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Abstract

Using recent extensions of work of S. Lie and E. Cartan for integrat-
ing Frobenius integrable vector field distributions via symmetry, we
examine some symmetry techniques for finding local solutions of first
order non-linear partial differential equations. In the language of exte-
rior differential systems, we develop a technique for solving first order
quasilinear partial differential equations that is then applied to gen-
eral, first order non-linear partial differential equations. Our results
are significant inasmuch as we give algorithms for solving first order
partial differential equations in the presence of symmetry that are
essentially mechanical in nature and done in the original coordinate
system.
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1 Introduction

In recent times, authors such as Basarab-Horwath [2], Duzhin and Lycha-
gin [7], Hartl and Athorne [11], and Sherring and Prince [15] have studied
ideas of Lie [14] and Cartan [4, 5] for integrating Frobenius integrable vector
field distributions, largely with an intention to solving ordinary differential
equations (ODEs). This paper examines how that same symmetry approach
may be used to find local solutions of partial differential equations (PDEs)
and in particular those differential equations which are first order non-linear.
Our work is motivated by the fact that any such partial differential equation
can be solved using ordinary differential equation techniques (e.g. by Cauchy
characteristics), and we look to transform the problem of finding a solution
into one of integrating a Frobenius integrable vector field distribution, which
we then do using symmetry. Our techniques are significant in the sense that
they remain the whole time in the original coordinate systems, as opposed
to well-known symmetry reduction methods by such authors as Bluman and
Kumei [3] who introduce canonical coordinates.

The fundamental assumption we make is the existence of certain very
general symmetries known as solvable structures which are not necessarily
of point (Lie) type. These may be generated most easily from existing sym-
bolic symmetry finders. Our work uses the symmetry determination software
package Dimsym [16] operating as a REDUCE overlay to find such symmetries,
and while there are many other symbolic programs for Lie symmetry analysis
such as Symmgrp.max [13], LIE [12], Crackstar [23], and Liesymm for Maple,
we choose to work with Dimsym since it allows us to easily insert Lie bracket
symmetry conditions. It then generates and attempts to solve the resulting
linear determining equations. In the Appendix, we give the required input
code for Dimsym.

Throughout this paper, we work in a smooth category, however there
exist systems of PDEs in this category that are without solution, e.g. Lewy’s
famous example. Alternatively, we could elect to work in an analytic category
with ‘involutive’ systems of PDEs, for which we are guaranteed local solutions
by the Cauchy-Kowalevski theorem. Instead, since our main tool for this
paper is a smooth results in Theorem 2.1, we choose to remain in a smooth
category and simply assume for all our PDEs that there exist smooth local
solutions. The reason we do this is also because we are not so much concerned
with the existence and uniqueness of solutions of PDEs, but rather with
the formulation of algorithmic approaches based on symmetry for extracting
smooth local solutions.

The plan of this paper is to first provide a simple technique using sym-
metry for generating local solutions of first order quasilinear PDEs of one
dependent variable and an arbitrary number of independent variables, based
on work also found in Edelen [8, 9] on fundamental ideals. It is well-known
that such PDEs can be solved by the method of characteristics using ordi-
nary differential equations (see for example Duff [6]) and our aim here is



to replace this approach with an algorithm solvable symmetry structures.
We then give two symmetry algorithms for finding local solutions of general
non-linear first order PDEs of one dependent variable and two independent
variables, one which applies work by Vessiot [20, 21, 22|, and another, simpler
approach that deals with a special class of such PDEs that do not involve
the dependent variable.

2 Preliminary results

It is assumed throughout this paper that for any integers n and m, U™ and
V'™ are, respectively, some open, convex neighbourhoods of R and R™, with
coordinates z!,...,z" and 2!,...,2™. On the s-th jet bundle J*(U", V™),
we say that the set of exterior differential p-forms AP(J*(U™, V™)) is a sec-
tion of the bundle of all homogeneous differential forms A(J*(U™, V™)). We
define X(J*(U", V™)) to be the module of all smooth vector fields over
C®(J*(U™,V™)). We also assume throughout this paper that, on their do-
mains of definition, all vector field distributions are of constant dimension,
and all mappings and differential one-forms are of constant rank.

The Cauchy characteristic space of a differential ideal I generated by some
finite collection of differential forms is denoted A(I), and contains all vector
fields X € X(U) such that X,I C I. A vector field X € X(J*(U",V™))
is said to be a symmetry (isovector) of I if it satisfies the Lie derivative
condition LxI C I. A vector field X € X(J*(U™, V™)) is a symmetry of a
vector field distribution D C X(J*(U", V™)) if LxD C D. We say that a
vector field is a non-trivial symmetry if, in terms of a differential ideal, it
is not Cauchy characteristic, or in terms of a vector field distribution, it is
not in the distribution. In this paper, unless otherwise stated, we assume all
symmetries are non-trivial. For any vector field distribution D, we say that a
collection of ¢ linearly independent vector fields X, ..., X, € X(J*(U",V™))
forms a solvable symmetry structure for D if

Lx, (sp{Xa,..., X} ® D) C sp{Xs,...,X;} ® D,

EXq—l (Sp{Xq} S D) C Sp{Xq} ® D,
LXqD c D.

Such a solvable structure may found using Dimsym. This is done in stages
by first finding a symmetry X, of D, then finding a symmetry X,_; of D
spanned with X, and so on until X is found. For each stage, we input the
necessary Lie bracket relations, and let Dimsym solve the linear determining
equations. See the Appendix for further details. Note that X;,..., X, are
quite general symmetries, and need not be of Lie point type. Moreover, while
X, is a genuine symmetry of D, X; is a much weaker symmetry. In fact, X;
is only a symmetry of D, modulo X,..., X,.



Finally, our main tool for this paper is Theorem 3.14 in [1] (or Proposition
4.7 in [15]), which is adapted from a result for integrating a Frobenius inte-
grable vector field distribution based on a solvable structure of symmetries:

Theorem 2.1. Let Q € AP(J*(U™, V™)) such that Q is decomposable and
d2 = 0 mod §2. Suppose there exists a solvable structure of linearly indepen-
dent symmetries Xi,..., X, € X(J*(U",V™)) such that X, is a non-trivial
symmetry of the Cauchy characteristic space A({(?)), and that for all i < p,
X, is a non-trivial symmetry of the distribution spanned by the generators of
A((Q)), and Xit1,...,X,. For1 <1< p, define w® by

; X oo o0 XimXipo o0 X Q

W X Xoo oo o0 X; 10X o0 X Q

Then {w',...,wP} is dual to {X1,...,X,}, and for all w* up to i = p,

wl — d’}/l,
w? =dy' — X1 (y*)dy',
w® =dv® — X (7%)(dy* — X1 (v*)dy') — X1 (7*)dy ',

WP =dy’ moddyt,...,dy"7H,

for some functionally independent v*,...,v? € C®(J*(U™,V™)). Finally,
define v° == Q(X1,...,X,). Then Q =%y  A--- AdP.

Using the decomposability of 2, it has been shown in [1] that the sym-
metry conditions in Theorem 2.1 are equivalent to having that

Lx, (Xoy .. .0Xp1) =X (Xou ... 0X,0Q),

L,y (Xp1 Q) = A1 (Xp2 Q)
Lx, = NS,

for some Ay,... A\, € C®(J5(U™, V™).

3 Quasilinear PDEs

Suppose we have a single quasilinear PDE of the form

m m

ou' ou' ou u
(fll%'i'""i_fnl%) oot (flmﬁ"‘"""fnm%) =k, (1)

where !, ..., 2" are the independent variables, u', ..., u™ are the dependent
variables of the PDE, and f;;, where 1 <4 <n, 1 < j <m, and k are smooth
functions of x!,..., 2™ u!,... u™.



On the first jet bundle J*(U", V™) with coordinates z', ..., z"™ 2, ..., 2™,
2{,...,2™, we have the first-order contact (Pfaffian) system ¥ (i.e. a sub-
module over C*®(J'(U™,V™))) generated by

Cl:=d — ZAdat — - — A da",
where 1 < 57 < m. Now define
F = (fnz% +---+fn1z,11) + o (fim2 - F famzn) — k.

A solution of the PDE in (1) can be thought of as an immersion or rank n
mapping into the locus of J'(U™, V™) described by the equation F' = 0, that
also satisfies the nm partial derivative relations

) J
o = 04
b Ozt

where 1 <i<nand1<j<m.

It is well-known (e.g. Theorem 2.3.1 in Stormark [17]) that an integral
manifold (immersion) in some x-jet bundle that annihilates all the contact
forms generating the xth-order contact system is a k-jet if and only if on
the integral manifold we have dz' A - -- A dz™ # 0. Using this result and the
discussion in the previous paragraph we can then say the following:

Theorem 3.1. Let there exist a (rank n) immersion
®.U" — JHU", V™),
satisfying the following (m + 2)-conditions:
1. ®*C? =0 for all1 < j <m,
2. &'F =0,
3. ®*(dz' A+ Ada™) £ 0.

Then ®(U™) = j' f(U™) for some smooth solution map f : U™ — V™ of the
PDE in (1).

The inequality condition of Theorem 3.1 is a transverse (or independence)
requirement which allows us to express the dependent variables as functions
of the independent variables.

4 Ideals of quasilinear PDEs
Following [8, 9], the fundamental ideal of the PDE in (1) is defined as:
Ip = (CY,...,C™,dCY, ..., dC™ Fdz A - - A dz™).

From Lemma 1.1 in [§],



Lemma 4.1.
d(Fdacl/\---/\dx”) =0 modC',...,C™dC',...,dC™.

This means that Ir is in fact a differential ideal. Our aim is to look for
an n-dimensional integral manifold of I, i.e. an immersion

®:U" — JHU", V™),

such that ®* I = 0 and ®*(dz' A- - -Adz™) # 0. Such an immersion obviously
satisfies items 1 and 3 in Theorem 3.1. Item 2 in the theorem is seen to be
satisfied if we recall that

0=®*(Fdz' A--- Ada") = (®*F)®*(dz' A - -+ A dz™)
implies that ®*F = 0, using item 3. Therefore, from Theorem 3.1:
Theorem 4.2. With I defined as above corresponding to the PDE in (1),

suppose the immersion
®:U" — JHU", V™),

is an n-dimensional integral manifold of Ir such that ®*(dz' A---Adz™) # 0.
Then ®(U™) = j' f(U™) for some smooth solution map f : U™ — V™ of the
PDE in (1).

We will now show in the following theorem that the first order quasilinear
nature of our PDE means the n-form Fdz! A --- A dz™ can be simplified
somewhat so that, modulo C,...,C™, it does not depend on any of the first

derivative coordinates z},..., 25, ... 2 ... 2m.

Theorem 4.3.
Ir = (C’l,...,Cm,dCl,...,de,K),
where

K = (fudz" + -+ findz™) Adz® A+ Ada" + ...
+dz' A Ada™E A (fnldzl-i-'--—i-fnmdzm)
— kdz" A - A dz™.

Proof. We have that

Fdg' A+ Ada™ = {(fuzt + -+ fuzh) + ...
+(f1ngn++fnmzzn)_k}d$1/\/\dxn

Now for any given 1 <7 <nand 1 <j <m (no sum on i or j),

i-zjdxl/\---/\dx” = i-da:l/\---/\dxi_lAzjd:viAdxiJ’lA---Adx”
el J 1
= fodr' A Ad7A (du? = O AdgTE A - A da”
j
= fidet A AdzTEAdW AdatTEA - Ade™ mod CY
J
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where in the second line we have used that dzl — € = Zda' + -+ 2 dz’ +
-+ -4 22 dx™. Therefore,
Fdz' A---Ada"™ = {(firdz" Ada? A--- Ada™) + ...
+ (faadz' A Ada™ P AdY) )+
+ {(fimdz™ Adz® A+ Ada") + ...
+ (fnmdfv1 Ao Adz™ P A dzm)}
— kdz' A---Adz™ mod C',...,C™.
We can collect terms so that
Fdz' A - ANda" = (f11d21—|—---+f1mdzm) AdZ> A+ ANdz™ + . ..
+dz' A ANdZ"TEA (fadet + o+ famd2™)
—kdz"'A---Adz" modC',...,C™,
=K modC*,...,C™.
To complete the proof, since
K=Fdx'A---ANdz" modC*,...,C™,
using Lemma 4.1 we obtain
dK = d(Fdxl/\---/\dx") mod C',...,C™,
=0 modC*,...,C™,dC",...,dC™.
Hence the result. 0

We define
It = (Cl, ...,C™ dCt, .. ., dC™ K).

Technically speaking, Iz := Ir (by Theorem 4.3), and the notation Iz might
appear redundant. However we will use Iz as a brief way of referring to the
particular choice of generators C*,...,C™ dC!,...,dC™ K.

Theorem 4.3 now means that the task of determining local solutions of
(1) becomes that of finding n-dimensional integral manifolds of Iz. Note
that the n-form K in the ideal contains no first order derivative coordinates.

We end this section with an obvious result that uses Theorems 3.1 and 4.3:

Theorem 4.4. Let

Q:U" —U"x V™,
be an immersion such that ®*K = 0 and ®*(dz' A --- A dz™) # 0. Then
®(U™) = j°£(U™) for some smooth solution map f: U™ — V™ of the PDE
in (1)

Theorem 4.4 means that if the pull-back of a rank n immersion mapping
into the graph space satisfies the transverse condition and annihilates K, then
this is enough to guarantee in this case that the 1-jet j' f is an n-dimensional
integral manifold of the differential ideal I (and hence a local solution of
PDE in (2)). This is because K contains no first order derivative coordinates
and all the contact forms are automatically annihilated.
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5 Quasilinear PDEs of one dependent vari-
able

This section addresses single quasilinear PDEs of one dependent variable of
the form

ou ou
- . n—— = k-’ 2
fl&vl +-+ 9z (2)
where fi,..., fa,k € C®(U™ x V1). For this PDE, the corresponding K in
If 1S
K = (fudz" Ada® A--- Ada™) + -+ (faudz! A--- Adz" ™t A d2?)
— kdz' A -+ Ada".

Now K is an n-form in the (n+1)-dimensional space U" x V1. From Corollary
4.2 and Theorem 4.3 in [1], respectively, it follows that K is decomposable and
dK = 0 mod K. Suppose we are given n non-trivial symmetries X;,..., X, €
X(U™ x V') such that

L K = MK,
Lx, (Xp1K) =X\ 1(Xn1K),

Lx,(Xoa .. .0 X K) =M(Xoa .. .0 X K),

for some Ay, ..., A\, € C®°(U"x V). Applying Theorem 2.1, we can explicitly
compute some 70, ... v € C®°(U" x V1) so that

K =7%dy' Ao A dy™.

Now consider the n-dimensional regular submanifold of U™ x V! described
by
H(,...,9") =0, (3)

where H is any non-constant smooth function of 4%, ..., " It is assumed H
is constant rank one on U™ x V!, Then

OH OH )
dH = —dy" + - -- dy* =0 4

where we use = to mean equality on the tangent space of the submanifold
of U™ x V! described by (3). We must have that at each point of this
submanifold there exists some 1 < p < n such that

on
onP



Otherwise H is independent of all 7, ..., 4™ at some point, but it is assumed
H is constant rank one. Now from inserting (4),

0=dHANdY'A-- - AdPIANYPTEA - AdY™

0H
= md’yp/\dfyl/\---/\d’yp_l/\d’yp“/\---/\d’y".
Y

This implies that K = 0 on the submanifold described by equation (3).
If on some neighbourhood of U™ x V! we have

oOH
g?’éoa

then by the implicit function theorem,
2 =H(z,...,2"), (5)

for some smooth H. Therefore j°H K = 0 (and hence j'H I+ = 0). Since
JOH (dz' A --- A dz™) # 0, Theorem 4.4 means that equation (5) is then a
local solution of the quasilinear PDE in (2). We summarise the above result
in the following theorem:

Theorem 5.1. Suppose we have a first order quasilinear PDE of the form

ou ou

e £, 00 g 6
h Oox! ot ox™ (6)
for some fi,..., fn,k € C®(U™ x V1), with the corresponding K in Iz as

K= (fidz' Ndz® A--- Nda") 4 -+ (fadz" Ao Ada™ Tt A d2Y)
— kdz' A -+ A da".

If there exist n non-trivial symmetries X1, ..., X, € X(U" x V) such that

L K = MK,
Lx, (Xn1K) =X 1(Xa K),

Lx,(Xoa .. .0 X K) = M(Xoa .. .0 X K),

for some Ay, ..., A\, € C®(U™ x V'), then there exist some functionally in-
dependent v, ...,y € C°(U™ x V1) so that

K=K(X,...,Xp)dy' A--- Ady™.
Furthermore, any reqular submanifold of U™ x V! given by
HH#,...,9") =0,

for any smooth H such that ‘37}{ # 0 on some neighbourhood is then the graph
space coordinate representation of a local solution of the PDE in (6).

9



Using the fact that K is decomposable, any symmetry of the vector field
distribution {X € X(U"x V') : X1 K = 0} is also a symmetry of K (and vice
versa). This fact also holds true for any differential form that is an interior
product of K by some vector field. See [1] for further details. Therefore we
may use Dimsym to generate the required symmetries in Theorem 5.1.

Next, we give an example:

Example 5.2. Consider the following first order quasilinear PDE of two
independent variables and one dependent variable:
1 Ou 5 Ou

- - = 2
T T s =T exp(u). (7)

Our corresponding two-form K on U2 x V! is
K = z'dz' Ada® + 22dz' Ada' — 2 exp(2')da' A da?.
Using Dimsym, we find that X, := ;—2% is a non-trivial symmetry of K.

Then with Xo1 K = —dz' — exp(z')dz?, it is easy to see that X; := 5% is a
non-trivial symmetry of Xo1 K. Hence from Theorem 2.1,

XQJ K _ 2 1
YO, K - d (:E exp(—z )) ,
and XK
m =d(z'2”) + z'd (2* — exp(—2")) . (8)

Equation (8) can easily be derived by performing a coordinate transformation
with the introduction of z? — exp(—z') as a new coordinate.
We now obtain

K = K(X5, X1)d(z'2%) Ad (z* — exp(—2")).
One can then say that
H (:le?, z? — exp(—zl)) =0,

is, in implicit form in terms of the graph space coordinates, a local solution
of (7) for any suitable smooth H. Thus

u=—1In|2* —(z'2?)],

gives local solutions for arbitrary choice of smooth [ that is a function of
1,.2
x'xt.

While the symmetries used in Theorem 5.1 do not have to be point sym-
metries, there exists a relationship between Lie point symmetries and sym-
metries of K that we explore below.

First, we introduce the following definition:

10



Definition 5.3. A vector field X € X(U" x V') is said to be a Lie point
symmetry of the first order quasilinear PDE in (2) if

XW(F) =0,

whenever F' = 0, where X is the first prolongation of X (i.e. X() projects
to X and preserves contact structure).

Using this, we obtain the following:

Theorem 5.4. Given a first order quasilinear PDE of the form in (2), a
vector field X € X(U™ x V1) is a symmetry of its corresponding n-form K if
and only if X s a Lie point symmetry of the PDE.

Proof. First suppose X € X(U™ x V') is a symmetry of K corresponding to
the quasilinear PDE in (2), i.e. LxK = MK for some A € C®(U" x V1),
Since K does not contain any first derivative coordinates, we can write

LixnK = \K, (9)

with (9) defined on the first jet bundle J} (U™, V?). Now K = Fdz'A---Adz™
mod C*, so

Lxw (Fdz' A---ANdz" ANCT— K ACY) = 0. (10)

It is well-known (and not hard to show) that for any point symmetry, the Lie
derivative of any first order contact form with respect to the first prolongation
of the symmetry is a contact form. So putting £yu)C* = pC! for some
p € C(JH U™, V1)), we have from (10),

XWO(F)dz' A+ Adx" ANCH+ FLyqy (dz' A -+ Ada™ A CP)

=A+pKAC. (1)

Now Fdz' A---Adz" ANC' = KAC'and dz' A---Adz" ANCt =dz' A--- A
dz™ A dz'. Hence

XD(FYdz' A--- Ada" Ad2' =0,

whenever F' = 0. This implies that X((F) = 0 whenever F = 0.
Conversely, suppose that X is a Lie point symmetry of the quasilinear
PDE in (2). Hence
XO(F) =0, (12)

whenever F' = 0. Now
L (K/\ Cl) =Lxw (Fdxl A= Adz"™ A Cl) ,
= XO(F)daz* A--- Ada™ A C*
+ FLyxw (de' A---ANda" ACY).

11



Therefore from (12),
[’X(l) (K/\Cl) =0,

whenever F' = 0. Expanding, and using the fact that £yu)C* = pC* for
some p € C°(JHU™, V")), we obtain

(LxiyK)AC' + pK ACH =0,
whenever F' = 0. Then using K A C' = Fdax' A--- Adz™ A C!, we find
(LxK)AC! =0,
whenever F' = 0. We also have
(LxyK)ANC' = Ldz* A--- Ada™ Ad2', (13)

for some L € C®(JY(U", V1)) because (9) implies £y K is an n-form ex-
pressed entirely in terms of the (n 4 1) coordinates of the graph space. Fur-
thermore, from the definition of C* we obtain that L is linear in z{ and
z3. Since (13) is zero whenever F' = 0, and F is also linear in 2{ and z3,
we can therefore say that L = hF for some h € C*®°(U™ x V')). Since
hFdz' A ...dz" A dz! = hK A C!, we may write

Lyt K =hK mod C".

Hence
LxK =hK modC'.

As h is expressed only in terms of coordinate of the graph space, we therefore
have LxK = hK. O

Theorem 5.4 has the following corollary:

Corollary 5.5. A vector field X € X(U™ x V') is a Lie point symmetry of
the first order quasilinear PDE in (2) if and only if XV is a symmetry of
its corresponding I.

6 First order non-linear PDEs

In this section, we examine two approaches to solving single first order non-
linear PDEs of one dependent variable and two independent variables. The
first involves using Vessiot theory while the second employs a simpler tech-
nique for the special case when the PDE does not explicitly involve the
dependent variable. We begin with the former.

12



6.1 Vessiot theory

This section summarises the main points of Vessiot’s theory [20, 21, 22] of
differential equations, as reviewed by Fackerell [10], Stormark [17], and Vas-
siliou [18, 19].

Consider the system of p PDEs of n independent and m dependent vari-
ables o _

F(a' vl ul jul w0 ) =0, v=1,...,p, (14)
where the n ¢ and m u’ are, respectively, the independent and dependent
variables. The subscripts 1 < i; < --- <1, < n are used to specify partial
derivatives of u7, where k is the maximum order of the system. o

In the xth-jet bundle J*(U", V™) with coordinates z*,27, 2/, 2, ...,
j

2, ..;., We may express a solution of the system of PDEs above as a regular

n-dimensional submanifold that

1. Satisfies the relations F,,(mi,zj,zgl,zfm,...,z{l___in) = 0, for all v =
1’ - '7p7

2. Satisfies the transverse requirement,

3. Has a tangent space that annihilates the kth-order contact system gen-
erated by (with sum):

C? = d7’ — 2] da",
VAR B B | iz
G, == dz; — zj;,dz",

i
\ o
dx'®,

! =dd — A

1162 1142 110243

c?

R B | _J ik
iy = dz zil___imdx .

i1
We denote the span of the contact system by Q(U", V™), that includes all
1<j)<m.

Using the independence forms dx!,...,dz", we know from before that if
o U" — J5(U™, V™) is any immersion whose pull-back annihilates the
contact system Q%(U™, V™), and satisfies the transverse condition ®*(dz! A
-+ Adz™) # 0, then ®(U™) is the image of some k-jet. To incorporate the
system of PDEs into the contact system, we introduce a inclusion map @
mapping onto the regular submanifold of the x-th jet bundle described by the
PDEs {F, =0:v =1,..., p} (here we put the subscript F' on ® to indicate the
single or system of PDEs of the form in (14)). We then pull-back the contact
forms in Q®(U™, V™) by ®p. The Vessiot distribution is then defined as the
vector field dual of the pulled-back contact system, i.e. ®p*Q=(U™, V™))L,
Using the Vessiot distribution, our task is to look for some immersion ® of
rank n that maps into the image of ®r and annihilates the contact system,
while at the same time being transverse.

We illustrate with a simple example:

13



Example 6.1. Suppose we have a single PDE of two dependent variables
u!,u? and two independent variables z!, 22 given by

1 g1 02 1.2 1.2 1 .2 1 1 2 9 9
Uy = F(x, 2%, 0™, u”, uy, ui, Uy, ug, Uy, Uyg, Uy, Uly, Udy)- (15)

Then a local solution of the PDE is a two-dimensional regular submanifold
of the thirteen-dimensional locus of J?(U?,V?) described by the map ®p :
Y — J3(U? V?), where

Qp (33 a?, 2t 2 ZlazlaZ2aZ2az11az12azlla212’z22)
2 2
— (iU 22,2 2 ,zl,21,z2,22,zn,zu,F,zH,zm,zm).
Thus from the discussion immediately before this example, the image of a
rank two immersion mapping into ®z(X) is a 2-jet image of a local solution

of the PDE if it annihilates the contact system and the transverse condition
is satisfied. Explicitly,

D2 (U* V?) = sp{dz' — z1da' — 2z5da?, d2* — 22dxt — Z2da?,
dzi — z1,dat — 2iyda?, d2? — 22 dat — 22yda?,
dzy — 2ipdx" — z3pda?, dzs — 22,dat — 25,dx?}.
Pulling this back onto the regular submanifold of J?(U?,V?) described by
(15), we get
O (U, V?) = spldz' — zpda' — zyda®, d2”° — 22da’ — 25da?,
dzi — z1,dxt — zi,da?, d2? — 22 dat — 22,dx?,

dzy — z,dxt — Fda?, dz; — 22,dxt — 25,dx*}.

Therefore the Vessiot distribution is

* . o9 L0 L0 9 9 9
(@RQ2(U2,V2) :Sp{ g T g gy g T g

ox!
8 o [0 L,0 L0 4,0
+2128 2,8 2+Z2ﬁ+Z2@+Z126—Z%+Z128—Z%

0 L2 2 o 9 o8 0 0
0z " T2022 021, 021, 022, 922, 972,

+ F—

Given a Vessiot distribution for some arbitrary system of p PDEs of n
independent and m dependent variables, we look for an n-dimensional Frobe-
nius integrable subdistribution that satisfies the transverse condition. This
is done in stages by generating a finite sequence of higher dimensional sub-
distributions, each containing the previous, beginning with dimensional one
and ending at dimension n. We describe this below:

Definition 6.2. For a vector field distribution D on some smooth manifold
M, the submodule E of D is said to be an involution if [X,Y] = 0 mod D
forall X,Y € E.
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If E is Frobenius integrable, then it is an involution. Moreover, if F is
spanned by a single vector field, say for example representing the solution
curve an ordinary differential equation field, then it is trivially an involution.

Given some b-dimensional Vessiot distribution Dy = sp{Xi,...,X,} in
X(J5(U™, V™)) corresponding to some system of PDEs in (14), the pro-
cess of generating an n-dimensional submanifold involves first setting up
a chain of lower dimensional involutions up to dimension n, where in each
step, the next involution is contained in the previous. Beginning with one-
dimensional involutions, since every vector field in Dy generates a one-
dimensional involution, we let the distribution spanned by Y; := a¥* X} gen-
erate our involution, where the a* are any smooth functions defined on the
(dim(J®(U™, V™)) — p)-dimensional regular submanifold of J*(U™, V™) de-
scribed by the PDEs. Given any Yj, we typically distinguish between two
types of involutions, namely those regular and those singular. In deter-
mining which of the two our one-dimensional involution may be, a two-
dimensional involution containing it is constructed. We do this by first defin-
ing Y5 := a5 X}, for some smooth af. Then the requirement that [Y;,Y5] =0
mod Dy generates a system linear algebraic equations, which in matrix form
is

M(Y;) - a2 =0, (16)
where
a
az = | :
a3

Define s := rank(M(Y})). In general, over all involutions of dimension one,
M(Y7) will have a maximal rank s;. If rank(M(Y;)) = s, then the one-
dimensional involution is said to be regular. If, however, rank(M(Y})) < s,
then we say that the involution is singular. If rank(M(Y;)) = 0, then
[Y1,Y5] € Dp for all Y, and here we can say further that the singular
one-dimensional involution is characteristic. Once we have a Y; that gen-
erates some one-dimensional involution, we then look for all possible two-
dimensional involutions of Dp containing Y] by solving (16) for some Y5.
The process continues until we have an n-dimensional involution that
may be regular or singular. To illustrate further, suppose we are give some
j-dimensional involution and wish to find a (j + 1)-dimensional involution
containing it. First define Y; ) := afj +1)Xk. Then the requirement that
Y5, Y41] = 0 mod Dy for all ¢ = 1,...,;j generates a system of linear
algebraic equations, which in matrix form is
M(Yl, ceey Y-) CA(j41) = 0,
where .
Aj+1)
Gy = [
0 41)
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Once again define s := rank(M(Y7,...,Y;)). Over all involutions of dimen-
sion j, let s; be the maximal rank of the matrix. If s = s; the j-dimensional
involution is regular. If s < s; then the involution is singular. If s = 0, then
[Y;,Y(j41)] € Dp for all i = 1,...,j and the singular involution is character-
istic.

A j-dimensional involution is regular if the rank of the matrix used to
determine all (j + 1)-dimensional involutions containing it is mazimised. In
the subset of the Grassmann bundle of j-planes consisting of all j-dimensional
involutions of Dp, those which are regular form a dense open subset of this
space. Therefore all j-dimensional involutions of Dg in some neighbourhood
of a regular j-dimensional involution are also regular. For a characteristic
j-dimensional involution, any choice of vector field in Dp that is linearly
independent of any vector field in the involution will generate a singular (and
not necessarily characteristic) (j 4+ 1)-dimensional involution containing the
characteristic involution. If at some stage during the process of building up
a chain of higher dimensional involutions we have a singular subinvolution,
then our n-dimensional involution at the end of the process will also be
singular.

For any Vessiot distribution, the maximal dimension of the regular invo-
lutions in the system is defined to be the genus g. In many situations, g will
be greater than or equal to the dimension of the desired involutions for the
particular PDE problem at hand, which will be n, the number of independent
variables. Problems arise when we are looking for n-dimensional involutions
when g < n. One way around this is to first find a singular g-dimensional
involution. The rank of M(Y3,...,Y,) is then not at a maximum, so it will
be possible to find a singular (g + 1)-dimensional involution containing the
g-dimensional involution.

Once we have an n-dimensional regular or singular involution (that also
satisfies the transverse condition), the final requirement that the distribution
be Frobenius integrable will then give us a system of first order quasilinear
PDEs where the arbitrary functions are the dependent variables. We take
up this issue in the next section.

6.2 Application of Vessiot theory to single first order
non-linear PDEs

In this section, we use Vessiot theory to examine symmetry solutions of single
first order non-linear PDEs of one dependent variable and two independent
variables. Suppose then that we are given a first order non-linear PDE of

the form 5 5
U 1 9 u
@—F<x , T ,u,%),

for some smooth function F. On J'(U?, V') with coordinates z', 22, 2!, 21, 23,
our first order contact system is generated by the element C' = dz! — 2] dz' —
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zidx?. Restricted to regular submanifold M* c J*(U?%, V') described by 23 =
F(x', 2% 2%, 2}), the contact system on M* with coordinates z',z?, 2!, 2] is
generated by C' := dz' — z]dz' — Fdz®. The Vessiot distribution Dg is
generated by

0 0 0 0 0
Xy = — e Xy =—+F— X3 = —.
LT g T g 2= o T 57T 92t

In looking for a one-dimensional involution of Dp which is regular, let
Yi:=d'X,, Yy:=diX;.

We have the commutator relations

0 0 0
@7 [X17X3] = _@a [X27X3] = _X3(F)—

X, Xo| = X4(F
(X1, Xo] 1(F) e
with all others zero. Demanding that [Y7,Y5] = 0 mod Dy means

(a}a% — a%aé) Xi(F) + (ai’ag — afag) X3(F) — ajay + alaly = 0.

In matrix form,

(—a?Xi(F)+a} alXi(F)+aiX3(F) —a?Xs3(F)—al)-|ad| =0. (17)

3
Qs

We choose a one-dimensional involution spanned by Y; by letting a] = 1 and
a? = 0. Then
(a3 X (F)+a3X5(F) —1).

is rank one, and hence in a neighbourhood of one-dimensional involutions
about Sp{Y1}, the matrix on the left in (17) remains rank one. Therefore
Sp{Y1} is a regular involution.

In looking for a two-dimensional involution satisfying the transverse con-
dition, we let a3 = 0 and a3 = 1 so that (17) holds with

Vi = X1 + a7 X3, Yy = Xo 4+ (X1(F) + 0} X3(F)) X3,

thus generating a two-dimensional involution for arbitrary a3. To see that
the involution is regular, let Y3 = a¥X;. Requiring that [Y7, Y3] = 0 mod Dp
and [Y2, V3] = 0 mod Dy means that

( a} X,(F) + al X, (F) -1 ) o
G?Xs(F) (Xl(F)-I-a:{’X?,(F))X?,(F) - X3(F) ag ’

where the matrix on the left is of rank one. The space of all possible Y;
must contain Y] and Y3, so it follows that in a neighbourhood of the two-
dimensional involution Sp{Y1, Y2}, this rank one condition must be main-
tained by dimension. Therefore Sp{Y7, Y5} is a regular involution.
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Given a two-dimensional involution spanned by Y; and Y5, we finally
require that it be Frobenius integrable. We introduce the condition [Y}, Ys] =
0 which forces a? to satisfy the following first order quasilinear PDE:

a3  0d} da? da3
— X3(F) ot + o= + (F — 21 X3(F)) == 4+ X1 (F) =
’ T T ( L )621 1 )8,2%

= X1 (X1(F)) + 0 X1 (X3(F)) + ) X5 (X1 (F)) + (a7)* X5 (X3(F))

where a} is some function of x1, s, 2!, 2f. The problem is now reduced to

that of finding a solution of a first order quasilinear PDE.
We can summarise the above in the following theorem:

Theorem 6.3. Consider the first order PDE

ou ou
w = F <$1,$2,U, %> y (18)

for smooth F. On the reqular submanifold of J'(U?, V") described by z3 =
F(x' 2% 2", 2]), let

0 . 0 0 0 0
Ni=gatagn K= -

Define the vector fields
Vii= Xi+aiXs, Y= Xo+ (Xi(F) + al Xs(F))Xs,

with a3 satisfying the first order quasilinear PDE

0a®  0a? oal oa3
- X3(F)a—xi + 8—30; + (F — 21 X3(F)) a—zi + X1(F)a—zi
= X1 (X1(F)) + a} X1 (X3(F)) 4 a} X5 (X1 (F)) + (a7)* X3 (X3(F)),

(19)
where a3 is some smooth function of x1,%9, 2", z{. Then Sp{Y1,Y3} generates
a two-dimensional regular submanifold of J'(U?, V') that is the image of the
1-jet of some local solution of the PDE in (18).

Remark 1. Of course, solving (19) using Theorem 5.1 will generally yield
a} in terms of an arbitrary function which typically cannot be left arbitrary
when integrating sp{Y1, Y2}.

Remark 2. In normal applications, Theorem 6.3 would be used if (18) is
non-linear. However it is obvious that the theorem still holds if the PDE
is linear or quasilinear. For such situations, Theorem 5.1 clearly provides a
simpler alternative.
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In spite of the fact that our resulting first order quasilinear PDE appears
much more complicated than the original (typically non-linear) PDE, the
situation is somewhat simpler because it may be solved using the symme-
try technique outlined earlier in Theorem 5.1 to generate local solutions of
(19) depending on an arbitrary function. Once we have chosen a suitable
a}, Theorem 2.1 (or Proposition 4.7 in Sherring and Prince [15]) for inte-
grating Frobenius integrable distributions may be applied to the vector field
distribution spanned by Y; and Y5.

We close this section with the following example:

Example 6.4. Consider the following non-linear PDE:
_ Ou Ou

U o aa (20)

On the regular submanifold of some suitably chosen J*(U?, V') specified by

with coordinates z',z?% 2!, 2] (where z{ # 0), the Vessiot distribution is
generated by

0 o 2'o 0

0
X, = — 41 = Xo= — 4+ 2 =
L= o TR 2T 022 ' 2oz

A two-dimensional involution satisfying the transverse condition is generated
by

0

0 0 o 2o 2Lf\ 0
N (- )

1
i Vo= 2 4+~ 9 v
Tagg TS T 012 | 2l ot (21)2 ) 0217

a7 Dzt
where f is some arbitrary smooth function of z', 2%, 2!, z1. The integrability
condition means that f must satisfy

2L of of 22tof @ Of f (224f 1
(zD)20x' 022 2t 02 02 ((z%)2 ) .
At this point we would use the ideas in Section 2 and Dimsym to find suitable
f, then integrate the distribution using Theorem 2.1. Quite often however,
a simple observation may yield a trivial solution for f that gives a non-
trivial solution to the original non-linear PDE. For example, let f = 0. Then

integrating the resulting distribution results in the rather obvious solution
to (20),

(21)

u=(c1 +2')(ca + %),

where ¢, co are arbitrary constants. We leave it to the reader to generate
local solutions of (21) using Theorem 5.1. For now though, by observing
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from (21) that there exists a solution of f that is only a function of z' and
z{, we have found another suitable f to be

(1)

/= (Ve +2)
This gives
0 0 (21)? 0
)% 7 1 >~ 1 7
LS opt TR (V2 +2) 021

Vi — 0 2zt 0 1 1 0
2‘@*?@*( ‘m) o2

as generators for our Frobenius integrable distribution. It has two obvious
commuting symmetries which are Z; := %, and Z, := %. They make
it easier to integrate our distribution, as shown in Theorem 3.16 in [1] or
Corollary 3.3 in [15] (which are simple extensions of Theorem 2.1). We can

then integrate the distribution to give

2l 422! ) (V2 +2)z] 0
— I =cy, —F— — X = Cg,
N
where ¢; and ¢, are two arbitrary constant functions. Finally, eliminating
2z and replacing z' with u yields the following local solution to the original
non-linear PDE in (20):

1
<1

u= (i\/(xl +c1)(2? +c) — 2)2.

7 First order non-linear PDEs not involving
the dependent variable

In the previous section it was shown that solution of a given first order non-
linear PDE of one dependent variable and two independent variables could be
found by generating a corresponding Vessiot distribution whose integrability
condition was in the form of a first order quasilinear PDE that could be solved
using Theorem 5.1. The major disadvantage of generating local solutions
of such non-linear PDEs in this way is that even for basic examples, the
resulting first order quasilinear PDE is usually quite complicated and of four
independent variables, that requires a solvable structure of four symmetries
to solve. In addition, a further solvable structure of two symmetries is then
required to integrate the resulting Frobenius integrable distribution.

In this section, we present a simpler alternative to the Vessiot integration
scheme for solving single first order non-linear PDEs that also generates a
corresponding first order quasilinear PDE, but which is of only two indepen-
dent variables and requires a single solvable structure of just two symmetries.
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Unfortunately, the disadvantage here is that this technique can only be ap-
plied to first order non-linear PDEs of two independent variables and one
dependent variable that do not depend on the dependent variable.

Suppose then, that our PDE is of the form

ou ou
=F 7, — 22
912 ( ’ 81:1) ’ (22)
for smooth F, where ', z? are the independent variables, and u is the de-
pendent variable. This gives the corresponding fundamental ideal

Ip = (dz" — zjdz' — zyda® dz; A da' + dzy A da?, (25 — F) da' A dz?),

where F is now a function of z', 22, 2.
The main result of this section the following theorem:

Theorem 7.1. Consider the first order PDE

ou ou
7 F 1 2 77 9

for smooth F. In terms of coordinates of J*(U%, V1), set 21 = f(zt,2?) and
zs = F(z', 22, f). Then any smooth solution f(z',2?) of the quasilinear PDE
OF 0f Of  OF

il — = _ 24
of o'  0Ox? oz’ (24)

has the property that z{dz' + zidz* = dg for some g € C*(U?). Moreover,
the expression u = g is a local solution of the PDE in (23).

Proof. Let f € C*®(U?) be any function. Using (23), set the following:

b= faha?), 2 =F(had ). (25)

We have
= (C,dC*, (25 — F)dx* A dz?),

where C! := dz' — z}ldx' — 2}dz?, and wish to look for conditions on f such
that
—dC" = dz} ANdx' +dzy A d2® = 0. (26)

Supposing this, we obtain by inserting (25) into (26),

OF 42 A dz +<6F+8F8f

e 57 3 )d Ada? = 0. (27)

Now if our f satisfies the PDE in (24), then from (27),

dzy Adx* +dzy A dz® =0,
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so zidx! + zidz? is closed. Therefore,
zidat + zpdx? = dg,
for some g € C*(U?). If we now set 2! = g, then
C':=dz' — z{dx' — zyd2® = 0.
Therefore the immersion
jlg: U — JH U VY,

maps onto the two-dimensional regular submanifold of J'(U? V1) defined
by the equations z! = g, 21 = f, and zi = F, and has the property that
j'g"Ir = 0. Hence the expression u = g is a local solution of (22). O

Remark. The second remark for Theorem 6.3 is valid here. In addition, since
the PDE in (23) is independent of u, it is obvious that a_au is a symmetry of
(23), and so all local solutions may have the addition of an arbitrary constant.

Finally, we apply Theorem 7.1 to an example:

Example 7.2. Consider the following first order non-linear PDE:

ou ou\
5@2(£ﬁ - (28)

Applying Theorem 7.1, let f € C*°(U?) be non-zero on U?, and set

d=f 4=%
so that
dzy Adz' +dzy Adz® = d <fd:1:1 + %d:cQ) ,
=df Adx' — %df A da?,
= — (%% + %) dz' A dz’
In order to solve for f in the first order quasilinear PDE
%% + % =0, (29)

we will use Theorem 5.1. The corresponding two-form K is
1

szf/\dxl—fz

df A da?.
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The vector field X5 := % is a non-trivial symmetry of K, and X; := a% is
a non-trivial symmetry of Xy1 K = —df. Then following Theorem 5.1, we

obtain that )
z
szf/\d(xl—ﬁ).

Hence in implicit form,

is a local solution of (29) for any suitably defined smooth function G. Suppose
we choose G so that

2 1 2
G(f,xl—%) :P-l-acl—x——cl,

for any constant function ¢;. Then

1— 22
e
Ci— T

is a local solution of (29), assuming that we are in some neighbourhood where
(1 —2%)/(c1 — x') > 0. Therefore

A 1 — 22 g fe; — 2t
1 ¢, — .',El ’ 2 1— $2 )
From Theorem 7.1, these expressions for z{ and z3 mean that

d (z}dﬂcl + zéde) =0.

So a simple integration yields

zida' + zyda® = d (—2\/(01 —zl)(1 - x2)) :

Putting

u=—2v/(c; — 21)(1 — 22),
then gives a local solution of the original non-linear PDE in (28). In fact,
u=—2v/(c; — 1) (cy — x2),

is a local solution of the PDE for any appropriate choice of constant functions
c; and cy.
Finally, if we suppose that
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for some constant cs, then we may solve the quadratic equation z! f2 —c3f —
2? = 0 to give
c3 £ /3 + 4zl z?

= 2zt
If we choose the positive option for f, and put
L 3t/ + drix? L 27!
z{ = , Zy = )
L 2! et 2 + dz'z?

then one obtains

cs zt (\/cg + 4zlz? — 03>
zida' + zydx® =d | \/c2 +4z'22 + —1n :
2 g2 (\/C§+4x1x2 +c3)

SO

1 2
5 — o, |7 (\/03+4:v1x2—03)
u=/c5+4z'x +5ln

z2 ( 2+ 4rlx? + c;;)

is another local solution of the original non-linear PDE in (28).

8 Summary

Using the Lie symmetry analysis software package Dimsym for generating
solvable structures of symmetries, a single first order quasilinear PDE of one
dependent variable and n independent variables may be solved in terms of
an arbitrary function of n so-called ‘invariants’ using a solvable structure
of n symmetries. For a single first order non-linear PDE of one dependent
variable and two independent variables we implement a two stage process.
Vessiot theory is first introduced to generate a two dimensional involution
whose integrability condition is in the form of a first order quasilinear PDE
that requires a solvable structure of four symmetries. Once this is solved,
another solvable structure of two symmetries is required to integrate the re-
sulting Frobenius integrable distribution and finally yield a solution to the
PDE. Finally, for situations where the first order non-linear PDE is not a
function of the dependent variable, but only depends on its derivatives and
the independent variables, we may avoid the two stage process above, and
generate solutions by using simply one solvable structure of two symmetries.
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Appendix: Solvable structures using Dimsym

Here we illustrate using Example 5.2 how to use Dimsym to find a solv-
able structure of an arbitrary vector field distribution. In the example, we
are given a one dimensional vector field distribution corresponding to the
Cauchy characteristic space of (K), and we wish to find solvable symmetry
structure of two non-trivial symmetries . Then working in REDUCE (with
x(1),x(2),x(3) representing, respectively, coordinates z!,x?,2!), we load
the Dimsym package and enter the Cauchy characteristic vector field like so:

Y1 := x(1)*0x(1) - x(2)*0x(2) + x(2)*exp(x(3))*@x(3);
We then define some arbitrary functions:

for i := 1:3 do
xi(i) newarb(x(1) ,x(2),x(3));

and also a symmetry vector:

symvec := xi(1)*@x(1) + xi(2)*0x(2) + xi(3)*0x(3);
Now defining the following arbitrary function:

a(1) := newarb(x(1),x(2),x(3));

we set up the Lie bracket symmetry relation:

zvecl := comm(symvec,Y1l) - a(1)*Y1;

Next, we introduce determining equations:

for i := 1:3 do
deteqn(i) := vecder(zvecl,x(i));

where vecder is a Dimsym command which in this case simply extracts from
the vector field in the first argument, the coefficient of the basis vector in the
second argument. We then read the determining equations into Dimsym using:

readdets () ;

Next, we ask Dimsym to solve the determining equations using the standard
algorithm:

solvedets (std);
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Any unsolved determining equations that were too difficult for Dimsym to
solve will be shown using:

showdets () ;

Finally, the infinitesimal generators of all the trivial as well as nontrivial
symmetries that Dimsym has been able to find are given using the following:

mkgens () ;
end;

Although Example 5.2 uses simple observation to obtain a symmetry of Xo1 K
(or equivalently, a symmetry of the span of symvec and Y1), for completeness,
we give a brief indication below of how the code above may be extended to
find this additional symmetry.

First we include the symmetry of the distribution spanned by Y1 and call
this X2:

X2 := 1/x(2)*0x(1);
While the definition for symvec stays the same, we make the following changes:

for i := 1:4 do
a(i) := newarb(x(1),x(2),x(3));

zvecl := comm(symvec,Y1l) - a(1)*Y1 - a(2)*X2;

zvec2 := comm(symvec,X2) - a(3)*Y1l - a(4)*X2;
for i := 1:3 do

begin

deteqn(i) := vecder(zvecl,x(i));

deteqn(i+3) := vecder(zvec2,x(i));

end;

Then remainder of the code is the same.

In performing the above routines, we would ideally like no unsolved deter-
mining equations to exist when we execute showdets() each time, however
in most cases, there will be unsolved determining equations if the symvec co-
efficients xi (1) ,x1(2),xi(3),xi(4),xi(5) are left purely arbitrary as they
are above. Typically, for at least one of the coefficients, it is required to
reduce the number of arguments of the corresponding newarb, or even define
the coefficient to be zero.
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