
An appliation of solvable strutures tolassial and non-lassial similarity solutionsM.A. Baro�January 4, 2001AbstratUsing exterior di�erential systems, we extend work by Harrison and Estabrook for de-riving similarity solutions of hyperboli and paraboli partial di�erential equations. Weuse exterior alulus results to show that a symmetry (isovetor) of the di�erential idealorresponding to some hyperboli or paraboli PDE an be used to generate a Cauhyharateristi vetor �eld of a restrited exterior di�erential system de�ned on some four-dimensional regular submanifold of the �rst jet bundle. We then show that this restriteddi�erential ideal has a Frobenius integrable annihilating spae whih an be used to yielda similarity solution of the PDE by applying results from S. Lie and �E. Cartan on in-tegrating Frobenius integrable vetor �eld distributions via symmetry. We also give anextension to onditional symmetries.1991 AMS Mathematis subjet lassi�ation: 38A30, 58A15, 58G35.Key words: exterior di�erential system, symmetry, similarity solution.I. INTRODUCTIONGiven a non-linear partial di�erential equation, a so-alled `similarity solution' is one whih isinvariant under some group ation. Pioneered by Lie [1℄, tehniques for using symmetries to�nd similarity solutions have been around for a long time, and in reent times authors suh asBluman and Cole [2℄, Bluman and Kumei [3℄, Olver [4, 5, 6℄ and Stephani [7℄ have providedmodern disussions on various aspets of this similarity solution approah to PDEs.This work onsiders a single seond order hyperboli or paraboli PDE of one dependentvariable u and two independent variables x1; x2 of the formf1 �2u�(x1)2 + f2 �2u�(x2)2 + f3 �2u�x1x2 = k; (1)where f1; f2; f3; k are smooth funtions of x1; x2; u; �u�x1 ; �u�x2 . Although exterior di�erential sys-tems [8, 9, 10, 11, 12℄ are of most use in studying systems of non-linear partial di�erentialequations, we examine in this paper their appliation to similarity solutions of (1) along sim-ilar lines as Harrison and Estabrook [13℄. We also give an alternative interpretation of theunderlying geometri signi�ane of suh solutions.�E-Mail: M.Baro�latrobe.edu.au. 1



Sine this paper is essentially onerned with algorithms based on symmetry for extrat-ing similarity solutions of (1), we assume throughout that give a seond order hyperboli orparaboli PDE of the form in (1) and symmetry vetor �eld, there exists a loal smooth simi-larity solution. This also means that if we apply the Cartan-Kuranishi theorem [14℄, we obtainafter a �nite number of prolongations an involutive system of PDEs.Our work also make use of results from Lie [15℄ and Cartan [16, 17℄ for integrating Frobeniusintegrable vetor �eld distributions via symmetry that has in reent times been extended byBasarab-Horwath [18℄, Duzhin and Lyhagin [19℄, Hartl and Athorne [20℄, and Sherring andPrine [21℄. With partiular emphasis on results in [21℄, we establish in Setions V and VIItwo algorithms based entirely on symmetry for generating similarity solutions of seond orderhyperboli or paraboli PDEs of the type in (1), whih avoids the usual requirement of havingto solve some ordinary di�erential equation one the similarity variable is known. Finally, webriey examine onditional symmetries. Using suh symmetries we extend earlier results inthis paper to give a tehnique for generating the so-alled `non-lassial' [6, 22, 23℄ similaritysolutions, that one again avoids the need to solve any ODE.II. BACKGROUNDIt is assumed throughout this paper that for natural numbers n and m, Un and V m are,respetively, some open, onvex neighbourhoods of Rn and Rm , with oordinates x1; : : : ; xnand z1; : : : ; zm. On the �-th jet bundle J�(Un; V m), we say that the set of exterior dif-ferential p-forms �p(J�(Un; V m)) is a setion of the bundle of all homogeneous di�erentialforms �(J�(Un; V m)): We de�ne X(J�(Un; V m)) to be the module of smooth vetor �elds overC1(J�(Un; V m)). Given some ! 2 �p(J�(Un; V m)), its kernel is de�ned by ker(!) = fX 2X(J�(Un; V m)) : X ! = 0g. We assume that on their domains of de�nition, all vetor �elddistributions are of onstant dimension, and unless otherwise stated as in Setions VI and VII,all mappings and di�erential one-forms are of onstant rank.The Cauhy harateristi spae of a di�erential ideal I generated by some �nite olletionof di�erential forms is denoted A(I), and ontains all vetor �elds X 2 X(J�(Un; V m)) suhthat X I � I. A vetor �eld X 2 X(J�(Un; V m)) is said to be a symmetry (isovetor) ofI if it satis�es the ondition involving the Lie derivative that LXI � I. A vetor �eld X 2X(J�(Un; V m)) is a symmetry of a vetor �eld distribution D � X(J�(Un; V m)) if LXD � D.We say that a vetor �eld is a non-trivial symmetry if, in terms of a di�erential ideal, it is notCauhy harateristi, or in terms of a vetor �eld distribution, it is not in the distribution.We also assume throughout this paper that unless otherwise stated, M q is some open,onvex q-dimensional neighbourhood of J�(Un; V m). Sine by the inverse funtion theorem,parameterising immersions mapping onto regular submanifolds are loally di�eomorphi, wealso assume all neighbourhoods Un, V m and M q are hosen suh that this holds. Thus for thedi�erential map 	� : X(M r) �! X(M s), we an therefore assume for eah Y 2 X(M r) that	�Y is a well-de�ned vetor �eld, and the following property holds:	�[Y1; Y2℄ = [	�Y1;	�Y2℄: (2)for any Y1; Y2 2 X(M r). We also make use of the following theorem found in Sternberg [24℄that we use in the next setion:Theorem 1. Let 	 : M r �! M s be a one-to-one immersion. Then for all Y 2 X(F (M r))there exists X 2 X(M r) suh that 	�X = Y . 2



Here we write X(	(M r)) to mean the module of vetor �elds tangent to 	(M r). At 	 isone-to-one, this notation is unambiguous.The pull-bak map 	� : �(M s) �! �(M r) has the following properties:(	�!) (Y1; : : : ; Yk) = 	� (!(	�Y1; : : : ;	�Yk)) ; (3)for any ! 2 �k(M s), Y1; : : : ; Yk 2 X(M r), and	� Æ d!1 = d Æ	�!1; (4)	� �!1 ^ !2� = �	�!1� ^ �	�!2� ; (5)for any !1; !2 2 �(M s). Given any smooth � : M q �!M r and ! 2 �1(M s), we also have thefollowing omposition property: (	 Æ �)� ! = �� (	�!) : (6)III. DIFFERENTIAL IDEAL REPRESENTATION OFPDESWorking in the seond jet bundle J2(U2; V 1) with oordinates x1; x2; z1; z11 ; z12 ; z111; z112; z122, wede�ne F := f1z111 + f2z122 + f3z112 � k;along with the ontat forms C1 := dz1 � z11dx1 � z12dx2;C11 := dz11 � z111dx1 � z112dx2;C12 := dz12 � z112dx1 � z122dx2:We an express a solution surfae of the PDE in (1) as a two-dimensional integral manifold(immersion) of the di�erential idealIF := hC1; C11 ; C12 ; dC11 ; dC12 ; Fdx1 ^ dx2i;suh that the transverse ondition dx1^dx2 6= 0 holds on its tangent spae. Note that dC1 � 0mod C11 ; C12 . Also, Lemma 1.1 in [25℄ impliesd �Fdx1 ^ dx2� � 0 mod C1; C11 ; C12 ; dC11 ; dC12 :It is well-known that an integral manifold in the seond jet bundle whih annihilates all theontat forms that generate the seond order ontat system is the image of the 2-jet of somesmooth map f : U2 �! V 1 if and only if dx1 ^ dx2 6= 0 on the tangent spae of the integralmanifold (see, for example, Theorem 2.3.1 in Stormark [26℄). If, in addition, the integralmanifold annihilates F , then the 2-jet is that of some loal solution of the PDE in (1).Our prinipal result of this setion is the following:Theorem 2. IF = hC1; C11 ; C12 ; dC11 ; dC12 ; Li;where L := f1dz11 ^ dx2 � f2dz12 ^ dx1 + f3dz12 ^ dx2 � kdx1 ^ dx2:3



Proof. Fdx1 ^ dx2 = �f1z111 + f2z122 + f3z112 � k� dx1 ^ dx2:Now f1z111dx1 ^ dx2 = f1(z111dx1 + z112dx2) ^ dx2;= f1(dz11 � C11) ^ dx2;f2z122dx1 ^ dx2 = �f2(z121dx1 + z122dx2) ^ dx1;= �f2(dz12 � C12) ^ dx1;f3z112dx1 ^ dx2 = f3(z112dx1 + z122dx2) ^ dx2;= f3(dz12 � C12) ^ dx2:Hene Fdx1 ^ dx2 � f1dz11 ^ dx2 � f2dz12 ^ dx1 + f3dz12 ^ dx2� kdx1 ^ dx2 mod C11 ; C12 ;� L mod C11 ; C12 :From this we obtain dL � d �Fdx1 ^ dx2� mod C11 ; C12 ; dC11 ; dC12 ;� 0 mod C1; C11 ; C12 ; dC11 ; dC12 ;using Lemma 1.1 in [25℄.Remark. In a similar fashion to above, it is easy to show thatIF = hC1; C11 ; C12 ; dC11 ; dC12 ; Lyi;where Ly := f1dz11 ^ dx2 � f2dz12 ^ dx1 � f3dz11 ^ dx1 � kdx1 ^ dx2:In our work, we deal mostly with L, however all results equally apply to Ly.We de�ne IF := hC1; C11 ; C12 ; dC11 ; dC12 ; Li:Tehnially speaking, IF := IF (by Theorem 2), and the notation IF might appear redun-dant. However we will use IF as a brief way of referring to the partiular hoie of generatorsC1; C11 ; C12 ; dC11 ; dC12 ; L.Now L (ontaining all the information spei� to the PDE) does not depend on any se-ond order terms z111; z112; z122. Therefore, we may modify our problem to that of �nding two-dimensional integral manifolds of a redued di�erential ideal IrF de�ned byIrF := hC1; dC1; L; dLi; (7)de�ned on the �rst jet bundle J1(U2; V 1). We note that sine dL is a three-form, all two-dimensional integral manifolds of IrF will trivially annihilate dL, so this di�erential form antherefore be ignored in all alulations. 4



IV. SIMILARITY SOLUTION APPROACHESGiven a Lie point symmetry X 2 X(U2 � V 1) of the PDE in (1), a similarity solution of thePDE is a loal solution that remains unhanged under the one-parameter group ation of thesymmetry. The most well-known proedure for using X to generate a orresponding similaritysolution basially involves determining the two funtionally independent invariants 1; 2 2C1(U2�V 1) of X and �nding a solution of (1) that is some funtion of these invariants. Doingso, one essentially obtains from (1) a seond order ODE expressed in terms of 1; 2, knownas the `redued' di�erential equation. In the general ase for PDE problems of n independentvariables, the redued equation retains the same order of the PDE but is of n� 1 independentvariables.An alternative and equivalent approah to �nding similarity solutions is disussed by Olverin [6℄ where one searhes for a ommon solution of the overdetermined system of PDEs givenby (1) and the �rst order quasilinear PDE obtained fromX(1) C1 = 0; (8)where z1 and z11 ; z12 are replaed with u and its respetive �rst partial derivatives. Here weassume (8) gives a valid PDE and the Lie point symmetry X is not, for example, ��z1 . ThePDE derived from (8) is known as the haraterising invariane system (or invariant surfaeondition) orresponding to X, and is typially solved �rst using invariant oordinates to givea solution in terms of an arbitrary funtion. Then, by inserting this solution into (1), a redueddi�erential equation for the arbitrary funtion is derived. One this is solved, a similaritysolution is obtained one more.In this paper we do not follow either of the above proedures, but instead hoose to adoptanother approah formulated by Harrison and Estabrook [13℄ that uses exterior alulus anddi�erential ideals. This is disussed below:Suppose we are given some di�erential ideal IrF on J1(U2; V 1) orresponding to some seondorder PDE of the form in (1). If a vetor �eld V 2 X (J1(U2; V 1)) is a symmetry of IrF , thenLVC1 = �1C1; (9)and LVL = �1 ^ C1 + �2dC1 + �3L; (10)for some �1; �2; �3 2 C1 (J1(U2; V 1)) and �1 2 �1 (J1(U2; V 1)). Applying the property thatLV (d!) = d (LV !) for any di�erential form !, we an use (9) and (10) to derive orrespondingsymmetry expressions for the remaining two generators of IrF . A key property of the Harrisonand Estabrook approah is that the symmetry algebra of IrF inludes the Lie point symmetryalgebra of (1). We state this fat without proof, however in [27℄ it is proved for di�erentialideals where the PDE is left as a 0-form generator of the ideal. Sine we are dealing with PDEsof one dependent variable, the determining equations derived from (9) and (10) should also beable to establish any so-alled ontat symmetries of the PDE.Suppose then that we are given some symmetry V of IrF (or the �rst prolongation of someLie point symmetry of (1)). In the Harrison and Estabrook approah to generating similaritysolutions of (1), the di�erential ideal IrF is augmented with V C1, V dC1, V L and V dL.One then looks for a two-dimensional integral manifold of the augmented idealhC1; dC1; L; dL; V C1; V C1; V L; V dLi; (11)de�ned on J1(U2; V 1), whih also satis�es the transverse ondition.5



The symmetry onditions in (9) and (10) an be used to easily prove that (11) is a di�erentialideal, and it is lear that V is a Cauhy harateristi vetor �eld of the di�erential ideal.Though this obvious latter fat has also been noted by Estabrook [28℄, we show in Lemma 3below that for hyperboli and paraboli PDEs of the form in (1), there exists a more usefulextension of this result.Finally, we an simplify (11) in the following way: It is not hard to establish from using (9)and (10) that (11) is equal tohC1; dC1; L; dL; V C1; d(V C1); V L; d(V L)i: (12)In the next setion we examine (12) more losely and show that two further redutions arepossible.V. FIRST MAIN RESULTThe lass of seond order PDEs we deal with is those for whih L is deomposable, or equiv-alently, L ^ L = 0 using Theorem 1.7 in Bryant et al. [8℄. Although L de�ned in Theorem 2is obviously not deomposable for some hoies of f1; f2; f3, and k, we will see later in SetionVIII that for all hyperboli and paraboli PDEs of the form in (1) we are able to add to L somemultiple of dC1 whih is then deomposable.Assuming then without loss that L is deomposable, we have0 = Y (L ^ L) = 2(Y L) ^ L;for any Y 2 X (J1(U2; V 1)), so that if Y L 6= 0, then L = (Y L) ^ ! for some ! 2�1 (J1(U2; V 1)). Therefore, for deomposable L, any integral manifold ofhC1; dC1; V C1; d(V C1); V L; d(V L)i: (13)is an integral manifold of (12) (the two di�erential ideals are equal for deomposable L). HereV is the symmetry of IrF desribed in the previous setion. We shall make use of this onditionon L in our two main results, Theorem 4 in this setion and Theorem 9 in Setion VII.Sine V C1 is a smooth funtion generator of (13), we an make a further simpli�ation tothis di�erential ideal by pulling it bak onto the regular submanifold of J1(U2; V 1) desribedby V C1 = 0, and on�ne our work to this region of J1(U2; V 1). Suppose that the equationV C1 = 0 desribes a four-dimensional regular submanifold of J1(U2; V 1), whih we parame-terise by the immersion � : M4 �! J1(U2; V 1). Then denoting the pull-bak of (13) onto M4by JrF := h��C1; d Æ ��C1;��(V L); d Æ ��(V L)i; (14)we have the following lemma:Lemma 3. Let V 2 X (J1(U2; V 1)) be a symmetry of IrF . If the equation V C1 = 0 desribes afour-dimensional regular submanifold of J1(U2; V 1), whih we parameterise by the immersion� : M4 �! J1(U2; V 1), then there exists W 2 X (M4) with the property that W is a Cauhyharateristi vetor �eld of JrF .Proof. Let � : M4 �! J1(U2; V 1) be a orresponding immersion mapping onto the regularsubmanifold of J1(U2; V 1) desribed by V C1 = 0. It is lear that the tangent spae of6



�(M4) � J1(U2; V 1) spans the annihilating spae of d (V C1). From ontrating the symmetryondition in (9) with V we obtain, at any point in �(M4),V d �V C1� = �1 �V C1� = 0:Hene V is in the tangent spae of �(M4). Applying Theorem 1, there exists a vetor �eldW 2 X(M4) suh that ��W = V .We now proeed to show that W is a Cauhy harateristi vetor �eld of JrF by examiningeah generator of the di�erential ideal. First,W ��C1 = �� ���W C1� = 0; (15)where for the �rst equality we have used the property in (3), and for the seond, we have madeuse of the fat that the pull-bak of V C1 by � is zero.Next, we have that W �� Æ dC1 = �� ���W dC1� = �� �V dC1� ; (16)one again using (3). Now�� �V dC1� = �� ��1C1 � d(V C1)� ;= (���1) ��C1 � d Æ�� �V C1� ;= (���1) ��C1 2 JrF ; (17)where in the �rst line we have inserted the symmetry ondition in (9), and in the seond, wehave used properties (4) and (5). Combining the end result in (17) with (16) and (4) then givesW d Æ ��C1 2 JrF : (18)We also have from (3),W ��(V L) = �� (��W V L) = �� (V V L) = 0: (19)In a similar fashion,W �� Æ d(V L) = �� (��W d(V L)) = �� (V d(V L)) : (20)The symmetry ondition in (10) yieldsV d (V L) = V ��1 ^ C1 + �2dC1 + �3L� V dL� ;= (V �1)C1 � (V C1)�1 + �2(V dC1) + �3(V L):Pulling this bak by �, then using (5) and ��(V C1) = 0 followed by (17) gives�� (V d(V L)) = ���(V �1)���C1 + (���2) �� �V dC1�+ (���3) �� (V L) 2 JrF ; (21)so that ombining this result with (20) and (4), we obtainW d Æ ��(V L) 2 JrF : (22)Therefore (15), (18), (19) and (22) imply that W JrF � JrF .7



From Lemma 3 we obtain the �rst of our major new results:Theorem 4. Given some seond order PDE of the form in (1) whose orresponding L isdeomposable, let V 2 X (J1(U2; V 1)) be a symmetry of IrF . Suppose the equation V C1 =0 desribes a four-dimensional regular submanifold of J1(U2; V 1), and denote � : M4 �!J1(U2; V 1) as a orresponding immersion mapping onto this submanifold. WithDrF := �sp���C1;��(V L)	�? ;if �� (C1 ^ (V L)) 6= 0, then ��DrF generates a two-dimensional integral manifold of IrF . If, inaddition, dx1 ^ dx2 6= 0 on ��DrF , then the integral manifold is the image of the 1-jet of someloal solution of the PDE in (1).Proof. We know from the proof of Lemma 3 that V = ��W for some W 2 X(M4). Sine�� (C1 ^ (V L)) 6= 0, it follows that DrF is two-dimensional. From Lemma 3, W is a Cauhyharateristi vetor �eld of the di�erential ideal JrF de�ned in (14), whih implies [W;Y ℄ 2 DrFfor all Y 2 DrF [29, 26℄. HeneDrF is Frobenius integrable. Sine it is assumed � is di�eomorphionto its image, ��DrF is well-de�ned. Now let Z1; Z2 2 ��DrF . This meansZ1 = ��P1; Z2 = ��P2;for some P1; P2 2 DrF . Using (2) and the fat that DrF is Frobenius integrable, we then get[Z1; Z2℄ = [��P1;��P2℄ = ��[P1; P2℄ 2 ��DrF ;so ��DrF is Frobenius integrable.Suppose that 	 :M2 �!M4 is an immersion mapping onto any leaf of the foliation of M4generated by DrF . Thus 	�JrF = 0. Using (6),(� Æ	)�C1 = 	�(��C1) = 0; (23)and from (4), (� Æ	)�(dC1) = d �(� Æ	)�C1� = 0: (24)By assumption, �� (C1 ^ (V L)) 6= 0. This implies V L 6= 0. Sine L is deomposable, wehave L = (V L) ^ ! for some ! 2 �1 (J1(U2; V 1)). Conentrating on V L,0 = 	� (��(V L)) = (� Æ	)�(V L);whih gives	� (��L) = 	� ((��(V L)) ^ (��!)) = ((� Æ	)�(V L)) ^ ((� Æ	)�!) = 0: (25)Hene from (23), (24) and (25), it then follows that (� Æ	)�IrF = 0: If the transverse onditionholds, then � Æ 	(M2) = j1h(U2) for some h 2 C1(U2; V 1), with h as some loal solution of(1).Remark. In order to satisfy the transverse requirement, the symmetry V in Theorem 4 mustneessarily satisfy the ondition d(V C1) ^ dx1 ^ dx2 6= 0. If this is not the ase, then��(dx1 ^ dx2) = 0, and hene for all 	, (� Æ 	)�(dx1 ^ dx2) = 0. Consequently the trans-verse requirement fails.We illustrate Theorem 4 with the following example:8



Example 5. Consider the heat equation �2u�(x1)2 = �u�x2 : (26)De�ned on J1(U2; V 1) we have IrF = hC1; dC1; L; dLi;where F = z111 � z12 and L = (dz11 � z12dx1) ^ dx2. NowV := x1 ��x1 + 2x2 ��x2is a Lie point symmetry of (26), and we use its �rst prolongation V (1), whereV (1) = x1 ��x1 + 2x2 ��x2 � z11 ��z11 � 2z12 ��z12 ;as our non-trivial symmetry of IrF .Applying Theorem 4, we de�ne the four-dimensional regular submanifold M4 � J1(U2; V 1)by the lous of V (1) C1 = �x1z11 � x2z12 = 0:In a simpli�ed manner without expliitly introduing an immersion, we assume M4 has oor-dinates x1; x2; z1; z11 with x2 6= 0, so that on M4,C1 = dz1 � z11dx1 + z11x12x2 dx2;V (1) L = �z11x1dx1 + z11 �(x1)22x2 � 1� dx2 � 2x2dz11 ; (27)with JrF = hC1; dC1; V (1) L; d(V (1) L)i;also de�ned on M4. From Theorem 4 we have that DrF � X(M4) generated by the annihilatingspae of the equations in (27) is Frobenius integrable. It is easy to show that on DrF , thetransverse ondition dx1 ^ dx2 6= 0 holds, so we expet to get some loal solution to theheat equation. Then applying Proposition 4.7 in Sherring and Prine [21℄ with a solvablestruture of two symmetries, where X2 := ��z1 2 X(M4) is a non-trivial symmetry of DrF ,X1 := z11 ��z11 2 X(M4) is a non-trivial symmetry of DrF � spfX2g, and de�ning
 := �dz1 � z11dx1 + z11x12x2 dx2� ^ ��z11x1dx1 + z11 �(x1)22x2 � 1� dx2 � 2x2dz11� ;we �nd X2 
X1 X2 
 = d�ln(z11px2) + (x1)24x2 � ;X1 
X2 X1 
 � d�z1 � 2z11px2 exp�(x1)24x2 �Z exp ���2� d�� mod X2 
X1 X2 
 ;where � := x1=(2px2). Putting ln(z11px2) + (x1)24x2 = 1;9



and z1 � 2z11px2 exp�(x1)24x2 �Z exp ���2� d� = 2;for any onstants 1; 2, we obtainu = 2 exp(1) Z exp ���2� d�as our loal similarity solution of the heat equation orresponding to V .We lose this setion with a warning that there will exist situations when applying Theorem 4will yield a distribution ��DrF that is not transverse, even with d(V C1) ^ dx1 ^ dx2 6= 0. Insuh ases we must abandon the above approah and look to use elements of IrF that are in asense singular. This is explained in full in the next setion.VI. A SINGULAR APPROACHConsider a di�erential ideal I := h�1; �2i de�ned on some open, onvex neighbourhood U4 � R4with oordinates x1; : : : ; x4, generated by two linearly independent one-forms �1; �2 2 �1(U4).Suppose that for eah i 2 f1; 2g, d�i � 0 mod �1; �2, i.e. ker(�1 ^ �2) is Frobenius integrable.Here, we hoose to work with a two-dimensional PfaÆan system de�ned on a four-dimensionalspae beause the material in the following setion on seond order hyperboli or paraboliPDEs of the type in (1) is preisely of this nature, but all results that follow in this setion aneasily be extended to arbitrary dimensions.For integrating the Frobenius integrable distribution ker(�1 ^ �2) using solvable symmetrystrutures, we an use Proposition 4.7 in Sherring and Prine [21℄ to �nd some funtionsf 11 ; f 12 ; f 21 ; f 22 ; g1; g2 2 C1(U4) suh thatf 11�1 + f 12�2 = dg1;f 21�1 + f 22�2 = dg2: (28)If, on U4, the funtions g1; g2 are of onstant maximal rank two, then the equations g1 =1; g2 = 2 desribe a two-dimensional regular submanifold of U4. Let 	 : M2 �! U4 be animmersion mapping onto this submanifold. If, in addition, the determinant	� ����f 11 f 12f 21 f 22 ���� 6= 0on M2, then (28) and the fat that 	�(dg1) = 0 = 	�(dg2) imply 	��1 = 0 = 	��2. Hene 	is a two-dimensional integral manifold of I, for arbitrary onstant funtions 1; 2.The problem with the above `regular' approah used in Theorem 4 for dealing with a PDEof the form in (1) is that if the submanifold generated by ��DrF is not transverse, then themethod fails to give us a loal solution with u as some smooth funtion of x1; x2.Our goal in this setion and the next is to provide an alternative approah for �nding two-dimensional integral manifolds of I, whih inludes the above situation as a sub-lass, as wellas applies to PDE problems when ��DrF may or may not be transverse. We will also see thatthe trade-o� for this extra exibility is that there is no diret omputational approah usingsolvable symmetry strutures, however using the Frobenius integrable nature of ker(�1 ^ �2)(or ��DrF in Theorem 4) we do ome lose.Consider then the following obvious extension to the above disussion:10



Theorem 6. With �1; �2 and I de�ned as above, let there exist f 11 ; f 12 ; f 21 ; f 22 ; g11; g12; g21; g22 2C1(U4) suh that f 11�1 + f 12�2 = g11dg12;f 21�1 + f 22�2 = g21dg22: (29)Suppose that for some p; q 2 f1; 2g, the equationsg1p = (0 if p = 1,1 otherwise, g2q = (0 if q = 1,2 otherwise,for some onstants 1; 2 desribe a two-dimensional regular submanifold of U4, and let 	 :M2 �! U4 be an immersion mapping onto this submanifold. If, on M2, the determinant	� ����f 11 f 12f 21 f 22 ���� 6= 0; (30)then 	 is a two-dimensional integral manifold of I.For PDE problems, Theorem 6 will be used to �nd alternative (hopefully transverse) integralmanifolds of I to those found with the usual approah reviewed at the start of this setion.Unfortunately there is no algorithmi tehnique (without involving ODEs) for establishing (29)by means other than following diret one using Proposition 4.7 in Sherring and Prine [21℄ thatinorporates symmetry:Suppose then we apply Proposition 4.7 with X2 2 X(U4) as a non-trivial symmetry ofker(�1 ^ �2), and X1 2 X(U4) as a non-trivial symmetry of spfX2g � ker(�1 ^ �2). We thenobtain X2 (�1 ^ �2)X1 X2 (�1 ^ �2) = dg12;X1 (�1 ^ �2)X2 X1 (�1 ^ �2) = dg22 �X1(g22)dg12; (31)for some g12; g22 2 C1(U4). This gives integral manifolds of I de�ned by g12 = 1, g22 = 2 foronstants 1; 2. Suppose these are not transverse. Rearranging the equations in (31) gives�X2 �2��1 � �X2 �1��2 = �X2 X1 (�1 ^ �2)� dg12;�(X1 +X1(g22)X2) �2��1� �(X1 +X1(g22)X2) �1��2= �X1 X2 (�1 ^ �2)� dg22: (32)Now applying Theorem 6 with the equations in (32), we setg11 = �g21 = X2 X1 (�1 ^ �2):We annot hoose p = 2; q = 2 sine by assumption these integral manifolds of I are nottransverse. We also annot hoose p = 1; q = 1 beause g11 = �g21 implies we do not obtaina regular two-dimensional submanifold of U4. This is learly due to the onstant maximalrank two requirement failing. Therefore we require that at least one of the two remaining (p; q)ombinations satisfy the rank two ondition. Finally, the equation in (30) must also be satis�ed,i.e. 	� ���� X2 �2 �X2 �1(X1 +X1(g22)X2) �2 �(X1 +X1(g22)X2) �1���� 6= 0:11



Below is a modi�ation of Theorem 6, whih shows that if we are given just one of theequations in (29) (found for example by inspetion, or using Proposition 4.7 in Sherring andPrine [21℄ as in the above), then the other an be determined using a symmetry:Theorem 7. With �1; �2 and I de�ned as above, let there exist f 11 ; f 12 ; g11; g12 2 C1(U4) suhthat f 11�1 + f 12�2 = g11dg12: (33)Suppose that for some p 2 f1; 2g, the equationg1p = (0 if p = 1,1 otherwise, (34)for some onstant 1 desribes a three-dimensional regular submanifold of U4. Let � : M3 �!U4 denote an immersion mapping onto this submanifold, and let X 2 X(M3) be a non-trivialsymmetry of �� (f 21�1 + f 22�2), for some f 21 ; f 22 2 C1(U4). Then there exist g21; g22 2 C1(M3)suh that �� �f 21�1 + f 22�2� = g21dg22:Further suppose that, for some q 2 f1; 2g, the equationg2q = (0 if q = 1,2 otherwise,for some onstant 2 desribes a two-dimensional regular submanifold of M3. With 	 : M2 �!M3 denoting an immersion mapping onto this submanifold, if(� Æ	)� ����f 11 f 12f 21 f 22 ���� 6= 0; (35)on M2, then � Æ	 is a two-dimensional integral manifold of I.Proof. Sine for eah i 2 f1; 2g, d�i � 0 mod �1; �2, it follows that with�1 :=f 11�1 + f 12�2;�2 :=f 21�1 + f 22�2;we have for eah i 2 f1; 2g, d�i � 0 mod �1; �2 for arbitrary hoie of f 11 ; f 12 ; f 21 ; f 22 2 C1(U4).Let �1 satisfy (33) for some f 11 ; f 12 and some g11; g12 2 C1(U4), and for some p 2 f1; 2g, let theimmersion � : M3 �! U4, de�ned as in the theorem, map onto the regular submanifold of U4given by (34). Then ���1 = 0, so thatd ����2� = �� �d�2� = (���1)���1 + (���2)���2 � 0 mod ���2;for some �1; �2 2 C1(U4). Let X 2 X(M3) be a non-trivial symmetry of ���2. Hene fromProposition 4.7 in Sherring and Prine [21℄ (or even Theorem 2.1 in the same paper), we obtaind� ���2X (���2)� = 0:Therefore ���2 = �X (���2)� dg22;12



for some g22 2 C1(M3). We set g21 = X (���2) and hoose g2q suh that it is of onstantmaximal rank one on M3. Hene with 	 de�ned as in the theorem, we have(� Æ	)��1 = 0 = (� Æ	)��2:By the assumption in (35), it is then lear that � Æ	 is a two-dimensional integral manifold ofI.Remark. The funtions f 21 ; f 22 in Theorem 7 are not quite arbitrary: First they must be hosenso that �� ����f 11 f 12f 21 f 22 ���� 6= 0;on M3, or else (35) fails for any 	. Then one 	 is known, (35) must be heked.Certainly the diÆult part in applying Theorem 7 is in establishing (33). One this isdone however, the remaining assumptions in the theorem simply involve two maximal rankonditions, one non-zero determinant ondition and one non-trivial symmetry.Another observation we an make regarding Theorem 7 is that ker(�1 ^�2) must be Frobe-nius integrable. Of ourse, even if ker(�1 ^ �2) is not Frobenius integrable, singular two-dimensional integral manifolds of I may still exist.The following example illustrates Theorem 7:Example 8. Suppose on some suitably hosen U4 where x2 6= 0, I := h�1; �2i with�1 := dx3 + x12x2dx1 � x4dx2;�2 :=�2x2x4 � (x1)22x2 + 1� dx2:It is easy to show that for all i 2 f1; 2g, d�i � 0 mod �1; �2, and so ker(�1 ^ �2) is Frobeniusintegrable.We begin with the `regular' approah to integrating ker(�1 ^ �2) reviewed at the beginningof this setion. Simple inspetion (or Proposition 4.7 in Sherring and Prine [21℄) yields�1 ^ �2 = �2x2x4 � (x1)22x2 + 1� d�x3 + (x1)24x2 � ^ dx2:Hene if the equations x2 = 1; x3 + (x1)24x2 = 2;for arbitrary onstants 1; 2 are onstant maximal rank two on some suitably hosen neigh-bourhood of U4, then they desribe a two-dimensional foliation of the neighbourhood, whereeah leaf is a regular submanifold that is an integral manifold of I.We now look to apply Theorem 7 in order to generate di�erent two-dimensional integralmanifolds of I. Applying the theorem, suppose we hoose f 11 := 0, f 12 := 1, andg11 := 2x2x4 � (x1)22x2 + 1; g12 := x2;so that (33) holds. We set g11 = 0: (36)13



We also hoose f 21 := 1, f 22 := 0. Again without expliitly introduing an immersion, andpulling-bak �1 onto M3 de�ned by (36) with oordinates for M3 given by x1; x2; x3, we �nd(on M3) �1 = dx3 + x12x2dx1 + 12x2 �1� (x1)22x2 � dx2;whih, from Theorem 7, is losed modulo itself. Applying Theorem 2.1 in [21℄ with ��x3 as anon-trivial symmetry of �1, we get�1 = d�x3 + ln(px2) + (x1)24x2 � ;so g21 = 1; g22 = x3 + ln(px2) + (x1)24x2 :Hene our only hoie is to set g22 = 3;where 3 is an arbitrary onstant funtion. On a suitable neighbourhood of U4 the equations2x2x4 � (x1)22x2 + 1 = 0; x3 + ln(px2) + (x1)24x2 = 3 (37)are of onstant maximal rank two, and it is easy to see from above that the non-zero determi-nant ondition in (35) holds. Hene the equations in (37) desribe a two-dimensional regularsubmanifold of the neighbourhood of U4, that is an integral manifold of I. Note that the two-dimensional leaves desribed by (37) do not generate a foliation of the neighbourhood. Rather,the three-dimensional regular submanifold of the neighbourhood desribed by the equation onthe left in (37) is foliated by the two-dimensional leaves generated by the equation on the right.VII. A SINGULAR APPLICATIONIn this setion we use Theorem 7 to provide an alternative to Theorem 4 when the transverserequirement fails for ��DrF . The following result is the seond of our major results:Theorem 9. Given some seond order PDE of the form in (1) whose orresponding L isdeomposable, let V 2 X (J1(U2; V 1)) be a symmetry of IrF . Suppose the equation V C1 = 0desribes a four-dimensional regular submanifold of J1(U2; V 1), and let � : M4 �! J1(U2; V 1)denote an immersion mapping onto this submanifold. Further suppose ��(C1 ^ (V L)) 6= 0,and we have applied Theorem 7, with �1 := ��C1 and �2 := ��(V L), thus generating somesmooth g1p; g2q and immersions � : M3 �! J1(U2; V 1) and 	 : M2 �!M3, as in the theorem.If (� Æ� Æ	)�(dx1 ^ dx2) 6= 0; (38)then � Æ� Æ	(M2) is the image of the 1-jet of some loal solution of the PDE in (1).Proof. Using Lemma 3, we have on M4 thatDrF := �sp���C1;��(V L)	�?14



is Frobenius integrable. Applying Theorem 7 to JrF de�ned in (14) then generates a two-dimensional integral manifold of JrF given by� Æ	 : M2 �!M4:At this point the proof beomes very similar to that of Theorem 4. As L is deomposable, we�nd that � Æ� Æ	 : M2 �! J1(U2; V 1)is a two-dimensional integral manifold of IrF . The ondition in (38) is a transverse requirement.It then lear that the image of �Æ�Æ	 is equal to the image of the 1-jet of some loal solutionof the PDE in (1).Remark 1. Theorem 9 an obviously be modi�ed by replaing Theorem 7 with Theorem 6.Remark 2. While Theorem 9 does not require that ��DrF be transverse, a transverse require-ment must still be introdued, but at a later stage.The following example attempts to larify Theorem 9:Example 10. Consider the Potential Burgers' Equation�u�x2 � �2u�(x1)2 � � �u�x1�2 = 0: (39)De�ned on J1(U2; V 1) we have IrF = hC1; dC1; L; dLi;where F = z12 � z111 � (z11)2 and L = ((z12 � (z11)2) dx1 � dz11) ^ dx2. NowV := 2x2 ��x1 � x1 ��z1is a Lie point symmetry of (39), and we use its �rst prolongation V (1), whereV (1) = 2x2 ��x1 � x1 ��z1 � ��z11 � 2z11 ��z12 ;as our non-trivial symmetry of IrF .Applying Theorem 9, we de�ne M4 to be the four-dimensional regular submanifold ofJ1(U2; V 1) given by the lous of V (1) C1 = �x1 � 2x2z11 = 0:We assume M4 has oordinates x1; x2; z1; z12 with x2 6= 0, so that on M4 we haveC1 = dz1 + x12x2dx1 � z12dx2;V (1) L = �2x2z12 � (x1)22x2 + 1� dx2:It is lear that the transverse ondition does not hold on the two-dimensional annihilating spaeof spfC1; V (1) Lg de�ned on M4, so we will look to use Theorem 7. In applying this result, werefer to Example 8 whih makes use of the theorem with x3 replaing z1 and x4 replaing z12 sothat �1 = C1 and �2 = V (1) L. From the example, we then get thatu = � ln(px2)� (x1)24x2 + 3;for any onstant 3 is a similarity solution of (39) orresponding to V .15



VIII. DECOMPOSABILITY EXAMINEDTheorems 4 and 9 appear to be restrited by the requirement that L (or Ly) be deomposable.However, sine dC1 is in IrF , we may look to add some multiple b 2 J1(U2; V 1) of dC1 to L sothat L + bdC1 is deomposable.Without loss, working this time with Ly, we de�ne the following two-form
y := Ly + bdC1;where b is for the moment any smooth funtion on the �rst jet bundle J1(U2; V 1). The followinglemma gives a simple quadrati ondition on b in order that 
y ^ 
y = 0, so that 
y isdeomposable by Theorem 1.7 in [8℄.Lemma 11. With 
y := Ly + bdC1, ifb = �f3 �pf 23 � 4f1f22 ;with f 23 � 4f1f2 � 0, then 
y is deomposable.Proof. �Ly + bdC1�2 = (Ly)2 + 2bdC1 ^ Ly + b2(dC1)2;and (dC1)2 = 2dz11 ^ dx1 ^ dz12 ^ dx2;(Ly)2 = �2f1f2dz11 ^ dx2 ^ dz12 ^ dx1;dC1 ^ Ly = f3dz12 ^ dx2 ^ dz11 ^ dx1:Hene �Ly + bdC1�2 = 2 �b2 + bf3 + f1f2� dz11 ^ dx1 ^ dz12 ^ dx2:It follows that if b = �f3 �pf 23 � 4f1f22 ;where b is real on J1(U2; V 1), then 
y ^ 
y = 0, and therefore by Theorem 1.7 in [8℄, 
y isdeomposable.Proved in a similar way to Lemma 11, we have the following for L:Lemma 12. With 
 := L+ bdC1, ifb = f3 �pf 23 � 4f1f22 ;with f 23 � 4f1f2 � 0, then 
 is deomposable.The requirement that the disriminant in Lemmas 11 and 12 remains non-negative onJ1(U2; V 1) (or on some suitable neighbourhood), oinides exatly with the ondition foundwidely in the literature that the seond order PDE in (1) be hyperboli or paraboli. Hene, ifthe PDE is of one of these two types, then we are always able to determine a deomposable 
(or 
y). Thus we an apply Theorems 4 and 9 by simply replaing the L in these two theoremswith 
. We illustrate with an example: 16



Example 13. Consider the non-linear wave equation:�2u�(x2)2 = u �2u�(x1)2 : (40)In terms of oordinates of J1(U2; V 1), this equation admits the point symmetryV := x2 ��x2 � 2z1 ��z1 ;whose �rst prolongation isV (1) = x2 ��x1 � 2z1 ��z1 � 2z11 ��z11 � 3z12 ��z12 :Working with L, we have L = �z1dz11 ^ dx2 � dz12 ^ dx1;whih is learly not deomposable. From Lemma 12, we �nd that L�pz1dC1 is deomposable.Taking the positive option gives
+ := L +pz1dC1;=�dz12 �pz1dz11� ^ �pz1dx2 � dx1� :Applying Theorem 4, we de�ne the four-dimensional regular submanifold M4 � J1(U2; V 1) bythe lous of V (1) C1 = �x2z12 � 2z1 = 0:Let M4 have oordinates x1; x2; z1; z11 with x2 6= 0. Then we have on M4,C1 = dz1 � z11dx1 + 2z1x2 dx2;V (1) 
+ = ��6z1x2 � 2pz1z11� dx1 + 4(z1) 32x2 + 2z1z11! dx2 + 2pz1dz1 + x2z1dz11 :It is easy to show that the transverse ondition holds on the two-dimensional annihilating spaeof spfC1; V (1) 
+g de�ned on M4. By inspetion,X1 := ��x1 2 X(M4)is a non-trivial symmetry of C1 ^ (V (1) 
+) (pulled-bak onto M4). Using the Lie symmetryanalysis software pakage DIMSYM [30℄, we �ndX2 := � 1(x2)2 ��z1 2 X(M4)is another non-trivial symmetry of C1 ^ (V (1) 
+), whih also ommutes with X1. Therefore,taking advantage of this situation and applying Theorems 4.1 and 5.1 in [21℄ gives the twolosed forms X1 (C1 ^ (V (1) 
+))X2 X1 (C1 ^ (V (1) 
+)) = d�(x2)4(z11)212 � (x2)2z1� ;X2 (C1 ^ (V (1) 
+))X1 X2 (C1 ^ (V (1) 
+)) = d�x1 � (x2)2z116 � :17



Putting (x2)4(z11)212 � (x2)2z1 = 1; x1 � (x2)2z116 = 2;for any onstants 1; 2, we obtain u = 3 (x1 � 2)2 � 1(x2)2as our similarity solution of the non-linear wave equation in (40) orresponding to V .IX. CONDITIONAL SYMMETRIESFollowing Olver [6℄, Stephani [7℄ or Bluman and Cole [23℄, a onditional symmetry V 2 X(U2�V 1) of some seond order PDE in (1) is de�ned as a Lie point symmetry of the overdeterminedsystem of PDEs given by (1) and the �rst order quasilinear PDE obtained fromV (1) C1 = 0: (41)In this setion we show that all results in the previous setions still hold true if instead of thesymmetry being the �rst prolongation of some point symmetry of (1) it is the �rst prolongationof some onditional symmetry.We de�ne bIrF := hC1; dC1; L; dL; (V (1) C1)dx1 ^ dx2; d(V (1) C1) ^ dx1 ^ dx2i;de�ned on the �rst jet bundle J1(U2; V 1). It is lear from Setion III that the image of anytwo-dimensional integral manifold of bIrF that satis�es the transverse ondition will be that ofsome 1-jet solution map of the overdetermined system of PDEs given by (1) and (41).If V is a onditional symmetry of (1), then it follows from the disussion in Setion IV thatLV (1) bIrF � bIrF :Expliitly, LV (1)C1 = �1C1; (42)as well as LV (1)L = �1 ^ C1 + �2dC1 + �3L+ �4 �(V (1) C1)dx1 ^ dx2� ; (43)and �nally, LV (1) �(V (1) C1)dx1 ^ dx2� = �2 ^ C1 + �5dC1 + �6L+ �7 �(V (1) C1)dx1 ^ dx2� ; (44)for some �1; : : : ; �7 2 C1 (J1(U2; V 1)) and �1; �2 2 �1 (J1(U2; V 1)).Suppose in terms of �rst jet bundle oordinates the equation in (41) desribes a four-dimensional regular submanifold of J1(U2; V 1), whih we parameterise by the immersion � :M4 �! J1(U2; V 1). It is then obvious that��bIrF = ��IrF :Without loss, we an assume L is deomposable, so that L = (V (1) L) ^ ! for some ! 2�1(J1(U2; V 1)) (assume V (1) L 6= 0). Suppose we now wish to repeat the proof of Lemma 3,where in the lemma, 18



1. IrF is replaed by bIrF ,2. V is replaed by the �rst prolongation of our onditional symmetry V (1),3. The symmetry onditions in (9) and (10) are replaed by those in (42) and (43).Now it is not hard to see that the lemma still holds true, sine the pull-bak of (43) by �fores the �nal term on the right to vanish. Thus when pulled-bak by �, the two sets ofequations given in item 3 above are in idential form. Hene from the lemma there exists someCauhy harateristi vetor �eld W 2 X (M4) of JrF with the property that ��W = V (1).Consequently, with the same three substitutions given above, Theorems 4 and 9 hold.Finally, the equation in (44) is not used in the proof of any of our results. Therefore itappears that in order for us to use symmetries of bIrF to derive non-lassial similarity solutions,vetor �elds from the symmetry algebra of bIrF are not stritly neessary. One essentially onlyrequires vetor �elds that satisfy (42) and (43).Using a onditional symmetry, we now illustrate Theorem 4 with the following example:Example 14. Consider the heat equation given in (26). From Stephani [7℄, it has the ondi-tional symmetry V := tan(x1) ��x1 + ��x2 ;whose �rst prolongation is given byV (1) = tan(x1) ��x1 + ��x2 � z11 se2(x1) ��z11 :From Example 5, L is deomposable. Applying Theorem 4, we de�ne the four-dimensionalregular submanifold M4 � J1(U2; V 1) by the lous ofV (1) C1 = �z11 tan(x1)� z12 = 0:Letting M4 have oordinates x1; x2; z1; z11, we pull-bak C1 and V (1) L so that (on M4),C1 = dz1 � z11dx1 + z11 tan(x1)dx2;V (1) L = �z11 tan x1dx1 � z11dx2 � dz11 :It an be shown that on M4, ker �C1 ^ (V (1) L)� is a two-dimensional Frobenius integrabledistribution that satis�es the transverse ondition. By inspetion,��x2 ; ��z1 2 X(M4);are two ommuting non-trivial symmetries of C1 ^ (V (1) L). Hene by Propositions 4.1 and5.1 in [21℄ we obtain the two losed forms��x2 (C1 ^ (V (1) L))��z1 ��x2 (C1 ^ (V (1) L)) = d �z1 � z11 tan(x1)� ;��z1 (C1 ^ (V (1) L))��x2 ��z1 (C1 ^ (V (1) L)) = d�ln ���� z11os(x1) ����+ x2� :19



Putting z1 � z11 tan(x1) = 1; ln ���� z11os(x1) ����+ x2 = 2;for any onstants 1 and 2 yieldsu = sin(x1) exp(2 � x2) + 1as our loal non-lassial similarity solution of the wave equation orresponding to the ondi-tional symmetry V .X. COMMENTS AND CONCLUSIONSOur main results, Theorems 4 and 9, ombined with Lemmas 11 and 12 show how one mayuse solvable symmetry strutures to extrat lassial and non-lassial similarity solutions ofseond order hyperboli or paraboli PDEs of the form in (1). While the two theorems assumeL (or Ly) is deomposable, it is hardly a restrition. This is beause the disriminant in the twolemmas remains non-negative on some neighbourhood preisely when the PDE is hyperbolior paraboli. Hene, we are always able to apply Theorems 4 and 9 by replaing the givennon-deomposable L with a suitable deomposable 
, whih is simply some linear ombinationof L and dC1. For Theorem 4 there is a risk that the resulting two-dimensional Frobeniusintegrable distribution does not satisfy the transverse requirement. If this is the ase, then theapproah desribed in the theorem must be abandoned, and we are fored to use the slightlymore sophistiated Theorem 9.It is unfortunate that both Theorems 4 and 9 demand the symmetry V satisfy d(V C1) ^dx1 ^ dx2 6= 0. At this stage it is not lear how to modify our work in suh a way so that thisrestrition is avoided.Finally, while our work has foused solely on the generation of similarity solutions in theabsene of boundary onditions, there is sope for further work with suh onditions. As apossible starting point, we know from Theorems 4 and 9 that given a symmetry V , we obtainuniqueness of solution up to two and one arbitrary onstants respetively. We leave suhresearh as the topi of another paper.XI. ACKNOWLEDGMENTSMihael Baro aknowledges the support of an Australian Postgraduate Award. The authorwould like to also thank Geo� Prine for his useful ritiisms.Referenes[1℄ S. Lie, \�Uber die Integration durh bestimmte Integrale von einer Klasse linear partiellerDi�erentialgleihungen," Arh. Math. 6, 328-368 (1881).[2℄ G.W. Bluman and J.D. Cole, \Similarity methods for di�erential equations," Springer-Verlag, New York (1974).[3℄ G.W. Bluman and S. Kumei, \Symmetries and di�erential equations," Springer-Verlag,New York (1989). 20
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