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lassi
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lassi
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o�January 4, 2001Abstra
tUsing exterior di�erential systems, we extend work by Harrison and Estabrook for de-riving similarity solutions of hyperboli
 and paraboli
 partial di�erential equations. Weuse exterior 
al
ulus results to show that a symmetry (isove
tor) of the di�erential ideal
orresponding to some hyperboli
 or paraboli
 PDE 
an be used to generate a Cau
hy
hara
teristi
 ve
tor �eld of a restri
ted exterior di�erential system de�ned on some four-dimensional regular submanifold of the �rst jet bundle. We then show that this restri
teddi�erential ideal has a Frobenius integrable annihilating spa
e whi
h 
an be used to yielda similarity solution of the PDE by applying results from S. Lie and �E. Cartan on in-tegrating Frobenius integrable ve
tor �eld distributions via symmetry. We also give anextension to 
onditional symmetries.1991 AMS Mathemati
s subje
t 
lassi�
ation: 38A30, 58A15, 58G35.Key words: exterior di�erential system, symmetry, similarity solution.I. INTRODUCTIONGiven a non-linear partial di�erential equation, a so-
alled `similarity solution' is one whi
h isinvariant under some group a
tion. Pioneered by Lie [1℄, te
hniques for using symmetries to�nd similarity solutions have been around for a long time, and in re
ent times authors su
h asBluman and Cole [2℄, Bluman and Kumei [3℄, Olver [4, 5, 6℄ and Stephani [7℄ have providedmodern dis
ussions on various aspe
ts of this similarity solution approa
h to PDEs.This work 
onsiders a single se
ond order hyperboli
 or paraboli
 PDE of one dependentvariable u and two independent variables x1; x2 of the formf1 �2u�(x1)2 + f2 �2u�(x2)2 + f3 �2u�x1x2 = k; (1)where f1; f2; f3; k are smooth fun
tions of x1; x2; u; �u�x1 ; �u�x2 . Although exterior di�erential sys-tems [8, 9, 10, 11, 12℄ are of most use in studying systems of non-linear partial di�erentialequations, we examine in this paper their appli
ation to similarity solutions of (1) along sim-ilar lines as Harrison and Estabrook [13℄. We also give an alternative interpretation of theunderlying geometri
 signi�
an
e of su
h solutions.�E-Mail: M.Bar
o�latrobe.edu.au. 1



Sin
e this paper is essentially 
on
erned with algorithms based on symmetry for extra
t-ing similarity solutions of (1), we assume throughout that give a se
ond order hyperboli
 orparaboli
 PDE of the form in (1) and symmetry ve
tor �eld, there exists a lo
al smooth simi-larity solution. This also means that if we apply the Cartan-Kuranishi theorem [14℄, we obtainafter a �nite number of prolongations an involutive system of PDEs.Our work also make use of results from Lie [15℄ and Cartan [16, 17℄ for integrating Frobeniusintegrable ve
tor �eld distributions via symmetry that has in re
ent times been extended byBasarab-Horwath [18℄, Duzhin and Ly
hagin [19℄, Hartl and Athorne [20℄, and Sherring andPrin
e [21℄. With parti
ular emphasis on results in [21℄, we establish in Se
tions V and VIItwo algorithms based entirely on symmetry for generating similarity solutions of se
ond orderhyperboli
 or paraboli
 PDEs of the type in (1), whi
h avoids the usual requirement of havingto solve some ordinary di�erential equation on
e the similarity variable is known. Finally, webrie
y examine 
onditional symmetries. Using su
h symmetries we extend earlier results inthis paper to give a te
hnique for generating the so-
alled `non-
lassi
al' [6, 22, 23℄ similaritysolutions, that on
e again avoids the need to solve any ODE.II. BACKGROUNDIt is assumed throughout this paper that for natural numbers n and m, Un and V m are,respe
tively, some open, 
onvex neighbourhoods of Rn and Rm , with 
oordinates x1; : : : ; xnand z1; : : : ; zm. On the �-th jet bundle J�(Un; V m), we say that the set of exterior dif-ferential p-forms �p(J�(Un; V m)) is a se
tion of the bundle of all homogeneous di�erentialforms �(J�(Un; V m)): We de�ne X(J�(Un; V m)) to be the module of smooth ve
tor �elds overC1(J�(Un; V m)). Given some ! 2 �p(J�(Un; V m)), its kernel is de�ned by ker(!) = fX 2X(J�(Un; V m)) : X ! = 0g. We assume that on their domains of de�nition, all ve
tor �elddistributions are of 
onstant dimension, and unless otherwise stated as in Se
tions VI and VII,all mappings and di�erential one-forms are of 
onstant rank.The Cau
hy 
hara
teristi
 spa
e of a di�erential ideal I generated by some �nite 
olle
tionof di�erential forms is denoted A(I), and 
ontains all ve
tor �elds X 2 X(J�(Un; V m)) su
hthat X I � I. A ve
tor �eld X 2 X(J�(Un; V m)) is said to be a symmetry (isove
tor) ofI if it satis�es the 
ondition involving the Lie derivative that LXI � I. A ve
tor �eld X 2X(J�(Un; V m)) is a symmetry of a ve
tor �eld distribution D � X(J�(Un; V m)) if LXD � D.We say that a ve
tor �eld is a non-trivial symmetry if, in terms of a di�erential ideal, it is notCau
hy 
hara
teristi
, or in terms of a ve
tor �eld distribution, it is not in the distribution.We also assume throughout this paper that unless otherwise stated, M q is some open,
onvex q-dimensional neighbourhood of J�(Un; V m). Sin
e by the inverse fun
tion theorem,parameterising immersions mapping onto regular submanifolds are lo
ally di�eomorphi
, wealso assume all neighbourhoods Un, V m and M q are 
hosen su
h that this holds. Thus for thedi�erential map 	� : X(M r) �! X(M s), we 
an therefore assume for ea
h Y 2 X(M r) that	�Y is a well-de�ned ve
tor �eld, and the following property holds:	�[Y1; Y2℄ = [	�Y1;	�Y2℄: (2)for any Y1; Y2 2 X(M r). We also make use of the following theorem found in Sternberg [24℄that we use in the next se
tion:Theorem 1. Let 	 : M r �! M s be a one-to-one immersion. Then for all Y 2 X(F (M r))there exists X 2 X(M r) su
h that 	�X = Y . 2



Here we write X(	(M r)) to mean the module of ve
tor �elds tangent to 	(M r). At 	 isone-to-one, this notation is unambiguous.The pull-ba
k map 	� : �(M s) �! �(M r) has the following properties:(	�!) (Y1; : : : ; Yk) = 	� (!(	�Y1; : : : ;	�Yk)) ; (3)for any ! 2 �k(M s), Y1; : : : ; Yk 2 X(M r), and	� Æ d!1 = d Æ	�!1; (4)	� �!1 ^ !2� = �	�!1� ^ �	�!2� ; (5)for any !1; !2 2 �(M s). Given any smooth � : M q �!M r and ! 2 �1(M s), we also have thefollowing 
omposition property: (	 Æ �)� ! = �� (	�!) : (6)III. DIFFERENTIAL IDEAL REPRESENTATION OFPDESWorking in the se
ond jet bundle J2(U2; V 1) with 
oordinates x1; x2; z1; z11 ; z12 ; z111; z112; z122, wede�ne F := f1z111 + f2z122 + f3z112 � k;along with the 
onta
t forms C1 := dz1 � z11dx1 � z12dx2;C11 := dz11 � z111dx1 � z112dx2;C12 := dz12 � z112dx1 � z122dx2:We 
an express a solution surfa
e of the PDE in (1) as a two-dimensional integral manifold(immersion) of the di�erential idealIF := hC1; C11 ; C12 ; dC11 ; dC12 ; Fdx1 ^ dx2i;su
h that the transverse 
ondition dx1^dx2 6= 0 holds on its tangent spa
e. Note that dC1 � 0mod C11 ; C12 . Also, Lemma 1.1 in [25℄ impliesd �Fdx1 ^ dx2� � 0 mod C1; C11 ; C12 ; dC11 ; dC12 :It is well-known that an integral manifold in the se
ond jet bundle whi
h annihilates all the
onta
t forms that generate the se
ond order 
onta
t system is the image of the 2-jet of somesmooth map f : U2 �! V 1 if and only if dx1 ^ dx2 6= 0 on the tangent spa
e of the integralmanifold (see, for example, Theorem 2.3.1 in Stormark [26℄). If, in addition, the integralmanifold annihilates F , then the 2-jet is that of some lo
al solution of the PDE in (1).Our prin
ipal result of this se
tion is the following:Theorem 2. IF = hC1; C11 ; C12 ; dC11 ; dC12 ; Li;where L := f1dz11 ^ dx2 � f2dz12 ^ dx1 + f3dz12 ^ dx2 � kdx1 ^ dx2:3



Proof. Fdx1 ^ dx2 = �f1z111 + f2z122 + f3z112 � k� dx1 ^ dx2:Now f1z111dx1 ^ dx2 = f1(z111dx1 + z112dx2) ^ dx2;= f1(dz11 � C11) ^ dx2;f2z122dx1 ^ dx2 = �f2(z121dx1 + z122dx2) ^ dx1;= �f2(dz12 � C12) ^ dx1;f3z112dx1 ^ dx2 = f3(z112dx1 + z122dx2) ^ dx2;= f3(dz12 � C12) ^ dx2:Hen
e Fdx1 ^ dx2 � f1dz11 ^ dx2 � f2dz12 ^ dx1 + f3dz12 ^ dx2� kdx1 ^ dx2 mod C11 ; C12 ;� L mod C11 ; C12 :From this we obtain dL � d �Fdx1 ^ dx2� mod C11 ; C12 ; dC11 ; dC12 ;� 0 mod C1; C11 ; C12 ; dC11 ; dC12 ;using Lemma 1.1 in [25℄.Remark. In a similar fashion to above, it is easy to show thatIF = hC1; C11 ; C12 ; dC11 ; dC12 ; Lyi;where Ly := f1dz11 ^ dx2 � f2dz12 ^ dx1 � f3dz11 ^ dx1 � kdx1 ^ dx2:In our work, we deal mostly with L, however all results equally apply to Ly.We de�ne IF := hC1; C11 ; C12 ; dC11 ; dC12 ; Li:Te
hni
ally speaking, IF := IF (by Theorem 2), and the notation IF might appear redun-dant. However we will use IF as a brief way of referring to the parti
ular 
hoi
e of generatorsC1; C11 ; C12 ; dC11 ; dC12 ; L.Now L (
ontaining all the information spe
i�
 to the PDE) does not depend on any se
-ond order terms z111; z112; z122. Therefore, we may modify our problem to that of �nding two-dimensional integral manifolds of a redu
ed di�erential ideal IrF de�ned byIrF := hC1; dC1; L; dLi; (7)de�ned on the �rst jet bundle J1(U2; V 1). We note that sin
e dL is a three-form, all two-dimensional integral manifolds of IrF will trivially annihilate dL, so this di�erential form 
antherefore be ignored in all 
al
ulations. 4



IV. SIMILARITY SOLUTION APPROACHESGiven a Lie point symmetry X 2 X(U2 � V 1) of the PDE in (1), a similarity solution of thePDE is a lo
al solution that remains un
hanged under the one-parameter group a
tion of thesymmetry. The most well-known pro
edure for using X to generate a 
orresponding similaritysolution basi
ally involves determining the two fun
tionally independent invariants 
1; 
2 2C1(U2�V 1) of X and �nding a solution of (1) that is some fun
tion of these invariants. Doingso, one essentially obtains from (1) a se
ond order ODE expressed in terms of 
1; 
2, knownas the `redu
ed' di�erential equation. In the general 
ase for PDE problems of n independentvariables, the redu
ed equation retains the same order of the PDE but is of n� 1 independentvariables.An alternative and equivalent approa
h to �nding similarity solutions is dis
ussed by Olverin [6℄ where one sear
hes for a 
ommon solution of the overdetermined system of PDEs givenby (1) and the �rst order quasilinear PDE obtained fromX(1) C1 = 0; (8)where z1 and z11 ; z12 are repla
ed with u and its respe
tive �rst partial derivatives. Here weassume (8) gives a valid PDE and the Lie point symmetry X is not, for example, ��z1 . ThePDE derived from (8) is known as the 
hara
terising invarian
e system (or invariant surfa
e
ondition) 
orresponding to X, and is typi
ally solved �rst using invariant 
oordinates to givea solution in terms of an arbitrary fun
tion. Then, by inserting this solution into (1), a redu
eddi�erential equation for the arbitrary fun
tion is derived. On
e this is solved, a similaritysolution is obtained on
e more.In this paper we do not follow either of the above pro
edures, but instead 
hoose to adoptanother approa
h formulated by Harrison and Estabrook [13℄ that uses exterior 
al
ulus anddi�erential ideals. This is dis
ussed below:Suppose we are given some di�erential ideal IrF on J1(U2; V 1) 
orresponding to some se
ondorder PDE of the form in (1). If a ve
tor �eld V 2 X (J1(U2; V 1)) is a symmetry of IrF , thenLVC1 = �1C1; (9)and LVL = �1 ^ C1 + �2dC1 + �3L; (10)for some �1; �2; �3 2 C1 (J1(U2; V 1)) and �1 2 �1 (J1(U2; V 1)). Applying the property thatLV (d!) = d (LV !) for any di�erential form !, we 
an use (9) and (10) to derive 
orrespondingsymmetry expressions for the remaining two generators of IrF . A key property of the Harrisonand Estabrook approa
h is that the symmetry algebra of IrF in
ludes the Lie point symmetryalgebra of (1). We state this fa
t without proof, however in [27℄ it is proved for di�erentialideals where the PDE is left as a 0-form generator of the ideal. Sin
e we are dealing with PDEsof one dependent variable, the determining equations derived from (9) and (10) should also beable to establish any so-
alled 
onta
t symmetries of the PDE.Suppose then that we are given some symmetry V of IrF (or the �rst prolongation of someLie point symmetry of (1)). In the Harrison and Estabrook approa
h to generating similaritysolutions of (1), the di�erential ideal IrF is augmented with V C1, V dC1, V L and V dL.One then looks for a two-dimensional integral manifold of the augmented idealhC1; dC1; L; dL; V C1; V C1; V L; V dLi; (11)de�ned on J1(U2; V 1), whi
h also satis�es the transverse 
ondition.5



The symmetry 
onditions in (9) and (10) 
an be used to easily prove that (11) is a di�erentialideal, and it is 
lear that V is a Cau
hy 
hara
teristi
 ve
tor �eld of the di�erential ideal.Though this obvious latter fa
t has also been noted by Estabrook [28℄, we show in Lemma 3below that for hyperboli
 and paraboli
 PDEs of the form in (1), there exists a more usefulextension of this result.Finally, we 
an simplify (11) in the following way: It is not hard to establish from using (9)and (10) that (11) is equal tohC1; dC1; L; dL; V C1; d(V C1); V L; d(V L)i: (12)In the next se
tion we examine (12) more 
losely and show that two further redu
tions arepossible.V. FIRST MAIN RESULTThe 
lass of se
ond order PDEs we deal with is those for whi
h L is de
omposable, or equiv-alently, L ^ L = 0 using Theorem 1.7 in Bryant et al. [8℄. Although L de�ned in Theorem 2is obviously not de
omposable for some 
hoi
es of f1; f2; f3, and k, we will see later in Se
tionVIII that for all hyperboli
 and paraboli
 PDEs of the form in (1) we are able to add to L somemultiple of dC1 whi
h is then de
omposable.Assuming then without loss that L is de
omposable, we have0 = Y (L ^ L) = 2(Y L) ^ L;for any Y 2 X (J1(U2; V 1)), so that if Y L 6= 0, then L = (Y L) ^ ! for some ! 2�1 (J1(U2; V 1)). Therefore, for de
omposable L, any integral manifold ofhC1; dC1; V C1; d(V C1); V L; d(V L)i: (13)is an integral manifold of (12) (the two di�erential ideals are equal for de
omposable L). HereV is the symmetry of IrF des
ribed in the previous se
tion. We shall make use of this 
onditionon L in our two main results, Theorem 4 in this se
tion and Theorem 9 in Se
tion VII.Sin
e V C1 is a smooth fun
tion generator of (13), we 
an make a further simpli�
ation tothis di�erential ideal by pulling it ba
k onto the regular submanifold of J1(U2; V 1) des
ribedby V C1 = 0, and 
on�ne our work to this region of J1(U2; V 1). Suppose that the equationV C1 = 0 des
ribes a four-dimensional regular submanifold of J1(U2; V 1), whi
h we parame-terise by the immersion � : M4 �! J1(U2; V 1). Then denoting the pull-ba
k of (13) onto M4by JrF := h��C1; d Æ ��C1;��(V L); d Æ ��(V L)i; (14)we have the following lemma:Lemma 3. Let V 2 X (J1(U2; V 1)) be a symmetry of IrF . If the equation V C1 = 0 des
ribes afour-dimensional regular submanifold of J1(U2; V 1), whi
h we parameterise by the immersion� : M4 �! J1(U2; V 1), then there exists W 2 X (M4) with the property that W is a Cau
hy
hara
teristi
 ve
tor �eld of JrF .Proof. Let � : M4 �! J1(U2; V 1) be a 
orresponding immersion mapping onto the regularsubmanifold of J1(U2; V 1) des
ribed by V C1 = 0. It is 
lear that the tangent spa
e of6



�(M4) � J1(U2; V 1) spans the annihilating spa
e of d (V C1). From 
ontra
ting the symmetry
ondition in (9) with V we obtain, at any point in �(M4),V d �V C1� = �1 �V C1� = 0:Hen
e V is in the tangent spa
e of �(M4). Applying Theorem 1, there exists a ve
tor �eldW 2 X(M4) su
h that ��W = V .We now pro
eed to show that W is a Cau
hy 
hara
teristi
 ve
tor �eld of JrF by examiningea
h generator of the di�erential ideal. First,W ��C1 = �� ���W C1� = 0; (15)where for the �rst equality we have used the property in (3), and for the se
ond, we have madeuse of the fa
t that the pull-ba
k of V C1 by � is zero.Next, we have that W �� Æ dC1 = �� ���W dC1� = �� �V dC1� ; (16)on
e again using (3). Now�� �V dC1� = �� ��1C1 � d(V C1)� ;= (���1) ��C1 � d Æ�� �V C1� ;= (���1) ��C1 2 JrF ; (17)where in the �rst line we have inserted the symmetry 
ondition in (9), and in the se
ond, wehave used properties (4) and (5). Combining the end result in (17) with (16) and (4) then givesW d Æ ��C1 2 JrF : (18)We also have from (3),W ��(V L) = �� (��W V L) = �� (V V L) = 0: (19)In a similar fashion,W �� Æ d(V L) = �� (��W d(V L)) = �� (V d(V L)) : (20)The symmetry 
ondition in (10) yieldsV d (V L) = V ��1 ^ C1 + �2dC1 + �3L� V dL� ;= (V �1)C1 � (V C1)�1 + �2(V dC1) + �3(V L):Pulling this ba
k by �, then using (5) and ��(V C1) = 0 followed by (17) gives�� (V d(V L)) = ���(V �1)���C1 + (���2) �� �V dC1�+ (���3) �� (V L) 2 JrF ; (21)so that 
ombining this result with (20) and (4), we obtainW d Æ ��(V L) 2 JrF : (22)Therefore (15), (18), (19) and (22) imply that W JrF � JrF .7



From Lemma 3 we obtain the �rst of our major new results:Theorem 4. Given some se
ond order PDE of the form in (1) whose 
orresponding L isde
omposable, let V 2 X (J1(U2; V 1)) be a symmetry of IrF . Suppose the equation V C1 =0 des
ribes a four-dimensional regular submanifold of J1(U2; V 1), and denote � : M4 �!J1(U2; V 1) as a 
orresponding immersion mapping onto this submanifold. WithDrF := �sp���C1;��(V L)	�? ;if �� (C1 ^ (V L)) 6= 0, then ��DrF generates a two-dimensional integral manifold of IrF . If, inaddition, dx1 ^ dx2 6= 0 on ��DrF , then the integral manifold is the image of the 1-jet of somelo
al solution of the PDE in (1).Proof. We know from the proof of Lemma 3 that V = ��W for some W 2 X(M4). Sin
e�� (C1 ^ (V L)) 6= 0, it follows that DrF is two-dimensional. From Lemma 3, W is a Cau
hy
hara
teristi
 ve
tor �eld of the di�erential ideal JrF de�ned in (14), whi
h implies [W;Y ℄ 2 DrFfor all Y 2 DrF [29, 26℄. Hen
eDrF is Frobenius integrable. Sin
e it is assumed � is di�eomorphi
onto its image, ��DrF is well-de�ned. Now let Z1; Z2 2 ��DrF . This meansZ1 = ��P1; Z2 = ��P2;for some P1; P2 2 DrF . Using (2) and the fa
t that DrF is Frobenius integrable, we then get[Z1; Z2℄ = [��P1;��P2℄ = ��[P1; P2℄ 2 ��DrF ;so ��DrF is Frobenius integrable.Suppose that 	 :M2 �!M4 is an immersion mapping onto any leaf of the foliation of M4generated by DrF . Thus 	�JrF = 0. Using (6),(� Æ	)�C1 = 	�(��C1) = 0; (23)and from (4), (� Æ	)�(dC1) = d �(� Æ	)�C1� = 0: (24)By assumption, �� (C1 ^ (V L)) 6= 0. This implies V L 6= 0. Sin
e L is de
omposable, wehave L = (V L) ^ ! for some ! 2 �1 (J1(U2; V 1)). Con
entrating on V L,0 = 	� (��(V L)) = (� Æ	)�(V L);whi
h gives	� (��L) = 	� ((��(V L)) ^ (��!)) = ((� Æ	)�(V L)) ^ ((� Æ	)�!) = 0: (25)Hen
e from (23), (24) and (25), it then follows that (� Æ	)�IrF = 0: If the transverse 
onditionholds, then � Æ 	(M2) = j1h(U2) for some h 2 C1(U2; V 1), with h as some lo
al solution of(1).Remark. In order to satisfy the transverse requirement, the symmetry V in Theorem 4 mustne
essarily satisfy the 
ondition d(V C1) ^ dx1 ^ dx2 6= 0. If this is not the 
ase, then��(dx1 ^ dx2) = 0, and hen
e for all 	, (� Æ 	)�(dx1 ^ dx2) = 0. Consequently the trans-verse requirement fails.We illustrate Theorem 4 with the following example:8



Example 5. Consider the heat equation �2u�(x1)2 = �u�x2 : (26)De�ned on J1(U2; V 1) we have IrF = hC1; dC1; L; dLi;where F = z111 � z12 and L = (dz11 � z12dx1) ^ dx2. NowV := x1 ��x1 + 2x2 ��x2is a Lie point symmetry of (26), and we use its �rst prolongation V (1), whereV (1) = x1 ��x1 + 2x2 ��x2 � z11 ��z11 � 2z12 ��z12 ;as our non-trivial symmetry of IrF .Applying Theorem 4, we de�ne the four-dimensional regular submanifold M4 � J1(U2; V 1)by the lo
us of V (1) C1 = �x1z11 � x2z12 = 0:In a simpli�ed manner without expli
itly introdu
ing an immersion, we assume M4 has 
oor-dinates x1; x2; z1; z11 with x2 6= 0, so that on M4,C1 = dz1 � z11dx1 + z11x12x2 dx2;V (1) L = �z11x1dx1 + z11 �(x1)22x2 � 1� dx2 � 2x2dz11 ; (27)with JrF = hC1; dC1; V (1) L; d(V (1) L)i;also de�ned on M4. From Theorem 4 we have that DrF � X(M4) generated by the annihilatingspa
e of the equations in (27) is Frobenius integrable. It is easy to show that on DrF , thetransverse 
ondition dx1 ^ dx2 6= 0 holds, so we expe
t to get some lo
al solution to theheat equation. Then applying Proposition 4.7 in Sherring and Prin
e [21℄ with a solvablestru
ture of two symmetries, where X2 := ��z1 2 X(M4) is a non-trivial symmetry of DrF ,X1 := z11 ��z11 2 X(M4) is a non-trivial symmetry of DrF � spfX2g, and de�ning
 := �dz1 � z11dx1 + z11x12x2 dx2� ^ ��z11x1dx1 + z11 �(x1)22x2 � 1� dx2 � 2x2dz11� ;we �nd X2 
X1 X2 
 = d�ln(z11px2) + (x1)24x2 � ;X1 
X2 X1 
 � d�z1 � 2z11px2 exp�(x1)24x2 �Z exp ���2� d�� mod X2 
X1 X2 
 ;where � := x1=(2px2). Putting ln(z11px2) + (x1)24x2 = 
1;9



and z1 � 2z11px2 exp�(x1)24x2 �Z exp ���2� d� = 
2;for any 
onstants 
1; 
2, we obtainu = 2 exp(
1) Z exp ���2� d�as our lo
al similarity solution of the heat equation 
orresponding to V .We 
lose this se
tion with a warning that there will exist situations when applying Theorem 4will yield a distribution ��DrF that is not transverse, even with d(V C1) ^ dx1 ^ dx2 6= 0. Insu
h 
ases we must abandon the above approa
h and look to use elements of IrF that are in asense singular. This is explained in full in the next se
tion.VI. A SINGULAR APPROACHConsider a di�erential ideal I := h�1; �2i de�ned on some open, 
onvex neighbourhood U4 � R4with 
oordinates x1; : : : ; x4, generated by two linearly independent one-forms �1; �2 2 �1(U4).Suppose that for ea
h i 2 f1; 2g, d�i � 0 mod �1; �2, i.e. ker(�1 ^ �2) is Frobenius integrable.Here, we 
hoose to work with a two-dimensional PfaÆan system de�ned on a four-dimensionalspa
e be
ause the material in the following se
tion on se
ond order hyperboli
 or paraboli
PDEs of the type in (1) is pre
isely of this nature, but all results that follow in this se
tion 
aneasily be extended to arbitrary dimensions.For integrating the Frobenius integrable distribution ker(�1 ^ �2) using solvable symmetrystru
tures, we 
an use Proposition 4.7 in Sherring and Prin
e [21℄ to �nd some fun
tionsf 11 ; f 12 ; f 21 ; f 22 ; g1; g2 2 C1(U4) su
h thatf 11�1 + f 12�2 = dg1;f 21�1 + f 22�2 = dg2: (28)If, on U4, the fun
tions g1; g2 are of 
onstant maximal rank two, then the equations g1 =
1; g2 = 
2 des
ribe a two-dimensional regular submanifold of U4. Let 	 : M2 �! U4 be animmersion mapping onto this submanifold. If, in addition, the determinant	� ����f 11 f 12f 21 f 22 ���� 6= 0on M2, then (28) and the fa
t that 	�(dg1) = 0 = 	�(dg2) imply 	��1 = 0 = 	��2. Hen
e 	is a two-dimensional integral manifold of I, for arbitrary 
onstant fun
tions 
1; 
2.The problem with the above `regular' approa
h used in Theorem 4 for dealing with a PDEof the form in (1) is that if the submanifold generated by ��DrF is not transverse, then themethod fails to give us a lo
al solution with u as some smooth fun
tion of x1; x2.Our goal in this se
tion and the next is to provide an alternative approa
h for �nding two-dimensional integral manifolds of I, whi
h in
ludes the above situation as a sub-
lass, as wellas applies to PDE problems when ��DrF may or may not be transverse. We will also see thatthe trade-o� for this extra 
exibility is that there is no dire
t 
omputational approa
h usingsolvable symmetry stru
tures, however using the Frobenius integrable nature of ker(�1 ^ �2)(or ��DrF in Theorem 4) we do 
ome 
lose.Consider then the following obvious extension to the above dis
ussion:10



Theorem 6. With �1; �2 and I de�ned as above, let there exist f 11 ; f 12 ; f 21 ; f 22 ; g11; g12; g21; g22 2C1(U4) su
h that f 11�1 + f 12�2 = g11dg12;f 21�1 + f 22�2 = g21dg22: (29)Suppose that for some p; q 2 f1; 2g, the equationsg1p = (0 if p = 1,
1 otherwise, g2q = (0 if q = 1,
2 otherwise,for some 
onstants 
1; 
2 des
ribe a two-dimensional regular submanifold of U4, and let 	 :M2 �! U4 be an immersion mapping onto this submanifold. If, on M2, the determinant	� ����f 11 f 12f 21 f 22 ���� 6= 0; (30)then 	 is a two-dimensional integral manifold of I.For PDE problems, Theorem 6 will be used to �nd alternative (hopefully transverse) integralmanifolds of I to those found with the usual approa
h reviewed at the start of this se
tion.Unfortunately there is no algorithmi
 te
hnique (without involving ODEs) for establishing (29)by means other than following dire
t one using Proposition 4.7 in Sherring and Prin
e [21℄ thatin
orporates symmetry:Suppose then we apply Proposition 4.7 with X2 2 X(U4) as a non-trivial symmetry ofker(�1 ^ �2), and X1 2 X(U4) as a non-trivial symmetry of spfX2g � ker(�1 ^ �2). We thenobtain X2 (�1 ^ �2)X1 X2 (�1 ^ �2) = dg12;X1 (�1 ^ �2)X2 X1 (�1 ^ �2) = dg22 �X1(g22)dg12; (31)for some g12; g22 2 C1(U4). This gives integral manifolds of I de�ned by g12 = 
1, g22 = 
2 for
onstants 
1; 
2. Suppose these are not transverse. Rearranging the equations in (31) gives�X2 �2��1 � �X2 �1��2 = �X2 X1 (�1 ^ �2)� dg12;�(X1 +X1(g22)X2) �2��1� �(X1 +X1(g22)X2) �1��2= �X1 X2 (�1 ^ �2)� dg22: (32)Now applying Theorem 6 with the equations in (32), we setg11 = �g21 = X2 X1 (�1 ^ �2):We 
annot 
hoose p = 2; q = 2 sin
e by assumption these integral manifolds of I are nottransverse. We also 
annot 
hoose p = 1; q = 1 be
ause g11 = �g21 implies we do not obtaina regular two-dimensional submanifold of U4. This is 
learly due to the 
onstant maximalrank two requirement failing. Therefore we require that at least one of the two remaining (p; q)
ombinations satisfy the rank two 
ondition. Finally, the equation in (30) must also be satis�ed,i.e. 	� ���� X2 �2 �X2 �1(X1 +X1(g22)X2) �2 �(X1 +X1(g22)X2) �1���� 6= 0:11



Below is a modi�
ation of Theorem 6, whi
h shows that if we are given just one of theequations in (29) (found for example by inspe
tion, or using Proposition 4.7 in Sherring andPrin
e [21℄ as in the above), then the other 
an be determined using a symmetry:Theorem 7. With �1; �2 and I de�ned as above, let there exist f 11 ; f 12 ; g11; g12 2 C1(U4) su
hthat f 11�1 + f 12�2 = g11dg12: (33)Suppose that for some p 2 f1; 2g, the equationg1p = (0 if p = 1,
1 otherwise, (34)for some 
onstant 
1 des
ribes a three-dimensional regular submanifold of U4. Let � : M3 �!U4 denote an immersion mapping onto this submanifold, and let X 2 X(M3) be a non-trivialsymmetry of �� (f 21�1 + f 22�2), for some f 21 ; f 22 2 C1(U4). Then there exist g21; g22 2 C1(M3)su
h that �� �f 21�1 + f 22�2� = g21dg22:Further suppose that, for some q 2 f1; 2g, the equationg2q = (0 if q = 1,
2 otherwise,for some 
onstant 
2 des
ribes a two-dimensional regular submanifold of M3. With 	 : M2 �!M3 denoting an immersion mapping onto this submanifold, if(� Æ	)� ����f 11 f 12f 21 f 22 ���� 6= 0; (35)on M2, then � Æ	 is a two-dimensional integral manifold of I.Proof. Sin
e for ea
h i 2 f1; 2g, d�i � 0 mod �1; �2, it follows that with�1 :=f 11�1 + f 12�2;�2 :=f 21�1 + f 22�2;we have for ea
h i 2 f1; 2g, d�i � 0 mod �1; �2 for arbitrary 
hoi
e of f 11 ; f 12 ; f 21 ; f 22 2 C1(U4).Let �1 satisfy (33) for some f 11 ; f 12 and some g11; g12 2 C1(U4), and for some p 2 f1; 2g, let theimmersion � : M3 �! U4, de�ned as in the theorem, map onto the regular submanifold of U4given by (34). Then ���1 = 0, so thatd ����2� = �� �d�2� = (���1)���1 + (���2)���2 � 0 mod ���2;for some �1; �2 2 C1(U4). Let X 2 X(M3) be a non-trivial symmetry of ���2. Hen
e fromProposition 4.7 in Sherring and Prin
e [21℄ (or even Theorem 2.1 in the same paper), we obtaind� ���2X (���2)� = 0:Therefore ���2 = �X (���2)� dg22;12



for some g22 2 C1(M3). We set g21 = X (���2) and 
hoose g2q su
h that it is of 
onstantmaximal rank one on M3. Hen
e with 	 de�ned as in the theorem, we have(� Æ	)��1 = 0 = (� Æ	)��2:By the assumption in (35), it is then 
lear that � Æ	 is a two-dimensional integral manifold ofI.Remark. The fun
tions f 21 ; f 22 in Theorem 7 are not quite arbitrary: First they must be 
hosenso that �� ����f 11 f 12f 21 f 22 ���� 6= 0;on M3, or else (35) fails for any 	. Then on
e 	 is known, (35) must be 
he
ked.Certainly the diÆ
ult part in applying Theorem 7 is in establishing (33). On
e this isdone however, the remaining assumptions in the theorem simply involve two maximal rank
onditions, one non-zero determinant 
ondition and one non-trivial symmetry.Another observation we 
an make regarding Theorem 7 is that ker(�1 ^�2) must be Frobe-nius integrable. Of 
ourse, even if ker(�1 ^ �2) is not Frobenius integrable, singular two-dimensional integral manifolds of I may still exist.The following example illustrates Theorem 7:Example 8. Suppose on some suitably 
hosen U4 where x2 6= 0, I := h�1; �2i with�1 := dx3 + x12x2dx1 � x4dx2;�2 :=�2x2x4 � (x1)22x2 + 1� dx2:It is easy to show that for all i 2 f1; 2g, d�i � 0 mod �1; �2, and so ker(�1 ^ �2) is Frobeniusintegrable.We begin with the `regular' approa
h to integrating ker(�1 ^ �2) reviewed at the beginningof this se
tion. Simple inspe
tion (or Proposition 4.7 in Sherring and Prin
e [21℄) yields�1 ^ �2 = �2x2x4 � (x1)22x2 + 1� d�x3 + (x1)24x2 � ^ dx2:Hen
e if the equations x2 = 
1; x3 + (x1)24x2 = 
2;for arbitrary 
onstants 
1; 
2 are 
onstant maximal rank two on some suitably 
hosen neigh-bourhood of U4, then they des
ribe a two-dimensional foliation of the neighbourhood, whereea
h leaf is a regular submanifold that is an integral manifold of I.We now look to apply Theorem 7 in order to generate di�erent two-dimensional integralmanifolds of I. Applying the theorem, suppose we 
hoose f 11 := 0, f 12 := 1, andg11 := 2x2x4 � (x1)22x2 + 1; g12 := x2;so that (33) holds. We set g11 = 0: (36)13



We also 
hoose f 21 := 1, f 22 := 0. Again without expli
itly introdu
ing an immersion, andpulling-ba
k �1 onto M3 de�ned by (36) with 
oordinates for M3 given by x1; x2; x3, we �nd(on M3) �1 = dx3 + x12x2dx1 + 12x2 �1� (x1)22x2 � dx2;whi
h, from Theorem 7, is 
losed modulo itself. Applying Theorem 2.1 in [21℄ with ��x3 as anon-trivial symmetry of �1, we get�1 = d�x3 + ln(px2) + (x1)24x2 � ;so g21 = 1; g22 = x3 + ln(px2) + (x1)24x2 :Hen
e our only 
hoi
e is to set g22 = 
3;where 
3 is an arbitrary 
onstant fun
tion. On a suitable neighbourhood of U4 the equations2x2x4 � (x1)22x2 + 1 = 0; x3 + ln(px2) + (x1)24x2 = 
3 (37)are of 
onstant maximal rank two, and it is easy to see from above that the non-zero determi-nant 
ondition in (35) holds. Hen
e the equations in (37) des
ribe a two-dimensional regularsubmanifold of the neighbourhood of U4, that is an integral manifold of I. Note that the two-dimensional leaves des
ribed by (37) do not generate a foliation of the neighbourhood. Rather,the three-dimensional regular submanifold of the neighbourhood des
ribed by the equation onthe left in (37) is foliated by the two-dimensional leaves generated by the equation on the right.VII. A SINGULAR APPLICATIONIn this se
tion we use Theorem 7 to provide an alternative to Theorem 4 when the transverserequirement fails for ��DrF . The following result is the se
ond of our major results:Theorem 9. Given some se
ond order PDE of the form in (1) whose 
orresponding L isde
omposable, let V 2 X (J1(U2; V 1)) be a symmetry of IrF . Suppose the equation V C1 = 0des
ribes a four-dimensional regular submanifold of J1(U2; V 1), and let � : M4 �! J1(U2; V 1)denote an immersion mapping onto this submanifold. Further suppose ��(C1 ^ (V L)) 6= 0,and we have applied Theorem 7, with �1 := ��C1 and �2 := ��(V L), thus generating somesmooth g1p; g2q and immersions � : M3 �! J1(U2; V 1) and 	 : M2 �!M3, as in the theorem.If (� Æ� Æ	)�(dx1 ^ dx2) 6= 0; (38)then � Æ� Æ	(M2) is the image of the 1-jet of some lo
al solution of the PDE in (1).Proof. Using Lemma 3, we have on M4 thatDrF := �sp���C1;��(V L)	�?14



is Frobenius integrable. Applying Theorem 7 to JrF de�ned in (14) then generates a two-dimensional integral manifold of JrF given by� Æ	 : M2 �!M4:At this point the proof be
omes very similar to that of Theorem 4. As L is de
omposable, we�nd that � Æ� Æ	 : M2 �! J1(U2; V 1)is a two-dimensional integral manifold of IrF . The 
ondition in (38) is a transverse requirement.It then 
lear that the image of �Æ�Æ	 is equal to the image of the 1-jet of some lo
al solutionof the PDE in (1).Remark 1. Theorem 9 
an obviously be modi�ed by repla
ing Theorem 7 with Theorem 6.Remark 2. While Theorem 9 does not require that ��DrF be transverse, a transverse require-ment must still be introdu
ed, but at a later stage.The following example attempts to 
larify Theorem 9:Example 10. Consider the Potential Burgers' Equation�u�x2 � �2u�(x1)2 � � �u�x1�2 = 0: (39)De�ned on J1(U2; V 1) we have IrF = hC1; dC1; L; dLi;where F = z12 � z111 � (z11)2 and L = ((z12 � (z11)2) dx1 � dz11) ^ dx2. NowV := 2x2 ��x1 � x1 ��z1is a Lie point symmetry of (39), and we use its �rst prolongation V (1), whereV (1) = 2x2 ��x1 � x1 ��z1 � ��z11 � 2z11 ��z12 ;as our non-trivial symmetry of IrF .Applying Theorem 9, we de�ne M4 to be the four-dimensional regular submanifold ofJ1(U2; V 1) given by the lo
us of V (1) C1 = �x1 � 2x2z11 = 0:We assume M4 has 
oordinates x1; x2; z1; z12 with x2 6= 0, so that on M4 we haveC1 = dz1 + x12x2dx1 � z12dx2;V (1) L = �2x2z12 � (x1)22x2 + 1� dx2:It is 
lear that the transverse 
ondition does not hold on the two-dimensional annihilating spa
eof spfC1; V (1) Lg de�ned on M4, so we will look to use Theorem 7. In applying this result, werefer to Example 8 whi
h makes use of the theorem with x3 repla
ing z1 and x4 repla
ing z12 sothat �1 = C1 and �2 = V (1) L. From the example, we then get thatu = � ln(px2)� (x1)24x2 + 
3;for any 
onstant 
3 is a similarity solution of (39) 
orresponding to V .15



VIII. DECOMPOSABILITY EXAMINEDTheorems 4 and 9 appear to be restri
ted by the requirement that L (or Ly) be de
omposable.However, sin
e dC1 is in IrF , we may look to add some multiple b 2 J1(U2; V 1) of dC1 to L sothat L + bdC1 is de
omposable.Without loss, working this time with Ly, we de�ne the following two-form
y := Ly + bdC1;where b is for the moment any smooth fun
tion on the �rst jet bundle J1(U2; V 1). The followinglemma gives a simple quadrati
 
ondition on b in order that 
y ^ 
y = 0, so that 
y isde
omposable by Theorem 1.7 in [8℄.Lemma 11. With 
y := Ly + bdC1, ifb = �f3 �pf 23 � 4f1f22 ;with f 23 � 4f1f2 � 0, then 
y is de
omposable.Proof. �Ly + bdC1�2 = (Ly)2 + 2bdC1 ^ Ly + b2(dC1)2;and (dC1)2 = 2dz11 ^ dx1 ^ dz12 ^ dx2;(Ly)2 = �2f1f2dz11 ^ dx2 ^ dz12 ^ dx1;dC1 ^ Ly = f3dz12 ^ dx2 ^ dz11 ^ dx1:Hen
e �Ly + bdC1�2 = 2 �b2 + bf3 + f1f2� dz11 ^ dx1 ^ dz12 ^ dx2:It follows that if b = �f3 �pf 23 � 4f1f22 ;where b is real on J1(U2; V 1), then 
y ^ 
y = 0, and therefore by Theorem 1.7 in [8℄, 
y isde
omposable.Proved in a similar way to Lemma 11, we have the following for L:Lemma 12. With 
 := L+ bdC1, ifb = f3 �pf 23 � 4f1f22 ;with f 23 � 4f1f2 � 0, then 
 is de
omposable.The requirement that the dis
riminant in Lemmas 11 and 12 remains non-negative onJ1(U2; V 1) (or on some suitable neighbourhood), 
oin
ides exa
tly with the 
ondition foundwidely in the literature that the se
ond order PDE in (1) be hyperboli
 or paraboli
. Hen
e, ifthe PDE is of one of these two types, then we are always able to determine a de
omposable 
(or 
y). Thus we 
an apply Theorems 4 and 9 by simply repla
ing the L in these two theoremswith 
. We illustrate with an example: 16



Example 13. Consider the non-linear wave equation:�2u�(x2)2 = u �2u�(x1)2 : (40)In terms of 
oordinates of J1(U2; V 1), this equation admits the point symmetryV := x2 ��x2 � 2z1 ��z1 ;whose �rst prolongation isV (1) = x2 ��x1 � 2z1 ��z1 � 2z11 ��z11 � 3z12 ��z12 :Working with L, we have L = �z1dz11 ^ dx2 � dz12 ^ dx1;whi
h is 
learly not de
omposable. From Lemma 12, we �nd that L�pz1dC1 is de
omposable.Taking the positive option gives
+ := L +pz1dC1;=�dz12 �pz1dz11� ^ �pz1dx2 � dx1� :Applying Theorem 4, we de�ne the four-dimensional regular submanifold M4 � J1(U2; V 1) bythe lo
us of V (1) C1 = �x2z12 � 2z1 = 0:Let M4 have 
oordinates x1; x2; z1; z11 with x2 6= 0. Then we have on M4,C1 = dz1 � z11dx1 + 2z1x2 dx2;V (1) 
+ = ��6z1x2 � 2pz1z11� dx1 + 4(z1) 32x2 + 2z1z11! dx2 + 2pz1dz1 + x2z1dz11 :It is easy to show that the transverse 
ondition holds on the two-dimensional annihilating spa
eof spfC1; V (1) 
+g de�ned on M4. By inspe
tion,X1 := ��x1 2 X(M4)is a non-trivial symmetry of C1 ^ (V (1) 
+) (pulled-ba
k onto M4). Using the Lie symmetryanalysis software pa
kage DIMSYM [30℄, we �ndX2 := � 1(x2)2 ��z1 2 X(M4)is another non-trivial symmetry of C1 ^ (V (1) 
+), whi
h also 
ommutes with X1. Therefore,taking advantage of this situation and applying Theorems 4.1 and 5.1 in [21℄ gives the two
losed forms X1 (C1 ^ (V (1) 
+))X2 X1 (C1 ^ (V (1) 
+)) = d�(x2)4(z11)212 � (x2)2z1� ;X2 (C1 ^ (V (1) 
+))X1 X2 (C1 ^ (V (1) 
+)) = d�x1 � (x2)2z116 � :17



Putting (x2)4(z11)212 � (x2)2z1 = 
1; x1 � (x2)2z116 = 
2;for any 
onstants 
1; 
2, we obtain u = 3 (x1 � 
2)2 � 
1(x2)2as our similarity solution of the non-linear wave equation in (40) 
orresponding to V .IX. CONDITIONAL SYMMETRIESFollowing Olver [6℄, Stephani [7℄ or Bluman and Cole [23℄, a 
onditional symmetry V 2 X(U2�V 1) of some se
ond order PDE in (1) is de�ned as a Lie point symmetry of the overdeterminedsystem of PDEs given by (1) and the �rst order quasilinear PDE obtained fromV (1) C1 = 0: (41)In this se
tion we show that all results in the previous se
tions still hold true if instead of thesymmetry being the �rst prolongation of some point symmetry of (1) it is the �rst prolongationof some 
onditional symmetry.We de�ne bIrF := hC1; dC1; L; dL; (V (1) C1)dx1 ^ dx2; d(V (1) C1) ^ dx1 ^ dx2i;de�ned on the �rst jet bundle J1(U2; V 1). It is 
lear from Se
tion III that the image of anytwo-dimensional integral manifold of bIrF that satis�es the transverse 
ondition will be that ofsome 1-jet solution map of the overdetermined system of PDEs given by (1) and (41).If V is a 
onditional symmetry of (1), then it follows from the dis
ussion in Se
tion IV thatLV (1) bIrF � bIrF :Expli
itly, LV (1)C1 = �1C1; (42)as well as LV (1)L = �1 ^ C1 + �2dC1 + �3L+ �4 �(V (1) C1)dx1 ^ dx2� ; (43)and �nally, LV (1) �(V (1) C1)dx1 ^ dx2� = �2 ^ C1 + �5dC1 + �6L+ �7 �(V (1) C1)dx1 ^ dx2� ; (44)for some �1; : : : ; �7 2 C1 (J1(U2; V 1)) and �1; �2 2 �1 (J1(U2; V 1)).Suppose in terms of �rst jet bundle 
oordinates the equation in (41) des
ribes a four-dimensional regular submanifold of J1(U2; V 1), whi
h we parameterise by the immersion � :M4 �! J1(U2; V 1). It is then obvious that��bIrF = ��IrF :Without loss, we 
an assume L is de
omposable, so that L = (V (1) L) ^ ! for some ! 2�1(J1(U2; V 1)) (assume V (1) L 6= 0). Suppose we now wish to repeat the proof of Lemma 3,where in the lemma, 18



1. IrF is repla
ed by bIrF ,2. V is repla
ed by the �rst prolongation of our 
onditional symmetry V (1),3. The symmetry 
onditions in (9) and (10) are repla
ed by those in (42) and (43).Now it is not hard to see that the lemma still holds true, sin
e the pull-ba
k of (43) by �for
es the �nal term on the right to vanish. Thus when pulled-ba
k by �, the two sets ofequations given in item 3 above are in identi
al form. Hen
e from the lemma there exists someCau
hy 
hara
teristi
 ve
tor �eld W 2 X (M4) of JrF with the property that ��W = V (1).Consequently, with the same three substitutions given above, Theorems 4 and 9 hold.Finally, the equation in (44) is not used in the proof of any of our results. Therefore itappears that in order for us to use symmetries of bIrF to derive non-
lassi
al similarity solutions,ve
tor �elds from the symmetry algebra of bIrF are not stri
tly ne
essary. One essentially onlyrequires ve
tor �elds that satisfy (42) and (43).Using a 
onditional symmetry, we now illustrate Theorem 4 with the following example:Example 14. Consider the heat equation given in (26). From Stephani [7℄, it has the 
ondi-tional symmetry V := tan(x1) ��x1 + ��x2 ;whose �rst prolongation is given byV (1) = tan(x1) ��x1 + ��x2 � z11 se
2(x1) ��z11 :From Example 5, L is de
omposable. Applying Theorem 4, we de�ne the four-dimensionalregular submanifold M4 � J1(U2; V 1) by the lo
us ofV (1) C1 = �z11 tan(x1)� z12 = 0:Letting M4 have 
oordinates x1; x2; z1; z11, we pull-ba
k C1 and V (1) L so that (on M4),C1 = dz1 � z11dx1 + z11 tan(x1)dx2;V (1) L = �z11 tan x1dx1 � z11dx2 � dz11 :It 
an be shown that on M4, ker �C1 ^ (V (1) L)� is a two-dimensional Frobenius integrabledistribution that satis�es the transverse 
ondition. By inspe
tion,��x2 ; ��z1 2 X(M4);are two 
ommuting non-trivial symmetries of C1 ^ (V (1) L). Hen
e by Propositions 4.1 and5.1 in [21℄ we obtain the two 
losed forms��x2 (C1 ^ (V (1) L))��z1 ��x2 (C1 ^ (V (1) L)) = d �z1 � z11 tan(x1)� ;��z1 (C1 ^ (V (1) L))��x2 ��z1 (C1 ^ (V (1) L)) = d�ln ���� z11
os(x1) ����+ x2� :19



Putting z1 � z11 tan(x1) = 
1; ln ���� z11
os(x1) ����+ x2 = 
2;for any 
onstants 
1 and 
2 yieldsu = sin(x1) exp(
2 � x2) + 
1as our lo
al non-
lassi
al similarity solution of the wave equation 
orresponding to the 
ondi-tional symmetry V .X. COMMENTS AND CONCLUSIONSOur main results, Theorems 4 and 9, 
ombined with Lemmas 11 and 12 show how one mayuse solvable symmetry stru
tures to extra
t 
lassi
al and non-
lassi
al similarity solutions ofse
ond order hyperboli
 or paraboli
 PDEs of the form in (1). While the two theorems assumeL (or Ly) is de
omposable, it is hardly a restri
tion. This is be
ause the dis
riminant in the twolemmas remains non-negative on some neighbourhood pre
isely when the PDE is hyperboli
or paraboli
. Hen
e, we are always able to apply Theorems 4 and 9 by repla
ing the givennon-de
omposable L with a suitable de
omposable 
, whi
h is simply some linear 
ombinationof L and dC1. For Theorem 4 there is a risk that the resulting two-dimensional Frobeniusintegrable distribution does not satisfy the transverse requirement. If this is the 
ase, then theapproa
h des
ribed in the theorem must be abandoned, and we are for
ed to use the slightlymore sophisti
ated Theorem 9.It is unfortunate that both Theorems 4 and 9 demand the symmetry V satisfy d(V C1) ^dx1 ^ dx2 6= 0. At this stage it is not 
lear how to modify our work in su
h a way so that thisrestri
tion is avoided.Finally, while our work has fo
used solely on the generation of similarity solutions in theabsen
e of boundary 
onditions, there is s
ope for further work with su
h 
onditions. As apossible starting point, we know from Theorems 4 and 9 that given a symmetry V , we obtainuniqueness of solution up to two and one arbitrary 
onstants respe
tively. We leave su
hresear
h as the topi
 of another paper.XI. ACKNOWLEDGMENTSMi
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