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Glossary of key symbols

A(T) Cauchy characteristic space of I
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Summary

The focus of this thesis is on developing symmetry techniques based on computer
algebra for extracting local solutions of partial differential equations (PDEs). A class
of symmetries more general than Lie point known as solvable symmetry structures
plays a central role in our study, and we examine the classes of PDEs for which
it is possible to develop systematic solution methods based on Cartan’s differential
geometric language of exterior differential calculus and such symmetries. Our work
is significant since these symmetry structures can be found using an advanced feature
of some existing Lie symmetry determination software packages such as DIMSYM, and
moreover, we present an alternative to the usual canonical coordinates approach to
symmetry solutions of differential equations as found in the literature.

The main tools in our study are Lie’s solvable symmetry structure approach to
integrating Frobenius integrable vector field distributions, and a simple extension in
term of differential forms. From these two starting points we use solvable symmetry
structures to derive the following new results: i) express a single Pfaffian equation
of constant rank in ‘normal form’; ii) find the coordinates for the closed two-form
in Darboux’s theorem; iii) give a technique for solving first order quasilinear PDEs;
iv) provide two techniques for solving first order non-linear PDEs; v) develop two
methods for solving a class of Cauchy problem for Pfaffian systems; vi) extract
similarity solutions of a class of second order PDEs using Lie point and conditional
symmetries; vii) examine how symmetries may be used to reduce certain second
order PDEs to first order; and viii) extend the reduction process in vii) to higher

order PDEs.
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Chapter 1

Introduction

The aim of this thesis is to use symbolic computation techniques and symmetry to
present some systematic approaches for finding local solutions of linear and non-
linear partial differential equations (PDEs). While symmetry methods for solving
ordinary and partial differential equations can be found in books by Bluman and
Kumei [22], Hill [75], Ibragimov [78], Olver [96], Ovsiannikov [100] and Stephani [117],
our work hopes to give a similar discussion with several new results from the point
of view of using Cartan’s exterior differential calculus [29, 30]. Using symmetries
known as ‘isovectors’, such a differential geometric approach for generating simi-
larity solutions of PDEs can be found most notably in a landmark paper by Har-
rison and Estabrook [64], as well as in a significant volume of literature by Ede-
len [43, 44, 45, 46, 47, 48, 49]. In this thesis we make use of: i) exterior calculus;
ii) a very general class of symmetries described below known as solvable symmetry
structures; and iii) modern day computing power, to present some new and alter-
native symbolic computation techniques for generating explicit local solutions of
several classes of PDEs, that we hope will serve to augment the work by Harrison,
Estabrook and Edelen referred to above.

A solvable symmetry structure is a special finite collection of symmetries more
general than Lie point that has its origin in work by Lie [90] and Cartan [29, 30] on
using such symmetries for integrating by quadratures Frobenius integrable vector

field distributions. Given a Frobenius integrable vector field distribution D, we say



that vector fields X1, ..., X, form a solvable symmetry structure for D if

EXpD C D,

Lx,  (Sp{X,} @ D) C Sp{X,} @ D,

Lx, (Sp{Xa,..., X,}® D) C Sp{Xy,...,X,} @D,

where L is the Lie derivative operator. Recent reviews and extensions of the work
of Lie and Cartan have been done by authors such as Athorne [11], Basarab-
Horwath [16], Dubrov and Komrakov [40], Duzhin and Lychagin [42], Hartl and
Athorne [65] and Sherring and Prince [110], with some of these authors pursuing
the way in which a solvable structure of symmetries can be used to solve ordinary
differential equations (ODEs). For a given ODE, D is of one dimension generated
by some ordinary differential equation vector field defined on some appropriate jet
bundle. As shown in [65], the notion of a solvable symmetry structure for a one-
dimensional vector field distribution generated by some ordinary differential equa-
tion field is tied to that of a ‘hidden’ symmetry of the ODE. Hidden symmetries are
discussed in the literature by Abraham-Shrauner [1, 2, 3], Abraham-Shrauner and
Guo [5, 6, 63], Abraham-Shrauner and Leach [7] and Abraham-Shrauner et al. [8],
where reducing the order of the given ODE loses or gains one or more symmetries.
In addition, Abraham-Shrauner and Guo have also looked at hidden symmetries
that arise when the order of the ODE is increased [4].

In this thesis we extend the use of solvable structures to extract local general
solutions of ODEs, and for the first time examine their applicability to PDEs. The
advantages of working with solvable symmetry structures are two-fold: Firstly, they
are considerably more general that Lie point, contact [92] or Lie-Bécklund [9, 77]
symmetries, so there is a greater likelihood that given any vector field distribution,
they will exist; and secondly (and perhaps more importantly), for a Frobenius in-
tegrable vector field distribution D, the computational process simply amounts to
initially finding one non-trivial symmetry of D, denoted by X, then finding one
non-trivial symmetry of D & Sp{X,}, denoted by X, _;, and so on a finite number
of times until X is obtained, that is a non-trivial symmetry of D& Sp{Xs, ..., X,}.

The fact that for each stage we only need one symmetry is therefore quite a weak



requirement. For further details on this issue see Definition 3.2.10 in Chapter 3 and
the discussion thereafter.

In the past, the main obstacle in any symmetry technique for solving differ-
ential equations has been finding the symmetries. However, the previous decade
(and to some extent the decade before) has seen various authors take advantage of
substantial and at the same time affordable computing power to develop computer
software based symbolic programs for Lie symmetry analysis. For good surveys
of the many programs that exist, including a discussion of the various program-
ming methods, see Hereman [72, 73, 78]. Since the aim of this thesis is not to
develop programming techniques for Lie symmetry analysis, we briefly mention at
this point some of the programs which exist today. To begin with, working under
REDUCE [70] there exists CRACK by Wolf and Brand [133, 135] which solves overde-
termined systems of PDEs with polynomial terms, and a more powerful LIEPDE by
Wolf [134] which also finds Lie point, contact and Lie-Bécklund symmetries. Also
under REDUCE, there exists SPDE by Schwarz [108] which only finds Lie point symme-
tries, and a larger program DIMSYM by Sherring and Prince [111] (influenced by the
Lie symmetry package LIE by Head [69] operating under muMath) which will find
Lie point, contact and Lie-Backlund symmetries. Under a MACSYMA platform, there
exists PDELIE by Vafeades [122] and SYMMGRP.MAX by Champagne et al. [32, 71],
however the latter will also find a class of symmetries known as conditional (also
known as non-classical) symmetries [20]. In the language of exterior calculus as used
in the Harrison and Estabrook [64] approach to finding symmetries (isovectors) of
differential ideals, some early contributions exist by Edelen [43, 44] and Gragert et
al. [60]. In more recent times, Kersten [84] has developed a series of procedures
working under REDUCE that can be used to find symmetries more general than Lie
point. There also exists Liesymm by Carminati et al. [27] operating under Maple.
Finally, there are numerous other good packages which we have not included in this
short listing, and we refer the reader to the abovementioned reviews by Hereman for
a full discussion including relative merits of these as well as the packages mentioned
above.

In our work we choose to use the software package DIMSYM [111] designed by

James Sherring to generate the solvable symmetry structures described earlier. In



addition to finding symmetries of differential equations, this piece of software will
also find symmetries of arbitrary vector field distributions. It is this latter feature
of DIMSYM that we use extensively throughout this thesis, and since it essentially
amounts to requiring the software to solve a set of determining equations in the
form of a system of first order linear PDEs, most of the other Lie symmetry analysis
packages mentioned earlier are also capable in various capacities of performing this
task, and hence finding such symmetry structures. In Appendix A we give full details
including software input code of how one may use DIMSYM to find a solvable symmetry
structure for an arbitrary vector field distribution. Therefore, in practice, generating
such a symmetry structure amounts to nothing more than entering some data into
the software program and waiting (sometimes a long time) for any symmetries in
the output. Hence all of the results in this thesis will assume that given any vector
field distribution, we are always able find a solvable structure of symmetries.

One of the main intentions of our study is to explore the classes of partial differ-
ential equations for which the Frobenius theorem and solvable symmetry structures
from DIMSYM can assist in generating local solutions. At first, it is not obvious how
one may even begin to attempt to apply the Frobenius theorem to the study of
partial differential equations. One approach is to express the single or system of
PDEs in terms of a corresponding exterior differential system, for which there are a
number of ways. Then one is faced with the problem of looking for Frobenius inte-
grable annihilating distributions of a dimension equal to the number of independent
variables. For ordinary differential equation problems, this approach is made trivial
due to the fact that a system of ODEs can be generally represented by a single
vector field, which generates a trivially Frobenius integrable distribution. Hence, at
least in principle, there is no difficulty in applying a solvable symmetry structure
to locally solve a single n-th order non-linear ODE, and so one obtains the required
first integrals for expressing the general solution. See Chapter 4 for further details
on this issue.

For partial differential equations, a corresponding exterior differential system for
a given system of PDEs is typically generated by the pull-back of the contact system
of one-forms onto the locus of the jet bundle described by the PDEs. The task of

finding a Frobenius integrable subdistribution of the annihilating space of the one-



forms generating the exterior differential system is no longer a simple exercise as
before, and indeed this is one of the major stumbling blocks in any study of PDEs
done in this fashion. There are two obvious approaches to tackling this problem.
The first is to somehow pin down a solution of the PDEs by introducing additional
PDEs (not by prolongation) so that when the contact forms are pulled-back onto the
locus of the jet bundle described by the augmented system of PDEs, we find that the
annihilating space is Frobenius integrable and of a dimension equal to the number
of independent variable. One of the most well-known examples of this technique is
Darboux’s method [59] on Liouvilles equation, as discussed in recent literature by
Fackerell et al. [53], Hartley et al. [68], Jurds and Anderson [80] and Vassiliou [127].
The second approach is to pull-back the contact forms onto the locus described by
the PDEs, and then look to augment the exterior differential system with one-forms
so that the annihilating space is Frobenius integrable and of a dimension equal to
the number of independent variables. A similar augmentation idea, though not with
the intention of finding Frobenius integrable distributions, has been used by Gard-
ner [54, 55] for solving the Cauchy problem for Pfaffian systems (see Chapter 6) with
k-stable vector fields. Briefly explaining the method, if an exterior differential sys-
tem generated by some finite collection of linearly independent one-forms o, ..., a?
does not contain any non-zero Cauchy characteristic vector fields, then one looks to
augment the generators of the exterior differential system with several one-forms so
that the resulting exterior differential system contains such vector fields, which are
said to be l-stable. The one-forms introduced are, over all i, X1da’, where X is
initially the most general element of the annihilating space of the span of o!, ..., a?.
If a 1-stable vector field exists, then it will clearly be some X. If it is not possible to
find a 1-stable vector field, then further one-forms are added, and one then looks for
2-stable vector fields. The process can be repeated until the vector field distribution
annihilated by the total of number of one-form generators is Frobenius integrable,
at which point all vector fields in the distribution are k-stable. However, one of the
main objective of the process of augmentation is not to reach this final stage. For
further details, see work by Gardner cited above, Fackerell et al. [53], Gardner and
Kamran [57] and Hartley et al. [68].

One tool that some authors have used in the past to assist in generating integral



manifolds of an exterior differential system (that may or may not correspond to some
system of PDEs) is the Cartan-Kéahler theorem [30, 81, 86]. In the literature, the
most comprehensive modern day discussion on this theorem can be found in work
by Bryant et al. [23], while Griffiths [62], Olver [99] and Yang [136] have given more
readable but less sophisticated treatments. Other authors such as Kakié [82, 83| have
studied the theorem for solving non-linear PDEs. Cianci [36] has generalised the
result on a superspace for studying first order non-linear PDEs, and Hartley [67, 66]
has examined the theorem from a symbolic computation point of view. Finally,
Edelen [47, 48] has studied alternatives to the Cartan-Kéhler theorem in order to
avoid some of the ‘computational horrors’ that sometimes arise in its application.

The Cartan-Kéhler theorem can be seen as a Cauchy problem result in the
sense that if we are given some ¢-dimensional, real analytic, Kdhler-regular integral
manifold of some exterior differential system [/, then by the Cauchy-Kowalevski
theorem [115], there exists a (¢ + 1)-dimensional real analytic integral manifold of I
containing the one we have been given. Two drawbacks of this theorem are firstly
that applying it can become computationally intensive and secondly that the result
is only true in an analytic category.

The structure of this thesis is as follows: We begin in Chapter 2 by review-
ing some preliminary material that is essentially an introduction to the basic ele-
ments of differential geometry, exterior calculus and symmetries. This discussion
is necessarily brief. Following this, Chapter 3 gives a thorough treatment of Lie’s
symmetry approach to integrating Frobenius integrable distributions, as discussed
in [11, 16, 40, 42, 65, 110]. The main new result of this chapter given in Theo-
rem 3.2.14 is an extension in terms of differential forms of Theorem 3.2.13 found in
Sherring and Prince [110], and throughout our work we make extensive use of both
these results. In addition, since we deal specifically with solvable symmetry struc-
tures, we also give various new results concerning certain types of solvable structures
that can simplify somewhat the conclusions of these two theorems. The reason we
do this is simply that while generating a solvable symmetry structure using DIMSYM
or some other Lie symmetry software package involves repeatedly finding only one
symmetry of some vector field distribution, there will exist occasions when we have

found more than one. Under certain conditions, the extra one(s) can be used as



symmetries in some of the remaining stages of the solvable symmetry structure.
Thus, in addition to simplifying the conclusions in Theorems 3.2.13 and 3.2.14, we
are also able to save time by virtue of less symbolic computation.

We continue Chapter 3 by focusing on the differential form result in Theo-
rem 3.2.14. We give several existence results concerning some necessary conditions
for a given differential form to satisfy the theorem. We then examine the Pfaff prob-
lem from the perspective of how one can use a solvable structure of symmetries and
Theorem 3.2.14 to express a given differential one-form of constant rank r on the
domain of definition in ‘normal form’. The main result we present is contained in
Theorem 3.5.7, and we find that to do the job, we require one solvable symmetry
structure of length 2r + 1, with a special (but not too restrictive) requirement on
the last r symmetries.

Finally, to conclude Chapter 3 we leave the Pfaff problem and turn to Darboux’s
theorem for closed two-forms. In particular, we formulate an algorithm adapted
from the one described by Crampin and Pirani [37], where such coordinates are
extracted a pair at a time.

It is Chapter 4 that begins our study of differential equations. Using Edelen’s
fundamental ideal [43, 45, 46, 49] approach to such equations, we briefly examine
ODEs as a prelude to our study of PDEs. The work presented in this chapter is not
new, but perhaps interpreted a little differently when compared with similar studies
in [16, 42, 65, 110].

In Chapter 5 we commence our work of partial differential equations by look-
ing at some symmetry techniques for generating local solutions of single first order
PDEs. We first examine single first order quasilinear PDEs. Using fundamental ide-
als, we express such a PDE as an exterior differential system that essentially resides
on the graph space. Applying a solvable symmetry structure, we then show how to
extract local solutions. Following this, we turn to first order (possibly non-linear)
PDEs. Here, we introduce the idea of a Vessiot distribution named after the French
mathematician E. Vessiot [124, 128, 129, 130]. Briefly, for any PDE (or system of
PDEs) two types of such distributions may exist, namely those regular and those
singular. While Vessiot’s work is most noted for using Monge characteristics of

singular Vessiot distributions to extract local solutions of second order hyperbolic



PDEs, our work examines how a regular Vessiot distribution corresponding to some
single first order PDE combined with solvable symmetry structures can yield lo-
cal solutions of the PDE. We present two algorithms for first order PDEs of one
dependent variable and two independent variables that each convert the problem
to finding local solutions of a corresponding first order quasilinear PDE. The first
approach requires two solvable symmetry structures, while the second only needs
one solvable symmetry structure but at the expense of only applying to first order

PDEs that do no involve their dependent variable of the form

ou ou
— —F gt 2 2=
Ox? <x’x’8x1)’

for smooth F', where z', 22 are the independent variables, and u is the dependent
variable.

Chapter 6 investigates some symmetry approaches to the Cauchy problem for
Pfaffian systems. Though defined more precisely in Chapter 6, if we are given a
differential ideal I generated by some finite number of linearly independent one-forms
and their exterior derivatives, the Cauchy problem essentially looks to extends a ¢-
dimensional integral manifold of I (called the Cauchy data) to a (¢+ 1)-dimensional
integral manifold of I. It is well-known that the Cauchy problem may be solved
using a non-zero Cauchy characteristic vector field of I (see Theorem 6.2.1), which
typically involves finding the solution of a system of first order ODEs. Our work
in Chapter 6 examines the extent to which solvable symmetry structures can assist
in solving the problem with the intention of replacing the need to introduce any
such ODEs. For a class of Pfaffian systems whose corresponding differential ideals
possess one-dimensional Cauchy characteristic spaces we give two results, the first
of which is only applicable to systems generated by single one-forms of rank one,
while the second is a generalisation of the first for systems that are generated by a
finite number of one-forms of arbitrary constant rank. For each of the two cases we
also give a PDE example.

While Chapter 6 briefly touches on second order PDE problems for which there
exist non-zero Cauchy characteristic vector fields, it is Chapter 7 which essentially
begins our study of second order PDEs. In this chapter we use exterior differential

systems and symmetry to present a new way of deriving similarity solutions of second



order hyperbolic or parabolic partial differential equations of the form

0*u 0*u 0*u
fla(xl)2 * f28(x2)2 s Ox'a?

=k, (1.1)

ou  Ou

s 5.0 557+ Our approach is basi-

where f1, fa, f3, k are smooth functions of 2!, 22, u
cally an extension of the well-known method originally given by Lie [89, 91].

Given a single second order hyperbolic or parabolic PDE of the type in (1.1),
we begin Chapter 7 by demonstrating that a Lie point symmetry of the exterior
differential system corresponding to the PDE can be used to generate a Cauchy
characteristic vector field of a restricted exterior differential system defined on some
four-dimensional regular submanifold of the first jet bundle. Using the hyperbolic
or parabolic nature of the PDE, we then show that this restricted exterior differ-
ential system has a Frobenius integrable annihilating space, which in turn yields
a similarity solution of the PDE when it is integrated with a solvable structure of
two symmetries. Finally, we close Chapter 7 by showing that all prior results in
the chapter still hold true if the Lie point symmetry is replaced with a conditional
symimetry.

While many texts exist on using symmetry to extract similarity solutions of
PDEs [39, 76, 96, 100, 106, 117], our work in Chapter 7 is based on a technique using
exterior calculus in the paper by Harrison and Estabrook [64] referred to before,
which was some time later generalised by Papachristou and Harrison [101] to vector
valued and Lie algebra-valued differential forms. Over the years, many other authors
have applied the technique in [64] to various problems in mathematics and physics.
These include, for example, non-linear diffusion (and reaction-diffusion) equations
by Chowdhury [35], Suhubi and Chowdhury [121] and Waller [131], Poisson and
Liouville type equations by Bhutani and Bhattacharya [18], and equations of power
law creep by Delph [38].

In Chapter 8 we look at second and higher order PDEs. In particular, we discuss
some necessary conditions for reducing a second order hyperbolic or parabolic PDE
of the form in (1.1) to first order (generally non-linear) depending on an arbitrary
smooth function. We also give various generalisations for higher order PDEs. For
certain classes of such higher order PDEs we use solvable symmetry structures to
develop a reduction of order process that reduces an n-th order PDE linear in its n-th

order derivatives to an (n—1)-th order PDE plus an arbitrary smooth function. The



results in Chapter 8 are significant because they not only provide some necessary
conditions for reducing the order of PDEs, but also give us some direct algorithms
for doing so using symmetry.

Throughout the material on PDEs in Chapters 5 to 8, we work in a smooth
category, however there exist systems of PDEs in this category that are without
solution, e.g. Lewy’s famous example [88]. Alternatively, we could elect to work in
an analytic category with ‘involutive’ (see Chapter 9) systems of PDEs, for which we
are guaranteed local solutions by the Cauchy-Kowalevski theorem. Instead, since
our main tools for these chapters are smooth results in Theorem 3.2.13 and its
extension, Theorem 3.2.14, we choose to remain in a smooth category and simply
assume for all our PDEs that there exist smooth local solutions. The reason we do
this is also since we are not so much concerned with the existence and uniqueness of
solutions of PDEs, but rather with the formulation of algorithmic approaches based
on symmetry for extracting smooth local solutions.

Finally, an important feature of our work is that while the well-known symmetry
techniques for solving single differential equations typically involve expressing the
differential equation in terms of canonical coordinates, none of our symmetry tech-
niques for PDEs take this path to solution. For example, all solutions of first order
quasilinear and non-linear PDEs, and similarity solutions of second order PDEs are
derived while always remaining in the original coordinate system of the differential
equation. Furthermore, since we deal with a class of quite general symmetries ca-
pable of being found using existing computer software packages, our work has the
potential of being very applicable to many problems in applied mathematics and

physics of today.



Chapter 2

Preliminary material

In this chapter we present a number of definitions and results that will provide
us with the necessary background for our study. We discuss various aspects of

differential geometry, symmetries and jet bundles, most of which are well-known.

2.1 Basic differential geometry

2.1.1 Manifolds and submanifolds

Manifolds
Following Olver [96, 99], we adopt the following definition of a manifold:

Definition 2.1.1. An m-dimensional manifold M is a topological space which is
covered by a countable collection of open subsets W, C M, called coordinate charts,
and homeomorphisms (i.e. one-to-one and onto with a continuous inverse [37])
Vo : Wy — V, onto connected open subsets V, C R™, which serve to define local
coordinates on M. A manifold is smooth (or differentiable) if, given any pair of

coordinate charts W, N Wj, the composite map
Vg oty ttha Wa NWs) — 1 (Wa N Wp)
is a smooth (here we mean infinitely differentiable) map.

We assume throughout that M is Hausdorff, i.e. any two distinct points = # y
in M can be separated by open subsets x € W and y € W with WNW = @. In
our work we often omit explicit reference to coordinate maps and identify a point

p € M with its image in R™.



Definition 2.1.2. If M, N are smooth manifolds of dimension m, n respectively, a
map F': N — M is said to be smooth if for every coordinate chart v, : W, —

V, C R" on N and every chart Eﬂ : Wg — Vg C R™ on M, the composite map
EﬂoFoz/);l R* — R™

is a smooth map. For smooth F' we write F' € C*°(N,M). If m=1and f: N —

M C R is a smooth function, then we write f € C*°(N).

Our work will only deal with smooth manifolds and mappings, however, other
authors will deal with analytic manifolds, usually when they require the Cauchy-
Kowalevski theorem as used in, for example, the proof of the Cartan-Kahler theo-

rem [23] discussed in Chapter 1.

Submanifolds

Following Sternberg [118],

Definition 2.1.3. Let M, N be smooth manifolds of dimension m, n respectively.

A smooth map F': N — M is called an immersion if it is of rank n at every point

in N.

The rank of a smooth map at some point in /N is for the moment simply taken

to be the rank of its Jacobian matrix. We define this more precisely later.

Definition 2.1.4. Let M, N be smooth manifolds of dimension m, n respectively.
A smooth map F': N — M is called an imbedding if it is a one-to-one immersion

which is homeomorphic onto its image.

For immersions, we have the following local result found in, for example, Olver [96,

99]:

Theorem 2.1.5. For smooth manifolds M, N of dimension m,n respectively with
n<m,let F: N — M be an immersion. Then for every point in N, there
exists a neighbourhood with local coordinates x*, ..., 2™ and y*,...,y™ on M and N

respectively, such that



Next, we introduce the following definition of a submanifold:

Definition 2.1.6. Let M, N be smooth manifolds of dimension m,n respectively
with n < m. An n-dimensional submanifold of M is a subset N and one-to-one

immersion F': N — N C M such that F(N) = N.

Our definition of a submanifold is commonly referred to as an immersed sub-
manifold. This thesis will only deal with reqular submanifolds, for which we have

the following definition and two results:

Definition 2.1.7. [26, 96] Let M, N be smooth manifolds of dimension m,n re-
spectively with n < m. A subset N is a n-dimensional reqular submanifold of
M if it is an n-dimensional submanifold with corresponding one-to-one immersion
F: N — N C M such that for all p € N, p possesses a basis of neighbourhoods
{U,} such that for some 3, p € Us C M with the property that F~1(Us N N) is a

connected open subset of V.

Theorem 2.1.8. [118] Let M be a smooth manifold of dimension m, and N be
some subset of dimension n. Then N is a reqular submanifold if and only if every

point p of N has a neighbourhood U in M with coordinates x',...,x™ such that
UNN={peM:z'=---=2™"=0at p}.

Theorem 2.1.9. [96] Let M be a smooth manifold of dimension m, and F : M —

R" with n < m be a smooth map. If F is of maximal rank on the subset N =

{p € M : F(p) =0}, then N is an (m — n)-dimensional reqular submanifold of M.

2.1.2 Tangent and cotangent spaces

Tangent spaces

Consider a smooth manifold M of dimension m. A tangent vector to M at a
point p € M, can be defined as an equivalence class of curves through p where two
curves are equivalent if they have the same derivatives about p [118]. Explicitly, let
o : I — M be a smooth curve with p = ¢(0) and 0 € I. Then with coordinates

1 m

x',...,2™ on M in some neighbourhood of p, we have the equivalence relation

(p,o) ~ (p',0") to mean p = p' and for each 1 <i < m,
d(z'oo)|  d(z'od)

dt - dt

t=0

=, (2.1)

t=0




for some v!,...,v™ € R. Using the chain rule it is easy to show that this equivalence
relation is independent of coordinate system. We define the tangent space as the set
of all tangent vectors at p € M, and is denoted by T),M. The tangent space has the
same dimension as M, given by the freedom in choosing v!,...,v™. The collection
of all tangent spaces is known as the tangent bundle, and is defined by
™™ = | T,M.
peM

TM has the natural structure of a smooth manifold of dimension 2m.

Using a local coordinate system z!,...,2™ on M, one may define a directional
derivative along tangent vectors as follows: Given a tangent vector v = (v!,...,v™)
at a point p € M, the directional derivative of a function f on M along v is the real

number

d(foo)

dt

Y

t=0

where ¢ is a curve in the equivalence class such that (2.1) holds. It is easy to show

that [37] (with sum)
d(foo)

dt

i Of
oxt’

=0
t=0

so we remove the reference to a curve. We can identify any element v € T,M as a

directional derivative operator given by

; 0
v=0'"—,
ox’
and it is convenient to write the basis for T,M as {3%1, . &Eim} evaluated at p.

A wvector field is a smoothly varying assignment of tangent vectors over the tangent
bundle M [99]. The module over C*°(M) of vector fields is denoted X(M). Any
vector field X € X(M) is of the form [105]

X =X'—
oxt’

for some X', ..., X™ e C®(M). For any f € C*(M), X(f) € C®(M) given by

_ yi0f
X(f) = X5

We say that a vector field is non-singular on M if it does not vanish anywhere on

M. In our work we will only deal with such vector fields.



A vector field distribution D C X(M) generated by some Xi,..., X, € X(M)
is a submodule over C*°(M), and denoted D := sp{X,,...,X,}. Here X;,..., X,
may or may not be linearly independent at all points in M. However when we write
D = Sp{Xy,...,X,}, it is assumed X},..., X, are linearly independent on M.
Let X,Y € X(M). Then the Lie bracket [X,Y] is given by

X Y]() = XY () =Y (X)),

where f € C°(M). The Lie bracket of two vector fields is a vector field. Hence it

displays the properties of a derivation, i.e.
L. [X,Y](af +bg) =a[X,Y](f) +b[X,Y](9) (Linearity over R),
2. [X,Y](fg) = [X,Y](f)g + [X,Y](9)f  (Leibniz rule),

for all X,Y € X(M), a,b € R and f,g € C*°(M). The Lie bracket also has the

properties:
L. [X,Y]=—[Y,X] (Antisymmetric),
2. Bilinearity over R,
3. (X, [V, Z)|+ [V, [Z, X]|+ [Z,[X,Y]] =0 (Jacobi’s identity),

where XY, Z € X(M).

Cotangent spaces

For any p € M, the dual space of the tangent space T),M is called the cotangent
space, and denoted TyM. Elements of T7M are differential one-forms, also known
as cotangent vectors, and the cotangent bundle is defined by

M= | J Ty M.
peM

We denote the module of one-forms over C*®(M) by A'(M).

Following [37, 99, 118], if we are given any f € C*(M), its differential df can
be evaluated on any vector field X € X(A/) defined by the linear map

(X, df) := X(f) € C%(M).



This may be evaluated at some point p € M to give a real result. In terms of local
coordinates z',..., 2™ on M, we can define a basis {dz’, ...,dx™} for T*M dual to

{32, ..., 50 } using the Kronecker delta:

<8x“dx]> =%

Thus in terms of these basis vectors, for any f € C®(M), df can locally be written

as

of dx’.

T or

df

2.2 Exterior calculus results

2.2.1 Differential forms

We have already introduced differential one-forms on the cotangent space. At this
point we introduce differential forms of higher degree. Given a smooth manifold M
of dimension m, we define the ezterior calculus [23] over M as the graded algebra
AM) =AMy A" (M)D-- - A™(M),
where A°(M) := C*>°(M). We introduce A as the ezterior (wedge) product in A(M).
The exterior product of a k-form w and an [-form x is defined as a multilinear map
A AF(M) x AY (M) — AR,

where

1 .
(w A X) (le cee 7Xk+l) = W Z(Slgnﬂ-) [w(Xiu st ’Xik)X(Xik+l’ Tt 7Xik+1)] ’

with summation over all distinct 1 <iy,... 05y < k+1, where Xy,..., Xxy €
X(M), and signr is the sign of the permutation (iy,...,4;) [104]. The exterior pro-
duce is associative, distributive and anti-commutative. For the latter, if w € A¥(M)

and x € AY(M), then
wAx = (-1 Aw.

For all k£ < m we can construct the space A¥(M) of differential k-forms. Such a

form is a k-linear map:

k times
N

~

Q:X(M) X - x X(M) — C®(M),



that is anti-symmetric in its arguments.
If wl,...,wr € AL(M) and Q := w' A --- AwF, then for any Xi,..., X} € X(M)

we have
Q(X1, ..., Xy) = det ((X;,w)),

where the right hand side is the determinant of a k£ x £ matrix. The map €2 may be
evaluated at a point p in M so its arguments are in 7, M thus giving a map to R.
If {¢',...,¢™} is a basis for A'(M), then any Q € A¥(M) can be expressed in

the form
Q= Qi@ Ao AP,

for some €;,..;, € C°°(M), where summation is over all 1 <i; < --- < i < m. The
collection of ¢ A - - - A ¢ provide us with a basis for the (Z’)—dimensional space
AR(M). Note that k& < m and dim (A™(M)) = 1.

Finally, from Bryant et al. [23] we have the following well-known result:

Theorem 2.2.1. Let w',...,w* € AY(M). Then w',...,w* are linearly dependent
atp € M if and only if w' A---AwF =0 at p.

The interior product

The interior product (contraction) is a map:
3 X (M) @ AS(M) — AP (M),
defined by
(Xow)(Y1,..., Y ) =w (X, Yq,..., Y1),

where w € A¥(M) and X,Yy,..., Y, 1 € X(M).
If f € A°(M), then we set X1 f = 0. The interior product has the following
properties [105]:

L. X+Y)iw=Xiw+Yiuw,
2. Xi(wAy)=(Xuw)Ax+ (—1)*w A (Xiy),

3. XuXiw=0,



4. XaYiw=-Yi1 X w,

where w € A¥(M), x € AY(M) and X,Y € X(M).

The exterior derivative

We have already seen the exterior derivative d : C®°(M) — A'(M). Here we
generalise things:

Let {dz',...,dz™} be a basis for A'Y(M). For k > 1, the exterior derivative
d: A¥(M) — AFT1(M) is defined by

d (€;y.ipdx™ A+ Ada™) i=degy.q, Ada” A~ A da't
It has the following properties [114, 118]: If w € A¥(M) and y € A'(M), then
1. d(w+ x) = dw + dx,
2. dwAx) =dwAx+ (—1)fw A dy,
3. d(dw) = 0.

We say that a differential form w € A¥(M) is closed if dw = 0. If there exists
a (k — 1)-form ¢ € AF"1(M) such that w = di, then we say that w is eract. For

closed forms, we have the following converse of item (3) above [99]:

Lemma 2.2.2. If U C R* is a convex open subset, and w is any closed k-form

defined on U. Then w = di for some (k — 1)-form ¢ on U.

In some literature, Lemma 2.2.2 (or even its converse) is referred to as the
Poincaré Lemma. We do not use this name here, because we prefer to use it when
strictly dealing with the ¢rue Poincaré Lemma given in books on cohomology.

Sometimes Lemma 2.2.2 is given with U being star-shaped [87, 93]. A set U C R"
is said to be star-shaped with respect to a point p € U if the line segment connecting
any point ¢ € U with p is also contained in U. For a convez set, by definition [25],
any two points in the set can be connected by a line segment that is also in the set.

Thus a convex set is star-shaped with respect to any point in the set.



2.2.2 Induced maps

We discuss two linear maps, the differential and the pull-back. The former is also
known as the push-forward [17, 24], and the latter is sometimes known as the recip-
rocal image [34]. Given a smooth map F': N — M between two smooth manifolds
M, N and some point p € N, the differential of F', denoted by F,, takes tangent

vectors in T, N to tangent vectors in T, M, 1.e.
F, TpN — TF(p)M.

The pull-back of F', denoted by F™, takes differential forms on M back to differential

forms on N, i.e.
F*: A’f(M)\F(p) — AN (V)]

The differential

Here we follow mostly [85, 96, 99]. Suppose then that o(¢) is an arbitrary
parametrised curve on N. At some p = o(tp), let v := &(ty) be the tangent vector
to the curve. The differential of v at the image point ¢ = F(p) is defined to be the
tangent vector of the curve F(o) at F(o(ty)). Explicitly,

d
F, (v) := aF(O’(t))
t=to
In terms of coordinates, if y',...,y" are local coordinates on N, z!,..., 2™ are

local coordinates on M, and F'is described in terms of these sets of coordinates by

the m equations

for some n',...,n" € C*°(N), we have that

0

Fu(X]) = (X,df)ly 5|
F(p)

Now suppose F' is diffeomorphic (i.e. one-to-one and onto with a smooth in-

verse [37]) onto its image. We can then remove the point p of application and say



that the differential mapping vector fields on N to vector fields on F(N) is well-
defined and one-to-one. Thus for any vector field X € X(NN), it is true that F,(X)
is a well-defined vector field in X(F(N)). Here we write X(F(N)) to mean the
module of vector fields tangent to F'(N). When F' is one-to-one, this notation is
unambiguous from Theorem 2.1.5.

Two vector fields X € X(N) and YV € X(M) are said to be F-related if Y =
F.(X). It Y] = F.(X;) and Y5 = F,(X5) for some Xi, X, € X(NV) and Y1,Y5 €
X(M), the differential also has the following property:

F*[Xl,XQ] - [F*Xl,F*XQ] (22)
From Theorem 8.4 in Sternberg [118] we have the following result:

Theorem 2.2.3. With M, N as smooth manifolds of dimension m,n respectively,
let F': N — M be a one-to-one immersion. Then for all Y € X(F(N)), there
exists X € X(N) such that F.X =Y.

Finally, the rank of F' at some point p € N is usually defined as the rank of the
linear map F, at p, which is by definition equal to the dimension of the image space
of F,(T,N). It is not hard to show that the rank of F" at p is equal to the rank of

the m x n Jacobian matrix

aft aft

1 n
oy » oy »
afm ofm

1 n
dy » oy

The pull-back

The following material is obtained from [94, 105, 116]. With FF : N — M
defined as above, if f is a smooth function defined on N, so that f € A°(M), then
the pull-back of f by F' at a point p € N is defined by

F*f|p = f|F(p)7

ie. F*f = folF.
For differential forms of degree > 1, the pull-back can be defined as follows: For
all w € A¥(N) and vy,...,vp € T,(M), we have

Frw)|, (vi, .-, 08) i= wlpgy (Favr, .., Flvg) .



If F, maps to well-defined vector fields, then we may write for any Y, ..., Y, € X(N),
(F*w) (Yy,...,Yy) = F* (w(F.Yq,..., F.Yy)). (2.3)

The pull-back also has the following properties: If w € A¥(M) and y € A'(M), then

F*(w+x) = Flw+ F*y, (2.4)
F*(wAx) = (F'w) A (F*x), (2.5)
F*(dw) = d(F*w). (2.6)

Removing w, (2.6) may be written as F* od = d o F*.
Given any smooth G : R — N defined on a smooth manifold R, we also have

the following composition property:

(FoG) w=G"(Fw). (2.7)

2.2.3 The Lie derivative

Consider the following definition found in Sternberg [118]:

Definition 2.2.4. A family «; of diffeomorphisms of M — M is called a one
parameter group of smooth transformations on M if the map o : Rx M — M
sending (¢,p) — a(p) is a smooth action of the additive group of real numbers on

M, i.e. if
1. The map « is smooth,
2. auys = a0 ay for all ¢ and s,
3. «p is the identity.

A one parameter group is also known as a flow. Every one parameter group
induces a vector field on M, known as the infinitesimal generator of the one pa-
rameter group, which is simply the vector field generating the tangent vector of the
curve t — ou(p) passing through p € M. In terms of coordinates, if M has local

coordinates z!, ..., 2™ and oy := (o}, ..., "), where



for some f1,..., f™ € C°(M x R), then

df?
Xp = <E

=)
=0 0T )|,

Given a vector field, one can expect to perform the reverse of the above proce-
dure and be able to generate a one parameter group by solving a system of first
order ODEs. However, as explained in Crampin and Pirani [37], every vector field
generates only a local one parameter group on some restricted interval of values for
the parameter ¢ and on some subset of M.

Using the idea of local one parameter groups we introduce the Lie derivative.
The Lie derivative of a linear object along some local one parameter group measures
the rate of change of the object along the flow. To illustrate, if our object is some
function g € C*°(M), then

Lxg:

d *
= dt (a7 g)

t=0
defines the Lie derivative of g with respect to the flow a; that generates the vector

field X € X(M). It is a simple exercise [87, 118] to show that
Lxg=X(g)

Suppose our linear object is some differential k-form w € A¥(M). Then its Lie
derivative with respect to the flow «; generated by the vector field X € X(M) is
defined by

Lxw:= — (qjw)

dt

=0
The Lie derivative on differential forms (including 0-forms), has the following

properties: If w,n € A(M) and X,Y € X(M), then
. Lxw=Xidw+d(Xiw),
2. Lx(w+1n)=Lxw+ Lxn,
3. Lx(wAn) =(Lxw)An+wA (Lxn),
4. Lx(dw)=d(Lxw),

5. Lx(Yiw)=[X,Yiw+ Y1 (Lxw),



6. E[ny]w = EX (Eyu)) — EY (Exw).

Finally, if our linear object is some vector field Y € X(M), then as in [96], its
Lie derivative with respect to the flow «; generated by the vector field X € X(M)
is defined by

d
Y = — (a_p (Yo
Lx 7 (0= (Yla,)) .
It can be shown that
LxY =[X,Y].

2.2.4 Exterior differential systems

Exterior differential systems are useful for providing an appropriate framework for
the study of PDEs. Here we give a brief introduction to some of the basic definitions
and results. The following may be found in, for example, Bryant et al. [23], Choquet-
Bruhat et al. [34] or Yang [136].

Definition 2.2.5. [23] Let M be some smooth manifold of dimension m, and let
al)...,aP € A(M) up to some p € N. The (algebraic) ideal generated by o, ..., af
is the subring I C A(M) such that for all 1 < i < p,

1. o' €1, and for allw € A(M), o' ANw € I,
2. If o = oy 4 - - - + af, for some o € A/(M), then each o € I.

We write I := (a!,...,a”) to mean that I is the ideal generated by the elements

a,...,ab,
From the second property in Definition 2.2.5, the ideal is said to be homogeneous.

Definition 2.2.6. An integral manifold of an ideal is an immersion ¢ : N — M

such that 7*a=0for all a € I.

In general, we will look for integral manifolds that satisfy an independence (trans-
verse) condition. Given some linearly independent exact one-forms da?, ... dz! €
A (M) up to some [ < m, we look for an immersion of rank [ such that dz' A --- A

dz' # 0 on the tangent space of i(N), or equivalently, i*(dz' A --- A dz') # 0. This



allows us to parameterise our integral manifold by 2!, ..., !, which is more appropri-

l

ate for generating solutions of a PDE, where 2!, ..., 2! are its independent variables,

and the dependent variables can then be expressed in terms of these variables.

Definition 2.2.7. Anideal I is a differential ideal if the exterior derivative of every

member of [ is also in 1.

The closure of an ideal is its corresponding differential ideal generated by the
original generators of the ideal and, in addition, their exterior derivatives.
Using the fact that the exterior derivative and pull-back commute, we have the

following simple result:
Theorem 2.2.8. An ideal and its closure have the same integral manifolds.

Definition 2.2.9. A Pfaffian system is a submodule over C*°(M) generated by a
finite collection of linearly independent one-forms o', ..., a? € A'(M). We denote
the Pfaffian system by {a',...,a?}. The differential ideal generated the Pfaffian

system is (o, ... aP dat, ... doP).

Definition 2.2.10. A vector field Y € X(M) is called a Cauchy characteristic of
an ideal I if Y1I C I. Define A(I) as the submodule over C*°(M) of all Cauchy

characteristic vector fields of I.

The notation for A(I) as the Cauchy characteristic space of an ideal I is identical
to that used in Bryant et al. [23], and should not be confused with the same notation
given in, for example, Hartley et al. [68] to denote the associated space of an ideal.
In [68], the associated space is defined as the annihilating space (see Definition 2.3.5)
of the vector field distribution in Definition 2.2.10, and the vector field dual of the
associated space is called the Cauchy characteristic space only if I is a differential
ideal.

Using Definition 2.2.10, we have the following well-known theorem for differential

ideals:

Theorem 2.2.11. IfY, 7 € X(M) are Cauchy characteristic vector fields of a dif-
ferential ideal I so is their bracket [Y,Z].

Next, we introduce the idea of a Cartan system of an ideal:



Definition 2.2.12. The Cartan system of I, denoted C(I), is the submodule de-
fined by C(I) := {w € A" (M) : Xaw =0, forall X € A(I)}.

For a differential ideal generated by some Pfaffian system, we have the following

well-known result from Cartan [30]:

Theorem 2.2.13. Let I be a differential ideal generated by some finitely generated
Pfaffian system. If C(I) is generated by some s linearly independent one-forms
dyt, ... dv* € AY(M), then there exist generators for I in terms of ', ..., v* and
their differentials.

Note that for any ideal I not containing zero-forms, I N AY(M) C C(I).

2.3 Symmetries

We begin with two important definitions of a symmetry:

Definition 2.3.1. Let I C A(M) be an ideal. A vector field X € X(M) is a

symmetry (or isovector) of I if LxT C 1.

In order to show that a vector field X is a symmetry of an ideal I, it is enough
to show that the Lie derivative with respect to X of the generators of I are also in
the ideal.

In dealing with a specific differential form, say €2, we generally avoid introducing
the ideal generated by the form and say that a vector field X is a symmetry of € if
LxQ =0 mod €.

Definition 2.3.2. Let D C X(M) be a vector field distribution. A vector field
X € X(M) is a symmetry of D if LxD C D.

Once again, it is enough to look at simply the generators of a given vector field
distribution D when determining whether a vector field X is a symmetry of the
distribution.

We now present some results connecting symmetries, ideals and Cauchy charac-

teristic spaces, some of which are not mentioned in the general literature.



Theorem 2.3.3. Let I C A(M) be an ideal, and suppose that A(I) is not zero-
dimensional. If a vector field X € X(M) is a symmetry of I then X is a symmetry
of A(I).

Proof. Let X be a symmetry of the ideal I. Let Y € A(I) and 3 € I. Then from
rearranging the identity Lx(Y13) = [X,Y]1 8+ Y1 (Lx3), we obtain

(X, Y8 =Lx(YaB) = Yi(LxP).

Now the first term on the right hand side isin I since Y13 € [ and X is a symmetry
of I. The second term is also in [ since Lxf € I and Y € A(I). Hence [X,Y]. 5 € I.
Therefore [X,Y] € A(I). O

Definition 2.3.4. Let Q € A¥(M). Then its kernel (also known as characteristic
space [37]) is defined by ker(Q2) := {X € X(M) : X2Q = 0}.

Definition 2.3.5. Let {a?,...,a?} be some Pfaffian system generated by p linearly
independent one-forms in A'(M). Its annihilating space is the vector field distribu-
tion given by (Sp{a',...,aP})" :={X € X(M) : X1ai =0, forall 1<i< p}.
Similarly, given a vector field distribution Sp{Xj,..., X;—,} generated by some
X1,y Xim—p € X(M), its annihilating space is the submodule of one-forms over
C(M) denoted by (Sp{X1,..., Xpm )" :={a e AY(M): Xua =0, forall 1<

i <m—p}.

In Definition 2.3.5, we write Sp{a', ..., a”} to mean the submodule over C*(M)
of AY(M) generated by linearly independent o', ... a?.
For linearly independent «y, ..., a, € A*(M), it is not hard to show that

{(XeX(M): X1a"'=0, forall 1<i<p}=ker(a'A---AaP).
In terms of vector fields, we have the following result for Cauchy characteristics:

Theorem 2.3.6. Let al,...,a? € AY(M) be p linearly independent one-forms, and
define I := (a',... of,dot,... do?). With D := (Sp{at,...,aP})", a vector field
Y € D is a Cauchy characteristic of I if and only if [X,Y] € D for all X € D.

Proof. Let Y be a Cauchy characteristic vector field of I,i.e. Yia! = 0 and Y.dao' €
I for all 1 < i < p. This implies that for all i,

Lya'=Yida' € 1.



Hence Y is a symmetry of I. Let X € D, where D is defined in the theorem. Using
the property

Ly (X1o') =Y, XJa' + X1 (Lya'),

we know that the term on the left is zero and the second term on the right is also
zero. Hence for all i, [X,Y]1a’ =0, so that [X,Y] € D.
Conversely, let Y € D and [X,Y] € D for all X € D. We therefore have for all

Yia'=0=[X,Y]ld"
Now once again using the property
Ly (X1a') =[Y, X' + X1 (Lya'),

we have

X1 (Lya') =0. (2.8)
Since (2.8) must hold for all X € D, this means Ly a’ € I for all i. Since Yo' =0,

Lya'=Yida' €1,

so Y is a Cauchy characteristic vector field of I. O

At this point we will introduce the idea of a trivial symmetry. Given a differential
ideal I, we call all Cauchy characteristics of I trivial symmetries of I (this also means
that all trivial symmetries of some differential form are in its kernel). The reason

for this is contained in the next theorem.

Theorem 2.3.7. Let I be a differential ideal, and let Y be a Cauchy characteristic
vector field of I. Then'Y s a symmetry of I.

Proof. Let f €I and Y € A(I).
Lyf=d (Vi) +Yidp.

The first term on the right is in I because Y1 € I, and consequently d (Y1) € I,

since [ is a differential ideal. The second term is obviously in I. O



Similarly, given a vector field distribution D, a trivial symmetry of D is a sym-
metry of D that is also in D.

A fundamental distinction between trivial and non-trivial symmetries is as fol-
lows: Given a trivial symmetry, multiplying it by any non-constant function will
yield a trivial symmetry, however doing the same to a non-trivial symmetry will in
general not produce a non-trivial symmetry.

For a differential ideal generated by a Pfaffian system we have the following

extension of Theorem 2.3.7:

Theorem 2.3.8. Let I be a differential ideal generated by some finite collection of
linearly independent one-forms o', ..., aP € A'(M). A vector field X € X(M) is a
symmetry of I in the annihilating space D := (Sp{a', ..., Ozf”})L if and only if X is
a trivial symmetry (Cauchy characteristic vector field) of 1.

Proof. With X as a symmetry of I, if X o' = 0 for all 1 < i < p, then for each i
I5 Lxa' = Xyddo'.
The converse is also obvious using Theorem 2.3.7. U

Definition 2.3.9. A differential k-form is said to be decomposable (or simple) if it

can be written as the exterior product of £ one-forms.

Decomposability is a local property, and a k-form defined on M is decomposable
if and only if the dimension of the kernel is m — k [37].
Next, consider the following two simple theorems, the first of which is proved in

Sherring and Prince [110]:

Theorem 2.3.10. A vector field X € X(M) is a symmetry of a decomposable k-
form Q € A¥(M) if and only if X is a symmetry of ker(£2).

Theorem 2.3.11. Let Q € A¥(M) and I := (Q,dQ). If dQ = 0 mod Q, then
ker(Q2) = A(I).

Proof. First suppose ker(2) is not zero-dimensional, i.e. there exists a non-zero
vector field W € X(M) such that WiQ = 0. Now since d2 = 0 mod Q, W.1dQ =
Wi(aAQ) = (Wia)Sd for some o € A*(M). Therefore W € A(I).



Now suppose A(I) is not zero-dimensional. This means there exists a non-zero
vector field X € X(M) such that X1Q =0 and X1dQ = p€ for some p € C*°(M).
Hence from the first part, X € ker(Q2).

If ker(Q2) is zero-dimensional, then Y1 # 0 for all non-zero Y € X(M). This
means Y Q ¢ I, and hence Y ¢ A(I). Therefore A([) is zero-dimensional.

Finally, if A(I) is zero-dimensional, then Z1Q # 0 for all Z € X(M). Hence

ker(2) is zero-dimensional. O

Using the above two theorems, we obtain the following extension of Theo-
rem 2.3.10 to differential ideals thus giving us a condition under which the converse

of Theorem 2.3.3 holds true:

Theorem 2.3.12. Let I := (Q) for some some Q € AF(M) with dQ = 0 mod Q.
Moreover, let ) be decomposable on M and A(I) not zero-dimensional. A vector

field X € X(M) is a symmetry of I if and only if X is a symmetry of A(I).

Proof. From Theorem 2.3.11, dQ2 = 0 mod 2 implies that ker(€2) = A(I). Hence the
result follows from Theorem 2.3.10. O

Remark. If Q € A¥(M) with k = m, and I is the differential ideal generated by €
(note d2 = 0), then any non-zero vector field in X(M) is a symmetry of I. More-
over, A((€2)) is zero-dimensional, and therefore any non-zero vector field in X(M)

is also a symmetry of a zero-dimensional A({(2)).

2.4 Jet bundles and contact structures

2.4.1 Jet bundles

Comprehensive discussions on jet bundle theory may be found in Ehresmann [50],
Saunders [107] and Pommaret [103]. Simplified presentations can be found in, for
example, Pirani et al. [102], Rogers and Shadwick [105] and Steeb [116].
Define an open, simply connected neighbourhood U" C R" with coordinates
1 n

x,...,x" and an open, simply connected neighbourhood V" C R™ with coordi-

nates z',..., 2™ Let C*°(U", V™) be the space of smooth maps from U" into V™



determined by the n coordinate functions

2= fi(at, . 2",

where fi,..., fm € C®(U™).

Definition 2.4.1. If f,g € C°(U", V™) are defined at some p € U™, then f and ¢

are said to be r-equivalent at p if for each 7, where 1 < j < m,

fizt, 2™ = gt 2",

and for each k, where 1 < k <,

" f; % g;

Oxtt Qg2 - - Qrie Ozt dzi2 - - Owie’

where iy,...,1 € {1,...,m}.

Definition 2.4.2. The equivalence class of maps f € C>®(U", V™) at p € U™ that

are r-equivalent is called the r-jet, and is denoted by j; f.

Definition 2.4.3. We call the collection of all r-jets ranging over all p € U™ and
all f € C°(U™, V™) the r-jet bundle of maps from U™ to V™, and we denote it by
JT(U™, V™). Thus

J(U™, V™) = U o f.

peUn, feCe(Un,Vm)

Using the natural topology for the r-jet bundle, we have the following result:

Theorem 2.4.4.
dim J"(U", V™) =n+m - <n+r>.
-

Definition 2.4.5. The map
Tr_1 i Jpf — j;_l

is defined as the canonical projection map from J™ (U™, V™) to J"~/({U™, V™), where
[=0,1,...,r — 1. If r = 0, we identify J°(U™, V™) with U" x V™ and

T Jpf = (p, f(p))-



The point p is called the source of j; f, and the point f(p) is called the target of
Jpf-
Definition 2.4.6. The natural projection maps
a: J(UM V™) — U, g:Jumvm)y —vm,
are defined by

a(ipf)=p, B f) = fD),
and known as the source and target maps, respectively.

Next, we introduce the idea of a section of a jet bundle as a particular example

of a section of an arbitrary vector bundle:

Definition 2.4.7. A section of o is a map h : U" — J" (U™, V™) satistying
aoh =idyn,
where idy» is the identity map on U™.

Definition 2.4.8. The r-jet extension of f € C®(U"™, V™), denoted by j"f, is
defined by the section j"f : p+— j, f.

We have j°f as the graph of f.

2.4.2 Contact structures

We show in this section that contact structures are useful for classifying those sec-
tions of o (where « is the natural source projection map of the previous section)
that are r-jet extensions of smooth maps from U" to V™.

The r-jet bundle J"(U™, V™) is the appropriate framework for dealing with sys-
tems of PDEs of highest order r of m dependent variables and n independent vari-
ables. The bundle may be identified with the following coordinates:

e Coordinates for the independent variables: zt, ..., 2",

e Coordinates for the dependent variables: z!,..., 2™,



e First derivative coordinates: {z!,..., 2L}, ... {z™... 2"},

e Second derivative coordinates:

{zh, ce z%n}, {2%2, el z%n}, e Zns

{200, 20 {2z b 2

and so on until we reach the final component that contains all the r-th derivative

J ; for each 1 < 7 < m and all possible choices of 1 <

coordinates of the form Zi

i << <.

Next, for each 1 < j < m we define the following contact one-forms on J" (U™, V'™):

C7 = d2 — 2 da",
Joe_ . J iz
C; i=dz — 2 ,;,dx",
Cl. =dy . — 2. . dr'3,

1142 1112 110213

C! =dz] — 2 da',

i1 ilie_1 i1y
where we are implying summation on the repeated indexes, with 1 < 4y < ... <

1 < n.

Definition 2.4.9. The r-th order contact system, denoted by Q" (U™, V™), is defined
as the submodule over C*°(J" (U™, V™)) generated by the contact forms on the r-jet
bundle J (U™, V™), i.e.

117 i1i2)? 11 lp—1

(U, VM) = {Cf,o?' o NN :1§jgm,1gilg---§¢,gn}.

It is easy to see that say, for example, we are on the 1-jet bundle J'(U", V™)

and given some section g : U" — J(U", V™) denoted by

g:r—> (:L‘l, conx" gt @), g™ (@), 91 () (), g7 (@), ,g,’;”(a:)) ,

where = (z',...,2"), then ¢g*C? = 0 for each j if and only if

;_ o
gi_axi7



for each 4, which holds if and only if g = j'f, where f := Bog.
This result can be generalised to the r-jet bundle, as summarised in Theorem

3.2 in [23] and Theorem 4.24 in [99]. This is stated in the following theorem:

Theorem 2.4.10. A section g : U™ — J" (U™, V™) is an r-jet, i.e. g = j"(f o g)
iof and only if

GO, V™) = 0.

A simple coordinate free proof of Theorem 2.4.10 can be found in Gardner and
Shadwick [56]. We also have the following corollary to Theorem 2.4.10, as found in
Theorem 2.3.1 in Stormark [120]:

Corollary 2.4.11. Let® : U™ — J" (U™, V™) be an immersion such that ®*Q" (U™,
V™) = 0. Then ®*(dz' A --- Adz™) # 0 if and only if the image of ® is the image

of some r-jet.

Note in Corollary 2.4.11 that the right hand side means ®(U") = j" f(U™) for
some smooth f : U™ — V™. If ® is a section, then not only is the transverse

condition automatically satisfied, but more importantly, Theorem 2.4.10 means & =

J"f.

2.5 Differential equations on jet bundles

Following [99], consider a general k-th order system of p differential equations

F,,(xi,uauq U Uy ):O, v=1,...,p, (2.9)

> Pipr Pigig) [t SRITIM

™ and n independent variables x!,...,2". The

in m dependent variables u!,..., u
system of equations in (2.9) describes a locus of J*(U", V™). It is assumed that the
equations {F, =0:v =1,...,p} are of rank p on J*(U", V™), so the partial differ-
ential equations describe a regular submanifold of J*(U™, V™). We can parameterise

the submanifold by a rank p immersion (which may or may not be one-to-one)
By X —s JEU, V™).

Here we use the subscript F' to indicate a single or system of PDEs of the form in
(2.9).

From Bryant et al. [23], we have the following result:



Theorem 2.5.1. A map f:U" — V™ is a solution map of the PDEs in (2.9) if

and only if
for all p e U™.

In looking for a solution of the system of PDEs in (2.9), we search for a section
that annihilates the submodule of contact forms Q*(U™, V™) and maps into ®x(X).
Hence by Theorems 2.4.10 and 2.5.1, this section is a k-jet of some solution map of
the PDEs in (2.9).

In terms of differential ideals, we investigate two approaches for finding solution
maps of a given system of PDEs. The first is based on Pfaffian systems, where the
contact forms are pulled-back onto the regular submanifold of J*(U™, V™) described
by the jet bundle coordinate representation of the PDEs, while the second uses
Edelen’s fundamental ideals [43, 45, 47, 49], where the information specific to the
PDE:s is encoded in some differential n-forms generating the ideal. We now proceed

to discuss both methods.

2.5.1 Pfaffian system approach

Recent discussions of this approach can be found in work by, for example, Hartley
et al. [67] and Vassiliou [124].
Suppose we are given the system of PDEs in (2.9) describing a regular subman-

ifold of J*(U™, V™) and some corresponding parameterising immersion
Sp X — JHU™, V™).
We pull-back the module of contact forms Q%(U™, V™) onto ¥, and denote this by
QRU™, V™) = R0 (U™, V™).
Suppose we define

QE(U”,V’")::{C? :1§j§m,1§i1<---§in,1§n},

containing only the highest order contact forms. It is easy to show that the exte-

rior derivative of all the contact forms less than s-th order in Q"(U™, V™) can be



expressed as a linear combination of the contact forms in Q*(U™, V™). This result

is given in the following lemma:
Lemma 2.5.2. [49]
QU™ V™), d Q5 (U™, V™)) = (@ (U™, V™), d (QF(U", V™).
From this lemma it is obvious that
(QEU™, V™), d(QEU", V™)) = (QEU", V™), d (QRU", V™).
We therefore define the differential ideal
Ip = QU™ V™), d (U (U™, V),

on Y. The task now becomes that of finding an n-dimensional integral manifold of

Ip, i.e. an immersion
v U" — %,

on which the transverse condition holds. Then from Corollary 2.4.11 and then
Theorem 2.5.1, the image of the immersion given by & o ¥ is equal to the image

of the k-jet of some local solution of the system of PDEs in (2.9).

2.5.2 Fundamental ideal representation

Given the system of PDEs in (2.9), we define a differential ideal on J*(U", V™) in

the following way:
Ip = (QYU", V™), d (Q°(U", V™), Fide" A --- Adz™, ... Fydz' A--- Ada™).

The ideal Iy is referred to by Edelen as the fundamental ideal corresponding to
the system of PDEs. We have not included each d (F,dz! A - - - A dz™) as generators
for the differential ideal because of the following result which can also be found

in [47, 49]:
Lemma 2.5.3. For eachv=1,...,p,

d (F,,da:l A-e- A dx") =0 mod Q*(U",V™),d (QE(U”, Vm)) )



Once again, if we can find an n-dimensional integral manifold of I, i.e. an

immersion
o U" — J“(U”,Vm),

on which the transverse condition ®*(dz' A --- A dx™) # 0 holds, then since for each

v,
0= (F,dz' A---Ada") = (D°F,) @* (dz' A -+ Ada™),
the transverse condition implies that
O*F, = 0.

Now once again from Corollary 2.4.11 and then Theorem 2.5.1, ®(U™) is equal to
the image of the k-jet of some solution map of the system of PDEs in (2.9).

The fundamental ideal representation differs from the Pfaffian system approach
in that it does not look to find n-dimensional integral manifolds of a differential
ideal defined on some locus of the jet bundle J*(U™, V™) described by the PDEs,
but instead looks for integral manifolds of a differential ideal that is defined on the
whole jet bundle. The price to be paid is that the differential ideal is no longer

generated solely by one-forms and their exterior derivatives, but includes p n-forms.



Chapter 3

Symmetry in differential forms

3.1 Introduction

This chapter begins with some preliminary results on symmetries and Frobenius inte-
grable distributions. Based on work by Lie [90] and Cartan [29, 30], Theorem 3.2.13
reproduces Proposition 4.7 in Sherring and Prince [110] for integrating Frobenius
integrable distributions using solvable symmetry structures. While this result can
also be found in Basarab-Horwath [16] using similar notation, it is an extension of
Theorem 3.2.13 given in Theorem 3.2.14 that will prove to be more useful in later
chapters for dealing with partial differential equations. Theorem 3.2.14 represents
the first of our major new results, and shows how solvable symmetry structures can
be used to give simplified expressions for a certain class of decomposable differential
forms. We then consider in this chapter some types of solvable symmetry structures
that simplify the conclusion of Theorem 3.2.14. Following this, we examine some
necessary conditions for a given differential form to be a candidate for the theorem.
Finally, we apply the theorem to finding local coordinates for the Pfaff problem and
Darboux’s theorem.

It is assumed throughout this chapter that our expressions apply locally on some
open neighbourhood U™ C R", with coordinates z',...,2" € C*°(U"). One fur-
ther assumption that we make on U" is that it be convex. This allows us to use

Lemma 2.2.2 on the whole of U™.



3.2 The Frobenius theorem and symmetry

The highlights of this section are firstly a review of the well-known Frobenius the-
orem in Theorem 3.2.4. We then introduce the definition of a solvable symmetry
structure in Definition 3.2.10, following which, we present in Theorem 3.2.13 an
extension of Lie’s symmetry approach to the integration of Frobenius integral dis-
tributions as found in Basarab-Horwath [16] and Sherring and Prince [110]. In The-
orem 3.2.14 which follows, we give a differential form equivalent of Theorem 3.2.13
that we use in later chapters in conjunction with Corollary 3.2.12. Finally, in The-
orem 3.2.16 and its generalisation in Theorem 3.2.17, we examine a certain type of
solvable symmetry structures that can simplify the conclusion of Theorem 3.2.14.

We begin with three supporting results for the Frobenius theorem:

Lemma 3.2.1. [37] Let Q € A»™(U") for some m < n — 1. Then ker(2) can be
at most m-dimensional. Moreover, ker(Q) is precisely m-dimensional if and only if

Q is decomposable.
From this we have the following lemma also found in Sherring and Prince [110]:

Lemma 3.2.2. Let Q € A™(U™) for some m > 1 be decomposable, and let X €
X(U™) such that X1Q #0 (i.e. XaQ #0 at allp € U"). Then X1 is decompos-
able.

It can be shown that the converse of Lemma 3.2.2 is also true, however we will
not make use of this fact.

As a corollary of Lemma 3.2.2, we have the following:

Corollary 3.2.3. Let D := Sp{Y1,..., Y} be some m-dimensional distribution in
X(U™), wherem <n—1. IfQ =Yy ...aYa(dz' A---Adz™) € A"=™(U™), then Q
15 decomposable and equal to the exterior product of some n—m linearly independent

generators of D*.

Proof. With D and 2 defined as in the theorem, let Y € X(U™) be any non-zero
vector field in D. Then from the definition of Q, Y1 = 0. Hence ker(2) is at least
m-dimensional. But from Lemma 3.2.1, since €2 is an (n — m)-form, its kernel can

not be greater than m-dimensional, and therefore €2 is decomposable.



Now we can write Q = ' A --- A 0"~™ for some linearly independent one-forms
0',...,0"~™ € AY(U™). Since for each 1 < i < m, Y1 = 0, we then have that for

each 1 <j<n—m, Y16/ =0. Hence 0, ..., 0" ™ generate D+. O

Theorem 3.2.4. (Frobenius) Let D be an m-dimensional distribution generated
by the vector fields Yi,...,Y,, € X(U"), where m < n — 1. Define D+ to be the
submodule of all one-forms that annihilate D. Let Q := Y1 ...V, a(dzt A--- A

dx™) € A"~™(U™). Then D has m-dimensional integral submanifolds on U™ if and

only if either of the following two equivalent conditions are true:
1. For oll X,Y € D, [X,Y] € D,
2. Forall® € D', dO A Q2 = 0.

For a proof of Theorem 3.2.4, see for example Bryant et al. [23], Chern and
Wolfson [33], Hermann [74] or Warner [132].

We say that a distribution D is Frobenius integrable (or generates a foliation
of U™) if the first condition in the Frobenius theorem holds. This theorem means
that D generates an m-dimensional foliation of U™ whose leaves are described by

some set of n — m functions ¥ = ¢!, ..., "™ = "™

of rank n — m, where
Yooy ™ e C°(U™) and ¢, ..., "™ are some appropriate constant functions.
Using the previous lemma, we have the following corollary to the Frobenius

theorem:

Corollary 3.2.5. Let D be an m-dimensional distribution generated by the vector
fields Yy, ..., Y, € X(U"), wherem < n—1. Let Q:= Y1 ...V, 1 (dz" A+ - -Adz") €
AM™(U™). For all € D+, dO AQ =0 (i.e. D is Frobenius integrable) if and only
of dQ2 =0 mod Q.

Proof. With Q defined as in the corollary, Corollary 3.2.3 implies Q = 0 A---AQ"™
for some linearly independent #*,...,0" ™ € AY(U") that generate D+. Now for
each 1 < i < n — m, the Frobenius condition df® A Q = 0 is equivalent to the
condition that df* = 0 mod 6*,...,6" ™. Hence

dQ=d (0" A--- AT,
=0 mod (.



To prove the converse, suppose d€2 = 0 mod 2. Now for all 7,
A" ANQ=d (0" ANQ) + 0" AdQ. (3.1)
Since °AQ = 0 and Q is closed modulo itself, we find from (3.1) that d0*AQ = 0. O

For any decomposable Q € A™(U™) such that dQ2 = 0 mod €2, the above corollary
to the Frobenius theorem essentially tells us that Q = 7%dy! A --- A dy™ for some
70, .., y™ e C°(U™), where 7', ..., 7™ are functionally independent.

Leaving the Frobenius theorem, suppose we are given some decomposable €2 with
d) = 0 mod €2. In what follows, we intend to eventually show in Corollary 3.2.12
that there is a clear relationship between a solvable structure of symmetries for
A({€2)) and a solvable structure of symmetries for Q (though we are yet to properly
define a solvable structure of symmetries in both instances). We begin with the

following obvious result that uses Theorems 2.2.11 and 2.3.11:

Lemma 3.2.6. Let Q2 € A™(U™) such that dQ2 = 0 mod Q. Then ker(Q2) is Frobenius

integrable.
Using Lemma 3.2.2 we obtain the following theorem:

Theorem 3.2.7. Let Q € A"™(U") for some m > 1 be decomposable, and let X €
X(U™) with the property X1Q # 0. Then

X1Q=¢"A---Nop™ L, (3.2)

for some linearly independent one-forms ¢',...,¢™' € AY(U"), and there exists

6 € AY(U") such that
Q=0N"N--- N,

Proof. Let Q € A™(U™) be decomposable, and let X € X(U") with X1 # 0. From
Lemma 3.2.2,

X1Q=¢"A---No™ 1 £0,

for some linearly independent one-forms ¢',...,¢™ " € AY(U™). Since X1 XJQ

= 0, we have that X1¢’ = 0 for all 1 < i < m — 1. We can always complete



{¢',...,¢™ 1} to a basis by adding a further n — m + 1 linearly independent one-
forms ¢, ™, ..., ¢" ! such that X ¢’ =0forall 1 <i<n—1and X1¢ =1. If we
choose Y1,...,Y,_; € X(U") so that {X,Y},...,Y,_1} is dual to {9, ¢, ..., ¢" 1},
then from (3.2), Y;0 X1Q =0 for all m < j <n — 1. Hence (with sum)

Q=QX,Y1,....Y0 DOAS A A"+ Q(Viy, .., Vi )P Ao A GPm,

= QAP N AT QY Y )M A A B,

where 1 < k; < -+ < kp, < n—1. Since Q is decomposable, we have that (with

sum only on p)
Q=¢gA" A A" '+ QY. Y, V) Ao A AP,
with m < p <n — 1. Hence
Q= (P + A"+ -+ A" ) AP A AP
for some A, ..., Aoy € C°(U™). O
By an obvious iteration we have the following corollary to Theorem 3.2.7:

Corollary 3.2.8. Let Q2 € A™(U™) be decomposable. Let X, ..., X, € X(U™) up to
some p < m such that X11...0X,0Q #0. Then X1 ... 0X,0Q =¢" A--- N p™7P
for some linearly independent ¢', ..., ¢™ P € AY(U™), and there exist 0',... 0P €
AY(U™) such that

Q=0 AN AO"ANS N ANPp™P,

XpuQ=0"""AN e NG AG A AP,

Xot oo d X0 Q=0" A" A AN g™ P,

Theorem 3.2.9. Let Q2 € A™(U™) be decomposable, and let X € X(U™) such that
XiQ #0. Then ker(X19Q) = ker(Q) & Sp{X}.

Proof. 1t is clear that ker(X1Q) D ker(€2). Since X € ker(X1€), we therefore have

ker(X1Q) D ker(Q) @ Sp{X}. (3.3)



By assumption 2 is decomposable, so Lemma 3.2.1 implies ker(€2) has maximal
dimension n—m. Lemma 3.2.2 now means X is also decomposable, and moreover
Lemma 3.2.1 implies ker(X1{2) has maximal dimensional n —m + 1. Hence X ¢
ker(£2) means ker(€2) & Sp{X} has dimension n —m + 1. Thus result now follows
from (3.3). O

Before we present the next theorem, we require the following central definition:

Definition 3.2.10. Let D be a distribution in X(U™). Then a set of p linearly
independent vector fields X,..., X, € X(U") form a solvable symmetry structure

for D if

EXpD C D,

Lx, .. (Sp{Xp} © D) C Sp{X,} & D,

Lx, (Sp{Xa,...,X,}® D) C Sp{Xs,...,X,} & D.

Given any Frobenius integrable distribution D, a solvable structure may be found
using the Lie symmetry determination software package DIMSYM. This is done in
stages by first finding a symmetry X, of D, then finding a symmetry X, ; of D
spanned with X, and so on until X; is found. For each stage we input the necessary
Lie bracket relations, and let DIMSYM solve the linear determining equations. See
Appendix A for further details. Note that while X, is a genuine symmetry of D, X;
is a much weaker symmetry: X, is a symmetry of D, modulo Xy, ..., X,,. Moreover,
in dealing with PDEs on some x-jet bundle J*(U", V™), X1, ..., X, are quite general
symmetries and not necessarily, for example, prolongations of Lie point, contact or
Lie-Bécklund symmetries. The coefficient of each basis vector in each X3,..., X, is

allowed to depend on any of the coordinates of J*(U™, V™).

Theorem 3.2.11. Let Q € A™(U™) be decomposable and dQ2 = 0 mod . Further,
let X € X(U™) such that A((Q)) & Sp{X} is Frobenius integrable and X182 # 0.
Then d(X1Q) =0 mod XiQ.

Proof. Let Q € A™(U™). Since Q decomposable and X1 # 0, from Theorem 3.2.7



we may write

XiQ=¢"A---ANp™ L,
Q=N A AP

for some linearly independent one-forms ¢, ¢',...,¢™ 1 € AY(U™). Since dQ = 0
mod €2, Theorem 2.3.11 implies A((Q2)) = ker(€2). Now A((2)) & Sp{X} is Frobe-
nius integrable, so we have from Theorem 3.2.9 that ker(X.) is also Frobenius

integrable. Hence from the Frobenius theorem,
(X1Q) Ade' =0, (3.4)
for all 1 <7< m—1. Since (X1Q)A¢' = 0 for each i, we therefore have from (3.4),
0=d (X2 A¢") =d(X1Q) A ¢
Hence ¢',...,¢™ " are m — 1 linearly independent factors of d(X1). This means

dX1Q) =BAS A---Ng™
:6/\(XJQ)7

for some 8 € AY(U™). O
We have the following corollary to Theorem 3.2.11:

Corollary 3.2.12. Let Q € A™(U") such that Q is decomposable and dQ) = 0
mod 2, and suppose there exist Xq,...,X, € X(U") up to some p < m such that
Xyo o aXpuQ#0. If A((Q2)) @ Sp{X,} is a Frobenius integrable distribution, and
forall1 <i<p, A(Q2))® Sp{Xi,...,X,} is also Frobenius integrable, then

d(Xp1 Q) =0 mod X1,

d(X,-10X,09Q) =0 mod X, 11X,19Q,

d(X11 ... 0XpuQ) =0 mod Xy ...0X,00.

Moreover, {Xy,...,X,} form a solvable symmetry structure for A((2)) if and only



Lx, 0=\,

£Xp71 (XpJ Q) = Ap—l(XpJ Q), (3 5)

Lx, (Xoa ... 0Xp00) = A (Xoa ... 0X,0Q),

for some Ay, ..., A\, € C®°(U").

The second part of Corollary 3.2.12 comes from repeatedly using Lemma 3.2.2
followed by Theorems 2.3.10 and 2.3.11, and is central to our study of PDEs in
the chapters remaining since it provides a direct connection between a solvable
symmetry structure for ker(Q2) = A({Q2)) and one for 2 (the equations in (3.5) will
be frequently referred to as a solvable symmetry structure for 2). Hence, by using
DIMSYM to find a solvable symmetry structure for the former, we are able to establish
a solvable symmetry structure for the latter.

The papers by Basarab-Horwath [16] and Sherring and Prince [110] (as well as
those in [11, 40, 42, 65]) extend Lie’s approach to integrating a Frobenius integrable
distribution via a solvable structure of symmetries. In these papers, a Frobenius
integrable distribution is given first. The one-form annihilating space is then gener-
ated, whose exterior product of generators is a decomposable differential form with
a Frobenius integrable kernel. In our work we start with a decomposable m-form €2
with a Frobenius integrable kernel. This is achieved by also demanding that d$2 = 0
mod 2. Hence by Theorems 2.2.11 and 2.3.11 respectively, the Cauchy characteris-
tic space of the differential ideal generated by €2 is Frobenius integrable and equal
to ker(Q2). From these results, we show below in Theorem 3.2.14 how a solvable
structure of symmetries for 2 (as in Corollary 3.2.12) can assist in generating a
simplified expression for {2. Theorem 3.2.14 is the key result of this chapter, and is
essentially an extension of Proposition 4.7 in Sherring and Prince [110] or Proposi-
tion 3 in Basarab-Horwath [16] that will play a pivotal role in our study of PDEs in
later chapters.

First we reproduce Proposition 4.7 in [110] below:

Theorem 3.2.13. [110] Let D := Sp{Y1,...,Y,} C X(U") be a g-dimensional
Frobenius integrable vector field distribution. Define Q := Y1 ... a0Ya(dzt A+ A



dz™) € A" UU™), and suppose there exists a solvable structure of linearly inde-
pendent symmetries Xi,...,X,—, € X(U") such that X,_, is a non-trivial sym-
metry of D, and that for all 1 < 1 < n —q, X; is a non-trivial symmetry of
D& Sp{Xiy1,..., Xn_yg}. Foralll <i<n-—q, definew' by

o X oo X X o0 X a0 Q
XXy oo X Xip1d o 0 X g0 Q

Then {w',...,w" 9} is dual to {X1,..., X, 4}, and for all w* up to i =n —q,

w' =dy',
w? = dy? = X, ()dy,

w? = dy’ — Xy (v")(dy* — Xa(y*)dy') — X (7*)dy',

n—q—1

W= dy" " moddy', ..., dy ,

for some functionally independent v*,..., "9 € C*°(U™). Moreover, on U", the
submanifolds described by D generate a q-dimensional foliation of U™ whose leaves

have v, ..., "7 constant.

Using Theorems 2.2.11 and 2.3.11, we can modify Theorem 3.2.13 in the following

way:

Theorem 3.2.14. Let Q@ € A™(U™) such that Q is decomposable and dQ2 = 0 mod
Q. Suppose that there exists a solvable structure of linearly independent symmetries,
X, ..., X € X(U™) such that X, is a non-trivial symmetry of A((?)), and that
for all 1 < i <m, X; is a non-trivial symmetry of A((Q)) ® Sp{Xi1,..., Xm}. For
all 1 < i < m, define w® by

Xig oo X 0 X 0 X000

W' 1= XX oo X o X0 X0 (3.6)
Then {w',...,w™} is dual to {Xy,...,X,,}, and for all w* up to i =m,
w' =dy',
WP = dyt = X (%) dy,
W' =dy* — Xo(7))(dy” = X1 (77)dy") — X1 (7', (3.7)

mod dv', ..., dy" !,

m —

m



for some functionally independent ~',...,v™ € C>*(U"). Finally, define 7° :=
Q(Xy,..., Xn). Then Q =A%y A+ A dy™.

Proof. Since € is decomposable, we may write Q = ' A --- A 0™ for some lin-
early independent 0!, ..., 0™ € AY(U™). Now ker(Q) = Sp{Y1,...,Y, .} for some
Yi,...,Yoom € X(U™). From Theorems 2.2.11 and 2.3.11, we have that A((2)) =
ker(€2) is Frobenius integrable. Applying Theorem 3.2.13 with the linearly inde-
pendent symmetries X, ..., X,, € X(U") for A((Q2)) given in Theorem 3.2.14, we
obtain that

{Ka"')Yn—maXla"'aXm}
spans X(U™) and is dual to
{¢1,...,¢”_m,w1,...,wm},

for some linearly independent @', ..., ¢" ™ € AL (U™) with w!, ..., w™ defined as in

(3.6). Since Y;uQ =0 for all 1 < j < n —m, it follows that
Q=Q(X1,..., X)W Ao AW™, (3.8)
Now Theorem 3.2.13 implies the equations in (3.7), so (3.8) simplifies to give
Q=Q(Xy,..., Xp)dy' Ao Ady™.
U

Remark 1. The fact that the symmetries in Theorem 3.2.14 are non-trivial means

that the denominator is non-zero in each of the definitions for w’.

Remark 2. Using Corollary 3.2.12, the solvable symmetry structure condition in

Theorem 3.2.14 is equivalent to having

Ly Q= A9,
Lx, _ (XpiQ) = A1 (X1 Q),

Lx, (Xog . o0 XpmaQ) =M (Xou ... 0 X1Q),



for some Ay, ...\, € C°(U").

We assume throughout this thesis that in practice, if we are given any Frobenius
integrable vector field distribution in Theorem 3.2.13 or decomposable and closed
modulo itself differential form in Theorem 3.2.14, we are always able to use DIMSYM to
find a solvable structure of non-trivial symmetries. As mentioned earlier, Appendix
A contains full discussion of the required computer input code, including examples,
as well as some comment on various technical matters.

In later sections we will illustrate Theorem 3.2.14 with some applications. For
now though, we have the following consequence of Theorem 3.2.14 regarding its

second remark:

Theorem 3.2.15. Given some decomposable Q@ € A™(U™) with dQ2 = 0 mod 2, and
a solvable structure Xy,..., X, € X(U™) for A((Q?)) as in Theorem 3.2.1/4, then

L, Q= { X d(In|Q(X1, ..., X))}
Lo (Xps Q) = {X i d(In QX1 -, X)) H X ),

Lx, (Xoy .. 0 X000 Q) ={Xpd(In |QX, ..., X)) HXos .0 X0 Q).

Proof. First we will show that for all 1 < i < m, dw! A--+ Aw’) = 0. From
Theorem 3.2.14 it is obvious that dw!' = 0 and for each 1 < i < m that dw® = 0 mod

wh, ..., wt Thus for all 4 > 1,
dw' A+ Aw') =0. (3.9)
From Theorem 3.2.14 once more, it is clear that
Q=QXy,.., Xp)w A AW™ (3.10)

Hence

d<Q(X1,.g.2.,Xm)> =0. (3.11)

Using that {w',...,w™} is dual to {X,...,X,,} and contracting (3.10) with X,,,

we obtain

X190
(—1)m719(X1, Ce ,Xm) '

WA AT =




From repeating this contraction with X,, ; and so on down to X;, we obtain for all
1<:<m-—1,

Xiga o0 X0 Q

1 . e i —
G A S e (X, X

Hence from (3.9),

Xiv1d oo 0 X1 Q B

Equation (3.11) implies
dQ =d(In|Q(X1,..., Xn)|) AQ, (3.13)
while equation (3.12) means
d(Xip1d oo 0 X Q) =d(In |Q(Xq, ..., X)) DA (Xig1d -0 X0 Q) (3.14)
forall 1 <¢<m —1. Now

Lx, Q= Xp1dQ+d(X,19),
— X {d (0 [QX 1, X)) A QY +d (0 [QX -, X)) A (X Q).
= { X d(In |Q(X7, ..., X0n)]) 2,

where in the second line we have inserted equations (3.13) and (3.14). To obtain
the third line we used the identity X1 (w A o) = (XJw) Ao+ (—=1)%9@w A (X0)
for differential forms o, w.
Finally, let 1 <7 <m — 1. Then in a similar fashion to before, we get
Lx,(Xiz10 .. 20X Q) =X {d(In|Q(X1, ..., X)) A (Xig1o .. 0 X000Q)}
+d(In|Q(X, ..., X)) DA (X 0 X0 Q)

which simplifies to
£Xi (Xi—i—lJ .. .JXmJ Q) = {XZJ d(ln |Q(X1, N ,Xm)|)}(Xi+1J .. .JXmJ Q)
U

In general, each w?, ..., w™ in Theorem 3.2.14 (or Theorem 3.2.13) is not ex-
act. Our final results for this section examine some conditions on the symmetries

Xi,..., X, in Theorem 3.2.14 that force at least one of w?,..., w™ to be exact.



Theorem 3.2.16. Let Q € A™(U"™) for some m > 3 such that 2 is decomposable
and dQ) = 0 mod 2. Let there exist a solvable structure of linearly independent sym-
metries X3, ..., Xm € X(U™) such that X, is a non-trivial symmetry of A((Q2)), and
that for all 3 <i < m, X; is a non-trivial symmetry of A(()) ® Sp{Xis1,..., X}
Also, let there exist two linearly independent vector fields X1, Xo € X(U™) that are
non-trivial symmetries of A((2)) ® Sp{Xs, ..., X} such that

X1, X2] =0 mod A((Q)) @ Sp{Xs, ..., Xm}. (3.15)

For all 1 <i <m, define w' by

i Xig oo X 0 X 0 X000

Yo X X o0 X0 X0 X0

Then {w',...,w™} is dual to {X1,...,X\n}, and for all w* up to i =m,
wl — d’)/l,
w? = dvy?,
W' =dy’ = Xa(")dy* = X1 (v*)dy'

w! =dv' = X5(v") (7’ — Xo(7P)dy? — X1 (%) dy') — Xo(vH)dy® — X (vh)dy ',

m — m—1

w™ =dy™ moddy',...,dy"!,

for some functionally independent v',...,v™ € C>®(U"). Finally, define v° :=
Q(Xy,..., Xn). Then Q =A%y A+ A dy™.

Proof. We begin by showing that X; is a non-trivial symmetry of the distribu-
tion A((Q)) & Sp{Xs,...,X,,}. Since X is a non-trivial symmetry of A((2)) &
Sp{Xs,..., X}, we have from Corollary 3.2.12 that

Lx, (Xzo .o 0 X Q) =A(Xau ... 0 X1 Q),
for some A € C*°(U™). Using this fact and equation (3.15) then gives

Lx, (Xos . o0 X Q) =[X1, X0t Xau .. X0t Q4+ Xoa Ly, (X310 .. .0 X0 Q),
=\ (Xoa...0X,,10).



From Theorem 3.2.12, our symmetries at this point satisfy Theorem 3.2.14. There-

fore

w' = dy',
w? = dy? = X, ("),

W’ =dy’ = Xo(V)(dy® = Xa(v*)dy') — Xa (7)),

m—1

mod dv',...,dy" !,

m —

W™ =dy

m

for some functionally independent ~',..., 7™ € C°°(U™). To show that X;(7?) = 0,

we must show that

XXz ...0X,,,0Q
do =d =0. 3.16
w <X2JX1JX3J...JXmJQ) ( )

This can be proved by observing that since ker(X;1X31...X,,1Q) = A((Q)) @
Sp{X1, X3,...,X,,} is a Frobenius integral distribution, we therefore have

d(X11X30 ... Xpa ) =0 mod Xp1X31...0X,00.

Then to show that X, is a non-trivial symmetry of A((Q)) & Sp{Xy, X;,..., X}

we use the formula

Lx, (XiaX30 ... 0X519Q) =[Xo, Xqu X300 X0 Q

+ X1uLx, (X3 ... 0 X1 Q).

Now using equation (3.15) and that X5 is a non-trivial symmetry of X3 ... X1 Q,
we get the desired result. Equation (3.16) can then be deduced from simple algebraic
manipulation, or by applying Theorem 3.2.14. O

Remark. While Theorem 3.2.16 assumes m > 3, it is clear that it still holds when
m = 2. In this situation, there is no need for symmetries other than X;, Xy, with
(3.15) reducing to [X;, X5] = 0 mod A((Q)). Further, the expressions for w’ in the

conclusion of the theorem vanish for 7 > 2.

We can generalise Theorem 3.2.16 in the following way:



Theorem 3.2.17. Let Q) € A™(U™) for somem > 3, and suppose 2 is decomposable
with dS2 = 0 mod ). For some 1 <1 < m, let there exist a solvable structure of m—1
linearly independent symmetries X, 11, ..., Xy, € X(U™) such that X, is a non-trivial
symmetry of A((Q)), and that for all 1 +1 < i < m, X; is a non-trivial symmetry
A((D) @ Sp{Xit1,-.., Xn}. Also, let there exist | linearly independent vector fields
Xi,...,X; € X(U") that are non-trivial symmetries of A((Q)) & Sp{Xi41,..., Xm}
such that

[X,, X,] =0 mod A((Q2)) @ Sp{Xit1, ..., Xm), (3.17)

foralll <u<v <l Foralll<i<m, definew' by

i Xig oo X 0 X 0 X000

W XX oo X0 X0 X0

Then {w',...,w™} is dual to {Xy,...,X,,}, and for all w* up toi =1,

with for each i greater than | up to i = m,
Wt = dy = Xy (T dy — X (YT = - = X (7Y
Wwt? = dy!? — X (71?) (' = X(V Y dy = Xos (VY -
—X (Y dyt) = X(Y)dy! — - = X (),

m — m—1

W™ =dy™ moddy',...,dy" ",

for some functionally independent ~',..., 4™ € C>*(U"). Finally, define 7° :=
QXy,..., X0n). Then Q =A%y A+ A dy™.

Proof. (Outline) The proof is similar to that of Theorem 3.2.16, and essentially
involves repeating the proof of Theorem 3.2.16 [ —1 more times. To do this, from the

fact that 2 is decomposable and df2 = 0 mod €2, we can then apply Corollary 3.2.12



to obtain

Lx, = A\nfl,
Lx, (Xpm1Q)=Ap1 (X2 Q),

Lxy (Xigod o0 Xop1 Q) = Mgy (Xpgon -0 X0 Q2),
and also that

Lx, (Xip13 X191 o0 Xyt Q) = N (X110 Xpgod -0 Xt Q)

Lx, (X100 X000 X0 Q) = Ny (X0 Xopo o0 Xa Q)

Lx, (Xpp10 X000 Xt Q) = N (X0 Xpgou -0 Xu Q)
for some Ay, ..., Ay, € C°(U™). Next, using (3.17), it is easy to show that

Lx, 2=\,
Lx, (Xm1Q) = A1 (Xa Q),

Lx,(Xoa ... 0X010) =M (Xog .. .0 X,1Q).

Then we may apply Theorem 3.2.14 to obtain a set of one-forms {w', ..., w™} dual

to {X1,..., X}, and that for all w’ up to i = m,

w' =dy',
w? = dy? = X, ("),

W' =dy’ = Xa(y")(dy* = Xa(v*)dy") = Xa(v*)dy,

w™ =dy™ moddy', ..., dy™",

for some functionally independent ~',...,7™ € C*°(U"). Now since we know al-

ready that dw! = 0, we only have to show that for each 1 < j <,

(3.18)

Xog oo X0 X000 X000 ) 0

dw! = d
w <XjJX1J et X X 0 X1 Q



The original symmetry relations for Xi,..., X, tell us that for each j, A((Q)) @
Sp{Xi,..., X;_1,Xj41,..., X} is Frobenius integrable, so

d(Xqg .. 20X X0 ..0X,,0Q)

=0 mod Xyu... 0X;_ X0 0 X QL

Finally, using (3.17), and in similar fashion to the end of the proof of Theorem 3.2.16,
we get that for each j, X is a non-trivial symmetry of X1 ... 0X,; 10 X000 ... 20X,

(2. Simple algebraic manipulation then yields (3.18). O

Remark. As in Theorem 3.2.16, it is easy to see that Theorem 3.2.17 holds for all
m > 2; however, here we can also say that the theorem holds if [ = m, so (3.17)
becomes [X,, X,] = 0 mod A((2)), for all 1 < u < v < [. In this situation, all

w' become exact, which is in accordance with the corollary to Proposition 2 given

in [16].

The next section gives a simple application of some of the ideas presented above.

3.3 Differential forms in A"(R""!)

In this section we show that, provided we have enough symmetries, any differential
form in A™(R™!) can be expressed locally in terms of m functionally independent
functions as in the conclusion of Theorem 3.2.14. Further details will be given in

Theorem 3.3.5 below, but first, consider the following result:

Lemma 3.3.1. Let Q € A™(U™) for some m < n be non-zero, where U™ is defined
as in previous sections (though the requirement that U™ be convex is not necessary

here). Suppose € is of the form
Q= ANPNA-- AOT g AP A AT ey O AP A AT,

for some linearly independent 6*,... 0™ € AY({U™) and v1,...,Ymi1 € C®(U").

Then ) is decomposable.

Proof. Let Q € A™(U™) be as in the theorem. We can write

Q=Xs (0" A---AO™),



where
m—+1

X = Z(—l)i_l%Xi,
i=1

for some Xi,..., X1 € X(U™) dual to 6, ... 0™, Hence from Lemma 3.2.2 the

result follows. O

From Lemma 3.2.2 we obtain the following useful corollary for m-forms in (m+1)-
dimensional spaces also found in [58] by Godbillon. Define W to be some open

neighbourhood of R™*!.

Corollary 3.3.2. Let Q € A™(W). Then 2 is decomposable.

Theorem 3.3.3. Let Q € A"(W). Then d2 =0 mod ).

Proof. Let Q € A™(W). Corollary 3.3.2 implies
Q=0"A---NO",

for some linearly independent 6',... 6™ € A'(W). Now dQ is an (m + 1)-form
in A™TH(W), so we may complete ', ...,0™ to a basis by including some linearly

independent ¢ € A'(1W) with the property that
dQ=0"N---ANO™ A 6.
Ol

Theorem 3.3.4. Let Q € A"™(W). Then (Q) is a differential ideal and A({Q)) is

one-dimensional.

Proof. From Theorem 3.3.3 we obtain the first result in the theorem. Then using
Theorem 2.3.11, A((2)) = ker(2). The decomposable nature of Q from Corol-
lary 3.3.2 tells us immediately that A((€2)) is one-dimensional. O

Theorem 3.3.5. Let Q@ € A™(W), where W is some open, convex neighbourhood
of R™T1.If there exists a solvable structure of m symmetries for A((Q)) as in
Theorem 8.2.14, then we can compute functions 7°,...,y™ € C®°(W) so that ) =
VOdyt A A dy™.

Proof. We know from Corollary 3.3.2 and Theorem 2.3.11 respectively that € is
decomposable and that d€2 = 0 mod €2, so Theorem 3.2.14 gives us a direct algorithm
for finding 7°,...,y™. O



3.4 The suitability of a differential form

For an arbitrary differential form A € A™(U™) we use ideas in the previous section to
examine some necessary conditions for A to be decomposable and dA = 0 mod A, so
that we can apply Theorem 3.2.14. Of course if m = n, these two conditions trivially
hold, and Corollary 3.3.2 and Theorem 3.3.3 mean they still hold if m =n — 1. In
this section we examine the situation when m < n — 1. In what follows, we assume

U™ is some open, convex neighbourhood of R".

Theorem 3.4.1. Let A € A™(U") for some m < n — 1. If there exist n —m —
1 linearly independent vector fields T'y,...Tp_mo1 € X(U") in ker(A), then A is

decomposable. Moreover, if for each 1 <i<n—m — 1,
Lr, A = NA, (3.19)
for some \; € C*°(U™), then dA =0 mod A.

Proof. Let A € A™(U™) with m < n — 1, and let there exist linearly independent
[y,...T m1 € X(U™) such that forall 1 <i<n-—m—1,

TuA =0, (3.20)
Now
(Sp{T1y. ., Do T = Sp {0t ..., oM},
for some @', ..., 0™ € A'(U™). Hence from (3.20), we must have

A - Ajl_“jmgjl /\ e /\ gjm,

for some A;, ;€ C°(U"), with summation over 1 < j; < -+ < jp,, < m+ 1.
Therefore by Lemma 3.3.1, A is decomposable.

For the second part of the proof, we choose without loss,
A=0"A---NO™.

We can complete 01, ..., 0™ to a basis for A}(U™) by adding linearly independent
o, "™ € AY(U™) such that

{o', ... om0t 0 (3.21)



is dual to
Ty, . T, Y1, Yo by (3.22)

for some linearly independent Yi,...,Y,,.; € X(U™). Now with summation on k

over 1 < k < m, we can write
AA = ANO' A AT ANPTEA AT BAA, (3.23)

for some oy,...,0, € A%(U") and § € AY(U") with the property that each oy
only depends on the basis vectors ¢!, ..., ¢" ™ 1 ™! Hence from the dual basis

property in (3.21) and (3.22), we have for each k,
Y101, =0, (3.24)

for all 1 < j < m. By combining the assumptions in (3.19) and (3.20), we have for

all 7,

Using the dual basis property once more, we get that for each i and 1 <[ <m +1,
[';20' = 0. Hence substituting (3.23) into (3.25) gives (with sum),

(Ciaop) AOVA - AOFE AN A O™ + (T B) A A = A, (3.26)

for each i. Since each I';1 04 only depends on the basis vectors ¢!, ..., ¢n~™m"1 gm+t

for (3.26) to hold we must have
[0y =0, (3.27)

for each 7 and k. Hence from (3.24) and (3.27), ker(oy,) is at least (n—1)-dimensional.
This means 04,(X,Y) = 0 for all X,Y € X(U™). Thus o, = 0 for each k. Therefore
dA =B ANA. O

Theorem 3.4.1 has the following two corollaries:

Corollary 3.4.2. Let A € A"™(U") such that m < n — 1. If there exist n —m —
1 linearly independent Cauchy characteristic vector fields of the differential ideal

(A, dA), then A is decomposable and dA =0 mod A.



Proof. Since the Cauchy characteristic vector fields are in the kernel of A, Theo-
rem 3.4.1 implies A is decomposable. Now it is clear that (3.19) in Theorem 3.4.1
still holds for some Ay,..., A\y_q1 € C°(U™). Hence from the theorem, dA = 0
mod A O

Corollary 3.4.3. Let A € A"™(U") such that m < n — 1. If there exist n —m —
1 linearly independent Cauchy characteristic vector fields of the differential ideal

(A, dA), then the Cauchy characteristic space of (A, dA) is (n — m)-dimensional

Proof. From Corollary 3.4.2, A is decomposable, so ker(A) is (n — m)-dimensional.
The corollary also means A is closed modulo itself which implies (A) = (A, dA),
and hence their Cauchy characteristic spaces are equal. From Theorem 2.3.11 the

result follows. O

Now the dimension of the Cauchy characteristic space of (A, dA) is always less
than or equal to that of ker(A), and the maximum dimensional of ker(A) is n —m,
which occurs when A is decomposable. Theorem 3.4.1 therefore means that if ker(A)
is at least (n — m — 1)-dimensional, then it is (n — m)-dimensional. Similarly,
Corollary 3.4.3 means that if the Cauchy characteristic space of (A, dA) is at least
(n —m — 1)-dimensional, then it is (n — m)-dimensional.

Next, we illustrate Corollary 3.4.2 with the following example:

Example 3.4.4. Suppose U* is some suitably chosen open, convex neighbourhood

3

of R* with coordinates ', 22, 23, 2%, and

4
T

dx® A dx? — (—3
x

222t

A = p

) da® A dzt — 2dx* A dxt

+ dz' A dx? + 4x’dx* A da?.

3zt
Now the vector field

0 0 1 0
I = 42 2 —
o ozt + 0x?  x3x40x2’

is a Cauchy characteristic of (A, dA). Hence from Corollary 3.4.2, A is decomposable
and dA = 0 mod A. Note from Corollary 3.4.3 that the Cauchy characteristic space
of (A, dA) is two-dimensional.



We will now proceed to apply Theorem 3.2.14 to A. It is easy to see that % is

a non-trivial symmetry of A. With

N,

ozl 3t

4
de* + %dx?’ + 2dz*,

it is also easy to see that 8%2 is a non-trivial symmetry of B%IJ A. Now from Theo-

rem 3.2.14 and Corollary 3.2.12,

)
<A
w! = % = dz® + (2*)dz® + 22%2 da? = d (2* + 2°(2%)?) .
922 91 A

Also, it is not hard to show that
w?i= 0 — (gt 4 227 (") 2da? + da’2Patdat
=d (z' — (2°)%) + 22°d (2* + 2°(2*)?) .
Hence

A= x31x4d (z' = (@*)°) Ad (2° + 2 (2)?).

Theorem 3.4.1 and its corollaries may be difficult to apply in practice. However
suppose it is known that A is decomposable (i.e. ker(Q2) is (n —m)-dimensional from
Lemma 3.2.1) and we have an explicit expression for A as the exterior product of
some m one-forms, so that A = w! A --- Aw™. If, using for example the exterior

calculus software package EXCALC [113] written by E. Schriifer, one finds that
dw' Awt Ao Aw™ =0,

for each 1 < i < m, then this implies A is closed modulo itself.

3.5 Pfaffian equations

In this section we examine how symmetries may be used to express a differential one-
form in ‘normal form’ given in (3.28) below. We begin with the following definition

and theorem:

Definition 3.5.1. Let a € A'(U"). The rank of the Pfaffian equation o = 0 at the
point p € U™ is the non-negative integer 7 such that (do)" Aa # 0 and (da) ™ Aa =0

at p.



If a one-form « is exact, i.e. a = df for some f € C*°(U"), then it (and any

linearly dependent one-form) has rank zero.

Theorem 3.5.2. Let a € AY(U™) and suppose the equation o = 0 is of constant
rank v on U™. Then there exists a coordinate system ',..., 7" € C®(U"™), where

2r +1 < n, so that the equation becomes
d’)/l + ’)/Qd’}/3 4t ,YQrd,YQT-i-I =0.

Theorem 3.5.2 is known as the Pfaff problem. A proof of this theorem may be
found in [23].

It is easy to see that multiplying any one-form of constant rank on U™ by a
nowhere zero smooth function f leaves the rank unchanged, using the fact that for
any m € N, we have (d(fa))™ A (fa) = f™(da)™ A a. This allows us to express

any o € A1(U™) of constant rank r on U™ as
o= 70(d71 + fYdeyS 4ot 72rd727‘+1)’ (328)
for some 70, ..., ¥yt e C®(U").

Theorem 3.5.3. Let o € A'Y(U™). Suppose « is of constant rank r on U™, and
define Q2 := (da)” A . Then Q is decomposable and d2 = 0 mod Q.

Proof. Let a € A'(U") with « of constant rank r on U". This means
o = dy 4+ A2dyP ATy,
for some 7%, ... ¥+t € C°°(U"). Define
@ = dy' 42 4+ A2y

Further, define 2 := (da)" Aa. We will first show that dQ = 0. Simple computation

yields
(da)" =rldy? A« Ady*

Hence

Q=aA(da),

=rldy' AdyP A - A dyPT



We then have dQ = 0. Now
Q= (") *da)" A a.
Since dQ2 = 0, we get
dQ = d((v")""H) A (da)” A .

But (d(v%a))" A ((Y")@) = (%) *!(da)” A @. Therefore dQ = 0 mod Q as 7° is
nowhere zero on U". Finally, since Q is decomposable and Q = (7°)"+1Q2, Q is

therefore decomposable. O

Our aim is to use Theorem 3.5.3 with Theorem 3.2.14 to ultimately find some
coordinates for the Pfaff problem in Theorem 3.5.2. The next theorem illustrates
how this may be done for one-forms that are of constant rank one on U™, which will
be later extended to one-forms of any constant rank r > 1. The case r = 0 involves
a trivial application of Theorem 3.2.14, and will therefore be ignored.

To assist in finding coordinates for the Pfaff problem, the following lemma will

be needed:

Lemma 3.5.4. Let a € A (U™) and suppose « is of constant non-zero rank r on

U™ Let Q := (da)" Ao and X € X(U™) such that X1Q =0. Then X1 =0.

Proof. Let o € A'(U™). Suppose « is of constant non-zero rank r on U", and define

2 as in the lemma. Let X € X(U") with X1Q = 0. Now
XiQ=(Xu(da)") Na+ (Xsa)(da).
By taking the exterior product with a, we obtain
(Xsa)(da)"Aa=0.
Since « is of rank r, (da)” A  # 0, and hence Xy = 0. O

Theorem 3.5.5. Let o € AY(U™) such that « is of constant rank one on U™. Let
Q:=daAa and (Q) be the differential ideal generated by 2. Suppose X, Xo, X3 €
X(U™) is a solvable structure of linearly independent symmetries such that X3 is

a non-trivial symmetry of A((Q)) with the extra condition that Xy = 0, Xy is



a non-trivial symmetry of A((Q)) & Sp{ X3}, and X1 is a non-trivial symmetry of
A((Q)) @ Sp{ Xy, X3}. Then with w',w? w* € AY(U™) defined by

1. XQJ X3JQ

W XlJXQJXgJQ,
2 XlJXgJQ
W= o

XQJXlJXgJQ

3 XlJXQJQ
W = o
X3JX1JX1JQ

we have
w' =dy',
w? = dy? = X1 ()dy,

w® = dy’ = Xo(v?)(dy* — X1 (v*)dy') — X (7*)dy ',

for some functionally independent v',~v%,~* € C*°(U™), and

(X)) = (Xopu )Xo (9?)
o dy ) . (3.29)

a = (Xaa) <d72 +

Proof. With Q := da A a, Theorem 3.5.3 means that €) is decomposable and d€2 = 0
mod . Theorem 3.2.14 can be used to obtain {w!, w? w*} dual to {X;, Xy, X3},

where

w' =dy',
W' =dy* = Xi(¥)dy',

w® =dv* = Xo(v?)(dy* — X1 (v*)dy') — Xa(7*)dy ',

for some functionally independent v',~v% ~+* € C*(U™). Now from Lemma 3.5.4,
Xia=0for all X € A((2)). And since X31a = 0, we are left with

a=(Xpa)w' + (X a)w?.

Now Xsia # 0 in the neighbourhood, since « is nowhere rank zero by assumption.

Hence

(X11a) — (Xaa a)X1(’Yz)d71> ‘

a = (Xqa) <d72 + (X 0)



Remark 1. The extra condition in Theorem 3.5.5 that the non-trivial symmetry X3
satisfies X351 a = 0 implies from Theorem 2.3.10 that the symmetry is not a Cauchy
characteristic vector field of («, dar). Therefore X31da is not some multiple of « (as
« is of rank one, it is impossible that da = 0 mod «). Such a symmetry exists since
if v',..., 9" are coordinates for U™ and «a := 7° (dy' + 7?d~?) is already in normal
form for some 7° € C®(U™), then it is easy to show that Theorem 3.5.5 can be
applied to such o with X3 chosen as 3%2 or 3%3 - 728%1.

Remark 2. In deriving our expression for « in (3.29), we do not need to calculate

~%. This significantly reduces the number of algebraic manipulations required.

We illustrate Theorem 3.5.5 with an example:

Example 3.5.6. Suppose we are in some open, convex neighbourhood of R?, de-
noted by U3, with coordinates z', 22, 3. Define on some suitably chosen U3,
2.3 1 3 1
2z ' s x'
o= — de' + | - + — ) dx" + —dz”.
(21)2 < 72 xl) 3

By dimension, (da)’ A« = 0, and it is easy to show that do A o # 0 on some region

of U3. Suppose U? is chosen such that da A o # 0 everywhere. Since any non-zero
vector field is a non-trivial symmetry of da A a € A3(U3?), we may choose any X3
such that X31a = 0. So let

2’z 0 a' 0
(12023 a3 Ox!

X3 =

be the symmetry. Using the software package DIMSYM, we obtain that
0

X2 = (1'3)2%

is a non-trivial symmetry of Sp{X3} (A({da A «)) is zero-dimensional), and by

inspection that

XI' a

T 022
is a non-trivial symmetry of Sp{ Xy, X3}. These yield

1. XZJ X3J (dOé A Oé)
T XlJ X2J X3J (dOz A Oé)

= dz?,

w



and

5 X113 X3 (da A @) w0 di?
W = = — dx _|_ ,
Xou X1 X3 (da A ) (z1)3 (23)2

Hence a simple calculation gives
2
13 x 1 1 1 9
o= (g ) + (o ) ).
Such expressions for a are in general not unique, and may be found by choosing

different symmetries. For example, we have also obtained

2 1
o=z <d (%) + %d (ln ‘x%ﬂ)) )

We now present a generalisation of Theorem 3.5.5:

Theorem 3.5.7. Let a € AY(U™) have constant rank v on U™, and define Q =
(da)" AN a. Let Xy,...,Xor41 € X(U™) be a solvable structure of linearly indepen-
dent symmetries such that Xopy1 is a non-trivial symmetry of A((Q)), and for each
1 <i<2r+1, X; is a non-trivial symmetry of of A((2)) & Sp{Xit1,..., Xors1}-
Suppose, in addition, that for the r vector fields X, o, ..., X911, we have X, o010 =
0,..., X0, 0a=0. Forall1 <i<2r+1, define w' by

XlJ ceed Xi_lJ Xi+1J ceed X27-+1J Q
W = .
X Xqo o0 X 10X 0 X9,010Q

Then for all w* up to i =2r+1,

wl — d’yl,
w® =dy* = X1(v?)dy',
w® =dy* — Xo(7*)(dy* — Xi(v*)dy') — Xa () dy ',

2r+1

w = d/er-l—l

2r

mod dv', ..., dy*,
for some functionally independent v', ..., v* 1 € C®(U"), and
o= (Xua)dy' + (Xpsa)(dy* — Xi(y*)dy')
+ (Xasa)(dy’ = Xo(v°)(dy* = Xa(y")dy') = Xa(y)dy') + . ..
+ (X a)(dy™ = X, () (dy = = X (Y)dy) —
— Xi(v"dy),

which when rearranged give « in the form of (3.28).



Proof. The proof follows in a similar fashion to Theorem 3.5.5. The conditions

Xriota=0,..., Xy, 110a =0and Lemma 3.5.4 ensure that « is a linear combination
of dy',...,dy"™!. Further, since « is of constant rank r, X, j1a # 0, so we are
permitted to divide by it, and hence express « in the form of (3.28). O

Remark. Both remarks for Theorem 3.5.5 may be extended to Theorem 3.5.7 as
follows: Firstly, from the proof of Theorem 3.5.3 it is clear that there exist r non-

trivial symmetries X, o, ..., Xo,41 of (da)” A v in ker(«r), and secondly, in deriving

our expression for a, we do not need to calculate any "2, ..., L,

3.6 Darboux systems

This section gives an algorithm based on vector fields for generating a set of coordi-
nates in Darboux’s theorem given below in Theorem 3.6.4. To begin with, we present
some preliminary material. In Bryant et al. [23] there is the following fundamental

theorem:

Theorem 3.6.1. Let Q € A*>(U™) and let r be the natural number such that Q" # 0
and "t = 0. Then there exist 2r linearly independent elements w',... , w? €

AN (U™) such that
Q=w' AW+ -+ 0" AW,
In what follows, we will also make use of the following lemma:

Lemma 3.6.2. Let Q € A2(U") and r € N such that Q" # 0 and Q"' = 0. Also
let X € X(U™). Then X1Q" =0 if and only if X1Q = 0.

Proof. Let Q € A*>(U™) with X1Q" = 0 for some vector field X € X(U"). Then

from Theorem 3.6.1 we have
Q=w' AW+ F W AW, (3.30)
for some linearly independent w?, ... w* € AY(U™). This implies
Q" =rlwt A AW

Now X1 Q" = 0 implies that X w’ = 0 for all 1 < i < 2r. Hence using the expression
for 2 in (3.30) gives X1 = 0. Proving the converse is obvious since if Y is any

vector field in X(U™), then Y1 Q" =r(Y1Q) AQ L. O



Theorem 3.6.3. Let Q € A>(U™) be closed. Suppose r is the natural number such
that Q" # 0 and Q"' = 0. Further suppose we have a solvable structure of 2r
linearly independent symmetries Xi,..., Xo, € X(U™) such that Xo. is a non-
trivial symmetry of A((Q7)), and for all 1 < i < 2r, X; is a non-trivial sym-
metry of A((Q")) & Sp{Xit1,...,Xo-}. Then Theorem 3.2.1J gives us an algo-
rithm for expressing €2 solely in terms of the 2r functionally independent functions

Yl 9% e C°(U™) and their exterior derivatives.

Proof. Let Q € A?(U") be closed with Q" # 0 and Q"' = 0 for some r € N.
Since dQ2 = 0 implies that d(2") = 0, from Theorem 2.3.11, ker(Q") = A((Q")) is
therefore Frobenius integrable. The fact that Q2" is decomposable of degree 2r means
that A((Q2")) is generated by n — 2r linearly independent vector fields. Suppose we
have a set of linearly independent symmetries X, ..., Xy, € X(U") such that X,
is a non-trivial symmetry of A((Q2")), and for all 1 < i < 2r, X; is a non-trivial
symmetry of A((Q")) ® Sp{Xit1,...,Xo}. Then by Theorem 3.2.14 we have on
Un, {w', ... w?} dual to {X,..., Xy}, where for all 1 < j < 2r,

i Xig o 0 XG0 XG0 X QY
XXy oo o0 X X000 X0 Q7

and
w' =dy',
w? = dy? = X1 (),

w? = dy’ — Xo(v")(dy” — Xa(y*)dy') = Xa(7")dr'

2r 2r—1

W' =dy*" moddy, ..., dy*" !,

for some functionally independent ~!,...,v?" € C*°(U"). Then by Lemma 3.6.2,
and using the fact that {Xy,..., Xy} plus any set of generators of A({Q")) spans

X(U™), we can therefore write
Q = QX X))k AW, 1<k<l<o2r
where we are implying a double summation. This means that

Q = Qudy® A dr, 1<k<l<2r (3.31)



for some functions Q € C*°(U™). But since Q is closed, we must have for all

I'e A({Q7)),
LrQ =d(T1Q) =0,
also using Lemma 3.6.2. Since ['(y*) = 0 for all 4, it follows that (with sum)
0 = LrQ = T(Qu)dy* A dy.

Therefore I'(Qg;) = 0 for each k£ and [. Hence  only depends on the 2r functions

7Y ..., ¥? and their exterior derivatives. O

Remark. In applying Theorem 3.6.3, there will exists situations when it may be

difficult to express each € in terms of the known ~!, ..., v*".

Next, consider Darboux’s theorem proved in [23, 37]:

Theorem 3.6.4. (Darboux) Let Q2 € A?(U™) be closed so that 2" # 0 and Q" =

0 for some r € N. Then there exist coordinates ¥',...,¥" such that
Q=dy' ANdy? + -+ dy" P Ady”.

Theorem 3.6.3 may be applied to Darboux’s theorem; however, the difficulty
is that Theorem 3.6.3 expresses {2 in terms of a sum of a maximum of (22’") two-
form components, which must then be simplified to » components with unit one
coefficients if we wish to find a set of coordinates in Darboux’s theorem.

As an alternative approach extending work in [37] by Crampin and Pirani in their
proof of Darboux’s theorem (though similar proofs can be found in the literature),
we now look to formulate an extraction process for generating a set of coordinates
in the theorem using solvable symmetry structures. The next three theorems will

be useful in establishing this.

Theorem 3.6.5. Let Q € A*(U") with Q" # 0 and Q"' = 0 for some r > 2.
Suppose there exist X1, Xo € X(U™) such that (X, Xs) =1 and (X110 Q)A(X21 Q) #
0. If Q is defined by Q := Q + (X91Q) A (X11Q), then Q! 40 and QO =0.

Proof. Let Q € A?>(U™) such that Q" # 0 and Q"' = 0 for some r > 2. Using the

definition for € in the theorem gives

Q=0 +rQ A (XouQ) A (X12Q). (3.32)



Now from (X, X3) =1 we have

Qr = QT(XQJ X1J Q),
= XQJ (Qr VAN (XlJ Q)) - (XQJ Qr) VAN (XlJ Q), (333)
= Xol (VA (X11Q) — (r(Xoa Q) AQH A (X11Q).

In the second line we have used the property Xo1 (2" A (X12Q)) = (X2uQ") A
(X10Q)+ (X210 X110 Q)Q", and in the third, we have expanded X1 Q". If we substitute
the end result in (3.33) into the expression for Q' in (3.32), we obtain

Q = Xou (U A (X12Q)). (3.34)

By Theorem 3.6.1, there exist linearly independent one-forms w!, ..., w?* € AY(U")

such that
I BN R s
Hence X11Q = ajw' + -+ + ag,w? for some ay, ..., ay € C°(U™). Since
Q" =rlw' A AW,

it follows that Q" A (X;1Q) = 0. Thus from (3.34) we get Q' = 0.
Now suppose Q' =0. Then

0=0 "= '+ (r— DU 2A (X0 Q) A (X12Q).
This implies
A= —1D)02A(XuQ) A (XaQ). (3.35)
Taking the exterior product with Q2 gives
Q=@ -DA 'A(XLQA (X1Q) =0, (3.36)

where the second equality comes from substituting Q"' in (3.36) with its expression
in (3.35). The calculations still holds for » = 2, and hence we reach a contradiction

for all r > 2. O

Remark. Although Theorem 3.6.5 demands that X, X3 be such that Q(X;, X5) =1,

we can relax this condition by saying that all we need is to find two vector fields



Y1,Ys € X(U™) such that Q(Y7,Y5) # 0. Then we can choose X, X, as, respectively,
scaled Y7,Y3 such that Q(X;, Xy) = 1.

The second theorem we require concerns the foliated exterior derivative, as ex-

plained by Vaisman [123]:

Theorem 3.6.6. Letw € A'(U") and o, ..., a* € AY(U") be s linearly independent

one-forms such that for all 1 <i <'s,

da'=0 modal,..., o,

(i.e. the Frobenius condition holds so that ker(a' A---A«®) is Frobenius integrable).

If

dw=0 modal, ..., o

then

w=df modal,..., o,

for some f € C®(U™).
Using the foliated exterior derivative, we prove the following theorem:

Theorem 3.6.7. Let Q € A2(U™) be closed. If there exists a pair of vector fields
X1, Xy € X(U™) such that

1. Lx,Q2=0,
2. Lx,22=0 mod X;1Q,
3. (X11Q) A (X21Q) #£0,
then on U™,
(X10Q) A (X Q) =df Ndyg,

for some functionally independent f,g € C*(U™).



Proof. Let Q € A*(U") be closed and let there exist vector fields X, Xy € X(U™)
that satisfy the three conditions in the theorem. Now Ly, = 0 implies d(X,1Q) =
0, using the property Lx,Q = X;1dQ + d(X12Q) and that Q is closed. Hence
X11Q = df for some f € C°(U").

Now suppose Lx,{2 = 0. Then by the same argument to above, X51€ = dg; for
some g; € C*°(U™). If, however, Lx,2 # 0, then by assumption,

0#Lx,2=aAn (X119Q),
for some a € A'(U"). Therefore
(Lx,2) A (X12Q) =0.
Using Ly, = Xo1dQ + d(X21Q) and the fact that Q is closed gives
d(X21Q) A (X11Q) =0.
Hence
d(X2102) =0 mod X11Q.
Using Theorem 3.6.6, we then get
Xo1Q2 =dg, mod df,
for some g, € C*°(U™). Hence in both cases the result is proved. O

We now present the main result of this section:

Theorem 3.6.8. Let Q € A*(U™) be closed with Q" # 0 and Q' = 0 for some
r € N. Then the following algorithm explicitly computes a set of 2r functions for

described in Darboux’s theorem:
1. Find vector fields X1, Xy € X(U™) such that:
(a) Lx, =0,
(b) Lx,2=0 mod X1,
(¢) (X129) A (X21€) #0,

(d) X1, Xs) =1,



2. Let Q+ (XouQ) A (X12Q) be our new €,
3. Repeat steps (1) and (2) a further r — 2 more times until Q* = 0,

4. Apply Theorem 3.2.1J with a solvable structure of two symmetries X3, Xy €
X(U™) for Q, such that X3 is a non-trivial symmetry of Q and X, is a non-
trivial symmetry of X31Q with the property that Q(X3, X4) = 1.

Proof. Let Q € A*(U™) be closed with Q" # 0 and Q"' = 0 for some 7 € N. From
Theorem 3.6.7 and then Theorem 3.6.5, we can compute € € A?(U"), where

0 = Q+dg, A dfy,

for some f;,91 € C®(U™), with Q7= # 0 and Q7 = 0. Then once again from
Theorem 3.6.7 followed by Theorem 3.6.5, Q, € A%(U") can be computed so that

QQ :Q—l-dgl/\df1+dgz/\df2,

for some fy, g, € C®°(U™), with Q5 2 # 0 and Q5 ' = 0. Continuing in this way, we

reach a stage when €2,_; is of the form
Q1 = Q+dg ANdfy +dga Ndfy + -+ -+ dgr—1 Ndfr_,

such that Q,_; # 0 and Q?_; = 0. Applying step (4), Q,_; is closed, and from The-
orem 3.6.1, €, 1 is also decomposable. From Theorem 3.2.14 and Corollary 3.2.12,

with X3 as a non-trivial symmetry of €2, ; and X, as a non-trivial symmetry of

X3J Q,«_l such that Qr_l(Xg, X4) = ]_, then

X3J Q,«_l
L~ dg,,
X1 X319, 4

X4J Qr,1
R df, + Mgy,
X3J X4J Qr—l f + g

for some f,, g., A € C*°(U"), with
Qr—l — Qr—l(X3aX4)dfr A dgr = dfr A dgr-
Therefore

Q =dfi Ndg, +dfs Ndgy + -+ - + df, 1 Adgr— + df, A dg,.



Remark 1. In looking for two symmetries that satisfy the four conditions in Theo-
rem 3.6.8, condition (d) can be relaxed a little by only requiring that X,1 X710 =
const. Then X; or X5 may be scaled appropriately by constants while still satisfying

the other three conditions. The same holds true for the two symmetries in step (4).

Remark 2. Conditions (a) and (b) are strong requirements, and may be difficult in
practice to satisfy. Since € is closed, they imply X, X5 must be chosen such that
X11Qis closed and X511 is closed, modulo X1 2. Hence the result in Theorem 3.6.8
is of more theoretical significance than practical use, although it is possible to use

DIMSYM and Theorem 2.3.10 to find X3, Xy in step (4).
We can provide an alternative to the requirement in step (4) in Theorem 3.6.8
as follows:

Lemma 3.6.9. Let Q € A*>(U™) be some arbitrary closed two-form. Suppose there
ezxists some X3 € X(U™) not in ker(Q2) such that

Ly, Q =0, (3.37)
and X, € X(U™) satisfies (X3, X4) = 1. Then
Lx,(X3:0Q) =0.
Proof.
Lx,(X319Q) = d(X41X310Q) + Xy1d(X31Q) = Xya (Lx,Q) =0,
using that X1 X31Q = 1, equation (3.37), and that 2 is closed. O

We now apply the algorithm in Theorem 3.6.8 and the modification of step
(4) using Lemma 3.6.9 to the following example. It is important to realise that the
difficult part in applying Theorem 3.6.8 is in finding the first » —1 pairs of symmetries
X1, Xy. Nevertheless, the main purposes of this example are to illustrate: i) the
crucial role Theorem 3.6.5 plays in reducing the number of terms in a two-form by

one; and ii) the flexibility in choosing X, in Lemma 3.6.9.



Example 3.6.10. Consider the following two-form Q € A%(U*), where U* is some
suitably chosen four-dimensional, open, convex neighbourhood of R* with coordi-
nates z', 22, 23, 2*:

1

3 1 9.1
Q.= x_2 (x_2_2> claz:l/\clas2+Jlr—Qdacl/\d:ﬁ—izlalxl/\ala;4
2 \z T T

71\ ?
— <—2> dz? A dx?.
T

It is easy to show that dQ = 0, Q? # 0 and Q* = 0. We may then proceed to apply
Theorem 3.6.8. Define

Xy = 1 (x_2>2 0 + vt 9

3 \z!) 0z  (x')2x3 Oxt

Now
Lx,Q=d(X11Q),
1. 222z [P )
=d (de + x1x3dx + prrpecl e 2)dx |,

1 1
=d (—3da:3 + —lda:1> =0,
T T

so condition (a) of step (1) in Theorem 3.6.8 is met. Hence
X1uQ=d(In|z'2%).

With

we have Xo1 X11Q =1, so condition (d) is satisfied. It is not hard to show that
(X12Q) A (X2uQ2) #0,
and
(Lx, ) N (X129Q) =0, (3.38)
so conditions (b) and (c¢) are met. From (3.38),

d(X20Q)=0 mod X162



Using the foliated derivative, this implies
Xo1Q =dgi + \id (In|z'2?]),

for some gy, A\; € C®(U*). To find these unknowns, we can perform a coordinate

transformation with In|z'z3| as a coordinate to yield

X1 Q= —d ((x1)2x3> D e

2 2

Hence

(Xou Q) A (X10Q) = —d <(3‘2§x3> Ad (In]a'a?)) .

Observe that

~a (15 nauiets) = ——Da (D) naet)

2 rlgd 2
21
=—d <ﬁ> Ad(z'2?).

For other choice of X, X5, we may obtain an expression for the other two-form

component of (2.

Now define Qy := Q + (X210 Q) A (X12Q) as in step (2). We then get

20! 20!
Q) = — = da' Ada? — Zdat A da
T T

It is clear that dQ; = 0 and Q% = 0 as expected, so we may proceed to apply the
final step in Theorem 3.6.8 on €2;. It is possible at this point to use DIMSYM and
Theorem 2.3.10 to search for a non-trivial symmetry of ker(€2;) with the property

that the Lie derivative of 2; is zero. Defining

0
X; = alet—

ox?’

we have
L, =d(X300) =d(2(z")%dz') = 0.

This implies




Now choose

so that X;1 X510, = 1. From Lemma 3.6.9, Lx, (X31€;) = 0, and hence from
Theorem 3.2.14,

2 1\3
X4J91:df2+)\2d< (xg) >7
for some fy, \y € C*°(U*). To find f, it is easy to show that
_ 1 2 4 1
Xy = —d | < Infz72" mod dx".
x

Therefore

1 2 1\3
Q= (Xaa ) A (Xu Q) =d (;ln|x2x4|> /\d< (“g) ) :

Once again we may simplify this:

1 2,4 2(z')’ 1\2 1 2,4 1
d(;ln|xm|>/\d< 3 =2(x")d ;ln|xx| Adx”,

= 2z'd (In |2°2*|) A dz',

=d (In|z*z*|) Ad ((z")?).
Thus

Q= (X11Q) A (Xo1Q) + (X3000) A (Xasy),

_ ("3_1> Ad (2') +d (In |22 ]) Ad (1))



Chapter 4

Fundamental ideals of ODEs

4.1 Introduction

As a prelude to our study of partial differential equations we examine an approach
to ordinary differential equations from the perspective of fundamental ideals by
Edelen [43, 45, 47, 49]. The material is essentially a brief review of work found
in Basarab-Horwath [16], Duzhin and Lychagin [42], Hartl and Athorne [65] and
Sherring and Prince [110] on solving ODEs with solvable symmetry structures. Thus
it presents nothing new apart from the fact that it uses fundamental ideals.

Our study in this chapter focuses on finding the general solution of a single n-th
order (possibly non-linear) ODE defined on some open, convex neighbourhood U*
of R with coordinate z corresponding to the independent variable. We define V! to
be some open, convex neighbourhood of R with coordinate y as the space for the

dependent variable.

4.2 Ideals of ODEs

Suppose we have some n-th order ODE defined on U! x V! of the form

dn d dnfl
J_ F (a:,y,d—y, _y> , (4.1)

dxm ' daent

for smooth F. On the n-th jet bundle J" (U, V1), we define the following coordinates
X, 2,21, 22, - - -, Zn, Where z; represents the i-th derivative of y (The notation here is

slightly different from that used in Chapter 2, and will only be used for this chapter).



Then from Section 2.5, a local solution of the ODE in (4.1) can be considered as
a one-dimensional regular submanifold of the locus of J*(U', V') described by the
jet space coordinate representation of (4.1), that in addition is the lift of some
transverse curve in the graph space U' x V!. Equivalently, from Section 2.5.2
on the fundamental ideal representation of differential equations, a local solution of
(4.1) can also be considered some one-dimensional regular submanifold of J"(U*, V')

whose tangent space is annihilated by the differential ideal
Ip = (dz — zdzx,dzy — zodz, ... dz, | — zpdx,dz, Ndx, (2, — F) dx),

and satisfies the transverse condition that dz # 0 on the tangent space. It is this
latter formulation that we use throughout this chapter.

The main result of this section is Theorem 4.2.1 given below which allows us to
study the ODE given in (4.1) in a simplified framework. This is explained in greater
detail following the proof of the theorem.

Theorem 4.2.1.
Ir = (dz — zydx,dz — zodx, . .. dzy_q — zpdx,dzy N dx, dz,_ — Fdz). (4.2)
Proof. From Lemma 2.5.3,
d((zn — F)dz) =0 mod dz — zidx,dz — zedx, ..., dzy_1 — zpdx,dz, A dx. (4.3)
Since
dzn—1 — Fdx = (2, — F) dx + (dzp—1 — z,dx), (4.4)

we obtain

d(dz, -1 — Fdz) =0 mod dz — zdxz,
(4.5)
dz1 — zodzx, ... ,dz, 1 — z,dzv,dz, A\ dx.

Combining (4.3), (4.4) and (4.5), we conclude (4.2). O
We define
It = (dz — z1dx,dz — zodx, . .. dzy—1 — zpdx,dz, A dx,dz,— — Fdx).

Technically speaking, I := Ir (by Theorem 4.2.1), and the notation Iz might

appear redundant. However we will use /7 as a brief way of referring to the particular



choice of generators dz — z1dx,dzy — zodx, ..., dz, 1 — 2,dx,dz, Ndx,dz, 1 — Fdz.
Throughout this thesis we frequently make this distinction.

The final generating term in [ that is specific to the ODE contains no z,
coordinate. Therefore we may disregard the highest contact form dz,_, — z,dz, and
work in the (n — 1)-th order jet bundle J*~'(U", V') with the corresponding reduced
differential ideal

I% = (dz — mide,dzy — 2odx, . .. d2y_9 — 2p_1dx,dzy_y — F'dx,dF Ndx). (4.6)

At this point we make the following observations regarding I7: Firstly, for I7 to be
a differential ideal, (4.5) means dF A dx must be included as a generator. However,
since differential forms in I7; of degree higher than one are trivially annihilated by the
tangent space of any curve in J*~!(U', V'), all such differential forms can be ignored
in all our calculations. Secondly, from examining the one-form generators of I, we
can say that for ODEs, the fundamental ideal approach to differential equations
coincides with the Pfaffian system approach outlined in Section 2.5.1. Finally, note
from the dimension of A! (J"~}(U', V1)) that any one-dimensional integral manifold

of I7- must necessarily satisfy the transverse condition.

4.3 A linear transformation

Concentrating on the n one-forms generators in I, suppose we can find some n x n

matrix
F:=[fj],
of rank n for some f;; € C®(J" (U, V1)) over all 1 <i,j < n, such that

dz — z1dx

dzp_o — Zn_1dx
dzp,_1 — Fdx
for some functionally independent 7!, ..., y* € C>°(J" Y(U*, V1)), Assuming !, ...,
7" are of constant rank on J"~!(U', V'), it is then clear that since F is invertible,

it follows that on the curve in J*~'(U', V') described by

Yl=c, ... " =c" (4.7)



where ¢!, ..., ¢" are any constant functions, all the one-forms in 7 are annihilated.
Hence by Corollary 2.4.11 the curve is, in implicit form, a lifted solution of the ODE
in (4.1). If we can also manipulate the n equations in (4.7) so that we are left with z
solely expressed in terms of x,c!, ..., ", then we obtain the (local) general solution
of the ODE in U' x V1.

Alternatively, and slightly more generally, suppose we can find some n X n matrix
F = [/,
of rank n, for some f;; € C®(J* 1 (U', V1)) over all 1 < 4,j < n, such that

dz — zidx dy!

dv? mod dv?

I
)

dzy_o — Zp_1dx

dzp_1 — Fdx dy® mod dvt,...,dy" !

for some functionally independent v!,... * € C®°(J" Y({U',V!)). Then by the

same argument as before, the corresponding equations given by v' = ¢!, ..., " = ",
for constant functions c!,. .., c", also describe a lifted solution curve of the ODE in
(4.1).

Focusing on f‘, we can summarise the above result in the following theorem:

Theorem 4.3.1. Let I7. in (4.6) be a differential ideal on J"~"(U', V') correspond-
ing to some n-th order ODE of the form in (4.1). If there exists an n X n matric
F of rank n such that (4.8) holds for some functionally independent v, ... 4" €
C>(J=1 (U, V1)), then the curve in J*"Y(U', V') described by v' = c',...,y" =
¢, for any choice of constant functions c',...,c", is a lifted solution curve of the

ODE in (4.1).

The matrix F (and F) has the special property that it gives us a linear trans-
formation between a column vector whose elements are expressed in terms of the
n+1 basis vectors dx, dz,dzy, . ..,dz, 1, and a column vector whose elements are lin-
ear combinations of n linearly independent exact one-forms dv', ..., dv". Assigning
vyt =¢l, ...,y = ¢, for constant functions ¢!, ..., c" then yields a one-dimensional
regular submanifold of J"~'(U', V') (assuming the functions are of constant rank),

whose tangent space annihilates each one-form in /7. Therefore, finding the general



solution of the ODE in (4.1) essentially amounts to finding some linear transforma-
tion that can allow us to express all the one-forms generating 7 in terms of a linear
combination of a fewer number of linearly independent exact one-forms.

Finally, a simple calculation (expanding dF A dz) shows that

0 0 0 0
= — — _ F
ox + 4 0z Tt lazH + 0%Zp—_1

is a Cauchy characteristic vector field of /7. Hence the matrix F essentially finds
the functions in Theorem 2.2.13.

In the next section we show how one may use a solvable structure of symmetries
to find such a matrix F and some corresponding 7', ...,¥", so that the general

solution of (4.1) may be derived in the above fashion.

4.4 Solutions and symmetry

Suppose [ is a differential ideal corresponding to some n-th order ODE of the form

in (4.1). Define Q € A*(J"H(U', V")) by
Q= (dz — z1dx) A (dzy — dzedx) A -+ - A (dzp—2 — 2p—1dz) A (dzp—y — Fdx).

Since 2 is an n-form defined on the (n + 1)-dimensional space J" '(U!, V'), from
Theorem 3.3.3, we therefore have d{2 = 0 mod 2.

Further suppose there exists a solvable structure of n linearly independent vector
fields Xy,..., X, € X(J"Y(U', V1)) such that X,, is a non-trivial symmetry of €,
X,,_1 is a non-trivial symmetry of X 12, and so on down to X; being a non-trivial

symmetry of Xo1 ...1X,10Q. If, for all 1 < k < n, we define w* by

. Xoo oo X0 X 0 X0 Q

YT Xea X0 oo 0 Xm0 X -0 X0 Q)

Then from Theorem 3.2.14 and Corollary 3.2.12, we have that for all £ up to n,
wh =dy',
WP =dyt = Xi(y%)dy,
W' =dy* — Xo(7*)(dy* = X1(77)dy") — X1 (7', (4.9)

n—1

mod dv', ..., dy" 1,

n

w"=dy

n



for some functionally independent v!,... 7", and {w',... , w"} is dual to {X1,...,

X, }. In other words, the equations in (4.9) are of the form

dry*
dz — z1dx
. dy? = X1 (%)
G- ' = [ d7’ = Xo(y°)(dy* — Xa(v)dy') — Xa(vP)dy' |
dzn—? - Zn—ldx .
dzp,—1 — Fdx
dy™ mod dv,...,dy"!
for some n x n matrix G. Further, since {w!,...,w"} is dual to {Xy,...,X,},
wt, ..., w" are linearly independent, so G is non-singular. Hence
dry*
dz — z1dx

=G| dy® - Xa(9P)(dy? = Xi(37)dy) — Xa(7P)dy!
dzy_o — zZp_1dx .

dzp—1 — Fdx

Therefore we can then apply Theorem 4.3.1, with F := G

Once again we can summarise the above in the following theorem:

Theorem 4.4.1. Suppose Ir. is a differential ideal on J"'(U', V') corresponding
to some n-th order ODE of the form in (4.1). Define Q € A»(J""Y (U, V1)) by

Q= (dz — z1dx) A (dzy — dzedx) A+ -+ A (d2zp—o — 2z 1dz) A (d2, 1 — Fdx).

Further, suppose there exists a solvable structure of n linearly independent vector
fields Xy, ..., X, € X(J"" YU, V")) such that X,, is a non-trivial symmetry of €,
X,_1 18 a non-trivial symmetry of X,1€), and so on down to X; being a non-trivial
symmetry of Xoi ...1X,20Q. Then there exrists an n X n matrix F of rank n such

that (4.8) holds for some functionally independent v, ... v* € C®(J" YU, V1)).

Theorem 4.3.1 combined with Theorem 4.4.1 gives us an algorithm based on
a solvable symmetry structure for generating the general solution of a given n-th
order ODE of the form in (4.1). We illustrate these two results with the following

example:



Example 4.4.2. Consider the following second order ODE (i.e. n = 2):
dy dy
— =F — 4.10
dr2? 2 (xaya dx) ) ( )
for smooth F,. For this example, on J'(U!, V1),

I%Z = (dz — z1dx,dz — Fydx, dFy A dx).

Now let Q € A%2(JY(U', V1)) defined by
Q= (dz — z1dx) A (dzy — Fadz).

If we are given a solvable structure of two symmetries X1, X, € X(JH (U, V1)) of
the form required in Theorem 4.4.1, then applying Theorem 3.2.14 in conjunction

with Corollary 3.2.12, we obtain

XQJQ _ df)/17
XlJ XQJ Q

XIJQ
=d 2 - X 2 d 1

for some functionally independent 7,72 € C>(J}(U', V!)). Expanding these equa-

tions gives

1 Xoi (Fodr —dz) Xou(dz — zdx) dz — zdx
XlJ XZJ Q XlJ (le - FQd.’L’) XlJ (Zldl' - dZ) le — FQd.’L’

dry*

dy? — X1 (v?)dy!
Now
Xoa (Fodz — dzy)  Xou(dz — z1dx)
X11(dzy — Fodz) X1 (z1dx — dz)

= (Xos (Fodz — dz1)) (X2 (21dz — dz))

— (Xoa (z1dx — d2)) (X112 (Fodr — dzy)) ,

== XQJ X1J Q §£ 0
Hence
dz — z1dx Xi1(dz — z1dx)  Xoa(dz — zdx) dry*
dz — Fydx X1 (dzy — Fodx) Xoi1(dzy — Fadx) dy? — X, (y?)dy*

Thus from Theorem 4.3.1, setting v = ¢!, 42 = ¢? for constant functions ¢!, ¢? yields

a lifted solution curve of the ODE in (4.10).



Chapter 5

First order PDEs

5.1 Introduction

This chapter presents some symmetry techniques for finding local solutions of single
first order partial differential equations. We begin by using solvable symmetry struc-
tures and Theorem 3.2.14 to provide a simple technique for finding local solutions of

first order quasilinear PDEs of one dependent variable and n independent variables

of the form
ou ou
4t fr— =k,
h Oox! et oz
for any smooth f1,..., fa, k that are functions of u, 2!, ..., 2" It is well-known that

such PDEs can be solved by the method of characteristics using ordinary differential
equations (see for example Duff [41]), and our aim here is to replace this approach
with an algorithm using symmetry.

Next, we give two slightly more sophisticated symmetry methods for finding local
solutions of first order (possibly non-linear) PDEs of one dependent variable and two
independent variables. The first approach examines such PDEs of the form

% =F (xl,xz,u,%> ,
for smooth F, while the second technique is a simplification of the first but at the
expense of only applying to first order PDEs of the form

ou ou
= =F <$1,$2,%> )



for smooth F' not involving the dependent variable.

The first part of our work on quasilinear PDEs has been partly motivated by
papers from Edelen [47, 49] on fundamental ideals, as used in Chapter 4 for ODEs,
and following [49], we begin this chapter by presenting some necessary background
material. The second part of this chapter on general first order PDEs applies work

by Vessiot [128, 129, 130], and includes a detailed review of this material.

5.2 Quasilinear PDEs

Beginning with a slight generalisation to m dependent variables, suppose we have a

single quasilinear PDE of the form

ou' out ou™ ou™

ox" n
where z!, ..., 2" are the independent variables, u',..., u™ are the dependent vari-
ables of the PDE, and f;;, for all 1 <i <n,1 <j <m, and k are smooth functions
of 2, ... 2™ ut, ..., u™.

The dependent variables will be renamed z', ..., 2™ and serve as coordinates for
the space V' which is defined as some open, convex neighbourhood of R™. We as-
sume U™, with coordinates x!, ..., 2" is also some open, convex neighbourhood of R".
On the first jet bundle J' (U™, V™) with coordinates a', ..., o™ 2" ... 2™ 2}, ... 21

we have the first-order contact system Q(U™, V™) generated by
C’j::dzj—z{dxl—---—zjdx”, 1<j7<m.
Define
Fi=(fuz + -+ fmz) + oo+ (fim2]" 4+ famal) — k.

Following Theorem 2.5.1, a local solution of the PDE in (5.1) can be thought of as
a transverse immersion of rank n mapping into the locus of J'(U™, V™) described
by the equation F' = 0, that also satisfies the nm partial derivative relations

;0 . .
Zizﬁa 1§Z§n71§]§m7

where the transverse nature of the immersion means that each 2/ and zf can be
parameterised by z!, ..., 2"

Using Corollary 2.4.11 we have the following basic result:



Theorem 5.2.1. Let there exist a (rank n) immersion
.U — JHU", V™),
satisfying the following (m + 2)-conditions:
1. ®*CI =0 forall1 < j <m,
2. &*F =0,
3. ®*(dz' A--- ANdx™) #£ 0.

Then locally, ®(U™) = j' f(U™) for some smooth solution map f : U™ — V™ of the
PDE in (5.1).

5.3 Ideals of quasilinear PDEs

Following Edelen [43, 45, 47, 49], and introduced in Section 2.5.2 in Chapter 2, we
denote I as the fundamental ideal of the PDE in (5.1), i.e.

Ip:={(C', ...,C™ dC",...,dC™ Fdx' A --- A dz"™).
From Lemma 2.5.3, it follows that
d (dec1 ARRRWA dx") =0 modC', ...,C™ dC",... ,dC™. (5.2)

This means that Ir is in fact a differential ideal. Our aim is to look for an n-

dimensional integral manifold of I, i.e. an immersion
$:U" — JH (U™, V™),

such that ®*Ir = 0 and ®*(dz! A --+ A dz™) # 0. Such an immersion obviously
satisfies items (1) and (3) in Theorem 5.2.1. Item (2) in the theorem is seen to be

satisfied if we recall that
0=®*(Fdax' A--- Ada™) = (P*F)®*(da* A -+ - A da™)

implies that ®*F = 0, using item (3). Therefore, from Theorem 5.2.1 we obtain the

following:



Theorem 5.3.1. With I defined as above corresponding to the PDFE in (5.1), sup-

pose the immersion
.U — JHU", V™),

is an n-dimensional integral manifold of Iy such that ®*(dz' A---Adz™) # 0. Then
O(U™) = jLf(U™) for some smooth solution map f : U" — V™ of the PDE in
(5.1).

We now show in the following theorem that the first order quasilinear nature of

our PDE means the n-form Fdz' A --- A da™ can be simplified somewhat so that,

modolo C',...,C™, it does not depend on any of the first derivative coordinates
1 1 m m
Zl ) ) Zna ) Zl ) ) Zn .

Theorem 5.3.2.
Ip = (C’l,...,Cm,dCl,...,de,K>,
where

K = (f11d21+---+f1mdzm)/\dx2/\---/\da:”+...
+dzt Ao AdETEA (fnlalz1 +---+fnmdzm)

— kdz' A -+ Ada™,
Proof. We have that

Fdz' A Nda" = {(fuz + -+ fazy) + ..

+ (frm2™ + -+ famz™) — kYot A A da™.
Now for any given 1 <i<nand 1 < j <m (no sum on i or j),

fijzgdxl A---ANdx" = fijdib'l JANRIEIRIVAN da’,‘iil A Zida’;l A dxiJrl A - Adx™
= fijdlb'l A---AdxEA (duj — Cj) Ade LA - Ade"

= fidz' A Ad  Adu? AdaTUA - Ada™ mod CF)

where in the second line we have used that dz/ —C7 = Z/da'+- - +2/dz'+- - +2z] da".



Therefore,

Fdz' A+ Ada™ = {(fudz' Ada® A--- Ada™) + ..
+ (farda" Ao Ada™ P AdE) L
+ {(fimd2™ Ndz® A= Ada") + ...
+ (famdz" Ao Ada" P AdZ™)}

— kdz' A+ Adz™ mod C',...,C™.
We can collect terms, thus yielding

Fdz' A---Nda" = (f11d21+---+f1mdzm)/\d:vZ/\---/\dx”+...
+dzt A ANdsTEA (fnldzl+---+fnmdzm)
—kdz' Ao Adz™ mod CY,...,C™,

=K modC,....C™.
To complete the proof, since
K=Fdz'AN---ANdz" modC',...,C™,
using (5.2) we obtain

dKEd(Fdxl/\---/\dx”) mod C*,...,C™,
=0 modC',...,C™ dC"', ... ,dC™.

Hence the result. O

We define
I+ = (C’l, ..,0™ dCH . L, dC™ K).

Once again we follow the notation introduced following Theorem 4.2.1 in Chap-
ter 4 and use I3 as brief way of referring to the particular choice of generators
ct,...,Cmdct, ..., dC™ K.

Theorem 5.3.2 now means that the task of determining solutions of (5.1) becomes
that of finding n-dimensional integral manifolds of /7. Note that the n-form K in
the ideal contains no first order derivative coordinates. In the following section we

use this feature of K to show how a solvable structure of symmetries can further



simplify K, so that we obtain an algorithmic approach based on symmetry for
extracting local solutions of single first order quasilinear PDEs of the form in (5.1).
We end this introductory section with an obvious result that uses Theorems 5.2.1

and 5.3.2:
Theorem 5.3.3. Let
o:U" —U"x V™,
be an immersion such that ®*K = 0 and ®*(dzx' A --- A dz™) # 0. Then ®(U") =
72 f(U™) for some solution map f: U™ — V™ of the PDE in (5.1).

Theorem 5.3.3 means that if the pull-back of a rank n immersion mapping into
the graph space satisfies the transverse condition and annihilates K, then this is
enough to guarantee in this case that the 1-jet j'f is an n-dimensional integral
manifold of the differential ideal I3 (and hence a local solution of PDE in (5.3)).
This is because K contains no first order derivative coordinates and all the contact

forms are automatically annihilated.

5.4 Quasilinear PDEs of one dependent variable

This section addresses single quasilinear PDEs of one dependent variable of the form

ou ou
flﬁﬂL"'ﬂLfn%—k: (5.3)

where fi,..., fo, k € C®(U™ x V). For this PDE, the corresponding K in I is
K = (fidz" Ada® A+ Nda™) 4 -+ (fuda' Ao AdzT Adz')
— kdz' Ao Ada”,
Now K is an n-form in the (n+ 1)-dimensional space U™ x V''. From Corollary 3.3.2
and Theorem 3.3.3, respectively, it follows that K is decomposable and dK = 0 mod

K. Suppose we are given n non-trivial symmetries X1,..., X, € X(U" x V') such

that
Ly K = MK,
Lx, (XpuK)=X\_1(Xn1K),

Lx,(Xoa .. .0 X0 K)=XM(Xog ... 0X,uK),



for some A, ..., \, € C®(U" x V). Applying Theorem 3.2.14 in conjunction with
Corollary 3.2.12, we can explicitly compute some 7°,...,y* € C®(U" x V') so that

K =%y A - A dy™.
Now consider the n-dimensional regular submanifold of U™ x V' described by

H(y',...,7") =0, (5.4)

n

where H is any non-constant smooth function of ~' ... 7" It is assumed H is

constant rank one on U” x V'. Then

OH

oOH .

dH = 9
where we use = to mean equality on tangent space of the submanifold of U™ x V!
described by (5.4). We must have that at each point of this submanifold there exists
some 1 < p < n such that

o

57 70

Otherwise H is independent of all ¥',... 4™ at some point, but it is assumed H is

constant rank one. Now from inserting (5.5),

0=dHAdY' A+ Ady" " Ndy?PT Ao Ady”

OH
= Wdfyp/\dvl/\---/\dvp_l/\dfy”“/\---/\dfy”.
Y

This implies that K = 0 on the submanifold described by equation (5.4).
If at some point in U™ x V! we have

oOH
a7 0

then by the implicit function theorem, we can write in some neighbourhood of the

point
2 =H(z', ... "), (5.6)

for some smooth H. Therefore j°H K = 0 (and hence j'H Iz = 0). Since
GOH (dz' A --- A dz™) # 0, Theorem 5.3.3 means that equation (5.6) then repre-
sents a local solution of the quasilinear PDE in (5.3).

We summarise the above result in the following theorem:



Theorem 5.4.1. Suppose we have a first order quasilinear PDE of the form

ou ou
flﬁ“""'“"fn%—ka (5.7)

for some fi,..., fu k € C®(U™ x V'), with the corresponding K in I+ as

K = (fldzl/\de/\---/\dx”)+---+(fndxl/\---/\dx”’l/\dzl)

— kdz' A - Adax™.
If there exist n non-trivial symmetries Xy, ..., X, € X(U" x V') such that

Lx, K = \K,

Lx, (XpuK)=X\_1(Xn1K),

Lx,(Xos .. .0 X K) = M(Xoa .. .0 X K),

for some Ay, ..., A\, € C®(U™ x V1), then there exist some functionally independent

Yoo e C°(U™ x V1) so that
K=K(Xy,...,X)dy" A+ Ady™

Furthermore, any reqular submanifold of U™ x V' given by

for any smooth H such that % # 0 on some neighbourhood, is then the graph space

coordinate representation of a local solution of the PDE in (5.7).

Remark. Since K is decomposable and closed modulo itself, from Corollary 3.2.12
and Theorem 2.3.11, we may use DIMSYM to generate the required symmetries in

Theorem 5.4.1 by simply searching for a solvable symmetry structure for ker(K).

Before we show how Theorem 5.4.1 may be used in an example, we make an
interesting comparison between the work in Chapter 4 applied to first order ODEs
and this theorem in the situation when there is one independent variable. Under
such circumstances, the equations in (4.1) and (5.7) are both linear in their deriva-

tives. Consequently, it is not hard to see that Theorems 4.2.1 and 5.3.2 become



very similar. In fact, for first order differential equations linear in their derivatives,
the symmetry approach given in Theorems 4.4.1 using the one-form ) is indeed a
special case of the more general symmetry technique contained in Theorem 5.4.1
that involves the n-form K.

Next, we illustrate Theorem 5.4.1 with the following example:

Example 5.4.2. Consider the following first order quasilinear PDE of two inde-

pendent variables and one dependent variable:

0 0
xl—a; — xz—axu? = 2% exp(u). (5.8)
Our corresponding two-form K on U? x V' is

K = z'dz' ANd2® + 2°dz" Ada' — 2 exp(2')dat A da®.

Using DIMSYM we find that

is a non-trivial symmetry of K. Then with
Xou K = —dz' — exp(z')da?,

it is easy to see that

is a non-trivial symmetry of Xy1 K. Hence from Theorem 3.2.14 and Corollary 3.2.12,

XQJK

= —d(2* - — 5.9
A (e - e(—2), (5.9
and
XK 1 1,71 271
————— = —x exp(—2)dz + z°dx,
Xp X K p(=7) (5.10)
= d(z'2”) — z'd (2* — exp(—2")).
Therefore

K = K(X1, X,)d (¢° — exp(—2")) Ad(z'2?).



One can then say that
H (:le?, r? — exp(—zl)) =0,

is, in implicit form in terms of the graph space coordinates, a local solution of (5.8)

for any suitable smooth H. Thus

u=—In|z* —(z'2?)

gives local solutions for arbitrary choice of smooth [ that is a function of x'az?.

By way of Example 5.4.2, we make the following observations: Firstly, if deduc-
ing (5.10) is not possible by simple inspection, then one can perform a coordinate
transformation by making the function found in (5.9) a coordinate. Then (5.10) will
take on a simpler appearance. In difficult problems, this is generally the preferred
option, but quite often involves tedious algebraic manipulations.

Secondly, in determining (5.10), one is tempted to write
—z'exp(—z")dz" + 2’dz' = dg — hd (2° — exp(—2")) , (5.11)

for some choice of g, h € C®(U? x V'). Then once we know h, finding g becomes a
simple matter. Examining this further, taking the exterior derivative of both sides

of (5.11) gives
exp(—z")dz' Ada' — da' A da? = dh A do® — exp(—2")dz' A dh.
Expanding this yields

oh
exp(—2")dz' Ada' — dat A da? = @dxl A dz®
oh

oh oh
1 2 1 1 1 1 1 2
+ 91 dz" N dx® — exp(—z )6a:1dz Adx —exp(—z )adeZ A dx®.

Therefore h must satisfy the following system of first order linear PDEs:

oh

ot

oh oh
= —1, eXp(—Zl)w = ﬁ (512)

All we need is one (possibly trivial) solution of (5.12) in order to obtain local so-

lutions of (5.8). Fortunately for this particular example it is easy to see that any

smooth h such that dh = —dz! mod d (z? — exp(—21)) is a local solution of (5.12),



however in general we will not be in this fortunate position. Hence we conclude that
the first idea of performing a coordinate transformation remains the best option.

While the symmetries used in Theorem 5.4.1 do not have to be Lie point sym-
metries, there exists a relationship between Lie point symmetries and symmetries
of K that we explore below.

First, we introduce the following definition:

Definition 5.4.3. A vector field X € X(U"x V') is said to be a Lie point symmetry
of the first order quasilinear PDE in (5.3) if

whenever F = 0, where X() is the first prolongation of X.
Using this we obtain the following:

Theorem 5.4.4. Given a first order quasilinear PDE of the form in (5.3), a vector
field X € X(U™ x V') is a symmetry of its corresponding n-form K if and only if
X is a Lie point symmetry of the PDE.

Proof. First suppose X € X(U™ x V') is a symmetry of K corresponding to the
quasilinear PDE in (5.3), i.e. LxK = MK for some A € C®(U" x V1). Since K

does not contain any first derivative coordinates, we can write
LyoyK = \K, (5.13)

with (5.13) defined on the first jet bundle J'(U™,V!). Now K = Fdz' A -+ A dz"

mod C*, so
Ly (Fdz' A+ ANda" ANC' = K AC') = 0. (5.14)

It is well-known (and not hard to show) that for any point symmetry, the Lie
derivative of any first order contact form with respect to the first prolongation
of the symmetry is a contact form [45]. So putting £y, C' = pC! for some p €
C>(JY (U™, V1)), we have from (5.14),

XO(F)dz" A+~ Adz™ ANCH + FLyoy (da' A -+ Adz™ ACP)

(5.15)
= (A +p)KAC



Now Fdz'A---Adx" ANCt = KACY and da* A---Adaz" ANCH = dz' A---Adx™ Adzt.

Hence
XD(F)dz' A ANda™ A dzt =0,

whenever F' = 0. This implies that X (F) = 0 whenever F = 0.
Conversely, suppose that X is a Lie point symmetry of the quasilinear PDE in

(5.3), i.e.
XD(F) =0, (5.16)
whenever ' = (. Now

EX(I) (K/\Ol) = ﬁx(l) (Fdl"l A Adx” /\Ol),
= XW(F)dat A--- Ada"™ A C

+ FLxw (dz' A+ Ada™ ACH).
Therefore from (5.16),
Ly (K VAN Cl) =0,

whenever F' = 0. Expanding, and using the fact that £y C!' = pC' for some
p € C®(JH(U™ V1)), we obtain

(LxiyK)ANC'+ pK AC' =0,
whenever F' = 0. Then using K A C' = Fdax' A--- Adx™ A C!, we find
(LxanK) A C' = 0,
whenever F' = (0. We also have
(LxwyK)ACH = Ldz* A -+ Ada™ A d2t, (5.17)

for some L € C*(J (U™, V1)) because (5.13) implies £y, K is an n-form expressed
entirely in terms of the n 4+ 1 coordinates of the graph space. Furthermore, from
the definition of C'' we obtain that L is linear in z{ and 2. Since (5.17) is zero

whenever F' = 0 and F is also linear in 2{ and 23, we can therefore say that L = hF

for some h € C®°(U" x V). Since hFdx' A...dx" ANdz' = hK A C', we may write

LyoK =hK modC.



Hence
LxK =hK modC!'.

As h is expressed only in terms of coordinates of the graph space, we therefore have

LxK =hK. 0
Theorem 5.4.4 has the following corollary:

Corollary 5.4.5. A vector field X € X(U"x V1) is a Lie point symmetry of the first
order quasilinear PDE in (5.3) if and only if XU is a symmetry of its corresponding
I+.

5.5 First order non-linear PDEs

In this section we examine two approaches to solving single first order non-linear
PDEs of one dependent variable and two independent variables. The first involves
using Vessiot theory while the second employs a simpler technique for the special
case when the PDE does not explicitly involve the dependent variable. We begin

with the former.

5.5.1 Vessiot theory

This section summarises the main points of Vessiot’s theory [128, 129, 130] of
differential equations, as reviewed by Fackerell [52], Stormark [119] and Vassil-
iou [124, 126].

Consider the system of p PDEs of n independent and m dependent variables

F,(z' o/ ul ol .. ul ) =0, v=1,...,p, (5.18)
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where the n z* and m u’ are, respectively, the independent and dependent variables.
The subscripts 1 < i; < --- < i, < n are used to specify partial derivatives of u/,
where k is the maximum order of the system.

In the x-th jet bundle J*(U™, V™) with coordinates z*, 27, z{l, z{liz, . szlmim we

may express a solution of the system of PDEs above as a regular n-dimensional

submanifold that



i j

1. Satisfies the relations F, (¢, 27, 25 iy s %) =0, forallv =1, p,

2. Satisfies the transverse requirement,

3. Has a tangent space that annihilates the xk-th order contact system generated

by (with sum):
OV = d — z{ldxil,

I g J iz
C;, ==dz; — 2 ,;,dx"”,

J e ] J i3
Oi1i2 T dziliz - ZiliQigd‘,'U )

c? = d) — L date,

i1 i1 i1ein

We denote the contact system by Q%(U™, V™), that includes all 1 < j < m.

From Corollary 2.4.11, if ® : U" — J®(U™, V™) is any immersion whose pull-
back annihilates the contact system Q°(U™, V™), and satisfies the transverse condi-
tion ®*(dx' A---Adz™) # 0, then ®(U™) is the image of some s-jet. To incorporate
the system of PDEs into the contact system, we introduce a rank p immersion ¢
mapping onto the regular submanifold of the x-th jet bundle described by the PDEs
{F, =0:v=1,..,p}. We then pull-back the contact forms in Q*(U", V™) by ®p.
The Vessiot distribution is then defined as the vector field dual of the pulled-back
contact system, i.e. (®p*QF(U",V™))+. Using the Vessiot distribution, our task
is to look for some immersion ® of rank n that maps into the image of ®r and
annihilates the contact system, while at the same time being transverse.

We illustrate with a simple example:

Example 5.5.1. Suppose we have a single PDE of two dependent variables u!, u?

and two independent variables z!, 22 given by
1 gt o2 01,02 01,2 01,2 1 1 2 2 2
Uy = F27, 2%, w, u”, uy, uy, Uy, Uy, Uy, Uy, Uiy, Uy, Ug)- (5.19)

Then a local solution of the PDE is a two-dimensional regular submanifold of
the thirteen-dimensional locus of J?(U?, V?) described by the map ®p : ¥ —
J2(U?,V?), where

L1 o2 1.2 1.2 .1 .2 .1 .1 .2 .2 .2
Dp : (f YU, 2, % 7zlv217227z2721172127211?2127222)

1.2 .1 .2 .1 .2 .1 .2 .1 .1 2 2 .2
— (27,27, 27,27, 21, 27, %3, 2y, 2115 2125 B 211, 212, %32) -



Thus from the discussion immediately before this example, the image of a rank two
immersion mapping into ®z(X) is the 2-jet image of a local solution map of the
PDE if it annihilates the contact system and the transverse condition is satisfied.

Explicitly,

Q*(U?,V?) = Sp{dz" — zida' — zyda?, d2* — 2ldx' — z5da?,
dz — 2, dat — ziyda?, d2? — 22 dat — 22,da?,

1 1 1 1 2 2 2 1 2 2

Pulling this back onto the regular submanifold of J?(U?, V?) described by (5.19),

we get

OrO* (U, V?) = Sp{dz" — z{dx' — zyda?, d2* — 2ida' — z5da?,
11 g0 1 g2 32 2 g1 2 g2

dzy — 2i,dxt — Fda?, dzs — 22,dat — z5,dx*}.

Therefore the Vessiot distribution is

(@5Q*(U?, VQ))L = Sp{% + zi% + zf% + Zha% + zflaiz% + Z%Z%
—l—zQii zliszQiﬂLzlisz?i
20227022 0zt 7022 TR0l T2
0 o 0 0 0 0 0
r }

2
+ 250
T T 225951 991 77,2 79,2 9.2
025 025" 0ziy 0z 0z, 0ziy 023

Given a Vessiot distribution for some arbitrary system of p PDEs of n indepen-
dent and m dependent variables, we look for an n-dimensional Frobenius integrable
subdistribution that satisfies the transverse condition. This is done in stages by gen-
erating a finite sequence of higher dimensional subdistributions, each containing the
previous, beginning with dimensional one and ending at dimension n. We describe

this below:

Definition 5.5.2. For a vector field distribution D on a smooth manifold M, the
submodule E of D is said to be an involution if [X,Y] = 0 mod D for all X|Y € E.

If E is Frobenius integrable, then it is an involution. Moreover, if E is spanned
by a single vector field, say for example representing the solution curve an ordinary

differential equation field, then it is trivially an involution.



Given some b-dimensional Vessiot distribution Dr = Sp{Xj, ..., X} in X(J*(U",
V™)) corresponding to some system of PDEs in (5.18), the process of generating an
n-dimensional submanifold involves first setting up a chain of lower dimensional in-
volutions up to dimension n, where in each step, the next involution is contained in
the previous. Beginning with one-dimensional involutions, since every vector field
in D generates a one-dimensional involution, we let the distribution spanned by
Y; := a¥ X} generate our involution, where the a¥ are any smooth functions defined
on the (dim(J®(U™, V™)) — p)-dimensional regular submanifold of J*(U™, V™) de-
scribed by the PDEs. Given any Y7, we typically distinguish between two types of
involutions, namely those regular and those singular. In determining which of the
two our one-dimensional involution may be, a two-dimensional involution containing
it is constructed. We do this by first defining Y, := ak X} for some smooth a%. Then
the requirement that [Y7,Y3] = 0 mod Dy generates a system of linear algebraic

equations, which in matrix form is

M(Y;)-az =0, (5.20)
where
ay
Ay =
as

Define s := rank(M(Y])). In general, over all involutions of dimension one, M(Y})
will have a maximal rank s;. If rank(M(Y])) = s;, then the one-dimensional invo-
lution is said to be reqular. If, however, rank(M(Y7)) < s, then we say that the
involution is singular. If rank(M(Y7)) = 0, then [Y7,Y3] € Dy for all Y, and here we
can say further that the singular one-dimensional involution is characteristic. Once
we have a Y] that generates some one-dimensional involution, we then look for all
possible two-dimensional involutions of D containing Y7 by solving (5.20) for some
Y.

The process continues until we have an n-dimensional involution that may be
regular or singular. To illustrate further, suppose we are give some j-dimensional
involution and wish to find a (j + 1)-dimensional involution containing it. First

define Yj;; = a;?HXk. Then the requirement that [Y;,Y;11] = 0 mod Dp for all



t =1,...,7 generates a system of linear algebraic equations, which in matrix form

is
M(Yy,...,Y}) ajq =0,
where
@i
Aj+1 1= :
as'ﬂ
Once again define s := rank(M(Y7,...,Y;)). Over all involutions of dimension j,

let s; be the maximal rank of the matrix. If s = s;, the j-dimensional involution is
regular. If s < s;, then the involution is singular. If s = 0, then [Y;, Y] € Dp for
all7 =1,...,7 and the singular involution is characteristic.

A j-dimensional involution is regular if the rank of the matrix used to deter-
mine all (j + 1)-dimensional involutions containing it is mazimised. In the subset
of the Grassmann bundle of j-planes consisting of all j-dimensional involutions of
Dp, those which are regular form a dense open subset of this space. Therefore all
j-dimensional involutions of Dy in some neighbourhood of a regular j-dimensional
involution are also regular. For a characteristic j-dimensional involution, any choice
of vector field in Dp that is linearly independent of any vector field in the involution
will generate a singular (and not necessarily characteristic) (j+ 1)-dimensional invo-
lution containing the characteristic involution. If at some stage during the process
of building up a chain of higher dimensional involutions we have a singular subin-
volution, then our n-dimensional involution at the end of the process will also be
singular.

For any Vessiot distribution, the maximal dimension of the regular involutions
in the system is defined to be the genus g. In many situations, g will be greater than
or equal to the dimension of the desired involutions for the particular PDE problem
at hand, which will be n, the number of independent variables. Problems arise when
we are looking for n-dimensional involutions when g < n. One way around this is to
first find a singular g-dimensional involution. The rank of M(Y7,...,Y}) is then not
at a maximum, so it will be possible to find a singular (g + 1)-dimensional involution

containing the g-dimensional involution.



Once we have an n-dimensional regular or singular involution, the final require-
ment that the distribution be Frobenius integrable will then give us a system of first
order quasilinear PDEs where the arbitrary functions are the dependent variables.

We take up this issue in the next section.

5.5.2 Application of Vessiot theory to first order PDEs

In this section we use Vessiot theory to examine symmetry solutions of single first
order PDEs of one dependent variable and two independent variables. Suppose then

that we are given a first order PDE of the form

ou L 2 Ou

for some smooth function F. On J'(U? V') with coordinates x', 2%, z', 2, z3, our

first order contact system is generated by the element
Ct=dz' — zida' — 2yda?.
Restricted to the regular submanifold M* C J*(U?%, V') described by
2 = F(zt, 2%, 2, 1),

L 21 is generated by

the contact system on M* with coordinates z!, 22, z
C' = dz' — z{dz' — Fda?®.

The Vessiot distribution D is generated by

o .0
K= g T
0 0
Xy = — 4+ L
2 Ox? + oz’
0

X3 = .
57 92!

In looking for a one-dimensional involution of Dy which is regular, let
Y] = df Xy, Yy := ak X

We have the commutator relations

0 0 0

[X17X2] — XI(F)ﬁa [X17X3] — _ﬁa [X27X3] = _X3(F)ﬁa



with all others zero. Demanding that [Y],Y5] = 0 mod Dy means
(aja3 — ajay) Xi(F) + (afa3 — aja}) X3(F) — ajaj + ajay = 0.

In matrix form,

(—a%Xl(F) +a? alX((F)+a3X3(F) —a?X3(F) — a%) la2| =0 (5.21)
aj
We choose a one-dimensional involution spanned by Y} by letting a} = 1 and a? = 0.

Then

(a7 X\(F) +alXa(F) 1)
is rank one, and hence in a neighbourhood of one-dimensional involutions about
Sp{Y1}, the matrix on the left in (5.21) remains rank one. Therefore Sp{Y,} is a
regular involution.

In looking for a two-dimensional involution satisfying the transverse condition,

we let aj = 0 and a3 = 1 so that (5.21) holds with
Vs XitdbXs Vo= Xt (Xu(F) +alXo(F)X,,

thus generating a two-dimensional involution for arbitrary a3. To see that the invo-
lution is regular, let Y3 = a% X. Requiring that [}, Y3] = 0 mod Dp and [Ys, Y3] = 0

mod Dr means that

ai’ Xl(F)‘i‘ai’Xg(F) -1 ai -0
a3 X3(F) (Xi(F)+alX3(F)) X3(F) —X3(F) az |

where the matrix on the left is of rank one. The space of all possible Y3 must contain
Y] and Y5, so it follows that in a neighbourhood of the two-dimensional involution
Sp{Y1,Y>}, this rank one condition must be maintained by dimension. Therefore
Sp{Y1, Y5} is a regular involution.

Given a two-dimensional involution spanned by Y; and Y5, we finally require that
3

it be Frobenius integrable. We introduce the condition [Y7, Y5] = 0 which forces af

to satisfy the following first order quasilinear PDE:

8& da? da? da’

= X (X1(F)) + ai X, (X3(F)) + a} X5 (X1(F)) + (a})? X3 (X3(F))

+X1(F)



where a? is some function of x1, x5, 2!, 21. The problem is now reduced to that of
finding a solution of a first order quasilinear PDE.

We can summarise the above in the following theorem:

Theorem 5.5.3. Consider the first order PDE

ou ou

_ 1 .2
@—F<x,x,u,@>, (522)

for smooth F. On the reqular submanifold of J'(U?, V') described by the equation

2 = F(xt, 22,24, 21), let
0 L 0
Xi= g T ag
0 %)
Xy =—+F
2= g T
%)
X3 i=—
7T 02!

Define the vector fields
}/1 = Xl—i—a?Xg, Y'Q = X2+(X1(F)+G?X3(F))X3,

with a3 satisfying the first order quasilinear PDE

da?  Oa? oa? oa’
— X3(F) == + =L 4 (F — 21 X3(F)) == + X1 (F)—
s(F)gr + g + (1= 21X(F) 50+ X )82% (5.23)

= X, (X1(F)) + a} X1 (X3(F)) + a} X5 (X1(F)) + (a7)* X5 (X3(F)),

where a3 is some smooth function of x1,xe, 2', 21. Then Sp{Y1, Y3} generates a two-

dimensional reqular submanifold of J'(U?, V') that is the image of the 1-jet of some
local solution of the PDE in (5.22).

Remark 1. Of course, solving (5.23) using Theorem 5.4.1 will generally yield a3 in
terms of an arbitrary function which typically cannot be left arbitrary when inte-

grating Sp{Y1, Y2}

Remark 2. In normal applications, Theorem 5.5.3 would be used if (5.22) is non-
linear. However it is obvious that the theorem still holds if the PDE is linear or
quasilinear. For such situations, Theorem 5.4.1 clearly provides a simpler alterna-

tive.



In spite of the fact that our resulting first order quasilinear PDE appears much
more complicated than the original (suppose non-linear) PDE, the situation is some-
what simpler because it may be solved using the symmetry technique in Theo-
rem 5.4.1 to generate local solutions of (5.23) depending on an arbitrary function.
Once we have chosen a suitable a?, Theorem 3.2.13 for integrating Frobenius inte-
grable distributions may then be applied to the vector field distribution spanned by
Y, and Y5.

On inspection of the manner in which Theorem 5.5.3 was established, one would
like to generalise the result to single first order non-linear PDE of n > 2 independent
variables. However the integrability conditions of the Vessiot distribution generates
more than one first order quasilinear PDE, and the present technique on quasilinear
PDESs described in Section 5.4 of this chapter does not address this situation.

We close this section with the following example:

Example 5.5.4. Consider the following non-linear PDE:
ou Ou
U=———:.
ozl Ox?

On the regular submanifold of some suitably chosen J'(U? V') specified by

(5.24)

Zl

-

o=
<1

with coordinates z', 22, 2!, 2] (where 2] # 0), the Vessiot distribution is generated

by

0 , 0
M= TG
o 2to
Xo=—+——,
27T 002 2oz
0
Xo = —
57 92!
A two-dimensional involution satisfying the transverse condition is generated by
0 0 0
Vi=—+2—+f=7,
TR faz%

1 1
e st ()

dx2 ' 2l oz (21)2) 02}’
where f is some arbitrary smooth function of 2!, 22, 2!, z{. The integrability condi-

tion means that f must satisfy

2 of  of 2218_f of _i<2zlf _1>

— — = 5.25
(21)202" 022 2} 920 021 2l \(2])? (5:25)




At this point we would use Theorem 5.4.1 and DIMSYM to find suitable f, then
integrate the distribution using Theorem 3.2.13. Quite often however, a simple
observation may yield a trivial solution for f that gives a non-trivial solution to the
original non-linear PDE. For example, let f = 0. Then integrating the resulting

distribution results in the rather obvious solution to (5.24),
u=(c'+z")(c®+ 2?),

where ¢!, ¢? are arbitrary constants. We leave it to the reader to generate local
solutions of (5.25) using Theorem 5.4.1. For now though, by observing from (5.25)
that there exists a solution of f that is only a function of z! and z{, we have found

another suitable f to be

__ =)
f= AWV +2)

This gives
G
(Ve +2) 07
o 210 1 0
Yo=—+—— 1— — ) —
2 8x2+z%821+< \/z_1+2> 0z1’

as generators for our Frobenius integrable distribution. It has two obvious commut-

o
Yi=gatAaga

ing symmetries which are

They make it easier to integrate our distribution, as shown in Theorem 3.2.16 (recall
the remark after the theorem discussing differential two-forms). Following Theo-

rem 3.2.13 we can then integrate the distribution to give

Zl+2\/z_1_ 1 1 (\/Z_1+2)Z%_ 2 _ 2

7 =c,

o e Ve

where ¢!, ¢? are arbitrary constant functions. Finally, eliminating 2} and replacing

2! with u yields the following local solution to the original non-linear PDE in (5.24):

u= (j:\/(xl +c) (a2 4 2) — 2)2.



5.6 A class of first order non-linear PDEs

In the previous section it was shown that local solutions of a given first order non-
linear PDE of one dependent variable and two independent variables could be found
by generating a corresponding Vessiot distribution whose integrability condition was
in the form of a first order quasilinear PDE that could be solved using Theorem 5.4.1.
The major disadvantage of generating local solutions of such non-linear PDEs in
this way is that even for basic examples, the resulting first order quasilinear PDE is
usually quite complicated and of four independent variables, that requires a solvable
structure of four symmetries to solve. In addition, a further solvable structure
of two symmetries is then required to integrate the resulting Frobenius integrable
distribution.

In this section we present a simpler alternative to the Vessiot integration scheme
for solving single first order non-linear PDEs that also generates a corresponding
first order quasilinear PDE, but which is of only two independent variables requiring
a single solvable structure of just two symmetries. Unfortunately, the disadvantage
here is that this technique can only be applied to first order PDEs of two independent
variables and one dependent variable that do not depend on the dependent variable.

Suppose then, that our PDE is of the form
ou L o Ou

2

for smooth F', where z', 22 are the independent variables, and u is the dependent

variable. This gives the corresponding fundamental ideal

Ip = (dz" — z{dz" — 2yda®, dz{ Nda' + dzy A da?, (25 — F) da' A da?),

where F' is now a function of z!, 2%, z{.

The main result of this section is the following theorem:

Theorem 5.6.1. Consider the first order PDE

Ou _ F <x1,x2 3u) , (5.27)

Ox? e
for smooth F. In terms of coordinates of J'(U?, V'), set z{ = f(z',2?) and 23 =
F(z', 22, f). Then any smooth solution f(x',z?) of the quasilinear PDE

OF of  Of OF
Of Ozt a2 T gl (5:28)




has the property that zidx' + zidz? = dg for some g € C®(U?). Moreover, the
expression u = g is a local solution of the PDE in (5.27).

Proof. Let f € C*(U?) be any function. Using (5.27), set the following:
2 = f(at,2?), 2 = F(z', 2%, f). (5.29)
We have
Ip = (C",dC", (25 — F)dz"' A dz?),
where C' := dz' — zldx' — z)dx?, and wish to look for conditions on f such that
—dC" = dz} Ada' + dzy A da? = 0. (5.30)

Supposing this, we obtain by inserting (5.29) into (5.30),
of OF OF Of
S N e el i
g2 Nt <8x1 tof ot

Now if our f satisfies the PDE in (5.28), then from (5.31),

) dz' A dz® = 0. (5.31)

dzt A dat + dz A da® =0,
so zidz' + z3dx? is closed. Therefore,
zidat + zyda® = dg,
for some g € C®(U?). If we now set 2! = g, then
C':=dz' — zjda" — zyd2z® = 0.
Therefore the immersion
jlg: U? — JH(U?, VY,

maps onto the two-dimensional regular submanifold of J'(U? V1) defined by the
equations z! = ¢, 21 = f and z} = F, and has the property that j'¢"Ir = 0. Hence

the expression u = g is a local solution of (5.26). O

Remark. The second remark for Theorem 5.5.3 is valid here. In addition, since the
PDE in (5.27) is independent of w, it is obvious that 2 is a symmetry of (5.27), and

so all local solutions may have the addition of an arbitrary constant.

Finally, we apply Theorem 5.6.1 to an example:



Example 5.6.2. Consider the following first order non-linear PDE:

u _ ( Ou )_1. (5.32)

ox? — \ Ozt
Applying Theorem 5.6.1, let f € C°°(U?) be non-zero on U?, and set
1
£ = fa Ry = T
1 2 f
so that

1
dzt Adat +dzy Ada® =d <fdx1 + ?dﬁ) ,
1
P

= — <iﬁ + ﬁ) dxt A da?.
x

In order to solve for f in the first order quasilinear PDE

=df Ndx' — —df A d2?,

1 of of
ot T 57 =0 (5.33)

we will use Theorem 5.4.1 in Section 5.4. The corresponding two-form K is
1 2
K =df Ndx —ﬁdf/\dx .

The vector field

0
X, = —
> dxt
is a non-trivial symmetry of K, and
0
X, = —
15 7

is a non-trivial symmetry of Xo1 K = —df. Then following Theorem 3.2.14 with
Corollary 3.2.12, we obtain that

szf/\d(a:l—;—z>.

Hence in implicit form,



is a local solution of (5.33) for any suitably defined smooth function G. Suppose we
choose G so that
2 2
ety 1 1T 1
S A s
for any constant function ¢!. Then

1— 22

f= 1 1

c—x

is a local solution of (5.33), assuming that we are in some neighbourhood where

(1 —2%)/(c' = x') > 0. Therefore,

1 1 — a2 " [ct — zt
2 =) ——— Zo = 4] ——.
2
! cl —gl’ 1 — 22
From Theorem 5.6.1, these expressions for zi and z! mean that
) 1 2

d (z{dz' + zyda*) = 0.

So a simple integration yields

zidat + zyda* = d (—2\/(01 —z)(1 - x2)> :

Putting

u=-2/(d )1 - 22),

then gives a local solution of the original non-linear PDE in (5.32). In fact,

u= =2/ =@ =)

is a local solution of the PDE for any appropriate choice of constant functions ¢!, ¢2.

Finally, if we suppose that

for some constant ¢®, then we may solve the quadratic equation
1'1f2—03f—1'2 :07

to give

A+ 4z z? + (3)?
2! '

f=




If we choose the positive option for f, and put

L A+ Arla? 4 (P)? L 2z!

zZ = 1 y 2o = )
2w A+ y/Axla? + (¢3)?

then one obtains

3 xl( dx'a? + () = ¢
11 g2 1,2 1 (3)2 4 C
zidr + zodx® = d | \/4x'a? + (c3) +2ln

z? ( 4atx? + (3)2 + ¢
S0
A |t ( data? 4 (c3)? — c3>

u=+/4z'z? + () + —In
2 x? ( drtz? + (3)? + c3>

is another local solution of the original non-linear PDE in (5.32).




Chapter 6

The Cauchy problem and

symmetry

6.1 Introduction

In this chapter we investigate the extent to which solvable symmetry structures can
assist in solving the Cauchy problem for Pfaffian systems. In the traditional ap-
proach, ordinary differential equation methods are used to solve the problem [128].
Our work looks to develop some computer algebra techniques using solvable symme-
try structures from DIMSYM, that avoid introducing any such differential equations.

The plan of this chapter is to first give a brief review of the typical Cauchy
problem for Pfaffian systems, as well as provide some preliminary results on solv-
able structures. Following this, two symmetry techniques for solving the Cauchy
problem are presented. The first deals with the special situation when we are given
a differential ideal that is generated by a single Pfaffian equation of rank one, while
the second looks at the more general situation when we have a differential ideal that
is generated by a finite collection of Pfaffian equations, each of constant and perhaps
different rank on the domain of definition. The second approach is an extension of
the first and is a little more sophisticated. We also provide a PDE example for each
of the two techniques presented.

Since our work in this chapter makes extensive use of Theorem 3.2.14, given
any solvable symmetry structure Xi,...,X,, for some Frobenius integrable vec-

tor field distribution D, we assume throughout that all vector fields in the sym-



metry structure are linearly independent, with X,, being a non-trivial symme-
try of D and so on down to X; being a non-trivial symmetry of the distribution
D ® Sp{Xs,...,X,,}. Furthermore, we assume ~!,..., 7™ are those found in The-
orem 3.2.14, and denote F(v*) as the ring of smooth functions of v!,..., ™. For
example, sin(y' — ™) € F(v*). Finally, as in previous chapters, if we are given a
differential ideal I, we denote its Cauchy characteristic space by A(I), and if we are
also given a list of generators for the space, we assume throughout that these are

linearly independent.

6.2 Background

Suppose we are given a differential ideal I defined on some open, convex neigh-
bourhood U™ C R" that is generated by a finite collection of linearly independent
differential one-forms in A'(U™). The Cauchy problem [54, 55] looks to extend a
¢-dimensional integral manifold of I to a (¢ + 1)-dimensional integral manifold. To
achieve this, we are given some Cauchy data, which is a one-to-one smooth map of

maximal rank
.U —U",

that satisfies ®*I = 0. We are also given a Cauchy characteristic vector field YV €
X(U™) of I that is transverse to ®. By transverse we mean in this case that on U™ it is
nowhere tangent to the image of ®. In dealing with PDE problems, we demand that
Y be transverse to ® with respect to an independence condition, which means that
the projections of the Cauchy data and Y onto the base manifold of the independent
variables are nowhere tangent.

The usual and most basic treatment of the Cauchy problem for Pfaffian systems

focuses on the following well-known theorem [54, 55, 119]:

Theorem 6.2.1. Let [ := (a',...,a?,da’, ... daP) for some linearly independent
o'y, aP € AY(U™) with Cauchy data given by the one-to-one immersion
o U —U",

that satisfies ®*I = 0, and let X € X(U™). An immersion © : U4 x U! — U"



defined by
O(u,t) 1= expg, (tX), (6.1)
s a solution to the Cauchy problem if and only if

1. X is a Cauchy characteristic vector field of I,
2. X s transverse to the Cauchy data,
3. ©U,0) =d(UY).

The standard notation given in (6.1) denotes the point in U™ at ¢ on the integral
curve given by X which passes through ®(u) when ¢ = 0. The map given by (6.1) is
typically found by solving a system of first order ODEs. In the remaining sections of

this chapter we examine how symmetry may be used to replace the need for solving

such ODEs.

6.3 Solvable structures revisited

This section contains several results that are basically a consequence of Theo-

rem 3.2.14.

Lemma 6.3.1. Let Q € A™(U") be decomposable with dQ = 0 mod . Suppose
there exists a solvable symmetry structure Xy, ..., Xy, € X(U™) for A((Q)), and let
Y € A((Q2)). Then

1. X;(v") =0 forall1 <i<j<m,

2. X;(v") =1 (no sum) for all 1 <i<m,
8 Y () =0 forall1 <i<m,

4. IV, X;hw' =0 forall1 <i<j<m.

Proof. From Theorem 3.2.14 {w',... , w™} is dual to {X,..., X,,}, and hence the
expression for w!' in (3.7) implies X;(v') = 0 for all j > 1. Now this result and
the expression for w? in (3.7) yields X;(7?) = 0 for all j > 2. It is clear that we
can continue in this way up to w™' to ultimately derive conclusion (1). Moreover,

conclusion (1) and the expression for w’ in (3.7) imply conclusion (2).



Now for any Y € A((Q2)), we have by the definition of w’ that V1w’ = 0 for each
1 <4 < m. Therefore from w' in (3.7) we obtain Y(y') = 0. Using this result,
the fact that Yiw? = 0, and w? in (3.7) then yields Y (v?) = 0. Continuing in this
fashion for all i up to m, we obtain conclusion (3).

Finally, it is not hard to see that the results in conclusions (1), (2) and (3) give
[V, Xjldy' =Y (X;(4) = X; (Y () =0,
for all 1 < i < j < m. Hence using each w' in (3.7) we get conclusion (4). O

Using Lemma 6.3.1 we obtain the following:

Theorem 6.3.2. Let Q € A™(U™) be decomposable with dQQ = 0 mod Q. Suppose
there exists a solvable symmetry structure Xy,..., X, € X(U™) for A((Q2)). Then
for any Y € A((Q2)), we have, modulo A({(Q?)),

D/a mel] = Y (mel

(
Y, Xpo] =Y (X2 (v™)
(

YV, Xi] =Y (X;(7*) X2 mod Xs,..., X,
(see the remark below for further details on this arrangement)

Proof. We begin with [V, X,,,_;]. Since {w!,...,w™} is dual to {Xi,..., X,,} and
A((Q)) @ Sp{Xy,...,X,,} spans the tangent space of U", we may write (with sum)

Y, X 1] = ([Y, X1 pw’) X; mod A((Q)).
Conclusion (4) in Lemma 6.3.1 then gives the simplification
Y, X)) = (Y, X pw™) X, mod A(()).

We note from (3.7) that w™ = dy™ mod w',...,w™ . This fact and conclusion (3)

in Lemma 6.3.1 then yields

Y, Xina] = ([, Xinalsdy™) X mod A((€2)),

Y (X1 (7™) X mod A((2)),



which proves the first result.

Following the same argument as before, but for [V, X,, 5], we obtain

Y, Xino] = ([Y, Xopa )1 ™) Xt 4+ (Y, Xppoosw™) X, mod A((Q2)),

(1Y, Xpah ™) X,y
(¥ X ala (097 = X (7)™ 1)) X mod A((9)),
=Y (Xn—2(7™ ") Xppet + Y (X2 (™)) X
— Y (Xn—2(7" 7)) Xima (0") X mod A((2)),
initially using the expressions for w™ ! and w™ in (3.7), and then several times each
of conclusions (4) and (3) in Lemma 6.3.1.

In a similar way to above, we can repeat the above process to eventually prove

the remaining m — 3 results in the theorem. O

Remark. The pattern in the expressions for [Y, X;| in the conclusion of the theo-
rem becomes obvious if we express, for example [V, X}, 4], modulo A({Q2)), in the

following form:

YV, Xon a] =V (X a(0™) X + Y (meﬁl(’ym_l)) X1

+Y (Xm—4 (f)/m_2)) Ym—2 +Y (Xm—4(f)/m_3)) Ym—37

X=Xt — Xmﬂ(’Ym)Yma

X2 = Xpmo — Xpo (" HX et — X2 (™) X s

Xz =Xz — Xpos(7" ) X o — Xones (7" H X et — Xones (™) X .
Lemma 6.3.3. Let Q € A™(U™) such that Q2 is decomposable and d2 =0 mod (2,

and let Xy,..., X, € X(U") be a solvable symmetry structure for A((Q2)). If we
define the vector fields X1,..., Xm by

me2 = me2 - Xm72(7m_1)ym71 - Xm72(7m)7m7 (62)



then {dv', ..., dy™} is dual to {X1,..., X}

Proof. We work by induction. From the definition of X, in (6.2) and conclusions
(1) and (2) in Lemma 6.3.1, it is obvious that X ,,(y™) = 1 and X,,(7/) = 0 for all
1< 7 <m.

Now let k£ be any integer such that 2 < k£ < m, and assume for each £k <[ < m
and 1 < p < m with p # [ that

Xi(v) =1, (6.3)
X,(7") = 0. (6.4)

We wish to show (6.3) and (6.4) hold for [ = k£ — 1. First suppose ¢ is any integer
such that k — 1 < ¢ < m. Consider X; ; in (6.2) operated on 79, i.e.

X1 (7)) = X (7)) = Xt (V)X (97) = -+ = X (V) Xy (1) — - 65)
— X1 (V") X (79).
Equation (6.3) then implies
N1 (7)) = X1 (V) X (1) = 0,
and from (6.4) all the other terms in (6.5) become zero. Thus X;_;(v%) = 0.
Now suppose ¢ = k — 1. The expression
Xim1(7) = Xpma (0) = Xpma () X (0) =+ = X ()X (09), - (6:6)

simplifies to give
X1 (V) = X (),

since (6.4) implies all the remaining terms in (6.6) vanish. Hence by using conclusion
(2) in Lemma 6.3.1 we obtain X;_;(v*1) =1.
Finally suppose ¢ is any integer such that 1 < ¢ < k— 1. Using (6.6) for such ¢,

and then inserting (6.4) leaves

X1 (77) = X (7).

Then from conclusion (1) in Lemma 6.3.1 we find that X;_;(7?) = 0. This completes
the induction. O



From the definitions of X1,..., X, in (6.2), we have the following corollary to
Theorem 6.3.2:

Corollary 6.3.4. Let Q € A™(U"™) be decomposable with d2 = 0 mod 2. Given
any solvable symmetry structure Xy, ..., X, € X(U™) for A((Q)), let Y € A(()).
Then with X1, ..., X, defined as in Lemma 6.3.3, we have, modulo A({Q)),

[Ya mel] =Y (mel 7m)

(r™))

YV, X o] =Y (Xno(V™) X + Y

Y, Xis] =Y (Xim—s(?¥™)) +Y
(

[Y,Xl] EY(X1(72)) YQ mod Yg,...,ym.

Using Corollary 6.3.4, we have the following major result:

Theorem 6.3.5. Let Q@ € A™(U"™) be decomposable with d2 = 0 mod . Given
any solvable symmetry structure Xy, ..., X,, € X(U™) for A((Q2)), let Y € A((2)).
Then with X1, ..., X, defined as in Lemma 6.3.3, we have for each 1 < i < m,
[Y, Xi] = 0 mod A((Q2)).

Proof. Instead of proving the result by a tedious induction, we simply examine the
first three [V YZ-] in descending order. Since X,, = X,, and X,, is a symmetry of
A((2)), it is obvious that

[V, X,,] =0 mod A((Q)). (6.7)
Next consider [Y, X,,_1]. By the definition of X,,_1,

[K Ym—l] = [K Xm—l - Xm—l(f)/m)ym]a

= [V, Xona] =V (X 1 (") X = X 1 (V) [V, X o).
Now using the expression for [V, X,, ;] in Corollary 6.3.4, we have that
Y, Xpni] = =X ()Y, X,
Then inserting (6.7) gives our second result, namely

[V, X 1] =0 mod A((Q)). (6.8)



Finally, we consider [V, X,, 5]. Once again by definition, and then inserting the

expression for [V, X, »| in Corollary 6.3.4, we get

[Ya Ym—?] = [Y; Xm—2 — Xm—?(f)/m_l)ym—l - Xm—Q(’Ym)Ym]a
=V, X = Y (X 2(0" ) X1 = ¥V (X2(v™) X
- meZ(’mel)[Y: mel] — X2 (Y)Y, Ym]a

= _Xm—2(7m_1)[ya Xno1] = Xna (Y)Y, X o).
Then using (6.7) and (6.8), we obtain
[V, X 2] =0 mod A((Q)).

At this point, it is easy to see how induction may be used to formally prove the

theorem. ]

6.4 The Cauchy problem for a one-form of rank
one

In this section we examine a symmetry technique for solving the Cauchy problem
for a differential ideal generated by a single one-form of constant rank one on U™. It
is well-known (and illustrated later in an example) that such an ideal can be gener-
ated from a single first order PDE of one dependent variable and two independent
variables by pulling back the first order contact form onto the regular submanifold
of the first jet bundle described by the PDE. In this space, the Cauchy characteristic
space is one-dimensional [119].

Before we present the main result, Theorem 6.4.11, we will need several prelim-
inary results, most of which also hold for differential one-forms of constant rank

higher than one.

Lemma 6.4.1. Let o € A'(U™) be of constant rankr > 1 on U™ and let Y € X(U™).
Then Y1 (da A a) =0 if and only if Y is a Cauchy characteristic vector field of the
differential ideal (o, dov).

Proof. Suppose that Y1 (da A o) =0 for some Y € X(U™). This implies

(Yada) Na+ (Yia)da = 0. (6.9)



The exterior product of (6.9) with « yields (YJ«a)da A a = 0, but since « is of rank
at least one, we must have da A a # 0. Therefore Yia = 0. Inserting this result
into (6.9) then gives that Yida = 0 mod «. Hence Y € A ((«,da)). Proving the

converse is obvious. O
The following lemma includes part of Lemma 6.4.1:

Lemma 6.4.2. Let a € A'(U") be of constant rank r > 1 on U™, and let Y €
A({a,dar)). Then for all 1 < p < r, Yi ((da)? Na) = 0, and in particular Y €
A({(da)" A ).

Proof. Suppose « is a one-form of constant rank » > 1 on U", and let YV €

A({a,da)). Then forall1 <p <,
Vi ((da)? Aa) = p(Yida) A (da)’ P Aa =0, (6.10)

since Yia =0 and Y.ida = 0 mod a.

Now if p = r, then from Theorem 3.5.3 we have that d ((da)” A @) = 0 mod
(da)” A ee. So from Theorem 2.3.11 it follows that ker ((da)” A a) = A({(da)” A v)).
Hence (6.10) implies Y € A({(da)" A ). O

Combining Lemmas 6.4.1 and 6.4.2 gives the following theorem for one-forms of

constant rank one:

Theorem 6.4.3. Let o € AY(U™) be of constant rank one on U". Then A({da A
a)) = A((a, day).

Also for one-forms of constant rank at least one, we have the following theorem:

Theorem 6.4.4. Let a« € AY(U™) be of constant rank r > 1 on U™, and suppose
A((av,de)) is of dimension q¢ > 1 generated by some Y1,...,Y, € X(U™). Then
A(((da)"ANa)) = Sp{Y1,.... Y, Ty, ..., s} for some s :=n—2r —q—1 vector fields
Ty,...,Ty € X(UM).

Proof. From Lemma 6.4.2 we get that A({(«, da)) C A({((da)” A «)). Theorem 3.5.3
tells us that (da)” A « is decomposable and

d((da)" ANa) =0 mod (da)" A a.



Since (da)” A « is closed modulo itself, Theorem 2.3.11 implies A({(da)" A a)) =
ker ((da)” A «). Hence A({(da)” A ) is of dimension n — 2r — 1. The theorem is

now obvious. O

The remaining preparatory results given below incorporate symmetry. The pre-
cise purpose of these final few results will be made clearer in the discussion following

Lemma 6.4.5.

Lemma 6.4.5. Let « € A(U™) such that the dimension of A({a,da)) is greater
than zero. LetY € A({«, da)) such thatY1da = pa for some non-zero p € C*(U™).
If h € C*(U") satisfies

Y (h) + hp =0,
then Yid(ha) = 0.

Proof. Let h € C*(U™). Then

Yid(ha) = Y1 (dh A o + hda)
= Y(h)a+h(Yida),
= (Y(h) + hp)

which proves the lemma. O

For one-dimensional A({«a,da)), Lemma 6.4.5 therefore allows us to find some
non-zero smooth A (which can be done through ordinary differential techniques),
so that the differential ideal generated by the one-form @ := ha has the property
that Yida = 0. In general, we will use a better result than Lemma 6.4.5 based on
symmetry, that has the advantage of including the situation when the Cauchy char-
acteristic space is of a higher dimension than one; however, first we must examine

an existence issue:

Theorem 6.4.6. Let o € AY(U™) such that for some ¢ > 1, Y1,...,Y, € X(U")
generate the Cauchy characteristic space of («,da). Then there exists some non-

zero h € C*°(U™) such that for all 1 < i < q, Yud(ha) = 0.



Proof. Let the Cauchy characteristic space A({(«, da)) be g-dimensional and gener-
ated by Yy,...,Y, € X(U"). For each 1 <i < ¢ we have

Y;'J da = i,

for some p; € C*°(U™). We wish to show there exists some non-zero h € C*>°(U")

such that for each 7,
Yi(h) + hp; = 0. (6.11)

Then from Lemma 6.4.5, finding such an h will mean that for all i, Y;1d(ha) = 0.
From Theorem 2.2.11, A({«, dar)) is Frobenius integrable, and therefore we can write

for each 1 < j,k < g,
Y5, Yi] = pje Y1 + -+ Yo, (6.12)

for some piy, ..., pf, € C°(U™) with ply = —p}; for all 1 <1 < g. For there to exist
a local solution h of the system of PDEs in (6.11), the integrability conditions that

must be satisfied are

Yj(uw) = Yeus) = pjein + -+ + plytig- (6.13)
To show (6.13) holds, we have that
Ly, vy = Ly; (Ly,a) — Ly, (Eyja) ,
= Ly, (Ypada) — Ly, (Yjada),
= Ly; (uxa) — Ly, (1)
= (Vi () = Yielny)) .
But from using (6.12),
Ly, v = £p}-,cYlJr---er‘;,ch a,
(Vi ALY s
= pjpi 4 -+ Pl g0
Hence the conditions in (6.13) are satisfied. O

Remark. The result in Theorem 6.4.6 is expected due to the Frobenius integrability

condition given in (6.12).



At this point we introduce symmetry. We begin with a simple result which we

state without proof.

Lemma 6.4.7. Let « € A'Y(U™). Then Z € X(U") is a non-trivial symmetry of

(v, dav) if and only if Z is a non-trivial symmetry of .
From this we obtain the following:

Lemma 6.4.8. Let o € AY(U™) and let for someq > 1,Yy,...,Y, € X(U") generate
the Cauchy characteristic space of (o, da). If Z € X(U™) is a non-trivial symmetry
of (o, dav), then for all 1 < i < g,

Yisd (ija) =0

Proof. Lemma 6.4.7 implies Z € X(U™) is a non-trivial symmetry of «, so Z1« # 0.

Now for each 1 <1 < g,

de(%) _ v, ((ZJa)doEZ—JZ()fJa)/\a),

Y;

=7 a)QJ (Zya)da + (Zyda) A ),
1

= WY}J Z1(da A a).

In the second line we have used the symmetry condition
Zida+d(Zia) = Lza = pa,
for some p € C*°(U"). We have
Yii(da A o) = (Yiada) Aa+ (Yo a)da =0,

since Y; is a Cauchy characteristic vector field of (a, dar). Thus

1
WEJ A (dO[ VAN CY) = 0.

Hence the result. O

In order to find a non-trivial symmetry of (o, da) for Lemma 6.4.8, we simply
use Lemma 6.4.7 and look for a non-trivial symmetry of «, or equivalently, the
vector field dual space of o using DIMSYM. This is because from Theorem 2.3.10, the
symmetries of a decomposable differential form are also the symmetries of its kernel.

We illustrate Lemma 6.4.8 with an example which we will refer to later:



Example 6.4.9. Suppose o € A}(U?) is defined by
a = ds® — gtdat + 2Pxtdat

The Cauchy characteristic space of (a, da) is of dimension one and generated by

0 0 0
Y = — S — (2h)?—.
Ox? T Ox! (=) Ox?
Here,
Yida = —zta.
It is obvious that
0
Z = —
ox!
is a non-trivial symmetry of o with Z1a = —a*. So
Yad (34) — 0,
x

on some suitably chosen subset of U*.

The final result required is contained in the following simple lemma which can

be proved in a similar way to Theorem 6.4.4, but also using Theorem 6.4.3:

Lemma 6.4.10. Let o € AY(U™) be of constant rank one on U™. Then A({«a,da))

is (n — 3)-dimensional.

At this point we are now in a position to present the main result of this section.
In what follows we assume o € A'(U™) is of constant rank one on U" with the (n—3)-
dimensional Cauchy characteristic space of («, do) generated by some Y7,...,Y, 3 €
X(U™). Further, it is assumed that we have applied Lemma 6.4.5 when n — 3 = 1,
or Lemma 6.4.8 when n — 3 > 1, so that Yjida = 0 for each 1 < 57 < n — 3.
In Theorem 6.4.11 below, we also introduce for the first time the notation X™(U™),
where m < n, to denote an m-dimensional submodule of X(U™) over the smooth ring
of functions F(y*). This simply means that for any Wy,... W, € X(U") generating
xm({um™), if Z € X™(U™), then

Z:M1W1+...+ume,



for some pt, ..., "™ € F(v%).
Theorem 6.4.11, when n = 4, gives a symmetry approach to the Cauchy problem
defined in Section 6.2 with one-dimensional Cauchy data, thus generating an integral

manifold of dimension two.

Theorem 6.4.11. Define Q2 := da A a and let Xy, Xo, X3 € X(U™) be a solvable
symmetry structure for A((Q)). There exists a two-dimensional submodule X*(U™) of
X(U™) over F(v*) such that for any non-zero Z € X*(U™), we have that [Y;, Z] = 0
mod A({(«,da)) for each 1 < j < n — 3. Moreover, on U™, Sp{Y1,...,Y, 35,7}
is Frobenius integrable and generates an (n — 2)-dimensional integral manifold of

{ar, dav).

Proof. Theorem 3.5.3 tells us that €2 is decomposable and d€2 = 0 mod €2. Then
applying Theorem 3.2.14 with w!, w? w?® defined as in the theorem we have that
{wh w?, w3} is dual to { X, X5, X3} with

w' =dy',
w? = dy? = X1 ()dy,
w? = dv* — Xo(7?)(dy? — X1 (7)) dy') — X1(7%)dy',

for some functionally independent 7', 72 +3 € C*(U"). Now from Theorem 6.4.3,
it follows that A({a, da)) = A((Q)) = Sp{Y1,...,Y,_3}, so

a=(Xpua)w' + (Xesa)w? + (Xzia) W,

= Adyt + Agdy? + Asdy?,

for some Aj, Ay, A3 € C°(U™). Since for each 1 < j <n—3, Y;ua =0=Yida, we

therefore have
Ly, =0. (6.14)

We know from conclusion (3) in Lemma 6.3.1 that Y;1dy* = 0 for each 1 < i < 3,

so (6.14) implies
Yi(A)dy' +Y;(A2)dy® + Y;(As)dy® = 0.
Therefore, as dvy!, dy?, dv? are linearly independent, it follows that

Y;(0) =0, (6.15)



for all ¢ and j. Since Sp{Yi,...,Y, 3} is Frobenius integrable with ', v% +* as
first integrals, we can then conclude from (6.15) that each \; is some function of
74 42,93, Hence a only depends on 7!, v%, 7 and their exterior derivatives.

Suppose we now define the vector fields X, X, X3 as in (6.2), i.e.
X5 = X3,
Y2 =X, — Xz(’Yg)Y?n
X=X, - X|()X, — X1(v*) X,

Then from Lemma 6.3.3 we have that {X, X5, X3} is dual to {dy}, dy?, dy3}. If we
choose an 1 < r < 3 such that A\, # 0, and (with a slight abuse of notation) define
foreach k € {1,...,r—1,r+1,...,3},

Wi = X, — M Xy,

then ker(«) = Sp{Y1,..., Y 3, Wi,... ., W1, Wyiq, ..., W3}. From Theorem 6.3.5
and (6.15), it then follows that for each j and k, [Y;, Wi] = 0 mod Y3, ...,Y], 3.

Now let X2(U™) be generated by Wy, ..., W,_1,W,.1,..., Ws, and let Z € X*(U").
Then

Z=p' Wi+ W+ W+ W,

for some p', ..., pmt p™ oo € F(92). From conclusion (3) in Lemma 6.3.1 we
then have that for each j, [Y;, Z] =0 mod Y3,...,Y,_s.

Finally, it is clear that Z1«a = 0, and since Y7, ..., Y, _3 are linearly independent
of Z, we now have an (n — 2)-dimensional Frobenius integrable distribution spanned
by Yi,...,Y,_3 and Z, that generates an integral manifold of (a), and hence an

integral manifold of («, da) using Theorem 2.2.8. O

If, in applying Theorem 6.4.11 to the Cauchy problem (i.e. n = 4) we are
given some Cauchy data in the form of a one-dimensional curve, and we are able to
establish some vector field tangent to the curve that is in X*(U*), then the theorem
will generate a unique two-dimensional foliation of U* in which there exists a unique
two-dimensional leaf containing the Cauchy data. If, however, we are only given
a vector field Z € X?(U*) for the Cauchy data, then the theorem only guarantees
uniqueness up to foliation. This means that we obtain, at most, a unique two-

dimensional foliation of U*, where the tangent space of each two-dimensional leaf



is spanned by Z and the Cauchy characteristic vector field Y;. Thus the Cauchy
problem is ‘solved’ in terms of two arbitrary constants. We illustrate this further in

the example in the next section.

6.5 An application

In this section we present an example showing how one may use Theorem 6.4.11
to generate local solutions of first order PDEs of one dependent variable and two
independent variables of the form

% =F (xl,xQ,u, %) , (6.16)
for some smooth function F. We work in the first jet bundle J'(U?, V') with coor-
dinates z', 22, 2%, 2{, 21, where U? has coordinates z', z? and V! has the coordinate
z'. The equation in (6.16) can be seen to describe a four-dimensional regular sub-
manifold of the five-dimensional jet bundle, which we denote by M* c JY(UZ%,V1).
Replacing the dependent variable u with the coordinate z*, M* is therefore described

by the locus of

2y = F(a', 2%, 2", 2]).

2

With coordinates x!, 22, 2%, 2} for M*, the Pfaffian equation corresponding to (6.16)

is
o :=dzt — zidat — Fdz® = 0. (6.17)

Before we examine a PDE example, we present the following result from Stor-
mark [119], where it is proven for the case when there are an arbitrary number of

independent variables:

Theorem 6.5.1. With « defined as in (6.17), the Cauchy characteristic space of
(o, dav) is one-dimensional and generated by

o OF 0 < 1aF)a <8F 18F>8

— a7 )lat |\ st 5
Y0z ) 02! oxt " "1ozl ) 0z]

T 912 92 0at

Example 6.5.2. Consider the inviscid Burgers’ equation:

Ou 0 _y, (6.18)

o2 Y T



Here M* C JY(U?, V') is described by the locus of

1 1.1

Using coordinates zt, 22, 21, 21 for M*, we define
o= dz' — zjda' + 2 2 da?.

By dimension, a has a maximum rank of one, so we suppose a has constant rank

on M*. The Cauchy characteristic space of («, da) is generated by

0 0 0
yo= 2 40 % el
dz? T2 dzt (1) 0z1

It is not necessary at this point to ensure that Y.1da = 0. This can be done following

the application of Theorem 3.2.14. With

Q:=daA a,
we find that
0
N = —
3 ox!

is a non-trivial symmetry of €2, that

0

Xy = —
2 ox?

is a non-trivial symmetry of X312, and finally that

Xl' a

S
is a non-trivial symmetry of X,i1 X31Q. Applying Theorem 3.2.14 with Corol-
lary 3.2.12 gives

1 XQJXgJQ 1
w :—:dz,
XlJXQJXgJQ
X11X310Q 1
e AN g x2——1 ,
XQJXlJXgJQ 21
X11X010Q 2t 1
3 1 2 1 1
= gt )+ =4
v XgJXlJXZJQ (aj Z%) +Z% #

on some suitably restricted domain. Next, we scale a so that Y. da = 0. From

Example 6.4.9 we obtain



We can therefore replace o with

1

- o dz

a:=—=-—7— dx' + 2tdx?.
21 21

Hence

:z1d<x2——1> —d<x1—2—1>.
21 21

Now we have from Lemma 6.3.3 that

1
{dzl,d <x2 — %) ,d <x1 — Z—1>}
21 21

is dual to

Thus from the expression for @ in (6.19), we let our Cauchy data be generated by

0 1 0 9, 9,
N Y T 2 1z 4~
Zi=p <821+Z%8x1>+'u <Z 8x1+8x2>’

where p!, u? are any smooth functions of 2!, 22 — 1/2}, 2! — 21 /2], so that Zia = 0.
Note that with this construction for the Cauchy data, applying Theorem 6.4.11 will
only give us uniqueness up to foliation. Therefore any solution of (6.18) will depend
on two arbitrary constants.

Now from Theorem 6.4.11, [Y;Z] = 0 mod Y, and hence Sp{Y,Z} is a two-
dimensional Frobenius integrable distribution that generates an integral manifold of
the differential ideal (o, da). To obtain a local solution to (6.18), we choose Z so
that the transverse condition dz' Adx? # 0 is satisfied on the distribution Sp{Y, Z}.

We now proceed to pick two different Z’s; and derive a local solution to (6.18)

for each choice. First choose

0 1 0
7-2 4 -2
0z! N 2] Ox!

On M*, the distribution spanned by Y and Z is annihilated by the two one-forms
@ and (z{)?dz? + dz{. Define

Q:=aA ((z)%da” + dzy) .



Since Sp{Y, Z} is a Frobenius integrable distribution, we have that d©Q = 0 mod €.

Hence we can proceed to once again apply Theorem 3.2.14. We find that

o 0
o'’ Oz2
are two linearly independent commuting non-trivial symmetries of . We can use

Theorem 3.2.16 so that Theorem 3.2.14 will give us the two closed forms

iaYe) 1
AT (e L),
2122100 Z]

9227 Bl

el

WJQ 1 Z1
i, 0 d{z — 1
31 52 1

for any choice of constant functions ¢!, c®. Then equating the 2! term and replacing

2! with u, we get the following local solution (where 22 # ¢?) of the PDE in (6.18):

1 1
U=-—_o—"—"->5.
x2_02

For our second choice for Z, we will be a little more ambitious and suppose that

7 0 N 1 0 n 1 5, 1 . 0 n 0
=—F =+ — | —= || =+=].
021 2ozt 2! 21 ort  Ox?
Following the same procedure as before, and using the same notation, we define
Q:=aA (dzl + (21)%da? + (1 — z2°) dzl> :

It is easy to see that 3%1 is a non-trivial symmetry of . Using DIMSYM and Theo-
rem 2.3.10, we find that 21% is a non-trivial symmetry of 3%” Q. Applying Theo-
rem 3.2.14 yields

o0 1.1
7€)
s —a(m| 2E).
A0 212,11 1 1.1
- = 8213 _Ed<x1+(x)2212— - il 12)modd(lnizziz>.
sord 2157142 2(1 — 2{2?)  2z{(1 — 2{2?) 1—2zz
We put
o (2%)221 2] ot
= +exp(c'), ot + L =c,
1 — zix? xp(e) 2(1 — za?)  2z{(1 — z}a?)

for any constant functions ¢!, ¢?>. Removing the z{ term, and replacing z' with u,

we then get on one branch the following local solution to (6.18):

u = +/exp(c!) (\/2 ) + exp(ch)(2?)? — exp(cl)x2> .




6.6 Pfaffian systems in general

In this section we give a generalisation of Theorem 6.4.11 that will ultimately allow
us to use symmetry to solve the Cauchy problem for Pfaffian systems that are
generated by a finite number of linearly independent one-forms, each of arbitrary
constant rank on U".

Before we do this we must first modify Lemmas 6.4.5 and 6.4.8, as well as pro-

vide some extra preliminary material. We begin with a slight generalisation of

Lemma 6.4.5:

Lemma 6.6.1. Let o',...,a? € AY(U™) be p linearly independent one-forms such
that the dimension of A({a',... a?,da’, ... doP)) is greater than zero. Let Y €
X(U™) be a non-zero vector field in A({a?,... a? dat, ... daP)) so that for each
1<i<p,
Yida' = plat + -+ /L;ap,
for some it ..., ,uf, e C°(U™). If, for each i, h;y € C°(U™) is non-zero and satisfies
Y (hi) + hipt = 0, then (no sum)
Yid(hia')=0 modal,...,a' " a'™ ... af.
Proof. Let Y € A({a?,...,aP,dat, ... daP)) be non-zero with Yida! = piat+-- -+
ppa? for some pif, ..., € C(U™). If, for all 1 < i < p, h; satisfies Y (h;)+hipi; = 0,
then (no sum)
Yid (ki) =Yy (dhi A o' + hida'),
=Dy (pied + - 4 @ a4 a?)
The result is now obvious. 0J

At this point, we wish to examine a generalisation of the existence result given
in Theorem 6.4.6 for Cauchy characteristic spaces of a higher dimension than in
Lemma 6.6.1. With a',...,o” defined as in the lemma, suppose for some ¢ > 1,
Yi,...,Y, € X(U") generates the Cauchy characteristic space of (o', ..., a?,dal, ...,
da?). Hence for each 1 <i<pand 1< j<g,

Yjida' = ué-lal +- /L;-po/’,



for some pfy,...,ph, € C(U"). Since A((a',...,aP,da',... do”)) is Frobenius

integrable, we may write for each 1 < k,[ < g,
[Ylﬁ YE] = pllclYI +oot le Q> (6'20)

for some py;,...,pl, € C=(U™). If, for each i, there exists some non-zero h; €

C*®(U™) such that for all j,
Yi(hi) + hiptly; = 0, (6.21)
then it is clear from Lemma 6.6.1 that for each i and j, (no sum)
Yjad(hia') =0 modal,...,a" ot L o

For there to exist some non-zero hy,...,h,, the integrability conditions for the pg

partial differential equations in (6.21) can easily be shown to be
Yi(pii) = Yilths) = paii; + -+ + plyttgs: (6.22)

Unfortunately, we show below that the equations in (6.22) are in general not satisfied
for ¢ > 1:

Using the same approach given in Theorem 6.4.6, we find that for all ¢,
Ly’ =Ly, (upo' + -+ p,0f) = Ly (o’ + -+ p,0f) |
which expands to give

Liyovyed = [Yi(uiy) — Yi(uiy)] ot + -+ [Yalui) — Yilpis)] o + ...

+ [Viluhy) = Yiliy)] o2 + ¢,
where
("= [(Mglﬂllcl +o Tt prﬂil) — (Hja iy + -+ + :U’fcpufl)] a4+ ...
[ + -+ i) — (i - -+ pigity) ] o 4

+ [ty + - -+ Hiphy) = (it + - - + Hiptip,)] OF.
We also have using (6.20),

i _ i
‘C[Yk,Yl]a - ‘CpllclY1+-“+lean )



which expands to give

Liv,yio' = (pppthy + -+ plattey) &' + -+ (prts + -+ + plyts) o + ...

+ (prattly + -+ - + phyty) &P

Hence the integrability conditions in (6.22) become satisfied if and only if for each

t, k and [,
YT T T (6.23)

with summation only on 1 < a < p. Of course if ¢ = 1, then the conditions in (6.23)
are met.

Undeterred by this inconvenience for Cauchy characteristic spaces of a higher
dimension than one, in what follows we assume the integrability conditions in (6.22)
are satisfied. The reason for this is that using symmetries, Lemma 6.4.8 easily

generalises to give the following four results below:

Lemma 6.6.2. Let ol,... a? € AY(U") be p linearly independent one-forms. Sup-
pose Yy, ..., Y, € X(U") generate the Cauchy characteristic space of (o, ..., o, da',

. daPy. If, for each 1 <i <p, Z; € X(U") is a non-trivial symmetry of (o', da'),
and Zjyad =0 for all 1 < j < p with j # i, then for each i and 1 < k < ¢,

Yde< a

ZiJ at

i

> =0 modal,...,a ottt .. ab.

Proof. For each 1 <7 <pand 1 <k < g, we have from the proof of Lemma 6.4.8

that

o 1 o
Yiad - | = ——=Y, 1 Z; 0 (da' N o).
] <ZlJ Oél> (ZZJ 042)2 ke 2 ( « @ )

Note from Lemma 6.4.7 that Z; is a non-trivial symmetry of o, so Za' # 0. We

have that

ol . .
Yiad Nl A A AT AT AP
ZZ'JCYZ

1 o . .
=——— [ZuYia(da! Ao Aar A AT A QT AP,
(Zina?)?
Jat
1 o . .
= —ﬁZiJ [(Via(da' Aa')) Aa' Ao At At e
Jat



using the assumption that Zyao/ = 0 for all 1 < j < p with j # i. Also by

assumption, Y, € A((a',...,aP,da', ... daP)), so it follows that

(YkJ(daiAai))/\al/\.../\aifl/\aiﬂ.../\ap

= (Yda') N A A Ao P AT A = 0.

Hence for all 7 and k,

Yde< a

i

) =0 modal,...,a" ot .. ol
ZiJOlZ

O

Lemma 6.6.3. Let Y € X(U") be a non-zero Cauchy characteristic vector field of
the differential ideal (o, ..., aP dal, ..., daP) generated by some p linearly indepen-

dent o, ..., aP € AY(U™). If, for each 1 <1 < p,
Yida!=0 modal,....,a 7 o't . af, (6.24)
then Yid (! A---Aaf) =0.
Proof. Since
d(a"' A AaP) = (da' Aa® A+ NaP) +- -+ (do? Ao Ao AaPTh)

and Yo' =0 for all 1 <i < p, we therefore have that

Yid(a'A--na?) = ((Yada') Aa® Ao ANaP) + ...

+ ((Yado?) Ao Ao Aol
Then because of (6.24), the result is now obvious. O

Using Lemma 6.6.3 we have the following result:

Theorem 6.6.4. Let Y € X(U") be a non-zero Cauchy characteristic vector field
of the differential ideal (o, ..., aP, dal, ... daP) generated by some p linearly inde-

pendent o', ... a? € AY(U™). Suppose that for each 1 < i < p,

Yido'=0 modal,...,a" ot . .. o



Further suppose there exist p — 1 linearly independent vector fields Z, . ..

Ty €

X(U™), each not in A({a',...,aP da', ... daP)), such that with Q = a' A--- A aP,

we have
;CZp_IQ - )\pflg,
L7, 2(Zp-1180) = Ap—2(Zp-11Q),

Lz (Zos .02y 10Q) = \(Zoa ... 0Z,119Q),

for some Ay, ..., \,—1 € C®°(U™). Then

Zha o0 Zy 10 = prat + -+ ppalf #0,
for some py,...,p, € C®(U") such that Yid (pia' + -+ pya?) = 0.
Proof. We first rewrite the equations in (6.25) in the following form:

prlJ ds? + d (prlJ Q) == )\p,IQ,
Zp_zJ d(Zp_lJ Q) + d (Zp_zJ Zp_lJ Q) = )\p_Q(Zp_lJ Q),

Zyd(Xoy .o 0Zy 1 3Q)+d(Zyy ... Zy 10Q) = N (Zoa .. .0 Z,10Q2).

Now Lemma 6.6.3 gives
YiZyy ... 0Z, 11dQ = 0.
We can then use (6.27) and the first equation in (6.26) to show that

YiZyy .o 0Zy 0dQY=Y 1 Zyy ... Zy 51 [Np1Q—d(Z,-120)] = 0.

Since Y € A((a},...,aP,dat, ... daP)) implies Y1 = 0, we therefore have

Y, ZlJ TN Zp,ZJ d (prlJ Q) =0.

(6.25)

(6.26)

(6.27)

(6.28)

We can repeat the above procedure, but this time using (6.28) and the second

equation in (6.26) to show that
YiZis ... Zy31d(Zy_91Z,_11Q) = 0.
Continuing in this fashion we eventually obtain

Yid (ZlJ TN prlJ Q) =0.



Since Zi,...,Z,; are all linearly independent, and each not in the Cauchy charac-

teristic space of (a',...,aP,da', ..., daP), we have that
2. Ly 11 F# 0.
Hence
2 Ly 10 = prot + -+ pyaf,

for some py,...,p, € C®(U™), with at least one of p, ..., p, being not identically

Zero. ]

Remark. The solvable symmetry structure condition for € in (6.25) is not the same
as the one given in Corollary 3.2.12 for the application of Theorem 3.2.14. The
difference is that the former contains one less stage. Nevertheless, by repeatedly
applying Theorem 2.3.11 with Lemma 3.2.2, DIMSYM may still be used to find the

symmetries in Theorem 6.6.4.

In our work, it is the following corollary to Theorem 6.6.4 that will be useful:

Corollary 6.6.5. Let a',...,a? € A (U") be some p linearly independent one-
forms and suppose A((al,...,a?,dat, ... daP)) is generated by some Yi,...,Y, €

X(U™). Further suppose that for each 1 <i<pand1 < j<gq,

Yizda' =0 modal,..., o o't L ol

Define Q := o' A---NaP. If, for each i, there exist p— 1 linearly independent vector
fields 73, ..., Z}_, € X(U") each not in A({a',... o, da',. .. doP)) that satisfy the
solvable symmetry structure property
ﬁZ}i}_IQ — )\;)—197
EZ;',_Q(Z;;—H Q) = )‘;f)—2(Z;i—1J Q),

ﬁZ{(Z;'J 32 ) =N (Zhy 0 Z) 119,
for some N\, ..., )\;,1 € C®(U™), and if our symmetries are such that the one-forms

B, ..., 6P defined by B° := Ziy...J ZZZ;_IJ Q are linearly independent on U™, then
(... ol dat,. .. doPy = (B, ... 6P, dBY, ..., dSP),

such that for all i and j, Y;1 =0 =Yadp".



We may summarise some of the above results of this section in the following
way: Given A({(a',...,aP,dat,. .. daP)) generated by some Y7, ..., Y, € X(U"), we
look to first apply Lemma 6.6.1 if ¢ = 1 or Lemma 6.6.2 if ¢ > 1, so that for each

1<i<pand1<j<gq, (nosum)
Yjid(hia') =0 moda',...,a" " o't L P,

for some non-zero hy,...,h, € C*°(U"). Then we look to use Corollary 6.6.5 to

obtain some 3!, ..., 3? € A'(U") such that
(... af dat, ... doPy = (B, ... 3P, dB",. .. dB"),

with the property that for all i and j, Y;13° = 0 = Y;ud3'. We will illustrate this
process in the example contained in the next section.

We now present the main result of this section, Theorem 6.6.6. In what fol-
lows, we assume a', ..., a? € A'(U") are p linearly independent one-forms, and the
Cauchy characteristic space of (o, ..., a?,da?, ..., daP) is generated by Yi,...,Y, €
X(U™), so that the Cartan system of (a',...,a?, dal,. .., da?) is generated by some
n — ¢ linearly independent one-forms o',...,0""9 € A'(U™). Suppose also that we
have been able to apply Lemmas 6.6.1 or 6.6.2, and Corollary 6.6.5, so that for all
l1<i<pandl<j<gq Yjuda' =0. Theorem 6.6.6, when ¢ = 1, once again
provides us with a symmetry approach to the Cauchy problem when the Cauchy

characteristic space is one-dimensional.

Theorem 6.6.6. Define Q := o' A---Ao" % and let Xy,..., X, 4 € X(U") be a
solvable symmetry structure for A((Q)). There exists a (n — q — p)-dimensional sub-
module X"~ 17P(U™) of X(U™) over F(y*) such that if we are given a v-dimensional
reqular submanifold of U™ whose tangent space is spanned by some v linearly indepen-
dent vector fields Zy, ..., Z, € X"~97P(U™), then for each 1 < j <qand1 <[ <w,
Y;,Z] = 0 mod Y1,...,Y,. Moreover, the distribution Sp{Y1,...,Y,, Z1,...,2Z,}
is Frobenius integrable and generates a (q + v)-dimensional integral manifold of the

differential ideal (o', ... aP,dat, ..., daP).

Proof. Since the Cauchy characteristic space of (a!,...,a? da', ..., daP) is Frobe-

nius integrable, we have dQ2 = 0 mod Q. Applying Theorem 3.2.14 with w!, ... w"™?



defined as in the theorem yields {w', ..., w™ 7} dual to {X,..., X,, ,} such that
w' =dy',
W' =dy* = Xi(¥)dy',
W = dy’ — X5(7*)(dy? — X1 (%) dy') — X1 (77)dy',

n—q—1

Wl =dy" " mod dy, ..., dy ,

for some functionally independent v',...,7""% € C*°(U™). Now from the note fol-
lowing Theorem 2.2.13, it follows that forall1 < s < p, a®* € C'((a!,...,a,da’,. ..,

da?)). This means that for each s,

of = (Xppaf)w' + -+ (X o) w9,

= Xdy' 4+ N, dy

for some A{,..., A\, , € C®°(U"). By assumption, Yjia® = 0 = Yjida® for each

n

1 < j < q and s. This gives
Ly,a® =0, (6.29)

But we know from conclusion (3) in Lemma 6.3.1 that Y;1dy" = 0, for each 1 <4 <

n — q and j, so (6.29) implies
V(DAY + -+ V(X )dy" " =0,
Since dv!,...,dy" 7 are linearly independent, we get
Y;(%) = 0,

for all 7, j and s. By the same argument used in the proof of Theorem 6.4.11, we
can then conclude that o!,..., o only depend on ~',...,7" ¢ and their exterior
derivatives.

The rest of the proof continues to be very similar to that of Theorem 6.4.11.
Define the vector fields X1, ..., X,_, as in (6.2). Then from Lemma 6.3.3 we have
that {X1,..., X, .} is dual to {dy},...,dy" 9}. Using this and the fact that each

a® only depends on 7!,...,7"% and their exterior derivatives, it is then obvious

that the kernel of a! A---Aa? (which equal the distribution annihilated by each o*)



is spanned by the Cauchy characteristic fields Y3, ..., Y,, and some n — ¢ —p linearly
independent vector fields Wy,..., W,,_,, € X(U™) that are linear combinations
of Xi,...,X,_, with coefficients in F (7). Since we have expressed o solely in
terms of 7',...,7" 7 and their exterior derivatives, Lemma 6.3.3 now means that
calculating Wy, ..., W,,_,_, is a straightforward exercise. From Theorem 6.3.5 and
conclusion (3) in Lemma 6.3.1, it now follows that for each j and 1 < k < n—q—p,
[Y;, W] =0 mod Yi,...,Y,.

Now let X" 9"P(U") be generated by Wy, ..., W,_,_,, and suppose we are given
some v-dimensional regular submanifold of U” whose tangent space is spanned by v

linearly independent vector fields 71, ..., Z, € X" 2 P(U™). Then foreach 1 <[ < v,
Z = MZIWI +oeeet M?iqian—q—pa

for some p, ..., " € F(v*). From conclusion (3) in Lemma 6.3.1 we then get
that for each j and [, [Y}, Z;] = 0 mod Y3, ...,Y,. Since for each [, Zjya = 0, and for
each j, Yj is linearly independent of 71, ..., Z,, it follows that Sp{Y1,...,Y,, Z1, ...,
Z,} is a (g+v)-dimensional Frobenius integrable distribution that generates a (g+v)-
dimensional integral manifold of (a!,...,a?), and hence an integral manifold of

(ad,...,aP dat, ... daP) using Theorem 2.2.8. O

Asin Theorem 6.4.11 earlier, if in applying Theorem 6.6.6 to the Cauchy problem
(i.e. ¢ = 1) we are given the Cauchy data only in the form of some Z;,..., 7, €
X"~1=P(U™) that are closed under the Lie bracket, then the theorem only guarantees
uniqueness up to foliation. Therefore we obtain a unique (v+1)-dimensional foliation
of U™, where the (v + 1)-dimensional leaves depend on n — v — 1 constants.

In the next section we discuss two PDE applications of Theorem 6.6.6 and give

one example.

6.7 Two applications

This section examines two types of PDE problems for which there exist non-zero
Cauchy characteristic vector fields. The first of these considers a single first order
(possibly non-linear) PDE of one dependent variable and an arbitrary number of
independent variables, while the second deals with a special class of systems of two

second order PDEs of one dependent variable and two independent variables.



Beginning with the first situation, suppose we are given a first order PDE of one
dependent variable and n independent variables of the form

a“:F(;pl,... L ) (6.30)

ox™ e A

for smooth F. We work in the first jet bundle J* (U™, V'), where U™ has coordinates
xl, ..., 2™ and V! has the coordinate z!. We express the PDE in (6.30) as

Z=F(x', . a2 2, 2 ), (6.31)

replacing the dependent variable u with the coordinate z!. The Pfaffian equation

corresponding to (6.30) on the regular submanifold M?* C J'(U", V') defined by

(6.31), with coordinates x!',... 2" 2% 21 ..., 2L | is
a:=dz' — zjdet — - — 2z da"" — Fda" = 0. (6.32)

The generalisation of Theorem 6.5.1 as in [119] is the following:

Theorem 6.7.1. With « defined as in (6.32), the Cauchy characteristic space of

(v, dav) is one-dimensional and generated by

0 <= 0F 0 “ OF\ 0 <~ [(0F ,0F\ 0
Y = -y =~ 4 [F- 12— ) = )
Ozm = 0z Ox' * ( Zzl 82}) 9o " z; <8xl T 62’1) 0z}

=1

Using Theorem 6.7.1 we may therefore apply Theorem 6.6.6 to find local solutions
of the first order PDE in (6.30). We will not provide an example of this. Instead, we
will give an example of the following material that deals with second order PDEs:

Consider the following pair of second order PDEs:

0u ou Ou 0%u
= F 1 2
d(x1)? ! <x T 5 a2 6x16x2>

0*u (a2 ou du 0%u
a2z~ P\7 T 0gl 922 0510 )

(6.33)

for some smooth functions F; and F,. This time, we work in the second jet bundle

J?(U?, V1), and represent the PDEs in (6.33) by

1 _ 1 2 1 _1 _1 _1
211 —Fl(x y Uy 2 7217227212)7

(6.34)

1 _ 1 2 .10 .1 .1 1
299 —F2(aj YUy 2 7217Z27Z12)7



replacing the dependent variable u with the coordinate 2'. Define M° C J*(U? V)

as the six-dimensional regular submanifold defined by (6.34). On M?® with coordi-

nates zt, 2% 21, 21, 23 21,, the Pfaffian system corresponding to (6.33) is generated

by the one-forms
o' i=dz' — 2idat — zyda?,
o’ = dz — Fida' — 2{,da?, (6.35)
o = dzy — 2iyda' — Fydar?

Note that da' = 0 mod o2, o®. We will use the following result also found in [119]:

Theorem 6.7.2. With o', a? a® defined as in (6.35), the Cauchy characteristic

space of (o', a?, a3, da?, da?) is one-dimensional and generated by

Y = 0 9ok 9 +<z%—z1@>i+(ﬂ—21@>i

ox'  0z], 0x? 2021, ) 02! 2021, ) 021
oF\ 0 oF, laF L OF} oF, 0
*( Fa>3_+<a— 2 g T gt Fa)a—
if and only if
OF, OF,

1 i )
and

OF, |0F, ,0F, _ 0F

o T ga g g
OF, (0F, |0F, _0F, , 0F
8212(81+ At Rgr+ g >:0'

We close this section with the following PDE example:

Example 6.7.3. Consider the linear second order PDE:

0%u 0%u ou  Ou
o(z1)2  0(z2)? o T o (6.36)

for which we now use Theorem 6.6.6 to find a local solution. We can put (6.36) in

the form of (6.33) and restrict our solution to one which satisfies

Pu  O%u ou  Ou
o(z')2  Ox'0ax? * dr' 0z
Pu  Ou
d(z2)2  Oxlox?’

(6.37)




On MS c J*(U? V') defined by the locus of
2%1 = 3%2 + Z% - Z%a
Zp = 212y

we let the differential ideal I defined on M® be generated by the one-forms

o' i=dzt — zidat — zyda?,

o =dz — (ziz + 2 — z%) da' — 21,da?,

o = dzy — 2ydxt — 2l,da?,
and the exterior derivatives of o and o®. Theorem 6.7.2 can be applied to (6.37).
Doing so, we find that the Cauchy characteristic space of I := (a!, a?, o3, da?, da®)

is generated by

Our first step is to ensure that for all 1 < ¢ < 3,

Yida'=0 modal,... ot ottt . ad

We have
Yido! = o — o,
Yido? = o — o,
Yido?® =0,

so we only need to scale o by some non-zero function. Using Lemma 6.6.1 we

obtain by inspection
Yid (exp (xQ)QQ) = —exp (:L‘Z)Oé3.

Therefore we define

This gives
Yida' = exp (—x2)§2 —a’,
Y.ida? = —exp (a:Q)E?’,

Yida® = 0.



Our second step is to look to apply Corollary 6.6.5. It is easy to see that 3%2 is

a non-trivial symmetry of @' A @® A @®, and that 52 is a non-trivial symmetry of
21 (@ Aa® A@?). Thus,

0 9 (@ AT AT = —exp (a2)2l, (2 — ) @ + 2hy(s) — 2y

g1 gz (@ NONT) = —exp (09)21, (21 — ) @ 4 221 — )

+exp (17) (521, + 2125 — (2)° — 2121,) O,

with the property that
g 0
Yad (@J 57 (@' Ao /\&3)) =0.

We need another pair of symmetries. We have that 3%1 is a non-trivial symmetry of
a' Aa® A@®, and that 52 is a non-trivial symmetry of ;21 (@' A@® A@?). Hence
—— 11 (@' Aa®? A@®) = 2,07 — exp (2%) 2,07,

with

o 0 , 4 5 _
YJd(@J gJ (al/\a2/\a3)> =0.

If we now make the following non-singular linear transformation,

~1 1

a' = —exp (2?21, (zi — ZZ) a + 212 — z)a°
+exp (27) (z21y + 2125 — (%)° — 2121) @,

a’ = zj,a° — exp (2°)z,@°,

~3 . —3

then Y1a' = 0 = Yida® for all 1 < i < 3. Explicitly,

1 1 1

a = exp (xz)(% - Zl) (Zizdzl - zbdz% - (Z% - Z%z)dZ%) )

a” = exp (2%)zy, (dz — dzy — (21 — 23)da'),

-~

a° = dzg — ziydxt — 21yda?

Applying Theorem 6.6.6, it is easy to show that on M?®, the Cartan system of I is

generated by at, a2, a3, dzi, dzl,. We define

Q:=a' ANa? Aad Adz Adzl,.



Since the Cauchy characteristic space of I is Frobenius integrable, it follows that
dQ? = 0 mod €2. Therefore, using Theorem 3.2.14 with the following solvable sym-
metry structure X, ..., X5 € X(M?®) for Q found using DIMSYM, where

X, — 0 N ) 10 9
0 G,
X == X s
LT g2 57 G0
we find
1 X Xpp Xpp Xsy Q)
W= =dz,,
X Xor X310 Xu1 X510
W2 — Xia X310 X0 X510 iy (3%2)4
Xoa X110 X350 Xa1 X510 4 )
X JX JX JX JQ
3 1 2 4 5 1 ) .
- =d(z' =1 _
. XSJ X1J XZJ X4J X5JQ (1‘ n|22 31|),
X JX JX JX JQ
4 1 2 3 5 9 L .
- =d 1 _
. X4J X1J XZJX;),JXE)JQ (1‘ + Il|22 31|),
X JX JX JX JQ
5 1 2 3 4 1 1 )
pu— — d . .
w X5JX1JX2JX3JX4JQ ( Zl +Z2)
Putting
Zl 4
= 2, 72 = %7 WP i=a' — Izl — 2,
yh=attlnlng -l =2 -+,

and assuming we are working in a neighbourhood where z; > 2{ and 2{, > 0 (the

other three cases — excluding 2{ = z3 and z}, = 0 — can be treated similarly), we
obtain

a' = (4%) " exp (1) dr° — 7' exp (1) dy,

a’ = (49%) " exp (v*) d?, (6.39)

a® =dy' — (472)i dy* — (472)% dv?.

=

Following the procedure in Theorem 6.6.6, we find that for all 1 <i < 5, X; = X,
because dw® = 0. Therefore using the annihilating space of (6.39), we require the

vector field Z describing our Cauchy data to be of the form
Z = ((49)" X1+ Xi 491 X5) + 05,

for any choice of A\, Ay that are smooth functions of v',...,7%. We suppose that
A1 =1 and Ay =0, so that
R 9 9

1 1
= + 2o + 2y
or2 0zt TR0zl 20z



On M?®, the annihilating space of Sp{Y, Z} is spanned by o', a? a?, dz],. Defining
Q= a' Aa? A a® Adzl,, and with the solvable symmetry structure T'y,..., Ty €
X(MP®) for Q (partly found using DIMSYM), where

19 0 0 0

ryi=——— 9= — :
21y 021y oxt’ Ox?

we obtain using Theorem 3.2.14,

ol = [5i031T400Q d 212 )
B I YR A0 VTS 2 ’
Ll
A ek el el (z' —1In(z; — 21)),
Foa 5Ty Q
3. Tl TuQ

I
=%

% (215)”
_Ed<x2+ln(z%—zi)——l> modd< ),
| NPNE R N VRS 219 2
[l 510Q 21,)?
R el bk _Ed(zl—z%+z§ ) modd( 1)>
| YD SR R R Y 2
Putting
21y = ' vt —In(zy — 21) = ? +1In(zy — 27) — 2 _ ¢
12 = C) 2 — 1) T 2 — A1 T =C

1)2
(22)
2
zl—zi+z;:— 1 =c!
227,

Y

for any constant functions c', ¢2, 3,

¢* (where we have assumed that ¢' > 0), yields
the following local solution to the system of PDEs in (6.37), and hence the PDE in

(6.36):

u=c"+cfexp(z') + (' +2?) + S(a' +2%)?, (6.40)

for any constants ¢, %, ¢’,c®. It can be shown that the assumption ¢' > 0 now

means that ¢® > 0, but the solution in (6.40) also holds for zero and negative c®.

Finally, note that
u=-c"+clexp(z') + f(a' +2?),

is also a solution to (6.36) (and (6.37)), where f is any smooth function of ' + 2.
Of course, f will depend on the Cauchy data.



Chapter 7

Similarity solutions

7.1 Introduction

Given a non-linear partial differential equation, a so-called ‘similarity solution’ is one
which is invariant under some group action. Pioneered by Lie [89, 91], techniques
for using symmetry to find similarity solutions have been around for a long time,
and in recent times authors such as Bluman and Cole [21], Bluman and Kumei [22],
Olver [96, 97, 98] and Stephani [117] have provided modern discussions on various
aspects of this similarity solution approach to PDEs.

This chapter considers a single second order hyperbolic or parabolic PDE of one

dependent variable v and two independent variables ', 22 of the form

0% 0u 0%
+ + =k, 7.1
where fi, f2, f3, k are smooth functions of z!, 22, u, %, %. We use exterior cal-

culus to study similarity solutions of (7.1) along similar lines as Harrison and Es-
tabrook [64], however our treatment gives an alternative interpretation of the under-
lying geometric significance of such solutions. We also make use of Theorem 3.2.13
for integrating Frobenius integrable vector field distributions to establish an algo-
rithm based entirely on symmetry for generating similarity solutions of second order
hyperbolic or parabolic PDEs of the type in (7.1). This avoids the usual requirement
of having to solve some ordinary differential equation once the similarity variable
is known. Finally, we briefly examine conditional symmetries. Using such symme-

tries we extend earlier results in this chapter to give a technique for generating the



so-called ‘non-classical’ [10, 20, 98] similarity solutions, that once again avoids the

need to solve any ODE.

7.2 A preliminary result

It is assumed throughout this chapter that unless otherwise stated, M7 is some open,
convex neighbourhood of R?. Moreover, since the inverse function theorem [17]
means immersions are locally diffeomorphic onto their images, we also assume the
domains of all our immersions are suitably chosen so that this diffeomorphic property
holds. Hence from Section 2.2.2, the differential maps of all our immersions map
vector fields to well-defined vector fields, and so (2.2) can be applied.

1,1 1 1

Working in the second jet bundle J?(U?, V1) with coordinates z!, 2%, 2%, 21, 23, 21,

21y, 235, we define
NS 1 1
F = fizy + fazao + f3210 — K,
along with the contact forms

Ch:=dz' — zjda' — zyda?,
1. 1 1 1 1 2

10 111 g2
Cy 1= dzy — z5dr — 255dx”.

We can express a solution surface of the PDE in (7.1) as a two-dimensional integral

manifold (immersion) of the differential ideal
Ir = (C',C},Cy,dCY, dCy, Fdz' A dx?),

such that the transverse condition dx! A dz? # 0 holds on its tangent space. Note
that dC' = 0 mod C},C}. Recall from Corollary 2.4.11 in Chapter 2 that an
integral manifold in the second jet bundle which annihilates all the contact forms
that generate the second order contact system is the image of the 2-jet of some
smooth map f : U? — V! if and only if dz' A do? # 0 on the tangent space of
the integral manifold. If, in addition, the integral manifold annihilates F', then by
Theorem 2.5.1 the 2-jet is that of some local solution of the PDE in (7.1).

Our principal result of this section is the following:



Theorem 7.2.1.

Iy = <01701170217d0117 d0217L>7

where
L= fidzh Ada® — fodzh A da' + fadzd A da® — kda' A da?.
Proof.
Fdz' A dz? = (f12%1 + f22%2 + f32%2 _ k) dael A da?.
Now
fizhdat A da? = fi(z)dat + 21ydx?) A da?,
= fi(dz} — C) Ada?,
fozpda' A da® = — fo(zy,da’ + z3,da”) Ada’,
= —fodzy — Cy) Ada',
faztpda' A dx? = fy(zlydat + 23,dx®) A da?,
= fa(dzy — Cy) A da?,
Hence

Fda' A da?® = fidz] Ada? — fodzy Adot + fadzd A do?
— kdz' Adz® mod C},Cy,
=L modC},C;.

From this we obtain

dL =d (Fdz' ANd2z*) mod Cy,Cy,dCY,dCy,
=0 modC*,C},Cy,dCt,dCy,

using Lemma 2.5.3.

Remark. In a similar fashion to above, it is easy to show that

Ir = (C',CL,CL act,dC), LT,



where
LT = fidzl Ada® — fodzd Adat — fadzl A dat — kdat A da®.

In our work we deal mostly with L, however all results equally apply to L.

We define
I+ = (C’I,C’II,C’QI,dCll,dC’QI,L>.

Now L (containing all the information specific to the PDE) does not depend on any
second order terms z{,, 2}, 20o. Therefore, we may modify our problem to that of
finding two-dimensional integral manifolds of a reduced differential ideal I7; defined

by
I :=(C",dC", L,dL), (7.2)

defined on the first jet bundle J*(U? V1),

7.3 Similarity solution approaches

Given a Lie point symmetry X € X(U? x V1) of the PDE in (7.1), a similarity
solution of the PDE is a local solution that remains unchanged under the one-
parameter group action of the symmetry. The most well-known procedure for using
X to generate a corresponding similarity solution basically involves determining the
two functionally independent invariants v',v? € C*°(U? x V!) of X and finding a
solution of (7.1) that is some function of these invariants. Doing so, one essentially
obtains from (7.1) a second order ODE expressed in terms of v',~% known as
the ‘reduced’ differential equation. In the general case for PDE problems of n
independent variables, the reduced equation retains the same order of the PDE but
is of n — 1 independent variables.

An alternative and equivalent approach to finding similarity solutions is discussed
by Olver in [98] where one searches for a common solution of the overdetermined

system of PDEs given by (7.1) and the first order quasilinear PDE obtained from

xXW,ct =o, (7.3)



where z! and 21, 23 are replaced with u and its respective first partial derivatives.
Here we assume (7.3) gives a valid PDE and the Lie point symmetry X is not, for
example, 8%1. The PDE derived from (7.3) is known as the characterising invariance
system [98] (or invariant surface condition [95]) corresponding to X, and is typically
solved first using invariant coordinates to give a solution in terms of an arbitrary
function. Then, by inserting this solution into (7.1), a reduced differential equation
for the arbitrary function is derived. Once this is solved, a similarity solution is
obtained once more.

In this chapter we do not follow either of the above procedures, but instead
choose to adopt another approach formulated by Harrison and Estabrook [64] that
uses exterior calculus and differential ideals. This is discussed below:

Suppose we are given some differential ideal I7. on JY(U?, V') corresponding to
some second order PDE of the form in (7.1). If a vector field V € X (J'(U?, V1)) is

a symmetry of I, then
LyC' =\ CH, (7.4)
and
LyL=a'AC"'+ X\dC" + \3L, (7.5)

for some A, Ay, A3 € C®(J'(U% V') and o' € A' (J'(U? V')). Applying the
property that Ly (dw) = d (Lyw) for any differential form w, we can use (7.4) and
(7.5) to derive corresponding symmetry expressions for the remaining two generators
of I7. A key property of the Harrison and Estabrook approach is that the symmetry
algebra of I7- includes the Lie point symmetry algebra of (7.1) obtained from using
Definition 5.4.3. We state this fact without proof, however in [31] it is proved for
differential ideals where the PDE is left as a 0-form generator of the ideal. Since
we are dealing with PDEs of one dependent variable, the determining equations
derived from (7.4) and (7.5) should also be able to establish any so-called contact
symmetries of the PDE.

Suppose then that we are given some symmetry V" of I7 (or the first prolongation
of some Lie point symmetry of (7.1)). In the Harrison and Estabrook approach to

generating similarity solutions of (7.1), the differential ideal I% is augmented with



V1O, VidCY, ViL and VidL. One then looks for a two-dimensional integral

manifold of the augmented ideal
(CtdC*, L,dL,ViC", VidC*, V1L, VidL), (7.6)

defined on J'(U?, V'), which also satisfies the transverse condition.

The symmetry conditions in (7.4) and (7.5) can be used to easily prove that
(7.6) is a differential ideal, and it is clear that V' is a Cauchy characteristic vector
field of the differential ideal. Though this obvious latter fact has also been noted
by Estabrook [51], we show in Lemma 7.4.1 below that for hyperbolic and parabolic
PDEs of the form in (7.1), there exists a more useful extension of this result.

Finally, we can simplify (7.6) in the following way: It is not hard to establish
from using (7.4) and (7.5) that (7.6) is equal to

(C',dC", L, dL,ViC",d(V1C"),VaL,d(ViL)). (7.7)

In the next section we examine (7.7) more closely and show that two further

reductions are possible.

7.4 Main results

The class of second order PDEs we deal with is those for which L is decomposable, or
equivalently, L A L = 0 using Theorem 3.6.1. Although L defined in Theorem 7.2.1
is obviously not decomposable for some choices of fi, fo, f3 and k, we will see later
in Section 7.7 that for all hyperbolic and parabolic PDEs of the form in (7.1) we are
able to add to L some multiple of dC* which is then decomposable.

Assuming then without loss that L is decomposable, we have
0=YJ(LAL)=2(Y1L)AL,

for any Y € X (JY(U? V1)), so that if YJL # 0, then L = (YJL) A w for some
w e A (JYU?,V1)). Therefore, for decomposable L, any integral manifold of

(C',dCt, viCh, d(ViCh), ViL,d(ViL)), (7.8)

is an integral manifold of (7.7) (the two differential ideals are equal for decomposable
L). Here V is the symmetry of I3 described in the previous section. We shall make

use of this condition on L in our two main results, Theorems 7.4.2 and 7.6.1.



Since V1C' is a smooth function generator of (7.8), we can make a further
simplification to this differential ideal by pulling it back onto the regular sub-
manifold of J'(U?, V1) described by ViC' = 0, and confine our work to this
region of J(U?,V!). Suppose that the equation ViC! = 0 describes a four-
dimensional regular submanifold of J'(U?, V'), which we parameterise by the im-
mersion ® : M* — J'(U?,V'). Then denoting the pull-back of (7.8) onto M*
by

Jr = (®*C", do ®*C", ®* (V1 L),do ®* (VI L)), (7.9)
we have the following lemma:

Lemma 7.4.1. Let V. € X (J'(U? V")) be a symmetry of Ir.. If the equation
V1CY = 0 describes a four-dimensional reqular submanifold of J*(U?, V'), which
we parameterise by the immersion ® : M* — JY(U?, V'), then there exists W €

X (M*) with the property that W is a Cauchy characteristic vector field of I

Proof. Let ® : M* — JY(U?, V') be a corresponding immersion mapping onto
the regular submanifold of J'(U?, V1) described by V1 C! = 0. It is clear that the
tangent space of ®(M*) C J'(U? V') spans the annihilating space of d (V1C").
From contracting the symmetry condition in (7.4) with V' we obtain, at any point
in ®(MY),
Vid (VaCh) =)\ (VaCh) =o.

Hence V is in the tangent space of ®(M*). Applying Theorem 2.2.3, there exists a
vector field W € X(M*) such that ®,W = V.

We now proceed to show that W is a Cauchy characteristic vector field of .J7. by

examining each generator of the differential ideal. First,
Wio*C' = @* (2, WiC") =0, (7.10)

where for the first equality we have used the property of the pull-back in (2.3), and
for the second, we have made use of the fact that the pull-back of V1C*! by ® is
Zero.

Next, we have that

W1d* odC' = ®* (&, WidC") = &* (VidC), (7.11)



once again using (2.3). Now

* (VidC') = @* (MCh —d(VaCh)),
= (2*\) ®*C' —do @ (VaCY), (7.12)
= (P*\) ®*C' € J,
where in the first line we have inserted the symmetry condition in (7.4), and in the

second, we have used the pull-back properties in (2.5) and (2.6). Combining the end
result in (7.12) with (7.11) and (2.6) then gives

Wido®C' € Jr. (7.13)
We also have from (2.3),
Wi®*(ViL)=®* (&, WiViL) =" (ViViL)=0. (7.14)
In a similar fashion,
Wid®*od(ViL)=®* (2, Wid(ViL))=®" (Vid(ViL)). (7.15)

The symmetry condition in (7.5) yields

Vid(ViL)=Vi (o' ACT + XodCt + X3L — VidL) ,
= (Via")C' — (VaCh)al + A(VadCY) + A3(Vi L),

Pulling this back by ®, then using (2.5) and ®*(V1C") = 0 followed by (7.12) gives

* (Vad(ViL)) = (®*(Vial)) @*C" + (2*Xy) @* (VadC)

(7.16)
+ (D)) @ (VL) € J7,
so that combining this result with (7.15) and (2.6), we obtain
Wido®*(ViL) € J5. (7.17)
Therefore (7.10), (7.13), (7.14) and (7.17) imply that W1 J. C JL. O

From Lemma 7.4.1 we obtain the first of our major new results for this chapter:

Theorem 7.4.2. Given some second order PDE of the form in (7.1) whose cor-
responding L is decomposable, let V € X (J'(U?, V")) be a symmetry of I'. Sup-

pose the equation ViC' = 0 describes a four-dimensional reqular submanifold of



JYU?, VY, and denote ® : M* — JH(U?, V1) as a corresponding immersion map-

ping onto this submanifold. With
D= (Sp{o*Ct,o*(VaL)})",

if ®* (C'A(V1L)) # 0, then ®. D% generates a two-dimensional integral manifold
of I If, in addition, det A dx? # 0 on ©. D5, then the integral manifold is the
image of the 1-jet of some local solution of the PDE in (7.1).

Proof. We know from the proof of Lemma 7.4.1 that V = ®,W for some W €
X(M*). Since ®* (C* A(V1L)) # 0, it follows that D is two-dimensional, and
from Lemma 7.4.1, that W is a Cauchy characteristic vector field of the differential
ideal JI defined in (7.9). Hence D7 is, from Theorem 2.3.6, Frobenius integrable.
Since it is assumed @ is diffeomorphic onto its image, ®, D7 is well-defined. Now

let 21,25 € @*D%. This means
Zl - q)*Pla ZZ — q)*P27

for some P, P, € DL Using (2.2) and the fact that DZ- is Frobenius integrable, we

then get
(21, 25) = [@,P1, Q. P] = ,[P1, P € ®,D%,

SO <I>*D% is Frobenius integrable.
Suppose that ¥ : M? — M* is an immersion mapping onto any leaf of the

foliation of M? generated by D%. Thus U*J = 0. Now
(®oW)*C' = ¥*(®*C') =0, (7.18)
and
(@0 U)*(dC") =d ((@o¥)*C") =0. (7.19)

By assumption, ®* (C' A (V1 L)) # 0. This implies V1L # 0. Since L is decom-
posable, we have L = (V1 L) A w for some w € A' (J1(U?,V?')). Concentrating on
VJL,

0= 0" (d*(ViL)) = (®o W) (ViL),



which gives
U (Q*L) =" ((P*(VIL) A(P*w)) = (P o W) (VIL)) A ((PoW)w)=0. (7.20)
Hence from (7.18), (7.19) and (7.20), it then follows that (® o W)*IZ = 0. If the

transverse condition holds, then ® o U(M?) = j'h(U?) for some h € C>*(U? V1),

with h as some local solution of (7.1). O

Remark. In order to satisfy the transverse requirement, the symmetry V' in Theo-
rem 7.4.2 must necessarily satisfy the condition d(V1C") A dz' A dz? # 0. If this is
not the case, then ®*(dz! A dz?) = 0, and hence for all ¥, (® o ¥)*(dz! A dz?) = 0.

Consequently the transverse requirement fails.

We illustrate Theorem 7.4.2 with the following example:

Example 7.4.3. Consider the heat equation

0%u ou
= —. 7.21
o(x1)2  Ox? (7.21)
Defined on J'(U?, V') we have
L= (C",dC", L,dL),
where F' = 2}, — 2} and L = (dz{ — z3dx') A dz®. Now
0 0
_ 1 2
is a Lie point symmetry of (7.21), and we use its first prolongation V"), where
0 0 0 0
v — 1 9 1929 19 519
T od T e T higa T g

as our non-trivial symmetry of /4.
Applying Theorem 7.4.2, we define the four-dimensional regular submanifold

M* c JYU?, V') by the locus of
v, ot = —z'z — 2?2 = 0.

In a simplified manner without explicitly introducing an immersion, we assume M*

has coordinates z', 22, 2!, 21 with 22 # 0, so that on M*
) ) » ~1 )

1 _ 1
Ct =dz! d:v—|—2

(7.22)
VO, L = —2latdat + 21 <

— 1> da?® — 22%dz,



with
Jr=(C",dC*, VW, L, d(VIiL)),

also defined on M*. From Theorem 7.4.2 we have that D, C X(M*) generated by
the annihilating space of equations in (7.22) is Frobenius integrable. It is easy to
show that on D7, the transverse condition da' A da* # 0 holds, so we expect to get
some local solution to the heat equation. Then applying Theorem 3.2.13 (we could
equally choose to use Theorem 3.2.14) with a solvable structure of two symmetries,
where X, := 5% € X(M*) is a non-trivial symmetry of D7, X, := Z%aizll € X(M*)

is a non-trivial symmetry of DL @ Sp{X,}, and defining

1.1 12
Q= <d,z1 — zjda" + ol dx2) A (—z%xldxl + 2 <(x ) 1) da® — 2x2dz%> ,

212 272
we find

XZJQ (271)2
= = In(zXv/ 72
XlJ X2J Q d < n(ZI v ) + 4372 ’

X119 1 1 (z')? / 5 X102
— = — 227V a2 - _—
X0 X0 d (z 2iV x? exp ( 122 exp( & )df mod X0

where ¢ := 2'/(2V/22). Putting

In(z}V22?) + (z)" = !,

422

and

422

P 22%\/x_2exp <(x ) ) /exp (—52) dé = ¢,

for any constants c', ¢?, we obtain

u = 2exp(c') /exp (=€) de¢
as our local similarity solution of the heat equation corresponding to V.

We close this section with a warning that there will exist situations when apply-
ing Theorem 7.4.2 will yield a distribution @, D% that is not transverse, even with
d(V1CY Adz' A dx? # 0. In such cases we must abandon the above approach and
look to use elements of I7; that are in a sense singular. This is explained in full in

the next section.



7.5 A singular approach

Consider a differential ideal I := (a!, o) defined on some open, convex neighbour-
hood U* C R*, with coordinates z',...,z* generated by two linearly independent
one-forms o', o® € A'(U*). Suppose that for each i € {1,2}, da’ = 0 mod o', a?, i.e.
ker(a' Aa?) is Frobenius integrable. Here, we choose to work with a two-dimensional
Pfaffian system defined on a four-dimensional space because the material in the fol-
lowing section on second order hyperbolic or parabolic PDEs of the type in (7.1)
is precisely of this nature, but all results that follow in this section can easily be
extended to arbitrary dimensions.

In the usual treatment in this thesis for integrating the Frobenius integrable dis-
tribution ker(a!' Aa?), we use Theorem 3.2.13 to find some functions f}, f, 2, f2, ¢,
g*> € C®(U*) such that

11, 1.2 1
vt et =dg (7.23)
ot + fia? = dg*.
If, on U*, the functions g*, g? are of constant maximal rank two, then the equations
1

gt = c',g?> = ¢? describe a two-dimensional regular submanifold of U*. Let W :

M? — U* be an immersion mapping onto this submanifold. If, in addition, the

determinant
s
& 0
2 2 7
1 J2

on M? then (7.23) and the fact that ¥*(dg') = 0 = ¥*(dg?) imply ¥*a! = 0 =
U*a?. Hence V¥ is a two-dimensional integral manifold of I, for arbitrary constant
functions ¢!, 2.

The problem with the above ‘regular’ approach used in Theorem 7.4.2 for dealing
with a PDE of the form in (7.1) is that if the submanifold generated by @, DZ is not
transverse, then the method fails to give us a local solution with u as some smooth
function of z!, 22.

Our goal in this section and the next is to provide an alternative approach for
finding two-dimensional integral manifolds of I, which includes the above situation
as a sub-class, as well as applies to PDE problems when ®, D% may or may not be

transverse. We will also see that the trade-off for this extra flexibility is that there



is no direct computational approach using solvable symmetry structures, however
using the Frobenius integrable nature of ker(a' A @) (or ®,D’ in Theorem 7.4.2)
we do come close.

Consider then the following obvious extension to the above discussion:

Theorem 7.5.1. With o', a? and I defined as above, let there exist fll, f21, f12, f22,
g, g2, g%, g?* € C(U*) such that
11a1 4 f21a2 — g'ldg"?,

(7.24)
12041 _|_f22a2 — ngdQZZ-

Suppose that for some p,q € {1,2}, the equations
fp=1 fq =1
g7 = 0 ifp=1, = 0 ifqg=1,

¢! otherwise, 2 otherwise,

for some constants ¢, ¢? describe a two-dimensional reqular submanifold of U*, and

let W : M? — U* be an immersion mapping onto this submanifold. If, on M?, the

determinant
1 gl
o f12 f“; 40, (7.25)
1 J2

then W is a two-dimensional integral manifold of I.

For PDE problems, Theorem 7.5.1 will be used to find alternative (hopefully
transverse) integral manifolds of I to those found with the usual approach reviewed
at the start of this section. Unfortunately there is no algorithmic technique (without
involving ODEs) for establishing (7.24) by means other than following direct one
using Theorem 3.2.13 that incorporates symmetry:

Suppose then we apply Theorem 3.2.13 with X, € X(U?) as a non-trivial sym-
metry of ker(a! A a?), and X; € X(U?) as a non-trivial symmetry of Sp{X,} &
ker(a! A a?). We then obtain

Xoi(al A a?)
X711 X1 (ol A a?)

Xii(a' A a?)
XQJ X1J (&1 A\ a2)

= dg*?,

(7.26)

— d922 _X1(922)d912,



for some ¢'?, g2 € C°(U*). This gives integral manifolds of I defined by ¢*? = ¢!,
g*2 = ¢? for constants c', ¢®>. Suppose these are not transverse. Rearranging the

equations in (7.26) gives

(Xoua?®) ' — (Xaah) o® = (Xou X1 (0! A a?)) dg*,
(X1 4+ X1(¢™)X2)10) o' = (X1 + X1(97)Xs)10") o (7.27)

= (X110 X0 (o' A 0?)) dg™.

Now applying Theorem 7.5.1 with the equations in (7.27), we set
gt = —g* = Xou X1 (o A a?).

We cannot choose p = 2,q = 2 since by assumption these integral manifolds of I
are not transverse. We also cannot choose p = 1,¢ = 1 because ¢g'' = —¢?! implies
we do not obtain a regular two-dimensional submanifold of U*. This is clearly due
to the constant maximal rank two requirement failing. Therefore we require that at
least one of the two remaining (p,q) combinations satisfy the rank two condition.

Finally, the equation in (7.25) must also be satisfied, i.e.

X2J 042 —XQJ Oél
e £ 0.
(X1 —|—X1(922)X2)J &2 —(X1 +X1(922)X2)J CYI
Below is a modification of Theorem 7.5.1, which shows that if we are given just

one of the equations in (7.24) (found for example by inspection, or using Theo-

rem 3.2.13 as in the above), then the other can be determined using a symmetry:

Theorem 7.5.2. With at,a? and I as defined as above, let fi, 3, g't, g*2 € C(U?)
such that

Lol + fla? = gMdg"™. (7.28)
Suppose that for some p € {1,2}, the equation

0 p=1,
g'? = (7.29)

¢! otherwise,

for some constant c* describes a three-dimensional reqular submanifold of U*. Let

O : M3 — U* denote an immersion mapping onto this submanifold, and let X €



X(M3) be a non-trivial symmetry of O* (fial + fia?), for some f%, f2 € C>°(U*).
Then there exist g*',g* € C®(M?3) such that

o ( 201 4 f22a2) — g dg?.
Further suppose that, for some q € {1,2}, the equation

— 0 ifqg=1,

c?  otherwise,

for some constant ¢® describes a two-dimensional reqular submanifold of M?>. With

U M? — M? denoting an immersion mapping onto this submanifold, if

1 1
(60 W)* e £ 0, (7.30)
&5

on M?, then © o VU is a two-dimensional integral manifold of I.

Proof. Since for each i € {1,2}, da’ = 0 mod o', o?, it follows that with

B o= fla + fjo*
5 = flad + f3,

we have for each i € {1,2}, d3* = 0 mod 3%, 3% for arbitrary choice of fi, f1, f2, f2 €

C>(U*"). Let (' satisfy (7.28) for some f}, f; and some g¢'!, g'? € C*(U*), and for

some p € {1,2}, let the immersion © : M?® — U*, defined as in the theorem, map

onto the regular submanifold of U* given by (7.29). Then ©*3' = 0, so that
d (0°%) = 0" (dF”) = (0" ) ©*3" + (0"12) ©°F* =0 mod ©" 5",

for some py, iy € C®(U*). Let X € X(M?) be a non-trivial symmetry of ©*32.

Hence, applying Theorem 3.2.14 combined with Theorems 2.3.10 and 2.3.11, we

@*52 B
! (XJ (@*62)> -

obtain

Therefore

@*52 — (XJ (@*52)) d§22,



for some g% € C°(M?). We set g*' = X1 (0*3?) and choose g% such that it is of
constant maximal rank one on M3. Hence with U defined as in the theorem, we

have
(0 W) f =0=(00W)

By the assumption in (7.30), it is then clear that © o U is a two-dimensional integral

manifold of I. O

Remark. The functions fZ, f7 in Theorem 7.5.2 are not quite arbitrary: First they

must be chosen so that

S
) , 2750,
1 J2

on M3, or else (7.30) fails for any W. Then once ¥ is known, (7.30) must be checked.

Certainly the difficult part in applying Theorem 7.5.2 is in establishing (7.28).
Once this is done however, the remaining assumptions in the theorem simply involve
two maximal rank conditions, one non-zero determinant condition and one non-
trivial symmetry.

Another observation we can make regarding Theorem 7.5.2 is that ker(a!' A a?)
must be Frobenius integrable. Of course, even if ker(a' A a?) is not Frobenius
integrable, singular two-dimensional integral manifolds of I may still exist.

The following example illustrates Theorem 7.5.2:

Example 7.5.3. Suppose on some suitably chosen U* where 2% # 0, I := (a', a?)

with
21
ol = de® + ——dat — 2*da?,
212
1\2
a? = | 22%xt — @ +1 | dz?.
212

It is easy to show that for all i € {1,2}, da’ = 0 mod !, a?, and so ker(at A o?) is
Frobenius integrable.

We begin with the ‘regular’ approach to integrating ker(a' A a?) reviewed at the
beginning of this section. Simple inspection (or Theorem 3.2.14) yields

1\2 1\2
a' Aa? = <2x2x4— (") +1>d<x3+(x) )/\de.

212 42




Hence if the equations

for arbitrary constants ¢!, ¢? are constant maximal rank two on some suitably chosen
neighbourhood of U*, then they describe a two-dimensional foliation of the neigh-
bourhood, where each leaf is a regular submanifold that is an integral manifold of
I.

We now look to apply Theorem 7.5.2 in order to generate different two-dimensional
integral manifolds of I. Applying the theorem, suppose we choose f{ :=0, f; =1,

and

1)2
gl = 2p2t — (=) +1, g'2 = o2
222

so that (7.28) holds. We set
g'' =o. (7.31)

We also choose f := 1, f2 := 0. Again without explicitly introducing an immersion,
and pulling-back o' onto M? defined by (7.31) with coordinates for M3 given by
xl 22, 23, we find (on M3)

1 1)2
1_ 33, L 1 1 (1) 2
o =dx +—2x2dx +—2x2 <1_—2x2 )dx,

which, from Theorem 7.5.2, is closed modulo itself. Applying Theorem 3.2.14 with

-2 as a non-trivial symmetry of o', we get
1\2
1 3 (1)
a =d|z°+In(vVe?) + ,
< (Va?) + =5
SO

1.1)2

422 7

§21 — 1, §22 — a:,?) +ln(\/ﬁ) + (

Hence our only choice is to set

where ¢? is an arbitrary constant function. On a suitable neighbourhood of U* the
equations

Y IS R S B YOV W G 7.32
T 5r T1=0, x+n(x)+4x2—c (7.32)




are of constant maximal rank two, and it is easy to see from above that the non-zero
determinant condition in (7.30) holds. Hence the equations in (7.32) describe a two-
dimensional regular submanifold of the neighbourhood of U*, that is an integral
manifold of I. Note that the two-dimensional leaves described by (7.32) do not
generate a foliation of the neighbourhood. Rather, the three-dimensional regular
submanifold of the neighbourhood described by the equation on the left in (7.32) is

foliated by the two-dimensional leaves generated by the equation on the right.

7.6 A singular application

In this section we use Theorem 7.5.2 to provide an alternative to Theorem 7.4.2
when the transverse requirement fails for <I>*D%. The following result is the second

of our major new results for this chapter:

Theorem 7.6.1. Given some second order PDE of the form in (7.1) whose cor-
responding L is decomposable, let V € X (JY(U% V1)) be a symmetry of I Sup-
pose the equation ViC' = 0 describes a four-dimensional reqular submanifold of
JUU?, VY, and let @ : M* — JY(U?, V') denote an immersion mapping onto
this submanifold. Further suppose ®*(C' A (V1L)) # 0, and we have applied The-
orem 7.5.2 with o' := ®*C' and o* := ®*(ViL), thus generating some smooth
9", g*" and corresponding immersions © : M — JYU? V') and ¥ : M* — M?,

as in the theorem. If
(®o©oW)*(ds' Ada?) #0, (7.33)

then ® o © o W(M?) is the image of the 1-jet of some local solution of the PDE in

(7.1).

Proof. Using Lemma 7.4.1, we have on M* that
r * * 1
D% = (S’p{(I) Ch, o (V. L)})

is Frobenius integrable. Applying Theorem 7.5.2 to J1; defined in (7.9) then gener-

ates a two-dimensional integral manifold of J% given by

OoW: M? — M.



At this point the proof becomes very similar to that of Theorem 7.4.2. As L is

decomposable, we find that
PoOoW: M? — JHU? V)

is a two-dimensional integral manifold of I7.. The condition in (7.33) is a transverse
requirement. It is then clear that the image of ® o © o ¥ is equal to the image of

the 1-jet of some local solution of the PDE in (7.1). O

Remark 1. Theorem 7.6.1 can obviously be modified by replacing Theorem 7.5.2
with Theorem 7.5.1.

Remark 2. While Theorem 7.6.1 does not require that ®, D% be transverse, a trans-

verse requirement must still be introduced, but at a later stage.

The following example attempts to clarify Theorem 7.6.1:

Example 7.6.2. Consider the potential Burgers’ equation:

ou 0%u ou \?
dr2  9(xzl)? (8351) =0 (7:34)

Defined on J'(U?, V') we have
L =(C",dC",L,dL),

where F' = 23 — 21, — (21)? and L = ((z3 — (21)?) dz* — dz}) A dz?*. Now

0 0
Ve 92 S
=2 ozt " 9t

is a Lie point symmetry of (7.34), and we use its first prolongation V"), where

0 0 0 0
)92 % 1% 9 519
v Tort T g dz1 “ 0z3’

as our non-trivial symmetry of /7.

Applying Theorem 7.6.1, we define M* to be the four-dimensional regular sub-
manifold of J'(U?, V') given by the locus of

VD ot = —zt — 22221 = 0.



We assume M* has coordinates x!, 22, 2%, 24 with 22 # 0, so that on M* we have

1
T

C'=dz' + ﬁdxl — zada?,
T

(z')?
VL = <2x2,z% sy + 1) dz?.

It is clear that the transverse condition does not hold on the two-dimensional annihi-
lating space of Sp{C", V(1)1 L} defined on M*, so we will look to use Theorem 7.5.2.
In applying this result, we refer to Example 7.5.3 which makes use of the theorem
with 23 replacing z' and x* replacing 2z so that o' = C' and o> = V)1 L. From

the example, we then get that

u=—In(Va?) — (z)" + ¢,

42

for any constant ¢? is a similarity solution of (7.34) corresponding to V.

7.7 Decomposability examined

Theorems 7.4.2 and 7.6.1 appear to be restricted by the requirement that L (or LT)

be decomposable. However, since dC! is in I%,

be JEU% VY of dC! to L so that L + bdC' is decomposable.

we may look to add some multiple

Without loss, working this time with LT, we define the following two-form
Qf .= LT + bdC"*,

where b is for the moment any smooth function on the first jet bundle J'(U% V).
The following theorem gives a simple quadratic condition on b in order that QfAQT =

0 (i.e. QF is decomposable by Theorem 3.6.1).

Theorem 7.7.1. With Qf .= LT + bdC", if

b —fs £V [i—4fif
2 )

with f2 —4f,fy >0, then QF is decomposable.

Proof.

(Lt +bdC")” = (L1)? + 26dC* A LT + 52(dCH?,



and
(dC")? = 2d2] A dat A dzy A da?,
(L2 = —2f, fod2t A dx® A dz) A dat,
dC' N LT = fadzy A da® Adz A da'.
Hence
(L' +bdCY)* =2 (2 + bfs + fifs) dof Ada' Adz A da?.

It follows that if

b

_ ~hEVE -4k
2 Y

where b is real on J'(U?, V'), then QT AQT = 0, and therefore by Theorem 3.6.1, QF
is decomposable. O

Proved in a similar way to Theorem 7.7.1, we have the following for L:

Theorem 7.7.2. With Q := L + bdC", if

_ it f3 —4fifo

’ 2

with f2 —4f1fs >0, then Q is decomposable.

The requirement that the discriminant in Theorems 7.7.1 and 7.7.2 remains non-
negative on J2(U?, V') (or on some suitable neighbourhood), coincides exactly with
the condition found widely in the literature [19, 28, 61] that the second order PDE
in (7.1) be hyperbolic or parabolic. Hence, if the PDE is of one of these two types,
we are always able to determine a decomposable Q (or Qf). Thus we can apply
Theorems 7.4.2 and 7.6.1 by simply replacing the L in these two theorems with (2.

We illustrate with an example:

Example 7.7.3. Consider the non-linear wave equation:

0%u 0%u

() = u@(xl)Q' (7.35)

In terms of coordinates of J'(U?, V'), this equation admits the point symmetry

28 218

V=g ¥ g



whose first prolongation is

o
025

Working with L we have
L= —2'dzt Nda® — dzy A da,

which is clearly not decomposable. From Theorem 7.7.2 we find that L + v/21dC"

is decomposable. Taking the positive option gives

Q, =L +Vz1dC",
= (dz% — \/;dz%) A (\/z_ldx2 — dx1> .

Applying Theorem 7.4.2, we define the four-dimensional regular submanifold M* C
JYU?, V') by the locus of

V0t = —2?2) — 221 = 0.
Let M* have coordinates z!, 22, 2, 2] with 22 # 0. Then we have on M4,
221
C' = dz' — 2idat + —deZ,
T

62" 4(z1)3
v,q, = <—iQ - 2\/§z}> dz* + (@ + 2z1z}> da® + 2V2 dz" + 2221 dz)
T x
It is easy to show that the transverse condition holds on the two-dimensional anni-
hilating space of Sp{C',V(1Q_,} defined on M*. By inspection,
0
X, = — e x(M*
! ox! (M)
is a non-trivial symmetry of C* A (VV1Q,) (pulled-back onto M*). Using DIMSYM,

1 0
0. © X(M*)

X2 = —

is another non-trivial symmetry of C' A (V(M1Q,), which also commutes with X.
Therefore, taking advantage of this situation and applying Theorem 3.2.16 with
Corollary 3.2.12 gives the two closed forms
X (CPA(VI1QL)
Xo1 X1 (CY A (VD1QL))

Xos (C'A(VI1QL)) al et (22)%2]
X Xoa (CPA(VOIQL)) '

QU
/N
~—

8
no
N
i
~—~
I
==
N
no
|
~—
8

[\

N

[\

N

-

N~




Putting

for any constants c', ¢?, we obtain

3(xt — 02)2 —ct
(22)?

u =

as our similarity solution of the non-linear wave equation in (7.35) corresponding to

V.

7.8 Conditional symmetries

Following Bluman and Cole [20], Olver [98] or Stephani [117], a conditional symmetry
V € X(U?x V1) of some second order PDE in (7.1) is defined as a Lie point symmetry
of the overdetermined system of PDEs given by (7.1) and the first order quasilinear
PDE obtained from

v,ot =o. (7.36)

In this section we show that all results in the previous sections still hold true if
instead of the symmetry being the first prolongation of some point symmetry of (7.1)
it is the first prolongation of some conditional symmetry.

We define
I = (CY,dCY, L, dL, (VY CYYdat A da?, d(VY1CY) A dat A da?),

defined on the first jet bundle J'(U?, V). It is clear from Section 2.5.2 in Chapter
2 that the image of any two-dimensional integral manifold of f% that satisfies the
transverse condition will be that of some 1-jet solution map of the overdetermined
system of PDEs given by (7.1) and (7.36).

If V' is a conditional symmetry of (7.1), then it follows from the discussion in

Section 7.3 that
Ev(l)./[\% C f%
Explicitly,

LyoyCh =\ CH (7.37)



as well as
LymL =a' NC'+ AdC' + ML+ Ay (V1 C)da! A da?), (7.38)

and finally,

Ly (VIDICYYda' Ada®) = a® ACH + AsdC' + N 7.39)
.39
+ A7 ((V(I)J Chyda' A dz?),
for some Ay,...,A\; € C® (JY(U?, V') and o', a? € A (JH(U?, V).
Suppose in terms of first jet bundle coordinates the equation in (7.36) describes

a four-dimensional regular submanifold of J'(U?, V1), which we parameterise by the

immersion ® : M* — J'(U? V). It is then obvious that

O = I,

Without loss, we can assume L is decomposable, so that L = (V) L) Aw for some

w € AL (JHU?, V1Y) (assume VDI L # 0). Suppose we now wish to repeat the proof

of Lemma 7.4.1, where in the lemma,
1. I7 is replaced by I,
2. V is replaced by the first prolongation of our conditional symmetry V1),

3. The symmetry conditions in (7.4) and (7.5) are replaced by those in (7.37)
and (7.38).

Now it is not hard to see that the lemma still holds true, since the pull-back of (7.38)
by ® forces the final term on the right to vanish. Thus when pulled-back by ®, the
two sets of equations given in item (3) above are in identical form. Hence from the
lemma there exists some Cauchy characteristic vector field W € X (M*) of Ji with
the property that ®, W = V(). Consequently, with the same three substitutions
given above, Theorems 7.4.2 and 7.6.1 hold.

Finally, the equation in (7.39) is not used in the proof of any of our results.
Therefore it appears that in order for us to use symmetries of f% to derive non-
classical similarity solutions, vector fields from the symmetry algebra of f% are not
strictly necessary. One essentially only requires vector fields that satisfy (7.37) and

(7.38).



Using a conditional symmetry, we now illustrate Theorem 7.4.2 with the following

example:

Example 7.8.1. Consider the heat equation given in (7.21). From Stephani [117],

it has the conditional symmetry

0 0
V= tan(xl)@ + EYek

whose first prolongation is given by

0 0 0
VO =tan(@) g5+ 5 o2

From Example 7.4.3, L is decomposable. Applying Theorem 7.4.2, we define the

— 21 sec?(at)

four-dimensional regular submanifold M* C J'(U?, V') by the locus of
VW 0t = —zltan(z!) — 2 = 0.
Letting M* have coordinates z', 22, 2", 2!, we pull-back C' and V()1 L so that (on
M*),
C' =dz' — zjdz' + 2| tan(z")da?,
VWL L = 2t tan atdat — 2lda® — dzt
It can be shown that on M*, ker (C' A (VW L)) is a two-dimensional Frobenius

integrable distribution that satisfies the transverse condition. By inspection,

9 9
0x?’ 021

are two commuting non-trivial symmetries of C' A (V1 L). Hence by Theo-

S x(MLl)a

rem 3.2.16 we obtain the two closed forms
a%ﬂ (C* A (VDS L))
0 121 (CY A (VDL L))

321 552

d (2" — 2 tan(z")),

) 1 1
2t AL 1
5 Ja( Woub) _ d <ln L T +x2> :
so31 571 (CT A (VL)) cos(z1)
Putting
2t — 2z tan(zt) = ¢ In & +at=c?
! ’ cos(z!) ’

Land ¢ yields

for any constants ¢
u = sin(z') exp(c® — 2?) + ¢*

as our local non-classical similarity solution of the wave equation corresponding to

the conditional symmetry V.



Chapter 8

Symmetry reduction of second and

higher order PDEs

8.1 Introduction

Consider a second order PDE of one dependent variable v and two independent
variables z!, 22 of the following form:

0%u 0%u 0%u

fl@(xl)Z +f28(x2)2 +f383:1x2 =k, (8.1)

ou  Ou

where fi, fa, fs, k are smooth functions of z', 2%, u, 5%, 5%.

This chapter partly examines conditions under which a certain class of PDEs of
the form in (8.1) can be ‘integrated’ to first order (generally non-linear). This is
achieved by firstly expressing a given second order PDE in terms of the differential
two-form L (or LT), as in Chapter 7. If the differential form is decomposable and
closed modulo itself, it is then shown that a solvable structure of two symmetries
can reduce the order of the PDE to first order depending on one arbitrary function.

The remainder of this chapter attempts to generalise the result above for second
order PDEs to single r-th order PDEs of n independent variables and m dependent
variables linear in their r-th order derivatives. It is shown that if the defining
differential n-form for the PDE is decomposable and closed modulo itself, then it
is possible to use a solvable structure of n symmetries to again reduce the PDE to

(r — 1)-th order depending on one arbitrary function.



8.2 Review

Reviewing Section 7.2 of Chapter 7, we can express solution surfaces of the PDE in
(8.1) as two-dimensional submanifolds of the locus described by F = 0 in J%(U%, V1)

- - 122 1 1 1 1 1 ]
(with coordinates x', 2%, 2", 21, 23, 211, #39, 215), Where
gl 1 1
Fi= fizg + fazgy + f321, — k-
Following Theorem 7.2.1, we use the contact forms

C!i=dz' — zjda* — zyda?,
1. g1 11 1 g2
Cy :=dzy — z1,dv — 2z1,dx”,

1. 1 1 1 1 2

and look for a two-dimensional Frobenius integrable distribution that is an integral

manifold of the differential ideal
Iz == (C',C},C,dCY,dCy, LY,
where
L := fidz; Nda® — fodzy Ada' + fzdzy A da® — kdz' A da?,

such that the transverse condition dz' A dz? # 0 also holds on the distribution.

8.3 Second order symmetry reduction

The main result of this section is the following:

Theorem 8.3.1. Suppose we are given some second order PDE of the form in (8.1)
such that

1. L s locally decomposable,
2. dL =0 mod L.

Let X1,X, € X(JY(U?, V) be a solvable structure of linearly independent sym-

metries such that Xy is a non-trivial symmetry of ker(L) and X, is a non-trivial



symmetry of ker(L) & Sp{Xs}. Then there exist some functionally independent
vy e C*(JHU?, V1Y), so that

L = L(X,, Xy)dy' Ady?.

Moreover, suppose H is any smooth function of v',7? such that H(y',v?*) = 0 is,
in terms of its first jet bundle coordinates, some first order PDE. Then any local

solution of this PDE is also a local solution of (8.1).

Proof. Theorem 3.2.14 in conjunction with Theorem 2.3.11 means we can find some

functionally independent ', v € C°°(J'(U%, V') so that
L = L(X1, Xo)dy* A dy?. (8.2)
Now we choose H, so that the expression
H(v',7%) =0, (8.3)

gives us some first order PDE of the form

H <x1,x2,u, Ou 3u> =0, (8.4)

dx'’ a2
for some smooth H. From the discussion preceding Theorem 5.4.1, it follows that
on the regular submanifold of J'(U? V') given by (8.3), L in (8.2) is annihilated.
Thus if u = h(z', 2?) is any local solution of the PDE in (8.4), it is then clear that
its 2-jet
J2h U — U2V,
has the property that
2L =0.
Further, the pull-back of all the contact forms in I3 is also zero. Therefore j2h" I =

0, so u = h(z',z?) is a local solution of the original second order PDE. O

Remark 1. While we exclusively deal with L, Theorem 8.3.1 can be applied to L'
as defined in Section 7.2 of Chapter 7.



Remark 2. It is possible to choose H so that we are left with some equation in (8.4)
that is defined entirely on the graph space, and consequently does not give us a
first order PDE. If this equation can locally be expressed as u = h(z!, 2%) for some
smooth h, then it is clear that it will be some local solution of (8.1). This chapter

ignores such pathological situations.

In order to solve the resulting first order PDE in Theorem 8.3.1 we may look to
use Theorem 5.4.1 in Chapter 5 if it is quasilinear, Theorem 5.5.3 (or Theorem 5.6.1
if the PDE does not contain u) if it is non-linear, or one of the more complicated

techniques in Theorems 6.4.11 and 6.6.6 in Chapter 6.

8.3.1 Examples
In this section we apply Theorem 8.3.1 to two examples:

Example 8.3.2. Consider the following second order PDE:
0*u 2 ou  d%u )

d0(z1)? * 22 022 011022
Our corresponding L is

1

2
L= <dz% + i;dz% - xdel) A daz?.
x

Now L is locally decomposable, and it is obvious that dL = 0, so we may proceed

to apply Theorem 8.3.1.

% is a non-trivial (and not of Lie point type) symmetry of L. Further,
1
0
— L =dx?
0z} ’
and % is a non-trivial symmetry of %J L. From Theorem 3.2.14 and Corol-
1
lary 3.2.12,
9
73211J - = da?
O 2L ’
0z~ 0z}
and
0 1
=1L 2z
33:’323 =dz + —;dZ% — z2dz!,
5.7 5e21 L v




Hence

1\2
L:d<2%+(12) —xx)/\dx

Thus our first order non-linear PDE is

ou 1 [(ou\® |, 9
ot T2 (aT) —wa =g,
for any choice of smooth function ¢ that is a function of z2.

From the example, it is no coincidence that

d (ou 1 [(ou)’
ot (a— w3 (5) e W)) =

simplifies to give the original second order PDE that we began with. Theorem 8.3.1
uses symmetries to find a first order PDE with such a property, which usually cannot

be found by simple inspection. This fact is reinforced by the next example:

Example 8.3.3. Consider the following second order PDE:

x_z 0%u N 0*u B ou\ " (8.5)
z! 0(2?)? Orlor2  \ Ox2 ) )

The corresponding L is

Lz——dzZ/\dx +dzy A da? ——dx A dz?.
2

Since LA L = 0, by Theorem 3.6.1, L is decomposable on a suitably chosen domain.

1
d(%L):m
T

it follows that dL = 0 mod L. Now z? W and - _IF are two commuting non-trivial

Since

symmetries of L, so by Theorem 3.2.16 we would expect two closed forms. We find

x? 62JL (23)° 1
5 5 =d|————x |,
—13—JJI :L,QJL 2

3Z1JL 22
2 a 1 =d{ln|—||.
2575 lazlJL x

So our first order non-linear PDE defined on a suitable domain is

%(;%y_xu:<m ), (8.6)

2




for any smooth g.
Note that the partial derivative of (8.6) with respect to z' yields
L (f?
0x? Ox'a? xt xt
and the partial derivative of (8.6) with respect to x? gives

ou 0*u 1,
oo 2\t

) — 0, (8.7)

372

7l

) = 0. (8.8)

It is then easy to see that a combination of (8.7) and (8.8) produces (8.5).

8.3.2 Generalisation to higher order

Suppose we are given a single r-th order PDE of n > 2 independent variables linear
in its r-th order derivatives. In a similar approach to that given in the proof of
Theorem 7.2.1 in Chapter 7, it is not hard to obtain a corresponding differential n-
form L such that it is expressed solely in terms of (r — 1)-th jet bundle coordinates
and their differentials. Using this fact we can generalise Theorem 8.3.1 to such r-th

order PDEs in the following way:

Theorem 8.3.4. Suppose we are given some r-th order PDE of m dependent vari-
ables and n independent variables that is linear in its r-th order derivatives. With F'
defined to be the PDE in terms of local coordinates of the r-th jet bundle J" (U™, V™),
let the equation F =0 describe a reqular submanifold of J" (U™, V™). Then the dif-
ferential n-form Fdz' A---Adz™ can be expressed, modulo the highest order contact
forms, solely in term of the local coordinates of J'=* (U™, V™). Call this differen-
tial form L,. If L, is locally decomposable and dL, = 0 mod L,, and if we have a
solvable symmetry structure Xy, ..., X, € X(J "1 (U", V™)) for ker(L,), then there
exist some functionally independent v', ...,y € C®(J'=H (U™, V™)) so that

L. =L, (Xy,...,X)dy" A--- Ady"

Moreover, any local solution of the (r — 1)-th order PDE of m dependent variables
and n independent variables given by H(y',...,4™) = 0, is a local solution of the

original r-th order PDE.

From Lemma 3.2.1, if ker(L,) has codimension n in some region, then L, is

locally decomposable; however determining whether dL, = 0 mod L, is the major



obstacle in applying Theorem 8.3.4 (similarly for L in Theorem 8.3.1). As mentioned
earlier in Chapter 3, if it is known that L, is decomposable with L, = w' A--- A w"
for some r one-forms, then we may use the exterior calculus package EXCALC to see

ifforall 1 <<,
dw' Awr A AW = 0.

This will then imply L, is closed modulo itself.

8.4 Extended reduction approaches

This section attempts to tackle a wider class of second order PDEs of the form in
(8.1) than those examined in the previous section. Given a second order PDE of
the type in (8.1) we will once again derive a corresponding first order PDE, but this
time in a more general setting than that in Theorem 8.3.1.

Using Theorem 7.7.2 we begin with the following result for hyperbolic and
parabolic PDEs of the form in (8.1):

Theorem 8.4.1. Consider the following second order PDE:

0% 0u 0%
fl a(xl)Z + f28(x2)2 + f3ax1x2 - k?

(8.9)
where fi, fa, f3, k are smooth functions of ', x', u, %, %. With
L := fidz; ANda® — fodzg Adat + fzdzy A da® — kdz' A da?,

define Q := L + bdC", where

_hEVE-4hh

b :
2

with f2 —4f1fy > 0. Suppose dQ) = 0 mod 2, and let there exist a solvable struc-
ture of two symmetries X1, Xo € X(J' (U, V")) for ker(Q2). Then there exist some
functionally independent ', v* € C*(JY(U? V1)) so that

Q = Q(Xy, Xo)dy' A dy?,

Moreover, any local solution of the first order PDE given by H (v',+?) = 0, is then
a local solution of (8.9).



Proof. From Theorem 7.7.2, 2 is decomposable. By assumption, d2 = 0 mod (2.
Applying Theorem 3.2.14 with Theorem 2.3.11, we are able to determine functionally
independent !,7? € C°(JY(U%, V1)) such that Q = Q(X;, X3)dy! A dvy?. The rest
of the proof is virtually identical to that of Theorem 8.3.1. O

We illustrate Theorem 8.4.1 with the following simple example:

Example 8.4.2. Consider the wave equation:

0%u 0%u
ST = 3R (8.10)

In this example we generate the general solution of (8.10) using Theorem 8.4.1
combined with the work on first order PDEs in Chapter 5.

Applying Theorem 8.4.1, we have
L = dz Ada® + dzy A dat,
which is not decomposable. Taking the positive option for {2 we obtain by inspection

Q+ = L"— dcl,

=d (21 +2z) ANd (2" +27).

Normally we would also apply Theorem 3.2.14 to reach this stage. Therefore our

resulting first order PDE is
Ju  Ou

for arbitrary smooth g that is a function of z' + x2. Now since (8.11) is first order

linear, using Theorem 5.4.1 we have
K =dz' ANda® + da' A dzt — g(z' + 2%)dat A da?,

defined on U? x V1. It is clear that

0 0 0
5o Bt~ g2 € XU V)

are two commuting non-trivial symmetries of K. Then applying Theorem 3.2.16

with Corollary 3.2.12 we obtain

K:d(xl—xQ)Ad(ZI—%/g(f)d§>,



where & = 2! + 22. We put

u [ o€ = hia' -7,

for arbitrary smooth A that is a function of ' — 2. From Theorem 5.4.1 this implies
u=h(z' —2%) + (2" + 2?),

for arbitrary smooth [ is a local solution of (8.11). Hence from Theorem 8.4.1 we

obtain the general solution of (8.10).

In typical problems, solving the resulting first order PDE may not be possible
with the introduced function left arbitrary. Fortunately in the example above we
are able to do this for (8.11). For first order quasilinear PDEs this may be feasable,
although finding the solvable symmetry structure for K in Theorem 5.4.1 can po-
tentially be quite difficult.

We present below two results that in a sense attempt to generalise Theorem 8.4.1.
Unfortunately these results are difficult to apply in practice and essentially have

more theoretical interest at this point in time.

Theorem 8.4.3. Consider the following second order PDE:

0%u 0%u 0%u
fla(xl)2 * f28(x2)2 +fs Oxla?

— K, (8.12)
where f1, f, f3,k are smooth functions of x',z', u, 2% 2% With

L= fidz{ Ada® — fadzy Ada' + fadzy A da® — kdz' A da?,

and C* := dz' — zidx' — zidx?, suppose there exist some b € C°(JH(U?,V?Y)) and
B e A (JHU?VY)), such that

Q:=L+BAC"+0bdC!

15 decomposable and dS2 = 0 mod Q. Let there exist a solvable structure of two
non-trivial symmetries X1, Xy € X(JY(U%, V")) for ker(Q). Then there exist some
functionally independent v',v* € C®(J'(U*, V")) so that

Q= Q(Xl,XQ)d’)/l VAN d’)’2

Further, any local solution of the first order PDE given by H (v',~v%) =0, is then a
local solution of (8.12).



Theorem 8.4.3 is similar to Theorem 3.1 in [125]. We can extend Theorem 8.4.3
to give us something more sophisticated than Theorem 8.3.4 as follows:

Consider the contact one-forms on the r-th jet bundle J" (U™, V'™):

C7 = d2 — 2] da",
. g0 J iz
C; i=dz; — 2 ,;,dx",
C?.oi=dy . — 2 dx'?,

0102 1112 111283

J O | o ir
Cil...ir,l = dzil...ir,l Zil...irdx )

for all 1 < 5 < m, where summation is implied on the repeated indexes with

1 <4y <--- <14 <n. Using these one-forms, we have the following result:

Theorem 8.4.4. Suppose we are given some r-th order PDE of m dependent vari-
ables and n independent variables that is linear in its r-th order derivatives. With
F defined to be the PDE in terms of coordinates of J" (U™, V™), let the equation
F = 0 describe a reqular submanifold of J" (U™, V™). Then the differential n-form
Fdx' A ---ANdx™ can be expressed, modulo the highest order contact forms, solely in
term of the local coordinates of J*=1 (U™, V™). Call this differential form L. Further

suppose the differential n-form (with sum,)

Q=L +a; ANCI+a ACL +- -+ a2 A CY

7 01.lp_2

+ G A dC

01eelp_2)

with 1 < 53 < mand 1l < iy < -+ < 49 < n, s locally decomposable and
ai_l---ir—2 c An—l(Jr—l(Un,Vm))

dL, = 0 mod L, for some choice of Oéj,a;-l,..., ’

and ﬂ;l'“ir’z e A 2(J=H U™, V™). If we have a solvable symmetry structure
X1y, Xy € X(JTHU™, V™)) for ker(S2,), then there exist some functionally inde-
pendent v', ... y" € C®(J Y U™, V™)) so that

L, = L.(Xy,...,X)dy" A Ady™,

and hence any local solution of the (r — 1)-th order PDE of m dependent variables
and n independent variables given by H(y',...,4™) = 0, is a local solution of the

original r-th order PDE.



Chapter 9

Summary and concluding remarks

9.1 Introduction

In this thesis we have attempted to develop some systematic methods for finding
local solutions of partial differential equations using solvable symmetry structures.
Our work has been motivated by the fact that while there exists a significant amount
of modern literature on using such symmetries for solving ordinary differential equa-
tions, it has generally been lacking for PDEs. Hence a fundamental aim has been
to examine the classes of PDEs for which we can use solvable symmetry structures
to extract local solutions.

In this final chapter we begin with a review of some of the important new results
contained in Chapters 3 to 8. We then discuss some areas for further research.
Following this, we end by giving an overall conclusion expressing what we feel is a

true evaluation of what this thesis has achieved.

9.2 Review

In this section we give some discussion on the most significant new results that were
established in Chapters 3 to 8.

After introducing some background material in Chapter 2, our work essentially
began in Chapter 3 by presenting in Theorem 3.2.13 an extension to Lie’s solv-
able symmetry structure approach to integrating Frobenius integrable distributions.

While this is not a new result, we used it to obtain a new result in Theorem 3.2.14



on using solvable symmetry structures to find simplifying expressions of differential
forms that are decomposable and closed modulo themselves. We then showed in
Theorems 3.2.16 and 3.2.17 that the conclusion of Theorem 3.2.14 (and also Theo-
rem 3.2.13) may be simplified somewhat when there exist certain solvable symmetry
structures that force more than one of the w’ in Theorem 3.2.14 to become exact.
Theorem 3.2.17 is a generalisation of Theorem 3.2.16 and gives a symmetry structure
condition for the first [ w’ to become exact.

Chapter 3 then examined in Theorems 3.4.1 (and its corollaries) some necessary
conditions for a given differential form to be decomposable and closed modulo itself,
in order to be able to apply Theorem 3.2.14. It was noted from Corollaries 3.4.2
and 3.4.3 that for a given A € A™(U™) (where m < n — 1), if one finds n —m — 1
linearly independent Cauchy characteristic vector fields of (A, dA), then the Cauchy
characteristic space is (n—m)-dimensional with A decomposable and closed modulo
itself.

Next, as an application of Theorem 3.2.14, we demonstrated in Theorem 3.5.7
how it is possible to apply Theorem 3.2.14 to find normal form coordinates for the
Pfaff problem. Given a one-form « of constant rank r on its domain, we showed
that one solvable symmetry structure of length 2r + 1 for (da)” A « is enough to
yield normal form, provided the last r symmetries are in the kernel of a.

We closed Chapter 3 by looking at closed differential two-forms. The main
result contained in Theorem 3.6.8 is a method based on vector fields for finding
the coordinates in Darboux’s theorem. The technique is derived from a well-known
iterative scheme, where a pair of new coordinates are extracted each time with the
last stage using Theorem 3.2.14.

Chapter 4, as an introduction to PDEs, briefly examined ODEs. We gave an
approach to finding the general solution of a single ODE using a solvable symme-
try structure. Based on work by Edelen on the fundamental ideal representation
of differential equations, Theorem 4.3.1 combined with Theorem 4.4.1 present an
extension of Theorem 3.2.14 that can be used to generate the general local solution
of single n-th order non-linear ODEs.

Next, in Chapter 5 we gave several algorithms based on solvable symmetry struc-

tures for finding local solutions of various types of first order PDEs. Firstly, we



examined single first order quasilinear PDEs of one dependent variable and n inde-
pendent variables. Given such a PDE, we showed in Theorem 5.4.1 that using its
fundamental ideal representation and a solvable structure of n symmetries we are
able to derive a local solution of the PDE in terms of an arbitrary function of n
‘invariants’. The symmetry approach in Theorem 5.4.1 replaces the usual method
of characteristics, where a parameterising variable is introduced, a system of first
order ODEs is solved, and finally the parameterising variable is removed.

Next, in Theorem 5.5.3 we looked at the problem of finding local solutions of
single first order non-linear PDEs of one dependent variable and two independent
variables. The theorem uses Vessiot theory, to transform the problem to that of
finding a local solution of some corresponding quasilinear PDE of precisely the form
described before. This generally involves a two stage process requiring two separate
solvable symmetry structures, one of four symmetries and the other of two. It is
important to realise here that using Vessiot theory, we are restricted to single first
order PDEs of two independent variables. This is because the integrability condi-
tions for n > 2 independent variables typically involve more than one quasilinear
PDE, for which we do not give a symmetry approach for generating local solutions.

Finally, we closed Chapter 5 with the situation when we are given a first order
non-linear PDE of one dependent variable and two independent variables that does
not involve the dependent variable. For such PDEs, we presented in Theorem 5.6.1
an alternative approach to using Vessiot theory, which is simpler in that it requires
only one solvable structure of two symmetries.

While one of the aims of Chapter 5 was to avoid using Cauchy characteristics
and the associated equations of Charpit and Lagrange to solve single first order
PDEs, it was in Chapter 6 where we formally introduced and focused on such char-
acteristics. In this chapter we examined some symmetry approaches to the Cauchy
problem for Pfaffian systems. Our objective was to determine the extent to which
symbolic computation techniques using solvable symmetry structures can be applied
to the Cauchy problem. We managed to develop two techniques in Theorems 6.4.11
and 6.6.6 that solve the problem for the situation when the Cauchy characteristic
space is strictly one-dimensional. Although these two results appear to be just al-

gorithms for using solvable structures to find the functions in Theorem 2.2.13 and



then express the Pfaffian system in terms of these functions (which is a significant
new result in itself), it is Lemma 6.3.3 and Theorem 6.3.5 which allow use to ap-
ply the results to the Cauchy problem. Furthermore, the symmetry results given
in Lemmas 6.4.8 and 6.6.2 and Corollary 6.6.5 (all of which can be applied using
DIMSYM) are equally crucial to Theorems 6.4.11 and 6.6.6. It is significant to note
that the symmetries required in Lemma 6.4.8 and Corollary 6.6.5 are not restricted
by the condition in Lemma 6.6.2 that Z;1a/ = 0 for all j # i. Therefore in using
DIMSYM to generate symmetries for these results, it is only those for Lemma 6.6.2
that may be more difficult to find.

An inherent deficiency in applying the methods in Theorems 6.4.11 and 6.6.6 to
solving the Cauchy problem is that the tangent space of the Cauchy data must be
specified by vector fields of the precise form in the theorems: In generating the data,
one must pick vector fields that are linear combinations of W;, whose coefficients
are smooth functions of 7!,...,y™. For one-dimensional data, this is all that is
required; however in Theorem 6.6.6, where Zy,..., 7, € X"~'"P(U") must form a
Frobenius integrable distribution, this may be difficult (or may not even exist) if
v > 1. Nevertheless, if we are given the Cauchy data only in the form of some
Frobenius integrable vector field distribution spanned by some Zi,..., Z,, then we
at least obtain uniqueness up to foliation. We used this situation in Sections 6.5
and 6.7 to show how to apply Theorems 6.4.11 and 6.6.6 to extract local solutions of
single first order PDEs and a class of systems of two second order PDEs, that depend
on some arbitrary constants. In solving the Cauchy problem for such PDEs with
uniqueness only up to foliation, the failure in the uniqueness of the PDE solution
is simply due to the arbitrariness of several constants. Thus if the Cauchy data is
given only in form of some Frobenius integrable vector field distribution, then all
solutions in the PDE solution space corresponding to the data are still functionally
dependent.

Chapter 7 then looked at several symmetry approaches for finding similarity

solutions of second order PDEs of the form

0%u 0%u 0?u
fl 8(1'1)2 + fZa(fL'Z)z + f3a]}11‘2 - k?

(9.1)

ou  Ou

s 52> 57+ OUr main re-

where f1, f2, f3, k are arbitrary smooth functions of z!, 2!, u

sults, Theorems 7.4.2 and 7.6.1, combined with Theorems 7.7.1 and 7.7.2 show how



one may use solvable symmetry structures to extract similarity solutions of a given
second order hyperbolic or parabolic PDE of the form in (9.1). While the former two
theorems assume L (or L') is decomposable, it is hardly a restriction. This is because
the discriminant in the latter two theorems remains non-negative on some neigh-
bourhood precisely when the PDE is hyperbolic or parabolic. Hence, we are always
able to apply Theorems 7.4.2 and 7.6.1 by replacing the given non-decomposable L
with a suitable decomposable €2, which is simply some linear combination of L and
dC'. For Theorem 7.4.2 there is a risk that the resulting two-dimensional Frobe-
nius integrable distribution does not satisfy the transverse requirement. For such
situations, Theorem 7.6.1 is an alternative to Theorem 7.4.2 that uses a non-regular
feature of differential forms.

Finally, we ended Chapter 7 with an extension of earlier results using conditional
symmetries. We showed that all previous results in the chapter are still true if I3
is replaced with the differential ideal f%, where the latter is the fundamental ideal
corresponding to the system of PDEs given by (9.1) and the first order quasilinear
characterising PDE obtained from V(M C' = 0, where V is a conditional point
symmetry of (9.1). We observed in Chapter 7 that since all our results are defined on
the regular submanifold of the first jet bundle described by the locus of V() C! =
0, on this region the difference between a conditional and a Lie point symmetry
vanishes.

Chapter 8 initially presented two symmetry methods in Theorems 8.3.1 and 8.4.1
for reducing a second order hyperbolic or parabolic PDE of the form in (9.1) to
first order. Using solvable symmetry structures, these theorems essentially give us
algorithms for ‘integrating’ such a PDE to first order (generally non-linear) plus an
arbitrary function. In applying the two techniques, it is necessary that the defining
decomposable two-form L in Theorem 8.3.1 (or © in Theorem 8.4.1) corresponding
to the PDE is closed modulo itself. While this condition may be difficult to test in
practice, Theorem 3.4.1 and one of its corollaries in Corollary 3.4.2 at least offer us
some hope of determining whether a differential two-form is closed modulo itself.

We also examined in Chapter 8 higher order PDEs linear in their highest order
derivatives and of an arbitrary number of independent variables. Given such a PDE,

Theorems 8.3.4 and 8.4.4 present two symmetry approaches for reducing its order



by one that depends on one arbitrary function. Again, the assumption is that the
defining n-form is decomposable and closed modulo itself. The results in Chapter 8
are a useful reformulation of the linearisation process by Bluman and Kumei [22].
For second order hyperbolic or parabolic PDEs of the form in (9.1) we may
summarise some of the results in Chapters 5, 6, 7 and 8 in the following way: Since
for such PDEs the corresponding L (or ) is locally decomposable, then we can at
least generate some similarity solutions using results in Chapter 7. If, in addition to
decomposability we have dL = 0 mod L (similarly for ©), then as well as yielding
similarity solutions, we can ‘integrate’ the PDE to first order plus an arbitrary
smooth function using results in Chapter 8. For dealing with such first order PDEs,
if the PDE is quasilinear then we may apply Theorem 5.4.1 in Chapter 5; however
if it is non-linear then we have several choices: i) Vessiot theory in Theorem 5.5.3
followed by Theorem 5.4.1; ii) if the PDE does not contain u, then Theorem 5.6.1
followed once again by Theorem 5.4.1; or iii) one of the more complicated techniques

in Theorems 6.4.11 and 6.6.6 in Chapter 6.

9.3 Areas for further work

In this section we examine some interesting areas arising from our work that either
we have not had the time to pursue or have been unable to make any significant

progress.

i) Solvable structure types
Examining Theorems 3.2.13 and 3.2.14, it would be of interest to be able to classify
the classes of solvable symmetry structures that display w',...,w™ in (3.7) in par-
ticular rank configurations. The types given in Theorem 3.2.16 and its extension in
Theorem 3.2.17 are what we consider to be the most obvious, and we found it very
difficult to find others, partly because the algebraic manipulations became large and
unmanageable. We would like to prove the following conjecture, which is essentially
an extension of Theorem 3.2.17:

Suppose we are in the process of generating a solvable symmetry structure for

some (n—m)-dimensional Frobenius integrable vector field distribution D defined on



U", and at some stage s := m—p-+1 for some 1 < p < m we have found ¢ commuting
modulo D & Sp{X,41,...X,,} non-trivial symmetries of D & Sp{X,1,... X},
which we denote by X,_,y1,...,X,. Further suppose these vector fields are used
as symmetries for the next ¢ stages in the structure (this is possible using their
commuting modulo D & Sp{X,,1,...X,,} property). Now wP™9*! can have, at
most, a rank of p — ¢. Then one would hope to show that each wP~9+2 ... WP is of
rank less than or equal to p—¢q. Theorem 3.2.17 proves this situation when p = ¢ = [.

Ideally, given any solvable symmetry structure, it would be desirable to know «a

priori the rank of each w’. At this point in time, this seems quite a difficult task.

ii) The Pfaff problem

In the algorithm given in Theorem 3.5.7 in Chapter 3 for using Theorem 3.2.14 to
find normal form coordinates for the Pfaff problem, it is not clear at this stage how
to remove the condition on the last » symmetries in the solvable structure that they
be in the kernel of the given one-form. However the following discussion provides a
possible alternative approach:

For a given one-form « of constant rank r, suppose we remove the requirement
in Theorem 3.5.7 that the last » symmetries be in the kernel of o, and are given an
arbitrary solvable structure. Then one way to tackle the Pfaff problem is to look to
classify the solvable symmetry structures that give a in the required normal form.
For example, in the situation when r = 1 discussed in Theorem 3.5.5, suppose X31a
is not necessarily zero. Now it is clear from repeating the proof of Theorem 3.5.5

that we eventually obtain
a= (Xpa)w' + (Xoa)w? + (Xz1a)w’.
Expanding this, it can be shown that the coefficient of dv? is X351 o, that of dy? is
Xosa — (X310)Xo(7?),
and the coefficient of dv' is
Niva — (X250)Xi(7?) + (Xa00) Xo (7)) X1 (7°) = (Xz1 @) X1 (7).

If any one of these three coefficients is zero (it is impossible for more than one to be

zero since « is of rank one), then we are once again able to express « in normal form.



Hence for a given « of arbitrary constant rank r > 1, if any r of the coefficients
of dvy',...,dy**! are zero, then normal form is achieved. We can therefore say
that Theorem 3.5.7 is indeed a special case of this situation where the coefficients of

dy"2, ..., dy**! become zero by demanding that X,y = 0 forall r+2 < i < 2r+1.

iii) Systems of PDEs

For ‘involutive’ systems of PDEs, i.e. in the sense of those that can be solved using
the Cartan-Kéahler theorem as a finite sequence of Cauchy problems, the most obvi-
ous area for further work is to develop symmetry approaches that are applicable to
PDE problems with specific types of Cartan characters [23, 79, 86, 109]. Using such
characters gives an indication of the number of arbitrary functions in the Cauchy
data of the Cauchy problems. For example, in the classical Cauchy problem, the
characters are of the form (s°,...,s") = (0,...,0,s,0), as the Cauchy data contains
s arbitrary functions of n — 1 variables. Of course the restriction to involutive sys-
tems of PDEs poses no obstruction since by the Cartan-Kuranishi theorem [86], any
non-involutive system of PDEs becomes involutive after a finite number of prolon-
gations of the system. Unfortunately to study such involutive systems we can no
longer work in a smooth category. Instead, we must rely on the Cauchy-Kowalevski

theorem and hence work in a real analytic category.

iv) The Cauchy problem for Pfaffian systems

Our treatment of the Cauchy problem in Chapter 6 is based on using Cauchy char-
acteristic vector fields of the given differential ideal corresponding to the Pfaffian
system, however it is possible to extend our work to a class of higher order vec-
tor fields introduced in Chapter 1 known as being k-stable [54, 55, 57]. Given a
differential ideal

I:={(a',...,a" da',..., doP),

generated by a finite number of linearly independent one-forms o', ..., o and their
exterior derivatives, we remind the reader from Chapter 1 that X is a 1-stable vector

field of I if it is a Cauchy characteristic of the augmented differential ideal

I, = (al,...,o/’,dal,...,do/’,XJdOzl,...,XJdo/’,d(XJ dal) yo o d (XadaP)).



Finding such an X typically involves solving some awkward system of first order
quasilinear PDEs, although the system may be simplified somewhat by looking for
an X € (Sp{at,.. .,aif’})L that is singular in the sense that Xuda?, ..., Xida? is
less than maximal rank [53, 57]. Once a 1-stable vector field is known, the fact
that any integral manifold of I; is an integral manifold of I means that the Cauchy
problem can be solved for I} using Theorem 6.2.1 given at the beginning of Chapter
6 while taking particular care that the Cauchy data is an integral manifold of I;.
While it is obvious how the symmetry approach to the Cauchy problem given in
Theorem 6.6.6 may be applied to I;, the main task would be to incorporate sym-
metry into finding a 1-stable vector field, or at least reducing the difficulty of the

quasilinear PDEs that must be solved.

v) Similarity solutions
The work in Chapter 7 on similarity solutions of hyperbolic and parabolic PDEs of
the form in (9.1) can be extended as follows:

Using the decomposability property of L in Theorem 7.2.1 (or Q2 in Theorem 7.7.2
when L is not decomposable), if Y is a vector field such that Y1 L # 0, then we
may write L = (Y1 L) A w for some one-form w. This fact means that any integral

manifold of
(C',dC", ViL,d(ViL)) (9.2)

is an integral manifold of I, though the converse is not true as the ideals are not
equal. Suppose we look for a symmetry of the differential ideal in (9.2). We may

replace the symmetry requirement for V' given in (7.4) with
LyCh = M\C + X (VI L), (9.3)
and the requirement in (7.5) with
Ly(VIL) =Vi(LyL) = A\C" + M\ (V1 L), (9.4)

for some smooth functions A, Ag, A3, \s. Now if V' satisfies (9.3) and (9.4) for some
decomposable L, it is easy to show that Lemma 7.4.1 (and hence Theorems 7.4.2
and 7.6.1) in Chapter 7 still hold for such V. Moreover, since we are dealing with a
very broad class of second order hyperbolic or parabolic PDEs of the form in (9.1)



which includes the heat equation, examining the symmetry algebra of (9.2) modulo
the symmetry algebra of I7, may be a worthwhile exercise in the hope of generating
new similarity solutions.

Finally, consider the work on conditional symmetries in Section 7.8 of Chapter 7.
In that section, Lie point symmetries of the overdetermined system of PDEs given
by the original second order PDE and the characterising invariance system are used,
but the issue of determining any differences between the symmetry algebra of the
pair of equations given by (7.37) and (7.38) and that of j\% is left unanswered. It
would be useful to examine whether any symmetries of (7.37) and (7.38) not con-

tained in I can once gain yield any new similarity solutions.

vi) Computer algebra

From a computational perspective, our work throughout this thesis has been confined
to using the Lie symmetry determination software package DIMSYM to finding sym-
metries of differential forms that are decomposable. This limitation has been largely
due to Theorem 2.3.10. In order to obtain symmetries of a given non-decomposable
form, say A, it is necessary to generate by hand the determining equations derived

from
LxA = )\A, (9.5)

and then feed them into DIMSYM in order to find some vector field X. It would
be useful to write a module for DIMSYM that automatically generates and solves
the determining equations of (9.5) for any given differential form, or even systems
of differential forms, as in the discussion just given above on similarity solutions.
Such software would also help with finding vector fields X; and X, in step (1) in

Theorem 3.6.8 for generating coordinates in Darboux’s theorem.

9.4 Final conclusion

In conclusion, our main tools in this thesis have been a result in Theorem 3.2.13 for
integrating Frobenius integrable distributions using solvable symmetry structures,
and an extension in Theorem 3.2.14 for simplifying differential forms that are decom-

posable and closed modulo themselves. Since both of these tasks can be performed



without symmetries using ordinary differential equation techniques, it comes as no
surprise (and with a little disappointment) that the types of PDEs for which we have
been able to apply solvable symmetry structures have essentially been those that
can be solved using ordinary differential equations. Nevertheless, for such classes of
PDEs, we at least have provided direct computational approaches based on symme-
try which replace the need for solving any differential equations at all. We believe
that this is a significant contribution to the mathematical community. While our
methods are really only limited by the capabilities of the particular software pack-
age used to solve the linear determining equations, this is perhaps only a temporary
limitation since computing is perpetually becoming both cheaper and faster, thus
attracting an increasing number of applied mathematicians to the field of solving
problems in applied mathematics with symbolic computation methods that was only

in its infancy a decade ago.



Appendix A

Solvable structures using DIMSYM

Here we illustrate using Examples 5.4.2 and 6.7.3 how to use DIMSYM to find a
solvable structure of an arbitrary vector field distribution.

In the first example we are given a one dimensional vector field distribution cor-
responding to the Cauchy characteristic space of the differential ideal (K'), where
K is defined as in the example, and we wish to find solvable symmetry structure of
two non-trivial symmetries. Working in REDUCE (with x(1),x(2),x(3) represent-
ing, respectively, coordinates ', 2%, 2'), we load the DIMSYM package and begin by

entering the Cauchy characteristic vector field like so:
Y1 := x(1)*0x(1) - x(2)*0x(2) + x(2)*exp(x(3))*0x(3);
We then define some arbitrary functions:

1:3 do

for i :

xi(i) := newarb(x(1),x(2),x(3));

and also a symmetry vector:

symvec := xi(1)*0x(1) + xi(2)*@x(2) + xi(3)*0x(3);

Now we define the following arbitrary function:



a(1l) := newarb(x(1),x(2),x(3));

and set up the Lie bracket symmetry relation:

zvecl := comm(symvec,Y1l) - a(l)*Y1;

Next, we introduce determining equations:

for i := 1:3 do

deteqn(i) := vecder(zvecl,x(i));

where vecder is a DIMSYM command which in this case simply extracts from the
vector field in the first argument, the coefficient of the basis vector in the second
argument. We then read the determining equations into DIMSYM using the following
command:

readdets () ;

Next, we ask DIMSYM to solve the determining equations using the standard al-

gorithm:

solvedets(std);

Any unsolved determining equations that were too difficult for DIMSYM to solve will

be shown as follows:

showdets () ;

Finally, the infinitesimal generators of all the trivial as well as nontrivial symmetries

that DIMSYM has been able to find are displayed in the following way:

mkgens () ;



end;

Although Example 5.4.2 uses simple observation to obtain a symmetry of Xoi K
(or equivalently, a symmetry of the span of symvec and Y1), for completeness, we
give a brief indication below of how the code above may be extended to find this
additional symmetry.

First we include the symmetry of the distribution spanned by Y1 and call this X2:

X2 := 1/x(2)*0x(1);

While the definition for symvec stays the same, we make the following changes:

for i := 1:4 do
a(i) := newarb(x(1),x(2),x(3));

zvecl := comm(symvec,Y1l) - a(1)*Y1l - a(2)*X2;
zvec2 := comm(symvec,X2) - a(3)*Y1 - a(4)*X2;
for i := 1:3 do

begin

deteqn(i) := vecder(zvecl,x(i));

deteqn(i+3) := vecder(zvec2,x(i));

end;

The remainder of the code is the same.

In performing the above routines, we would ideally like no unsolved deter-
mining equations to exist when we execute showdets() each time; however in
most cases, there will be unsolved determining equations if the symvec coefficients
xi(1),xi(2),xi(3),xi(4),xi(5) are left purely arbitrary as they are above. Typ-
ically, for at least one of these coefficients, it is necessary to reduce the number of
arguments of the corresponding newarb, or even define the coefficient to be zero.

Once a symmetry of a distribution is obtained, testing that it is non-trivial can



simply be done by observation, or by using the exterior calculus package EXCALC
to check that the interior product of the symmetry with the wedge product of the
annihilating one-forms of the distribution is non-zero.

In generating solvable structures, it frequently occurs that at least one symmetry
in the structure can be obtained by observation without the use of DIMSYM. In Exam-
ple 6.7.3, X3, X4, X5 are obvious symmetries found in this way. However to obtain
the symmetry X,, we are forced to used DIMSYM. Suppose then that we are given
Y and symmetries X3, X, X5 in the example, and wish to find X,. Then working
in REDUCE with x(1),x(2),x(3),x(4),x(5),x(6) representing z', 2%, 2!, 2}, 23, 21, the

required input code for DIMSYM is:

Y := 0x(1) - 0x(2) + (x(4)-x(5))*x0x(3) + (x(4)-x(5))*0x(4);
X5

0x(3);
X4

0x(2);

X3 := 0x(1);

for 1 := 1:6 do

xi(i) newarb(x(1),x(2),x(3),x(4),x(5),x(6));
symvec := xi(1)*0x(1) + xi(2)*0x(2) + xi(3)*0x(3)
+ xi(4)*0x(4) + xi(5)*0x(5) + xi(6)*0x(6);

for i := 1:16 do
a(i) := newarb(x(1),x(2),x(3),x(4),x(5),x(6));

zvecl := comm(symvec,Y)

- a()*Y - a(2)*xX5 - a(3)*X4 - a(4)*X3;
zvec2 := comm(symvec,X5)

- a(B)*Y - a(6)*X5 - a(7)*X4 - a(8)*X3;
zvec3 := comm(symvec,X4)

- a(9)*Y - a(10)*X5 - a(11)*X4 - a(12)*X3;

zvecd := comm(symvec,X3)



- a(13)*Y - a(14)*X5 - a(15)*X4 - a(16)*X3;

for i := 1:6 do
begin
deteqn(i) := vecder(zvecl,x(i));

deteqn(i+6) := vecder(zvec2,x(i));

deteqn(i+12) vecder (zvec3,x (1)) ;

deteqn(i+18) vecder(zvec4,x(1));

end;

readdets () ;
solvedets(std);
showdets () ;
mkgens () ;

end;
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