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Theories of Newtonian Gravity and
Empirical Indistinguishability

ABSTRACT.  In this essay, I examine the curved spacetime formulation of Newtonian gravity known
as Newton-Cartan gravity and compare it with flat spacetime formulations.  Two versions of
Newton-Cartan gravity can be identified in the physics literature -- a “weak” version and a
“strong” version.  The strong version has  a constrained Hamiltonian formulation and consequently
a well-defined gauge structure, whereas the weak version does not (with some qualifications).
Moreover, the strong version is best compared with the structure of what Earman (1989) has dubbed
Maxwellian spacetime.  This suggests that there are also two versions of Newtonian gravity in flat
spacetime -- a “weak” version in Maxwellian spacetime, and a “strong” version in Neo-Newtonian
spacetime.  I conclude by indicating how these alternative formulations of Newtonian gravity impact
the notion of empirical indistinguishability and the debate over scientific realism.
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1.  Introduction

The standard way of formulating Newton’s theory of gravity is as the theory of a
gravitational field in a background spacetime.  The latter is normally taken to be flat Neo-
Newtonian spacetime, the spacetime characterized by automorphisms belonging to the Galilei
group (the symmetry group for Newtonian dynamics).  Newtonian gravity can also be given a
curved spacetime formulation by geometricizing the gravitational field and incorporating it
into the curvature tensor in a manner similar to general relativity.  This geometricized version
of the theory was first described by Cartan and is usually referred to as Newton-Cartan gravity
(NCG, hereafter).  While it has been given considerable attention in the philosophical
literature (see, e.g., Earman and Friedman 1973; Friedman 1983; Earman 1989; Malament 1986,
1995; and Norton 1995), I think it deserves a second look, for a number of reasons.

First, the philosophical literature does not reflect the current state of affairs in the physics
literature.  At least two versions of NCG have appeared in the latter, and these versions affect
the status of NCG as an alleged example of empirical indistinguishability.  Some authors have
claimed that NCG and the standard formulation of Newtonian gravity make identical
empirical claims, but subscribe to different ontologies.  Hence they count as a non-trivial
example of empirically indistinguishable theories.  However, if the standard formulation is
only recoverable from NCG under the imposition of certain constraints, and if these constraints
effectively reduce the ontology of NCG to the ontology of the standard formulation, then
perhaps they are not significantly different after all.  In particular, perhaps NCG, so-
constrained, is simply the standard formulation in disguise.  I will claim that this is not the
case -- that NCG and the standard formulation, appropriately construed, are legitimate
examples of empirically indistinguishable theories.  But this will involve distinguishing
between different versions of NCG, as well as different versions of the standard formulation.  In
particular, it will be seen that “non-geometricized” Newtonian gravity can also be formulated
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in background spacetimes with less structure than Neo-Newtonian spacetime, and that one such
version is the legitimate empirically indistinguishable partner to one version of NCG.

Second, while the symmetries of the standard formulation of Newtonian gravity are relatively
straight-forward, those for NCG are, at best, open to debate.  Most authors agree that NCG has
a gauge structure represented explicitly by a freedom in choosing how to distinguish inertial
trajectories from gravitationally accelerated trajectories.  But how this gauge structure relates
to the standard formulation is a bit cryptic, as is how it relates to other notions of gauge
symmetry.  In particular, Earman (2002, pg. S218) observes that NCG cannot be derived from an
action principle, hence it cannot be formulated as a constrained Hamiltonian system, and to the
extent that gauge talk is talk about constrained Hamiltonian systems, gauge talk cannot
characterize NCG.  On the other hand, a version of NCG as a purported Yang-Mills-type
theory has been proposed in the physics literature, primarily by Duval and Künzle (e.g., 1984).
These authors claim that NCG is characterized not by any single symmetry group, but by
numerous nested symmetries.  Moreover, Christian (1997, 2001) has recently presented a version
of NCG formulated explicitly as a constrained Hamiltonian system.  These different versions
need to be sorted out.  In particular, I will indicate how Christian’s version (“strong” NCG)
differs from previous versions (“weak” NCG), and how these versions relate to standard
formulations of Newtonian gravity in background spacetimes.

Section 2 below sets the stage by characterizing three types of classical spacetimes in terms of
conditions placed on the curvature tensor.  Section 3 looks at theories of Newtonian gravity
obtained by placing a Newtonian gravitational field in a background classical spacetime.
Section 4 looks at theories of Newtonian gravity obtained by geometricizing the Newtonian
gravitational field and making it a part of the background spacetime structure.  Finally,
Section 5 summarizes the relationships between these theories and identifies among them
legitimate instances of empirical indistinguishability.

2.  Classical Spacetimes

The theories of Newtonian gravity considered below will be distinguished in terms of the
spacetime structure they posit.  Such structure takes the form of privileged global frames of
reference, which may be identified intrinsically with congruences of smooth timelike
worldlines.  In the absence of gravity and other forces, one may identify various classical
spacetimes by the frames they minimally admit and the associated group of symmetry
transformations between these frames.  In this section, I will review three such spacetimes,
what Earman (1989, Chapter 2) refers to as Leibnizian spacetime, Maxwellian spacetime, and
Neo-Newtonian spacetime.  Earman characterizes these spacetimes extrinsically in terms of
coordinate transformations between their privileged reference frames.  The approach taken
below will be to characterize these spacetimes intrinsically by conditions placed on the
curvature tensor.  This will help to clarify the subsequent discussion of theories of gravity.

To begin, following Malament (1986, pg. 183; 1995, pg. 493), I will take a classical spacetime to

be a structure (M, h
ab

, ta, ∇a), where M is a smooth differentiable manifold, h
ab

 is a symmetric

tensor field on M with signature (0, 1, 1, 1) identified as a degenerate spatial metric; ta is a

covariant vector field on M which induces a degenerate temporal metric tab = tatb with

signature (1, 0, 0, 0); and ∇a is a smooth derivative operator associated with a connection on M.1

These objects are required to satisfy the following conditions:

h
ab

tb = 0 (orthogonality) (1)
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∇ch
ab

 = 0 = ∇atb (compatibility) (2)

As explained in detail by Malament, such a structure serves as the basis for a classical theory of
motion in the following manner.  The vector field ta assigns a temporal length to all vectors and

thus allows a distinction between timelike and spacelike vectors.  The signature of h
ab

 and
condition (1) entail that the subspace of spacelike vectors is 3-dimensional.  Condition (2)
entails that ta is closed, so a global time function t exists (given that M is well-behaved

topologically).  These facts allow M to be decomposed into instantaneous 3-dimensional
spacelike hypersurfaces Σt parameterized by t.  Particle trajectories can be associated with

timelike curves γ ; i.e., curves with everywhere timelike tangent vectors.  Such curves can be

parametrized by t by requiring their tangent vector fields ξa
 to satisfy taξa

 = 1.  These tangent

fields ξa
 can then be identified as the four-velocity associated with γ .  The four-acceleration

associated with γ  is then given by ξa∇aξb
.  The compatibility condition (2) entails that such

four-accelerations are spacelike.  Finally, the spatial metric h
ab

 assigns a spatial length to
spacelike vectors but it does not assign spatial lengths to timelike vectors.2  This allows
acceleration magnitudes to be assigned to particle trajectories but not, in general, velocity
magnitudes, and this is minimally what a classical Galilean-invariant theory of motion
requires.

At this point, nothing has been assumed about the nature of the connection and, hence, about the
curvature of such classical spacetime models.  In fact, unlike the Riemannian case in which the
compatibility condition ∇agab = 0 on a Lorentzian metric gab uniquely determines the connection,

conditions (1) and (2) fail to uniquely determine a classical connection.3  Thus, one way to
further categorize classical spacetimes is by how they place restrictions on the curvature tensor.

Curvature Constraints

For a given connection, there is an associated curvature tensor R
a
bcd defined by R

a
bcdx

c
y

d
z

b
 =

∇c(∇dz
a
y

d
)x

c
 − ∇c(∇dz

a
x

d
)y

c
, for arbitrary vector fields x

c
, y

d
, z

b
 (here and throughout, no

torsion is assumed).  Geometrically, R
a
bcdx

c
y

d
z

b
 measures the difference in z

b
 upon parallel

transport along a (small) closed curve defined by x
c
 and y

d
.  Thus the condition R

a
bcdx

c
y

d
z

b
 = 0

for arbitrary x
c
, y

d
, z

b
 represents path independence of parallel transport of an arbitrary z

b

along an arbitrary closed curve; in other words:  complete path independence of parallel
transport.  This condition is associated with spacetime flatness and is given by the vanishing of

the curvature tensor R
a
bcd = 0.  A slightly less restrictive constraint on the curvature occurs when

z
b
 is required to be spacelike, while x

c
 and y

d
 are left arbitrary.  In this case, z

b
 = h

beω e for

some 1-form ω e (see footnote 2) and the condition 0 = R
a
bcdx

c
y

d
h

beω e = R
ae

cdx
c
y

dω e represents

path independence of parallel transport for spacelike vectors.  Here use has been made of the

fact that, while h
ab

 cannot be used to lower indices, it can be used to raise them.  So, for

instance, h
eb

R
a
bcd can be written as R

ae
cd.  Again, for arbitrary x

c
, y

d
, and arbitrary spacelike

z
b
, the preceding condition is equivalent to R

ae
cd = 0.  In a similar vein, the condition R

abcd
 = 0

represents path independence of parallel transport of spacelike vectors along closed spacelike
curves.  To summarize:
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R
abcd

 = 0 (spatial flatness :  spacelike vector fields remain unchanged
under parallel transport on spacelike hypersurfaces)

(3)

R
ab

cd = 0 (rotation standard:  spacelike vector fields remain
unchanged under parallel transport everywhere)

(4)

R
a
bcd = 0 (spacetime flatness:  arbitrary vector fields remain

unchanged under parallel transport everywhere)
(5)

As restrictions on the curvature tensor, (5) is strongest and (3) weakest, in the sense that (5) ⇒
(4) ⇒ (3).  Malament (1986, 1995) refers to condition (3) as spatial flatness, in so far as imposing
it on a classical spacetime entails that the 3-dimensional spacelike hypersurfaces
parameterized by the global time function are flat (i.e., “space” is Euclidean).  Condition (4) is
equivalent to specifying a standard of rotation (see Section 1.2 below).  Briefly, it requires
spacelike vector fields to be covariantly constant throughout spacetime in general (and not just
on spacelike hypersurfaces).  Hence it requires spacelike surfaces in M to be “parallel” in the
sense that the timelike “rigging” between these surfaces is hypersurface orthogonal.  This
prohibits “twisting” of the rigging; thus the privileged frames adapted to the rigging are non-
rotating with respect to each other (but, as will be seen, can have arbitrary relative
acceleration).  In this vein, condition (5) not only prohibits relative rotation between adapted
frames, but also requires linearity in the time-dependency of translations between such frames;
thus it prohibits relative acceleration.

In the remainder of this section, I will distinguish Leibnizian, Maxwellian, and Neo-
Newtonian spacetimes in terms of the above three curvature constraints.

1.1.  Leibnizian Spacetime

Leibnizian spacetime is the classical spacetime with just enough structure to minimally support
the existence of rigid Euclidean, arbitrarily rotating, and arbitrarily accelerating reference
frames (hereafter referred to as Leibnizian frames).  It can be defined as the classical spacetime
satisfying

(1) h
ab

tb = 0 (orthogonality)

(2) ∇ch
ab

 = 0 = ∇atb (compatibility)

(3) R
abcd

 = 0 (spatial flatness)

The symmetries of Leibnizian spacetime so-defined are generated by vector fields x
a
 that Lie-

annihilate the “absolute objects” h
ab

, ta, and Γabc
 = h

ce
h

bdΓa
bc, where Γabc

 can be viewed as the

spatial part of the connection.4  In particular, the conditions £xh
ab

 = £xta = £xΓabc
 = 0 generate

an infinite dimensional Lie group known as the Leibniz5 group (Leib), which, in terms of

coordinates adapted to x
a
, consists of transformations of the form:

x
i
 → x’

i
 = R

i
j(t)x

j
 + a

i
(t) i , j = 1, 2, 3

(Leib)
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t → t’ = t + c,

where R
i
j(t) ∈ SO(3) is an orthogonal rotation matrix for each t ∈ R, a

i
(t) ∈ R

3
 are arbitrary

functions of t, and c ∈ R is a constant.  To see that these are transformations between rigid Eu-
clidean, arbitrarily rotating, and arbitrarily accelerating reference frames, one can first
calculate the connection components in “Leibnizian coordinates” to obtain:6

Γ’
i
00 = R

i
m  

˙ ̇ R 
m

jx’
j
 + R

i
m  ̇ ̇ a 

m
, Γ’

i
j0 = R

i
m  

˙ R 
m

j, Γ’
α

βγ = 0 otherwise, (6)

where a
m

 = R
m

ja
j
 and the dot denotes differentiation with respect to t.  The path of a particle

with zero four-acceleration ξa∇aξb
 = 0 is then given by,

  ̇ ̇ x 
i
 + R

i
m  

˙ ̇ R 
m

jx
j
 + R

i
m  ̇ ̇ a 

m
+ R

i
m  

˙ R 
m

j  ̇ x 
j
 = 0

This indicates that acceleration and rotation are relative in Leibnizian frames:  Any non-zero
linear acceleration term on the RHS can be absorbed by an appropriate choice of the functions

  ̇ ̇ a 
m

(t) on the LHS, and any non-zero rotational acceleration term on the RHS can likewise be

absorbed by an appropriate choice of the matrices   
˙ R 

i
j(t) on the LHS.  From a geometric point of

view, the degrees of freedom in specifying these functions represent the inability of a
Leibnizian connection to distinguish between “straight”, “curved”, and “twisted” particle
trajectories.  (In the more familiar context of Neo-Newtonian spacetime (Section 1.3 below), the
second, third and fourth terms on the LHS of the equation of motion above are interpreted as
due to centrifugal, linear, and coriolis inertial forces, respectively.)

Note, finally, that conditions (1) and (2) do not guarantee that the constant t spatial slices are
flat.  This guarantee is secured only with the addition of condition (3).  Compatibility of the
spatial metric (2), for instance, only guarantees rigidity in the sense that, if two timelike
worldlines are at rest relative to each other, then the spatial distance between them remains
constant (think of the worldlines as endpoints of a measuring rod).7  It does not, in particular,
guarantee that the state of relative rest of the endpoints can be determined.

1.2.  Maxwellian Spacetime

Mawellian spacetime is the classical spacetime with just enough structure to minimally support
the existence of rigid Euclidean, non-rotating, and arbitrarily accelerating reference frames
(hereafter referred to as Maxwellian frames8).  It can be defined as the classical spacetime
satisfying,

(1) h
ab

tb = 0 (orthogonality)

(2) ∇ch
ab

 = 0 = ∇atb (compatibility)

(4) R
ab

cd = 0 (rotation standard)

The symmetries of Maxwellian spacetime are generated by vector fields x
a
 satisfying £xh

ab
 =

£xta = £xΓab
c = 0, where Γab

c = h
bdΓa

bc can be viewed as the rotation part of the connection.  One
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obtains an infinite dimensional Lie group referred to as the Maxwell9 group (Max) with
coordinate representation given by,

x
i
 → x’

i
 = R

i
jx

j
 + a

i
(t) i , j = 1, 2, 3

(Max)
t → t’ = t + c

where R
i
j ∈ SO(3) is a constant orthogonal rotation matrix, a

i
(t) ∈ R

3
 are arbitrary functions of t

∈ R, and c ∈ R.  Maxwellian transformations consist of transformations between rigid Euclidean,
non-rotating, and arbitrarily accelerating reference frames, as can be seen by the following.  The
connection components in Maxwellian coordinates are,

Γ’
i
00 = R

i
m  ̇ ̇ a 

m
, Γ’

α
βγ = 0 otherwise. (7)

The path of a particle with zero four-acceleration ξa∇aξb
 = 0 is thus given in Maxwellian

coordinates by,

  ̇ ̇ x 
i
 + R

i
m  ̇ ̇ a 

m
 = 0

This indicates that acceleration is relative in Maxwellian frames:  Any non-zero linear

acceleration term on the RHS can be absorbed into the functions   ̇ ̇ a 
m

(t).  Rotation terms,
however, cannot be so-absorbed, hence rotation is not relative.  From a geometric point of view,

the degrees of freedom in specifying the   ̇ ̇ a 
m

(t) represent the inability of a Maxwellian
connection to distinguish between “straight”, and “curved” particle trajectories.  Unlike a
Leibnizian connection, however, a Maxwellian connection can distinguish “twisted” from “non-
twisted” particle trajectories.

Note that (7) follows immediately from (6) by setting the term   
˙ R 

m
j = 0 and thus removing the

time dependency of the rotation matrices in (Leib).  Maxwellian frames may be rotated by a
constant amount relative to each other, but they cannot be in rotation (constant or accelerated)
with respect to each other over time.

1.3.  Neo-Newtonian Spacetime

Neo-Newtonian spacetime is the classical spacetime with just enough structure to minimally
support the existence of rigid Euclidean, non-rotating and non-accelerating reference frames
(hereafter referred to as Neo-Newtonian frames).  It can be defined as the classical spacetime
satisfying,

(1) h
ab

tb = 0 (orthogonality)

(2) ∇ch
ab

 = 0 = ∇atb (compatibility)

(5) R
a
bcd = 0 (spacetime flatness)
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The symmetries of Neo-Newtonian spacetime are generated by vector fields x
a
 satisfying £xh

ab

= £xta = £xΓa
bc = 0.  One obtains a 10-parameter Lie group referred to as the Galilei group (Gal)

with coordinate representation given by,

x
i → x’

i
 = R

i
jx

j 
+ v

i
t + d

i
, i , j = 1, 2, 3

(Gal)
t → t’ = t + c,

where R
i
j ∈ SO(3) is a constant orthogonal rotation matrix, v

i
, d

i
 ∈ R

3
 and c ∈ R.  Galilei

transformations are transformations between rigid Euclidean, non-rotating, and non-
accelerating reference frames:  In Neo-Newtonian components, the connection takes the

familiar form Γα
βγ = 0.  Hence the path of a particle with zero four-acceleration ξa∇aξb

 = 0 is

given in Neo-Newtonian coordinates by,

  ̇ ̇ x 
i
 = 0

Any acceleration terms, linear or rotational, that may appear on the RHS cannot be absorbed by
appropriate adjustment of parameters on the LHS (there are no degrees of freedom available);
hence, acceleration and rotation are absolute in Neo-Newtonian frames.  A Neo-Newtonian
connection can distinguish between “straight”, “curved” and “twisted” particle trajectories.

3.  Newtonian gravity in Classical Spacetimes

These theories are obtained by adding a Newtonian gravitational field to a particular
classical spacetime.  In such theories, one can distinguish between absolute geometrical object
fields -- those objects that encode the structure of the given classical spacetime; and dynamical
geometric object fields -- those objects that encode the dynamics of the particular theory.  In
this context, such objects represent the material contents of the spacetime.  Two types of
symmetries can thus be identified:  spacetime symmetries are the automorphisms of the given
spacetime, while dynamical symmetries are the symmetries of the differential equations that
hold between the dynamical objects of the theory.

3.1.  Newtonian Gravity in Neo-Newtonian spacetime

This theory, Neo-Newt NG for short, is obtained by adding a Newtonian gravitational field to
Neo-Newtonian spacetime.  Dynamically possible models of Neo-Newt NG are of the form (M,

h
ab

, ta, ∇a, φ , ρ), where (M, h
ab

, ta, ∇a) is Neo-Newtonian spacetime, and φ  and ρ are scalar

fields representing the Newtonian gravitational potential and the mass density, respectively.
The field equations are,

(1) h
ab

tb = 0 (orthogonality)

(2) ∇ch
ab

 = 0 = ∇atb (compatibility)
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(5) R
a
bcd = 0 (spacetime flatness)

h
ab ∇a∇bφ  = 4πGρ (Poisson equation) (8)

where G is the Newtonian gravitational constant.  The equation of motion is,

ξa ∇aξb
 = −h

ab ∇aφ (9)

for particle trajectories with four-velocity ξa
.  The spacetime symmetries of Neo-Newt NG are

the symmetries of Neo-Newtonian spacetime, namely (Gal).  The dynamical symmetries are
symmetries of the equation of motion (9); i.e., transformations that send solutions of (9) to other
solutions.  These are transformations that leave (9) covariant in Neo-Newtonian reference

frames; i.e., frames in which (9) takes the form   ̇ ̇ x 
i
 = −h

ij∂φ/∂x
j
.  The most general such

transformations are elements of (Max) together with the transformation φ a φ’ = φ  − x
i
  ̇ ̇ a 

i
  +

ϕ(t), where ϕ is an arbitrary function of t.

Neo-Newt NG faces the following conceptual problem (see, e.g., Friedman 1983, pg. 96).  The
theory states that there are preferred non-accelerating reference frames; i.e., Neo-Newtonian
frames.  Accordingly, from the point of view of spacetime structure, there is a distinction
between these non-accelerated frames and arbitrarily accelerated frames.  However, from the
point of view of the dynamics, such a distinction cannot be made.  To see this, suppose we

perform a (Max) transformation on the Neo-Newtonian frame x
a
 to obtain a frame x’

a
 that is

arbitrarily accelerating with respect to x
a
.  In this new frame, the equation of motion (9)

becomes   ̇ ̇ x ’
i
 = −h

ij∂ψ/∂x’
j
, where ψ = φ  − x’

i
  ̇ ̇ a 

i
.  From the point of view of the dynamics, φ  and ψ

are indistinguishable:  if φ  is a solution to (8) and (9), then so is ψ.  Hence, from the point of
view of the dynamics, Neo-Newtonian frames cannot be made distinct from Maxwellian frames
(in the presence of only gravitational forces) -- the dynamics cannot distinguish between φ  and
ψ, and thus cannot distinguish between the gravitational equation of motion in a Maxwellian
frame with gravitational potential ψ, from the gravitational equation of motion in a Neo-
Newtonian frame with gravitational potential φ .  In other words, gravitationally accelerated
motion cannot be made distinct from non-accelerated motion.

Such a distinction can be made if we impose an additional constraint on φ ; namely, that it

vanish at spatial infinity:  φ  → 0 as x
i
 → ∞.  Formally, this entails that   ̇ ̇ a 

i
 = 0, and thus reduces

the covariance group of (9) to (Gal) plus the transformation φ a φ’ = φ  + ϕ(t).  Physically, this

assumption entails that all the matter in the universe is concentrated in a finite region of space.
This may be called the “island universe” assumption, after Misner, Thorne and Wheeler (1973,
pg. 295).

Without this additional constraint, Neo-Newt NG suffers from not being well-tuned:  its
spacetime symmetries (Gal) are smaller than its dynamical symmetries (Max + φ-
transformations).  Hence it posits unobservable spacetime fluff; namely, a connection that can
distinguish between “inertial” (viz., non-accelerated) motion and gravitationally accelerated
motion.  To obtain a well-tuned theory, one can fiddle with either the spacetime structure or
the dynamics.  The dynamics is independently supported by evidence for the equivalence
principle (which, in one version, states just that inertial motion is indistinguishable from
gravitationally accelerated motion).  This indicates that spacetime fiddling is to be preferred.
In particular, perhaps moving to Maxwellian spacetime will tune the fiddle.
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3.2.  Newtonian Gravity in Maxwellian Spacetime

This theory, Max NG for short, is obtained by adding a Newtonian gravitational field to

Maxwellian spacetime.  Dynamically possible models of Max NG are of the form (M, h
ab

, ta, ∇a,

φ , ρ), where (M, h
ab

, ta, ∇a) is Maxwellian spacetime, and φ  and ρ are scalar fields representing

the Newtonian gravitational potential and the mass density, respectively.  The field equa-
tions are,

(1) h
ab

tb = 0 (orthogonality)

(2) ∇ch
ab

 = 0 = ∇atb (compatibility)

(4) R
ab

cd = 0 (rotation standard)

(8) h
ab ∇a∇bφ  = 4πGρ (Poisson equation)

where G is the Newtonian gravitational constant.  The equation of motion is,

 (9) ξa ∇aξb
 = −h

ab ∇aφ

for particle trajectories with four-velocity ξa
.  The spacetime symmetries of Max NG are (Max).

The dynamical symmetries should leave (9) covariant in Maxwellian frames in which it takes

the form   ̇ ̇ x 
i
 + R

i
m  ̇ ̇ a 

m
 = −h

ij∂φ/∂x
j
.  The most general type of transformation that does this is an

element of (Max) with the φ-transformation φ a φ’ = φ  − x
i
  ̇ ̇ a 

i
  + ϕ(t), where ϕ is an arbitrary

function of t.

On first glance, Max NG appears more in tune than Neo-Newt NG in so far as its spacetime
symmetries agree with its dynamical symmetries (up to arbitrary ϕ).  It turns out, however,
that this alone does not solve the problem afflicting Neo-Newt NG.  Max NG still posits an in-
principle unobservable distinction between non-accelerated motion and gravitationally
accelerated motion.  This is due to the fact that, on the one hand, the theory explicitly posits
the existence of a gravitational potential field φ  as the cause of gravitationally accelerated
motion; hence, from the point of view of the dynamics, non-accelerated frames are distinct from
gravitationally accelerated frames by the absence of φ  in the former.  On the other hand, this
distinction is in-principle unobservable since, from the point of view of the spacetime, φ  can
always be transformed away:  For any value of φ , one can always define a new set of

Maxwellian frames by R
i
m  ̇ ̇ a 

m
 = −h

ij∂φ/∂x
j
.

The problem with Max NG is that its spacetime degrees of freedom do not “mesh” with its

dynamical degrees of freedom.  Formally, the arbitrary functions a
i
(t) are not explicitly

identified by Max NG with the gravitational potential.  Simply put, Max NG does not
incorporate a principle of equivalence.  Doing so paves the way to the geometricized version of
Newtonian gravity known as Newton-Cartan gravity.
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4.  Newton-Cartan Gravity

This theory of Newtonian gravity, hereafter referred to as Newton-Cartan Gravity (NCG),
identifies the trajectories of objects in free fall (experiencing no other force than the
gravitational field) with the geodesics of a non-flat connection.  This is done explicitly in two
steps:  First, one replaces the Poisson equation (8) with a generalized Poisson equation

R
c
abc = Rab = 4πGρtatb (10)

which identifies the source ρ of the Newtonian gravitational potential with the curvature

tensor R
a
bcd.  Second, one replaces the equations of motion (9) with the geodesic equation for the

connection associated with R
a
bcd:

ξa ∇aξb
 = 0 (11)

for particle trajectories with four-velocity ξa
.

At this point, several observations are pertinent.  First, the problem afflicting Max NG does not
occur in NCG.  In effect, the gravitational potential has been absorbed into the curvature of the
spacetime; hence the equation of motion for particles, given by (11), does not posit the existence
of a physical gravitational field whose influences are indistinguishable from non-accelerated
motion.  Rather, non-accelerated motion now includes the special case of “gravitationally
accelerated” motion.  (As will be seen, the distinction between non-accelerated motion and
“gravitationally accelerated” motion is still in-principle unobservable.  What (10) and (11)
effect is simply the explicit elimination of the gravitational potential term from the equation
of motion.)

Second, the generalized Poisson equation (10) indicates that the NCG connection is dynamic in
the sense that it is determined in part by the mass density ρ.  On the other hand, note that not
all of it is dynamic:  a large part of it remains absolute (in the sense of being independent of
matter terms).  Just how much remains absolute is important in so far as this will determine
what the spacetime symmetries of NGC are.  Unlike general relativity, NGC does have
absolute spacetime structure that remains unaffected by matter.  In particular, part of the NGC
connection contributes to this absolute spacetime structure.

It turns out that there is some lee-way in implementing this geometrization procedure.  For a
given derivative operator ∇a and a scalar function φ , the compatibility and orthogonality

constraints (1), (2), pick out a unique connection given by Γ’
a
bc = Γa

bc + h
ad∇dφtbtc that satisfies

ξa∇’aξb
 = 0 if and only if ξa∇aξb

 = −h
ab∇bφ , for any unit timelike vector field ξa

 (Malament 1995,

pg. 498).  In general, ∇a may be an arbitrary classical connection.  In the special case in which ∇a
is Neo-Newtonian (i.e., spatiotemporally flat), the new connection associated with ∇’a
satisfies further constraints.  In general, however, it need not.  These additional constraints
become important in considering geometricized theories that are the “Newtonian limit” of
general relativity, or that reproduce, for instance, the standard form of the Poisson equation
(8).  Thus there arises the possibility of different versions of NCG, depending on what
additional constraints one imposes on the curvature.  In what follows, I will consider two
versions; what I will refer to as weak NCG and strong NCG.  I will be primarily concerned with
their relationship to each other and to the theories of Newtonian gravity in classical
spacetimes described above.
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4.1.  Weak NCG

Versions of weak NCG that have appeared in the physics literature include Künzle (1972),
Duval and Künzle (1984), Künzle and Duval (1994), and De Pietri, Lusanna and Pauri (1995).  In
the following, I will first characterize the features common to all these presentations and then
look briefly at the version given in Duval and Künzle (1984).

Weak NCG can be characterized by dynamically possible models of the form (M, h
ab

, ta, ∇a, ρ).

Here the dynamical objects are a scalar field mass density ρ, and part of a connection associated

with the derivative operator ∇a.  The absolute objects include the spatial metric h
ab

, the

temporal metric defined by ta, and part of the connection associated with ∇a.  These objects are

required to satisfy the following field equations:

(1) h
ab

tb = 0 (orthogonality)

(2) ∇ch
ab

 = 0 = ∇atb (compatibility)

(10) R
c
abc = Rab = 4πGρtatb (generalized Poisson equation)

(11) ξa ∇aξb
 = 0 (equation of motion)

R
[a

[b
c]

d] = 0 (Curl-freeness)10 (12)

As indicated above, conditions (10) and (11) implement the equivalence principle.  Again,
together they imply that particles experiencing forces with mass density sources follow
geodesics of the weak NCG connection.  This entails that gravitational acceleration terms in
the equations of motion can always be absorbed; hence gravitational accelerations are relative.

Condition (12) is an additional constraint on the connection that can be motivated in a number of
ways.  First, Dixon (1975) has shown that it is the only additional constraint that is consistent
from a group theoretic point of view with conditions (1), (2), and (10).  Second, it is necessary in
demonstrating that weak NCG is the c → ∞ limit of general relativity.11  Third, it goes part
way  in allowing recovery of the standard formulation of Newtonian gravity in Neo-Newtonian
spacetime (Neo-Newt NG).  This last motivation will become important in the discussion of
Strong NCG in the next section, so it bears fleshing out.  The following is adapted in slightly
modified form from Künzle (1972, pp. 351-352).

To recover Neo-Newt NG from weak NCG, one can first show that conditions (1) and (2)
determine the connection up to an arbitrary 2-form Fab.  In particular, given (1) and (2), the

connection components can be decomposed according to

Γa
bc =   Γ

u a
bc + t(bFc)dh

da
(13)

where   Γ
u a

bc is the unique connection for which the arbitrary unit timelike vector field u
a
 is

geodetic, u
a
  ∇

u

au
b
 = 0, and curl-free, h

a[b
  ∇

u

au
c]

  = 0.12  Condition (12) requires locally that the 2-
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form be closed:  ∇[aFbc] = 0 (in this sense, it imposes a “curl-free” condition).  It follows that,

locally, it can be given by Fab = 2∇[aAb], for arbitrary 1-form Ab.  Hence a connection satisfying

(1), (2) and (12) is determined up to an arbitrary 1-form Aa.  Intuitively, such a 1-form does not

uniquely determine a scalar function that we could associate with the Newtonian gravitational
potential.  To see this more concretely, choose a coordinate chart adapted to the temporal and
spatial metrics.13  The connection components are then given by,

Γi
00 = 2h

ik
F0k, Γi

0j = h
ik

Fjk, Γα
βγ = 0 otherwise, (14)

and the components of the Ricci tensor are,

R00 = 2∂iF0
i
 − FijF

ij
 = 4πGρ, Rαβ = 0 otherwise. (15)

If we now introduce the field A
i
 ≡ 2F0

i
, condition (12) then entails ∂[iAj] = 0; hence Ai can be given

locally by Ai ≡ ∂iφ , for some scalar function φ .  The Ricci tensor components then become,

R00 = ∂i∂
iφ  − FijF

ij
 = 4πGρ, Rαβ = 0 otherwise. (16)

Thus, while condition (12) allows us to introduce a scalar function φ , we cannot yet identify it as
a Newtonian gravitational potential.  This is only possible if we can recover the Poisson
equation (8), and this is blocked by the appearance of terms in R00 depending on the “spatial

part” Fij of the 2-form Fab.  To recover the Poisson equation, such terms must be forced to vanish.

Two options can be considered:14

(a) We can require space to be asymptotically flat.
(b) We can impose condition (4) on the curvature.  This entails we can further specialize to

Maxwellian coordinates in which Γi
0j = 0.

Hence, while weak NCG is the c → ∞ limit of general relativity, it does not constitute the
geometricized version of the standard formulation of Newtonian gravity in Neo-Newtonian
spacetime, in so far as it cannot recover the Poisson equation (8) without the imposition of
additional assumptions.  Note, further, that, if option (a) is adopted, what is recovered is not,
strictly speaking, Neo Newt NG.  Option (a) is equivalent to the “island universe” assumption,

which requires the scalar function φ  to vanish at spatial infinity:  φ  → 0 as x
i
 → ∞.  Recall that

this assumption reduces the dynamical symmetries of Neo Newt NG from (Max) to (Gal) (with
accompanying φ-transformations).  Thus, strictly speaking, weak NCG plus option (a) recovers
a restricted version of Neo Newt NG.

Finally, note that conditions (1) and (2) are sufficient for an “inertial/gravitational split” of

the connection, up to an arbitrary timelike vector field u
a
.  They allow us to identify a “flat-

for-u
a
”  (i.e., “inertial”) part of the connection, and a “non-flat-for-u

a
” (i.e., “gravitational”)

part (although, strictly speaking, the “gravitational” part should not be associated with
Newtonian gravity, given that the Newtonian potential cannot be recovered from it).  This
indicates that such a split is not sufficient to recover the Poisson equation (8).  Again, what is
explicitly required for such a recovery is an additional assumption of the form  of (a) or (b)
above.

Duval and Künzle’s (1984) “Gauge” Theory of Weak NCG



DRAFT

14

As noted above, conditions (1), (2) and (12) only determine a weak NCG connection up to an

arbitrary 1-form Aa, or, equivalently, up to a unit timelike vector field u
a
.15  This motivates

Duval and Künzle’s (1984) version of weak NCG which identifies the degrees of freedom of the

connection as a gauge given (redundantly) by the pair (u
a
, Aa).  Any other pair (u’

a
, A’a)

reproduces the same weak NCG connection, so long as u’
a
 is a unit timelike vector field.  Duval

and Künzle demonstrate that this condition holds, and thus weak NCG connections are
invariant, under transformations of the following form:

u
a
 a u’

a
 = u

a
 + h

ab
wb,

Aa a A’a = Aa + ∂af + wa − (u
b
wb + 1/2h

cd
wcwd)ta, (17a)

where wa is an arbitrary 1-form, and f ∈ C
∞

(M) is an arbitrary scalar function.  They then

formulate weak NCG as a theory given by a connection on a principle U(1) bundle, call it P,
over a classical spacetime satisfying conditions (1), (2), and (12).  They construct P as a
restriction of a Bargmann frame bundle B(M) over M.16  It turns out that the connection on B(M)
defines a family of connections on P that are in 1-1 correspondence with time-like vector fields

u
a
 on M.  They thus identify a “Bargmann gauge” as a choice of the pair (u

a
, Aa) and identify

the “gauge group” of weak NCG as the group Aut(B(M)) of automorphisms of B(M).  This is
given by the group Diff(M) of diffeomorphisms on M together with vertical automorphisms on
the unit tangent bundle over P given by (17a) and the U(1) phase factor transformations17

χ a χ’ = χ + f (17b)

In an earlier work (Duval and Künzle 1978), it was shown that suitable conservation laws can

be obtained if the general form of the matter Lagrangian depends on the fields (h
ab

, ta, u
a
, Aa)

and is invariant under Aut(B(M)).  The procedure is essentially an application of Noether’s 2nd
Theorem and follows the general relativistic case in which conservation of stress-energy is
derived by requiring the general form of the matter Lagrangian to be invariant under Diff(M).18

In the weak NCG case, invariance under (17a, b) produces a matter current conservation
equation, and invariance under Diff(M) produces a “stress-energy” conservation equation.  In the
latter case, however, the conservation equation obtained is not in the form of the vanishing of a
divergence.  In fact, as Duval and Künzle (1984, pg. 340) concede, it is only called a “stress-
energy” equation in analogy with the relativistic case, and for concrete weak NCG matter
Lagrangians, the actual stress-energy tensor derived v i a  Noether’s 2nd Theorem is not
Aut(B(M))-invariant.  This is demonstrated in subsequent work, which established concrete
matter Lagrangians for the coupling of the weak NCG gravitational field to a complex scalar
field that obeys the Schrödinger equation (Duval and Künzle 1984); for a non-relativistic
analogue of the Dirac-Maxwell theory (Künzle and Duval 1984); and for a perfect fluid (Künzle
and Nestor 1984).19

The Status of Weak NCG as a Gauge Theory

Duval and Künzle (1984, pg. 333) claim that their Bargmann frame bundle version of weak NCG
“... achieves the status of a gauge theory about as much as general relativity”.  They
furthermore state that, “We attempt to present Newtonian gravity as much as possible as a
gauge theory of the Bargmann group.  This cannot fully succeed, at least not in the narrow sense
of a Yang-Mills-type gauge theory, just as general relativity is not simply the gauge theory of
the Poincaré (or the Lorentz) group” (1984, pg. 334).
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Given these remarks, in what sense is Duval and Künzle’s version of weak NCG a gauge theory?
Since there are a number of senses of what it means to be a gauge theory, it is perhaps helpful to
consider what Duval and Künzle’s weak NCG is not.  Two points seem relevant here.  Note first
that in the work reviewed above, while explicit matter Lagrangians have been constructed
that, when extremized, produce appropriate conservation laws and equations of motion, no
gravitational  Lagrangian is given that produces all the relevant weak NCG field equations,
and in particular, the generalized Poisson equation (10).  This indicates immediately that this
version of weak NCG cannot be formulated as a constrained Hamiltonian system; hence, at least
according to one sense of gauge, it is not a gauge theory.  Two qualifications are perhaps
relevant here.

(i) In subsequent work, Duval and Künzle have extended their version of weak NCG to a
theory given by a Bargmann frame bundle over a 5-dimensional base manifold.20  In this
theory, they have shown that the Poisson equation can be obtained from a (singular)
Lagrangian with a Lagrange multiplier interpreted as the mass density source of the
gravitational field.  Thus the possibility exists for a constrained Hamiltonian analysis
(which the authors do not give) and hence for treating this 5-dimensional theory as a
gauge theory.  Briefly, the 5-dim manifold M is equipped with a (5-dim) Lorentzian
metric g and a vector field ζ.  The quotient manifold M/{orbits of ζ} then produces a 4-dim
Lorentzian manifold for spacelike ζ, or a 4-dim classical spacetime satisfying (12) for null
ζ, respectively.  The construction is based on the fact that the Lorentz group SO(1, 3) and
homogeneous Galilei group are subgroups of (the identity component of) the de Sitter
group SO(1, 4) that leave invariant a spacelike or a null vector, respectively.  In the null
case, condition (12) is satisfied automatically due to the Riemannian nature of g (see
footnote 11).  To recover the Poisson equation, the authors adopt the Einstein-Hilbert
action, add the null vector constraint g(ζ, ζ) = 0, and require δ∫M(R + λg(ζ, ζ))vol = 0,

where R is the Ricci scalar on M and λ is a Lagrange multiplier.  Upon extremization,

they obtain R = 0 and R
ab

 = −λζaζb
.  The latter projects to the 4-dim manifold as Rab =

4πGtatb, if the Lagrange multiplier λ is interpreted as the mass density source  λ = −4πGρ.

(ii)Künzle and Nestor (1984) cast weak NCG in a (3 + 1)-dimensional form in a manner
similar to the ADM Hamiltonian formulation of general relativity.  In particular, they
indicate how the Poisson equation arises from a limit of constraint equations in the
relativistic case.  Instructively, these constraints are associated with non-rotating
coordinates (more precisely, they stem from the maximal slicing and maximal distortion
choices for the lapse and shift functions in the relativistic case).  They are careful to note,
however, that their (3 + 1) formulation of weak NCG does not produce a Hamiltonian as
in the relativistic case.  Rather, their choices for the (3 + 1) decomposition are informed
by formulating the relativistic case in a way that allows a c → ∞ limit to be consistently
taken.  (Mathematically, the “Hamiltonian” obtained from their (3 + 1) decomposition
cannot be obtained from a standard symplectic form on a cotangent bundle, as in the
relativistic case.)

The second point is that Duval and Künzle’s original Bargmann bundle formulation of weak
NCG is similar to frame bundle formulations of general relativity, in which the base space M
does not come prepackaged with absolute objects, and the frame bundle is (typically) the bundle
of Poincaré frames.  These formulations of general relativity can be given the status of gauge
theories by “gauging” the Poincaré group in a manner similar to Yang-Mills theories.  The result
is what is generally referred to as Poincaré Gauge Theory (PGT).21  Here one starts with a
matter Lagrangian that is invariant under “global” Poincaré transformations.  These are then
promoted to “local” transformations by requiring that they be dependent on spacetime
coordinates.22  Gauge potential fields are then introduced to maintain Poincaré invariance of
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the Lagrangian.  These fields turn out to be the connection on the Poincaré frame bundle over M
(rotational gauge) and the tetrad fields (translational gauge).  The Einstein equations are then
obtained by extremizing the Lagrangian with respect to the gauge potentials.  It should be
noted that PGT is not, strictly speaking, a Yang-Mills type gauge theory.  The algebra of
constraints for PGT is open (it is not a Lie algebra), unlike the Yang-Mills case.  At this point it
should be obvious that Duval and Künzle’s weak NCG is not this type of gauge theory.  They do
not “gauge” the Bargmann group, hence their theory should not be conceived as a non-
relativistic version of PGT.

One version of weak NCG that expressly follows the PGT lead is given by De Pietri, Lusanna
and Pauri (1995).  Here they “gauge” the Bargmann group and end up with 11 3-dimensional

gauge potential fields given by Θ, hij, A0, Ai (it turns out these are related to ta, h
ab

, and Aa in

the 4-dim formulation).  They obtain an appropriate matter Lagrangian that reproduces the
equations of motion, but to get a gravitational Lagrangian, they essentially employ the same
tactic as Künzle and Nestor (1984) by using a c → ∞ limit procedure on the relativistic case.  In
particular, they identify the gravitational part of the weak NCG Lagrangian with the

zeroth-order term of a 1/c
2
 expansion of the standard Einstein-Hilbert action of general

relativity, motivated in part by Kuchar’s (1980) method of obtaining a consistent NCG matter
Lagrangian, and in part by the fact that the Bargmann group is the c → ∞ contraction of the
Poincaré group.  They then perform a Hamiltonian analysis of their complete matter +
gravitational NCG Lagrangian and indicate how the Poisson equation falls out of a
combination of constraint equations.  From Künzle and Nestor’s (1984) analysis, however, it
appears that this theory is not yet in the form of a constrained Hamiltonian system.

What, then, is the status of Duval and Künzle’s version of weak NCG as a gauge theory?  The
following conclusions can be drawn:

1. It is not a gauge theory in the sense of being a constrained Hamiltonian system.  In this
sense, it is unlike general relativity, which does admit constrained Hamiltonian
formulations.  In this sense, it is also not a Yang-Mills theory to the extent that a Yang-
Mills theory can be defined as a certain type of constrained Hamiltonian system in which
the algebra of constraints is closed.

2. It is not a gauge theory in a more looser sense of being a Yang-Mills theory; namely, a
theory based on the gauging of a given symmetry group.  In this sense, it is unlike general
relativity, which admits formulations of this type (PGT-type theories).  Note that, in this
more looser sense, there is still a distinction between theories with closed constraint
algebras (typical Yang-Mills theories) and theories with open constraint algebras (PGT-
type theories).

3. It is a gauge theory in a very loose sense of being a theory associated with unphysical
degrees of freedom (and being formulated in terms of fiber bundles).  In this sense, it is like
general relativity, which admits formulations simply in terms of a frame bundle over a
base space.

It might be argued that (3) is too loose a notion for the concept of gauge.  If this is the case, then
Duval and Künzle’s weak NCG is perhaps only suggestive of a gauge theory.  General
relativity, likewise, when formulated in terms of a frame bundle over a base space, is
suggestive of a gauge theory.  What Duval and Künzle make explicit in their formulation of
weak NCG is the degrees of freedom of the weak NCG connection.
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Weak NCG Symmetries

Duval and Künzle’s “gauge group” Aut(B(M)), in addition to the vertical automorphisms (17a,
b), also  includes the base space automorphisms Diff(M).  While this appears to motivate
Duval and Künzle to consider weak NCG as “generally covariant” (Christian 1997, pg. 4852,
follows suite), arguably Diff(M) should not be considered a symmetry of the theory.  Certainly,
including Diff(M) as a gauge symmetry cannot be motivated by an appeal to Noether’s 2nd
Theorem (as, perhaps, can be done in the case of general relativity):  as mentioned above, the
“stress-energy” tensor obtained by requiring invariance under Diff(M) of an appropriate weak
NCG matter Lagrangian does not satisfy a “strong” conservation law.  And, of course, including

Diff(M) as a symmetry simply because the weak NCG objects (hab, t
a
, ∇a) are invariant under

Diff(M) is ill-advised.  This would conflate a trivial notion of general covariance (one that is
satisfied by any theory formulated using tensors on manifolds) with a non-trivial symmetry
principle (one that weak NCG does not satisfy and that general relativity does).

Given that the vertical automorphisms (17a, b) represent, if not the “gauge” structure of NCG,
then at least the degrees of freedom in the weak NCG connection, what can we say about the
spacetime symmetries of the theory?  First note that talk of spacetime symmetries should make
sense in the context of NCG, in so far as NCG contains absolute objects that remain unaffected by
the dynamical contents of spacetime.  Some authors identify multiple candidates for such
symmetries (see, e.g., Trautman 1965, pp. 115-117; Duval 1993; Christian 1997, pp. 4852-4853).
Duval (1993), for instance, lists as candidates three extensions of the Lie algebras leib, max, gal of
the Leibniz, Maxwell and Galilei groups.  These candidates are associated with different

choices of “Bargmann gauge” (u
a
, Aa).  For instance, the “standard flat” choice u

a
 = (∂/∂t)

a
, Aa =

0 (and hence, implicitly, φ  = constant) is invariant under transformations generated by the

Bargmann algebra     gal~  (the non-trivial central extension of gal), whereas the choice u
a
 = (∂/∂t)

a
,

Aa = −φta is invariant under transformations generated by an extension     max~  of max; and the

choice u
a
 = (∂/∂t)

a
, with arbitrary Aa, is invariant under transformations generated by an

extension     leib~  of leib.23

To see how these Lie algebras come about in a bit more detail, consider weak NCG as given by a

structure (M, h
ab

, ta, u
a
, Aa) that satisfies tau

a
 = 1 and the conditions (1), (2), (10), (11) (12), and

(13), where in the latter, Fab = 2∇[aAb].  Condition (13) defines a weak NCG connection in terms

of Duval and Künzle’s “Bargmann gauge” (u
a
, Aa).  We’ve seen that such a connection is not

unique:  Any other “Bargmann gauge” (u’
a
, A’a) satisfying (17a) defines the same connection.

Now note that, as far as the Poisson equation (8) is concerned, not all “Bargmann gauges” are
created equal.  Only for a subclass of gauges can (8) be recovered from (10).  It’s not hard to be

convinced that this subclass, call it a “Poisson gauge” (v
a
, φ), defines a weak NCG connection by

the condition

Γa
bc =   Γ

v a
bc + h

ad∇dφtbtc (18)

(where   Γ
v

 is defined in analogy with   Γ
u

).  Comparing (13) and (18), one obtains the relations
between a general “Bargmann gauge” and a special “Poisson gauge” as (Christian 1997, pg. 4849;
Duval 1993, pg. 2219)
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v
a
 = u

a
 − h

ab
Ab

φ  = 1/2h
ab

AaAb − u
a
Aa (19)

Intuitively, transformations between members of a “Poisson gauge” should be those that leave
the Poisson equation (8) covariant.  As was seen above, a sufficient condition for this is (4), and

this entails that the spacelike displacement vector h
ab

Ab is covariantly constant:

h
ab∇b(h

ac
Ac) = 0; thus it can be given by h

ab
Ab = h

ab∂bf, for arbitrary scalar f.  Hence the

transformations that leave “Poisson gauges” invariant are given by:

v
a
 a v’

a
 = v

a
 − h

ab∂bf

φ  a φ’ = φ  − v
a∂af (20)

This prompts Duval (1993) to consider weak NCG as given by structures of the form (M, h
ab

, ta,

u
a
, v

a
, φ).  On such a structure, the infinitesimal action of Aut(B(M)) is the following:

δh = £xh

δt = £xt

δu = £xu + h(y) (21)

δv = £xv + h(df)

δφ  = x(φ) + v(f)

where x is a basis for the Lie algebra, y is an arbitrary 1-form on M, and f is an arbitrary scalar
function (and indices have been suppressed for convenience).  By setting one or more of these
infinitesimal transformations to zero and solving for x, y, f, we recover the corresponding finite
transformations on the objects h, t, u, v and φ .  Duval (1993, pp. 2220-2221) now demonstrates

that the conditions δh = δt = δu = 0 generate     leib~ , the conditions δh = δt = δu = δv = 0 generate

    max~ , and the conditions δh = δt = δu = δv = δφ  = 0 generate     gal~ .  From this we can infer, for

instance, that u
a
 defines an “extended” Leibnizian frame (i.e., it is a member of a subclass of

Leibnizian frames related by transformations generated by     leib~ ), while v
a
 defines an

“extended” Maxwellian frame.  (Note that in Maxwellian coordinates, v’
α
 = v

α
 +   ̇ ̇ a 

i
h

αβ∂βx
i
, and

thus f = x
i
  ̇ ̇ a 

i
.  Hence φ  transforms as φ’ = φ  − ∂f/∂t = φ  − x

i
  ̇ ̇ a 

i
 .  (see, e.g., Kuchar 1980, pg. 1288).

Hence an “extended” Maxwell transformation includes both a spacetime coordinate
transformation and an accompanying φ-transformation.  Thus the dynamical symmetries of both

Neo-Newt NG and Max NG are simply those generated by     max~ .)

The important question again is which symmetries should we associate with weak NCG?  More
precisely, which terms in (21) should we set to zero?  Duval and others seem satisfied with
simply listing the candidates.  On the surface, such talk of multiple candidates for the
symmetries of weak NCG is slightly misleading.  The groups (and algebras) mentioned above
represent very different symmetries.  Certainly, the intrinsic structure posited by a given
theory cannot exhibit both  (Leib) and (Max) symmetries, for instance (Leibnizian spacetimes
are rather different from Maxwellian spacetimes).  Trautman (1965) indicates one view of the
situation:
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A preferred coordinate system in a theory is one which puts some geometrical structure in the
theory in a particularly simple form.  The multiplicity of geometrical structures present in
[geometricized] Newtonian theory thus enables us to have many different classes of preferred
coordinate systems, some more useful than others.  (Trautman 1965, pg. 116)

If putting a geometrical structure in a simple form makes a coordinate system privileged, then
clearly there are multiple privileged coordinates in weak NCG, and hence multiple
symmetries, insofar as there are many different geometrical objects in the theory.  In this essay,
however, a privileged coordinate system is one adapted to the intrinsic structure of the global
spacetime, and not to individual geometrical object fields.  Thus it should make sense to say
there is only one symmetry structure for weak NCG, as opposed to multiple candidates; namely,
that one that is adapted to the structure of the background spacetime.

What then are the spacetime symmetries of weak NCG?  Certainly the absolute structure of

weak NCG includes the metrics h
ab

 and ta and condition (3) of spatial flatness; the latter since

the generalized Poisson equation (10) entails  spatial flatness (see, e.g., Malament 1986, pg.
188).  Hence weak NCG has as much structure as Leibnizian spacetime.  Note further that weak
NCG needs enough structure to support “extended” Leibnizian frames, in order to foliate

spacetime with “Bargmann gauges” (u
a
, Aa).  But what weak NCG does not, strictly speaking,

support is that particular subclass of “Bargmann gauge” (v
a
, φ) that define “extended”

Maxwellian frames.  To pick out this subclass, additional assumptions need to be tacked on
(viz ., the “island universe” assumption, or the “no rotational holonomies” assumption).  But it’s
now clear that weak NCG includes just a bit more absolute structure than Leibnizian spacetime,
given specifically by condition (12), as well as the particular conditions, beyond spatial
flatness, encoded in (10).  These observations suggest that the symmetries of weak NCG be

identified with the extended Leibniz algebra     leib~  with basis x
a
 satisfying δh = δt = δu = 0 in

(21).  These are the symmetries that preserve (M, h
ab

, ta, u
a
, Aa) subject to (1), (2), (10), (11),

(12), (13), and u
a
ta = 1.  Again, these symmetries are a bit more constrained than those of

Leibnizian spacetime (the symmetries of which are generated by leib).  A weak NCG connection
(14) is obtained from a Leibnizian connection (6) by the further conditions,

R
i
m  

˙ R 
m

j = h
ik

Fjk

R
i
m  

˙ ̇ R 
m

jx
j
 + R

i
m  ̇ ̇ a 

m
 = 2h

ik
F0k (22)

due to the addition of (12), and subject to −2∂iF0
i
 + F

ij
Fij = 4πGρ, due to the replacement of (3)

with the stronger requirement (10).  This suggests that, whereas in Leibnizian spacetime (in the
absence of external forces), all rotations and (linear) accelerations are relative, in weak NCG
spacetime, only certain types of rotation and (linear) acceleration are relative.  In weak NCG
spacetime, relative rotations are only those that can be given by a closed 2-form Fab, and

relative accelerations are only those induced by the mass density in conjunction with Fab.

Geometrically, a Leibnizian connection cannot distinguish between “straight”, “curved”, and
“twisted” particle trajectories, in toto.  A weak NCG connection fails to distinguish only a
subclass of such trajectories.

The dynamical symmetries of weak NCG should leave the equation of motion (11) covariant in

extended Leibnizian frames in which it takes the form   ̇ ̇ x 
i
 + 2h

ik
F0k + h

ik
Fjk  ̇ x 

j
 = 0.  Evidently,

these are transformations generated by     leib~ .
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4.2.  Strong NCG

Versions of strong NCG have appeared in Trautman (1965), Misner, Thorne, and Wheeler
(1973), Kuchar (1980), and Christian (1997, 2001).  In the following, I will characterize its
essential features and then assess Christian’s (1997) version.

Strong NCG differs from weak NCG only in the addition of the rotation standard condition (4)
on the curvature tensor.  It can be characterized by dynamically possible models of the form (M,

h
ab

, ta, ∇a, ρ) that satisfy:

(1) h
ab

tb = 0 (orthogonality)

(2) ∇ch
ab

 = 0 = ∇atb (compatibility)

(4) R
ab

cd = 0 (Rotation standard)24

(12) R
[a

[b
c]

d] = 0 (Curl-freeness)

(10) R
c
abc = Rab = 4πGρtatb (generalized Poisson equation)

(11) ξa ∇aξb
 = 0 (equation of motion)

Recall that the significance of adding condition (4) is that it allows recovery of the Poisson
equation (8) without the need for imposing the “boundary condition” of asymptotic spatial
flatness.

Christian’s (1997) Version of Strong NCG

None of the versions of weak NCG reviewed in Section 4.1 are derived from a single 4-
dimensional Lagrangian.  In particular, in none of these theories is the generalized Poisson
equation (10) obtained by extremizing an appropriate 4-dimensional action.  Christian (1997)
demonstrates that condition (4), which is sufficient to recover the Poisson equation (8), is also
sufficient for the existence of a Lagrangian density for NCG.  In particular, Christian is able to
construct a Lagrangian density that is invariant under Duval and Künzle’s Aut(B(M)) and that
reproduces all the field equations of strong NCG, including the generalized Poisson equation.
Christian then recasts strong NCG as a (3 + 1) constraint-free Hamiltonian system, and
quantizes the theory in the reduced phase-space to obtain what amounts to a  (Max)-invariant
quantum field theory of Newtonian gravity.  In the remainder of this section, I will review the
main features of Christian’s gravitational Lagrangian density and the (3 + 1) Hamiltonian
decomposition, stressing the role condition (4) plays  in the derivation of the generalized
Poisson equation.

A Lagrangian Density for Strong NCG
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The following exposition may be made more perspicuous by a brief review of the Lagrangian
formalism.  In the Lagrangian formulation of a field theory, the field equations and equations

of motion are derived from an action principle δS = δ∫Ld
4
x = 0, where the Lagrangian density L =

L(ϕi, ∂µϕi, x
µ
), i = 1...N, is a functional of N dynamical field variables ϕi(x) and their first (and

possibly higher-order) derivatives.  The equations of motion take the form of the Euler-

Lagrange equations 0
)( ii

=
ϕ∂∂

∂∂−
ϕ∂

∂

µ
µ

LL
.  In some theories, the Hessian matrix of L is singular,

hence the dynamical variables are not all independent, but rather satisfy a set of constraint
equations φm(ϕi, ∂µϕi) = 0, m = 1...M.  For such theories, both equations of motion and constraint

equations can be derived from the modified action principle δS’ = δ∫L’d
4
x ≡ δ∫(L − u

mφm)d
4
x = 0,

where u
m

 are arbitrary Lagrange multiplier fields.  The equations of motion are obtained by
extremizing L’ with respect to the dynamical variables, while the constraint equations are

obtained by extremizing L’ with respect to the Lagrange multipliers u
m

.25

Christian’s strong NCG gravitational Lagrangian density Lgrav is a functional of the dynamical

field variables (u
a
, Aa), up to second derivatives, and a set of parametrized kinematical

variables 
(s)

y. 26  In addition, Lgrav depends on a large set of Lagrange multiplier fields.  By

judiciously combining the resulting constraint equations, Christian is able to recover all the
field equations of strong NCG.  Below I indicate how, in particular, the generalized Poisson
equation (10) is obtained, and how the relevant Lagrange multipliers are interpreted.

The field equations (1), (2), (4), (12), and the condition uat
a
 = 1, are all obtained as constraint

equations by extremizing Lgrav with respect to Lagrange multipliers.27  In particular,

extremizing Lgrav with respect to multiplier fields given by χab
 and χabc

 produces (12) and (4),

respectively.  These latter two multipliers also play a role in the derivation of the generalized
Poisson equation (10), which proceeds in two steps.

1. First, Lgrav is extremized with respect to Aa (or, it turns out, equivalently with respect to u
a
)

to produce the equation of motion,

κ∇aΘa
 + ta∇bχab

 + ta∇b∇cχabc
 = 4πGρ (23)

where κ is an arbitrary parameter and Θa
 ≡ h

ab∇b{1/2h
cd

AcAd − Acu
c
}.  It turns out that the

multiplier χab
 encodes the momentum conjugate to Aa, in so far as the momentum density

conjugate to Aa is given by Πb
 = ℘taχab

 (where ℘d
4
x is the volume element).

2. The second step in the derivation of (10) involves extremizing Lgrav with respect to yet

another Lagrange multiplier χ, yielding the constraint equation,

1/℘∇aΠa
 − (1 − κ)∇aΘa

 + λΛN − Λ0 = 0 (24)

where Λ0 and λ are arbitrary scalars, and ΛN ≡ ta∇b∇cχabc
.  As will be seen below in the

Hamiltonian formulation, (24) is analogous to the momentum constraint in general
relativity, and the multiplier χ can be interpreted as the U(1) phase factor in (17b).
Substituting (24) into (23) then yields,
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∇aΘa
 + Λ = 4πGρ (25)

where Λ ≡ Λ0 + (1 − λ)ΛN.  This reproduces the Poisson equation (8) with cosmological

constant Λ just when Θ ≡ 1/2h
ab

AaAb − Acu
c
 can be interpreted as the Newtonian

gravitational potential φ .  This is justified by recalling from (19) that Θ is in the form of
the potential φ  in an arbitrary “Bargmann gauge”, and that Aa in this formula can be

interpreted as the NCG 1-form, given the recovery of (1), (2) and (12).  Note further that

this establishes the physical interpretation of the multiplier χabc
 as encoding a

contribution ΛN to the cosmological constant. 28

From these two steps, the generalized Poisson equation (10) follows quickly.  First, we know
that the form for the Ricci tensor obtained from recovery of the field equations (1), (2), (4), and
(12) is,

Rcd = h
ab∇a∇bφtctd (26)

for some scalar φ  identified as the Newtonian potential.  The generalized Poisson equation (10)
with cosmological constant is thus recovered from (25) and (26) in the form

Rab + Λtatb = 4πGρtatb (27)

The essential features of Christian’s Lgrav can be summarized by the following:

A. The strong NCG field equations (1), (2), (4), (12) appear as constraint equations, derived by
extremizing Lgrav with respect to Lagrange multipliers.

B. The generalized Poisson equation (10) is derived from extremizing Lgrav with respect to the

dynamical field variable Aa, and then applying constraint equations:  Extremizing with

respect to Aa yields an equation (23) dependent on multipliers.  Solving for these

multipliers, which involves making use of the momentum constraint equation (24), then
reduces (23) to (10).

Strong NCG as a Constraint-Free Hamiltonian System

The Hamiltonian formalism of a field theory requires a (3 + 1) split of spacetime into 3-dim
Cauchy surfaces Σ.  It proceeds with the specification of Cauchy data in the form of dynamical
variables that describe the instantaneous configuration of the fields on Σ, as well as their
conjugate momenta.  The equations describing the evolution of this data come in the form of
Hamilton’s equations of motion .  In the context of constrained Hamiltonian systems, constraint
equations on Σ are required for data to evolve uniquely.  In the ADM constrained Hamiltonian
formulation of general relativity, for example, the Cauchy surfaces are obtained as the level

surfaces Στ of a timelike field τa
 = (∂/∂τ)

a
 and the Cauchy data consists of the 3-metric and the

extrinsic curvature on Στ.  This data satisfies two constraint equations:  the momentum

constraint, which generates spatial diffeomorphisms on Στ, and the Hamiltonian constraint,

which generates “time” evolution (in terms of the chosen time function τ).29  The latter implies
that gauge-invariant quantities are constants of motion, which leads to the well-known
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problem of time.30  It stems specifically from the freedom involved in making the initial (3 + 1)
split; in particular, in choosing a time function to label the 3-spaces.

In the NCG case, on the other hand, there is a natural choice of (3 + 1) decomposition and a
natural choice of time function; namely, the preferred foliation Σt adapted to ta.  The 3-metric

on a given slice is given by the spatial projection   h
u

ab with respect to a unit timelike field u
a

(footnote 12).  With respect to u
a
, any quantity can be decomposed into tangential and normal

components.  For the Cauchy data, Christian takes (u
a
, Aa) and their conjugate momenta (  Π

u

a,

Πa
), as well as the kinematical variable θa

 (with conjugate momentum πa), which is a

parametrization of the global time function.31  It turns out the normal components of the

momenta   Π
u

a, Πa
 vanish, so only the tangential components of u

a
 and Aa contribute to unique

Cauchy evolution.  Moreover, these momenta are not independent, being related v i a

  Π
u a

 = −  h
u

abΠb
(28)

which reflects the redundancy in specifying the pair (u
a
, Aa) to determine an NCG connection.

By including the global time function as a canonical variable, Christian is setting the stage for
a time-parametrized Hamiltonian system (see, e.g., Henneaux and Teitelboim 1992, pg. 103).  In

any theory with action S[ϕa
(t), pa(t)] = ∫ −ϕ

dt)H
dt

d
p( 0

a

a , the time variable t can be

parametrized.  This is done by introducing a canonical variable ϕ0
 ≡ t with conjugate momentum

p0, and replacing S with S’[ϕ0
(τ), p0(τ); ϕa

(τ), pa(τ); u
0
(τ)] = 

  
(p0

˙ ϕ 0 + pa
˙ ϕ a − u

0
(p0 + H0 ))dτ∫ ,

where the dot represents the derivative with respect to the parameter τ, and u
0
 is an arbitrary

Lagrange multiplier.  Extremizing S’ with respect to p0 and u
0
 yields the equation of motion   ̇ t  −

u
0
 = 0, and the “Hamiltonian” constraint equation p0 + H0 = 0.  Substituting p0 = −H0 and u

0
 =   ̇ t 

into S’ yields S; hence the motion derived from S’ is identical to that derived from S.  Note
further that no (first-class) Hamiltonian occurs in S’, in the sense that the total Hamiltonian

for S’ consists solely of the constraint term u
0
(p0 + H0) (see footnote 25).  In general relativity,

since there is no global time function to begin with, the action is already time-parametrized,
and the vanishing of the Hamiltonian reflects this.  The task of “de-parametrizing” the
theory involves solving the, in general, complicated Hamiltonian constraint.  In NCG, since
there is a natural global time function, the task of de-parametrizing a parametrized version of
the theory should not be so difficult.  This is reflected in Christian’s approach.

Christian’s Hamiltonian density is given in the time-parametrized form ℵa
Ha ≡ (  Π

u

a  ̇ u 
a
 +

Πa
  
˙ A a + πa  ̇ θ a) − Lgrav, where ℵa

 is a multiplier field and Ha ≡ πa + H’a, where H’a is a

functional of the Cauchy data.  One obtains a set of 6 equations of motion and 10 constraint

equations.  The equations of motion include (23), condition (12), and   ̇ θ a − ℵa
 = 0.32  The constraint

equations naturally include the “Hamiltonian constraint”,

πa + H’a = 0 (29)
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Unlike it’s general relativistic counterpart, (29) is linear in the momenta conjugate to the

“time” function   ̇ θ a, and hence can be solved.  (In general relativity, the Hamiltonian constraint
is quadratic in the momenta, which prevents, in general, a solution.  Hence a fully reduced
phase space for general relativity cannot in general be constructed.)  Additional constraint
equations include:

(a) the classical spacetime structure equations (1), (2);

(b) the condition u
a
ta = 1;

(c) equation (23);
(d) condition (4);
(e) equation (24);
(f) the constraints on the momenta (28).

Constraint (a) can be eliminated by working with a non-Diff(M) invariant background

spacetime structure.  (Formally, the functions tα, h
αβ

 are constant on the phase space.  This

means, as far as the dynamics is concerned, we don’t have to work with the parametrized
manifold M; rather, we can work on the “fixed” manifold M’.)  Constraint (b) is redundant,

given already by the natural foliation Σt adapted to u
a
; and constraint (c) is also redundant,

since it already appears as an equation of motion.  Thus, at this point, Christian has a
constrained Hamiltonian formulation of strong NCG containing the 3 constraints (d), (e), and (f)
on the Cauchy data.33

It turns out that constraints (d) and (e) can be eliminated simultaneously.  Enforcing condition
(4) on the Cauchy data entails a modification of the constraint equation (24) that reduces it to
the equation of motion (23) in the limit κ → 0.  It is instructive to compare this process with the

analogous one in general relativity.  By eliminating the Θa
-term in (23) and (24), the NCG

“momentum” constraint (24) can be rewritten as

1/℘∇aΠa
 + ΛN − (1 − κ)4πGρ − κΛ = 0 (30)

In general relativity, the momentum constraint can be satisfied by taking equivalence classes of
3-metrics up to spatial diffeomorphism on Στ (the resulting partially reduced phase space is

referred to as “superspace”).  In the NCG case, Christian takes equivalence classes of Aa’s up to

Aa a Aa + ∇af, which entails the momenta satisfy 1/℘∇aΠa
 − 4πGρ = 0.  This is not yet (30).

However, further constraining the Aa’s to satisfy condition (4) entails that the momenta satisfy

1/℘∇aΠa
 + ΛN − 4πGρ = 0, and this is identical to (30) in the limit κ → 0.  Hence, condition (4)

guarantees that the NCG “momentum” constraint is satisfied for a particular choice of the free
parameter κ.34

At this point in the reduction process, all constraints have been eliminated with the exception
of (f).  To eliminate (f), Christian further restricts the Cauchy data by defining a new set given

by (v
a
, pa), where v

a
 = u

a
 − h

ab
Ab and pa =   Π

u

a.  His constraint-free Hamiltonian density then

takes the form ℵa
Ha = pa  ̇ v 

a
 + πa  ̇ θ a − Lgrav.  The reduced phase space is the cotangent bundle

T*Z over an infinite dimensional configuration space Z evaluated on Σt, where

Z = {v
a
 | tav

a
 = 1, ∇[a∇b]v

c
 = 0, v

a
 ~ v

a
 − h

ab∇bf} (31)
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Intuitively, the v
a
 constitute extended Maxwellian frames that pick out an “extended”

Maxwellian connection determined by the Poisson equation.

Strong NCG Symmetries

Christian’s explicit formulation of strong NCG as a constraint-free Hamiltonian system
indicates that strong NCG is a gauge theory in the sense of Earman (2002).  Evidently, the gauge

group is generated by the extended Maxwell algebra     max~ , obtained by setting δh = δt = δu = δv =

0 in (21).  The reduced phase space (31) consists simply of extended Maxwellian frames v
a
.  In

particular, note that the “momentum” constraint (24) is obtained by extremizing Lgrav with

respect to the multiplier χ associated with the arbitrary U(1) phase factor.  Hence, in
Christian’s construction of the reduced phase space, constraint (d) picks out the Maxwell

algebra max, constraint (e) extends the Maxwell algebra to     max~  v i a  χ, and constraint (f)

eliminates the redundancy of specifying both u
a
 and Aa initially as dynamically variables.

In terms of absolute and dynamical structure, the spacetime symmetries of strong NCG are

generated by the extended Maxwell algebra     max~ , in so far as the absolute objects of the theory

can be identified as the metrics h
ab

, ta, and the family of extended Maxwellian frames v
a
.

These symmetries are a bit more constrained than those of Maxwellian spacetime (the
symmetries of which are generated by max).  A strong NCG connection is obtained from a
Maxwellian connection (7) by the further condition

R
i
m  ̇ ̇ a 

m
 = h

ij∂φ/∂x
j

(32)

subject to h
ij∂i∂jφ  = 4πGρ.  This suggests that, whereas in Maxwellian spacetime (in the absence

of external forces), all linear accelerations are relative, in strong NCG spacetime, only a certain
type of linear acceleration is relative.  In strong NCG spacetime, relative accelerations are only
those induced by the mass density in conjunction with φ .  Geometrically, a Maxwellian
connection cannot distinguish between “straight”, and “curved” particle trajectories, in toto.  A
strong NCG connection fails to distinguish between only a subclass of such trajectories.

The dynamical symmetries of strong NCG should leave the equation of motion (11) covariant in

extended Maxwellian frames in which it takes the form   ̇ ̇ x 
i
 + h

ij∂φ/∂x
j
 = 0.  These are

transformations generated by     max~  (i.e., max plus the φ-transformation φ  a φ  − x
i
  ̇ ̇ a 

i
 + ϕ(t)).

5.  Conclusion

I now would like to return to the issue raised in the introduction of empirical
indistinguishability.  Some authors have claimed that the standard way of formulating
Newtonian gravity (i.e., Neo-Newt NG) and the curved spacetime formulation share the same
empirical commitments but subscribe to different ontologies; hence they constitute a non-trivial
example of empirically indistinguishable theories.35  It’s now evident that, without further
ado, this claim is ambiguous, in so far as it fails to distinguish between weak NCG and strong
NCG.  Before attempting a bit of disambiguation, perhaps it’s best to first explain what is at
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stake.

Empirical indistinguishability plays a central role in one form of underdetermination argument
in the debate over scientific realism.  Briefly, some anti-realists attempt to use empirical
indistinguishability to drive a wedge between semantic realism (the realist’s desire to read
successful theories literally) and epistemic realism (the realist’s contention that there can be
good reasons to believe the theoretical claims of successful theories).  A conventionalist, for
instance, argues that empirical indistinguishability conjoined with epistemic realism entails
semantic anti-realism:  If T and T’ are distinct empirically indistinguishable theories, then, to
the extent that any reason to believe one is also a reason to believe the other, we cannot read
both of them literally.  A constructive empiricist, on the other hand, argues that empirical
indistinguishability conjoined with semantic realism entails epistemic anti-realism:  T and T’,
read literally, make different, possibly conflicting, theoretical claims, with respect to which
we cannot be epistemic realists.

The task for such anti-realists then is to identify non-trivial examples of empirically
indistinguishable theories.  In particular, an anti-realist may look to Neo-Newt NG and NCG
as such an example.  On the other hand, a realist might respond by claiming that Neo-Newt
NG and NCG are really a trivial example of empirical indistinguishability, in so far as they
are the same theory.  Such a realist might suggest that the empirical content of Neo-Newt NG
is only recoverable from NCG under conditions that effectively reduce the ontology of NCG to
the ontology of the standard formulation.  Hence NCG is just Neo-Newt NG in disguise.  I will
now attempt to describe the contexts in which both  of these anti-realist and realist claims are
correct.

Note, first, that the different versions of Newtonian gravity canvassed above can be
distinguished in terms of their symmetries:

Theory          Spacetime Symmetries          Dynamical Symmetries    

Neo-Newt NG gal     max~

Neo-Newt NG w/b.c. gal gal and φ  a φ  + ϕ(t)

Max NG max     max~

Weak NCG     leib~
    leib~

Weak NCG w/b.c. gal gal and φ  a φ  + ϕ(t)

Strong NCG     max~
    max~

where “b.c.” denotes “boundary condition” in the form of the “island universe” assumption.
Now suppose the anti-realist makes the following claim:

(A) If two theories agree on their dynamical symmetries, then they are empirically
indistinguishable.

One way to make (A) plausible is in terms of two further claims:  (i) two theories are
empirically indistinguishable just when they share the same set of observables; and (ii) the
observables of a theory are the invariants of its dynamical symmetries.  If the anti-realist can
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mount arguments in support of these claims, then she has found two cases of empirical
indistinguishability in the context of Newtonian theories of gravity; namely,

(a) Neo-Newt NG w/b.c. and Weak NCG w/b.c.

(b) Neo-Newt NG, Max NG, and Strong NCG

A realist may now take issue with case (a), claiming that, to the extent that both theories
have the same spacetime symmetries, and hence posit the same absolute objects, they are
really the same theory with the same ontological commitments.  (Of course, “pathological”
interpretations that would distinguish between the two are always possible, but perhaps
disingenuous on the part of the anti-realist).  The realist may claim that the “island universe”
assumption imposed on weak NCG effectively reduces its ontology to that of Neo-Newt NG
w/b.c.

However, to the extent that the realist labels case (a) as a trivial example of empirical
indistinguishability in this fashion, she will have to admit that case (b) is a non-trivial
example; namely, that Neo-Newt NG, Max NG, and Strong NCG, while agreeing on their
observables, posit different absolute objects and hence constitute different theories with
different ontologies.  (For instance, a typical semantic realist, who desires to read Max NG and
Strong NCG literally, will admit φ  into the ontology of the former, but not the latter.)

Note, finally, that this is not to say that case (b) provides fool-proof ammunition for the anti-
realist in her attack on scientific realism.  In the light of case (b), the realist has at least two
options available:

(i) Case (b) can be given a semantic gloss.  For example, a structural realist may take heart
with the above classification of Newtonian gravitation theories in terms of their
symmetries and claim:  dynamical structure is real, and not the contents of “individuals-
based” ontologies.36  A structural realist interpretation of Neo-Newt NG, Max NG and
Strong NCG will then view all three as the same theory.

(ii)Case (b) can be given an epistemic gloss:  Typical semantic realists who adopt “individuals-
based” ontologies can appropriate a suitable epistemic component for their realism; one
based on, for instance, epistemic criteria like simplicity, explanatory and/or unifying
power, etc.  Case (b) can then be addressed by attempting to adjudicate between Neo-Newt
NG, Max NG, and Strong NCG in terms of these criteria.

Hence, arguably, even in the light of non-trivial examples of empirically indistinguishable
theories, the debate over scientific realism is far from settled.
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1In this essay lower-case Latin letters from the beginning of the alphabet a, b, c, ... are abstract
indices; lower-case Greek letters α, β, γ , ... are component indices ranging over 0, 1, 2, 3; and
lower-case Latin letters from the middle of the alphabet i, j, k, ... are component indices ranging
over 1, 2, 3.

2It can be shown that a vector ζa
 is spacelike if and only if ζa

 = h
abω b for some 1-form ω b

(Malament 1986, pg. 185).  The spatial length of ζa
 is then defined by (h

abω aω b)
1/2

.

3As indicated below in Section 4.1, conditions (1) and (2) determine a connection only up to an
arbitrary 2-form.  In the physics literature, classical spacetimes as defined above are referred
to as Galilei manifolds (see, e.g., Künzle 1972, pg. 343).  This terminology is motivated by the
fact that the homogeneous Galilei group is the most general linear  group of transformations

that preserve the metrics h
ab

 and ta (see, e.g., Lévy-Leblond 1971, pg. 225).  However, if

linearity is dropped, the structure-preserving group expands considerably.

4The condition that the fields x
a
 Lie-annihilate the objects h

ab
, ta, and Γabc

 entails that the

latter remain constant along the integral curves of the former.  Hence the transformations

generated by x
a
 leave the objects h

ab
, ta, and Γabc

 invariant.  In this sense, these objects encode

the structure of the frames defined by these transformations and, hence, the structure of the
associated spacetime.

5This terminology follows Earman (1989, pg. 31), who associates these transformations with
the spacetime structure proposed in the writings of Leibniz.  In the physics literature, this
group has been referred to as the Coriolis group (Duval 1993, pg. 2218), or the kinematical group
(Künzle 1972, pg. 347).

6This follows upon substitution of (Leib) into the general transformation rule for the connection

components, 

  

′ Γ αβγ =
∂2xσ

∂ ′ x γ∂ ′ x β
+

∂ ′ x υ
∂ ′ x γ

∂ ′ x µ
∂ ′ x β

Γσ
µυ

 

 
  

 

 
  

∂ ′ x α
∂xσ

, and setting Γσ
µυ  = 0.  Physically, we pick an

arbitrary rigid, non-rotating, geodetic frame in which the connection components vanish, and
then perform a Leibniz transformation on it.

7More precisely, compatibility of the spatial metric entails that “... the h
ab

-length of all ∇a-

constant spacelike vector fields along arbitrary timelike curves is constant” (Malament 1986,

pg. 186).  In other words, ∇a(h
bcω bω c) = 0, if both (2) holds and ∇aω b = 0.

8In the physics literature, these are sometimes referred to as Galilean frames (e.g., Christian
1997, Kuchar 1980).

9This terminology follows Earman (1989, pp. 31), who associates these transformations with
the spacetime structure proposed in the writings of James Clerk Maxwell.  In the physics
literature, this group is referred to as the Milne group after Milne’s work in Newtonian
cosmology (Duval 1993, pg. 2218).
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10Explicitly, R

a
b
c
d = R

c
d

a
b, with indices raised by h

ab
.  The label “curl-freeness” is explained

below.  Some early presentations of NCG impose a slightly weaker condition R
[a

(b
c]

d) = 0

(Künzle 1972, pg. 350; Misner, Thorne, and Wheeler 1973, pg. 301).

11Condition (12) imposes a Riemannian symmetry on the classical connection that makes it
possible to recover it as a c → ∞ limit of a Riemannian connection.  See, e.g., Malament (1986,

pp. 194-196) who demonstrates this holds for the weaker R
[a

(b
c]

d) = 0 case by way of holding for

the stronger case (12).

12The “flat-for-u
a
” connection   Γ

u a
bc  is given explicitly by   Γ

u a
bc = h

ad
(∂(b  h

u

c)d  − 1\2∂d  h
u

bc) +

u
a∂(btc) , where   h

u

ab is the projection of h
ab

 relative to u
a
, defined by the conditions   h

u

abh
bc

 = δa
c

− tau
c
, and   h

u

abu
b
 = 0 (see, e.g., Künzle 1972, pp. 348-349; Christian 1997, pg. 4847).

13In such a chart {t, x
i
}, ta = (dt)a, u

a
 = (∂/∂t)

a
, and h

ab
 = δij

(∂/∂xi)
a
(∂/∂xj)

b
; the latter since the

generalized Poisson equation (10) entails spatial flatness (see, e.g., Malament 1986, pg. 188).

14See Künzle (1972, pg. 352).  Künzle’s second option is to require the global condition H
2
(Σt, R) =

0.  This requires holonomies on Σt to vanish, which is equivalent to imposing condition (4) on the

curvature tensor.

15More precisely, given a weak NCG connection and a timelike u
a
, then there exists a unique   Γ

u

and a 1-form Aa such that the connection can be decomposed as in (13).  Conversely, for every

weak NCG connection Γ, there exists locally a unit timelike, nonrotating, geodetic u
a
 such that

Γ =   Γ
u

.  See, e.g., Christian (1997, pg. 56) and references therein.

16The Bargmann group is the projective Galilei group; i.e., the Galilei group up to an arbitrary
U(1) phase (more precisely, it is the nontrivial central extension of the Galilei group).
Lagrangians for Galilean massive particles are not, in general, invariant under (Gal),
containing a gauge freedom given by the non-trivial exponents of (Gal) (see, e.g., Lévy-Leblond
1971, pp. 254-257).  Switching to the Bargmann group thus restores invariance.  The U(1) bundle
P is constructed as the quotient B0(M)/G0(M) of a “homogeneous” Bargmann bundle over M by a

homogeneous Galilei bundle.  The construction rests ultimately on the fact that G0(M) is

uniquely determined by the pair (h
ab

, ta) on M satisfying (1) and (2) (see footnote 3).

17Technically, since the 1-form wa in (17a) is defined modulo ta, the vertical automorphisms

must be factored with respect to the relation wa ~ wa’ i f f  wa’ = wa + σta, for arbitrary function σ.

18See, e.g., Wald 1984, pg. 456.  Such a law is sometimes referred to as a “strong” conservation
law.  It requires only that the gravitational field equations are satisfied, but is independent of
both their explicit form and the explicit form of the matter field equations.

19To get a taste of these constructions, consider Duval and Künzle’s (1984) derivation of an NCG-
covariant Schrödinger equation.  They start with the standard one-particle Shrödinger

Lagrangian density L = h2
/(2m)δab∂aΦ∂b Φ  + (ih/2)(Φ∂t Φ  − Φ ∂tΦ) and impose minimal

coupling in the form of the replacements δab
 → h

ab
, ∂a → Da, and ∂t → u

a
Da, where Da ≡ ∂a −
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im/hAa is the NCG-covariant derivative defined by the connection on P.  The result is LSch =

{(h2
/2m)h

ab
DaΦ  DbΦ  + (ih/2)u

a
(Φ  DaΦ  − Φ DaΦ)}, where Φ is now interpreted as a section of a

vector bundle associated with P.  Extremizing LSch with respect to the matter fields produces an

NCG-covariant one-particle Schrödinger equation of the form originally derived by Kuchar
(1980).  Kuchar (1980) also provides a matter Lagrangian for a single massive classical particle
which produces the appropriate equation of motion (11).

20For a summary, see Duval and Künzle (1994) and references therein.

21See Hammond (2002, pp. 612-615) for a quick review.

22See Earman (2002) for discussion on the terminological nuances of the terms in scare quotes, as
well as Martin (2002) for discussion on the “logic” of the gauge argument.

23The significance of the Bargmann group, and thus     gal~ , was indicated above in footnote 16.  The

extensions     leib~  and     max~  are required to account for the additional degree of freedom in Aa (resp.

φ) upon spacetime transformations.  It turns out that     leib~  leaves Aa determined up to an

arbitrary scalar function;     max~  leaves φ  determined up to a function of time; and     gal~  fixes φ  up to

a constant.  Technically,     leib~  = leib × C
∞

(M),     max~  = max × C
∞

(T), and     gal~  = gal × R, where “×”
denotes a semi-direct product, and T = M/{orbits of ta} (see Duvall 1993, pp. 2220-2221, for

details).

24Trautman (1965, pg. 107) writes t[eR
a
b]cd = 0, which is equivalent to (4).  In addition to (4) and

(12), Misner, Thorne and Wheeler (1973, pg. 300) also include the curvature constraint R
a
b
cd

 = 0,

which entails that arbitrary vector fields remain unchanged under parallel transport on
spacelike hypersurfaces.  This appears a bit redundant.

25The transition to the Hamiltonian formalism involves defining the conjugate momenta pi ≡

∂L’/∂  
˙ ϕ i, where   

˙ ϕ i ≡ ∂tϕi,
 
and the total Hamiltonian HT ≡ pi  

˙ ϕ i − L’(ϕi, pi(ϕi,   
˙ ϕ i)) ≡ H0 + u

mφm,

where H0 = pi  
˙ ϕ i − L.  (In general, some of the multipliers u

m
 may be determined v i a  secondary

constraints by requiring the φm to be conserved in the sense of {φm, HT} = 0.  See, e.g., Henneaux

and Teitelboim 1992, pp. 13-14.)

26The following is a partial exposition of Christian (1997, pp. 4858-4867).  I will ignore the
matter field variables for simplicity, and refer the reader to Christian for the explicit form of
Lgrav.  The kinematical variables are required to make Lgrav manifestly invariant under the

Diff(M) subgroup of Aut(B(M)) in the manner of a parametrized field theory.  They are given

by maps 
(s)

y :  M → M’, from a “parametrized” manifold M to a “fixed” manifold M’ containing
absolute spacetime structure (in this case, M’ is simply a classical spacetime).  They thus allow
the absolute structures on M’ to be pulled back to M as dynamical fields.

27A simple example of this method of deriving field equations for absolute spacetime objects as
constraint equations of a singular Lagrangian density is given in Sorkin (2001).
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28Christian (1997, pg. 4861) notes that if we set the free parameter λ = Λ0/ΛN, then Λ = ΛN.  In

this way, recalling the definition of ΛN, condition (4) (derived from the multiplier χabc
) can be

related, at least formally, to the cosmological constant.  This is consistent with the fact that, if
asymptotic flatness is imposed, then both condition (4) and the cosmological constant become
redundant.  Christian also notes that if one desires to make condition (4) independent of the
cosmological constant, then one can simply set λ = 1, and thus have Λ = Λ0.

29In the ADM formulation, the vector field τa
 is decomposed as τa

 = Nn
a
 + N

a
, where n

a
 is

normal to the Στ and N
a 

and N are the “shift” vector and “lapse” function.  These latter appear

as Lagrange multipliers in the ADM singular Lagrangian, associated respectively with the
momentum and the Hamiltonian constraints.  For details, see Wald (1984, pp. 463-465).

30See, e.g.,Earman (2002) for a quick review.

31Technically, θa
 :  Σt → M’ is an embedding of the 3-spaces Σt in the fixed manifold M’.  It

allows the global time function on M’ to be pulled back to the parametrized manifold M.  It’s

“u
a
-derivative” is given by   ̇ θ a = u

a∇aθa
 = ∂θa

/∂t, and dictates the transition from one leaf of the

foliation to another.  It can be decomposed into normal and tangential components as    ̇ θ a = 
⊥
  ̇ θ ua

+ 
||
  ̇ θ a, where 

⊥
  ̇ θ  ≡   ̇ θ ata corresponds to the lapse function of the ADM formulation, and 

||
  ̇ θ a ≡

δb
a
  ̇ θ b is the shift (footnote 29).

32The equations of motion also include the condition   
˙ H a = 0, indicating the Hamiltonian

constraint (29) below is preserved in time.

33Note that condition (4) is locally equivalent to ∇[a∇b]Ac −   h
u

cd∇[a∇b]u
d
 = 0  (see, e.g.,

Christian 1997, pg. 4851).

34Thus the constraint 1/℘∇aΠa
 + ΛN − 4πGρ = 0 generates the gauge transformations (17a) in the

case of no boosts (i.e., wa = 0); and the constraints (24), in the limit κ → 0, and (4) together

generate the gauge transformations (17a, b), for “Maxwell boosts” (i.e., wa = ∂af, for some f).

This justifies identifying the Lagrange multiplier χ in Christian’s Lgrav as the U(1) phase

factor (see comments below equation 24).

35See, e.g., Earman (1993, pg. 31) and Friedman (1983, pg. 121, footnote 15).

36See, e.g., Ladyman (1998) for a statement of such structural realism.


