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Abstract

Using exterior differential systems, we extend work by Harrison and Estabrook for de-
riving similarity solutions of hyperbolic and parabolic partial differential equations. We
use exterior calculus results to show that a symmetry (isovector) of the differential ideal
corresponding to some hyperbolic or parabolic PDE can be used to generate a Cauchy
characteristic vector field of a restricted exterior differential system defined on some four-
dimensional regular submanifold of the first jet bundle. We then show that this restricted
differential ideal has a Frobenius integrable annihilating space which can be used to yield
a similarity solution of the PDE by applying results from S. Lie and E. Cartan on in-
tegrating Frobenius integrable vector field distributions via symmetry. We also give an
extension to conditional symmetries.

1991 AMS Mathematics subject classification: 38A30, 58A15, 58G35.
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I. INTRODUCTION

Given a non-linear partial differential equation, a so-called ‘similarity solution’ is one which is
invariant under some group action. Pioneered by Lie [1], techniques for using symmetries to
find similarity solutions have been around for a long time, and in recent times authors such as
Bluman and Cole [2], Bluman and Kumei [3], Olver [4, 5, 6] and Stephani [7] have provided
modern discussions on various aspects of this similarity solution approach to PDEs.

This work considers a single second order hyperbolic or parabolic PDE of one dependent
variable u and two independent variables z!', 2% of the form

0%u 0%u 0%u
f]a(f]'}])Q +f26(,’)’,'2)2 +f38f]’,‘],')',‘2 ) ( )
2 du Ou

where f1, f2, f3, k are smooth functions of z!, 22, u, 5215 5,2+ Although exterior differential sys-
tems [8, 9, 10, 11, 12] are of most use in studying systems of non-linear partial differential
equations, we examine in this paper their application to similarity solutions of (1) along sim-
ilar lines as Harrison and Estabrook [13]. We also give an alternative interpretation of the
underlying geometric significance of such solutions.
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D1ICE LIS papel 15 €55€11tlally colcerned witll algoritning based o1 syminetry Lol extract-
ing similarity solutions of (1), we assume throughout that give a second order hyperbolic or
parabolic PDE of the form in (1) and symmetry vector field, there exists a local smooth simi-
larity solution. This also means that if we apply the Cartan-Kuranishi theorem [14], we obtain
after a finite number of prolongations an involutive system of PDEs.

Our work also make use of results from Lie [15] and Cartan [16, 17] for integrating Frobenius
integrable vector field distributions via symmetry that has in recent times been extended by
Basarab-Horwath [18], Duzhin and Lychagin [19], Hartl and Athorne [20], and Sherring and
Prince [21]. With particular emphasis on results in [21], we establish in Sections V and VII
two algorithms based entirely on symmetry for generating similarity solutions of second order
hyperbolic or parabolic PDEs of the type in (1), which avoids the usual requirement of having
to solve some ordinary differential equation once the similarity variable is known. Finally, we
briefly examine conditional symmetries. Using such symmetries we extend earlier results in
this paper to give a technique for generating the so-called ‘non-classical’ [6, 22, 23] similarity
solutions, that once again avoids the need to solve any ODE.

II. BACKGROUND

It is assumed throughout this paper that for natural numbers n and m, U" and V™ are,
respectively, some open, convex neighbourhoods of R* and R™, with coordinates z',... 2"
and z',...,2™. On the k-th jet bundle J*(U", V™), we say that the set of exterior dif-
ferential p-forms AP(J*(U", V™)) is a section of the bundle of all homogeneous differential
forms A(J*(U", V™). We define X(J*(U", V™)) to be the module of smooth vector fields over
C>®(JH(U™, V™). Given some w € AP(J*(U", V™)), its kernel is defined by ker(w) = {X €
X(JE(U™, V™)) @ Xaw = 0}. We assume that on their domains of definition, all vector field
distributions are of constant dimension, and unless otherwise stated as in Sections VI and VII,
all mappings and differential one-forms are of constant rank.

The Cauchy characteristic space of a differential ideal I generated by some finite collection
of differential forms is denoted A(7), and contains all vector fields X € X(J*(U", V™)) such
that Xu7 C I. A vector field X € X(J*(U", V™)) is said to be a symmetry (isovector) of
I if it satisfies the condition involving the Lie derivative that LxI C I. A vector field X €
X(JE(U™, V™)) is a symmetry of a vector field distribution D C X(J*(U™, V™)) if LxD C D.
We say that a vector field is a non-trivial symmetry if, in terms of a differential ideal, it is not
Cauchy characteristic, or in terms of a vector field distribution, it is not in the distribution.

We also assume throughout this paper that unless otherwise stated, MY is some open,
convex g-dimensional neighbourhood of J*(U™, V™). Since by the inverse function theorem,
parameterising immersions mapping onto regular submanifolds are locally diffeomorphic, we
also assume all neighbourhoods U™, V™ and M? are chosen such that this holds. Thus for the
differential map ¥, : X(M") — X(M?*), we can therefore assume for each Y € X(M") that
V.Y is a well-defined vector field, and the following property holds:

VL[V, Ys] = [0,V 0,Y5). (2)

for any Y1,Y; € X(M"). We also make use of the following theorem found in Sternberg [24]
that we use in the next section:

Theorem 1. Let W : M"™ — M? be a one-to-one immersion. Then for all Y € X(F(M"))
there exists X € X(M") such that ¥, X =Y.
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one-to-one, this notation is unambiguous.
The pull-back map ¥* : A(M?®) — A(M") has the following properties:

(U'w) (Y, ..., V) = " (w(W,Y7, ..., 0, Y%)), (3)

for any w € A*(M?®), Yy,..., Y, € X(M"), and
U* o dw' = do Ww!, (4)
U (wh Aw?) = (TPwh) A (TFw?) (5)

for any w',w? € A(M?*). Given any smooth ® : M4 — M" and w € A'(M?*), we also have the
following composition property:

(Tod) w=0"(T*w). (6)

III. DIFFERENTIAL IDEAL REPRESENTATION OF
PDES

Working in the second jet bundle J?(U? V') with coordinates x', 22, 2", 21, 29, 211, 219, 299, We
define
F = flzh + fQZ%Q + fBZ%Q — k,

along with the contact forms

C':=dz' — zjdx' — zyda®,
1. g1 11 1 72
Cy :=dzy — zydx” — zppdx”,

1. g 1 g1 1 g2
Cy 1= dzy — z19dr — 255dx”.

We can express a solution surface of the PDE in (1) as a two-dimensional integral manifold
(immersion) of the differential ideal

Ip == (C',C},CL,dC!, dCL, Fdz' A dz?),

such that the transverse condition dz' A dx? # 0 holds on its tangent space. Note that dC' =0
mod C},C3. Also, Lemma 1.1 in [25] implies

d(Fdz' Adz®) =0 mod C',CY,Cy,dCY, dCs.

It is well-known that an integral manifold in the second jet bundle which annihilates all the
contact forms that generate the second order contact system is the image of the 2-jet of some
smooth map f : U2 — V' if and only if dz' A dz? # 0 on the tangent space of the integral
manifold (see, for example, Theorem 2.3.1 in Stormark [26]). If, in addition, the integral
manifold annihilates F', then the 2-jet is that of some local solution of the PDE in (1).

Our principal result of this section is the following:

Theorem 2.
Ip = (C’I,C’ll,C’Ql,dCll,dC’Ql,L>,

where
L= fidz{ Nda® — fodzy Nda' + fsdzy Ada® — kdx' A da®.
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Fdz' Adx® = (fizi, + fozge + f321y — k) dz' A da®.

Now
fizdx' Ada® = fi(z,dx’ + 2),dx®) A da?,
= fildz — Cy) Ada?,
fozgedx' A da® = — fy(zy,da’ + 25,d2”) A da',
= —faldzy — C3) A da?,
fazipdxt A da? = fs(ziyda’ + 23,da?) A da?,
= f3(dzyg — C3) A da?.
Hence

Fda' A da? = fidzl Ada? — fodzy A da' + fydzd A da?
— kdz' Adz* mod C},C;,
=L modC/,C,.

From this we obtain

dL =d (Fdaz:1 A da:Q) mod C},Cy,dC},dC;,
=0 modC', C],C,,dC},dCy,

using Lemma 1.1 in [25]. O

Remark. In a similar fashion to above, it is easy to show that
Ip = (C',C},C;,dC},dC}, LY,

where
LT := fidzl Ada? — fodzy Ada' — fadz) Ada' — kdx' A da®.

In our work, we deal mostly with L, however all results equally apply to L.

We define
I = (CI,CII,C%,dCll,dCQI,L).

Technically speaking, I+ := Ir (by Theorem 2), and the notation I might appear redun-
dant. However we will use I as a brief way of referring to the particular choice of generators
cl,Ct,Ci,dCt,dCl, L.

Now L (containing all the information specific to the PDE) does not depend on any sec-
ond order terms z{;, z{y, 299. Therefore, we may modify our problem to that of finding two-
dimensional integral manifolds of a reduced differential ideal I defined by

I :=(C',dC", L,dL), (7)

defined on the first jet bundle J'(U? V). We note that since dL is a three-form, all two-
dimensional integral manifolds of I7. will trivially annihilate dL, so this differential form can
therefore be ignored in all calculations.
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Given a Lie point symmetry X € X(U? x V') of the PDE in (1), a similarity solution of the
PDE is a local solution that remains unchanged under the one-parameter group action of the
symmetry. The most well-known procedure for using X to generate a corresponding similarity
solution basically involves determining the two functionally independent invariants ', 72 €
C>®(U? x V1) of X and finding a solution of (1) that is some function of these invariants. Doing
so, one essentially obtains from (1) a second order ODE expressed in terms of 7', 72, known
as the ‘reduced’ differential equation. In the general case for PDE problems of n independent
variables, the reduced equation retains the same order of the PDE but is of n — 1 independent
variables.

An alternative and equivalent approach to finding similarity solutions is discussed by Olver
in [6] where one searches for a common solution of the overdetermined system of PDEs given
by (1) and the first order quasilinear PDE obtained from

X ¢t =o, (8)

where 2! and 2{, zy are replaced with u and its respective first partial derivatives. Here we
assume (8) gives a valid PDE and the Lie point symmetry X is not, for example, 5%. The
PDE derived from (8) is known as the characterising invariance system (or invariant surface
condition) corresponding to X, and is typically solved first using invariant coordinates to give
a solution in terms of an arbitrary function. Then, by inserting this solution into (1), a reduced
differential equation for the arbitrary function is derived. Once this is solved, a similarity
solution is obtained once more.

In this paper we do not follow either of the above procedures, but instead choose to adopt
another approach formulated by Harrison and Estabrook [13] that uses exterior calculus and
differential ideals. This is discussed below:

Suppose we are given some differential ideal I7. on .J'(U?, V") corresponding to some second
order PDE of the form in (1). If a vector field V' € X (J'(U?, V")) is a symmetry of IZ, then

LyC' =)0, (9)

and
LyvL=a"AC'+ XdC" + \3L, (10)

for some A\, Ay, A3 € C® (JY(U?,V!)) and o' € A (J1(U?,V!)). Applying the property that
Ly (dw) = d (Lyw) for any differential form w, we can use (9) and (10) to derive corresponding
symmetry expressions for the remaining two generators of IZ. A key property of the Harrison
and Estabrook approach is that the symmetry algebra of I includes the Lie point symmetry
algebra of (1). We state this fact without proof, however in [27] it is proved for differential
ideals where the PDE is left as a 0-form generator of the ideal. Since we are dealing with PDEs
of one dependent variable, the determining equations derived from (9) and (10) should also be
able to establish any so-called contact symmetries of the PDE.

Suppose then that we are given some symmetry V of I (or the first prolongation of some
Lie point symmetry of (1)). In the Harrison and Estabrook approach to generating similarity
solutions of (1), the differential ideal I7; is augmented with V. C, VidC*, ViL and VidL.
One then looks for a two-dimensional integral manifold of the augmented ideal

(C',dC", L,dL,ViC', V1C" VIL,VidL), (11)

defined on J'(U?, V'), which also satisfies the transverse condition.
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ideal, and it is clear that V is a Cauchy characteristic vector field of the differential ideal.
Though this obvious latter fact has also been noted by Estabrook [28], we show in Lemma 3
below that for hyperbolic and parabolic PDEs of the form in (1), there exists a more useful
extension of this result.

Finally, we can simplify (11) in the following way: It is not hard to establish from using (9)
and (10) that (11) is equal to

(C',dC",L,dL,V1C',d(ViC"),ViL,d(ViL)). (12)

In the next section we examine (12) more closely and show that two further reductions are
possible.

V. FIRST MAIN RESULT

The class of second order PDEs we deal with is those for which L is decomposable, or equiv-
alently, L A L = 0 using Theorem 1.7 in Bryant et al. [8]. Although L defined in Theorem 2
is obviously not decomposable for some choices of fi, fs, f3, and k, we will see later in Section
VIII that for all hyperbolic and parabolic PDEs of the form in (1) we are able to add to L some
multiple of dC" which is then decomposable.

Assuming then without loss that L is decomposable, we have

0=YJ1(LAL)=2(Y1L)ANL,

for any Y € X (J'(U?, V")), so that if YJL # 0, then L = (YJL) A w for some w €
AL (JYU?, V1Y), Therefore, for decomposable L, any integral manifold of

(', dC",viC',d(ViC"),ViL,d(ViL)). (13)

is an integral manifold of (12) (the two differential ideals are equal for decomposable L). Here
V' is the symmetry of /7 described in the previous section. We shall make use of this condition
on L in our two main results, Theorem 4 in this section and Theorem 9 in Section VII.

Since V1 C" is a smooth function generator of (13), we can make a further simplification to
this differential ideal by pulling it back onto the regular submanifold of J'(U?, V1) described
by V1C! = 0, and confine our work to this region of J'(U?, V). Suppose that the equation
V1C" = 0 describes a four-dimensional regular submanifold of J'(U?, V'), which we parame-
terise by the immersion ® : M* — J'(U? V"'). Then denoting the pull-back of (13) onto M*
by

Jr:=(*C',do ®*C',®*(V1L),do ®*(ViL)), (14)

we have the following lemma:
Lemma 3. Let V € X (J'(U*, V")) be a symmetry of I If the equation Vi C' = 0 describes a
four-dimensional regular submanifold of J*(U?, V'), which we parameterise by the immersion

O M* — JY U VY, then there erists W € X (M*) with the property that W is a Cauchy
characteristic vector field of Jz.

Proof. Let ® : M* — JY(U% V') be a corresponding immersion mapping onto the regular
submanifold of J'(U? V') described by ViC!' = 0. It is clear that the tangent space of
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condition in (9) with V' we obtain, at any point in ®(M?),

Vad(VaCh) =\ (VaCh) =0.

Hence V is in the tangent space of ®(M?). Applying Theorem 1, there exists a vector field
W € X(M*) such that ®,W = V.

We now proceed to show that W is a Cauchy characteristic vector field of J% by examining
each generator of the differential ideal. First,

Wi C' = @ (D.WiC") =0, (15)

where for the first equality we have used the property in (3), and for the second, we have made
use of the fact that the pull-back of V1C' by @ is zero.
Next, we have that

Wi®* 0dC' = @* (0, WidC") = &* (VidC), (16)
once again using (3). Now

* (VidC') = @* (MC' —d(VaCh)),
= (®*A) ®*C" — do®* (ViC'), (17)
= (®*\) *C' € JL,

where in the first line we have inserted the symmetry condition in (9), and in the second, we
have used properties (4) and (5). Combining the end result in (17) with (16) and (4) then gives

Wido®*C' € Jr. (18)
We also have from (3),
Wio*(ViL)=®* (&, WiViL) =" (ViVLL)=0. (19)
In a similar fashion,
Wid* od(ViL) =& (0, Wid(ViL)) = & (Vad(ViL)). (20)

The symmetry condition in (10) yields

Vid(ViL) = Vi (o' AC" 4+ XdC' + A\3L — VidL),
= (ViaC' — (ViCHa! + A\y(V1dC) + N3(VI L).

Pulling this back by ®, then using (5) and ®*(V1C") = 0 followed by (17) gives

®* (Vid(ViL)) = (®*(Via')) ®*C' + (*Ny) ®* (V1dC")

+ (B Ng) B* (VL) € J1, (21)

so that combining this result with (20) and (4), we obtain
Wido®*(ViL) € Ji. (22)
Therefore (15), (18), (19) and (22) imply that W1 J. C JI. O

7
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Theorem 4. Given some second order PDE of the form in (1) whose corresponding L is
decomposable, let V € X (JYU?,V?')) be a symmetry of L5 Suppose the equation V. Cl =
0 describes a four-dimensional reqular submanifold of J'(U?, V'), and denote ® : M* —
JYU? V) as a corresponding immersion mapping onto this submanifold. With

D= (sp{®*C", " (V1L)}) ",

if ®* (CY A (VJL)) #0, then ®. D7 generates a two-dimensional integral manifold of Ir.. If, in
addition, dx' A dz? # 0 on . D7, then the integral manifold is the image of the 1-jet of some
local solution of the PDE in (1).

Proof. We know from the proof of Lemma 3 that V = ®,W for some W € X(M*). Since
®* (C' A (VIL)) # 0, it follows that DI is two-dimensional. From Lemma 3, W is a Cauchy
characteristic vector field of the differential ideal J1. defined in (14), which implies [W,Y] € D7
forall Y € D7 [29, 26]. Hence D7 is Frobenius integrable. Since it is assumed @ is diffeomorphic
onto its image, ®, D% is well-defined. Now let Z;, Z € ®,D%. This means

Z] :@*P], ZQZ(I)*PQ,
for some Py, P, € D7, Using (2) and the fact that D= is Frobenius integrable, we then get
[Z],ZQ] - [(I)*P] y (b*PQ] - (b*[P],PQ] S @*D%,

SO Q*D% is Frobenius integrable.
Suppose that ¥ : M2 —s M* is an immersion mapping onto any leaf of the foliation of AM*
generated by DZ. Thus W*.JI. = 0. Using (6),

(® 0 W)*C' = U*(®*C") = 0, (23)

and from (4),
(®oU)*(dC") =d ((® o ¥)*C") = 0. (24)

By assumption, ®* (C' A (V1 L)) # 0. This implies V1L # 0. Since L is decomposable, we
have L = (V1 L) A w for some w € A' (J'(U?,V')). Concentrating on V1L,

0=U"(®*(V1L)) = (®o W) (ViL),
which gives
U (P L) = 0" ((P* (VI L) A(P*'w)) = ((Po W) (VIL) A ((PoW)w)=0. (25)

Hence from (23), (24) and (25), it then follows that (® o W)*/7- = 0. If the transverse condition
holds, then ® o W(M?) = j'h(U?) for some h € C*(U* V"), with h as some local solution of
(1). O

Remark. In order to satisfy the transverse requirement, the symmetry V in Theorem 4 must
necessarily satisfy the condition d(V1C') A dz' A dz* # 0. If this is not the case, then
®*(dz' A dz?) = 0, and hence for all U, (® o U)*(dx' A dz?) = 0. Consequently the trans-
verse requirement fails.

We illustrate Theorem 4 with the following example:

8
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0%u ou
o) o (26)

Defined on J'(U?, V') we have
I = (C",dC", L,dL),

where F' = z{, — 25 and L = (dz{ — zydaz') A da®. Now

is a Lie point symmetry of (26), and we use its first prolongation V1), where

0 0 0 0
m_ .19 2 O 1
R e R P F e
as our non-trivial symmetry of I7.
Applying Theorem 4, we define the four-dimensional regular submanifold M* c J'(U% V1)
by the locus of
VI ot = gty — 2?2 =0,

In a simplified manner without explicitly introducing an immersion, we assume M?* has coor-
dinates z', 2%, 21, 21 with 22 # 0, so that on M*,

C!' =dz' — z{da' + 21

(27)
VO L = —2latdat + 21 (

) — 22%dz;,

with
Jr=(C",dC", VL, d(V, L)),

also defined on M*. From Theorem 4 we have that D= C X(M*) generated by the annihilating
space of the equations in (27) is Frobenius integrable. It is easy to show that on Dz, the
transverse condition dz' A dz? # 0 holds, so we expect to get some local solution to the
heat equation. Then applying Proposition 4.7 in Sherring and Prince [21] with a solvable
structure of two symmetries, where X, := % € X(M*") is a non-trivial symmetry of D%,
X, = z%% € X(M*") is a non-trivial symmetry of DL @ sp{ X5}, and defining

e 1)2
Q:= (dz — zpda' + a7 da:2> A ( satdat + 2 ((;—)2 - 1) da?® — 2x2dz%> :
x

212
we find

Xoi€) (z1)?
= d [ In(z] Va?
X1 X01Q (n(zl v) + 422 )7’

X119 (z1)? Xo1€)
——=d |2 22 Va2e / —£%)d d ————
X1 X719 (Z ave 6‘Xp<4.722 ) exp( 5) &) mo X11X0uQ'

where & := z'/(2V/22). Putting




all

422

P 22}\/ﬁexp ((3:])2> /exp (—52) d¢ = 2,

for any constants c', ¢?, we obtain

u = 2exp(c') /exp (—¢&%) de

as our local similarity solution of the heat equation corresponding to V.

We close this section with a warning that there will exist situations when applying Theorem 4
will yield a distribution ®,DZ that is not transverse, even with d(ViC") A dz' A dz® # 0. In
such cases we must abandon the above approach and look to use elements of I% that are in a
sense singular. This is explained in full in the next section.

VI. A SINGULAR APPROACH

Consider a differential ideal I := (o', o?) defined on some open, convex neighbourhood U* C R*

with coordinates z', ..., 2%, generated by two linearly independent one-forms o', o € A'(U?).
Suppose that for each i € {1,2}, do’ = 0 mod o', a?, i.e. ker(a' A a?) is Frobenius integrable.
Here, we choose to work with a two-dimensional Pfaffian system defined on a four-dimensional
space because the material in the following section on second order hyperbolic or parabolic
PDEs of the type in (1) is precisely of this nature, but all results that follow in this section can
easily be extended to arbitrary dimensions.

For integrating the Frobenius integrable distribution ker(a' A a?) using solvable symmetry
structures, we can use Proposition 4.7 in Sherring and Prince [21] to find some functions
fisfo, 12 £5. 9, 9% € C(U") such that

fial + fya? = dg',
2 1 2 2 ;.2 (28)

fia + fya” =dg”.
If, on U*, the functions g', g> are of constant maximal rank two, then the equations ¢g' =
ct, g = ¢* describe a two-dimensional regular submanifold of U*. Let ¥ : M? — U* be an
immersion mapping onto this submanifold. If, in addition, the determinant

fify
s

on M?, then (28) and the fact that U*(dg') = 0 = U*(dg?) imply U*a! = 0 = ¥*a?. Hence ¥
is a two-dimensional integral manifold of I, for arbitrary constant functions c', ¢?.

The problem with the above ‘regular’ approach used in Theorem 4 for dealing with a PDE
of the form in (1) is that if the submanifold generated by ®,DZ is not transverse, then the
method fails to give us a local solution with u as some smooth function of z!, 2.

Our goal in this section and the next is to provide an alternative approach for finding two-
dimensional integral manifolds of I, which includes the above situation as a sub-class, as well
as applies to PDE problems when ®,DZ may or may not be transverse. We will also see that
the trade-off for this extra flexibility is that there is no direct computational approach using
solvable symmetry structures, however using the Frobenius integrable nature of ker(a! A a?)
(or ®,D% in Theorem 4) we do come close.

Consider then the following obvious extension to the above discussion:

o+ £ 0

10
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C>(U*) such that

fla' + fo0® = g'ldg", (29)
]2041 _|_ f220/2 — gQ]dQQQ.

Suppose that for some p,q € {1,2}, the equations

glp:{o ifp=1, ggq:{o ifg=1,

¢ otherwise, c?  otherwise,

for some constants c',c? describe a two-dimensional reqular submanifold of U*, and let ¥ :
M? — U* be an immersion mapping onto this submanifold. If, on M?, the determinant

o
2

then V¥ is a two-dimensional integral manifold of I.

VA £ 0, (30)

For PDE problems, Theorem 6 will be used to find alternative (hopefully transverse) integral
manifolds of I to those found with the usual approach reviewed at the start of this section.
Unfortunately there is no algorithmic technique (without involving ODEs) for establishing (29)
by means other than following direct one using Proposition 4.7 in Sherring and Prince [21] that
incorporates symmetry:

Suppose then we apply Proposition 4.7 with X, € X(U?) as a non-trivial symmetry of
ker(a' A o?), and X; € X(U") as a non-trivial symmetry of sp{X,} @ ker(a' A o?). We then
obtain

Xo1 (! A a?)
X1 Xo1 (! A a?)
X1 (a' Aa?)
Xo1 Xyi(a' A a?)

— dng,

(31)

— dg22 - X] (922)(19]2’
1 22

for some ¢'?, g*? € C>°(U*). This gives integral manifolds of I defined by ¢'2 = ¢!, ¢*? = ¢? for
constants ¢!, ¢?. Suppose these are not transverse. Rearranging the equations in (31) gives

(XQJ (12) al — (XQJ ozl) a? = (XQJ Xii(at A 0/2)) dg"?,
(X1 + X1 (¢®)Xa)10?) o' — (X1 + X1 (97) Xs)1a") o (32)
= (X1 Xo1 (o' A a?)) dg™.

Now applying Theorem 6 with the equations in (32), we set
g” = 7921 = XQJ X]J (G{] A (12).

We cannot choose p = 2,q¢ = 2 since by assumption these integral manifolds of I are not
transverse. We also cannot choose p = 1,¢ = 1 because ¢g'' = —¢?! implies we do not obtain
a regular two-dimensional submanifold of U%. This is clearly due to the constant maximal
rank two requirement failing. Therefore we require that at least one of the two remaining (p, q)
combinations satisfy the rank two condition. Finally, the equation in (30) must also be satisfied,
ie.

- Xoia? ~Xoial! £

(X] + X] (QQQ)XQ)J (12 *(X] + X] (g22)X2)J (J(l

11



DEIOW 15 a IModliicatlon ol 1Neorei o, wiicl sSnows tilat 1I we are given jJust 0lle Ol tie
equations in (29) (found for example by inspection, or using Proposition 4.7 in Sherring and
Prince [21] as in the above), then the other can be determined using a symmetry:

Theorem 7. With o', a? and I defined as above, let there exist !, fa,g"", g'? € C®(U") such
that

fla' + fa® = g'ldg"™. (33)
Suppose that for some p € {1,2}, the equation
0 ifp=1,
gr =10 Ir=1 (34)
¢ otherwise,

for some constant ¢ describes a three-dimensional reqular submanifold of U*. Let © : M3 —
U' denote an immersion mapping onto this submanifold, and let X € X(M?) be a non-trivial
symmetry of O (f2a! + fia?), for some f2, f3 € C°(U"). Then there exist g*', §** € C°(M?)
such that

o* ( 201 4 f220/2) — g2 dg®.

Further suppose that, for some q € {1,2}, the equation

0 0 ifqg=1,
c?  otherwise,

for some constant ¢ describes a two-dimensional reqular submanifold of M?3. With U : M? —
M3 denoting an immersion mapping onto this submanifold, if

fih
i

on M?, then © o W is a two-dimensional integral manifold of 1.

(©0 W) 40, (35)

Proof. Since for each i € {1,2}, do’ = 0 mod o', o?, it follows that with
pl=fla + fya,
B =fial + fia?,

we have for each 7 € {1,2}, df* = 0 mod %, 32 for arbitrary choice of fl, fl, f2, f2 € C>=(U*).
Let B! satisfy (33) for some f{, fJ and some g'!, g'* € C°°(U*), and for some p € {1, 2}, let the
immersion © : M3 — U*, defined as in the theorem, map onto the regular submanifold of U*
given by (34). Then ©*3' = 0, so that

d(0'8%) = 0" (dB?) = (0" 1) OB + (O%uy) 0" =0 mod O° 7,

for some 1,y € C°(U?). Let X € X(M3) be a non-trivial symmetry of ©*3%. Hence from
Proposition 4.7 in Sherring and Prince [21] (or even Theorem 2.1 in the same paper), we obtain

@*52 -
d(XJ@%%>Q

0" = (X, (0°5) g™,

Therefore

12



rsome g  <c U (M ). vwve sel g — ALY 0O ) alld CNOo0sE g = sSuchh that 1t 15 01 COoNstallt
maximal rank one on M?. Hence with ¥ defined as in the theorem, we have

(©oW)5 =0 = (00W) 4,

By the assumption in (35), it is then clear that © o ¥ is a two-dimensional integral manifold of
1. O

Remark. The functions fZ, f2 in Theorem 7 are not quite arbitrary: First they must be chosen

so that Lo
fi fa
0,
nopT

on M3 or else (35) fails for any W. Then once W is known, (35) must be checked.

(__)*

Certainly the difficult part in applying Theorem 7 is in establishing (33). Once this is
done however, the remaining assumptions in the theorem simply involve two maximal rank
conditions, one non-zero determinant condition and one non-trivial symmetry.

Another observation we can make regarding Theorem 7 is that ker(a' A @?) must be Frobe-
nius integrable. Of course, even if ker(a' A a?) is not Frobenius integrable, singular two-
dimensional integral manifolds of I may still exist.

The following example illustrates Theorem 7:

Example 8. Suppose on some suitably chosen U? where 22 # 0, I := (o', o?) with

1

x
o' i=dr® + ——dz' — z'da’,
22

1\2
a? = (2372.7:4 — (3: ) + 1> dr?.

212

It is easy to show that for all i € {1,2}, do’ = 0 mod o', o?, and so ker(a' A ?) is Frobenius
integrable.

We begin with the ‘regular’ approach to integrating ker(a! A a?) reviewed at the beginning
of this section. Simple inspection (or Proposition 4.7 in Sherring and Prince [21]) yields

1\2 1\2
a' Aa? = <2m2m4 (x) +1>d<m3+(j;—)> A dx?,

Q2 2

Hence if the equations

21?2
IQZC], 3:3—1—%202,

for arbitrary constants c!',c? are constant maximal rank two on some suitably chosen neigh-
bourhood of U?, then they describe a two-dimensional foliation of the neighbourhood, where
each leaf is a regular submanifold that is an integral manifold of I.

We now look to apply Theorem 7 in order to generate different two-dimensional integral
manifolds of 7. Applying the theorem, suppose we choose f] :=0, f; :=1, and

(z')?
212

2

gH = 2%t — +1, 912 = 3:2,

so that (33) holds. We set
g''=0. (36)

13



vwe also cnoose j, — 1, Jo — U. Agalll WILIOUt €XplCltly INtroducing an 11minersioin, ald
pulling-back o' onto M? defined by (36) with coordinates for M? given by !, 2%, 2%, we find
(on M?)

1 1\2
1_ 33, % 1 1 (=) 2

which, from Theorem 7, is closed modulo itself. Applying Theorem 2.1 in [21] with % as a
non-trivial symmetry of o!, we get

ol =d (g;* +In(Va?) + (m1)2> ,

472

SO

7 =1, 77 = 2" +In(Va?) + =

Hence our only choice is to set

—22 3
g =c,
3

where ¢® is an arbitrary constant function. On a suitable neighbourhood of U* the equations

oI il P S ln(Va?) + B (37)
xort — = x n(vze =c
212 ’ 42
are of constant maximal rank two, and it is easy to see from above that the non-zero determi-
nant condition in (35) holds. Hence the equations in (37) describe a two-dimensional regular
submanifold of the neighbourhood of U*, that is an integral manifold of I. Note that the two-
dimensional leaves described by (37) do not generate a foliation of the neighbourhood. Rather,
the three-dimensional regular submanifold of the neighbourhood described by the equation on
the left in (37) is foliated by the two-dimensional leaves generated by the equation on the right.

VII. A SINGULAR APPLICATION

In this section we use Theorem 7 to provide an alternative to Theorem 4 when the transverse
requirement fails for ®,DZ. The following result is the second of our major results:

Theorem 9. Given some second order PDE of the form in (1) whose corresponding L is
decomposable, let V € X (J'(U?*, V")) be a symmetry of I%.. Suppose the equation V C'=0
describes a four-dimensional reqular submanifold of J'(U?, V'), and let ® : M* —s J'(U?, V")
denote an immersion mapping onto this submanifold. Further suppose ®*(C' A (V1L)) # 0,
and we have applied Theorem 7, with o' := ®*C* and o? := ®*(V1L), thus generating some
smooth g'?, g% and immersions © : M* — JY(U?, V) and ¥ : M? — M3, as in the theorem.
If

(®0©oW)*(da' Ada?) #0, (38)
then ® o © o W(M?) is the image of the 1-jet of some local solution of the PDE in (1).

Proof. Using Lemma 3, we have on M* that

D% = (sp {(P*Cl, (V] L)})l

14



Is FIODENIUS 1Htegrable.  Applylllg  LLHEOrell 10 J dellled (1<) LHEll gCHerates a two-
dimensional integral manifold of J7 given by

OoW: M? — M*.
At this point the proof becomes very similar to that of Theorem 4. As L is decomposable, we
find that
PoOoW: M — JH(U* V)
is a two-dimensional integral manifold of I7.. The condition in (38) is a transverse requirement.

It then clear that the image of ® 0 © o W is equal to the image of the 1-jet of some local solution
of the PDE in (1). O

Remark 1. Theorem 9 can obviously be modified by replacing Theorem 7 with Theorem 6.

Remark 2. While Theorem 9 does not require that Q*DTF be transverse, a transverse require-
ment must still be introduced, but at a later stage.

The following example attempts to clarify Theorem 9:
Example 10. Consider the Potential Burgers’ Equation
ou 0%u ou '\’
— — =0. 39
oz?  O(z')? (6.7:1) (39)
Defined on J'(U?, V') we have

Im = (C",dC", L,dL),

F
where F'= 2} — 2], — (2})? and L = ((23 — (2])?) dz' — dz]) A dx®. Now
0 0
5.2 1
is a Lie point symmetry of (39), and we use its first prolongation V), where
0 0 0 0
v 92 % 9% 9 510
¥ 9 dz' 0z 102}

as our non-trivial symmetry of /1.
Applying Theorem 9, we define M* to be the four-dimensional regular submanifold of
JYU?, V1) given by the locus of

VviiCt = 2" - 22%2 = 0.

We assume M* has coordinates z', 2%, 2", 23 with 22 # 0, so that on M* we have

1
x

C'=dz' + ——dz' — 2yd2”,
222

1\2
VUL = (23722; — (+) + 1> da?.
212
It is clear that the transverse condition does not hold on the two-dimensional annihilating space
of sp{C", V(N L} defined on M*, so we will look to use Theorem 7. In applying this result, we
refer to Example 8 which makes use of the theorem with 23 replacing z' and z* replacing z} so
that o' = C" and o? = V), L. From the example, we then get that

1)2
u=—In(Va?) — (@) + ¢,

472

for any constant ¢® is a similarity solution of (39) corresponding to V.
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Theorems 4 and 9 appear to be restricted by the requirement that L (or LT) be decomposable.
However, since dC" is in I, we may look to add some multiple b € .J'(U?, V') of dC" to L so
that L + bdC'" is decomposable.

Without loss, working this time with LT, we define the following two-form
Q.= LT +bdC",

where b is for the moment any smooth function on the first jet bundle J*(U?, V'!). The following
lemma gives a simple quadratic condition on b in order that Qf A QF = 0, so that QFf is
decomposable by Theorem 1.7 in [8].

Lemma 11. With Qf := LT +bdC", if

_ B4R
2 bl

b

with f2 — 4f1fy >0, then QF is decomposable.

Proof.
(L' +bdC")* = (L1)? + 26dC" A LY + 02 (dC)?,
and
(dC")? = 2dz] A da' Adzy A da?,
(LN?2 = —2f, fodz] Adax* Adzy A da’,
dC' N LT = fadzy Ada® Adz) A da'.
Hence

(L1 +0dCY)* = 2 (0> + bfs + fufa) dzt A da A dzb A da?,
It follows that if
_ B4R
2 b)

where b is real on J'(U?, V'), then QF A QF = 0, and therefore by Theorem 1.7 in [8], QF is
decomposable. ]

b

Proved in a similar way to Lemma 11, we have the following for L:

Lemma 12. With Q := L + bdC", if

_hBEVE AR
2 3

b

with f2 —4f1fy >0, then Q is decomposable.

The requirement that the discriminant in Lemmas 11 and 12 remains non-negative on
JYU? V') (or on some suitable neighbourhood), coincides exactly with the condition found
widely in the literature that the second order PDE in (1) be hyperbolic or parabolic. Hence, if
the PDE is of one of these two types, then we are always able to determine a decomposable €2
(or QF). Thus we can apply Theorems 4 and 9 by simply replacing the L in these two theorems
with 2. We illustrate with an example:

16



LXamnmpilie 1o. Lonsiaer tie non-inear wave equatloll.

0*u 0*u
o2 "B (40)

In terms of coordinates of J'(U?, V"), this equation admits the point symmetry

0 0
2 1
Vi==x W — YRR
whose first prolongation is
0 0 0 0
m_.29 919 4519 419
ViV=ux 51 2z 5.1 22 721 32, 2

Working with L, we have
L =—z2'dz Ada? — dzy A da',

which is clearly not decomposable. From Lemma 12, we find that L+ V21dC! is decomposable.
Taking the positive option gives
Q, =L+ VzdC",
= (dz; — ﬁdz{) A (\/2_1(1372 — dml) .

Applying Theorem 4, we define the four-dimensional regular submanifold M* c J'(U? V') by
the locus of
VI ot = 2?2 - 22" =0,

Let M* have coordinates x', 22, 2", z] with 2% # 0. Then we have on M*,
2 1
C'=dz' — z{dz' + %de,
1 4(z')2 1)% 2 1, 211
v, Q, = f——2\/721 da' + + 22120 | da? 4+ 2V2ldet + a2t deL

It is easy to show that the transverse condition holds on the two-dimensional annihilating space
of sp{C", V10, } defined on M*. By inspection,

5,
X, = — M
! ox! < %( )

is a non-trivial symmetry of C* A (V1€ (pulled-back onto M?). Using the Lie symmetry
analysis software package DIMSYM [30], we find
1 0

— € X(M*Y

A= gy

is another non-trivial symmetry of C' A (V(V1€,), which also commutes with X ;. Therefore,
taking advantage of this situation and applying Theorems 4.1 and 5.1 in [21] gives the two
closed forms

X (C'A(viQy) (*)*(21)” 2\2 1

XQJXIJ(OIA(V(l)JQ+))_d<— _(-’E)Z>=
Xou (C'A(VDLQL)) d(T1 B (x2)22%>

X]J XQJ (C] A\ (V(])J Q+)) -\ .




2\4(,1)2 2121
(z )1;'21) (@)% =, 1 (@) 2
for any constants c', ¢2, we obtain

3(xt — 2)” — ¢!
(22)?

u =

as our similarity solution of the non-linear wave equation in (40) corresponding to V.

IX. CONDITIONAL SYMMETRIES

Following Olver [6], Stephani [7] or Bluman and Cole [23], a conditional symmetry V € X(U? x
V1) of some second order PDE in (1) is defined as a Lie point symmetry of the overdetermined
system of PDEs given by (1) and the first order quasilinear PDE obtained from

vih,ot =o. (41)

In this section we show that all results in the previous sections still hold true if instead of the
symmetry being the first prolongation of some point symmetry of (1) it is the first prolongation
of some conditional symmetry.

We define

It = (CY,dCY, L, dL, (VY1 CYYda' A da?, d(VDICY) A dat A da?),

defined on the first jet bundle J'(U? V'). It is clear from Section III that the image of any
two-dimensional integral manifold of f% that satisfies the transverse condition will be that of
some 1-jet solution map of the overdetermined system of PDEs given by (1) and (41).

If V' is a conditional symmetry of (1), then it follows from the discussion in Section TV that

Ev(l)]% C [%.

Explicitly,
Cv(l)Cl = )\101, (42)
as well as
Ly L =a'ANC" + XdC" + ML + A (V3O da' A da?), (43)
and finally,

Ly ((V(])J C'Ydz' Ada®) = a® AC' 4 AsdC' + AL

44
+ A (VS CYYda' A da?) (44)

for some \y,..., A\, € C®°(JY(U?, V")) and o', a? € A (JY(U?, V).

Suppose in terms of first jet bundle coordinates the equation in (41) describes a four-
dimensional regular submanifold of J'(U?, V'), which we parameterise by the immersion @ :
M* — JYU?, V). Tt is then obvious that

O IE = O L.

Without loss, we can assume L is decomposable, so that L = (V(I)J L) A w for some w €
A (JYU?, V1Y) (assume VDL # 0). Suppose we now wish to repeat the proof of Lemma 3,
where in the lemma,

18



L. A7 15 replacted Dy [+,

2. V is replaced by the first prolongation of our conditional symmetry V1),
3. The symmetry conditions in (9) and (10) are replaced by those in (42) and (43).

Now it is not hard to see that the lemma still holds true, since the pull-back of (43) by ®
forces the final term on the right to vanish. Thus when pulled-back by ®, the two sets of
equations given in item 3 above are in identical form. Hence from the lemma there exists some
Cauchy characteristic vector field W e X (M*) of JL with the property that ®,W = 17408
Consequently, with the same three substitutions given above, Theorems 4 and 9 hold.

Finally, the equation in (44) is not used in the proof of any of our results. Therefore it
appears that in order for us to use symmetries of f% to derive non-classical similarity solutions,

vector fields from the symmetry algebra of f% are not strictly necessary. One essentially only
requires vector fields that satisfy (42) and (43).
Using a conditional symmetry, we now illustrate Theorem 4 with the following example:

Example 14. Consider the heat equation given in (26). From Stephani [7], it has the condi-
tional symmetry

0
V:=tan(z')=— + —,
( )6:::1 Ox?
whose first prolongation is given by
0 0 0
VW =tan(2")=— + = — 2! sec’(z')=—.
( )Bml oz2 ! ( )8211

From Example 5, L is decomposable. Applying Theorem 4, we define the four-dimensional
regular submanifold M* C J'(U?, V') by the locus of

Vv, C' = 2l tan(z') — 2 = 0.
Letting M* have coordinates z', 22, 2', 2!, we pull-back C' and V(1 L so that (on M*),

C' = dz' — z{dz' + 2 tan(x')da?,

VWL L = 2 tanz'da' — 2]da” — dz].

It can be shown that on M*, ker (C’l A (V) L)) is a two-dimensional Frobenius integrable
distribution that satisfies the transverse condition. By inspection,

Jd 0

0x?’ 021

S :{(M4)7

are two commuting non-trivial symmetries of C' A (VU3 L). Hence by Propositions 4.1 and
5.1 in [21] we obtain the two closed forms

2 (CA (VDL L))
215251 (CYA (VDL L))

21 (CPA (VDS L)) (
n
%J %J (CT'A(VOIL))

d(z' — z{ tan(z")),

I
=%
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2 — 7 tan(zh) = ¢, In

for any constants ¢' and ¢? yields
u = sin(z') exp(c® — 2?) + ¢!

as our local non-classical similarity solution of the wave equation corresponding to the condi-
tional symmetry V.

X. COMMENTS AND CONCLUSIONS

Our main results, Theorems 4 and 9, combined with Lemmas 11 and 12 show how one may
use solvable symmetry structures to extract classical and non-classical similarity solutions of
second order hyperbolic or parabolic PDEs of the form in (1). While the two theorems assume
L (or L) is decomposable, it is hardly a restriction. This is because the discriminant in the two
lemmas remains non-negative on some neighbourhood precisely when the PDE is hyperbolic
or parabolic. Hence, we are always able to apply Theorems 4 and 9 by replacing the given
non-decomposable L with a suitable decomposable €2, which is simply some linear combination
of L and dC'. For Theorem 4 there is a risk that the resulting two-dimensional Frobenius
integrable distribution does not satisfy the transverse requirement. If this is the case, then the
approach described in the theorem must be abandoned, and we are forced to use the slightly
more sophisticated Theorem 9.

It is unfortunate that both Theorems 4 and 9 demand the symmetry V satisfy d(VJ1Ct) A
dx' A dx? # 0. At this stage it is not clear how to modify our work in such a way so that this
restriction is avoided.

Finally, while our work has focused solely on the generation of similarity solutions in the
absence of boundary conditions, there is scope for further work with such conditions. As a
possible starting point, we know from Theorems 4 and 9 that given a symmetry V', we obtain
uniqueness of solution up to two and one arbitrary constants respectively. We leave such
research as the topic of another paper.
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