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Preface to the Series

Contributions in Mathematical and Computational Sciences

Mathematical theories and methods and effective computational algorithms are cru-
cial in coping with the challenges arising in the sciences and in many areas of their
application. New concepts and approaches are necessary in order to overcome the
complexity barriers particularly created by nonlinearity, high-dimensionality, mul-
tiple scales and uncertainty. Combining advanced mathematical and computational
methods and computer technology is an essential key to achieving progress, often
even in purely theoretical research.

The term mathematical sciences refers to mathematics and its genuine sub-fields,
as well as to scientific disciplines that are based on mathematical concepts and meth-
ods, including sub-fields of the natural and life sciences, the engineering and so-
cial sciences and recently also of the humanities. It is a major aim of this series
to integrate the different sub-fields within mathematics and the computational sci-
ences, and to build bridges to all academic disciplines, to industry and other fields
of society, where mathematical and computational methods are necessary tools for
progress. Fundamental and application-oriented research will be covered in proper
balance.

The series will further offer contributions on areas at the frontier of research,
providing both detailed information on topical research, as well as surveys of the
state-of-the-art in a manner not usually possible in standard journal publications. Its
volumes are intended to cover themes involving more than just a single “spectral
line” of the rich spectrum of mathematical and computational research.

The Mathematics Center Heidelberg (MATCH) and the Interdisciplinary Center
for Scientific Computing (IWR) with its Heidelberg Graduate School of Mathemat-
ical and Computational Methods for the Sciences (HGS) are in charge of providing
and preparing the material for publication. A substantial part of the material will be
acquired in workshops and symposia organized by these institutions in topical areas
of research. The resulting volumes should be more than just proceedings collect-
ing papers submitted in advance. The exchange of information and the discussions
during the meetings should also have a substantial influence on the contributions.
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vi Preface to the Series

Starting this series is a venture posing challenges to all partners involved.
A unique style attracting a larger audience beyond the group of experts in the subject
areas of specific volumes will have to be developed.

The first volume covers the mathematics of knots in theory and application, a
field that appears excellently suited for the start of the series. Furthermore, due to
the role that famous mathematicians in Heidelberg like Herbert Seifert (1907–1996)
played in the development of topology in general and knot theory in particular, Hei-
delberg seemed a fitting place to host the special activities underlying this volume.

Springer Verlag deserves our special appreciation for its most efficient support in
structuring and initiating this series.

Willi Jäger
Hans Georg Bock

Heidelberg University, Germany



Preface

This volume is based on the themes of, and records advances achieved as a re-
sult of, the Heidelberg Knot Theory Semester, held in winter 2008/09 at Heidelberg
University under the sponsorship of the Mathematics Center Heidelberg (MATCH),
organized by M. Banagl and D. Vogel. In the preceding summer semester an intro-
ductory seminar on knots aimed at providing non-experts and young mathematicians
with some of the foundational knowledge required to participate in the events of the
winter semester. These comprised expository lecture series by several leading ex-
perts, representing rather diverse aspects of knot theory and its applications, and a
concluding workshop held December 15 to 19, 2008.

Knots seem to be a deep structure, whose peculiar feature it is to surface unex-
pectedly in many different and a priori unrelated areas of mathematics and the nat-
ural sciences, such as algebra and number theory, topology and geometry, analysis,
mathematical physics (in particular statistical mechanics), and molecular biology.
Its relevance in topology, apart from its intrinsic interest, is partly due to the fact that
every closed, oriented 3-manifold can be obtained by surgery on a framed link in
the 3-sphere. Modern topology has also obtained information on high-dimensional
knots, that is, embeddings of an n-sphere in an (n+2)-sphere with n larger than one.
In algebra, representations of quantum groups lead to a multitude of knot invariants.
Based on ideas of B. Mazur in number theory, one can assign to two prime ideals of
a number field a linking number in analogy with classical knot theory. This number-
theoretic linking number plays a role in studying the structure of Galois groups of
certain extensions of the number field. Analysis touches on knot theory by means of
operator algebras and their connection to the Jones polynomial. As far as geometry
is concerned, results by Fenchel on the curvature of a closed space curve date back
to the 1920s. Milnor showed in 1949 that the curvature must exceed 4π if the curve
is knotted. One also considers “real” knots as physical objects in 3-space and stud-
ies various natural energy functionals on them. Sums taken over all states of suitable
models originating in statistical mechanics, describing large ensembles of particles,
can express knot invariants such as L. Kauffman’s bracket polynomial. The dis-
covery of the Jones polynomial entailed ties with mathematical physics based on a
curious congruity of five relations, namely the Artin-relation in braid groups, a fun-
damental relation in certain operator algebras due to Hecke, the third Reidemeister
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viii Preface

move, the classical Yang-Baxter equation, and its quantum version. This lead to the
construction of topological quantum field theories by Witten and Atiyah. Cellular
DNA is a long molecule, which may be closed (as e.g. the genome of certain bacte-
ria) and knotted or linked with other DNA strands. Enzymes such as topoisomerase
or recombinase operate on DNA changing the topological knot or link type.

The objective of the Heidelberg Knot Theory Semester was to do justice to this
diversity by bringing together representatives of most of the above research avenues,
accompanied by the hope that such a meeting might foster inspiration and synergy
across the various questions and approaches. Certainly, a fairly comprehensive por-
trait of the current state-of-the-art in knot theory and its applications emerged as a
result.

Four lecture series were given: DeWitt Sumners gave 5 lectures on scientific
applications of knot theory, discussing DNA topology, a tangle model for DNA
site-specific recombination, random knotting, topoisomerase, spiral waves and vi-
ral DNA packing. Kent Orr’s 3 lectures explained knot concordance and surgery
techniques, while Louis Kauffman’s 2 lectures introduced virtual knots and detailed
parallels to elementary particles. The topic of Masanori Morishita’s 6 lectures were
the aforementioned analogies between knot theory and number theory.

The 21 speakers of the final workshop “The Mathematics of Knots” reported on
a variety of interesting current developments. Many of these accounts are mirrored
in the papers of the present volume. Among the low-dimensional topics were virtual
knots and associated invariants such as arrow and Jones polynomials, the HOMFLY
polynomial, questions about Dehn filling, Legendrian knots, Khovanov homology,
surface knots, slice knots, fibered knots and property R, colorings by metabelian
groups, singular knots, Gram determinants of planar curves, as well as geometric
structures such as surfaces associated with knots, and the fibering of 3-manifolds
when the product of the manifold with a circle is known to be symplectic. High-
dimensional topics concerned the Cohn noncommutative localization of rings and its
application to knots via algebraic K- and L-theory, as well as high-dimensional non-
locally flat embeddings and the role of knot theory vis-à-vis transformation groups.
Scientific talks discussed random knotting, viral DNA packing, and the topology of
DNA-protein interactions.

We wish to extend our sincere thanks to the contributors of this volume and to
all participants of the Heidelberg Knot Theory Semester, especially to the lecturers
giving mini-courses, for the energy and time they have devoted to this event and the
preparation of the present collection. Paul Seyfert receives the editors’ thanks for
technical help in typesetting this volume. Furthermore, we are grateful to Dorothea
Heukäufer for her efficient handling of numerous logistical issues. Finally, we would
like to express our gratitude to Willi Jäger and MATCH, whose financial support
made the Heidelberg Knot Theory Semester possible.

Markus Banagl
Denis Vogel

Heidelberg University, Germany
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Chapter 1
Knots, Singular Embeddings, and Monodromy

Markus Banagl, Sylvain E. Cappell,
and Julius L. Shaneson

Abstract The Goresky-MacPherson L-class of a PL pseudomanifold piecewise-
linearly embedded in a PL manifold in a possibly nonlocally flat way, can be
computed in terms of the Hirzebruch-Thom L-class of the manifold and twisted
L-classes associated to the singularities of the embedding, as was shown by Cappell
and Shaneson. These formulae are refined here by analyzing the twisted classes.
We treat the case of Blanchfield local systems that extend into the singularities as
well as cases where they do not extend. In the latter situation, we consider fibered
embeddings of strata and 4-dimensional singular sets, using work of Banagl. Rho-
invariants enter the picture.

1.1 Introduction

Let Mn+2 be a closed, oriented, connected PL manifold of dimension n+2 and Xn a
closed, oriented, connected PL pseudomanifold of dimension n. Let i : X ↪→ M be a
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2 M. Banagl et al.

not necessarily locally flat PL embedding. Let L∗ = 1 +L1(p1)+L2(p1,p2)+ · · ·
be the total Hirzebruch L-polynomial,

L1(p1) = 1

3
p1, L2(p1,p2) = 1

45
(7p2 − p2

1), . . . .

Let P(M) ∈ H ∗(M;Z) be the total Pontrjagin class of M and the Euler class χ ∈
H 2(M;Z) be the Poincaré dual of i∗[X] ∈ Hn(M;Z), where [X] is the fundamental
class of X. Set

L∗(M,X) = [X] ∩ i∗L∗(P (M) ∪ (1 + χ2)−1) ∈ H∗(X;Q).

Recall that the sequence L1,L2, . . . of polynomials is the multiplicative sequence
associated to the even power series defined by x/ tanh(x). Thus

L∗(1 + χ2) = χ

tanh(χ)
= 1 + 1

3
χ2 − 1

45
χ4 ± · · ·

and by the multiplicativity of {Lj },

L∗((1 + χ2)−1) = tanh(χ)

χ
= 1 − 1

3
χ2 + 2

15
χ4 ∓ · · · .

Hence the above defining expression for L∗(M,X) may alternatively be written
as

L∗(M,X) = [X] ∩
(

tanh i∗χ
i∗χ

∪ i∗L∗(PM)

)

= [X] ∩
((

1 − 1

3
i∗χ2 + 2

15
i∗χ4 ∓ · · ·

)
∪ i∗L∗(PM)

)
.

When this formula is pushed on into M , one obtains

i∗L∗(M,X) = i∗
(

[X] ∩ i∗
(

tanhχ

χ
∪ L∗(PM)

))

= i∗[X] ∩
(

tanhχ

χ
∪ L∗(PM)

)

= ([M] ∩ χ) ∩
(

tanhχ

χ
∪ L∗(PM)

)

= [M] ∩ (tanhχ ∪ L∗(PM)).

If the embedding is nonsingular, that is, X is a locally flat submanifold, then

L∗(X) = L∗(M,X),



1 Knots, Singular Embeddings, and Monodromy 3

where L∗(X) is the Poincaré dual of the Hirzebruch L-class of X. In particular, the
signature σ(X) = L0(X) is given by

σ(X) = L0(M,X).

If the embedding is singular, the singularities of X and the singularities of the
embedding induce a stratification of the pair (M,X). Under the assumption that
there are no strata of odd codimension, it was shown in [CS91] that the Goresky-
MacPherson L-class L∗(X) ∈ H∗(X;Q) of X, defined using middle-perversity in-
tersection homology, can be computed as

L∗(X) = L∗(M,X) −
∑
V ∈X

iV ∗L∗(V ; BR

V ), (1.1)

where the sum ranges over all connected components V of pure strata of X

that have codimension at least two, iV : V ↪→ X is the inclusion of the clo-
sure V of V into X and L∗(V ; BR

V ) ∈ H∗(V ;Q) is the Goresky-MacPherson L-
class of V twisted by a local coefficient system BR

V . This local system is en-
dowed with a nonsingular symmetric or skew-symmetric form BR

V ⊗ BR

V → R

and arises as Trotter’s “scalar product” [Tro73] of a certain Blanchfield local sys-
tem BV ⊗ Bop

V → Q(t)/�, � = Q[t, t−1]. The systems are defined on V and do
not in general extend as local systems to the closure V . They do, of course, ex-
tend as intersection chain sheaves by applying Deligne’s pushforward/truncation-
formula to BR

V , and L∗(V ; BR

V ) is defined as the L-class of this self-dual sheaf
complex on V . (For an introduction to the L-class of self-dual sheaves see
[Ban07].)

In the present paper, we refine formula (1.1) by computing the twisted classes
L∗(V ; BR

V ) further. Two cases are to be distinguished: The systems BR

V either extend
as local systems from V to V or they do not. In the former situation, the results of
[BCS03] apply and yield the formula (Theorem 6)

L∗(X) = L∗(M,X) −
∑
V ∈X

iV ∗(c̃h[BR

V ]K ∩ L∗(V )), (1.2)

where the modification c̃h of the Chern character is given by precomposing with the
second Adams operation, c̃h = ch◦ψ2 and [BR

V ]K denotes the K-theory signature
of BR

V , an element of KO(X) if the form on BR

V is symmetric, and of KU(X) if
it is skew-symmetric. In the situation of nonextendable systems, formulae of type
(1.2), even when the right hand side is defined, cease to hold as counterexamples
of [Ban08] show. The main results presented here, then, are concerned with un-
derstanding the twisted signatures σ(V ; BR

V ) when BR

V does not extend as a local
system into the singularities of V . Theorem 10 asserts that

σ(X) = L0(M,X)

when all embeddings V − V ↪→ V are locally flat spherical fibered knots. In par-
ticular if M = Sn+2 is a sphere, we have σ(X) = 0, since L0(S

n+2,X) = 0. The
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remaining results all assume that i : X ↪→ M has a 4-dimensional singular set such
that the V are 4-manifolds and the bottom stratum consists of locally flat 2-spheres
(see Examples 1 and 2). If the 2-spheres have zero self-intersection numbers and
BR

V is positive (εV = 1) or negative (εV = −1) definite of rank rV , then

σ(X) = L0(M,X) −
∑

V ⊂X4−X2

εV rV σ (V ),

with V ranging over all connected components V of the pure 4-stratum (Theorem 7).
Again we obtain a corollary for the case where M is a sphere:

σ(X) +
∑

V ⊂X4−X2

εV rV σ (V ) = 0.

Similar corollaries for embeddings in spheres can be deduced for the following re-
sults as well.

More generally, if the structure group of the form on V is O(pV ,qV ), then

σ(X) = L0(M,X) −
∑

V ⊂X4−X2

(pV − qV )σ (V ) −
∑

V ⊂X4−X2

〈2(c2
1 − 2c2)(BC

V ), [V ]〉,

where 2(c2
1 − 2c2) is an H 4(V ;Z)-valued characteristic class (Theorem 8). As a

corollary (Corollary 4) we deduce that σ(X) − L0(M,X) is divisible by 8 if every
V is a 4-sphere. When the 2-spheres have nonzero self-intersection numbers, then
rho-invariants enter. Theorem 9 for positive, say, definite forms asserts that

σ(X) = L0(M,X)

−
∑

V ⊂X4−X2

(
rV σ (V ) +

nV∑
i=1

(c-rk(BC

V |Li
) sign[S2

i ]2 − ραi
(pi, qi))

)
,

where σ(V ) denotes the (Novikov-) signature of the exterior of the 2-spheres

nV⊔
i=1

S2
i ⊂ V ,

Li = L(pi, qi), a lens space, is the boundary of a regular neighborhood of S2
i in V ,

and αi is obtained by restricting BC

V to Li . The function ρα(p,q) is given by an
explicit formula, see Sect. 1.9, p. 26, where the constancy-rank c-rk(S) of a local
system S is defined as well.

Organization Section 1.2 reviews Blanchfield forms and their relation to Seifert
manifolds. Fundamental results of Levine, Trotter, Kearton and Kervaire are re-
called. Blanchfield and Poincaré local coefficient systems are defined. In Sect. 1.3
we review the Trotter trace T : Q(t)/� → Q, which allows us to pass from Blanch-
field local systems to Poincaré local systems. An important point here is that this
passage reverses symmetry properties: if the Blanchfield form is Hermitian, then
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the real Poincaré form is skew-symmetric and if the Blanchfield form is skew-
Hermitian, then the Poincaré form is symmetric. Section 1.4 serves mainly to set
up notation concerning the complexification of real sheaf complexes, forms, etc.
Various characterizations of extendability of a local system from the top stratum
of a stratified pseudomanifold into the singular strata are discussed in Sect. 1.5.
The K-theory signature of a Poincaré local system is recalled. Section 1.6 reviews
the twisted L-class formula of [BCS03]. The Cappell-Shaneson L-class formula for
singular embeddings, [CS91], is discussed in Sect. 1.7, where details on the strati-
fication induced by a singular embedding, together with an example, are also to be
found. Embeddings are always assumed to induce only strata of even codimension
and to be of finite local type and of finite type. The final two sections contain the
results of this paper; Sect. 1.8 for local systems that extend and Sect. 1.9 for systems
that do not extend.

1.2 Blanchfield and Poincaré Local Systems

Let R be a Dedekind domain, for example R = � = Q[t, t−1], the ring of Laurent
polynomials. Let F be the quotient field of R and let A and B be finitely generated
torsion R-modules. A pairing

A ⊗R B −→ F/R

is called perfect, if the induced map

A −→ HomR(B,F/R)

is an isomorphism. Suppose R is equipped with an involution r → r̄ . Then Bop will
denote the R-module obtained by composing the module structure of B with the
involution. A pairing

β : B ⊗R Bop −→ F/R

is called Hermitian if

β(a ⊗ b) = β(b ⊗ a)−,

and skew-Hermitian if

β(a ⊗ b) = −β(b ⊗ a)−.

We will be primarily concerned with the ring R = � of Laurent polynomials. For
this ring, the quotient field F is F = Q(t), the rational functions. The involution on
R is given by replacing t with t−1.

Definition 1 An (abstract) Blanchfield pairing is a perfect Hermitian or skew-
Hermitian pairing

B ⊗� Bop −→ Q(t)/�,

where B is a finitely generated torsion �-module.
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A locally flat knot S2n−1 ⊂ S2n+1 possesses two related kinds of abelian invari-
ants associated to the map of the knot group to its abelianization Z: those arising
from the infinite cyclic cover of the knot exterior and those arising from choices of
Seifert manifolds. For later reference, we recall here some well-known facts about
the relation between the Blanchfield pairing and Seifert matrices. A Seifert mani-
fold for the knot is a codimension 1 framed compact submanifold of S2n+1 whose
boundary is the knot. Every (locally flat) knot has a Seifert manifold. Let K be
the exterior of the knot. The knot is simple, if πi(K) ∼= πi(S

1) for 1 ≤ i < n. The
(2n − 1)-knot is simple if and only if it bounds an (n − 1)-connected Seifert mani-
fold, [Lev65, Theorem 2]. A choice of Seifert manifold M2n together with a choice
of basis {bi} for the torsion-free part of Hn(M) determines a Seifert matrix A by
defining the (i, j)-entry to be the linking number of a cycle representing bi with a
translate in the positive normal direction to M of a cycle representing bj . Any such
A has the property that A + (−1)nAT is unimodular. In fact, A + (−1)nAT is the
matrix of the intersection form of M . Two square integral matrices are S-equivalent
if they can be obtained from each other by a finite sequence of elementary enlarge-
ments, reductions and unimodular congruences. An elementary enlargement of A is
any matrix of the form

⎛
⎝A 0 0

α 0 0
0 1 0

⎞
⎠ or

⎛
⎝A β 0

0 0 1
0 0 0

⎞
⎠ ,

where α is a row vector and β is a column vector. A matrix is an elementary reduc-
tion of any of its elementary enlargements.

Theorem 1 (Levine [Lev70]) Seifert matrices of isotopic knots of any odd dimen-
sion are S-equivalent.

Trotter [Tro73] abstractly calls a square integral matrix A with A + AT or
A − AT unimodular a Seifert matrix. Such an A must be even dimensional. Any
Seifert matrix A determines a Z[t, t−1]-module BA presented by the matrix tA +
(−1)nAT . The determinant of the latter matrix is the Alexander polynomial of the
knot,

�(t) = det(tA + (−1)nAT ),

defined up to multiplication with a unit of Z[t, t−1]. Moreover, A determines a non-
singular (−1)n+1-Hermitian pairing

βA : BA ⊗ B
op
A −→ F/Z[t, t−1],

given by the matrix (1 − t)(tA + (−1)nAT )−1, where F is the field of fractions of
Z[t, t−1].

Theorem 2 (Trotter [Tro73]) If A1 and A2 are S-equivalent Seifert matrices, then
there is an isometry (BA1 , βA1)

∼= (BA2 , βA2).
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Thus (BA,βA) is an invariant of the knot; BA is called the knot module of the
knot. Let K∞ be the infinite cyclic cover of the exterior K of the knot. The homol-
ogy group Hn(K∞) is a Z[t, t−1]-module via the action of the Deck-transformation
group, generated by t . Assume that the knot is simple. The Blanchfield pairing

b : Hn(K∞) ⊗ Hn(K∞)op −→ F/Z[t, t−1]
is nonsingular and (−1)n+1-Hermitian.

Theorem 3 (Kearton [Kea73]) If A is any Seifert matrix of a simple knot, then there
is an isometry (BA,βA) ∼= (Hn(K∞), b).

Particularly agreeable representatives of S-equivalence classes are provided by
the following result.

Proposition 1 (Trotter [Tro73]) Any Seifert matrix is S-equivalent to a nonsingular
matrix.

If A is a nonsingular Seifert matrix, then the Q-vector space BA ⊗Z Q has di-
mension

dimQ(BA ⊗Z Q) = rkA. (1.3)

We conclude this review with a geometric realization result due to Kervaire.

Theorem 4 (Kervaire [Ker65]) Let n > 2 be an integer and A a square integral
matrix such that A+ (−1)nAT is unimodular. Then there exists a simple locally flat
(2n − 1)-knot with Seifert matrix A.

Let (Xn, ∂X) be a pseudomanifold with (possibly empty) boundary and filtration

Xn = Xn ⊃ Xn−2 ⊃ Xn−3 ⊃ · · · ⊃ X0 ⊃ ∅,

where the strata are indexed by dimension, the Xi ∩∂X stratify ∂X, and the Xi −∂X

stratify X − ∂X; � = Xn−2 is the singular set. For a ring R, let RX denote the
constant sheaf with stalk R on X.

Definition 2 A Blanchfield local system on X is a locally constant sheaf B on X

together with a pairing

β : B ⊗ Bop −→ (Q(t)/�)X,

such that for every x ∈ X, the stalk Bx is a finitely generated torsion �-module and
the restriction

βx : Bx ⊗ Bop
x −→ Q(t)/�

is a Blanchfield pairing.
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Definition 3 A Poincaré local system on X is a locally constant sheaf P on X

together with a pairing

φ : P ⊗ P → RX,

such that for every x ∈ X, the stalk Px is a finite dimensional real vector space and
the restriction

φx : Px ⊗ Px → R

is perfect and either symmetric or skew-symmetric.

1.3 Passage from Blanchfield Systems to Poincaré Systems

The method of partial fraction decomposition enables us to write any rational func-
tion f ∈ Q(t) uniquely in the form

f (t) = p(t) +
k∑

i=1

Ai

t i
+ g(t),

where p ∈ Q[t], Ai ∈ Q, and

g(t) =
l∑

j=1

kj∑
i=1

pi,j (t)

qj (t)i
,

pi,j , qj ∈ Q[t], the qj are distinct, irreducible, and prime to t , degpi,j < i degqj .
Since t does not divide qj , qj (0) �= 0 and thus g(0) ∈ Q is defined. The Trotter trace
T : Q(t) → Q is the Q-linear map

T (f ) = g(0).

If f ∈ � ⊂ Q(t), then g = 0 and so T (f ) = 0. Thus T passes from Q(t) to the
quotient Q(t)/�, T : Q(t)/� → Q.

Let B be a �-module. By restricting the coefficients to the subring Q ⊂ �, we
may regard B as a Q-vector space BQ. If B is finitely generated and torsion, then
BQ is finite dimensional. Using the standard embedding Q ⊂ R, we define the real
vector space BR = BQ ⊗Q R. Let β : B ⊗� Bop → Q(t)/� be a Blanchfield pairing.
Define

βR : BR ⊗R BR −→ R

by

βR((a ⊗Q λ) ⊗R (b ⊗Q μ)) = λμTβ(a ⊗� b),

a, b ∈ B , λ,μ ∈ R. Then βR is a perfect pairing on BR. The passage from β to βR

reverses symmetry properties: if β is Hermitian, then βR is skew-symmetric and if
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β is skew-Hermitian, then βR is symmetric. We denote the signature of this pairing
by σ(βR); it is zero in the skew-symmetric case.

If B = Hn(K∞) is the knot module of a locally flat knot S2n−1 ⊂ S2n+1 and β

the Blanchfield pairing for this knot, then the signature of βR can be computed as

σ(βR) = σ(M2n), (1.4)

where M2n is any Seifert manifold for the knot and σ(M2n) denotes the (Novikov-)
signature of its intersection form, see [CS91]. Note also that

σ(M2n) = σ(A + (−1)nAT ), (1.5)

where A is the corresponding Seifert matrix, since A + (−1)nAT is a matrix repre-
sentation of the intersection form.

If B is a local system of �-modules on a space X, then BR = BQ ⊗Q R, where
BQ is the local system of Q-vector spaces with stalks (BQ)x = (Bx)

Q obtained from
restricting coefficients to Q. Let β : B ⊗� Bop → (Q(t)/�)X be a Blanchfield local
system on a pseudomanifold X. Then the pairings (βx)R : (Bx)

R ⊗R (Bx)
R → R

define a Poincaré local system

βR : BR ⊗R BR −→ RX.

1.4 Passage from Poincaré Systems to Complex Hermitian
Systems

Given a real vector space V of dimension n, let VC = V ⊗R C denote its complexifi-
cation, a complex vector space of dimension n. For example, R

n
C

= C
n. Taking com-

plex conjugation as the involution to be composed with the scalar multiplication, we
get the complex vector space V

op
C

. In fact, V op
C

= V ⊗R (Cop). If B = {v1, . . . , vn} is
a basis for V , then BC = {v1 ⊗ 1, . . . , vn ⊗ 1} is a basis for VC. As regards pairings,
let us concentrate on the symmetric case, the skew-symmetric case is treated in a
similar way. To a symmetric perfect pairing φ : V ⊗ V → R, we can associate a
Hermitian perfect pairing φC : VC ⊗ V

op
C

→ C by setting

φC((v ⊗ λ) ⊗ (w ⊗ μ)) = λμφ(v,w),

v,w ∈ V , λ,μ ∈ C. The canonical example is γ : R
p+q ⊗ R

p+q → R given by

γ ((x1, . . . , xp+q) ⊗ (y1, . . . , yp+q))

= x1y1 + · · · + xpyp − xp+1yp+1 − · · · − xp+qyp+q .

For this pairing, γC : C
p+q ⊗ (Cp+q)op → C is

γC((z1, . . . , zp+q) ⊗ (u1, . . . , up+q))

= z1u1 + · · · + zpup − zp+1up+1 − · · · − zp+qup+q .
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If MatB(φ) = (φ(vi ⊗ vj )) denotes the matrix representation of φ with respect to
the basis B , then the matrix representation of φC with respect to BC is simply

MatBC
(φC) = MatB(φ),

viewed as a complex matrix. This is a Hermitian matrix because it is real and sym-
metric. In fact, we can choose B so that MatB(φ) is diagonal. Then MatBC

(φC)

is diagonal with the same entries, which shows that the signature does not change
under complexification, σ(φ) = σ(φC) ∈ Z.

The symmetric perfect pairing φ may alternatively be described by a self-duality

isomorphism d : V
∼=−→ V ∗, where V ∗ = Hom(V ,R), given by d(v) = φ(v ⊗ −).

The symmetry property is equivalent to asserting that

V
d

ev ∼=

V ∗

V ∗∗
d∗

commutes, where ev is the canonical evaluation isomorphism. Similarly, if W is a
complex vector space and ψ : W ⊗ W op → C a perfect Hermitian pairing, then ψ

can alternatively be described by a self-duality isomorphism D : W ∼=−→ W †, where
W † = Hom(W op,C), by setting D(w) = ψ(w ⊗ −). The Hermitian symmetry is
equivalent to asserting that

W
D

ev ∼=

W †

W ††
D†

commutes. In particular, we get D : VC

∼=→ V
†
C

for (W,ψ) = (VC, φC).
Let X be a path-connected space and (P , φ) a Poincaré local system on X, φ :

P ⊗ P → RX . Applying complexification stalkwise, we obtain a Hermitian local
system φC : PC ⊗ P op

C
→ CX. A monodromy-theoretic description of this passage

runs as follows: Let p and q be such that p + q = rk P and p − q = σ(φx), x ∈ X.
Let O(p,q) be the group of all matrices in GL(p + q,R) that preserve the form γ ,
that is,

O(p,q) = {A ∈ GL(p + q,R) : AT · Ip,q · A = Ip,q},
where

Ip,q =
(

1p×p 0p×q

0q×p −1q×q

)
.
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Then (P , φ) determines, and is determined by, a representation π1(X) → O(p,q).
Let U(p,q) be the group of all matrices in GL(p + q,C) that preserve the form γC,
that is,

U(p,q) = {A ∈ GL(p + q,C) : A
T · Ip,q · A = Ip,q}.

Note that O(p,q) ⊂ U(p,q) is a subgroup. The Hermitian local system (PC, φC)

determines, and is determined by, a representation π1(X) → U(p,q), and this rep-
resentation is the composition

π1(X) −→ O(p,q) ↪→ U(p,q).

Let Xn be a PL stratified pseudomanifold. The real dualizing complex D
•
X(R)

on X may be defined as the complex of sheaves of real vector spaces which has the
sheafification of the presheaf

U → Cj (X,X − U ;R), U ⊂ X open,

in degree −j , where Cj denotes singular chains of dimension j . Similarly, D
•
X(C) is

the sheafification of U → Cj (X,X − U ;C). Since Cj(X,X − U ;C) = Cj (X,X −
U ;R) ⊗R C and − ⊗R C commutes with direct limits, it follows that

D
•
X(C) = D

•
X(R) ⊗R CX.

Let S• ∈ Db
c (X;R) be an object of the constructible bounded derived category of

sheaf complexes of real vector spaces on X. Since we are working over fields,
L⊗ = ⊗. Define the complexification of S• by S•

C
= S• ⊗R CX ∈ Db

c (X;C). Given
A• ∈ Db

c (X;C), we may apply composition with complex conjugation in a stalk-
wise fashion to define (A•)op ∈ Db

c (X;C). We have (S•
C
)op = S• ⊗R (C

op
X ). Given

T• ∈ Db
c (X;R), there is a canonical isomorphism

S•
C

⊗C (T•
C
)op ∼= (S• ⊗R T•) ⊗R (CX ⊗C C

op
X ),

(v ⊗ λ) ⊗ (w ⊗ μ) → (v ⊗ w) ⊗ (λ ⊗ μ).

Let

m : CX ⊗C C
op
X −→ CX

λ ⊗ μ → λμ

be the canonical multiplication. To a pairing

φ : S• ⊗R T• −→ D
•
X(R)

into the dualizing complex, we can associate a pairing

φC : S•
C

⊗C (T•
C
)op −→ D

•
X(C)
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by taking φC to be the composition

S•
C

⊗C (T•
C
)op = (S• ⊗R T•) ⊗R (CX ⊗C C

op
X )

φ⊗m−→ D
•
X(R) ⊗R CX = D

•
X(C).

Under the canonical identifications

RHom•(S• ⊗ T•,D
•
X(R)) ∼= RHom•(S•,RHom•(T•,D

•
X(R))),

RHom•(S•
C

⊗C (T•
C
)op,D

•
X(C)) ∼= RHom•(S•

C
,RHom•((T•

C
)op,D

•
X(C))),

the above procedure associates to a morphism

d : S• −→ RHom•(T•,D
•
X(R)) = DX,R(T•)

in Db
c (X;R) with codomain the real Verdier-dual of T• a morphism

D : S•
C

−→ RHom•((T•
C
)op,D

•
X(C)) = DX,C((T•

C
)op)

in Db
c (X;C) to the complex Verdier-dual of (T•

C
)op. If d is an isomorphism, then

so is D. If d is symmetric, that is, DX,R(d) = d , then D is Hermitian, that is,
DX,C(Dop) = D. In particular, if S• is a symmetric self-dual real sheaf, then S•

C

is a Hermitian self-dual complex sheaf.
Suppose the dimension n of X is a multiple of 4 and that X is oriented, closed and

has only even codimensional strata. Let φ : P ⊗ P → RX be a symmetric Poincaré
local system on the top stratum of X. Then φ extends uniquely to a symmetric self-
duality isomorphism

d : IC•̄
m(X; P ) ∼= DX,RIC•̄

m(X; P )[n].
Similarly, the associated Hermitian local system φC : PC ⊗ (PC)op → CX extends
uniquely to a Hermitian self-duality isomorphism

δ : IC•̄
m(X; PC) ∼= DX,CIC•̄

m(X; PC)op[n].
As, for an open inclusion i, the derived pushforward R i∗ commutes with − ⊗R C,
and the truncation functor τ≤k commutes with − ⊗R C as well, we have

IC•̄
m(X; PC) = IC•̄

m(X; P )C.

Moreover, δ = D, where D is the complexification of d as described above.
Let S• ∈ Db

c (X;R) be a symmetric self-dual sheaf on X, d : S• ∼= DX,RS•[n],
DX,Rd[n] = d . The isomorphism d induces a symmetric isomorphism on the
middle-dimensional hypercohomology groups

H−n/2(X;S•)
∼=−→ H−n/2(X;S•)∗,

i.e. a symmetric perfect pairing

ψ : H−n/2(X;S•) ⊗R H−n/2(X;S•) −→ R.
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Let σ(S•) ∈ Z denote the signature of this pairing. The complexification S•
C

is a
Hermitian self-dual sheaf. Its self-duality isomorphism D : S•

C
∼= DX,C(S•

C
)op[n]

induces a perfect Hermitian pairing

η : H−n/2(X;S•
C
) ⊗C H−n/2(X;S•

C
)op −→ C.

Let σ(S•
C
) ∈ Z denote the signature of η. With V = H−n/2(X;S•), we have

H−n/2(X;S•
C
) = VC and η = ψC, whence σ(S•

C
) = σ(ψC) = σ(ψ) = σ(S•). Given

a Poincaré local system (P , φ), the twisted signature σ(X; P ) is by definition the
signature of the self-dual sheaf (IC•̄

m(X; P ), d). We conclude that

σ(X; P ) = σ(IC•̄
m(X; P ), d)

= σ(IC•̄
m(X; P )C,D)

= σ(IC•̄
m(X; PC), δ)

= σ(X; PC),

where the last equality is a definition.

1.5 Strongly Transverse Poincaré Local Systems

Let ε ∈ {±1}, let (P , φ) be an ε-symmetric Poincaré local system of stalk dimension
m on the space Xn and let �1(X) denote the fundamental groupoid of X. By Vectm

denote the category whose objects are pairs (V ,ψ), with V an m-dimensional real
vector space and ψ : V ×V → R a perfect ε-symmetric bilinear pairing, and whose
morphisms are isometries of the pairings. The system (P , φ) induces a covariant
functor

μ(P ) : �1(X) −→ Vectm

as follows: For x ∈ X, let

μ(P )(x) = (Px,φx)

and for a path class [ω] ∈ π1(X,x1, x2) = Hom�1(X)(x2, x1), ω : I → X, ω(0) =
x1, ω(1) = x2, define the linear operator

μ(P )[ω] : μ(P )(x2) −→ μ(P )(x1)

to be the composition

μ(P )(x2) = Pω(1)
∼= (ω∗P )1

�←
restr

�(I,ω∗P )
�→

restr
(ω∗P )0 ∼= Pω(0) = μ(P )(x1).

If we choose a base-point x ∈ X, then restricting μ(P ) to the fundamental group
π1(X,x) = Hom�1(X)(x, x) gives an assignment of a linear automorphism on the
stalk Px ,

μ(P )x(g) : Px −→ Px,
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preserving the pairing φx : Px × Px → R, to each g ∈ π1(X,x). Thus one obtains
the monodromy representation

μ(P )x : π1(X,x) −→ O(p,q)

when ε = 1 (p + q = m is the rank of P , p − q the signature of φx ), and

μ(P )x : π1(X,x) −→ Sp(2r;R)

when ε = −1 (m = 2r is the rank of P ). Conversely, a given functor μ : �1(X) →
Vectm determines a Poincaré local system: Let X0 be a path component of X, and
x0 ∈ X0. Then π(X0, x0) acts on μ(x0) = (V ,φ) by the restriction μx0 and we have
the associated local system

P |X0 = X̃0 ×π1(X0,x0) V

over X0 with an induced pairing φ, where X̃0 denotes the universal cover of X0.

Definition 4 Let X be a stratified pseudomanifold with singular set � and let X
denote the set of components of open strata of X of codimension at least 2. Each
Z ∈ X has a link Lk(Z). Call a Poincaré local system P on X − � strongly trans-
verse to � if the composite functor

�1(Lk(Z) − �)
incl∗−→ �1(X − �)

μ(P )−→ Vectm

is isomorphic to the trivial functor for all Z ∈ X .

On normal spaces, strong transversality of local systems characterizes those sys-
tems that extend as local systems over the whole space:

Proposition 2 Let Xn be normal. A Poincaré local system P on X − � is strongly
transverse to � if and only if it extends as a Poincaré local system over all of X.
Such an extension is unique.

The normality assumption is not necessary for the “if”-direction. The assumption
cannot be omitted in the “only if”-direction and in the uniqueness statement.

Corollary 1 Let Xn be normal. A Poincaré local system P on X − � is strongly
transverse to � if and only if its monodromy functor μ(P ) : �1(X − �) → Vectm

factors (up to isomorphism of functors) through �1(X):

�1(X − �)
incl∗

μ(P )

�1(X)

Vectm
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Let Xn be normal. A Poincaré local system (P , φ) on Xn − � strongly transverse
to � has a K-theory signature

[P ]K ∈
{

KO(X), if ε = 1

KU(X), if ε = −1,

as we shall now explain. By Proposition 2, (P , φ) has a unique extension to a
Poincaré local system (P̄ , φ̄) on X. We now proceed as in [Mey72]. Let P c de-
note the flat vector bundle associated to the locally constant sheaf P̄ , that is

P c|X0 = X̃0 ×π R
m

over a path component X0 of X, where R
m is given the usual topology, π = π1(X0),

and π acts on R
m by means of the monodromy μ(P̄) of P̄ . A suitable choice of

Euclidean metric on P c induces (using φ̄) a vector bundle automorphism

A : P c −→ P c

such that A2 = 1 (if φ̄ is symmetric, i.e. ε = 1) or A2 = −1 (if φ̄ is skew-symmetric,
i.e. ε = −1). Thus in the case ε = 1, P c decomposes as a direct sum of vector
bundles

P c = P+ ⊕ P−
corresponding to the ±1-eigenspaces of A. Put

[P ]K = [P+] − [P−] ∈ KO(X).

In the case ε = −1, A defines a complex structure on P c and we obtain the complex
vector bundle PC and its conjugate bundle P ∗

C
; we put

[P ]K = [P ∗
C
] − [PC] ∈ KU(X).

Similar remarks apply to perfect complex Hermitian local coefficient systems S .
They are determined over connected components X0 ⊂ X by monodromy repre-
sentations μ(S) : π1(X0) → U(p,q) and their K-theory signature is defined as
[S]K = [S+] − [S−] ∈ KU(X), where S c = S+ ⊕ S− is a nonflat splitting such
that the Hermitian form is positive definite on S+ and negative definite on S−,
corresponding to a reduction of the structure group from U(p,q) to the maximal
compact subgroup U(p) × U(q), see [Lus71].

1.6 Computing Twisted L-Classes for Strongly Transverse
Coefficients

Let X be a closed Witt space with singular set �, and (P , φ) a Poincaré local system
on X − � such that a self-dual extension (IC•̄

m(X; P ), φ̄) exists. The twisted L-
classes

Lk(X; P ) ∈ Hk(X;Q)
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of X with coefficients in P are the L-classes of the self-dual sheaf S• = IC•̄
m(X; P ).

In [BCS03], we show:

Theorem 5 Let Xn be a closed oriented Whitney stratified normal Witt space with
singular set �, and let (P , φ) be a Poincaré local system on X − �, strongly trans-
verse to �. Then

L∗(X; P ) = c̃h[P ]K ∩ L∗(X). (1.6)

Recall the

Definition 5 Xn is supernormal, if for any components Z,Z′ of open strata with
dimZ′ > dimZ ≤ n − 2, the link Lk(Z) ∩ Z′ is simply connected.

Theorem 5 implies

Corollary 2 If Xn is supernormal, then for any Poincaré local system (P , φ) on
X − �

L∗(X; P ) = c̃h[P ]K ∩ L∗(X).

To obtain the conclusion of the corollary, less than supernormality is actually
needed. Indeed it is sufficient to require that X be normal and that the image of
π1(Lk(Z) − �) in π1(X − �) vanishes for all Z ∈ X .

In [Ban06], the first author has extended formula (1.6) to spaces that are not Witt,
but still support self-dual perverse sheaves, given by Lagrangian structures, so that
the L-class is still defined.

1.7 The Cappell-Shaneson L-Class Formula for Singular
Embeddings

Let Xn be an oriented connected PL pseudomanifold of real dimension n, piecewise
linearly embedded in an oriented, connected PL manifold Mm of dimension m =
n + 2. Since (M,X) is a PL pair, there exists a filtration

M = Mm ⊃ Mm−1 = X ⊃ Mm−2 = X ⊃ Mm−3 = X ⊃ Mm−4

⊃ Mm−5 ⊃ · · · ⊃ M0 ⊃ M−1 = ∅,

such that for each y ∈ Mi − Mi−1 there exists a distinguished neighborhood U of y

in M , a compact Hausdorff pair (G,F ), a filtration

G = Gm−i−1 ⊃ · · · ⊃ G0 ⊃ G−1 = ∅,

and a PL homeomorphism

φ : Di × c(G,F ) −→ (U,U ∩ X)
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that maps Di × c(Gj−1,Gj−1 ∩ F) onto (Mi+j ,Mi+j ∩ X), where cY denotes
the cone on a space Y . The link pair (G,F ) depends up to PL homeomorphism
only on the connected component V of Mi − Mi−1 that contains y. Since M is
a manifold, G = Sm−i−1 = Sn−i+1 is a sphere. As in [CS91], we will henceforth
assume that embeddings are of finite local type and of finite type. (This guarantees
finite dimensionality of intersection sheaf stalks and global intersection homology
groups. Algebraic knots, for example, are always of finite type.) An induced PL
stratification of X is given by

X = Xn ⊃ Xn−1 = Mm−3 = X ⊃ Xn−2 = Mm−4

⊃ Xn−3 = Mm−5 ⊃ · · · ⊃ X0 = M0 ⊃ X−1 = ∅.

The link in X of a component V of a stratum Xi − Xi−1 = Mi − Mi−1 at a point
y ∈ V is the above F . Let X be the collection of connected components of pure
strata Xi − Xi−1, i ≤ n − 2. It is worthwhile to discuss the case of X a manifold.
Since the embedding of X in M may not be locally flat, the pair (M,X) will in gen-
eral still receive a nontrivial stratification, but the links of components in X will be
spheres F = Sn−i−1. The link pairs in (M,X) will thus be knots (Sn−i+1, Sn−i−1).
The closed strata Xi ⊂ X induced by the embedding X ⊂ M may or may not be
submanifolds of X and the embeddings Xi ⊂ X may or may not be locally flat.

Example 1 Let S(Y ) denote the unreduced suspension of a space Y . We shall dis-
cuss the stratification of Xn = S2 × S(S1 × Sn−4) induced by a certain nonlocally
flat embedding Xn ⊂ S2 × Sn = Mn+2, where n ≥ 6. We start out with a nontrivial
locally flat PL knot κ : Sn−5 ↪→ Sn−3 and suspend it to obtain an embedding Sκ :
Sn−4 = S(Sn−5) ↪→ S(Sn−3) = Sn−2. Denote the two suspension points in Sn−4 by
p+ and p−. Think of Sn−2 as the one-point compactification Sn−2 = R

n−2 ∪ {∞}
of R

n−2, with ∞ not in the image of Sκ . Then by restricting Sκ , we obtain an em-
bedding σ : Sn−4 ↪→ R

n−2, which is not flat at p+ and p− because the link pair at
p± is the knot κ . On the complement Sn−4 − {p±}, σ is locally flat. Crossing with
a circle S1, we get an embedding idS1 ×σ : S1 × Sn−4 ↪→ S1 × R

n−2 with link pair
κ for the singular stratum S1 × {p±} ⊂ S1 × Sn−4 where idS1 ×σ is not locally flat.
Embed S1 in the plane R

2 as the unit circle and R
2 in R

n−1 in the standard way,
(x, y) → (x, y,0,0, . . . ,0). Then the normal bundle of S1 ↪→ R

n−1 is S1 × R
n−2

and defines an open embedding S1 × R
n−2 ↪→ R

n−1 ↪→ Sn−1. The composition
of idS1 ×σ with this open embedding gives an embedding f : S1 × Sn−4 ↪→ Sn−1.
Since the open embedding does not change the link types, f still has singular stra-
tum S1 × {p±}. Let q+ and q− be the two suspension points of S(S1 × Sn−4).
Suspending f , we obtain an embedding Sf : S(S1 × Sn−4) ↪→ S(Sn−1) = Sn.
The points q± are singularities of the pseudomanifold S(S1 × Sn−4) and thus
must appear as a stratum of the pair (Sn, S(S1 × Sn−4)). The stratification of
(Sn, S(S1 × Sn−4)) is given by

Sn ⊃ S(S1 × Sn−4) ⊃ S(S1 × {p±}) ⊃ {q±}.
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Finally, idS2 ×Sf : S2 × S(S1 × Sn−4) ↪→ S2 × Sn defines an embedding Xn ⊂
Mn+2. The pair (M,X) is stratified by

M = S2 × Sn ⊃ X = S2 × S(S1 × Sn−4)

⊃ X4 = S2 × S(S1 × {p±}) ⊃ X2 = S2 × {q±}.
The collection X is given by

X = {S2 × ◦
I × S1 × {p+}, S2 × ◦

I × S1 × {p−}, S2 × {q+}, S2 × {q−}},

where
◦
I = (0,1) denotes the open unit interval. The closure V of the pure compo-

nent V = S2 × ◦
I × S1 × {p+} in X is

V = S2 × S(S1 × {p+}),
PL homeomorphic to the 4-manifold S2 × S2, and the singular set V − V of V is
V −V = S2 ×{q±}, the disjoint union of two 2-spheres. The embedding V −V ⊂ V

is locally flat and has trivial normal bundle. The link pair of V is the knot κ that we
started with.

We return to the general case of an oriented pseudomanifold X ⊂ M . Assume
that all strata in X have even codimension in X. Let V ∈ X be a component of codi-
mension 2c = m − i ≥ 4 in M and let x ∈ V be a point with link pair (Gx,Fx) =
(S2c−1

x ,Fx). The fundamental class [Fx ] maps trivially to H2c−3(S
2c−1
x ) = 0. Thus

Fx ⊂ S2c−1
x has a Seifert-pseudomanifold that can be used to define a linking num-

ber. For α ∈ π1(S
2c−1
x − Fx), let lk(Fx,α) ∈ Z denote the linking number. The as-

signment α → t lk(Fx,α) determines a local system Lx with stalks � on S2c−1
x − Fx .

The complex of sheaves IC•̄
m(S2c−1

x ; Lx) is defined by the Deligne extension pro-
cess for the lower middle perversity m̄ applied to Lx . The pairing

Lx ⊗ Lop
x −→ �,

f (t) ⊗ g(t) → f (t)g(t−1)

is perfect and Hermitian. Assuming that Fx ⊂ S2c−1
x is of finite local type, this

pairing extends to a Verdier-superduality isomorphism

IC•̄
l
(S2c−1

x ; Lx)op ∼= D(IC•̄
m(S2c−1

x ; Lx))[2c − 1],

where l̄ is the logarithmic perversity of [CS91], that is, l̄(s) = [(s + 1)/2] so that
m̄(s) + l̄(s) = s − 1 (m̄ and l̄ are “superdual”). If Fx ⊂ S2c−1

x is in addition of finite
type, then this isomorphism induces upon taking hypercohomology an isomorphism

IH l̄
i (S

2c−1
x ; Lx)op ∼= Ext(IHm̄

2c−i−2(S
2c−1
x ; Lx),�)

= Hom(IHm̄
2c−i−2(S

2c−1
x ; Lx),Q(t)/�).
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With (BV )x = Image(IHm̄
c−1(S

2c−1
x ; Lx) → IH l̄

c−1(S
2c−1
x ; Lx)), we thus get for i =

c − 1 a Blanchfield pairing

(BV )x ⊗ (BV )
op
x −→ Q(t)/�.

Remark 1 When Fx = S2c−3 and Fx ⊂ S2c−1
x is locally flat, this is the classical

Blanchfield pairing. If F ⊂ S2c−1 is any locally flat submanifold, then according to
[CS91, p. 339],

IHp̄
i (S2c−1; L) =

{
Hi(K; L), p̄(2) = 0,

Hi(K, ∂K; L), p̄(2) = 1,

where K is the exterior of F . In this situation, then, the above map IHm̄
c−1(S

2c−1; L)

→ IH l̄
c−1(S

2c−1; L) becomes the map

Hc−1(K; L) −→ Hc−1(K, ∂K; L)

induced by inclusion. For F = S2c−3, c ≥ 3, we have ∂K = S2c−3 ×S1 and the map
is an isomorphism.

Letting x vary over V , we obtain a Blanchfield local system

BV ⊗ Bop
V −→ Q(t)/�

over V . Again by the Deligne extension process, the associated Poincaré local sys-
tem

BR

V ⊗ BR

V −→ R

extends to a self-duality isomorphism

IC•̄
m(V ; BR

V ) ∼= DIC•̄
m(V ; BR

V )[m − 2c].
This self-dual sheaf has L-classes

Lj (V ; BR

V ) ∈ Hj(V ;Q),

assuming now that X is compact. Let iV : V ↪→ X be the inclusion. The Cappell-
Shaneson L-class formula [CS91] for singular embeddings asserts that

L∗(X) = L∗(M,X) −
∑
V ∈X

iV ∗L∗(V ; BR

V ). (1.7)

When M = Sn+2, n > 0, is a sphere, we have i∗[X] = 0 ∈ Hn(S
n+2) so that χ = 0

and L∗(P (M)) = 1. Therefore,

L∗(Sn+2,X) = [X] ∩ i∗L∗(P (M) ∪ (1 + χ2)−1) = [X] ∩ 1 = [X],
and in particular in degree 0,

L0(S
n+2,X) = 0. (1.8)
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1.8 Embeddings and Strongly Transverse Coefficients

A synthesis of the characteristic class formula of Theorem 5 and the Cappell-
Shaneson formula (1.7) yields the following result.

Theorem 6 Let i : Xn ↪→ Mn+2 be a PL embedding of an oriented compact pseu-
domanifold in an oriented compact manifold such that the pair (M,X) is stratifiable
without odd-codimensional strata. Assume that all Poincaré local systems BR

V are
strongly transverse to the singular set V − V , V ∈ X . Then

L∗(X) = L∗(M,X) −
∑
V ∈X

iV ∗(c̃h[BR

V ]K ∩ L∗(V )). (1.9)

Formula (1.9) holds automatically if X happens to be a manifold and the singular
set of the embedded X has codimension at least 3. For in that case, the links in X

are spheres of dimension 2 or higher which are simply connected. Thus we find
ourselves in the supernormal situation of Corollary 2.

1.9 Nontransverse Coefficient Systems

We shall first consider singular embeddings Xn ⊂ Mn+2 which have at most
4-dimensional singularities whose pure components have definite real Blanchfield
form. The 4-stratum may contain a 2-stratum which is a disjoint union of 2-spheres,
embedded in the 4-stratum in a locally flat way and with zero self-intersection num-
ber. The following is an example of such a situation.

Example 2 Let A be a square integral matrix such that A + AT is unimodular. Ac-
cording to the realization theorem of Kervaire (Theorem 4), there exists a simple
locally flat 7-knot κ : S7 ↪→ S9 with Seifert matrix A. Applying the construction of
Example 1, we obtain an embedding

i : X12 = S2 × S(S1 × S8) ⊂ S2 × S12 = M14.

The induced stratification has the form

M ⊃ X ⊃ X4 = S2 × S(S1 × {p±}) ⊃ X2 = S2 × {q±},

where X4 −X2 has 2 connected components V± = S2 × ◦
I ×S1 ×{p±} with closures

V ± = S2 × S2, a 4-manifold, and V + − V+ = S2 × {q±} = V − − V−. The embed-
dings S2 × {q±} ⊂ V ± = S2 × S2 are locally flat and have zero self-intersection
number. The link pair of both V− and V+ is the 7-knot κ . Taking for instance the
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nonsingular matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we have A + AT = E8, which is unimodular with σ(E8) = 8. By Kervaire’s the-
orem, there exists a simple locally flat knot κ : S7 ⊂ S9 with Seifert matrix A. By
formulae (1.4) and (1.5), the signature of the skew-Hermitian Blanchfield pairing β

of κ is

σ(βR) = σ(A + AT ) = 8.

Since A is nonsingular, formula (1.3) shows that the knot Z[t, t−1]-module BA de-
termined algebraically by A as described in Sect. 1.2 has rational dimension

dimQ(BA ⊗Z Q) = rkA = 8.

By Kearton’s theorem (Theorem 3), BA
∼= H4(K∞), where K∞ is the infinite cyclic

cover of the exterior K of κ . Thus H4(K∞;Q) has dimension 8 over Q. We con-
clude that the symmetric real Blanchfield form of κ is positive definite.

Theorem 7 Let i : Xn ↪→ Mn+2, n ≡ 0(4), be a PL embedding of a compact ori-
ented PL pseudomanifold X in a closed oriented PL manifold M which induces a
stratification of the form

X = Xn ⊃ X4 ⊃ X2 ⊃ X−1 = ∅,

such that

(i) for every connected component V of X4 − X2, the closure V is a 4-manifold,
(ii) the link pair of every such V is a (necessarily nontrivial but locally flat) spher-

ical knot (Sn−3, Sn−5) with definite real Blanchfield form of rank rV ,
(iii) X2 is a disjoint union of 2-spheres, and
(iv) for every such S2 and 4-dimensional V with S2 ⊂ V , the latter embedding is

locally flat with zero self-intersection number.

Then

σ(X) = L0(M,X) −
∑

V ⊂X4−X2

εV rV σ (V ),

where the sum ranges over all connected components V of X4 − X2 and εV = 1
if the real Blanchfield form on V is positive definite and εV = −1 if it is negative
definite.
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Proof Write n = 4k. Let V be a connected component of X4 − X2 and βV : BV ⊗
Bop

V → Q(t)/� the associated Blanchfield local system with stalk

(BV )x = IHm̄
2k−2(S

4k−3
x ; Lx) = H2k−2(Kx; Lx) ∼= H2k−2(Kx, ∂Kx; Lx)

by Remark 1. At x ∈ V , (βV )x is the classical Blanchfield pairing of the locally flat
link pair (S4k−3

x , S4k−5
x ). This pairing is skew-Hermitian. Its Poincaré local system

βR

V : BR

V ⊗ BR

V → R is obtained using the Trotter trace as described in Sect. 1.3. This
system is symmetric and by assumption definite of rank rV . In principle, we shall
use Theorem 4.1 of [Ban08] to compute the twisted signature σ(V ; BR

V ). That theo-
rem was proven in a slightly different context, namely for complex Hermitian local
systems and for smooth embeddings. The first issue is easily resolved by passing
to the complexification BC of BR

V as described in Sect. 1.4. As we have seen, the
signature does not change under complexification,

σ(V ; BR

V ) = σ(V ; BC).

The second issue presents no problem either, since the proof of Theorem 4.1
[Ban08] essentially carries over to the PL category, with one minor addition con-
cerning smoothability. Let us recall the argument. The stratum X2 is comprised of
pairwise disjoint two-spheres. Those two-spheres that lie in V are embedded there
in a locally flat manner, whence they have a normal (block) bundle. That bundle is
trivial by the assumption on the self-intersection number. We can thus do surgery
on these two-spheres in V and obtain a closed PL manifold M4. The surgery re-
places each two-sphere by a circle, and M minus these circles is homeomorphic
to V . Thus the local system BC on V is naturally defined on M minus the circles.
The key observation is that the circles have high enough codimension (namely 3) in
M in order for BC to extend (uniquely) onto all of M . (The link of a circle in M is a
2-sphere, which is simply connected. Thus BC is constant on the links of the circle
and extends (uniquely) to the cone on the link.) Let us call this unique extension BC.
In fact it is not hard to see that BC and BC extend further as local systems over the
trace W of the surgery, so that W together with this extension is a bordism between
(V ; BC) and (M; BC). By bordism invariance of the twisted signature,

σ(V ; BC) = σ(M; BC).

At this point, the proof of Theorem 4.1 [Ban08] is able to invoke W. Meyer’s twisted
signature formula [Mey72] because in that context the manifold M is smooth. Our
present M however is piecewise linear. The Hirsch-Mazur obstructions to smoothing
M lie in Hi(M;πi−1(PL/O)). They all vanish because PL/O is 6-connected and
M is 4-dimensional. Thus M is smoothable and we may indeed call on Meyer’s
formula

σ(M; BC) = 〈c̃h[BC]K ∪ L∗(M), [M]〉,
where L∗(M) = L∗(P (M)). Since βR

V , and thus also the complexification of βR

V , is
definite of rank rV , the K-theory signature [BC]K of BC is given by

[BC]K = εV [BC] ∈ KU0(M),
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where we regard BC as a flat complex vector bundle of rank rV . The positive di-
mensional rational Chern classes of BC vanish by flatness, so that c̃h[BC]K = εV rV .
Therefore,

σ(V ; BR

V ) = σ(M; BC)

= εV rV 〈L∗(M), [M]〉
= εV rV σ (M)

= εV rV σ (V ),

using the Hirzebruch signature theorem and bordism invariance.
Let S be a connected component of X2 and βS : BS ⊗ Bop

S → Q(t)/� the asso-
ciated Blanchfield local system with stalk

(BS)x = Image(IHm̄
2k−1(S

4k−1
x ; Lx) −→ IH l̄

2k−1(S
4k−1
x ; Lx))

at x ∈ V . The link pair at x has the form (S4k−1
x ,Fx) with Fx a PL pseudomanifold

of dimension 4k − 3. The pairing βS is Hermitian as 2k − 1 is odd. By assumption,
S is a 2-sphere, in particular simply connected. This implies that BS is constant
(untwisted) on S. Thus the corresponding Poincaré local system BR

S is constant
and βR

S : BR

S ⊗ BR

S → R is skew-symmetric. It follows that the signature of any
stalk (BR

S )x is zero, σ((BR

S )x) = 0. Since BR

S is constant on S, the twisted signature
factors as

σ(S; BR

S ) = σ((BR

S )x) · σ(S) = 0.

Assembling the above information using the Cappell-Shaneson L-class formula
(1.7) for singular embeddings, we obtain

σ(X) = L0(X)

= L0(M,X) −
∑

V ⊂X4−X2

σ(V ; BR

V ) −
∑

S⊂X2

σ(S; BR

S )

= L0(M,X) −
∑

V ⊂X4−X2

εV rV σ (V ).
�

Corollary 3 Let i : Xn ↪→ Sn+2, n ≡ 0(4), n > 0, be a PL embedding of a compact
oriented PL pseudomanifold X in a sphere satisfying the hypotheses of Theorem 7.
Then

σ(X) +
∑

V ⊂X4−X2

εV rV σ (V ) = 0.

Proof Observe that L0(S
n+2,X) = 0 according to (1.8). �

Although not always explicitly stated, similar corollaries for embeddings in
spheres can be deduced in the contexts of the subsequent results as well.
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For a space Y , let Shlch(Y ) denote the collection of isomorphism classes of lo-
cally constant perfect complex Hermitian sheaves of finite rank on Y . The following
theorem extends Theorem 7 to the case of an indefinite structure group U(p,q). Its
conclusion reduces to the conclusion of Theorem 7 when p = 0 or q = 0. We do
maintain the zero self-intersection assumption for now.

Theorem 8 Let i : Xn ↪→ Mn+2, n ≡ 0(4), be a PL embedding of a compact ori-
ented PL pseudomanifold X in a closed oriented PL manifold M which induces a
stratification of the form

X = Xn ⊃ X4 ⊃ X2 ⊃ X−1 = ∅,

such that

(i) for every connected component V of X4 − X2, the closure V is a 4-manifold,
(ii) the complexified Blanchfield system BC

V of the link pair of every such V has
structure group U(pV ,qV ),

(iii) X2 is a disjoint union of 2-spheres, and
(iv) for every such S2 and 4-dimensional V with S2 ⊂ V , the latter embedding is

locally flat with zero self-intersection number.

Then there exists an integral characteristic class

2(c2
1 − 2c2) : Shlch(V ) −→ H 4(V ;Z)

such that

σ(X) = L0(M,X) −
∑

V ⊂X4−X2

(pV − qV )σ (V ) −
∑

V ⊂X4−X2

〈2(c2
1 − 2c2)(BC

V ), [V ]〉,

where the two sums range over all connected components V of X4 − X2.

Proof Let V be a connected component of X4 − X2 with associated real Blanch-
field system BR

V . The pairing BR

V ⊗ BR

V → R is symmetric. Thus the complexified
form BC

V ⊗ (BC

V )op → CV is Hermitian with structure group U(pV ,qV ). In order
to compute the twisted signature σ(V ; BR

V ), we modify the proof of Theorem 4.3
[Ban08] so that it applies to PL spaces. As in the proof of the previous Theorem 7,
we can do surgery on X2 ∩ V to obtain a PL manifold M4 with a perfect Hermitian
local system BC defined everywhere on M such that

σ(V ; BR

V ) = σ(M; BC)

via the trace of the surgery. The manifold M is smoothable because it is 4-
dimensional, and therefore

σ(M; BC) = 〈c̃h[BC]K ∪ L∗(M), [M]〉

=
〈
((pV − qV ) + 2c1[BC]K + 2(c2

1 − 2c2)[BC]K)
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∪
(

1 + 1

3
p1(M)

)
, [M]

〉

= (pV − qV )σ (M) + 2〈(c2
1 − 2c2)[BC]K, [M]〉.

There is a unique isomorphism

φ : H 4(M)
∼=−→ H 4(V )

such that

H 4
c (M − ⊔

(D3 × S1))

∼=

H 4
c (V )

∼=

H 4(M)

∼=
φ

H 4(V )

commutes, where H ∗
c (−) denotes cohomology with compact supports and the ver-

tical maps are given by extension by zero. We set

2(c2
1 − 2c2)(BC

V ) = φ(2(c2
1 − 2c2)[BC]K) ∈ H 4(V ;Z).

Let γ be a 4-dimensional PL cochain on M representing the cohomology class
2(c2

1 − 2c2)[BC]K . Since extension by zero is here an isomorphism in dimension 4,
we may assume that γ has compact support in M − ⊔

(D3 × S1). As

M −
⊔

(D3 × S1) ∼= V,

γ is a cochain on V with compact support and thus, by extension by zero, a cochain
on V . This cochain represents 2(c2

1 − 2c2)(BC

V ) and

2〈(c2
1 − 2c2)[BC]K, [M]〉 = 〈(2(c2

1 − 2c2)(BC

V ), [V ]〉.
Since σ(M) = σ(V ) by bordism invariance, we have

σ(V , BR

V ) = (pV − qV )σ (V ) + 〈(2(c2
1 − 2c2)(BC

V ), [V ]〉.
As in the proof of Theorem 7, σ(S; BR

S ) = 0 for every connected component S

of X2. The result follows from substituting the above information into the Cappell-
Shaneson L-class formula

σ(X) = L0(M,X) −
∑

V ⊂X4−X2

σ(V ; BR

V ) −
∑

S⊂X2

σ(S; BR

S ).

�

Theorem 8 together with Corollary 4.4 [Ban08] and Proposition 4.5 [Ban08]
imply:
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Corollary 4 Let (Mn+2,Xn) be stratified as in Theorem 8 and assume that V is a
4-sphere for every connected component V of X4 − X2. Then

σ(X) − L0(M,X)

is divisible by 8. If for every V , V − V is connected and X2 ∩ V ↪→ V is the Artin
spin of a classical knot, then

σ(X) = L0(M,X).

When a lower stratum has nonzero self-intersection inside a higher one, rho-
invariants enter into signature formulae, as the next theorem illustrates. Let (p, q)

be coprime integers such that 0 ≤ q < p and write Z/p = {1, ξ, ξ2, . . . , ξp−1}, ξ a
primitive p-th root of unity. For a representation α : Z/p → U(k), let χα : Z/p → C

denote the character of α. Set

ρα(p,q) = 1

p

p−1∑
j=1

(k − χα(ξj )) cot
jπ

p
cot jπq

p
.

The constancy rank, c-rk(S), of a local system S on a connected space with cyclic
fundamental group is defined to be the rank of the 1-eigenspace of the monodromy
matrix of S .

Theorem 9 Let i : Xn ↪→ Mn+2, n ≡ 0(4), be a PL embedding of a compact ori-
ented PL pseudomanifold X in a closed oriented PL manifold M which induces a
stratification of the form

X = Xn ⊃ X4 ⊃ X2 ⊃ X−1 = ∅,

such that

(i) for every connected component V of X4 − X2, the closure V is a 4-manifold,
(ii) the link pair of every such V is a (necessarily nontrivial but locally flat) spher-

ical knot (Sn−3, Sn−5) with positive, say, definite complex Blanchfield form BC

V

of rank rV ,
(iii) X2 is a disjoint union of 2-spheres, and
(iv) for every such S2 and 4-dimensional V with S2 ⊂ V , the latter embedding is

locally flat with nonzero self-intersection number.

Then

σ(X) = L0(M,X)

−
∑

V ⊂X4−X2

(
rV σ (V ) +

nV∑
i=1

(c-rk(BC

V |Li
) sign[S2

i ]2 − ραi
(pi, qi))

)
,

where the sum ranges over all connected components V of X4 − X2, σ(V ) denotes
the (Novikov-) signature of the exterior of the link V ∩ X2 = ⊔nV

i=1 S2
i ⊂ V , Li =
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L(pi, qi), a lens space, is the boundary of a regular neighborhood of S2
i in V , and

αi is obtained by restricting BC

V to Li .

Proof Let V be a connected component of X4 − X2. The locally flat PL-2-link

V ∩ X2 =
⊔

S2
i ↪→ V

is isotopic to a smooth 2-link
⊔

S2
i

C∞
↪→ M4,

where M is a smooth 4-manifold homeomorphic to V . The isotopy ensures that BC

V

defines a complex Blanchfield local system on the complement of the smooth 2-link
and

σ(V ; BC

V ) = σ(M; BC

V ).

The latter signature can be computed using Theorem 4.8 of [Ban08]. Let us recall the
method. Let (E4, ∂E) be the exterior of the smooth 2-link. Its boundary ∂E = ⊔

Li

is a disjoint union of lens spaces Li = L(pi, qi) with finite fundamental group Z/pi
,

pi ≥ 1, since S2
i has nonzero self-intersection number by (iv). Let (N4

i , ∂Ni = Li)

be the total space of the disc bundle of S2
i ⊂ M so that

∂E =
⊔

∂Ni, M = E ∪∂E

⋃
Ni.

By Novikov additivity,

σ(M; BC

V ) = σ(E; BC

V ) +
nV∑
i=1

σ(Ni; BC

V ).

Let us first discuss the terms σ(Ni; BC

V ), where BC

V is only given on the complement
of the zero-section. This complement deformation retracts onto ∂Ni = Li , whence

BC

V is determined by a unitary representation αi : π1(Li) = Z/pi
→ U(rV ), given

by a monodromy matrix A ∈ U(rV ). Diagonalizing A, we obtain a decomposition
BC

V |Li
∼= B(1) ⊕ B′, where B(1) is a constant sheaf of rank c-rk(BC

V |Li
), correspond-

ing to the eigenvalue 1 (if it is present) of A, and the monodromy matrix of B′
does not have 1 among its eigenvalues. Since σ(Ni) = sign[S2

i ]2, where S2
i is the

zero-section of Ni , we have

σ(Ni; B(1)) = c-rk(BC

V |Li
) · sign[S2

i ]2.

Since 1 is not an eigenvalue of B′, the intersection chain sheaf IC•̄
m(

◦
Ni; B′) is zero

over S2
i ⊂ ◦

Ni and thus for the middle hypercohomology,

H−2
c (

◦
Ni; IC•̄

m(B′)) ∼= H 2
c (

◦
Ni − S2

i ; B′).
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From a transfer-map argument involving the universal cover S3 → L(pi, qi), one

infers H 2
c (

◦
Ni − S2

i ; B′) = 0. In particular σ(Ni; B′) = 0, and therefore

σ(Ni; BC

V ) = σ(Ni; B(1)).

By [APS75], the difference between the untwisted and the twisted signature of E is
a differential invariant of ∂E, the rho-invariant

ρ(∂E; BC

V ) = rV σ (E) − σ(E; BC

V ).

Thus

σ(E; BC

V ) = rV σ (E) − ρ

(⊔
i

Li;
⊔
i

BC

V |Li

)

= rV σ (V ) −
∑

i

ρ(Li; BC

V |Li
)

= rV σ (V ) −
∑

i

ραi
(pi, qi).

�

We shall now turn our attention to fibered embeddings of strata; the dimension
of the singular set is arbitrary.

Theorem 10 Let i : Xn ↪→ Mn+2, n ≡ 0(4), be a PL embedding of a compact ori-
ented PL pseudomanifold X in a closed oriented PL manifold M with stratification

X = Xn ⊃ Xn−2 ⊃ Xn−4 ⊃ · · · ⊃ X−1 = ∅.

If V − V ↪→ V is a locally flat spherical fibered knot for all V ∈ X , then

σ(X) = L0(M,X).

Proof This follows from the proof of Theorem 4.7 in [Ban08], by using block bun-
dles instead of fiber bundles. Let us recall the argument briefly. Let V be a com-
ponent in X . By assumption, the embedding V − V ↪→ V is a locally flat spheri-
cal fibered knot Sk ↪→ Sk+2. The complement of this knot carries the complexified
Blanchfield form BC

V ⊗(BC

V )op → CV . By assumption, the exterior E PL-fibers over
a circle with Seifert manifold fiber F , i.e. E is a block bundle over S1: the circle
is triangulated by a finite simplicial complex K , for every simplex � ∈ K , there is
a block � × F , and E is obtained from the disjoint union of all these blocks by
gluing �0 × F to �1 × F for every 1-simplex �1 ∈ K and 0-simplex �0 ∈ K

such that �0 is a face of �1. The gluing is effected by a PL-homeomorphism
f (�1,�0) : F → F , which is the identity on ∂F = Sk . Set F ′ = F ∪∂F Dk+1. Since
every f (�1,�0) is the identity on ∂F , we can extend it to a PL-homeomorphism
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f ′(�1,�0) : F ′ → F ′ by taking f ′ to be the identity on Dk+1. Using the system
{f ′(�1,�0)} to glue the blocks � × F ′, � ∈ K , we obtain the total space Mk+2 of
an F ′-block bundle over S1. This manifold M is the result of surgery on the knot. Let
P be the total space of the cone-block bundle associated to the blocking of M . That
is, if PL-homeomorphisms cf ′(�1,�0) : cF ′ → cF ′ on the cone cF ′ of F ′ are de-
fined by coning f ′(�1,�0), then P is obtained by using the system {cf ′(�1,�0)}
to glue the blocks � × cF ′, � ∈ K . Let BC

M be the unique extension of BC

V to M .
Then, as in the proof of Theorem 7, σ(V ; BC

V ) = σ(M; BC

M). The space P is a
stratified pseudomanifold-with-boundary, with stratification Pk+3 = P ⊃ P1 = S1,
∂P = M . The singular stratum contains the cone-points of the cF ′. On the inte-
rior M × (0,1) of the top stratum, BC

M defines a perfect ±1-Hermitian local system,
which can be extended into the singular stratum P1 by the middle-perversity Deligne
step. The result is an intersection chain sheaf IC•̄

m(P − ∂P ; BC

M) which is self-dual,
as P1 has even codimension k + 2 in P . Thus

(P ; IC•̄
m(P − ∂P ; BC

M))

is a null-cobordism for (M; BC

M) and σ(M; BC

M) = 0. Thus the contributions of all
V in the Cappell-Shaneson L-class formula (1.7) vanish. �

Corollary 5 Let i : Xn ↪→ Sn+2, n ≡ 0(4), n > 0, be a PL embedding of a compact
oriented PL pseudomanifold X in a sphere with stratification

X = Xn ⊃ Xn−2 ⊃ Xn−4 ⊃ · · · ⊃ X−1 = ∅.

If V − V ↪→ V is a locally flat spherical fibered knot for all V ∈ X , then

σ(X) = 0.

Proof We have L0(S
n+2,X) = 0 by (1.8). �

Acknowledgements The authors thank Laurentiu Maxim for correcting an expository error in
Sect. 1.7.
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Chapter 2
Lower Bounds on Virtual Crossing Number
and Minimal Surface Genus

Kumud Bhandari, H.A. Dye,
and Louis H. Kauffman

Abstract We compute lower bounds on the virtual crossing number and minimal
surface genus of virtual knot diagrams from the arrow polynomial. In particular, we
focus on several interesting examples.

2.1 The Arrow Polynomial

The arrow polynomial is an invariant of oriented link diagrams introduced in [DK].
This polynomial is an element of the ring Z�A,A−1,K1,K2, . . .� and is invari-
ant under both the classical and virtual Reidemeister moves. This polynomial is
equivalent to the simplified extended bracket [Kau] and the Miyazawa polynomial
[Kam07a, Kam07b, KM05, Miy08].

A virtual link diagram [Kau99] is a decorated immersion of n copies of S1 into
the plane, with two types of double points: virtual and classical crossings. Classical
crossings are indicated by over under markings and virtual crossings are indicated
by a solid, circled crossing. A virtual link is an equivalence class of virtual link
diagrams. Two virtual link diagrams are equivalent if one can be transformed into
the other by a sequence of classical and virtual Reidemeister moves. The classical
Reidemeister moves are shown in Fig. 2.1 and the virtual Reidemeister moves are
shown in Fig. 2.2.
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Fig. 2.1 Classical
Reidemeister moves

Fig. 2.2 Virtual
Reidemeister moves

Fig. 2.3 Crossing sign

An oriented virtual link diagram is determined by assigning an orientation to each
component of the diagram. For an n component link, there are 2n possible orienta-
tions. Based on the orientation of each component, we can determine a numerical
value associated with each classical crossing v as shown in Fig. 2.3. This numerical
value associated with a classical crossing v is called the crossing sign and denoted
sgn(v). Based on the crossing sign, we can compute the writhe of a link diagram L,
denoted w(L). The writhe is computed by summing over all classical crossings v in
the diagram. That is,

w(L) =
∑

v

sgn(v) (2.1)

The arrow polynomial, defined in [DK], is an invariant of oriented, virtual link
diagrams. These polynomials are elements of the commutative ring:

Z�A,A−1,K1,K2, . . .�

where the Ki form an infinite set of variables. The arrow polynomial is obtained
from the oriented skein relation shown in Fig. 2.4. Applying this skein relation
to each classical crossing results in a weighted sum of states with coefficients in
Z�A,A−1 �. We obtain a state of the diagram by choosing either a horizontal or
vertical smoothing for each classical crossing in the diagram. This state consists of
a collection of closed loops, possibly with virtual crossings. Each loop contains a
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Fig. 2.4 Arrow polynomial
skein relation

Fig. 2.5 Virtual
Reidemeister move with a
nodal arrow

Fig. 2.6 Reducing the total
number of arrows

non-negative, even number of nodal arrows. We can simplify each state into a col-
lection of disjoint loops possibly containing nodal arrows by applying the virtual
Reidemeister moves to the diagram and using the move shown in Fig. 2.5. The total
number of nodal arrows in a component is reduced using the convention shown in
Fig. 2.6. We evaluate a single loop C with 2n arrows as follows:

〈C〉 = Kn. (2.2)

Then for a state S with

S =
n∏

i=1

Ci

we find that

〈S〉 =
n∏

i=1

〈Ci〉. (2.3)

Let d = −A2 − A−2 and let L denote a virtual link, then the arrow polynomial of L

is:

〈L〉A =
∑
S

Aα−βd |S|−1〈S〉 (2.4)
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Fig. 2.7 Virtualized trefoil

where α is the number of smoothings in the state S with coefficient A and β is the
number of smoothings with coefficient A−1, and |S| denote the number of closed
loops in the state. Recall that 〈L〉A is invariant under the virtual Reidemeister moves
and the classical Reidemeister moves II and III [DK, Kau]. The normalized arrow
polynomial, denoted 〈L〉NA, is invariant under all classical and virtual Reidemeister
moves. The normalized arrow polynomial of a link L is:

(−A3)−w(L)〈L〉A. (2.5)

For example, the arrow polynomial of the knot shown in Fig. 2.7 is:

−A−3(−A−5 + K2
1 A−5 − K2

1 A3). (2.6)

The arrow polynomial determines a lower bound on both the genus and the vir-
tual crossing number of a virtual link. Recall that the virtual crossing number of a
link L (denoted v(L)) is the minimum number of virtual crossings in any virtual
link diagram equivalent to L. Notice that individual summands of 〈L〉A have the
form:

AmK
p1
i1

K
p2
i2

. . .K
pn

in

The k-degree of the summand is:

i1 × p1 + i2 × p2 + · · · + in × pn

The maximum k-degree of 〈L〉A is the maximum k-degree of the summands. In
[DK], the following theorem was proved.

Theorem 1 Let K be a virtual link diagram. Then the virtual crossing number of K ,
v(K), is greater than or equal to the maximum k-degree of 〈K〉A.

Hence the maximum k-degree provides a lower bound on the virtual crossing
number.

Recall that virtual links are in one to one correspondence with representations
of virtual links [CKS02, DK05]. A representation of a virtual link, denoted (F,L),
is an embedding of the link L in F × I where F is a closed, two dimensional,
oriented surface modulo Dehn twists, isotopy of the link with in F × I , and handle
addition/subtraction. Representations are in one to one correspondence with virtual
links. Kuperberg proved the following theorem in [Kup03]:
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Theorem 2 Every stable equivalence class of links in thickened surfaces has a
unique irreducible representative.

Hence, each virtual link corresponds to a representation with a minimum genus
surface. In [DK], it was shown that the arrow polynomial can determine a lower
bound on the mimimum genus.

Theorem 3 Let S be an oriented, closed, 2-dimensional surface with genus g ≥ 1.
If g = 1 then S contains at most 1 nonintersecting, essential curve and if g > 1 then
S contains at most 3g − 3 non-intersecting, essential curves.

That is, if 〈L〉A contains a Ki in any summand, the minimum genus is at least
one. If a single summand contains a factor of the form KiKj then the minimum
genus is at least two.

2.2 Computations

In the Tables 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, and 2.7, the arrow polynomial has been
computed for all virtual knots with four or fewer classical crossings. This tabulation
is based on Jeremy Green’s knot tables, available at: http://www.math.toronto.edu/
drorbn/Students/GreenJ/ [Gre]. Images of all the knots in this paper are available
at this website. Since virtual knots have only one component, it is not necessary to
specify the orientation of the links. From the arrow polynomial, we have computed
both a lower bound on the virtual crossing number and the genus which is also
listed in the table. There are only four knots with arrow polynomial one: (4.46,
4.72, 4.98, 4.107). In comparison, 24 four crossing knots (out of 108 knots) have
Jones polynomial one.

The maximum lower bound on virtual crossing number is three, and based on the
computational results we make the following conjecture:

Conjecture 1 Given a virtual knot, K , an upper bound on the number of virtual
crossings is determined by the minimum number of classical crossings.

Unlike the virtual crossing number, the classical crossing number can be de-
termined from the Gauss diagram. We focus on several specific examples in the
remainder of the paper.

2.2.1 Knot 4.01

The arrow polynomial of knot 4.01 (Fig. 2.8) is:

A8K2
1 − 3K2

1 + 2 − 2A4K2
1 + 2K1

2 − 2A2K1 + 2A−2K1 + A−4. (2.7)
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Table 2.1 Bounds: Knots 1–15

Knot Arrow polynomial v(K) g(K)

4.01 A8K2
1 − 3K2

1 + 2 − 2A4K2
1 + 2K1

2 − 2A2K1 + 2A−2K1 + A−4 2 1

4.02 −A6K1 −A4K2
1 + 2K2 + 3 − 2K2

1 +A2K1 +A−2K1 −A−4K2
1 −

A−6K1

2 1

4.03 A8K2
1 − A4 − K2

1 + 1 − 2A2K1
1 − A4K2 + K2 + 2A−2K1

1 + A−4 2 1

4.04 A2 −A4K1
1 −2A2K2

1 −2A−2K2
1 +A−2K2 +A2K2 +2A−2 +1K1 2 1

4.05 −A4K1
1 +A2 −2A2K2

1 −2A−2K2
1 +A−2K2 +A2K2 +K1 +2A−2 2 1

4.06 −A6K1 −A4K2
1 +K2 +A−4K2

1 −A−4K2 +A2K1 +2+A−2K1 −
A−4 − A−6K1

2 1

4.07 A8K2
1 − 3K2

1 + 2K1
2 − 2A4K2

1 + 2 − 2A2K1
1 + 2A−2K1

1 + A−4 2 1

4.08 −A6K1 −A4K2
1 + 3 + 2K2 − 2K2

1 +A2K1 +A−2K1 −A−4K2
1 −

A−6K1

2 1

4.09 −A4 − A2K1 + A−2K1 + A−4 1 1

4.10 −A6 − A4K1 + 2A2 + 2K1 + A−2 − A2K2
1 − A−2K2

1 + A−2K2 −
A−4K1

2 1

4.11 −A−2K2
1 + A2 − A4K1 − A2K2

1 + A−2K2 + K1 + A−2 2 1

4.12 −A6K1 −A4K2 +A2K1 + 1 + 2K2 −A−4K2 +A−2K1 −A−6K1 2 1

4.13 A4 − A−4K2
1 + 1 − A4K2

1 − 2K2
1 + 2K2 + A−4 2 1

4.14 −A6K1 − 2A−4K2
1 + A2K1 + 2K2 + 2 − 2K2

1 + A−4 2 1

4.15 K2 − A4K2
1 − K2

1 + 1 − A2K1 + A−2K1 + A−4 2 1

Table 2.2 Bounds: Knots 16–30

Knot Arrow polynomial v(K) g(K)

4.16 −A6 − A4K1 + A2 + 2K1 + A−2 − A−4K1 1 1

4.17 −A6K1 − A4K2 + A2K1 + 2 + 2K2 − A−4K2
1 − K2

1 + A−2K1 −
A−6K1

2 1

4.18 −2A−2K2
1 −A4K1 +A2K2 −2A2K2

1 +2A−2 +A2 +K1 +A−2K2 2 1

4.19 A4 + K2 + 1 − A4K2
1 − K2

1 2 1

4.20 −A6K1 + K2 + A2K1 + 2 − A−4K2
1 − K2

1 2 1

4.21 A2 +A2K2 −A4K1 −A2K2
1 −2A−2K2

1 +2A−2 +2K1 +A−2K2 −
A−4K1 − A−6K2

1

2 1

4.22 −A6K1 + A2K1 + K2 + 2 − A2K1K2 − A−2K1K2 − K2
1 −

A−4K2
1 + A2K3

1 + 2A−2K3
1 + A−6K3

1 − A−2K1 − A−6K1

3 2

4.23 A8K1 − 2A4K1 + 2A−2 − A2K2
1 − A−2K2

1 + K1 + A−2K2 2 1

4.24 A2 − 2A4K1 + A4K3
1 + 2K3

1 + A−4K3
1 − A−4K1 + A−2 + K1 +

A−2K2 − 1K1K2 − A−4K1K2 − A−2K2
1 − A−6K2

1

3 2

4.25 −A6K1 − A−2K1 + A−6K1 + A2K1 − A−4 + 1 + A−8 1 1

4.26 A2K1 − A−2K1K2 − A2K1K2 + 1 + A−2K3 3 2

4.27 A−6 − A−2 + A2 − A−4K1 + A−8K1 1 1

4.28 A2 + K3 + K1 − A−4K1K2 − K1K2 3 2

4.29 1 − A4K2
1 − K2

1 + K2 − A2K1 + A−2K1 + A−4 2 1

4.30 −2A−2K2
1 +A2K2 +A2 −2A2K2

1 +A−2K2 −A4K1 +2A−2 +K1 2 1
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Table 2.3 Bounds: Knots 30–45

Knot Arrow polynomial v(K) g(K)

4.31 −A6K2
1 − 2A2K2

1 + 2A2K2 − A−2K2
1 − A4K1 + 2K1 + 2A−2 +

A2 − A−4K1

2 1

4.32 −A6K1 +A2K1 +3−A4K2
1 −K2

1 −A−4 +K2 +A−2K1 −A−6K1 2 1

4.33 −A4K1 + K1 + A−2 1 1

4.34 −A6K1 + A2K1 + 2 − A−4K2
1 + K2 − K2

1 2 1

4.35 −K2
1 − A−4K2

1 + 2 + A−4K2 2 1

4.36 A2 + 2K1 − A4K1 − A−4K1 + A−2K2 − A−6K2 2 1

4.37 K2 − A4K2 − A2K1 + A−2K1 + A−4 2 1

4.38 A2K2 − A4K1 − A2K2
1 − A−2K2

1 + 2A−2 + K1 2 1

4.39 A2K2 − A4K1K2 − K1K2 − A2K2
1 − A−2K2

1 − A4K1 + 2A−2 −
A−4K1 + A4K3

1 + 2K3
1 + A−4K3

1

3 2

4.40 −A6K1 − A−4 + 2 + A2K1 1 1

4.41 A8K1 − 2A4K1 − A2 + K1 + 2A−2 1 1

4.42 −A6K1 + A6K3
1 + 2A2K3

1 + A−2K3
1 − A2K1 + 2 − A2K1K2 −

A−2K1K2 − K2
1 − A−4K2

1 + A−4K2

2 2

4.43 −A6K1 − A−2K1 + A−6K1 + A2K1 − A−4 + 1 + A−8 1 1

4.44 −A4K1 + A−2 + K1 1 1

4.45 −K1K2 − A4K1K2 + K1 + K3 + A−2 3 1

Table 2.4 Bounds: Knots 46–60

Knot Arrow polynomial v(K) g(K)

4.46 1 0 0

4.47 A2K1
3 + 1 − A−2K1K2 − A2K1K2 + A−2K1 3 2

4.48 A4 − 2A4K2
1 − 2K2

1 + 1 + 2K2 − A2K1 + A−2K1 + A−4 2 1

4.49 A2K2 − A−2K2
1 − A2K2

1 − A4K1 + K1 + 2A−2 2 1

4.50 −A6K2
1 − A2K2

1 + A2 + 2K1 + A2K2 − A4K1 − A−4K1 + A−2 2 1

4.51 −A6K1 +A2K1 + 3 −A4K2
1 − 2K2

1 + 2K2 −A−4K2
1 +A−2K1 −

A−6K1

2 1

4.52 −A6K1 + A2K1 + 2 − A−4 1 1

4.53 A8 − 2A4 − 2A2K1 + 1 + 2A−2K1 + A−4 1 1

4.54 −A6 − A4K1 + A6K2
1 + A−2 − A2K2 + A2 + K1 − A−2K2

1 +
A−2K2

2 1

4.55 A4 + 2K2 + 1 − A4K2
1 − 2K2

1 − A−4K2
1 + A−4 2 1

4.56 A4 + 1 − A4K2
1 + 2K2 − 2K2

1 − A−4K2
1 + A−4 2 1

4.57 −A6K2 − A4K1 + 2A2K2 + 2K1 + 2A−2 − A2K2
1 − A−2K2

1 −
A−4K1

2 1

4.58 −A6K1 + A2K1 + 3 − A4 + A−2K1 − A−4 − A−6K1 1 1

4.59 A4K2 − A−4K2
1 − A4K2

1 − 2K2
1 + 3 + A−4K2 2 1

4.60 −A6K1 − 2A−4K2
1 + A2K1 + 3 + K2 − 2K2

1 + A−4K2 2 1
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Table 2.5 Bounds: Knots 61–75

Knot Arrow polynomial v(K) g(K)

4.61 1 − A4 − A2K1 + A−2K1 + A−4 1 1

4.62 A2 − A4K1K2 − K1K2 − A2K2
1 − A−2K2

1 − A4K1 + A−2K2 −
A−4K1 + A−2 + A4K3

1 + 2K3
1 + A−4K3

1

2 1

4.63 A2 − A4K1 − A2K2
1 − A−2K2

1 + A−2K2 + K1 + A−2 2 1

4.64 −A6K1 − A−4K2 + K2 + 1 + A2K1 2 1

4.65 A8K1 − 2A4K1 + A−2 − A2K2 + K1 + A−2K2 2 1

4.66 −A6K1 +A−2K3
1 +1+A6K3

1 +2A2K3
1 −A−4K2

1 +K2 −A2K1 −
A2K1K2 − A−2K1K2 − K2

1 + A−4
3 2

4.67 −A−4K2
1 + 1 + K2 − K2

1 + A−4 2 1

4.68 A2 − A4K1 + A−2 + 2K1 − A−4K1 − A−6 1 1

4.69 A4K2 − 2A4K2
1 − 2K2

1 + K2 + 2 − A2K1 + A−2K1 + A−4 2 1

4.70 −A6K2
1 − A2K2

1 + A2K2 + 2K1 − A4K1 + A2 − A−4K1 + A−2 2 1

4.71 −A6K1 +A2K1 + 2K2 −A4K2
1 − 2K2

1 + 3 −A−4K2
1 +A−2K1 −

A−6K1 2
1

4.72 1 0 0

4.73 A8K2 − 2A4K2 − 2A2K1 + K2 + 2A−2K1 + A−4 2 1

4.74 −A6K2 − A4K1 + A6K2
1 + 2A−2 − A2 + A2K2 + K1 − A−2K2

1 2 1

4.75 −A6K1 − A4 + 3 + A2K1 + A−2K1 − A−4 − A−6K1 1 1

Table 2.6 Bounds: Knots 76–90

Knot Arrow polynomial v(K) g(K)

4.76 A4K2 − A4K2
1 + 3 − 2K2

1 − A−4K2
1 + A−4K2 2 1

4.77 A4K2 − 2K2
1 − A4K2

1 + 3 − A−4K2
1 + A−4K2 2 1

4.78 −A6K1K2 −A2K1K2 −A4K2
1 −K2

1 +A−2K3
1 +K2 +1+A6K3

1 +
2A2K3

1 − 2A2K1 + A−4
3 2

4.79 A8K3
1 + 2A4K3

1 + K3
1 − 3A4K1 + 2A−2 − A4K1K2 − K1K2 −

A2K2
1 − A−2K2

1 + K1 + A−2K2

3 2

4.80 −A6K1K2 − A2K1K2 − A−2K1 + A2K1 + A−6K1 + A2K3 −
A−4 + 1 + A−8

3 2

4.81 A4K3 − A−2 + A2 + A−6 − A4K1K2 − K1K2 − A−4K1 + K1 +
A−8K1

3 2

4.82 −A6K1 + A−4K2
1 − A4K2

1 + 2 − 2A−4 + A2K1 + A−8 2 1

4.83 −K1K2 − A4K1K2 + K1 + A−2 + K3 3 2

4.84 2 + A2K1 − A−4 − A−2K1 − K2
1 + A−8K2

1 2 1

4.85 −A2K2
1 + A2 + A−6K2

1 2 1

4.86 A8 − A4 + 2 − A−4 − K2
1 + A−8K2

1 2 1

4.87 −A6K1K2 − A2K1K2 − A4K2
1 − 2A−4 + A2K1 + 2 + A2K3 +

A−4K2
1 + A−8

3 2

4.88 2 +A2K1 +A2K3 −A−4 −A2K1K2 −A−2K1K2 −K2
1 +A−8K2

1 3 2

4.89 A4 − 2A4K2
1 + 2A−4K2

1 − 2A−4 + 1 + A−8 2 1

4.90 A8K2
1 − A4 − 2K2

1 + 3 − A−4 + A−8K2
1 2 1
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Table 2.7 Bounds: Knots 90–108

Knot Arrow Polynomial v(K) g(K)

4.91 −A10K3
1 − A6K3

1 + A2K3
1 + 2A6K1 + A−2K3

1 − 2A2K1 + A−4 3 1
4.92 −A6K3 − A4 + 2 + A2K3 − A−4 + A−8 3 1
4.93 A4K3 + A−6K2

1 + A2 − A2K2
1 − A4K1K2 − K1K2 + K1 3 2

4.94 −A6K1 + 2 − A4 + A2K1 − A−4 + A−8 1 1
4.95 −A4K3 + A−2 + K3 3 1
4.96 A−6K2

1 − A2K2
1 + A2 2 1

4.97 −A2K1K2 − A−2K1K2 + A2K3 + 1 + A−2K1 3 1
4.98 1 0 0
4.99 A8 − A4 − A−4 + 1 + A−8 0 0
4.100 −A10K1 + A6K1 − A2K1 + A−2K1 + A−4 1 1
4.101 A8K1 + K3

1 − A−4K1 + A−2 − A8K3
1 − A4K3

1 + A−4K3
1 3 1

4.102 −A6K1 − A−2K3
1 + 1 + A6K3

1 + A2K3
1 − A−6K3

1 − A2K1 +
A−6K1 + A−2K1

3 1

4.103 A4K1 + A2 + K3 − A4K1K2 − K1K2 − A2K2
1 + A−6K2

1 3 2
4.104 A2K3 − A−2K3 − A−4 + 1 + A−8 3 1
4.105 −A4 + 1 + A−8 0 0
4.106 A2 − A2K2

1 + A−6K2
1 2 1

4.107 1 0 0
4.108 A8 − A4 − A−4 + 1 + A−8 0 0

Fig. 2.8 Knot 4.01

The lower bound on the virtual crossing number is two and the lower bound on the
genus is one. However, this minimal genus of this virtual knot is two.

2.2.2 Knot 4.09

The arrow polynomial of the knot 4.09 (Fig. 2.9) is:

−A4 − A2K1 + A−2K1 + A−4.

The lower bound on the virtual crossing number and the mimimal genus is one. Note
a single detour move reduces the number of virtual crossings to three.
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Fig. 2.9 Knot 4.09

Fig. 2.10 Knot 4.22 and an
equivalent knot

Fig. 2.11 Knot 4.47

2.2.3 Knot 4.22

The arrow polynomial of the knot 4.22 (Fig. 2.10) is:

−A6K1 + A2K1 + K2 + 2 − A2K1K2 − A−2K1K2 − K2
1

− A−4K2
1 + A2K3

1 + 2A−2K3
1 + A−6K3

1 − A−2K1 − A−6K1 (2.8)

The lower bound on the virtual crossing number is 3 and the lower bound on the
minimal genus is two. A sequence of Reidemeister moves reduces the number of
virtual crossings to three. The knot pictured in the right hand side of Fig. 2.10 is
equivalent to knot 4.22. This demonstrates that the virtual crossing number is three.

2.2.4 Knot 4.47

The arrow polynomial of knot 4.47 (Fig. 2.11) is:

A2K1
3 + 1 − A−2K1K2 − A2K1K2 + A−2K1
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Fig. 2.12 Knot 4.91

Fig. 2.13 Knot 4.99

The virtual crossing number is three and the minimal genus is at least two. The
Jones polynomial does not differentiate between this knot and the unknot.

2.2.5 Knot 4.91

The arrow of polynomial of knot 4.91 (Fig. 2.12) is:

−A10K3
1 − A6K3

1 + A2K3
1 + 2A6K1 + A−2K3

1 − 2A2K1 + A−4

The virtual crossing number of the knot 4.91 is three and the minimal genus is one
as predicted by the arrow polynomial.

2.2.6 Knot 4.99

The arrow polynomial of the knot 4.99 (Fig. 2.13) is:

A8 − A4 − A−4 + 1 + A−8.

This results in a lower bound on the virtual crossing number and the minimal genus
of zero. Lower bounds on crossing number and virtual genus have been considered
in [AM] and [Man03]. We observe that under virtualization, this knot is equivalent
to a classical knot.
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Fig. 2.14 Z-equivalence

Fig. 2.15 Knot 4.46

Fig. 2.16 Knot 4.72

Fig. 2.17 Knot 4.98

2.2.7 Knots with Arrow Polynomial One

The knots 4.46, 4.72, 4.98, and 4.107 have arrow polynomial one and are equivalent
to the unknot via a sequence of classical and virtual Reidemeister moves and the
Z-equivalence (shown in Fig. 2.14).

The knots in Figs. 2.15, 2.16, 2.17, and 2.18 have arrow polynomial one.
In the paper [FKM05], the authors (Fenn, Kauffman, and Manturov) made the

following conjecture:

Conjecture 2 Let K be a virtual knot. If the bracket polynomial of K , 〈K〉 = 1 then
K is Z-equivalent to the unknot.
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Fig. 2.18 Knot 4.107

Note that if 〈K〉A = 1 (arrow polynomial) then 〈K〉 = 1 (bracket polynomial).
This fact and our experimental evidence support the following conjecture:

Conjecture 3 Let K be a virtual knot. If 〈K〉A = 1 then K is Z-equivalent to the
unknot.
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Chapter 3
A Survey of Twisted Alexander Polynomials

Stefan Friedl and Stefano Vidussi

Abstract We give a short introduction to the theory of twisted Alexander poly-
nomials of a 3-manifold associated to a representation of its fundamental group.
We summarize their formal properties and we explain their relationship to twisted
Reidemeister torsion. We then give a survey of the many applications of twisted in-
variants to the study of topological problems. We conclude with a short summary of
the theory of higher order Alexander polynomials.

3.1 Introduction

In 1928 Alexander introduced a polynomial invariant for knots and links which
quickly got referred to as the Alexander polynomial. His definition was later recast
in terms of Reidemeister torsion by Milnor [Mi62] and it was extended by Turaev
[Tu75, Tu86] to an invariant of 3-manifolds. More precisely, to a 3-manifold with
empty or toroidal boundary N we can associate its Alexander polynomial �N which
lies in the group ring Z[H ], where H is the maximal abelian quotient of H1(N;Z).
The Alexander polynomial of knots, links and 3-manifolds in general is closely re-
lated to the topology properties of the underlying space. For example it is known to
contain information on the knot genus [Se35], knot concordance [FM66], fibered-
ness and symmetries.

The Alexander polynomial carries only metabelian information on the funda-
mental group. This limitation explain why in all the above cases the Alexander
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polynomial carries partial, but not complete information. The idea behind twisted
invariants is to associate a polynomial invariant to a 3-manifold together with a
choice of a representation of its fundamental group. This approach makes it possi-
ble to extract more powerful topological information.

The twisted Alexander polynomial for a knot K ⊂ S3 was first introduced by
Xiao–Song Lin in 1990 (cf. [Lin01]). Whereas Lin’s original definition used ‘regu-
lar Seifert surfaces’ of knots, later extensions to links and 3-manifolds either gen-
eralized the Reidemeister–Milnor–Turaev torsion (cf. [Wa94, Ki96, KL99a, FK06])
or generalized the homological definition of the Alexander polynomial (cf. [JW93,
KL99a, Ch03, FK06, HKL10]).

In most cases the setup for twisted invariants is as follows: Let N be a 3-manifold
with empty or toroidal boundary, ψ : π1(N) → F an epimorphism onto a free
abelian group F and γ : π1(N) → GL(k,R) a representation with R a domain.
In that case one can define the twisted Reidemeister torsion τ(N,γ ⊗ ψ), an in-
variant which in general lives in the quotient field of the group ring R[F ]. If R is
furthermore a Noetherian unique factorization domain (e.g. R = Z or R a field),
then the twisted Alexander polynomials �

γ⊗ψ

N,i ∈ R[F ] is defined to be the order of

the twisted Alexander module Hi(N;R[F ]k).
These two invariants are closely related, for example in the case that rank(F ) ≥ 2

we will see that

τ(N,γ ⊗ ψ) = �
γ⊗ψ

N,1 ∈ R[F ].
In fact in many papers the twisted Reidemeister torsion τ(N,γ ⊗ ψ) is referred to
as the twisted Alexander polynomial (cf. e.g. [Wa94]).

The most important raison d’être of these invariants lies in the fact that they
contain deep information on the underlying topology while at the same time being,
as we will see, very computable invariants.

We now give a short outline of the paper. In Sect. 3.2 we define twisted Reide-
meister torsion and twisted Alexander polynomials of 3-manifolds, and we show
how to calculate these invariants. In Sect. 3.3 we discuss basic properties of twisted
invariants, in particular we discuss the relationship between twisted Reidemeister
torsion and twisted Alexander polynomials and we discuss the effect of Poincaré
duality on twisted invariants. Section 3.4 contains applications to distinguishing
knots and links using twisted invariants. In Sect. 3.5 we outline the results of Kirk
and Livingston regarding the behavior of twisted invariants under knot concordance
and we extend the results to the study of doubly slice knots and ribbon knots. In
Sect. 3.6 we show that twisted invariants give lower bounds on the knot genus and
the Thurston norm, and we show that they give obstructions to the fiberedness of
3-manifolds. Sections 3.7, 3.8 and 3.9 contains a discussion of the many gener-
alizations and further applications of twisted invariants. In Sect. 3.10 we give an
overview of the closely related theory of higher-order Alexander polynomials, this
theory was initiated by Cochran and Harvey. Finally in Sect. 3.11 we provide a list
of open questions and problems.

Conventions and Notation Unless we say otherwise we adopt the following con-
ventions:
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(1) rings are commutative domains with unit element,
(2) 3-manifolds are compact, connected and orientable,
(3) homology is taken with integral coefficients,
(4) groups are finitely generated.

We also use the following notation: Given a ring R we denote by Q(R) its quotient
field and given a link L ⊂ S3 we denote by νL a (open) tubular neighborhood of L

in S3.

Remark For space reasons we unfortunately have to exclude from our exposition
several important aspects of the subject. Among the most relevant omissions, we
mention Turaev’s torsion function, and the relation between torsion invariants on the
one hand and Seiberg–Witten theory and Heegaard–Floer homology on the other.
Turaev’s torsion function is defined using Reidemeister torsion corresponding to
one-dimensional abelian representations. This theory and its connection to Seiberg–
Witten invariants, first unveiled by Meng and Taubes in [MT96] (cf. also [Do99]), is
treated beautifully in Turaev’s original papers [Tu97, Tu98] and in Turaev’s books
[Tu01, Tu02a]. We also refer to [OS04] for the relation of Turaev’s torsion function
to Heegaard–Floer homology.

Remark Almost all the results of this survey paper appeared already in previous
paper. We hope that we correctly stated the results of the many authors who worked
on twisted Alexander polynomials. For the definite statements we nonetheless refer
to the original papers. The only new results are some theorems in Sect. 3.5.2 on knot
and link concordance and Theorem 10 on Reidemeister torsion of fibered manifolds.

3.2 Definition and Basic Properties

3.2.1 Twisted Reidemeister Torsion

Let N be a 3-manifold with empty or toroidal boundary, F a torsion-free abelian
group and α : π1(N) → GL(k,R[F ]) a representation. Recall that we denote by
Q(R[F ]) the quotient field of R[F ].

We endow N with a finite CW-structure. We denote the universal cover of N

by Ñ . Recall that there exists a canonical left π1(N)-action on the universal cover Ñ

given by deck transformations. We consider the cellular chain complex C∗(Ñ) as a
right Z[π1(N)]-module by defining σ · g := g−1σ for a chain σ . The representation
α induces a representation α : π1(N) → GL(k,R[F ]) → GL(k,Q(R[F ])) which
gives rise to a left action of π1(N) on Q(R[F ])k . We can therefore consider the
Q(R[F ])-complex

C∗(Ñ) ⊗Z[π1(N)] Q(R[F ])k.
We now endow the free Z[π1(N)]-modules C∗(Ñ) with a basis by picking lifts
of the cells of N to Ñ . Together with the canonical basis for Q(R[F ])k we can
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now view the Q(R[F ])-complex C∗(Ñ)⊗Z[π1(N)] Q(R[F ])k as a complex of based
Q(R[F ])-modules.

If this complex is not acyclic, then we define τ(N,α) = 0. Otherwise we de-
note by τ(N,α) ∈ Q(R[F ]) \ {0} the Reidemeister torsion of this based Q(R[F ])-
complex. We will not recall the definition of Reidemeister torsion, referring instead
to the many excellent expositions, e.g. [Mi66, Tu01] and [Nic03]. However, in the
next section we will present a method for computing explicitly the twisted Reide-
meister torsion of a 3-manifold.

It follows from Chapman’s theorem [Chp74] and from standard arguments (cf.
the above literature) that up to multiplication by an element in

{±det(α(g)) |g ∈ π1(N)}

the Reidemeister torsion τ(N,α) is well-defined, i.e. up to that indeterminacy
τ(N,α) is independent of the choice of underlying CW-structure and the choice
of the lifts of the cells. In the following, given w ∈ Q(R[F ]) we write

τ(N,α)
.= w

if there exists a representative of τ(N,α) which equals w.
Note that if γ : π1(N) → GL(k,R) is a representation and ψ : π1(N) → F a

homomorphism to a free abelian group, then we get a tensor representation

γ ⊗ ψ : π1(N) → GL(k,R[F ])
g �→ γ (g) · ψ(g)

and the corresponding Reidemeister torsion τ(N,γ ⊗ ψ). Except for parts of
Sect. 3.5.2 we will always consider the twisted Reidemeister torsion correspond-
ing to such a tensor representation. In that case, specializing the previous formula,
τ(N,γ ⊗ ψ) is well-defined up to multiplication by an element in

{±det(γ (g))f |g ∈ π1(N),f ∈ F }.

In particular, if γ : π1(N) → SL(k,R) is a representation to a special linear groups,
then τ(N,γ ⊗ ψ) ∈ Q(R[F ]) is well-defined up to multiplication by an element
in ±F . Furthermore, if k is even, then τ(N,γ ⊗ ψ) ∈ Q(R[F ]) is in fact well-
defined up to multiplication by an element in F (cf. e.g. [GKM05]).

Finally we adopt the following notation:

1. Given a homomorphism γ : π → G to a finite group G we get an induced rep-
resentation π → Aut(Z[G]) ∼= GL(|G|,Z) given by left multiplication. In our
notation we will not distinguish between a homomorphism to a finite group and
the corresponding representation over Z.

2. If N is the exterior of a link L ⊂ S3, ψ : π1(S
3 \νL) → F the abelianization and

γ : π → GL(k,R) a representation, then we write τ(L,γ ) for τ(S3 \νL,γ ⊗ψ).
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3.2.2 Computation of Twisted Reidemeister Torsion

Let N be a 3-manifold with empty or toroidal boundary, ψ : π1(N) → F a non-
trivial homomorphism to a free abelian group F and γ : π1(N) → GL(k,R) a rep-
resentation. In this section we will give an algorithm for computing τ(N,γ ⊗ ψ)

which is based on ideas of Turaev (cf. in particular [Tu01, Theorem 2.2]).
We will first consider the case that N is closed. We write π = π1(N). We endow

N with a CW-structure with one 0-cell, n 1-cells, n 2-cells and one 3-cell. It is well-
known that such a CW-structure exists (cf. e.g. [McM02, Theorem 5.1] or [FK06,
Proof of Theorem 6.1]). Using this CW-structure we have the cellular chain complex

0 → C3(Ñ)
∂3−→ C2(Ñ)

∂2−→ C1(Ñ)
∂1−→ C0(Ñ) → 0

where Ci(Ñ) ∼= Z[π] for i = 0,3 and Ci(Ñ) ∼= Z[π]n for i = 1,2. Let Ai, i =
1,2,3 be the matrices over Z[π] corresponding to the boundary maps ∂i : Ci →
Ci−1 with respect to the bases given by the lifts of the cells of N to Ñ . We can
arrange the lifts such that

A3 = (1 − g1,1 − g2, . . . ,1 − gn)
t ,

A1 = (1 − h1,1 − h2, . . . ,1 − hn)

with g1, . . . , gn,h1, . . . , hn ∈ π . Note that {g1, . . . , gn} and {h1, . . . , hn} are gener-
ating sets for π since N is a closed 3-manifold. Since ψ is non-trivial there exist
r, s such that ψ(gr) 
= 0 and ψ(hs) 
= 0. Let B3 be the r-th row of A3. Let B2 be
the result of deleting the r-th column and the s-th row from A2. Let B1 be the s-th
column of A1.

Given a p × q matrix B = (brs) with entries in Z[π] we write brs = ∑
b

g
rsg for

b
g
rs ∈ Z, g ∈ π . We then define (γ ⊗ ψ)(B) to be the p × q matrix with entries

∑
b

g
rs(γ ⊗ ψ)(g) =

∑
b

g
rsγ (g) · ψ(g) ∈ R[F ].

Since each such entry is a k × k matrix with entries in R[F ] we can think of
(γ ⊗ ψ)(B) as a pk × qk matrix with entries in R[F ].

Now note that

det((γ ⊗ ψ)(B3)) = det(id − γ (gr ) · ψ(gr)) 
= 0

since ψ(gr) 
= 0. Similarly det((γ ⊗ ψ)(B1)) 
= 0. The following theorem is an
immediate application of [Tu01, Theorem 2.2].

Theorem 1 We have

τ(N,γ ⊗ ψ)
.=

3∏
i=1

det((γ ⊗ ψ)(Bi))
(−1)i .

In particular, H∗(N;Q(R[F ])k) = 0 if and only if det((γ ⊗ ψ)(B2)) 
= 0.
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We now consider the case that N has non-empty toroidal boundary. Let X be a
CW-complex with the following two properties:

1. X is simple homotopy equivalent to a CW-complex of N ,
2. X has one 0-cell, n 1-cells and n − 1 2-cells.

It is well-known that such a CW-structure exists. For example, if N is the comple-
ment of a non-split link L ⊂ S3, then we can take X to be the 2-complex corre-
sponding to a Wirtinger presentation of π1(S

3 \ νL).
We now consider

0 → C2(X̃)
∂2−→ C1(X̃)

∂1−→ C0(X̃) → 0

where C0(X̃) ∼= Z[π], Ci(X̃) ∼= Z[π]n and Ci(X̃) ∼= Z[π]n−1. Let Ai , i = 1,2 over
Z[π] be the matrices corresponding to the boundary maps ∂i : Ci → Ci−1. As above
we can arrange that

A1 = (1 − h1,1 − h2, . . . ,1 − hn)

where {h1, . . . , hn} is a generating set for π . Since ψ is non-trivial there exists an s

such that ψ(hs) 
= 0. Let B2 be the result of deleting the s-th row from A2. Let B1

be the s-th column of A1. As above we have det((γ ⊗ ψ)(B1)) 
= 0. The following
theorem is again an immediate application of [Tu01, Theorem 2.2].

Theorem 2 We have

τ(N,γ ⊗ ψ)
.=

2∏
i=1

det((γ ⊗ ψ)(Bi))
(−1)i .

In particular, we have H∗(N;Q(R[F ])k) = 0 if and only if det((γ ⊗ ψ)(B2)) 
= 0.

3.2.3 Torsion Invariants

Let S be a Noetherian unique factorization domain (henceforth UFD). Examples of
Noetherian UFD’s are given by Z and by fields, furthermore if R is a Noetherian
UFD and F a free abelian group, then R[F ] is again a Noetherian UFD.

For a finitely generated S-module A we can find a presentation

Sr P−→ Ss → A → 0

since S is Noetherian. Let i ≥ 0 and suppose s − i ≤ r . We define Ei(A), the i-th
elementary ideal of A, to be the ideal in S generated by all (s − i) × (s − i) minors
of P if s − i > 0 and to be S if s − i ≤ 0. If s − i > r , we define Ei(A) = 0. It is
known that Ei(A) does not depend on the choice of a presentation of A (cf. [CF77]).
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Since S is a UFD there exists a unique smallest principal ideal of S that contains
E0(A). A generator of this principal ideal is defined to be the order of A and denoted
by ord(A) ∈ S. The order is well-defined up to multiplication by a unit in S. Note
that A is S-torsion if and only if ord(A) 
= 0. For more details, we refer to [Tu01].

3.2.4 Twisted Alexander Invariants

Let N be a 3-manifold and let α : π1(N) → GL(k,R[F ]) be a representation with
R a Noetherian UFD. Similarly to Sect. 3.2.1 we define the R[F ]-chain complex
C∗(Ñ) ⊗Z[π1(N)] R[F ]k . For i ≥ 0, we define the i-th twisted Alexander module of
(N,α) to be the R[F ]-module

Hi(N;R[F ]k) := Hi(C∗(Ñ) ⊗Z[π1(N)] R[F ]k),

where π1(N) acts on R[F ]k by α. Since N is compact and R[F ] is Noetherian these
modules are finitely presented over R[F ].

Definition 1 The i-th twisted Alexander polynomial of (N,α) is defined to be
ord(Hi(N;R[F ]k)) ∈ R[F ] and denoted by �α

N,i .

Recall that by the discussion of Sect. 3.2.3 twisted Alexander polynomials are
well-defined up to multiplication by a unit in R[F ]. Note that the units of R[F ] are
of the form rf with r a unit in R and f ∈ F . In the following, given p ∈ R[F ] we
write

�α
N,i

.= p

if there exists a representative of �α
N,i which equals p.

We often write �α
N instead of �α

N,1, and we refer to it as the twisted Alexander
polynomial of (N,α). We recall that given a representation γ : π1(N) → GL(k,R)

and a non-trivial homomorphism ψ : π1(N) → F to a free abelian group F we get a
tensor representation γ ⊗ψ and in particular twisted Alexander polynomials �

γ⊗ψ

N,i .
In almost all cases we will consider twisted Alexander polynomials corresponding
to such a tensor representation.

When we consider twisted Alexander polynomials of links we adopt the follow-
ing notational conventions:

1. We identify R[Z] with R[t±1] and R[Zm] with R[t±1
1 , . . . , t±1

m ].
2. Given a link L ⊂ S3 together with the abelianization ψ : π1(S

3 \ νL) → F and a
representation γ : π1(S

3 \ νL) → GL(k,R) with R a Noetherian UFD, we write
�

γ

L,i instead of �
γ⊗ψ

S3\νL,i
.

3. If L is an ordered oriented link, then we have a canonical isomorphism F ∼= Z
m

and we can identify R[F ] with R[t±1
1 , . . . , t±1

m ].
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4. We sometimes record the fact that the twisted Alexander polynomial of a link L

is a (multivariable) Laurent polynomial in the notation, i.e. given an oriented knot
K ⊂ S3 we sometimes write �

γ

K,i(t) = �
γ

K,i ∈ R[t±1] and given an ordered ori-

ented m-component link L ⊂ S3 we sometimes write �
γ

L,i(t1, . . . , tm) = �
γ

L,i ∈
R[t±1

1 , . . . , t±1
m ].

5. Finally given a link L we also drop the representation from the notation when
the representation is the trivial representation to GL(1,Z).

With all these conventions, given a knot K ⊂ S3, the polynomial �K(t) = �K ∈
Z[t±1] is just the ordinary Alexander polynomial.

3.2.5 Computation of Twisted Alexander Polynomials

Let N be a 3-manifold with empty or toroidal boundary, α : π1(N) → GL(k,R[F ])
a representation with R a Noetherian UFD and F a free abelian group. Given a
finite presentation for π1(N) the polynomials �α

N,1 ∈ R[F ] and �α
N,0 ∈ R[F ] can

be computed efficiently using Fox calculus (cf. e.g. [CF77, p. 98] and [KL99a]). We
point out that because we view C∗(Ñ) as a right module over Z[π1(N)] we need a
slightly different definition of Fox derivatives than the one commonly used. We refer
to [Ha05, Sect. 6] for details. Finally, Proposition 5 allows us to compute �α

N,2 ∈
R[F ] using the algorithm for computing the zeroth twisted Alexander polynomial.
In particular all the twisted Alexander polynomials �α

N,i can be computed from a
finite presentation of the fundamental group.

3.3 Basic Properties of Twisted Invariants

In this section we summarize various basic algebraic properties of twisted Reide-
meister torsion and twisted Alexander polynomials.

3.3.1 Relationship Between Twisted Invariants

The following proposition is [Tu01, Theorem 4.7].

Proposition 1 Let N be a 3-manifold with empty or toroidal boundary and let α :
π1(N) → GL(k,R[F ]) a representation where R is a Noetherian UFD and F a free
abelian group. If �α

N,i 
= 0 for i = 0,1,2, then

τ(N,α)
.=

2∏
i=0

(
�α

N,i

)(−1)i+1
.
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The following is a mild extension of [FK06, Proposition 2.5], [FK08a, Lem-
mas 6.2 and 6.3] and [FK08a, Theorem 6.7]. Most of the ideas go back to work of
Turaev (cf. e.g. [Tu86] and [Tu01]). The third statement is proved in [DFJ10].

Proposition 2 Let N be a 3-manifold with empty or toroidal boundary, ψ :
π1(N) → F a non-trivial homomorphism to a free abelian group F and γ :
π1(N) → GL(k,R) a representation where R is a Noetherian UFD. Then the fol-
lowing hold:

1. �
γ⊗ψ

N,0 
= 0 and �
γ⊗ψ

N,i = 1 for i ≥ 3.

2. If rank(Im{π1(N) → F }) > 1, then �
γ⊗ψ

N,0
.= 1.

3. If γ is irreducible and if γ restricted to ker(ψ) is non-trivial, then �
γ⊗ψ

N,0
.= 1.

4. If �
γ⊗ψ

N,1 
= 0, then �
γ⊗ψ

N,2 
= 0.

5. If N has non-empty boundary and if �
γ⊗ψ

N,1 
= 0, then �
γ⊗ψ

N,2
.= 1.

6. If rank(Im{π1(N) → F }) > 1 and if �
γ⊗ψ

N,1 
= 0, then �
γ⊗ψ

N,2
.= 1.

7. We have �
γ⊗ψ

N,1 = 0 if and only if τ(N,γ ⊗ ψ) = 0.

8. If �
γ⊗ψ

N,1 
= 0, then

τ(N,γ ⊗ ψ)
.=

2∏
i=0

(
�

γ⊗ψ

N,i

)(−1)i+1
.

A few remarks regarding the equalities of Proposition 1 and Proposition 2 (8) are
in order:

1. Note that twisted Reidemeister torsion has in general a smaller indeterminacy
than twisted Alexander polynomials. In particular the equality holds up to the
indeterminacy of the twisted Alexander polynomials.

2. As pointed out in Sect. 3.2.5, the twisted Alexander polynomials �
γ⊗ψ

N,i can be
computed from a presentation of the fundamental group, whereas the computa-
tion of τ(N,γ ⊗ ψ) requires in general an understanding of the CW-structure
of N (cf. Sect. 3.2.2). In particular the equality of Proposition 2 (8) is often a
faster method for computing τ(N,γ ⊗ ψ) (at the price of a higher indetermi-
nacy).

3. The twisted Alexander polynomial is only defined for representations over a
Noetherian UFD, whereas the twisted Reidemeister torsion is defined for a fi-
nite dimensional representation over any commutative ring.

4. It is an immediate consequence of Proposition 2 that τ(N,γ ⊗ ψ) lies in R[F ],
i.e. is a polynomial, if rank(Im{π1(N) → F }) > 1.

Remark 1

1. Given a link L ⊂ S3 and a representation γ : π1(S
3 \ L) → GL(k,R) Wada

[Wa94] introduced an invariant, which in this paragraph we refer to as W(L,γ ).
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Wada’s invariant is in many papers referred to as the twisted Alexander polyno-
mial of a link. Kitano [Ki96] showed that W(L,γ ) agrees with the Reidemeister
torsion τ(L,γ ) (with the same indeterminacy). This can also be shown using
the arguments of Sect. 3.2.2. In particular, in light of Proposition 2 we see that
W(L,γ )

.= �
γ

L if L has more than one component.
2. Lin’s original definition [Lin01] of the twisted Alexander polynomial of a knot

uses ‘regular Seifert surfaces’ and is rather different in character to the algebra-
topological approach taken in the subsequent papers. The relation between the
definitions of twisted Alexander polynomials given by Lin [Lin01], Jiang and
Wang [JW93] and Sect. 3.2.4 is explained in [JW93, Proposition 3.3] and
[KL99a, Sect. 4].

3.3.2 Twisted Invariants for Conjugate Representations

Given a group π we say that two representations γ1, γ2 : π → GL(k,R) are conju-
gate if there exists P ∈ GL(k,R) such that γ1(g) = Pγ2(g)P−1 for all g ∈ π . We
recall the following elementary lemma.

Lemma 1 Let N be a 3-manifold with empty or toroidal boundary and let ψ :
π1(N) → F a non-trivial homomorphism to a free abelian group. If γ1 and γ2 are
conjugate representations of π1(N), then

τ(N,γ1 ⊗ ψ)
.= τ(N,γ2 ⊗ ψ),

if R is furthermore a Noetherian UFD, then for any i we have

�
γ1⊗ψ

N,i

.= �
γ2⊗ψ

N,i .

Note that non-conjugate representations do not necessarily give different Alexan-
der polynomials (cf. [LX03, Theorem B]).

3.3.3 Change of Variables

In this section we will show how to reduce the number of variables in twisted
Alexander polynomials, in particular this discussion will show how to obtain one-
variable twisted Alexander polynomials from multi-variable twisted Alexander
polynomials.

Throughout this section let N be a 3-manifold with empty or toroidal boundary,
let ψ : π1(N) → F be a non-trivial homomorphism to a free abelian group F and
let γ : π1(N) → GL(k,R) be a representation. Furthermore let φ : F → H also be
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a homomorphism to a free abelian group such that φ ◦ ψ is non-trivial. We denote
the induced ring homomorphism R[F ] → R[H ] by φ as well. Let

S = {f ∈ R[F ] |φ(R[F ]) 
= 0 ∈ R[H ]}.
Note that φ induces a homomorphism R[F ]S−1 → Q(R[H ]) which we also denote
by φ.

The following is a slight generalization of [FK08a, Theorem 6.6], which in turn
builds on ideas of Turaev (cf. [Tu86] and [Tu01]).

Proposition 3 We have τ(N,γ ⊗ ψ) ∈ R[F ]S−1, and

τ(N,γ ⊗ ψ ◦ φ)
.= φ(τ(N,γ ⊗ ψ)).

The following is now an immediate corollary of the previous proposition and
Proposition 2.

Corollary 1 Assume that γ : π1(N) → GL(k,R) is a representation with R a
Noetherian UFD. If φ(�

γ⊗ψ

N ) 
= 0, then we have the following equality:

2∏
i=0

(
�

γ⊗φ◦ψ
N,i

)(−1)i+1
.= φ

(
2∏

i=0

(
�

γ⊗ψ

N,i

)(−1)i+1

)
.

In particular, if rank{Im{π1(N)
φ◦ψ−−→ H }} ≥ 2, then

�
γ⊗φ◦φ
N

.= φ
(
�

γ⊗ψ

N

)
.

3.3.4 Duality for Twisted Invariants

Let R be a ring with a (possibly trivial) involution r �→ r . Let F be a free abelian
group, with its natural involution. We extend the involution on R to the group ring
R[F ] and the quotient field Q(R[F ]) in the usual way. We equip R[F ]k with the
standard hermitian inner product 〈v,w〉 = vtw (where we view elements in R[F ]k
as column vectors).

Let N be a 3-manifold with empty or toroidal boundary and let α : π1(N) →
GL(k,R[F ]) a representation. We denote by α : π1(N) → GL(k,R[F ]) the repre-
sentation given by

〈α(g−1)v,w〉 = 〈v,α(g)w〉
for all v,w ∈ R[F ]k, g ∈ π1(N). Put differently, for any g ∈ π1(N) we have

α(g) = (α(g)−1)t ∈ GL(k,R[F ]).
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We say that a representation is unitary if α = α.
Note that if ψ : π1(N) → F is a non-trivial homomorphism to a free abelian

group F and γ : π1(N) → GL(k,R) a representation, then

γ ⊗ ψ = γ ⊗ ψ.

The following duality theorem can be proved using the ideas of [Ki96] and
[KL99a, Corollary 5.2].

Proposition 4 Let N be a 3-manifold with empty or toroidal boundary and let α :
π1(N) → GL(k,R[F ]) a representation. Then

τ(N,α)
.= τ(N,a) ∈ R[F ].

In particular if ψ : π1(N) → F is a non-trivial homomorphism to a free abelian
group F and γ : π1(N) → GL(k,R) is a unitary representation, then τ(N,γ ⊗ ψ)

is reciprocal, i.e.

τ(N,γ ⊗ ψ) = τ(N,γ ⊗ ψ) ∈ R[F ].

It is easy to see that in general the twisted Reidemeister torsion is not reciprocal
if one considers representations α such that α(g) 
= α(g) for some g ∈ π1(N). Hill-
man, Silver and Williams [HSW09] give much more subtle examples which show
that there also exist knots K together with special linear representations such that
the corresponding twisted Reidemeister torsion is not reciprocal.

The following proposition follows from the discussion in [FK06].

Proposition 5 Let N be a closed 3-manifold and let α : π1(N) → GL(k,R[F ]) a
representation with R a Noetherian UFD. Assume that �α

N,i 
= 0 for all i. Then the
following equalities hold:

�α
N,2

.= �a
N,0 and �α

N

.= �a
N.

3.3.5 Shapiro’s Lemma for Twisted Invariants

Let N be a 3-manifold with empty or toroidal boundary. Let p : N̂ → N be a finite
cover of degree d . Let F be a free abelian group and let α̂ : π1(N̂) → GL(k,R[F ])
a representation.

Now consider the R[F ]k-module

Z[π1(N)] ⊗
Z[π1(N̂)] R[F ]k.

If g1, . . . , gd are representatives of π1(N)/π1(N̂) and if e1, . . . , ek is the canonical
basis of R[F ]k , then it is straightforward to see that the above R[F ]-module is a
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free R[F ]-module with basis gi ⊗ ej , i = 1, . . . , d, j = 1, . . . , k. The group π1(N)

acts on

Z[π1(N)] ⊗
Z[π1(N̂)] R[F ]k = R[F ]kd

via left multiplication which defines a representation π1(N) → GL(kd,R[F ])
which we denote by α.

Remark 2

1. Let γ̂ : π1(N̂) → GL(k,R) be a representation. Let ψ : π1(N) → F be a non-
trivial homomorphism to a free abelian group F . We write ψ̂ = ψ ◦ p∗ and we
denote by γ the representation given by left multiplication by π1(N) on

Z[π1(N)] ⊗
Z[π1(N̂)] Rk = Rkd .

Given α̂ = γ̂ ⊗ ψ̂ we have in that case α = γ ⊗ ψ .
2. If γ̂ is the trivial one-dimensional representation, and N̂ the cover of N cor-

responding to an epimorphism ϕ : π1(N) → G to a finite group, then we have
γ = ϕ.

The following is now a variation on Shapiro’s lemma (cf. [FV08a, Lemma 3.3]
and [HKL10, Sect. 3]).

Theorem 3 We have

τ(N̂, α̂)
.= τ(N,α).

If R is furthermore a Noetherian UFD, then

�α̂

N̂,i

.= �α
N,i .

In its simplest form Theorem 3 says that given an epimorphism γ : π1(N) → G

to a finite group the corresponding twisted Alexander polynomials of N are just
untwisted Alexander polynomials of the corresponding finite cover.

3.3.6 Twisted Invariants of Knots and Links

Let L = L1 ∪ · · · ∪ Lm ⊂ S3 be an ordered oriented link. Recall that given a repre-
sentation γ : π1(S

3 \ νL) → GL(k,R) with R a Noetherian UFD we can consider
the twisted Alexander polynomial �

γ

L as an element in the Laurent polynomial ring
R[t±1

1 , . . . , t±1
m ] and we write �

γ

L,i(t1, . . . , tm) = �
γ

L,i ∈ R[t±1
1 , . . . , t±1

m ].
Given εj ∈ {±1} for j = 1, . . . ,m we denote by Lε the link ε1L1, . . . , εmLm,

i.e. the oriented link obtained from L by reversing the orientation of all components
with εj = −1.

The following lemma is now an immediate consequence of the definitions:
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Lemma 2 Given εj ∈ {±1} for j = 1, . . . ,m we have

�
γ

Lε,i(t1, . . . , tm) = �
γ

L,i(t
ε1
1 , . . . , tεm

m ).

We now turn to the study of twisted Alexander polynomials of sublinks. Given a
link L = L1 ∪ . . .Lk−1 ∪Lk ⊂ S3 Torres [To53] showed how to relate the Alexander
polynomials of L and L′ = L1 ∪ . . .Lk−1 ⊂ S3. The following theorem of Morifuji
[Mo07, Theorem 3.6] gives a generalization of the Torres condition to twisted Rei-
demeister torsion.

Theorem 4 Let L = L1 ∪ . . .Lk−1 ∪Lk ⊂ S3 be a link. Write L′ = L1 ∪ . . .Lk−1 ⊂
S3 and let γ ′ : π1(S

3 \ νL′) → SL(n,F) be a representation where F is a field.
Denote by γ the representation π1(S

3 \ νL) → π1(S
3 \ νL′) → SL(n,F), then

τ(L,γ )(t1, . . . , tk−1,1)
.=

(
T n +

n−1∑
k=1

εiT
i + (−1)n

)
· τ(L′, γ ′)(t1, . . . , tk−1)

where

T :=
k−1∏
i=1

t
lk(Li ,Lk)
i

and where ε1, . . . , εn−1 are elements of F.

3.4 Distinguishing Knots and Links

In this section we will restrict ourselves to twisted Alexander polynomials of knots
and links. Recall that given an oriented knot K ⊂ S3 the reverse K is given by re-
versing the orientation. Given a knot K ⊂ S3 we denote by K∗ its mirror image, i.e.
the result of reflecting K in S2 ⊂ S3. The mirror image is also sometimes referred
to as the obverse.

Twisted Alexander invariants have so far been surprisingly little used to distin-
guish a knot from its mirror image or from its reverse (cf. [KL99b] though for a deep
result showing that the knot 817 and its reverse lie in different concordance classes).
It is an interesting question whether Kitayama’s normalized Alexander polynomial
[Kiy08a] can be used to distinguish a knot from its mirror image and its reverse.
We refer to [Ei07] for an interesting and very successful approach to distinguishing
knots using ‘knot colouring polynomials’.

In this section we are from now on only concerned with distinguishing knot types
of prime knots. Here we say that two knots K1 and K2 are of the same knot type if
there exists a homeomorphism h of the sphere with h(K1) = K2. Put differently, K1

and K2 are of the same knot type if they are related by an isotopy together possibly
with taking the mirror image and possibly reversing the orientation.
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The most common approach for distinguishing knots using twisted Alexander
polynomials is to look at the set (or product) of all twisted Alexander polynomials
corresponding to a ‘characteristic set’ of representations. Note that due to Lemma 1
we can in fact restrict ourselves to conjugacy classes of a set of characteristic repre-
sentations.

The following two types of characteristic sets have been used in the literature:

1. Given a knot K consider all conjugacy classes of (all upper triangular, parabolic,
metabelian, orthogonal, unitary) representations of π1(S

3 \ νK) of a fixed di-
mension over a finite ring.

2. Given K consider all conjugacy classes of homomorphisms of π1(S
3 \ νK) onto

a finite group G composed with a fixed representation of G.

The first approach was used in Lin’s original paper [Lin01] to distinguish knots
with the same Alexander module. Wada [Wa94] also used the first approach to
show that twisted Alexander polynomials can distinguish the Conway knot and
the Kinoshita–Terasaka knot (cf. also [In00]). This shows in particular that twisted
Alexander polynomials detect mutation. In fact in [FV07a] it is shown that twisted
Alexander polynomials detect all mutants with 11 crossings or less. Furthermore, in
[FV07a] the authors give an example of a pair of knot types of prime knots which
can be distinguished using twisted Alexander polynomials, even though the HOM-
FLY polynomial, Khovanov homology and knot Floer homology agree.

Remark 3

1. The approach of using twisted Alexander polynomials corresponding to a char-
acteristic set of conjugacy classes can be viewed as an extension of the approach
of Riley [Ri71] who studied the first homology group corresponding to such a set
of representations to distinguish the Conway knot from the Kinoshita–Terasaka
knot.

2. By the work of Whitten [Wh87] and Gordon–Luecke [GL89] the knot type of a
prime knot is determined by its fundamental group. It is therefore at least con-
ceivable that twisted Alexander polynomials can distinguish any two pairs of
knot types.

The following theorem shows that twisted Alexander polynomials detect the un-
knot and the Hopf link. The statement for knots was first proved by Silver and
Williams [SW06], the extension to links was later proved in [FV07a].

Theorem 5 Let L ⊂ S3 be a link which is neither the unknot nor the Hopf link.
Then there exists an epimorphism γ : π1(S

3 \ νL) → G onto a finite group G such
that �

γ

L 
 .= ±1.

Given a knot K we denote by t (K) its tunnel number. Theorem 5 was used by
Pajitnov [Pa08] to show that for any knot K there exists λ > 0 such that t (nK) ≥
λn − 1.
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3.5 Twisted Alexander Polynomials and Concordance

We first recall the relevant definitions. Let L = L1 ∪ · · · ∪ Lm ⊂ S3 be an ori-
ented m-component link. We say that L is (topologically) slice if the components
bound m disjointly embedded locally flat disks in D4. Given two ordered oriented
m-component links K = K1 ∪ · · · ∪ Km ⊂ S3 and L = L1 ∪ · · · ∪ Lm ⊂ S3 we
say that K and L are concordant if there exist m disjointly embedded locally flat
cylinders C1, . . . ,Cm in S3 × [0,1] such that ∂Ci = Ki × 0 ∪ −Li × 1. (Given an
oriented knot K ⊂ S3 we write −K = K

∗
, i.e. −K is the knot obtained from the

mirror image of K by reversing the orientation.) Note that two knots K1 and K2 are
concordant if and only if K1# − K2 is slice, and a link is slice if and only if it is
concordant to the unlink.

3.5.1 Twisted Alexander Polynomials of Zero-Surgeries

Given a knot K ⊂ S3 the zero-framed surgery NK of S3 along K is defined to be

NK = S3 \ νK ∪T S1 × D2

where T = ∂(S3 \ νK) and T is glued to S1 ×D2 by gluing the meridian to S1 ×pt.

The inclusion map induces an isomorphism Z ∼= H1(S
3 \ νK;Z)

∼=−→ H1(NK;Z). It
is well-known that understanding the zero-framed surgery NK is the key to de-
termining whether K is slice or not (cf. e.g. [COT03], [FT05, Proposition 3.1],
[CFT09, Proposition 2.1]). We therefore prefer to formulate the sliceness obstruc-
tions in terms of the twisted Alexander polynomials of the zero-framed surgery. The
following lemma, together with Proposition 2, relates the twisted invariants of the
zero-framed surgery with the twisted invariants of the knot complement. We refer
to [KL99a, Lemma 6.3] and [Tu02a, Sect. VII] for very similar statements.

Lemma 3 Let K ⊂ S3 be a knot. Denote its meridian by μ. Let α : π1(NK) →
GL(k,R[t±1]) be a representation such that det(α(μ) − id) 
= 0. We denote the
inclusion induced representation α : π1(S

3 \ νK) → π1(NK) → GL(k,R[t±1]) by
α as well. Then

τ(S3 \ νK,α) = τ(NK,α) · det(α(μ) − id).

Proof The proof of the lemma is standard and well-known. We therefore give just a
quick summary. Consider the decomposition NK = S3 \ νK ∪T S as above, where
S = S1 × D2. Using the Mayer–Vietoris theorem for torsion we obtain that

τ(NK,α) = τ(S3 \ νK,α) · τ(S,α)

τ(T ,α)
.
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It is well-known that the torsion of the torus is trivial (c.f. e.g. [KL99a]) and that the
torsion of S is given by

τ(S,α) = 1

det(α(μ) − id)
.

The lemma now follows immediately. �

3.5.2 Twisted Alexander Polynomials and Knot Concordance

The first significant result in the study of slice knots is due to Fox and Milnor
[FM66] who showed that if K is a slice knot, then �K

.= f (t)f (t−1) for some
f (t) ∈ Z[t±1].

In this section we will give an exposition and a slight generalization of the Kirk–
Livingston [KL99a] sliceness obstruction theorem, which generalizes the Fox–
Milnor condition. Note that we will state this obstruction using a slightly different
setup, but Theorem 6 is already contained in [KL99a] and [HKL10].

Let K be a knot, as above we denote by NK the zero-framed surgery of S3

along K . Now suppose that K has a slice disk D. Note that ∂(D4 \ νD) = NK . Let
R be a ring with (possibly trivial) involution and as usual we extend the involution
to R[t±1] by t := t−1. Let α : π1(NK) → GL(R[t±1], k) be a unitary representation.
Assume that α has the following two properties:

1. α factors through a representation π1(D
4 \ νD) → GL(k,R[t±1]), and

2. the induced twisted modules H∗(D4 \ νD;R[t±1]k) are R[t±1]-torsion,

then using Poincaré duality for Reidemeister torsion (cf. [KL99a, Theorem 6.1])
one can show that τ(NK,α)

.= f (t)f (t) for some f (t) ∈ R(t). We refer to [KL99a,
Corollary 5.3] for details.

Remark 4 Note that the canonical representation π1(NK) → GL(1,Z[t±1]) extends
over any slice disk complement. It can be shown that H∗(D4 \ νD;Z[t±1]) is
Z[t±1]-torsion. We can therefore recover the Fox–Milnor theorem from this dis-
cussion.

Most of the ideas and techniques of finding representations satisfying (1) and (2)
go back to the seminal work of Casson and Gordon [CG86]. We follow the approach
taken in [Fr04] which is inspired by Letsche [Let00] and Kirk–Livingston [KL99a,
HKL10].

In the following let K again be a knot in S3. We denote by Wk the cyclic k-fold
branched cover of K . Note that H1(Wk;Z) has a natural Z/k-action, and we can
therefore view H1(Wk;Z) as a Z[Z/k]-module. If H1(Wk;Z) is finite, then there
exists a non-singular linking form

λk : H1(Wk;Z) × H1(Wk;Z) → Q/Z
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with respect to which Z/k acts via isometries. We say that M ⊂ H1(Wk;Z) is a
metabolizer of the linking form if M is a Z[Z/k]-submodule of H1(Wk;Z) such
that λk(M,M) = 0 and such that |M|2 = |H1(Wk;Z)|. It is well-known that if K

is slice, then λk has a metabolizer for any prime power k. We refer to [Go78] for
details.

Note that H 1(NK;Z) = Z, in particular H 1(NK ;Z) has a unique generator
(up to sign) which we denote by φ. We now consider the Alexander module
H1(NK ;Z[t±1]) which we denote by H . Note that H is isomorphic to the usual
Alexander module of K . It is well-known that given k there exists a canonical iso-
morphism H/(tk −1) → H1(Wk;Z) (cf. e.g. [Fr04, Corollary 2.4] for details). Now
let μ ∈ π1(NK) be an element with φ(μ) = 1. Note that for any g ∈ π we have
φ(μ−φ(g)g) = 0, in particular we can consider its image [μ−φ(g)g] in the abelian-
ization H1(ker(φ)), which we can identify with H . Then we have a well-defined
map

π → Z � H → Z � H/(tk − 1)

where the first map is given by sending g ∈ π to (φ(g), [μ−φ(g)g]). Here n ∈ Z acts
on H and on H/(tk − 1) via multiplication by tn. We refer to [Fr04] and [BF08] for
details.

Fix k ∈ N. Let χ : H1(Wk;Z) → Z/q → S1 be a character. We denote the in-
duced character H → H/(tk − 1) = H1(Wk;Z) → S1 by χ as well. Let ζq be a
primitive q-th root of unity. Then it is straightforward to verify that

α(k,χ) : π → Z � H/(tk − 1) → GL(k,Z[ζq ][t±1])

(j, h) �→

⎛
⎜⎜⎜⎝

0 . . . 0 t

1 0 . . . 0
...

. . .
...

0 . . . 1 0

⎞
⎟⎟⎟⎠

j

×

⎛
⎜⎜⎜⎝

χ(h) 0 . . . 0
0 χ(th) . . . 0
...

. . .
...

0 0 . . . χ(tk−1h)

⎞
⎟⎟⎟⎠

defines a unitary representation. (Note the “t” in the upper right corner.) Also note
that α(k,χ) is not a tensor representation (cf. [HKL10]).

We can now formulate the following obstruction theorem which is well-known
to the experts. It can be proved using the above discussion, Proposition 1, vari-
ous well-known arguments going back to Casson and Gordon [CG86] and [KL99a,
Lemma 6.4]. We also refer to Letsche [Let00] and [Fr04] for more information.

Theorem 6 Let K be a slice knot. Then for any prime power k there exists a
metabolizer M of λk such that for any odd prime power n and any character
χ : H1(Wk;Z) → Z/n → S1 vanishing on M we have

�
α(k,χ)
NK

.= f (t)f (t)
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for some f (t) ∈ Q(Z[ζn])[t±1] = Q(ζn)[t±1].

Note that the original sliceness obstruction of Kirk and Livingston [KL99a, The-
orem 6.2] (cf. also [HKL10, Theorem 8.1] and [Liv09, Theorem 5.4]) gives an ob-
struction in terms of twisted Alexander polynomials of a cyclic cover of S3 \ νK

corresponding to one-dimensional representations. Using Theorem 3 and Lemma 3
(cf. also [KL99a, Lemma 6.3]) one can show that the sliceness obstruction of The-
orem 6 is equivalent to the original formulation by Kirk and Livingston.

Remark 5 In Theorem 6 and later in Theorems 7 and 9 we restrict ourselves to
characters of odd prime power. Similar theorems also hold for characters of even
prime power order, we refer to [KL99a, Lemma 6.4] and [Liv09, Sect. 5] for more
information.

Theorem 6 can be somewhat generalized using tensor representations. In the
following let k1, . . . , kn ∈ N. Assume we are given characters χi : H1(Wki

;Z) →
Z/q → S1, i = 1, . . . , n we also get a tensor representation

α(k1, χ1) ⊗ · · · ⊗ α(kn,χn) → GL(k1 · · · · · kn,Z[ζq ][t±1]).
We refer to [Fr04, Proposition 4.6] for more information.

The following theorem can be proved by modifying the proof of Theorem 6 along
the lines of [Fr04, Theorem 4.7].

Theorem 7 Let K be a slice knot. Let q be an odd prime power and let k1, . . . , kn

be coprime prime powers. Then there exist metabolizers M1, . . . ,Mn of the linking
forms λk1 , . . . , λkn

such that for any choice of characters χi : H1(Wki
;Z) → Z/q →

S1, i = 1, . . . , n vanishing on Mi we have

�
α(k1,χ1)⊗···⊗α(kn,χn)
NK

.= f (t)f (t)

for some f (t) ∈ Q(Z[ζq ])[t±1] = Q(ζq)[t±1].

Remark 6 It was first observed by Letsche [Let00] that non-prime power dimen-
sional representations can give rise to sliceness obstructions. It is shown in [Fr03]
that Letsche’s non-prime power representations are given by the tensor representa-
tions considered in Theorem 7.

The sliceness obstruction coming from twisted Alexander polynomials is in some
sense less powerful than the invariants of Casson and Gordon [CG86] (cf. [KL99a,
Sect. 6] for a careful discussion) and Cochran–Orr–Teichner [COT03]. But to date
twisted Alexander polynomials give the strongest sliceness obstruction for alge-
braically slice knots that can be computed efficiently. The Kirk–Livingston sliceness
obstruction theorem has been used by various authors to produce many interesting
examples, some of which we list below:
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1. Kirk and Livingston [KL99b] apply twisted Alexander polynomials to show that
some knots (e.g. 817) are not concordant to their inverses. This shows in partic-
ular that knots are not necessarily concordant to their mutants. In [KL99b] it is
also shown that in general a knot is not even concordant to a positive mutant.

2. Tamulis [Tam02] considered knots with at most ten crossings which have alge-
braic concordance order two. Tamulis used twisted Alexander polynomials to
show that all but one of these knots do not have order two in the knot concor-
dance group.

3. In [HKL10] Herald, Kirk and Livingston consider all knots with up to twelve
crossings. Eighteen of these knots are algebraically slice but can not be shown to
be slice using elementary methods. In [HKL10] twisted Alexander polynomials
are used to show that sixteen of these knots are in fact not slice and one knot is
smoothly slice. Therefore among the knots with up to twelve crossings only the
sliceness status of the knot 12a631 is unknown.

4. The concordance genus gc(K) of a knot K is defined to be the minimal genus
among all knots concordant to K . Livingston [Liv09] uses twisted Alexander
polynomials to show that the concordance genus of 1082 equals three, which is
its ordinary genus.

3.5.3 Ribbon Knots and Doubly Slice Knots

A knot K is called homotopy ribbon if there exists a slice disk D such that
π1(NK) → π1(D

4 \ νD) is surjective. Note that if a knot is ribbon, then it is also
homotopy ribbon. It is an open conjecture whether every knot that is slice is also
homotopy ribbon.

Let K ⊂ S3 be a knot. Recall that there exists a non-singular hermitian pairing

λ : H1(NK ;Z[t±1]) × H1(NK;Z[t±1]) → Q(t)/Z[t±1]

which is referred to as the Blanchfield pairing. We say that M ⊂ H1(NK ;Z[t±1]) is
a metabolizer for the Blanchfield pairing if M = M⊥, i.e. if M satisfies

M = {x ∈ H1(NK ;Z[t±1]) |λ(x, y) = 0 ∈ Q(t)/Z[t±1] for all y ∈ M}.

If K is slice, then there exists a metabolizer for the Blanchfield pairing. Also re-
call from the previous section that for any k there exists a canonical isomorphism
H1(NK ;Z[t±1])/(tk − 1) = H1(Lk;Z). If M is a metabolizer for the Blanchfield
pairing, then for any k we have that M/(tk − 1) ⊂ H1(NK;Z[t±1])/(tk − 1) =
H1(Lk;Z) is a metabolizer for the linking form λk . We refer to [Bl57], [Ke75],
[Go78, Sect. 7], [Let00] and [Fr04, Sect. 2.3] for more information.

The proof of Theorem 6 can now be modified along well established lines (cf.
e.g. [Fr04, Theorem 8.3]) to prove the following theorem:
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Theorem 8 Let K ⊂ S3 be a ribbon knot, then there exists a metabolizer M ⊂
H1(NK ;Z[t±1]) for the Blanchfield pairing λ such that for any k and any non-
trivial character χ : H1(Lk;Z) → S1 of prime power vanishing on M/(tk − 1) we
have

�
α(k,χ)
NK

.= f (t)f (t)

for some f (t) ∈ Q(Z[ζq ])[t±1] = Q(ζq)[t±1].

Using [Fr04, Proposition 4.6] one can show that if a knot K satisfies the ribbon
obstruction of Theorem 8, then it also satisfies the sliceness obstruction given by
Theorem 7.

A knot K ⊂ S3 is called doubly slice if there exists an unknotted locally flat two-
sphere S ⊂ S4 such that S ∩ S3 = K . Note that a doubly slice knot is in particular
slice. The ordinary Alexander polynomial does not contain enough information to
distinguish between slice and doubly slice knots. On the other hand twisted Alexan-
der polynomials can detect the difference. The following theorem is well-known to
the experts. It can be proved using the above ideas of Kirk and Livingston combined
with the results of Gilmer and Livingston [GL83] (cf. also [Fr04, Sect. 8.2]). Note
that many of the ideas already go back to the original paper by Sumners [Sum71].

Theorem 9 Let K be a doubly slice knot. Then for any prime power k there exist
two metabolizers M1 and M2 of λk with M1 ∩M2 = {0} such that for any odd prime
power n and any character χ : H1(Lk;Z) → Z/n → S1 which vanishes either on
M1 or on M2 we have

�
α(k,χ)
NK

.= f (t)f (t)

for some f (t) ∈ Q(Z[ζn])[t±1].

It is also possible to state and prove an analogue of Theorem 7 for doubly slice
knots.

3.5.4 Twisted Invariants and Slice Links

Kawauchi [Ka78, Theorems A and B] showed that if L is a slice link with more than
one component, then the ordinary Alexander module is necessarily non-torsion, in
particular the corresponding Reidemeister torsion is zero. We will follow an idea of
Turaev [Tu86, Sect. 5.1] to define a (twisted) invariant for links even if the (twisted)
Alexander module is non-torsion. This invariant will then give rise to a sliceness
obstruction for links. We refer throughout this section to [CF10] and [Tu86] for
details.

Let L ⊂ S3 be an oriented m-component link. Let R ⊂ C be a subring and let
α : π(S3 \ νL) → GL(k,R) be a unitary representation. Suppose that ψ : π1(S

3 \
νL) → F is a homomorphism to a free abelian group which is non-trivial on each



66 S. Friedl and S. Vidussi

meridian of L. Under these assumptions we can endow H1(S
3 \ νL;Q(R[F ])k)

and H2(S
3 \ νL;Q(R[F ])k) with dual bases and using these bases we can define

the Reidemeister torsion

τ̃ α⊗ψ(L) ∈ Q(F)∗/N(Q(F)∗),

here N(Q(F)∗) denotes the subgroup of norms of the multiplicative group Q(F)∗,
i.e. N(Q(F)∗) = {qq |q ∈ Q(F)∗}. Reidemeister torsion τ̃ α⊗ψ(L) viewed as an
element in Q(F)∗/N(Q(F)∗) is well-defined up to multiplication by an element of
the form ±df where d ∈ det(α(π1(S

3 \ νL))), f ∈ F . The invariant τα⊗ψ(L) is the
twisted version of an invariant first introduced by Turaev [Tu86, Sect. 5.1].

For example, if L is the m-component unlink in S3 with meridians μ1, . . . ,μm,
then given α and ψ as above we have

τ̃ α⊗ψ(L) = ±df ·
m∏

i=1

det
(
id − ψ(μi)α(μi)

)−1 ∈ Q(F)∗/N(Q(F)∗)

with d ∈ det(α(π1(S
3 \ νL))), f ∈ F .

In [CF10] the first author and Jae Choon Cha prove the following result.

Proposition 6 Let L be an m-component oriented slice link with oriented meridians
μ1, . . . ,μm. Let R ⊂ C be a subring closed under complex conjugation and let
α : π1(S

3 \νL) → GL(k,R) be a representation which factors through a finite group
of prime power order. Let ψ : H1(S

3 \ νL) → F be an epimorphism onto a free
abelian group which is non-trivial on each meridian of L. Then

τ̃ α⊗ψ(L) = ±df ·
m∏

i=1

det
(
id − ψ(μi)α(μi)

)−1 ∈ Q(F)∗/N(Q(F))∗

for some d ∈ det(α(π1(S
3 \ νL))) and f ∈ F .

If α is the trivial representation over Z, then it is shown in [Tu86, Theorem 5.1.1]
that the torsion is represented by the untwisted Alexander polynomial of L corre-
sponding to ψ . Using this observation we see that Proposition 6 generalizes earlier
results of Murasugi [Mu67], Kawauchi [Ka77, Ka78] and Nakagawa [Na78]. The
approach taken in [CF10] is partly inspired by Turaev’s proof of the untwisted case
(cf. [Tu86, Theorem 5.4.2]).

In [CF10] we will in particular use the obstruction of Proposition 6 to reprove
that the Bing double of the Fig. 8 knot is not slice. This had first been shown by
Cha [Ch10].
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3.6 Twisted Alexander Polynomials, the Thurston Norm and
Fibered Manifolds

3.6.1 Twisted Alexander Polynomials and Fibered Manifolds

Let φ ∈ H 1(N;Z) = Hom(π1(N),Z) be non-trivial. We say (N,φ) fibers over S1

if there exists a fibration p : N → S1 such that the induced map p∗ : π1(N) →
π1(S

1) = Z coincides with φ. If K is a fibered knot, then it is a classical result
of Neuwirth that �K is monic and that deg(�K) = 2 genus(K). Similarly, twisted
Alexander polynomials provide necessary conditions to the fiberability of a pair
(N,φ).

In order to state the fibering obstructions for a pair (N,φ) we need to introduce
the Thurston norm. Given (N,φ) the Thurston norm of φ is defined as

‖φ‖T = min{χ−(S) |S ⊂ N properly embedded surface dual to φ}.

Here, given a surface S with connected components S1 ∪· · ·∪Sk , we define χ−(S) =∑k
i=1 max{−χ(Si),0}. Thurston [Th86] showed that this defines a seminorm on

H 1(N;Z) which can be extended to a seminorm on H 1(N;R). As an example
consider S3 \ νK , where K ⊂ S3 is a non-trivial knot. Let φ ∈ H 1(S3 \ νK;Z) be a
generator, then ‖φ‖T = 2 genus(K) − 1.

Let N be a 3-manifold N with empty or toroidal boundary and let φ ∈ H 1(N;Z).
Recall that we identify the group ring R[Z] with the Laurent polynomial ring R[t±1]
and we will now identify Q(R[Z]) with the field of rational functions Q(t). Given a
representation γ : π1(N) → GL(k,R) we therefore view the corresponding twisted
Reidemeister torsion τ(N,γ ⊗ φ) as an element in Q(t) and we view the corre-
sponding twisted Alexander polynomials �

γ⊗φ

N,i as elements in R[t±1].
We say that the twisted Reidemeister torsion τ(N,γ ⊗ φ) is monic if there exist

polynomials p(t), q(t) ∈ R[t±1] with p(t)
q(t)

.= τ(N,γ ⊗ φ) such that the top coeffi-
cients of p(t) and q(t) lie in

{±det(γ (g)) |g ∈ π1(N)}.

We also say that the twisted Alexander polynomial �
γ⊗φ

N,i is monic if one (and equiv-
alently any) representative has a top coefficient which is a unit in R.

We recall the following basic lemma:

Lemma 4 Let N be a 3-manifold with empty or toroidal boundary. Let φ ∈
H 1(N;Z) be non-trivial and let γ : π1(N) → GL(k,R) be a representation with
R a Noetherian UFD. Then the following hold:

1. �
γ⊗φ

N,0 is monic,

2. If �
γ⊗φ

N,1 is non-zero, then �
γ⊗φ

N,2 is monic.
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Proof As in Sect. 3.2.2 we pick a cell decomposition of N with one 0-cell x0 and n

1-cells c1, . . . , cn. We denote the corresponding elements in π1(N,x0) by c1, . . . , cn

as well. Without loss of generality we can assume that φ(c1) > 0. We then get a
resolution for H0(N;R[t±1]n) with presentation matrix

idn − (γ ⊗ φ)(c1) . . . idn − (γ ⊗ φ)(cn).

We refer to [FK06, Proof of Proposition 6.1] for details. We have

det(idn − (γ ⊗ φ)(c1)) = det(idn − tφ(c1)γ (c1)) ∈ R[t±1],

which is monic since the top coefficient equals det(γ (c1)). By definition �
γ⊗φ

N,0

divides det(idn − (γ ⊗ φ)(c1)), we therefore see that �
γ⊗φ

N,0 is monic. The claim

that �
γ⊗φ

N,2 is monic now follows from Proposition 5. �

Remark 7 Note that if τ(N,γ ⊗ φ) is monic, then it follows from the previous
lemma and from Proposition 2 that �

γ⊗φ

N,i ∈ R[t±1] is monic for i = 0,1,2. Note
though that the converse does not hold in general since twisted Alexander polyno-
mials have in general a higher indeterminacy than twisted Reidemeister torsion. For
example, let F be a field and let γ : π1(N) → GL(k,F) be a representation such that
�

γ⊗φ

N,i 
= 0. It follows immediately from the definition that �
γ⊗φ

N,i is monic. How-
ever, τ(N,γ ⊗ ψ) is not necessarily monic (cf. e.g. [GKM05, Example 4.2]).

We can now formulate the following fibering obstruction theorem which was
proved in various levels of generality by Cha [Ch03], Kitano and Morifuji [KM05],
Goda, Kitano and Morifuji [GKM05], Pajitnov [Pa07], Kitayama [Kiy08a] and
[FK06].

Theorem 10 Let N be a 3-manifold. Let φ ∈ H 1(N;Z) be non-trivial such that
(N,φ) fibers over S1 and such that N 
= S1 × D2,N 
= S1 × S2. Let γ : π1(N) →
GL(k,R) be a representation. Then τ(N,γ ⊗ φ) ∈ Q(t) is monic and we have

k‖φ‖T = deg(τ (N,γ ⊗ φ)).

Remark 8

1. If R is a Noetherian UFD, then the last equality can be rewritten as

k‖φ‖T = deg�
γ⊗φ

N,1 − deg�
γ⊗φ

N,0 − deg�
γ⊗φ

N,2 .

2. Recall that an alternating knot is fibered if and only if its ordinary Alexander
polynomial is monic. In contrast to this classical result it follows from calcula-
tions by Goda and Morifuji [GM03] (cf. also [Mo08]) that there exists an alter-
nating knot such that a twisted Reidemeister torsion is monic, but which is not
fibered.
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3. Theorem 10 has been generalized by Silver and Williams [SW09d] to give an
obstruction for a general group to admit an epimorphism onto Z such that the
kernel is a finitely generated free group.

Proof The condition on the degrees is proved in [FK06, Theorem 1.3] for R a
Noetherian UFD. The monicness of twisted Reidemeister torsion was proved by
Goda, Kitano and Morifuji [GKM05] in the case of a knot complement. The monic-
ness of �

γ⊗φ

N,1 was proved in [FK06, Theorem 1.3]. The general case of Theorem 10
can be obtained by a direct calculation as follows. Let S be the fiber and f : S → S

the monodromy. We endow S with a CW-structure such that f is a cellular map.
Denote by Di the set of i-cells of S and denote by ni the number of i-cells. We
can then endow N = (S × [0,1])/(x,0) ∼ (f (x),1) with a CW-structure where the
i-cells are given by Di and Ei := {c × (0,1) | c ∈ Di−1}. A direct calculation using
[Tu01, Theorem 2.2] now shows that τ(N,γ ⊗ φ) ∈ Q(t) is monic and that

deg(τ (N,γ ⊗ φ)) = −kχ(S) = k‖φ‖T .

�

The calculations in [Ch03], [GKM05] and [FK06] gave evidence that twisted
Alexander polynomials are very successful at detecting non-fibered manifolds. The
results of Morifuji [Mo08, p. 452] also give evidence to the conjecture that the
twisted Alexander polynomial corresponding to a ‘generic’ representation detect
fiberedness.

Using a deep result of Agol [Ag08] the authors proved in [FV08c] (see also
[FV10] for an outline of the proof) the following converse to Theorem 10.

Theorem 11 Let N be a 3-manifold with empty or toroidal boundary. Let φ ∈
H 1(N;Z) a nontrivial class. If for any epimorphism γ : π1(N) → G onto a finite
group the twisted Alexander polynomial �

γ⊗φ

N ∈ Z[t±1] is monic and

k‖φ‖T = deg(τ (N,γ ⊗ φ))

holds, then (N,φ) fibers over S1.

Remark 9 Building on work of Taubes [Ta94, Ta95], Donaldson [Do96] and Kro-
nheimer [Kr99] the authors also show that Theorem 11 implies the following: If N

is a closed 3-manifold and if S1 × N is symplectic, then N fibers over S1. This
provides a converse to a theorem of Thurston [Th76]. We refer to [FV06, FV08a,
FV08b, FV08c] for details, and we refer to Kutluhan–Taubes [KT09], Kronheimer–
Mrowka [KM08] and Ni [Ni08] for an alternative proof in the case that b1(N) = 1.

It is natural to ask whether (N,φ) fibers if all twisted Alexander polynomials are
monic. An affirmative answer would be of great interest in the study of symplec-
tic structures of 4-manifolds with a free circle action (cf. [FV07b]). An equivalent
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question has also been raised as a conjecture by Goda and Pajitnov [GP05, Conjec-
ture 13.2] in the study of Morse–Novikov numbers. We refer to [GP05] and [Pa07]
for more information on the relationship between twisted Alexander polynomials,
twisted Novikov homology and Morse–Novikov numbers.

Somewhat surprisingly, there is strong evidence to the following much weaker
conjecture: A pair (N,φ) fibers if all twisted Alexander polynomials are non-zero.
In fact the authors showed the following theorem (cf. [FV07a, Theorem 1.3] and
[FV08b, Theorem 1, Proposition 4.6, Corollary 5.6]).

Theorem 12 Let N be a 3-manifold with empty or toroidal boundary and φ ∈
H 1(N;Z) non-trivial. Suppose that �

γ⊗φ

N is non-zero for any epimorphism γ :
π1(N) → G onto a finite group. Furthermore suppose that one of the following
holds:

1. N = S3 \ νK and K is a genus one knot,
2. ‖φ‖T = 0,
3. N is a graph manifold,
4. φ is dual to a connected incompressible surface S such that π1(S) ⊂ π1(N) is

separable,

then (N,φ) fibers over S1.

Here we say that a subgroup A of a group π is separable if for any g ∈ π \A there
exists an epimorphism γ : π → G onto a finite group G such that γ (g) 
∈ γ (A). It is
conjectured (cf. [Th82]) that given a hyperbolic 3-manifold N any finitely generated
subgroup A ⊂ π1(N) is separable. In particular, if Thurston’s conjecture is true, then
Condition (4) of Theorem 12 is satisfied for any hyperbolic N .

The following theorem of Silver–Williams [SW09b] (cf. also [SW09a]) gives an
interesting criterion for a knot to have vanishing twisted Alexander polynomial.

Theorem 13 Let K ⊂ S3 a knot. Then there exists an epimorphism γ : π1(S
3 \

νK) → G to a finite group such that �
γ

K = 0 if and only if the universal abelian
cover of S3 \ νK has uncountably many finite covers.

3.6.2 Twisted Alexander Polynomials and the Thurston Norm

It is a classical result of Alexander that given a knot K ⊂ S3 the following inequality
holds:

2genus(K) ≥ deg(�K).

This result was first generalized to general 3-manifolds by McMullen [McM02] and
then to twisted Alexander polynomials in [FK06]. The following theorem is [FK06,
Theorem 1.1]. The proof builds partly on ideas of Turaev’s in [Tu02b].
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Theorem 14 Let N be a 3-manifold whose boundary is empty or consists of tori.
Let φ ∈ H 1(N;Z) be non-trivial and let γ : π1(N) → GL(k,R) be a representation
such that �

γ⊗φ

N 
= 0. Then

‖φ‖T ≥ 1

k
deg(τ (N,γ ⊗ φ)).

Equivalently,

‖φ‖T ≥ 1

k

(
deg(�

γ⊗φ

N ) − deg(�
γ⊗φ

N,0 ) − deg(�
γ⊗φ

N,2 )
)
.

Remark 10 In [FK06] it was furthermore shown using ‘KnotTwister’ (cf. [Fr09])
that twisted Alexander polynomials detect the genus of all knots with up to twelve
crossings.

It seems reasonable to conjecture that given an irreducible 3-manifold N twisted
Alexander polynomials detect the Thurston norm for any φ ∈ H 1(N;Z). A positive
answer would have interesting consequences for 4-manifold topology as pointed out
in [FV09].

If �
γ⊗φ

N = 0, then we define the torsion twisted Alexander polynomial �̃
γ⊗φ

N to
be the order of the R[t±1]-module

TorR[t±1](H1(N;R[t±1]k))
= {v ∈ H1(N;R[t±1]k) |λv = 0 for some λ ∈ R[t±1] \ {0}}.

It is then shown in [FK06, Sect. 4] that the �̃
γ⊗φ

N also gives rise to give lower bounds
on the Thurston norm. We point out that by [Hi02, Theorem 3.12 (3)] and [Tu01,
Lemma 4.9] the torsion twisted Alexander polynomial can be computed directly
from a presentation of H1(N;R[t±1]k).

Note that Theorem 14 gives lower bounds on the Thurston norm for a given
φ ∈ H 1(N;Z). In order to give bounds for the whole Thurston norm ball at once, we
will introduce twisted Alexander norms, generalizing McMullen’s Alexander norm
[McM02] and Turaev’s torsion norm [Tu02a]. In the following let N be a 3-manifold
with empty or toroidal boundary such that b1(N) > 1. Let ψ : π1(N) → F :=
H1(N;Z)/torsion be the canonical projection map. Let γ : π1(N) → GL(k,R) be
a representation. If �

γ⊗ψ

N = 0 then we set ‖φ‖γ

A = 0 for all φ ∈ H 1(N;R). Oth-

erwise we write �
γ⊗ψ

N = ∑
aifi for ai ∈ R and fi ∈ F . Given φ ∈ H 1(N;R) we

then define

‖φ‖γ

A := max{φ(fi − fj ) | (fi, fj ) such that aiaj 
= 0}.

Note that this norm is independent of the choice of representative of �
γ⊗ψ

N . Clearly
this defines a seminorm on H 1(N;R) which we call the twisted Alexander norm of
(N,γ ). Note that if γ : π1(N) → GL(1,Z) is the trivial representation, then we just
obtain McMullen’s Alexander norm.
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The following is proved in [FK08a, Theorem 3.1], but we also refer to the work of
McMullen [McM02], Turaev [Tu02a], [Tu02b, Sect. 6], Harvey [Ha05] and Vidussi
[Vi99, Vi03]. The main idea of the proof is to combine Theorem 14 with Corollary 1.

Theorem 15 Let N be a 3-manifold with empty or toroidal boundary such that
b1(N) > 1. Let ψ : π1(N) → F := H1(N;Z)/torsion be the canonical projection
map and let γ : π1(N) → GL(k,R) be a representation with R a Noetherian UFD.
Then for any φ ∈ H 1(N;R) we have

‖φ‖T ≥ 1

k
‖φ‖γ

A

and equality holds for any φ in a fibered cone of the Thurston norm ball.

We refer to [McM02] and [FK08a] for some calculations, and we refer to [Du01]
for more information on the relationship between the Alexander norm and the
Thurston norm.

3.6.3 Normalized Twisted Reidemeister Torsion and the Free
Genus of a Knot

Let K ⊂ S3 a knot and let γ : π1(S
3 \ νK) → GL(k,R) be a representation with R

a Noetherian UFD. Let ε = det(γ (μ)) where μ denotes a meridian of K . Kitayama

[Kiy08a] introduced an invariant �̃K,γ ∈ Q(R(ε
1
2 )[t± 1

2 ]) which is a normalized
version of the twisted Reidemeister torsion τ(K,γ ), i.e. τ(K,γ ) has no indetermi-
nacy and up to multiplication by an element of the form εr t

s
2 it is a representative of

the twisted Reidemeister torsion. (The invariant �̃K,γ should not be confused with
the torsion polynomial introduced in Sect. 3.5.4.)

Kitayama [Kiy08a, Theorem 6.3] studies the invariant �̃K,γ for fibered knots,
obtaining a refined version of the fibering obstruction which we stated in Theo-
rem 10. Furthermore [Kiy08a, Theorem 5.8] proves a duality theorem for �̃K,γ ,
refining Proposition 4.

In the following we say that S is a free Seifert surface for K if π1(S
3 \ S) is a

free group. Note that Seifert’s algorithm produces free Seifert surfaces, in particular
any knot has a free Seifert surface. Given K the free genus is now defined as

free-genus(K) = min{genus(S) |S free Seifert surface for K}.
Clearly we have free-genus(K) ≥ genus(K). In order to state the lower bound
on the free genus coming from �̃K,γ we have to make a few more definitions.

Given a Laurent polynomial p = ∑l
i=k ai t

i ∈ R[t± 1
2 ] with ak 
= 0, al 
= 0 we write

l-deg(p) = k (‘lowest degree’) and h-deg(p) = l (‘highest degree’). Furthermore

given f ∈ Q(R[t± 1
2 ]) we define

h-deg(f ) = h-deg(p) − h-deg(q)
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where we pick p,q ∈ R[t± 1
2 ] with f = p

q
. Kitayama [Kiy08a, Proposition 6.6]

proved the following theorem:

Theorem 16 Given a knot K ⊂ S3 and a representation γ : π1(S
3 \ νK) →

GL(k,R) with R a Noetherian UFD we have

2kfree-genus(K) ≥ 2h-deg(�̃K,γ ) + k.

Note that if h-deg(�̃K,γ ) = −l-deg(�̃K,γ ) (which is the case for unitary repre-
sentations) then the bound in the theorem is implied by the bound given in Theo-
rem 14. It is a very interesting question whether Kitayama’s bound can detect the
difference between the genus and the free genus.

Recall that Lin’s original definition of the twisted Alexander polynomial is in
terms of regular Seifert surfaces, it might be worthwhile to explore the possibil-
ity that an appropriate version of Lin’s twisted Alexander polynomial gives lower
bounds on the ‘regular genus’ of a knot which can tell the regular genus apart from
the free genus.

3.7 Twisted Invariants of Knots and Special Representations

Given a knot K ⊂ S3 the representations which have been studied most are the
2-dimensional complex representations and the metabelian representations. It is
therefore natural to consider special properties of twisted Alexander polynomials
corresponding to such representations.

3.7.1 Parabolic Representations

Let K ⊂ S3 be a knot. A representation γ : π1(S
3 \ νK) → SL(2,C) is called

parabolic if the image of any meridian is a matrix with trace 2. Note that Thurston
[Th87] showed that given a hyperbolic knot K the discrete faithful representation
π1(S

3 \ νK) → PSL(2,C) lifts to a parabolic representation γ : π1(S
3 \ νK) →

SL(2,C). The twisted Reidemeister torsion corresponding to this canonical repre-
sentation has been surprisingly little studied (cf. though [Sug07] and [Mo08, Corol-
lary 4.2]).

Throughout the remainder of this section let K be a 2-bridge knot. Then the
group π1(S

3 \ νK) has a presentation of the form 〈x, y|Wx = yW 〉 where x, y are
meridians of K and W is a word in x±1, y±1. Parabolic representations of 2-bridge
knots have been extensively studied by Riley [Ri72, Sect. 3]. To a 2-bridge knot K

Riley associates a monic polynomial �K(t) ∈ Z[t±1] such that any zero ζ of �K(t)

gives rise to a representation γζ : π1(S
3 \ νK) → SL(2,C) of the form

γζ (x) =
(

1 1
0 1

)
and γζ (y) =

(
1 0
ζ 1

)
.
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Furthermore Riley shows that any parabolic representation of a 2-bridge knot is
conjugate to such a representation (cf. also [SW09c, Sect. 5] for details).

Given an irreducible factor φ(t) of �K(t) of degree d one can consider the
representation ⊕γζ ′ where ζ ′ runs over the set of all zeroes of φ(t). Silver and
Williams show that this representation is conjugate to an integral representation
γφ(t) : π1(S

3 \ νK) → GL(2d,Z) which is called the total representation corre-
sponding to φ(t).

Twisted Alexander polynomials of 2-bridge knots corresponding to parabolic and
total representations have been studied extensively by Silver and Williams [SW09c]
and Hirasawa and Murasugi (cf. [Mu06] and [HM08]). In particular the following
theorem is shown. It should be compared to the classical result that given a knot K

we have �K(1) = 1.

Theorem 17 Let K be a two-bridge knot and φ(t) an irreducible factor of �K(t)

of degree d . Then ∣∣∣�γφ(t)

K (1)

∣∣∣ = 2d .

A special case of the theorem is shown in [HM08, Theorem A], the general case
is proved in [SW09c, Theorem 6.1]. Silver and Williams also conjectured that under
the assumptions of the theorem we have

∣∣∣�γφ(t)

K (−1)

∣∣∣ = 2dm2

for some odd number m.
We refer to [SW09c] and [HM08] for more on twisted Alexander polynomials of

2-bridge knots. All three papers contain a wealth of interesting examples and results
which we find impossible to summarize in this short survey.

Silver and Williams also considered twisted Alexander polynomials of torus
knots. They showed [SW09c, Sect. 7] that for any parabolic representation γ of
a torus knot K , the twisted Alexander polynomial �

γ

K is a product of cyclotomic
polynomials.

3.7.2 Twisted Alexander Polynomials and the Space
of 2-Dimensional Representations

It is a natural question to study the behavior of twisted Alexander polynomials un-
der a change of representation. Recall that given a group π we say that two rep-
resentations α,β : π → GL(k,R) are conjugate if there exists P ∈ GL(k,R) with
α(g) = Pβ(g)P −1 for all g ∈ π . By Lemma 1 we can view Alexander polynomials
as function on the set of conjugacy classes of representations.

Let K be a 2-bridge knot. Riley [Ri84] (cf. also [DHY09, Proposition 3]) showed
that conjugacy classes of representations π1(S

3 \ νK) → SL(2,C) correspond to
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the zeros of an affine algebraic curve in C
2. The twisted Reidemeister torsion cor-

responding to these representations for twist knots have been studied by Mori-
fuji [Mo08] (cf. also [GM03]). The computations show in particular that for twist
knots twisted Reidemeister torsion detects fiberedness and the genus for all but
finitely many conjugacy classes of non-abelian SL(2,C)-representations.

Regarding twist knots we also refer to the work of Huynh and Le [HL07, Theo-
rem 3.3] who found an unexpected relationship between twisted Alexander polyno-
mials and the A-polynomial. (Note thought that their definition of twisted Alexander
polynomials differs somewhat from our approach.)

Finally we refer to Kitayama’s work [Kiy08b] for certain symmetries when we
view twisted Alexander polynomials of knots in rational homology spheres as a
function on the space of 2-dimensional regular unitary representations.

3.7.3 Twisted Invariants of Hyperbolic Knots and Links

Let L ⊂ S3 be a hyperbolic link. Then the corresponding representation π1(S
3 \

νL) → PSL(2,C) lifts to a canonical representation γcan : π1(S
3 \ νL) → SL(2,C)

and it induces the adjoint representation

γadj : π1(S
3 \ νL) → PSL(2,C) → Aut(sl(2,C)) ∼= SL(3,C).

The corresponding invariant τ(L,γadj) has been studied in great detail by Dubois
and Yamaguchi [DY09]. In particular it is shown that τ(L,γadj) is a symmetric non-
zero polynomial (the non-vanishing result builds on work of Porti [Po97]). Further-
more the invariant τ(L,γadj) is computed explicitly for many examples.

In [DFJ10] it is shown that given a knot K the invariant τ(K,γcan) gives rise to a
well-defined non-zero invariant TK(t). (This result builds on work of Menal-Ferrer
and Porti [MP09]). This invariant is computed for all knots up to 13 crossings, for all
these knots the invariant TK(t) detects the genus, the fiberedness and the chirality.

3.7.4 Metabelian Representations

Given a group G the derived series of G is defined inductively by G(0) = G and
G(i+1) = [G(i),G(i)]. A representation of a group G is called metabelian if it factors
through G/G(2). Note that if K is a knot, then the metabelian quotient π1(S

3 \
νK)/π1(S

3 \ νK)(2) is well-known to be determined by the Alexander module of
K (cf. e.g. [BF08, Sect. 2]). Metabelian representations and metabelian quotients of
knot groups have been studied extensively, we refer to [Fo62, Fo70, Hat79, Fr04,
Je08] and [BF08] for more information.

The structure of twisted Alexander polynomials of knots corresponding to cer-
tain types of metabelian representations has been studied in detail by Hirasawa and
Murasugi [HM09a, HM09b]. These papers contain several interesting conjectures
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regarding special properties of such twisted Alexander polynomials, furthermore
these conjectures are verified for certain classes of 2-bridge knots and further evi-
dence is given by explicit calculations.

3.8 Miscellaneous Applications of Twisted Reidemeister Torsion
to Knot Theory

In this section we will summarize various applications of twisted Alexander poly-
nomials to the study of knots and links.

3.8.1 A Partial Order on Knots

Given a knot K we write π1(S
3 \ νK) := π1(S

3 \ K). For two prime knots K1

and K2 one defines K1 ≥ K2 if there exists a surjective group homomorphism ϕ :
π1(K1) → π1(K2). The relation “≥” defines a partial order on the set of prime knots
(cf. [KS05a]). Its study is often related to a well-known conjecture of J. Simon, that
posits that for a given K1, the set of knots K2 s.t. K1 ≥ K2 is finite.

Kitano, Suzuki and Wada [KSW05] prove the following theorem which general-
izes a result of Murasugi [Mu03].

Theorem 18 Let K1 and K2 be two knots in S3 and let ϕ : π1(K1) → π1(K2) an
epimorphism. Let γ : π1(K2) → GL(k,R) a representation with R a Noetherian
UFD. Then

τ(K1, γ ◦ ϕ)

τ(K2, γ )

is an element in R[t±1].

This theorem plays a crucial role in determining the partial order on the set
of knots with up to eleven crossings. We refer to [KS05a, KS05b, KS08] and
[HKMS09] for details.

3.8.2 Periodic and Freely Periodic Knots

A knot K ⊂ S3 is called periodic of period q , if there exists a smooth transformation
of S3 of order q which leaves K invariant and such that the fixed point set is a circle
A disjoint from K . Note that A ⊂ S3 is the trivial knot by the Smith conjecture. We
refer to [Ka96, Sect. 10.1] for more details on periodic knots.
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Now assume that K ⊂ S3 is a periodic knot of period q with A the fixed point
set of f : S3 → S3. Note that S3/f is diffeomorphic to S3. We denote by π the
projection map S3 → S3/f = S3 and we write K = π(K),A = π(A).

The following two theorems of Hillman, Livingston and Naik [HLN06, Theo-
rems 3 and 4] generalize results of Trotter [Tr61] and Murasugi [Mu71].

Theorem 19 Let K be a periodic knot of period q . Let π,A,A and K as above.
Let γ : π1(S

3 \ νK) → GL(n,R) a representation with R = Z or R = Q. Write
γ = γ ◦ π∗. Then there exists a polynomial F(t, s) ∈ R[t±1, s±1] such that

�
γ

K(t)
.= �

γ

K
(t)

q−1∏
k=1

F(t, e2πik/q).

In the untwisted case the polynomial F(t, s) is just the Alexander polynomial of
the ordered link K ∪A ⊂ S3. We refer to [HLN06, Sect. 6] for more information on
F(t, s). The following theorem gives an often stronger condition when the period is
a prime power.

Theorem 20 Let K be a periodic knot of period q = pr where p is a prime. Let
π,A,A and K as above. Let γ : π1(S

3 \ νK) → GL(n,Zp) be a representation.
Write γ = γ ◦ π∗. If �

γ

K(t) 
= 0, then

�
γ

K(t) · (�γ

K,0(t))
q−1 .= �

γ

K
(t)q (det(idn − γ (A)t lk(K,A)))q−1 ∈ Zp[t±1],

where we view A as an element in π1(S
3 \ νK).

(Note that Elliot [El08] gave an alternative proof for this theorem.) These the-
orems are applied in [HLN06, Sect. 10] to give obstructions on the periodicity of
the Kinoshita–Terasaka knot and the Conway knot. Note that both knots have trivial
Alexander polynomial, in particular Murasugi’s obstructions are satisfied trivially.

A knot K ⊂ S3 is called freely periodic of period q if there exists a free transfor-
mation f of S3 of order q which leaves K invariant. We refer to [Ka96, Sect. 10.2]
for more information on freely periodic knots. Given such a freely periodic knot K

we denote by π the projection map S3 → � := S3/f and we write K = π(K).
The following theorem is [HLN06, Theorem 5]; the untwisted case was first

proved by Hartley [Hat81].

Theorem 21 Let K be a freely periodic knot of period q . Let π,§ and K as above.
Let γ : π1(§ \K) → GL(k,R) be a representation with R a Noetherian UFD. Write
γ = γ ◦ π∗. Then

�
γ

K(tq)
.=

q−1∏
k=0

�
γ

K
(e2πik/q t).

We refer to [HLN06, Sect. 11] for an application of this theorem to a case which
could not be settled with Hartley’s theorem.
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3.8.3 Zeroes of Twisted Alexander Polynomials and Non-abelian
Representations

Let N be a 3-manifold with one boundary component and b1(N) = 1. Put dif-
ferently, let N be the complement of a knot in a rational homology sphere. Let
α : π1(N) → C

∗ = GL(1,C) be a one-dimensional representation. Note that α nec-
essarily factors through a representation H1(N;Z) → GL(1,C) which we also de-
note by α. Heusener and Porti [HP05] ask when the abelian representation

ρα : π1(N) → PSL(2,C)

g �→ ±
(

α(g)1/2 0
0 α(g)−1/2

)

can be deformed into an irreducible representation.
Denote by φ ∈ Hom(π1(N),Z) = H 1(N;Z) ∼= Z a generator. Pick μ ∈ H1(N;Z)

with φ(μ) = 1. Denote by σ(α,μ) the representation

π1(N) → GL(1,C)

g �→ α(gμ−φ(g)).

Heusener and Porti then give necessary and sufficient conditions for ρα to be
deformable into an irreducible representation in terms of the order of vanishing of
�

σ(α,μ)⊗φ
N (t) ∈ C[t±1] at α(μ) ∈ C

∗. We refer to [HP05, Theorems 1.2 and 1.3] for
more precise formulations and more detailed results.

Note that this result is somewhat reminiscent of the earlier results of Burde
[Bu67] and de Rham [dRh68] who showed that zeroes of the (untwisted) Alexander
polynomial give rise to metabelian representations of the knot group. We also refer
to [SW09e] for another relationship between zeros of twisted Alexander polynomi-
als and the representation theory of knot groups.

3.8.4 Seifert Fibered Surgeries

In [Kiy09, Sect. 3] Kitayama gives a surgery formula for twisted Reidemeister tor-
sion. Furthermore in [Kiy09, Lemma 4.3] a formula for the Reidemeister torsion
of a Seifert fibered space is given. By studying a suitable invariant derived from
twisted Reidemeister torsion an obstruction for a Dehn surgery on a knot to equal a
specific Seifert fibered space are given. These obstructions generalize Kadokami’s
obstructions given in [Ka06] and [Ka07]. Finally Kitayama applies these methods
to show that there exists no Dehn surgery on the Kinoshita–Terasaka knot which
is homeomorphic to any Seifert fibered space of the form M(p1/q1,p2/q2,p3/q3)

(we refer to [Kiy09, Sect. 4] for the notation).
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3.8.5 Homology of Cyclic Covers

Let K ⊂ S3 be a knot. We denote by H := H1(S
3 \ νK;Z[t±1]) its Alexander

module. Given n ∈ N we denote by Ln the n-fold cyclic branched cover of K .
Recall that we have a canonical isomorphism H/(tn −1) ∼= H1(Ln). Put differently,
the Alexander module determines the homology of the branched covers. In the same
vein, the following formula due to Fox ([Fo56] and see also [Go78]) shows that the
Alexander polynomial determines the size of the homology of a branched cover:

|H1(Ln)| =
∣∣∣∣∣∣
n−1∏
j=1

�K(e2πij/n)

∣∣∣∣∣∣ . (3.1)

Here we write |H1(Ln)| = 0 if H1(Ln) has positive rank. Gordon [Go72] used this
formula to study extensively the homology of the branched covers of a knot. Gor-
don [Go72, p. 366] asked whether the non-zero values of the sequence |H1(Ln)|
converge to infinity if there exists a zero of the Alexander polynomial which is not
a root of unity.

Given a multivariable polynomial p := p(t1, . . . , tn) ∈ C[t±1
1 , . . . , t±1

n ] the
Mahler measure is defined as

m(p) = exp
∫ 1

θ1=0
. . .

∫ 1

θn=0
log

∣∣∣p(
e2πiθ1 , . . . , e2πiθ1

)∣∣∣dθ1 . . . dθn.

Note that the integral can be singular, but one can show that the integral always
converges. It is known (cf. e.g. [SW02]) that an integral one variable polynomial p

always satisfies m(p) ≥ 1, and it satisfies m(p) = 1 if and only if all zeroes of p are
roots of unity.

Theorem 22 Let K be any knot, then

lim
n→∞

1

n
log |Tor H1(Ln)| = log(m(�K(t))).

This theorem was proved for most cases by González-Acuña and Short [GS91],
the most general statement was proved by Silver and Williams [SW02, Theo-
rem 2.1]. We also refer to [Ri90] for a related result. Note that by the above discus-
sion this theorem in particular implies the affirmative answer to Gordon’s question.

Silver and Williams also generalized this theorem to links, relating the Mahler
measure multivariable Alexander polynomial to the homology growth of finite
abelian covers of the link [SW02, Theorem 2.1]. Finally in [SW09c, Sect. 3] these
results are extended to the twisted case for certain representations (e.g. integral
representations). We refer to [SW09c, Sect. 3] for the precise formulations and to
[SW09c, Sect. 5] for an interesting example.
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3.8.6 Alexander Polynomials for Links in RP 3

Given a link L ⊂ RP 3 Huynh and Le [HL08, Sect. 5.3.2] use Reidemeister torsion
corresponding to abelian representations to define an invariant ∇L(t) which lies in
general in Z[t±1, (t − t−1)−1] and has no indeterminacy. Furthermore they show in
[HL08, Theorem 5.7] the surprising fact that this invariant satisfies in fact a skein
relation.

3.9 Twisted Alexander Polynomials of CW-complexes and
Groups

3.9.1 Definitions and Basic Properties

Let X be a CW-complex with finitely many cells in each dimension. Assume we are
given a non-trivial homomorphism ψ : π1(X) → F to a torsion-free abelian group
and a representation γ : π1(X) → GL(k,R) where R is a Noetherian UFD. As in
Sect. 3.2.4 we can define the twisted Alexander modules

Hi(X;R[F ]k) = Hi(C∗(X̃;Z) ⊗Z[π1(X)] R[F ]k)

where π1(X) acts on C∗(X̃;Z) by deck transformations and on R[F ]k by
γ ⊗ ψ . These modules are finitely presented and we can therefore define the
twisted Alexander polynomial �

γ⊗ψ

X,i ∈ R[F ] to be the order of the R[F ]-module

Hi(X;R[F ]k). Note that twisted Alexander polynomials are homotopy invariants,
in particular given any manifold homotopy equivalent to a finite CW-complex we
can define the twisted Alexander polynomials �

γ⊗ψ

X,i ∈ R[F ].
Let G be a finitely presented group and X = K(G,1) its Eilenberg–Maclane

space. Given a non-trivial homomorphism ψ : G → F to a torsion-free abelian
group and a representation γ : G → GL(k,R) where R is a Noetherian UFD we
define

�
γ⊗ψ

G,i = �
γ⊗ψ

K(G,1),i
.

Remark 11

1. For i = 0,1 the Alexander polynomials �
γ⊗ψ

X,i ∈ R[F ] can be computed using
Fox calculus as in Sect. 3.2.5.

2. Note that unless the Euler characteristic of X vanishes we can not define the
Reidemeister torsion corresponding to (X,ψ,γ ).

3. Most of the results of Sect. 3.3 do not hold in the general context. The only
results which do generalize are Proposition 2 (2), Lemma 1 and Theorem 3.
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4. Note that given a finitely presented group G and ψ , γ as above Wada [Wa94]
introduced an invariant which we refer to as W(G,γ ⊗ ψ) ∈ Q(R[F ]). Using
[Tu01, Lemma 4.11] one can show that

W(G,γ ⊗ ψ)
.= �

γ⊗ψ

G,1

�
γ⊗ψ

G,0

.

In the literature Wada’s invariant is often referred to as the twisted Alexander
polynomial of a group.

3.9.2 Twisted Alexander Polynomials of Groups

The twisted Alexander polynomial has been calculated by Morifuji [Mo01, The-
orem 1.1] for the braid groups Bn with ψ : Bn → Z the abelianization map and
together with the Burau representation. Morifuji [Mo01, Theorem 1.2] also proves
a symmetry theorem for twisted Alexander polynomials of braid groups for Jones
representations corresponding to dual Young diagrams.

In [Suz04] Suzuki shows that the twisted Alexander polynomial of the braid
group B4 corresponding to the Lawrence–Krammer representation and the abelian-
ization φ : B4 → Z is trivial. This shows in particular that the twisted Alexander
polynomial of a group corresponding to a faithful representation can be trivial. It is
an interesting question whether given a knot and a faithful representation the twisted
Alexander polynomial can ever be trivial.

Given a 2-complex X Turaev [Tu02c] introduced a norm on H 1(X;R) to which
we refer to as the Turaev norm. The definition of the Turaev norm is inspired by
the definition of the Thurston norm [Th86]. Turaev [Tu02c] uses twisted Alexan-
der polynomials of X corresponding to one-dimensional representations to define a
twisted Alexander norm similar to the one defined in Sect. 3.6.2. Turaev goes on to
show that the twisted Alexander norm gives a lower bound on the Turaev norm. We
refer to [Tu02b, Sect. 7.1] for more information.

3.9.3 Plane Algebraic Curves

Let C ⊂ C
2 be an affine algebraic curve. Denote by P1, . . . ,Pk the set of singular-

ities and denote by L1, . . . ,Lk the links at the singularities and let L∞ be the link
at infinity (we refer to [CF07] for details). Note that C

2 \ νC is homotopy equiva-
lent to a finite CW-complex. By Sect. 3.9.1 we can therefore consider the twisted
Alexander polynomial of C

2 \ νC . Now let γ : π1(C
2 \ νC) → GL(k,F) be a repre-

sentation where F ⊂ C is a subring closed under conjugation. Let φ : C
2 \ νC → Z

be the map given by sending each oriented meridian to one. Cogolludo and Florens
[CF07, Theorem 1.1] then relate twisted Alexander polynomial of C

2 \ νC corre-
sponding to γ ⊗ φ to the one-variable twisted Alexander polynomials of the links
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L1, . . . ,Lk and L∞. This result generalizes a result of Libgober’s regarding un-
twisted Alexander polynomials of affine algebraic curves (cf. [Lib82, Theorem 1]).
We refer to [CF07, Sect. 6] for applications of this result. Finally we refer to [CS08]
for a further application of twisted Alexander polynomials to algebraic geometry.

3.10 Alexander Polynomials and Representations over
Non-commutative Rings

In the previous sections we only considered finite dimensional representations over
commutative rings. One possible approach to studying invariants corresponding to
infinite dimensional representations is to use the theory of L2-invariants. We refer
to [Lü02] for the definition of various L2-invariants and for some applications to
low-dimensional topology. Even though L2-invariants are a powerful tool they have
not yet been systematically studied for links and 3-manifolds. We refer to the work
of Li and Zhang [LZ06a, LZ06b] for some initial work. We also would like to use
this opportunity to advertise a problem stated in [FLM09, Sect. 3.2, Remark (3)].

For the remainder of this section we will now be concerned with invariants cor-
responding to finite dimensional representations over non-commutative rings. The
study of such invariants (often referred to as higher order Alexander polynomials)
was initiated by Cochran [Co04], building on ideas of Cochran, Orr and Teichner
[COT03]. The notion of higher order Alexander polynomials was extended to 3-
manifolds by Harvey [Ha05] and Turaev [Tu02b]. This theory is different in spirit
to the fore mentioned L2-invariants, but we refer to [Ha08] and [FLM09, Proposi-
tion 2.4] for some connections.

3.10.1 Non-commutative Alexander Polynomials

Let K be a (skew) field and γ : K → K a ring homomorphism. Denote by K[t±1]
the corresponding skew Laurent polynomial ring over K. The elements in K[t±1]
are formal sums

∑s
i=−r ai t

i with ai ∈ K and multiplication in K[t±1] is given by
the rule t ia = γ i(a)t i for any a ∈ K.

Let N be a 3-manifold and let φ ∈ H 1(N;Z) be non-trivial. Following Turaev
[Tu02b] we call a ring homomorphism ϕ : Z[π1(N)] → K[t±1] φ-compatible if
for any g ∈ π1(N) we have ϕ(g) = ktφ(g) for some k ∈ K. Given a φ-compatible
homomorphism ϕ : Z[π1(N)] → K[t±1] we consider the K[t±1]-module

Hi(N;K[t±1]) = Hi(C∗(Ñ) ⊗Z[π1(N)] K[t±1])
where Ñ is the universal cover of N . Since K[t±1] is a principal ideal domain (PID)
(cf. [Co04, Proposition 4.5]) we can decompose

Hi(N;K[t±1]) ∼=
l⊕

k=1

K[t±1]/(pk(t))
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for pk(t) ∈ K[t±1], 1 ≤ k ≤ l. We define �
ϕ
N,φ,i

:= ∏l
k=1 pk(t) ∈ K[t±1]. As

for twisted Alexander polynomials we write �
ϕ
N,φ = �

ϕ
N,φ,1. Non-commutative

Alexander polynomials have in general a high indeterminacy, we refer to [Co04,
p. 367] and [Fr07, Theorem 3.1] for a discussion of the indeterminacy. Note though
that the degree of a non-commutative Alexander polynomial is well-defined.

The following theorem was proved for knots by Cochran [Co04] and extended to
3-manifolds by Harvey [Ha05] and Turaev [Tu02b].

Theorem 23 Let N be a 3-manifold with empty or toroidal boundary and let
φ ∈ H 1(N;Z) non-trivial. Let ϕ : Z[π1(N)] → K[t±1] be a φ-compatible homo-
morphism.

1. If the image of π1(N) → K[t±1] is non-cyclic, then

deg(�
ϕ
N,φ,0) = 0.

2. If the image of π1(N) → K[t±1] is non-cyclic and if �
ϕ
N,φ 
= 0, then

deg(�
ϕ
N,φ,2) = 0.

3. If �
ϕ
N,φ 
= 0, then we have the following inequality

‖φ‖T ≥ deg(�
ϕ
N,φ) − deg(�

ϕ
N,φ,0) − deg(�

ϕ
N,φ,2)

and equality holds if φ is a fibered class and N 
= S1 × D2,N 
= S1 × S2.

We refer to [Fr07] for the definition of a twisted non-commutative Alexander
polynomial and to a corresponding generalization of Theorem 23, we also refer to
[Fr07] for a reinterpretation of the third statement of Theorem 23 in terms of a
certain non-commutative Reidemeister torsion.

3.10.2 Higher Order Alexander Polynomials

We now recall the construction of what are arguably the most interesting examples
of φ-compatible homomorphisms from π1(N) to a non-commutative Laurent poly-
nomial ring. The ideas of this section are due to Cochran and Harvey.

Theorem 24 Let γ be a torsion-free solvable group and let F be a commutative
field. Then the following hold.

1. F[�] is an Ore domain, in particular it embeds in its classical right ring of quo-
tients K(�).

2. K(�) is flat over F[�].
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Indeed, it follows from [KLM88] that F[�] has no zero divisors. The first
part now follows from [DLMSY03, Corollary 6.3]. The second part is a well-
known property of Ore localizations. We call K(�) the Ore localization of F[�].
In [COT03] the notion of a poly-torsion-free-abelian (PTFA) group is introduced, it
is well-known that these groups are torsion-free and solvable.

Remark 12

1. It follows from Higman’s theorem [Hi40] that the above theorem also holds for
groups which are locally indicable and amenable. We will not make use of this,
but note that throughout this section ‘torsion-free solvable’ could be replaced by
‘locally indicable and amenable’.

2. Note that the poly-torsion-free-abelian (PTFA) groups introduced in [COT03]
are solvable and torsion-free.

We need the following definition.

Definition 2 Let π be a group, φ : π → Z an epimorphism and ϕ : π → γ an
epimorphism to a torsion-free solvable group γ such that there exists a map φ� :
� → Z (which is necessarily unique) such that

π

φ

ϕ

�

φ�

Z

commutes. Following [Ha06, Definition 1.4] we call (ϕ,φ) an admissible pair.

Now let (ϕ : π1(N) → �,φ) be an admissible pair for π1(N). In the following
we denote ker{φ : � → Z} by �′(φ). When the homomorphism φ is understood
we will write �′ for �′(φ). Clearly �′ is still solvable and torsion-free. Let F be
any commutative field and K(�′) the Ore localization of F[�′]. Pick an element
μ ∈ γ such that φ(μ) = 1. Let γ : K(�′) → K(�′) be the homomorphism given by
γ (a) = μaμ−1. Then we get a ring homomorphism

Z[�] → K(�′)γ [t±1]
g �→ (gμ−φ(g)tφ(g)), for g ∈ γ .

We denote this ring homomorphism again by ϕ. It is clear that ϕ is φ-compatible.
Note that the ring K(�′)[t±1] and hence the above representation depends on the
choice of μ. We will nonetheless suppress μ in the notation since different choices
of splittings give isomorphic rings. We will refer to a non-commutative Alexan-
der polynomial corresponding to such a group homomorphism as a higher order
Alexander polynomial.
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An important example of admissible pairs is provided by Harvey’s rational de-
rived series of a group γ (cf. [Ha05, Sect. 3]). Let γ

(0)
r = γ and define inductively

γ (n)
r = {

g ∈ γ (n−1)
r |gk ∈ [

γ (n−1)
r , γ (n−1)

r

]
for some k ∈ Z \ {0}}.

Note that

γ (n−1)
r /γ (n)

r
∼= (

γ (n−1)
r /

[
γ (n−1)
r , γ (n−1)

r

])
/Z-torsion.

By [Ha05, Corollary 3.6] the quotients �/γ
(n)
r are solvable and torsion-free for any

γ and any n. If φ : � → Z is an epimorphism, then (� → �/γ
(n)
r , φ) is an admissi-

ble pair for (�,φ) for any n > 0.
For example if K is a knot, γ = π1(S

3 \ νK), then it follows from [St74] that
�

(n)
r = �(n), i.e. the rational derived series equals the ordinary derived series (cf.

also [Co04] and [Ha05]).

Remark 13 The Achilles heel of the higher order Alexander polynomials is that they
are unfortunately difficult to compute in practice. We refer to [Sa07] for some ideas
on how to compute higher order Alexander polynomials in some cases.

3.10.3 Comparing Different φ-Compatible Maps

We now recall a definition from [Ha06].

Definition 3 Let N be a 3-manifold with empty or toroidal boundary. We write π =
π1(N). Let φ : π → Z an epimorphism. Furthermore let ϕ1 : π → γ1 and ϕ2 : π →
γ2 be epimorphisms to torsion-free solvable groups γ1 and γ2. We call (ϕ1, ϕ2, φ)

an admissible triple for π if there exist epimorphisms ϕ1
2 : γ1 → γ2 and φ2 : γ2 → Z

such that ϕ2 = ϕ1
2 ◦ ϕ1, and φ = φ2 ◦ ϕ2.

The situation can be summarized in the following diagram

γ1

ϕ1
2

π

φ

ϕ1

ϕ2
γ2

φ2

Z.

Note that in particular (ϕi, φ), i = 1,2 are admissible pairs for π . The following
theorem is perhaps the most striking feature of higher order Alexander polynomials.
In light of Theorem 23 the statement can be summarized as saying that higher order
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Alexander polynomials corresponding to larger groups give better bounds on the
Thurston norm.

Theorem 25 Let N be a 3-manifold whose boundary is a (possibly empty) col-
lection of tori. Let (ϕ1, ϕ2, φ) be an admissible triple for π1(N). Suppose that
�

ϕ2
N,φ 
= 0, then it follows that �

ϕ1
N,φ 
= 0. We write

di := deg(�
ϕi

N,φ) − deg(�
ϕi

N,φ,0) − deg(�
ϕi

N,φ,2), i = 1,2

Then the following holds:

d1 ≥ d2.

Furthermore, if the ordinary Alexander polynomial �
φ
N ∈ Z[t±1] is non-trivial, then

d1 − d2 is an even integer.

Proof The fact that �
ϕ2
N,φ 
= 0 implies that �

ϕ1
N,φ 
= 0 and the inequality d2 ≥ d1

were first proved for knots by Cochran [Co04]. Cochran’s result were then extended
to the case of 3-manifolds by Harvey [Ha06] (cf. also [Fr07]). Finally the fact that
d2 − d1 is an even integer when �

φ
N 
= 0 is proved in [FK08a]. �

The strong relationship between the Thurston norm and higher order Alexander
polynomials is also confirmed by the following result (cf. [FH07]).

Theorem 26 Let N be a 3-manifold with empty or toroidal boundary, let ϕ :
π1(N) → γ be an epimorphism to a torsion-free solvable group such that the
abelianization π1(N) → F := H1(N;Z)/torsion factors through ϕ. Then the map

H 1(N;Z) = Hom(F,Z) → Z≥0

φ �→ max{0,deg(�
ϕ
N,φ) − deg(�

ϕ
N,φ,0) − deg(�

ϕ
N,φ,2)}

defines a seminorm on H 1(N;Z) which gives a lower bound on the Thurston norm.

3.10.4 Miscellaneous Applications of Higher Order Alexander
Polynomials

In this section we quickly summarize various applications of higher order Alexander
polynomials and related invariants to various aspects of low-dimensional topology:

1. Leidy [Lei06] studied the relationship between higher order Alexander modules
and non-commutative Blanchfield pairings.

2. Leidy and Maxim ([LM06] and [LM08]) studied higher order Alexander poly-
nomials of plane curve complements.

3. Cochran and Taehee Kim [CT08] showed that given a knot with genus greater
than one, the higher order Alexander polynomials do not determine the concor-
dance class of a knot.
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4. Sakasai [Sa06, Sa08] and Goda–Sakasai [GS08] studied applications of higher
order Alexander invariants to homology cylinders and sutured manifolds. For
example higher order Alexander invariants can be used to give obstructions to
homology cylinders being products.

5. In [FK08b] it is shown that the degrees of higher order Alexander polynomials
of closed 3-manifolds are even.

3.11 Open Questions and Problems

We conclude this survey paper with a list of open questions and problems.

1. Using elementary ideals one can define the twisted k-th Alexander polynomial,
generalizing the k-th Alexander polynomial of a knot K ⊂ S3. What informa-
tion do these invariants contain?

2. Let K ⊂ S3 a knot and let γ : π1(S
3 \ νK) → SL(k,R) be a representation,

where R is a Noetherian UFD with possibly trivial involution. Does it follow

that �
γ

K is reciprocal, i.e. does it hold that �
γ

K

.= �
γ

K ? Note that this holds for
unitary representations (cf. Sect. 3.3.4, [Ki96, KL99a]) and for all calculations
known to the authors.

Added in proof: This question was answered in the negative by Hillman,
Silver and Williams [HSW09], cf. also the remark after Proposition 4.

3. Can any two knots or links be distinguished using twisted Alexander polyno-
mials?

4. If (N,φ) is non-fibered, does there exist a representation γ : π1(N) →
GL(k,R) such that �

γ⊗φ

N is not monic?
5. If (N,φ) is non-fibered, does there exist a representation γ : π1(N) → SL(2,C)

such that τ(N,γ ⊗ φ) is not monic? (cf. e.g. [GM03, Problem 1.1]).
6. If (N,φ) is non-fibered, does there exist a representation γ : π1(N) →

GL(k,R) such that �
γ⊗φ

N is zero?
7. Let K ⊂ S3 be any knot, does the twisted Reidemeister torsion of [GKM05]

corresponding to a generic faithful representation detect fiberedness? (cf.
[Mo08, p. 452] for some calculations).

8. Let N be a 3-manifold with empty or toroidal boundary, N 
= S1 ×D2, S1 ×S2,
let φ ∈ H 1(N;Z) and let γ : π1(N) → GL(k,R) be a representation such that
�

γ⊗φ

N 
= 0. Does it follow that

deg(τ (N,γ ⊗ φ)) = deg(�
γ⊗φ

N,1 ) − deg(�
γ⊗φ

N,0 ) − deg(�
γ⊗φ

N,2 )

has the parity of k‖φ‖T ? Note that this holds for fibered (N,φ) and for the
untwisted Alexander polynomials of a knot.

Added in proof: this also holds for hyperbolic knots and the canonical
SL(2,C) representation.

9. Does the twisted Alexander polynomial detect the Thurston norm of a given
φ ∈ H 1(N;Z)?
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10. Let K be a hyperbolic knot and ρ : π1(S
3 \νK) → SL(2,C) the unique discrete

faithful representation.
a. Is �

ρ
K non-trivial?

b. Does deg(�
ρ
K) determine the genus of K?

c. Is K fibered if τ(K,ρ) is monic?
Note that the unique discrete representation is over a number field which for
many knots can be obtained explicitly with Snappea. These questions can there-
fore be answered for small crossing knots.

Added in proof: the answer to all three questions is yes, if K has at most 13
crossings [DFJ10].

11. Does there exist a knot K ⊂ S3 and a nonabelian representation γ such that �
γ

K

is trivial?
12. Are there knots for which Kitayama’s lower bounds on the free genus of a

knot (cf. [Kiy08a]) are larger than the bound on the ordinary genus obtained in
[FK06]?

13. Find a practical algorithm for computing higher order Alexander polynomials.
14. Do higher order Alexander polynomials detect mutation?
15. Does there exist a twisted version of Turaev’s torsion function?
16. Use twisted Alexander polynomials to determine which knots with up to twelve

crossings are doubly slice.
17. Can the results of [HK79] and [Hat80] regarding Alexander polynomials of

amphichiral knots be generalized to twisted Alexander polynomials?
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Chapter 4
On Two Categorifications of the Arrow
Polynomial for Virtual Knots

Heather Ann Dye, Louis Hirsch Kauffman,
and Vassily Olegovich Manturov

Abstract Two categorifications are given for the arrow polynomial, an extension of
the Kauffman bracket polynomial for virtual knots. The arrow polynomial extends
the bracket polynomial to infinitely many variables, each variable corresponding to
an integer arrow number calculated from each loop in an oriented state summation
for the bracket. The categorifications are based on new gradings associated with
these arrow numbers, and give homology theories associated with oriented virtual
knots and links via extra structure on the Khovanov chain complex. Applications
are given to the estimation of virtual crossing number and surface genus of virtual
knots and links.

4.1 Introduction

The purpose of this paper is to give a categorification for an extension of the Kauff-
man bracket polynomial, giving a new categorified homology for virtual knots and
links. The extension of the bracket that we work with is the arrow polynomial as de-
fined in [Kau09, DK09]. This invariant was independently constructed by Miyazawa
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in [Miy08, Miy06] and so this work can also be seen as a categorification of the
Miyazawa polynomial.

In [Kau09], Kauffman gives an extension of the bracket polynomial for virtual
knots that is obtained by using an oriented state expansion, as indicated here in
Fig. 4.1. In such an expansion there are two types of smoothing as shown in this fig-
ure. The guiding principle for the extended bracket invariant is to retain the pairing
of the cusps at the reverse oriented smoothings for as long as possible. The resulting
state configurations are then replaced by 4-regular virtual graphs, and the invariant
is a linear combination of these graphs with polynomial coefficients. For a given
state S, the corresponding graph is denoted by [S]. In [Kau09] this invariant is then
simplified by retaining the cusps at the non-oriented smoothings but not insisting
upon pairing them. In this simplified version [S] is replaced by a diagram that is
a union of circle graphs with (reduced) cusps and virtual crossings, modulo virtual
equivalence. States are reduced via the rule that consecutive pairs of cusps on a
given state curve cancel if they point to the same local side of the curve in the plane.
With this caveat, each state curve can be regarded as an extra variable Kn with an
index n denoting one half of the reduced number of cusps. This simplified version
of the invariant is called the arrow polynomial. It takes the form

〈K〉A =
∑
S

Aα(S)−β(S)(−A2 − A−2)γ (S)−1
∏

c∈c(S)

Kn(c), (4.1)

where the product is taken over all single loop components c in the state S, and
n(c) counts one half the number of cusps in the reduced circle graph. Here α(S) and
β(S) are the numbers of positively (resp., negatively) smoothed crossings, and γ (S)

is the number of loops in the state S.
H.A. Dye and L.H. Kauffman studied an equivalent version of the arrow poly-

nomial [DK09] and used it to obtain a lower bound on the virtual crossing number
for diagrams of a virtual link. In the Dye-Kauffman version the cusps are replaced
by an extra orientation convention. See Fig. 4.3. Here we shall refer to 〈K〉A as the
arrow polynomial of K . We call the reduced cusp count n(c) for a state loop the
arrow number of this loop. Thus a state loop with label Kn has arrow number n.

Both the extended bracket polynomial and the arrow polynomial 〈K〉A are invari-
ant with respect to the second and the third Reidemeister moves. They can be made
invariant under the first Reidemeister move by the usual normalisation by a power
of (−A3). In the rest of the paper, we shall omit this normalisation. Moreover, while
passing to the Khovanov homology, we shall omit the corresponding renormalisa-
tion and refer the interested reader to [BN02, Man05b] or [BN02, BN05].

The aim of the present paper is to present two categorifications of the arrow poly-
nomial [Kau09, DK09]. We split the chain spaces of the Khovanov complex C(K)

into subspaces Cgr=x(K) with a fixed new grading x and restrict our differential ∂

to these subspaces. Now, set ∂ = ∂ ′ + ∂ ′′ where ∂ ′ is the part of ∂ which preserves
the new gradings for basic chains, and ∂ ′′ is the remaining part of ∂ . We have to
define this new grading in such a way that the new differential ∂ ′ is well defined
and the corresponding homology groups H(C(K), ∂ ′) are invariant with respect to
Reidemeister moves.
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A Khovanov homology theory for virtual knots has been constructed in a se-
quence of papers by Manturov. In [Man08], one gives a certain procedure for further
generalization of these invariants, which deals with so-called dotted gradings. In
working with Khovanov homology we use enhanced states of the Kauffman bracket
polynomial. These enhanced states are collections of labelled simple closed curves
obtained by smoothing crossings in the diagram. Each curve is labelled with either
the algebra element X or with the number 1. The elements X and 1 belong to the
algebra k[X]/(X2) where k = Z[A,A−1]. In the dotted grading, the X and the 1
can acquire a dot in the form Ẋ and 1̇. We explain how this notation works in the
discussion below.

We assume all circles in Kauffman states of a diagram can be assigned a mod
Z2 dotting: every state circle is either dotted or not (the dotting should be read from
the topology/combinatorics of the diagram), and the new integral grading of a chain
is set to be #Ẋ − #1̇, i.e. the number of dotted circles with the element X minus
the number of dotted circles carrying the element 1. If this dotting satisfies certain
very simple axioms [Man08], then the complex is well defined and its homology is
invariant under Reidemeister moves.

Another way to introduce the gradings for a given Khovanov homology theory is
to take the coefficients like [S] or

∏
c(S) Kn(s) to be new (multi)gradings themselves,

but for this we use Z2-coefficients. Possibly, this Z2-reduction can be avoided if we
use twisted coefficients similar to those from [Man07b], but this has not been done
so far.

We note that this paper makes use of enhanced states of the bracket polyno-
mial for discussing Khovanov homology. This approach was introduced in [Viro1,
Viro2]. The first categorification of link invariants in thickened surfaces, thus also
of the Kauffman bracket of virtual links occurs in [APS]. Finally, two recent pa-
pers by[Caprau, CMW] can also be viewed as categorifying the arrow polynomial.
although that was not the principle aim of these works. A sequel to this paper will
discuss these relationships.

4.2 The Arrow Polynomial 〈K〉A

In this section we describe the arrow polynomial invariant [Kau09, DK09]. One
way to see the definition of the arrow polynomial is to begin with the extended
bracket invariant [Kau09] and simplify it. The extended invariant is a sum of graphs
(taken up to virtual equivalence in the plane) weighted by polynomials. In the ex-
tended bracket one uses an oriented expansion so that the smoothings consist of
oriented smoothings and disoriented smoothings. At a disoriented smoothing one
sees two cusps with orientation arrows going into the cusp point in one cusp and out
of the cusp point for the other cusp. Rules for reducing the states of the extended
bracket keep the cusps paired whenever possible. If we release the cusp pairings at
the disoriented smoothings, we get simpler graphs. These are composed of disjoint
collections of circle graphs that are labelled with the orientation markers and left-
right distinctions that occur in the state expansion. The basic conventions for this
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Fig. 4.1 Oriented bracket
expansion

simplification are shown in Fig. 4.2. In that figure we illustrate how the disoriented
smoothing is a local disjoint union of two vertices (the cusps). Each cusp is denoted
by an angle with arrows either both entering the cusp or both leaving the cusp. Fur-
thermore, the angle locally divides the plane into two parts: One part is the span of
an acute angle (of size less than π ); the other part is the span of an obtuse angle. We
refer to the span of the acute angle as the inside of the cusp. In Fig. 4.2, we have
labelled the insides of the cusps with the symbol �.

Figure 4.1 illustrates the basic oriented bracket expansion formula. Figure 4.2
illustrates the reduction rule for the arrow polynomial. While we have indicated
(above) the relationship of the arrow polynomial with the extended bracket poly-
nomial, the reduction rule for the arrow polynomial is completely described by
Fig. 4.2. We shall denote the arrow polynomial by the notation 〈K〉A, for a virtual
knot or link diagram K . The reduction rule allows the cancellation of two adjacent
cusps when they have insides on the same side of the segment that connects them.
When the insides of the cusps are on opposite sides of the connecting segment, then
no cancellation is allowed. All graphs are taken up to virtual equivalence. Figure 4.2
illustrates the simplification of two circle graphs. In one case the graph reduces to
a circle with no vertices. In the other case there is no further cancellation, but the
graph is equivalent to one without a virtual crossing. The state expansion for 〈K〉A
is exactly as shown in Fig. 4.1, but we use the reduction rule of Fig. 4.2 so that each
state is a disjoint union of reduced circle graphs. Since such graphs are planar, each
is equivalent to an embedded graph (no virtual crossings) and the reduced forms
of such graphs have 2n cusps that alternate in type around the circle so that n are
pointing inward and n are pointing outward. The circle with no cusps is evaluated
as d = −A2 − A−2 as is usual for these expansions and the circle is removed from
the graphical expansion. Let Kn denote the circle graph with 2n alternating vertex
types as shown in Fig. 4.2 for n = 1 and n = 2. By our conventions for the extended
bracket polynomial, each circle graph contributes d = −A2 − A−2 to the state sum
and the graphs Kn (with n ≥ 1) remain in the graphical expansion. For the arrow
polynomial 〈K〉A we can regard each Kn as an extra variable in the polynomial.
Thus a product of the Kn’s denotes a state that is a disjoint union of copies of these
circle graphs with multiplicities. By evaluating each circle graph as d = −A2 −A−2

we guarantee that the resulting polynomial will reduce to the original bracket poly-
nomial when each of the new variables Kn is set equal to unity. Note that we con-
tinue to use the caveat that an isolated circle or circle graph (i.e. a state consisting
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Fig. 4.2 Reduction relation
for the arrow polynomial

in a single circle or single circle graph) is assigned a loop value of unity in the state
sum. This assures that 〈K〉A is normalized so that the unknot receives the value one.

Formally, we have the following state summation for the arrow polynomial

〈K〉A =
∑
S

〈K|S〉d‖S‖−1P [S]

where S runs over the oriented bracket states of the diagram, 〈K|S〉 is the usual
product of vertex weights as in the standard bracket polynomial, ‖S‖ is the number
of circle graphs in the state S, and P [S] is a product of the variables Kn associated
with the non-trivial circle graphs in the state S. Note that each circle graph (trivial or
not) contributes to the power of d in the state summation, but only non-trivial circle
graphs contribute to P [S]. The regular isotopy invariance of 〈K〉A follows from an
analysis of the behaviour of this state summation under the Reidemeister moves.

Theorem 1 With the above conventions, the arrow polynomial 〈K〉A is a polyno-
mial in A, A−1 and the graphical variables Kn (of which finitely many will appear
for any given virtual knot or link). 〈K〉A is a regular isotopy invariant of virtual
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Fig. 4.3 Arrow convention

Fig. 4.4 Kishino diagram

knots and links. The normalized version

W [K] = (−A3)−wr(K)〈K〉A
is an invariant of virtual isotopy. Here wr(K) denotes the writhe of the diagram K ;
this is the sum of the signs of all the classical crossings in the diagram. If we set
A = 1 and d = −A2 − A−2 = −2, then the resulting specialization

F [K] = 〈K〉A(A = 1)

is an invariant of flat virtual knots and links.

Example 1 Figure 4.4 illustrates the Kishino diagram. With d = −A2 − A−2

〈K〉A = 1 + A4 + A−4 − d2K2
1 + 2K2.

Thus the simple extended bracket shows that the Kishino is non-trivial and non-
classical. In fact, note that

F [K] = 3 + 2K2 − 4K2
1 .

Thus the invariant F [K] of flat virtual diagrams proves that the flat Kishino diagram
is non-trivial. This example shows the power of the arrow polynomial. See [Kau09,
DK09] for the details of this calculation.
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4.3 Khovanov Homology for Virtual Knots

In this section, we describe Khovanov homology for virtual knots along the lines of
[Kho97, BN02, Man07b].

The bracket polynomial [Kau87] is usually described by the expansion

〈 〉 = A〈 〉 + A−1〈 〉 (4.2)

Letting c(K) denote the number of crossings in the diagram K, if we replace 〈K〉
by A−c(K)〈K〉, and then replace A2 by −q−1, the bracket will be rewritten in the
following form:

〈 〉 = 〈 〉 − q〈 〉 (4.3)

with 〈©〉 = (q +q−1). In this form of the bracket state sum, the grading of the Kho-
vanov homology (which is described below) appears naturally. We shall continue to
refer to the smoothings labelled q (or A−1 in the original bracket formulation) as
B-smoothings. We should further note that we use the well-known convention of
enhanced states where an enhanced state has a label of 1 or X on each of its compo-
nent loops. We then regard the value of the loop (q + q−1) as the sum of the value
of two circles: a circle labelled with a 1 (the value is q) and a circle labelled with an
X (the value is q−1).

To see how the Khovanov grading arises, consider the form of the expansion of
this version of the bracket polynomial in enhanced states. We have the formula as a
sum over enhanced states s:

〈K〉 =
∑

s

(−1)nB(s)qj (s)

where nB(s) is the number of B-type smoothings in s, λ(s) is the number of loops
in s labelled 1 minus the number of loops labelled X, and j (s) = nB(s)+λ(s). This
can be rewritten in the following form:

〈K〉 =
∑
i, j

(−1)iqj

⎡
⎣ ∑

s:nB(s)=i,j (s)=j

1

⎤
⎦ =

∑
i,j

(−1)iqj dim(Cij ).

In the Khovanov homology, the states with nB(s) = i and j (s) = j form the
basis for a module Cij over the ground ring k. Thus we can write

dim(Cij ) =
∑

s:nB(s)=i,j (s)=j

1.

The bigraded complex composed of the Cij has a differential d : C ij −→ C i+1j .
That is, the differential increases the homological grading i by 1 and preserves
the quantum grading j . Below, we will remind the reader of the formula for the
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differential in the Khovanov complex. Note however that the existence of a bigraded
complex of this type allows us to further write:

〈K〉 =
∑
j

qj
∑

i

(−1)idim(Cij ) =
∑

j

qjχ(C• j ),

where χ(C• j ) is the Euler characteristic of the subcomplex C• j for a fixed value
of j . Since j is preserved by the differential, these subcomplexes have their own
Euler characteristics and homology. We can write

〈K〉 =
∑
j

qjχ(H(C• j )),

where H(C• j ) denotes the homology of this complex. Thus our last formula ex-
presses the bracket polynomial as a graded Euler characteristic of a homology the-
ory associated with the enhanced states of the bracket state summation. This is the
categorification of the bracket polynomial. Khovanov proves that this homology the-
ory is an invariant of knots and links, creating a new and stronger invariant than the
original Jones polynomial.

We explain the differential in this complex for mod-2 coefficients and leave it
to the reader to see the references for the rest. The differential is defined via the
algebra A = k[X]/(x2) so that X2 = 0 with coproduct 
 : A −→ A ⊗ A defined
by 
(X) = X ⊗ X and 
(1) = 1 ⊗ X + X ⊗ 1. Partial differentials (which are
defined on an enhanced state with a chosen site, whereas the differential is a sum
of these mappings) are defined on each enhanced state s and a site κ of type A in
that state. We consider states obtained from the given state by smoothing the given
site κ . The result of smoothing κ is to produce a new state s ′ with one more site of
type B than s. Forming s′ from s we either amalgamate two loops to a single loop
at κ , or we divide a loop at κ into two distinct loops. In the case of amalgamation,
the new state s acquires the label on the amalgamated circle that is the product
of the labels on the two circles that are its ancestors in s. That is, m(1 ⊗ X) = X

and m(X ⊗ X) = 0. Thus this case of the partial differential is described by the
multiplication in the algebra. If one circle becomes two circles, then we apply the
coproduct. Thus if the circle is labelled X, then the resultant two circles are each
labelled X corresponding to 
(X) = X ⊗ X. If the original circle is labelled 1 then
we take the partial boundary to be a sum of two enhanced states with labels 1 and
X in one case, and labels X and 1 in the other case on the respective circles. This
corresponds to 
(1) = 1 ⊗ X + X ⊗ 1. Modulo two, the differential of an enhanced
state is the sum, over all sites of type A in the state, of the partial differential at these
sites. It is not hard to verify directly that the square of the differential mapping is
zero and that it behaves as advertised, keeping j (s) constant. There is more to say
about the nature of this construction with respect to Frobenius algebras and tangle
cobordisms. See [Kho97, BN02, BN05].

Here we consider bigraded complexes Cij with height (homological grading) i

and quantum grading j . In the unnormalized Khovanov complex [[K]] the index i is
the number of B-smoothings of the bracket, and for every enhanced state, the index
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j is equal to the number of components labelled 1 minus the number of components
labelled X plus the number of B-smoothings. The normalized complex differs from
[[K]] by an overall shift of both gradings; the differential preserves the quantum
grading and increases the height by 1. The height and grading shift operations are
defined as (C[k]{l})ij = C[i − k]{j − l}.

This form is used as the starting point for the Khovanov homology. We now
describe the formalism in a bit more detail in order to give the structure of the dif-
ferential for Khovanov homology of virtual knots and links. For a diagram K of a
virtual knot, we consider the state cube defined as follows: Enumerate all n classical
crossings of K in arbitrary way and consider all Kauffman states (states as collec-
tions of loops without specific enhancement labels) as vertices of the discrete cube
{0,1}n. Each coordinate corresponds to a way of smoothing and is equal to 0 (the
A-smoothing) or 1 (the B-smoothing). Thus, each vertex of the cube defines a set of
circles (say, p circles), and this set of circles defines a certain vector space (module)
of dimension 2p . The module for a single circle is generated by 1 and X. The spaces
together form the total chain space of the unnormalized Khovanov complex [[K]]
and its normalized version C[[K]]. We omit the normalisation, which is standard,
and refer the reader to [Kho97, BN02, Man07b].

We regard the loop factors for the unenhanced bracket, (q + q−1), as graded
dimensions of the module V = Span({1,X}),deg 1 = 1, deg X = −1 over some
ring k, and the height i(s) plays the role of homological dimension. Define the
chain space [[K]]i of homological dimension i to be the direct sum over all vertices
of height i (defined as above) of V γ (s){i} (here {·} is the quantum grading shift
and γ (s) is the number of loops in the state s). Then the alternating sum of graded
dimensions of [[K]]i , is precisely equal to the (modified) Kauffman bracket, as we
have described above.

Thus, if one defines a differential on [[K]] that preserves the grading and in-
creases the homological dimension by 1, the Euler characteristic of that complex
will be precisely the bracket.

We now consider a generalization of the Khovanov homology to virtual knots.
When we pass from one state of the state cube to a neighboring state (which differs
precisely at one coordinate), we get a resmoothing of the set of circles. We refer
to that as a bifurcation of the state cube. Such a bifurcation can either merge two
circles into one (2 → 1-bifurcation) or split one circle into two (1 → 2-bifurcation),
or (in the case of virtual knots and links) transform one circle into one (1 → 1-
bifurcation). These bifurcations encode the information about differentials in the
complex as follows.

We have defined the state cube consisting of state loops and carrying no infor-
mation how these loops interact. For Khovanov homology, we deal with the same
cube, remembering the information about the loop bifurcation. Later on, we refer to
it as a bifurcation cube.

The chain spaces of the complex are well defined. However, the problem of find-
ing a differential ∂ in the general case of virtual knots, is not easy. See Fig. 4.7 for a
key example that we shall discuss. To define the differential, we have to pay atten-
tion to the different isomorphism classes of the chain space identified by using local
bases (see below).
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The differential acts on the chain space as follows: it takes a chain (regard an
enhanced state as an elementary chain) corresponding to a certain vertex of the bi-
furcation cube to some chains corresponding to all adjacent vertices with greater
homological degree. That is, the differential is a sum of partial differentials, each
partial differential acts along an edge of the cube. Every partial differential corre-
sponds to some direction and is associated with some classical crossing of the dia-
gram. The total differential is the sum of these partial differentials, and so formally
looks like

∂ =
∑
a

∂a

where the summation is over all edges of the cube. In discussing differentials we
shall often refer to a partial differential without indicating its subscript.

Selecting an un-enhanced Kauffman state S (consisting of loops with cusps),
we choose an arbitrary order for the circles in S. and then orient each circle in S.
Letting γ (S) = ‖S‖ be the number of loops in S, associate the module �‖S‖(V )

to S where this denotes the ‖S‖th exterior power of V —the order of the factors in
the exterior power depends on the choice of the ordering that was chosen. Having
made this choice (of ordering and orientation), if s is an enhancement of S then
label all loops in the state s with either +X or +1 according to the enhancement.
This oriented, ordered, and labelled state forms a generating chain in the complex.
If the orientation of a loop in S is reversed then the label for X becomes −X but the
label for 1 does not change. Otherwise, signs change according to the structure of
the exterior algebra.

Then for a state with l circles, we get a vector space (module) of dimension 2l .
All these chains have homological dimension i = nB . We set the quantum grading
j of these chains equal to i plus the number of circles marked by ±1 minus the
number of circles marked by ±X.

Let us now define the partial differentials of our complex. First, we think of each
classical crossing so that its edges are oriented upwards, as in Fig. 4.5, upper left
picture.

Choose a certain state of a virtual link diagram L ⊂ M. Choose a classical cross-
ing U of L. We say that in a state s that a state circle γ is incident to a classical
crossing U if at least one of the two local parts of smoothed crossing U belongs
to γ . Consider all circles γ incident to U . Fix some orientation of these circles ac-
cording to the orientation of the edge emanating in the upward-right direction and
opposite to the orientation of the edge coming from the bottom left, see Fig. 4.5.
Such an orientation is well defined except for the case when resmoothing one edge
takes one circle to one circle. In such a situation, we shall not define the local basis
{1,X}, and we set the partial differential corresponding to that edge to be zero.

In the other situations, the edge of the cube corresponding to the partial differen-
tial either increases or decreases the number of circles. This means that at the cor-
responding crossing the local bifurcation either takes two circles into one or takes
one circle into two. If we deal with two circles incident to a crossing from opposite
signs, we order them in such a way that the upper (resp., left) one is the first one;
the lower (resp., right) one is the second; here the notions “left, right, upper, lower”
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Fig. 4.5 Setting the local
basis for a crossing

are chosen according to the rule for identifying the crossing neighbourhood with
Fig. 4.5. Furthermore, for defining the partial differentials of types m and 
 (which
correspond to decreasing/increasing the number of circles by one) we assume that
the circles we deal with are in the initial positions specified in our ordered tensor
product; this can always be achieved by a preliminary permutation, which, possibly
leads to a sign change. Now, let us define the partial differential locally according to
the prescribed choice of generators at crossings and the prescribed ordering.

Now, we describe the partial differentials ∂ from [Man07b] without new grad-
ings. If we set 
(1) = 11 ∧ X2 + X1 ∧ 12; 
(X) = X1 ∧ X2 and m(11 ∧ 12) = 1;
m(X1 ∧ 12) = m(11 ∧ X2) = X; m(X1 ∧ X2) = 0, define the partial differential ∂

according to the rule ∂(α ∧ β) = m(α) ∧ β (in the case we deal with a 2 → 1-
bifurcation, where α denotes the first two circles α) or ∂(α ∧ β) = 
(α) ∧ β (when
one circle marked by α bifurcates to two ones); here by β we mean an ordered set of
oriented circles, not incident to the given crossings; the marks on these circles ±1
and ±X are given.

Theorem 2 [Man07b] Let K be a virtual knot or link. Then [[K]] is a well-defined
complex with respect to ∂ . After a small grading shift and a height shift, the homol-
ogy of [[K]] is invariant under the generalised Reidemeister moves for virtual knots
and links.

4.4 Grading Considerations for the Arrow Polynomial 〈K〉A

In order to consider gradings for Khovanov homology in relation to the structure
of the arrow polynomial 〈K〉A we have to examine how the arrow number of state
loops change under a replacement of an A-smoothing by a B-smoothing. Such re-
placement, when we use oriented diagrams involves the replacement of a cusp pair
by an oriented smoothing or vice versa. Furthermore, we may be combining or split-
ting two loops. Refer to Fig. 4.6 for a depiction of the different cases. This figure
shows the three basic cases.

In the first case we have two loops C1 and C2 sharing a disoriented site and the
smoothing is a single loop C where the paired cusps of the disoriented site disappear.
In this case if n(C1) = n and n(C2) = m, then n(C) = |n − m|.
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Fig. 4.6 Arrow numbers for
interacting loops

In the second case, we have a single loop C with a disoriented site and a pair
of cusps, and on smoothing this site we obtain two loops C1 and C2 whose arrow
numbers are n(C1) = n and n(C2) = m. The following arrow numbers for C are
then possible |n(C)| = |n − m| or |n + m|.

In the third case, we have a single loop C with a disoriented site and a pair
of cusps, and on smoothing this site we obtain a single loop C ′. Assuming that
n(C′) = |n + m| as shown in the figure, we have |n(C)| = |n + m + 1| where n and
m can be positive or negative.

These are all the ways that loops can interact and change their respective arrow
numbers. In the next section, we will apply these results to the grading in Khovanov
homology.

4.5 Dotted Gradings and the Dotted Categorification

First, we introduce a concept of dotting axiomatics as developed in [Man08]. The
purpose of this dotting axiomatics is to give general conditions under which extra
decorations on the states can be used to create new gradings and hence new versions
of Khovanov homology. We will apply these axiomatics to the arrow numbers on
the state loops of the arrow polynomial.
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For the axiomatics, assume we have some class of objects with Reidemeister
moves, Kauffman bracket and the Khovanov homology (in the usual setup or in the
setup of [Man05c]). Assume that there is a method, which for every diagram and
every state of it associates dots to some of the circles in the bracket states in such a
way that the following conditions hold:

1. The dotting of circles is additive with respect to 2 → 1-bifurcations and 1 →
2-bifurcations mod 2. This additivity means that when we merge two circles
(split one circle into two), the number of dots on the circles being operated on is
preserved modulo Z2.

This means that the parity of the number of dots on the circles operated on is
preserved whenever we merge two circles or split one circle into two.

If the dotting is not preserved under a 1 → 1 bifurcation, then this bifurcation
is taken to be the zero map.

2. Similar curves for corresponding smoothings of the RHS and the LHS of any
Reidemeister move have the same dotting.

3. Small circles appearing for the first, the second, and the third Reidemeister moves
are not dotted.

Let us call the conditions above the dotting conditions. With such a structure in
hand, one defines a new grading g(s) for states s by taking the difference between
the number of dotted X’s and the number of dotted 1’s in the state.

g(s) = �(Ẋ) − �(1̇)

We shall use this grading in the constructions that follow.

Theorem 3 Assume there is a theory using the Khovanov complex ([[K]], ∂) such
that the Kauffman states can be dotted so that the dotting conditions hold. Take
[[K]]g to be the space [[K]] endowed with new grading as above.

Define ∂ ′ to be the composition of ∂ with the new grading projection and set
∂ ′′ = ∂ − ∂ ′.

Then the homology of [[K]]g (with respect to ∂ ′) is invariant (up to a degree shift
and a height shift).

For any operator λ on the ground ring, the complex [[K]]g is well defined with
respect to the differential ∂ ′ +λ∂ ′′, and the corresponding homology is invariant (up
to well-known shifts).

Moreover, if we have several forms of dotting g1, g2, . . . , gk occuring together on
the same Khovanov complex so that for each of them the dotting condition holds,
then the complex Kg1,...,gk

with differential ∂g1,...,gk
defined to be the projection of ∂

to the subspace preserving all the gradings, is invariant.

The theorem above allows one to ‘raise’ some additional information modulo
Z2 to the level of gradings. Our aim is to categorify the arrow polynomial, that is,
to add new gradings corresponding to the arrow count: for every state we have a
set of circles labelled by a set of non-zero integers, and this set of integers should
be represented in the complex as a grading. Theorem 3 shows that it is possible to
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do that when we consider the information of the arrow count only modulo Z2: the
conditions of additivity and similarity under Reidemeister moves for arrow count
were checked in the previous section of this paper.

In order to use the integral information about the arrow count, we have to under-
take a generalization of the construction of Theorem 3. We shall do this in the next
section. This section of the paper is devoted to describing a first-order categorifica-
tion of the arrow polynomial.

The main idea behind the proof of Theorem 3 is as follows. Additivity of the
grading can be verified and checked on a bifurcation cube. First of all, it follows
from a straightforward check that ∂ ′′ always increases the dotted grading (this is
proved in [Man07b] but can be taken here as an exercise for the reader). Then, the
complex is well defined because (∂ ′)2 is nothing but a composition of (∂)2 with a
“grading-preserving projection”. This is guaranteed because ∂ ′′ strictly increases the
new grading. Note the mod-2 preservation of the dotting is what makes this grading
increase of ∂ ′′ work. Thus Theorem 3 depends ultimately on that parity preservation
of the dotted grading.

The main idea of the invariance under Reidemeister moves is similar to the usual
Khovanov idea, see for example [BN02]: we have to check that the multiplication m

remains surjective after reducing ∂ to ∂ ′ and 
 remains injective. The latter follows
from the fact that “small circles are not dotted”.

Now, one can easily check that the conditions of the theorem hold if we set the
dotting as follows: the curve is dotted if it is marked as Kj with j odd, and it is not
dotted if it is marked as Ki with i even.

Now, one checks that

1. The dotting is Z2-additive with respect to resmoothing (performing 1 → 2 or
2 → 1 bifurcation).

This follows from Fig. 4.6 upper part: we see that when merging two circles
with arrow count m and n, we get ±m±n and when splitting a circle with arrow
number k, we get two circles with arrow numbers l and ±k ± l which results in
Z2-additivity under 2 → 1 and 1 → 2-bifurcations.

On the other hand, if partial differentials for all 1 → 1 bifurcations are set
to be zero, it can be checked that all faces having at least 1 → 1-bifurcation
are anticommutative because 0 = 0. The only non-trivial example is shown in
Fig. 4.7, and the corresponding calculation is performed in [Man07b].

2. The small circles coming from Reidemeister moves are not dotted. Indeed, for
the 1st Reidemeister move we have no cusps at all, and for the second move and
for the third move we have two cusps of opposite signs.

3. For any Reidemeister move, the corresponding state diagrams in the LHS and
RHS have the same dotting. Locally, there is no grading change for the Reide-
meister moves when we use arrow counts. Again, this follows from the invari-
ance under Reidemeister moves: two pictures would not get cancelled if they had
different coefficients coming from cusps; this means they have the same dotting.
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Fig. 4.7 A face for the case
of the extended bracket of the
cube

4.6 Z2-Categorification with General Gradings

4.6.1 General Setup

The aim of this section is to prove a general theorem on categorification that fits the
arrow polynomial. This is an extension of the dotted grading construction, which
works, however, only with Z2-coefficients for the homology. Later, we shall discuss
whether this construction can be extended to the case of integral coefficients. For
instance, we can extend this construction to the case of integral coefficients if the
odd Khovanov homology theory [ORS07] can be defined for this class of knots.

Briefly, we want to start with a Khovanov homology (usual over Z2 or the one
using twisted coefficients) and make some partial differentials equal to zero.

As the initial data for this theorem, we require that we have a well-defined
bracket, and we assume that in each state of the diagram, each circle is given a
non-negative integer. For the dotted conditions, we require that

1. The numbers are “plus-minus additive” with respect to 2 → 1-bifurcations and
1 → 2-bifurcations, that is, if a resmoothing of two circles labelled by non-
negative integers p and q leads to one circle, the label of this circle will be
|p + q| or |p − q|.

2. Similar curves for corresponding smoothings of the RHS and the LHS of any
Reidemeister move have the same numbers.

3. Small circles appearing for the first, the second, and the third Reidemeister moves
are labelled by zeroes.
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We call these conditions integer labelling conditions.
After this, our strategy will be as follows: If we attempt to make the integral

arrow count the new grading and take the part of the differential preserving this,
to be the new differential, we shall see that the square of this new differential will
not be zero. Consider the situation when a 2-face of the bifurcation cube has arrow
counts P in the left corner (both smoothings zero), P in the upper corner (both
smoothings one), P in one right corner and Q in the remaining corner. See Fig. 7
for an example. Then one composition of the two differentials (going through P )
survives, while the other one (going through Q) becomes zero. That is why the
square of the new proposed differential, detecting the arrow count, is non-zero. On
the other hand, all the information about the arrow count has to be included in order
to get a faithful categorification of the arrow polynomial (that is, having a chain
space with gradings one can restore the arrow count, and having the homology one
can restore the arrow polynomial). In order to solve this problem, we are going to
introduce two new sorts of gradings, one of which will correct the other, and make
the differential well-defined.

We take the usual Khovanov differential ∂ and form two new series of gradings
(called multiple gradings and vector gradings). After that, for each basic chain of the
complex we have a whole collection of gradings, and we define the new differential
∂ ′ to be the composition of ∂ with the projection to the subspace where all gradings
are preserved by ∂ , having the same gradings (all multiple and vector gradings) as
in the preimage. That is, we let S = {x|gr(x) = gr(∂x)} and define ∂ ′ = ∂|S .

Now, we introduce multiple gradings as follows. A multiple grading is a set of
strictly positive integers that is associated with a Kauffman state of the diagram.
That is, the state is not yet labelled with X and 1; a basic chain in the state is such a
labelling. With each state, we shall associate exactly one multiple grading for each
basic chain in this state, independently from the particular choice of X and 1 on
circles. This multiple grading is just the set of all non-zero arrow counts on circles
of the state.

The vector grading is an infinite ordered collection (list) of integers (first, second,
third, etc.) each of which might be either positive or negative or zero. The vector
grading depends on the particular choice of 1 and X on all state circles. But before
introducing the vector grading, we introduce the vector dotting for state circles (that
have the initial labelling by arrow numbers). For a circle labelled by p we put no
dots at all if p = 0; otherwise we represent p = 2k−1l, where l is odd and put exactly
one dot of order k over this circle (we also call it a k-th dot). Thus, for p = 1 we will
have only one primary dot, for p = 2 we will have only one secondary dot, for p = 4
we will have only one ternary dot and so on. The vector dotting is an infinite vector
of these dot numbers with one possibly non-zero coordinate for each state circle.
Note that the vector dotting depends only on arrow numbers for the Kauffman state.

Now we can define the vector grading. The vector grading of a trivial circle
(without dots) is the zero vector (0, . . . ,0, . . .). For a non-trivial circle having one
k-th dot, the grading is set to be +1 on k-th vector position for the enhanced state
carrying X and −1 on k-th vector position for the enhanced state carrying 1; the
other entries of the vector grading for a given enhanced state circle are set to be
zero.
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The vector grading of a basic chain (enhanced state) is defined to be the coor-
dinatewise sum of the vector gradings (these are infinite vectors)6 over all circles
in the enhanced state. Thus, if we have one circle labelled by 2 with element X on
it and another circle labelled by 1 with element 1 on it, we get the vector grading:
(−1,1,0, . . . ,0, . . .).

The chain space of the initial Khovanov complex is split into subspaces with
respect to the multiple grading and vector grading. We set the differential ∂ ′ to
be the composition of the initial differential ∂ with the projection to the subspace
having the same gradings as the preimage.

Theorem 4 If a state labelling satisfies the integer labelling conditions, then the
complex C is well defined with respect to differential ∂ ′ (that is, (∂ ′)2 = 0), and its
homology groups H(C, ∂ ′) are invariant with respect to the Reidemeister moves.

First, let us check that the arrow polynomial satisfies the integer labelling con-
ditions. This follows from Fig. 4.6. Now, the second condition “similar curves gen-
erate similar smoothing” also follows from a direct calculation, as well as the third
condition about trivial circles coming from Reidemeister moves. Indeed, for the
first Reidemeister move one gets a small loop without any cusp, for the second
Reidemeister move one gets either a loop without cusps or a loop with two cusps
cancelling each other. The same for the third Reidemeister move: one gets at least
two cusps, which should cancel each other. This proves that the integer labelling
conditions hold for the arrow count.

Now, let us prove the main theorem. The proof will consist of the two parts: the
difficult one, where we show that the complex is well defined (the square of the
differential is zero) and the easy one, where we prove that the homology is invariant
under Reidemeister moves. The second part will be standard and in main features it
will repeat the analogous proof for the usual Khovanov homology.

Part 1. Proof that the Complex is Well Defined We first note that we work over
Z2-coefficients. We have to prove that for every 2-face of the bifurcation cube, the
two compositions corresponding to faces will coincide. This means that commuta-
tivity and anticommutativity coincide.

An atom is a pair (M,) of a 2-manifold M and a graph  embedded M together
with a colouring of M\ in a checkerboard manner. Here  is called the frame of
the atom, whence by genus (resp., Euler characteristic) of the atom we mean that
of the surface M .

With a virtual knot diagram (with every component having at least one classical
crossing) we associate an atom as follows. (Note that the atom need not be ori-
entable.) We take all classical crossings to be vertices of the frame. The edges of the
frame correspond to branches of the diagram connecting classical crossings (we do
not take into account how they intersect in virtual crossings). Moreover, the edges
of the frame emanating from a vertex are naturally split into two pairs of opposite
ones: the opposite relation (ordering of edges) is taken from the plane diagram. Thus
we get two pairs of opposite edges (opposite in the sense that these edges are not
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adjacent in the cyclic order of edges about the vertex) and also four angles gener-
ated by pairs of adjacent (non-opposite) edges. Now, for the obtained four-valent
graph we attach black and white cells as follows: for every crossing we indicate two
pairs of adjacent edges for “pasting the black cells”, and the remaining pair of an-
gles are used for attaching black cells. Cells are attached globally to conform these
local conditions. The “black angles” correspond to pairs of edges taken from the
B-smoothing of the bracket. This completely defines the way for attaching black
and white cells to get a 2-manifold starting from the frame.

This atomic terminology is useful in classifying virtual diagrams in terms of ori-
entability and non-orientability of the corresponding atoms. An atom has a 1 → 1-
bifurcation if and only if it is non-orientable [Man07b]. In the following we shall
need to discuss all atoms that derive from diagrams with two crossings. The reader
can easily enumerate the possible Gauss codes with two symbols and arrive at the
possibilities (11)(22) (two components, four cases depending on the crossings),
(12)(12) (a Hopf link configuration with four crossing possibilities), (1122) (a sin-
gle unknotted component), (1212) (a non-orientable atom). These cases need to
be analyzed and the reader will find them depicted in Fig. 4.8. See also Figs. 4.9
through 4.12.

Each possible 2-face of the bifurcation cube represents an atom with 2 vertices
(that is, the face represents all four possibilities for smoothing a pair of crossings in
the original link diagram): for each atom, there are four states AA,AB,BA,BB and
four maps corresponding to partial differentials AA → AB, AA → BA, AB → BB,
BA → BB. Some of them correspond to 1 → 1-bifurcation which means that the
corresponding partial differential in the usual Khovanov complex is zero. Thus, so is
the partial differential in question (it is a composition of zero map with a projection).
By parity reasons, for a given atom, there may be 4, 2 or 0 partial differentials (in
the initial cube) which are equal to zero.

If all four differentials are equal to zero, then we get the desired equality for the
composition of the differentials as 0 = 0. If we have 2 maps of type 1 → 1 then
two options are possible. In one of them we have one zero map for each of the two
compositions, which leads to 0 = 0. We call such atoms inessential. In the other case
we have 0 for the composition of the two 1 → 1 maps, but the other composition of
maps must be analyzed.

Thus we are left with 6 essential atoms as shown in Fig. 4.8.
For each of these atoms the usual Khovanov differential produces a commutative

diagram. Now, multi-gradings and multi-dotted gradings come into play. We have
to show that for each atom V the equality of partial differentials q ◦ p = s ◦ r for
the usual Khovanov differentials will hold for the reduced differentials q ′ ◦ p′ =
s′ ◦ r ′. Here p,q, r, s denote the four partial differentials that occur in the Khovanov
complex at the atom in question. Some remarks are in order.

Notation Let us denote the differential of the Khovanov complex by ∂ , and denote
its combination with the projection respecting the multiple grading by ∂multi, its
combination with the projection respecting the vector gradings by ∂vect and denote
the combination with both projections by ∂ ′. We are mostly interested in the cases
when ∂ = ∂ ′ or when ∂ ′ = 0 for some particular element of the chain complex.
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Fig. 4.8 Essential atoms
with 2 vertices

We have to list all atoms with two vertices. Some of them are disconnected in the
sense that there is no edge connecting one vertex to the other.

For such atoms the (anti)commutativity obviously holds.
Now, let us list all connected essential atoms. There are exactly 6 of them, one

non-orientable, 3 orientable with the frame of the unlink and 2 orientable with the
frame of the Hopf link, see Fig. 4.8.

For each atom, the anticommutativity of the virtual Khovanov homology over
Z is checked in [Man07b], which leads to the (anti)commutativity over Z2. Our
goal is to check that the multigradings and dotted multigradings preserve this
(anti)commutativity.

For this sake we must consider all possible labellings of the state circles for
atoms. Each labelling gives a number of integers, for which we take only absolute
values and consider only non-zero ones. This leads to the following multiple grad-
ings P , Q, R, S where P corresponds to the smoothing of the atom where both
crossings have A-type of smoothing, for S both crossings have B-type of smooth-
ing, and for each of Q, R one crossing has A-smoothing and the other one has the
B-smoothing. See Fig. 4.9.

We must look at the differentials depending on P,Q,R,S. Denote the corre-
sponding partial differentials of ∂ ′ by f1, f2, f3, f4, respectively, see Fig. 4.9.

The following lemma holds.
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Fig. 4.9 Each atom
generates a labelling and two
compositions of maps

Lemma 1 If the multiple gradings P , Q, R, S as described above are all equal
(P = Q = R = S), then for all partial differentials corresponding to the atom under
discussion, we have ∂mult = ∂ .

Let us now look at vector gradings. There is one case when ∂vect �= ∂ because of
the following. Assume we have a 1 → 2 or 2 → 1-bifurcation where all three circles
are dotted: two circles have dotting of order k and one circle has dotting of higher
order l > k. This may happen, e.g., in 2 → 1-bifurcation, when the two circles to
merge have arrow label one each (one primary dot) and one target circle has arrow
label 2. In this case ∂vect �= ∂ because the non-trivial secondary dot leads to either
+1 or −1 in the vector grading, hence a non-trivial higher order grading.

Note that this situation does not depend on the particular choice of chain (1 or X

in a given state). It depends only on the labelling in the two neighboring states. We
call this shifting in the vector grading the odd dotting condition.

The following Lemma follows from the definition of the vector grading.

Lemma 2 If for an atom we have P = Q = R = S then the odd dotting condition
does not hold for any of the four edges of the bifurcation diagram.

Now, it turns out that ∂vect in some cases can play the role of the differential, that
is, in some cases, ∂2

vect = 0.
Namely, we have the following

Lemma 3 If the odd dotting condition fails, then ∂ does not decrease the vector
grading, that is, ∂ = ∂vect + ∂̃ where ∂vect preserves the vector grading and ∂̃ in-
creases exactly one of the dotted gradings (one of the vector slots) by 2.

Proof We deal with a 2 → 1-bifurcation or 1 → 2-bifurcation. We may assume that
precisely two of the 3 circles are dotted; moreover, without loss of generality, we
may think that these two circles have a primary dot.

Then we have to list all possible maps m and 
 to see that some of them preserve
the vector grading, and the others increase the vector grading by 2. Note that all
calculations occur in one vector slot since the odd dotting condition fails. In this
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context we can speak freely about the dotted grading and whether it increases or
decreases under a differential.

Let us start with the multiplication. We see that the multiplication of 1 (without
dot) with any of 1, 1̇, X, Ẋ leads to 1, 1̇, X, Ẋ and this multiplication preserves the
dotted grading. Now, 1̇ ⊗ Ẋ (or Ẋ ⊗ 1̇) multiply to get X, which does not change
the dotted grading. Multiplication of X (or Ẋ) with another X (or Ẋ) gives zero.

Finally, 1̇⊗ 1̇ → 1 increases the dotted grading by 2 as well as any of 1̇⊗X → Ẋ

or Ẋ ⊗ 1 → Ẋ.
With comultiplication the situation is quite analogous. When none of the three

circles is dotted, then the dotted grading is preserved under multiplication. If the
circle in the source space and one circle in the target space is dotted, then the co-
multiplication looks like 1̇ → 1̇ ⊗ X + Ẋ ⊗ 1 or Ẋ → Ẋ ⊗ X. Here the only term
where the dotted grading is not preserved, is 1̇ → Ẋ ⊗ 1; in this case it is increased
by 2.

If the circle in the source space is not dotted and both circles in the target space
are dotted then the dotting is preserved for 1 → 1 ⊗ X + X ⊗ 1, and it is increased
by 2 for X → X ⊗ X. �

Altogether Lemmas 2 and 3 lead to the following

Lemma 4 Assume for an atom representing a face of the bifurcation cube the la-
bellings of all four states coincide. Then the restriction of (∂ ′)2 to this atom gives
zero.

Proof We see that the differentials ∂ and ∂mult agree along the edges of such an atom
because of Lemma 1, so the 2-face corresponding to that atom ∂mult (anti)commutes.
Moreover, by Lemma 2, the differential ∂ splits into the sum of two differen-
tials, ∂ ′ + ∂ ′′, where ∂ ′′ strictly increases the multi-dotted grading. This means
that (∂ ′)2 = 0 because (∂ ′)2 is a composition of (∂2) = 0 with the projection to
the “dotted-grading preserving subspace” �

The next lemma is obvious.

Lemma 5 Assume in the setting above P �= S. Then both compositions for our
atom are zero maps because of the multi-grading. Thus, the restriction of (∂ ′)2 to
this atom is zero.

Proof This happens just because ∂ ′ preserves the multi-grading, and so does
(∂ ′)2. �

In the third case we have P = Q = S �= R or P = R = S �= Q.
In this case, we must separately consider all the six atoms (the schema represent-

ing each atom depicted as in Fig. 4.9) to show that the corresponding faces of the
cube anti-commute. We shall draw each atom separately in referring to the appro-
priate Figures in the paper.
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Consider the upper left atom depicted in Fig. 4.8. We leave it to the reader to
label the maps so that f2 and f4 correspond to 1 → 1-bifurcations. The composition
f4 ◦ f2 is then a zero-map, by definition. The remaining two maps are labelled f1
and f3.

Thus, we have two options. If R �= P then the other composition of differentials
is zero because of multiple gradings. If P = R = S then in the A-state we have only
one circle labelled by P as well as in the B-state; in the intermediate state we have
two circles labelled by P and 0.

The composition f3 ◦ f1 behaves as follows. First, we comultiply 1, and then we
multiply the result. If we start with X, we would end up with 0 because X → X ⊗
X → 0 even for the usual differential ∂ . If we had 1 then two options are possible. If
P = 0 then the composition f3 ◦ f1 will lead to 1 → 1 ⊗ X + X ⊗ 1 → X + X = 0.
If P �= 0 then the f3 ◦ f1 will take 1 to 0 as well because of the vector grading: the
vector grading of 1 for a non-zero P differs from that for X by sign.

Thus, for the unique non-orientable essential atom with two vertices we have the
equality f4 ◦ f2 = 0 = f3 ◦ f1, which shows the (anti)commutativity. For the other
atom with the same frame (which corresponds to the Hopf link with the A-state
having 2 circles) the “bad” situation does not occur, just because two single-circle
states can not have different Kj ’s. This completes the analysis of the upper left atom
in Fig. 4.8.

We now consider the remaining five essential atoms in Fig. 4.8. The atoms are all
orientable, so the arrow count (labelling) is additive. Following the methodology of
our previous argument, we can verify that the anticommutativity survives after the
new grading is imposed for these atoms.

The unlink (bottom right in Fig. 4.8) has one circle in the opposite states and two
circles in the intermediate states (see the upper part of Fig. 4.10). The Hopf link
has 2 circles in the A-state, 2 circles in the B-state, and 1 circle in each of the two
intermediate states, as shown in the lower part of Fig. 4.10.

Consider the three atoms having the frame of the unknot with two curls as shown
in Fig. 4.8. The corresponding bifurcation cubes have a state with three circles, two
states with two circles and one state with one circle (that is positioned opposite the
state with three circles). The three possible bifurcation cubes depend on the number
of circles in the initial state of the cube. An example of this is shown in Fig. 4.11.

For the Hopf link, assume that for both 2-circle states the multiple grading is the
same as that of one of the two 1-circle states. By definition, this means that one of
the two circles in one 2-circle state has arrow count zero. Denote the arrow count
for the other circle by p. Consequently, the other way of merging the two circles
gives us p again. This means that the labelling is A = B = C = D = {p}, and we
are in the situation of Lemma 4.

If we have 1-circle in the A-state and 1-circle in the B-state, we may have a
“bad” situation (P = Q = S �= R) (not covered by Lemmas 4 and 5) occurring as
described below.

First, note that if P = Q = S then the A-state with two circles should have la-
belling {P } as well as the B-state, whence the labelling for two circles correspond-
ing to Q should be {P,0}. We are interested in the case when the other intermediate
state has labelling R = (α,β), say, (α,P ± α), where α �= 0.
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Fig. 4.10 The two atoms
with the shadow of the Hopf
link

In this case the composition f3 ◦ f1 is zero. Let us consider the composition
f4 ◦ f2.

First, let us consider the partial differentials corresponding to ∂ . If we apply it
to X, we get 0, because the comultiplication f1 gives us X ⊗ X and the further
multiplication gives zero. On the other hand, the composition f4 ◦ f2 takes 1 to 0
because we first get 1 ⊗ X + X ⊗ 1, which is then mapped to 2X = 0. Now, when
we pass from ∂ to ∂ ′, we see that both multiplication and comultiplication either
preserve the vector grading or increase it by 2, we should compare the dotting of
the initial 1 and the final X. If they both are zero, then the composition takes 1 to
2X = 0, otherwise, 1 is taken to 0 because of the dotted gradings.

Note that this is precisely the case where we need our coefficients to be defined
over Z2.

Finally, all 3 atoms with the frame an unknot (drawn in the middle of Fig. 4.8)
are to be double-checked.

The three possibilities are: the A-state has 3 circles, or it has 2 circles or it has 1
circle, see Fig. 4.11.

Assume P = Q = S (the case P = R = S is analogous because of the symme-
try). We claim that in this case R = P . Indeed, since we have 3 circles in the A-state,
and one circle in the B-state, we see that the labellings of the circles are {p,0,0}
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Fig. 4.11 An atom with 2 vertices

Fig. 4.12 An atom with 2 vertices

in the A-state and {p} in the B-state. This yields that R = {p,0} = {p}, and the
(anti)commutativity follows from Lemma 4.

The atom when we have three circles in the B-state is analogous.
In fact, because of the symmetry, we can reduce these three cases to two cases:

when we have 1 and 3 at the ends, or when we have 2 and 2 at the ends.
Now, we are left with the example shown in Fig. 4.12.
We are interested in the case when P = S and either Q �= P or R �= P .
Note that each of P and S consists of 2 circles. Assume P = S = {a, b}.
It is easy to see that if R = P = S then Q = P = S = R. Indeed, if R = S, this

means that both P and S are of the form {a,0} (or both are {b,0}) which yields
Q = {a,0,0} = P = S.

Thus we are interested in the case when a �= 0, b �= 0 and Q = P = S. This
means that Q = {a,0, b}, whence R may be of the form {|a ± b|}. In this case
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the composition f3 ◦ f1 = 0 because Q �= P . Let us show that the composition
f4 ◦ f2 = 0.

Recall that both f4 and f2 are compositions of the partial differential ∂ with the
projection map preserving the multi-grading and the multi-dotted grading.

Regardless any grading, f4 ◦ f2 would take 1 ⊗ 1 → 1 ⊗ X + X ⊗ 1, 1 ⊗ X →
X ⊗ X, X ⊗ 1 → X ⊗ X.

Now we note that none of these maps survives after applying the projection with
respect to vector grading. Indeed, consider for instance the map from 1 ⊗ 1 to the
summand 1 ⊗ X. In the source space we had 1 and 1 with vector grading coming
from labelling a and b; let us denote it by 1a +1b. For 1⊗X we have either 1a ⊗Xb

or 1b ⊗ Xb depending on the circle having label a.
Here 1a denotes the (0, . . . ,0,−1,0, . . . ,0) with the only non-trivial entry on k-

th position, a = 2k−1m for odd m. Analogously, Xa denotes (0, . . . ,0,+1,0, . . . ,0)

with the only non-trivial entry on k-th position.
It is crucially important here that neither a nor b is equal to zero. This means that

1a + 1b �= 1a + Xb just because 1b �= Xb.
The same happens in the other cases.
This proves that f4 ◦ f2 = 0, and the atom is (anti)commutative because both

compositions are zeroes.
This completes the check of cases of the different atoms corresponding to faces

of the bifurcation cube.

Part 2. Proof that the Homology is Invariant Under Reidemeister Moves Be-
low, we shall sketch the outline of the main ideas of the proof. The main features
mirror the invariance proof for the usual Khovanov homology along the lines of
[BN02].

The invariance under the first Reidemeister move is based on the following two
statements which will held when adding a small curl:

1. The mapping 
 is injective.
2. The mapping m is surjective.

In fact, the last two conditions hold when the small circle has the trivial arrow
count, and this means that it does not contribute to any of the gradings.

Indeed, consider the complex

[[ ]] =
(
[[ ]] 
→ [[ ]]{1}

)
. (4.4)

The usual argument goes as follows: the complex in the right hand side con-
tains a 
-type partial differential, which is injective. Thus, the complex [[ ]] is

killed, and what remains from [[ ]] is precisely (after a suitable normalisation)

the homology of [[ ]].
But 
 is injective because for any l ∈ {1,X} we have 
(l) = l ⊗ X +

〈other terms〉, where the second term X in l ⊗ X corresponds to the small circle.
But in our situation with dotted circles, this happens only if the small circle is

not dotted. But if the small circle has non-trivial arrow count (say, it appears after
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splitting a circle without dots into two circles with primary dot each), it would lead,
say, to 
 : X → 0, because Ẋ ∧ Ẋ has another vector grading (which is greater by
2 than the grading of X).

An analogous situation happens with the other curl

[[ ]] =
(
[[ ]] m→ [[ ]]{1}

)
. (4.5)

Here we need that the mapping m be surjective; actually, it would suffice that the
multiplication by 1 on the small circle is the identity. But this happens if and only if
the small circle has arrow count 0, that is, we have 1, not 1̇.

Quite similar things happen for the second and for the third Reidemeister moves.
The necessary conditions can be summarised as follows:

The small circles which appear for the second and the third Reidemeister move
should not be dotted, and similar curves for corresponding smoothings of the RHS
and the LHS of any Reidemeister move have the same dotting.

The explanation comes a bit later. Now, we see that this condition is obviously
satisfied when the dotting comes from a cohomology class, and not necessarily the
Stiefel-Whitney cohomology class for non-orientable surface. Any homology class
should do.

Thus (modulo some explanations given below) we have proved the following

Theorem 5 Let M → M be a fibration with I -fibre so that M is orientable and
M is a 2-surface. Let h be a Z2-cohomology class and let g be the corresponding
dotting. Consider the corresponding grading on [[K]]. Then for a link K ⊂ M the
homology of [[K]]g is invariant under isotopy of K in M (with both the orientation
of M and the I -bundle structure fixed) up to some shifts of the usual (quantum)
grading and height (homological grading).

Explanation for the Second and the Third Moves We have the following picture
for the Reidemeister move for [[ ]]:

[[ ]]{1} m−→ [[ ]]{2}

 ↑ ↑

[[ ]] −→ [[ ]]{1}.
(4.6)

Here we use the notation {·} for the degree shifts, see p. 102.

[[ ]]{1} m−→ [[ ]]{2}

 ↑ ↑

[[ ]] −→ [[ ]]{1}.
(4.7)



4 On Two Categorifications of the Arrow Polynomial for Virtual Knots 121

This complex contains the subcomplex C′:

C′ =
[[ ]]1{1} m−→ [[ ]]{2}

↑ ↑
0 −→ 0

(4.8)

if the small circle is not dotted.
From now on 1 denotes the mark on the small circle. Then the acyclicity of C′ is

evident. Factoring C by C′, we get:

[[ ]]{1}/1=0 −→ 0


 ↑ ↑
[[ ]] −→ [[ ]]{1}.

(4.9)

In the last complex, the mapping 
 directed upwards, is an isomorphism (when
our small circle is not dotted). Thus the initial complex has the same homology
group as [[ ]]. This proves the invariance under �2.

The argument for �3 is standard as well; it relies on the invariance under �2 and
thus we also require that the small circle is not dotted.

4.7 Applications

The complex constructed in this paper allows us to prove some properties of virtual
knot diagrams coming from the Kauffman bracket, the Khovanov homology and the
arrow polynomial, see [Man05b, Kau09, Man05a, Tur87, DK09].

First, the consideration of the chain spaces and arrow counts immediately leads
to the following theorem.

Theorem 6 Assume K is a virtual link diagram, and assume there is a non-trivial
homology class of [[K]] with multiple grading {k1, . . . , kn}, such that

∑
i |kj | = k.

Then any diagram of K has at least k virtual crossings.

Besides, the following generalization of the Kauffman-Murasugi Theorem says

Theorem 7 Let K be a virtual link diagram with a connected shadow (that is,
every classical crossing of K can be connected to any other classical crossing by
a sequence of arcs starting and ending at classical crossings and going through
virtual crossings).

Let g be the minimal oriented atom genus for the diagram of K and let n be the
number of crossings in the diagram K . Then span〈K〉 ≤ 4n−4g, where span stands
for the difference between the leading degree and the lowest degree of the Kauffman
bracket with respect to the variable a.
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The condition of Theorem 7 rules out the split link diagrams. The same argument
(see [Man05b, Man05a, Man07a]) leads to

Theorem 8 For K as in Theorem 7, the span of the arrow polynomial of K taken
with respect to a does not exceed 4n − 4g.

On the other hand, the genus of the atom estimates from above the thickness
of the Khovanov homology: the number of diagonals with slope two in coordinates
(homological grading, quantum grading) which appear between the leftmost and the
rightmost diagonal having a non-trivial homology group. The estimate in [Man07a]
says that this thickness does not exceed 2 + g. Similar considerations lead to the
same estimate for the thickness of [[·]] (taking with respect to the old gradings,
after forgetting all new gradings of non-trivial homology groups):

Theorem 9 For K as in Theorem 7, the thickness of [[·]] does not exceed 2 + g.

Theorems 8 and 9 together lead to the following

Theorem 10 Assume the diagram K represents a split virtual link (e.g. virtual
knot). Then, if K having span of the arrow bracket equal to 4n − 4g and the thick-
ness of the extended Khovanov homology equal to 2+g then this diagram is minimal
with respect to the number of classical crossings.

It is an interesting question to determine if there exist examples where the theo-
rems stated above give sharper estimates than the already existing invariants.

4.8 Open Questions

The methods described in the present paper allow us to extend the arrow counts in
the arrow polynomial to the level of gradings of a link homology theory. We can
recover the arrow polynomial from this link homology by taking the Euler charac-
teristic, forgetting vector gradings and taking the multiple gradings as arrow counts.
In this sense, our link homology theory is a true categorification of the arrow poly-
nomial.

There is a more delicate invariant, the extended bracket polynomial, [Kau09],
which generalizes the arrow polynomial and takes geometrical information into ac-
count (instead of just arrow counts). Can this polynomial be categorified by using
techniques given in the present paper?

Another question is whether there is a categorification of the arrow polyno-
mial (or the extended bracket polynomial) with integral coefficients. The only point
where we needed the Z2 coefficients was the atom in Fig. 4.11 where the vector
gradings and the multiple gradings together did not make the complex over Z well
defined. However, in a similar situation one gets the commutativity of the corre-
sponding face of the atom for odd Khovanov homology theory, [ORS07]. Thus, the



4 On Two Categorifications of the Arrow Polynomial for Virtual Knots 123

question of generalizing odd Khovanov homology theory for virtual links gets one
more motivation: it would be useful to have it for constructing a categorification of
the arrow polynomial with integral coefficients.

Another issue of investigation is the notion of parity of crossings, developed re-
cently by Manturov, [Man09a, Man09b] (see also [Kau04] for a precursor to this
approach). The idea is to distinguish between two types of crossings, the even ones,
and the odd ones according to some axioms. This approach turns out to be extremely
powerful in recognizing some virtual knots and creating new virtual knot invariants.
There is a natural way to generalize the arrow polynomial by using the parity argu-
ment. This, and a corresponding categorification will be discussed in a subsequent
paper.
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Chapter 5
An Adelic Extension of the Jones Polynomial

Jesús Juyumaya and Sofia Lambropoulou

Abstract In this paper we represent the classical braids in the Yokonuma–Hecke
and the adelic Yokonuma–Hecke algebras. More precisely, we define the comple-
tion of the framed braid group and we introduce the adelic Yokonuma–Hecke al-
gebras, in analogy to the p-adic framed braids and the p-adic Yokonuma–Hecke
algebras introduced in Juyumaya and Lambropoulou (Topol. Appl. 154:1804–1826,
2007; arXiv:0905.3626v1, 2009). We further construct an adelic Markov trace, anal-
ogous to the p-adic Markov trace constructed in Juyumaya and Lambropoulou
(arXiv:0905.3626v1, 2009), and using the traces in Juyumaya (J. Knot Theory
Ramif. 13:25–29, 2004) and the adelic Markov trace we define topological invari-
ants of classical knots and links, upon imposing some condition. Each invariant
satisfies a cubic skein relation coming from the Yokonuma–Hecke algebra.

5.1 Introduction

The classical braid group on n strands Bn is generated by the elementary braids
σ1, . . . , σn−1, under the defining braid relations:

σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi for |i − j | > 1.
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Geometrically, σi is a positive crossing between the ith and the (i + 1)st strand and
σ−1

i is the opposite crossing. The operation in Bn corresponds to the concatenation
of two braids and the braid relations reflect allowed topological moves. Closing a
braid β by joining with simple arcs the corresponding top and bottom endpoints
of β gives rise to an oriented knot or link, denoted β̂ . By the classical Alexander
theorem, an oriented knot or link can be also isotoped to the closure of a braid.
Isotopy is the notion of topological equivalence for knots and links. Further, by the
classical Markov theorem, isotopy classes of oriented knots or links are in bijective
correspondence with equivalence classes of braids in

⋃
n Bn under the two moves:

1. Conjugation in Bn: αβ ∼ βα

2. Markov move: α ∼ ασn
±1, α ∈ Bn

Using the above and Ocneanu’s Markov trace on the Iwahori–Hecke algebra of
type A, Hn(q), V.F.R. Jones constructed in [Jon87] the 2-variable Jones or HOM-
FLYPT polynomial, a new isotopy invariant of oriented knots and links. The algebra
Hn(q) can be described naturally as a quotient of the group algebra CBn over the
quadratic relations:

g2
i = (q − 1)gi + q for all i (5.1)

The Yokonuma–Hecke algebra Yd,n(u), d ∈ N, is a similar algebraic object and
has a natural topological interpretation as quotient of the modular framed braid
group algebras CFd,n (classical framed braids with framings modulo d) over cer-
tain quadratic relations, see (5.3). Originally, the algebras Yd,n(u) were introduced
by T. Yokonuma [Yok67] in the representation theory of finite Chevalley groups
and they are natural generalizations of the Hecke algebras Hn(q). Indeed, for d = 1
the algebra Y1,n(u) coincides with the algebra Hn(q). In the above topological in-
terpretation, d = 1 means all framings zero, so the algebra Y1,n(u) is really re-
lated to classical braids (with no framings). In [Juy04] Juyumaya constructed a
Markov trace on the algebras Yd,n(u), which for d = 1 coincides with the Oc-
neanu trace. Further, in [JL07] the authors introduced the p-adic framed braids
and the p-adic Yokonuma–Hecke algebras, while in [JL09] they constructed a p-
adic Markov trace. This was used, together with the trace in [Juy04], in order to
construct Jones-type isotopy invariants of framed links, upon imposing a certain
E-condition to the trace parameters, according to the Markov braid equivalence.
Finally, in [JL08] they constructed a monoid representation of the singular braid
monoid to Yd,n(u). Then the trace of [Juy04] is also a Markov trace on the sin-
gular braid monoid, so Jones-type invariants for singular knots were constructed,
assuming the E-condition.

In the present paper we first relate the Yokonuma–Hecke algebras Yd,n(u), for
d �= 1, to classical knots and links via a natural homomorphism of the classical
braid group (5.12). We further define the completion of the framed braid group
and we introduce the adelic Yokonuma–Hecke algebra (Sect. 5.2), into which the
classical braid group maps also homomorphically. Then, using the Markov traces
in [Juy04] (for different values of d) we construct an infinite family of 2-variable
Jones-type invariants of oriented classical knots and links (Sect. 5.5), upon impos-
ing the E-condition (Sect. 5.4). We also construct, in analogy to [JL09], an adelic
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Markov trace (Sect. 5.3), which we use for defining an isotopy invariant of classical
knots and links, an adelic extension of the 2-variable Jones polynomial (Sect. 5.5),
upon imposing the E-condition. The E-condition and the E-system are discussed
in Sect. 5.4. As far as the braid generators are concerned, the first ‘closed’ relations
in the Yokonuma–Hecke algebra are cubic relations (5.26), which also pass to the
level of each invariant in the form of a cubic skein relation (5.28).

The above-mentioned results are relatively new and computations with the alge-
bras Yd,n(u) are very complicated. We are now in the process of creating a comput-
ing package. Yet, we believe that our invariants are different from the HOMFLYPT
polynomial, mainly for the following reasons. Firstly, the differences of the two al-
gebras, Hn(q) and Yd,n(u), and of their quadratic relations. The structure of the
Yokonuma–Hecke algebra is much more subtle and complicated than that of the
classical Hecke algebra, even made ‘framed’. In the latter case the quadratic re-
lations (5.1) would remain the same as in Hn(q), hence we would talk about the
framed HOMFLYPT polynomial. Secondly, the appearance of the cubic relations
on the Yokonuma–Hecke algebra level, as the first ‘closed’ relations of the braid
generators, which induce a cubic skein relation for each invariant. Finally, the mere
fact that we needed to impose the E-condition to the trace parameters in order to ob-
tain a knot invariant, something not needed in the case of the Ocneanu trace. In fact,
the trace in [Juy04] is the first Markov trace in the literature that does not rescale di-
rectly in order to yield knot invariants. (Even the fact that the complicated E-system
has non-trivial solutions was a surprise to us, see Sect. 5.4 and [JL09].)

In an effort to keep this paper light we omit some technical details, which are
mostly to be found in [JL09].

The Yokonuma–Hecke algebras are very versatile algebraic objects, in the sense
that they can be used for completely different topological interpretations: to framed
braids, to classical braids, to singular braids and, most recently, to transversal and
virtual braids, and they comprise the only examples we know of algebras having
this property.

5.2 An Adelic Representation of the Braid Group

5.2.1 The Yokonuma–Hecke Algebra

Fix u ∈ C\{0,1}. Given two positive integers d and n, we denote Yd,n = Yd,n(u)

the Yokonuma–Hecke algebra, which is a unital associative algebra over C, defined
by the generators:

1, g1, . . . , gn−1, t1, . . . , tn
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subject to the following relations:

gigj = gjgi for |i − j | > 1
gigjgi = gjgigj for |i − j | = 1

ti tj = tj ti for all i, j

tj gi = gitsi(j) for all i, j

tdj = 1 for all j

(5.2)

where si(j) is the result of applying the transposition si = (i, i + 1) to j (in partic-
ular tigi = giti+1 and ti+1gi = giti ), together with the extra quadratic relations:

g2
i = 1 + (u − 1)ed,i − (u − 1)ed,igi for all i (5.3)

where

ed,i := 1

d

d−1∑
m=0

tmi t−m
i+1. (5.4)

From the defining relations (5.2) and (5.3) it is easy to check that the elements
ed,i are idempotents and that they satisfy the following relations (compare with
Lemma 1 in [JL08]).

eiej = ej ei

eigj = gj ei for j = i and for |i − j | > 1
ejgigj = gigj ei for |i − j | = 1.

(5.5)

Remark 1 For all 1 ≤ i ≤ n, let Cd,i = {1, ti , t
2
i , . . . , td−1

i } denote the cyclic group
containing all possible framings modulo d of the ith strand of a framed braid on n

strands. Notice that Cd,i � Z/dZ for all i. We also define the group H := Cd,1 ×
Cd,2 ×· · ·×Cd,n � (Z/dZ)n. From the defining relations among the ti’s we deduce
that the groups Cd,i and H can be regarded inside Yd,n.

The modular framed braid group Fd,n contains framed braids on n strands, but
with framings modulo d . It is generated by the braiding generators σi and the fram-
ing generators t1, . . . , tn, where tj stands for the identity braid with framing one on
the j th strand and framing zero on the other strands. Corresponding the braiding
generators σi to the algebra generators gi , relations (5.2) furnish a presentation for

Fd,n and the Yokonuma–Hecke algebra Yd,n is a quotient of the modular framed
braid group algebra CFd,n over the quadratic relations (5.3). The elements ed,i are
in the algebra CFd,n as well as in the quotient algebra Yd,n and they are expressions
of the framing generators ti , ti+1.

5.2.2 The Adelic Yokonuma–Hecke Algebra

Let N denote the set of positive integers regarded as a directed set with the usual
order. Let also N

∼ denote the directed set of positive integers regarded with respect
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to the partial order defined by the divisibility relation. The notation d|d ′ means d

divides d ′.
For d , d ′ ∈ N with d|d ′ we consider the natural connecting ring homomor-

phism ρd ′
d , defined in [JL09], (1.17):

ρd ′
d : Yd ′,n −→ Yd,n (5.6)

More precisely, we denote ϑd ′
d the natural epimorphism:

ϑd ′
d : Z/d ′

Z −→ Z/dZ

m 	→ m(modd)
(5.7)

The inverse limit Ẑ of the inverse system of groups (Z/dZ, ϑd ′
d ) indexed by N

∼ is
called the completion of Z:

Ẑ = lim←−
d∈N∼

Z/dZ

Our references for inverse limits are mainly [RZ00] and [Wil98].
By componentwise multiplication, epimorphism (5.7) defines the epimorphism:

�d ′
d : (Z/d ′

Z)n −→ (Z/dZ)n (5.8)

Extension to the Bn-part by the identity map yields the epimorphism:

�d ′
d · id : Fd ′,n −→ Fd,n (5.9)

Definition 1 The completion F∞,n of the framed braid group Fn is defined as the
inverse limit of the inverse system of groups (Fd,n,�

d ′
d · id):

F∞,n := lim←−
d∈N∼

Fd,n

The linear extension of map (5.9) yields an algebra epimorphism:

�d ′
d : CFd ′,n −→ CFd,n (5.10)

Remark 2 The braid group Bn acts on Ẑ
n by permuting the factors, so we may

consider the group Ẑ
n

� Bn. It is easy to construct an isomorphism between the
groups Ẑ

n
� Bn and F∞,n (proof analogous to Theorem 1 in [JL07]). We note,

though, that this isomorphism does not carry through on the level of the algebras
C(Ẑn

� Bn) and lim←−d∈N∼ CFd,n (see [JL09] for more details).

Passing now to the quotient algebras by relations (5.3) we obtain the algebra
epimorphism (5.6).
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Definition 2 The adelic Yokonuma–Hecke algebra Y∞,n(u) = Y∞,n is defined as
the inverse limit of the inverse system of rings (Yd,n, ρ

d ′
d ) indexed by N

∼:

Y∞,n = lim←−
d∈N∼

Yd,n

Hence, elements in Y∞,n are infinite sequences of elements in the algebras Yd,n,
for d ∈ N

∼, which are coherent in the sense of maps (5.7)–(5.6). Moreover, the defi-
nition of the connecting maps ρd ′

d do not involve the elements gi , so we shall denote
also by gi the elements in Y∞,n corresponding to the infinite constant sequence (gi).

For all 0 ≤ i ≤ n − 1 define now the groups Hd,i as follows:

Hd,i = {1, ti t
−1
i+1, t

2
i t−2

i+1, . . . , t
d−1
i ti+1}

In this notation, the element ed,i in (5.4) is the average of the elements of the group
Hd,i :

ed,i = 1

d

∑
x∈Hd,i

x

Then ρd ′
d (Hd ′,i ) = Hd,i for all d|d ′. Hence, we deduce the following result.

Lemma 1 For all i and for d , d ′ such that d|d ′, we have:

ρd ′
d (ed ′,i ) = ed,i .

We shall denote by ei the sequence (ed,i)d∈N∼ in Y∞,n:

ei := (ed,i )d∈N∼ (5.11)

It follows easily from relations (5.5) and (5.3) that the adelic elements ei satisfy
the following relations (compare with Proposition 10 and Theorem 3 in [JL07]).

Proposition 1 For all i the following relations hold in Y∞,n:

1. eiej = ej ei

2. eigj = gj ei for j = i and for |i − j | > 1
3. ejgigj = gigj ei for |i − j | = 1
4. g2

i = 1 + (u − 1)eigi − (u − 1)gi .

5.2.3 Representing the Braid Group

The defining relations of Yd,n imply that the map:

	d,n : Bn −→ Yd,n

σi 	→ gi
(5.12)
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defines a representation of the classical braid group Bn in Yd,n. Under this represen-
tation the generators gi of the algebra Yd,n correspond to the braid generators σi .
The generators tj , though, loose their initial topological interpretation as framing
generators and they are just considered formally as elements in the algebra.

Further, for all d, d ′, d ′′ such that d|d ′ and d ′|d ′′ we have the following commu-
tative diagram:

· · · Bn Bn Bn · · ·

· · · Yd,n Yd ′,n Yd ′′,n · · ·

	d,n

Id

	d′,n

Id

	d′′,n

ρd′
d

ρd′′
d′

(5.13)

By taking inverse limits in the above diagram we obtain the following represen-
tation of the classical braid group Bn in the adelic Yokonuma–Hecke algebra:

	∞,n : Bn −→ Y∞,n (5.14)

where:

	∞,n := lim←−
d∈N∼

	d,n

5.3 An Adelic Markov Trace

5.3.1 The Modular Markov Trace trd

It is known that the Yokonuma–Hecke algebra supports a Markov trace [Juy04].
More precisely, for fixed d we consider the inductive system (Yd,n)n∈N associated
to the natural inclusions Yd,n ⊂ Yd,n+1 for all n ∈ N. Let Yd,∞ be the corresponding
inductive limit. In [Juy04] the following theorem is proved.

Theorem 1 (Juyumaya 2004) Let z, x1, . . . , xd−1 ∈ C and let d be a positive integer.
For all n ∈ N there exists a unique linear map trd = (trd,n)n∈N:

trd : Yd,∞ −→ C

satisfying the rules:

trd,n(ab) = trd,n(ba)

trd,n(1) = 1

trd,n+1(agn) = z trd,n(a) (a ∈ Yd,n)

trd,n+1(atmn+1) = xmtrd,n(a) (a ∈ Yd,n , 1 ≤ m ≤ d − 1).
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The proof of Theorem 1 rests on the fact that the algebra Yd,n+1 admits an induc-
tive linear basis, where either gn or tmn+1 appears at most once. Note that, for d = 1
the trace restricts to the first three rules and it coincides with Ocneanu’s trace on
the Iwahori–Hecke algebra, which was used in [Jon87] to construct the 2-variable
or HOMFLYPT Jones polynomial for oriented classical knots and links.

5.3.2 The Adelic Markov Trace tr∞

Let R be the polynomial ring C[z] and let R[Xd ] be the polynomial ring with co-
efficients in R and variables xa , where a ∈ Z/dZ. Let also d|d ′. The natural map
xa 	→ xb where b := ϑd ′

d (a) (recall (5.7)), defines a ring epimorphism:

ξd ′
d : R [Xd ′] −→ R [Xd ] (5.15)

We now have the following result (compare with Lemma 7 in [JL09]).

Lemma 2 The family (R[Xd ], ξd ′
d ) indexed by N

∼, is an inverse system.

We shall then consider the inverse limit:

lim←−
d∈N∼

R[Xd ]

Notice that lim←−d∈N∼ R[Xd ] can be regarded as the polynomial ring over C in the

variables z and xα , where α ∈ Ẑ. The ring lim←−d∈N∼ R[Xd ] turns out to be an integral
domain.

Now, for all n ∈ N and for all d, d ′, d ′′ such that d|d ′ and d ′|d ′′, we have the
following commutative diagram (compare with Lemma 6 [JL09]):

· · · Yd,n Yd ′,n Yd ′′,n · · ·

· · · R [Xd ] R [Xd ′] R [Xd ′′ ] · · ·
trd,n

ρd′
d

trd′,n

ρd′′
d′

trd′′,n
ξd′
d

ξd′′
d′

(5.16)

Finally, we note that there are natural inclusions Y∞,n ⊂ Y∞,n+1, for all n ∈ N.
Let

Y∞ := lim−→
n∈N

Y∞,n

the associated inductive limit. We then have the following.

Theorem 2 There exists a unique linear Markov trace tr∞ = (tr∞,n)n∈N,

tr∞ : Y∞ −→ lim←−
d∈N∼

R[Xd ]
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such that

tr∞,n(ab) = tr∞,n(ba)

tr∞,n(1) = 1

tr∞,n+1(agn) = z tr∞,n(a)

tr∞,n+1(ayn+1) = xy tr∞,n(a)

where a, b ∈ Y∞,n and yn+1 is the element in Ẑ
n+1 with y ∈ Ẑ in the position n+ 1

and 0 otherwise, that is: yn+1 = (0, . . . ,0, y).

Proof It follows immediately from the commutative diagram (5.16) and from the
existence and uniqueness of the traces trd . �

5.4 The E-Condition

5.4.1 Why E-Condition

The representations (5.12) and (5.14) of the braid group through the classical and
the adelic Yokonuma–Hecke algebras composed with the Markov traces trd and
tr∞ of Theorems 1 and 2 map classical braids to complex polynomials. In view of
the Alexander and Markov theorems for classical braids we would like to construct
isotopy invariants for classical oriented knots and links. According to the Markov

Theorem, such an invariant has to agree on the links α̂, α̂σn and ̂
ασ−1

n , for any
α ∈ Bn. Following Jones’ construction of the 2-variable Jones polynomial for clas-
sical knots [Jon87], we will try to define knot isotopy invariants by re-scaling and
normalizing the traces trd and the adelic trace tr∞. By the equation:

g−1
i = gi − (u−1 − 1) ed,i + (u−1 − 1) ed,i gi (5.17)

we have:

trd(αg−1
n ) = trd(αgn) − (u−1 − 1)trd(αed,n) + (u−1 − 1)trd(αed,ngn). (5.18)

In order that the invariant agrees on the closures of the braids ασn
−1 and ασn we

need that trd(αg−1
n ) factorizes through trd(α), just as trd(αgn) does. Indeed, for the

first term we have: trd(αgn) = z trd(α). Further:

trd(αed,ngn) = 1

d

d−1∑
m=0

trd(αtmn t−m
n+1gn) = 1

d

d−1∑
m=0

z trd(α) = z trd(α) (5.19)

since trd(αtmn t−m
n+1gn) = trd(αtmn gnt

−m
n ) = z trd(αtmn t−m

n ) = z trd(α). So, we need
that trd(αed,n) also factorizes through trd(α). Unfortunately, we do not have, in
general, such a nice formula for trd(αed,n). The underlying reason on the framed
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braid level (which is the natural interpretation for elements in Yd,n) is that ed,n

involves the nth strand of the braid α. Yet, by imposing some conditions on the
indeterminates xi of the trace trd it is possible to have this factorization.

5.4.2 The E-System

Set Xd = {x0, x1, . . . , xd−1} a set of d complex numbers. We shall say that Xd

satisfies the E-condition if the xi ’s are solutions of the following non-linear system
of d − 1 equations:

E(1)
d = x1E(0)

d

E(2)
d = x2E(0)

d
...

E(d−1)
d = xd−1E(0)

d

(5.20)

where E(m)
d is the polynomial in variables x1, . . . ,xd−1 defined as:

E(m)
d =

d−1∑
s=0

xm+sxd−s (5.21)

where, by definition, x0 = xd = 1, and the sub-indices are regarded modulo d . We
shall refer to the system above as the (E,d)-system or simply the E-system. For
example, in the case d = 3 we have the E-system:

x1 + x2
2 = 2x2

1x2

x2
1 + x2 = 2x1x2

2

We then have the following result (compare with Theorem 6 in [JL09]).

Theorem 3 If Xd,S is a solution of the E-system then for all α ∈ Yd,n we have:

trd(αed,n) = trd(α) trd(ed,n).

For the proof of Theorem 3 we need to consider all different cases for α being an
element in the inductive basis of Yd,n(u). See [JL09] for details.

We still need to establish, of course, that the set of solutions of the E-system is
non-empty. For a ∈ Z/dZ we denote expa the exponential character of the group
Z/dZ, that is:

expa(k) := cos
2πak

d
+ i sin

2πak

d
(k ∈ Z/dZ).
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Theorem 4 (Gérardin 2009) The solutions of system (5.20) are parametrized by
the non-empty subsets S of Z/dZ. More precisely, a subset S defines the solution
Xd,S = {x0, x1, . . . , xd−1}, where:

xk = 1

|S|
∑
s∈S

exps(k) (0 ≤ k ≤ d − 1).

Proof See Appendix in [JL09]. �

Let Xd,S be a solution of the E-system. A direct computation yields that the
value of the trd on ed,i (with respect to Xd,S) is:

trd(ed,i) = 1

|S| (1 ≤ i ≤ n − 1). (5.22)

For a thorough discussion and full proofs related to the E-condition and the
E-system we refer the reader to [JL09].

5.4.3 Lifting Solutions of the E-System

For d|d ′ we denote sd
d ′ a section map of the natural epimorphism ϑd ′

d of (5.7). By
taking a section sd

d ′ any solution of the (E,d)-system can be lifted trivially to a so-
lution of the (E,d ′)-system. Indeed: If Xd,S is a solution of the (E,d)-system, then
Xd ′,S′ is a solution of the (E,d ′)-system, where S ′ := sd

d ′(S). A more interesting

lifting can be constructed as follows. Define Sd
d ′ = {sd

d ′(a) + b ;a ∈ S, b ∈ kerϑd ′
d }.

Then we define the lifting Xd,d ′,S of Xd,S as:

Xd,d ′,S := Xd ′,Sd
d′ (S ⊆ Z/dZ) (5.23)

Notice that |Xd,d ′,S | = |S|d ′/d and Xd,d,S = Xd,S .

Lemma 3 For d|d ′|d ′′ and S non-empty subset of Z/dZ we have:

Xd,d ′′,S = Xd ′,d ′′,S′

where S′ := Sd
d ′ .

Proof According to the definition of XS,d it is enough to prove that:

(
Sd

d ′
)d ′

d ′′ = Sd
d ′

Now the elements in (Sd
d ′)d

′
d ′′ are in the form z := sd ′

d ′′(x) + y, where x ∈ Sd
d ′ and y ∈

kerϑd ′′
d ′ . The element x is in the form x = sd

d ′(μ) + ν, where μ ∈ S and ν ∈ kerϑd ′
d .
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So we can re-write z as:

z = sd ′
d ′′

(
sd
d ′(μ) + ν

)
+ y = sd ′

d ′′
(

sd
d ′(μ)

)
+ sd ′

d ′′ (ν) + y = sd
d ′′ (μ) + sd ′

d ′′ (ν) + y

But sd ′
d ′′(ν) + y belongs to the kerϑd ′′

d ; hence z ∈ Sd
d ′ . Thus (Sd

d ′)d
′

d ′′ = Sd
d ′ . �

We showed that solutions of the E-system lift to solutions on the adelic level.

5.5 An Adelic Extension of the Jones Polynomial

5.5.1 Isotopy Invariants from trd

Given a solution Xd,S of the E-system, (5.18) can be rewritten as follows, using
Theorem 3:

trd(αg−1
n ) = z + (u − 1)ζd,S

u
trd(α) (5.24)

where, for all i:

ζd,S := trd(ed,i) = 1

|S| .

Let now L be the set of oriented links in S3. Recall that by the Alexander theorem
every link type may be represented by a closed braid. For the solution Xd,S of the
E-system we wish to define a link isotopy invariant �d,S . In order that �d,S(α̂σn) =
�d,S(

̂
ασ−1

n ), for α ∈ Bn, we apply a re-scaling via the homomorphism:

δ : Bn −→ Yd,n

σi 	→ √
λgi

(5.25)

where:

λ := z − (1 − u)ζd,S

uz

Finally, in order that �d,S(α̂σn) = �d,S (̂α) we need to do a normalization. So, we
define the following map on the set L.

Definition 3 Let α ∈ Bn, any n. We define the map �d,S on the closure α̂ of α as
follows:

�d,S (̂α) :=
(

1 − λu√
λ(1 − u)ζd,S

)n−1

(trd ◦ δ) (α)
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Equivalently, setting

D := 1 − λu√
λ(1 − u)ζd,S

we can write:

�d,S(̂α) = Dn−1(
√

λ)ε(α)trd(	d,n(α))

where ε(α) is the algebraic sum of the exponents of the σi ’s in the braid word α and
where 	d,n was defined in (5.12).

Theorem 5 For any solution Xd,S of the E-system, �d,S is a 2-variable isotopy
invariant of oriented links in S3, depending on the variables u, z.

Proof We need to show that �d,S is well-defined on isotopy classes of oriented
links. According to the Markov theorem, it suffices to prove that �d,S is consistent
with moves (i) and (ii). From the facts that ε(αα′) = ε(α′α) and trd(ab) = trd(ba),
it follows that �d,S respects move (i). Let now α ∈ Bn. Then ασn ∈ Bn+1 and
ε(ασn) = ε(α) + 1. Hence:

�d,S(α̂σn) = Dn(
√

λ)ε(ασn) trd(	d,n(ασn)) = Dn(
√

λ)ε(α)+1 trd(	d,n(α)gn)

= D
√

λz�d,S (̂α)

where we used that trd(	d,n(α)gn) = z tr(	d,n(α)). Now:

z = (1 − u)ζd,S

1 − λu
,

so:

D
√

λz = 1.

Therefore, �d,S(α̂σn) = �d,S(̂α). Finally, we will prove that �d,S(
̂
ασ−1

n ) =
�d,S (̂α). Indeed:

�d,S(
̂
ασ−1

n ) = Dn(
√

λ)ε(ασ−1
n )trd(	d,n(ασ−1

n )) = Dn(
√

λ)ε(α)−1 trd(	d,n(α)g−1
n ).

Resolving g−1
n from (5.17) we obtain:

�d,S(
̂
ασ−1

n ) = Dn(
√

λ)ε(α)−1
[
z − (u−1 − 1)ζd,S + (u−1 − 1)z

]
trd(	d,n(α)).

Also, from Theorem 3 and (5.19) we have:

trd(	d,n(αed,n)) = ζd,S trd(	d,n(α)) and trd(	d,n(α)ed,ngn) = z trd(	d,n(α)).

Therefore:

�d,S(
̂
ασ−1

n ) = Dn(
√

λ)ε(α)−1 z + (u − 1)ζd,S

u
trd(	d,n(α))
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= D√
λ

z + (u − 1)ζd,S

u
�d,S (̂α)

= �d,S(̂α).

Hence the proof is concluded. �

We have defined an infinite family of 2-variable isotopy invariants for oriented
classical links.

5.5.2 Computations

We shall first give some formulas that are useful for computations. For powers of gi

we can deduce by induction the following formulae.

Lemma 4 Let m ∈ Z, k ∈ N. (i) For m positive, define αm = (u − 1)
∑k−1

l=0 u2l if

m = 2k and βm = u(u − 1)
∑k−1

l=0 u2l if m = 2k + 1. Then:

gm
i =

{
1 + αmed,i − αmed,igi if m = 2k

gi − βmed,i + βmed,igi if m = 2k + 1

(ii) For m negative, define α′
m = u−1(u−1 − 1)

∑k−1
l=0 u−2l if m = −2k and β ′

m =
(u−1 − 1)

∑k−1
l=0 u−2l if m = −2k + 1. Then:

gm
i =

{
1 + α′

med,i − α′
med,igi if m = −2k

gi − β ′
med,i + β ′

med,igi if m = −2k + 1

We now proceed with some basic computations. Clearly, for the unknot O,
�d,S(O) = 1. For the Hopf link and the two trefoil knots we have:

• Let H = σ̂ 2
1 , the Hopf link. We find trd(g2

1) = 1+(u+1)(ζd,S −z) and ε(σ 2
1 ) = 2.

Then:

�d,S(H) = 1 − λu

(1 − u)ζd,S

√
λ

(
1 + (u + 1)(ζd,S − z)

)

= z−1
√

λ
(
1 + (u + 1)(ζd,S − z)

)
.

• Let T = σ̂ 3
1 , the right-handed trefoil. From Lemma 4 we have g3

1 = g1 −
u(u − 1)ed,1 + u(u − 1)ed,1g1. Hence: trd(g3

1) = z − u(u − 1)ζd,S + u(u − 1)z.
Moreover ε(σ 3

1 ) = 3. Then, using that 1 − λu = z−1ζd,S(1 − u), we obtain:

�d,S(T) = D(
√

λ)3 [
(u(u − 1) + 1)z − u(u − 1)ζd,S

]

= λ

z

[
(u2 − u + 1)z − (u2 − u)ζd,S

]
.
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• Let, finally, −T = σ̂−3
1 , the left-handed trefoil. From Lemma 4 we have g−3

1 =
g1 − (u−1 − 1)(u−2 + 1)ed,1 + (u−1 − 1)(u−2 + 1)ed,1g1. Hence: trd(g−3

1 ) =
z − (u−1 − 1)(u−2 + 1)ζd,S + (u−1 − 1)(u−2 + 1)z. Moreover ε(σ−3

1 ) = −3.
Then we obtain:

�d,S(−T) = D(
√

λ)−3
[
(u−3 − u−2 + u−1)z − (u−3 − u−2 + u−1 − 1)ζd,S

]
,

where we recall that D = 1−λu√
λ(1−u)ζd,S

.

5.5.3 A Cubic Skein Relation for �d,S

Let L+, L−, L0 be diagrams of oriented links, which are all identical, except
near one crossing, where they differ by the ways indicated in Fig. 5.1. We shall
try to establish a skein relation satisfied by the invariant �d,S . Indeed, by the
Alexander theorem we may assume that L+ is in braided form and that L+ = β̂σi

for some β ∈ Bn. Also that L− = ̂
βσ−1

i and that L0 = β̂ . Apply now relation
(5.17) for the g−1

i in the expression below, noting that ε(βσ−1
i ) = ε(β) − 1 and

ε(βσi) = ε(β) + 1:

�d,S(L−) = Dn−1(
√

λ)ε(βσ−1
i )trd(	d,n(β)g−1

i )

= Dn−1(
√

λ)ε(β)−1[trd(	d,n(β)gi) − (u−1 − 1) trd(	d,n(β)ed,i )

+ (u−1 − 1) trd(	d,n(β)ed,i gi)
]

= 1

λ
�d,S(L+) − Dn−1(

√
λ)ε(β)−1(u−1 − 1) trd(	d,n(β)ed,i )

+ Dn−1(
√

λ)ε(β)−1(u−1 − 1) trd(	d,n(β)ed,i gi).

The problem is that the algebra words 	d,n(β)ed,i and 	d,n(β)ed,i gi do not have
a natural lifting in the braid groups, even if we break the ed,i ’s according to (5.4).
This was not the case in [JL09], where we were dealing with framed braids and all
algebra generators had natural liftings in the framed braid groups. Yet, we have in
the algebra Yd,n the following ‘closed’ relation (compare with [Fun95]).

Lemma 5 The generators gi of the Yokonuma–Hecke algebra Yd,n satisfy the cubic
relations:

g3
i = −ug2

i + gi + u (5.26)

Equivalently,

g−1
i = u−1g2

i + gi − u−1 (5.27)
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Fig. 5.1 L++, L+, L0
and L−

Proof From Lemma 4 we find the relation g3
i = gi + (u − 1)ed,igi − (u − 1)ed,ig

2
i .

Substituting (5.3) and replacing the expression (u − 1)ed,i − (u − 1)ed,igi by the
expression g2

i − 1 we arrive at the stated cubic relation. �

We then have the following result.

Proposition 2 The invariant �d,S satisfies the following cubic skein relation:

√
λ�d,S(L−) = 1

λu
�d,S(L++) + 1√

λ
�d,S(L+) − 1

u
�d,S(L0). (5.28)

Proof By the same reasoning as above we may assume that L0 = β̂ for some

β ∈ Bn. Also that L+ = β̂σi , L++ = β̂σ 2
i and L− = ̂

βσ−1
i . Apply now (5.27)

from Lemma 5 in the expression below, noting that ε(βσ−1
i ) = ε(β) − 1, ε(βσi) =

ε(β) + 1 and ε(βσ 2
i ) = ε(β) + 2.

�d,S(L−) = Dn−1(
√

λ)ε(βσ−1
i )trd(	d,n(β)g−1

i )

= Dn−1(
√

λ)ε(β)−1

×
[
u−1 trd(	d,n(β)g2

i ) + trd(	d,n(β)gi) − u−1 trd(	d,n(β))
]

= 1

(
√

λ)3u
�d,S(L++) + 1

λ
�d,S(L+) − 1√

λu
�d,S(L0).

�

5.5.4 An Isotopy Invariant from tr∞

In this subsection we extend the values of the invariants �d,S to the adelic context.
By (5.14) the braid group Bn is represented in Y∞,n = lim←−d∈N∼ Yd,n via the map
	∞,n = lim←−d∈N∼ 	d,n. Further, by Theorem 2, elements in Y∞,n map, via the Markov
trace tr∞,n = lim←−d∈N∼ trd,n, in the ring lim←−d∈N∼ R[Xd ], where R = C[z].

For any d|d ′, now, the connecting ring epimorphism ξd ′
d (recall (5.15)) yields a

connecting epimorphism �d ′
d from the ring of rational functions C(z,Xd ′) to the

ring of rational functions C(z,Xd).
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Lemma 6 The following diagram is commutative.

L C (z,Xd ′)

L C (z,Xd)

�d′,S

Id �d′
d

�d,S

(5.29)

We shall further denote by R∞ the field of fractions of lim←−d∈N∼ R[Xd ]. Tak-
ing now inverse limits in the diagram of Lemma 6 we obtain the map �∞,S :=
lim←−d∈N∼ �d,S and we have the following.

Theorem 6 If for all d the set Xd satisfies the E-condition, then the map

�∞,S : L −→ R∞
α̂ 	→ (�d,S (̂α),�d ′,S (̂α), . . .)

for any α ∈ ⋃
n Bn is an isotopy invariant of oriented links in S3. Moreover:

�∞,S (̂α) =
(

1 − λu√
λ(1 − u)ζd,S

)n−1

(
√

λ)ε(α)tr∞(	∞,n(α))

= Dn−1(
√

λ)ε(α)tr∞(	∞,n(α)).

Proof By Lemma 3 we have non-trivial solutions of the E-system in the adelic con-
text. Let now β,α ∈ ⋃

n Bn be Markov equivalent braids. Then, any isotopy invari-
ant agrees on the closures β̂ and α̂. So, �d,S(β̂) = �d,S (̂α), �d ′,S(β̂) = �d ′,S (̂α),
etc. Hence: �∞,S (̂α) = �∞,S(β̂). Moreover, we have:

�∞,S (̂α) = (�d,S (̂α),�d ′,S (̂α), . . .)

= (Dn−1(
√

λ)ε(α)trd(	d,n(α)),Dn−1(
√

λ)ε(α)trd ′(	d ′,n(α)), . . .)

= Dn−1(
√

λ)ε(α)(trd(	d,n(α)), trd ′(	d ′,n(α)), . . .)

= Dn−1(
√

λ)ε(α)tr∞(	∞,n(α)).

�

The link invariant �∞,S is an adelic extension of the Jones polynomial.
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Chapter 6
Legendrian Grid Number One Knots
and Augmentations of Their Differential
Algebras

Joan E. Licata

Abstract In this article we study the differential graded algebra (DGA) invariant
associated to Legendrian knots in tight lens spaces. Given a grid number one dia-
gram for a knot in L(p,q), we show how to construct a special Lagrangian diagram
suitable for computing the DGA invariant for the Legendrian knot specified by the
diagram. We then specialize to L(p,p − 1) and show that for two families of knots,
the existence of an augmentation of the DGA depends solely on the value of p.

6.1 Introduction

Differential graded algebras have been associated to Legendrian knots in a variety
of different contact manifolds, including the standard tight R

3, S3, and lens spaces
L(p,q) [Che02, Sab03, Lic09, NT04]. These algebras may be computed combina-
torially from a Lagrangian projection of the knot, and the equivalence class of the
algebra is an invariant of Legendrian knot type. These algebras are a combinatorial
interpretation of the relative contact homology developed by Eliashberg, Givental,
and Hofer, which is generally difficult to compute [EGH00]. In the last few years,
attempts have been made to compute these algebras from the front, rather than the
Lagrangian, projection, and also to extract more tractable invariants from the DGAs.

Although the Lagrangian projection is the most natural for computing the DGA,
it has significant drawbacks relative to the front projection. Lagrangian projections
admit only a weak Reidemeister theorem, and it is computationally intensive to
determine whether or not a given picture is actually the projection of a Legendrian
knot. In contrast, front projections suffer from neither of these features, but they are
less geometrically natural for computing the DGA. For knots in R

3 and the solid
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torus, this difficulty was addressed by Ng, who used “resolution” to compute the
DGA directly from a front projection [Ng03]. The results in this paper are part of a
program to develop an analogous technique for Legendrian knots in lens spaces.

The front projection of a Legendrian knot in a lens spaces is its projection to a
Heegaard torus, and front projections are encoded combinatorially by toroidal grid
diagrams as described in [BG08]. As in the Euclidean case, front projections in lens
spaces are more easily manipulated than are Lagrangian projections. We focus on
the case of grid number one knots (defined in Sect. 6.2.2), and we show that for
these knots, a grid diagram suffices to determine a labeled Lagrangian projection
with a specialized form. Grid number one knots are of particular interest because
of their relationship to the Berge Conjecture, which characterizes knots in S3 which
have lens space surgeries [BGH07, Hed07, Ras07]. Topologically, a grid number
one knot is a particular kind of bridge number one knot with respect to a Heegaard
torus in L(p,q). However, we adopt the perspective of [BG08]: any grid diagram
specifies a particular Legendrian isotopy class within the topological isotopy class.

In R
3, Chekanov used the linearized homology of the DGA to distinguish a pair

of non-isotopic knots with identical classical invariants [Che02]. The existence of
the linearized homology relies on whether the DGA can be augmented, and the
existence of augmentations is itself an invariant of the equivalence type. Although
the existence of augmentations is algorithmically decidable, the computation time
is generally exponential in the number of generators.

As an application of the construction described above, we determine the (non)-
existence of augmentations of the DGA for several families of grid number one
knots in L(p,p − 1). These theorems, which are stated precisely in the next sec-
tion, follow in the footsteps of other efforts to detect augmentations of Legendrian
DGAs without computing the full differential. For example, the relationship be-
tween augmentations and rulings of the front projection for knots in R

3 has been
extensively studied [FI04, Fuc03, NS06, Sab05]. Although the current results apply
only to particular families of knots, these examples suggest a framework for a more
general approach to this problem.

6.1.1 Main Results

In order to state the main results precisely, we establish some notation that will be
used throughout this article. A grid number one diagram for L(p,q) can be viewed
as a row of p boxes, two of which contain basepoints. For details on how such a
diagram specifies a Legendrian knot, see Sect. 6.2.2. If s is the number of boxes
separating the two basepoints, define v(s) by

s + (v(s))q ≡ 0 mod p and 1 < v(s) < p − 1.
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Fig. 6.1 Two diagrams for K(5,2,3). When s is the length (measured in boxes) of the horizontal
segment connecting the two basepoints, v(s) is the length of the vertical segment in the rectilinear
diagram with only southwest and northeast corners

Ignoring orientation, the knots associated to a pair of basepoints separated by s

or p − s boxes are isotopic, so define

h =
{

s if s + v(s) < p

p − s if s + v(p − s) > p.

Denote the knot specified by this grid diagram by K(p,q,h). As shown in
[Ras07], K(p,q,h) is primitive if and only if gcd(h,p) = 1. Given a grid number
one diagram for a primitive knot in L(p,q) with q �= 1, we construct a Lagrangian
diagram for a knot in the associated Legendrian isotopy class.

Let gcd(q − 1,p) = k. Theorem 5, which is proved in Sect. 6.3.2, states that the
crossings of the Lagrangian diagram are in one-to-one correspondence with the set
of positive integers

{x | x < h and k|x} ∪ {y | y ≤ v and k|y}.

This shows that if h,v < k, then there is a Lagrangian projection of K(p,q,h)

with no crossings, so the algebra A(K(p,q,h)) is isomorphic to the ground
field Z2.

In contrast, the theorem implies that if gcd(q −1,p) = 1, then there is knot in the
specified Legendrian isotopy class whose Lagrangian projection has h+v+1 cross-
ings. It follows that the DGA A(K(p,q,h), ∂) is a tensor algebra on 2(h + v + 1)

generators, and the ancillary data needed to determine the differential may also be
computed from the numerical data associated to the grid diagram (Sect. 6.3.2 ). In
Sect. 6.4, we apply this construction to show that in special cases, the existence of
augmentations of the DGA can be deduced directly from the original grid diagram:

Theorem 1 Let K = K(p,p − 1,1) be a Legendrian grid number one knot in
L(p,p − 1) for gcd(p − 2,p) = 1. Then the homology of (A(K), ∂) is a tensor al-
gebra with two generators. Furthermore, the map sending both generators of A(K)

to 0 is an augmentation.

Theorem 2 Let K = K(p,p − 1,2) be a Legendrian grid number one knot in
L(p,p − 1) for gcd(p − 2,p) = 1. Then (A(K), ∂) has an augmentation if and
only if p ≡ 3 mod 12 or p ≡ 9 mod 12.
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6.1.2 Conventions and Organization

Nearly every orientation convention imaginable for lens spaces exists in the litera-
ture. Following [GS99], we view the lens space L(p,q) as the result of −p

q
surgery

on the unknot in S3. With this choice, the lens spaces L(p,1) are smooth S1 bun-
dles over S2, and the combinatorial formulation of the DGA for Legendrian knots in
these spaces is due to Sabloff [Sab03]. The invariant described in Sect. 6.2.4 applies
to L(p,q) with q �= 1. Furthermore, we make use of the canonical correspondence
between grid diagrams and toroidal front projections which is described in [BG08],
but our use of “grid diagram” agrees with the authors’ use of “dual grid diagram” in
[BG08]. Throughout the paper, the ground field is Z2.

The next section has a brief introduction to augmentations, the universally tight
contact structure on lens spaces, grid diagrams, and the Legendrian contact homol-
ogy DGA for knots in lens spaces. In Sect. 6.3 we describe how to construct the La-
grangian projection of a knot from a grid number one diagram. Finally, in Sect. 6.3.2
we apply this construction to special classes of knots in L(p,p − 1) and prove The-
orems 1 and 2.

6.2 Background

This section briefly reviews augmentations, grid diagrams, and the DGA for prim-
itive knots in lens spaces. We refer the reader to [Ng03, BGH07], and [Lic09] for
more details.

6.2.1 Contact Lens Spaces

View S3 as the unit sphere in C
2 with polar coordinates:

S3 = {(r1, θ1, r2, θ2) | r2
1 + r2

2 = 1}.
These coordinates suggest a genus one Heegaard splitting of S3 along the torus
r1 = r2 = 1√

2
. Define Fp,q : S3 → S3 by

Fp,q(r1, θ1, r2, θ2) =
(

r1, θ1 + 2πq

p
, r2, θ2 + 2π

p

)
.

The map Fp,q is an automorphism of S3 with order p, and the quotient of S3 by the
equivalence induced by Fp,q is the lens space L(p,q). Since Fp,q preserves the ri
coordinates in S3, the lens space inherits a genus one Heegaard splitting whose core
curves C1 and C2 are the images of the curves r1 = 0 and r2 = 0 in S3.

The standard tight contact structure on S3 is induced by the one-form

r2
1 dθ1 + r2

2 dθ2.
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For 0 < r1 < 1, the Reeb vector field is the constant vector field 〈1,1,0〉 with respect
to the basis {dθ1, dθ2, dr1} on T (T 2 × (0,1)). Thus the set of Reeb orbits consists
of curves with slope dθ2

dθ1
= 1 on each torus of fixed r1, together with the two core

curves r1 = 0 and r2 = 0. The Lagrangian projection of S3 is the orbit space of S3

as an S1 bundle over S2.
The map Fp,q preserves the contact structure on S3, so L(p,q) inherits a tight

contact structure from its universal cover. Throughout this article, we will assume
that L(p,q) is equipped with this universally tight contact structure, and we sup-
press it from the notation. The Lagrangian projection of L(p,q) is again S2, and
when q = 1, this contact form induces a smooth S1 bundle structure on L(p,1). In
contrast, when q > 1, the images of the core curves C1 and C2 are orbifold points
in the Lagrangian projection. In this case, the covering map S3 → L(p,q) factors
as a composition of cyclic covers

S3 → L(k,1) → L(p,q),

where k = gcd(q − 1,p). The ramified points of the Lagrangian projection of
L(p,q) will have order p

k
, and we identify these with the south and north poles

of S2. We will always assume that the knot K lives in L(p,q) − (C1 ∪ C2).

6.2.2 Grid Diagrams

The front projection of a Legendrian knot K ⊂ L(p,q) is its projection to the genus-
one Heegaard surface inherited from S3. The knot K is completely determined by
its front projection, and the Legendrian isotopy class of K may be encoded combi-
natorially by a grid diagram. In this section we introduce grid diagrams for links in
S3 and grid number one diagrams for knots in L(p,q). The relationship between
a knot K ⊂ L(p,q) and its Fp,q -preimage K̃ ⊂ S3 plays an important role in the
construction of the DGA (A(K), ∂), and grid diagrams are a useful tool for under-
standing this relationship.

In S3, parameterize the r1 = 1√
2

torus by θi coordinates, where 0 ≤ θi < 2π for

i = 1,2. Decorate this torus with curves satisfying θi = 2nπ
p

for n ∈ {0,1, . . . , p−1}
and i = 1,2. Cutting the torus along the curves θi = 0 yields a square divided into p2

boxes which are arrayed in p rows and p columns. Although the diagram is drawn
as a planar object, we retain the identifications (t,0) ∼ (t,1) and (0, t) ∼ (1, t)

in order to simultaneously view the planar grid diagram as a decorated Heegaard
torus. Finally, add 2p basepoints to the diagram, so that each column and each row
contains exactly two basepoints. The decorated square is called a grid number p

grid diagram. See Fig. 6.2 for an example.
If a grid number p grid diagram �̃ is invariant under Fp,q , then its quotient

under the equivalence induced by Fp,q is called a grid number one grid diagram �.
The bottom row of �̃ is a fundamental domain for the action of Fp,q , so we may
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Fig. 6.2 Left: An F5,2-invariant grid number 5 diagram for K̃ ⊂ S3. Center: A compatible rec-

tilinear diagram for K̃ ⊂ S3. Right: A grid number one diagram for K(5,2,3), together with a
compatible rectilinear projection. In the grid number one diagrams, the rectangles on the boundary
indicate the gluing which yields a Heegaard torus for L(5,2)

parameterize � by θi coordinates with 0 ≤ θ1 < 2π and 0 ≤ θ2 < 2π
p

. As in the case

of a grid number p diagram in S3, a grid number one diagram is a planar depiction
of a torus; to recover a Heegaard torus for L(p,q), identify (t,0) with (t + 2qπ

p
, 2π

p
)

and (0, t) with (1, t). These identifications yield a torus decorated by two connected
curves which intersect p times. The complement of the images of the vertical curves
from �̃ is connected in �, and it is referred to as the column of the grid diagram.
Similarly, the complement of the images of the horizontal curves is referred to as
the row of the grid diagram.

A grid diagram specifies a link in the associated three-manifold. Connect each
pair of basepoints in the same row or same column by a linear segment. Observe
that for each such pair of basepoints, one may choose between two possible line
segments on the torus. The result of any set of choices is called a rectilinear diagram
compatible with the grid diagram. (See Fig. 6.2.) Viewing the rectilinear diagram as
a curve in the three-manifold, push the interior of each horizontal curve into the solid
torus defined by r1 > 1√

2
and push the interior of each vertical curve into the solid

torus defined by r1 < 1√
2

. The resulting embedded curve intersects the Heegaard
torus only at the original basepoints of the grid diagram.

The topological isotopy class of the knot constructed this way is independent
of the choice of rectilinear projection, so one may refer to a grid diagram for a
knot K . Given a grid diagram � for K ⊂ L(p,q), one may construct a grid diagram
for its Fp,q -preimage K̃ ⊂ S3 using p copies of �. This construction is indicated
in Fig. 6.2, and we refer the reader to [BGH07] for a fuller treatment. Following
Rasmussen, we say that a knot in L(p,q) is primitive if it generates H1(L(p,q)).
The knot K ⊂ L(p,q) is primitive if and only if K̃ ⊂ S3 has one component, and
in the notation from Sect. 6.1.1, K(p,q,h) is primitive if and only if h and p are
relatively prime [Ras07].

A grid diagram can be interpreted as specifying not simply a topological isotopy
class of knot, but rather a Legendrian isotopy class of knot in the standard contact
S3 or L(p,q) [BG08, OST08]. Proposition 3.3 of [BG08] asserts that any curve on
� with dθ2

dθ1
slope in (−∞,0) which is smoothly embedded away from semi-cubical

cusps or transverse double points is the front projection of some Legendrian knot in
L(p,q) − (C1 ∪ C2). The knot can be recovered from this projection because the
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Legendrian condition implies that the slope of the front projection of K determines
the r1 coordinate:

dθ2

dθ1
= −r2

1

1 − r2
1

.

Theorem 3 [BG08] Any rectilinear diagram compatible with a grid diagram is
isotopic on � to the front projection of some Legendrian knot K in L(p,q). The
Legendrian isotopy class of K is independent of the choice of compatible rectilinear
diagram.

6.2.3 Differential Graded Algebras

Let V be the vector space generated by {vi}ni=1. Then the tensor algebra generated
by the vi is

T (v1, . . . , vn) =
∞⊕

k=0

V ⊗k

If V is graded by some cyclic group, extend the grading by setting |v1v2| = |v1| +
|v2|. If ∂ : A → A is a graded degree −1 map which satisfies ∂2 = 0, then the pair
(A, ∂) is a semi-free differential graded algebra (DGA).

Definition 1 An augmentation of a DGA is a graded algebra homomorphism ε :
A → Z2 such that ε(1) = 1, ε ◦ ∂ = 0 and ε(x) = 0 if |x| �= 0.

The natural notion of equivalence on DGAs is that of stable tame isomorphism.
(For a definition, see [Che02, Sab03], or [Lic09].) Equivalent DGAs have isomor-
phic homology, and the existence of augmentations of a DGA (A, ∂) is also an
invariant of its equivalence type. Furthermore, the number of augmentations is an
invariant of the equivalence type, up to a power of two.

6.2.4 The Lagrangian DGA for K ⊂ L(p,q)

In this section we introduce the Lagrangian DGA for primitive Legendrian knots in
lens spaces L(p,q) with q �= 1. The algebra is generated by Reeb chords with both
endpoints on K , so each crossing in the Lagrangian projection of K corresponds to
a pair of complementary Reeb chords in L(p,q).

The DGA (A(K), ∂) is defined in purely combinatorial terms from a labeled
Lagrangian projection of K , but the reader may find it helpful to know that the
proof of invariance relies on the relationship between K ⊂ L(p,q) and a cyclic
cover K̃ ⊂ Mk . If gcd(q − 1,p) = 1, the cyclic cover Mk is the universal cover of
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Fig. 6.3 The orientation of the chords determines the quadrant labels in the Lagrangian projection.
The left figures shows two strands of K intersecting a fixed Reeb orbit, and the other diagrams
indicated the associated labeling in the Lagrangian projection. The plus signs in the right figure
indicate that a is the preferred chord

L(p,q). If gcd(q − 1,p) = k > 1, then Mk is the lens space L(k,1), which is a
p
k

-to-one cover of L(p,q). The results in this paper are stated for primitive knots
in L(p,q), but they generalize to any knot which generates an order p

k
subgroup of

π1(L(p,q)). For a fuller description of this relationship, see [Lic09].
Given K ⊂ L(p,q), denote by � the Lagrangian projection of K . The preim-

age of each double point in � consists of a pair of complementary Reeb chords in
L(p,q), and we (arbitrarily) designate one chord in each pair as preferred. At each
crossing, � divides a neighborhood of the crossing into four quadrants, and we will
label these quadrants so as to identify the preferred chord. (See Fig. 6.3.) Because
the Reeb orbits are integral curves of the Reeb vector field, the Reeb chords are natu-
rally oriented. At a fixed crossing, each oriented chord x assigns “source” and “sink”
labels to the two arcs of K which project to the crossing, and we label a quadrant by
“x+” if traveling along the source curve to the sink curve in � orients the quadrant
they bound positively. Similarly, we label a quadrant x− if traveling source-to-sink
orients the bounded quadrant negatively. If x is the preferred generator at a crossing,
then we decorate the x+ quadrants with an additional “+”.

Suppose that the Lagrangian projection of K has m crossings, and let ai and bi

be the complementary Reeb chords associated to the ith crossing of �. We define
A(K) to be the tensor algebra generated over Z2 by the {ai} and {bi}:

A(K) = T (a1, b1, . . . , am, bm).

The remainder of this section is devoted to defining the boundary map ∂ :
A(K) → A(K). In order to do so, we will associate a rational-valued defect to each
component of S2 − �. A Lagrangian projection which is decorated with defects in
each region and “+” signs to denote the preferred chords at each crossing is called a
labeled Lagrangian diagram for K . We defer a description of the grading on A(K)

until Sect. 6.4.1, as it is not necessary to understand Sect. 6.3.

6.2.4.1 The Defect

We will simultaneously think of the generators of A(K) as formal symbols and as
Reeb chords in L(p,q). As such, we can assign a length to each generator of the
algebra:
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Definition 2 The length of a generator x is the length of the associated Reeb chord,
measured as a fraction of the orbital period. Denote the length of x by l(x) ∈ (0,1).

As above, let gcd(q − 1,p) = k, and let Mk denote the p
k

-fold cyclic cover of
L(p,q). The manifold Mk is either L(k,1), if k > 1, or S3, if k = 1. The contact
form on Mk induces a curvature 2-form on its Lagrangian base space S2. This copy
of S2 is a p

k
-to-one branched cover of the Lagrangian base space of L(p,q), and

the latter two-sphere inherits an area form from its covering space. Normalize the

induced form so that the Lagrangian projection of L(p,q) has area equal to k2

p
. Let

a(R) denote the area of a region R ∈ S2 − �.
Suppose that xm is the preferred generator at a crossing where the region R has a

corner. If R fills the quadrant labeled x+
m , define ε(m) = 1, and if R fills the quadrant

labeled x−
m , define ε(m) = −1.

Definition 3 Let R be a component of S2 − � with m corners. The defect of R is
given by

n(R) = −a(R) +
m∑

i=1

ε(i)l(xi),

where the sum is taken over the preferred generators at crossings where R has a
corner.

Definition 3 is closely related to Sabloff’s definition of defect for Legendrian
knots in smooth lens spaces, and we offer the following geometric perspective on
n(R) [Sab03]. The boundary of R lifts to a curve γ ∈ L(p,q) which is composed
of alternating Legendrian segments and preferred Reeb chords. If R is disjoint from
the poles of S2, the defect of R is the winding number of γ around the Reeb orbit
with respect to an appropriate trivialization of the S1 bundle. If R contains one of the
poles of S2, then it lifts to a region R̃ in the Lagrangian projection of (Mk, K̃). One
may similarly associate a winding number n(R̃) to this region, and n(R) = k

p
n(R̃).

It follows from [Sab03] and [Lic09] that a region disjoint from the poles will have
integral defect, and the defect of a region containing a pole will lie in k

p
Z.

If f : (D2, ∂D2) → (S2,�) is smooth on the interior of D2, extend the definition
of defect to n(f (D2)) by summing the defects of the regions in f (D2), counted with
multiplicity.

Remark 1 In [Lic09], the defect is defined in terms of the lift of K to K̃ ⊂ Mk . The
area term in the present definition replaces the curvature term seen there, and the
equivalence of the definitions follows from the identification of the curvature form
on S2 with the Euler class of Mk as a unit sphere bundle [Gei08].
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Fig. 6.4 The a2-defect of f

is n(f (D2)) + 1 − 1 =
n(f (D2)) = 0, so the disc
shown contributes the term
w(f,a2) = b3a1 to ∂a2. The
same disc f also corresponds
to w(f,a3) = a1b2 ∈ ∂a3 and
w(f,b1) = b2b3 ∈ ∂b1

6.2.4.2 The Boundary Map

Definition 4 An admissible disc is a map f : (D2, ∂D2) → (S2,�) of the disc with
m marked points on its boundary which satisfies the following properties:

1. either f is an immersion or f fails to be an immersion only at points which
map to the poles of S2. In the latter case, f is diffeomorphic to z → z

p
k in a

neighborhood of each singular point;
2. each marked point maps to a crossing of �.
3. f extends smoothly to ∂D2 away from the marked points;
4. at each marked point, f (D2) fills exactly one quadrant.

Two admissible discs f and g are equivalent if there is a smooth automorphism
φ : D2 → D2 such that f = g ◦ φ. As above, the defect of an admissible disc f is
the sum of the defects of regions in its image, counted with multiplicity.

If f is an admissible disc which fills a quadrant marked with x+, we associate to
f the boundary word w(f,x) and the x-defect nx(f ):

• Moving counterclockwise around ∂D2 from the point mapping to x+, let y−
i be

the negative generator labels associated to the ith corner of the image of D2,
where 1 ≤ i ≤ m − 1. Then w(f,x) = y1y2 . . . ym−1. See Fig. 6.4 for an example

• The x-defect nx(f ) is computed from the defect of f (D2) by subtracting one for
each yi which is not a preferred generator and adding one if x is not a preferred
generator.

Definition 5 Define ∂ : A → A on generators of A by

∂(x) =
∑

f :nx(f )=0

w(f,x).

Extend ∂ to all of A via the Leibniz rule ∂(ab) = (∂a)b + a(∂b).

Theorem 4 [Lic09] If K is a primitive Legendrian knot in L(p,q) for q �= 1, the
pair (A(K), ∂) is a DGA. The equivalence type of this DGA is an invariant of the
Legendrian isotopy class of K .
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6.3 Converting Fronts to Lagrangian Projections

Given a grid diagram, Sect. 6.2.2 describes how to construct a curve which is the
front projection of a knot in the Legendrian isotopy class indicated by the grid dia-
gram. This front projection completely determines the knot, as the slope of the curve
at each point recovers the coordinate lost in the projection. Abstractly, this implies
that the grid diagram carries sufficient information to compute the DGA of the asso-
ciated Legendrian knot, but the conversion from grid diagram to front projection to
labeled Lagrangian diagram may be difficult in practice. Furthermore, although the
grid diagram determines a unique Legendrian isotopy class of knot, isotopic front
projections may correspond to knots whose Lagrangian projections vary tremen-
dously; the choice of front projection therefore greatly affects the computability of
the DGA. In this section we describe how to construct a relatively simple Lagrangian
projection directly from a grid diagram for a Legendrian knot in L(p,q).

Our approach is as follows: beginning with a grid number one diagram for
K ⊂ L(p,q), draw a special front projection compatible with the grid diagram.
This front projection represents the choice of a fixed knot K0 in the Legendrian iso-
topy class determined by the grid diagram. We parameterize the grid diagram for
K in (θ1, θ2) coordinates, where 0 ≤ θ1 < 2π and 0 ≤ θ2 < 2π

p
. The Lagrangian

projection of L(p,q) is a two-sphere, and we parameterize this by (φ, r1), where
−π ≤ φ < π is the azimuthal coordinate. The r1 coordinate corresponds to latitude
on the sphere, and the north and south poles are the two ramified points of the cov-
ering map between the Lagrangian projections of L(p,q) and its cyclic cover Mk .
We will find it convenient to represent this S2 as the rectangle [−π,π] × [0,1], and
we recover the sphere via the identification of each of the top and bottom edges to a
point, as well as the further identification (−π, t) ∼ (π, t), which glues the left and
right edges of the square.

In order to move between different projections, parameterize the Lagrangian pro-
jection of L(p,q) so that the Reeb orbit on the Heegaard torus which passes through
the point θ1 = θ2 = 0 maps to φ = 0.

Lemma 1 The θi and φ coordinates are related by the equation

φ = p

k
(θ1 − θ2) mod 2π.

Proof Begin by considering a grid diagram for S3, and recall that each Reeb orbit
on the Heegaard torus is a curve with constant slope dθ2

dθ1
= 1. Thus, holding θ1 − θ2

fixed determines a Reeb orbit, and consequently, a point in the Lagrangian projec-
tion of S3.

Now recall that the action of Fp,q on S3 permutes a set of p
k

distinct Reeb orbits.
The Reeb orbit on the Heegaard torus which passes through (0,0) is identified in
the quotient with the Reeb orbits passing through the points

( 2ckπ
p

,0
)

for c ∈ Zk .
Since the r1 coordinate is independent of φ and the θi , the formula follows. �

Figure 6.6 provides an example illustrating Lemma 1.
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The remainder of this section is divided into two parts. In the first, we describe
the special front more precisely. In Sect. 6.3.2, we consider a knot K0 with a special
front projection and we show how features of the Lagrangian and front projections
of K0 correspond.

6.3.1 Special Front Projections

Label the boxes of the grid diagram from 0 to p − 1 so that one basepoint appears
in Box 0 and the other in Box h. Connect the two basepoints by a horizontal line
whose length (measured in boxes) is h. Moving downward from the basepoint in
Box h, draw a vertical line in the column of the grid diagram which connects the
two basepoints and has length v. Add a new basepoint to the curve each time it
passes through the center of a box until the curve consists of h + v equal-length
segments that meet at basepoints. Now allow each basepoint to slide along the anti-
diagonal of its box so that the slopes of the line segments connecting successive
pairs decrease strictly as one moves right from the basepoint in Box 0. See Fig. 6.5.

Observe that by keeping these perturbations small, the slopes of the formerly-
horizontal segments can be held arbitrarily close to 0 and the slopes of the formerly-
vertical segments can be held arbitrarily close to −∞. Finally, replace a neighbor-
hood of each basepoint with a curve that smoothly and strictly monotonically inter-
polates between the slopes of the line segments to either side. Since the resulting
curve is smooth with negative slope, Proposition 3.3 of [BG08] implies that it is the
front projection of a Legendrian knot K in L(p,q).

6.3.2 The Lagrangian Projection Associated to a Special Front

Let K0 be a Legendrian knot in L(p,q) whose front projection has the form de-
scribed in the previous section. For convenience, we will continue to describe the
line segments as connecting basepoints except when specifically focusing on the
short connecting curves introduce in the previous paragraph. Each of these line seg-
ments on the front corresponds to a subcurve of K0 with a fixed r1 coordinate. Thus,
each subcurve maps to a horizontal curve on the Lagrangian projection. Since each
of the line segments in the special front projection has a distinct slope, the corre-
sponding horizontal curves in the Lagrangian projection are disjoint. Furthermore,

Fig. 6.5 Transforming a rectilinear diagram for K(5,2,3) into a special front projection
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because each line segment connects basepoints in adjacent boxes on the grid dia-
gram, the Lagrangian projection of the corresponding subcurve satisfies

2cπ

k
+ ε′ < φ <

2(c + 1)π

k
− ε′

for some c ∈ Zk .
Each connecting curve on the special front projection lies in a small neighbor-

hood of the anti-diagonal of some box of the grid diagram, so the Lagrangian pro-
jection of the corresponding subcurve of K0 lies in a neighborhood of one of the
vertical lines φ = 2cπ

k
for c ∈ Zk . The connecting curve in Box 0 joins the line seg-

ment with the most negative slope to the line segment with the least negative slope;
the image of this curve in the Lagrangian projection joins the φ = −ε′ endpoint of
the bottom horizontal curve to the φ = ε′ endpoint of the top horizontal curve. We
will refer to this as the ascending curve. Each of the other connecting curves on the
special front joins the right endpoint of a segment to the left endpoint of a segment
with a more negative slope; the corresponding descending curve on the Lagrangian
projection joins the φ = 2cπ

k
− ε′ endpoint of a horizontal line to the φ = 2cπ

k
+ ε′

endpoint of the horizontal line immediately below, for some c ∈ Zk . See Fig. 6.6.
From this description, we can extract the number of crossings of � and the num-

ber of connected components of S2 − �:

Theorem 5 The crossings of � are in one-to-one correspondence with the set of
positive integers

{x | x < h and k|x} ∪ {y | y ≤ v and k|y}.

The number of connected components of S2 − � is two more than the number of
crossings.

Fig. 6.6 Left: An F8,3-invariant grid diagram for a knot in S3. The dotted lines show 4 Reeb orbits
which are identified in the quotient. Right: A special front projection of K(8,3,5), together with a
schematic Lagrangian projection
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Fig. 6.7 Left: A schematic
Lagrangian projection of
K(5,2,3), partially labeled.
Right: Image of the Reeb
chord a1 on the front
projection, which shows that
l(a1) = 1

5

Corollary 1 When gcd(q − 1,p) = 1, the Lagrangian projection of K(p,q,h) has
h + v − 1 crossings, and there are h + v + 1 connected components of S2 − �.

Corollary 2 When h,v < gcd(q − 1,p), the Lagrangian projection of K(p,q,h)

has no crossings.

Proof of Theorem 5 In the complement of the ascending curve, we may parameter-
ize � so that dr1 ≤ 0 and dφ > 0. Thus, this portion of the Lagrangian projection of
K0 embeds in S2 as a descending spiral. In order to determine the crossings of �, we
count the number of times the ascending curve crosses this spiral. Observe that the
ascending curve lies in a neighborhood of the line φ = 0. Each crossing in the La-
grangian projection corresponds to a point on the spiral with φ = 0, and this in turn
corresponds to a connecting segment on the special front which appears in a box
numbered ck for c ∈ Z p

k
. The indexing set in the statement of Theorem 5 counts

the number of times the front projection of K0 passes through a box whose label
is divisible by k. If � has no crossings, it divides S2 into two regions; each time �

spirals around S2 adds a new crossing and a new complementary region. �

The proof of Theorem 5 suggests a fuller description of the Lagrangian projec-
tion of K0. If the diagram has no crossings, then the DGA is isomorphic to Z2, so
consider the case when � has at least one crossing. Each of the regions of S2 − �

which contains a pole has a single corner. Generically, each of the remaining regions
of S2 − � has four corners, but this number is reduced by one for each adjacent po-
lar region. It is also possible to completely label the Lagrangian diagram using data
from the front projection.

As described in Sect. 6.2.4, each crossing in � corresponds to a pair of Reeb
chords of K0 ∈ L(p,q) and, consequently, a pair of generators of A(K0). We
number the intersections of the Lagrangian diagram, counting from the top down.
A neighborhood of each crossing is divided into north, east, south, and west quad-
rants by �. Define ai to be the generator which corresponds to a “+” label on the
north and south quadrants of the ith crossing. Similarly, let bi be the generator which
corresponds to a “+” label on the east and west quadrants of the ith crossing. We
will refer to the generators ai as a-type generators, and at each crossing, designate
the a-type generator as preferred. See Fig. 6.7.

Assigning a defect to each region requires the lengths of the generators and the
areas of the regions, both of which may be computed from a grid diagram. To com-
pute the area of a given region, recall that the total area of the Lagrangian projection
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of L(p,q) is normalized to be k2

p
. Assume that each connecting segment on the

front projection of K0 lies in small neighborhood of the center of its box on the grid
diagram. This forces the constant-r1 curves on the Lagrangian projection to lie in
a small neighborhood of the two poles of S2. The descending curve corresponding
to the basepoint in Box h travels from a neighborhood of the north pole to a neigh-
borhood of the south pole, whereas each of the other descending curves remains in
an neighborhood of one of the poles. As a consequence, only the regions bounded
to the left and right by the Box h descending curve will have more than negligible
area. When k = 1, these two regions coincide and the unique large region has area
approximately 1

p
. When k > 1, each of the two large regions has area approximately

equal to some integral multiple of k
p

. See Fig. 6.6.
To compute the length associated to each generator, it will be convenient to iden-

tify Reeb chords in L(p,q) with their images on the Heegaard torus. In particular,
we will denote by ai either the Reeb chord in L(p,q) or its projection to the Hee-
gaard torus. Each Reeb chord has the same length as its front projection, and we may
compute that latter by counting boxes in the grid diagram. The following proposition
gives a formula for computing the length of the preferred chords.

Proposition 1 If s is the total number of crossings in the Lagrangian projection of
K0, define B(j) by

B(j) =
{

kj if j ≤ h
k

(−qk)(s + 1 − j) mod p if j > h
k
.

If xj denotes the least positive integer such that

B(j) + (1 − q)xj ≡ 0 mod p,

then the length of the generator aj is ε-close to k
p
xj . Furthermore, l(bj ) = 1− l(aj ).

Proof As noted above, each crossing occurs at a point where the ascending curve in
the Lagrangian projection intersects a descending curve. The formula for B(j) con-
verts between two numbering systems: numbering a descending connecting segment
by the crossing it projects to in � (its j label) and numbering it by the box it lies in
on the grid diagram (its B(j) label). The endpoints of the chord aj front-project to
basepoints in Box 0 and Box B(j), and the orientation convention described above
implies that aj is oriented from Box B(j) to Box 0. For j ≤ h

k
, each increase in j

corresponds to traveling k boxes to the right, which increases B(j) by k. For larger
values of j , each increase in s + 1 − j corresponds to traveling up by k boxes, and
each row change decreases the box index by q .

We may assume that each connecting segment in the front projection lies in an
arbitrarily small neighborhood of the center of its respective box, so the length of a
chord may be estimated by counting the number of up-one-row, right-one-column
steps needed to travel from Box B(j) to Box 0. The box index decreases by q with
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each up-one-row step, so xj counts the number of diagonal box lengths between the
two boxes.

Finally, we note that an entire Reeb orbit measures p
k

diagonal box lengths, so
dividing xj by p

k
yields the length of the generator aj as a fraction of the orbital

period. Since the chords aj and bj are complementary, the formula for the length of
bj follows. �

We end this section with a brief comparison to Ng’s resolution technique for
Legendrian knots in R

3. In [Ng03], Ng successfully reformulated Chekanov’s al-
gebra in terms of the front projection of Legendrian knot. This can be mimicked
for null-homologous knots in lens spaces, but the geometric constraints imposed by
representing a non-trivial homology class prevent this approach from being directly
applied to the general case of knots in lens spaces. In the preceding section, we
have instead tried to simplify the process of translating between different projec-
tions, identifying generators of the algebra with chords on the front projection but
not computing the boundary map until after the Lagrangian projection is produced.
Although it is possible to describe the loops on a grid diagram which correspond to
the boundary of a disc counted by the differential, this description is not particularly
useful for computational purposes. In the final section, however, we see that under
special circumstances, such loops can play a useful role.

6.4 Augmentations of (A(K0), ∂)

In the previous section, we developed the correspondence between special front and
Lagrangian projections. In this section, we apply these results to study the ques-
tion of when A(K0) has augmentations. Our approach relies on the grading on the
DGA, which we introduce in Sect. 6.4.1. We show that when gcd(q − 1,p) = 1,
the existence of augmentations depends only on a subclass of words appearing in
the boundary of the preferred generators. These words can be described in terms of
certain loops on a grid diagram for K̃0, the preimage of K0 in S3. In Sect. 6.4.4.2,
we determine the existence of augmentations of A(K(p,p−1,2)) by analyzing the
set of special loops. The DGA may still be computed from the Lagrangian projec-
tion described in Sect. 6.3.2 when gcd(q − 1,p) > 1, but the computations in this
section rely on the diagram having h+v −1 crossings and h+v +1 components of
S2 − �. In the remainder of this section, we restrict to the gcd(q − 1,p) = 1 case,
but we indicate which of the propositions generalize naturally.

6.4.1 The Grading

As noted above, we will restrict to the case when gcd(q − 1,p) = 1.
A capping path for the generator x is a path η in � which is smooth away from

the crossing associated to x, and which has the further property that at this crossing,
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η turns a corner around a quadrant labeled by x+. In the special Lagrangian dia-
grams, each a-type generator has two capping paths, and no b-type generator has
a capping path. For each aj , the capping paths positively bound discs which fill a
quadrant marked a+

j ; let η denote the capping path whose associated disc lies in the

complement of the south pole of S2. Use this disc to define a rotation number r(η)

which counts the number of counter-clockwise rotations of the tangent vector η′ in
the disc S2 − {south pole}. Assuming that the strands of � are orthogonal at each
crossing, this rotation number takes values in Z − 1

4 .
Letting wN(η) denote the winding number of η with respect to the north pole, a

capping path is admissible if wN(η) ≡ 0 mod p.

Definition 6 If aj is a generator with an admissible capping path η, the grading of
aj is given by

|aj | = 2�r(η)� − 2
p − 1

p
wN(η) − 1 + 4n(Dη).

The grading of bj is given by

|bj | = 3 − |aj |.

Orient K0, and denote by r(K0) and n(K0) the rotation number of K0 and
the defect of the disc bounded by K0. The gradings above are well-defined up to
2(r(K0)) − 4n(K0) [Lic09, Sab03].

Remark The definition of an admissible capping path generalizes to the case k > 1
by replacing p with p

k
; for the corresponding formulae for the grading, see [Lic09].

6.4.2 Special Boundary Discs

We will use Fuchs’s characterization of augmentations [FI04]:
Given a homomorphism ε : A → Z2, a disc which contributes a term to ∂x is

special with respect to ε if ε(yi) = 1 for every yi in w(f,x). A graded homomor-
phism ε is an augmentation of (A, ∂) if for each generator xj , the number of special
boundary discs is even.

Lemma 2 Any graded augmentation of A(K(p,q,h)) sends every a-type genera-
tor to zero.

We defer the proof of this lemma in order to first explain why it is helpful. The
statement that every a-type generator vanishes under any graded augmentation im-
plies that only boundary words written exclusively in b-type generators can be spe-
cial. Such words only appear in the boundary of a-type generators:
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Lemma 3 If f is an admissible disc contributing a term to ∂x and w(f,x) is writ-
ten exclusively in b-type generators, then x is an a-type generator.

Proof In the Lagrangian diagram for K0, corners which preserve the orientation of
K0 are marked with a+ and b− labels. If γ is a path which traces out f (∂D2),
the orientation of γ relative to K0 is preserved at every b− corner. This implies
that if w(f,x) is written only in b-type generators, then x+ must also preserve the
orientation. �

Thus, the existence of an augmentation for (A, ∂) depends solely on the bound-
ary of the a-type generators. Equivalently, the only discs that need to be consid-
ered are those in which every corner of f (D2) fills a corner labeled with a b−. In
Sect. 6.4.3, we will show that such discs can be identified with loops on the special
front projection of K̃0 ⊂ S3.

We end this section with a proof of Lemma 2:

Proof Orient K0 to bound a disc disjoint from the south pole. Then the rotation
number of K0 is h + v.

The defect of the disc bounded by K0 is equal to its area, and this value may
be bounded arbitrarily close to v

p
by making the connecting curves on the special

front projection lie in a sufficiently small neighborhood of the centers of the boxes.
According to the remark after Definition 6, this implies that (A(K0), ∂) is graded
by a cyclic group of order 2(h + v) − 4v = 2|h − v|.

Recall that the a-type generators are exactly those with capping paths. It follows
from Definition 6 that the grading of each ai is the sum of an odd integer and 4v

p
. In

order for the grading of an a-type generator to be congruent to 0, 4v
p

would have to
be equal to an odd integer, but this contradicts the assumption that gcd(q−1,p) = 1.
Thus any graded augmentation sends each ai to 0. �

6.4.3 Boundary Maps of a-Type Generators

As the discussion in Sect. 6.4.2 suggests, we will determine whether (A(K0), ∂)

has any augmentations by studying the summands in ∂ai which could be special in
the sense of [FI04]. The boundary of a disc counted by the differential consists of
segments of the Lagrangian projection of K0. This lifts to a loop γ ⊂ L(p,q) con-
sisting of segments of K0 alternating with the Reeb chords which label the corners
of the disc. Any such γ may be lifted further to a loop γ̃ ⊂ S3 which consists of
segments of K̃0 alternating with Reeb chords whose endpoints lie on K̃0. We will
characterize potential special boundary discs by studying the front projections of
their associated γ̃ curves.

Just as Reeb chords in L(p,q) are identified with their front projections, let ãi

denote either a lift of the chord ai to S3 or the front projection of that chord to the
Heegaard torus. Lifting preserves chord length: l(ai) = l(ãi ).
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Fig. 6.8 Left: An N loop for
K(7,6,2). Right: An S loop
for K(7,6,2)

Definition 7 An N -loop is an oriented simple closed curve on a special front pro-
jection for K̃0 which satisfies the following:

• the curve is homotopic to the loop θ1 = c for some c ∈ [0,2π];
• the curve alternates between b̃−

i chords and segments of K0 traversed left to right
and top to bottom.

If a single b̃−
i is replaced by its complementary ˜a+

i , the resulting curve is called an
Ni -loop.

Similarly, an S-loop is a simple closed curve on a special front projection for K̃0
which satisfies the following:

• the curve is homotopic to the loop θ2 = c for some c ∈ [0,2π];
• the curve alternates between b̃−

i chords and segments of K0 traversed bottom to
top and right to left.

If a single b̃−
i is replaced by its complementary ˜a+

i , the resulting curve is called an
Si -loop. See Fig. 6.8.

Each Ni - and each Si -loop corresponds to some Fp,q -invariant γ̃ in S3, and
equivalently, to some γ ⊂ L(p,q). The Lagrangian projection of this γ is a closed
curve in the Lagrangian projection of K0, and the next proposition states that this
loop bounds a disc counted by the differential.

Proposition 2 Each Ni - or Si -loop corresponds to a summand of ∂ai , and the as-
sociated boundary word is written in the b-type chords in the Ni or Si loop.

Proof Consider first an Si loop. Because ˜a+
i replaced b̃−

i , the Si -loop is homo-
topic to the curve θ1 = c on the grid diagram. The image of the Si loop in the front
projection of the lens space lifts to a curve γ ⊂ L(p,q), and the Lagrangian projec-
tion of γ has winding number p with respect to the south pole. (This fact requires
gcd(q −1,p) = 1.) Thus, this curve bounds an admissible disc D in the Lagrangian
projection. We claim that the ai -defect of D is zero.

Recall that the defect of a region in S2 −� is the sum of the signed lengths of the
preferred chords labeling the corners, minus the area of the region. To compute the
ai -defect of D, replace each term l(aj ) for j �= i in this sum by l(aj ) − 1 = −l(bj ).
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Fig. 6.9 Replacing the chord b−
3 in an S-loop by a+

3 yields an S3 loop which gives the boundary of
a disc with a3-defect zero. The lift of the disc with area 2

7 to the Lagrangian projection of K̃ ∈ S3

is shown on the right

The proposition therefore follows if l(ai) − ∑
j �=i l(bj ) is equal to the area of D.

As usual, we assume that the connecting segments on the special front projection
lie in arbitrarily small neighborhoods of the centers of the boxes, so we treat the
length of each chord as an integral multiple of 1

p
. This multiple may be computed

by counting, with sign, the number of times the chord crosses a vertical line on the
grid diagram for K̃0.

The area of the large region in S2 −� has area approximately equal to 1
p

, and the
multiplicity of this region in D is equal to the number of times the boundary of D

traverses a horizontal segment of � lying near the north pole. The number of such
segments equals the number of horizontal box-lengths traversed by the Si -loop.

Since the net horizontal displacement of the Si loop is zero, the horizontal dis-
placement along chords is canceled by the horizontal displacement along the front
projection of K̃0. This shows that the ai -defect of D is zero, so the associated bound-
ary word appears as a summand in ∂ai .

The proof for an N -loop is similar, and the argument shows that if an N or S

loop has k chord segments, then it will correspond to k distinct boundary discs. �

Counting S- and N -loops on the front projection of K̃0 shows that exactly two
admissible capping paths in the special Lagrangian diagram contribute terms to the
differential.

Proposition 3 Let j = p mod (h + v). One capping path for aj bounds a disc
disjoint from the south pole which contributes a constant term to ∂aj , and one cap-
ping path for ah+v−j bounds a disc disjoint from the north pole which contributes a
constant term to ∂ah+v−j .

Proof The proof requires showing first that aj and ah+v−j both have admissible
capping paths, and second, that these paths correspond to an Nj - and an Sh+v−j -
loop, respectively.

Label the horizontal segments from 1 to h + v, counting from the top down. An
admissible capping path for ai must complete p rotations about the sphere; starting
on the top horizontal segment, each full rotation increases this index by one, counted
modulo h + v. If an admissible capping path for ai bounds a disc containing the
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Fig. 6.10 Left: Replacing a+
1 with b−

1 in the front projection of the capping path would yield an
N loop. Right: The capping path and the disc it bounds are shown lifted to a Lagrangian projection
for K̃ ; the parenthetical numbers identify the horizontal segments as they are numbered in the
proof of Proposition 3

north pole, then the path leaves the ith crossing to the right on the first horizontal
segment, and enters ai from the left on the ith horizontal segment. This implies that
i = p mod h + v.

On the other hand, if an admissible capping path for ai bounds a disc containing
the south pole, then the path leaves the ith crossing to the right on the (i + 1)th
segment and the path enters from the right on the h+ vth segment. This implies that
(i + 1) + (j − 1) = h + v mod h + v, so i = h + v − j .

Now lift the northern capping path for aj to γ̃ ⊂ S3 and consider its front projec-
tion. On the Heegaard torus, the path traverses the chord a+

j and then moves right
and down along K until reaching the other end of the chord. This curve forms a
loop homotopic to θ2 = c on the Heegaard torus, so replacing a+

j with b−
j yields a

loop homotopic to θ1 = d . (See Fig. 6.10.) This is an N -loop, so the projection of γ̃

was an Nj -loop and therefore bounded a disc counted by the differential. Since the
Nj -loop has a unique Reeb chord segment, the corresponding term in ∂aj is 1.

The proof for ah+v−j is similar. �

6.4.4 Applications

In this section we apply the results about N - and S-loops to examples where the
number of generators is small. Counting the number of possible loops allows us to
determine whether or not A(K(p,p − 1, h)) has augmentations in the special cases
h = 1 and h = 2. A similar analysis should be possible for other values of q and h,
but the combinatorics involved in counting all possible N - and S-loops will be more
complicated.

6.4.4.1 Augmentations for (A(K(p,p − 1,1)), ∂)

Theorem 6 (1) Let K = K(p,p − 1,1) be a Legendrian grid number one knot in
L(p,p − 1) for gcd(p − 2,p) = 1. Then the homology of (A(K), ∂) is a tensor al-
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gebra with two generators. Furthermore, the map sending both generators of A(K)

to 0 is an augmentation.

Proof As shown in Theorem 5, the special Lagrangian diagram for K(p,p − 1,1)

has only one intersection point. Studying the front projection of K̃0 shows that the
a chord is shorter than the b chord, so only constant terms can appear in ∂a. How-
ever, since both capping paths for the a generator contribute constant terms, they
cancel modulo two and ∂a = 0. Similarly, ∂b = a + a = 0, so the entire algebra
lies in the kernel of the differential. Furthermore, both ε1(b) = 0 and ε2(b) = 1 are
augmentations of (A(K(p,p − 1,1)), ∂), with εi(a) = 0 for i = 1,2. �

6.4.4.2 Augmentations of (A(K(p,p − 1,2)), ∂)

In the final section we consider the case K = K(p,p − 1,2). We will show the
following:

Theorem 7 (2) Let K = K(p,p − 1,2) be a Legendrian grid number one knot in
L(p,p − 1) for gcd(p − 2,p) = 1. Then (A(K), ∂) has an augmentation if and
only if p ≡ 3 mod 12 or p ≡ 9 mod 12.

The special Lagrangian diagram has three crossings, and Proposition 3 implies
that the generators a1 and a3 will each have a capping path which bounds a boundary
disc. One of these discs contains the north pole, and we denote the corresponding
generator by aN . Similarly, the other disc contains the south pole, and we denote the
corresponding generator by aS .

Lemma 4 The boundary of aN has no terms containing bS or bN . Similarly, the
boundary of aS has no terms containing bS or bN .

Proof Recall that at each crossing, the a-type generator is preferred. Thus, if f is
a boundary disc whose boundary word is written entirely in b-type generators, then
naN

(f ) = n(f (D2)). The front projection of K(p,p − 1,2) shows that l(aN ) =
l(bN) − 1 = l(bS) − 1. Any disc with positive corner a+

N that had a b−
N or b−

S corner
would therefore have a negative defect. This implies that no boundary word for aN

can contain bS or bN , and the argument for aS is identical. �

Lemma 5 If ε : A → Z2 is a graded homomorphism such that ε(bN) = ε(bS), then
the generator a2 will have an even number of special boundary discs.

Proof Fix a representative of a+
2 in the front projection of K̃ . For each N2-loop

containing this chord, the reflection of the loop across the Reeb orbit containing the
chord is an S2-loop and vice versa. This reflection interchanges bN and bS , and the
hypothesis that ε(bN) = ε(bS) implies that the number of special boundary discs for
a2 is even. �
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Fig. 6.11 Left: If bN = b3,
the S loop may traverse the
last b−

2 . Right: If bN = b1, the
S loop may not traverse the
last b−

2

Since bN and bS do not appear in words written only in b-type generators in
∂aN and ∂aS , we are free to choose ε(bS) = ε(bN) without affecting the number
of special boundary discs of aS and aN . Thus, Lemmas 4 and 5 together imply that
the existence of an augmentation of (A, ∂) depends only on the number of words
in ∂aN and ∂aS which are written solely in b−

2 . Note that the capping paths which
bound boundary discs are special with respect to any homomorphism.

Lemma 6 The number of boundary words of aN (respectively, aS ) associated to S-
(N -) loops is odd unless p ≡ ±1 mod 12.

Proof The chords bS and bN have the same image in the front projection of K , so
they are represented by a total of p chords in the front projection of K̃ . Pick one
representative and fix this choice. Note that the S-loops containing b−

N are reflections
of the N -loops containing b−

S and vice versa. Thus, it suffices to count only S-loops
which contain b−

N .
Trace a path on the front projection of K̃ , beginning along b−

N . Moving only up
and left along the image of K , it is not possible to form an S-loop without traveling
along any other Reeb chords; if it were, the resulting loop would contradict the
choice of chord. Thus, in order to form an S-loop, the path must traverse some
number of b−

2 chords. The maximal possible number of b−
2 chords is the largest odd

number less than or equal to p − l(bN). To see that this is the right value, observe
that if the path traverses the last b−

2 chord, it must end at b3. However, b3 = bN if
and only if p − l(bN ) is odd. See Fig. 6.11.

Locally, identify the two strands of the image of K̃ as A and B as indicated in
Fig. 6.12. Each time the path traverses a b−

2 chord, it switches between A and B ,
and the total number of switches must be odd in order for the path to close up into
an S-loop.

Labeling the b−
2 chords by the strand they begin on, an S-loop is defined by an

odd-length sequence of chords labeled alternately by A and B . Thus each S-loop on
a diagram with 2k + 1 switching chords corresponds to an alternating subsequence
of a length 2k + 1 alternating sequence of A’s and B’s. Note, too, that the subse-
quence must start with an A. For k = 1, the possible paths are given by the letters in
bold: ABA,ABA, and ABA (Fig. 6.12). For k = 2, there are eight possible paths:

ABABA ABABA

ABABA ABABA

ABABA ABABA

ABABA ABABA
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Fig. 6.12 In L(7,6), the maximal number of switches is 3. The bold curves show the three possible
S-loops which contain bN = b3. Each S-loop corresponds to a boundary disc for aN which is
disjoint from the north pole

Let S(k) denote the number of S-loops which include bN on a diagram with 2k+
1 possible switching chords. Picking the first and last A chosen in a subsequence
yields the following recursive formula:

S(k) = k + 1 +
k∑

i=1

iS(k − i), where S(0) = 1.

Expanding this yields

S(k) = k + 1 +
k∑

i=1

iS(k − i)

= k + 1 + S(k − 1) +
k∑

i=2

iS(k − i)

= (k + 1) + (k − 1 + 1) +
k−1∑
j=1

jS(k − 1 − j) +
k∑

i=2

iS(k − i).

We then reduce the previous equation modulo 2:

S(K) ≡ 1 +
k−1∑
j=1

jS(k − 1 − j) +
k∑

i=2

iS(k − i) mod 2

≡ 1 +
k−1∑
j=1

(2j + 1)S(k − 1 − j) mod 2

≡ 1 +
k−1∑
j=1

S(k − 1 − j) mod 2
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Expanding the new relation and again reducing modulo two yields

S(k) ≡ 1 +
k−1∑
j=1

S(k − 1 − j) mod 2

≡ 1 + S(k − 2) +
k−1∑
j=2

S(k − 1 − j) mod 2

≡ 1 + 1 +
k−3∑
l=1

S(k − 3 − l) +
k−1∑
j=2

S(k − 1 − j) mod 2

≡
k−3∑
l=1

S(k − 3 − l) +
k−1∑
j=2

S(k − 1 − j) mod 2

≡ S(k − 3) mod 2

Computing the first few cases directly shows that S(k) is odd except when
k ≡ 2 mod 3. The maximal number of switching chords is the greatest odd in-
teger less than or equal to p − l(bN) = p−1

2 , so k ≡ 2 mod 3 if and only if
p ≡ ±1 mod 12. �

Lemma 7 The number of boundary words of aN associated to N -loops is odd un-
less p ≡ 5 mod 12 or p ≡ 7 mod 12.

Proof This proof is similar to the previous one. In this case the path which traverses
no b−

2 chords is an N -loop, and any other N -loop also traverses an number of b−
2

chords. If the maximal number of b−
2 chords is 2k, then N(k) counts the number of

even-length alternating subsequences beginning with A:

N(k) = 1 +
k∑

i=1

iN(k − i), where N(0) = 1 and N(1) = 2.

Expanding and reducing modulo two as above, this yields

N(k) ≡ N(k − 3) mod 2.

This value is odd unless k ≡ 1 mod 3. The maximal number of possible b−
2 chords

is the greatest even number less than or equal to p−1
2 , so k ≡ 1 mod 3 if and only if

p ≡ 5 mod 12 or p ≡ 7 mod 12. �

When p ≡ 3 mod 12 or p ≡ 9 mod 12, then the total number of N - and S-loops
containing bN is even. Similarly, the total number of S- and N -loops containing bS

is even. Thus setting ε(b2) = 1 implies an even number of special discs with respect
to ε. Note that since a capping path always corresponds to a special disc, other
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Fig. 6.13 The bold curves
show the two possible
N -loops which contain
bN = b3. Each N -loop
corresponds to a boundary
disc for aN which is disjoint
from the south pole

values of p cannot admit an even number of special discs for any ε. Combining this
with Lemmas 4 and 5 proves Theorem 2.
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Chapter 7
Embeddings of Four-valent Framed Graphs
into 2-surfaces

Vassily Olegovich Manturov

Abstract It is well known that the problem of detecting the least (highest) genus of
a surface where a given graph can be embedded is closely connected to the problem
of embedding special four-valent framed graphs, i.e. 4-valent graphs with opposite
edge structure at vertices specified. This problem has been studied, and some cases
(e.g., recognizing planarity) are known to have a polynomial solution.

The aim of the present survey is to connect the problem above to several prob-
lems which arise in knot theory and combinatorics: Vassiliev invariants and weight
systems coming from Lie algebras, Boolean matrices etc., and to give both partial
solutions to the problem above and new formulations of it in the language of knot
theory.

7.1 Introduction

Assume 4-valent graph � with each vertex endowed with opposite half-edge struc-
ture, that is, at each vertex the four half-edges are split into two pairs of formally
opposite edges. Classify the surfaces S where � can be embedded in a way such
that the formal opposite half-edge structure coincides with the opposite half-edge
structure induced by the embedding.

A natural question is to study the highest (least) genus of the surface the graph
can be embedded into. We restrict ourselves only to the case of embeddings which
decompose the surface into 2-cells. We shall address this general question later in
this paper. We shall start with the following partial cases of it. One of them, more
general, deals with embedded graphs whose first Z2-homology class is orienting.
As a partial case of this, we address the following
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Fig. 7.1 Any embedded graph generates a 4-valent framed graph

Problem 1 Which is the least possible (highest possible) genus of a 2-surface S

(closed, but not necessarily orientable) this graph can be embedded into in such a
way that the embedding represents the zero homology class in the surface (alterna-
tively, the complement to the graph is checkerboard colourable).

Embeddings of such graphs representing the Z2-homology class are well stud-
ied for the case of the plane (see e.g., [Ros99, LM76, RR78, Man05b]) and in the
general case (see e.g., [LRS87, CR01]).

In fact, any embedding of a 4-graph in R
2 defines a checkerboard colouring on

the set of faces (we consider the infinite domain as a face of S2, the latter being a
one-point compactification of R

2) because the plane has trivial first homology. On
the other hand, any graph � embedded into a 2-surface S (orientable or not) can be
transformed into a 4-graph by taking the medial graph �′: the vertices of �′ are the
middle points of the edges of �, the edges of �′ connect adjacent edges (sharing the
same angle), and faces of �′ correspond to faces (white) and vertices (black) of �,
see Fig. 7.1.

Such 4-valent graphs appeared with many names in different problems of low-
dimensional topology: as atoms (see rigorous definition ahead), originally due to
Fomenko [Fom91], see the connection between atoms and knots in [MU05a], they
are connected to Grothendieck’s dessins d’enfant, see [LZ03] and [DFK+06].

There is a nice connection between combinatorics of Vassiliev invariants and
other invariants of knots and virtual knots and many well-known functions on
graphs, see [CDM] and references therein.

Finally, the genus of the atom (the genus of the checkerboard surface we are
interested in) is closely connected to the estimates of the thickness for Khovanov and
Ozsváth-Szabó homology for classical and virtual knots, see [Man] and [Low07].

In [CR01] there was a reformulation of the problem stated above in terms of
ranks of some matrices.
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We give another formulation of Problem 1 in terms of ranks of matrices which is
closely connected to knot theory.

Problem 2 Given a symmetric Z2-matrix M of size n×n, find a splitting of the set
of indices {1, . . . , n} into I � J such that for the corresponding square matrices MI

and MJ , the sum of ranks rk(MI ) + rk(MJ ) is minimal (resp., maximal).

This seems to be the easiest reformulation of the initial problem. Of course, we
are looking for a solution which would either be fast (say, having polynomial time
in the number of vertices) or connected to some interesting mathematical problems.

In knot theory, the study of classical knots is closely connected to the so-called
d-diagrams, chord diagrams with 2 sets of pairwise unlinked chords (see rigorous
definition ahead). It turns out that these diagrams play a special role in the chord di-
agram algebra having the highest possible degree of the Vassiliev invariants coming
from sl(n) (see [CSM04]). On the other hand, these are precisely those diagrams
corresponding (in sense of [MU05a]) to planar 4-valent graphs.

This is not incidental. In fact, the generating function for such embeddings is
closely connected to the sl(n)-weight system, and the latter weight system some-
times gives estimates for the genus of the atom where the framed graph can be
embedded into.

The paper is organized as follows. In the next section, we give the definitions
of atom, chord diagram, d-diagram, virtual link and establish a connection between
them and embedded graphs. We also give a proof of a conjecture due to Vassiliev
(stated in [Vas05]) and proved in [Man05b] saying that the only obstruction to the
planar embeddability of such graphs is the existence of two cycles with no common
edges with exactly one transverse intersection point.

Later, we also give criteria for embeddability of framed graphs to the real projec-
tive space and in the Klein bottle.

In Sect. 7.3, we define the Kauffman bracket for the virtual knots and we re-
call a result by Soboleva [Sob01] about the number of circles which appear after a
surgery along a chord diagram. This will lead us to the reformulation of Problem 1
as Problem 2.

The approach relying on Soboleva’s theorem was one of the main tools of the
papers [IM09b, IM09a], where we construct graph-link theory. The main idea of
these papers is as follows: a knot can be represented by a chord diagram, which, in
turn, has an intersection graph (with some extra labeling and framing). Reidemeister
moves can be translated into the language of intersection graphs, which generates
new equivalence classes of all graph (not necessarily realisable by chord diagrams
and knots). These equivalence classes are called graph-links.

Section 7.4 will be devoted to the connection between chord diagrams, weight
systems and Vassiliev’s invariants coming from Lie algebras in sense of Bar-Natan
[BN95]. We shall prove a theorem giving an estimate in terms of sl(n)-invariants.

The last section will be devoted to the discussion and open problems.
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Fig. 7.2 Surface colouring
and a knot diagram

7.1.1 Atoms and Knots

A four-valent planar graph � generates a natural checkerboard colouring of the
plane by two colours (in a way such that adjacent components of the complement
R

2\� have different colours).
This construction perfectly describes the role played by alternating diagrams of

classical knots. Recall that a link diagram is alternating if while walking along any
component one alternates over- and underpasses. Another definition of an alternat-
ing link diagram sounds as follows: fix a checkerboard colouring of the plane (one
of the two possible colourings). Then, for every vertex the colour of the region cor-
responding to the angle swept by going from the overpass to the underpass in the
counterclockwise direction is the same.

Thus, planar graphs with natural colourings somehow correspond to alternating
diagrams of knots and links on the plane: starting with a graph and a colouring,
we may fix the rule for making crossings. Assume at some vertex we have four
half-edges a, b, c, d in this clockwise direction, so that a is opposite to c, b is oppo-
site to d , and the pairs (a, b) and (c, d) share black angles. Then the pair of edges
(a, c) will form an overcrossing, and the pair (b, d) will form an undercrossing, see
Fig. 7.2. Thus, colouring a couple of two opposite angles corresponds to a choice of
a pair of opposite edges to form an overcrossing and vice versa.

Now, if we take an arbitrary link diagram and try to fix the colouring of regions
by colouring angles according to the rule described above, we see that generally it
is impossible unless the initial diagram is alternating: we can just get a region on
the plane where colourings at two adjacent angles disagree. So, alternating diagrams
perfectly match colourings of the 2-sphere (think of S2 as a one-point compactifica-
tion of R

2). For an arbitrary link, we may try to take colours and attach cells to them
in a way that the colours would agree, namely, the circuits for attaching two-cells
are chosen to be closed paths on the frame which at every vertex turn inside the
angle of the fixed colour.

This leads to the notion of atom. An atom is a pair (M,�) consisting of a
2-manifold M and a four-valent graph � embedded in M together with a colouring
of M\� in a checkerboard manner. Here � is called the frame of the atom, where
by genus (resp., Euler characteristic) of the atom we mean that of the surface M .
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Note that the atom genus is also called the Turaev genus, following the paper by
Turaev [Tur87].

Such a colouring exists if and only if � represents the trivial Z2-homology class
in M : an obstruction to such a colouring generates a closed path intersecting the
frame at odd number of points, and if the colouring exists, then the frame can be
treated as a sum (over Z2 of boundaries of all black cells).

Thus, gluing cells to the black (white) 1-cycles, we get an atom, where the
shadow of the knot plays the role of the frame. Note that the structure of oppo-
site half-edges on the plane coincides (by construction) with that on the surface of
the atom.

Now, we see that atoms on the sphere are precisely those corresponding to alter-
nating link diagrams, whence non-alternating link diagrams lead to atoms on sur-
faces of higher genera.

In some sense, the genus of the atom is a measure of how far a link diagram is
from an alternating one, which leads to generalisations of the celebrated Kauffman-
Murasugi theorem, see [MU05a] and to some estimates concerning the Khovanov
homology [Man].

Having an atom, we may try to embed its frame in R
2 in such a way that the

structure of opposite half-edges at vertices is preserved. Then we can take the “black
angle” structure of the atom to restore the over/under crossing structure on the plane.

In [Man00] it is proved that the link isotopy type does not depend on the partic-
ular choice of embedding of the frame into R

2 with the structure of opposite edges
preserved. The reason is that such embeddings are unique (for “prime” graphs) up
to overall colour change.

The atoms whose frame is embeddable in the plane with opposite half-edge struc-
ture preserved are called height or vertical.

However, not all atoms can be obtained from some classical knots. Some abstract
atoms may be quite complicated for its frame to be embeddable into R

2 with the
opposite half-edges structure preserved. However, if it is impossible to embed a
graph in R

2, we may immerse it by marking artifacts of the immersion (intersections
of images of different arcs; we assume the embedding to be generic) by small circles.

This leads to a connection between atoms and virtual knots which perfectly
agrees with virtual knot theory proposed by Kauffman in [Kau99].

Definition 1 A virtual diagram is a 4-valent diagram in R
2 where each crossing is

either endowed with a classical crossing structure (with a choice for underpass and
overpass specified) or just said to be virtual and marked by a circle.

Definition 2 The shadow of a virtual diagram D is a four-valent framed graph G

whose vertices correspond to classical crossings of D, and edges correspond to arcs
connecting classical crossings (in D, arcs may contain virtual crossings inside). The
framing of G is taken from the plane, and D represents a generic immersion of G

in R
2.

Definition 3 A virtual link is an equivalence class of virtual link diagram modulo
generalized Reidemeister moves. The latter consist of usual Reidemeister moves
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Fig. 7.3 The detour move

referring to classical crossings and the detour move that replaces one arc containing
only virtual intersections and self-intersection by another arc of such sort in any
other place of the plane, see Fig. 7.3.

Having freedom of immersing knot diagrams into R
2 instead of just embedding,

we are able to make different virtual diagrams out of atoms. Obviously, since we
disregard virtual crossings, the most we can expect is the well-definiteness of the
virtual diagram corresponding to the atom up to detours. However, this allows us to
get different virtual link types from the same atom, since for every vertex V of the
atom with four emanating half-edges a, b, c, d (ordered cyclically on the atom) we
may get two different clockwise-orderings on the plane of embedding, (a, b, c, d)

and (a, d, c, b). The difference between two diagrams obtained from different im-
mersions of the same atom leads to a move called virtualisation.

Definition 4 By a virtualisation of a classical crossing we mean a local transforma-
tion shown in Fig. 7.4.

The above statements summarise as

Proposition 1 (see., e.g. [MU05a]). Let L1 and L2 be two virtual links obtained
from the same atom by using different immersions of its frame. Then L1 differs from
L2 by a sequence of (detours and) virtualisations.

Obviously, the inverse operation of obtaining an atom from a virtual diagram is
well defined.

Note that many famous invariants of classical and virtual knots (Kauffman
bracket, Khovanov homology, Khovanov-Rozansky homology [KR08, KR]) do not
change under the virtualisation, which supports the virtualisation conjecture: if for
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Fig. 7.4 Virtualisation

two classical links L and L′ there is a sequence L = L0 → ·· · → Ln = L′ of virtu-
alisations and generalised Reidemeister moves then L and L′ are classically equiv-
alent (isotopic).

Note that the usual virtual equivalence implies classical equivalence for classical
knots, see [GPV00].

Definition 5 By a chord diagram we mean a cubic graph with a selected oriented
cycle S1 passing through all vertices. The remaining edges are called chords; every
vertex is incident to exactly one chord.

A chord diagram is called framed if every chord is marked by either +1 or −1.
A chord diagram without framings is assumed to have all chords positive.

Two chords A,B of a chord diagram are linked if the ends A1 and A2 of the first
chord lie in different components of S1\{B1,B2}.

Analogously, one defines a chord diagram on m circles; for a cubic graph there
should be m oriented cycles passing through all vertices; the edges not belonging to
circles are referred to as chords.

For a given chord diagram the intersection graph is constructed as follows. The
vertices of the intersection graph are in one-to-one correspondence with the chords.
Two vertices of the graph are connected by an edge iff the corresponding chords are
linked.

A chord diagram (with all chords framed positively) is a d-diagram if the corre-
sponding intersection graph is bipartite.

If the chord diagram is framed then the corresponding graph obtains framings at
vertices.

Now, assume we have an atom with exactly one white cell. Then the whole infor-
mation about the atom can be obtained from a rotating circuit along the boundary of
this cell. Namely, consider a walk along this boundary (in any direction) as a map
from S1 to the atom, and connect the preimages of vertices of the atom by chords.
We thus construct a framed chord diagram, where the framing is positive when the
orientations of the two segments locally agree or negative otherwise, see Fig. 7.5.

This way of constructing a chord diagram out of a virtual link diagram leads us
to the notion of rotating circuit.
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Fig. 7.5 Two types of
orientations in a
neighbourhood of a vertex

Definition 6 By a rotating circuit of a framed graph � we mean a map from the
oriented circle S1 → � which is homeomorphic outside preimages of vertices of �,
and each vertex of � has precisely two preimages such that the corresponding neigh-
bourhoods of them on the circle switch from one edge to an edge not opposite to
it.

From the chord diagram constructed from an atom, one easily restores the atom
and, thus, the corresponding virtual link up to detours and virtualisations.

Notation For a chord diagram C with one cell denote the corresponding atom
by A(C) and denote the corresponding virtual knot (considered up to detours and
virtualisations) by K(C).

7.2 Chord Diagrams, 1-dimensional Surgery and the Kauffman
Bracket

The Kauffman bracket [Kau87] is a very useful model for understanding the Jones
polynomial [Jon85]. The Kauffman bracket associates with a virtual knot diagram
a Laurent polynomial in one variable a associated to every virtual diagram. After
a small normalisation (multiplication by a power of (−a)) it gives an invariant for
virtual links.

This invariant can be read from the atom corresponding to a knot diagram.
Namely, take an atom V with n vertices corresponding to a virtual diagram L with
n classical crossings and call a state a choice of the couple of black or white angles
at every vertex of V . Every such choice gives rise to a collection of closed curves on
V whose boundaries contain all the edges of V , see Fig. 7.6, and at each crossing
the curves turn locally from one edge to an adjacent edge sharing the same angle of
the prefixed colour.
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Fig. 7.6 State curves drawn
on an atom

Thus, having 2n states of the atom, we define the Kauffman bracket of it as

〈V 〉 =
∑

s

aα(s)−β(s)(−a2 − a−2)γ (s)−1, (7.1)

where the sum is taken over all states s of the diagram, α(s) and β(s) denote the
number of white and black angles in the state (thus, α(s) + β(s) = n and γ (s)

denotes the number of curves in the state).
This formula (7.6) gives the expression of the Kauffman bracket for any virtual

diagram corresponding to the atom V .
The Kauffman bracket is an invariant of virtual link diagrams under all Reide-

meister moves except the first move. Moreover, the Kauffman bracket is invariant
under the virtualisation. Thus, it is not surprising that it can be read from the corre-
sponding atom.

If the atom A is obtained from a (framed) chord diagram C, then one can con-
struct the Kauffman bracket 〈C(A)〉.

Thus, one obtains a function f on framed chord diagram valued in Laurent poly-
nomials in a. We shall return to that function because it is connected to the Vassiliev
invariants of knots and J -invariants of closed curves (Lando, [Lan06]).

Assume now we have a framed graph (a graph with each vertex labeled either
positively or negatively).

Every rotating circuit gives rise to a framed chord diagram associated with a
graph (the latter graph will have no loops or multiple edges): this chord diagram
consists of the circle S1 and chords connecting those points of S1 having the same
image in �. A chord is positive (or of framing zero) if for the corresponding vertex
the two emanating edges are opposite; otherwise it is called negative (or of framing
one).

The following statement is left to the reader:

Statement 1 Let � be a four-valent graph and D be the chord diagram corre-
sponding to some rotating circuit of �. Assume � is embedded in a 2-surface S in a
checkerboard manner with framing preserved. Then S is orientable if and only if D

has all chords positive.
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Fig. 7.7 Two chord diagrams
with the same intersection
graph

Fig. 7.8 Mutation and its
chord diagram presentation

Remark 1 Note that the orientability condition holds for one embedding then it
holds for any embedding, and this can be read out from any rotating circuit.

Consider an arbitrary simple graph G (without loops and multiple edges). It may
or may not be represented as an intersection graph of a chord diagram (see [Bou94]
for the details) for which it is an intersection graph. Moreover, if such a chord dia-
gram exists, it may not be unique, see, e.g., Fig. 7.7.

This non-uniqueness usually corresponds to so called mutations of virtual knots.
The mutation operation (shown in the top of Fig. 7.8) cuts a piece of a knot

diagram inside a box turn is by a half-twist and reglues the obtained piece to the
initial position.

It turns out that the mutation operation is expressed in terms of chord diagrams
in almost the same way: one cuts a piece of diagram with 4 ends and exchanges the
top and the bottom part of it (see bottom picture of Fig. 7.8). Exactly this operation
corresponds to the mutation from both Gauss diagram and rotating circuit points of
view.

In the bottom part of Fig. 7.8 chords whose end points belong to the “dotted”
area remain the same; the other chords are reflected as a whole.

Regarded from the point of view of Gauss diagrams and the Vassiliev knot in-
variants, this non-uniqueness corresponds to mutations of classical links as well.
Namely, S.K. Lando and S.V. Chmutov [CL07] proved the following
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Theorem 1 Assume w is a weight system. Then w depends only on the intersection
graph of the chord diagram if and only if no Vassiliev invariant having weight system
w detects mutant knots.

It is well-known that the Kauffman bracket does not detect mutations. Thus, one
might guess that the corresponding Kauffman bracket can be read from the intersec-
tion graph.

Surprisingly, the Kauffman bracket can be defined in a meaningful way even for
those framed graphs which can not be represented as intersection graphs of chord
diagrams. This leads to the newborn theory of graph-links, [IM09b, IM09a], a far-
reaching generalization of virtual and classical knot theory constructed out of inter-
section graphs of the corresponding chord diagrams.

Having a chord diagram, we can treat the states of the corresponding Kauffman
bracket as collections of chords: we set the initial state s0 to be the empty collection
of curves (with α(s) = n, β(s) = 0), and with each state s we associate a collec-
tion of chords corresponding to those vertices of the atom where s differs from s0.
Indeed, if the initial circle of a chord diagram corresponds to the A-state of the
Kauffman bracket for some virtual knot, and chords indicate the ways of resmooth-
ing the A-state at all classical crossings, then every state corresponds to a collection
of classical crossings (chords of the diagram) where it differs from the A-state.

Now, if we are able to calculate how many circles we have in each state, we can
apply (7.1) to calculate the Kauffman bracket.

This can be seen from a chord diagram after introducing the notion of surgery
along a chord.

Given a chord diagram D on n circles C1, . . . ,Cn. Fix a chord c of it. By surgery
along c we mean the following operation. We delete small neighbourhoods of end-
points of c and connect the obtained endpoints by segments in the following way.
There are 3 ways of pairing the four points. One of them corresponds to the discon-
nection we have performing. We choose one of the other two ways as follows. If c

is positive then we connect the endpoints according to the orientation of circles, and
if c is negative, we connect the endpoints in the way opposite manner, see Fig. 7.9.

Then we get a collection of circles, not necessarily oriented. If we choose a col-
lection of chords c1, . . . , ck of C, then the surgery along these chords means the
consequence of surgeries performed along all chords ci ; in each case we look at the
orientations of the initial diagram C.

Assume the circle represents a boundary component of an annulus. By adding a
band to the annulus circle transforms its boundary component according to a surgery
along the chord corresponding to the band, see Fig. 7.10.

Thus, the number of circles in the state corresponding to the chords d1, . . . , dn is
precisely the number of components of the manifold obtained from the initial circle
by surgery along these chords.

Now, for a framed graph G on k enumerated vertices, introduce the intersection
matrix of G to be k × k matrix over Z2 whose rows and columns correspond to
vertices of G such that Mij = Mji = 1 for i �= j iff the vertices i, j are connected
by an edge and Mii = 1 iff i-th vertex is framed negatively.
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Fig. 7.9 Surgeries along
positive and negative chords

Fig. 7.10 A surgery and its
band representation

Surprisingly, this number can be counted from the intersection graph even when
the corresponding chord diagram does not exist, due to the following

Theorem 2 (Soboleva [Sob01]) For a chord diagram D with an intersection graph
G = G(D), the number of components of the manifold obtained from D after a
surgery along chords 1, . . . , k is one plus the corank of M(D).

Now, we just define for a framed graph � the Kauffman bracket as

∑
G′⊂G

a2|G′|−n(−a2 − a−2)corankM�′ (7.2)

This formula is used in [IM09b, IM09a] to define the Kauffman bracket for
graph-links.

Soboleva’s theorem allows to reformulate Problem 1 as Problem 2. Indeed, let
� be a framed 4-graph. We are looking for an embedding of � into a surface S of
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Fig. 7.11 A circuit splits
chords into two sets

minimal (maximal) genus with a checkerboard face colouring. Choose a rotating
circuit of � and a corresponding framed chord diagram C(�).

Now, assume � is embedded in a certain surface S. Then C(�) yields a mapping
S1 → S which is an embedding outside pre-images of vertices of �. Indeed, we just
take S1 → � → C(�) ⊂ S. This map can be slightly smoothed in neighbourhoods
of images of vertices on S to give an embedding as shown in Fig. 7.11.

Obviously, this circle S1 ∈ S is separating: it divides the surface S into the “white
part” and the “black part”. Namely, no point inside any black cell can be connected
by an arc to a point inside any white cell without intersecting the circle S1. We can
draw all chords of C(�) as small edges on S lying in neighbourhoods of vertices
of �. Thus, all chords of the chord diagram C(�) are naturally split into two fam-
ilies: those lying in white regions (and connecting one white cell to another) and
those lying in black regions.

Vice versa, any splitting of chords of C(�) into two families (black and white)
gives rise to a checkerboard colourable embedding of � into a certain surface S.
Indeed, consider an annulus S1 × I and let S1 be the medial circle of this annulus.
Now, we attach bands to two sides of the annulus according to the splitting. More
precisely, we consider the neighbourhood of our embedded circuit: it is an annulus.
Colour its boundary circles with black and white. Then we start attaching bands to
different sides of this annulus: every band will correspond to a neighbourhood of
some chord. Chords corresponding to the white regions are connected to the white
boundary component, and chords corresponding to black regions are connected to
the black boundary component. A band is overtwisted iff the corresponding chord is
negative. This leads to a 2-manifold M with boundary; this boundary naturally splits
into two parts corresponding to the boundary components of the annulus. Gluing
the boundary components of M , we get the desired surface S without boundary, see
Fig. 7.12.

Thus, the question of estimating the genus (Euler characteristic) of S is equiv-
alent to the question of maximising (minimising) the boundary components of S.
By definition, this is nothing but counting the number of components of the two
1-manifolds obtained from the sphere by a surgery along the set of chords. By
Soboleva’s formula, we have two subsets of chords I and J , and we should take
two coranks of the adjacency matrices MI and MJ .

Thus, we have to find a way of splitting the chords in order to maximise (min-
imise) the sum of ranks of the two matrices rankMI + rankMJ .

Thus, we have proved
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Fig. 7.12 Restoring the atom
from a chord diagram with
two sets of chords

Theorem 3 Let � be a four-valent framed graph on n vertices, and M(�) be the
intersection matrix corresponding to some rotating circuit of �. Then � is embed-
dable in a surface of genus g in a checkerboard manner if and only if for any cir-
cuit C there exists a way of splitting the indices of M(�) into two sets I and J ,
I � J = {1, . . . , n} such that rankMI(�) + rankMJ (�) = 2g.

Remark 2 Note that this solution does not depend on a particular choice of a rotating
circuit, depending only on the initial framed graph.

The observation above leads to the following

Statement 2 Given a framed 4-graph � and the chord diagram C(�) correspond-
ing to some rotating circuit of �. Then if all chords of C(�) are positive then all
checkerboard colourable embeddings of � yield orientable surface. If at least one
chord of � is negative then all such surfaces are non-orientable.

Remark 3 Note that the statement above means, in particular, that if for some circuit
the chord diagram contains a negative chord, then so are all diagrams corresponding
to all rotating circuits for the same graph.

7.2.1 The Source-sink Condition

The above condition can be reformulated in terms of some intrinsic properties of the
framed 4-graph.

Definition 7 We say that a four-valent framed graph satisfies the source-sink con-
dition if each edge of it can be endowed with an orientation in such a way that for
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each vertices some two opposite edges are emanating, and the remaining two edges
are incoming.

Obviously, for a given connected graph there exists at most one source-target
structure (up to overall orientation reversal of all edges). Moreover, if such a struc-
ture exists, then it agrees with any rotating circuit. Namely, starting with a rotating
circuit one may try to orient its edges consequently in order to get a source-target
structure of the whole framed graph. The only obstruction one gets in this direction
corresponds to negative chords.

From the above, we get the following

Theorem 4 A four-valent framed graph � admits a source-sink structure if and only
all surfaces where it can be embedded in a checkerboard colourable manner, are
orientable surface, if � does not admit such an orientation then all surfaces where
it can be embedded into in a checkerboard colourable manner and with framing
preserved, are non-orientable; in other words, a source-target structure means that
for any rotating circuit all chords are positive (of framing zero), cf. Statement 1.

Proof The idea of the proof goes as follows. Assume � admits a source-sink orien-
tation of edges. Then, if � is embedded in some surface S, the boundary of each cell
acquires a natural orientation from the source-sink condition. Now, assuming that
the boundaries of the black cells generate the clockwise orientation of black cells,
and the boundaries of white cells generate the counterclockwise orientation of the
white cells, we get the desired statement.

Conversely, having an embedding of � into an orientable surface in a checker-
board-colourable manner, we may take the clockwise orientations for the boundaries
of the black cells to generate the source-sink orientation of �. �

7.2.2 The Planar Case: Vassiliev’s Conjecture

To see whether a 4-graph � is embeddable in R
2 (or S2), take a chord diagram

C(�) corresponding to some rotating circuit of �, and consider the adjacency ma-
trix MC(�). A simple calculation shows that the corresponding sum of ranks should
be the minimal possible, i.e., equal to zero (cf. Theorem 3). That means that all
chords of � are positive (otherwise we would have diagonal non-zero entries giv-
ing rank at least 1). Moreover, the chords should constitute two families of non-
intersecting chords (each family forming a submatrix of rank 0). This means that
the corresponding intersection graph is bipartite or the diagram is a d-diagram.

Assume � is a 4-valent framed graph and γ1, γ2 are two cycles on � without
common edges having an intersection point X. The intersection point X of γ1, γ2

is called transverse if γ1 contains a pair of opposite edges at X and γ2 contains the
two remaining edges.
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Now, one can check that for a diagram with a negative chord c there is a Vassiliev
obstruction consisting of two circuits having precisely one transverse intersection
point at the vertex of � corresponding to c.

Having proved that, we are left with the case of graphs posessing the source-sink
conditions, see Theorem 4.

Besides, for a chord diagram which is not a d-diagram, one can explicitly con-
struct a Vassiliev obstruct. Finally, if a chord diagram corresponding to the rotating
circuit is a d-diagram, and the graph satisfies the source-sink condition, then the
graph is embeddable in R

2 with framing preserved.
This leads to a proof of Vassiliev’s conjecture. For more details see [Man05b].
Note that the above considerations lead to a fast (quadratic on the number of

chords) algorithm of planarity recognition: one takes any circuit, checks whether
all chords are positive, and then checks that a diagram is a d-diagram. The latter
consists of possible splitting of all chords into two disjoint sets, which is unique for
chord diagrams with connected intersection graphs.

7.2.3 The Case of RP 2

Here we shall use the adjacency matrix M = (mij ). According to Statement 2, the
adjacency matrix should have at least one non-zero diagonal element, and according
to Theorem 3, the sum of two ranks of block-diagonal matrices should be equal to
one. Without loss of generality, assume it is the element m11. Since we are looking
for a splitting of {1, . . . , n} in order to get rank 1, all elements entries mjj = 1 should
belong to the same set. Without loss of generality, assume a11 = · · · = mkk = 1,
mk+1,k+1 = · · · = mnn = 0. Now, merge some subset {k + 1, . . . , n} with {1, . . . , n}
and leave the remaining part as it is in order to get the total rank 1. The remaining
part should thus have rank 0, while the former should not increase rank 1 formed
by the first k entries of the matrix. This can be done by the procedure similar to
finding d-diagrams. The generic diagram corresponding to RP 2 looks as follows
(see Fig. 7.13): there is a family of dashed chords (all intersecting each other) and
two families of pairwise disjoint chords; chords belonging to one family do not
intersect dashed chords.

In Fig. 7.13 solid chords from another family are represented by thicker lines
than chords belonging to the family containing all dashed chords.

Obviously, the algorithm described in the present section has quadratic complex-
ity.

7.2.4 The Case of the Klein Bottle

The main idea of detecting the Klein bottle embeddability is the following. While
seeking the minimal sum of ranks being equal to 2 (by Theorem 3) there might be
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Fig. 7.13 A generic framed
chord diagram corresponding
to a graph in RP 3

Fig. 7.14 A surgery along a
dashed chord generates a
Möbius band

two possibilities: either 2 = 1+1 (which corresponds to the Klein bottle represented
as a connected sum of two projective planes) or 2 = 2 + 0, the first case is easier,
and it turns out that the general case can be reduced to it).

Lemma 1 For every four-valent framed graph embeddable in KL2 there exists a
rotating circuit dividing KL2 into two copies of RP 2.

Proof Starting with a rotating circuit bounding a disc, one can get a desired circuit
by performing surgery along a dashed chord, see Fig. 7.14. �

Then, the procedure is as follows: we take a dashed chord, perform a surgery and
look whether the intersection matrix corresponding to the obtained chord diagram
is splittable into two families giving the desired decomposition.

The desired decomposition should be such that inside each family any two
dashed chords intersect, and any non-dashed chord is disjoint from any other chord.
Thus, the procedure of finding two families is exactly the same as in the case of
d-diagrams, except for the case of incidence of dashed chords.
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Fig. 7.15 The four-term relation

7.2.5 The Chord Diagram Algebra and the Graph Algebra

Chord diagrams play a crucial role in the study of finite-type (Vassiliev) invari-
ants of knots [Vas90, BN95]. Roughly speaking, for every positive integer n there
is a class of invariants of degree n whose “leading term” (called symbol or n-th
derivative) is a function on chord diagrams satisfying a certain set of relations. In-
variants of the same order having the same leading term differ by an invariant of
a strictly smaller order (like polynomials of degree n whose n-th derivatives coin-
cide).

There are two versions of the chord diagram algebra: for usual knots (with two
sorts of relations, the four-term (see ahead) and the one-term relation) and for
framed knots (with only the four-term relation).

The one term relation says that a chord diagram having a solitary chord (not
linked with any other chord) is equivalent to zero.

We shall restrict ourselves for the case of only four-term relation which is defined
as follows (see Fig. 7.15): given four diagrams on n chords for which n − 2 chords
coincide (they are not depicted in Fig. 7.15 and have endpoints in punctured areas)
and the disposition of the remaining two chords, α and β is as shown in Fig. 7.15.
Then for any such quadruple of chords, we set their alternating sum (as in 7.15) to
be equal to zero.

Remark 4 There exists a standard “deframing” procedure which associates with
each weight system satisfying only the 4T -relation a weight system satisfying both
the 4T and the 1T -relation. The latter means that the diagram containing a solitary
chord is equal to zero.

Definition 8 We define the linear space Ac
n (over Q) to be the quotient space of all

chord diagrams on n chords modulo the four-term relation.

It turns out that the space Ac = ⊕∞
i=0 Ac

n has an algebra (and even bialgebra and
Hopf algebra) structure.

Let us now pass to the multiplication of chord diagrams. Given two chord dia-
grams C1 and C2, we take some points x1 and x2 (where xi lies on the circle of Ci

and is not a chord end), split Ci at xi , i = 1,2 and reconnect them to get a diagram
one circle with respect to their orientation. Certainly, this operation depends on the
choice of xi .
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It turns out that this operation is well-defined modulo 4T -relation [BN95].
The comultiplication operation for a chord diagram C is defined as �(C) =∑
I�J CI ⊗ CJ , where the sum is taken over all possible ways to split the total

set of chords into two subsets I and J , and we take the subdiagrams CI and CJ

formed by these sets. More precisely, we make two copies c1 and c2 of the circle
of c and put every chord of C on exactly one of these circles. We take the tensor
product of the two chord diagrams (one on c1 and one on c2) obtained in this way
and sum over all ways of splitting the chords into two sets.

Having the intersection graph mapping, one can define the analogous operations
on graphs (which is in fact, even simpler).

Indeed, a chord of a chord diagram corresponds to a vertex of the intersection
graph, and two vertices are connected by an edge iff the corresponding chords are
linked. Thus, the product operation on graphs corresponding to the multiplication of
chord diagrams is just the disjoint sum operation. Obviously, this disjoint sum does
not depend on the choice of the splitting point for chord diagram, and the product
of graphs is well defined. On the other hand, one can introduce (following Lando,
[CDL94]) the 4T -relation for graphs which corresponds to the 4T -relation on chord
diagrams. It is defined as follows.

To make the definition of the graph algebra precise, we have to describe the
correspondence between the four terms A,B,C,D in the graph-theoretic language.
Since vertices of the graph correspond to chords, the diagrams A and B differ just
by one chord: in A, the vertices α and β are connected by an edge, and in B they
are not. The same for C and D. It remains only to explain how to construct the
chord diagram C starting from A. In the chord diagram we moved one end of the
chord β from one end of the chord α to the other while passing from A to C, see
Fig. 7.15. This means that the chord β changes its incidence with all chords incident
to α and does not change its incidence with those chords which are not incident
to α.

Definition 9 The graph algebra G is the quotient algebra generated by linear com-
bination of graphs without loops and multiple edges by the four-term relation, with
multiplication operation defined to be the disconnected sum.

Remark 5 Note that the surgery over A and the surgery over C lead to the same
number of circles; the same is true about B and D.

It turns out that many nice functions defined on graphs (e.g., the Tutte poly-
nomial) satisfy the 4T -relation. We shall touch on such functions when defin-
ing the generating function for counting genera of surfaces spanning a given
graph.

It turns out that the chord diagram algebra has its meaningful “framed analogue”.
It is connected to so-called finite-type invariants of plane curves, see [Lan06] for
details. The definition goes as follows.
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Fig. 7.16 Two types of generalized 4-term relations

Consider the set of all framed chord diagrams on n chords. Now, we set A
cf
n to be

the Q-linear space generated by all such chord diagrams subject to the generalised
4T -relations depicted in Fig. 7.16.

The general rule for the defining generalized four-term relation is as follows:
we consider some n − 2 fixed chords and two chords, α and β . If α is positive
then in all chord diagrams A,B,C,D, the chord β is of the same sign (in all cases
positive or in all cases negative), and the relation looks just as the usual four-term
relation: A − B = C − D. If α is negative, then while moving from A,B to C,D

the chord β changes its sign; moreover, the RHS changes the overall sign: A − B =
D − C, that means that if in the LHS we take the chord diagram with intersecting
α,β with plus then in the RHS we take the diagram with intersecting α,β with
minus.

One can easily check that in any special case of the generalized 4T -relation,
the surgery along A gives the same number of circles as the surgery along the dia-
gram with plus in the right hand side (C or D), and the surgery along B gives the
same number of circles as the surgery along the diagram with minus from the RHS,
namely, we have f (A)−f (B) = f (C)−f (D), where A,B,C,D is the quadruple
of diagrams shown in Fig. 7.16.

To the best of the author’s knowledge, the connected sum operation on the framed
chord diagram algebra has not been proved to be well-defined. Again, one can break
two chord diagrams and reconnect them together with respect to the orientation, but
it is no proved that different diagrams obtained in this way for different choices of
the breaking points are equal modulo generalized four-term relations.

Of course, the coalgebraic operation is well-defined.
Analogously, one defines the bialgebra of framed graphs (at the level of graphs,

there is no problem to define the product, we omit the exact definition leaving it for
the reader as an exercise).
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7.3 The Generating Function for the Embedding Genera

7.3.1 Weight Systems Associated with Lie Algebras: a Brief Review

There is a natural way of associating a number (say, from Q) with a given chord
diagram and a given representation of a (semisimple) Lie algebra due to Bar-Natan,
[BN95]. It turns out that the corresponding mapping naturally extends (for a fixed
representation R of a fixed Lie algebra G) to the mapping from the algebra of chord
diagram Ac to Q because of the similarity of the 4T -relation and the Jacobi iden-
tity.

We shall deal only with the adjoint representation of Lie algebras; for a Lie alge-
bra G we denote the corresponding mapping from Ac to Q by WG.

The construction goes as follows. Every chord diagram is a cubic graph im-
mersed in the plane with prefixed edge cyclic ordering at each vertex (when drawing
chord diagrams on the plane we assume this rotation to be counterclockwise). We
shall enlarge the construction for arbitrary cubic graphs with rotation. Namely, we
take the structural tensor Lijk of the Lie algebra G with all indices shifted down by
using the Cartan-Killing metric. Obviously, Lijk = Ljki = Lkij. Now, we can asso-
ciate with each trivalent vertex the tensor Lijk with indices corresponding to edges
and going counterclockwise i, j, k. Then we contract all tensors along edges (by
using the Cartan-Killing metric tensor) and get an integer.

We specify ourselves for the case of the Lie algebra sl(n) and its adjoint repre-
sentation.

In [Man02], see also [CSM04], we proved the following

Theorem 5 For a given chord diagram D on n chords, Wsln(D) is a polynomial in
n; its degree does not exceed k + 2; moreover, it is equal to k + 2 only in the case
when D is a d-diagram.

As an immediate consequence from this theorem we see that each basis of the
chord diagram algebra consisting of chord diagrams contains at least one d-diagram.
Indeed, if we consider the weight system to be the coefficient at nk+2 for the Wsln ,
then it is non-zero only for d-diagrams, so, no d-diagram is expressible as a linear
combination of chord diagrams which are not d-diagrams, in Ac.

On the other hand, theorem 5 underlines the special role of d-diagrams amongst
all chord diagrams from two points of view: as those (corresponding to graphs)
embeddable in S2 and as those having the highest possible degree of the leading
term.

It turns out that this is not an accident: degrees of the Wsln polynomial are closely
connected to possible embeddings of the 4-valent graph into surfaces. We shall
touch on this subject in later sections.
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7.3.2 Checkerboard Colourable Embeddings

As we have seen, in order to minimise (maximise) the genus of the surface the
graph can be embedded into, we have to maximise (minimise) the number of circles
obtained as a result of surgeries along two subsets I, J of chords of the initial chord
diagram such that I � J forms the complete set of chords {1, . . . , n}.

In this section, we have reformulated this problem in terms of ranks of incidence
matrices. A new formulation comes with the generating function.

Let � be a framed 4-valent graph on k vertices, and let D be a chord diagram
corresponding to some circuit of �. Consider the following function

f (C) := f (�) =
∑

atoms

xk+2−g, (7.3)

where the sum is taken over all atoms with the framing taken from � and g is the
genus of the atom.

Note that here we take the genus to be g = 2−χ
2 , where χ is the Euler character-

istic of the surface; so g may be half-integer.
In view of Soboleva’s theorem, f (C) depends merely on the intersection graph

of �.
Consider the restriction of f (C) to chord diagrams with only positive chords

(i.e., to graphs corresponding to orientable atoms).

Theorem 6 f (C) is a well-defined function on the algebra of chord diagrams, i.e.,
it satisfies the 4T -relation.

Moreover, f (C) is multiplicative with respect to the multiplication operations in
these algebras.

Both chord diagram algebra and graph algebra have a commutative and co-
commutative Hopf-algebra structure, see, e.g., [BN95, CDL94, MU05a]. By
Milnor-Moore theorem, [MM65], each such algebra is isomorphic to the polyno-
mial algebra in its primitive elements. Thus, in order to calculate f (C) for a given
chord diagram, one can use the algebraic structure of the Hopf algebra of chord
diagrams (or graphs).

Now, we turn to the proof of Theorem 6. Consider a quadruple of chord diagrams
A,B,C,D on n chords each forming a 4T -relation A − B = C − D as shown in
Fig. 7.15. We can naturally identify chords from A,B,C,D: there are n − 2 chords
in common, one “fixed chord” (denoted by α in Fig. 7.15) and one “moving” chord
(denoted by β).

Consider summands for f (A),f (B),f (C),f (D) coming from the definition
(7.3). For those summands where α and β belong to the same subset of chords (say,
I , recall, that we deal with {1, . . . , n} = I � J ), the genus of surface corresponding
to A is equal to the genus corresponding to C, and the genus corresponding to
B is equal to the genus corresponding to D (this follows from a straightforward
calculation of the number of circles). Thus, these terms give the same contribution
to (7.3).
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For those summands where α and β belong to different subsets I and J , the cor-
responding subdiagrams coincide: AI = BI , AJ = BJ , CI = DI , CJ = DJ because
when we move α and β to different subdiagrams, it does not matter whether they
intersect or not.

The proof for the graph algebra is analogous.
Arguing as above, one can prove the following

Theorem 7 The restriction of function f to Ac satisfies the generalised 4T -
relation.

Corollary 1 If for a framed graph � satisfying source-sink condition on k ver-
tices and the corresponding chord diagram C we have degf (C) = k then � is
checkerboard-embeddable into the torus.

Proof Indeed, the maximal possible degree k + 2 corresponds only to planar em-
bedding; the orientability of the surface is guaranteed by the source-sink condition,
and the degree k corresponds to genus 1. �

It is important to know what sort of weight system we obtain from f . It turns out
that this weight system is closely connected to Wsln ; roughly speaking, Wsln can be
represented as a sum of 22k summands (for k chords); some k of them give exactly
the function f . Moreover, the Wsln -polynomial itself gives a “generating function”
for some more general embeddings (see ahead), however, this generating function
has signs ±, so the embeddings are counted with pluses and minuses, which means
that not the whole information can be restored from Wsln .

To clarify the situation, we shall need some more information about calculating
Wsln (see [Man02] and [CSM04]). We will in fact work in gln; the result of final
contraction will be the same as that for sln.

Given a chord diagram D, fix an arc of it and break this diagram along the arc.
Then Wsln(D) = Tr(x → [. . . [, x] . . .]) where by [. . . [, ] . . .] we mean the result of
consequent commutators of x with elements of the Lie algebra, where for each chord
we take α on one end of the chord and the dual element α∗ on the other end of the
chord and sum up when α runs over the basis of the Lie algebra. Let us be more
specific. Consider the diagram shown in Fig. 7.17, upper part. Take an arbitrary
point x on the circle different from a chord end.

The “long” commutator can be rewritten according to [p,q] = pq − qp. Thus we
get 22k terms of the following form:

(−1)lTr(x → p1 . . . plxq2k−l . . . q1), (7.4)

where p1, . . . pl are variables corresponding to some chord ends in the usual or-
der, and q2k−l , . . . , q1 are the remaining chord ends in the reversed order. For in-
stance, for a diagram shown in Fig. 7.17, the summands of the form (7.4) looks like
(−1)Tr(x → d∗baxcda∗b∗c∗).

After that, we have to simplify the trace formula by taking contraction of double
occurrences of words one-by one.



192 V.O. Manturov

Fig. 7.17 The contraction operator

Now, two simple gl(n)-contraction formulae come into play:

Tr(AαBα∗) = Tr(A)Tr(B); Tr(Aα)Tr(Bα∗) = Tr(AB). (7.5)

Here the sum is taken over α running over a basis of gln, whence α∗ runs over
the dual basis; A and B may be arbitrary n × n matrices. Looking at the formulae
(7.5) and representing any factor Tr(p1 · · ·pk) by a circle with points p1, . . . , pn

arranged in the clockwise direction, we see that the formulae (7.5) correspond to
splitting (merging) of two circles into one. Here pi correspond to some chord ends
lying on those circles.

With these formulae, we may calculate any trace of the form (7.4).
This means precisely that the contraction rules in sln correspond to surgery

operations.
We first transform the trace formula Tr(x → AxB) = Tr(xAx∗B) according to

the first formula of (7.5) and get Tr(A)Tr(B). Here A and B collect some variables
a, b, c, d and their dual ones a∗, b∗, c∗, d∗. These variables are now inside the
product of two traces, and we shall represent it schematically by taking chord ends
of the chord diagram into two separate circles as shown in Fig. 7.18. One circle will
contain those variables (from A) which were on the left hand side with respect to x

and the other set will contain those variables (from B) which were on the right hand
side with respect to x.

Schematically, it means that we have to collect 22k terms corresponding to dif-
ferent splittings of chord ends into two circles. For instance, (−1)d∗baxcda∗b∗c∗
corresponds to the diagram shown in Fig. 7.18.

Call a summand good if for each chord both ends belong to the same subset.
Such summands contribute with sign +. Now, it follows from definition that the
contribution of good summands gives exactly the function f .

Now, we explain the geometric meaning of the function f itself.
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Fig. 7.18 A chord diagram
on 2 circles corresponding to
(−1)d∗baxcda∗b∗c∗

7.3.3 Embeddings with Orienting Z2-homology Class

As we have seen, the generating function f for all Z2-zero homologous embeddings
can be written in a form of a function on the chord diagram algebra, which is closely
connected to the Vassiliev finite type invariants of the type sln.

To calculate all the summands for the generating function (not necessarily good
ones) we deal with arbitrary ways of splittings of chord ends into two sets. This
leads to an arbitrary way of attaching bands to the annulus, and, finally, gives the
generating function for arbitrary embeddings of our framed graph provided that the
Z2-homology represented by this graph corresponds to an orienting cycle.

Let us be more specific. First of all, our weight systems corresponding to Lie
algebras are defined only for the case when all chords of the chord diagram are
positive (of framing zero). On the other hand, the generating function can be written
down for an arbitrary graph. As we shall see, all generating functions will satisfy the
generalized 4T -relation and give a certain generalized weight system in the sense
of Lando.

Analogously to f , we define the function f̃ as follows:

f̃ (C) := f̃ (�) =
∑

Z2-orient.emb

xk+2−g, (7.6)

where the sum is taken over Z2-orientable embeddings.
Analogously to Theorem 7, one can prove

Theorem 8 The restriction of f̃ to chord diagrams satisfies the 4T -relation.

This immediately yields the following

Corollary 2 If f̃ (C) has maximal degree k then the corresponding framed 4-valent
graph is checkerboard-embeddable into the torus.
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Unfortunately, the converse is not true: the graph corresponding to the chord
diagram consisting of three pairwise-linked chords is embeddable into torus, though
the sl(n)-function on this chord diagram gives zero.

Now, let us try to understand the geometric meaning of f̃ . For a chord diagram
on k chords, the function f can be represented by 22k summands which clearly
correspond to the terms obtained after contracting the sln-sum according to the rules
(7.5). These are exactly the 2k summands corresponding to those contractions where
we place both ends of each chord on the same circle.

It would be very interesting to understand the nature of contraction along chords
connecting points on different circles, see Fig. 7.18.

First of all, in the expansion for a commutator, we may get a minus sign, which
corresponds to a surgery along a chord diagram with two ends on different circles
(indeed, the sign comes from [a, b] = ab − ba, and the total sign counts the number
of letters on the left hand side from x in the expansion of the iterated commuta-
tor).

Now assume we perform count the sl(n) weight system for a chord diagram. As
we have seen, after expanding the commutators, the expressions for two circles go
in the opposite order. Thus, in order to restore the real picture of embedding genera,
one should perform overtwisted surgeries along chords with endpoints on different
circles.

Thus, Wsln -weight system estimates the genera of the surfaces the graph can be
embedded to, but:

1. It counts embeddings with signs, thus, for some embedding it does not give a
real estimate for the genus. For instance, for the chord diagram on three pairwise
linked chords, the value of the Wsln -function is zero.

2. The contraction corresponding to chords with ends on different circles count
embeddings of the same graph, but with another framing.

So, the geometric meaning of f̃ is not yet completely understood.

7.3.4 The General Case

Arguing as above, one can consider the case of arbitrary embedding of four-valent
graphs with opposite edge structure preserved. In this case, for a given rotating cycle
C, the neighbourhood of its (smoothed) image on a surface can be either a cylinder
or a Möbius band, when the type of the surface depends only on the orientability of
the corresponding Z2-homology class.

We restrict ourselves by saying that the case of the Möbius band can be
considered analogously, and when passing to the orienting double covering of
the surface, one gets a generating function also satisfying the four-term rela-
tion.
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7.4 Unsolved Problems

The method of matrix ranks gives an explicit polynomial solution only in a very
limited number of cases. It is known that for every surface of rank g there is a
solution to Problem 1 which is polynomial in the number of chords [FMR79]. It
would be very interesting to get such algorithms via matrices.

Both bialgebra of chord diagrams and coalgebra of framed diagrams are well
known.

However, the weight system approach is applicable only to chord diagrams with
all chords having framing zero (which correspond to chord diagrams satisfying the
source-sink condition). It is not yet known how to apply any similar techniques for
framed chord diagrams (with chords of framing one). Possibly, one should treat
positive chords by means of sl(n)-tensors, and negative chords by means of so(n)

or maybe sp(n)-tensors (cf. [BN95] and [CSM04]).
It is well known (see [LZ03]) that many enumerative problems in graph theory

can be solved by using Gaussian integrals. However, these problems usually count
generating functions for genera coming from all possible gluings, say, of a polygon.
In our problem, we have to fix a graph (or a chord diagram), and consider the gener-
ating function for genera of surface this graph can be embedded into. Possibly, this
can be done by means of a Gauss integral for all admissible gluings of crosses at
vertices of the diagram.

Any framed four-valent graph can be represented as a shadow of a virtual link.
Problem 1 is devoted to finding the minimal atom genus for a link with this shadow
and some classical crossing setup. Fixing such a link with one white cell leads to
a chord diagram and a rotating circuit. The Kauffman bracket of this link is very
similar to the generating function for the solution f of Problem 1: it has 2n sum-
mands. It is known [Mel00] that the Kauffman bracket (after some variable change)
giving a series of weight systems integrates to give the Kauffman 2-variable poly-
nomial of the knot. It would be interesting to know which are the knot invariants
that can be obtained by integrating (in Kontsevich’s sense) the generating functions
for Problem 1 and which knot-theoretic properties they can detect.

In [Ros99] a new viewpoint to the planarity problem of four-valent graph is estab-
lished: one uses certain vector spaces over Z2 calculated out of edges and vertices of
the graph (together with their opposite structure), and proves that a 4-valent framed
graph is realizable iff there is no homological obstruction coming from a certain
scalar product.

It would be extremely interesting to understand whether this Z2-homological
approach generalizes for embeddings of arbitrary genera.

Acknowledgements I express my gratitude for useful discussions to V.A. Vassiliev, A.T. Fomen-
ko, L.H. Kauffman, and O.R. Campoamor-Stursberg.
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Chapter 8
Geometric Topology and Field Theory
on 3-Manifolds

Kishore Marathe

Abstract In recent years the interaction between geometric topology and classi-
cal and quantum field theories has attracted a great deal of attention from both the
mathematicians and physicists. This interaction has been especially fruitful in low
dimensional topology. In this article We discuss some topics from the geometric
topology of 3-manifolds with or without links where this has led to new viewpoints
as well as new results. They include in addition to the early work of Witten, Cas-
son, Bott, Taubes and others, the categorification of knot polynomials by Khovanov.
Rozansky, Bar-Natan and Garofouladis and a special case of the gauge theory to
string theory correspondence in the Euclidean version of the theories, where ex-
act results are available. We show how the Witten-Reshetikhin-Turaev invariant in
SU(n) Chern-Simons theory on S3 is related via conifold transition to the all-genus
generating function of the topological string amplitudes on a Calabi-Yau manifold.
This result can be thought of as an interpretation of TQFT as TQG (Topological
Quantum Gravity). A brief discussion of Perelman’s work on the geometrization
conjecture and its relation to gravity is also included.

8.1 Introduction

This paper is based in part on my seminars given at the Max Planck Institute for
Mathematics in the Sciences, and at other institutes, notably at the IIT (Mumbai),
Universitá di Firenze, University of Florida at Gainsville, Inter University Center
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for Astronomy and Astrophysics, University of Pune, India and conferences given
at the XXIV workshop on Geometric Methods in Physics, Poland [Mar06a] and
the Blaubeuren workshop “Mathematical and Physical Aspects of Quantum Grav-
ity” [Mar06b]. In my lectures on the mathematical and physical aspects of gauge
theories in New York and Florence in the early 1980s, I began using the phrase
gauge theoretic topology and geometry to describe a rapidly developing area of
mathematics, where unexpected advances were made with essential use of gauge
theory. By the late 1990s it was evident that in addition to gauge theory, many other
parts of theoretical physics were contributing new ideas and methods to the study
of topology, geometry, algebra and other fields of mathematics. I then began using
the phrase “Physical Mathematics” to collectively denote the areas of mathematics
benefitting from an infusion of ideas from physics. It appears in print for the first
time in [MMF95] and more recently, in [Mar01] and is the theme of my forthcoming
book [Mar10b] “Topics in Physical Mathematics” with Springer-Verlag.

During the past two decades a surprising number of new structures have ap-
peared in the geometric topology of low-dimensional manifolds. Chiral, Vertex,
Affine and other infinite dimensional algebras are related to 2d CFT and string the-
ory as well as to sporadic finite groups such as the monster. In three dimensions
there are the polynomial link invariants of Jones, Kaufman. HOMFLY and others,
Witten-Reshetikhin-Turaev invariants of 3-manifolds, Casson invariants of homol-
ogy spheres and Fukaya-Floer instanton homologies. In 4 dimensions we have the
instanton invariants of Donaldson and the monopole invariants of Seiberg-Witten
and the list continues to grow. These invariants may be roughly split into two groups.
Those in the first group arise from combinatorial (algebraic or topological) consid-
erations and can be computed algorithmically. Those in the second group arise from
the study of moduli spaces of solutions of partial differential equations which have
their origin in physical field theories. Here the computations generally depend on
special conditions or extra structures. The main aim of these lectures is to study
some of the relations that have been found between the invariants from the two
groups and more generally, to understand the influence of ideas from field theo-
ries in geometric topology and vice versa. For example, many physicists consider
supersymmetric string theory to be the most promising candidate to lead to the so
called grand unification of all four fundamental forces. Unifying different string the-
ories into a single theory (such as M-theory) would seem to be the natural first step.
This goal seems distant at this time, since even the physical foundations for such
unification are not yet clear. However, in mathematics it has led to new areas such
as mirror symmetry, Calabi-Yau spaces, Gromov-Witten theory, and Gopakumar-
Vafa invariants. The earliest and the best understood example of the relationship
between invariants from the two groups is illustrated by the Casson invariant which
was defined by using combinatorial topological methods. Taubes found a gauge the-
oretic interpretation of the Casson invariant as the Euler characteristic by using the
generalized Poincaré-Hopf index which can also be obtained by using Floer’s in-
stanton homology. Yet there is no algorithm for computing the homology groups
themselves.

Topological quantum field theory was ushered in by Witten in his 1989 paper
[Wit89] “QFT and the Jones’ polynomial”. WRT invariants arose as a byproduct
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of the quantization of Chern-Simons theory used to characterize the Jones’ poly-
nomial. At this time, it is the only known geometric characterization of the Jones’
polynomial, although the Feynman integrals used by Witten do not yet have a math-
ematically acceptable definition. Space-time manifolds in such theories are compact
Riemannian manifolds. They are referred to as Euclidean theories in the physics lit-
erature. Their role in physically interesting theories is not clear at this time and they
should be regarded as toy models.

In the last few years we have celebrated a number of special events. The Gauss’
year and the 100th anniversary of Einstein’s “Annus Mirabilis” (the miraculous
year) are the most important among these. Indeed, Gauss’ “Disquisitiones generale
circa superficies curvas” was the basis and inspiration for Riemann’s work which
ushered in a new era in geometry. It is an extension of this geometry that is the
cornerstone of relativity theory. More recently, we have witnessed the marriage be-
tween Gauge Theory and the Geometry of Fiber Bundles from the sometime warring
tribes of Physics and Mathematics. Marriage brokers were none other than Chern
and Simons. The 1975 paper by Wu and Yang [WY75] can be regarded as the an-
nouncement of this union. It has led to many wonderful offspring. The theories of
Donaldson, Chern-Simons, Floer-Fukaya, Seiberg-Witten, and TQFT are just some
of the more famous members of their extended family. Quantum Groups, CFT, Su-
persymmetry (SUSY), String Theory, Gromov-Witten theory and Gravity also have
close ties with this family. Later in this paper we will discuss one particular rela-
tionship between gauge theory and string theory, that has recently come to light.
The qualitative aspects of Chern-Simons theory as string theory were investigated
by Witten [Wit95] almost ten years ago. Before recounting the main idea of this
work we review the Feynman path integral method of quantization which is particu-
larly suited for studying topological quantum field theories. For general background
on gauge theory and geometric topology see, for example, [MM92, MMF95].

We now give a brief description of the contents of the paper. In Sect. 8.2 we
discuss Gauss’ Formula for Linking Number of knots, the earliest example of
TFT (Topological Field Theory) and its recent extension to self linking invari-
ants. Witten’s fundamental work on supersymmetry and Morse theory is covered
in Sect. 8.3. Chern-Simons theory is introduced in Sect. 8.6. Its relation to Cas-
son invariant via the moduli space of flat connections is explained in Sect. 8.7.
Ideas from Sects. 8.3 and 8.6 are used in Sect. 8.8 to define the Fukaya-Floer
homology. This homology provides the categorification of the Casson invariant.
Knot polynomials and their categorification are discussed in Sects. 8.9 and 8.10
respectively. Section 8.11 is devoted to a general discussion of TQFT and its ap-
plications to invariants of links and 3-manifolds. Atiyah-Segal axioms for TQFT
are introduced in Sect. 8.11.1. In Sect. 8.11.2 we define quantum observables and
introduce the Feynman path integral approach to QFT. The Euclidean version of
this theory is applied in Sect. 8.11.3 to the Chern-Simons Lagrangian to obtain
the skein relations for the Jones-Witten polynomial of a link in S3. A by prod-
uct of this is the family of WRT invariants of 3-manifolds. They are discussed
in Sect. 8.11.4. Section 8.12 is devoted to studying the relation between WRT
invariants of S3 with gauge group SU(n) and the open and closed string ampli-
tudes in generalized Calabi-Yau manifolds. Change in geometry and topology via
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conifold transition which plays an important role in this study is introduced in
Sect. 8.12.1 in the form needed for our specific problem. Expansion of free en-
ergy and its relation to string amplitudes is given in Sect. 8.12.2. This result is
a special case of the general program introduced by Witten in [Wit95]. A real-
ization of this program even within Euclidean field theory promises to be a rich
and rewarding area of research. We have given some indication of this at the end
of this section. Links between Yang-Mills, gravity and string theory are consid-
ered in the concluding Sect. 8.13. Relation of Yang-Mills equations with Ein-
stein’s equations for gravitational field in the Euclidean setting is considered in
Sect. 8.13. Various formulations of Einstein’s equations for gravitational field are
discussed in Sect. 8.13.1. They also make a surprising appearance in Perelman’s
proof of Thurston’s Geometrization conjecture. A brief indication of this is given in
Sect. 8.13.2.

We have included some basic material and given more details than necessary
to make the paper essentially self-contained. A fairly large number of references
ranging from January 1833 to January 2009, when the Heidelberg conference was
held, are included to facilitate further study and research in this exciting and rapidly
expanding area.

8.2 Gauss’ Formula for Linking Number of Knots

Knots have been known since ancient times but knot theory is of quite recent ori-
gin. One of the earliest investigations in combinatorial knot theory is contained in
several unpublished notes written by Gauss between 1825 and 1844 and published
posthumously as part of his Nachlaß (estate). They deal mostly with his attempts
to classify “Tractfiguren” or plane closed curves with a finite number of transverse
self-intersections. However, one fragment deals with a pair of linked knots. We re-
produce a part of this fragment below.

Es seien die Coordinaten eines unbestimmten Punkts der ersten Linie r =
(x, y, z); der zweiten r ′ = (x′, y′, z′) und

∫ ∫
(r ′ − r) · (dr × dr ′)

|r ′ − r|3 = V

dann ist dies Integral durch beide Linien ausgedehnt = 4πm und m die Anzahl
der Umschlingungen. Der Werth ist gegenseitig, d.i. er bleibt derselbe, wenn
beide Linien gegen einander umgetauscht werden 1833. Jan. 22.

In this fragment of a note from his Nachlaß, Gauss had given an analytic formula
for the linking number of a pair of knots. This number is a combinatorial topolog-
ical invariant. As is quite common in Gauss’s work, there is no indication of how
he obtained this formula. The title of the section where the note appears, “Zur Elec-
trodynamik” (“On Electrodynamics”) and his continuing work with Weber on the
properties of electric and magnetic fields leads us to guess that it originated in the
study of magnetic field generated by an electric current flowing in a curved wire.
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Maxwell knew Gauss’s formula for the linking number and its topological sig-
nificance and its origin in electromagnetic theory. In fact, before he knew of Gauss’s
formula, he had rediscovered it. He mentions it in a letter to Tait dated December 4,
1867. He wrote several manuscripts which study knots, links and also addressed the
problem of their classification. In these and other topological problems his approach
was not mathematically rigorous but was rather based on his deep understanding of
physics. Indeed this situation persists today in several mathematical results obtained
by physical reasoning. Like Maxwell, Tait used his physical intuition to correctly
classify all knots up to seven crossings and made a number of conjectures, the last
of which remained open for over hundred years.

In obtaining a topological invariant by using a physical field theory, Gauss had
anticipated Topological Field Theory by almost 150 years. Even the term topology
was not used then. It was introduced in 1847 by J.B. Listing, a student and protegé
of Gauss, in his essay “Vorstudien zur Topologie”. Gauss’s linking number formula
can also be interpreted as the equality of topological and analytic degree of the
function λ defined by

λ(�r, �r ′) := (�r − �r ′)
|�r − �r ′| , ∀(�r, �r ′) ∈ C × C ′

It is well defined by the disjointness of C and C′. If ω denotes the standard volume
form on S2, then the pull back λ∗(ω) of ω to C × C′ is precisely the integrand in
the Gauss formula and

∫
ω = 4π . One can check that the topological degree of λ

equals the linking number m.
Recently, Bott and Taubes have used these ideas to study a self-linking invariant

of knots [BT94]. It turns out that this invariant belongs to a family of knot invari-
ants, called finite type invariants, defined by Vassiliev. Gauss forms with different
normalization are used by Kontsevich [Kon94] in the formula for this invariant and
it is stated that the invariant is an integer equal to the second coefficient of the
Alexander-Conway polynomial of the knot. In [BC98, BC99] Bott and Cattaneo
obtain invariants of rational homology 3-spheres in terms of configuration space in-
tegrals. Kontsevich views these formulas as forming a small part of a very broad
program to relate the invariants of low-dimensional manifolds, homotopical alge-
bras, and non-commutative geometry with topological field theories and the calcu-
lus of Feynman diagrams. It seems that the full realization of this program would
require the best efforts of mathematicians and physicists for years to come.

8.3 Supersymmetry and Morse Theory

Classical Morse theory on a finite dimensional, compact, differentiable manifold M

relates the behaviour of critical points of a suitable function on M with topologi-
cal information about M . The relation is generally stated as an equality of certain
polynomials as follows. Recall first that a smooth function f : M → R is called a
Morse function if its critical points are isolated and non-degenerate. If x ∈ M is a
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critical point (i.e. df (x) = 0), then by Taylor expansion of f around x, we obtain
the Hessian of f at x defined by

{
∂2f

∂xi∂xj
(x)

}
.

Then the non-degeneracy of the critical point x is equivalent to the non-degeneracy
of the quadratic form determined by the Hessian. The dimension of the negative
eigenspace of this form is called the Morse index, or simply index, of f at x and
is denoted by μf (x) or simply μ(x) when f is understood. It can be verified that
these definitions are independent of the choice of the local coordinates. Let mk be
the number of critical points with index k. Then the Morse series of f is the formal
power series ∑

k

mkt
k, where mk = 0,∀k > dimM.

Recall that the Poincaré series of M is given by
∑

k bkt
k , where bk ≡ bk(M) is the

k-th Betti number of M . The relation between the two series is given by
∑

k

mkt
k =

∑
k

bkt
k + (1 + t)

∑
k

qkt
k, (8.1)

where qk are non-negative integers. Comparing the coefficients of the powers of t

in this relation leads to the well-known Morse inequalities

i∑
k=0

mi−k(−1)k ≥
i∑

k=0

bi−k(−1)k, 0 ≤ i ≤ n − 1,

n∑
k=0

mn−k(−1)k =
n∑

k=0

bn−k(−1)k.

The Morse inequalities can also be obtained from the following observation. Let
C∗ be the graded vector space over the set of critical points of f . Then the
Morse inequalities are equivalent to the existence of a certain coboundary operator
∂ : C∗ → C∗ so that ∂2 = 0 and the cohomology of the complex (C∗, ∂) coincides
with the deRham cohomology of M .

In his fundamental paper [Wit82], Witten arrives at precisely such a complex by
considering a suitable supersymmetric quantum mechanical Hamiltonian. Witten
showed how the standard Morse theory (see, for example, Milnor [Mil73]) can be
modified by considering the gradient flow of the Morse function f between pairs
of critical points of f . One may think of this as a sort of relative Morse theory.
He was motivated by the phenomenon of the quantum mechanical tunneling. We
now discuss this approach. From a mathematical point of view, supersymmetry may
be regarded as a theory of operators on a Z2-graded Hilbert space. In recent years
this theory has attracted a great deal of interest from theoretical point of view even
though as yet there is no physical evidence for its existence.



8 Geometric Topology and Field Theory on 3-Manifolds 205

8.3.1 Graded Algebraic Structures

In this subsection we recall briefly a few important properties of graded vector
spaces and graded operators in a slightly more general situation than is immedi-
ately needed. We will use this information again in studying Khovanov homology.
Graded algebraic structures appear naturally in many mathematical and physical
theories. We shall restrict our considerations only to Z- and Z2-gradings. The most
basic such structure is that of a graded vector space which we now describe. Let V

be a vector space. We say that V is Z-graded (resp. Z2-graded) if V is the direct
sum of vector subspaces Vi , indexed by the integers (resp. integers mod. 2), i.e.

V =
⊕
i∈Z

Vi (resp. V = V0 ⊕ V1).

The elements of Vi are said to be homogeneous of degree i. In the case of Z2-
grading it is customary to call the elements of V0 (resp. V1) even (resp. odd). If V

and W are two Z-graded vector spaces, a linear transformation f : V → W is said
to be graded of degree k if f (Vi) ⊂ Wi+k, ∀i ∈ Z. If V and W are Z2-graded,
then a linear map f : V → W is said to be even if f (Vi) ⊂ Wi, i ∈ Z2 and is said
to be odd if f (Vi) ⊂ Wi+1, i ∈ Z2. An algebra A is said to be Z-graded if A is
Z-graded as a vector space, i.e.

A =
⊕
i∈Z

Ai

and AiAj ⊂ Ai+j , ∀i, j ∈ Z. An ideal I ⊂ A is called a homogeneous ideal if

I =
⊕
i∈Z

(I ∩ Ai).

A similar definition can be given for a Z2-graded algebra. In the physical literature
a Z2-graded algebra is referred to as a superalgebra. Other algebraic structures
(such as Lie, commutative etc.) have their superalgebra counterparts. An example of
a Z-graded algebra is given by the exterior algebra of differential forms �(M) of a
manifold M if we define �i(M) = 0 for i < 0. The exterior differential d is a graded
linear transformation of degree 1 of �(M). The graded or quantum dimension of V

is defined by

dimq V =
∑
i∈Z

qi(dim(Vi)),

where q is a formal variable. If we write q = exp2πiz, z ∈ C then dimq V can be
regarded as the Fourier expansion of a complex function. A spectacular application
of this occurs in the study of finite groups. We discuss this briefly in the next para-
graph. It is not needed in the rest of the paper. However, it has surprising connections
with conformal field theory and vertex algebras. It does not deal with 3-manifolds
and may be omitted without loss of continuity.
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8.4 Monstrous Moonshine

It was his study of Kepler’s sphere packing conjecture, that led John Conway to
the discovery of his sporadic simple group. Soon thereafter the last holdouts in the
complete list of the 26 finite sporadic simple groups were found. All the infinite
families of finite simple groups (such as the groups Zp, for p a prime number and
alternating groups An,n > 4 that we study in the first course in algebra) were al-
ready known. So the classification of finite simple groups was complete. It ranks
as the greatest achievement of twentieth century mathematics. Hundreds of mathe-
maticians contributed to it. The various parts of the classification together fill more
than ten thousand pages. Conway’s group and other sporadic simple groups are
closely related to the symmetries of lattices. The study of representations of the
largest of these groups (called the Friendly Giant or Fisher-Griess Monster) has led
to the creation of a new field of mathematics called Vertex algebras. They turn out
to be closely related to the chiral algebras in conformal field theory. These and other
ideas inspired by string theory have led to a proof of Conway and Norton’s Moon-
shine conjectures (see, for example, Borcherds [Bor92], and the book [FLM88] by
Frenkel, Lepowski, Meurman). The monster Lie algebra is the simplest example of
a Lie algebra of physical states of a chiral string on a 26-dimensional orbifold. This
algebra can be defined by using the infinite dimensional graded representation V

of the monster simple group. Its quantum dimension is related to Jacobi’s SL(2,Z)

hauptmodule (elliptic modular function of genus 0) j (q), where q = e2πiz, z ∈ H

by

dimq V = j (q) − 744 = q−1 + 196884q + 21493760q2 + · · ·
The above formula is one small part in the proof of the moonshine conjectures. For
more information see my review [Mar09] in the Mathematical Intelligencer.

8.5 SUSY Quantum Theory

The Hilbert space E of a supersymmetric theory is Z2-graded, i.e. E = E0 ⊕ E1,
where the even (resp. odd) space E0 (resp. E1) is called the space of bosonic (resp.
fermionic) states. These spaces are distinguished by an operator S : E → E defined
by

Su = u, ∀u ∈ E0,

Sv = −v, ∀v ∈ E1.

The operator S is interpreted as counting the number of fermions modulo 2. A su-
persymmetric theory begins with a collection {Qi | i = 1, . . . , n} of supercharge (or
supersymmetry) operators on E which are of odd degree, i.e. anti-commute with S

SQi + QiS = 0, ∀i (8.2)
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and satisfy the following anti-commutation relations

QiQj + QjQi = 0, ∀i �= j. (8.3)

The dynamics is introduced by the Hamiltonian operator H which commutes
with the supercharge operators and is usually required to satisfy additional condi-
tions. For example, in the simplest non-relativistic theory one requires that

H = Q2
i , ∀i. (8.4)

In fact this simplest supersymmetric theory has surprising connections with Morse
theory which we now discuss.

Let M be a compact differentiable manifold and define E by

E := �(M) ⊗ C.

The natural grading on �(M) induces a grading on E. We define

E0 :=
⊕

j

�2j (M) ⊗ C

(
resp. E1 :=

⊕
j

�2j+1(M) ⊗ C

)

the space of complex-valued even (resp. odd) forms on M . The exterior differential
d and its formal adjoint δ have natural extension to odd operators on E and thus
satisfy (8.2). We define supercharge operators Qj, j = 1,2, by

Q1 = d + δ, (8.5)

Q2 = i(d − δ). (8.6)

The Hamiltonian is taken to be the Hodge-deRham operator extended to E, i.e.

H = dδ + δd. (8.7)

The relations d2 = δ2 = 0 imply the supersymmetry relations (8.3) and (8.4). We
note that in this case bosonic (resp. fermionic) states correspond to even (resp. odd)
forms. The relation to Morse theory arises in the following way. If f is a Morse
function on M , define a one-parameter family of operators

dt = e−f t def t , δt = ef t δe−f t , t ∈ R (8.8)

and the corresponding supersymmetry operators

Q1,t = dt + δt , Q2,t = i(dt − δt ), Ht = dt δt + δtdt .

It is easy to verify that d2
t = δ2

t = 0 and that Q1,t , Q2,t , Ht satisfy the supersym-
metry relations (8.3) and (8.4). The parameter t interpolates between the deRham
cohomology and the Morse indices as t goes from 0 to +∞. At t = 0, the number of
linearly independent eigenvectors with zero eigenvalue is just the k-th Betti number
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bk when H0 = H is restricted to act on k-forms. In fact these ground states of the
Hamiltonian are just the harmonic forms. On the other hand, for large t the spec-
trum of Ht simplifies greatly with the eigenfunctions concentrating near the critical
points of the Morse function. It is in this way that the Morse indices enter into this
picture. We can write Ht as a perturbation of H near the critical points. In fact, we
have

Ht = H + t
∑
j,k

f,jk[αj , iXk ] + t2‖df ‖2,

where αj = dxj acts by exterior multiplication, Xk = ∂/∂xk and iXk is the usual
action of inner multiplication by Xk on forms and the norm ‖df ‖ is the norm on
�1(M) induced by the Riemannian metric on M . In a suitable neighborhood of a
fixed critical point taken as origin, we can approximate Ht up to quadratic terms in
xj by

Ht =
∑
j

(
− ∂2

∂x2
j

+ t2λ2
j x

2
j + tλj [αj , iXj ]

)
,

where λj are the eigenvalues of the Hessian of f . The first two terms correspond to
the quantized Hamiltonian of a harmonic oscillator with eigenvalues

t
∑
j

|λj |(1 + 2Nj),

whereas the last term defines an operator with eigenvalues ±λj . It commutes with
the first and thus the spectrum of Ht is given by

t
∑
j

[|λj |(1 + 2Nj) + λjnj ],

where Nj ’s are non-negative integers and nj = ±1. We remark that the classical
harmonic oscillator was the first dynamical system that was quantized by using the
canonical quantization principle. Dirac introduced his creation and annihilation op-
erators to obtain its spectrum without solving the corresponding Schrodinger equa-
tion. Feynman used this result to test his path integral quantization method. Re-
stricting H to act on k-forms we can find the ground states by requiring all the Nj

to be 0 and by choosing nj to be 1 whenever λj is negative. Thus the ground states
(zero eigenvalues) of H correspond to the critical points of Morse index k. All other
eigenvalues are proportional to t with positive coefficients. Starting from this obser-
vation and using standard perturbation theory, one finds that the number of k-form
ground states equals the number of critical points of Morse index k. Comparing this
with the ground state for t = 0, we obtain the weak Morse inequalities mk ≥ bk .
As we observed in the introduction the strong Morse inequalities are equivalent to
the existence of a certain cochain complex which has cohomology isomorphic to
H ∗(M), the cohomology of the base manifold M . Witten defines Cp , the set of p-
chains of this complex, to be the free group generated by the critical points of Morse
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index p. He then argues that the operator dt defined in (8.8) defines in the limit as
t → ∞ a coboundary operator

d∞ : Cp → Cp+1

and that the cohomology of this complex is isomorphic to the deRham cohomology
of Y .

Thus we see that in establishing both the weak and strong form of Morse in-
equalities a fundamental role is played by the ground states of the supersymmetric
quantum mechanical system (8.5), (8.6), (8.7). In a classical system the transition
from one ground state to another is forbidden, but in a quantum mechanical system
it is possible to have tunneling paths between two ground states. In gauge theory
the role of such tunneling paths is played by instantons. Indeed, Witten uses the
prescient words “instanton analysis” to describe the tunneling effects obtained by
considering the gradient flow of the Morse function f between two ground states
(critical points). If β (resp. α) is a critical point of f of Morse index p + 1 (resp.
p) and 
 is a gradient flow of f from β to α, then by comparing the orientation of
negative eigenspaces of the Hessian of f at β and α, Witten defines the signature
n
 of this flow. By considering the set S of all such flows from β to α, he defines

n(α,β) :=
∑

∈S

n
.

Now defining δ∞ by

δ∞ : Cp → Cp+1 by α �→
∑

β∈Cp+1

n(α,β)β, (8.9)

he shows that (C∗, δ∞) is a cochain complex with integer coefficients. Witten con-
jectures that the integer-valued coboundary operator δ∞ actually gives the integral
cohomology of the manifold M . The complex (C∗, δ∞), with the coboundary op-
erator defined by (8.9), is referred to as the Witten complex. As we will see later,
Floer homology is the result of such “instanton analysis” applied to the gradient
flow of a suitable Morse function on the moduli space of gauge potentials on an
integral homology 3-sphere. Floer has also used these ideas to study a “symplectic
homology” associated to a manifold. A corollary of this theory proves the Witten
conjecture for finite dimensional manifolds (see [Sal90] for further details), namely

H ∗(C∗, δ∞) = H ∗(M,Z).

A direct proof of the conjecture may be found in the appendix to K.C. Chang
[Cha93]. A detailed study of the homological concepts of finite dimensional Morse
theory in analogy with Floer homology may be found in M. Schwarz [Sch93]. While
many basic concepts of “Morse homology” can be found in the classical investiga-
tions of Milnor, Smale and Thom, its presentation as an axiomatic homology theory
in the sense of Eilenberg and Steeenrod [ES52] is given for the first time in [Sch93].
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One consequence of this axiomatic approach is the uniqueness result for “Morse ho-
mology” and its natural equivalence with other axiomatic homology theories defined
on a suitable category of topological spaces. Witten conjecture is then a corollary of
this result. A discussion of the relation of equivariant cohomolgy and supersymme-
try may be found in Guillemin and Sternberg’s book [GS99].

8.6 Chern-Simons Theory

Let M be a compact manifold of dimension m = 2r +1, r > 0, and let P(M,G) be
a principal bundle over M with a compact, semisimple Lie group G as its structure
group. Let αm(ω) denote the Chern-Simons m-form on M corresponding to the
gauge potential (connection) ω on P ; then the Chern-Simons action ACS is defined
by

ACS = c(G)

∫
M

αm(ω), (8.10)

where c(G) is a coupling constant whose normalization depends on the group G.
In the rest of this paragraph we restrict ourselves to the case r = 1 and G = SU(n).
The most interesting applications of the Chern-Simons theory to low dimensional
topologies are related to this case. It has been extensively studied by both physicists
and mathematicians in recent years. In this case the action (8.10) takes the form

ACS = k

4π

∫
M

tr

(
A ∧ F − 1

3
A ∧ A ∧ A

)
(8.11)

= k

4π

∫
M

tr

(
A ∧ dA + 2

3
A ∧ A ∧ A

)
, (8.12)

where k ∈ R is a coupling constant, A denotes the pull-back to M of the gauge
potential ω by a local section of P and F = Fω = dωA is the gauge field on M

corresponding to the gauge potential A. A local expression for (8.11) is given by

ACS = k

4π

∫
M

εαβγ tr

(
Aα∂βAγ + 2

3
AαAβAγ

)
, (8.13)

where Aα = Aa
αTa are the components of the gauge potential with respect to the

local coordinates {xα}, {Ta} is a basis of the Lie algebra su(n) in the fundamen-
tal representation and εαβγ is the totally skew-symmetric Levi-Civita symbol with
ε123 = 1. We take the basis {Ta} with the normalization

tr(TaTb) = 1

2
δab, (8.14)

where δab is the Kronecker δ function. Let g ∈ G be a gauge transformation regarded
(locally) as a function from M to SU(n) and define the 1-form θ by

θ = g−1dg = g−1∂μgdxμ.



8 Geometric Topology and Field Theory on 3-Manifolds 211

Then the gauge transformation Ag of A by g has the local expression

Ag
μ = g−1Aμg + g−1∂μg. (8.15)

In the physics literature, the connected component of the identity, Gid ⊂ G is called
the group of small gauge transformations. A gauge transformation not belonging
to Gid is called a large gauge transformation. By a direct calculation, one can show
that the Chern-Simons action is invariant under small gauge transformations, i.e.

ACS(A
g) = ACS(A), ∀g ∈ Gid .

Under a large gauge transformation g the action (8.13) transforms as follows:

ACS(A
g) = ACS(A) + 2πkAWZ, (8.16)

where

AWZ := 1

24π2

∫
M

εαβγ tr(θαθβθγ ) (8.17)

is the Wess-Zumino action functional. It can be shown that the Wess-Zumino func-
tional is integer valued and hence, if the Chern-Simons coupling constant k is taken
to be an integer, then we have

eiACS(A
g) = eiACS(A).

The integer k is called the level of the corresponding Chern-Simons theory. It
follows that the path integral quantization of the Chern-Simons model is gauge-
invariant. This conclusion holds more generally for any compact simple group if the
coupling constant c(G) is chosen appropriately. The action is manifestly covariant
since the integral involved in its definition is independent of the metric on M . It
is in this sense that the Chern-Simons theory is a topological field theory. We will
consider this aspect of the Chern-Simons theory later.

In general, the Chern-Simons action is defined on the space AP(M,G) of all gauge
potentials on the principal bundle P(M,G). But when M is 3-dimensional P is
trivial (in a non-canonical way). We fix a trivialization to write P(M,G) = M × G

and write AM for AP(M,G). Then the group of gauge transformations GP can be
identified with the group of smooth functions from M to G and we denote it simply
by GM . For k ∈ N, the transformation law (8.16) implies that the Chern-Simons
action descends to the quotient BM = AM/GM as a function with values in R/Z.
We denote this function by fCS, i.e.

fCS : BM → R/Z is defined by [ω] �→ ACS(ω), ∀ [ω] = ωGM ∈ BM. (8.18)

The field equations of the Chern-Simons theory are obtained by setting the first
variation of the action to zero as

δACS = 0.
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We shall discuss two approaches to this calculation. Consider first a one parameter
family c(t) of connections on P with c(0) = ω and ċ(0) = α. Differentiating the
action ACS(c(t)) with respect to t and noting that differentiation commutes with
integration and the tr operator, we get

d

dt
ACS(c(t)) = 1

4π

∫
M

tr (2ċ(t) ∧ dc(t) + 2(ċ(t) ∧ c(t) ∧ c(t)))

= 1

2π

∫
M

tr (ċ(t) ∧ (dc(t) + c(t) ∧ c(t)))

= 1

2π

∫
M

〈ċ(t), ∗Fc(t)〉

where the inner product on the right is as defined in Definition 2.1. It follows that

δACS = d

dt
ACS(c(t))|t=0 = 1

2π

∫
M

〈α, ∗Fω〉. (8.19)

Since α can be chosen arbitrarily, the field equations are given by

∗Fω = 0 or equivalently Fω = 0. (8.20)

Alternatively, one can start with the local coordinate expression of (8.13) as follows

ACS = k

4π

∫
M

εαβγ tr

(
Aα∂βAγ + 2

3
AαAβAγ

)

= k

4π

∫
M

εαβγ tr

(
Aa

α∂βAc
γ TaTb + 2

3
Aa

αAb
βAc

γ TaTbTc

)

and find the field equations by using the variational equation

δACS

δAa
ρ

= 0. (8.21)

This method brings out the role of commutation relations and the structure constants
of the Lie algebra su(n) as well as the boundary conditions used in the integration
by parts in the course of calculating the variation of the action. The result of this
calculation gives

δACS

δAa
ρ

= k

2π

∫
M

ερβγ
(
∂βAa

γ + Ab
βAc

γ fabc

)
(8.22)

where fabc are the structure constants of su(n) with respect to the basis Ta . The
integrand on the right hand side of (8.22) is just the local coordinate expression of
∗FA, the dual of the curvature, and hence leads to the same field equations.
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The calculations leading to the field equations (8.20) also show that the gradient
vector field of the function fCS is given by

grad fCS = 1

2π
∗ F (8.23)

The gradient flow of fCS plays a fundamental role in the definition of Floer ho-
mology. The solutions of the field equations (8.20) are called the Chern-Simons
connections. They are precisely the flat connections. In the next paragraph we dis-
cuss flat connections on a manifold N and their relation to the homomorphisms of
the fundamental group π1(N) into the gauge group.

8.6.1 Flat Connections

Let H be a compact Lie group and Q(N,H) be a principal bundle with structure
group H over a compact Riemannian manifold N . A connection ω on Q is said to be
flat if its curvature is zero, i.e. Fω = 0. The pair (Q,ω) is called a flat bundle. Let
�(N,x) be the loop space at x ∈ N . Recall that the horizontal lift hu of c ∈ �(N,x)

to u ∈ π−1(x) determines a unique element of H . Thus we have the map

hu : �(N,x) → H.

It is easy to see that ω flat implies that this map hu depends only on the homotopy
class of the loop c and hence induces a map (also denoted by hu)

hu : π1(N,x) → H.

It is this map that is related to the Bohm-Aharonov effect. It can be shown that the
map hu is a homomorphism of groups. The group H acts on the set Hom(π1(N),H)

by conjugation sending hu to g−1hug = hug . Thus a flat bundle (Q,ω) determines
an element of the quotient Hom(π1(N),H)/H. If a ∈ G(Q), the group of gauge
transformations of Q, then a · ω is also a flat connection on Q and determines the
same element of Hom(π1(N),H)/H. Conversely, let f ∈ Hom(π1(N),H) and let
(U,q) be the universal covering of N . Then U is a principal bundle over N with
structure group π1(N). Define Q := U ×f H to be the bundle associated to U by
the action f with standard fiber H . It can be shown that Q admits a natural flat
connection and that f and g−1fg, g ∈ H , determine isomorphic flat bundles. Thus
the moduli space Mf (N,H) of flat H -bundles over N can be identified with the
set Hom(π1(N),H)/H. The moduli space Mf (N,H) and the set Hom(π1(N),H)

have a rich mathematical structure which has been extensively studied in the partic-
ular case when N is a compact Riemann surface [AB82].

The flat connection deformation complex is the generalized deRham sequence
with the usual differential d replaced by the covariant differential dω. The fact that in
this case it is a complex follows from the observation that ω flat implies dω ◦dω = 0.
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By rolling up this complex, we can consider the rolled up deformation operator
dω + δω : �ev → �odd . By the index theorem, we have

Ind(dω + δω) = χ(N)dimH

and hence
n∑

i=0

(−1)ibi = χ(N)dimH, (8.24)

where bi is the dimension of the i-th cohomology of the deformation complex. Both
sides are identically zero for odd n. For even n, the formula can be used to obtain
some information on the virtual dimension of Mf (= b1). For example, if N = �g

is a Riemann surface of genus g > 1, then χ(�g) = −2g + 2, while, by Hodge
duality, b0 = b2 = 0 at an irreducible connection. Thus, equation (8.24) gives

−b1 = −(2g − 2)dimH.

From this it follows that

dimMf (�g,H) = dimMf = (2g − 2)dimH. (8.25)

In even dimensions greater than 2, the higher cohomology groups provide additional
obstructions to smoothability of Mf . For example, for n = 4, Hodge duality implies
that b0 = b4 and b1 = b3 and (8.24) gives

b1 = b0 + (b2 − χ(N)dimH)/2.

Equation (8.25) shows that dimMf is even. Identifying the first cohomology

H 1(�(M,adh), dω)

of the deformation complex with the tangent space TωMf to Mf , the intersection
form defines a map ιω : TωMf × TωMf → R by

ι(X,Y ) =
∫

�g

X ∧ Y, X,Y ∈ TωMf . (8.26)

The map ιω is skew-symmetric and bilinear. The map

ι : ω �→ ιω, ∀ω ∈ Mf , (8.27)

defines a 2-form ι on Mf . If h admits an H -invariant inner product, then this 2-form
ι is closed and non-degenerate and hence defines a symplectic structure on Mf . It
can be shown that, for a Riemann surface with H = PSL(2,R), the form ι, restricted
to the Teichmüller space, agrees with the well-known Weil-Petersson form.

We now discuss an interesting physical interpretation of the symplectic man-
ifold (Mf (�g,H), ι). Consider a Chern-Simons theory on the principal bundle
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P(M,H) over the 2+1-dimensional space-time manifold M = �g ×R with gauge
group H and with time independent gauge potentials and gauge transformations.
Let A (resp. H) denote the space (resp. group) of these gauge connections (resp.
transformations). It can be shown that the curvature Fω defines an H-equivariant
moment map

μ : A → LH ∼= �1(M,adP), by ω �→ ∗Fω,

where LH is the Lie algebra of H. The zero set μ−1(0) of this map is precisely the
set of flat connections and hence

Mf
∼= μ−1(0)/H := A//H (8.28)

is the reduced phase space of the theory, in the sense of the Marsden-Weinstein
reduction. We call A//H the symplectic quotient of A by H. Marsden-Weinstein
reduction and symplectic quotient are fundamental constructions in geometrical me-
chanics and geometric quantization. They also arise in many other mathematical
applications.

A situation similar to that described above, also arises in the geometric formula-
tion of canonical quantization of field theories. One proceeds by analogy with the
geometric quantization of finite dimensional systems. For example, Q = A/H can
be taken as the configuration space and T ∗Q as the corresponding phase space. The
associated Hilbert space is obtained as the space of L2 sections of a complex line
bundle over Q. For physical reasons this bundle is taken to be flat. Inequivalent flat
U(1)-bundles are said to correspond to distinct sectors of the theory. Thus we see
that at least formally these sectors are parametrized by the moduli space

Mf (Q,U(1)) ∼= Hom(π1(Q),U(1))/U(1) ∼= Hom(π1(Q),U(1))

since U(1) acts trivially on Hom(π1(Q),U(1)).
We note that the Chern-Simons theory has been extended by Witten to the cases

when the gauge group is finite and when it the complexification of compact real
gauge groups [DW90, Wit91]. While there are some similarities between these the-
ories and the standard CS theory, there are major differences in the corresponding
TQFTs. New invariants of some hyperbolic 3-manifolds have recently been obtained
by considering the complex gauge groups leading to the concept of arithmetic TQFT
by Zagier and collaborators (see [DGLZ09]). See also Dijkgraaf and Fuji [DF09]
and Gukov and Witten [GW08].

8.7 Casson Invariant and Flat Connections

Let Y be a homology 3-sphere. Let D1, D2 be two unitary, unimodular representa-
tions of π1(Y ) in C

2. We say that they are equivalent if they are conjugate under the
natural SU(2)-action on C

2, i.e.

D2(g) = S−1D1(g)S, ∀g ∈ π1(Y ), S ∈ SU(2).
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Let us denote by R(Y ) the set of equivalence classes of such representations. It is
customary to write

R(Y ) := Hom{π1(Y ) → SU(2)}/conj. (8.29)

The set R(Y ) can be given the structure of a compact, real algebraic variety. It is
called the SU(2)-representation variety of Y . Let R∗(Y ) be the class of irreducible
representations. Fixing an orientation of Y , Casson showed how to assign a sign
s(α) to each element α ∈ R∗(Y ). He showed that the set R∗(Y ) is 0-dimensional and
compact and hence finite. Casson defined a numerical invariant of Y by counting the
signed number of elements of R∗(Y ) by

c(Y ) :=
∑

α∈R∗(Y )

s(α).1 (8.30)

The integer c(Y ) is called the Casson invariant of Y .

Theorem 1 The Casson invariant c(Y ) is well defined up to sign for any homology
sphere Y and satisfies the following properties:

i) c(−Y) = −c(Y ),
ii) c(X#Y) = c(X) + c(Y ), X a homology sphere,

iii) c(Y )/2 = ρ(Y ) mod 2, ρ Rokhlin invariant.

We now give a gauge theory description of R(Y ) leading to Taubes’ theorem. In
[Tau90] Taubes gives a new interpretation of the Casson invariant c(Y ) of an ori-
ented homology 3-sphere Y , which is defined above in terms of the signed count
of equivalence classes of irreducible representations of π1(Y ) into SU(2). As indi-
cated above, this space can be identified with the moduli space Mf (Y,SU(2)) of flat
connections in the trivial SU(2)-bundle over Y . Recall that this is also the space of
solutions of the Chern-Simons field equations (8.20). The map F : ω �→ Fω defines
a natural 1-form on A/G and the zeros of this form are just the flat connections. We
note that since A/G is infinite dimensional, it is necessary to use suitable Fredholm
perturbations to get simple zeros and to count them with appropriate signs. Let Z

denote the set of zeros of the perturbed vector field and let s(a) be the sign of a ∈ Z.
Taubes shows that Z is contained in a compact set and that

c(Y ) =
∑
a∈Z

s(a).1

The right hand side of this equation can be interpreted as the index of a vector field
in the infinite dimensional setting. The classical Poincaré-Hopf theorem can also be
generalized to interprete the index as Euler characteristic. A natural question to ask
is if this Euler characteristic comes from some homology theory? An affirmative
answer is provided by Floer’s instanton homology. We discuss it in the next section.

Another approach to Casson’s invariant involves symplectic geometry and topol-
ogy. We conclude this section with a brief indication of this approach. Let Y+∪�g Y−
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be a Heegaard splitting of Y along the Riemann surface �g of genus g. The space
R(�g) of conjugacy classes of representations of π1(�g) into SU(2) can be iden-
tified with the moduli space Mf (�g,SU(2)) of flat connections. This identifica-
tion endows it with a natural symplectic structure which makes it into a (6g − 6)-
dimensional symplectic manifold. The representations which extend to Y+ (resp.
Y−) form a (3g − 3)-dimensional Lagrangian submanifold of R(�g) which we de-
note by R(Y+) (resp. R(Y−)). Casson’s invariant is then obtained from the intersec-
tion number of the Lagrangian submanifolds R(Y+) and R(Y−) in the symplectic
manifold R(�g). How the Floer homology of Y fits into this scheme seems to be
unknown at this time.

8.8 Fukaya-Floer Homology

The idea of instanton tunnelling and the corresponding Witten complex was ex-
tended by Floer to do Morse theory on the infinite dimensional moduli space of
gauge potentials on a homology 3-sphere Y and to define new topological invariants
of Y . Fukaya has generalized this work to apply to arbitrary oriented 3-manifolds.
We shall refer to the invariants of Floer and Fukaya collectively as Fukaya-Floer
Homology. Fukaya-Floer Homology associates to an oriented, connected, closed,
smooth 3-dimensional manifold Y , a family of Z8-graded instanton homology
groups FFn(Y ), n ∈ Z8. We begin by introducing Floer’s original definition, which
requires Y to be a homology 3-sphere. Let R(Y ) be the SU(2)-representation variety
of Y as defined in (8.29) and let R∗(Y ) be the class of irreducible representations.
We say that α ∈ R∗(Y ) is a regular representation if

H 1(Y,ad(α)) = 0. (8.31)

We identify R(Y ) with the space of flat or Chern-Simons connections on Y . The
Chern-Simon functional has non-degenerate Hessian at α if α is regular. Fix a triv-
ialization P of the given SU(2)-bundle over Y . Using the trivial connection θ on
P = Y × SU(2) as a background connection on Y , we can identify the space of
connections AY with the space of sections of �1(Y ) ⊗ su(2). In what follows we
shall consider a suitable Sobolev completion of this space and continue to denote it
by AY .

Let c : I → AY be a path from α to θ . The family of connections c(t) on Y can
be identified as a connection A on Y × I . Using this connection we can rewrite the
Chern-Simons action (8.11) as follows

ACS = 1

8π2

∫
Y×I

tr(FA ∧ FA). (8.32)

We note that the integrand corresponds to the second Chern class of the pull-back of
the trivial SU(2)-bundle over Y to Y × I . Recall that the critical points of the Chern-
Simons action are the flat connections. The gauge group GY acts on ACS : A → R
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by

ACS(α
g) = ACS(α) + deg(g), g ∈ GY .

It follows that ACS descends to BY := AY /GY as a map fCS : BY → R/Z and we
can take R(Y ) ⊂ BY as the critical set of fCS. The gradient flow of this function is
given by the equation

∂c(t)

∂t
= ∗Y Fc(t). (8.33)

Since Y is a homology 3-sphere, the critical points of the flow of grad fCS and the
set of reducible connections intersect at a single point, the trivial connection θ . If all
the critical points of the flow are regular then it is a Morse-Smale flow. If not, one
can perturb the function fCS to get a Morse function.

In general the representation space R∗(Y ) ⊂ BY contains degenerate critical
points of the Chern-Simons function fCS. In this case Floer defines a set of per-
turbations of fCS as follows. Let m ∈ N and let

∨m
i=1 S1

i be a bouquet of m copies
of the circle S1. Let 
m be the set of maps

γ :
m∨

i=1

S1
i × D2 → Y

such that the restrictions

γx :
m∨

i=1

S1
i × {x} → Y and γi : S1

i × D2 → Y

are smooth embeddings for each x ∈ D2 and for each i, 1 ≤ i ≤ m. Let γ̂x denote
the family of holonomy maps

γ̂x : AY → SU(2) × · · · × SU(2)︸ ︷︷ ︸
m times

, x ∈ D2.

The holonomy is conjugated under the action of the group of gauge transformations
and we continue to denote by γ̂x the induced map on the quotient BY = AY /G. Let
Fm denote the set of smooth functions

h : SU(2) × · · · × SU(2)︸ ︷︷ ︸
m times

→ R

which are invariant under the adjoint action of SU(2). Floer’s set of perturbations �

is defined as

� :=
⋃
m∈N


m × Fm.
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Floer proves that for each (γ,h) ∈ � the function

hγ : BY → R defined by hγ (α) =
∫

D2
h(γ̂x(α))

is a smooth function and that for a dense subset P ⊂ RM(Y ) × � the critical points
of the perturbed function

f(γ,h) := fCS + hγ

are non-degenerate and the corresponding moduli space decomposes into smooth,
oriented manifolds of regular trajectories of the gradient flow of the function f(γ,h)

with respect to a generic metric σ ∈ RM(Y ). Furthermore, the homology groups of
the perturbed chain complex are independent of the choice of perturbation in P. We
shall assume that this has been done. Let α,β be two critical points of the function
fCS. Considering the spectral flow (denoted by sf ) from α to β we obtain the mod-
uli space M(α,β) as the moduli space of self-dual connections on Y × R which
are asymptotic to α and β (as t → ±∞). Let Mj (α,β) denote the component of
dimension j in M(α,β). There is a natural action of R on M(α,β). Let M̂j (α,β)

denote the component of dimension j − 1 in M(α,β)/R. Let #M̂1(α,β) denote the
signed sum of the number of points in M̂1(α,β). Floer defines the Morse index of α

by considering the spectral flow from α to the trivial connection θ . It can be shown
that the spectral flow and hence the Morse index are defined modulo 8. Now define
the chain groups by

Rn(Y ) = Z{α ∈ R∗(Y ) | sf (α) = n}, n ∈ Z8

and define the boundary operator ∂

∂ : Rn(Y ) → Rn−1(Y )

by

∂α =
∑

β∈Rn−1(Y )

#M̂1(α,β)β. (8.34)

It can be shown that ∂2 = 0 and hence (R(Y ), ∂) is a complex. This complex
can be thought of as an infinite dimensional generalization [Flo89] of Witten’s
instanton tunnelling and we will call it the Floer-Witten Complex of the pair
(Y,SU(2)). Since the spectral flow and hence the dimensions of the components of
M(α,β) are congruent modulo 8, this complex defines the Floer homology groups
FHj (Y ), j ∈ Z8, where j is the spectral flow of α to θ modulo 8. If rj denotes
the rank of the Floer homology group FHj (Y ), j ∈ Z8, then we can define the
corresponding Euler characteristic χF (Y ) by

χF (Y ) :=
∑
j∈Z8

(−1)j rj .
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Combining this with Taubes’ interpretation of the Casson invariant c(Y ) we get

c(Y ) = χF (Y ) =
∑
j∈Z8

(−1)j rj . (8.35)

An important feature of Floer’s instanton homology is that it can be regarded as a
functor from the category of homology 3-spheres with morphisms given by oriented
cobordism, to the category of graded abelian groups. Let M be a smooth, oriented
cobordism from Y1 to Y2 so that ∂M = Y2 − Y1. By a careful analysis of instantons
on M , Floer showed [Flo88] that M induces a graded homomorphism

Mj : FHj (Y1) → FHj+b(M)(Y2), j ∈ Z8, (8.36)

where

b(M) = 3(b1(M) − b2(M)). (8.37)

Then the homomorphisms induced by cobordism has the following functorial prop-
erties.

(Y × R)j = id, (8.38)

(MN)j = Mj+b(N)Nj . (8.39)

An algorithm for computing the Floer homology groups for Seifert-fibered ho-
mology 3-spheres with three exceptional fibers (or orbits) has been discussed in
[FS90].

In addition to these invariants of 3-manifolds and the linking number, there are
several other invariants of knots and links in 3-manifolds. We introduce them in the
next section and study their field theory interpretations in the later sections.

8.9 Knot Polynomials

In the second half of the nineteenth century, a systematic study of knots in R
3 was

made by Tait. He was motivated by Kelvin’s theory of atoms modelled on knotted
vortex tubes of ether. Tait classified the knots in terms of the crossing number of
a plane projection and made a number of observations about some general proper-
ties of knots which have come to be known as the “Tait conjectures”. Recall that
a knot κ in S3 is an embedding of the circle S1 and that a link is a disjoint union
of knots. A link diagram of κ is a plane projection with crossings marked as over
or under. By changing a link diagram at one crossing we can obtain three diagrams
corresponding to links κ+, κ− and κ0.

In the 1920s, Alexander gave an algorithm for computing a polynomial invariant
Aκ(q) of a knot κ , called the Alexander polynomial, by using its projection on a
plane. He also gave its topological interpretation as an annihilator of a certain coho-
mology module associated to the knot κ . In the 1960s, Conway defined his polyno-
mial invariant and gave its relation to the Alexander polynomial. This polynomial is
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called the Alexander-Conway polynomial or simply the Conway polynomial. The
Alexander-Conway polynomial of an oriented link L is denoted by ∇L(z) or simply
by ∇(z) when L is fixed. We denote the corresponding polynomials of L+, L− and
L0 by ∇+, ∇− and ∇0 respectively. The Alexander-Conway polynomial is uniquely
determined by the following simple set of axioms.
AC1. Let L and L′ be two oriented links which are ambient isotopic. Then

∇L′(z) = ∇L(z) (8.40)

AC2. Let S1 be the standard unknotted circle embedded in S3. It is usually referred
to as the unknot and is denoted by O. Then

∇O(z) = 1. (8.41)

AC3. The polynomial satisfies the following skein relation

∇+(z) − ∇−(z) = z∇0(z). (8.42)

We note that the original Alexander polynomial �L is related to the Alexander-
Conway polynomial by the relation

�L(t) = ∇L(t1/2 − t−1/2).

Despite these and other major advances in knot theory, the Tait conjectures remained
unsettled for more than a century after their formulation. Then in the 1980s, Jones
discovered his polynomial invariant Vκ(q), called the Jones polynomial, while
studying Von Neumann algebras and gave its interpretation in terms of statistical
mechanics. These new polynomial invariants have led to the proofs of most of the
Tait conjectures. As with the earlier invariants, Jones’ definition of his polynomial
invariants is algebraic and combinatorial in nature and was based on representations
of the braid groups and related Hecke algebras. The Jones polynomial Vκ(t) of κ is
a Laurent polynomial in t (polynomial in t and t−1) which is uniquely determined
by a simple set of properties similar to the axioms for the Alexander-Conway poly-
nomial. More generally, the Jones polynomial can be defined for any oriented link
L as a Laurent polynomial in t1/2. Reversing the orientation of all components of
L leaves VL unchanged. In particular, Vκ does not depend on the orientation of the
knot κ . For a fixed link, we denote the Jones polynomial simply by V . Recall that
there are 3 standard ways to change a link diagram at a crossing point. The Jones
polynomials of the corresponding links are denoted by V+, V− and V0 respectively.
Then the Jones polynomial is characterized by the following properties:

JO1. Let κ and κ ′ be two oriented links which are ambient isotopic. Then

Vκ ′(t) = Vκ(t) (8.43)

JO2. Let O denote the unknot. Then

VO(t) = 1. (8.44)
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JO3. The polynomial satisfies the following skein relation

t−1V+ − tV− = (t1/2 − t−1/2)V0. (8.45)

An important property of the Jones polynomial that is not shared by the Alexander-
Conway polynomial is its ability to sometimes distinguish between a knot and its
mirror image. Let κm be the mirror image of the knot κ . Then

VKm(t) = VK(t−1). (8.46)

It can sometimes happen that VK(t−1) = VK(t), in which case the Jones polynomial
does not distinguish between the knot K and its mirror image. This can happen when
K is topologically equivalent to its mirror image, and it can also happen when K

is not topologically equivalent to its mirror image. Nevertheless, when VK(t−1) �=
VK(t) then one knows that K is not topologically equivalent to its mirror image.
Soon after Jones’ discovery a two variable polynomial generalizing V was found
by several mathematicians. It is called the HOMFLY polynomial and is denoted
by P . The HOMFLY polynomial P(α, z) satisfies the following skein relation

αP+ − α−1P− = zP0. (8.47)

If we put α = t−1 and z = (t1/2 − t−1/2) in equation (8.47) we get the skein relation
for the original Jones polynomial V . If we put α = 1 we get the skein relation for
the Alexander-Conway polynomial.

Knots and links in R
3 can also be obtained by using braids. A braid on n strands

(or with n strings or simply an n-braid) can be thought of as a set of n pairwise
disjoint strings joining n distinct points in one plane with n distinct points in a
parallel plane in R

3. The set of equivalence classes of n-braids is denoted by Bn.
A braid is called elementary if only two neighboring strings cross. We denote by σi

the elementary braid where the i-th string crosses over the (i + 1)-th string.
Theorem (M. Artin): The set Bn with multiplication operation induced by concate-
nation of braids is a group generated by the elementary braids σi,1 ≤ i ≤ n − 1
subject to the braid relations

σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n − 2 (8.48)

and the far commutativity relations

σiσj = σjσi, 1 ≤ i, j ≤ n − 1 and |i − j | > 1. (8.49)

The closure of a braid b obtained by gluing the endpoints is a link denoted by
c(b). A classical theorem of Alexander shows that the closure map from the set of
braids to the set of links is surjective, i.e. any link (and, in particular, knot) is the
closure of some braid. Moreover, if braids b and b′ are equivalent, then the links c(b)

and c(b′) are equivalent. There are several descriptions of the braid group leading
to various approaches to the study of its representations and invariants of links. For
example, Bn is isomorphic to the fundamental group of the configuration space of n
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distinct points in the plane. The action of Bn on the homology of the configuration
space is related to the representations of certain Hecke algebras leading to invariants
of links such as the Jones polynomial that we have discussed earlier. The group Bn is
also isomorphic to the mapping class group of the n-punctured disc. This definition
was recently used by Krammer and Bigelow in showing the linearity of Bn over the
ring Z[q±1, t±1] of Laurent polynomials in two variables.

8.10 Categorification of Knot Polynomials

We begin by recalling that a categorification of an invariant I is the construction of a
suitable (co)homology H ∗ such that its Euler characteristic χ(H ∗) (the alternating
sum of the ranks of (co)homology groups) equals I . Historically, the Euler charac-
teristic was defined and understood well before the advent of algebraic topology.
Theorema egregium of Gauss and the closely related Gauss-Bonnet theorem and its
generalization by Chern give a geometric interpretation of the Euler characteristic
χ(M) of a manifold M . They can be regarded as precursors of Chern-Weil theory as
well as index theory. Categorification χ(H ∗(M)) of this Euler characteristic χ(M)

by various (co)homolgy theories H ∗(M) came much later. A well known recent
example that we have discussed is the categorification of the Casson invariant by
the Fukaya-Floer homology. Categorification of quantum invariants such as Knot
Polynomials requires the use of quantum Euler characteristic and multi-graded knot
homologies.

Recently Khovanov [Kho00] has obtained a categorification of the Jones poly-
nomial Vκ(q) by constructing a bi-graded sl(2)-homology Hi,j determined by the
knot κ . It is called the Khovanov homology of the knot κ and is denoted by KH(κ).
The Khovanov polynomial Khκ (t, q) is defined by

Khκ(t, q) =
∑
i,j

t j qi dimHi,j .

It can be thought of as a two variable generalization of the Poincarè polynomial.
The quantum or graded Euler characteristic of the Khovanov homology equals the
Jones polynomial. i.e.

Vκ(q) = χq(KH(κ)) =
∑
i,j

(−1)jqi dimHi,j .

Khovanov’s construction follows Kauffman’s state-sum model [Kauf87, Kauf88,
Kauf91] of the link L and his alternative definition of the Jones polynomial. Let L̂

be a regular projection of L with n = n+ + n− labelled crossings. At each crossing
we can define two resolutions or states, the vertical or 1-state and horizontal or 0-
state. Thus there are 2n total resolutions of L̂ which can be put into one to one
correspondence with the vertices of an n-dimensional unit cube. For each vertex x

let |x| be the sum of its coordinates and let c(x) be the number of disjoint circles
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in the resolution L̂x of L̂ determined by x. Kauffman’s state-sum expression for the
non-normalized Jones polynomial V̂ (L) can be written as follows:

V̂ (L) = (−1)n−q(n+−2n−)
∑

(−q)|x|(q + q−1)c(x). (8.50)

Dividing this by the unknot value (q + q−1) gives the usual normalized Jones
polynomial V (L). The Khovanov complex is constructed as follows. Let V be a
graded vector space over a fixed ground field K , generated by two basis vectors
v± with respective degrees ±1. The total resolution associates to each vertex x a
one dimensional manifold Mx consisting of c(x) disjoint circles. We can construct
a (1 + 1)-dimensional TQFT (along the lines of Atiyah-Segal axioms discussed in
the next section) for each edge of the cube as follows. If xy is an edge of the cube
we can get a pair of pants cobordism from Mx to My by noting that a circle at x

can split into two at y or two circles at x can fuse into one at y. If a circle goes to a
circle than the cylinder provides the cobordism. To the manifold Mx at each vertex
x we associate the graded vector space

Vx(L) := V ⊗c(x){|x|}, (8.51)

where {k} is the degree shift by k. We define the Frobenius structure (see the book
[Koc04] by Kock for Frobenius algebras and their relation to TQFT) on V as fol-
lows. Multiplication m : V ⊗ V → V is defined by

m(v+ ⊗ v+) = v+, m(v+ ⊗ v−) = v−,

m(v− ⊗ v+) = v−, m(v− ⊗ v−) = 0.

Co-multiplication � : V → V ⊗ V is defined by

�(v+) = v+ ⊗ v− + v− ⊗ v+, �(v−) = v− ⊗ v−.

Thus v+ is the unit. The co-unit δ ∈ V ∗ is defined by mapping v+ to 0 and v− to 1
in the base field. The r-th chain group Cr(L) in the Khovanov complex is the direct
sum of all vector spaces Vx(L), where |x| = r, and the differential is defined by the
Frobenius structure. Thus

Cr(L) := ⊕|x|=rVx(L). (8.52)

We remark that the TQFT corresponds to the Frobenius algebra structure on V de-
fined above. The r-th homology group of the Khovanov complex is denoted by KHr .
Khovanov has proved that the homology is independent of the various choices made
in defining it. Thus we have

Theorem 2 The homology groups KHr are link invariants. In particular, the Kho-
vanov polynomial

KhL(t, q) =
∑
j

tj dimq(KHj )
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is a link invariant that specializes to the non-normalized Jones polynomial. The
Khovanov polynomial is strictly stronger than the Jones polynomial.

We note that the knots 942 and 10125 are chiral. Their chirality is detected by the
Khovanov polynomial but not by the Jones polynomial. Also there are several pairs
of knots with the same Jones polynomials but different Khovanov polynomials. For
example (51,10132) is such a pair.

8.10.1 Categorification of V (31)

Using equations (8.51) and (8.52) and the algebra structure on V the calculation
of the Khovanov complex can be reduced to an algorithm. A computer program
implementing such an algorithm is discussed in [BN02]. A table of Khovanov poly-
nomials for knots and links up to 11 crossings is also given there. We now illus-
trate Khovanov’s categorification of the Jones polynomial of the right handed trefoil
knot 31. For the standard diagram of the trefoil, n = n+ = 3 and n− = 0. The quan-
tum dimensions of the non-zero terms of the Khovanov complex with the shift factor
included are given by

C0 = (q + q−1)2, C1 = 3q(q + q−1),

C2 = 3q2(q + q−1)2, C3 = q3(q + q−1)3.
(8.53)

The non-normalized Jones polynomial can be obtained from (8.53) or directly
from (8.50) giving

V̂ (L) = (q + q3 + q5 − q9) (8.54)

The normalized or standard Jones polynomial is then given by

V (q) = (q + q3 + q5 − q9)/(q + q−1) = q2 + q6 − q8.

By direct computation or using the program in [BN02] we obtain the following
formula for the Khovanov polynomial of the trefoil

Kh(t, q) = q + q3 + t2q5 + t3q9, Kh(−1, q) = χq = V̂ (L).

Based on computations using the program described in [BN02], Khovanov, Garo-
fouladis and Bar-Natan (BKG) have formulated some conjectures on the structure
of Khovanov polynomials over different base fields. We now state these conjectures.
The BKG Conjectures: For any prime knot κ , there exists an even integer s = s(κ)

and a polynomial Kh′
κ(t, q) with only non-negative coefficients such that

1. Over the base field K = Q,

Khκ(t, q) = qs−1[1 + q2 + (1 + tq4)Kh′
κ (t, q)]
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2. Over the base field K = Z2,

Khκ(t, q) = qs−1(1 + q2)[1 + (1 + tq2)Kh′
κ (t, q)]

3. Moreover, if the κ is alternating, then s(κ) is the signature of the knot and
Kh′

κ(t, q) contains only powers of tq2.

The conjectured results are in agreement with all the known values of the Khovanov
polynomials.

If S ⊂ R
4 is an oriented surface cobordism between links L1 and L2, then it

induces a homomorphism of Khovanov homologies of links L1 and L2. These ho-
momorphisms define a functor from the category of link cobordisms to the category
of bigraded abelian groups. Khovanov homology extends to colored links (i.e. ori-
ented links with components labelled by irreducible finite dimensional representa-
tions of sl(2)) to give a categorification of the colored Jones polynomial. Khovanov
and Rozansky have defined an sl(n)-homology for links colored by either the defin-
ing representation or its dual. This gives categorification of the specialization of
the HOMFLY polynomial P(α,q) with a = qn. The sequence of such specializa-
tions for n ∈ N would categorify the two variable HOMFLY polynomial P(α,q).
For n = 0 the theory coincides with the Heegaard Floer homology of Ozsváth and
Szabo [OS03].

In the 1990s Reshetikhin, Turaev and other mathematicians obtained several
quantum invariants of triples (g,L,M), where g is a simple Lie algebra, L ⊂ M

is an oriented, framed link with components labelled by irreducible representations
of g and M is a 2-framed 3-manifold. In particular, there are polynomial invariants
〈L〉 that take values in Z[q−1, q]. Khovanov has conjectured that at least for some
classes of Lie algebras (e.g. simply-laced) there exists a bigraded homology theory
of labelled links such that the polynomial invariant 〈L〉 is the quantum Euler charac-
teristic of this homology. It should define a functor from the category of framed link
cobordisms to the category of bigraded abelian groups. In particular, the homology
of the unknot labelled by an irreducible representation U of g should be a Frobenius
algebra of dimension dim (U).

8.11 Topological Quantum Field Theory

Quantization of classical fields is an area of fundamental importance in modern
mathematical physics. Although there is no satisfactory mathematical theory of
quantization of classical dynamical systems or fields, physicists have developed sev-
eral methods of quantization that can be applied to specific problems. Most success-
ful among these is QED (Quantum Electrodynamics), the theory of quantization of
electromagnetic fields. The physical significance of electromagnetic fields is thus
well understood at both the classical and the quantum level. Electromagnetic theory
is the prototype of classical gauge theories. It is therefore, natural to try to extend
the methods of QED to the quantization of other gauge field theories. The methods
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of quantization may be broadly classified as non-perturbative and perturbative. The
literature pertaining to each of these areas is vast. See for example [DW90, Saw96,
Ste84]. Our aim in this section is to discuss some aspects of a new area of research
in quantum field theory, namely, topological quantum field theory (or TQFT for
short). Ideas from TQFT have already led to new ways of looking at old topological
invariants as well as to surprising new invariants.

8.11.1 Atiyah-Segal Axioms for TQFT

In 2 and 3 dimensional geometric topology, Conformal Field Theory (CFT) meth-
ods have proved to be useful. An attempt to put the CFT on a firm mathematical
foundation was begun by Segal in [Seg89] by proposing a set of axioms for CFT.
CFT is a two dimensional theory and it was necessary to modify and generalize
these axioms to apply to topological field theory in any dimension. We now discuss
briefly these TQFT axioms following Atiyah The Atiyah-Segal axioms for TQFT
(see, for example, [Ati89, Law96]) arose from an attempt to give a mathematical
formulation of the non-perturbative aspects of quantum field theory in general and
to develop, in particular, computational tools for the Feynman path integrals that are
fundamental in the Hamiltonian approach to Witten’s topological QFT. The most
spectacular application of the non-perturbative methods has been in the definition
and calculation of the invariants of 3-manifolds with or without links and knots.
In most physical applications however, it is the perturbative calculations that are
predominantly used. Recently, perturbative aspects of the Chern-Simons theory in
the context of TQFT have been considered in [BN91]. For other approaches to the
invariants of 3-manifolds see [KM90, KR88, Mur93, Tur88, TV92].

Let Cn denote the category of compact, oriented, smooth n-dimensional mani-
folds with morphism given by oriented cobordism. Let VC denote the category of
finite dimensional complex vector spaces. An (n + 1)-dimensional TQFT is a func-
tor T from the category Cn to the category VC which satisfies the following axioms.

A1. Let −� denote the manifold � with the opposite orientation of � and let
V ∗ be the dual vector space of V ∈ VC. Then

T(−�) = (T(�))∗, ∀� ∈ Cn.

A2. Let � denote disjoint union. Then

T(�1 � �2) = T(�1) ⊗ T(�2), ∀�1,�2 ∈ Cn.

A3. Let Yi : �i → �i+1, i = 1,2 be morphisms. Then

T(Y1Y2) = T(Y2)T(Y1) ∈ Hom(T(�1),T(�3)),

where Y1Y2 denotes the morphism given by composite cobordism Y1 ∪�2 Y2.
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A4. Let ∅n be the empty n-dimensional manifold. Then

T(∅n) = C.

A5. For every � ∈ Cn

T(� × [0,1]) : T(�) → T(�)

is the identity endomorphism.
We note that if Y is a compact, oriented, smooth (n+ 1)-manifold with compact,

oriented, smooth boundary �, then

T(Y ) : T(φn) → T(�)

is uniquely determined by the image of the basis vector 1 ∈ C ≡ T(φn). In this case
the vector T(Y ) · 1 ∈ T(�) is often denoted simply by T(Y ) also. In particular, if Y

is closed, then

T(Y ) : T(φn) → T(φn) and T(Y ) · 1 ∈ T(φn) ≡ C

is a complex number which turns out to be an invariant of Y . Axiom A3 suggests
a way of obtaining this invariant by a cut and paste operation on Y as follows. Let
Y = Y1 ∪� Y2 so that Y1 (resp. Y2) has boundary � (resp. −�). Then we have

T(Y ) · 1 = 〈T(Y1) · 1,T(Y2) · 1〉, (8.55)

where 〈, 〉 is the pairing between the dual vector spaces T(�) and T(−�) =
(T(�))∗. Equation (8.55) is often referred to as a gluing formula. Such gluing for-
mulas are characteristic of TQFT. They also arise in Fukaya-Floer homology the-
ory of 3-manifolds, Floer-Donaldson theory of 4-manifold invariants as well as in
2-dimensional conformal field theory. For specific applications the Atiyah axioms
need to be refined, supplemented and modified. For example, one may replace the
category VC of complex vector spaces by the category of finite-dimensional Hilbert
spaces. This is in fact, the situation of the (2 + 1)-dimensional Jones-Witten theory.
In this case it is natural to require the following additional axiom.

A6. Let Y be a compact oriented 3-manifold with ∂Y = �1 � (−�2). Then the
linear transformations

T(Y ) : T(�1) → T(�2) and T(−Y) : T(�2) → T(�1)

are mutually adjoint.
For a closed 3-manifold Y the axiom A6 implies that

T(−Y) = T(Y ) ∈ C.

It is this property that is at the heart of the result that in general, the Jones polyno-
mials of a knot and its mirror image are different, i.e.

Vκ(t) �= Vκm(t),
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where κm is the mirror image of the knot κ .
An important example of a (3 + 1)-dimensional TQFT is provided by the Floer-

Donaldson theory. The functor T goes from the category C of compact, oriented
Homology 3-spheres to the category of Z8-graded abelian groups. It is defined by

T : Y → HF∗(Y ), Y ∈ C.

For a compact, oriented, 4-manifold M with ∂M = Y , T(M) is defined to be the
vector q(M,Y )

q(M,Y ) := (q1(M,Y ), q2(M,Y ), . . . ),

where the components qi(M,Y ) are the relative polynomial invariants of Donaldson
defined on the relative homology group H2(M,Y ;Z).

The axioms also suggest algebraic approaches to TQFT. The most widely stud-
ied of these approaches are based on quantum groups, operator algebras, modular
tensor categories and Jones’ theory of subfactors. See, for example, books [Koh02,
Koc04, KS01, Tur94], and articles [Tur88, TV92, TW93]. Turaev and Viro gave
an algebraic construction of such a TQFT by using the quantum 6j -symbols for
the quantum group Uq(sl2) at roots of unity. Ocneanu [Ocn88] starts with a special
type of subfactor to generate the data which can be used with the Turaev and Viro
construction.

The correspondence between geometric (topological) and algebraic structures
has played a fundamental role in the development of modern mathematics. Its roots
can be traced back to the classical work of Descartes. Recent developments in low
dimensional geometric topology have raised this correspodence to a new level bring-
ing in ever more exotic algebraic structures such as quantum groups, vertex algebras,
monoidal and higher categories. This broad area is now often referred to as quantum
topology. See, for example, [Yet1 , Man04].

8.11.2 Quantum Observables

A quantum field theory may be considered as an assignment of the quantum ex-
pectation 〈�〉μ to each gauge invariant function � : A(M) → C, where A(M) is
the space of gauge potentials for a given gauge group G and the base manifold
(space-time) M . � is called a quantum observable or simply an observable in
quantum field theory. Note that the invariance of � under the group of gauge trans-
formations G implies that � descends to a function on the moduli space B = A/G

of gauge equivalence classes of gauge potentials. In the Feynman path integral ap-
proach to quantization the quantum or vacuum expectation 〈�〉μ of an observable
is given by the following expression.

〈�〉μ =
∫
B(M)

e−Sμ(ω)�(ω)DB∫
B(M)

e−Sμ(ω)DB
, (8.56)
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where e−SμDB is a suitably defined measure on B(M). It is customary to express
the quantum expectation 〈�〉μ in terms of the partition function Zμ defined by

Zμ(�) :=
∫

B(M)

e−Sμ(ω)�(ω)DB. (8.57)

Thus we can write

〈�〉μ = Zμ(�)

Zμ(1)
. (8.58)

In the above equations we have written the quantum expectation as 〈�〉μ to indicate
explicitly that, in fact, we have a one-parameter family of quantum expectations
indexed by the coupling constant μ in the action. There are several examples of
gauge invariant functions. For example, primary characteristic classes evaluated on
suitable homology cycles give an important family of gauge invariant functions.
The instanton number and the Yang-Mills action are also gauge invariant functions.
Another important example is the Wilson loop functional well known in the physics
literature.

Wilson Loop Functional Let ρ denote a representation of G on V . Let α ∈
�(M,x0) denote a loop at x0 ∈ M. Let π : P(M,G) → M be the canonical
projection and let p ∈ π−1(x0). If ω is a connection on the principal bundle
P(M,G), then the parallel translation along α maps the fiber π−1(x0) into itself. Let
α̂ω : π−1(x0) → π−1(x0) denote this map. Since G acts transitively on the fibers,
∃gω ∈ G such that α̂ω(p) = pgω. Now define

Wρ,α(ω) := Tr[ρ(gω)] ∀ω ∈ A. (8.59)

We note that gω and hence ρ(gω), change by conjugation if, instead of p, we choose
another point in the fiber π−1(x0), but the trace remains unchanged. We call these
Wρ,α the Wilson loop functionals associated to the representation ρ and the loop α.
In the particular case when ρ = Ad the adjoint representation of G on g, our con-
structions reduce to those considered in physics. If L = (κ1, . . . , κn) is an oriented
link with component knots κi, 1 ≤ i ≤ n and if ρi is a representation of the gauge
group associated to κi , then we can define the quantum observable Wρ,L associated
to the pair (L,ρ), where ρ = (ρ1, . . . , ρn) by

Wρ,L =
n∏

i=1

Wρi ,κi
.

8.11.3 Link Invariants

In the 1980s, Jones discovered his polynomial invariant Vκ(q), called the Jones
polynomial, while studying Von Neumann algebras and gave its interpretation in
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terms of statistical mechanics. These new polynomial invariants have led to the
proofs of most of the Tait conjectures. As with most of the earlier invariants, Jones’
definition of his polynomial invariants is algebraic and combinatorial in nature and
was based on representations of the braid groups and related Hecke algebras. The
Jones polynomial Vκ(t) of κ is a Laurent polynomial in t (polynomial in t and
t−1) which is uniquely determined by a simple set of properties similar to the well
known axioms for the Alexander-Conway polynomial. More generally, the Jones
polynomial can be defined for any oriented link L as a Laurent polynomial in t1/2.

A geometrical interpretation of the Jones’ polynomial invariant of links was pro-
vided by Witten by applying ideas from QFT to the Chern-Simons Lagrangian con-
structed from the Chern-Simons action

ACS = k

4π

∫
M

tr

(
A ∧ dA + 2

3
A ∧ A ∧ A

)
,

where A is the gauge potential of the SU(n) connection ω. Chern-Simons action
is not gauge invariant. Under a gauge transformation g the action transforms as
follows:

ACS(A
g) = ACS(A) + 2πkAWZ, (8.60)

where AWZ is the Wess-Zumino action functional. It can be shown that the Wess-
Zumino functional is integer valued and hence, if the Chern-Simons coupling con-
stant k is taken to be an integer, then the partition function In fact, Witten’s model
allows us to consider the knot and link invariants in any compact 3-manifold M .
Z defined by

Z(�) :=
∫

B(M)

e−iACS(ω)�(ω)DB

is gauge invariant. We take for � the Wilson loop functional Wρ,L, where ρ is a
representation of SU(n) and L is the link under consideration.

We denote the Jones polynomial of L simply by V . Recall that there are 3 stan-
dard ways to change a link diagram at a crossing point. The Jones polynomials of
the corresponding links are denoted by V+, V− and V0 respectively. To verify the
defining relations for the Jones’ polynomial of a link L in S3, Witten [Wit89] starts
by considering the Wilson loop functionals for the associated links L+,L−,L0. For
a framed link L, we denote by 〈L〉 the expectation value of the corresponding Wil-
son loop functional for the Chern-Simons theory of level k and gauge group SU(n)

and with ρi the fundamental representation for all i. To verify the defining relations
for the Jones’ polynomial of a link L in S3, Witten considers the expectation values
of the Wilson loop functionals for the associated links L+,L−,L0 and obtains the
relation

α〈L+〉 + β〈L0〉 + γ 〈L−〉 = 0 (8.61)

where the coefficients α,β, γ are given by the following expressions

α = − exp

(
2πi

n(n + k)

)
, (8.62)
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β = − exp

(
πi(2 − n − n2)

n(n + k)

)
+ exp

(
πi(2 + n − n2)

n(n + k)

)
, (8.63)

γ = exp

(
2πi(1 − n2)

n(n + k)

)
. (8.64)

We note that the result makes essential use of 3-manifolds with boundary. The cal-
culation of the coefficients α,β, γ is closely related to the Verlinde fusion rules
[Ver88] and 2d conformal field theories. Substituting the values of α,β, γ into equa-

tion (8.61) and cancelling a common factor exp(πi(2−n2)
n(n+k)

), we get

−tn/2〈L+〉 + (t1/2 − t−1/2)〈L0〉 + t−n/2〈L−〉 = 0, (8.65)

where we have put

t = exp

(
2πi

n + k

)
.

This is equivalent to the following skein relation for the polynomial invariant V of
the link

tn/2V+ − t−n/2V− = (t1/2 − t−1/2)V0 (8.66)

For SU(2) Chern-Simons theory, equation (8.66) is the skein relation that defines
a variant of the original Jones’ polynomial. This variant also occurs in the work of
Kirby and Melvin [KM91] where the invariants are studied by using representation
theory of certain Hopf algebras and the topology of framed links. It is not equiva-
lent to the Jones polynomial. In an earlier work [Mar01] I had observed that under
the transformation

√
t → −1/

√
t , it goes over into the equation which is the skein

relation characterizing the Jones polynomial. The Jones polynomial belongs to a
different family that corresponds to the negative values of the level. Note that the
coefficients in the skein relation (8.66) are defined for positive values of the level k.
To extend them to negative values of the level we must also note that the shift in k

by the dual Coxeter number would now change the level −k to −k − n. If in equa-
tion (8.66) we now allow negative values of n and take t to be a formal variable,
then the extended family includes both positive and negative levels.

Let V (n) denote the Jones-Witten polynomial corresponding to the skein rela-
tion (8.66), (with n ∈ Z) then the family of polynomials {V (n)} can be shown to
be equivalent to the two variable HOMFLY polynomial P(α, z) which satisfies the
following skein relation

αP+ − α−1P− = zP0. (8.67)

If we put α = t−1 and z = (t1/2 − t−1/2) in equation (8.47) we get the skein relation
for the original Jones polynomial V . If we put α = 1 we get the skein relation for
the Alexander-Conway polynomial.

To compare our results with those of Kirby and Melvin we note that they use
q to denote our t and t to denote its fourth root. They construct a modular Hopf
algebra Ut as a quotient of the Hopf algebra Uq(sl(2,C)) which is the well known



8 Geometric Topology and Field Theory on 3-Manifolds 233

q-deformation of the universal enveloping algebra of the Lie algebra sl(2,C). Jones
polynomial and its extensions are obtained by studying the representations of the
algebras Ut and Uq .

8.11.4 WRT Invariants

Witten’s TQFT invariants of 3-manifolds were given a mathematical definition by
Reshetikhin and Turaev in [RT91]. In view of this and with a suggestion from Prof.
Zagier, I called them Witten–Reshetikhin–Turaev or WRT invariants in [Mar01].
Several alternative approaches to WRT invariants are now available. We will discuss
some of them later in this section. If Zk(1) exists, it provides a numerical invariant
of M . For example, for M = S3 and G = SU(2), using the Chern-Simons action
Witten obtains the following expression for this partition function as a function of
the level k

Zk(1) =
√

2

k + 2
sin

(
π

k + 2

)
. (8.68)

This partition function provides a new family of invariants for M = S3, indexed by
the level k. Such a partition function can be defined for a more general class of 3-
manifolds and gauge groups. More precisely, let G be a compact, simply connected,
simple Lie group and let k ∈ Z. Let M be a 2-framed closed, oriented 3-manifold.
We define the Witten invariant TG,k(M) of the triple (M,G,k) by

TG,k(M) := Z(1) :=
∫

B(M)

e−iACSDB, (8.69)

where e−iACSDB, is a suitable measure on B(M). We note that no precise definition
of such a measure is available at this time and the definition is to be regarded as a
formal expression. Indeed, one of the aims of TQFT is to make sense of such formal
expressions. We define the normalized Witten invariant WG,k(M) of a 2-framed,
closed, oriented 3-manifold M by

WG,k(M) := TG,k(M)

TG,k(S3)
. (8.70)

If G is a compact, simply connected, simple Lie group and M,N be two 2-framed,
closed, oriented 3-manifolds. Then we have the following results:

TG,k(S
2 × S1) = 1 (8.71)

TSU(2),k(S
3) =

√
2

k + 2
sin

(
π

k + 2

)
(8.72)

WG,k(M#N) = WG,k(M)WG,k(N) (8.73)
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If G is a compact simple group then the WRT invariant TG,k(S
3) can be given in a

closed form in terms of the root and weight lattices associated to G. In particular,
for G = SU(n) we get

T = 1√
n(k + n)(n−1)

n−1∏
j=1

[
2 sin

(
jπ

k + n

)]n−j

.

We will show later that this invariant can be expressed in terms of the generating
function of topological string amplitudes in a closed string theory compactified on
a suitable Calabi-Yau manifold. More generally, if a manifold M can be cut into
pieces over which the CS path integral can be computed, then the gluing rules of
TQFT can be applied to these pieces to find T. Different ways of using such a cut
and paste operation can lead to different ways of computing this invariant. Another
method that is used in both the theoretical and experimental applications is the per-
turbative quantum field theory. The rules for perturbative expansion around classical
solutions of field equations are well understood in physics. It is called the station-
ary phase approximation to the partition function. It leads to the asymptotic expan-
sion in terms of a parameter depending on the coupling constants and the group. If
č(G) is the dual Coxeter number of G then the asymptotic expansion is in terms of
� = 2πi/(k + č(G)). This notation in TQFT is a reminder of the Planck’s constant
used in physical field theories. The asymptotic expansion of log(T) is then given by

log(T) = −b log � + a0

�
+

∞∑
n=1

an+1�
n,

where ai are evaluated on Feynman diagrams with i loops. The expansion may be
around any flat connection and the dependence of ai the choice of connection may
be explicitly indicated if necessary. For Chern-Simons theory the above perturba-
tive expansion is also valid for non-compact groups. In his talk at this conference,
Garofouladis discussed the asymptotic expansion of the free energy associated to
the LMO invariant of a 3-manifold and its many interesting properties (see Garo-
fouladis et al. in these proceedings) I asked Stavros if he has looked at his expansion
as a generating function for topological string moduli. I also asked a similar ques-
tion to Don Zagier about the free energy expansion of Chern-Simons invariant with
complex gauge group considered by Zagier et al. in [DGLZ09]. Both of them told
me that they had not considered this aspect. It seems that the general program of re-
lating gauge theoretic and string theoretic invariants is still far from well formulated,
even in the cases where explicit asymptotic expansions are available.

8.11.5 CFT Approach to WRT Invariants

In [Koh92] Kohno defines a family of invariants �k(M) of a 3-manifold M by using
its Heegaard decomposition along a Riemann surface �g and representations of the
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mapping class group of �g . Kohno’s work makes essential use of ideas and results
from conformal field theory. We now give a brief discussion of Kohno’s definition.

We begin by reviewing some information about the geometric topology of
3-manifolds and their Heegaard splittings. Recall that two compact 3-manifolds
X1,X2 with homeomorphic boundaries can be glued together along a homeomor-
phism f : ∂X1 → ∂X2 to obtain a closed 3-manifold X = X1 ∪f X2. If X1,X2
are oriented with compatible orientations on the boundaries, then f can be taken
to be either orientation preserving or reversing. Conversely, any closed orientable
3-manifold can be obtained by such a gluing procedure where each of the pieces is
a special 3-manifold called a handlebody. Recall that a handlebody of genus g is
an orientable 3-manifold obtained from gluing g copies of 1-handles D2 × [−1,1]
to the 3-ball D3. The gluing homeomorphisms join the 2g discs D2 × {±1} to the
2g pairwise disjoint 2-discs in ∂D3 = S2 in such a way that the resulting manifold
is orientable. The handlebodies H1,H2 have the same genus and a common bound-
ary H1 ∩ H2 = ∂H1 = ∂H2. Such a decomposition of a 3-manifold X is called a
Heegaard splitting of X of genus g. We say that X has Heegaard genus g if it
has some Heegaard splitting of genus g but no Heegaard splitting of smaller genus.
Given a Heegaard splitting of genus g of X, there exists an operation called stabi-
lization which gives another Heegaard splitting of X of genus g + 1. Two Heegaard
splitting of X are called equivalent if there exists a homeomorphism of X onto it-
self taking one splitting into the other. Two Heegaard splitting of X are called stably
equivalent if they are equivalent after a finite number of stabilizations. A proof of
the following theorem is given in [Sav99].

Theorem 3 Any two Heegaard splittings of a closed orientable 3-manifold X are
stably equivalent.

The mapping class group M(M) of a connected, compact, smooth surface M

is the quotient group of the group of diffeomorphisms Diff (M) of M modulo the
group Diff 0(M) of diffeomorphisms isotopic to the identity. i.e.

M(M) := Diff (M)/Diff 0(M)

If M is oriented, then M(M) has a normal subgroup M+(M) of index 2 consist-
ing of orientation preserving diffeomorphisms of M modulo isotopies. The group
M(M) can also be defined as π0(Diff (M)). Smooth closed orientable surfaces �g

are classified by their genus g and in this case it is customary to denote M(�g)

by Mg . In the applications that we have in mind, it is this group Mg that we shall
use. The group Mg is generated by Dehn twists along simple closed curves in �g .
Let c be a simple closed curve in �g which forms one of the boundaries of an annu-
lus. In local complex coordinate z we can identify the annulus with {z | 1 ≤ |z| ≤ 2}
and the curve c with {z | |z| = 1}. Then the Dehn twist τc along c is an automor-
phism of �g which is the identity outside the annulus and in the annulus, is given
by the formula

τc(re
iθ ) = rei(θ+2π(r−1)), where z = reiθ , 1 ≤ r ≤ 2,0 ≤ θ ≤ 2π
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Changing the curve c by an isotopic curve or changing the annulus gives isotopic
twists. However, twists in opposite directions define elements of Mg which are the
inverses of each other. Note that any two homotopic simple closed curves on �g are
isotopic. A useful description of Mg is given by the following theorem.

Theorem 4 Let �g be a smooth closed orientable surface of genus g. Then the
group Mg is generated by the 3g −1 Dehn twists along the curves αi,βj , γk, 1 ≤ i,
j ≤ g, 1 ≤ k < g which are Poincaré dual to a basis of the first integral homology
of �g .

In [Koh92] Kohno obtains a representation of the mapping class group Mg in
the space of conformal blocks which arise in conformal field theory. He then uses
a special function for this representation and the stabilization to define a family of
invariants �k(M) of the 3-manifold M which are independent of its stable Heegaard
decomposition. Kohno obtains the following formulas:

�k(S
2 × S1) =

(√
2

k + 2
sin

(
π

k + 2

))−1

, (8.74)

�k(S
3) = 1, (8.75)

�k(M#N) = �k(M) · �k(N). (8.76)

Kohno’s invariant coincides with the normalized Witten invariant with the gauge
group SU(2). Similar results were also obtained by Crane [Cra91]. The agreement
of these results with those of Witten may be regarded as strong evidence for the
correctness of the TQFT calculations. In [Koh92] Kohno also obtains the Jones-
Witten polynomial invariants for a framed colored link in a 3-manifold M by using
representations of mapping class groups via conformal field theory. In [Koh94] the
Jones-Witten polynomials are used to estimate the tunnel number of knots and the
Heegaard genus of a 3-manifold. The monodromy of the Knizhnik-Zamolodchikov
equation [KZ84] plays a crucial role in these calculations.

8.11.6 WRT Invariants via Quantum Groups

Shortly after the publication of Witten’s paper [Wit89], Reshetikhin and Turaev
[RT91] gave a precise combinatorial definition of a new invariant by using the rep-
resentation theory of quantum group Uqsl2 at the root of unity q = e2πi/(k+2). The
parameter q coincides with Witten’s SU(n) Chern-Simons theory parameter t when
n = 2 and in this case the invariant of Reshetikhin and Turaev is the same as the nor-
malized Witten invariant. In view of this it is now customary to call the normalized
Witten invariant as Witten-Reshetikhin-Turaev invariant or WRT invariant. We now
discuss their construction in the form given by Kirby and Melvin in [KM91].
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Let U denote the universal enveloping algebra of sl(2,C) and let Uh denote the
quantized universal enveloping algebra of formal power series in h. Recall that U is
generated by X,Y,H subject to relations as in the algebra sl(2,C), i.e.

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H.

In Uh the last relation is replaced by

[X,Y ] = [H ]s := sH − s−H

s − s−1
, s = eh/2.

It can be shown that Uh admits a Hopf algebra structure as a module over the ring
of formal power series. However, the presence of divergent series make this algebra
unsuitable for representation theory. We construct a finite dimensional algebra by
using Uh. Define

K := ehH/4 and K̄ := e−hH/4 = K−1.

Fix an integer r > 1 (r = k + 2 of the Witten formula) and set q = eh = e2πi/r . We
restrict this to a subalgebra over the ring of convergent power series in h generated
by X,Y,K, K̄ . This infinite dimensional algebra occurs in the work of Jimbo. We
take its quotient by setting

Xr = 0, Y r = 0, K4r = 1.

It is the representations of this quotient algebra A that are used to define colored
Jones polynomials and the WRT invariants. The algebra A is a finite dimensional
complex algebra satisfying the relations

K̄ = K−1, KX = sXK, KY = s̄YK,

[X,Y ] = K2 − K−2

s − s̄
, s = eπi/r

There are irreducible A-modules V i in each dimension i > 0. If we put i = 2m+ 1,
then V i has a basis {em, . . . , e−m}. The action of A on the basis vectors is given by

Xej = [m + j + 1]sej+1, Y ej = [m − j + 1]sej−1, and Kej = sj ej .

The A-modules V i are self dual for 0 < i < r . The structure of their tensor products
is similar to that in the classical case. The algebra A has the additional structure of
a quasitriangular Hopf algebra with Drinfeld’s universal R-matrix R satisfying the
Yang-Baxter equation. One has an explicit formula for R ∈ A ⊗ A of the form

R =
∑

cnabX
aKb ⊗ YnKb.

If V,W are A-modules, then R acts on V ⊗ W . Composing with the permutation
operator we get the operator R′ : V ⊗ W → W ⊗ V . These are the operators used



238 K. Marathe

in the definition of our link invariants. Let L be a framed link with n components
Li colored by k = {k1, . . . , kn}. Let JL,k be the corresponding colored Jones poly-
nomial. The colors are restricted to Lie in a family of irreducible modules V i , one
for each dimension 0 < i < r . Let σ denote the signature of the linking matrix of L.
Define τL by

τL =
(√

2/r sin(π/r)
)n

e3(2−r)σ/(8r)
∑

[k]JL,k,

where the sum is over all admissible colors. Every 3-manifold can be obtained by
surgery on a link in S3. Two links give isomorphic manifolds if they are related by
Kirby moves. It can be shown that the invariant τL is preserved under Kirby moves
and hence defines an invariant of the 3-manifold ML obtained by surgery on L. With
suitable normalization it coincides with the WRT invariant. WRT invariants do not
belong to the class of polynomial invariants or other known 3-manifold invariants.
They arose from topological quantum field theory applied to calculate the partition
functions in the Chern-Simons gauge theory.

A number of other mathematicians have also obtained invariants that are closely
related to the Witten invariant. The equivalence of these invariants defined by using
different methods was a folk theorem until a complete proof was given by Piunikhin
in [Piu93]. Another approach to WRT invariants is via Hecke algebras and related
special categories. A detailed construction of modular categories from Hecke alge-
bras at roots of unity is given in [Bla00]. For a special choice of the framing pa-
rameter, one recovers the Reshetikhin-Turaev invariants of 3-manifolds constructed
from the representations of the quantum groups Uqsl(N) by Reshetikhin, Turaev
and Wenzl [RT91, TW93, Wen93]. These invariants were constructed by Yokota
[Yok97] by using skein theory. As we have discussed earlier the quantum invari-
ants were obtained by Witten [Wit88] by using path integral quantization of Chern-
Simons theory. In “Quantum Invariants of Knots and 3-Manifolds” [Tur94], Turaev
showed that the idea of modular categories is fundamental in the construction of
these invariants and that it plays an essential role in extending them to a Topological
Quantum Field Theory. Since these early results, WRT invariants for several other
manifolds and gauge groups have been obtained. We collect together some of these
results below.

Theorem 5 The WRT invariant for the lens space L(p,q) in the canonical framing
is given by

Wk(L(p,q)) = − i√
2p(k + 2)

e( 6πis
k+2 )

∑
δ∈{−1,1}

p∑
n=1

δe
δ

2p(k+2) e
2πiqn2(k+2)

p e
2πin(q+δ)

p ,

where s = s(q,p) is the Dedekind sum defined by

s(q,p) := 1

4p

p−1∑
k=1

cot

(
πk

p

)
cot

(
πkq

p

)
.
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In all of these the invariant is well defined only at roots of unity and perhaps
near roots of unity if a perturbative expansion is possible. This situation occurs in
the study of classical modular functions and Ramanujan’s mock theta functions.
Ramanujan had introduced his mock theta functions in a letter to Hardy in 1920
(the famous last letter) to describe some power series in variable q = e2πiz, z ∈ C.
He also wrote down (without proof, as was usual in his work) a number of identities
involving these series which were completely verified only in 1988 by Hickerson
[Hic88]. Recently, Lawrence and Zagier have obtained several different formulas for
the Witten invariant WSU(2),k(M) of the Poincaré homology sphere M = �(2,3,5)

in [LZ99]. Using the work of Zwegers [Zwe01], they show how the Witten invariant
can be extended from integral k to rational k and give its relation to the mock theta
function. In particular, they obtain the following fantastic formula, a la Ramanujan,
for the Witten invariant WSU(2),k(M) of the Poincaré homology sphere

WSU(2),k(�(2,3,5)) = 1 +
∞∑

n=1

x−n2
(1 + x)(1 + x2) · · · (1 + xn−1)

where x = eπi/(k+2). We note that the series on the right hand side of this formula
terminates after k + 2 terms1.

We have not discussed the Kauffman bracket polynomial or the theory of skein
modules in the study of 3-manifold invariants. An invariant that combines these two
ideas has been define in the following general setting. Let R be a commutative ring
and let A be a fixed invertible element of R. Then one can define a new invariant,
S2,∞(M;R,A), of an oriented 3-manifold M called the Kauffman bracket skein
module (see [Prz99]). The theory of skein modules is related to the theory of rep-
resentations of quantum groups. This connection should prove useful in developing
the theory of quantum group invariants which can be defined in terms of skein theory
as well as by using the theory of representations of quantum groups.

8.12 Chern-Simons and String Theory

The general question “what is the relationship between gauge theory and string the-
ory?” is not meaningful at this time. So I will follow the strong admonition by
Galileo against2 “disputar lungamente delle massime questioni senza conseguir ver-
ità nissuna”. However, interesting special cases where such relationship can be es-
tablished are emerging. For example, Witten [Wit95] has argued that Chern-Simons
gauge theory on a 3-manifold M can be viewed as a string theory constructed by
using a topological sigma model with target space T ∗M . The perturbation theory
of this string will coincide with Chern-Simons perturbation theory, in the form dis-
cussed by Axelrod and Singer [AS94]. The coefficient of k−r in the perturbative

1I would like to thank Don Zagier for bringing this work to my attention.
2Lengthy discussions about the greatest questions that fail to lead to any truth whatever.
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expansion of SU(n) theory in powers of 1/k comes from Feynman diagrams with
r loops. Witten shows how each diagram can be replaced by a Riemann surface �

of genus g with h holes (boundary components) with g = (r − h + 1)/2. Gauge
theory would then give an invariant 
g,h(M) for every topological type of �. Wit-
ten shows that this invariant would equal the corresponding string partition function
Zg,h(M). We now give an example of gauge theory to string theory correspondence
relating the non-perturbative WRT invariants in Chern-Simons theory with gauge
group SU(n) and topological string amplitudes which generalize the GW (Gromov-
Witten) invariants of Calabi-Yau 3-folds following the work in [GV99, AMnV04].
The passage from real 3 dimensional Chern-Simons theory to the 10 dimensional
string theory and further onto the 11 dimensional M-theory can be schematically
represented by the following:

3 + 3 = 6 (real symplectic 6-manifold)

= 6 (conifold in C
4 )

= 6 (Calabi-Yau manifold)

= 10 − 4 (string compactification)

= (11 − 1) − 4 (M-theory)

We now discuss the significance of the various terms of the above equation array. Re-
call that string amplitudes are computed on a 6-dimensional manifold which in the
usual setting is a complex 3-dimensional Calaby-Yau manifold obtained by string
compactification. This is the most extensively studied model of passing from the
10-dimensional space of supersymmetric string theory to the usual 4-dimensional
space-time manifold. However, in our work we do allow these so called extra di-
mensions to form an open or a symplectic Calabi-Yau manifold. We call these the
generalized Calabi-Yau manifolds. The first line suggests that we consider open
topological strings on such a generalized Calabi-Yau manifold, namely, the cotan-
gent bundle T ∗S3, with Dirichlet boundary conditions on the zero section S3. We
can compute the open topological string amplitudes from the SU(n) Chern-Simons
theory. Conifold transition [STY02] has the effect of closing up the holes in open
strings to give closed strings on the Calabi-Yau manifold obtained by the usual string
compactification from 10 dimensions. Thus we recover a topological gravity result
starting from gauge theory. In fact, as we discussed earlier, Witten had anticipated
such a gauge theory string theory correspondance almost ten years ago. Significance
of the last line is based on the conjectured equivalence of M-theory compactified on
S1 to type IIA strings compactified on a Calabi-Yau threefold. We do not consider
this aspect here. The crucial step that allows us to go from a real, non-compact, sym-
plectic 6-manifold to a compact Calabi-Yau manifold is the conifold or geometric
transition. Such a change of geometry and topology is expected to play an important
role in other applications of string theory as well. A discussion of this example from
physical point of view may be found in [AMnV04, GV99].
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8.12.1 Conifold Transition

To understand the relation of the WRT invariant of S3 for SU(n) Chern-Simons
theory with open and closed topological string amplitudes on “Calabi-Yau” mani-
folds we need to discuss the concept of conifold transition. From the geometrical
point of view this corresponds to symplectic surgery in six dimensions. It replaces
a vanishing Lagrangian 3-sphere by a symplectic S2. The starting point of the con-
struction is the observation that T ∗S3 minus its zero section is symplectomorphic to
the cone z2

1 + z2
2 + z2

3 + z2
4 = 0 minus the origin in C

4, where each manifold is taken
with its standard symplectic structure. The complex singularity at the origin can be
smoothed out by the manifold Mτ defined by z2

1 + z2
2 + z2

3 + z2
4 = τ producing a

Lagrangian S3 vanishing cycle. There are also two so called small resolutions M±
of the singularity with exceptional set CP 1.

They are defined by

M± :=
{
z ∈ C

4
∣∣∣ z1 + iz2

z3 ± iz4
= −z3 ± iz4

z1 − iz2

}
.

Note that M0 \ {0} is symplectomorphic to each of M± \ CP 1. Blowing up the
exceptional set CP 1 ⊂ M± gives a resolution of the singularity which can be ex-
pressed as a fiber bundle F over CP 1. Going from the fiber bundle T ∗S3 over S3

to the fiber bundle F over CP 1is referred to in the physics literature as the conifold
transition. We note that the holomorphic automorphism of C

4 given by z4 �→ −z4
switches the two small resolutions M± and changes the orientation of S3. Conifold
transition can also be viewed as an application of mirror symmetry to Calabi-Yau
manifolds with singularities. Such an interpretation requires the notion of symplec-
tic Calabi-Yau manifolds and the corresponding enumerative geometry. The geo-
metric structures arising from the resolution of singularities in the conifold tran-
sition can also be interpreted in terms of the symplectic quotient construction of
Marsden and Weinstein.

8.12.2 WRT Invariants and String Amplitudes

To find the relation between the large n limit of SU(n) Chern-Simons theory on
S3 to a special topological string amplitude on a Calabi-Yau manifold we begin by
recalling the formula for the partition function (vacuum amplitude) of the theory
TSU(n),k(S

3) or simply T. Up to a phase, it is given by

T = 1√
n(k + n)(n−1)

n−1∏
j=1

[
2 sin

(
jπ

k + n

)]n−j

. (8.77)

Let us denote by F(g,h) the amplitude of an open topological string theory on T ∗S3

of a Riemann surface of genus g with h holes. Then the generating function for the
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free energy can be expressed as

−
∞∑

g=0

∞∑
h=1

λ2g−2+hnhF(g,h) (8.78)

This can be compared directly with the result from Chern-Simons theory by expand-
ing the logT as a double power series in λ and n.

Instead of that we use the conifold transition to get the topological amplitude for
a closed string on a Calabi-Yau manifold. We want to obtain the large n expansion
of this amplitude in terms of parameters λ and τ which are defined in terms of the
Chern-Simons parameters by

λ = 2π

k + n
, τ = nλ = 2πn

k + n
. (8.79)

The parameter λ is the string coupling constant and τ is the ’t Hooft coupling
nλ of the Chern-Simons theory. The parameter τ entering in the string amplitude
expansion has the geometric interpretation as the Kähler modulus of a blown up S2

in the resolved M±. If Fg(τ) denotes the amplitude for a closed string at genus g

then we have

Fg(τ) =
∞∑

h=1

τhF(g,h) (8.80)

So summing over the holes amounts to filling them up to give the closed string
amplitude.

The large n expansion of T in terms of parameters λ and τ is given by

T = exp

⎡
⎣−

∞∑
g=0

λ2g−2Fg(τ)

⎤
⎦ , (8.81)

where Fg defined in (8.80) can be interpreted on the string side as the contribution
of closed genus g Riemann surfaces. For g > 1 the Fg can be expressed in terms
of the Euler characteristic χg and the Chern class cg−1 of the Hodge bundle of the
moduli space Mg of Riemann surfaces of genus g as follows

Fg =
∫

Mg

c3
g−1 − χg

(2g − 3)!
∞∑

n=1

n2g−3e−n(τ). (8.82)

The integral appearing in the formula for Fg can be evaluated explicitly to give

∫
Mg

c3
g−1 = (−1)(g−1)

(2π)(2g−2)
2ζ(2g − 2)χg. (8.83)
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The Euler characteristic is given by the Harer-Zagier [HZ86] formula

χg = (−1)(g−1)

(2g)(2g − 2)
B2g, (8.84)

where B2g is the (2g)-th Bernoulli number. We omit the special formulas for the
genus 0 and genus 1 cases. The formulas for Fg for g ≥ 0 coincide with those of the
g-loop topological string amplitude on a suitable Calabi-Yau manifold. The change
in geometry that leads to this calculation can be thought of as the result of coupling
to gravity. Such a situation occurs in the quantization of Chern-Simons theory. Here
the classical Lagrangian does not depend on the metric, however, coupling to the
gravitational Chern-Simons term is necessary to make it TQFT.

We have mentioned the following four approaches that lead to the WRT invari-
ants.

1. Witten’s QFT calculation of the Chern-Simons partition function
2. Quantum group (or Hopf algebraic) computations initiated by Reshetikhin and

Turaev
3. Kohno’s special functions corresponding to representations of mapping class

groups in the space of conformal blocks and a similar approach by Crane
4. Open or closed string amplitudes in suitable Calabi-Yau manifolds

These methods can also be applied to obtain invariants of links, such as the Jones
polynomial. Indeed, this was the objective of Witten’s original work. WRT invari-
ants were a byproduct of this work. Their relation to topological strings came later.

The WRT to string theory correspondence has been extended by Gopakumar
and Vafa (see, [GV08a, GV08b]) by using string theoretic arguments to show that
the expectation value of the quantum observables defined by the Wilson loops in
the Chern-Simons theory also has a similar interpretation in terms of a topological
string amplitude. This leads them to conjecture a correspondence between certain
knot invariants (such as the Jones polynomial) and Gromov-Witten type invariants
of generalized Calabi-Yau manifolds. Gromov-Witten invariants of a Calabi-Yau 3-
fold X are in general rational numbers, since one has to get the weighted count by
dividing by the order of automorphism groups. Using M-theory Gopakumar and
Vafa have argued that the generating series FX of Gromov-Witten invariants in all
degrees and all genera is determined by a set of integers n(g,β). They give the
following remarkable formula for FX

FX(λ, q) =
∑∑

g≥0

∑
k≥1

1

k
n(g,β)(2 sin(kλ/2))2g−2qkβ,

where λ is the string coupling constant and the first sum is taken over all nonzero
elements β in H2(X). We note that for a fixed genus there are only finitely many
nonzero integers n(g,β). A mathematical formulation of the Gopakumar-Vafa con-
jecture (GV conjecture) has been given in [Pan99]. Special cases of the conjecture
have been verified (see, for example [Pan02] and references therein). In [LLZ06] a
new geometric approach relating the Gromov-Witten invariants to equivariant index
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theory and 4-dimensional gauge theory has been used to compute the string parti-
tion functions of some local Calabi-Yau spaces and to verify the GV conjecture for
them.

A knot should correspond to a Lagrangian D-brane on the string side and the knot
invariant would then give a suitably defined count of compact holomorphic curves
with boundary on the D-brane. To understand a proposed proof, recall first that a
categorification of an invariant I is the construction of a suitable homology such
that its Euler characteristic equals I . A well known example of this is Floer’s cate-
gorification of the Casson invariant. We have already discussed earlier, Khovanov’s
categorification of the Jones polynomial Vκ(q) by constructing a bi-graded sl(2)-
homology Hi,j determined by the knot κ . Its quantum or graded Euler characteristic
equals the Jones polynomial. i.e.

Vκ(q) =
∑
i,j

(−1)j qi dimHi,j .

Now let Lκ be the Lagrangian submanifold corresponding to the knot κ of a fixed
Calabi-Yau space X. Let r be a fixed relative integral homology class of the pair
(X,Lκ). Let Mg,r denote the moduli space of pairs (�g,A), where �g is a compact
Riemann surface in the class r with boundary S1 and A is a flat U(1) connection
on �g . This data together with the cohomology groups Hk(Mg,r ) determines a tri-
graded homology. It generalizes the Khovanov homology. Its Euler characteristic is
a generating function for the BPS states’ invariants in string theory and these can be
used to obtain the Gromov-Witten invariants. Taubes has given a construction of the
Lagrangians in the Gopakumar-Vafa conjecture. We note that counting holomorphic
curves with boundary on a Lagrangian manifold was introduced by Floer in his work
on the Arnold conjecture.

The tri-graded homology is expected to unify knot homologies of the Khovanov
type as well as knot Floer homology constructed by Ozswáth and Szabó [OS03]
which provides a categorification of the Alexander polynomial. Knot Floer homol-
ogy is defined by counting pseudo-holomorphic curves and has no known combi-
natorial description. An explicit construction of a tri-graded homology for certain
torus knots has been recently given by Dunfield, Gukov and Rasmussen [DGR05].

8.13 Yang-Mills, Gravity and Strings

Recall that in string theory, an elementary particle is identified with a vibrational
mode of a string. Different particles correspond to different harmonics of vibration.
The Feynman diagrams of the usual QFT are replaced by fat graphs or Riemann sur-
faces that are generated by moving strings splitting or joining together. The particle
interactions described by these Feynman diagrams are built into the basic structure
of string theory. The appearance of Riemann surfaces explains the relation to confor-
mal field theory. We have already discussed Witten’s argument relating gauge and
string theories. It now forms a small part of the program of relating quantum group
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invariants and topological string amplitudes. In general, the string states are identi-
fied with fields. The ground state of the closed string turns out to be a massless spin
two field which may be interpreted as a graviton. In the large distance limit, (at least
at the lower loop levels) string theory includes the vacuum equations of Einstein’s
general relativity theory. String theory avoids the ultraviolet divergences that ap-
pear in conventional attempts at quantizing gravity. In physically interesting string
models one expects the string space to be a non-trivial bundle over a Lorentzian
space-time M with compact or non-compact fibers. Relating the usual Einstein’s
equations with cosmological constant with the Yang-Mills equations requires the
ten dimensional manifold �2(M) of differential forms of degree two. There are
several differences between the Riemannian functionals used in theories of gravi-
tation and the Yang-Mills functional used to study gauge field theories. The most
important difference is that the Riemannian functionals are dependent on the bundle
of frames of M or its reductions, while the Yang-Mills functional can be defined on
any principal bundle over M . However, we have the following interesting theorem
[Bes86].

Theorem Let (M,g) be a compact, 4-dimensional, Riemannian manifold. Let
�2+(M) denote the bundle of self-dual 2-forms on M with induced metric G+. Then
the Levi-Civita connection λg on M satisfies the Euclidean gravitational instan-
ton equations if and only if the Levi-Civita connection λG+ on �2+(M) satisfies the
Yang-Mills instanton equations.

8.13.1 Gravitational Field Equations

A geometric formulation of gravitational field equations is generally not in the
tool kit of topologists. We review them as the full Einstein equations with energy-
momentum tensor corresponding to the dilaton field appear in Perelman’s work on
the Thurston geometrization conjecture. There are several ways of deriving Ein-
stein’s gravitational field equations. For example, we can consider natural tensors
satisfying the conditions that they contain derivatives of the fundamental (pseudo-
metric) tensor up to order two and depend linearly on the second order derivatives.
Then we obtain the tensor

c1R
ij + c2g

ij S + c3g
ij ,

where Rij are the components of the Ricci tensor Ric and S is the scalar curvature.
Requiring this tensor to be divergenceless and using the Bianchi identities leads to
the relation c1 + 2c2 = 0 between the constants c1, c2, c3. Choosing c1 = 1 and
c3 = 0 we obtain Einstein’s equations (without the cosmological constant) which
may be expressed as

E = −T (8.85)
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where E := Ric − 1
2Sg is the Einstein tensor and T is an energy-momentum ten-

sor on the space-time manifold which acts as the source term. Now the Bianchi
identities satisfied by the curvature tensor imply that

divE := ∇iE
ij = 0.

Hence, if Einstein’s equations (8.85) are satisfied, then for consistency we must have

divT = ∇iT
ij = 0. (8.86)

Equation (8.86) is called the differential (or local) law of conservation of energy
and momentum. However, integral (or global) conservation laws can be obtained by
integrating equation (8.86) only if the space-time manifold admits Killing vectors.
Thus equation (8.86) has no clear physical meaning, except in special cases. An
interesting discussion of this point is given by Sachs and Wu [SW77]. Einstein was
aware of the tentative nature of the right hand side of equation (8.85), but he believed
strongly in the expression on the left hand side of (8.85). By taking the trace of both
sides of equations (8.85) we are led to the condition

S = t (8.87)

where t denotes the trace of the energy-momentum tensor. The physical meaning of
this condition seems even more obscure than that of condition (8.86). If we modify
equation (8.85) by adding the cosmological term �g (� is called the cosmological
constant) to the left hand side of equation (8.85), we obtain Einstein’s equation with
cosmological constant

E + �g = −T . (8.88)

This equation also leads to the consistency condition (8.86), but condition (8.87) is
changed to

S = t + 4�. (8.89)

Using (8.89), equation (8.88) can be rewritten in the following form

K = −
(

T − 1

4
tg

)
, (8.90)

where

K =
(

Ric − 1

4
Sg

)
(8.91)

is the trace-free part of the Ricci tensor of g. We call equations (8.90) generalized
field equations of gravitation. We now show that these equations arise naturally in
a geometric formulation of Einstein’s equations. We begin by defining a tensor of
curvature type.
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Let C be a tensor of type (4,0) on M . We can regard C as a quadrilinear mapping
(pointwise) so that for each x ∈ M , Cx can be identified with a multilinear map

Cx : T ∗
x (M) × T ∗

x (M) × T ∗
x (M) × T ∗

x (M) → R.

We say that the tensor C is of curvature type if Cx satisfies the following conditions
for each x ∈ M and for all α,β, γ, δ ∈ T ∗

x (M).

1. Cx(α,β, γ, δ) = −Cx(β,α, γ, δ);
2. Cx(α,β, γ, δ) = −Cx(α,β, δ, γ );
3. Cx(α,β, γ, δ) + Cx(α, γ, δ,β) + Cx(α, δ, γ,β) = 0.

From the above definition it follows that a tensor C of curvature type also satisfies
the following condition:

Cx(α,β, γ, δ) = Cx(γ, δ,α,β), ∀x ∈ M.

We denote by C the space of all tensors of curvature type. The Riemann-Christoffel
curvature tensor Rm is of curvature type. Indeed, the definition of tensors of curva-
ture type is modelled after this fundamental example. Another important example
of a tensor of curvature type is the tensor G defined by

Gx(α,β, γ, δ) = gx(α, γ )gx(β, δ) − gx(α, δ)gx(β, γ ), ∀x ∈ M (8.92)

where g is the fundamental or metric tensor of M .
We now define the curvature product of two symmetric tensors of type (2,0)

on M . It was introduced by the author in [Mar71] and used in [MM89] to obtain a
geometric formulation of Einstein’s equations.

Let g and T be two symmetric tensors of type (2,0) on M . The curvature prod-
uct of g and T , denoted by g ×c T , is a tensor of type (4,0) defined by

(g ×c T )x(α,β, γ, δ) := 1

2

[
g(α, γ )T (β, δ) + g(β, δ)T (α, γ )

− g(α, δ)T (β, γ ) − g(β, γ )T (α, δ)
]
,

for all x ∈ M and α,β, γ, δ ∈ T ∗
x (M).

In the following proposition we collect together some important properties of the
curvature product and tensors of curvature type.

Proposition 1 Let g and T be two symmetric tensors of type (2,0) on M and let C

be a tensor of curvature type on M . Then we have the following:

1. g ×c T = T ×c g.
2. g ×c T is a tensor of curvature type.
3. g ×c g = G, where G is the tensor defined in (8.92).
4. Gx induces a pseudo-inner product on �2

x(M),∀x ∈ M .
5. Cx induces a symmetric, linear transformation of �2

x(M),∀x ∈ M.
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The orthogonal group O(g) of the metric acts on the space C and splits it into
three irreducible subspaces of dimensions 10, 9, and 1. Under this splitting the Rie-
mann curvature Rm into three parts as follows:

Rm = W + c1(K ×c g) + c2S(g ×c g).

The ten dimensional part W is the Weyl conformal curvature tensor. It splits further
into its self-dual part W+ and anti-dual part W− under the action of SO(g). The part
involving the trace-free Ricci tensor K is 9 dimensional. All of these tensors occur
in functionals on the space of metrics.

We denote the Hodge star operator on �2
x(M) by Jx . The fact that M is a Lorentz

4-manifold implies that Jx defines a complex structure on �2
x(M), ∀x ∈ M. Using

this complex structure we can give a natural structure of a complex vector space to
�2

x(M). Then we have the following proposition.

Proposition 2 Let U : �2
x(M) → �2

x(M) be a real, linear transformation. Then the
following are equivalent:

1. L commutes with Jx .
2. L is a complex linear transformation of the complex vector space �2

x(M).
3. The matrix of L with respect to a Gx -orthonormal basis of �2

x(M) is of the form

(
A B

−B A

)
(8.93)

where A,B are real 3 × 3 matrices.

We now define the gravitational tensor Wgr , of curvature type, which includes the
source term. Let M be a space-time manifold with fundamental tensor g and let T

be a symmetric tensor of type (2,0) on M . Then the gravitational tensor Wgr is
defined by

Wgr := Rm + g ×c T , (8.94)

where Rm is the Riemann-Christoffel curvature tensor of type (4,0).
We are now in a position to give a geometric formulation of the generalized field

equations of gravitation.

Theorem 6 Let Wgr denote the gravitational tensor defined by (8.94) with source
tensor T . We denote by Ŵgr the linear transformation of �2

x(M) induced by Wgr .
Then the following are equivalent:

1. g satisfies the generalized field equations of gravitation (8.90);
2. Ŵgr commutes with Jx ;
3. Ŵgr is a complex linear transformation of the complex vector space �2

x(M).

We shall call the triple (M,g,T ) a generalized gravitational field if any one of
the conditions of Theorem 6 is satisfied. Generalized gravitational field equations
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were introduced by the author in [Mar71]. Their mathematical properties have been
studied in [MMF95, Mar72, Mod73]. In local coordinates, the generalized gravita-
tional field equations can be written as

Rij − 1

4
Rgij = −

(
T ij − 1

4
T gij

)
. (8.95)

We observe that the equation (8.95) does not lead to any relation between the scalar
curvature and the trace of the source tensor, since both sides of equation (8.95) are
trace-free. Taking divergence of both sides of equation (8.95) and using the Bianchi
identities we obtain the generalized conservation condition

∇iT
ij − gij�i = 0, (8.96)

where ∇i is the covariant derivative with respect to the vector ∂
∂xi ,

� = 1

4
(T − R) (8.97)

and �i = ∂
∂xi �. Using the function � defined by equation (8.97), the field equations

can be written as

Rij − 1

2
Rgij − �gij = −T ij . (8.98)

In this form the new field equations appear as Einstein’s field equations with the cos-
mological constant replaced by the function �, which we may call the cosmological
function. The cosmological function is intimately connected with the classical con-
servation condition expressing the divergence-free nature of the energy-momentum
tensor as is shown by the following proposition.

Proposition 3 The energy-momentum tensor satisfies the classical conservation
condition

∇iT
ij = 0 (8.99)

if and only if the cosmological function � is a constant. Moreover, in this case the
generalized field equations reduce to Einstein’s field equations with cosmological
constant.

We note that, if the energy-momentum tensor is non-zero but is localized in the
sense that it is negligible away from a given region, then the scalar curvature acts
as a measure of the cosmological constant. By setting the energy-momentum ten-
sor to zero in (8.95) we obtain various characterizations of the usual gravitational
instanton. Solutions of the generalized gravitational field equations which are not
solutions of Einstein’s equations have been discussed in [Can83].

We note that the theorem (6) and the last condition in proposition (1) can be
used to discuss the Petrov classification of gravitational fields (see Petrov [Pet69]).
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The tensor Wgr can be used in place of R in the usual definition of sectional cur-
vature to define the gravitational sectional curvature on the Grassmann manifold of
non-degenerate 2-planes over M and to give a further geometric characterization
of gravitational field equations. We observe that the generalized field equations of
gravitation contain Einstein’s equations with or without the cosmological constant
as special cases. Solutions of the source-free generalized field equations are called
gravitational instantons If the base manifold is Riemannian, then gravitational in-
stantons correspond to Einstein spaces. A detailed discussion of the structure of
Einstein spaces and their moduli spaces may be found in [Bes86]. Over a compact,
4-dimensional, Riemannian manifold (M,g), the gravitational instantons that are
not solutions of the vacuum Einstein equations are critical points of the quadratic,
Riemannian functional or action A2(g) defined by

A2(g) =
∫

M

S2dvg.

Furthermore, the standard Hilbert-Einstein action

A1(g) =
∫

M

Sdvg

also leads to the generalized field equations when the variation of the action is re-
stricted to metrics of volume 1.

The generalized field equations of gravitation in the Euclidean theory can be
obtained by considerations similar to those given above. It is these equations with
the source the dilaton field that appear in Perelman’s modification of the Ricci flow.
We give a brief discussion of his work in the next section.

8.13.2 Geometrization Conjecture and Gravity

The classification problem for low dimensional manifolds is a natural question after
the success of the case of surfaces by the uniformization theorem. In 1905, Poincaré
formulated his famous conjecture which states in the smooth case: A closed, simply-
connected 3-manifold is diffeomorphic to S3, the standard sphere. A great deal of
work in three dimensional topology in the next 100 years was motivated by this. In
the 1980s Thurston studied hyperbolic manifolds. This led him to his “Geometriza-
tion Conjecture” about the existence of homogeneous metrics on all 3-manifolds. It
includes the Poincaré conjecture as a special case. In the case of 4-manifolds, there
is at present no analogue of the geometrization conjecture. We discuss briefly the
current state of these problems in the next two subsections.

The Ricci flow equations

∂gij

∂t
= −2Rij
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for a Riemannian metric g were introduced by Hamilton in [Ham82]. They form
a system of nonlinear second order partial differential equations. Hamilton proved
that this equation has a unique solution for a short time for any smooth metric on a
closed manifold. The evolution equation for the metric leads to the evolution equa-
tions for the curvature and Ricci tensors and for the scalar curvature. By developing
a maximum principle for tensors, Hamilton proved that the Ricci flow preserves the
positivity of the Ricci tensor in dimension three and that of the curvature opera-
tor in dimension four [Ham86]. In each of these cases he proved that the evolving
metrics converge to metrics of constant positive curvature (modulo scaling). These
and a series of further papers led him to conjecture that the Ricci flow with surg-
eries could be used to prove the Thurston geometrization conjecture. In a series of
e-prints Perelman developed the essential framework for implementing the Hamil-
ton program. We would like to add that the full Einstein equations with dilaton
field as source play a fundamental role in Perelman’s work (see, [Per02, Per03a,
Per03b]) on the geometrization conjecture. A corollary of this work is the proof of
the long standing Poincaré conjecture. Perelman was awarded the Fields medal at
the ICM 2006 in Madrid for his proof of the Poincaré and the geometrization con-
jectures. His ideas and methods have already found many applications in analysis
and geometry. On March 18, 2010 Perelman was awarded the first Clay Mathemat-
ics Institute’s first millenium prize of one million dollars for his resolution of the
Poincaré conjecture. A complete proof of the geometrization conjecture by applying
the Hamilton-Perelman theory of the Ricci flow has appeared in [CZ06] in a special
issue dedicated to the memory of S.-S. Chern,3 one of the greatest mathematicians
of the twentieth century.

The Ricci flow is perturbed by a scalar field which corresponds in string theory
to the dilaton. It is supposed to determine the overall strength of all interactions.
The low energy effective action of the dilaton field coupled to gravity is given by
the action functional

F(g, f ) =
∫

M

(R + |∇f |2)e−f dv.

Note that when f is the constant function the action reduces to the classical Hilbert-
Einstein action. The first variation can be written as

δF(g, f ) =
∫

M

[
−δgij (Rij + ∇if ∇j f )

+
(

1

2
δgij (gij − δf )(2�f − |∇f |2 + R)

)]
dm,

3I first met Prof. Chern and his then newly arrived student S.-T. Yau in 1973 at the AMS summer
workshop on differential geometry held at Stanford University. Chern was a gourmet and his con-
ference dinners were always memorable. I attended the first one in 1973 and the last one in 2002
on the occasion of the ICM satellite conference at his institute in Tianjin. In spite of his advanced
age and poor health he participated in the entire program and then continued with his duties as
President of the ICM in Beijing.
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where dm = e−f dv. If m = ∫
M

e−f dv is kept fixed, then the second term in the
variation is zero and then the symmetric tensor −(Rij + ∇if ∇j f ) is the L2 gra-
dient flow of the action functional Fm = ∫

M
(R + |∇f |2)dm. The choice of m is

similar to the choice of a gauge. All choices of m lead to the same flow, up to dif-
feomorphism, if the flow exists. We remark that in the quantum field theory of the
two-dimensional nonlinear σ -model, Ricci flow can be considered as an approxima-
tion to the renormalization group flow. This suggests gradient-flow like behaviour
for the Ricci flow, from the physical point of view. Perelman’s calculations confirm
this result. The functional Fm has also a geometric interpretation in terms of the
classical Bochner-Lichnerowicz formulas with the metric measure replaced by the
dilaton twisted measure dm.

The corresponding variational equations are

Rij − 1

2
Rgij = −

(
∇i∇j f − 1

2
(�f )gij

)
.

These are the usual Einstein equations with the energy-momentum tensor of the
dilaton field as source. They lead to the decoupled evolution equations

(gij )t = −2(Rij + ∇i∇j f ), ft = −R − �f.

After applying a suitable diffeomorphism these equations lead to the gradient flow
equations. This modified Ricci flow can be pushed through the singularities by
surgery and rescaling. A detailed case by case analysis is then used to prove
Thurston’s geometrization conjecture. This includes as a special case the classical
Poincaré conjecture.

We have seen that QFT calculations have their counterparts in string theory. One
can speculate that this is a topological quantum gravity (TQG) interpretation of
a result in TQFT, in the Euclidean version of the theories. If modes of vibration
of a string are identified with fundamental particles, then their interactions are al-
ready built into the theory. Consistency with known physical theories requires string
theory to include supersymmetry. While supersymmetry has had great success in
mathematical applications, its physical verification is not yet available. However,
there are indications that it may be the theory that unifies fundamental forces in the
standard model at energies close to those at currently existing and planned accel-
erators. Perturbative supersymmetric string theory (at least up to lower loop levels)
avoids the ultraviolet divergences that appear in conventional attempts at quantizing
gravity. Recent work relating the Hartle-Hawking wave function to string partition
function can be used to obtain a wave function for the metric fluctuations on S3

embedded in a Calabi-Yau manifold. This may be a first step in a realistic quantum
cosmology relating the entropy of certain black holes with the topological string
wave function. While a string theory model unifying all fundamental forces is not
yet available, a number of small results (some of which we have discussed in this
paper) are emerging to suggest that supersymmetric string theory could play a fun-
damental role in constructing such a model. Developing a theory and phenomenol-
ogy of 4-dimensional string vacua and relating them to experimental physics and
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cosmological data would be a major step in this direction. New mathematical ideas
may be needed for the completion of this project.
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Chapter 9
From Goeritz Matrices to Quasi-alternating
Links

Józef H. Przytycki

Abstract Knot Theory is currently a very broad field. Even a long survey can
only cover a narrow area. Here we concentrate on the path from Goeritz matri-
ces to quasi-alternating links. On the way, we often stray from the main road and
tell related stories, especially if they allow us to place the main topic in a histori-
cal context. For example, we mention that the Goeritz matrix was preceded by the
Kirchhoff matrix of an electrical network. The network complexity extracted from
the matrix corresponds to the determinant of a link. We assume basic knowledge of
knot theory and graph theory, however, we offer a short introduction under the guise
of a historical perspective.

9.1 Short Historical Introduction

Combinatorics, graph theory, and knot theory have their common roots in Gottfried
Wilhelm Leibniz’ (1646–1716) ideas of Ars Combinatoria, and Geometria Situs.
In Ars Combinatoria [Lei66], Leibniz was influenced by Ramon Llull (1232–1315)
and his combinatorial machines (Fig. 9.1; [Bon85, Llu05]).

Geometria (or Analysis) Situs seems to be an invention of Leibniz. I am not
aware of any Ancient or Renaissance influence (compare however [Prz98]). The
first convincing example of geometria situs was proposed by Heinrich Kuhn about
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Fig. 9.1 Combinatorial
machine of Ramon Llull from
his Ars Generalis Ultima

1735 in the form of the seven bridges of Königsberg puzzle. Kuhn (1690–1769)
was a Danzig (Gdańsk) mathematician born in Königsberg. He studied at the Ped-
agogicum there, and in 1733 settled in Danzig as a mathematics professor at the
Academic Gymnasium (he was also a co-founder of the Nature Society and the first
person to suggest the geometric interpretation of complex numbers [Jan01, Kue56]).
Kuhn communicated to Leonard Euler (1707–1783) the puzzle of the bridges of
Königsberg, suggesting that this may be an example of geometria situs. Kuhn was
communicating, in fact, through his friend Carl Leonhard Gottlieb Ehler (1685–
1753), correspondent of Leibniz and future mayor of Danzig. The first extant1 letter
by Ehler concerning Königsberg bridges is dated March 9, 1736. There he writes:
“You would render to me and our friend Köhn a most valuable service, putting us
greatly in your debt, most learned Sir, if you would send us the solution, which you
know well, to the problem of the seven Königsberg bridges, together with a proof.
It would prove to be an outstanding example of Calculi Situs, worthy of your great
genius. I have added a sketch of the said bridges . . . ” In the reply of April 3, 1736
Euler writes “. . . Thus you see, most noble Sir, how this type of solution bears little
relationship to mathematics, and I do not understand why you expect a mathemati-
cian to produce it, rather than anyone else, for the solution is based on reason alone,
and its discovery does not depend on any mathematical principle. Because of this, I
do not know why even questions which bear so little relationship to mathematics are

1Very likely the bridges of Könighsberg were mentioned in previous letters of Ehler to Euler, or
possibly, they discussed them when Ehler was in Petersburg. Ehler met Euler in Petersburg in late
1734 or 1735 as a member of a delegation of Danzig to Empress of Russia, asking for a reduction
of reparations forced on Danzig by Russia in 1734 after the capitulation of Danzig (the city was
briefly occupied by the Russians after the prolonged Siege of Danzig during the War of the Polish
Succession (city capitulated June 30, 1734). The city, which supported S. Leszczyński, the losing
candidate for the Polish throne, was forced to pay reparations following the siege). The delegation
left Petersburg June 3, 1735; [Cz06].
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solved more quickly by mathematicians than by others. In the meantime, most noble
Sir, you have assigned this question to the geometry of position, but I am ignorant
as to what this new discipline involves, and as to which types of problem Leibniz
and Wolff expected to see expressed in this way . . . ” [HW04]. However, when com-
posing his famous paper on the bridges of Königsberg, Euler already agrees with
Kuhn’s suggestion. The geometry of position figures even in the title of the paper
Solutio problematis ad geometriam situs pertinentis.2

The first paper mentioning knots from the mathematical point of view is that of
Alexandre-Theophile Vandermonde (1735–1796) Remarques sur les problèmes de
situation [Van71]. Carl Friedrich Gauss (1777–1855) had an interest in Knot Theory
his whole life, starting from the 1794 drawings of knots, the drawing of a braid with
complex coordinates (c. 1820), several drawings of knots with “Gaussian codes”,
and Gauss’ linking number of 1833. He did not publish anything however; this was
left to his student Johann Benedict Listing (1808–1882) who in 1847 published his
monograph (Vorstudien zur Topologie, [Lis47]). The monograph is mostly devoted
to knots, graphs and combinatorics.

In the XIX century Knot Theory was an experimental science. Topology (or ge-
ometria situs) had not developed enough to offer tools allowing precise definitions
and proofs3 (here Gaussian linking number is an exception). Furthermore, in the sec-
ond half of that century Knot Theory was developed mostly by physicists (William
Thomson (Lord Kelvin) (1824–1907), James Clerk Maxwell (1831–1879), Peter
Guthrie Tait (1831–1901)) and one can argue that a high level of precision was not
appreciated.4 I outline the global history of Knot Theory in [Prz98] and in the sec-
ond chapter of my book on Knot Theory [Prz12]. In the next subsection we deal
with the mathematics developed in order to understand precisely the phenomenon
of knotting.

2In the paper, Euler writes: “The branch of geometry that deals with magnitudes has been zeal-
ously studied throughout the past, but there is another branch that has been almost unknown up to
now; Leibniz spoke of it first, calling it the “geometry of position” (geometria situs). This branch
of geometry deals with relations dependent on position; it does not take magnitudes into consid-
erations, nor does it involve calculation with quantities. But as yet no satisfactory definition has
been given of the problems that belong to this geometry of position or of the method to be used
in solving them. Hence, when a problem was recently mentioned, which seemed geometrical but
was so constructed that it did not require the measurement of distances, nor did calculation help at
all, I had no doubt that it was concerned with the geometry of position—especially as its solution
involved only position, and no calculation was of any use. I have therefore decided to give here
the method which I have found for solving this kind of problem, as an example of the geometry of
position. 2. The problem, which I am told is widely known, is as follows: in Königsberg in Prussia,
there is. . . ” [Eul36, BLW86].
3Listing writes in [Lis47]: In order to reach the level of exact science, topology will have to trans-
late facts of spatial contemplation into easier notion which, using corresponding symbols analo-
gous to mathematical ones, we will be able to do corresponding operations following some simple
rules.
4This may be a controversial statement. The precision of Maxwell was different than that of Tait
and both were physicists.



260 J.H. Przytycki

9.1.1 Precision Comes to Knot Theory

Throughout the XIX century knots were understood as closed curves in space up to
a natural deformation, which was described as a movement in space without cutting
and pasting. This understanding allowed scientists (Tait, Thomas Penyngton Kirk-
man, Charles Newton Little, Mary Gertrude Haseman) to build tables of knots but
did not lead to precise methods allowing one to distinguish knots which could not
be practically deformed into another. In a letter to O. Veblen, written in 1919, young
J. Alexander expressed his disappointment:5

“When looking over Tait On Knots among other things, He really doesn’t
get very far. He merely writes down all the plane projections of knots with a
limited number of crossings, tries out a few transformations that he happen to
think of and assumes without proof that if he is unable to reduce one knot to
another with a reasonable number of tries, the two are distinct. His invariant,
the generalization of the Gaussian invariant . . . for links is an invariant merely
of the particular projection of the knot that you are dealing with, - the very
thing I kept running up against in trying to get an integral that would apply.
The same is true of his ‘Beknottednes’.”

In the famous Mathematical Encyclopedia Max Dehn and Poul Heegaard out-
lined a systematic approach to topology, in particular they precisely formulated the
subject of the Knot Theory [DH07], in 1907. To bypass the notion of deformation
of a curve in a space (then not yet well defined) they introduced lattice knots and the
precise definition of their (lattice) equivalence. Later Reidemeister and Alexander
considered more general polygonal knots in a space with equivalent knots related by
a sequence of �-moves; they also explained �-moves by the elementary moves on
link diagrams—Reidemeister moves (see Sect. 9.1.6). The definition of Dehn and
Heegaard was long ignored and only recently lattice knots are again studied (e.g.
[BL]). It is a folklore result, probably never written down in detail,6 that the two
concepts, lattice knots and polygonal knots, are equivalent.

9.1.2 Lattice Knots of Dehn and Heegaard

In this part we discuss two early XX century definitions of knots and their equiva-
lence, one by Dehn-Heegaard and one by Reidemeister. In the XIX century knots
were treated from the intuitive point of view and it was P. Heegaard in his 1898
thesis who came close to a formal proof that there are nontrivial knots.

5We should remember that it was written by a young revolutionary mathematician forgetting that
he is “standing on the shoulders of giants” [New76]. In fact the invariant Alexander outlined in
the letter is closely related to Kirchhoff matrix, and extracted numerical invariant is equivalent to
complexity of a signed graph corresponding to the link via Tait translation; see Sect. 9.1.4.
6It is however a long routine exercise.
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Fig. 9.2 Lattice moves DH1
and DH2

Dehn and Heegaard gave the following definition of a knot (or curve in their
terminology) and of the equivalence of knots (which they call isotopy of curves).7

Definition 1 [DH07] A curve is a simple closed polygon on a cubical lattice. It has
coordinates xi, yi, zi . An isotopy of these curves is given by:

(i) Multiplication of every coordinate by a natural number.
(ii) Insertion of an elementary square, when it does not interfere with the rest of

the polygon.
(iii) Deletion of an elementary square.

Elementary moves of Dehn and Heegaard can also be grouped into the following
types, which are slightly different from (i)–(iii):

(DH0) Rescaling. We show in [Prz12] that this move is a consequence of the other
Dehn-Heegaard moves.

(DH1) If a unit square intersects the lattice knot in exactly two neighboring edges
then we replace these edges by two other edges of the square, as illustrated
in Fig. 9.2 (DH1).

(DH2) If a unit square intersects the lattice knot in exactly one edge then we replace
this edge by three other edges of the square, as illustrated in Fig. 9.2 (DH2).

In this language, lattice knots (or links) and lattice isotopy are defined as follows.

Definition 2 A lattice knot is a simple closed polygon on a cubical lattice. Its ver-
tices have integer coordinates xi, yi, zi and edges, of length one, are parallel to one
of the coordinate axis. We say that two lattice knots are lattice isotopic if they are
related by a finite sequence of elementary lattice (“square”) moves as illustrated in
Fig. 9.2 (we allow the DH1-move, the DH2-move and its inverse the DH−1

2 -move).
These are moves (ii) and (iii) of Dehn and Heegaard.

Below we give a few examples of lattice knots.
They can be easily coded as (cyclic) words over the alphabet {x±1, y±1, z±1}.

For example:

• the trivial knot can be represented by xyx−1y−1,
• the trefoil knot by x2z3y2x−1z−2y−3zx2y2x−3y−1z−2,
• and the figure-eight knot by y2z2xy−3x2y2z−1x−4y−2x3yz2x−2z−3 see Fig. 9.3.

7Translation from German due to Chris Lamm.



262 J.H. Przytycki

Fig. 9.3 A trivial lattice knot, with 4 edges, 4 right angles and no changes of planes. A lattice
trefoil with 24 edges, 12 right angles and 8 changes of planes. A lattice figure-eight knot with 30
edges, 14 right angles and 8 changes of planes. The numbers are the z-levels and the dots are the
sticks in the z-direction

9.1.3 Early Invariants of Links

The fundamental problem in knot theory is8 to be able to distinguish non-equivalent
knots. Even in the case of the unknot and the trefoil knot this was not achieved
until the fundamental work of Jules Henri Poincaré (1854–1912) was used. In his
seminal paper “Analysis Situs” ([Poi95] 1895) he laid the foundations for algebraic
topology. According to W. Magnus [Mag78]:

Today, it appears to be a hopeless task to assign priorities for the definition
and the use of fundamental groups in the study of knots, particularly since
Dehn had announced [Deh07] one of the important results of his 1910 paper
(the construction of Poincaré spaces with the help of knots) already in 1907.

Wilhelm Wirtinger (1865–1945) in his lecture delivered at a meeting of the German
Mathematical Society in 1905 outlined a method of finding a knot group presen-
tation (it is called now the Wirtinger presentation of a knot group) [Wir05], but
examples using his method were given after the work of Dehn.

9.1.4 Kirchhoff’s Complexity of a Graph

In his fundamental paper on electrical circuits [Kir47], published in 1847, Gustav
Robert Kirchhoff (1824–1887) defined the complexity of a circuit. In the language
of graph theory, this complexity of a graph, τ(G), is the number of spanning trees of
G, that is trees in G which contain all vertices of G. It was noted in [BSAT40] that
if e is an edge of G that is not a loop then τ(G) satisfies the deleting-contracting
relation:

τ(G) = τ(G − e) + τ(G/e),

8One should rather say “was”; there are now algorithms allowing recognition of any knots, even if
very slow. Modern Knot Theory looks rather for structures on a space of knots or for a mathematical
or physical meanings of knot invariants.
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where G − e is the graph obtained from G by deleting the edge e, and G/e is
obtained from G by contracting e, that is identifying endpoints of e in G − e.
The deleting-contracting relation has an important analogue in knot theory, usually
called a skein relation (e.g. Kauffman bracket skein relation). Connections were dis-
covered only about a hundred years later (e.g. the Kirchhoff complexity of a circuit
corresponds to the determinant of the knot or link yielded by the circuit, see the next
subsection).

For completeness, and to be later able to see clearly the connection to Goeritz
matrix in knot theory, let us define the (version of) the Kirchhoff matrix of a graph,
G, the determinant of which is the complexity τ(G).

Definition 3 Consider a graph G with vertices {v0, v1, . . . , vn} possibly with mul-
tiple edges and loops (however loops are ignored in the definitions which follow).

(1) The adjacency matrix of the graph G is the (n + 1) × (n + 1) matrix A(G)

whose entries, aij are equal to the number of edges connecting vi with vj ; we
set vi,i = 0.

(2) The degree matrix �(G) is the diagonal (n + 1) × (n + 1) matrix whose ith
entry is the degree of the vertex vi (loops are ignored). Thus the ith entry is
equal to

∑n
j=0 aij .

(3) The Laplacian matrix Q′(G) is defined to be �(G) − A(G); [Big74]. Notice
that the sum of rows of Q′(G) is equal to zero and that Q′(G) is a symmetric
matrix.

(4) The Kirchoff matrix (or reduced Laplacian matrix) Q(G) of G is obtained from
Q′(G) by deleting the first row and the first column from Q′(G).

Theorem 1 det(Q(G)) = τ(G).

Proof The shortest proof I am aware of is by directly checking that det(Q(G))

satisfies the deleting-contracting relation for any edge e, not a loop, that is

det(Q(G)) = det(Q(G − e)) + det(Q(G/e)).

The above equation plays an important role in showing in Sect. 9.7 that an alternat-
ing link is quasi-alternating. �

Example 1 Consider the graph . For this graph we have:

A( ) =
⎡
⎣0 1 1

1 0 2
1 2 0

⎤
⎦ , �( ) =

⎡
⎣2 0 0

0 3 0
0 0 3

⎤
⎦ .

Q′( ) =
⎡
⎣ 2 −1 −1

−1 3 −2
−1 −2 3

⎤
⎦ ; Q( ) =

[
3 −2

−2 3

]
.
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det(Q( )) = det

[
3 −2

−2 3

]
= 5 = τ( ).

As we will see in the next subsection the corresponding knot is the figure eight
knot (Fig. 9.4).

9.1.5 Tait’s Relation Between Knots and Graphs

Tait was the first to notice the relation between knots and planar graphs. He col-
ored the regions of the knot diagram alternately white and black (following Listing)
and constructed the graph by placing a vertex inside each white region, and then
connecting vertices by edges going through the crossing points of the diagram (see
Fig. 9.4) [DH07].

It is useful to mention the Tait construction going in the opposite direction, from
a signed planar graph G to a link diagram D(G). We replace every edge of a graph
by a crossing according to the convention of Fig. 9.5 and connect endpoints along
edges as in Figs. 9.6 and 9.7.

We should mention here one important observation known already to Tait (and
in explicit form to Listing):

Proposition 1 The diagram D(G) of a connected graph G is alternating if and only
if G is positive (i.e. all edges of G are positive) or G is negative.

Fig. 9.4 Tait’s construction
of graphs from link diagrams,
according to Dehn-Heegaard

Fig. 9.5 Convention for
crossings of signed edges
(edges without markers are
assumed to be positive)
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Fig. 9.6 The knot 819 and its
Tait graph (819 is the first in
tables non-alternating knot)

Fig. 9.7 Octahedral graph
(with all positive edges) and
the associated link diagram

Fig. 9.8 Alternating and
non-alternating parts of a
diagram

A proof is illustrated in Fig. 9.8.

9.1.6 Link Diagrams and Reidemeister Moves

In this part we define, after Reidemeister, polygonal knots and links, and �-
equivalence of knots and links. A �-move is an elementary deformation of a polyg-
onal knot which intuitively agrees with the notion of “deforming without cutting
and glueing,” which is the first underlining principle of topology.

Definition 4 (Polygonal knot, �-equivalence)

(a) A polygonal knot is a simple closed polygonal curve in R3.
(b) Let us assume that u is a line segment (edge) in a polygonal knot K in R3. Let

� be a triangle in R3 whose boundary consists of three line segments u, v, w

and such that �∩K = u. The polygonal curve defined as K ′ = (K −u)∪v ∪w
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Fig. 9.9 �-move on a
polygonal curve

is a new polygonal knot in R3. We say that the knot K ′ was obtained from K

by a �-move. Conversely, we say that K is obtained from K ′ by a �−1-move
(Fig. 9.9). We allow the triangle � to be degenerate so that the vertex v ∩ w is
on the side u; in other words we allow a subdivision of the line segment u.9

(c) We say that two polygonal knots are �-equivalent (or combinatorially equiv-
alent) if one can be obtained from the other by a finite sequence of �- and
�−1-moves.

Polygonal links are usually presented by their projections to a plane. Let p :
R3 → R2 be a projection and let L ⊂ R3 be a link. Then a point P ∈ p(L) is called
a multiple point (of p) if p−1(P ) contains more than one point (the number of points
in p−1(P ) is called the multiplicity of P ).

Definition 5 The projection p is called regular if

(1) p has only a finite number of multiple points and all of them are of multiplicity
two,

(2) no vertex of the polygonal link is an inverse image of a multiple point of p.

Thus for a regular projection the parts of a diagram illustrated in the figure below
are not allowed.

Maxwell was the first person to consider the question of two projections repre-
senting equivalent knots. He considered some elementary moves (reminiscent of the
future Reidemeister moves), but never published his findings.

The formal interpretation of �-equivalence of knots in terms of diagrams was
done by Reidemeister [Rei27], 1927, and Alexander and Briggs [AB27], 1927.

9Notice that any subdivision is a combination of three non-degenerate �-moves, or more precisely
two �-moves and the inverse to a �-move:
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Fig. 9.10 Reidemeister
moves; we draw two versions
of the first and the third
moves which are related by a
mirror symmetry in the plane
of the projection

Theorem 2 (Reidemeister theorem) Two link diagrams are �-equivalent10 if and
only if they are connected by a finite sequence of Reidemeister moves R±1

i , i =
1,2,3 (see Fig. 9.10) and isotopy of the diagram inside the plane. The theorem
holds also for oriented links and diagrams. One then has to take into account all
possible coherent orientations of the diagrams involved in the moves.

9.2 Goeritz Matrix and Signature of a Link

In the first half of the XX-century combinatorial methods ruled over knot theory,
even though more topological approaches were available. For example, Reidemeis-
ter moves were used to prove the existence of the Alexander polynomial even though
purely topological prove using the fundamental group was possible and probably
well understood by Alexander himself. Later, after the Second World War, to a

10In modern Knot Theory, especially after the work of R. Fox, we use usually the equivalent notion
of ambient isotopy in R3 or S3. Two links in a 3-manifold M are ambient isotopic if there is an
isotopy of M sending one link into another.
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great extent under the influence of Ralph Hartzler Fox (1913–1973), Knot The-
ory was considered to be a part of algebraic topology with the fundamental group
and coverings playing an important role. The renaissance of combinatorial meth-
ods in Knot Theory can be traced back to Conway’s paper [Con69] and bloomed
after Jones’ breakthrough [Jon85] with Conway type invariants and the Kauffman
approach (compare Chap. III of [Prz12]). As we already mentioned, these had their
predecessors in the 1930s [Goe33, Sei34]. The Goeritz matrix of a link can be de-
fined purely combinatorially and is closely related to the Kirchhoff matrix of an
electrical network. The Seifert matrix is a generalization of the Goeritz matrix and,
even historically, its development was a mix of combinatorial and topological meth-
ods.

In this section we start from the work of L. Goeritz. He showed [Goe33] how
to associate a quadratic form to a diagram of a knot and moreover how to use this
form to get algebraic invariants of the knot. (The signature of this form, however,
is not an invariant of the knot.) Later, H.F. Trotter [Tro62], using the Seifert form
(see Sect. 9.3), introduced another quadratic form, the signature of which was an
invariant of links.

C.McA. Gordon and R.A. Litherland [GL78] provided a unified approach to
Goeritz and Trotter forms. They showed how to use the form of Goeritz to get (after
adding a correcting factor) the signature of a link (this signature is often called the
classical or Trotter, or Murasugi [Mur65] signature of a link).

We begin with a purely combinatorial description of the matrix of Goeritz and of
the signature of a link. This description is based on [GL78] and [Tra85].

Definition 6 Let L be a diagram of a link. Let us checkerboard color the comple-
ment of the diagram in the projection plane R2, that is, color in black and white
the regions into which the plane is divided by the diagram.11 We assume that the
unbounded region of R2 \ L is colored white and it is denoted by X0 while the
other white regions are denoted by X1, . . . ,Xn. Now, to any crossing, p, of L we
associate the number η(p) which is either +1 or −1 according to the convention
described in Fig. 9.11.

Fig. 9.11 The convention for
a sign of a colored crossing

11This (checkerboard) coloring was first used by P.G. Tait in 1876/7, compare Chap. II of [Prz12].
However, following C. Gordon, we switched the role of white and black. We can say that Tait
convention worked well with a blackboard, while our convention works better with a white-board.
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Let

G′ = {gi,j }ni,j=0, where

gi,j =

⎧⎪⎨
⎪⎩

−∑
p η(p) for i �= j , where the summation extends

over crossings which connect Xi and Xj

−∑
k=0,1,...,n;k �=i gi,k if i = j

The matrix G′ = G′(L) is called the unreduced Goeritz matrix of the diagram L.
The reduced Goeritz matrix (or shortly Goeritz matrix) associated to the diagram
L is the matrix G = G(L) obtained by removing the first row and the first column
of G′.

Theorem 3 [Goe33, KP53, Kyl54] Let us assume that L1 and L2 are two diagrams
of a given link. Then the matrices G(L1) and G(L2) can be obtained from each
other by a finite number of the following elementary operations on matrices:

1. G ↔ PGPT , where P is a matrix with integer entries and det P = ±1.
2.

G ↔
[
G 0
0 ±1

]

3.

G ↔
[
G 0
0 0

]

Moreover, if L is a diagram of a knot,12 then operations (1) and (2) are sufficient.

Corollary 1 |det G| is an invariant of isotopy of knots called the determinant of a
knot.13

A sketch of a proof of Theorem 3.
We have to examine how a Goeritz matrix changes under Reidemeister moves.

The matrix does not depend on the orientation of the link, let us assume, however,
that the diagram L is oriented. We introduce new notation: a crossing is called of
type I or II according to Fig. 9.12. Moreover, we define μ(L) = ∑

η(p), where the
summation is taken over crossings of type II.

Now let us construct a graph with vertices representing black regions (this is
Tait’s construction, however, the choice of black and white regions is reversed) and
edges in bijection with crossings of L. Edges of the graph are in bijection with

12It suffices to assume that L represent a non-split link, that is a link all projections of which are
connected.
13Often, by the determinant of a knot one understands the more delicate invariant whose absolute
value is equal to |det G|; see Corollary 3. This determinant can also be defined as the Alexander-
Conway or Jones polynomial at t = −1; compare Remark 2 and Corollary 18.



270 J.H. Przytycki

Fig. 9.12 Two types of
colored oriented crossings

Fig. 9.13 The first coloring
of R1

Fig. 9.14 The second
coloring of R1

crossings of L: two vertices of the graph are joined if and only if the respective
regions meet in a crossing.14 Let B(L) denote the number of components of such a
graph. From now on, let R be a Reidemeister move. We denote by G1 the Goeritz
matrix of L, and by G2 the matrix of R(L). Similarly we set μ1 = μ(L), μ2 =
μ(R(L)) and also β1 = B(L), β2 = B(R(L)). We will write G1 ≈ G2 if G1 and G2
are in relation (1) and G1 ∼ G2 if G2 can be obtained from G1 by a sequence of
relations (1)–(3).

1. Let us consider the first Reidemeister move R1.
a. In the case shown in Fig. 9.13 we have: β1 = β2, μ1 = μ2, and G1 ≈ G2.
b. In the case shown in Fig. 9.14 we have:

β1 = β2, μ2 = μ1 + η(p), G2 =
[
G1 0
0 η(p)

]

2. Let us consider the second Reidemeister move R2.
a. In the case described in Fig. 9.15 we get immediately that β1 = β2 and

μ1 = μ2 (either both crossings are of type I or of type II and always of oppo-
site signs), G1 ≈ G2.

b. In the case described in Fig. 9.16 we have to consider two subcases. In each
of them μ1 = μ2, since the two new crossings are either both of type I or both
of type II and always of opposite signs:

14This construction of Tait is an important motivation for material in Chap. V of [Prz12]. The
constructed graph, which we denote by Gb(L), is usually called the Tait graph of L (see the first
section). For an alternating diagram L this graph is the same as the graph Gs+(L) considered in
Chap. V of [Prz12]. We often equip the edges of Gb(L) with signs: the edge corresponding to a
vertex p has the sign η(p) (see Fig. 9.11). The signed graph Gb(L) is considered in Chap. V of
[Prz12]; compare also Definition 20.
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Fig. 9.15 The first coloring
of R2

Fig. 9.16 The first coloring
of R2

Fig. 9.17 Coloring of R3
(�2 in Fig. 9.15 should be
changed to R2

(i) β1 = β2. Then

G2 ≈
⎡
⎣G1 0

1
0 −1

⎤
⎦ or

[
G2 0
0 1

]
≈

⎡
⎢⎢⎣

G1 0
1

1
0 −1

⎤
⎥⎥⎦

We leave it for the reader to check the details, c.f. [KP53].
Both possibilities give G1 ∼ G2.

(ii) β2 = β1 − 1. Then we see immediately that

G2 ≈
[
G1 0
0 0

]
.

3. Let us consider the Reidemeister move R3 (Fig. 9.17).
We see immediately that β1 = β2. Next we should consider different orienta-

tions of arcs participating in R3 and two possibilities for the crossing p. However,
we will get always μ2 = μ1 + η(p) and

G2 ≈
[
G1 0
0 η(p)

]
.

We leave it for the reader to check (c.f. [Goe33] and [Rei32]).

This concludes the proof of Theorem 3.

Corollary 2

(1) For a link L let us define σ(L) = σ(G(L)) − μ(L), where σ(G(L)) is the sig-
nature of the Goeritz matrix of L. Then σ(L) is an invariant of the link L, called
the signature of the link; compare Corollary 3 and Definition 17.

(2) Let us define nul(L) = nul(G(L)) + β(L) − 1, where nul(G(L)) is the nullity
(i.e. the difference between the dimension and the rank) of the matrix G(L).
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Then nul(L) is an invariant of the link L and we call it the nullity (or defect) of
the link.

Proof It is enough to apply Theorem 3 to see that σ(L) and nul(L) are invariant
with respect to Reidemeister moves. �

L. Traldi [Tra85] introduced a modified matrix of an oriented link, the signature
and the nullity of which are invariants of the link.

Definition 7 Let L be a diagram of an oriented link. Then we define the generalized
Goeritz matrix

H(L) =
⎡
⎣G ©

A

© B

⎤
⎦ ,

where G is a Goeritz matrix of L, and the matrices A and B are defined as follows.
The matrix A is diagonal of dimension equal to the number of type II crossings and
the diagonal entries equal to −η(p), where p’s are crossings of type II. The matrix
B is of dimension β(L) − 1 with all entries equal to 0.

Lemma 1 [Tra85] If L1 and L2 are diagrams of two isotopic oriented links then
H(L1) can be obtained from H(L2) by a sequence of the following elementary
equivalence operations:

1. H ⇔ PHPT , where P is a matrix with integer entries and with det P = ±1,
2.

H ⇔
⎡
⎣H ©

1
© −1

⎤
⎦ .

Proof Lemma 1 follows immediately from the proof of Theorem 3. �

Corollary 3 The determinant det(iH(L)) (i = √−1) is an isotopy invariant of a
link L, called the determinant of the link, DetL. Moreover, σ(H(L)) = σ(L) and
nul(H(L)) = nul(L).

The proof follows immediately from Lemma 1 and from the proof of Theorem 3.

Example 2 Consider a torus link of type (2, k), we denote it by T2,k . It is a knot for
odd k and a link of two components for k even; see Fig. 9.18.

The matrix G′ of T2,k is then equal to
[

k −k
−k k

]
, and thus Goeritz matrix of the

link is G = [k]. Moreover, β = 1 and μ = k because all crossings are of type II.
Therefore, for k �= 0, σ(T2,k) = σ(G)−μ = 1 − k and nul(T2,k) = nul(G) = 0. The
generalized Goeritz matrix H of the knot T2,k is of dimension k + 1 and it is equal
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Fig. 9.18 Coloring a torus
link of type T2,k

Fig. 9.19 Connecting black
regions by bands

to

H =

⎡
⎢⎢⎢⎢⎢⎣

k ©
−1

−1
. . .

© −1

⎤
⎥⎥⎥⎥⎥⎦

Therefore DetL = det(iH) = (−1)kik+1k = i1−kk. Notice also that iσ (T2,k) =
DetT2,k

|DetT2,k
| ; compare Exercise 2.

Let us note that if we connect black regions of the plane divided by the diagram
of the link by half-twisted bands (as indicated in Fig. 9.19) then we get a surface
in R3 (and in S3), the boundary of which is the given link; we denote this surface
by Fb, and call it the Tait surface of a link diagram; compare Definition 20. If, for
some checkerboard coloring of the plane, the constructed surface has an orientation
which yields the given orientation of the link then this oriented diagram is called a
special diagram.

Exercise 1 Prove that an oriented diagram of a link is special if and only if all
crossings are of type I for some checkerboard coloring of the plane. Conclude from
this that for a special diagram D, we have σ(D) = σ(G(D)).

Exercise 2 Show that any oriented link has a special diagram. Conclude from this
that for any oriented link L one has

DetL = iσ (L)|DetL |
(compare Lemma 10 and Corollary 18).

Assume now that L0 is a sublink of an oriented link L. Let L′ be an oriented
link obtained from L by changing the orientation of L0 to the opposite orientation.
Let DL be a diagram of L and the linking number lk(L − L0,L0) be defined as∑

p sgnp where the sum is taken over all crossings of the diagram of L − L0 and
L0 (as subdiagrams of LD). This definition does not depend on the choice of DL, as
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Fig. 9.20 Ln obtained from
L = L0 by an n-move,
and L∞

checked using Reidemeister moves, and agrees with the standard notion of linking
number which is recalled in the next section.

From Corollary 2 and Corollary 3, we obtain.

Proposition 2 [Mur70]

(i) DetL′ = (−1)lk(L−L0,L0) DetL.
(ii) σ(L′) = σ(L) + 2lk(L − L0,L0).
(ii) σ(L) + lk(L) is independent on orientation of L.

Proof The derivation of formulas is immediate but it is still instructive to see how
Corollary 2(ii) follows from Corollary 2(i):

σ(L′) = σ(G(L′)) − μ(L′) = σ(G(L)) − μ(L′) = σ(L) + μ(L) − μ(L′)

= σ(L) + 2lk(L − L0,L0). �

Recall [Prz88] that an n-move is a local change of an unoriented link diagram, as
described in Fig. 9.20.

When computing and comparing Goeritz matrices of L = L0, Ln and L∞ we
can assume that black regions are chosen as in Fig. 9.20 and that the white region X

in R2 − L∞ is divided into two regions X0 and X1 in R2 − L.

Lemma 2 G(Ln) = [ G(L∞) α

αT q+n

]
,

Corollary 4

(i) Det G(Ln) − Det G(L0) = nDet G(L∞).
(ii) σ(G(L0)) ≤ σ(G(Ln)) ≤ σ(G(L0)) + 2, n ≥ 0.

(iii) |σ(G(Ln)) − σ(G(L∞))| ≤ 1. Furthermore, σ(G(Ln)) = σ(G(L∞)) if and
only if rank G(Ln) = rank G(L∞) or rank G(Ln) = rank G(L∞) + 2.

If we orient L = L0 we can use Corollary 2.13(ii) to obtain very useful properties
of the signature of L and Ln.

Corollary 5 [Prz88]

(i) Assume that L0 is oriented in such a way that its strings are parallel. Ln is

said to be obtained from L0 by a tn-move ( ); then

n − 2 ≤ σ(L0) − σ(Ln) ≤ n
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(ii) Assume that L0 is oriented in such a way that its strings are anti-parallel and
that n = 2k is an even number. L2k is said to be obtained from L0 by a t̄2k-move

( ); then

0 ≤ σ(L2k) − σ(L0) ≤ 2.

(iii) (Giller [Gil82])

0 ≤ σ(L ) − σ(L ) ≤ 2

Proof

(i) All new crossings of Ln are of type II (we use shading of Fig. 9.20), thus
μ(Ln) − μ(L0) = n. Therefore by Corollary 4(ii) we have n − 2 ≤ σ(GL0) −
μ(L0) − (σ (GLn

) − μ(Ln) ≤ n, and Corollary 5(i) follows by Corollary 2.
(ii) In this case μ(L2k) = μ(L0) thus (ii) follows from Corollary 4(ii). The gen-

eralization of Corollary 5(ii) to Tristram-Levine signatures is given in Corol-
lary 14(ii).

(iii) Follows from (i), or (ii) for n = 2.
�

We finish the section with an example of computing a close form for the deter-
minant of the family of links called Turk-head links. We define the nth Turk-head
link, Thn as the closure of the 3-braid (σ1σ

−1
2 )n (see Fig. 9.21 for Th6).15

Example 3 We compute that

DetThn =
(

3 + √
5

2

)n

+
(

3 − √
5

2

)n

− 2,

or it can be written as DetThn = Tn(3) − 2, where Ti(z) is the Chebyshev (Tcheby-
cheff) polynomial of the first kind:16

T0 = 2, T1 = z, Ti = zTi−1 − Ti−2.

In particular, DetTh2 = 5, DetTh3 = 16, DetTh4 = 45, DetTh5 = 121, DetTh6 = 320,
DetTh7 = 841, and DetTh8 = 2205; compare [Sed70, Mye71].

15Th0 is the trivial link of 3 components, Th1 the trivial knot, Th2 the figure eight knot (41), Th3

the Borromean rings (63
2), Th4, the knot 818, Th5 the knot 10123, Th6 the link 123

474 (that is 474th
link of 12 crossings and 3 components in unpublished M. Thistlethwaite tables; compare [Thi85]),
and Th7 and Th8 are the knots 14a19470 and 16a275159, respectively, in Thistlethwaite (Knotscape)
list.
16Tn(3) is often named the Lucas number; more precisely Tn(3) = 	2n , where 	0 = 2, 	1 = 1
and 	n = 	n−1 + 	n−2 as 	n = 3	n−2 − 	n−4.
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Fig. 9.21 The Turk-head link
Th6 and its checkerboard
coloring

To show the above formulas, consider the (unreduced) Goeritz matrix related to
the checkerboard coloring of the diagram of Thn as shown in Fig. 9.21 (we have
here z = 3 and we draw the case of n = 6).

G′(Th6) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−n 1 1 1 1 1 1
1 −z 1 0 0 0 1
1 1 −z 1 0 0 0
1 0 1 −z 1 0 0
1 0 0 1 −z 1 0
1 0 0 0 1 −z 1
1 1 0 0 0 1 −z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

By crossing the first row and column of G′(Thn) we obtain the Goeritz matrix of
Thn which is also the circulant matrix with the first row (−z,1,0, . . . ,0,1) (z = 3
and n = 6 in our concrete case):

G(Th6) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−z 1 0 0 0 1
1 −z 1 0 0 0
0 1 −z 1 0 0
0 0 1 −z 1 0
0 0 0 1 −z 1
1 0 0 0 1 −z

⎤
⎥⎥⎥⎥⎥⎥⎦

.

To compute the determinant of the circulant matrix CMn(z) of the size n×n and
the first row (−z,1,0, . . . ,0,1) we treat each row as a relation and find the structure
of the Z[z] module generated by columns (indexed by (e0, e1, . . . , en)). Thus we
have n relations of the form ek = zek−1 − ek−2, where k is taken modulo n. The
relation recalls the relation of Chebyshev polynomials, and in fact we easily check
that ek = Sk−1(z)e1 − Sk−2(z)e0, where Sk(z) is the Chebyshev polynomial of the
second kind:

S0 = 1, S1 = z, Si = zSi−1 − Si−2.

Thus we can eliminate all vectors (columns) ek except e0 and e1, and we are left
with two equations e0 = en = Sn−1e1 − Sn−2e0 , and e1 = en+1 = Sne1 − Sn−1e0.
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Thus, our module can be represented by the 2 × 2 matrix

[
Sn−1 1 − Sn

Sn−2 + 1 −Sn−1

]
.

We conclude that, up to a sign, det CMn(z) is equal to the determinant of our
2 × 2 matrix, that is Sn −Sn−2 − 1 −S2

n−1 +SnSn−2. To simplify this expression let
us use the substitution z = a + a−1. Then Sn(z) = an + an−2 + · · · + a2−n + a−n =
an+1−a−n−1

a−a−1 , and Tn(z) = an + a−n. Therefore,

Sn − Sn−2 − 1 − S2
n−1 + SnSn−2

= Sn − Sn−2 − 1 −
((

an − a−n

a − a−1

)2

−
(

an+1 − a−n−1

a − a−1

)(
an−1 − a−n+1

a − a−1

))

= Sn − Sn−2 − 1 −
(

(an − a−n)2 − (an+1 − a−n−1)(an−1 − a−n+1)

(a − a−1)2

)

= Sn − Sn−2 − 2 = an + a−n − 2 = Tn(z) − 2.

By comparing the maximal power of z in det CMn(z) and T2(z) − 2, we get that

det CMn(z) = (−1)n(Tn(z) − 2). For z = 3 we have a + a−1 = 3, thus a = 3±√
5

2 so

we can choose a = 3+√
5

2 and a−1 = 3−√
5

2 , and thus Tn(3) = ( 3+√
5

2 )n + ( 3−√
5

2 )n.
Because, Thn is an amphicheiral link, its signature is equal to 0 and

DetThn = iσ (Thn)|det CMn(3)| = Tn(3) − 2 =
(

3 + √
5

2

)n

+
(

3 − √
5

2

)n

− 2.

We computed the determinant of the circulant17 matrix CMn for a general vari-
able z and until now used it only for z = 3. We see in the next exercise that the
matrix has a knot theory interpretation for any rational number z.

Exercise 3 Consider the “braid like” closure of the tangle (σ
− 1

a

2 σb
1 )n for any inte-

gers a and b, (see Fig. 9.22 for (σ
− 1

3
2 σ 3

1 )4). Show that the determinant of the link

17Recall that the circulant n × n matrix satisfies ai,j = ai−1,j−1 = . . . a1,j−i+1, 0 ≤ i, j ≤ n − 1.
Such a matrix has (over C) n different eigenvectors: (1,ω,ω2, . . . ,ωn−1), where ω is any nth root
of unity (ωn = 1). The corresponding eigenvalues are λω = ∑n−1

i=0 ωia1,i . Thus Example 3 leads to
a curious identity �n−1

i=0 (ωi + ω−i − z) = det CMn = (−1)n(Tn(z) − 2) for any primitive nth root
of unity ω.
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Fig. 9.22 The closure of the

tangle (σ
− 1

3
2 σ 3

1 )4

satisfies the formula18

|Det
(σ

− 1
a

2 σ b
1 )n

| =
∣∣∣∣bn det CMn

(
2 + a

b

)∣∣∣∣ =
∣∣∣∣bn

(
Tn

(
2 + a

b

)
− 2

)∣∣∣∣.

9.3 Seifert Surfaces

It was first demonstrated by P. Frankl and L. Pontrjagin in 1930 [FP30] that any
knot bounds an oriented surface.19 H. Seifert found a very simple construction of
such a surface [Sei34] and developed several applications of the surface, named now
Seifert surface (also, infrequently, Frankl-Pontrjagin surface).20

Definition 8 A Seifert surface of a link L ⊂ S3 is a compact, connected, orientable
2-manifold S ⊂ S3 such that ∂S = L.

If the link L is oriented then its Seifert surface S is assumed to be oriented so
that the induced orientation on the boundary agrees with that of L.

For example: a Seifert surface of a trefoil knot is pictured in Fig. 9.23.

Definition 9 The genus of a link L ⊂ S3 is the minimal genus of a Seifert surface
of L.

The genus is an invariant (of ambient isotopy classes) of knots and links. The
following theorem provides that it is well defined.

18It is also the formula for the number of spanning trees of the generalized wheel, Wa,b,n , which is

the Tait graph of the closure of (σ
− 1

a

2 σb
1 )n (W3,3,4 = ; compare Chap. V of [Prz12]).

19According to [FP30]: “The Theorem. . . [was] found by both authors independently from each
other. In what follows, the Frankl’s form of the proof is presented.” One should add that Seifert
refers in [Sei34] to the Frankl-Pontrjagin paper and says that they use a different method.
20Kauffman in [Kau87a, Kau83] uses the term Seifert surface to describes the surface obtained
from an oriented link diagram by the Seifert algorithm (Construction 5), and the term spanning
surface for an oriented surface bounding a link (our Seifert surface of Definition 8). In [BE82] the
name Frankl surface is used for any oriented or unoriented spanning surface.
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Fig. 9.23 A Seifert surface
of a trefoil knot

Fig. 9.24 Smoothing
of a crossing

Fig. 9.25 Arranging nested disks in Seifert construction

Theorem 4 (Frankl-Pontrjagin-Seifert) Every link in S3 bounds a Seifert surface.
If, moreover, the link is oriented then there exists a Seifert surface, an orientation of
which determines the orientation of its boundary coinciding with that of L.

Construction 5 (Seifert) Consider a fixed diagram D of an oriented link L in S3. In
the diagram there are two types of crossings, in a neighborhood of each of the cross-
ings we make a modification of the link (called smoothing) according to Fig. 9.24.

After smoothing all crossings of D we obtain a family of disjoint oriented simple
closed curves in the plane, called Seifert circles by R. Fox, and denoted by D�s . Each
of the curves of D�s bounds a disk in the plane; the disks do not have to be disjoint
(they can be nested). Now we make the disks disjoint by pushing them slightly up
above the projection plane. We start with the innermost disks (that is disks without
any other disks inside) and proceed outwards (i.e. if D′ ⊂ D then D′ is pushed
above D); see Fig. 9.25.

The disks are two-sided so we can assign the signs + and − to each of the sides
of a disk according to the following convention: the sign of the “upper” side of the
disk is + (respectively, −) if its boundary is oriented counterclockwise (respectively,
clockwise), see Fig. 9.26.

Now we connect the disks together at the original crossings of the diagram D by
half-twisted bands so that the 2-manifold which we obtain has L as its boundary,
see Fig. 9.27.
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Fig. 9.26 Signs of disks in
Seifert construction

Fig. 9.27 Seifert surface around a crossing

Fig. 9.28 Connecting
components of a surface by a
tube

Since the “+ side” is connected to another “+ side” it follows that the resulting
surface is orientable. Moreover, this surface is connected if the projection of the
link is connected (for example if L is a knot). If the surface is not connected then
we join its components by tubes (see Fig. 9.28) in such a way that the orientation of
components is preserved.

Remark 1 If the link L has more than one component then the Seifert surface which
we constructed above depends on the orientation of components of L. This can be
seen on the example of a torus link of type (2,4), see Fig. 9.29.

The Seifert surface from Fig. 9.29(a) has genus 1 while the surface from
Fig. 9.29(b) has genus 0. Therefore the link L has genus 0 (as an unoriented link).

Corollary 6 If a projection of a link L is connected (e.g. if L is a knot) then the
surface, from the Seifert Construction 5, is unknotted, that is, its complement in S3

is a handlebody. The genus of the handlebody is equal to c + 1 − s and the Euler
characteristic is equal to s − c, where c denotes the number of crossings of the
projection and s the number of Seifert circles.
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Fig. 9.29 Different
orientations result in different
Seifert surfaces

Proof The complement in S3 of the plane projection of L is a 3-disk with c + 1
handles (the projection of L cuts the projection plane (or 2-sphere) into c + 2 re-
gions). Furthermore adding s 2-disks in the construction of the Seifert surface we
cut s of the handles thus the result remains a 3-disk with c+1−s handles. The Euler
characteristic of the obtained handlebody is equal to 1 − (c + 1 − s) = s − c. �

Corollary 7 A knot K in S3 is trivial if and only if its genus is equal to 0.

Exercise 4 Let L be a link with n components and DL its diagram. Moreover, let
c denote the number of crossings in DL and let s be the number of Seifert circles.
Prove that the genus of the resulting Seifert surface is equal to:

genus(S) = p − s + n − c

2
,

where p is the number of connected components of the projection of L.
Check that, for p = 1, the Euler characteristic of S is equal to s − c so it agrees

with the Euler characteristic of handlebody described in Corollary 6.

Suppose that the solid torus VK is a closure of a regular neighborhood of a knot
K in S3 and set MK = S3 − int VK (note that MK is homotopy equivalent to the
knot complement). Let us write a Mayer-Vietoris sequence for the pair (MK,VK):

0 = H2(S
3) → H1(∂MK) → H1(MK) ⊕ H1(VK) → H1(S

3) = 0.

For a torus ∂MK and the solid torus VK homology are Z ⊕ Z and Z, respectively.
Therefore H1(MK) = Z and it is generated by a meridian in ∂MK = ∂VK , where by
the meridian we understand a simple closed curve in ∂Vk which bounds a disk in VK .
We denote the meridian by m. A simple closed curve on ∂MK which generates
ker(H1(∂MK) → H1(MK)) is called longitude and it is denoted by l. If S3 and K

are oriented then the longitude is oriented in agreement with the orientation of K .
Subsequently, the meridian is given the orientation in such a way that the pair (m, l)

induces on ∂VK the same orientation as the one induced by the solid torus VK ,
which inherits its orientation from S3. Equivalently, the linking number of m and K

is equal to 1 (compare Sect. 9.5). Similar reasoning allows us also to conclude:
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Proposition 3 For any link L in S3 the first homology of the exterior of L in S3 is
freely generated by the meridians of components of L. In particular, H1(S

3 − L) =
Zcom(L), where com(L) denotes the number of components of the link L.

We also can use the Mayer-Vietoris sequence to find the homology of the exterior
the Seifert surface in S3. Let FL be a Seifert surface of a link L and F ′ its restriction
to ML = S3 − int VL. Let VF ′ be a regular neighborhood of F ′ in ML. Because F ′ is
orientable VF ′ is a product F ′ × [−1,1] with F+ = F ′ × {1} and F− = F ′ × {−1}.
The boundary, ∂VF ′ is homeomorphic to F+ and F− glued together naturally along
their boundary. Now let us apply the Mayer-Vietoris sequence to VF ′ and S3 −
int VF ′ . We get:

0 = H2(S
3) → H1(∂VF ′)

(i1,−i2)→ H1(S
3 − int VF ′) ⊕ H1(VF ′) → H1(S

3) = 0,

where i1 and i2 are induced by embeddings. Clearly, H1(S
3 − int VF ′) is isomorphic

to the kernel of i2. We can easily identify the elements x+ − x− as elements of the
kernel, for any x a cycle in F ′. In the case of L being a knot, these elements generate
the kernel.

Corollary 8 The homology groups, H1(FL) and H1(S
3 − FL) are isomorphic to

Z2g+com(L)−1, where g is the genus of FL and com(L) is the number of components
of L thus also the number of boundary components of FL. Compare Theorem 6.

Corollary 9 Let x1, . . . , x2g be a basis of H1(FK) where FK is the Seifert surface
of a knot K . Then x+

1 − x−
1 , . . . , x+

2g − x−
2g form a basis of H1(S

3 − K).

With some effort we can generalize Corollary 8 to get the following result which
is a version of Alexander-Lefschetz duality21 (see [Lic97] for an elementary proof).

Theorem 6 Let F be a Seifert surface of a link, then H1(S
3 − F) is isomorphic to

H1(F ) and there is a nonsingular bilinear form

β : H1(S
3 − F) × H1(F ) → Z

given by β(a, b) = lk(a, b), where lk(a, b) is defined to be the intersection number
of a and a 2-chain whose boundary is b (see Sect. 9.5).

9.4 Connected Sum of Links

Definition 10 Assume that K1 and K2 are oriented knots in S3. A connected sum
of knots, K = K1#K2, is a knot K in S3 obtained in the following way:

21Let us recall that Alexander duality gives us an isomorphism H̃ i(Sn − X) = H̃n−i−1(X) for
a compact subcomplex X of Sn and that on the free parts of homology the Alexander isomor-
phism induces a nonsingular form β : H̃i (S

n − X) × H̃n−i−1(X) → Z, where H̃ denotes reduced
(co)homology.



9 From Goeritz Matrices to Quasi-alternating Links 283

First, for i = 1, 2, choose a point xi ∈ Ki and its regular neighborhood Ci in the
pair (S3,Ki). Then, consider a pair ((S3 − int C1 ∪ϕ S3 − int C2), (K1 − int C1 ∪ϕ

K2 − int C2)), where ϕ is an orientation reversing homeomorphism ∂C1 → ∂C2
which maps the end of K1 ∩(S3 − int C1) to the beginning of K2 ∩(S3 − int C2) (and
vice versa). (Notice that notions of beginning and end are well defined because K1
and K2 are oriented.) We see that (S3 − int C1) ∪ϕ (S3 − int C2) is a 3-dimensional
sphere and (K1 − int C1) ∪ϕ (K2 − int C2) is an oriented knot.

Lemma 3 The connected sum of knots is a well defined, commutative and associa-
tive operation in the category of oriented knots in S3 (up to ambient isotopy).

A proof of the lemma follows from two theorems in PL topology which we quote
without proofs.

Theorem 7 Let (C, I ) be a pair consisting of a 3-cell C and 1-cell I which is
properly embedded and unknotted in C (i.e. the pair (C, I ) is homeomorphic to
(B̄(0,1), [−1,1]) where (B̄(0,1) is the closed unit ball in R3 and [−1,1] is the
interval (x,0,0) parameterized by x ∈ [−1,1]. Respectively, let (S2, S0) be a pair
consisting of the 2-dimensional sphere and two points on it. Then any orientation
preserving homeomorphism of C (respectively, S2) which preserves I and is con-
stant on ∂I (respectively, it is constant on S0) is isotopic to the identity.

Theorem 8 Let K be a knot in S3 and let C′ and C′′ be two regular neighborhoods
in the pair (S3,K) of two points on K . Then there exists an isotopy F of the pair
(S3,K) which is constant outside of a regular neighborhood of K and such that
F0 = Id and F1(C

′) = C′′.

Remark 2 In the definition of the connected sum of knots we assumed that the
homeomorphism ϕ reverses the orientation. This assumption is significant as the
following example shows.

Let us consider the right-handed trefoil knot K (i.e. a torus knot of type (2,3)),
Fig. 9.23. Let K be the mirror image of K (i.e. a torus knot of type (2,−3)). Then
K#K is the square knot while K#K is the knot “Granny” and these two knots are
not equivalent. To distinguish them it is enough to compute their signature (as de-
fined in Corollary 2(1). One can also use Jones polynomial, or HOMFLYPT (Jones-
Conway) polynomial. For completeness let us recall their definitions, again in a
historical context:
The first polynomial invariant of links was invented by James Waddell Alexander
(1888–1971) in 1928 [A28]. Alexander observed also that if three oriented links,
L+ = , L− = , and L0 = , have diagrams which are identical except near
one crossing (as drawn) then their polynomials are linearly related [A28]. In early
1960’s, J. Conway rediscovered Alexander’s formula and normalized the Alexander
polynomial, �L(t) ∈ Z[t±1/2], defining it recursively as follows [Con69]:

(i) �o(t) = 1, where o denotes a knot isotopic to a simple circle
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(ii)

�L+ − �L− =
(√

t − 1√
t

)
�L0 .

We call the resulting polynomial the Alexander-Conway polynomial.
In the spring of 1984, Vaughan Jones discovered his invariant of links, VL(t)

[Jon85]. Soon he realized that his polynomial satisfies the local relation analogous
to that discovered by Alexander and Conway and established the meaning of t = −1.
Thus the Jones polynomial is defined recursively as follows:

(i) Vo = 1,
(ii) 1

t
VL+(t) − tVL−(t) = (

√
t − 1√

t
)VL0(t).

In the summer and the fall of 1984, the Alexander and the Jones polynomi-
als were generalized to the HOMFLYPT (Conway-Jones),22 polynomial, PL ∈
Z[a±1, z±1], of oriented links. This polynomial is defined recursively as follows
[FYHLMO85, PT87]:

(i) Po = 1;
(ii) aPL+ + a−1PL− = zPL0 .

In particular �L(t) = PL(i, i(
√

t − 1√
t
)), VL(t) = PL(it−1, i(

√
t − 1√

t
)). In Au-

gust 1985 L. Kauffman found another approach to the Jones polynomial; we discuss
this Kauffman bracket polynomial in Sect. 1.7.

Theorem 9 (Schubert [Sch53]) Genus of knots in S3 is additive, that is

g(K1#K2) = g(K1) + g(K2).

A proof of the Schubert theorem can be found in e.g. [JP87, Lic97].

Corollary 10 Any knot in S3 admits a decomposition into a finite connected sum of
prime knots, i.e. knots which are not connected sums of non-trivial knots.

In fact Schubert [Sch49] showed that the prime decomposition of knots is unique
up to order of factors; in other words, knots with connected sum form a unique
factorization commutative monoid.

Corollary 11 The trefoil knot is non-trivial and prime.

Proof The trefoil knot is non-trivial therefore its genus is positive (Corollary 7).
Figure 9.23 demonstrates that the genus is equal to 1. Now primeness follows from
Theorem 9 and Corollary 10. �

22HOMFLYPT is the acronym after the initials of the inventors: Hoste, Ocneanu, Millett, Freyd,
Lickorish, Yetter, Przytycki and Traczyk [FYHLMO85, PT87].
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Similarly as for knots, the notion of connected sum can be extended to oriented
links. It, however, depends on the choice of the components which we glue together.
The weak version of the unique factorization of links with respect to connected sum
was proven by Youko Hashizume [Has58].

9.5 Linking Number; Seifert Forms and Matrices

We start this Section by introducing the linking number lk(J,K) for any pair of
disjoint oriented knots J and K . Our definition is topological and we will show that
it agrees with the diagrammatic definition considered before. We use the notation
introduced right after the Exercise 4.

Definition 11 The linking number lk(J,K) is an integer such that

[J ] = lk(J,K)[m],
where [J ] and [m] are homology classes in H1(S

3 −K) of the oriented curve J and
the meridian m of the oriented knot K , respectively.

Lemma 4 Let S ⊂ S3 − int VK be a Seifert surface of a knot K (more precisely,
its restriction to S3 − int VK ), such that its orientation determines the orientation of
∂S compatible with that of the longitude l. Then lk(J,K) is equal to the algebraic
intersection number of J and S.

Proof First, let us recall the convention for the orientation of the boundary of an
oriented manifold M . For x ∈ ∂M we consider a basis (v2, . . . , vn) of the tangent
space Tx∂M together with the normal n of ∂M in M which is directed outwards.
Then, v2, . . . , vn defines orientation of Tx∂M if n, v2, . . . , vn defines the orientation
of TxM . Returning to the proof of 4 we note that the meridian m intersects the
Seifert surface S exactly at one point. Moreover, the algebraic intersection number
of m and S is +1, according to our definition of the orientation of S. Thus, if the
algebraic intersection number of J and S is equal to i, then [J ] = i[m], that is
i = lk(J,M), which concludes the proof. �

Lemma 5 Let us consider a diagram of a link J ∪ K consisting of two disjoint
oriented knots J and K . We assume that the orientation of S3 = R3 ∪ ∞ is induced
by the orientation of the plane containing the diagram of J ∪ K and the third axis
which is directed upwards. Now, to any crossing of the diagram where J passes

under K we assign +1 in the case of and −1 in the case of . Then the

sum of all numbers assigned to such crossings is equal to linking number lk(J,K).

Proof Let us consider a Seifert surface of the knot K constructed from the diagram
of K , as described in Construction 5. We may assume that the knot J is placed above
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this surface, except small neighborhoods of the crossings where J passes under K .
We check now that the sign of the intersection of J with this surface coincides with
the number that we have just assigned to such a crossing. �

Exercise 5 Show that lk(J,K) = lk(K,J ) = −lk(−K,J ), where −K denotes the
knot K with reversed orientation.

Hint. Apply Lemma 5.

The linking number may be defined for any two disjoint 1-cycles in S3. For
example, as a definition we may use the condition from Lemma 4. That is, if α and
β are disjoint 1-cycles in S3 then lk(α,β) is defined as the intersection number of α

with a 2-chain in S3 whose boundary is equal β .

Exercise 6 Prove that lk(α,β) is well defined, that is, it does not depend on the
2-chain whose boundary is β .

Exercise 7 Show that lk is symmetric and bilinear, i.e. lk(α,β) = lk(β,α) and
lk(α,nβ) = n · lk(α,β), and if a cycle β ′ is disjoint from α then lk(α,β + β ′) =
lk(α,β) + lk(α,β ′).

Exercise 8 Prove that, if β and β ′ are homologous in the complement of α, then
lk(α,β) = lk(α,β ′).

Now we define a Seifert form of a knot or a link. Let S be a Seifert surface of a
knot or a link K . Then S is a two-sided surface in S3. Let S × [−1,1] be a regular
neighborhood of S in S3. For a 1-cycle x in int S we can consider a cycle x+
(respectively x−) in S × {1} (respectively S × {−1}) which is obtained by pushing
the cycle x to S × {1} (respectively, to S × {−1}). (We note that the sides of S are
uniquely defined by the orientations of K and S3.)

Definition 12 The Seifert form of the knot K is a function

f : H1(int S) × H1(int S) → Z

such that f (x, y) = lk(x+, y). Similarly we define a Seifert form of an oriented link
L using an oriented Seifert surface S of L.

Lemma 6 The function f is a well defined bilinear form on the Z-module (i.e.
abelian group) H1(int S).

Proof The result follows from Exercises 7 and 8. �

Definition 13 By a Seifert matrix V = {vi,j } in a basis e1, e2, . . . , e2g+com(L)−1 of
H1(S) we understand the matrix of f in this basis, that is

vi,j = lk(e+
i , ej ).
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Fig. 9.30 A basis of the first
homology of a Seifert surface
of the right-handed trefoil
knot

Fig. 9.31 A basis of the first
homology of a Seifert surface
of the figure-eight knot

Then, for x, y ∈ H1(S) we have f (x, y) = xT Vy. We use the convention that coef-
ficients of a vector are written as a column matrix.23

Notice that a change of the basis in H1(S) results in the change of the matrix V

to a similar matrix PT V P , where det P = ±1.

Example 4 The Seifert matrix of a Seifert surface of the right-handed trefoil knot,
computed in the basis [α], [β], is equal to

[ −1 0
1 −1

]
(see Fig. 9.30).

Example 5 The Seifert matrix of a Seifert surface of the figure-eight knot, computed
in the basis [α], [β] is equal to

[ 1 −1
0 −1

]
(see Fig. 9.31).

With some practice one should be able to find Seifert form efficiently and we
encourage a reader to compute more examples and develop some rules; for example
if α is a simple closed curve on S and on the plane then lk(α+, α) = −1

2

∑
sgnp

where the sum is taken over all crossings of the diagram traversed by α. We illustrate
it by one more example, the Seifert matrix of a pretzel knot. The computation is
almost the same as in the trefoil case as the genus of the surface is equal to 1 and
three crossings of the right-handed trefoil knot 3̄1 are replaced by 2k1 + 1, 2k2 + 1,
and 2k3 + 1, respectively.

23Our notation agrees with that of Kauffman [Kau87a], Kawauchi [Kaw96], and [JP87] but in the
books by Burde and Zieschang [BZ85], Lickorish [Lic97], Rolfsen [Rol76], Livingston [Liv93],
and Murasugi [Mur96] the convention is the opposite, that is f (x, y) = lk(x, y+).
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Fig. 9.32 P1,3,5—the pretzel
knot of type (1,3,5)

Example 6 Let Pn1,n2,n3 denote the pretzel link of type (n1, n2, n3) (com-
pare Fig. 9.32). The Seifert matrix of a Seifert surface of the pretzel knot
P2k1+1,2k2+1,2k3+1, computed in the basis [α], [β], is equal to

[ −k1−k2 k2
k2+1 −k1−k2

]
(see

Fig. 9.32).

There is a classical skew-symmetric form on a homology group of an oriented
surface, called an intersection form, which is related to the Seifert form f .

Definition 14 Let S be an oriented surface. For two homology classes x, y ∈ H1(S)

represented by transversal cycles we define their algebraic intersection number
τ(x, y) as the sum of the signed intersection points where the sign is defined in the
following way: if x meet y transversally at a point p then the sign of the intersection

at p is equal +1 if and −1 if .

Exercise 9 Prove that τ : H1(S) × H1(S) → Z is bilinear and skew-symmetric
(i.e. τ(x, y) = −τ(y, x)).

Exercise 10 Prove that the determinant of a matrix of τ is equal to 1 if ∂S = S1, or
∂S = ∅ and that it is equal to 0 otherwise.

Solution. Assume that S has more than one boundary component and ∂1 is one
of them. Then ∂1 is a nontrivial element in H1(S) with trivial intersection number
with any element of H1(S). Thus the matrix of τ is singular and its determinant is
equal to zero.

Assume now that ∂S = S1, or ∂S = ∅. Let us choose loops representing a basis
of H1(S) such as in Fig. 9.33. In this basis the matrix of τ is as follows

⎡
⎢⎢⎢⎢⎢⎣

0 1 ©
−1 0

. . .

0 1
© −1 0

⎤
⎥⎥⎥⎥⎥⎦
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Fig. 9.33 A basis of the first
homology of a surface S

Thus, its determinant is equal to 1. Notice also that the determinant of a matrix
changing a basis of H1(S) is equal to 1 or −1. Thus the determinant of the form
does not depend on the choice of a basis.

Exercise 11 Prove that, if S is a Seifert surface of a link then τ(x, y) = f (x, y) −
f (y, x).

Solution. It follows from Lemma 5 that the crossing change between two oriented
disjoint curves J and K in S3 changes the linking number between them by 1 or −1,

diagrammatically we have: lk( ) − lk( ) = 1. If J and K are two, possibly

intersecting, oriented curves on an oriented surface we see that the pair (J+,K)

differs from the pair (J −,K) by crossing changes at the crossings of J and K .

Furthermore the convention we use is that sgn( ) = −1.

Thus f (J,K)−f (K,J ) = lk(J+,K)− lk(K+, J ) = lk(J+,K)− lk(J−,K) =∑
p∈J∩K) sgnp = τ(J,K). The solution is completed.24

Corollary 12 The Seifert matrix V of a knot K in S3 satisfies the following equa-
tion:

det(V − V T ) = 1.

Proof We note that V − V T is a matrix of τ (Exercise 11) and its determinant is
equal to 1 (Exercise 10). �

A Seifert matrix is not an invariant of a knot or a link, but it can be used to define
some well known invariants, including the Alexander polynomial.

Now we describe the relation between Seifert matrices of (possibly different)
Seifert surfaces of a given link.

24The equality is a defining relation of Vassiliev-Gusarov invariants or skein

modules of links; compare Chap. IX of [Prz12]. This relation, combined with = 0

(that is, the value of a link with at least two singular crossings is equal to zero), leads to the (global)
linking number, described as Vassiliev-Gusarov invariant of degree 1.
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Fig. 9.34 Adding a handle to
a surface

Definition 15 We call two matrices S-equivalent if one can be obtained from the
other by a finite number of the following modifications:

(1) A ⇔ PAP T where det P = ∓1.
(2)

A ⇔
⎡
⎣A α 0

0 0 1
0 0 0

⎤
⎦ and A ⇔

⎡
⎣A 0 0

β 0 0
0 1 0

⎤
⎦

where α is a column and β is a row.

Theorem 10 Let us assume that L1 and L2 are isotopic links and F1, respectively,
F2, are their Seifert surfaces. If A1 and A2 are their Seifert matrices computed in
some basis B1 and, respectively, B2 then A1 is S-equivalent to A2.

We perform the proof in two steps. Namely, we will prove the following two
claims:

(1) If we attach a handle to F1 then the resulting surface (boundary of which is
again L1) has its Seifert surface S-equivalent to the Seifert surface of F1.

(2) We can assume that L1 = L2. Then there exists a Seifert surface for L1 which
can be reached (modulo isotopy) from both F1 and F2 by the operation of at-
taching handles.

First we prove (1).
Let A1 be a Seifert matrix of F1 (in some basis of H1(F )). By γ and μ let us

denote two new generators of H1(F ∪ handle)—see Fig. 9.34.
Let us recall that the Seifert form f : H1(F ) × H1(F ) → Z was defined by the

formula f (x, y) = lk(x+, y), where lk denotes linking number in S3 and x+ is
obtained by pushing the cycle x out of F in the normal direction of F .

If the pushing moves the cycle μ outside of the handle (that is μ+ is outside the
handle) then the resulting Seifert matrix is

⎡
⎣A α 0

β w0 0
0 ±1 0

⎤
⎦

which is S-equivalent to the matrix A (α and ω0 can be converted to 0 matrices by
type (1) operations; similarly, ±1 can be converted to 1 by a type (1) operation). In



9 From Goeritz Matrices to Quasi-alternating Links 291

the matrix, β is a row vector determined by linking numbers of λ+ with the basis
of H1(F ), α is a column vector determined by linking numbers of the basis H1(F )

with λ− and ω0 = lk(λ+, λ−).
Otherwise (i.e. μ+ is inside the handle) we get the matrix:

⎡
⎣A α 0

β ω0 ±1
0 0 0

⎤
⎦

which is S-equivalent to A as well.

Proof of (2) Assume that the Seifert surface F1 intersects F2 transversally (modulo
the boundary L1; in the neighborhood of L1 they may be assumed to be disjoint
outside L1). Now we will use the following

Lemma 7 Let M be compact connected 3-manifold and let F1, F2 be such subman-
ifolds of ∂M that ∂M = F1 ∪F2 and F1 ∩F2 = ∂F1 = ∂F2. Then there exists a sur-
face F in M such that ∂F = ∂F1 and F can be obtained from F1 as well as from F2
by attaching 1-handles. More precisely: F cuts M into two 3-submanifolds M1, con-
taining F1 and M2 containing F2. Furthermore Mi can be obtained from Fi (more
precisely Fi × [0,1]) by attaching 1-handles25 to int(Fi). We have Fi ∪ F = ∂Mi ;
in particular F is obtained from Fi by 1-surgeries.

Sketch of the Proof. The presented proof is based on the proof of existence of
Heegaard decomposition of a 3-manifold from triangulation (e.g. [Hem76, JP87]).
Let X be a triangulation of (M,F1,F2). In particular L is in the 1-skeleton of tri-
angulation �1. Let �2 denote the dual 1-skeleton. That is, �2 is the maximal 1-
subcomplex of the first baricentric subdivision X′ of X, such that �2 is disjoint
with �1. Let Vi (i = 1,2) be a regular neighborhood of �i associated to the second
baricentric subdivision of X. Then X = V1 ∪ V2 and Vi is obtained from Fi by at-
taching (solid) 1-handles. Therefore (F1 ∪ V1) ∩ (F2 ∪ V2) is the surface F that we
look for.

The proof of claim (2) is inductive with respect to the number of circles in the
intersection F1 ∩ F2:

(1) Suppose that F1 ∩ F2 = L1. Then we apply Lemma 7 to a part of S3 which is
bounded by the closed surface F1 ∪ F2.

(n) Inductive step. Suppose that (2) holds if the number of components of F1 ∩ F2
is smaller than n.

Now, assume that F1 ∩ F2 consists of n circles. Then F1 ∪ F2 cuts S3 into
a number of connected components and moreover different “sides” of F1 and
F2 bound different components. Let M be a component such that F ′

1 = F1 ∩

25We attach k-handle to an (n + 1)-dimensional manifold M along an open subset, N , of the
boundary by choosing a disk Dn+1 = Dk × Dn+1−k and the embedding φ : ∂Dk × Dn+1−k → N ,
and gluing M with Dn+1 using φ. In our case n = 2.
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∂M and F ′
2 = F2 ∩ ∂M . Now we apply Lemma 7 to the triple (M,F ′

1,F
′
2)

and consequently let F ′
0 be the surface provided by the lemma. That is, F ′

0 is
obtained by attaching solid 1-handles to either F ′

1 or F ′
2.

Let F 0
1 and F 0

2 be obtained from F1 and F2 by replacing F ′
1 and F ′

2 by F ′
0.

Then by moving slightly surfaces F 0
1 and F 0

2 we can obtain a smaller number of
components of their intersection and thus we can apply the inductive assump-
tion. This concludes the proof of (2) and of Theorem 10. �

An elementary, diagrammatic proof of Theorem 10, based on Reidemeister
moves and, the fact that any link has a special diagram (compare Exercises 1 and 2
or Proposition 13.15 of [BZ85]), is given in [BNFK98].

9.6 From Seifert form to Alexander Polynomial and Signatures

The Conway’s potential function is defined as a normalized version of the Alexander
polynomial using Seifert matrix, as follows [Kau80]:

Lemma 8 Let A be a Seifert matrix of an oriented link L and define the potential
function �L(x) = det(xA − x−1AT ). Then �L(x) does not depend on the choice
of a Seifert surface and its Seifert matrix. In particular, if T1 is the trivial knot then
�T1(x) = 1.

Proof. The result follows from Lemma 10. Indeed, simple computations show
that if we replace the matrix A with another S-equivalent matrix then �L(x) remains
the same. We use the following identity

det

(
x

[
0 1
0 0

]
− x−1

[
0 0
1 0

])
= det

[
0 x

−x−1 0

]
= 1.

The same identity is used in the computations for the trivial knot.
If we choose x = −√

t then the potential function is the normalized Alexander
polynomial (i.e. Alexander-Conway polynomial). The transposition of a matrix is
preserving its determinant thus the substitution x → −x−1 (or

√
t → 1√

t
) is pre-

serving the potential function and Alexander-Conway polynomial. Furthermore, we
can put z = x−1 − x = √

t − 1√
t
. As follows from Theorem 11, we obtain, after the

substitution, the Conway polynomial ∇L(z) (the terminology may be sometimes
confused, as ∇L(z) is also often called Alexander-Conway polynomial).

Theorem 11 (Kauffman [Kau80]) �L(x) = �L(t) = ∇L(z), where x = −√
t , z =

x−1 − x = √
t − 1√

t
.

Proof (hint). We have to show that �L+(x) − �L−(x) = (x−1 − x)�L0(x). In order
to demonstrate it we use the properly chosen Seifert surfaces F+,F−,F0 for L+,L−
and L0 respectively.
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Fig. 9.35 Oriented links L,
t̄2k(L), and L∞, and their
Seifert surfaces

We give all details in the analysis of the more general case of the behavior of
Seifert matrices under t̄2k-moves, which generalize the crossing change, which is
t̄±2-move.

Definition 16 [Prz88] The t̄2k-move (introducing k full twists on anti-parallel ori-
ented arcs) is the elementary operation on an oriented diagram L resulting in t̄2k(L)

as illustrated in Fig. 9.35.

Notice that t̄2-move is a crossing change from a positive to negative crossing (L− =
t̄2(L+)). We can choose Seifert surfaces F(L), F(t̄2k(L)), and F(L∞) for L =
L , t̄2k(L), and L∞ = L , respectively, to look locally as in Fig. 9.35.

Let us choose a basis for H1(F (L )) and add one, standard, element, e to

obtain a basis for H1(F (L )), and et̄2k(L) to get a basis of H1(F (t̄2k(L)). Denote

the Seifert matrix of L in the chosen basis by AL . In these bases we have

immediately:

Lemma 9

AL =
⎡
⎣AL α

β q

⎤
⎦ ,

At̄2k(L) =
⎡
⎣AL α

β q + k

⎤
⎦ ,

where α is a column given by linking numbers of e+ (or e+
t̄2k(L)

) with basis ele-

ments of H1(F (L )), β is a row given by linking numbers of basis elements of

H1(F (L )) with e− (or e−
t̄2k(L)

), and q is a number equal to lk(e+ , e )

(compare [Kau80, PT87’] or [Prz86]).

Corollary 13

(i) If two oriented links are t̄2k equivalent (that is they differ by a finite number of
t̄2k-moves) then their Seifert matrices are S-equivalent modulo k.
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(ii) The potential function satisfies:

�t̄2k(L) − � = k(x − x−1)� .

In particular the case k = −1 gives: �L+(x) − �L−(x) = (x−1 − x)�L0(x).

Proof (i) It follows from the fact we noted in Lemma 9 that for properly chosen
Seifert surfaces and basis of their homology, the entries of Seifert matrices for t̄2k

and are congruent modulo k.

(ii) �t̄2k(L) = det(xAt̄2k(L)−x−1AT
t̄2k(L)

) = det

⎡
⎣ AL xα − x−1βT

xβ − x−1αT (x − x−1)(q + k)

⎤
⎦,

and

� = det

⎡
⎣ AL xα − x−1βT

xβ − x−1αT (x − x−1)q

⎤
⎦ .

Thus the difference is equal to k(x − x−1)� . �

Example 7 We can use Corollary 13 to compute the potential (and Alexander-
Conway) polynomial of the pretzel link L = P2k1+1,2k2+1,...,2km+1 (see Fig. 9.32
or Fig. 9.36). Namely, we apply the formula of Corollary 13(ii) for any column of a
pretzel link. For z = x−1 − x we get

�L(x) = ∇L(z) =
m−1∑
j=0

sm,j z
j∇T2,m−j

(z)

= zm−1
((

m − 1

0

)
+ sm,1

(
m − 2

0

)
+ sm,2

(
m − 3

0

)
+ · · ·

)

+ zm−3
((

m − 2

1

)
+ sm,1

(
m − 3

1

)
+ sm,2

(
m − 4

1

)
+ · · ·

)
+ · · ·

=
�(m−1)/2�∑

j=0

(
m−1−2j∑

i=0

(
m − 1 − j − i

j

)
sm,j

)
zm−1−2j ,

where sm,j is an elementary symmetric polynomial in variables k1, . . . , km of de-
gree j , that is �m

i=1(z + ki) = ∑m
j=0 sm,j z

m−j and ∇T2,m−j
(z) = ∇P1,1,...,1(z) are

the Alexander-Conway polynomials of the torus links of type (2,m − j), in par-
ticular, it satisfies Chebyshev type26 (compare Example 3) relations ∇T2,n

(z) =

26We have ∇T2,n
(z) = i1−nSn−1(iz).
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Fig. 9.36 P5,7,−3—the
pretzel knot with the trivial
Alexander-Conway
polynomial

z∇T2,n−1(z) + ∇T2,n−2(z) (with initial data ∇T2,0(z) = 0 and ∇T2,1(z) = 1). In par-

ticular, �T2,n
(x) = ∇T2,n

(x−1 − x) = x−n−(−1)nxn

x−1+x
= (

n−1
0

)
zn−1 + (

n−2
1

)
zn−3 + · · ·+(

n−1−i
i

)
zn−1−2i + · · · = ∑�(n−1)/2�

i=0

(
n−1−2i

i

)
zn−1−2i .

9.6.1 Tristram-Levine Signature

We generalize definition of the classical (Trotter-Murasugi) signature, following
Tristram and Levine (see [Gor78, Lev69, PT87’, Tri69]).

Recall that a symmetric Hermitian form h : Cn×Cn → C is a map which satisfies
h(a + b, c) = h(a, c) + h(b, c), h(λa, b) = λh(a, b), and h(a, b) = h(b, a). The
matrix H of a symmetric Hermitian form in any basis is called a Hermitian matrix
(i.e. H = H̄ T ). A symmetric Hermitian form has a basis in which the matrix is
diagonal with 1, −1 or 0 entries. The numbers, n1 of 1’s, n−1 of −1’s and n0 of
0’s form a complete invariant of a symmetric Hermitian form (the Sylvester law
of inertia). The number n0 is called the nullity of the form and σ = n1 − n−1 is
called the signature of the form. Recall also that if we count eigenvalues of H (with
multiplicities) then n1 is the number of positive eigenvalues of H and n−1 is the
number of negative eigenvalues.

Definition 17 [Tri69, Lev69] Let AL be a Seifert matrix of a link L. For each com-
plex number ξ (ξ �= 1) consider the Hermitian matrix HL(ξ) = (1 − ξ̄ )AL + (1 −
ξ)AT

L . The signature of this matrix is called the Tristram-Levine signature of the
link L. If the parameter ξ is considered, we denote the signature by σL(ξ), if we
consider ψ = 1 − ξ as a parameter, we use notation σψ(L). The classical signature
σ satisfies σ(L) = σ1(L) = σL(0) = σL(−1). Also, by well justified convention, we
put σL(1) = 0 (see Remark 3).

The Tristram-Levine signature is a well defined link invariant as it is an invariant
of S-equivalence of Seifert matrices. Checking this is similar to the calculation for
the potential function (we leave this to the reader as an exercise).
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Remark 3 The signature of a Hermitian matrix is unchanged when matrix is mul-
tiplied by a positive number,27 we can (and will) often assume that ξ in σL(ξ) and
ψ in σψ(L) are of unit length. With such assumptions we have the Tristram-Levin
signature functions, σL(ξ), σψ(L) : S1 → Z. σL(ξ) is the signature function tab-
ulated in [CL], and σψ(L) is used in Examples in this book. S1 will be usually
parameterized by arg(ψ) ∈ [−π,π].28 Generally, we have σL(ξ) = σ1−ξ (L) but
when restricted to the unit circle, we have to write σL(ξ) = σ(1−ξ)/(|1−ξ |(L). Notice
that for ψ = 1−ξ

|1−ξ | , we have ψ2 = (1−ξ)(1−ξ)

(1−ξ)(1−ξ̄ )
= 1−ξ

1−ξ̄
= −ξ (and (iψ)2 = ξ ). There-

fore, σψ(L) = σL((iψ)2) = σL(ξ), for Re(ψ) ≥ 0. As we show in Corollary 16,
σi(L) = 0, which justifies the convention29 that σL(1) = 0.

Corollary 14 [Prz88]

(i) For any t̄2k-move and Re(1 − ξ) ≥ 0 (i.e. |arg(ψ)| ≤ π/2) we have:

0 ≤ σt̄2k(L)(ξ) − σL(ξ) ≤ 2.

In particular [PT87’], for Re(1 − ξ) ≥ 0, we have −2 ≤ σL+(ξ) − σL−(ξ) ≤ 0.
(ii) Furthermore, for any ξ and k we have:

0 ≤ |σL (ξ) − σt̄2k(L)(ξ)| ≤ 1.

In particular, 0 ≤ |σL+(ξ) − σL0(ξ)| ≤ 1.

Proof Applying Lemma 9 we obtain

Ht̄2k(L(ξ) =
⎡
⎣HL (ξ) a

a−T m + k(2 − ξ − ξ̄ )

⎤
⎦ ,

HL(ξ) =
⎡
⎣HL (ξ) a

a−T m

⎤
⎦ ,

27The Hermitian matrix H is Hermitian similar to λH for any real positive number λ; λH =
(
√

λId)H(
√

λId).
28In [CL], S1 is parameterized by arg ξ

π
.

29In the literature on the Tristram-Levine signature of knots, often used normalization of the Hermi-
tian matrix (1 − ξ̄ )AL + (1 − ξ)AT

L is to take |ξ | = 1 (ξ �= 1). When one writes the function σK(ξ)

then usual assumption about the parameter ξ is that it is on the unit circle. Then one has det((1 −
ξ̄ )AL +(1−ξ)AT

L) = det ((ξ −1)(
1−ξ̄
ξ−1 A−AT )) = det ((ξ −1)(ξ̄A−AT ))

.= (ξ −1)n�(ξ̄ ), where
.= denotes equality up to ±t i , [Gor78] (compare Lemma 10). When dealing with links, we found

more convenient (see [PT87’, Prz86]) to consider ψ = 1 − ξ and assume that |ψ | = 1. Then we
have det (i(ψ̄A + ψAT )) = det(iψ̄A − iψAT ) = �(iψ̄) = �(iψ) = ∇(−i(ψ̄ + ψ)) (compare
Lemma 10). Therefore, for any knot σψ(K) = σK((iψ)2) = σK(ξ).
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where a = (1− ξ̄ )α+ (1−ξ)βT and m = ((1− ξ̄ )+ (1−ξ))q . Because 2−ξ − ξ̄ ≥
0, so 0 ≤ σ(Ht̄2k(L)(ξ)) − σ(HL(ξ)) ≤ 2, and the proof of (i) is finished.30 Part
(ii) follows from the easy observation that deleting the last row and column of a
Hermitian matrix can change the signature at most by ±1. �

We can use results of computations in Examples 4, 5, and 6 to find the Tristram-
Levine signature for the trefoil knot, the figure eight knot, and the pretzel knot
P2k1+1,2k2+1,2k3+1.

Example 8 Using the Seifert matrix for the right-handed trefoil knot (3̄1) computed
in Example 4 we find that:

H3̄1
(ξ) =

[
ξ + ξ̄ − 2 1 − ξ

1 − ξ̄ ξ + ξ̄ − 2

]

Therefore

σ3̄1
(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 if Re(1 − ξ) > 1
2

−1 if Re(1 − ξ) = 1
2

0 if − 1
2 < Re(1 − ξ) < 1

2

1 if Re(1 − ξ) = − 1
2

2 if Re(1 − ξ) < 1
2

Part of the regularity of the Tristram-Levine signature can be explained by the ob-
servation that for ξ2 = 2 − ξ1 (i.e. 1 − ξ2 = −(1 − ξ1)) we have HL(ξ2) = −HL(ξ1)

and σL(ξ2) = −σL(ξ1).

Example 9 Using the Seifert matrix for the figure eight knot (41) computed in Ex-
ample 5 we find that:

H41(ξ) =
[

2 − ξ − ξ̄ ξ̄ − 1
ξ − 1 ξ + ξ̄ − 2

]

For any ξ �= 1, we have det H41(ξ) = −(2 − ξ − ξ̄ )2 − (1 − ξ)(1 − ξ̄ ) < 0, thus
σ41(ξ) = 0.

The observation that for the figure eight knot the Tristram-Levin signature is always
equal to zero is not that unexpected because the figure eight knot is an amphicheiral
knot (41 = 4̄1) and we have:

30It holds, in general, that if two n × n Hermitian matrices H and H ′ differ only at one entry,
a′
nn > ann then 0 ≤ σ(H ′) − σ(H) ≤ 2. Furthermore, if det H det H ′ > 0 then σ(H ′) = σ(H) and

if det H det H ′ < 0 then σ(H ′) = σ(H) + 2.
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Corollary 15 If L̄ is the mirror image of a link L then the Seifert matrix AL̄ =
−AL, HL̄(ξ) = −HL(ξ), σL̄(ξ) = −σL(ξ), and σψ(L̄) = −σψ(L). In particular,
the Tristram-Levine signature of an amphicheiral link is equal to zero.

We can also observe that i (i = √−1) times the matrix of τ from Exercise 9
is a Hermitian matrix of the signature equal to 0 thus for a knot, σi(K) = 0. This
holds also for links as the signature is unchanged by adding to the matrix rows and
columns of zeros:

Corollary 16 For any link L we have σi(L) = σ−i (L) = 0.

It is useful to summarize our observations about the Tristram-Levin signature of
links using ψ = 1 − ξ and |ψ | = 1.

Corollary 17 When we change ψ from 1 to i, the signature σψ(L) changes from
the classical (Trotter-Murasugi) σ(L) to 0 (equivalently, if ξ changes from 1 to −1,
then σL(ξ) changes from 0 to σ(L)). Furthermore, σψ(L) = σψ̄(L) = −σ−ψ(L) =
−σψ(L̄).

Example 10 Using the Seifert matrix of the pretzel knot P2k1+1,2k2+1,2k3+1 com-
puted in Example 6 we find that:

HP2k1+1,2k2+1,2k3+1 =
[−(ψ + ψ̄)(k1 + k2 + 1) k2ψ̄ + (k2 + 1)ψ

(k2 + 1)ψ̄ + k2ψ −(ψ + ψ̄)(k2 + k3 + 1)

]

Furthermore,

det HP2k1+1,2k2+1,2k3+1 = (ψ + ψ̄)2(1 + k1 + k2 + k3 + k1k2 + k1k3 + k2k3) − 1.

Therefore the Tristram-Levine signature of a pretzel knot with 1 + k1 + k2 + k3 +
k1k2 + k1k3 + k2k3 > 0 (e.g. a positive pretzel knot) satisfies (in lieu of Corollary 15
we consider only Re(ψ) ≥ 0):

σψ(P2k1+1,2k2+1,2k3+1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2 if Re(ψ) > 1
2
√

1+k1+k2+k3+k1k2+k1k3+k2k3

−1 if Re(ψ) = 1
2
√

1+k1+k2+k3+k1k2+k1k3+k2k3

0 if 0 ≤ Re(ψ) < 1
2
√

1+k1+k2+k3+k1k2+k1k3+k2k3

Notice that in the example of Seifert of P5,7,−3, Fig. 9.36, we have det HP5,7,−3 = −1
and σψ(P5,7,−3) ≡ 0. We utilize the result of this calculation in [PT].

9.6.2 Potential Function and Tristram-Levine Signature

Lemma 8 and Definition 17 suggest that there is a relation between the potential
function and the Tristram-Levine signature of links. In fact we have:
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Lemma 10 Assume that the potential function at iψ is different from zero. Then

iσψ(L) = �L(iψ)

|�L(iψ)| = �L(t0)

|�L(t0)| = ∇L(−i(ψ + ψ̄)

|∇L(−i(ψ + ψ̄)| ,

where �L(t0) is the Alexander-Conway polynomial and t0 = −ψ2 (
√

t0 = −iψ ).
In particular, the Tristram-Levine signature is determined modulo 4 by the appro-
priate value of the potential function (or Alexander-Conway polynomial); compare
Chap. III of [Prz12].

Proof The idea is to compare the formulas for the potential functions and the sig-
nature, that is:

�L(iψ) = det(iψAL − (iψ)−1AT
L) = in det(ψAL + ψ̄AT

L) and

σψ(L) = σ(ψ̄AL + ψAT
L)

In more detail, we write our proof as follows:
Let H be a non-singular Hermitian matrix of dimension n and λ1, λ2, . . . , λn its

eigenvalues (with multiplicities). Then

det(iH) = in det H = inλ1λ2 · · ·λn

= in(−1)n−1 |det H | = in−2n−1 |det H | = in1−n−1 |det H |
= iσ (H)|det H |.

Therefore, det(iH)
|det(iH)| = iσ (H). By applying this formula for H = ψAL + ψ̄AT

L ,

|ψ | = 1, and remembering that σ(H̄ ) = σ(H), we obtain the formula of Lem-
ma 10. �

Example 11 We can use Lemma 10 to compute quickly the Tristram-Levine signa-
ture31 of the torus link of type (2, n), T2,n. We use the fact that we already computed
the classical signature and Alexander-Conway (and potential) polynomial to be (for
k �= 0):

σ(T2,n) = 1−n, �T2,n
(z) = �T2,n

(x) = x−n − (−1)nxn

x−1 + x
= t

1−n
2

tn + (−1)n+1

t + 1
,

where z = x−1 −x = t1/2 − t−1/2. In particular σψ(T2,n) can change only if x = iψ

is a root of the potential function, and because �T2,n
(iψ) = i1−n ψn−ψ−n

ψ−ψ−1 , the only

changes holds at ψ satisfying ψ2n = 1 and ψ �= ±1.

31It is essentially the same proof we used in Chap. III of [Prz12] to show that a signature
is a skein equivalence invariant: The Alexander-Conway polynomial determines the signature
modulo 4 and the Murasugi type inequalities (|σψ(L+) − σψ(L0)| ≤ 1 and for Re(ψ) ≥ 0,
0 ≤ (σψ(L−) − σψ(L+) ≤ 2) gives the direction, and limit the size of the signature change, com-
pare also Corollary 13.
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We have for Reψ ≥ 0, k �= 0, 0 ≤ j ≤ n − 1:

σψ(T2,n) =

⎧⎪⎨
⎪⎩

1 − n if Re(ψ) > Re(eπ/n)

1 − n + 2j if Re(ejπ/n) > Re(ψ) > Re(e(j+1)π/n), j > 0

2 − n + 2j if Re(ψ) = Re(ejπ/n), j > 0.

Corollary 18 The classical (Trotter-Murasugi) signature σ(L) = σ1(L) = σL(−1),
satisfies:

iσ (L) = iσ (AL+AT
L) = �L(i)

|�L(i)
= �L(−1)

|�L(−1)| = DetL
|DetL | = ∇(−2i)

|∇(−2i)| ,
assuming DetL �= 0;

here �L(−1) denotes �L(t) for
√

t = −i. Recall, that DetL = �L(−1) = �L(i) =
det(i(AL + AT

L)) is called the determinant32 of a link L.

Example 12 We compute here the Tristram-Levine signature of the knot K = 62
using Lemma 10 and discuss the standard convention and notation.

We have:

σψ(62) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−2 if Re(ψ) > 1
2

√
1+√

5
2

−1 if Re(ψ) = 1
2

√
1+√

5
2 ≈ 0.636 . . .

0 if 0 ≤ Re(ψ) < 1
2

√
1+√

5
2 .

Step 1. We compute the Conway polynomial ∇62(z) = 1 − z2 + z4; we use reso-
lution in Fig. 9.37 to find this value and also observe that changing a crossing at p

results in the trivial knot and smoothing at p results in a connected sum of the right
handed trefoil knot and the left handed Hopf link (Kp

0 = 3̄1#H−). In particular the
unknotting number u(62) = 1.

Step 2. DetK = ∇K(−2i) = −11, thus δ(K) ≡ 2 mod 4, and because K can
be unknotted by changing one positive crossing, thus −2 ≤ σ(K) ≤ 0, and finally
σ(K) = −2.

Step 2. Roots of ∇62(z) are at z2 = −1±√
5

2 . Thus for t0 = ξ = −ψ2, z = −i(ψ +
ψ̄), we have ξ + ξ̄ = (iψ)2 + ¯(iψ)2 = z2 + 2 = 3±√

5
2 . Because |ψ | = |ξ | = 1,

therefore −2 ≤ ξ + ξ̄ ≤ 2 and ξ + ξ̄ = 3−√
5

2 (Re(ξ) = 3−√
5

4 ). Finally, assuming

Re(ψ) ≥ 0 we get ψ = 1
2

√
1+√

5
2 .

32We should mention here that |DetL | is equal to |det(GL)| where GL is a Goeritz matrix of L.
Furthermore, if DL is a special diagram of an oriented link L then GDL

= AL + AT
L for a prop-

erly chosen basis of H1(S) where S is the Seifert surface of DL constructed according to Seifert
algorithm. Thus not only DetL = det(iGDL

)) but also σ(L) = σ(GL); compare Corollary 3.
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Fig. 9.37 Computing the
Conway polynomial of the
knot K = 62.
∇62 (z) = ∇T1 (z)+∇3̄1#H− (z) =
1+(1+z2)(−z) = 1−z2 −z4

Step 3. For Re(ψ) ≥ 0, the value Re(ψ) = 1
2

√
1+√

5
2 is the only place where

the Tristram-Levine signature σψ(62) can be changing, and because we know al-
ready that σ1(62) = −2 and σi(62) = 0 we conclude that σψ(62) = −2 if Re(ψ) >

1
2

√
1+√

5
2 and σψ(62) = 0 if 0 ≤ Re(ψ) < 1

2

√
1+√

5
2 .

Step 4. It remains to show that σψ(62) = −1 for Re(ψ) = 1
2

√
1+√

5
2 . Here we

argue that, because the considered ψ is the singular root of the Alexander polyno-
mial (precisely t0 = −ψ2), therefore the value of the signature at this point cannot
differ by more than one from the neighboring values (so from 0 and from −2).
More detailed analysis of the Hermitian matrix ψ̄A + ψAT , leads to the conclusion
that if t0 = −ψ2 is a singular root of the Alexander polynomial of a knot K then

σψ(K) = σψ− (K)+σψ+ (K)

2 , where ψ− and ψ+ are parameters just before ψ and just
after ψ on the unit circle [Mat77].

In the convention of [Gor78, CL] one defines the Tristram-Levine signature func-
tion of variable ξ (|ξ | = 1) as σL(ξ) = σ((1 − ξ̄ )A + (1 − ξ)AT )). For Re(ψ) ≥ 0,
one has σψ(L) = σL(ξ), where ξ = −ψ2 (ψ = 1−ξ

|1−ξ | ). In knotinfo Web page

[CL], the parameter s satisfying ξ = eπis is used. In particular, σ62(ξ) = −1 for

Re(ξ) = 3−√
5

4 = 1 − cos(π/5) ≈ 0.191, and s = arccos(1 − cos(π/5))/π ≈ 0.44
(compare Remark 3).

Example 13 The knot 942 = is the smallest knot which is not am-

phicheiral but the Jones, HOMFLYPT, and Kauffman polynomials are symmet-
ric (e.g. V942(t) = V942(t

−1)); compare [Prz12]. The non-amphicheirality of 942
is detected by the signature: σ(942) = −2 = −σ(942). This description can leave
however an impression that the fact that 942 is not ambient isotopic to its mir-
ror image cannot be checked by the Jones polynomial alone. However, it follows
from Corollary 18 (compare also Exercise 2) that (−1)σ(K)/2 = sign(VK(−1))

for any knot K , thus if a knot is amphicheiral then VK(−1) > 0. For 942 we
have V942(−1) = Det942 = −7 < 0 thus 942 is not amphicheiral. Furthermore, be-
cause 942 can be unknotted by changing one positive crossing, we can deduce that
σ(942) = −2.
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In fact, the absolute value of the determinant |DetK | = |VK(−1)| = |�K(−1)| =
|∇(−2i)| suffices to show that the knot 942 is not amphicheiral. K. Murasugi proved
in [Mur65] (Theorem 5.6), the following result:

Theorem 12 For any knot K

σK ≡ |DetK | − 1 mod 4

Proof We use the fact that DetK = ∇(−2i) ≡ 1 mod 4. Therefore, |DetK | ≡ 1
mod 4 if DetK > 0 and |DetK | ≡ −DetK ≡ −1 mod 4 if DetK < 0. Furthermore,
from Corollary 18 follows that DetK = (−1)σ(K)/2|DetK |. Therefore,

σK
mod 4≡

{
0 if |DetK | ≡ 1 mod 4

2 if |DetK | ≡ 3 mod 4

and Theorem 12 follows. �

Murasugi’s Theorem leads to a curious formula:

Corollary 19 For any knot K

DetK = (−1)(|DetK |−1)/2|DetK |.

J. Milnor proved that the signature of a knot with the Alexander polynomial equal
to one is equal to zero [Mil68]. In fact, it follows directly from Lemma 10 that the
Tristram-Levin signature can change only at roots of the unit length of Alexander
polynomial; therefore a link which has the Alexander polynomial without any root
on the unit circle has a constant Tristram-Levin signature function. Thus:

Corollary 20 [Mil68] If the Alexander polynomial �L(t) is different from zero on
the unit circle then for any ψ , (|ψ | = 1), we have σψ(L) = 0.

If we assume only that the determinant of a knot is equal to 1 then we get as a
conclusion that the signature is divisible by eight (compare [Mur96], p. 149 after
Exercise 7.5.4):

Proposition 4 If the determinant of a knot K is equal to 1 then σ(K) ≡ 0 mod 8.

Proof DetK = 1 means that for a Seifert matrix A of a knot K , det(A + AT ) = 1;
The matrix/form A + AT is often called the Trotter form. The diagonal entries of
the Trotter form are even because the diagonal of A + AT is twice a diagonal of A.
We can summarize these conditions by saying that the Trotter form is even and uni-
modular; recall that unimodularity means that det(A + AT ) is invertible (here equal
to ±1). The form is even if x(A + AT )xT is always an even number. Finally, every
even unimodular form over Z has its signature divisible by 8; see Theorem II.5.1
in [MH73]. �
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9.7 A Combinatorial Formula for the Signature of Alternating
Diagrams; Quasi-alternating Links

Corollary 18 has various interesting consequences. P. Traczyk used it back in 1987
[Tra04] to find the combinatorial formula for the signature of alternating links, start-
ing from the analysis of the condition σ(L+) = σ(L0)−1 (and σ(L−) = σ(L0)+1)
and observing that it holds for any essential crossing of an alternating diagram. The
property was refined by Manolescu, Ozsvath, and Szabo and used to define quasi-
alternating links [OS05], whose Khovanov [Kho00] and Heegaard Floer homol-
ogy share with alternating links many interesting properties [MO, CK] (compare
Chap. X of [Prz12]). The precise definition of quasi-alternating links is given in
Sect. 9.7.1. The property of link diagrams which Manolescu, Ozsvath, and Szabo
observe to be important, and which always holds for alternating links, is the follow-
ing (compare Sect. 9.1.4):

|Det | = |Det | + |Det |

The following result combines the above properties (compare [MO]):

Theorem 13 The following two conditions are equivalent, provided that the deter-
minants of L0 and L∞ are not equal to zero33

(a) |DetL+ | = |DetL0 | + |DetL∞ |
(b) σ(L+) = σ(L0) − 1 and σ(L+) = σ(L∞) − 1

2 (w(L0) − w(L∞)).

A similar equivalence also holds for a negative crossing:

(a′) |DetL− | = |DetL0 | + |DetL∞ |
(b′) σ(L−) = σ(L0) + 1 and σ(L−) = σ(L∞) + 1

2 (w(L0) − w(L∞)).

Proof ((a) ⇔ (b)): We apply the formula Det(L) = iσ (L)|Det(L)| and use the rela-
tion between the Jones polynomial, and its Kauffman bracket variant, with the signa-
ture. Recall, that the Jones polynomial VL(t) of an oriented link L is normalized to
be one for the trivial knot and satisfies the skein relation t−1V (t) − tV (t) =

(t
1
2 − t− 1

2 )V (t). For t = −1 (or, more precisely,
√

t = i) we obtain exactly the

skein relation of the determinant: Det −Det = −2i Det . Thus DetL =
VL(−1);

√
t = i. Recall also that the Kauffman bracket polynomial of unoriented

link diagrams, 〈D〉 ∈ Z[A±1], is defined by the following properties [Kau87a]:

33In (a) one deals with a Kauffman skein triple of unoriented links; in (b) one chooses any orienta-

tion of L+ (e.g. ) and related orientation of L0 ( ), and any orientation of L∞ (e.g. or

).
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(i) 〈©〉 = 1
(ii) 〈© � D〉 = −(A2 + A−2)〈D〉

(iii) 〈 〉 = A〈 〉 + A−1〈 〉
Furthermore, if �D is an oriented diagram with underlying unoriented diagram D

then V �D(t) = (−A3)w( �D)〈D〉. Thus for A2 = −i (A4 = −1) we get:

Det(D) = (−A3)−w(D)〈D〉 = Aw(D)〈D〉.
Recursive formula for the Kauffman bracket 〈D+〉 = A〈D0〉 + A−1〈D∞〉 leads to

(−A3)w(D+) Det(D+) = A(−A3)w(D0) Det(D0) + A−1(−A3)w(D∞) Det(D∞)

then leads to A−w(D+) Det(D+) = A1−w(D0) Det(D0)+A−1−w(D∞) Det(D∞), then
leads to

A−w(D+)iσ (D+)|Det(D+)| = A1−w(D0)iσ (D0)|Det(D0)|
+ A−1−w(D∞ iσ (D∞|Det(D∞)|

and eventually to

|Det(D+)|
= Aw(D+)−w(D0)+1iσ (D0)−σ(D+)|Det(D0)|

+ Aw(D+)−w(D∞)−1iσ (D∞)−σ(D+)|Det(D∞)|
= iσ (D0)−σ(D+)−1|Det(D0)| + iσ (D∞)−σ(D+)−1/2(w(D0)−w(D∞))|Det(D∞)|.

When we compare this formula with that of Theorem 13(a) we see that (a) holds iff
iσ (D0)−σ(D+)−1 = 1 and iσ (D∞)−σ(D+)−1/2(w(D0)−w(D∞)) = 1 and these conditions
are equivalent to conditions σ(D0) − σ(D+) ≡ 1 mod 4 and σ(D∞) − σ(D+) −
1
2 (w(D0) − w(D∞) ≡ 0 mod 4. These conditions are equivalent to (b) because by
Corollary 5(i), we have generally that |σ(D+) − σ(D0)| ≤ 1). Furthermore, in gen-
eral, we have that |σ(D+)−σ(D∞)+ 1

2 (w(D0)−w(D∞)| ≤ 2. The last inequality
requires some explanation and consideration of two cases in which is either a
mixed crossing or a self-crossing.

(m) If is a mixed crossing then let Dj be a component of D+ such that the

change of the orientation of Dj results in the link D′− = . Then by Corol-

lary 5 |σ( ) − σ( )| ≤ 1. Further, by Proposition 2.11(ii), |σ( +
2lk(Dj ,D+ − Dj) − σ( )| ≤ 1. Because 4lk(Dj ,D+ − Dj) = w(D+) −
w(D′−) = w( ) − w( ) + 2 we obtain |σ(D+) − σ(D∞) + 1

2 (w(D0) −
w(D∞))+1| ≤ 1 and finally −2 ≤ σ(D+)−σ(D∞)− 1

2 (w(D0)−w(D∞)) ≤
0.
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(s) If is a self-crossing then in D0 = the two parallel arcs belong to
different link components. Let Dj be the component that contains the lower
arc and let D′

0 = be obtained from D0 by changing the orientation of

Dj . After performing the second Reidemeister move on D′
0 we obtain a di-

agram which has two mixed crossings. We use Corollary 5(i) on

one of them to get |σ( ) − σ( )| ≤ 1. Because σ(D′
0) = σ(D0) +

2lk(Dj ,D0 − Dj) = σ(D0) − 1
2 (w(D0) − w(D′

0)) = σ(D0) − 1
2 (w(D0) −

w(D∞)), we obtain |σ( ) − σ( ) + 1
2 (w( ) − w( ))| ≤ 1, then

|(σ ( ) − σ( )) + (σ ( ) − σ( ) + 1
2 (w( ) − w( )))| ≤ 1, and

finally |σ( ) − σ( ) + 1
2 (w( ) − w( ))| ≤ 2 as required.

The equivalence (a′) ⇔ (b′) follows from (a) ⇔ (b) by considering mirror images
of diagrams from (a) and (b). In particular, for the diagram D̄ being the mirror image
of D, we always have that σ(D̄) = −σ(D), and w(D̄) = −w(D)). �

It is not difficult to see that any crossing of an alternating diagram satisfies prop-
erties (a), (a′) of Theorem 13. This follows from the fact that if D is an alternat-
ing diagram then also D0 and D∞ are alternating, and for an alternating diagram
|DetD | can be interpreted as the number of spanning trees of the underlying Tait
graph, Gb(D), and the number of spanning trees is additive under deleting contract-
ing rule; see Sect. 9.1.4. These ideas are developed in Chap. V of [Prz12]. Without
referring to it, the properties (a) and (a′) of alternating links follow from the proof of
Traczyk’s formula for the signature of alternating diagrams which we present below.
First, we have to recall the necessary terminology. In fact, we use this as an oppor-
tunity for introducing some basic language that unifies the notion of Tait surface
and Tait graph (Footnote 14) with that of Seifert surface and Seifert graph [Cro89].
Before the general definition let us recall the definition of the Seifert graph.

Definition 18 [Cro89] The Seifert graph of an oriented diagram �D is a signed (pla-
nar) graph �( �D) whose vertices correspond to Seifert circles of the diagram and
whose edges correspond to crossings of the diagram. The sign of an edge is deter-
mined by the sign of the corresponding crossing.

In the more general setting we allow arbitrary smoothings of crossings of (not
necessarily oriented) diagram D.

Definition 19 A Kauffman state s of D is a function from the set of crossings of
D to the set {+1,−1}. Equivalently, we assign to each crossing of D a marker
according to the following convention:

By Ds we denote the system of circles in the diagram obtained by smoothing all
crossings of D according to the markers of the state s, Fig. 9.38. |Ds | denotes the
number of circles in Ds .
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Fig. 9.38 Markers and
associated smoothings

In this notation the Kauffman bracket polynomial of D is given by the state sum
formula:

〈D〉 =
∑

s

Aσ(s)(−A2 − A−2)|Ds |−1,

where σ(s) = ∑
p s(p) is the number of positive markers minus the number of

negative markers in the state s.
The state sum formula looks like a useful but not necessarily sophisticated tool.

However, state sums (and their limits) are basic and deep concepts in statistical
physics and very likely the next breakthrough in Knot Theory (and more) will utilize
a connection (still to be discovered) between phase transition of a physical system
and Khovanov type homology based on closeness of states of the system (possibly
persistent homology [EH] will play a role here).

But we are straying too far from our local goal of associating graphs and surfaces
to any Kauffman state s.

Definition 20 [PPS09]

(i) Let D be a diagram of a link and s its Kauffman state. We form a state graph,
Gs(D), associated to D and s as follows. Vertices of Gs(D) correspond to
circles of Ds . Edges of Gs(D) are in bijection with crossings of D and an
edge connects given vertices if the corresponding crossing connects circles of
Ds corresponding to the vertices. As in the case of the Tait graph, Gs(D) is
a signed graph where the sign of an edge e(p) is s(p), that is the sign of the
marker of the Kauffman state s at the crossing p.

(ii) In the language of associated graphs we can state the definition of an s-adequate
diagram as follows: the diagram D is s-adequate if the graph Gs(D) has no
loops (adequacy is studied and utilized in Chap. V of [Prz12]).

(iii) We associate with every Kauffman state s of a diagram D, a state surface
Fs(D) embedded in R3 and with ∂Fs(D) = D, in a manner similar to Con-
struction 5 of a Seifert surface. That is, we start from the collection of cir-
cles Ds . Each of the circles bounds a disk in the projection plane. We make
the disks disjoint by pushing them slightly up above the plane of projection,
starting from the innermost disks. We connect the disks together at the original
crossings of the diagram D by half-twisted bands so that the 2-manifold which
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we obtain has D as its boundary, see Fig. 9.27 (we ignore orientation of the di-
agram, and the resulted surface can be unorientable). Equivalently, we can start
a construction of Fs(D) from the graph Gs(D) as a spine (strong deformation
retract) of the constructed surface and proceed as follows: The graph Gs(D)

possesses an additional structure, that is a cyclic ordering of edges at every
vertex following the ordering of crossings at any circle of Ds . The sign of each
edge is the label of the corresponding crossing. In short, we can assume that
Gs(D) is a ribbon (or framed) graph, and that with every state we associate a
surface Fs(G) whose core is the graph Gs(D). Fs(G) is naturally embedded in
R3 with ∂Fs(G) = D. If s is the state separating black regions of checkerboard
coloring of R2 − D then Fs(G) is the Tait surface of the diagram described in
Exercise 2. For s = �s, that is, D is oriented and markers of �s agree with orien-
tation of D, Gs(D) is the Seifert graph of D and Fs(G) is the Seifert surface
of D obtained by Seifert construction. We do not use this additional data in this
survey but it may be of great use in analysis of Khovanov homology (compare
[AP01] or Chap. X of [Prz12]).

The surface Fs(G) is not the only surface associated with the graph Gs(D). An-
other such surface is Turaev surface, M(s) [Tur87], which for positive (s+) or nega-
tive (s−) states of an alternating diagram is a planar surface. With some justification
Turaev surface can be called a background surface of a diagram. The construction
of M(s) for a given state s of D is illustrated, after [Tur87], in Fig. 9.39. That is,
M(s) is obtained from a regular neighborhood of a projection of a link by modify-
ing (by half-twists) neighborhoods of s-wrong edges (see Fig. 9.39 and compare it
to Fig. 9.8 to see that any alternating diagram has only s+-true edges). Notice that
M(s) depends on s and the link projection but not on over-under information of a
link diagram. Alternatively, we can say that M(s) is a surface realizing the natural
cobordism between circles of Ds and circles of D−s . In [DFK+08] the Turaev genus
of a link is defined to be the minimal genus of Turaev surface over all diagrams D

of a link with s+(D) states. The immediate consequence is that the alternating link
has the Turaev genus equal to zero. Notice also, that if we cup off the circles of Ds

in M(s) by 2-discs we obtain the surface M+(s) with boundary D−s and the graph
Gs(D) as its spine.

Fig. 9.39 Turaev surface
M(s) is composed of squares
along every crossing of D

connected by ribbons
according to convention
illustrated in this figure. s-true
edge and s-wrong edge are
arcs of the diagram D

connecting crossings and the
name depends on the label
given by s to boundary
crossings [Tur87]
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Fig. 9.40 Checkerboard
shading of the plane of the
projection: (a) Tait’s, (b) dual
to Tait’s

Going back to Traczyk’s combinatorial formula, we recall the convention for
checkerboard shading of the projection plane. In an alternating diagram we choose
the standard shading as in Fig. 9.40(a) complementary to the shading given in
Fig. 9.40(b) (this essentially agrees with Tait’s convention of checkerboard color-
ing, however we do not assume that the outside region is white or black).

We denote by B the number of black (shaded) areas and by W the number of
white areas (for an alternating diagram D we have B = |Ds−| and W = |Ds+|).
Furthermore for an oriented diagram �D let �( �D) denote its Seifert graph (Def-
inition 18), T its (signed) spanning tree and d+(T ) (resp. d−(T )) the number
of positive (resp. negative) edges in T . For an alternating diagram the numbers
d+(T ), d−(T ) do not depend on T so we can write d+( �D), and d−( �D) in this
case34

Lemma 11 If �D is an oriented connected alternating diagram of a link then

1

2
(w( �D) + |Ds+| − |Ds−|) = d+( �D) − d−( �D)

In particular, the left hand side of the equation is unchanged when one goes from �D
to �Dp

0 for a non-nugatory35 crossing p (in �Dp

0 the crossing p is smoothed according

to orientation of �D).

Proof One can easily prove Lemma 11 by induction on the number of non-nugatory
crossings of �D. First one observes that if �D has only nugatory crossings then �( �D)

is a tree and d+( �D) = c+( �D) = s+( �D)−1 (and d−( �D) = c−( �D) = s−( �D)−1), thus
the formula in Lemma 11 holds. In the inductive step we consider a non-nugatory
crossing p of �D and compare ingredients of the formula for �D and �Dp

0 , and having
the formula for �Dp

0 deduct it for �D. It is worth it however to compare d+, d−, c+,
c−, |Ds+|, and |Ds−|) in more detail. �

34This is the case for more general class of homogeneous diagrams introduced in [Cro89] and
defined as diagrams for which 2-connected components of the Seifert graph have all edges of the
same sign (i.e. they are homogeneous). Alternating diagrams are special cases of homogeneous
diagrams; this well known fact follows also from Lemma 11 as the lemma can be proved for a
fixed choice of a spanning tree and the left side of the equation does not depend on the choice of a
spanning tree.
35The crossing p of D is called nugatory if D

p

0 has more (graph) component from D.
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Fig. 9.41 �s(p) = s+(p) if
sgn(p) = 1, and
�s(p) = s−(p) if sgn(p) = −1

Lemma 12 Let p be any crossing of an oriented diagram �D. Then

(i)

�s(p) =
{

s+(p) if p is positive

s−(p) if p is negative

In particular if �D is a positive diagram then �s = s+, and if �D is a negative
diagram then �s = s−.

(ii) |( �Dp

0 )�s | = | �D�s |,
(iii)

|( �Dp

0 )s+| =
{

| �Ds+| if p is positive

| �Ds+| − ε+ if p is negative

|( �Dp

0 )s−| =
{

| �Ds−| − ε− if p is positive

| �Ds−| if p is negative

Here ε+ and ε− are +1 or −1. If p is a non-nugatory crossing of an alternating
diagram then ε+ = ε− = 1.

Proof (i) The proof is illustrated in Fig. 9.41.
The other parts are equally elementary and we leave them as exercises for the

reader. �

Lemma 13 If D is a connected alternating diagram, then for a complex number A

such that A4 = −1, we have:

(i) 〈D〉A4=−1 = AB−W |〈D〉A4=−1|
(ii) For any crossing p of an alternating diagram D one has:

|〈D〉A4=−1| = |〈Dp

0 〉A4=−1| + |〈Dp∞〉A4=−1|
in other words the absolute value of the determinant of a diagram is additive
under the Kauffman bracket skein triple.

Proof If all crossings of D are nugatory, then D represents the trivial knot. Choose
an orientation of D. The orientation defines signs of crossings, which are inde-
pendent on chosen orientation. As we noticed in the proof of Lemma 11 in this
case c+ = W − 1 and c− = B − 1. Thus 〈D〉 = (−A3)w(D) = (−A3)W−B (for a
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knot w(D) does not depend on the orientation of D). For A4 = −1, 〈D〉A4=−1 =
(−A4)W−B(A)B−W = AB−W as required. The inductive step follows easily: If p is
a non-nugatory crossing of D, then from the Kauffman bracket skein relation

〈D〉 = A〈D0〉 + A−1〈D0+〉
and by the inductive assumption, for A4 = −1, it follows that:

〈D〉A4=−1 = AAB−W−1|〈Dp

0 〉A4=−1| + A−1AB−W+1|〈Dp∞〉A4=−1|
= AB−W

(|〈Dp

0 〉A4=−1| + |〈Dp∞〉A4=−1|
) = AB−W |〈D〉A4=−1|

which completes the proof of Lemma 13(i). It also establishes Lemma 13(ii) for a
non-nugatory crossing p of a connected diagram D. If p is a nugatory crossing,
then 〈Dp

0 〉A4=−1| or |〈Dp∞〉A4=−1| is equal to zero and (ii) holds immediately. If
D is not a connected diagram then (ii) holds for any connected component of D

and (ii) follows because Kauffman bracket (and signature) is multiplicative under
disjoint sum. �

As a corollary of Theorem 13, Lemma 11, and Lemma 13, we have Traczyk’s
result.

Theorem 14 [Tra04] If D is a reduced36 alternating diagram of an oriented link,
then

(1) σ(D) = −(c+ − c−) + d+ − d− = −w + d+ − d−
(2) σ(D) = − 1

2 (c+ − c−) + 1
2 (W − B) = − 1

2w + 1
2 (W − B) = − 1

2 (w + |Ds+| −
|Ds−|)

(3) σ(D) = σ(D
p

0 ) − sign(p)

9.7.1 Quasi-alternating Links

Quasi-alternating links were introduced by Ozsvath, and Szabo in [OS05] and fur-
ther studied by Manolescu-Ozsvath, Champanerkar-Kofman [MO, CK]. Their def-
inition is motivated by properties (a), (a′) of Theorem 13, described in the theorem
relations to signature, and applications of these properties to the thinness of Kho-
vanov and Heegaard Floer homology:

Definition 21 [OS05] The family of quasi-alternating links is the smallest family
of links which satisfies:

(i) The trivial knot is quasi-alternating.
(ii) If L is a link which admits a crossing such that

36Reduced means that no crossing of D is nugatory.
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(1) both smoothings (L0 and L∞) are quasi-alternating, and
(2) |DetL | = |DetL0 | + |DetL∞ |,
then L is quasi-alternating.

The crossing used in the definition is called a quasi-alternating crossing of L.

Notice that a split link has its determinant equal to 0 so it cannot be quasi-
alternating (the determinants of quasi-alternating links are always positive as easily
follows by induction from Definition 21). Therefore, we can use condition (b) of
Theorem 13 as an alternative definition of the family of quasi-alternating links.

One can ask why we choose condition (2) in the definition of quasi-alternating
links and not a weaker first part of conditions (b), (b′) from the Theorem 13
(σ(D+) = σ(D0) − 1 or σ(D−) = σ(D0) + 1). The first answer is purely practical:
this is exactly what is needed to have thin Khovanov (and Heegaard Floer) homol-
ogy (see Chap. X of [Prz12]). One can also argue that a condition which refers only
to unoriented links is sometimes a plus.

We already have proved that non-split alternating links satisfy properties which
make them quasi-alternating: if D is an alternating diagram then also D0 and D∞
are alternating, and every non-nugatory crossing of an alternating diagram is quasi-
alternating (satisfies property (ii)(2)) as long as D is a non-split link.

According to [MO] among the 85 prime knots with up to nine crossings, 82
are quasi-alternating (71 are alternating), 2 are not quasi-alternating (819 and 942),
and the knot 946 still remains undecided. It was later showed by A. Schumakovitch
using odd Khovanov homology that 946 is not quasi-alternating. The classification
of quasi-alternating knots up to 11 crossings was completed by J. Greene in [Gre].

It was also determined which pretzel links are quasi-alternating:

Theorem 15 ([CK, Gre] Characterization of quasi-alternating pretzel links) The
pretzel link P(1,...,1,p1,...,pn,−q1,...,qm) with e 1th, e + n + m ≥ 3, and pi ≥ 2, qi ≥ 3
is quasi-alternating if and only if one of the conditions below holds:

(1) e ≥ m,
(2) e = m − 1 > 0,
(3) e = 0, n = 1, and p1 > min(q1, . . . , qm),
(4) e = 0, m = 1, and q1 > min(p1, . . . , pn),

The same is true on permuting parameters37 pi and qj .

Partial classification of quasi-alternating Montesinos links is advanced in [CK,
Gre, JS, Wid09].

The importance of quasi-alternating links rests on the following results of
Manolescu and Ozsvath:

(1) Quasi-alternating links are Khovanov homologically σ -thin (over Z).
(2) Quasi-alternating links are Floer homologically σ -thin (over Z2).

37Thus all pretzel links are covered in the theorem.
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Fig. 9.42 A quasi-alternating knot 13n1659 with 2 diagrams of (minimal number) 13 crossings. The
first diagram is (Conway) algebraic but no crossing is quasi-alternating. In the second diagram,
based on Conway’s polyhedron 6∗ , the circled crossing is quasi-alternating. The determinant of
13n1659 is equal to 51 while smoothings of the quasi-alternating crossing gives the trivial knot and
a quasi-alternating link with the determinant equal to 50, [JS]

We explain the meaning of the first result in Chap. X of [Prz12] showing also
how to generalize it to Khovanov homologically k-almost thin links.

To have some measure of complexity or depth of quasi-alternating links we intro-
duce the quasi-alternating computational tree index QACTI(L), defined inductively
from the definition of quasi-alternating link as follows:

Definition 22 For the trivial knot T1, QACTI(T1) = 0. QACTI(L) is the minimum
over all quasi-alternating crossings p (of any diagram) of L of max(QACTI(Lp

0 ),

QACTI(Lp∞)) + 1.
In other words, QACTI(L) is the minimal depth of any binary computational

resolving tree of L using only quasi-alternating crossings and having the trivial knot
in leaves.

From Definitions 21 and 22, and Theorem 13 we get an approximation on
QACTI(L):

Corollary 21 Let L be a quasi-alternating link then:

(i) |Det(L)| − 1 ≥ QACTI(L) ≥ log2(|Det(L)|)
(ii) QACTI(L) ≥ |σ( �L)|, for every orientation of L.

(iii) If p is a quasi-alternating crossing of L then
QACTI(L) ≤ QACTI(Lp

0 ) + 1, and QACTI(L) ≤ QACTI(Lp∞) + 1.

Let us finish this survey with a nice example of a quasi-alternating knot of 13
crossings due to S. Jablan and R. Sazdanovic [JS]; see Fig. 9.42.
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Chapter 10
An Overview of Property 2R

Martin Scharlemann

Abstract The celebrated Property R Conjecture, affirmed by David Gabai (J. Dif-
fer. Geom. 26:461, 1987), can be viewed as the first stage of a sequence of conjec-
tures culminating in what has been called the Generalized Property R Conjecture.
This conjecture is relevant to the study of outstanding problems in both 3-manifolds
(specifically, links in S3) and 4-manifolds (specifically, the Schoenflies Conjecture
and the smooth Poincare Conjecture). Here we give an overview of part of forth-
coming work of R. Gompf, A. Thompson and the author which considers the next
stage in such a progression, called the Property 2R Conjecture.

It is shown that the lowest genus counterexample (if any exists) cannot be fibered.
Exploiting Andrews-Curtis type considerations on presentations of the trivial group,
it is argued that one of the simplest possible candidates for a counterexample, the
square knot, probably is one. This suggests there is a genus one counterexample,
though we have so far been unable to identify it. Finally, we note that the coun-
terexample need not be an obstacle to the sort of 4-manifold consequences towards
which the Generalized Property R Conjecture is aimed.

10.1 Generalizing Property R

A major development in knot theory during the 1980’s was David Gabai’s proof of
the Property R theorem [Gab87]:

Theorem 1 (Property R) If 0-framed surgery on a knot K ⊂ S3 yields S1 × S2 then
K is the unknot.
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Fig. 10.1 Unlinking after a handle slide

In the ensuing quarter century some effort has been made to sensibly generalize
this conjecture, though very little public progress has been made. It is a particularly
provocative conjecture because it is relevant to problems in both dimension 3 and
dimension 4. Here we give a brief outline of some forthcoming results by R. Gompf,
A. Thompson and the author on the question [GST], results that followed a 2007
meeting arranged by Mike Freedman at Microsoft’s Station Q. Proofs can be found
in [GST].

There is a plausible way of trying to generalize Theorem 1 to links in S3, but for
more than one component so-called handle-slides are required. (The terminology is
motivated by a related 4-dimensional picture.) Suppose U and V are two compo-
nents of a framed link L ⊂ S3. A handle-slide of U over V changes L to the link
obtained by replacing U with a band sum U of U and a copy of V that has been
pushed off of V by its framing.

Let #n(S
1 × S2) denote the connected sum of n copies of S1 × S2. The General-

ized Property R conjecture (see [Kir97, Problem 1.82]) says this:

Conjecture 1 (Generalized Property R) Suppose L is an integrally framed link of
n ≥ 1 components in S3, and surgery on L via the specified framing yields #n(S

1 ×
S2). Then there is a sequence of handle slides on L that converts L into a 0-framed
unlink.

Framing is not an issue: an elementary homology argument shows that any can-
didate must have framing 0 on all components (and also linking number 0 between
any pair of components.) In the case n = 1 no slides are possible, so Conjecture 1
does indeed directly generalize Theorem 1. On the other hand, for n > 1 it is
certainly necessary to include the possibility of handle slides. Figure 10.1 shows
that 0-framed surgery on a certain link of the unknot with the square knot creates
#2(S

1 × S2). In a similar spirit, Fig. 10.2 shows that even more complicated such
framed links are easily created.

There is an immediate topological restriction on the link itself (see [Hil81, The-
orem 2]) a restriction that hints at the connection with 4-dimensional problems.

Proposition 1 (Hillman) Suppose L is a framed link of n ≥ 1 components in S3,
and surgery on L via the specified framing yields #n(S

1 × S2). Then L bounds a
collection of n smooth 2-disks in a 4-dimensional homotopy ball bounded by S3.
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Fig. 10.2 Complicating the link by a handle slide

An equivalent way of stating the conclusion, following Freedman’s proof of the
4-dimensional topological Poincare Conjecture [Fre82], is that L (and so each com-
ponent of L) is topologically slice in B4.

The Generalized Property R Conjecture is a conjecture about framed links, but
if we include in the conjecture the number of components and state it somewhat
obliquely, it can be viewed as a sequence of conjectures about knots:

Definition 1 A knot K ⊂ S3 has Property nR if it does not appear among the com-
ponents of any n-component counterexamples to the Generalized Property R con-
jecture.

Conjecture 2 (Property nR Conjecture) All knots have Property nR.

Thus the Generalized Property R conjecture for all n component links is equiv-
alent to the Property nR Conjecture for all knots. Following Proposition 1 any non-
slice knot has Property nR for all n. The main focus of our work has been on Prop-
erty 2R.

10.2 Property 2R

To appreciate the role of handle-slides in the argument it is instructive to consider
two very special cases of Property 2R. The first was shown to me by Alan Reid:

Proposition 2 (A. Reid) Suppose L ⊂ S3 is a 2-component link with tunnel num-
ber 1. If surgery on L gives #2(S

1 × S2) then L is the unlink of two components.

Note that handle-slides (the new and necessary ingredient for Generalized Prop-
erty R) do not arise. In contrast, Fig. 10.1 shows that handle slides are needed in the
proof of the following:

Proposition 3 The unknot has Property 2R.

That is, if surgery on a framed link of two components in which one component is
the unknot gives #2(S

1 ×S2), then after handle-slides the link becomes the 0-framed
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unlink. The proof shows more: only handle-slides over the unknotted component are
needed. That is, the unknotted component does not change during the sequence of
handle-slides.

In contrast, the proof of the next result explicitly does require handle slides over
both components of the link.

Theorem 2 No smallest genus counterexample to Property 2R is fibered.

In other words: Suppose surgery on a framed link of two components gives
#2(S

1 × S2), and one component of the link is a fibered knot U . Then, perhaps after
handle-slides, at least one component of the link will have genus less than genus(U).
The proof makes use of the central result of [ST], which leads fairly directly to this
preliminary observation that is interesting in its own right:

Lemma 1 Suppose surgery on a framed link of two components U,V ⊂ S3 gives
#2(S

1 × S2), and suppose U is a fibered knot. Then, perhaps after some slides
over U , the component V lies on a fiber of U and the 0-framing of V in S3 co-
incides with the framing given by the fiber.

Following Lemma 1 it is natural to ask what properties V must have in the fiber
in order that surgery on the pair U,V gives #2(S

1 × S2). A surprising application
of Heegaard splitting theory gives:

Proposition 4 Suppose surgery on a framed link of two components U , V ⊂ S3

gives #2(S
1 × S2). Suppose further that

• U is a fibered knot
• V lies on a fiber F− of U and
• the framing of V by the fiber is the 0-framing in S3.

Then, for h : F− → F− the fiber monodromy , h(V ) can be isotoped off of V in the
closed surface F = F− ∪∂ D2.

The distinction between the isotopy here taking place in the closed surface rather
than the original punctured surface F− could be crucial. For if it were not, the fol-
lowing proposition would guarantee that all genus two fibered knots have Prop-
erty 2R, and this is regarded as highly unlikely for reasons which we will eventually
discuss.

Proposition 5 Suppose U ⊂ S3 is a fibered knot, with fiber the punctured surface
F− ⊂ S3 and monodromy h− : F− → F−. Suppose a knot V ⊂ F− has the property
that 0-framed surgery on the link U ∪ V gives #2(S

1 × S2) and h−(V ) can be
isotoped to be disjoint from V in F−. Then either V is the unknot or genus(F−) �=
1, 2.

In the special case of genus two fibered knots one can further show that, at the
same time that h(V ) can be isotoped in the closed surface F to be disjoint from V , it
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will never be isotopic to V itself and, conversely, the properties we have shown suf-
fice to characterize those curves V in the fiber which have the property that surgery
on U , V yields #2(S

1 × S2). That is:

Proposition 6 Suppose U ⊂ S3 is a genus two fibered knot and V ⊂ S3 is a disjoint
knot. Then 0-framed surgery on U ∪V gives #2(S

1 ×S2) if and only if after possible
handle-slides of V over U ,

1. V lies in a fiber of U ;
2. in the closed fiber F of the manifold M obtained by 0-framed surgery on U ,

h(V ) can be isotoped to be disjoint from V ;
3. h(V ) is not isotopic to V in F ; and
4. the framing of V given by F is the 0-framing of V in S3.

We turn to the specific and very simple example of the genus two fibered knot
called the square knot Q. It is the connected sum of the right-hand trefoil knot and
the left-hand trefoil knot. There are many 2-component links containing Q so that
surgery on the link gives #2(S

1 × S2). Figure 10.1 shows (by sliding Q over the
unknot) that the other component could be the unknot; Fig. 10.2 shows (by instead
sliding the unknot over Q) that the second component could be quite complicated.
It turns out that, up to handle-slides of V over Q, there is an easy description of
all two component links Q ∪ V , so that surgery on Q ∪ V gives #2(S

1 × S2). The
critical ingredient in the characterization of V is the collection of properties listed
in Proposition 6.

Let M be the 3-manifold obtained by 0-framed surgery on the square knot Q, so
M fibers over the circle with fiber the closed genus 2 surface F . There is a simple
picture of the monodromy h : F → F of the bundle M , obtained from a similar
picture of the monodromy on the fiber of a trefoil knot, essentially by doubling it
[Rol76, Sect. 10.I]:

Regard F as obtained from two spheres by attaching 3 tubes between them. See
Fig. 10.3. There is an obvious period 3 symmetry ρ : F → F gotten by rotating 2π

3
around an axis intersecting each sphere in two points, and a period 2 symmetry (the
hyperelliptic involution) σ : F → F obtained by rotating around a circular axis that
intersects each tube in two points. Then h = ρ ◦ σ = σ ◦ρ is an automorphism of F

of order 2 × 3 = 6.
The quotient of F under the action of ρ is a sphere with 4 branch points, each

of branching index 3. Let P be the 4-punctured sphere obtained by removing the
branch points. A simple closed curve in P is essential if and only if it divides P

into two twice-punctured disks. It is easy to see [GST] that there is a separating
simple closed curve γ ⊂ F that is invariant under σ and ρ, and hence under h, that
separates F into two punctured tori FR and FL; the restriction of h to FR or FL is
the monodromy of the trefoil knot. The quotient of γ under ρ is shown as the brown
curve in Fig. 10.3.

Here then is the characterization:

Proposition 7 Suppose Q ⊂ S3 is the square knot with fiber F− ⊂ S3 and V ⊂ S3

is a disjoint knot. Then 0-framed surgery on Q ∪ V gives #2(S
1 × S2) if and only
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Fig. 10.3 Action of the
monodromy

if, after perhaps some handle-slides of V over Q, V lies in F− and ρ projects V

homeomorphically to an essential simple closed curve in P .

Essential simple closed curves c in P that are such homeomorphic projections
are precisely those for which one branch point of FL (or, equivalently, one branch
point from FR) lies on each side of c. So another way of saying that ρ projects V

homeomorphically to an essential simple closed curve in P is to say that V is the
lift of an essential simple closed curve in P that separates one branch point of FL

(or, equivalently FR) from the other.
Having established exactly what knots, combined with the square knot, can be

surgered to get #2(S
1 × S2), it would seem to be a straightforward task to show that

these links do satisfy the Generalized Property R Conjecture. In fact the story now
gets murky, as we try to integrate information from the theory of 4-manifolds.

10.3 The 4-manifold Viewpoint: A Non-standard Handle
Structure on S4

In [Gom91], R. Gompf provided unexpected examples of handle structures on ho-
motopy 4-spheres which do not obviously simplify to give the trivial handle struc-
ture on S4. At least one family is highly relevant to the discussion above. This is
example [Gom91, Fig. 1], reproduced here as the left side of Fig. 10.4. (Setting
k = 1 gives rise to the square knot.) A sequence of Kirby operations in [Gom91,
Sect. 2] shows that the resulting 4-manifold has boundary S3.

We will be interested in the 4-manifold that is the trace of the 2-handle surgeries,
the manifold that lies between #2(S

1 × S2) and S3. If the 4-manifold is thought
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Fig. 10.4 The Gompf examples

Fig. 10.5 Reconfiguring the Gompf examples

of as starting with S3 to which two 2-handles are attached to get #2(S
1 × S2) the

construction is solidly in the context of this paper, for the picture becomes a link of
two components, one of them the square knot.

Figures 10.5 (clockwise around the figure beginning at the upper left) and 10.6
show the end of the process; the middle 0-framed component becomes the square
knot Q ⊂ S3. (The other component becomes an interleaved connected sum of two
torus knots, Vn = Tn,n+1#Tn,n+1.)

Two natural questions arise:
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Fig. 10.6 Locating the square knot in the link

Question 1 As described, Vn does not obviously lie on a Seifert surface for Q.
According to Corollary 7, some handle slides of Vn over Q should alter Vn so that it
is one of the easily enumerated curves that do lie on the Seifert surface, in particular
it would be among those that are lifts of (half of) the essential simple closed curves
in the 4-punctured sphere P . Which curves in P represent Vn for some n?

Question 2 Is each Q ∪ Vn,n ≥ 3, a counter-example to Generalized Property R?

This second question is motivated by Fig. 10.4. As described in [Gom91], the
first diagram of that figure exhibits a simply connected 2-complex, presenting the
trivial group as

〈x, y | y = w−1xw, xn+1 = yn〉,
where w is some word in x±1, y±1 depending on k and equal to yx when k = 1.
If the 2-component link of Fig. 10.5 (after blowing down the two bracketed circles)
can be changed to the unlink by handle slides, then the dual slides in Fig. 10.4 will
trivialize that picture, showing that the above presentation is Andrews-Curtis trivial.
For k = 1, for example, this is regarded as very unlikely when n ≥ 3. Since surgery
on the link is #2(S

1 × S2) by construction, this suggests an affirmative answer to
Question Two, which (for any one n) would imply:

Conjecture 3 The square knot does not have Property 2R.

Although this news from the world of 4-manifolds is both puzzling and perhaps
unwelcome, the 4-manifold perspective also suggests a weaker but more awkward
version of Generalized Property R which would still provide the sort of 4-manifold
results one would hope for:

Conjecture 4 (Weak Generalized Property R) Suppose L is a framed link of n ≥ 1
components in S3, and surgery on L yields #n(S

1 ×S2). Then, perhaps after adding
a distant r-component 0-framed unlink and a set of s canceling Hopf pairs to L,
there is a sequence of handle-slides that creates the distant union of an n + r com-
ponent 0-framed unlink with a set of s canceling Hopf pairs.

Here a canceling Hopf pair is a Hopf link with one component of the link la-
beled with a dot and the other given framing 0. The dotted component represents a
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1-handle and the 0-framed component represents the attaching circle for a canceling
2-handle. From the 4-manifold point of view adding a canceling Hopf pair makes
no difference to the topology of the underlying 4-manifold since it denotes a pair
of canceling 1- and 2- handles. But it can destroy the Andrews-Curtis obstruction,
since adding a canceling Hopf pair introduces a new relator that is obviously trivial.

Definition 2 A knot K ⊂ S3 has Weak Property nR if it does not appear among the
components of any n-component counterexample to the Weak Generalized Prop-
erty R conjecture.

The Weak Generalized Property R Conjecture is closely related to the Smooth
(or PL) 4-Dimensional Poincaré Conjecture, that every homotopy 4-sphere is actu-
ally diffeomorphic to S4. For a precise statement, we restrict attention to homotopy
spheres that admit handle decompositions without 1-handles.

Proposition 8 The Weak Generalized Property R Conjecture is equivalent to the
Smooth 4-Dimensional Poincaré Conjecture for homotopy spheres that admit han-
dle decompositions without 1-handles.

While there are various known ways of constructing potential counterexamples
to the Smooth 4-Dimensional Poincaré Conjecture, each method is known to pro-
duce standard 4-spheres in many special cases. (The most recent developments are
[Akb, Gom].) Akbulut’s recent work [Akb] has eliminated the only promising po-
tential counterexamples currently known to admit handle decompositions without
1-handles. For 3-dimensional renderings of the full Smooth 4-Dimensional Poincaré
Conjecture and other related conjectures from 4-manifold theory, see [FGMW].
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Chapter 11
DNA, Knots and Tangles

De Witt Sumners

Abstract The DNA of all organisms has a complex and essential topology. Each
cell has a family of naturally occurring enzymes that manipulate cellular DNA in
topologically interesting and non-trivial ways in order to mediate the vital cellu-
lar life processes of replication, transcription and recombination. In order to assay
enzyme binding and mechanism, molecular biologists developed the topological ap-
proach to enzymology, an experimental protocol in which one reacts small artificial
circular DNA substrate molecules with purified enzyme in vitro (in the test tube).
The enzyme acts on the DNA substrate, causing changes in the geometry (supercoil-
ing) and/or topology (knotting and linking) of the DNA molecules. Once change in
topology of the DNA is known, mathematical analysis can be employed to tease out
the structure of the active DNA-protein complex and the changes in that structure
due to enzyme mechanism. This paper will describe the tangle model and apply it
to the case of site-specific DNA recombination.

11.1 Introduction

The DNA of all organisms has a complex and essential topology. The genome of
prokaryotes (bacteria) is a single closed duplex DNA circle; the genome of eukary-
otes such as ourselves consists of a cell nucleus comprised of distinct chromosomes,
and each chromosome is constructed from a single very long linear duplex DNA
molecule. Each individual chromosome has an intricate interwound structure where
the DNA is reduced in volume by 4–5 orders of magnitude, compared to the volume
occupied by free DNA in solution. When the cell needs to access the information
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contained in its DNA, the DNA must be geometrically and topologically manip-
ulated in order to expose parts of the DNA to the proteins that orchestrate vital
cellular life functions. At the end of the day, the cell’s DNA must be returned to
its original state. Each cell has a family of naturally occurring enzymes that ma-
nipulate cellular DNA in topologically interesting and non-trivial ways in order to
mediate the vital cellular life processes of replication, transcription and recombina-
tion. One of these enzymes is topoisomerase [Wan02, Wan09], which passes DNA
through itself via an enzyme-bridged transient break in the DNA. Another enzyme
is recombinase [SESC95, GWR06], which binds to duplex DNA at a pair of re-
combination sites, breaks both sites, and splices each end to the companion end at
the other site. In order to assay enzyme binding and mechanism, molecular biolo-
gists developed the topological approach to enzymology, an experimental protocol
in which one reacts small artificial circular DNA substrate molecules with purified
enzyme in vitro (in the test tube). The enzyme acts on the DNA substrate, caus-
ing changes in the geometry (supercoiling) and/or topology (knotting and linking)
of the DNA molecules. The spectrum of changes in DNA supercoiling, knotting
and linking caused by enzyme action can be experimentally observed in the reac-
tion products. In order to determine these changes, one separates the DNA reaction
products by gel electrophoresis, and visualizes the products by electron microscopy.
Once the exact topology of the reaction products is known, mathematical analysis
is employed to tease out the structure of the active DNA-protein complex and the
changes in that complex due to enzyme mechanism. This paper will describe the
tangle model and apply it to the case of site-specific recombination.

Knot theory is the study of topological entanglement of flexible curves and
graphs in 3-space. It is a study of embedding pathology and has proven to be fun-
damental as a laboratory for the development of algebraic-topological invariants
and in the understanding of the topology of 3-manifolds. During the last 100 years,
topologists have developed the discrete geometric language of knots to a fine mathe-
matical art [BZ85, Kau87, Rol76]. More recently, the unexpected (coming from Von
Neumann algebras and quantum mechanics) discovery by Vaughan Jones [Jon85] of
new polynomial invariants that help with the knot classification problem has brought
intense attention to the subject spawning that might be called the new combinato-
rial knot theory. Whatever it is, however, knot theory isn’t just pure mathematics
anymore. It is a prototype of what Lynn A. Steen [Ste88] calls the science of pat-
terns–theory built on relations among patterns and on applications derived from the
fit between pattern and observation. The precise descriptive and calculational power
of knot theory has been put to work in the description and computation of molecular
configurations [WC86]. Entanglement in real physical systems has consequences.
Leaving aside your frustration at resolving the entanglement in the spaghetti-like
mass of computer wires under your desk, unresolved entanglement of DNA in a
cell is a death sentence for that cell [BZ04, LZC06, LMZC06, DMSZ07]. Most
drugs for the treatment of bacterial infections or cancer work by inhibiting cellu-
lar enzymes that resolve molecular entanglement in the cell, and the target cell (a
pathogen or cancer cell) dies when it is unable to disentangle its DNA. Knots in
viral DNA can give information about the packing geometry of the viral DNA in
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the protein capsid [ATV+02, AVM+05, AVT+02, MMOS06, MMOS08, MOS+09].
Knots in linear proteins have been discovered in the protein data base [VMK06],
and give information about the time course of folding and the protein function, in-
cluding the role of enzymes in protein degradation. In polymer science, macroscopic
properties of polymer systems often depend on microscopic intermolecular entan-
glement [LBHS86]; entanglement determines whether or not the polymer system is
a gel or a polymer fluid, and if a solid, the entanglement has consequences in the
strength of the material. In fluid dynamics, plasma and superfliud physics [Mof99,
Ric99, Ric01], entanglement of magnetic and vortex filaments have important con-
sequences for the energy of the system.

This paper describes the tangle model for site-specific recombination [ES90,
SESC95, CWP+99, VS04, VCS05]. The binding and mechanism of many enzymes
that operate on DNA involve local (near the enzyme) interaction of a pair of DNA
strands and the protein. The mathematics that can be used to model this biological
situation is the 2-string tangle. One can think of a topological enzymology exper-
iment as happening in the 3-sphere instead of Euclidean 3-space. The globular en-
zyme protein is a 3-ball, and when bound to two sites in a circular DNA molecule,
the spherical surface of the protein separates S3 into two complementary 2-string
tangles. Enzyme action on circular DNA can be thought of as tangle surgery, in
which the action of the enzyme is to delete the protein-DNA tangle, and replace
it by another protein-DNA tangle. One can regard these protein-DNA tangles as
unknowns that describe enzyme binding and mechanism, and the observed topolog-
ical differences between substrate and product in an equation determine equations
relating these tangle unknowns. In general, solving tangle equations is a difficult
task. The job is greatly simplified by the observation that most known DNA reac-
tion products lie in the mathematically well-understood class of 4-plats (2-bridge
knots and links). Moreover, a great deal can be said about the decomposition of
4-plats into rational tangle summands. Rational tangles are formed by the iterated
plectonemic interwinding of a pair of strands, and the structure of rational tangles
looks like electron micrographs of DNA. In order to analyze DNA site-specific re-
combination experiments, one converts the tangle equations to equations involving
the 2-fold branched cyclic covers of the tangles. In this setting, one can use the re-
sults of Dehn surgery on 3-manifolds, specifically the fact that there are relatively
few Dehn surgeries on knots in S3 that yield lens spaces.

11.2 Topological Enzymology

One of the important issues in molecular biology is the three-dimensional struc-
ture (shape) of proteins and their precursors (deoxyribonucleic acid (DNA) and ri-
bonucleic acid (RNA)) in the cell, and the close relationship between macromolec-
ular structure and function. Ordinarily, protein and DNA structure is determined by
X-ray crystallography, electron and atomic force microscopy, and nuclear magnetic
resonance imaging (NMR). Because of the close packing needed for crystallization,
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the manipulation required to prepare a specimen for electron or atomic force mi-
croscopy, and the lack of resolution of NMR, these methods often do not provide
conclusive evidence for molecular shape in solution. Moreover, some proteins (en-
zymes) function as molecular machines, changing their shape as they execute their
function, so one static spatial snapshot may not tell the whole story. Topology can
shed light on these issues. The topological approach to enzymology (Fig. 11.5) is
an experimental protocol in which the descriptive and analytical powers of topol-
ogy and geometry are employed in an indirect effort to determine enzyme mech-
anism and the structure of active enzyme-DNA complexes in vitro (in a test tube)
and in vivo (in the cell). This article will describe how results in 3-manifold topol-
ogy [Con70, CGLS87, DS97, DS98, DS00, ES90, ES99, Lic81, Sum07, Sum92,
Sum95, Sum09, SESC95, Vaz00, VS04, VCS05] have proven to be of use in the
description and quantization of DNA structure and the action of cellular enzymes
on DNA, and will draw heavily on earlier articles [ES90, Sum07, Sum92, Sum95,
Sum09, Sum87, Sum90].

DNA molecules are long and thin, and the packing of DNA into the cell nucleus
is very complex. DNA can be viewed as two very long curves that are intertwined
millions of times, linked to other curves, and subjected to four or five successive
orders of coiling to convert it into a compact form for information storage. If one
scales up the cell nucleus to the size of a basketball, the DNA inside scales up to the
thickness of thin fishing line, with 200 km of that line inside the nuclear basketball.
Most cellular DNA is double-stranded (duplex), consisting of two linear backbones
of alternating sugar and phosphorus. Each 5-carbon (pentagonal) sugar molecule
in the backbone is attached to the phosphate unit on one side by the carbon atom
designated 5′, and to the phosphate unit on the other side by the carbon atom desig-
nated 3′. Therefore, each backbone chain is endowed with a natural chemical orien-
tation 5′ → 3′. Attached to each sugar molecule is one of the four nucleotide bases:
A = Adenine, T = Thymine, C = Cytosine, G = Guanine. A ladder is formed by
hydrogen bonding between base pairs, with A bonding with T via a double hydrogen
bond, and C bonding with G via a triple hydrogen bond. The base-pair sequence (or
code) for a linear segment of duplex DNA is obtained by reading along one of the
two backbones and is a word in the letters {A, C, G, T}. One can model the duplex
DNA molecule as a ribbon R, in which the hydrogen bonds define the ruled surface
of the ribbon. The edges of the ribbon R (the backbone strands) are chemically ori-
ented opposite to each other, and the axis of the ribbon is unoriented. In the classical
Crick-Watson double helix model for DNA, the backbone strands are twisted in a
right-hand helical (plectonemic) fashion with an average and nearly constant pitch
of approximately 10.5 base pairs per full helical twist (Fig. 11.1). Biologists often
call the backbone edges of the DNA molecule C (for Crick) and W (for Watson)!

Moreover, since backbone bonds can only be formed 3′ to 5′, a covalently closed
circular duplex DNA molecule is a twisted annulus, not a twisted Mobius band. We
will ignore the natural antiparallel chemical orientation of the backbone strands, and
adopt the orientation convention that the backbones of the circular DNA molecule
are oriented in parallel with the axis, as in Fig. 11.2. Moreover, we will usually ig-
nore the Crick-Watson helical interwinding of the backbone strands, and represent
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Fig. 11.1 Duplex DNA
(from [Sum87])

Fig. 11.2 Orientation of
DNA ribbon R (from
[Sum87])

duplex DNA by the axis alone. The orientation of the axis itself is often biologically
determined by short non-palindromic nucleotide sequences present on the backbone
strands, for example, enzyme binding sites in site-specific recombination. If no bi-
ological orientation is determined, the orientation of the molecular axis or can be
arbitrarily assigned in order to facilitate computations of molecular spatial struc-
ture.

The local helical pitch of duplex DNA is a function of the base-pair sequence,
and if a DNA molecule is under stress or constrained to live on a surface (bound to
a protein), the helical pitch can change. Duplex DNA can exist in nature in closed
circular form, where the rungs of the ladder lie on a twisted cylinder. Duplex DNA
in a chromosome in a eukaryotic cell nucleus is a very long linear molecule, ge-
ometrically constrained by periodic attachment to a protein scaffold. The packing,
twisting, and topological constraints all taken together mean that topological en-
tanglement poses problems for the DNA molecules in the cell. This entanglement
would interfere with, and be exacerbated by, the vital life processes of replication,
transcription, translocation and recombination [DMSZ07, CCM+06]. For informa-
tion retrieval and cell viability, some geometric and topological features must be
introduced into the DNA, and others quickly removed [Wan02, Wan09]. For exam-
ple, the Crick-Watson helical twist of duplex DNA requires local unwinding in order
to make room for a protein involved in transcription to attach to the DNA. The DNA
sequence in the vicinity of a gene may need to be altered to include a promoter or re-
pressor. During replication, the daughter duplex DNA molecules become entangled
and must be disentangled in order for replication to proceed to completion. After
a metabolic process is finished, the original DNA conformation must be restored.
Some enzymes maintain proper geometry and topology by passing one strand of
DNA through another by means of a transient enzyme-bridged break in one of the
DNA strands, a move performed by topoisomerase enzymes. Other enzymes break
the DNA apart and recombine the ends by exchanging them, a move performed by
recombinase enzymes. The description and quantization of the three-dimensional
structure of DNA and the changes in DNA structure due to the action of these en-
zymes have required the serious use of geometry and topology in molecular biology.
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Fig. 11.3 Oriented skew
lines sign convention

This use of mathematics as an analytic tool is especially important because there is
no experimental way to directly observe the dynamics of enzymatic action.

One of the most useful descriptors of circular DNA ribbon structure comes from
the conservation equation [Căl61, Ful71, Whi69] relating the geometric quantities
twist (of the ribbon) and writhe (of the ribbon axis) to the topological quantity link
(of the ribbon boundary). The computation of linking number and writhe depend on
the oriented skew lines sign convention (right-hand rule) for a projected crossing of
two oriented skew lines in space (Fig. 11.3).

Given a regular projection (one in which all crossings are transverse intersections
of exactly two projected arcs) of two disjoint oriented simple closed curves {C,W }
in R3, the linking number Lk(C,W) of C and W is the sum of signed crossings
where C crosses over W . The linking number is a topological invariant. Given any
regular projection of the ribbon axis, compute the sum of the signed self-crossings
of the axis, obtaining the directional writhe of the ribbon axis (the writhe in the
direction of the projection). By averaging the directional writhe over all projection
directions (points on the unit 2-sphere), one obtains Wr(R), the writhe of the ribbon
axis. Although the directional writhe is an integer, upon averaging, one obtains a
real number for the writhe; the writhe is not a topological invariant; it is a geometric
measure of non-planarity of the ribbon axis, and can change when the ribbon is
moved about in space. The other geometric quantity of interest is the winding of
the ribbon boundary curves around the axis of the ribbon. Given a smooth closed
ribbon (a twisted annulus), choose an origin on the axis, and one of the two boundary
curves C, and parameterize the axis with arc length s. Let τ(s) denote the unit
tangent vector to the axis at position s, and ν(s) denote the unit perpendicular on
the ribbon to τ(s) at position s, pointing toward the boundary curve C. Let τ(s)′ν(s)

denote the unit normal to the ribbon at position s. The twist of the ribbon R is a real
number defined by the integral:

Tw(R) = 1

2π

∮
axis

(τ × ν) · dν (11.1)

The conservation equation [Căl61, Ful71, Whi69] relating these quantities is:

Lk(C,W) = Tw(R) + Wr(R) (11.2)

Figure 11.4 shows two isotopic configurations of a ribbon. The ribbon of
Fig. 11.4(a) has a planar axis, so Wr(R) = 0, and one left handed full twist of the
ribbon yields Lk(C,W) = Tw(R) = −1. In Fig. 11.4(b), the local twist of the ribbon
has been converted to a global writhe of the axis of the ribbon, and the ribbon has
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Fig. 11.4 Link, twist and
writhe of R (from [Sum95])

no twist, so Tw(R) = 0 and Lk(C,W) = Wr(R) = −1. The ribbon of Fig. 11.4(a) is
said to be relaxed, and the ribbon of Fig. 11.4(b) is said to be negatively supercoiled.
Most DNA extracted from living cells is negatively supercoiled [BCW80].

In order to describe and quantify the DNA structure and its enzyme-mediated
changes, it is clear that knot theory ought to be of some help. An interesting bio-
logical development for topology has been the recent (circa 1983) emergence of a
new experimental protocol, the topological approach to enzymology [WC86], which
aims to exploit knot theory directly to unravel the secrets of enzyme action. Here’s
how it works. Focus attention on an enzyme that mediates a local DNA interaction.
Because there is at present no direct observational method (either in the cell or in
a laboratory) for enzyme action, one must rely on indirect methods. One can use
circular DNA as a probe to deduce facts about enzyme mechanism by detecting a
topological enzyme signature, the change the enzyme causes in the topological state
(embedding) of the molecule upon which it is acting. In many cases, the natural sub-
strate for the enzyme action is linear DNA. The problem for the molecular detective
is that linear DNA cannot trap topological changes caused by an enzyme–there can
be no interesting (observable) topology (knots) in an unconstrained linear piece of
DNA. The trick is to get a particular enzyme to act on circular DNA molecules.
This can be done by manufacturing (via cloning) artificial circular DNA molecules
on which the enzyme will act. When an enzyme acts on circular DNA molecules,
some of the enzymatic changes can be trapped in the form of DNA knots and links.
One performs laboratory (in vitro) experiments, in which purified enzyme is reacted
with a large collection of circular DNA molecules (the substrate). In such experi-
ments, it is possible to control the amount of supercoiling (Fig. 11.4(b)), the knot
type, and the linking of the family of substrate molecules. Using a biological tech-
nique (rec A coating) to enhance viewing resolution under the electron microscope,
one can observe the reaction products, an enzyme-specific family of DNA knots and
links (Fig. 11.5).
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Fig. 11.5 The topological approach to enzymology (from [Sum95])

The topological approach to enzymology poses an interesting challenge for math-
ematics: from the observed changes in DNA geometry and topology, how can one
deduce enzyme binding and mechanism? This requires the construction of mathe-
matical models for enzyme action and the use of these models to analyze the results
of topological enzymology experiments. The entangled form of the product family
of DNA knots and links contains information about the enzyme that made them. In
addition to utility in the analysis of experimental results, the use of mathematical
models forces all of the background assumptions about the biology to be carefully
laid out. At this point they can be examined and dissected, and their influence on the
biological conclusions drawn from experimental results can be determined.

11.3 Site-Specific Recombination

Site-specific recombination is one of the ways in which nature alters the genetic
code of an organism, either by moving a block of DNA to another position on the
molecule or by integrating a block of alien DNA into a host genome. One of the bi-
ological purposes of recombination is the regulation of gene expression in the cell,
because recombination can alter the relative position of the gene and its repressor
and promoter sites on the genome. Site-specific recombination also plays a vital role
in the life cycle of certain viruses, which utilize this process to insert and remove
viral DNA into the DNA of a host organism. An enzyme that mediates site-specific
recombination on DNA is called a recombinase. A recombination site is a short
(10–15 base pair) segment of duplex DNA whose base pair sequence is recognized
by the recombinase. Site-specific recombination can occur when a pair of sites (on
the same or on different DNA molecules) become juxtaposed in the presence of the
recombinase. The pair of sites is aligned through enzyme manipulation or random
thermal motion (or both), and both sites (and perhaps some contiguous DNA) are
bound by the enzyme. This stage of the reaction is called synapsis, and we will call
this intermediate protein-DNA complex formed by the part of the substrate that is
bound to the enzyme together with the enzyme itself the synaptosome. We will call
the entire DNA molecule(s) involved in synapsis (including the parts of the DNA
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Fig. 11.6 Tn3 resolvase
synaptic complex (from
[Sum95])

molecule(s) not bound to the enzyme), together with the enzyme itself, the synaptic
complex. The electron micrograph in Fig. 11.6 (courtesy of N.R. Cozzarelli) shows a
synaptic complex formed by the recombination enzyme Tn3 resolvase when reacted
with unknotted circular duplex DNA. In the micrograph of Fig. 11.6, the synap-
tosome is the black mass attached to the DNA circle, with the unbound DNA in
the synaptic complex forming twisted loops in the exterior of the synaptosome. It
is our intent to look behind the curtain, to deduce mathematically the path of the
DNA in the black mass of the globular protein, both before and after recombina-
tion. We want to answer the question: How is DNA wound around the enzyme, and
what happens during recombination? After forming the synaptosome, a single re-
combination event occurs: the enzyme performs two double-stranded breaks at the
sites and recombines the ends by exchanging them in an enzyme-specific manner.
The synaptosome can then dissociate, and the DNA is released by the enzyme. We
call the pre-recombination unbound DNA molecule(s) the substrate and the post-
recombination unbound DNA molecule(s) the product.

During a single productive binding encounter between enzyme and DNA, the en-
zyme may mediate more than one recombination event before it dissociates; this is
called processive recombination. On the other hand, the enzyme may perform re-
combination in multiple productive binding encounters with the DNA, a scenario
called distributive recombination. Some site-specific recombination enzymes me-
diate both distributive and processive recombination; other site-specific recombi-
nation enzymes mediate only a single recombination event, and the changed ge-
netic sequence of the product DNA molecules cannot support further recombination
events. In addition to changing the genetic sequence of the substrate DNA molecule,
site-specific recombination usually changes the topology of the substrate, produc-
ing knots, links and supercoiling in the circular molecules. In order to identify these
topological changes, one chooses to perform experiments on circular DNA sub-
strate. One must perform an experiment on a large number of circular molecules in
order to obtain an observable amount of product. Using cloning techniques, one can
synthesize circular duplex DNA molecules, which contain two copies of a recom-
bination site. At each recombination site, the base pair sequence is in general not
palindromic hence induces a local orientation on the substrate DNA circle. If these
induced orientations from a pair of sites on a singular circular molecule agree, this
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Fig. 11.7 A single
recombination event: direct
repeats (from [Sum95])

site configuration is called direct repeats (or head-to-tail), and if the induced orien-
tations disagree, this site configuration is called inverted repeats (or head-to-head).
If the substrate is a single DNA circle with a single pair of directly repeated sites,
the recombination product is a pair of DNA circles and can form a DNA link (or
catenane) (Fig. 11.7). If the substrate is a pair of DNA circles with one site each,
the product is a single DNA circle (Fig. 11.7 read in reverse) and can form a DNA
knot (usually with direct repeats). In processive recombination on circular substrate
with direct repeats, the product of an odd number of rounds of processive recom-
bination is a pair of DNA circles, and the product of an even number of rounds of
processive recombination is a single DNA circle with the parental genotype. If the
substrate is a single DNA circle with inverted repeats, the product is a single DNA
circle and can form a DNA knot. In iterated site-specific recombination on a single
circle with inverted repeats, and odd number of rounds of recombination produces
a single DNA circle of recombinant genotype, and an even number of rounds of re-
combination produces a DNA circle of parental genotype. In all figures where DNA
is represented by a line drawing (such as Fig. 11.7), the axis of duplex DNA is rep-
resented by a single line, and primary Crick-Watson helical structure and molecular
supercoiling is omitted.

The geometry (supercoiling) and topology (knotting and linking) of circular
DNA substrate molecules are experimental control variables. The geometry and
topology of the recombination reaction products are observables. In vitro exper-
iments usually proceed as follows: Circular substrate is prepared, with all of the
substrate molecules representing the same knot type (usually the negatively super-
coiled unknot). The amount of supercoiling of the substrate molecules is also a con-
trol variable. The substrate molecules are reacted in vitro with a high concentration
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Fig. 11.8 Gel
electrophoresis of DNA knots
(from [AVM+05])

of purified enzyme, and the reaction products are fractionated by gel electrophore-
sis. DNA is a polyelectrolyte with negative charge proportional to molecular weight.
An agarose gel is a sugar that provides a random obstruction field through the DNA
molecules can be forced to migrate in the presence of an applied static electric field.
Under the influence of the electric field, the DNA molecules migrate toward the pos-
itive electrode. Gel electrophoresis normally discriminates among DNA molecules
on the basis of molecular weight, and can discriminate a difference of one base
pair. Given that all molecules are exactly the same molecular weight (as is the case
in these topological enzymology experiments), electrophoresis discriminates on the
basis of subtle differences in the geometry (supercoiling) and/or topology of the
DNA molecules. Under the proper conditions of gel density and applied voltage, cir-
cular DNA velocity in the gel is (perhaps surprisingly) determined by the crossing
number of the knot or link [SKB+96]; knots and links of the same crossing number
migrate with the same gel velocities (Fig. 11.8). After running the gel, the DNA
molecules can be removed from the gel and coated with Rec A protein. It is this
new observation technique (Rec A-enhanced electron microscopy) [KSS+83] that
makes possible the detailed knot-theoretic analysis of reaction products. Rec A is
an E. coli protein that binds to DNA and mediates general recombination in E. coli.
The process of Rec A coating fattens, stiffens, and stretches (untwists) the DNA,
but does not change the knot/link type of DNA circles. Rec A coating facilitates
the unambiguous determination of crossings (nodes) in an electron micrograph of
DNA, allowing precise determination of the DNA knot/link type.

11.4 Knots and Tangles

In this section, we will describe the parts of knot theory and tangle calculus that
are of biological relevance. For a more rigorous mathematical treatment we refer
the reader to [BZ85, Kau87, Rol76] for knot theory and [ES90] for tangle calculus.
A knot K is an embedding of a single circle in R3; a link L is an embedding of two
or more circles in R3. Unless otherwise specified, all knots and links will be unori-
ented; the ambient space R3 is endowed with a fixed orientation. Two knots (links)
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K1,K2 are equivalent (written K1 = K2) if there is an orientation-preserving (on
R3) homeomorphism of pairs h : (R3,K1) → (R3,K2). The homeomorphism of
pairs h superimposes K1 on K2; in this case the knots (links) can also be made con-
gruent by a flexible motion or flow (ambient isotopy) of space. An ambient isotopy
is a 1-parameter family of homeomorphisms {Ht }0 ≤ t ≤ 1 of R3 that begins with
the identity and ends with the homeomorphism under consideration: H0 = identity
and H1 = h. An equivalence class of embeddings is called a knot (link) type. A knot
(link) type is usually represented by drawing a diagram (projection) in a plane. This
diagram is a shadow of the knot (link) cast on a plane in 3-space, coded with breaks
in the undercrossing strand so that the knot (link) type can be unambiguously re-
constructed in 3-space from the 2-dimensional knot (link) diagram. The crossing
number of a knot or link type is the smallest number of crossings possible in a pla-
nar diagram. A diagram which realizes the minimum number of crossings for a knot
(link) type is called a minimal diagram. A knot (link) diagram is alternating if, as
one traverses any strand, the crossings encountered are alternately over and under.
Figure 11.9 shows minimal alternating diagrams for the knots and links that turn
up in Tn3 recombination experiments. In the definition of knot type, we insisted
that the transformation that superimposes one knot on another must be orientation-
preserving on the ambient space R3. This restriction allows us to detect a property
of great biological significance: chirality. If K denotes a knot (link), let K∗ denote
the mirror image. One can convert a diagram of K to a diagram of K∗ by reversing
each of the crossings in the diagram (Fig. 11.9d, e). If K = K∗, then we say that
K is achiral; if K �= K∗, then we say that K is chiral. In Fig. 11.9, (a) and (b) are
achiral, and (c), (d) and (e) are chiral.

Fortunately for biological applications, most (if not all) of the circular DNA
products produced by in vitro enzymology experiments fall into the mathematically
well-understood and computationally tractable family of 4-plats (2-bridge knots and
links) [Sch56, BZ85]. This family consists of knot and link configurations produced
by patterns of plectonemic interwinding of pairs of strands about each other, echo-
ing the primary Crick-Watson helical winding in duplex DNA (Fig. 11.1). All small
knots and links are members of the family of 4-plats–more precisely, all prime knots
with crossing number less than 8 and all prime (two-component) links with cross-
ing number less than 7 are 4-plats. A 4-plat is a knot or two-component link that
can be formed by platting (or braiding) four strings. All of the knots and links in
Fig. 11.4 are 4-plats; their standard 4-plat minimal alternating diagrams are shown
in Fig. 11.10. Each standard 4-plat diagram consists of four horizontal strings, and
the standard pattern of half-twists (plectonemic interwinds) of strings is encoded by
an odd-length classifying vector with positive integer entries 〈c1, c2, . . . , c2k+1〉, as
shown in Fig. 11.10. Two unoriented 4-plats are of the same knot (link) type if and
only if their classifying vectors are identical, or identical upon reversal of one of the
vectors. A classifying rational number can be computed from the classifying vector
using the following extended fraction calculation:

β

α
= 1

c1 + 1
c2+···
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Fig. 11.9 Tn3 resolvase
products: (a) Hopf link,
(b) figure 8 knot, (c) (+)
Whitehead link, (d) 62∗,
(e) 62 (from [Sum95])

Given the classifying rational numbers β/α and β ′/α′ for a pair of unoriented
4-plats, the 4-plats are the same type if and only if α + α′ and β±1 ≡ β ′ mod α

[Sch56, BZ85].
For in vitro topological enzymology experiments, we can regard the enzyme

mechanism as a machine that transforms some DNA 4-plats into other DNA 4-plats.
We need a mathematical language for describing and computing these enzyme-
mediated changes. In many enzyme-DNA reactions, a pair of sites that are distant
on the substrate circle are juxtaposed in space and bound to the enzyme (Fig. 11.6)
to create the synaptosome. The enzyme then performs its topological moves, and
the DNA is then released.

We need a mathematical language to describe configurations of linear strings
(the segments of bound DNA) in a spatially confined region (the enzyme). As is
evident from the enzyme-DNA complex in Fig. 11.6, the globular protein enzyme
is homeomorphic to a 3-ball, and the 2 strands of bound DNA (which contains the
recombination sites) forms a protein-DNA 2-string tangle. Tangles were introduced
into knot theory by J.H. Conway [Con70]. Tangle theory is knot theory done inside
a unit 3-ball (B3) with the ends of the strings firmly glued down. On the unit 3-ball,
select four points on the equator {NW;SW;SE;NE}. A 2-string tangle in the unit
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Fig. 11.10 Tn3 resolvase
4-plats: (a) 〈2〉 Hopf link,
(b) 〈2,1,1〉 figure 8 knot,
(c) 〈1,1,1,1,1〉 Whitehead
link, (d) 〈1,2,1,1,1〉 62∗,
(e) 〈3,1,2〉 62 (from
[Sum95])

3-ball is a configuration of two disjoint strings in the unit 3-ball whose endpoints are
the four distinguished points {NW;SW;SE;NE}. Two tangles in the unit 3-ball are
equivalent if it is possible to ambient isotopy in the interior of the 3-ball the strings
of one tangle into the strings of the other while keeping the boundary sphere fixed.
A class of equivalent tangles is called a tangle type. Tangles are usually represented
by their coded projections, called tangle diagrams, onto the equatorial disk in the
unit 3-ball, as shown in Fig. 11.11. In all figures containing tangles, we assume that
the four boundary points {NW;SW;SE;NE} are as in Fig. 11.11, and we suppress
these labels.

All four of the tangles in Fig. 11.11 are pairwise inequivalent. However, if we
relax the restriction that the endpoints of the strings remain fixed and allow the end-
points of the strings to move about on the boundary sphere of the 3-ball during the
isotopy, then the tangle of Fig. 11.11(a) can be transformed into the trivial tangle of
Fig. 11.11(d). The tangles in Figs. 11.11(b) and 11.11(c) cannot be transformed to
the trivial tangle by any sequence of such turning motions of the endpoints on the
boundary sphere. The family of tangles that can be converted to the trivial tangle by
an ambient isotopy that is allowed to move the endpoints on the boundary sphere
is the family of rational tangles. Equivalently, a rational tangle is one in which the
strings can be transformed by ambient isotopy entirely into the boundary 2-sphere
of the 3-ball. Rational tangles form a homologous family of 2-string configurations
in B3, and are formed by a pattern of plectonemic interwinding of pairs of strings.
Like 4-plats, rational tangles look like DNA configurations being built up out of suc-
cessive plectonemic supercoiling of pairs of strings. More specifically, enzymes are
often globular in shape and are topologically equivalent to our unit-defining ball.
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Fig. 11.11 Tangles
(a) rational, (b) locally
knotted, (c) prime, (d) trivial
(from [Sum95])

Furthermore, we assume that any two copies of the enzyme can be superimposed
by rigid motion, and this spatial congruence of the protein also respects the atomic
structure of the protein (it matches corresponding atoms and endpoints of corre-
sponding DNA strands). Thus, in an enzymatic reaction between a pair of DNA
duplexes, the pair {enzyme, bound DNA} forms a well-defined 2-string tangle.

How do we know the DNA tangles are rational? I will give three arguments:
1. Since the amount of bound DNA is small, the enzyme-DNA tangle so formed
admits projections with only a few nodes and therefore is rational by default. For
example, all locally unknotted 2-string tangles having less than five crossings are
rational. 2. In all cases studied intensively, the DNA is bound to the surface of the
protein. This means that the resulting protein-DNA tangle is rational, since any tan-
gle whose strings can be continuously deformed into the boundary of the defining
ball is automatically rational. 3. We will give a mathematical proof: If the prod-
ucts of processive recombination are 4-plats, then one can often prove that the DNA
tangles involved must be rational tangles.

There is a classification scheme for rational tangles which is based on a standard
form that is a minimal alternating tangle diagram. The classifying vector for a ra-
tional tangle is an integer-entry vector (a1, a2, . . . , an) of odd or even length, with
all entries (except possibly the last) nonzero and of the same sign, with |a1| > 1.
The integers in the classifying vector represent the left-to-right (west-to-east) alter-
nation of vertical and horizontal windings in the standard tangle diagram, always
ending with horizontal windings on the east side of the diagram. Horizontal wind-
ing is the winding between strings in the top and bottom (north and south) positions;
vertical winding is the winding between strings in the left and right (west and east)
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positions. By convention, positive integers correspond to horizontal plectonemic
right-handed supercoils and vertical left-handed plectonemic supercoils; negative
integers correspond to horizontal left-handed plectonemic super-coils and vertical
right-handed plectonemic supercoils (Fig. 11.12). This sign convention is opposite
to that of Conway [Con70], and was chosen to agree with existing sign conventions
used by biologists.

Figure 11.12 shows some standard tangle diagrams, which are minimal alternat-
ing diagrams. Two rational tangles are of the same type if and only if they have iden-
tical classifying vectors. Due to the requirement that |a1| > 1 in the classifying vec-
tor convention for rational tangles, the corresponding minimal tangle diagram must
have at least two crossings. There are four rational tangles {(0); (0,0), (1), (−1)}
that are exceptions to this convention |a1| > 1, and are displayed in Fig. 11.12c
through f. The classifying vector (a1, a2, . . . , an) can be converted to an (extended)
rational number by means of the following continued fraction calculation:

β

α
= an + 1

an−1 + 1
an−2...

Two rational tangles are of the same type if and only if these rational numbers
are equal [Con70, BZ85].

In order to use tangles as building blocks for knots and links and mathematically
to mimic enzyme action on DNA, we now introduce the geometric operations of
tangle additional and tangle closure. Given tangles A and B , one can form the tangle
(A+B) as shown in Fig. 11.13a. Equivalently, the tangle sum (A+B) can be viewed
as the decomposition of a complicated tangle into two simpler summands. The sum
of two rational tangles need not be rational (Fig. 11.11c). Given any tangle A, one
can form the tangle closure N(A) as in Fig. 11.13b. In the closure operation on a
2-string tangle, ends NW and NE are connected outside the 3-ball, ends SW and
SE are connected outside the 3-ball, and the tangle-defining ball is deleted, leaving
a knot or a link of two components. Deletion of the tangle-defining 3-ball is the
mathematical analogue of the biological action of deproteinization of the DNA that
occurs when the synaptosome dissociates. One can combine the operations of tangle
addition and tangle closure to create a tangle equation of the form N(A + B) =
knot (link). In such a tangle equation, the tangles A and B are said to be summands
of the resulting knot (link). An example of this phenomenon is the tangle equation
N((−3,0) + (1)) = 〈2〉 shown in Fig. 11.13c. In general, if A and B are any two
rational tangles, then N(A + B) is a 4-plat.

11.5 The Tangle Model for Site-Specific Recombination

The fundamental observations underlying this model are that a pair of sites bound
by an enzyme (Fig. 11.6) forms a 2-string tangle and that most of the products of
recombination experiments performed on unknotted substrate are 4-plats. We will
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Fig. 11.12 Rational tangle
diagrams: (a) (2,3,1),
(b) (−2,0), (c) (0), (d) (0,0),
(e) (+1), (f) (−1) (from
[Sum95])

use tangles to build a model that will compute the topology of the pre- and post-
recombination synaptic complex in a single recombination event, given knowledge
of the topology of the substrate and product [ES90, ES99, SESC95]. In site-specific
recombination on circular DNA substrate, two kinds of geometric manipulation of
the DNA occur. The first is a global ambient isotopy, in which a pair of distant re-
combination sites are juxtaposed in space and the enzyme binds to the molecule(s),
forming the synaptic complex. Once synapsis is achieved, the next move is local
and due entirely to enzyme action. Within the region occupied by the enzyme, the
substrate is broken at each site, and the ends are recombined. We will model this
local move. Within the region controlled by the enzyme, the enzyme performs a
double-stranded break in the DNA at each site and recombines the ends by exchang-
ing them. We model the enzyme itself as a 3-ball. The synaptosome consisting of
the enzyme and bound DNA forms a 2-string tangle. What follows is a list of bi-
ological and mathematical assumptions made in the tangle model [ES90, Sum92,
Sum95].
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Fig. 11.13 Tangle
operations: (a) tangle
addition, (b) tangle closure,
(c) tangle equation
N((−3,0) + (1)) = 〈2〉 (from
[Sum95])

Assumption 1 The enzyme mechanism in a single recombination event is constant,
independent of the geometry (supercoiling) and topology (knotting and catenation)
of the substrate population. Moreover, recombination takes place entirely within the
domain of the enzyme ball, and the substrate configuration outside the enzyme ball
remains fixed while the strands are being broken and recombined inside and on the
boundary of the enzyme.

That is, we assume that any two pre-recombination copies of the synaptosome are
identical, meaning that we can by rotation and translation superimpose one copy on
the other, with the congruence so achieved respecting the structure of both the pro-
tein and the DNA. We likewise assume that all of the copies of post-re-combination
synaptosome are identical.

In a recombination event, we can mathematically divide the DNA involved into
three types: (1) the DNA at and very near the sites where the DNA breakage and
reunion are taking place; (2) other DNA bound to the enzyme, which is unchanged
during a recombination event; and (3) the DNA in the synaptic complex that is not
bound to the enzyme and consequently does not change during recombination.

We make the following mathematical assumption about DNA types (1) and (2):
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Assumption 2 The synaptosome is a 2-string tangle that can be mathematically sub-
divided into the sum Ob + P of two tangles.

One tangle, the parental tangle P , contains the recombination sites where strand
breakage and reunion take place. The other tangle, the outside bound tangle Ob , is
the remaining DNA in the synaptosome outside the P tangle—this is the DNA that
is bound to the enzyme but that re-mains unchanged during recombination. If the
enzyme must achieve a geometric footprint on the DNA in order to mediate produc-
tive synapsis, this footprint is captured in the tangle Ob . The enzyme mechanism is
modeled as tangle replacement (surgery) in which the parental tangle P is removed
from the smaptosome and replaced by the recombinant tangle R. The schematic of
Fig. 11.7 shows the tangles involved in Tn3 Resolvase site-specific recombination.

Therefore, our model assumes the following:

pre-recombination synaptosome = (Ob + P)

post-recombination synaptosome = (Ob + R).

In order to accommodate nontrivial topology in the DNA of type (3), we let the
outside free tangle Of denote the synaptic complex DNA that is free (not bound to
the enzyme) and that is unchanged during a single recombination event.

We make the following mathematical assumption:

Assumption 3 The entire synaptic complex is obtained from the tangle sum (Of +
synaptosome) by the tangle closure construction.

If one deproteinizes the pre-recombination synaptic complex, one obtains the
substrate (an experimentally controlled knot/link type); deproteinization of the post-
recombination synaptic complex yields the product (an observable knot/link type).
The topological structure (knot and link types) of the substrate and product yields
equations in the four recombination variables {Of ,Ob,P,R}. Specifically, a single
recombination event on a single circular substrate molecule produces two recombi-
nation equations in four unknowns:

Substrate Equation: N(Of + (Ob + P)) = substrate,
Product Equation: N(Of + (Ob + R)) = product.

The geometric meaning of these recombination equations is illustrated in
Fig. 11.7. In Fig. 11.7, with the tangle unknowns evaluated as follows: Of = (0),
Ob = (−3,0), P = (0), R = (1). With these values for the tangle variables, our
recombination equations become:

Substrate Equation: N((0) + ((−3,0)) + (0))) = 〈1〉,
Product Equation: N((0) + ((−3,0) + (1))) = 〈2〉.
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11.6 The Topology of Tn3 Resolvase

Tn3 resolvase is a site-specific recombination enzyme that reacts with negatively su-
percoiled circular duplex DNA substrate with directly repeated recombination sites
[WDC85]. As substrate for the in vitro reaction, supercoiled unknotted DNA sub-
strate is incubated with resolvase. The principal product of this reaction is known to
be the DNA 4-plat (2) (the Hopf link, Figs. 11.4a and 11.5a). Resolvase is known to
act dispersively in this situation–to bind to the circular DNA substrate, to mediate a
single recombination event, and then to release the linked product. It is also known
that resolvase and free (unbound to protein) DNA links do not react. However, once
in twenty encounters, resolvase acts processively-additional recombinant strand ex-
changes are mediated during the single binding encounter prior to the release of
the product, with yield decreasing exponentially with increasing number of strand
exchanges. Two successive rounds of processive recombination produce the DNA
Fig. 11.8 knot 〈2,1,1〉, Fig. 11.9b and 11.10b, whose electron micrograph appears
in Fig. 11.14a. Three successive rounds of processive recombination produce the
DNA link 〈1,1,1,1,1〉 (the +Whitehead link, Fig. 11.9c and 11.10c, whose elec-
tron micrograph appears in Fig. 11.14b; four successive rounds of recombination
produce the DNA knot 〈1,1,1,1,1〉, the knot 62*, Fig. 11.9d and 11.10d, whose
electron micrograph appears in Fig. 11.14c.

In processive recombination, it is the synaptosome itself that repeatedly changes
structure. We make the following biologically reasonable mathematical assumption
in our model:

Assumption 4 In procession recombination, each additional round of recombination
adds a copy of the recombinant tangle R to the synaptosome.

More precisely, p rounds of processive recombination at a single binding en-
counter generates the following system of (p + 1) tangle equations in the 4 tangle
unknowns {Of ,Ob,P,R}:

Substrate Equation: N(Of + (Ob + P)) = substrate
nth Round Product Equation: N(Of + (Ob + nR)) = nth round product 1 ≤
n ≤ p.

For resolvase, the electron micrograph of the synaptic complex in Fig. 11.6 re-
veals that Of = (0), since the DNA loops on the exterior of the synaptosome can be
untwisted and are not entangled with each other. This observation from the micro-
graph reduces the number of variables in the tangle model by one, leaving us with
three variables {Ob,P,R}.

Theorem 1 [ES90] Suppose that tangles {Ob,P,R} satisfy the following equa-
tions:

1. N(Ob + P) = 〈1〉 (substrate = unknot)
2. N(Ob + R) = 〈2〉 (1st round product = Hopf link)
3. N(Ob + 2R) = 〈2,1,1〉 (2nd round product = Fig. 11.8 knot)
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Fig. 11.14 Electron micrographs of RecA coated Tn3 resolvase recombination products

Then

{Ob,R} = {(−3,0), (1)}, {(3,0), (−1)}, {(−2,−3,−1), (1)} or {(2,3,1), (−1)}

Theorem 1 gives an even number of tangle solution pairs for {Ob,R} because each
of the knots and links involved in the three equations is achiral (the unoriented Hopf
link is achiral); therefore the mirror image of any solution pair is also a solution
pair. Theorem 1 says that there are two mirror image solution pairs for {Ob,R}.
Notice that Theorem 1 says nothing about the parental tangle P . This is because P

is involved in only one tangle equation. It is known [ES90] that if the tangle X is
a solution to an equation of the form N(A + X) = K , where A is a rational tangle
and K is a 4-plat, then there are infinitely many rational solutions for X. Biologists
believe that P = (0); since the recombination sites are short (∼15 base pairs), and
duplex DNA is fairly stiff, then the DNA axis at the sites can be represented by ori-
ented straight line segments. Given two spatially juxtaposed straight line segments
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in space, one can choose a projection where the segments project to a pair of parallel
oriented line segments [SESC95].

The first (and most mathematically interesting) step in the proof of Theorem 1
is to argue that the solutions Ob,R must be rational tangles. We have the following
facts about tangles [Lic81]: tangles come in three classes: locally knotted, prime
and rational; if a tangle is locally unknotted, then it must be either prime or rational.
A tangle A is rational if and only if its 2-fold branched cyclic cover A′ is a solid
torus. If A is a prime tangle, and A′ is its 2-fold branched cyclic cover, then the in-
clusion induced homomorphism injects π1(∂A′) = Z ⊕Z into π1(A

′). Now Ob and
R are locally unknotted because of equation 2, since the 1st round recombination
product Hopf link has two unknotted components, and any local knot in any of the
tangles would persist as a local knot in the recombination product. Also, at least one
of {Ob,R} must be rational; otherwise they are both prime, which means that the
2-fold branched cover of N(Ob +R) = 〈2〉 (the lens space L(2,1)) is obtained from
O ′

b and R′ , glued together along their common incompressible torus boundary. This
means that L(2,1) contains an incompressible torus, which is impossible.

Suppose now that Ob is rational and R is prime. Given that N((Ob + R) + R)

is a knot (equation 3), one can argue [ES90] that (Ob + R) is also a prime tangle,
which means that the 2-fold branched cyclic cover of the Fig. 11.8 knot (the lens
space L(5,3)) contains an incompressible torus, also impossible. We conclude that
R must be a rational tangle.

The next step is to argue that Ob is rational. Otherwise, Ob is prime; in this
case, since N(Ob + P) =〉1〈, P must be locally unknotted and rational. The 2-fold

branched cyclic cover N(Ob +P)′ = O ′
b∪P ′

∂O ′
b
=∂P ′=S1×S1 = S3. Since P ′ is a solid torus,

this means that O ′
b is a bounded knot complement in S3. We have that R is rational,

and can argue that equation 3 implies that (R + R) is also rational. Passing to the
2-fold branched cyclic covers of equations 2 and 3, we obtain the equations N(Ob +
R)′ = L(2,1) and N(Ob + (R)+R))′ = L(5,3). Because R′ and (R +R)′ are each
a solid torus, this means that there are two Dehn fillings of the knot complement
O ′

b, resulting in the lens spaces L(2,1) and L(5,3). The cyclic surgery theorem
[CGLS87] now applies to argue that, since the orders of the cyclic fundamental
groups of the lens spaces differ by more than one, this means that O ′

b must be a
Seifert fiber space, and that O ′

b is a torus knot complement. The results of Dehn
surgery on torus knots is well understood [Mos71], and one can show that in fact
the torus knot in question must be the unknot, and that O ′

b is a solid torus, hence Ob

is a rational tangle.
The proof now amounts to computing the rational solutions to the equations in

Theorem 1. Claus Ernst and I developed a “rational tangle calculus” [ES90] which
uses the classifying symbols for rational tangles and 4-plats to do these calculations,
obtaining the four solutions in Theorem 1. In order to decide which of these four
tangle pair solutions is the biologically correct one, we must utilize more experi-
mental evidence, and to get to a unique solution, must have a chiral recombination
product. The result of 3 rounds of 3 rounds of recombination is the unoriented (+)
Whitehead link, which is chiral. Using this information, we have the following:
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Fig. 11.15 The biologically oriented DNA Hopf link (from [WC85])

Theorem 2 [ES90] Suppose that tangles {Ob,P,R} satisfy the following equa-
tions:

1. N(Ob + P) = 〈1〉 (substrate = unknot)
2. N(Ob + R) = 〈2〉 (1st round product = Hopf link)
3. N(Ob + 2R) = 〈2,1,1〉 (2nd round product = Fig. 11.8 knot)
4. N(Ob + 3R) = 〈1,1,1,1,1〉 (3rd round product = +Whitehead link)

Then {Ob,R} = {(−3,0), (1)} and the result of 4 rounds of processive recombina-
tion is the 4-plat 62*= 〈1,2,1,1,1〉,

Of the four solutions produced in Theorem 1, only {Ob,R} = {(−3,0), (1)} is
a solution to equation 4. The correct global topology of the first round of iterated
processive Tn3 site-specific recombination is shown in Fig. 11.7. Moreover, the first
3 rounds of recombination uniquely determine the result of 4 rounds of recombina-
tion, the observed DNA knot 62* (Fig. 11.14(c)).

Is it possible to use the first two rounds of recombination to uniquely deter-
mine the enzyme binding and mechanism, and to correctly predict the results of
3 and 4 rounds of recombination? In order to do this, we need a chiral product, and
fortunately experimental evidence exists which allows us to unambiguously put a
recombination-induced orientation on the Hopf link product, making it chiral.

In a remarkable experiment, Steve Wassserman and Nick Cozzarelli [WC85]
were able to determine the orientation induced on the 1st round recombination prod-
uct of resolvase acting on supercoiled unknotted substrate with directly repeated
sites. In duplex DNA, the AT base pairs have a double hydrogen bond, and the
CG base pairs have a triple hydrogen bond, so the AT bonding is weaker than the
CG bonding. When duplex DNA is partially denatured by heating, the AT bonds
break before the CG bonds. On circular substrate with directly repeated sites, the
recombination sites divide the circular substrate into two domains. Using cloning
techniques, one can install 3 AT-rich regions into each domain; the AT-rich regions
are of 3 different lengths. Upon recombination, one obtains a linked pair of cir-
cles, each inheriting 3 AT-rich regions from the parental DNA substrate circle. In
order to visualize these regions, partial denaturation of the Hopf link product revels
3 bubbles on each component circle, allowing us to unambiguously determine the
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orientation of each circle. With this induced orientation, the linking number of the
oriented DNA Hopf link is −1 (Fig. 11.7 and Fig. 11.15), making it a chiral product.
Assuming again that P = (0), we have the following:

Theorem 3 [ES90] Suppose that tangles {Ob,R} satisfy the following equations:

1. N(Ob) = 〈1〉 (substrate = unknot)
2. N(Ob + R) = 〈2〉 (1st round product = Hopf link, with linking number = −1)
3. N(Ob + 2R) = 〈2,1,1〉 (2nd round product = Fig. 11.8 knot)

Then {Ob,R} = {(−3,0), (1)} and the result of 3 rounds of processive recombina-
tion is the +Whitehead link 〈1,1,1,1,1〉, and the result of 4 rounds of processive
recombination is the 4-plat 62* = 〈1,2,1,1,1〉.

So, only the first two rounds of recombination determine enzyme mechanism
and binding, and correctly predict the observed result of 3 and 4 rounds of recom-
bination. The above analysis amounts to a mathematical proof of enzyme bind-
ing and mechanism, and is a mathematical model that is of utility in many other
situations where circular DNA is used as a probe for biological activity. For ex-
ample, the tangle model is useful when electron microscopy is not available. Gel
electrophoresis (enhanced by radiolabelling of DNA) can be done to detect van-
ishingly small amounts of DNA product, and the gel velocity of relaxed circular
DNA tells us the crossing number of the DNA product. Knowing only the cross-
ing number is very useful; one can for example use crossing number informa-
tion to help characterize the geometry of packing of viral DNA in phage capsids
[ATV+02, AVM+05, AVT+02, TAV+01, MMOS06, MMOS08]. Since all knots
and links of small crossing numbers are known, one can write down tangle equa-
tions and solve them, knowing only the crossing number of the DNA products.
One goes to the knot and link tables, and for the right-hand sides of each tangle
equation, plugs in all the possible knot (link) products of a given crossing num-
ber [Vaz00]. Moreover, computer programs exist to solve systems of tangle equa-
tions and visualize the answers [SV02], [http://bio.math.berkeley.edu/TangleSolve/;
http://www.math.uiowa.edu/~idarcy/]. More generally, the existence of a mathemat-
ical model allows one to answer “what if” questions, and carefully investigate the
utility of the assumptions that go into the model.
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