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Abstract

We investigate symmetry techniques for expressing various exterior
differential forms in terms of simplified coordinate systems. In partic-
ular, we give extensions of the Lie symmetry approach to integrating
Frobenius integrable distributions based on a solvable structure of
symmetries and show how a solvable structure of symmetries may be
used to find local coordinates for the Pfaffian problem and Darboux’s
theorem.
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1 Introduction

In this paper we present several methods based on symmetry techniques for
expressing various differential forms in simplified coordinate systems. We
use work by Lie [10] and Cartan [3] to explore how symmetries may be used
to integrate Frobenius integrable distributions. In recent times, Barasab-
Horwath [1], Duzhin and Lychagin [6], Hartl and Athorne [9], and Sherring
and Prince [13] have extended Lie and Cartan’s work from the perspective of
constructing first integrals of a completely integrable distribution by quadra-
tures. Our work uses such results to examine conditions under which a given
differential form can be expressed in a simpler coordinate system.
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The plan of this paper is to first review Lie’s solvable symmetry structure
approach to integrating Frobenius integrable vector field distributions. For
a given Frobenius integrable distribution an exterior product of one-forms is
used to generate invariants of the distribution. We then apply the approach
to Pfaffian and Darboux systems, and in both cases present an example.

It is assumed throughout this paper that our expressions apply locally on
some n-dimensional, open, simply connected differentiable submanifold, U,
of R", with coordinates z!,...,2" € C*®(U). One further assumption that
we make on U is that it be convex. This allows us to use the converse of the
Poincaré Lemma on the whole of U, i.e. if A € A¥(U) is closed (dA = 0),
then 0 = dO for some © € AF1(U) [12, 15].

Consider the differentiable manifold U of dimension n. T'U is the tangent
bundle of vector fields with T,(U), p € U as its fibres. Let X(U) be be the
module of all smooth vector fields over C*°(U). T*U is the cotangent bundle
with T>(U), p € U as its fibres. The set of exterior differential m-forms is a
section of the bundle of all homogeneous differential forms, A(U). For any
Q € A™(U) define its kernel by ker(Q) := {X € X(U) : X1Q = 0}.

For the remainder of this paper we will also assume all vector field distri-
butions non-singular in the sense that their dimension is constant on U, and
also that all one-forms have constant rank on U.

2 Ideals, Cauchy characteristics and symme-
tries

Following Bryant et al. [2], for any o', ..., a? € A(U) up to some p € N, we
write I := (al,...,a”) to mean that I is the (homogeneous) algebraic ideal
generated by the elements o', ..., a”. An ideal I is a differential ideal if the
exterior derivative of every member of I is also in I. A vector field YV is called
a Cauchy characteristic vector field of an ideal I if Y I C I. Define A(I)
to be the set of all Cauchy characteristic vector fields of I. It is not hard to
show that A(7) is Frobenius integrable.

A vector field X € X(U) is said to be a symmetry (or isovector) of an
ideal, I, if LxI C I. It is easy to see that in order to show that X is a
symmetry of I, it is enough to show that the Lie derivative with respect to
X of merely the generators of I, is also in I. A vector field X € X(U) is a
symmetry of a vector field distribution D C X(U) if LxD C D. Once again,
it is enough to look at simply the generators of D when determining whether
a vector field is a symmetry of the distribution.

We now present some results connecting symmetries, ideals, and Cauchy
characteristic spaces.

Proposition 2.1. Let I be an ideal. Suppose A(I) is not zero-dimensional.
If a vector field X is a symmetry of I then X is a symmetry of A(I).



Proof. Let X be a symmetry of the ideal I. Let Y € A(I) and 5 € I. Then,
from rearranging the identity Lx(Y10) = [X, Y18+ Y1 (Lx/), we obtain

(X, Y18 = Lx(Y1B) = YI(LxPB).

Now the first term on the right hand side is in I since Y138 € I and X is a
symmetry of I. The second term is also in [ since Lx/5 € [ and Y € A(I).
Hence [X,Y]1 8 € I. Therefore [X,Y] € A(I). O

Proposition 2.2. Let {a', ... aP} be some finite set of linearly independent
one-forms in A'(U), and define I := {(a',...,aP da’, ... daP). With the
dual space of the Pfaffian system generated by o',...,aP defined by D :=
{X eX(U): X1a'=0, forall 1<i<p}, then a vector field, Y € D is a
Cauchy characteristic of T if and only if [X,Y] € D for all X € D.

Proof. Let Y be a Cauchy characteristic vector field of I, i.e. Y1a! = 0 and
Yida' € I for all 1 < i < p. This implies that for all 4,

Ly =Y.ido' € 1.

Hence Y is a symmetry of I. Let X € D, where D is defined in the theorem.
Using the property

Ly (Xia') =Y, X'+ X1 (Lya'),

we know that the term on the left is zero and the second term on the right
is also zero. Hence for all i, [X,Y]1a' = 0, so that [X,Y] € D.
Conversely, let Y € D and [X,Y] € D for all X € D. We therefore have
that for all i,
Yia'=0=[X,Y]ia"

Now once again using the property
Ly (Xia') =Y, X'+ X1 (Lya'),

we have that for each 1, ‘

X1 (Lya') =0. (1)
Since (1) must hold for all X € D, we must have that Lya' € I. Since
Yiat =0, ‘ .

Lya'=Yida' €1,

so Y is a Cauchy characteristic vector field of I. O

At this point we will introduce the idea of a trivial symmetry. Given a
differential ideal I, we call all Cauchy characteristics of I trivial symmetries
of I. The reason for this is contained in the next proposition:

Proposition 2.3. Let I be a differential ideal, and let Y be a Cauchy char-
acteristic vector field of I. Then 'Y s a symmetry of I.



Proof. let f € I and Y € A(I).
LyB=d(YiB)+YidB.

The first term on the right is in [ because Y18 € I, and consequently
d(Y1pB) € I, since I is a differential ideal. The second term is obviously in
1. O

Similarly, given a vector field distribution D, a trivial symmetry of D is
a symmetry of D that is also in D.

A fundamental distinction between trivial and non-trivial symmetries is
as follows: Given a trivial symmetry, multiplying it by any non-constant
function will yield a trivial symmetry, however doing the same to a non-
trivial symmetry will in general not produce a non-trivial symmetry.

For a differential ideal generated by a Pfaffian system we have the follow-
ing extension of Proposition 2.3:

Proposition 2.4. Let I be a differential ideal generated by some finite col-
lection of linearly independent one-forms o', ... of € AY(U). A vector field
X € X(U) is a symmetry of I in the annihilating space D = {X € X(U) :
Xiat =0, forall 1 < i < p}ifand only if X is a trivial symmetry
(Cauchy characteristic vector field) of I.

Proof. With X as a symmetry of I, if X a’ = 0 for all 1 < i < p, then for
each 7 ' _
1> Lxa' = Xido

The converse is also obvious using Proposition 2.3. U

Definition 2.5. A differential p-form said to be decomposable (or simple) if
it can be written as the wedge product of p one-forms.

Decomposability is a local property, and a p-form is decomposable if and
only if the dimension of the kernel is of dimension n — p.

Consider the following two simple propositions, the first of which is proved
in Sherring and Prince [13]:

Proposition 2.6. A vector field X € X(U) is a symmetry of a decomposable
m-form Q € A™(U) if and only if X is a symmetry of ker(Q).

Proposition 2.7. Let Q € A™(U) and I := (Q,dQ). If dQ2 = 0 mod Q, then
ker(Q) = A(I).

Proof. First suppose ker(2) is not zero-dimensional, so that there exists a
non-zero vector field W € X(U) such that WiQ = 0. Now since df2 = 0
mod Q, W1dQ = Wi(aAQ) = (Wia)AQ for some a € A'(U). Therefore
W e A(l).



Now suppose A(I) is not zero-dimensional. This means there exists a
non-zero vector field, X € X(U) such that X Q = 0 and X1dQ = fQ for
some smooth f € C*(U). Hence from the first part, X € ker(2).

If ker(€2) is zero-dimensional, then Y1 # 0 for all non-zero Y € X(U).
This means Y1 ¢ I, and hence Y ¢ A(I). Therefore A(I) is zero-dimensional.

Finally, if A([) is zero-dimensional, then Z1Q # 0 for all Z € X(U).
Hence ker({2) is zero-dimensional. O

Using the above two results, we obtain the following extension to differ-
ential ideals thus giving us a condition under which the converse of Proposi-
tion 2.1 holds true:

Proposition 2.8. Let I be a differential ideal generated by some Q € A™(U)
with dQ = 0 mod Q. Furthermore, let Q be decomposable on U and A(I) not
zero-dimensional. Then X is a symmetry of I if and only if X is a symmetry

of A(T).

Proof. From Proposition 2.7, dQ = 0 mod € implies that ker(Q) = A([).
Hence the result follows from Proposition 2.6. O

Remark. 1t Q € A™(U) with m = n, and T is the differential ideal generated
by © (note d2 = 0), then any non-zero vector field in X(U) is a symmetry of
I. Moreover, A((2)) is zero-dimensional, and therefore any non-zero vector
field in X(U) is also a symmetry of a zero-dimensional A((€2)).

3 The Frobenius theorem and integration via
symmetry

First, we present a basic result:

Lemma 3.1. [5] Let Q € A» ™ (U) for some m < n — 1. Then ker(2) can
be at most m-dimensional. Moreover, ker(Q)) is precisely m-dimensional if
and only if 2 is decomposable.

Lemma 3.1 has the following corollary:

Corollary 3.2. Let D := sp{Y1,...,Y,} be some m-dimensional distribu-
tion in X(U), where m < n —1. If Q := Yo ... aYa(da' A--- Ada™) €
A"™(U), then § is decomposable and equal to the wedge product of some
n — m linearly independent generators of D*.

Proof. With D and Q defined as in the corollary, let X € X(U) be any
non-zero vector field in D. Then from the definition of €2, X1 = 0. Hence
ker(€2) is at least m-dimensional. But from Lemma 3.1, since Q is an (n—m)-
form, its kernel can not be greater than m-dimensional, and therefore € is
decomposable.



Now we can write Q = ' A --- A "™ for some linearly independent
6',...,0" ™ € AY(U). Since for each 1 < i < m, Y;1Q = 0, we then have
that for each 1 < j < (n —m), Yu6? = 0. Hence ',...,0" ™ generate
Dt O

Theorem 3.3. (Frobenius) Let D be an m-dimensional distribution gen-
erated by the vector fields Yi,...,Y,, € X(U), where m < n — 1. Define
Dt to be the submodule of all one-forms that annihilate D. Let Q :=
Yig.oooaYpa(dz' Ao Ada™) € A"™(U). Then D has m-dimensional inte-
gral submanifolds on U if and only if either of the following two equivalent
conditions are true:

1. For oll XY € D, [X,Y] € D,
2. Forall € DY, dONQ =0.

We say that a distribution D is Frobenius integrable (or generates a foli-
ation of U) if the first condition in the Frobenius theorem holds. The Frobe-
nius theorem means that D generates an m-dimensional foliation of U whose
leaves are described by some set of n—m functions ' = ¢1,..., 7" ™ = cp_m
of rank n — m, where ',...,v" ™ € C*(U) and ¢,..., ¢, are some ap-
propriate constant functions.

Using Corollary 3.2, we have the following corollary to the Frobenius
theorem:

Corollary 3.4. Let D be an m-dimensional distribution generated by the vec-
tor fields Yy, ..., Y, € X(U), wherem <n —1. Let Q := Y1 ...1Y,1(dz! A
- Adz™) € A™(U). Forall® € DY, d9 AQ = 0 (i.e. D is Frobenius
integrable) if and only if dQ = 0 mod Q.

Proof. With Q defined as in the corollary, Corollary 3.2 implies Q = 0 A
-+ AO""™ for some linearly independent 8 ... 6"~™ € A'(U) that generate
D*. Now for each 1 < i < (n — m), the Frobenius condition df* A Q = 0 is
equivalent to the condition that df = 0 mod 6',...,6" ™. Hence

dr=d (0" A--- A",
=0 mod €.

To prove the converse, suppose df2 = 0 mod €2. Now for all 7,
do’ AQ =d (6" AQ) + 6" A dSL. (2)

Since ' AQ = 0, and  is closed modulo itself, we find from (2) that d§? AQ =
0. U

From Sherring and Prince [13] we have the following definition:

Definition 3.5. A differential m-form Q € A™(U) is Frobenius integrable if
ker(€2) is Frobenius integrable and of dimension n — m.
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From this definition we have the following lemma:

Lemma 3.6. A differential m-form Q € A™(U) is Frobenius integrable if
and only if Q) is decomposable and dS) = 0 mod ).

Proof. First suppose Q € A™(U) is Frobenius integrable. By definition,
ker(2) is maximal dimension, and hence 2 is decomposable. We can write
Q=0"A...0"™ for some 0',...0" ™ € A(U). Since ker(Q2) is Frobenius
integrable, it follows that for each 1 < i < n —m, df’ = mod 0',..., 60" ™.
Hence d2 = 0 mod (2.

Conversely, let {2 be decomposable and df) = 0 mod 2. It is clear that
ker(§2) is maximal rank. Further, ker(2) = A((€2)) is Frobenius integrable
from Proposition 2.7. O

Theorem 3.7. Let Q € A™(U) for some m > 1 be decomposable, and let
X € X(U) with the property X1Q # 0. Then there exists 0 € A (U) such
that Q@ =0 N (X1Q).

Proof. Let Q € A™(U) be decomposable, and let X € X(U) with X1Q # 0.
Let Y41,...,Y, € X(U) be a basis for ker(€2). Since X1Q # 0, the vector
fields X,Y,,11,...,Y, are linearly independent. We can extend these vector
fields to a basis by including some Y,...,Y,, € X. Let {0',...,0™} be a
dual basis of one forms for {X,Y,,...,Y,,}. Then Q = f0' A--- A O™, and
moreover, X1 = f6? A--- A0™. Hence the result follows. O

By an obvious iteration, we have the following corollary to Theorem 3.7:

Corollary 3.8. Let Q € A™(U) be decomposable. Let Xy,..., X, € X(U) up
to some p < m such that X11...1X,0Q # 0. Then there exist 0',... 0P €
AY(U) such that

Q=0"N---ANO'"AN(X11...0X,0Q),
Xy Q=0 A AN (Xqa 0 X Q)

Xot oo 0 X0 Q=0"A(X11...20X,0Q).

Proposition 3.9. Let Q € A™(U) be decomposable, and let X € X(U) such
that X1Q # 0. Then ker(X1Q) = ker(2) & sp{ X }.

Proof. 1t is clear that ker(X1 ) D ker(Q2). Since X € ker(X1€), we therefore
have ker(X19Q) D ker(Q2) & sp{X}. By assumption Q is decomposable, so
Lemma 3.1 implies ker(€2) has maximal dimension n —m. Since X ¢ ker(£2),
it follows that ker(£2) @ sp{ X} has dimension n —m + 1. Hence Lemma 3.1
implies X1€2 is decomposable. O

We have the following corollary to Proposition 3.9, which can also be
found in Sherring and Prince [13]:



Corollary 3.10. Let Q € A™(U) for some m > 1 be decomposable, and let
X € X(U) such that X1Q # 0. Then X1 is decomposable.

Before we present the next result, we require the following central defini-
tion:

Definition 3.11. Let D be a distribution in X(U). Then a set of p linearly
independent vector fields, Xi,..., X, € X(U), form a solvable symmetry
structure for D if

Lx, (sp{Xs,...,X,}@®D) C sp{Xy,....X,} & D,

‘Cqu (Sp{Xp} S D) - Sp{Xp} & D,
»CXPD C D.

Theorem 3.12. Let Q2 € A™(U) be Frobenius integrable. Further, let X €
X(U) such that A((QQ)) @ sp{ X} is Frobenius integrable and X1Q # 0. Then
X1Q is Frobenius integrable.

Proof. This theorem is obvious from Definition 3.5, Propositions 2.7 and 3.7,
and Corollary 3.10. O

We have the following corollary to Theorem 3.12:

Corollary 3.13. Let Q € A™(U) be Frobenius integrable, and suppose there
erist Xi,...,X, € X(U) up to some p < m such that Xy ...1X,1Q # 0.
If A((Q2)) @ sp{X,} is a Frobenius integrable distribution, and for all 1 <
i < p, A(Q)) @ sp{X;,..., X,} is also Frobenius integrable, then X,i€,
ooy Xy 0 X0 Q2 are Frobenius integrable. Moreover, {Xy,..., X,} form
a solvable symmetry structure for A((2)) if and only if

L3, = A0,
Lx, (Xp1€) = X 1(Xp0Q),

Lx, (Xoa ... 0Xp0Q) =M (Xo ... 0 X0Q),
for some Ay, ..., \, € C®(U).

Corollary 3.13 provides a direct connection between a solvable symmetry
structure for ker(Q2) = A((€2)) and one for Q (the equations in (3) will be
frequently referred to as a solvable symmetry structure for Q).

The papers by Sherring and Prince [13] and Basarab-Horwath [1] ex-
tend Lie’s approach to integrating a Frobenius integrable distribution via a
solvable structure of symmetries. In those papers, a Frobenius integrable
distribution is given first. The one-form annihilating space is then generated
and all generators wedged to give a decomposable form with a Frobenius
integrable kernel. The result is reproduced below:
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Theorem 3.14. [13| Let D := sp{Y;,...,Y,} C X(U) be a q-dimensional
Frobenius integrable vector field distribution. Define Q = Yi1 ...2Y1(dz' A
<« Adx™) € A"UU), and suppose there exists a solvable structure of linearly
independent symmetries Xy, ..., X,_, € X(U) such that X,,_, is a non-trivial
symmetry of D, and that for all 1 <1 < n—q, X; is a non-trivial symmetry
of D& sp{Xit1,...,Xn o} Foralll<i<n—q, definew' by

[

Xig oo o X Xig o0 X, Q2
w' = )
Xipo Xqg o0 X0 X 00X, 0 Q

Then {w',...,w" %} is dual to { X1, ..., X4}, and for allw’ up toi =n—gq,

— — 1 —q—1
W' l=dy" 7 moddy,...,dy" T,
for some functionally independent v',...,y"~9 € C®(U). Moreover, on
U, the submanifolds described by D generate a q-dimensional foliation of
U whose leaves have ', ..., 4" 9 constant.

In our work, we will start with a decomposable m-form 2 with a Frobenius
integrable kernel. This is achieved by also demanding that d2 = 0 mod (2.
Hence by Proposition 2.7, the Cauchy characteristic space of the differential
ideal generated by (2 is Frobenius integrable and equal to ker(€2). Using these
facts, we show below in Theorem 3.15 how a solvable structure of symmetries
for Q (as in Corollary 3.13) can assist in generating a simplified expression
for Q2. Theorem 3.15 is the key result of this paper.

Theorem 3.15. Let 2 € A™(U) be Frobenius integrable. Suppose there ezists
a solvable structure of linearly independent symmetries Xq,..., X, € X(U)
such that X, is a non-trivial symmetry of A({(Q)), and that for all1 < i < m,
X; is a non-trivial symmetry of A((Q)) ® sp{Xis1,-.., Xm}. Forall1l <i<
m, define w' by
i Xog oo X 0 X000 X0

= . 4
XooXqo oo oo X 0 X 0 0 X100 (4)

Then {w',...,w™} is dual to {X1,..., X,,}, and for all W' up to i = m,

w' =dy',
W' =dy’ — Xa(v7)dy',
W' =dyt = X (V) (dy? — Xa(v)dy') — Xa()dy (5)

m—1

W™ =dy™ moddy',...,dy"",
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for some functionally independent ', ..., v™ € C*(U). Finally, define~" :=
Q(Xy,..., X)), Then Q =A%y A Ady™.

Proof. Since from Lemma 3.6, € is decomposable, we may write Q = ' A
-+ A @™ for some linearly independent 0',...,0™ € A'(U). Now ker(Q2) =
sp{Y1,..., Yo m} for some Yy,....Y, ,, € X(U). From Lemma 3.6 and
Proposition 2.7, we have that A((Q2)) = ker(2) is Frobenius integrable. Ap-
plying Theorem 3.14 with the linearly independent symmetries X;,..., X, €
X(U) for A((€2)) given in Theorem 3.15, we obtain that

{KJ“‘JYTl*WLJXlJ"'JXm}
spans X(U) and is dual to
{gzﬁl,...,gb”*m,w],...,wm},

for some linearly independent ¢',... ¢" ™ € AY(U) with w', ..., w™ defined
as in (4). Since Y;uQ =0 for all 1 < j <n —m, it follows that

Q=Q(Xy,..., Xp)w A AW™ (6)
Now Theorem 3.14 implies the equations in (5), so (6) simplifies to give
Q=Q(X1,..., Xn)dy' A Ady™
O
Remark 1. The fact that the symmetries in Theorem 3.15 are non-trivial

means that the denominator is non-zero in each of the definitions for w!.

Remark 2. The expression for 7° is easily derived since Q = Q(X,..., X,,)
WA Aw™as Va2 =0 for all 1 < j < (n— m) linearly independent vec-
tor fields Y3, ..., Y, ., in A((Q)) that are used with X;, ..., X,, to span X(U).

Theorem 3.15, for a given (2 and solvable symmetry structure of vector
fields, gives us explicit expressions for the relations described in Proposition
3 in [9].

In later sections, we will illustrate Theorem 3.15 with some applications.
For now though, we have the following consequence of Theorem 3.15 regard-
ing the its second remark:

Theorem 3.16. Given some Frobenius integrable 2 € A™(U) and a solvable
structure Xq, ..., Xy € X(U) for A((Q)) as in Theorem 3.15, then

Lx, Q={X,1d(In|QXy,..., X,)])}2,
Ly, (Xpn1Q)={X, 12d(In|Q(Xq,..., X)) HX1Q),

Lx, (Xos ... 0X0Q) ={X1d(In[Q(Xy, ..., X)) F( X ... 0 X0 Q).
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Proof. First we will show that for all 1 <i <m, d(w' A--- Aw') = 0. From
Theorem 3.15 it is obvious that dw! = 0 and for each 1 < i < m that dw’ = 0
mod w!, ..., w' ! Thus for all i > 1,

dw' A---Aw') = 0. (7)
From Theorem 3.15 it is clear that
Q=Q(X1,..., X)W A AW™ (8)

Hence

d(ﬂ(X],.g.z.,Xm)> =0 (9)

Using that {w',...,w™} is dual to {Xi,...,X,,} and contracting (8) with
X, we obtain

X, Q

1 m—1
A A — .
v v C)™ (X, ..., Xo)

From repeating this contraction with X,,, ; and so on down to X, we obtain
forall1 <i:<m-—1,

Xigd .0 X0
(—1)m=D++9Q(X,, ..., X,,)

WA AW =

Hence from (7),

Xig1d o0 X10
d : = 0. 10
<(—1)((m1)+"'+7')Q(X1,...,Xm)> (10)

Equation (9) implies
dQ =d(In|Q(Xy,..., X)) AQ, (11)
while equation (10) means
d(Xig1d o 0 X1 Q) =d(In QX ., X)) DA (Xigro 0 X01Q), (12)
forall1 <7< (m —1). Now

L. Q= Xpa1dQ+d(Xmi ),
= X {d (0K, X)) A QY+ d (090X, X)) A (X ).
= { Xy d(In | X1, ..., Xm)]) }2,

where in the second line we have inserted equations (11) and (12). To obtain

the third line we used the identity X1 (w A o) = (X1w) Ao + (—=1)49@y A
(X1o0) for differential forms o, w.
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Finally, let 1 <4 < (m — 1). Then in a similar fashion to before, we get

Lx,(Xip11 o 0X01Q) = X {d(In |Q(Xq, .., X)) DA (Xigas 20 X0Q)}
+d(In|QXy, ..., X)) A (X0 o .0 Xpa Q)

which simplifies to

EXi(Xi+1J .. .JXmJ Q) = {X,J d(lﬂ ‘Q(Xl, C ;Xm)‘)}(XH—lJ .. .JXmJ Q)

O
In general, each w?, ..., w™ in Theorem 3.15 is not exact. Our final results
for this section examine some conditions on the symmetries X;,..., X, in

Theorem 3.15 that force at least one of w?,...,w™ to be exact.

Theorem 3.17. Let Q € A™(U) for some m > 3 such that Q is Frobe-
nius integrable. Let there exist a solvable structure of linearly independent
symmetries X3, ..., Xy, € X(U) such that X, is a non-trivial symmetry of
A((Q)), and that for all 3 < i < m, X; is a non-trivial symmetry of A({Q)) &
sp{Xit1,..., X} Also, let there exist two linearly independent vector fields
X, Xy € X(U) that are non-trivial symmetries of A((Q)) ® sp{X3,..., X}
such that

[X1, Xo] =0 mod A((€2)) © sp{Xs,..., Xn}. (13)
For all 1 <i <m, define w' by

i Xyg oo X 0 X000 X0

W XX oo X0 X 0 X0

Then {w',...,w™} is dual to {X1,..., X,,} and for all w* up to i =m,

w' =dy',
w? = dvy?,
w' =dv* — Xo (7)) dy? — X1 (7°)dy,

W' =dy' = X3(v") (A7’ — Xo(7?)dy* — Xa (V7)) — Xo(v)dr? — Xi(v")dry',

m—1
3

w™ =dy™ moddy',... dy

for some functionally independent v*, ..., v™ € C®(U). Finally, define~" :=
Q(Xy, ..., Xm). Then Q =%y A+ Ady™.

Proof. We begin by showing that X; is a non-trivial symmetry of A((Q2)) &

sp{ Xy, ..., X;»}. Since X; is a non-trivial symmetry of A((Q))®sp{ X3, ..., X},
we have from Corollary 3.13 that

Lx, (Xso . 0 XmaQ) =X (Xau...0Xn1Q),
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for some A € C*°(U). Using this fact and equation (13) then gives

Lx, (Xog .. 0X,0Q) =X, Xou X310 ... Xpu Q+ Xoa Ly, (X0 ... 0X,19Q),
=A(Xos...0X,1Q).

From Theorem 3.13, our symmetries at this point satisfy Theorem 3.15.
Therefore

w' =dy',
W’ =dy = X1 (v)dy',
w’ = dy’ — Xo(7*)(dy® — Xa () dy') — X (y)dy',

m—1

mod dv', ..., dy" ",

m

w™ = dy

m

for some functionally independent ', ..., v™ € C*(U). To show that X;(7?) =
0, we must show that

X0 X3 ... 0X,,10
o’ = d ( ' =0. 14
N <X2JX1JX3J ...JXmJQ> ( )

This can be proved by observing that since ker( X1 X531 ... X,,,0Q) = A((Q))®
sp{ Xy, X3,..., X;n} is a Frobenius integral distribution, we therefore have
that

Ad(X12X30 ... X1 Q) =0 mod Xy X530 ...0 X510,

Then to show that X5 is a non-trivial symmetry of A({(Q))®sp{ X1, X3,..., X;n}
we use the formula

Ly, (X11X30...0X00Q) = [Xo, X1J0 X350 ... 0 X,,00
+ X0 Lx, (Xzu ... 0 X1 Q).

Now using equation (13) and that X, is a non-trivial symmetry of X31 ...
Xma €, we get the desired result. Equation (14) can then be deduced from
simple algebraic manipulation, or by applying Theorem 3.15. ]

Remark. While Theorem 3.17 assumes m > 3, it is clear that is still holds
when m = 2. In this situation, there is no need for symmetries other than
Xy, Xy, with (13) reducing to [X;, X5] = 0 mod A((Q2)). Further, the expres-
sions for w’ in the conclusion of the theorem vanish for 7 > 2.

We can generalise Theorem 3.17 in the following way:

Theorem 3.18. Let Q) € A™(U) for somem > 3, and suppose 2 is Frobenius
integrable. For some 1 <[ < m, let there exist a solvable structure of m — 1
linearly independent symmetries Xiy1,..., X;m € X(U) such that X, is a
non-trivial symmetry of A((QQ)), and that for all [+ 1 < i < m, X; is a
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non-trivial symmetry of A((Q)) & sp{Xiy1,..., Xm}. Also, let there exist
[ linearly independent vector fields Xy,..., X, € X(U) that are non-trivial
symmetries of A((Q)) @ sp{X41,..., X} such that

(X, X,] =0 mod A((Q) & sp{Xis1, ..., X}, (15)

foralll <u<wv<l. Foralll<i<m, definew by

i Xg oo X 0 X0 0X00
XX X X 0 X

Then {w',...,w™} is dual to {X1,..., X,,} and for all w* up to i =1,

w' =dy',

with for each © greater than | up to 1 = m,

le — d’}/H_l _ Xl(’)/l+1)d’}/l _ X;,l(’}/l_l_l)d’yl*l L X1(’)/l+1)d’)/1,
wl+2 — d’}/HQ _ Xl+1(’)/l+2) (d’}/Hl _ Xl(’)/l+1)d’}/l _ X;,l(’}/l_l_l)d’}/lfl -
*X] (’}/l+2)d’7]) - Xl(,yl+2)d/yl L X] (,YH»Q)d,}/]’

m—1

w™ =dy™ moddy',... dy"",

for some functionally independentv', ... ,v™ € C*(U). Finally, define~" :=
Q(Xy,..., Xm). Then Q=~2%y" A+ Ady™.

Proof. (Outline) The proof is similar to that of Theorem 3.17, and essentially
involves repeating the proof of Theorem 3.17 [ — 1 more times. To do this,
from the fact that € is decomposable and df2 = 0 mod 2, we can then apply
Corollary 3.13 to obtain

»CXm - )\mQa
Lx, o (XpmaQ)=XAp 1 (X1 Q),

Lx, (Xigod o0 X1 Q) = Nyt (Xpgou .01 X000 Q),
and also that

Lx, (Xip10Xipo1 000 X0 Q) = N (Xp0 Xigon -0 X0 Q)
Lx,  (Xip11 X000 Xopn Q) = Ny (Xp Xpgoo o0 X1 Q)

|-

Lx, (Xip1a X000 X Q) = A (Xpp10 X0 .00 X0 Q)
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for some Ay, ..., A\, € C®(U). Next, using (15), it is easy to show that

Ly, Q=A<
,Cqu (XmJ Q) = )\mfl(XmJ Q),

Lx, (Xog .. 0X01Q) = M (Xoa ... 0X,00Q).

Then we may apply Theorem 3.15 to give us that {wh, ..., w™} is dual to
{X1,..., X»}, and that for all w* up to i = m,

w! = dy',

w? =dy* = X1 (y*)dy',

w’ = dy’ — Xo(7’)(dy® — Xa () dy') — X (y)dy',

m—1

W™ =dy™ moddy',... dy" !,

for some functionally independent 7',... ™ € C*(U). Now since we know
already that dw' = 0, we only have to show that for each 1 < j <1,

dud — d ( Xy oo X 0 X000 X,00 ) _ o
Xio X o0 X0 Xm0 0 0 X500
The original symmetry relations for Xi,...,X,, tell us that for each j,
A) @ sp{ Xy, ..., X;-1, X 41, ..., X} is Frobenius integrable, so
d(Xys o0 X 0 X000 ...0X,,00)
=0 mod X1 ... 0X; 10X 0. 20X

(16)

Finally, using (15), and in similar fashion to the end of the proof of Theo-
rem 3.17, we get that for each j, X; is a non-trivial symmetry of X,y ... 1 X,
1 X410 .. .0 X1 Q. Simple algebraic manipulation then yields (16). O

Remark. As in Theorem 3.17, it is easy to see that Theorem 3.18 holds for
all m > 2. However, here we can also say that the theorem holds if [ = m,
so (15) becomes [X,, X,] = 0 mod A((Q2)) for all 1 < u < v < [. In this
situation, all w’ become exact, which is in accordance with the corollary to
Proposition 2 given in [1].

The next section gives a simple application of some of the ideas presented
above.

4 Differential forms in A™(R™*1)

In this section we show that, provided we have enough symmetries, any differ-
ential form in A™(R™!) can be expressed locally in terms of m functionally
independent functions as in the conclusion of Theorem 3.15. Further details
will be given in Theorem 4.3 below, but first, consider the following result:
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Lemma 4.1. Let Q € A™(U) for some m < n be non-zero, where U is
defined as in previous sections (though the requirement that U be convez is
not necessary here). Suppose € is of the form

Q=P NANPNA- AT NP A AT
+ Vg1 O NP N A OT

for some linearly independent 0, ... 0™ € AY(U) and 1, ..., Ymy1 € C®(U).
Then € is decomposable.

Proof. Let Q € A™(U) be as in the theorem. We can write
Q=X1 (0" A---NO™T),

where
m—+1

X = Z(—l)FlViXi;
i=1
for some Xi,...,X,,;1 € X(U) dual to 0',...,0™"". Hence from Corol-

lary 3.10 the result follows. O

From Lemma 4.1 we obtain the following useful result for m-forms in
(m + 1)-dimensional spaces also found in [8] by Godbillon. Define W to be
some open neighbourhood of R™*!,

Proposition 4.2. Let Q € A™(W). Then Q is Frobenius integrable.

Proof. Let Q € A™(W). Lemma 4.1 implies
Q=0"'A---NO™,

for some linearly independent 0',... 6™ € A'(W). Now df2 is an (m + 1)-
form in A™T(W), so we may complete ',... 6™ to a basis by including
some linearly independent ¢ € A'(W) with the property that

dQ=0'A--- A" A ¢.
O

Theorem 4.3. Let Q € A™(W), where W to be some open, convex neigh-
bourhood of R™*! . If there exists a solvable structure of m symmetries for

A((Q)) as in Theorem 3.15, then we can compute functions 7°,...,y™ €
C>(W) so that Q = ~%dy' A+ Ady™.

Proof. We know from Proposition 4.2 and Proposition 3.6 respectively that
Q) is decomposable and that d€2 = 0 mod €2, so Theorem 3.15 gives us a direct
algorithm for finding ~°,...,y™. O
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5 Some necessary conditions

For an arbitrary form differential form A € A™(U), we use ideas in the previ-
ous section to examine some necessary conditions for A to be decomposable
and dA = 0 mod A, so that we can apply Theorem 3.15. Of course if m = n,
these two conditions trivially hold, and Proposition 4.2 and means they still
hold if m = n — 1. In this section we examine the situation when m < n — 1.
In what follows, we assume U is some open, convex neighbourhood of R".

Theorem 5.1. Let A € A™(U) for some m < n—1. If there exist n —m —1
linearly independent vector fields Ty, ... T,y € X(U) in ker(A), then A is
decomposable. Moreover, if for each 1 <1 <n—m —1,

for some \; € C°(U), then dA =0 mod A.

Proof. Let A € A™(U) with m < n — 1, and let there exist linearly indepen-
dent T'y,...T, 1 € X(U) such that forall 1 <i<n—m—1,

Now
(Sp {Fla R anm—l})L =sp {917 o gm-l—l} :
for some @', ..., 0™ € A'(U). Hence from (18), we must have
A == A]1]m031 ANEREEA 9jm7

for some A;, ;€ C®(U), with summation over 1 < j; < -+ < j,, <m+1.
Therefore by Lemma 4.1, A is decomposable.
For the second part of the proof, we choose without loss,

A=0"AN---NBO™.

We can complete ', ..., 0™ to a basis for A'(U) by adding linearly inde-
pendent ¢!, ..., ¢" ™t € AY(U) such that

{o',....0" 10", ..o} (19)
is dual to

Ty, T, Y1, Youaa (20)
for some linearly independent Y3,..., Y11 € X(U). Now with summation

on k over 1 < k < m, we can write

AA = o ANO' A AP AT AT BAA, (21)
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for some oy,...,0, € A*(U) and 8 € A'(U) with the property that each o},
only depends on the basis vectors ¢!, ..., ¢" ™ 1 ™! Hence from the dual
basis property in (19) and (20), we have for each k,

Y}'J O — 0, (22)

for all 1 < j < m. By combining the assumptions in (17) and (18), we have
for all 7,
LiadA = NA. (23)

Using the dual basis property once more, we get that for each 7 and 1 <1 <
m + 1, [';160' = 0. Hence substituting (21) into (23) gives (with sum),

(Caao ) AN AN A A+ (T B) AA =NA,  (24)

for each i. Since each I';1 o4, only depends on the basis vectors ¢!, ..., ¢" ™ 1,
6™+, for (24) to hold we must have

FZ'J O =— 0, (25)

for each 7 and k. Hence from (22) and (25), ker(oy) is at least (n — 1)-
dimensional. This means o,(X,Y) = 0 for all X, Y € X(U). Thus o, = 0
for each k. Therefore dA = 5 A A. O

Theorem 5.1 has the following two corollaries:

Corollary 5.2. Let A € A™(U) such that m < n — 1. If there exist n —m —
1 linearly independent Cauchy characteristic vector fields of the differential
ideal (A, dA), then A is decomposable and dA =0 mod A.

Proof. Since the Cauchy characteristic vector fields are in the kernel of A,
Theorem 5.1 implies A is decomposable. Now it is clear that (17) in The-
orem 5.1 still holds for some A,..., A\, 1 € C®(U). Hence from the
theorem, dA = 0 mod A O

Corollary 5.3. Let A € A™(U) such that m < n — 1. If there exist n —m —
1 linearly independent Cauchy characteristic vector fields of the differential
ideal (A, dA), then the Cauchy characteristic space of (A, dA) is (n — m)-

dimensional

Proof. From Corollary 5.2, A is decomposable, so ker(A) is (n—m)-dimensional.
The corollary also means A is closed modulo itself which implies (A) =
(A,dA), and hence their Cauchy characteristic spaces are equal. From
Proposition 2.7 the result follows. ]

Now the dimension of the Cauchy characteristic space of (A, dA) is always
less than or equal to that of ker(A), and the maximum dimensional of ker(A)
is n — m, which occurs when A is decomposable. Theorem 5.1 therefore
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means that if ker(A) is at least (n — m — 1)-dimensional, then it is (n — m)-
dimensional. Similarly, Corollary 5.3 means that if the Cauchy characteristic
space of (A dA) is at least (n — m — 1)-dimensional, then it is (n — m)-
dimensional.

Next, we illustrate Corollary 5.2 with the following example:

Example 5.4. Suppose U* is some suitably chosen open, convex neighbour-

hood of R* with coordinates z', 22, 23, 2*, and
2274 xt
A= dz® A dx’ ( 3>dT Adxt = 2dx" A da!
x3 x

dx' A da? + 4x2dx* A da?.

3: 3:4
Now the vector field

0 0 1 0
[=4z? 2— —
T o + or? a3zt Ox?’
is a Cauchy characteristic of (A, dA). Hence from Corollary 5.2, A is de-
composable and dA = 0 mod A. Note from Corollary 5.3 that the Cauchy
characteristic space of (A, dA) is two-dimensional.

We will now proceed to apply Theorem 3.15 to A. It is easy to see that

% is a non-trivial symmetry of A. With
0
1A= (]’I“ + dT + 2dz*,
Ox! x3

it is also easy to see that 5 2 is a non-trivial symmetry of 571 A. Now from
Theorem 3.15 and Corollary 3.13,

O A
w' = 88’"7 = da® + (2)*da® + 22°2 da = d (2 + 2% (2")?) .
Ba2 amlJ A

Also, it is not hard to show that

2 gl A 1 3,4
w? = 9 — = da’ 4 22%(2*)?da’ + 42’2t da?,
=d(z' — (2%)%) + 22%d (2* + 2 (2")?) .
Hence .
A= 7:3m4d (z' — (2°)°) Ad (2” + 2° (2)?) .

6 Pfaffian equations

In this section we examine how symmetries may be used to express a dif-
ferential one-form ‘normal form’ given in (26). We begin with the following
definition and theorem:
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Definition 6.1. Let a € A'(U). The rankof the Pfaffian equation o = 0 at
the point p € U is the non-negative integer r such that (da)” A a # 0 and
(da)" "' Aa =0 at p.

If a one-form « is exact, i.e. a = df for some f € C*°(U), then it (and
any linearly dependent one-form) has rank zero.

Theorem 6.2. Let o € A'(U) and suppose the equation o = 0 is of constant
rank r on U. Then there erists a coordinate system v',..., 4" € C*(U),
where 2r + 1 < n, so that the equation becomes

d’)/l + ,de,y? R ,YQTd,yQT-I-l = 0.

Theorem 6.2 is known as the Pfaff problem. A proof of this theorem may
be found in [2].

It is easy to see that multiplying any one-form of constant rank on U by
a nowhere zero smooth function f leaves the rank unchanged, using the fact
that for any m € N, we have (d(fa))™ A (fa) = f™(da)™ A a. This allows
us to express any a € A'(U) of constant rank r on U as

a=9"dy' + %y’ + Ty, (26)
for some ~%,... ¥+ € C>(U).

Theorem 6.3. Let « € A'(U). Suppose a is of constant rank v on U. Define
Q:= (da)" ANa. Then Q is decomposable and d2 = 0 mod €.

Proof. Let a € AY(U) with « of constant rank 7 on U. Hence
o = ’}/O(d’}/l + ,YQd,yB 4t 72rd727+1)’
for some %, ..., ¥+t € C*°(U). Define
o= d’}/l + ,de,yB 4+t ,YQrd,yQT-I-l.

Further, let Q := (da)” A@. We will first show that dQ = 0. Simple compu-
tation yields
(da)" = rldy? A -~ Ndy* T

Hence
Q=aA (da),
=rldy' Ady* A AdyP L
We then have dQ = 0. Now
Q= (""" (da)" Aa.
Since dQ) = 0, we get
dQ = d((")"tH) A (da)” A
But, (d(v@))" A ((7%)a) = (v°)" L (da)" Aa. Hence dQ2 = 0 mod Q as ° is

nowhere zero on U. Finally, since 0 is decomposable and Q = (7°)"*1Q, Q
is therefore decomposable. ]

20



Our aim is to use Theorem 6.3 with Theorem 3.15 to ultimately find
some coordinates for the Pfaff problem in Theorem 6.2. The next theorem
illustrates how this may be done for one-forms that are of constant rank
one on U, which will be later extended to one-forms of any constant rank
r > 1. The case r = 0 involves a trivial application of Theorem 3.15, and
will therefore be ignored.

To assist in finding coordinates for the Pfaff problem, the following lemma
will be needed:

Lemma 6.4. Let o € AY(U) and suppose « is of constant non-zero rank r on
U. Let Q := (da)" AN and X € X(U) such that X1Q =10. Then X1a = 0.

Proof. Let o € AY(U). Suppose « is of constant non-zero rank r on U, and
define Q as in the lemma. Let X € X(U) with X,Q = 0. Now

0=X,Q=(Xs(do)")Na+ (Xsa)(da)".
By taking the exterior product with a, we obtain
(Xsa)(da)"Aa=0.
Since « is of rank 7, (da)” A @ # 0, and hence X1« = 0. O

Theorem 6.5. Let o € A'(U) such that « is of constant rank one on U.
Let Q := da A « and () be the differential ideal generated by Q). Suppose
X1, X9, X3 € X(U) is a solvable structure of linearly independent symmetries
such that X3 is a non-trivial symmetry of A((Q)) with the extra condition
that Xs1 a0 = 0, X is a non-trivial symmetry of A((Q))@sp{ X3}, and X1 is a
non-trivial symmetry of A((Q)) @ sp{ Xy, X3}. Then with w',w? w? € A'(U)
defined by

1 XQJ X‘;JQ
W ===
X1J XQJ )(3JQ7

U_)Q — X1J X‘;JQ
XQJ XlJ )(3JQ7

U_)3 — X1J XQJQ
X3J XlJ )(1JQ7

we have

w' = dy’ = Xa(y7)(dy? = Xi(y*)dy') — Xa(y7)dy ',
for some functionally independent v*,~v%, ~v* € C*(U), and

(Xiua) — (Xpa)Xi(7?) ,
(Xo00) h ) '

a = (Xoya) <d72 + (27)
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Proof. With Q := da A o, Theorem 6.3 means that € is decomposable and
dQ = 0 mod Q. Theorem 3.15 can be used to obtain {w',w? w?*} dual to
{X] s XQ, Xg}, where

W' =dy’ = X,(7*)(dy? — X1 (%) dn') — X1 (7*)dy,

for some functionally independent v, 7%, +* € C*°(U). Now from Lemma 6.4,
Xia =0 forall X € A((Q2)). And since X31a = 0, we are left with

a= (Xpa)w' + (Xoa)w?.

Now Xsia # 0 in the neighbourhood, since « is nowhere rank zero by as-
sumption. Hence

(Xisa) — (Xoaa)X; (72){171) .

a = (Xoua) <d72 + (Xo10)

O

Remark 1. The extra condition in Theorem 6.5 that the non-trivial symme-
try X3 satisfies X310« = 0 implies from Proposition 2.6 that the symmetry is
not a Cauchy characteristic vector field of (o, da). Therefore X31da is not
some multiple of o (as « is of rank one, it is impossible that da = 0 mod
«). Such a symmetry exists since if y!,..., 7" are coordinates for U and
a =" (dy' + v*d~?) is already in normal form for some % € C*(U), then
it is easy to show that Theorem 6.5 can be applied to such a with X3 chosen

Remark. 2 In deriving our expression for « in (27), we do not need to cal-
culate v3. This significantly reduces the number of algebraic manipulations
required.

We illustrate Theorem 6.5 with an example:

Example 6.6. Suppose we are in some open, convex neighbourhood of R?,

denoted by U?, with coordinates z', 22, 23. Define on some suitably chosen

U3
2,3 1 3 1
o= — dr' + | = + = | do® + =dz®.
(z1)?2 22 e
By dimension, (d()z)2 Aa = 0, and it is easy to show that da A« # 0 on some
region of U?. Suppose U? is chosen such that do A a # 0 everywhere. Since
any non-zero vector field is a non-trivial symmetry of da A o € A*(U?), we
may choose any X3 such that X31a = 0. So let

x?x® 0 x' 0
z)20x3 3 0!

X3 =
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be the symmetry. Now

0
X2 = (7}3)2%

is a non-trivial symmetry of sp{X3} (A({da A «)) is zero-dimensional), and
by inspection that

X]' a

T 02

is a non-trivial symmetry of sp{ Xy, X3}. These yield
L XoaXsi(da A a)

= = da?
“ X1 Xo1 X531 (da A ) o
and
e X1 X510 (da N ) _ 2 PR da? |
Xo1 X110 X3 (da A ) ()3 (23)2

Hence a simple calculation gives

2
o x 1 1 1 ,
v (d<2<m1)2ﬁ)*(w?x”%x])?)d”)'

Such expressions for a are in general not unique, and may be found by
choosing different symmetries. For example, we have also obtained

2 1
o=z (d (%) + i—gd (ln‘x2x3)> )

We now present a generalisation of Theorem 6.5:

Theorem 6.7. Let a € A'(U) have constant rank r on U, and define
Q= (da)" ANa. Let Xy,..., X911 € X(U) be a solvable structure of lin-
early independent symmetries such that Xo,. 11 1s a non-trivial symmetry of
A((Q2)), and for each 1 < i < 2r + 1, X; is a non-trivial symmetry of
A((Q) ® {Xiy1,---, Xops1}.  Suppose, in addition, that for the r wvector
fields X, o,..., Xory1, we have X, o0a = 0,..., Xo,yy0a = 0. For all
1 <i<2r+1, define w' by

i XX X 0 X000
XooXqa oo X a0 X o 0 X9,110Q

Then for all w* up to i = 2r + 1,

w

w' =dy',
W' =dy’ = X, (y")dy',
w’ = dy’ — Xo(7*)(dy? — X () dy') — X (77)dy',

2r+1 2r—+1 2r

w =dy mod dv', ..., dvy*",
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for some functionally independent v', ..., v* ' € C>*(U), and
a = (Xpa)dy' + (Xoua)(dy® — X1 (7?)dy")
+ (Xaa)(dy’ — Xo(°)(dy? — Xa(v)dy') — Xa(v7)dy') + ..
+ (X a)(dy™ = X, () (dy = = Xa(77)dy') —
— Xi(y"Ndyh),
which when rearranged give « in the form of (26).

Proof. The proof follows in a similar fashion to Theorem 6.5. The con-

ditions X, 000 = 0,..., X9, 10 = 0 and Lemma 6.4 ensure that « is a
linear combination of dvy',...,dy"*'. Further, since « is of constant rank r,
X,111a # 0, so we are permitted to divide by it, and hence express « in the
form of (26). O

Remark. Both remarks for Theorem 6.5 may be extended to Theorem 6.7 as
follows: Firstly, from the proof of Theorem 6.3 it is clear that there exist r
non-trivial symmetries X, .o, ..., X9, of (da)"Acv in ker(«), and secondly, in
deriving our expression for o, we do not need to calculate any v 2, ... v*+!

7 Darboux systems

This section gives an algorithm based on vector fields for generating a set
of coordinates in Darboux’s theorem given below in Theorem 7.4. To begin
with, we present some preliminary material. In Bryant et al. [2] there is the
following fundamental theorem:

Theorem 7.1. Let Q € A*(U) and let r be the natural number such that
Q" # 0 and Q" = 0. Then there exist 2r linearly independent elements
wl, .. w? € AYU) such that

Q=w' AW+ -+ T AW
In what follows, we will also make use of the following lemma:

Lemma 7.2. Let Q € A*(U) and r € N such that Q" # 0 and Q"' = 0.
Also let X € X(U). Then X1Q" =0 if and only if X1Q = 0.

Proof. Let Q € A*(U) with X1Q" = 0 for some vector field X € X(U). Then
from Theorem 7.1 we have

Q=w' AW+ +w” " Aw”, (28)
for some linearly independent w?, ..., w? € AY(U). This implies
QO =rlw' A AW

Now X" = 0 implies that X w’ = 0 for all 1 < i < 2r. Hence using the
expression for €2 in (28) gives X1 = 0. Proving the converse is obvious
since if Y is any vector field in X(U), then Y1 Q" = r(Y1Q) A Q"1 O

24



Theorem 7.3. Let Q € A*(U) be closed. Suppose r is the natural number
such that Q" # 0 and Q"' = 0. Further suppose we have a solvable structure
of 2r linearly independent symmetries Xy, ..., Xy, € X(U) such that Xy, is a
non-trivial symmetry of A((Q")), and for all 1 < i < 2r, X; is a non-trivial
symmetry of A(Q)) & sp{Xis1,...,Xor}. Then Theorem 3.15 gives us an
algorithm for expressing Q) solely in terms of the 2r functionally independent
functions ¥, ..., y*" € C®(U) and their exterior derivatives

Proof. Let Q € A*(U) be closed with Q" # 0 and Q"' = 0 for some
r € N Since dQ = 0 implies that d(Q2") = 0, from Proposition 2.7,
ker(€2") = A((Q")) is therefore Frobenius integrable. The fact that "
is decomposable of degree 2r means that A(()")) is generated by n — 2r
linearly independent vector fields. Suppose we have a set of linearly in-
dependent symmetries X;,..., Xy € X(U) such that X, is a non-trivial
symmetry of A((2")), and for all 1 < i < 2r, X; is a non-trivial symme-
try of A((Q")) @ sp{Xi41,..., X9 }. Then by Theorem 3.15 we have on U,
{w', ..., w*} dual to {X1,..., Xy}, where for all 1 < j < 2r,

i Xog oo XX 0 X
. XjJXlJ ...JXjflJXj_FlJ ...JXQTJQTJ

and

2r—1

mod dv',. ... dy ,

for some functionally independent ', ..., v* € C*(U). Then by Lemma 7.2,
and using the fact that {X;,..., Xy, } plus any set of generators of A({Q)"))
spans X(U), we can therefore write

Q = QX X))k AW, 1<k<l<2r
where we are implying a double summation. This means that
Q = Qudy* A dy, 1<k<l<2r (29)

for some functions Q, € C*>(U). But since Q is closed, we must have for all
I'e A({(Q7),
,CFQ = d(FJ Q) = O,

also using Lemma 7.2. Since I'(y*) = 0 for all 4, it follows that (with sum)
0= LrQ=T(Qu)dy" A dy'.

Therefore I'(2;) = 0 for each k£ and [. Hence Q only depends on the 2r
functions v', ..., %" and their exterior derivatives. O
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Remark. In applying Theorem 7.3, there will exist situations when it may
be difficult to express each € in terms of the known ~', ..., %",

Next, consider Darboux’s theorem proved in [2, 5]:

Theorem 7.4. (Darboux) Let Q € A*(U) be closed so that Q" # 0 and
Q'+t =0 for some r € N. Then there exist coordinates ', ..., y™ such that

Q=dy' ANdy* + -+ dy*" P Ady”.

Theorem 7.3 may be applied to Darboux’s theorem; however, the difficulty
is that Theorem 7.3 expresses () in terms of a sum of a maximum of (22’") two-
form components, which must then be simplified to » components with unit
one coefficients if we wish to find a set of coordinates in Darboux’s theorem.

As an alternative approach extending work in [5] by Crampin and Pirani
in their proof of Darboux’s theorem (though similar proofs can be found in
the literature), we now look to formulate an extraction process for generating
a set, of coordinates in the theorem using solvable symmetry structures. The
next three theorems will be useful in establishing this.

Theorem 7.5. Let Q € A*(U) with Q" # 0 and Q"' = 0 for some r > 2.
Suppose there exist X1, Xy € X(U) such that Q(X1, Xs) = 1 and (X720Q) A

(XouQ) # 0. If Q is defined by Q := Q + (Xo0Q) A (X11Q), then Q! # 0
and Q' = 0.

Proof. Let Q € A*(U) such that Q" # 0 and Q""" = 0 for some r > 2. Using
the definition for €2 in the theorem gives

Q =+ "N (X Q) A (X120Q). (30)
Now from (X, X5) =1 we have
Q" = QT(XQJ X1J Q),
= XQJ (Qr N (XlJ Q)) — (XQJ Qr) N (XlJ Q), (31)
= Xt (" A (X119Q)) — (r(Xos Q) AQ ) A (X11Q).
In the second line we have used the property Xoi (Q"A(X11Q)) = (XoaQ")A

(X119Q) + (X1 X71Q)Q", and in the third, we have expanded X,1Q". If we
substitute the end result in (31) into the expression for Q" in (30), we obtain

Q= X0 (A (X12Q)). (32)

By Theorem 7.1, there exist linearly independent one-forms w!,... w? €

A'(U) such that
Q=w'Aw’ + -+ AW,

Hence X11Q = ayw' + -+ + ag,w? for some ay, ..., as € C*°(U). Since

Q" =rlw' A AW
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it follows that Q7 A (X,1Q) = 0. Thus from (32) we get Q' = 0.
Now suppose Q' =0. Then

0=0 "= '+ (r— DU 2A (X1 Q) A (X11Q).
This implies
Q= 1D A (X11Q) A (XeuQ). (33)
Taking the exterior product with Q gives

Q =(r 1D "A(X11Q) A (XuQ) =0, (34)

where the second equality comes from substituting Q™! in (34) with its
expression in (33). The calculations still holds for 7 = 2, and hence we reach
a contradiction for all » > 2. O

Remark. Although Theorem 7.5 demands that X;, X, be such that Q(X;, Xy) =
1, we can relax this condition by saying that all we need is to find two vector
fields Y7,Y3 € X(U) such that (Y7,Y3) # 0. Then we can choose X1, X5 as,
respectively, scaled Y7, Y5 such that Q(X;, X,) = 1.

The second theorem we require concerns the foliated exterior derivative,
as explained by Vaisman [15]:

Theorem 7.6. Let w € A'(U) and o', ..., a* € A'(U) be s linearly indepen-
dent one-forms such that for all 1 <i <'s,

do' =0 moda',..., o,
(i.e. the Frobenius condition holds so that ker(a' A -+ A a*) is Frobenius
integrable).
Then if
dw=0 modal, ... o
then
w=df moda',... o,

for some f € C*(U).
Using the foliated exterior derivative, we prove the following theorem:

Theorem 7.7. Let Q € A*(U) be closed. If there exists a pair of vector field
X1, Xy € X(U) such that

1. ‘CX1Q = 0,
2. Lx,2=0 mod X1,
3. (XaQ) A (X2u9Q) #0,
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then on U,
(X12Q) A (XouQ) = df Ndg,

for some functionally independent smooth f and g.

Proof. Let Q € A*(U) be closed and let there exist vector fields Xy, Xy €
X(U) that satisfy the three conditions in the theorem. Now Ly, = 0 implies
d(X119) = 0, using the property Lx,Q = X11dQ + d(X;19) and that € is
closed. Hence X;1€) = df for some smooth f.

Now suppose Lx,{2 = 0. Then by the same argument to above, X51€ =
dg, for some smooth g;. If, however, Lx,2 # 0, then by assumption,

0# Lx,Q=aA (X11Q),
for some v € A'(U). Therefore
(Lx,Q) A (X20) =0.
Using Ly, = Xo1dQ + d(X91Q) and the fact that Q is closed gives
d(X2u Q) A (X11Q) = 0.

Hence

d(X212) =0 mod (X119).
Using Theorem 7.6, we then get

XQJ Q= d(]Q mod df,
for some smooth gy. Hence in both cases the result is proved. O

We now present the main result of this section:

Theorem 7.8. Let Q € A*(U) be closed with Q" # 0 and Q"' = 0 for some
r € N. Then the following algorithm explicitly computes a set of 2r functions
for Q described in Darboux’s theorem:

1. Find vector fields X1, Xy € X(U) such that:

(a) Lx,Q2 =0,
(b) Lx,2=0 mod X119,
(¢) (X12Q) A (X219Q) #0,
(d) (X1, Xp) =1,
2. Let Q+ (XouQ) A (X12Q) be our new €,

3. Repeat steps 1 and 2 a further v — 2 more times until Q? = 0,

4. Apply Theorem 3.15 with a solvable structure of two symmetries X3, X4 €
X(U) for §, such that X3 is a non-trivial symmetry of Q and X4 is a
non-trivial symmetry of Xs1$ with the property that Q(X3, X4) = 1.
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Proof. Let Q € A*(U) be closed with Q" # 0 and Q"' = 0 for some r € N.
From Theorem 7.7 and then Theorem 7.5, we can compute ©; € A*(U),
where

O = Q+dg Adfy,

for some smooth f; and gy, with Q7' # 0 and € = 0. Then once again
from Theorem 7.7 followed by Theorem 7.5, Qy € A*(U) can be computed
so that

Qo = Q+dgi Adfy + dga A dfy,

for some smooth f, and g, with Q5 2 # 0 and Q5 ' = 0. Continuing in this
way, we reach a stage when €2, is of the form

Q1 =Q4+dg Ndfy +dgs Ndfy + - +dg, 1 ANdf,_q,

such that Q, ; # 0 and Q2 | = 0. Applying step 4, €, ; is closed, and
from Theorem 7.1, €, ; is also decomposable. From Theorem 3.15 and
Corollary 3.13, with X3 as a non-trivial symmetry of €2, ; and X, as a non-
trivial symmetry of X351, 1 such that Q. (X3, X4) = 1, then

X3J Q,ﬂ,1
- dgr:
X4J X3J Q,ﬂ,l
X4J QT,1
~ v o = 4+ Mg,
X1 Xy Q, 4 f g

for some smooth f,., g, and A, with
Q1 = Q1 (X3, Xy)df, Adg, = df, Ndg,.
Therefore
Q=dfi Ndg1 +dfa Ndga + -+ - + dfr 1 ANdg,—1 + df, A dg,.
O

Remark 1. In looking for two symmetries that satisfy the four conditions
in Theorem 7.8, condition (d) can be relaxed a little by only requiring that
Xo1 X719 = const. Then X; or X, may be scaled appropriately by constants
while still satisfying the other three conditions. The same holds true for the
two symmetries in step 4.

Remark 2. Conditions (a) and (b) are strong requirements, and may be dif-
ficult in practice to satisfy. Since 2 is closed, they imply X;, X5 must be
chosen such that X;1€2 is closed and X512 is closed, modulo X;1€2. Hence
the result in Theorem 7.8 is of more theoretical significance than practical
use.

We can provide an alternative to the requirement in step 4 in Theorem 7.8
as follows:
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Lemma 7.9. Let Q € A*(U) be some arbitrary closed two-form. Suppose
there exists some X3 € X(U) not in ker(Q) such that such that

Lx,Q2 =0, (35)
and X4 € X(U) satisfies (X3, X4) = 1. Then
Lx,(X310Q) =0.
Proof.
Lx,(X3190) =d(Xq1 X310Q) + X40d(X319Q) = X4u(Lx,Q) =0,
using that X1 X351Q = 1, equation (35), and that € is closed. O

We now apply the algorithm in Theorem 7.8 and the modification of Step
4 in Lemma 7.9 to an example. It is important to realise that the difficult
part in applying Theorem 7.8 is in finding the first » — 1 pairs of symmetries
X1, X,. Nevertheless, the main purposes of this example are to illustrate:
i) the crucial role Theorem 7.5 plays in reducing the number of terms in a
two-form by one; and ii) the flexibility in choosing X, in Lemma 7.9.

Example 7.10. Consider the following two-form Q € A?(U*), where U* is
some suitably chosen four-dimensional, open, convex neighbourhood of R*

with coordinates z!, 22, 2%, 2%

! 73 ! 2!
Q.= (T—> (T— — 2) dz' A da?® + T—Qdajl Adz® — iala:l A dzt
T

2 2 rt

1 2
T
— <—2> dx? A da.
T

Now it is easy to show that dQ = 0, Q> # 0 and Q2* = 0. We may then
proceed to apply Theorem 7.8. Let

1 (22\?% 0 2240
X];__(T_) 4 B2

23 \z') 0z  (x')%x3 Ox*

Now

Lx,Q=d(X19Q),
2x

1,4 201 [a? z? 1
1 1
=d (—3dm3+—1dm1> =0,

so condition (a) of step 1 in Theorem 7.8 is met. Hence

XuQ=d(Inz'2%).
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Let p
X, =3 —

ox3’
We have Xy X710 =1, so condition (d) is satisfied. Then using that

LA

1,.3 7l 2
Xo1Q = ——da' +2° (-) dz?,
r

T2

it is not hard to show that (X71Q) A (X21Q) # 0, so condition (¢) is satisfied.
Also,

(ﬁXQQ) N (X]J Q) — d(XQJ Q) N (X]J Q) s

1 1,.3 1\ 2
T Tz T
= Zde' Ada? — ——dax' ANd2? — [ = | dx® Ada?
22 (3:2)2 22

22! 23 1 1
T A de? ) A [ —de! + —da? )
(22)? oL 3
=0,
so condition (b) is met. Now
d(X21Q) =0 mod X;19.
Using the foliated derivative, this implies

Xo1Q =dg, + \d (ln \TlT?’\) , (36)

for some gy, \; € C®(U?). Performing a coordinate substitution gives

1\2,.3 1\2,.3
XQJQ_d<(:E):E>+(:E)x d(In|z'z%) .

2 2

Therefore

(z1)223 1

(X Q) A (X1Q) = —d (T) Ad(In|z'a?)) = —d (%) A d(z'a?).

For other choice of X7, X5, we may obtain an expression for the other two-

form component of €.
Now define 1 := Q 4+ (X91Q) A (X129) as in step 2. We then get

2! 21!
0, = —Zda' Adx? — Z—dz' A dzt.
T2 rt

It is clear that d€); = 0 and Q2 = 0 as expected, so we may proceed to apply
the final step in Theorem 7.8 on 2. Defining

0
X; =alat—
Oz’
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we have

This implies

Now choose

1 0
©2(x")2 0z
so that X,1 X310, = 1. From Lemma 7.9, Ly, (X31€;) = 0, and hence from
Theorem 3.15,

2(1)?
XMQ—1%+Aﬂ<(Z)>, (38)

for some fy, \y € C°°(U*). To find f, it is easy to show that

Xy =—d <—ln|:c x > mod dz',

Ql—d<—4nxx>Ad<%§f>.

Once again we may simplify this:

1 2(z')3 1
d<—1n|T x > /\d< (=) ) —2(m1)2d<—ln|T x > Ada',
x! 3 x!

= 2z'd (In |z%2*|) A dz',
=d (In]2*z*|) Ad ((z")?).

and hence

Thus

7!
Q=d < > Ad(z'2) +d (In|2*z* ) Ad ((2")?).

2

8 Summary

Using the idea of a solvable symmetry structure we presented various algo-
rithms for expressing certain classes of differential forms in terms of simplified
coordinate systems. We began by reviewing Lie’s symmetry approach and
then showed that it may applied to simplify differential forms which are de-
composable and closed modulo themselves. We then gave a result showing
that certain types of symmetry structures in Theorem 3.15 forced more than
one of the w' to become closed, and looked at under what conditions a given
differential form was decomposable and closed modulo itself.

Next, we examined the problem of finding simplifying coordinates for the
Pfaffian problem. This was treated by imposing a special condition on the
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solvable symmetry structure applied to the Cauchy characteristic space of
the differential ideal generated by the differential form (da)” A a;, where o
was the Pfaffian form, and r was its rank.

Finally, we looked at differential two-forms where the main result there

was an algorithm for finding the coordinates in Darboux’s theorem, derived
from the well-known iterative scheme, where a pair of new coordinates is
extracted each time.
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