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The plan of this paper is to �rst review Lie's solvable symmetry strutureapproah to integrating Frobenius integrable vetor �eld distributions. Fora given Frobenius integrable distribution an exterior produt of one-forms isused to generate invariants of the distribution. We then apply the approahto PfaÆan and Darboux systems, and in both ases present an example.It is assumed throughout this paper that our expressions apply loally onsome n-dimensional, open, simply onneted di�erentiable submanifold, U ,of Rn , with oordinates x1; : : : ; xn 2 C1(U). One further assumption thatwe make on U is that it be onvex. This allows us to use the onverse of thePoinar�e Lemma on the whole of U , i.e. if � 2 �k(U) is losed (d� = 0),then 
 = d� for some � 2 �k�1(U) [12, 15℄.Consider the di�erentiable manifold U of dimension n. TU is the tangentbundle of vetor �elds with Tp(U), p 2 U as its �bres. Let X(U) be be themodule of all smooth vetor �elds over C1(U). T �U is the otangent bundlewith T �p (U), p 2 U as its �bres. The set of exterior di�erential m-forms is asetion of the bundle of all homogeneous di�erential forms, �(U). For any
 2 �m(U) de�ne its kernel by ker(
) := fX 2 X(U) : X 
 = 0g.For the remainder of this paper we will also assume all vetor �eld distri-butions non-singular in the sense that their dimension is onstant on U , andalso that all one-forms have onstant rank on U .2 Ideals, Cauhy harateristis and symme-triesFollowing Bryant et al. [2℄, for any �1; : : : ; �p 2 �(U) up to some p 2 N , wewrite I := h�1; : : : ; �pi to mean that I is the (homogeneous) algebrai idealgenerated by the elements �1; : : : ; �p. An ideal I is a di�erential ideal if theexterior derivative of every member of I is also in I. A vetor �eld Y is alleda Cauhy harateristi vetor �eld of an ideal I if Y I � I. De�ne A(I)to be the set of all Cauhy harateristi vetor �elds of I. It is not hard toshow that A(I) is Frobenius integrable.A vetor �eld X 2 X(U) is said to be a symmetry (or isovetor) of anideal, I, if LXI � I. It is easy to see that in order to show that X is asymmetry of I, it is enough to show that the Lie derivative with respet toX of merely the generators of I, is also in I. A vetor �eld X 2 X(U) is asymmetry of a vetor �eld distribution D � X(U) if LXD � D. One again,it is enough to look at simply the generators of D when determining whethera vetor �eld is a symmetry of the distribution.We now present some results onneting symmetries, ideals, and Cauhyharateristi spaes.Proposition 2.1. Let I be an ideal. Suppose A(I) is not zero-dimensional.If a vetor �eld X is a symmetry of I then X is a symmetry of A(I).2



Proof. Let X be a symmetry of the ideal I. Let Y 2 A(I) and � 2 I. Then,from rearranging the identity LX(Y �) = [X; Y ℄ � + Y (LX�), we obtain[X; Y ℄ � = LX(Y �)� Y (LX�):Now the �rst term on the right hand side is in I sine Y � 2 I and X is asymmetry of I. The seond term is also in I sine LX� 2 I and Y 2 A(I).Hene [X; Y ℄ � 2 I. Therefore [X; Y ℄ 2 A(I).Proposition 2.2. Let f�1; : : : ; �pg be some �nite set of linearly independentone-forms in �1(U), and de�ne I := h�1; : : : ; �p; d�1; : : : ; d�pi. With thedual spae of the PfaÆan system generated by �1; : : : ; �p de�ned by D :=fX 2 X(U) : X �i = 0; for all 1 � i � pg, then a vetor �eld, Y 2 D is aCauhy harateristi of I if and only if [X; Y ℄ 2 D for all X 2 D.Proof. Let Y be a Cauhy harateristi vetor �eld of I, i.e. Y �i = 0 andY d�i 2 I for all 1 � i � p. This implies that for all i,LY �i = Y d�i 2 I:Hene Y is a symmetry of I. Let X 2 D, where D is de�ned in the theorem.Using the propertyLY �X �i� = [Y;X℄ �i +X �LY �i� ;we know that the term on the left is zero and the seond term on the rightis also zero. Hene for all i, [X; Y ℄ �i = 0, so that [X; Y ℄ 2 D.Conversely, let Y 2 D and [X; Y ℄ 2 D for all X 2 D. We therefore havethat for all i, Y �i = 0 = [X; Y ℄ �i:Now one again using the propertyLY �X �i� = [Y;X℄ �i +X �LY �i� ;we have that for eah i, X �LY �i� = 0: (1)Sine (1) must hold for all X 2 D, we must have that LY �i 2 I. SineY �i = 0, LY �i = Y d�i 2 I;so Y is a Cauhy harateristi vetor �eld of I.At this point we will introdue the idea of a trivial symmetry. Given adi�erential ideal I, we all all Cauhy harateristis of I trivial symmetriesof I. The reason for this is ontained in the next proposition:Proposition 2.3. Let I be a di�erential ideal, and let Y be a Cauhy har-ateristi vetor �eld of I. Then Y is a symmetry of I.3



Proof. let � 2 I and Y 2 A(I).LY � = d (Y �) + Y d�:The �rst term on the right is in I beause Y � 2 I, and onsequentlyd (Y �) 2 I, sine I is a di�erential ideal. The seond term is obviously inI. Similarly, given a vetor �eld distribution D, a trivial symmetry of D isa symmetry of D that is also in D.A fundamental distintion between trivial and non-trivial symmetries isas follows: Given a trivial symmetry, multiplying it by any non-onstantfuntion will yield a trivial symmetry, however doing the same to a non-trivial symmetry will in general not produe a non-trivial symmetry.For a di�erential ideal generated by a PfaÆan system we have the follow-ing extension of Proposition 2.3:Proposition 2.4. Let I be a di�erential ideal generated by some �nite ol-letion of linearly independent one-forms �1; : : : ; �p 2 �1(U). A vetor �eldX 2 X(U) is a symmetry of I in the annihilating spae D := fX 2 X(U) :X �i = 0; for all 1 � i � pg if and only if X is a trivial symmetry(Cauhy harateristi vetor �eld) of I.Proof. With X as a symmetry of I, if X �i = 0 for all 1 � i � p, then foreah i I 3 LX�i = X d�i:The onverse is also obvious using Proposition 2.3.De�nition 2.5. A di�erential p-form said to be deomposable (or simple) ifit an be written as the wedge produt of p one-forms.Deomposability is a loal property, and a p-form is deomposable if andonly if the dimension of the kernel is of dimension n� p.Consider the following two simple propositions, the �rst of whih is provedin Sherring and Prine [13℄:Proposition 2.6. A vetor �eld X 2 X(U) is a symmetry of a deomposablem-form 
 2 �m(U) if and only if X is a symmetry of ker(
).Proposition 2.7. Let 
 2 �m(U) and I := h
; d
i. If d
 = 0 mod 
, thenker(
) = A(I).Proof. First suppose ker(
) is not zero-dimensional, so that there exists anon-zero vetor �eld W 2 X(U) suh that W 
 = 0. Now sine d
 = 0mod 
, W d
 = W (� ^ 
) = (W �) ^ 
 for some � 2 �1(U). ThereforeW 2 A(I). 4



Now suppose A(I) is not zero-dimensional. This means there exists anon-zero vetor �eld, X 2 X(U) suh that X 
 = 0 and X d
 = f
 forsome smooth f 2 C1(U). Hene from the �rst part, X 2 ker(
).If ker(
) is zero-dimensional, then Y 
 6= 0 for all non-zero Y 2 X(U).This means Y 
 =2 I, and hene Y =2 A(I). Therefore A(I) is zero-dimensional.Finally, if A(I) is zero-dimensional, then Z 
 6= 0 for all Z 2 X(U).Hene ker(
) is zero-dimensional.Using the above two results, we obtain the following extension to di�er-ential ideals thus giving us a ondition under whih the onverse of Proposi-tion 2.1 holds true:Proposition 2.8. Let I be a di�erential ideal generated by some 
 2 �m(U)with d
 = 0 mod 
. Furthermore, let 
 be deomposable on U and A(I) notzero-dimensional. Then X is a symmetry of I if and only if X is a symmetryof A(I).Proof. From Proposition 2.7, d
 = 0 mod 
 implies that ker(
) = A(I).Hene the result follows from Proposition 2.6.Remark. If 
 2 �m(U) with m = n, and I is the di�erential ideal generatedby 
 (note d
 = 0), then any non-zero vetor �eld in X(U) is a symmetry ofI. Moreover, A(h
i) is zero-dimensional, and therefore any non-zero vetor�eld in X(U) is also a symmetry of a zero-dimensional A(h
i).3 The Frobenius theorem and integration viasymmetryFirst, we present a basi result:Lemma 3.1. [5℄ Let 
 2 �n�m(U) for some m � n� 1. Then ker(
) anbe at most m-dimensional. Moreover, ker(
) is preisely m-dimensional ifand only if 
 is deomposable.Lemma 3.1 has the following orollary:Corollary 3.2. Let D := spfY1; : : : ; Ymg be some m-dimensional distribu-tion in X(U), where m < n � 1. If 
 := Y1 : : : Ym (dx1 ^ � � � ^ dxn) 2�n�m(U), then 
 is deomposable and equal to the wedge produt of somen�m linearly independent generators of D?.Proof. With D and 
 de�ned as in the orollary, let X 2 X(U) be anynon-zero vetor �eld in D. Then from the de�nition of 
, X 
 = 0. Heneker(
) is at leastm-dimensional. But from Lemma 3.1, sine 
 is an (n�m)-form, its kernel an not be greater than m-dimensional, and therefore 
 isdeomposable. 5



Now we an write 
 = �1 ^ � � � ^ �n�m for some linearly independent�1; : : : ; �n�m 2 �1(U). Sine for eah 1 � i � m, Yi 
 = 0, we then havethat for eah 1 � j � (n � m), Yi �j = 0. Hene �1; : : : ; �n�m generateD?.Theorem 3.3. (Frobenius) Let D be an m-dimensional distribution gen-erated by the vetor �elds Y1; : : : ; Ym 2 X(U), where m � n � 1. De�neD? to be the submodule of all one-forms that annihilate D. Let 
 :=Y1 : : : Ym (dx1 ^ � � � ^ dxn) 2 �n�m(U). Then D has m-dimensional inte-gral submanifolds on U if and only if either of the following two equivalentonditions are true:1. For all X; Y 2 D, [X; Y ℄ 2 D,2. For all � 2 D?, d� ^ 
 = 0.We say that a distribution D is Frobenius integrable (or generates a foli-ation of U) if the �rst ondition in the Frobenius theorem holds. The Frobe-nius theorem means that D generates an m-dimensional foliation of U whoseleaves are desribed by some set of n�m funtions 1 = 1; : : : ; n�m = n�mof rank n �m, where 1; : : : ; n�m 2 C1(U) and 1; : : : ; n�m are some ap-propriate onstant funtions.Using Corollary 3.2, we have the following orollary to the Frobeniustheorem:Corollary 3.4. Let D be an m-dimensional distribution generated by the ve-tor �elds Y1; : : : ; Ym 2 X(U), where m � n� 1. Let 
 := Y1 : : : Ym (dx1 ^� � � ^ dxn) 2 �n�m(U). For all � 2 D?, d� ^ 
 = 0 (i.e. D is Frobeniusintegrable) if and only if d
 = 0 mod 
.Proof. With 
 de�ned as in the orollary, Corollary 3.2 implies 
 = �1 ^� � �^ �n�m for some linearly independent �1; : : : ; �n�m 2 �1(U) that generateD?. Now for eah 1 � i � (n �m), the Frobenius ondition d�i ^ 
 = 0 isequivalent to the ondition that d�i = 0 mod �1; : : : ; �n�m. Hened
 = d ��1 ^ � � � ^ �n�m� ;= 0 mod 
:To prove the onverse, suppose d
 = 0 mod 
. Now for all i,d�i ^ 
 = d ��i ^ 
�+ �i ^ d
: (2)Sine �i^
 = 0, and 
 is losed modulo itself, we �nd from (2) that d�i^
 =0. From Sherring and Prine [13℄ we have the following de�nition:De�nition 3.5. A di�erential m-form 
 2 �m(U) is Frobenius integrable ifker(
) is Frobenius integrable and of dimension n�m.6



From this de�nition we have the following lemma:Lemma 3.6. A di�erential m-form 
 2 �m(U) is Frobenius integrable ifand only if 
 is deomposable and d
 = 0 mod 
.Proof. First suppose 
 2 �m(U) is Frobenius integrable. By de�nition,ker(
) is maximal dimension, and hene 
 is deomposable. We an write
 = �1 ^ : : : �n�m for some �1; : : : �n�m 2 �1(U). Sine ker(
) is Frobeniusintegrable, it follows that for eah 1 � i � n �m, d�i = mod �1; : : : ; �n�m.Hene d
 = 0 mod 
.Conversely, let 
 be deomposable and d
 = 0 mod 
. It is lear thatker(
) is maximal rank. Further, ker(
) = A(h
i) is Frobenius integrablefrom Proposition 2.7.Theorem 3.7. Let 
 2 �m(U) for some m > 1 be deomposable, and letX 2 X(U) with the property X 
 6= 0. Then there exists � 2 �1(U) suhthat 
 = � ^ (X 
).Proof. Let 
 2 �m(U) be deomposable, and let X 2 X(U) with X 
 6= 0.Let Ym+1; : : : ; Yn 2 X(U) be a basis for ker(
). Sine X 
 6= 0, the vetor�elds X; Ym+1; : : : ; Yn are linearly independent. We an extend these vetor�elds to a basis by inluding some Y2; : : : ; Ym 2 X. Let f�1; : : : ; �mg be adual basis of one forms for fX; Y2; : : : ; Ymg. Then 
 = f�1 ^ � � � ^ �m, andmoreover, X 
 = f�2 ^ � � � ^ �m. Hene the result follows.By an obvious iteration, we have the following orollary to Theorem 3.7:Corollary 3.8. Let 
 2 �m(U) be deomposable. Let X1; : : : ; Xp 2 X(U) upto some p < m suh that X1 : : : Xp 
 6= 0. Then there exist �1; : : : ; �p 2�1(U) suh that 
 = �p ^ � � � ^ �1 ^ (X1 : : : Xp 
) ;Xp 
 = �p�1 ^ � � � ^ �1 ^ (X1 : : : Xp 
) ;...X2 : : : Xp 
 = �1 ^ (X1 : : : Xp 
) :Proposition 3.9. Let 
 2 �m(U) be deomposable, and let X 2 X(U) suhthat X 
 6= 0. Then ker(X 
) = ker(
)� spfXg.Proof. It is lear that ker(X 
) � ker(
). SineX 2 ker(X 
), we thereforehave ker(X 
) � ker(
) � spfXg. By assumption 
 is deomposable, soLemma 3.1 implies ker(
) has maximal dimension n�m. Sine X =2 ker(
),it follows that ker(
)� spfXg has dimension n�m+ 1. Hene Lemma 3.1implies X 
 is deomposable.We have the following orollary to Proposition 3.9, whih an also befound in Sherring and Prine [13℄: 7



Corollary 3.10. Let 
 2 �m(U) for some m > 1 be deomposable, and letX 2 X(U) suh that X 
 6= 0. Then X 
 is deomposable.Before we present the next result, we require the following entral de�ni-tion:De�nition 3.11. Let D be a distribution in X(U). Then a set of p linearlyindependent vetor �elds, X1; : : : ; Xp 2 X(U), form a solvable symmetrystruture for D ifLX1 (spfX2; : : : ; Xpg �D) � spfX2; : : : ; Xpg �D;...LXp�1 (spfXpg �D) � spfXpg �D;LXpD � D:Theorem 3.12. Let 
 2 �m(U) be Frobenius integrable. Further, let X 2X(U) suh that A(h
i)� spfXg is Frobenius integrable and X 
 6= 0. ThenX 
 is Frobenius integrable.Proof. This theorem is obvious from De�nition 3.5, Propositions 2.7 and 3.7,and Corollary 3.10.We have the following orollary to Theorem 3.12:Corollary 3.13. Let 
 2 �m(U) be Frobenius integrable, and suppose thereexist X1; : : : ; Xp 2 X(U) up to some p < m suh that X1 : : : Xp 
 6= 0.If A(h
i) � spfXpg is a Frobenius integrable distribution, and for all 1 �i < p, A(h
i) � spfXi; : : : ; Xpg is also Frobenius integrable, then Xp 
,: : : , X1 : : : Xp 
 are Frobenius integrable. Moreover, fX1; : : : ; Xpg forma solvable symmetry struture for A(h
i) if and only ifLXp
 = �p
;LXp�1(Xp 
) = �p�1(Xp 
);...LX1(X2 : : : Xp 
) = �1(X2 : : : Xp 
); (3)for some �1; : : : ; �p 2 C1(U).Corollary 3.13 provides a diret onnetion between a solvable symmetrystruture for ker(
) = A(h
i) and one for 
 (the equations in (3) will befrequently referred to as a solvable symmetry struture for 
).The papers by Sherring and Prine [13℄ and Basarab-Horwath [1℄ ex-tend Lie's approah to integrating a Frobenius integrable distribution via asolvable struture of symmetries. In those papers, a Frobenius integrabledistribution is given �rst. The one-form annihilating spae is then generatedand all generators wedged to give a deomposable form with a Frobeniusintegrable kernel. The result is reprodued below:8



Theorem 3.14. [13℄ Let D := spfY1; : : : ; Yqg � X(U) be a q-dimensionalFrobenius integrable vetor �eld distribution. De�ne 
 := Y1 : : : Yq (dx1 ^� � �^dxn) 2 �n�q(U), and suppose there exists a solvable struture of linearlyindependent symmetries X1; : : : ; Xn�q 2 X(U) suh that Xn�q is a non-trivialsymmetry of D, and that for all 1 � i < n� q, Xi is a non-trivial symmetryof D � spfXi+1; : : : ; Xn�qg. For all 1 � i � n� q, de�ne !i by!i := X1 : : : Xi�1 Xi+1 : : : Xn�q 
Xi X1 : : : Xi�1 Xi+1 : : : Xn�q 
 :Then f!1; : : : ; !n�qg is dual to fX1; : : : ; Xn�qg, and for all !i up to i = n�q,!1 = d1;!2 = d2 �X1(2)d1;!3 = d3 �X2(3)(d2 �X1(2)d1)�X1(3)d1;...!n�q = dn�q mod d1; : : : ; dn�q�1;for some funtionally independent 1; : : : ; n�q 2 C1(U). Moreover, onU , the submanifolds desribed by D generate a q-dimensional foliation ofU whose leaves have 1; : : : ; n�q onstant.In our work, we will start with a deomposablem-form 
 with a Frobeniusintegrable kernel. This is ahieved by also demanding that d
 = 0 mod 
.Hene by Proposition 2.7, the Cauhy harateristi spae of the di�erentialideal generated by 
 is Frobenius integrable and equal to ker(
). Using thesefats, we show below in Theorem 3.15 how a solvable struture of symmetriesfor 
 (as in Corollary 3.13) an assist in generating a simpli�ed expressionfor 
. Theorem 3.15 is the key result of this paper.Theorem 3.15. Let 
 2 �m(U) be Frobenius integrable. Suppose there existsa solvable struture of linearly independent symmetries X1; : : : ; Xm 2 X(U)suh that Xm is a non-trivial symmetry of A(h
i), and that for all 1 � i < m,Xi is a non-trivial symmetry of A(h
i)� spfXi+1; : : : ; Xmg. For all 1 � i �m, de�ne !i by !i := X1 : : : Xi�1 Xi+1 : : : Xm 
Xi X1 : : : Xi�1 Xi+1 : : : Xm 
 : (4)Then f!1; : : : ; !mg is dual to fX1; : : : ; Xmg, and for all !i up to i = m,!1 = d1;!2 = d2 �X1(2)d1;!3 = d3 �X2(3)(d2 �X1(2)d1)�X1(3)d1;...!m = dm mod d1; : : : ; dm�1; (5)
9



for some funtionally independent 1; : : : ; m 2 C1(U). Finally, de�ne 0 :=
(X1; : : : ; Xm). Then 
 = 0d1 ^ � � � ^ dm.Proof. Sine from Lemma 3.6, 
 is deomposable, we may write 
 = �1 ^� � � ^ �m for some linearly independent �1; : : : ; �m 2 �1(U). Now ker(
) =spfY1; : : : ; Yn�mg for some Y1; : : : ; Yn�m 2 X(U). From Lemma 3.6 andProposition 2.7, we have that A(h
i) = ker(
) is Frobenius integrable. Ap-plying Theorem 3.14 with the linearly independent symmetriesX1; : : : ; Xm 2X(U) for A(h
i) given in Theorem 3.15, we obtain thatfY1; : : : ; Yn�m; X1; : : : ; Xmgspans X(U) and is dual to��1; : : : ; �n�m; !1; : : : ; !m	 ;for some linearly independent �1; : : : ; �n�m 2 �1(U) with !1; : : : ; !m de�nedas in (4). Sine Yj 
 = 0 for all 1 � j � n�m, it follows that
 = 
(X1; : : : ; Xm)!1 ^ � � � ^ !m: (6)Now Theorem 3.14 implies the equations in (5), so (6) simpli�es to give
 = 
(X1; : : : ; Xm)d1 ^ � � � ^ dm:Remark 1. The fat that the symmetries in Theorem 3.15 are non-trivialmeans that the denominator is non-zero in eah of the de�nitions for !i.Remark 2. The expression for 0 is easily derived sine 
 = 
(X1; : : : ; Xm)!1 ^ � � � ^ !m as Yj 
 = 0 for all 1 � j � (n�m) linearly independent ve-tor �elds Y1; : : : ; Yn�m in A(h
i) that are used withX1; : : : ; Xm to span X(U).Theorem 3.15, for a given 
 and solvable symmetry struture of vetor�elds, gives us expliit expressions for the relations desribed in Proposition3 in [9℄.In later setions, we will illustrate Theorem 3.15 with some appliations.For now though, we have the following onsequene of Theorem 3.15 regard-ing the its seond remark:Theorem 3.16. Given some Frobenius integrable 
 2 �m(U) and a solvablestruture X1; : : : ; Xm 2 X(U) for A(h
i) as in Theorem 3.15, thenLXm
 = fXm d(ln j
(X1; : : : ; Xm)j)g
;LXm�1(Xm 
) = fXm�1 d(ln j
(X1; : : : ; Xm)j)g(Xm 
);...LX1(X2 : : : Xm 
) = fX1 d(ln j
(X1; : : : ; Xm)j)g(X2 : : : Xm 
):10



Proof. First we will show that for all 1 � i � m, d(!1 ^ � � � ^ !i) = 0. FromTheorem 3.15 it is obvious that d!1 = 0 and for eah 1 < i � m that d!i = 0mod !1; : : : ; !i�1. Thus for all i > 1,d(!1 ^ � � � ^ !i) = 0: (7)From Theorem 3.15 it is lear that
 = 
(X1; : : : ; Xm)!1 ^ � � � ^ !m: (8)Hene d� 

(X1; : : : ; Xm)� = 0: (9)Using that f!1; : : : ; !mg is dual to fX1; : : : ; Xmg and ontrating (8) withXm, we obtain !1 ^ � � � ^ !m�1 = Xm 
(�1)m�1
(X1; : : : ; Xm) :From repeating this ontration with Xm�1 and so on down to X1, we obtainfor all 1 � i � m� 1,!1 ^ � � � ^ !i = Xi+1 : : : Xm 
(�1)((m�1)+���+i)
(X1; : : : ; Xm) :Hene from (7), d� Xi+1 : : : Xm 
(�1)((m�1)+���+i)
(X1; : : : ; Xm)� = 0: (10)Equation (9) implies d
 = d (ln j
(X1; : : : ; Xm)j) ^ 
; (11)while equation (10) meansd (Xi+1 : : : Xm 
) = d (ln j
(X1; : : : ; Xm)j) ^ (Xi+1 : : : Xm 
) ; (12)for all 1 � i � (m� 1). NowLXm
 = Xm d
 + d (Xm 
) ;= Xm fd (ln j
(X1; : : : ; Xm)j) ^ 
g + d (ln j
(X1; : : : ; Xm)j) ^ (Xm 
) ;= fXm d(ln j
(X1; : : : ; Xm)j)g
;where in the seond line we have inserted equations (11) and (12). To obtainthe third line we used the identity X (! ^ �) = (X !) ^ � + (�1)deg(!)! ^(X �) for di�erential forms �; !. 11



Finally, let 1 � i � (m� 1). Then in a similar fashion to before, we getLXi(Xi+1 : : : Xm 
) = Xi fd (ln j
(X1; : : : ; Xm)j) ^ (Xi+1 : : : Xm 
)g+ d (ln j
(X1; : : : ; Xm)j) ^ (Xi : : : Xm 
) ;whih simpli�es toLXi(Xi+1 : : : Xm 
) = fXi d(ln j
(X1; : : : ; Xm)j)g(Xi+1 : : : Xm 
):In general, eah !2; : : : ; !m in Theorem 3.15 is not exat. Our �nal resultsfor this setion examine some onditions on the symmetries X1; : : : ; Xm inTheorem 3.15 that fore at least one of !2; : : : ; !m to be exat.Theorem 3.17. Let 
 2 �m(U) for some m � 3 suh that 
 is Frobe-nius integrable. Let there exist a solvable struture of linearly independentsymmetries X3; : : : ; Xm 2 X(U) suh that Xm is a non-trivial symmetry ofA(h
i), and that for all 3 � i < m, Xi is a non-trivial symmetry of A(h
i)�spfXi+1; : : : ; Xmg. Also, let there exist two linearly independent vetor �eldsX1; X2 2 X(U) that are non-trivial symmetries of A(h
i)� spfX3; : : : ; Xmgsuh that [X1; X2℄ = 0 mod A(h
i)� spfX3; : : : ; Xmg: (13)For all 1 � i � m, de�ne !i by!i := X1 : : : Xi�1 Xi+1 : : : Xm 
Xi X1 : : : Xi�1 Xi+1 : : : Xm 
 :Then f!1; : : : ; !mg is dual to fX1; : : : ; Xmg and for all !i up to i = m,!1 = d1;!2 = d2;!3 = d3 �X2(3)d2 �X1(3)d1;!4 = d4 �X3(4)(d3 �X2(3)d2 �X1(3)d1)�X2(4)d2 �X1(4)d1;...!m = dm mod d1; : : : ; dm�1;for some funtionally independent 1; : : : ; m 2 C1(U). Finally, de�ne 0 :=
(X1; : : : ; Xm). Then 
 = 0d1 ^ � � � ^ dm.Proof. We begin by showing that X1 is a non-trivial symmetry of A(h
i)�spfX2; : : : ; Xmg. SineX1 is a non-trivial symmetry ofA(h
i)�spfX3; : : : ; Xmg,we have from Corollary 3.13 thatLX1 (X3 : : : Xm 
) = � (X3 : : : Xm 
) ;12



for some � 2 C1(U). Using this fat and equation (13) then givesLX1 (X2 : : : Xm 
) = [X1; X2℄ X3 : : : Xm 
 +X2 LX1 (X3 : : : Xm 
) ;= � (X2 : : : Xm 
) :From Theorem 3.13, our symmetries at this point satisfy Theorem 3.15.Therefore !1 = d1;!2 = d2 �X1(2)d1;!3 = d3 �X2(3)(d2 �X1(2)d1)�X1(3)d1;...!m = dm mod d1; : : : ; dm�1;for some funtionally independent 1; : : : ; m 2 C1(U). To show thatX1(2) =0, we must show thatd!2 = d� X1 X3 : : : Xm 
X2 X1 X3 : : : Xm 
� = 0: (14)This an be proved by observing that sine ker(X1 X3 : : :Xm 
) = A(h
i)�spfX1; X3; : : : ; Xmg is a Frobenius integral distribution, we therefore havethat d(X1 X3 : : :Xm 
) = 0 mod X1 X3 : : : Xm 
:Then to show thatX2 is a non-trivial symmetry ofA(h
i)�spfX1; X3; : : : ; Xmgwe use the formulaLX2 (X1 X3 : : : Xm 
) = [X2; X1℄ X3 : : : Xm 
+X1 LX2 (X3 : : : Xm 
) :Now using equation (13) and that X2 is a non-trivial symmetry of X3 : : :Xm 
, we get the desired result. Equation (14) an then be dedued fromsimple algebrai manipulation, or by applying Theorem 3.15.Remark. While Theorem 3.17 assumes m � 3, it is lear that is still holdswhen m = 2. In this situation, there is no need for symmetries other thanX1; X2, with (13) reduing to [X1; X2℄ = 0 mod A(h
i). Further, the expres-sions for !i in the onlusion of the theorem vanish for i > 2.We an generalise Theorem 3.17 in the following way:Theorem 3.18. Let 
 2 �m(U) for some m � 3, and suppose 
 is Frobeniusintegrable. For some 1 � l < m, let there exist a solvable struture of m� llinearly independent symmetries Xl+1; : : : ; Xm 2 X(U) suh that Xm is anon-trivial symmetry of A(h
i), and that for all l + 1 � i < m, Xi is a13



non-trivial symmetry of A(h
i) � spfXi+1; : : : ; Xmg. Also, let there existl linearly independent vetor �elds X1; : : : ; Xl 2 X(U) that are non-trivialsymmetries of A(h
i)� spfXl+1; : : : ; Xmg suh that[Xu; Xv℄ = 0 mod A(h
i)� spfXl+1; : : : ; Xmg; (15)for all 1 � u < v � l. For all 1 � i � m, de�ne !i by!i := X1 : : : Xi�1 Xi+1 : : : Xm 
Xi X1 : : : Xi�1 Xi+1 : : : Xm 
 :Then f!1; : : : ; !mg is dual to fX1; : : : ; Xmg and for all !i up to i = l,!1 = d1;...!l = dl;with for eah i greater than l up to i = m,!l+1 = dl+1 �Xl(l+1)dl �Xl�1(l+1)dl�1 � � � � �X1(l+1)d1;!l+2 = dl+2 �Xl+1(l+2) �dl+1 �Xl(l+1)dl �Xl�1(l+1)dl�1 � : : :�X1(l+2)d1��Xl(l+2)dl � � � � �X1(l+2)d1;...!m = dm mod d1; : : : ; dm�1;for some funtionally independent 1; : : : ; m 2 C1(U). Finally, de�ne 0 :=
(X1; : : : ; Xm). Then 
 = 0d1 ^ � � � ^ dm.Proof. (Outline) The proof is similar to that of Theorem 3.17, and essentiallyinvolves repeating the proof of Theorem 3.17 l � 1 more times. To do this,from the fat that 
 is deomposable and d
 = 0 mod 
, we an then applyCorollary 3.13 to obtain LXm = �m
;LXm�1 (Xm 
) = �m�1 (Xm 
) ;...LXl+1 (Xl+2 : : : Xm 
) = �l+1 (Xl+2 : : : Xm 
) ;and also thatLXl (Xl+1 Xl+2 : : : Xm 
) = �l (Xl+1 Xl+2 : : : Xm 
) ;LXl�1 (Xl+1 Xl+2 : : : Xm 
) = �l�1 (Xl+1 Xl+2 : : : Xm 
) ;...LX1 (Xl+1 Xl+2 : : : Xm 
) = �1 (Xl+1 Xl+2 : : : Xm 
) ;14



for some �1; : : : ; �m 2 C1(U). Next, using (15), it is easy to show thatLXm
 = �m
;LXm�1(Xm 
) = �m�1(Xm 
);...LX1(X2 : : : Xm 
) = �1(X2 : : : Xm 
):Then we may apply Theorem 3.15 to give us that f!1; : : : ; !mg is dual tofX1; : : : ; Xmg, and that for all !i up to i = m,!1 = d1;!2 = d2 �X1(2)d1;!3 = d3 �X2(3)(d2 �X1(2)d1)�X1(3)d1;...!m = dm mod d1; : : : ; dm�1;for some funtionally independent 1; : : : ; m 2 C1(U). Now sine we knowalready that d!1 = 0, we only have to show that for eah 1 < j � l,d!j = d� X1 : : : Xj�1 Xj+1 : : : Xm 
Xj X1 : : : Xj�1 Xj+1 : : : Xm 
� = 0: (16)The original symmetry relations for X1; : : : ; Xm tell us that for eah j,A(h
i)� spfX1; : : : ; Xj�1; Xj+1; : : : ; Xmg is Frobenius integrable, sod (X1 : : : Xj�1 Xj+1 : : : Xm 
)= 0 mod X1 : : : Xj�1 Xj+1 : : : Xm 
:Finally, using (15), and in similar fashion to the end of the proof of Theo-rem 3.17, we get that for eah j,Xj is a non-trivial symmetry ofX1 : : : Xj�1Xj+1 : : : Xm 
. Simple algebrai manipulation then yields (16).Remark. As in Theorem 3.17, it is easy to see that Theorem 3.18 holds forall m � 2. However, here we an also say that the theorem holds if l = m,so (15) beomes [Xu; Xv℄ = 0 mod A(h
i) for all 1 � u < v � l. In thissituation, all !i beome exat, whih is in aordane with the orollary toProposition 2 given in [1℄.The next setion gives a simple appliation of some of the ideas presentedabove.4 Di�erential forms in �m(Rm+1)In this setion we show that, provided we have enough symmetries, any di�er-ential form in �m(Rm+1) an be expressed loally in terms of m funtionallyindependent funtions as in the onlusion of Theorem 3.15. Further detailswill be given in Theorem 4.3 below, but �rst, onsider the following result:15



Lemma 4.1. Let 
 2 �m(U) for some m < n be non-zero, where U isde�ned as in previous setions (though the requirement that U be onvex isnot neessary here). Suppose 
 is of the form
 := 1�2 ^ �3 ^ � � � ^ �m+1 + 2�1 ^ �3 ^ � � � ^ �m+1 + : : :+ m+1�1 ^ �2 ^ � � � ^ �m;for some linearly independent �1; : : : ; �m+1 2 �1(U) and 1; : : : ; m+1 2 C1(U).Then 
 is deomposable.Proof. Let 
 2 �m(U) be as in the theorem. We an write
 = X ��1 ^ � � � ^ �m+1� ;where X := m+1Xi=1 (�1)i�1iXi;for some X1; : : : ; Xm+1 2 X(U) dual to �1; : : : ; �m+1. Hene from Corol-lary 3.10 the result follows.From Lemma 4.1 we obtain the following useful result for m-forms in(m + 1)-dimensional spaes also found in [8℄ by Godbillon. De�ne W to besome open neighbourhood of Rm+1 .Proposition 4.2. Let 
 2 �m(W ). Then 
 is Frobenius integrable.Proof. Let 
 2 �m(W ). Lemma 4.1 implies
 = �1 ^ � � � ^ �m;for some linearly independent �1; : : : ; �m 2 �1(W ). Now d
 is an (m + 1)-form in �m+1(W ), so we may omplete �1; : : : ; �m to a basis by inludingsome linearly independent � 2 �1(W ) with the property thatd
 = �1 ^ � � � ^ �m ^ �:Theorem 4.3. Let 
 2 �m(W ), where W to be some open, onvex neigh-bourhood of Rm+1 . If there exists a solvable struture of m symmetries forA(h
i) as in Theorem 3.15, then we an ompute funtions 0; : : : ; m 2C1(W ) so that 
 = 0d1 ^ � � � ^ dm.Proof. We know from Proposition 4.2 and Proposition 3.6 respetively that
 is deomposable and that d
 = 0 mod 
, so Theorem 3.15 gives us a diretalgorithm for �nding 0; : : : ; m. 16



5 Some neessary onditionsFor an arbitrary form di�erential form � 2 �m(U), we use ideas in the previ-ous setion to examine some neessary onditions for � to be deomposableand d� = 0 mod �, so that we an apply Theorem 3.15. Of ourse if m = n,these two onditions trivially hold, and Proposition 4.2 and means they stillhold if m = n� 1. In this setion we examine the situation when m < n� 1.In what follows, we assume U is some open, onvex neighbourhood of Rn .Theorem 5.1. Let � 2 �m(U) for some m < n�1. If there exist n�m�1linearly independent vetor �elds �1; : : :�n�m�1 2 X(U) in ker(�), then � isdeomposable. Moreover, if for eah 1 � i � n�m� 1,L�i� = �i�; (17)for some �i 2 C1(U), then d� = 0 mod �.Proof. Let � 2 �m(U) with m < n� 1, and let there exist linearly indepen-dent �1; : : :�n�m�1 2 X(U) suh that for all 1 � i � n�m� 1,�i � = 0: (18)Now (sp f�1; : : : ;�n�m�1g)? = sp��1; : : : ; �m+1	 ;for some �1; : : : ; �m+1 2 �1(U). Hene from (18), we must have� = �j1:::jm�j1 ^ � � � ^ �jm ;for some �j1:::jm 2 C1(U), with summation over 1 � j1 < � � � < jm � m+1.Therefore by Lemma 4.1, � is deomposable.For the seond part of the proof, we hoose without loss,� = �1 ^ � � � ^ �m:We an omplete �1; : : : ; �m+1 to a basis for �1(U) by adding linearly inde-pendent �1; : : : ; �n�m�1 2 �1(U) suh that��1; : : : ; �n�m�1; �1; : : : ; �m+1	 (19)is dual to f�1; : : :�n�m�1; Y1; : : : ; Ym+1g ; (20)for some linearly independent Y1; : : : ; Ym+1 2 X(U). Now with summationon k over 1 � k � m, we an writed� = �k ^ �1 ^ � � � ^ �k�1 ^ �k+1 ^ � � � ^ �m + � ^�; (21)17



for some �1; : : : ; �m 2 �2(U) and � 2 �1(U) with the property that eah �konly depends on the basis vetors �1; : : : ; �n�m�1; �m+1. Hene from the dualbasis property in (19) and (20), we have for eah k,Yj �k = 0; (22)for all 1 � j � m. By ombining the assumptions in (17) and (18), we havefor all i, �i d� = �i�: (23)Using the dual basis property one more, we get that for eah i and 1 � l �m+ 1, �i �l = 0. Hene substituting (21) into (23) gives (with sum),(�i �k) ^ �1 ^ � � � ^ �k�1 ^ �k+1 ^ � � � ^ �m + (�i �) ^� = �i�; (24)for eah i. Sine eah �i �k only depends on the basis vetors �1; : : : ; �n�m�1;�m+1, for (24) to hold we must have�i �k = 0; (25)for eah i and k. Hene from (22) and (25), ker(�k) is at least (n � 1)-dimensional. This means �k(X; Y ) = 0 for all X; Y 2 X(U). Thus �k = 0for eah k. Therefore d� = � ^�.Theorem 5.1 has the following two orollaries:Corollary 5.2. Let � 2 �m(U) suh that m < n� 1. If there exist n�m�1 linearly independent Cauhy harateristi vetor �elds of the di�erentialideal h�; d�i, then � is deomposable and d� = 0 mod �.Proof. Sine the Cauhy harateristi vetor �elds are in the kernel of �,Theorem 5.1 implies � is deomposable. Now it is lear that (17) in The-orem 5.1 still holds for some �1; : : : ; �n�m�1 2 C1(U). Hene from thetheorem, d� = 0 mod �Corollary 5.3. Let � 2 �m(U) suh that m < n� 1. If there exist n�m�1 linearly independent Cauhy harateristi vetor �elds of the di�erentialideal h�; d�i, then the Cauhy harateristi spae of h�; d�i is (n � m)-dimensionalProof. FromCorollary 5.2, � is deomposable, so ker(�) is (n�m)-dimensional.The orollary also means � is losed modulo itself whih implies h�i =h�; d�i, and hene their Cauhy harateristi spaes are equal. FromProposition 2.7 the result follows.Now the dimension of the Cauhy harateristi spae of h�; d�i is alwaysless than or equal to that of ker(�), and the maximum dimensional of ker(�)is n � m, whih ours when � is deomposable. Theorem 5.1 therefore18



means that if ker(�) is at least (n�m� 1)-dimensional, then it is (n�m)-dimensional. Similarly, Corollary 5.3 means that if the Cauhy harateristispae of h�; d�i is at least (n � m � 1)-dimensional, then it is (n � m)-dimensional.Next, we illustrate Corollary 5.2 with the following example:Example 5.4. Suppose U4 is some suitably hosen open, onvex neighbour-hood of R4 with oordinates x1; x2; x3; x4, and� := 2x2x4x3 dx3 ^ dx2 � �x4x3� dx3 ^ dx1 � 2dx4 ^ dx1+ 1x3x4dx1 ^ dx2 + 4x2dx4 ^ dx2:Now the vetor �eld � := 4x2 ��x1 + 2 ��x2 � 1x3x4 ��x2 ;is a Cauhy harateristi of h�; d�i. Hene from Corollary 5.2, � is de-omposable and d� = 0 mod �. Note from Corollary 5.3 that the Cauhyharateristi spae of h�; d�i is two-dimensional.We will now proeed to apply Theorem 3.15 to �. It is easy to see that��x1 is a non-trivial symmetry of �. With��x1 � = 1x3x4dx2 + x4x3dx3 + 2dx4;it is also easy to see that ��x2 is a non-trivial symmetry of ��x1 �. Now fromTheorem 3.15 and Corollary 3.13,!1 := ��x1 ���x2 ��x1 � = dx2 + (x4)2dx3 + 2x3x4dx4 = d �x2 + x3(x4)2� :Also, it is not hard to show that!2 := ��x2 ���x1 ��x2 � = dx1 + 2x2(x4)2dx3 + 4x2x3x4dx4;= d �x1 � (x2)2�+ 2x2d �x2 + x3(x4)2� :Hene � = 1x3x4d �x1 � (x2)2� ^ d �x2 + x3(x4)2� :6 PfaÆan equationsIn this setion we examine how symmetries may be used to express a dif-ferential one-form `normal form' given in (26). We begin with the followingde�nition and theorem: 19



De�nition 6.1. Let � 2 �1(U). The rankof the PfaÆan equation � = 0 atthe point p 2 U is the non-negative integer r suh that (d�)r ^ � 6= 0 and(d�)r+1 ^ � = 0 at p.If a one-form � is exat, i.e. � = df for some f 2 C1(U), then it (andany linearly dependent one-form) has rank zero.Theorem 6.2. Let � 2 �1(U) and suppose the equation � = 0 is of onstantrank r on U . Then there exists a oordinate system 1; : : : ; n 2 C1(U),where 2r + 1 � n, so that the equation beomesd1 + 2d3 + � � �+ 2rd2r+1 = 0:Theorem 6.2 is known as the Pfa� problem. A proof of this theorem maybe found in [2℄.It is easy to see that multiplying any one-form of onstant rank on U bya nowhere zero smooth funtion f leaves the rank unhanged, using the fatthat for any m 2 N , we have (d(f�))m ^ (f�) = fm+1(d�)m ^�. This allowsus to express any � 2 �1(U) of onstant rank r on U as� = 0(d1 + 2d3 + � � �+ 2rd2r+1); (26)for some 0; : : : ; 2r+1 2 C1(U).Theorem 6.3. Let � 2 �1(U). Suppose � is of onstant rank r on U . De�ne
 := (d�)r ^ �. Then 
 is deomposable and d
 = 0 mod 
.Proof. Let � 2 �1(U) with � of onstant rank r on U . Hene� = 0(d1 + 2d3 + � � �+ 2rd2r+1);for some 0; : : : ; 2r+1 2 C1(U). De�ne� := d1 + 2d3 + � � �+ 2rd2r+1:Further, let 
 := (d�)r ^ �. We will �rst show that d
 = 0. Simple ompu-tation yields (d�)r = r!d2 ^ � � � ^ d2r+1:Hene 
 = � ^ (d�)r;= r!d1 ^ d2 ^ � � � ^ d2r+1:We then have d
 = 0. Now
 = (0)r+1(d�)r ^ �:Sine d
 = 0, we get d
 = d((0)r+1) ^ (d�)r ^ �:But, (d(0�))r ^ ((0)�) = (0)r+1(d�)r ^ �. Hene d
 = 0 mod 
 as 0 isnowhere zero on U . Finally, sine 
 is deomposable and 
 = (0)r+1
, 
is therefore deomposable. 20



Our aim is to use Theorem 6.3 with Theorem 3.15 to ultimately �ndsome oordinates for the Pfa� problem in Theorem 6.2. The next theoremillustrates how this may be done for one-forms that are of onstant rankone on U , whih will be later extended to one-forms of any onstant rankr � 1. The ase r = 0 involves a trivial appliation of Theorem 3.15, andwill therefore be ignored.To assist in �nding oordinates for the Pfa� problem, the following lemmawill be needed:Lemma 6.4. Let � 2 �1(U) and suppose � is of onstant non-zero rank r onU . Let 
 := (d�)r ^ � and X 2 X(U) suh that X 
 = 0. Then X � = 0.Proof. Let � 2 �1(U). Suppose � is of onstant non-zero rank r on U , andde�ne 
 as in the lemma. Let X 2 X(U) with X 
 = 0. Now0 = X 
 = (X (d�)r) ^ �+ (X �)(d�)r:By taking the exterior produt with �, we obtain(X �)(d�)r ^ � = 0:Sine � is of rank r, (d�)r ^ � 6= 0, and hene X � = 0.Theorem 6.5. Let � 2 �1(U) suh that � is of onstant rank one on U .Let 
 := d� ^ � and h
i be the di�erential ideal generated by 
. SupposeX1; X2; X3 2 X(U) is a solvable struture of linearly independent symmetriessuh that X3 is a non-trivial symmetry of A(h
i) with the extra onditionthat X3 � = 0, X2 is a non-trivial symmetry of A(h
i)�spfX3g, and X1 is anon-trivial symmetry of A(h
i)� spfX2; X3g. Then with !1; !2; !3 2 �1(U)de�ned by !1 := X2 X3 
X1 X2 X3 
 ;!2 := X1 X3 
X2 X1 X3 
 ;!3 := X1 X2 
X3 X1 X1 
 ;we have !1 = d1;!2 = d2 �X1(2)d1;!3 = d3 �X2(3)(d2 �X1(2)d1)�X1(3)d1;for some funtionally independent 1; 2; 3 2 C1(U), and� = (X2 �)�d2 + (X1 �)� (X2 �)X1(2)(X2 �) d1� : (27)21



Proof. With 
 := d� ^ �, Theorem 6.3 means that 
 is deomposable andd
 = 0 mod 
. Theorem 3.15 an be used to obtain f!1; !2; !3g dual tofX1; X2; X3g, where!1 = d1;!2 = d2 �X1(2)d1;!3 = d3 �X2(3)(d2 �X1(2)d1)�X1(3)d1;for some funtionally independent 1; 2; 3 2 C1(U). Now from Lemma 6.4,X � = 0 for all X 2 A(h
i). And sine X3 � = 0, we are left with� = (X1 �)!1 + (X2 �)!2:Now X2 � 6= 0 in the neighbourhood, sine � is nowhere rank zero by as-sumption. Hene� = (X2 �)�d2 + (X1 �)� (X2 �)X1(2)(X2 �) d1� :Remark 1. The extra ondition in Theorem 6.5 that the non-trivial symme-try X3 satis�es X3 � = 0 implies from Proposition 2.6 that the symmetry isnot a Cauhy harateristi vetor �eld of h�; d�i. Therefore X3 d� is notsome multiple of � (as � is of rank one, it is impossible that d� = 0 mod�). Suh a symmetry exists sine if 1; : : : ; n are oordinates for U and� := 0 (d1 + 2d3) is already in normal form for some 0 2 C1(U), thenit is easy to show that Theorem 6.5 an be applied to suh � with X3 hosenas ��2 or ��3 � 2 ��1 .Remark. 2 In deriving our expression for � in (27), we do not need to al-ulate 3. This signi�antly redues the number of algebrai manipulationsrequired.We illustrate Theorem 6.5 with an example:Example 6.6. Suppose we are in some open, onvex neighbourhood of R3 ,denoted by U3, with oordinates x1; x2; x3. De�ne on some suitably hosenU3, � := � x2x3(x1)2dx1 + �x1x2 + x3x1� dx2 + x1x3dx3:By dimension, (d�)2 ^� = 0, and it is easy to show that d�^� 6= 0 on someregion of U3. Suppose U3 is hosen suh that d� ^ � 6= 0 everywhere. Sineany non-zero vetor �eld is a non-trivial symmetry of d� ^ � 2 �3(U3), wemay hoose any X3 suh that X3 � = 0. So letX3 := x2x3(x1)2 ��x3 + x1x3 ��x122



be the symmetry. Now X2 := (x3)2 ��x3is a non-trivial symmetry of spfX3g (A(hd� ^ �i) is zero-dimensional), andby inspetion that X1 := ��x2is a non-trivial symmetry of spfX2; X3g. These yield!1 := X2 X3 (d� ^ �)X1 X2 X3 (d� ^ �) = dx2;and !2 := X1 X3 (d� ^ �)X2 X1 X3 (d� ^ �) = � x2(x1)3dx1 + dx3(x3)2 ;= d� x22(x1)2 � 1x3�� 12(x1)2dx2:Hene a simple alulation gives� = x1x3�d� x22(x1)2 � 1x3�+ � 1x2x3 + 12(x1)2� dx2� :Suh expressions for � are in general not unique, and may be found byhoosing di�erent symmetries. For example, we have also obtained� = x3�d�x2x1�+ x1x3d �ln ��x2x3���� :We now present a generalisation of Theorem 6.5:Theorem 6.7. Let � 2 �1(U) have onstant rank r on U , and de�ne
 := (d�)r ^ �. Let X1; : : : ; X2r+1 2 X(U) be a solvable struture of lin-early independent symmetries suh that X2r+1 is a non-trivial symmetry ofA(h
i), and for eah 1 < i < 2r + 1, Xi is a non-trivial symmetry ofA(h
i) � fXi+1; : : : ; X2r+1g. Suppose, in addition, that for the r vetor�elds Xr+2; : : : ; X2r+1, we have Xr+2 � = 0; : : : ; X2r+1 � = 0. For all1 � i � 2r + 1, de�ne !i by!i := X1 : : : Xi�1 Xi+1 : : : X2r+1 
Xi X1 : : : Xi�1 Xi+1 : : : X2r+1 
 :Then for all !i up to i = 2r + 1,!1 = d1;!2 = d2 �X1(2)d1;!3 = d3 �X2(3)(d2 �X1(2)d1)�X1(3)d1;...!2r+1 = d2r+1 mod d1; : : : ; d2r;23



for some funtionally independent 1; : : : ; 2r+1 2 C1(U), and� = (X1 �)d1 + (X2 �)(d2 �X1(2)d1)+ (X3 �)(d3 �X2(3)(d2 �X1(2)d1)�X1(3)d1) + : : :+ (Xr+1 �)(dr+1 �Xr(r+1)(dr � � � � �X1(r)d1)� : : :�X1(r+1)d1);whih when rearranged give � in the form of (26).Proof. The proof follows in a similar fashion to Theorem 6.5. The on-ditions Xr+2 � = 0; : : : ; X2r+1 � = 0 and Lemma 6.4 ensure that � is alinear ombination of d1; : : : ; dr+1. Further, sine � is of onstant rank r,Xr+1 � 6= 0, so we are permitted to divide by it, and hene express � in theform of (26).Remark. Both remarks for Theorem 6.5 may be extended to Theorem 6.7 asfollows: Firstly, from the proof of Theorem 6.3 it is lear that there exist rnon-trivial symmetriesXr+2; : : : ; X2r+1 of (d�)r^� in ker(�), and seondly, inderiving our expression for �, we do not need to alulate any r+2; : : : ; 2r+1.7 Darboux systemsThis setion gives an algorithm based on vetor �elds for generating a setof oordinates in Darboux's theorem given below in Theorem 7.4. To beginwith, we present some preliminary material. In Bryant et al. [2℄ there is thefollowing fundamental theorem:Theorem 7.1. Let 
 2 �2(U) and let r be the natural number suh that
r 6= 0 and 
r+1 = 0. Then there exist 2r linearly independent elements!1; : : : ; !2r 2 �1(U) suh that
 = !1 ^ !2 + � � �+ !2r�1 ^ !2r:In what follows, we will also make use of the following lemma:Lemma 7.2. Let 
 2 �2(U) and r 2 N suh that 
r 6= 0 and 
r+1 = 0.Also let X 2 X(U). Then X 
r = 0 if and only if X 
 = 0.Proof. Let 
 2 �2(U) with X 
r = 0 for some vetor �eld X 2 X(U). Thenfrom Theorem 7.1 we have
 = !1 ^ !2 + � � �+ !2r�1 ^ !2r; (28)for some linearly independent !1; : : : ; !2r 2 �1(U). This implies
r = r!!1 ^ � � � ^ !2r:Now X 
r = 0 implies that X !i = 0 for all 1 � i � 2r. Hene using theexpression for 
 in (28) gives X 
 = 0. Proving the onverse is obvioussine if Y is any vetor �eld in X(U), then Y 
r = r(Y 
) ^ 
r�1.24



Theorem 7.3. Let 
 2 �2(U) be losed. Suppose r is the natural numbersuh that 
r 6= 0 and 
r+1 = 0. Further suppose we have a solvable strutureof 2r linearly independent symmetries X1; : : : ; X2r 2 X(U) suh that X2r is anon-trivial symmetry of A(h
ri), and for all 1 � i < 2r, Xi is a non-trivialsymmetry of A(h
ri) � spfXi+1; : : : ; X2rg. Then Theorem 3.15 gives us analgorithm for expressing 
 solely in terms of the 2r funtionally independentfuntions 1; : : : ; 2r 2 C1(U) and their exterior derivativesProof. Let 
 2 �2(U) be losed with 
r 6= 0 and 
r+1 = 0 for somer 2 N . Sine d
 = 0 implies that d(
r) = 0, from Proposition 2.7,ker(
r) = A(h
ri) is therefore Frobenius integrable. The fat that 
ris deomposable of degree 2r means that A(h
ri) is generated by n � 2rlinearly independent vetor �elds. Suppose we have a set of linearly in-dependent symmetries X1; : : : ; X2r 2 X(U) suh that X2r is a non-trivialsymmetry of A(h
ri), and for all 1 � i < 2r, Xi is a non-trivial symme-try of A(h
ri) � spfXi+1; : : : ; X2rg. Then by Theorem 3.15 we have on U ,f!1; : : : ; !2rg dual to fX1; : : : ; X2rg, where for all 1 � j � 2r,!j := X1 : : : Xj�1 Xj+1 : : : X2r 
rXj X1 : : : Xj�1 Xj+1 : : : X2r 
r ;and !1 = d1;!2 = d2 �X1(2)d1;!3 = d3 �X2(3)(d2 �X1(2)d1)�X1(3)d1;...!2r = d2r mod d1; : : : ; d2r�1;for some funtionally independent 1; : : : ; 2r 2 C1(U). Then by Lemma 7.2,and using the fat that fX1; : : : ; X2rg plus any set of generators of A(h
ri)spans X(U), we an therefore write
 = 
(Xk; Xl)!k ^ !l; 1 � k < l � 2r;where we are implying a double summation. This means that
 = 
kldk ^ dl; 1 � k < l � 2r; (29)for some funtions 
kl 2 C1(U). But sine 
 is losed, we must have for all� 2 A(h
ri), L�
 = d(� 
) = 0;also using Lemma 7.2. Sine �(i) = 0 for all i, it follows that (with sum)0 = L�
 = �(
kl)dk ^ dl:Therefore �(
kl) = 0 for eah k and l. Hene 
 only depends on the 2rfuntions 1; : : : ; 2r and their exterior derivatives.25



Remark. In applying Theorem 7.3, there will exist situations when it maybe diÆult to express eah 
kl in terms of the known 1; : : : ; 2r.Next, onsider Darboux's theorem proved in [2, 5℄:Theorem 7.4. (Darboux) Let 
 2 �2(U) be losed so that 
r 6= 0 and
r+1 = 0 for some r 2 N. Then there exist oordinates 1; : : : ; n suh that
 = d1 ^ d2 + � � �+ d2r�1 ^ d2r:Theorem 7.3 may be applied to Darboux's theorem; however, the diÆultyis that Theorem 7.3 expresses 
 in terms of a sum of a maximum of �2r2 � two-form omponents, whih must then be simpli�ed to r omponents with unitone oeÆients if we wish to �nd a set of oordinates in Darboux's theorem.As an alternative approah extending work in [5℄ by Crampin and Piraniin their proof of Darboux's theorem (though similar proofs an be found inthe literature), we now look to formulate an extration proess for generatinga set of oordinates in the theorem using solvable symmetry strutures. Thenext three theorems will be useful in establishing this.Theorem 7.5. Let 
 2 �2(U) with 
r 6= 0 and 
r+1 = 0 for some r � 2.Suppose there exist X1; X2 2 X(U) suh that 
(X1; X2) = 1 and (X1 
) ^(X2 
) 6= 0. If 
 is de�ned by 
 := 
 + (X2 
) ^ (X1 
), then 
r�1 6= 0and 
r = 0:Proof. Let 
 2 �2(U) suh that 
r 6= 0 and 
r+1 = 0 for some r � 2. Usingthe de�nition for 
 in the theorem gives
r = 
r + r
r�1 ^ (X2 
) ^ (X1 
): (30)Now from 
(X1; X2) = 1 we have
r = 
r(X2 X1 
);= X2 (
r ^ (X1 
))� (X2 
r) ^ (X1 
);= X2 (
r ^ (X1 
))� (r(X2 
) ^ 
r�1) ^ (X1 
): (31)In the seond line we have used the property X2 (
r^ (X1 
)) = (X2 
r)^(X1 
) + (X2 X1 
)
r, and in the third, we have expanded X2 
r. If wesubstitute the end result in (31) into the expression for 
r in (30), we obtain
r = X2 (
r ^ (X1 
)): (32)By Theorem 7.1, there exist linearly independent one-forms !1; : : : ; !2r 2�1(U) suh that 
 = !1 ^ !2 + � � �+ !2r�1 ^ !2r:Hene X1 
 = a1!1 + � � �+ a2r!2r for some a1; : : : ; a2r 2 C1(U). Sine
r = r!!1 ^ � � � ^ !2r;26



it follows that 
r ^ (X1 
) = 0. Thus from (32) we get 
r = 0.Now suppose 
r�1 = 0. Then0 = 
r�1 = 
r�1 + (r � 1)
r�2 ^ (X2 
) ^ (X1 
):This implies 
r�1 = (r � 1)
r�2 ^ (X1 
) ^ (X2 
): (33)Taking the exterior produt with 
 gives
r = (r � 1)
r�1 ^ (X1 
) ^ (X2 
) = 0; (34)where the seond equality omes from substituting 
r�1 in (34) with itsexpression in (33). The alulations still holds for r = 2, and hene we reaha ontradition for all r � 2.Remark. Although Theorem 7.5 demands thatX1; X2 be suh that 
(X1; X2) =1, we an relax this ondition by saying that all we need is to �nd two vetor�elds Y1; Y2 2 X(U) suh that 
(Y1; Y2) 6= 0. Then we an hoose X1; X2 as,respetively, saled Y1; Y2 suh that 
(X1; X2) = 1.The seond theorem we require onerns the foliated exterior derivative,as explained by Vaisman [15℄:Theorem 7.6. Let ! 2 �1(U) and �1; : : : ; �s 2 �1(U) be s linearly indepen-dent one-forms suh that for all 1 � i � s,d�i = 0 mod �1; : : : ; �s;(i.e. the Frobenius ondition holds so that ker(�1 ^ � � � ^ �s) is Frobeniusintegrable).Then if d! = 0 mod �1; : : : ; �s;then ! = df mod �1; : : : ; �s;for some f 2 C1(U).Using the foliated exterior derivative, we prove the following theorem:Theorem 7.7. Let 
 2 �2(U) be losed. If there exists a pair of vetor �eldX1; X2 2 X(U) suh that1. LX1
 = 0;2. LX2
 = 0 mod X1 
;3. (X1 
) ^ (X2 
) 6= 0; 27



then on U , (X1 
) ^ (X2 
) = df ^ dg;for some funtionally independent smooth f and g.Proof. Let 
 2 �2(U) be losed and let there exist vetor �elds X1; X2 2X(U) that satisfy the three onditions in the theorem. Now LX1
 = 0 impliesd(X1 
) = 0, using the property LX1
 = X1 d
 + d(X1 
) and that 
 islosed. Hene X1 
 = df for some smooth f .Now suppose LX2
 = 0. Then by the same argument to above, X2 
 =dg1 for some smooth g1. If, however, LX2
 6= 0, then by assumption,0 6= LX2
 = � ^ (X1 
);for some � 2 �1(U). Therefore(LX2
) ^ (X1 
) = 0:Using LX2
 = X2 d
 + d(X2 
) and the fat that 
 is losed givesd(X2 
) ^ (X1 
) = 0:Hene d(X2 
) = 0 mod (X1 
):Using Theorem 7.6, we then getX2 
 = dg2 mod df;for some smooth g2. Hene in both ases the result is proved.We now present the main result of this setion:Theorem 7.8. Let 
 2 �2(U) be losed with 
r 6= 0 and 
r+1 = 0 for somer 2 N. Then the following algorithm expliitly omputes a set of 2r funtionsfor 
 desribed in Darboux's theorem:1. Find vetor �elds X1; X2 2 X(U) suh that:(a) LX1
 = 0;(b) LX2
 = 0 mod X1 
;() (X1 
) ^ (X2 
) 6= 0;(d) 
(X1; X2) = 1,2. Let 
 + (X2 
) ^ (X1 
) be our new 
,3. Repeat steps 1 and 2 a further r � 2 more times until 
2 = 0,4. Apply Theorem 3.15 with a solvable struture of two symmetries X3; X4 2X(U) for 
, suh that X3 is a non-trivial symmetry of 
 and X4 is anon-trivial symmetry of X3 
 with the property that 
(X3; X4) = 1.28



Proof. Let 
 2 �2(U) be losed with 
r 6= 0 and 
r+1 = 0 for some r 2 N .From Theorem 7.7 and then Theorem 7.5, we an ompute 
1 2 �2(U),where 
1 = 
+ dg1 ^ df1;for some smooth f1 and g1, with 
r�11 6= 0 and 
r1 = 0. Then one againfrom Theorem 7.7 followed by Theorem 7.5, 
2 2 �2(U) an be omputedso that 
2 = 
+ dg1 ^ df1 + dg2 ^ df2;for some smooth f2 and g2, with 
r�22 6= 0 and 
r�12 = 0. Continuing in thisway, we reah a stage when 
r�1 is of the form
r�1 = 
+ dg1 ^ df1 + dg2 ^ df2 + � � �+ dgr�1 ^ dfr�1;suh that 
r�1 6= 0 and 
2r�1 = 0. Applying step 4, 
r�1 is losed, andfrom Theorem 7.1, 
r�1 is also deomposable. From Theorem 3.15 andCorollary 3.13, with X3 as a non-trivial symmetry of 
r�1 and X4 as a non-trivial symmetry of X3 
r�1 suh that 
r�1(X3; X4) = 1, thenX3 
r�1X4 X3 
r�1 = dgr;X4 
r�1X3 X4 
r�1 = dfr + �dgr;for some smooth fr, gr and �, with
r�1 = 
r�1(X3; X4)dfr ^ dgr = dfr ^ dgr:Therefore
 = df1 ^ dg1 + df2 ^ dg2 + � � �+ dfr�1 ^ dgr�1 + dfr ^ dgr:Remark 1. In looking for two symmetries that satisfy the four onditionsin Theorem 7.8, ondition (d) an be relaxed a little by only requiring thatX2 X1 
 = onst. Then X1 or X2 may be saled appropriately by onstantswhile still satisfying the other three onditions. The same holds true for thetwo symmetries in step 4.Remark 2. Conditions (a) and (b) are strong requirements, and may be dif-�ult in pratie to satisfy. Sine 
 is losed, they imply X1; X2 must behosen suh that X1 
 is losed and X2 
 is losed, modulo X1 
. Henethe result in Theorem 7.8 is of more theoretial signi�ane than pratialuse.We an provide an alternative to the requirement in step 4 in Theorem 7.8as follows: 29



Lemma 7.9. Let 
 2 �2(U) be some arbitrary losed two-form. Supposethere exists some X3 2 X(U) not in ker(
) suh that suh thatLX3
 = 0; (35)and X4 2 X(U) satis�es 
(X3; X4) = 1. ThenLX4(X3 
) = 0:Proof. LX4(X3 
) = d(X4 X3 
) +X4 d(X3 
) = X4 (LX3
) = 0;using that X4 X3 
 = 1, equation (35), and that 
 is losed.We now apply the algorithm in Theorem 7.8 and the modi�ation of Step4 in Lemma 7.9 to an example. It is important to realise that the diÆultpart in applying Theorem 7.8 is in �nding the �rst r� 1 pairs of symmetriesX1; X2. Nevertheless, the main purposes of this example are to illustrate:i) the ruial role Theorem 7.5 plays in reduing the number of terms in atwo-form by one; and ii) the exibility in hoosing X4 in Lemma 7.9.Example 7.10. Consider the following two-form 
 2 �2(U4), where U4 issome suitably hosen four-dimensional, open, onvex neighbourhood of R4with oordinates x1; x2; x3; x4:
 := �x1x2��x3x2 � 2� dx1 ^ dx2 + x1x2dx1 ^ dx3 � 2x1x4 dx1 ^ dx4� �x1x2�2 dx2 ^ dx3:Now it is easy to show that d
 = 0, 
2 6= 0 and 
3 = 0. We may thenproeed to apply Theorem 7.8. LetX1 := � 1x3 �x2x1�2 ��x2 + x2x4(x1)2x3 ��x4 :Now LX1
 = d (X1 
) ;= d� 1x3dx3 + 2x2x1x3dx1 + 1x3 �x2x1��x3x2 � 2� dx1� ;= d� 1x3dx3 + 1x1dx1� = 0;so ondition (a) of step 1 in Theorem 7.8 is met. HeneX1 
 = d �ln jx1x3j� :30



Let X2 := x3 ��x3 :We have X2 X1 
 = 1, so ondition (d) is satis�ed. Then using thatX2 
 = x1x3x2 dx1 + x3 �x1x2�2 dx2;it is not hard to show that (X1 
)^(X2 
) 6= 0; so ondition () is satis�ed.Also,(LX2
) ^ (X1 
) = d (X2 
) ^ (X1 
) ;= �x1x2dx1 ^ dx3 � x1x3(x2)2dx1 ^ dx2 � �x1x2�2 dx2 ^ dx3+ 2x1x3(x2)2 dx1 ^ dx2� ^ � 1x1dx1 + 1x3dx3� ;= 0;so ondition (b) is met. Nowd (X2 
) = 0 mod X1 
:Using the foliated derivative, this impliesX2 
 = dg1 + �1d �ln jx1x3j� ; (36)for some g1; �1 2 C1(U4). Performing a oordinate substitution givesX2 
 = �d�(x1)2x3x2 �+ (x1)2x3x2 d �ln jx1x3j� :Therefore(X2 
) ^ (X1 
) = �d�(x1)2x3x2 � ^ d �ln jx1x3j� = �d�x1x2� ^ d(x1x3):For other hoie of X1; X2, we may obtain an expression for the other two-form omponent of 
.Now de�ne 
1 := 
 + (X2 
) ^ (X1 
) as in step 2. We then get
1 = �2x1x2 dx1 ^ dx2 � 2x1x4 dx1 ^ dx4:It is lear that d
1 = 0 and 
21 = 0 as expeted, so we may proeed to applythe �nal step in Theorem 7.8 on 
1. De�ningX3 := x1x4 ��x4 ;31



we have LX3
1 = d (X3 
1) = d �2(x1)2dx1� = 0:This implies X3 
1 = d�2(x1)33 � : (37)Now hoose X4 := 12(x1)2 ��x1 ;so that X4 X3 
1 = 1. From Lemma 7.9, LX4 (X3 
1) = 0, and hene fromTheorem 3.15, X4 
1 = df2 + �2d�2(x1)33 � ; (38)for some f2; �2 2 C1(U4). To �nd f2, it is easy to show thatX4 
1 = �d� 1x1 ln jx2x4j� mod dx1;and hene 
1 = d� 1x1 ln jx2x4j� ^ d�2(x1)33 � :One again we may simplify this:d� 1x1 ln jx2x4j� ^ d�2(x1)33 � = 2(x1)2d� 1x1 ln jx2x4j� ^ dx1;= 2x1d �ln jx2x4j� ^ dx1;= d �ln jx2x4j� ^ d �(x1)2� :Thus 
 = d�x1x2� ^ d �x1x3�+ d �ln jx2x4j� ^ d �(x1)2� :8 SummaryUsing the idea of a solvable symmetry struture we presented various algo-rithms for expressing ertain lasses of di�erential forms in terms of simpli�edoordinate systems. We began by reviewing Lie's symmetry approah andthen showed that it may applied to simplify di�erential forms whih are de-omposable and losed modulo themselves. We then gave a result showingthat ertain types of symmetry strutures in Theorem 3.15 fored more thanone of the !i to beome losed, and looked at under what onditions a givendi�erential form was deomposable and losed modulo itself.Next, we examined the problem of �nding simplifying oordinates for thePfaÆan problem. This was treated by imposing a speial ondition on the32
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