituting (1.2) in (1.1) that (1.3) gives an approximate group
in the sense of the following definition.

DEFINITION 1. The transformations (1.3), or

z'*if(z,e,a), (1.3')

form an approximate one-parameter group with respect to the parameter a if

f(z,e,0)*z, (1.4)

f(f(z,e,a),e,b)*f(z,e,a + b), (1.5)

and the condition f(z, ε, α) κ, ζ for all ζ implies that a = 0.
The main assertions about the infinitesimal description of local Lie groups re-

main true upon passing to approximate groups, with the exact equalities replaced by
approximate equalities.

THEOREM 2 (an approximate Lie theorem). Suppose that the transformations (1.3')
form an approximate group with the tangent vector field

%/- ~\~ df(z,e,a)

* v ' ' da

Then the function f(z,s,a) satisfies

df(z,e,a)

(1.6)
£Z=0

d a ξ(Αζ,ε,α),ε). (1.7)

Conversely, for any (smooth) function ξ(ζ, ε) the solution (1.3') of the approximate
Cauchy problem

άζ'/άα*ξ{ζ',ε), (1.8)

z ' | a = 0 « z (1.9)

determines an approximate one-parameter group with group parameter a.

REMARK 1. Equation (1.8) will be called the approximate Lie equation.
PROOF. Suppose that f(z, ε, a) gives an approximate group of transformations

(1.3'). The (1.5) takes the form

df(f(z,e,a),e,b)
f(f(z,s,a),e,0)

db
•b + o(b)

b=0

r, Ν 9f(z,e,a) , ...
« /(ζ, ε, a) + V • b + o(b)

after the principal terms with respect to b are singled out. The approximate equation
(1.7) is obtained from this by transforming the left-hand side with the help of (1.4)
and (1.6), dividing by b, and passing to the limit as b —* 0.

Conversely, suppose that the function (1.3') is a solution of the approximate prob-
lem (1.8), (1.9). To prove that f(z,e,a) gives an approximate group it suffices to
verify the approximate equality (1.5),

f(f(z,e,a),e,b)^f(z,e,a + b).

Denote by x(b,e) and y(b,e) the left-hand and right-hand side of (1.5), regarded (for
fixed ζ and a) as functions of (b, ε). By (1.8), they satisfy the same approximate
Cauchy problem:

^x/^b^ξ(x,ε), x\b=0 « g(z,e,a),

dy/db κξ{γ,έ), y\b=o~ g(z,e,a).
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Therefore, by Theorem 1, we have the approximate equality x{b,e) « y{b,e), i.e.,
the group property (1.5).

§2. An algorithm for constructing an approximate group

The construction of an approximate group from a given infinitesimal operator is
implemented on the basis of the approximate Lie theorem. To show how to solve
the approximate Lie equation (1.8) we consider first the case ρ — I.

We seek the approximate group of transformations

z /«/ 0(z,fl) + e/1(z,a)J (2.1)

determined by the infinitesimal operator

Χ = (ξο(ζ) + εξι(ζ))(Θ/8ζ). (2.2)

The corresponding approximate Lie equation

can be rewritten as the system

dfo/da « Wo), df/da « ξ'0(/0)Λ + £,(/0)

after singling out the principal terms with respect to ε, where ξ'ο is the derivative of
ξ0. The initial condition z'\a=o ~ ζ gives us that fo\a=o & ζ and fi\a=o ~ 0-

Thus, according to the definition of a solution of the approximate Cauchy prob-
lem (§1), to construct the approximate (to within ο (ε)) group (2.1) from the given
infinitesimal operator (2.2) it suffices to solve the following (exact) Cauchy problem:

§ | = So(/o), ^ = & ( / o ) / i + £ i ( / o ) , fo\a=o = z, /iU=o = O. (2.3)

EXAMPLE 1. Suppose that Ν — 1 and X = (1 + ex)(d/dx). The corresponding
problem (2.3)

dfo/da = 1, df/da = f0, fo\a=o = z, f\ \a=o = 0

is easily solved, and gives us fo = χ + a and f = xa + a2/2. Consequently, the
approximate group is determined by

χ' « χ + a + (χα + α2/2)ε.

This formula is clearly the principal term in the Taylor series expansion with respect
to ε of the exact group

x1 = x e

a t + = (x + a) + a [x + - j ε + y (̂ x + ̂  j ε2 + • · • ,

generated by the operator X — (1 + ex)(d/dx).
EXAMPLE 2. We construct the approximate group of transformations

x' ~ fo {x,y, a) + ε/,1 (x,y, a), y1 « fo

2(x,y, a) + ε/,2(χ,y, a)

determined by the operator

X = (l+ ex2){d/dx) + exy(d/dy)

in the (x,>>)-plane. After solving problem (2.3)

dti_, df2 _ dp, , 2 df2

 1 2

-da"1' "da"0' ~da--(JoU -da--JoJo>
\a=0 = X, fo\a=Q = y, / / U=0 = 0, f\\a=0 = 0,
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we get that

χ' « χ + a + (x2a + χα2 + α3/3)ε, y' « y + {xya + ya2/2)e.

To construct an approximate (to within ο(ερ)) group for arbitrary ρ we need a for-
mula for the principal (with respect to ε) part of a function of the form
F(yo + eyi + • • • + εργρ). By Taylor's formula,

ρ ,

F{y0 + eyi + • • • + εργρ) = F(y0) + ^ — ir(<T)(y0)(eyi + · · · + εργρ)
σ + ο(ερ), (2.4)

|σ| = 1 σ '

where

/ c = l

σ = (σι,..., σ/ν) is a multi-index, |σ| = σι + • · • + σ/ν, σ! = σ^ · · · σ/̂ !, and the indices
σι,..., σ Ν run from 0 to p. In the last expression we single out the terms up to order
ερ:

k=\ \iu...,lak = \

\ Ν ρ

V f * V v vk \ =
k=\

Σ
j=W\ \V\=J

Here the notation is

where the indices i\,..., i<,k run from 0 to p, and ν — ν (σ) = [υ\,..., ΐ̂ Λ·) is a multi-
index associated with the multi-index σ in such a way that if the index as in σ is equal
to zero, then the corresponding index vs is absent in v, and each of the remaining
indices v^ takes values from σ^ to p; for example, for σ = (0, σι, σι, 0,..., 0) with
σ2, σ-i φ 0 we have that ι/ = (ι/2, ̂ 3), so that y(i/) = J(

2

i/2)y(i3)·

Substituting (2.6) into (2.4) and interchanging the summations over σ and j , we
get the following formula for the principal part:

F(y0 + ey, + • · • + epyp) = F(y0) + ^2ε' Έ ^ ( σ ) ( > Ό ) Ε ^ ) + °(ε / 7)' ( 2 · 8)
7=1 |σ| = 1 ' μΐ = ;
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where the notation in (2.5) and (2.7) has been used. For example,

e2y2

k=\

+ ε
2 Σ

\fc=l

/ Ν

Σ

3*·(3Ό),
dzk '

dF(y0),

dzk '

Ν Ν

k=l 1=1

, Ν Ν Ν

4ΣΣΣ
d2F(y0)

k=\ 1=1 m=\

We also need a generalization of (2.8) for the expression

ρ

Σ<
ι=0

Applying (2.8) to each function Fj and introducing for brevity the notation

j ,

\a\ = l ' Μ =ν

we have that

Ρ

Σ'
1=0

epyp)

i=0

«ί>^(>
ΐ=0 ι=0 7=1

to within ο(ερ). The standard transformations are used to order the last term with
respect to powers of ε:

p—\ p-i p—\ ρ ρ I—I pi

Σ Σ «/+^ = Σ Σ * ν,,- = Σ <' Σ τ/-,, = Σ«' Σ ^ ·
1=0 7=1 (=0/=ΐ+1 /=1 ί=0 /=! 7=1

As a result, we arrive at the following generalization of (2.8):

ρ

i=0

ι=1 7=1 |σ | = 1

(2.9)

with the same notation as in (2.5) and (2.7).
We now return to the construction of an approximate group to within ο(ερ) with

an arbitrary p. For the infinitesimal operator
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the approximate group of transformations

z' « fQ(z,a) + e/i(z,fl) + · • · + epfp(z,a) (2.10)

is determined by the approximate Lie equation

i-Ak + c/i + • • • + ερ/ρ) « ^ β'ί'·(/ο + e/i + · · · + ε'/ρ)· (2.11)
ί=0

Transforming the right-hand side of this equation according to (2.9) and equating
the coefficients of like powers of ε, we get the system of equations (in the notation
of (2.5) and (2.7))

dfo/da = Wo), (2.12)

Σ Σ ^-j(fo

which is equivalent to the approximate equation (2.11).
Accordingly, the problem of constructing the approximate group (2.10) reduces to

the solution of system (2.12), (2.13) under the initial conditions

/θ|α=Ο = Ζ, fi\a=0 = 0, 1 = 1 , . . . , p . (2.14)

For clarity we write out the first few equations of system (2.12), (2.13):

dfo/da = £o(/o),

df\ \^ d£o(/o) rk

k=\ \ΖΛ·>)

dfi _ <Λ 9^o(/o) f/t ΐ Λ Λ d2£o(/o) skfi.sr

EXAMPLE 3. Let us write out system (2.12), (2.13) for the operator

in Example 2. In this case Ν = 2, ζ = (jc,y), /fc = (/fc',/fc

2), k = 0 , 1 , . . .,ρ, ξ0 - (1,0),

ί ι = (x 2 ,xy), and ̂  = 0 for / > 2. From (2.15),

dfo

l/da=l, dfi/da = 0;

dfUda = {$)\ dfl/da = fUh
dfl/da = 2/01/,1, dfi /da = ft ft + ft ft.

For i > 3 equation (2.13) simplifies because of the special form of the vector ξ.
Namely, since ξο = const and ξι = 0 for / > 2, only terms with j = i - 1 are present
on the right-hand side of (2.13), and the latter can be written in the form

Ta ~ 2-* Vr{ {h) ^ i(vy

|σ | = 1 | ν | = ί — 1

A further simplification of these equations has to do with the form of the vector ξ\:
since ξ\ = x2 and ξ2 = xy, only σ = (1,0) and σ = (2,0) are used in the expression
for the first component of the equations under consideration, and only σ equal to
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(1,0), (0,1), and (1,1) in the expression for the second component. As a result we
have the following recurrence system:

t\
da ~ZJ0Ji-l+ Z^

ί Ι + ί 2 = ί—1

EXAMPLE 4. We compute the approximate group of transformations of order ερ

generated by the operator X — (1 + ex)(d/dx) in Example 1. In this case system
(2.12), (2.13) takes the form

dfo dfi

and, under the initial conditions (2.14), gives us f = xa'/i\+a'+l/(i+l)\, i = 0, ...,p.
The corresponding approximate group of transformations is determined by

a ,
ε'.

§3. A criterion for approximate invariance

DEFINITION 2. The approximate equation

F ( z , e ) « 0 (3.1)

is said to be invariant with respect to the approximate group of transformations z' «
f(z,e,a) if

F(f(z,e,a),e)*0 (3.2)

for all ζ = (ζ 1 , . . . , zN) satisfying (3.1).

THEOREM 3. Suppose that the function F(z,e) = (F\z,s),...,Fn(z,s)), η < N,
which is jointly analytic in the variables ζ and ε, satisfies the condition

rankF'(z,0)|f(z,O)=o = «, (3.3)

where F'(z,e) = \\dF"(z,e)/dz'\\ for ν = I,..., n and i = 1,... ,N. For the approxi-
mate equation

Ρ(ζ,ε) = ο(εη (3.1)

to be invariant under the approximate group of transformations

+ ο{ε"), (3.4)
α=0

νν/7Λ infinitesimal operator

~ ' ' ( Ζ ' ε ) 9 ζ ' ξ ~

/ί w necessary and sufficient that

ΧΡ(ζ,ε)\(3Λ]=ο(εη. (3.5)

PROOF. Necessity. Suppose that condition (3.2) for invariance of the approximate
equation (3.1) holds:
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By differentiation with respect to a at a = 0, this yields (3.5).
Sufficiency. Suppose now that (3.5) holds for a function F(z,e) satisfying (3.3).

Let us prove the invariance of the approximate equation (3.1). To do this we intro-
d u c e t h e n e w v a r i a b l e s y 1 = Fl(z,e),...,y" = Fn(z,s), y n + l = Hl{z,e),...,yN =
HN~n(z, ε) i n s t e a d of zl,..., zN, c h o o s i n g Η1 (ζ, ε ) , . . . , ΗΝ~η(ζ, ε) so t h a t t h e func-
tions Fl,...,Fn, Hl,...,HN~" are functionally independent (for sufficiently small
ε this is possible in view of condition (3.3)). In the new variables the original ap-
proximate equation (3.1), the operator (3.4), and condition (3.5) take the respective
forms

yv = ev

p{y,B), v=\,...,n, (3.1')

Χ^η'^,ε) — , where ^ ^ ( χ , ε ) ^ ^ , (3.4')

ην(θι

ρ,...,θ"ρ,ν
η+ι,...,γΝ) = ο{εη, u=l,...,n, (3.5')

where θρ = ο(ερ) (see (0.1)). By Theorem 2, the transformations of the variables y
are determined from the approximate Cauchy problem

dy'vlda^nv{y'\...,/",yln+l,. ..,y'N,e), ylv\a=0 = θν

ρ(γ,ε),

dy'k/da^^(yn,...,y"',y'n+l,...,y'N,e), y'k\a=0 = yk, k = n + l,...,N,

where the initial conditions for the first subsystem are written with (3.1) taken into
account. According to Theorem 1, the solution of this problem is unique (with
the accuracy under consideration) and has the form y' = (θρ, ...,θρ, yn+1,.. .,yN)
in view of (3.5'). Returning to the old variables, we get that Fv(z',e) = ο(ερ),
ν — 1, ...,n, i.e., the approximate equation (3.2). The theorem is proved.

EXAMPLE 5. Let Ν — 2, ζ — (x,y), and ρ = 1. We consider the approximate
group of transformations (see Example 2 in §2)

χ' κχ + α + (χ2α + χα2 + α3/3)ε, y'κ,γ + {xya + ya2/2)ε (3.6)

with the infinitesimal operator

X = (\+εx2){^/^x) + εxy(^/^y). (3.7)

Let us show that the approximate equation

F{x,y,e) =γ2+ε-εχ2- 1 = ο(ε) (3.8)

is invariant v/ith respect to the transformations (3.7).
We first verify the invariance of (3.8), following Definition 2. For this it is conve-

nient to rewrite (3.8), while preserving the necessary accuracy, in the form

F(x,y, ε) Ξ y2 - ε(χ2 - y2 Iny) - 1 « 0. (3.8')

After the transformation (3.6) we have that

F(x',y',e) =y12 + ε{χ'2 -y'2lny')- 1 « y2 - ε{χ2 - y2 Iny) - 1

+ ε{2χα + a2){y2 - 1)

= F(x,y, s) + ε{2χα + a2)[F(x,y, ε) + ε{χ2 - y2 Iny)]

= [1 +ε(2αχ + a2)]F(x,y, ε) + ο(ε),

which implies the necessary equality (3.2): F(x',y',e)\{i^) « 0.
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The function F(x,y,e) satisfies condition (3.3) of Theorem 3; therefore, the in-
variance can be established also with the help of the infinitesimal criterion (3.5). For
the operator (3.7) we have that

XF = (2 + ε)εχγ2+ε - 2ex(l + εχ2) = 2εχ(γ2+ε - ο{ε) = ο(ε),

so that the satisfaction of the invariance criterion (3.5) is obvious.
According to Theorem 3, the construction of the approximate group leaving the

equation F(z, ε) « 0 invariant reduces to the solution of the defining equation

XF(x,e)\F^0~0 (3.9)

for the coordinates ξΙί(ζ,ε) of the infinitesimal operator X = ξ(0/0ζ). To solve the
defining equation (3.9) to within ο(ερ) it is necessary to represent z, F, and ξ* in the
form

Z~yo+£yl+...+ePyp, F(z, fi) ~ £ fi«>(.(z)> £*(Z, fi) « £ V # ( Z ) , (3.10)
/=0 i=0

substitute them in XF, and single out their principal terms. We have

XF = ς dzk

Γ Ρ

.i=0

Using (2.9) and the notation

= if(

spyp)

we get that

which implies

XF =

Σ'
J=2

+ (3.13)

Combining (3.9)—(3.13) and (2.9), we arrive at the following form of the defining
equation:

= 0, / = 2,... ,ρ;
(3.14)

/+;·=/
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these equations hold on the set of all yo,... ,yp satisfying the system

i J ι

F0(y0) = 0, Fi(y0) + Σ Σ ^\Fi-M^ Σ >V)> i=U-..,P, (3.15)

which is equivalent to the approximate equation (3.1). Thus, the problem of solving
the approximate defining equation (3.9) has been reduced to the solution of the
system of exact equations (3.14), (3.15).

We write the defining equations for ρ = 1. Equations (3.14) and (3.15) give us(')

(3.16)

dzk ^i ^ dzk J 0 (3.17)

under the conditions

F0(yQ) = 0, Fl(yo)+y[^^- = 0. (3.18)

EXAMPLE 6. Let us again consider the approximate equation (3.8)

F(x,y,e) = y2+e - εχ2 - 1 = o(e)

from Example 5. In the notation of (3.10) (see also (3.8')) we have

F0(x,y)=y2-l, Fx(x,y) = y2lny -x2.

Since y > 0, the equations (3.18) imply that yo = 1 and yt — XQ/2, and the defining
equations (3.16) and (3.17) can be written in the form

ioixo,yo) = u> w = u,
d x (3.19)

xo, JO) - xoti>{xo,yo) + ψξ»{χ^ϋ) = ο

after splitting with respect to the free variable jq and substituting y\ = XQ/2. Any
operator

X = &(x,y) + εζ\(χ,γ)]-^ + [il{x,y) + εξ2(χ,Υ)]~

with coordinates satisfying (3.19) with yo = 1 and arbitrary values of XQ generates an
approximate group leaving (3.8) invariant (to within ο (ε)). For example,

dy' L Jdx ' ν >dy

are such operators, along with (3.7).
REMARK 2. If some variables zk do not enter in the equation F(z,e) « 0, then it

is unnecessary to represent zk in the form 5Z/>oyfe' in the defining equation (3.14).

§4. Approximate symmetries of the equation un + eut = {(p{u)ux)x

The approximate symmetries (understood either as admissible approximate groups
or as their infinitesimal operators) of differential equations can be computed accord-
ing to the algorithm in §3 with the use of the usual technique for prolongation of

(')Here, as everywhere in this section, the following notation is used for brevity:

Λ' Ν



438 V. A. BAlKOV, R. Κ. GAZIZOV, AND Ν. ΚΗ. IBRAGIMOV

the infinitesimal operators by the necessary derivatives. Below, we consider approxi-
mate symmetries of first order (p = 1) and classify according to such symmetries the
second-order equations

utt + ειι, - {φ(ιι)ιιΛ
φ Φ const, (4.1)

with a small parameter, which arise in various applied problems (see, for example,
[4]). The infinitesimal operator of an approximate symmetry is sought in the form

X = ( ^ 4- e£j) \- (<j[2 _|_ e£2-j 1_ ̂  _|_ £η^—_ (4.2)

The coordinates ξ and η of the operator (4.2) depend on t, x, and u and occur in the
defining equations (3.16) and (3.17), in which

ζ = (t,x,u,ut,ux,ult,u,x,ux_ Fo = utt - {<p{u)ux)x = ut

according to Remark 2 (see §3), it suffices to carry out the decomposition ζ =
only for the differentiable variable (since t and χ do not appear explicitly in (4.1)):
u = UQ + ε«ι, ux = («ο)* + ε("ι)χ> and so on.

Equation (3.16) is the defining equation for the operator

admitted by the zero approximate of equation (4.1), i.e., by the equation

utt = {<p{u)ux)x, φ / c o n s t . (4.4)

Consequently, the first step in the classification of the equations (4.1) according to
approximate symmetries is the classification of the equations (4.4) according to exact
symmetries. The second step is to solve the defining equation (3.17) with known Fo

and with values ξ^, ξ%, ηο of the coordinates of the operator (4.3).
A group classification of the equations (4.4) (according to exact point symmetries)

was obtained in [4], and its result can be written in the form of Table 1 with the use
of dilations and translations.

TABLE 1

Group classification of the equations (4.4)

1

2

3

4

k =

<p(u)

Arbitrary
function

ku°
4

ku~i

ku~4

keu

id

C,f +

C^ + C

C,/ +

- ± 1, σ is an arbitrary

c2

c2

c2

c2

ίο2

CiX + C3

C^x + C4

C 3 x 2 + C 4 x -f

C4x + C5

C3x + C4

parameter, and Q , . . . ,

c5

no

0

— ( C 3 — C[ ) U

— -zyK^-^X -\- C4 — C\)U

2(C 3 -Q)

const

We now pass to the second step in constructing approximate symmetries. Let us
first consider the case of an arbitrary function <p(u). Substituting in (3.17) the values
$ = Cit + C 2, ξΐ = C\x + C 3, and η0 = 0, we get that d = 0, ξ\ = Kxt + K2,
ξ? = K\X + Κ?,, and η\ = 0, where K, = const. We now observe that equation
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(4.1) admits together with any admissible (exactly or approximately) operator X also
the operator εΧ; such operators will be assumed to be inessential and omitted. In
particular, the operators e(d/dt) and εψ/dx) are inessential, so that the constants K2

and KT, in the solution of the defining equation (3.17) can be set equal to zero. Thus,
for an arbitrary function <p{u) equation (4.1) admits three essential approximate
symmetry operators, corresponding to the constants Ci, C3, and K\. The remaining
cases in Table 1 are analyzed similarly. The result is summarized in Table 2, where
for convenience in comparing approximate symmetries with exact ones we have given
the operators admitted by equations (4.4) exactly, and those admitted by (4.1) exactly
and approximately.

TABLE 2

Comparative table of exact and approximate symmetries

1

2

3

4

Arbitrary
function

ku"

ku-*/3

ku~4

keu

Operators for (4.4)

yO _ a yO a
A i ~ at' Λ2 - ax

X1 = 'it+
Xfx

Λ5 - x al ixuali

yO _ T r a ,. a

y o _ ,2 a_ , t a_
Λ 5 ~ ' at + lU8u

yO v a , ~) a
XA ~ xaH + lTu

Operators for (4.1)

Exact symmetries

Υχ=Χ\

Y2 = X\

Y3 = X%

Y3 = x°4

1 4 = * 5 °

Yi = X\

ϊ\ = ΧΪ

Yi = x°4

Approximate symmetries

A-, = AT», Χχ = Χ\

X3 = εΧ°

Ϋ — y O ι ε ί σ t 2 3 T i , , a \
X3 ~ X-i + Ϊ Τ 3 U ai~ Zluan)

x4 = x°

x4 = x°, x5 = x°

X* = *4°

X5 = εΧ°

x* = x°A

NOTE. In Table 2 bases of the admitted algebras are given for the exact symmetries,
and generators for them are given for the approximate symmetries: a basis for the
corresponding algebra is obtained by multiplying the generators by ε and discarding
the terms of order ε2. For example, for φ{υ) = ku~4^ equation (4.4) admits a 5-
dimensional algebra, and (4.1) admits a 4-dimensional algebra of exact symmetries
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and a 10-dimensional algebra of approximate symmetries with basis

d „ d - ( 1 Λ d d 3 d

^ X 2 3 u ' Xe = eXu Χη =

§5. Approximate symmetries of the equation ut — h(u) = u\+ eH

We consider the class of evolution equations of the form

ut = h(u)ux+eH, Hesf, (5.1)

which contains, in particular, the Korteweg-de Vries equation, the Burgers-Korteweg-
de Vries equation, etc.

THEOREM 4. Equation (5.1) approximately (with any degree of accuracy) inherits
all the symmetries of the Hopf equation

ut = h(u)ul. (5.2)

Namely, any canonical Lie-Backlund operator [3] X° = f°(d/du) + • • •, admitted by
(5.2) gives rise to an approximate (of arbitrary order p) symmetry for (5.1) determined
by the coordinate

of the canonical operator X = f(d/du) + • • •.

PROOF. The approximate symmetries (5.3) of equation (5.1) are found from the
denning equation (3.14), which in this case takes the form

J? - h(u)f° + Y^[Da(hu,) - hui+a]fl - h'(u)u{f = 0, (5.4)
a>0

fj - h(u)fx + J2[Dn(hu{) - hul+a]fj, - h'(u)uxf
a>0

i=l,...,p. (5.5)
Q>0

Equation (5.4) in f° is a denning equation for finding the exact group of transforma-
tions admitted by (5.2). Let f° be an arbitrary solution of (5.4) that is a differentiable
function of order ko > 0, and let Η be a differentiable function of order n > 1, i.e.,

/o = f°(t,x,u,...,uko), Η = H(t,x,u,...,un).

We look for a solution / ' of (5.5) in the form of a differentiable function of order
k\ = n + ko - 1. Then (5.5) is a linear first-order partial differential equation in
the function / ' of the k\ + 3 arguments t,x,u,U\,...,Ukl, and is hence solvable.
Substitution of any solution fx(t,x,u,u\,..., ukx) in the right-hand side of (5.5) with
/ = 2 shows that f2 can be found in the form of a differentiable function of order
kj = n + k\ — 1, and the corresponding equation for f2 is solvable. The rest of
the coefficients / ' , / = 3,...,p, in (5.3) are determined recursively from (5.5). The
theorem is proved.
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It follows from Theorem 4 that, in particular, any point symmetry of (5.2) deter-
mined by the infinitesimal operator

Υ = θ(ί,*,u)-Q-t+ [φ(χ + tu,u) - (ψ(χ + tu, u) - u6{t,x,«)]—

+ IJ/{x + tU,u) —

with arbitrary functions φ, ψ, and θ, or with the corresponding canonical Lie-
Backlund operator with coordinate

f° = [<p(x + tu, u) - ίψ(χ + tu, u)]u\ - ψ(χ + tu, u),

is approximately inherited by equation (5.1). For example, the Burgers-Korteweg-
de Vries equation

ut = uu\ + s{au-i + bui) (5.6)

to within ο (ε2) admits the operator

fu — (p{u)U\ + \ j

3a2<p'"u2ui

u\ + \a2(pmu\) + ο{ε2). (5.7)

Setting a = 1 and b = 0 in (5.7), we get an approximate symmetry of second order
for the Korteweg-de Vries equation

ut = uu\ + ε»3. (5.8)

We remark that in this case the coefficient fk of the approximate symmetry (5.3) is
a differentiable function of order 2k + 1 containing derivatives of φ of order > k.
This implies that if φ{ύ) is a polynomial, then the approximate symmetry becomes
an exact Lie-Backlund symmetry; then we can set ε = 1 and get exact symmetries of
the equation

ut — 1/3 + uu\. (5.9)

For example, for ρ = 2 and φ = u2 we get that /„ = u2ux + 4u\U2 + 2ww3 + |w5 by
(5.7) (cf. [3], §18.2).
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