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The plan of this paper is to �rst review Lie's solvable symmetry stru
tureapproa
h to integrating Frobenius integrable ve
tor �eld distributions. Fora given Frobenius integrable distribution an exterior produ
t of one-forms isused to generate invariants of the distribution. We then apply the approa
hto PfaÆan and Darboux systems, and in both 
ases present an example.It is assumed throughout this paper that our expressions apply lo
ally onsome n-dimensional, open, simply 
onne
ted di�erentiable submanifold, U ,of Rn , with 
oordinates x1; : : : ; xn 2 C1(U). One further assumption thatwe make on U is that it be 
onvex. This allows us to use the 
onverse of thePoin
ar�e Lemma on the whole of U , i.e. if � 2 �k(U) is 
losed (d� = 0),then 
 = d� for some � 2 �k�1(U) [12, 15℄.Consider the di�erentiable manifold U of dimension n. TU is the tangentbundle of ve
tor �elds with Tp(U), p 2 U as its �bres. Let X(U) be be themodule of all smooth ve
tor �elds over C1(U). T �U is the 
otangent bundlewith T �p (U), p 2 U as its �bres. The set of exterior di�erential m-forms is ase
tion of the bundle of all homogeneous di�erential forms, �(U). For any
 2 �m(U) de�ne its kernel by ker(
) := fX 2 X(U) : X 
 = 0g.For the remainder of this paper we will also assume all ve
tor �eld distri-butions non-singular in the sense that their dimension is 
onstant on U , andalso that all one-forms have 
onstant rank on U .2 Ideals, Cau
hy 
hara
teristi
s and symme-triesFollowing Bryant et al. [2℄, for any �1; : : : ; �p 2 �(U) up to some p 2 N , wewrite I := h�1; : : : ; �pi to mean that I is the (homogeneous) algebrai
 idealgenerated by the elements �1; : : : ; �p. An ideal I is a di�erential ideal if theexterior derivative of every member of I is also in I. A ve
tor �eld Y is 
alleda Cau
hy 
hara
teristi
 ve
tor �eld of an ideal I if Y I � I. De�ne A(I)to be the set of all Cau
hy 
hara
teristi
 ve
tor �elds of I. It is not hard toshow that A(I) is Frobenius integrable.A ve
tor �eld X 2 X(U) is said to be a symmetry (or isove
tor) of anideal, I, if LXI � I. It is easy to see that in order to show that X is asymmetry of I, it is enough to show that the Lie derivative with respe
t toX of merely the generators of I, is also in I. A ve
tor �eld X 2 X(U) is asymmetry of a ve
tor �eld distribution D � X(U) if LXD � D. On
e again,it is enough to look at simply the generators of D when determining whethera ve
tor �eld is a symmetry of the distribution.We now present some results 
onne
ting symmetries, ideals, and Cau
hy
hara
teristi
 spa
es.Proposition 2.1. Let I be an ideal. Suppose A(I) is not zero-dimensional.If a ve
tor �eld X is a symmetry of I then X is a symmetry of A(I).2



Proof. Let X be a symmetry of the ideal I. Let Y 2 A(I) and � 2 I. Then,from rearranging the identity LX(Y �) = [X; Y ℄ � + Y (LX�), we obtain[X; Y ℄ � = LX(Y �)� Y (LX�):Now the �rst term on the right hand side is in I sin
e Y � 2 I and X is asymmetry of I. The se
ond term is also in I sin
e LX� 2 I and Y 2 A(I).Hen
e [X; Y ℄ � 2 I. Therefore [X; Y ℄ 2 A(I).Proposition 2.2. Let f�1; : : : ; �pg be some �nite set of linearly independentone-forms in �1(U), and de�ne I := h�1; : : : ; �p; d�1; : : : ; d�pi. With thedual spa
e of the PfaÆan system generated by �1; : : : ; �p de�ned by D :=fX 2 X(U) : X �i = 0; for all 1 � i � pg, then a ve
tor �eld, Y 2 D is aCau
hy 
hara
teristi
 of I if and only if [X; Y ℄ 2 D for all X 2 D.Proof. Let Y be a Cau
hy 
hara
teristi
 ve
tor �eld of I, i.e. Y �i = 0 andY d�i 2 I for all 1 � i � p. This implies that for all i,LY �i = Y d�i 2 I:Hen
e Y is a symmetry of I. Let X 2 D, where D is de�ned in the theorem.Using the propertyLY �X �i� = [Y;X℄ �i +X �LY �i� ;we know that the term on the left is zero and the se
ond term on the rightis also zero. Hen
e for all i, [X; Y ℄ �i = 0, so that [X; Y ℄ 2 D.Conversely, let Y 2 D and [X; Y ℄ 2 D for all X 2 D. We therefore havethat for all i, Y �i = 0 = [X; Y ℄ �i:Now on
e again using the propertyLY �X �i� = [Y;X℄ �i +X �LY �i� ;we have that for ea
h i, X �LY �i� = 0: (1)Sin
e (1) must hold for all X 2 D, we must have that LY �i 2 I. Sin
eY �i = 0, LY �i = Y d�i 2 I;so Y is a Cau
hy 
hara
teristi
 ve
tor �eld of I.At this point we will introdu
e the idea of a trivial symmetry. Given adi�erential ideal I, we 
all all Cau
hy 
hara
teristi
s of I trivial symmetriesof I. The reason for this is 
ontained in the next proposition:Proposition 2.3. Let I be a di�erential ideal, and let Y be a Cau
hy 
har-a
teristi
 ve
tor �eld of I. Then Y is a symmetry of I.3



Proof. let � 2 I and Y 2 A(I).LY � = d (Y �) + Y d�:The �rst term on the right is in I be
ause Y � 2 I, and 
onsequentlyd (Y �) 2 I, sin
e I is a di�erential ideal. The se
ond term is obviously inI. Similarly, given a ve
tor �eld distribution D, a trivial symmetry of D isa symmetry of D that is also in D.A fundamental distin
tion between trivial and non-trivial symmetries isas follows: Given a trivial symmetry, multiplying it by any non-
onstantfun
tion will yield a trivial symmetry, however doing the same to a non-trivial symmetry will in general not produ
e a non-trivial symmetry.For a di�erential ideal generated by a PfaÆan system we have the follow-ing extension of Proposition 2.3:Proposition 2.4. Let I be a di�erential ideal generated by some �nite 
ol-le
tion of linearly independent one-forms �1; : : : ; �p 2 �1(U). A ve
tor �eldX 2 X(U) is a symmetry of I in the annihilating spa
e D := fX 2 X(U) :X �i = 0; for all 1 � i � pg if and only if X is a trivial symmetry(Cau
hy 
hara
teristi
 ve
tor �eld) of I.Proof. With X as a symmetry of I, if X �i = 0 for all 1 � i � p, then forea
h i I 3 LX�i = X d�i:The 
onverse is also obvious using Proposition 2.3.De�nition 2.5. A di�erential p-form said to be de
omposable (or simple) ifit 
an be written as the wedge produ
t of p one-forms.De
omposability is a lo
al property, and a p-form is de
omposable if andonly if the dimension of the kernel is of dimension n� p.Consider the following two simple propositions, the �rst of whi
h is provedin Sherring and Prin
e [13℄:Proposition 2.6. A ve
tor �eld X 2 X(U) is a symmetry of a de
omposablem-form 
 2 �m(U) if and only if X is a symmetry of ker(
).Proposition 2.7. Let 
 2 �m(U) and I := h
; d
i. If d
 = 0 mod 
, thenker(
) = A(I).Proof. First suppose ker(
) is not zero-dimensional, so that there exists anon-zero ve
tor �eld W 2 X(U) su
h that W 
 = 0. Now sin
e d
 = 0mod 
, W d
 = W (� ^ 
) = (W �) ^ 
 for some � 2 �1(U). ThereforeW 2 A(I). 4



Now suppose A(I) is not zero-dimensional. This means there exists anon-zero ve
tor �eld, X 2 X(U) su
h that X 
 = 0 and X d
 = f
 forsome smooth f 2 C1(U). Hen
e from the �rst part, X 2 ker(
).If ker(
) is zero-dimensional, then Y 
 6= 0 for all non-zero Y 2 X(U).This means Y 
 =2 I, and hen
e Y =2 A(I). Therefore A(I) is zero-dimensional.Finally, if A(I) is zero-dimensional, then Z 
 6= 0 for all Z 2 X(U).Hen
e ker(
) is zero-dimensional.Using the above two results, we obtain the following extension to di�er-ential ideals thus giving us a 
ondition under whi
h the 
onverse of Proposi-tion 2.1 holds true:Proposition 2.8. Let I be a di�erential ideal generated by some 
 2 �m(U)with d
 = 0 mod 
. Furthermore, let 
 be de
omposable on U and A(I) notzero-dimensional. Then X is a symmetry of I if and only if X is a symmetryof A(I).Proof. From Proposition 2.7, d
 = 0 mod 
 implies that ker(
) = A(I).Hen
e the result follows from Proposition 2.6.Remark. If 
 2 �m(U) with m = n, and I is the di�erential ideal generatedby 
 (note d
 = 0), then any non-zero ve
tor �eld in X(U) is a symmetry ofI. Moreover, A(h
i) is zero-dimensional, and therefore any non-zero ve
tor�eld in X(U) is also a symmetry of a zero-dimensional A(h
i).3 The Frobenius theorem and integration viasymmetryFirst, we present a basi
 result:Lemma 3.1. [5℄ Let 
 2 �n�m(U) for some m � n� 1. Then ker(
) 
anbe at most m-dimensional. Moreover, ker(
) is pre
isely m-dimensional ifand only if 
 is de
omposable.Lemma 3.1 has the following 
orollary:Corollary 3.2. Let D := spfY1; : : : ; Ymg be some m-dimensional distribu-tion in X(U), where m < n � 1. If 
 := Y1 : : : Ym (dx1 ^ � � � ^ dxn) 2�n�m(U), then 
 is de
omposable and equal to the wedge produ
t of somen�m linearly independent generators of D?.Proof. With D and 
 de�ned as in the 
orollary, let X 2 X(U) be anynon-zero ve
tor �eld in D. Then from the de�nition of 
, X 
 = 0. Hen
eker(
) is at leastm-dimensional. But from Lemma 3.1, sin
e 
 is an (n�m)-form, its kernel 
an not be greater than m-dimensional, and therefore 
 isde
omposable. 5



Now we 
an write 
 = �1 ^ � � � ^ �n�m for some linearly independent�1; : : : ; �n�m 2 �1(U). Sin
e for ea
h 1 � i � m, Yi 
 = 0, we then havethat for ea
h 1 � j � (n � m), Yi �j = 0. Hen
e �1; : : : ; �n�m generateD?.Theorem 3.3. (Frobenius) Let D be an m-dimensional distribution gen-erated by the ve
tor �elds Y1; : : : ; Ym 2 X(U), where m � n � 1. De�neD? to be the submodule of all one-forms that annihilate D. Let 
 :=Y1 : : : Ym (dx1 ^ � � � ^ dxn) 2 �n�m(U). Then D has m-dimensional inte-gral submanifolds on U if and only if either of the following two equivalent
onditions are true:1. For all X; Y 2 D, [X; Y ℄ 2 D,2. For all � 2 D?, d� ^ 
 = 0.We say that a distribution D is Frobenius integrable (or generates a foli-ation of U) if the �rst 
ondition in the Frobenius theorem holds. The Frobe-nius theorem means that D generates an m-dimensional foliation of U whoseleaves are des
ribed by some set of n�m fun
tions 
1 = 
1; : : : ; 
n�m = 
n�mof rank n �m, where 
1; : : : ; 
n�m 2 C1(U) and 
1; : : : ; 
n�m are some ap-propriate 
onstant fun
tions.Using Corollary 3.2, we have the following 
orollary to the Frobeniustheorem:Corollary 3.4. Let D be an m-dimensional distribution generated by the ve
-tor �elds Y1; : : : ; Ym 2 X(U), where m � n� 1. Let 
 := Y1 : : : Ym (dx1 ^� � � ^ dxn) 2 �n�m(U). For all � 2 D?, d� ^ 
 = 0 (i.e. D is Frobeniusintegrable) if and only if d
 = 0 mod 
.Proof. With 
 de�ned as in the 
orollary, Corollary 3.2 implies 
 = �1 ^� � �^ �n�m for some linearly independent �1; : : : ; �n�m 2 �1(U) that generateD?. Now for ea
h 1 � i � (n �m), the Frobenius 
ondition d�i ^ 
 = 0 isequivalent to the 
ondition that d�i = 0 mod �1; : : : ; �n�m. Hen
ed
 = d ��1 ^ � � � ^ �n�m� ;= 0 mod 
:To prove the 
onverse, suppose d
 = 0 mod 
. Now for all i,d�i ^ 
 = d ��i ^ 
�+ �i ^ d
: (2)Sin
e �i^
 = 0, and 
 is 
losed modulo itself, we �nd from (2) that d�i^
 =0. From Sherring and Prin
e [13℄ we have the following de�nition:De�nition 3.5. A di�erential m-form 
 2 �m(U) is Frobenius integrable ifker(
) is Frobenius integrable and of dimension n�m.6



From this de�nition we have the following lemma:Lemma 3.6. A di�erential m-form 
 2 �m(U) is Frobenius integrable ifand only if 
 is de
omposable and d
 = 0 mod 
.Proof. First suppose 
 2 �m(U) is Frobenius integrable. By de�nition,ker(
) is maximal dimension, and hen
e 
 is de
omposable. We 
an write
 = �1 ^ : : : �n�m for some �1; : : : �n�m 2 �1(U). Sin
e ker(
) is Frobeniusintegrable, it follows that for ea
h 1 � i � n �m, d�i = mod �1; : : : ; �n�m.Hen
e d
 = 0 mod 
.Conversely, let 
 be de
omposable and d
 = 0 mod 
. It is 
lear thatker(
) is maximal rank. Further, ker(
) = A(h
i) is Frobenius integrablefrom Proposition 2.7.Theorem 3.7. Let 
 2 �m(U) for some m > 1 be de
omposable, and letX 2 X(U) with the property X 
 6= 0. Then there exists � 2 �1(U) su
hthat 
 = � ^ (X 
).Proof. Let 
 2 �m(U) be de
omposable, and let X 2 X(U) with X 
 6= 0.Let Ym+1; : : : ; Yn 2 X(U) be a basis for ker(
). Sin
e X 
 6= 0, the ve
tor�elds X; Ym+1; : : : ; Yn are linearly independent. We 
an extend these ve
tor�elds to a basis by in
luding some Y2; : : : ; Ym 2 X. Let f�1; : : : ; �mg be adual basis of one forms for fX; Y2; : : : ; Ymg. Then 
 = f�1 ^ � � � ^ �m, andmoreover, X 
 = f�2 ^ � � � ^ �m. Hen
e the result follows.By an obvious iteration, we have the following 
orollary to Theorem 3.7:Corollary 3.8. Let 
 2 �m(U) be de
omposable. Let X1; : : : ; Xp 2 X(U) upto some p < m su
h that X1 : : : Xp 
 6= 0. Then there exist �1; : : : ; �p 2�1(U) su
h that 
 = �p ^ � � � ^ �1 ^ (X1 : : : Xp 
) ;Xp 
 = �p�1 ^ � � � ^ �1 ^ (X1 : : : Xp 
) ;...X2 : : : Xp 
 = �1 ^ (X1 : : : Xp 
) :Proposition 3.9. Let 
 2 �m(U) be de
omposable, and let X 2 X(U) su
hthat X 
 6= 0. Then ker(X 
) = ker(
)� spfXg.Proof. It is 
lear that ker(X 
) � ker(
). Sin
eX 2 ker(X 
), we thereforehave ker(X 
) � ker(
) � spfXg. By assumption 
 is de
omposable, soLemma 3.1 implies ker(
) has maximal dimension n�m. Sin
e X =2 ker(
),it follows that ker(
)� spfXg has dimension n�m+ 1. Hen
e Lemma 3.1implies X 
 is de
omposable.We have the following 
orollary to Proposition 3.9, whi
h 
an also befound in Sherring and Prin
e [13℄: 7



Corollary 3.10. Let 
 2 �m(U) for some m > 1 be de
omposable, and letX 2 X(U) su
h that X 
 6= 0. Then X 
 is de
omposable.Before we present the next result, we require the following 
entral de�ni-tion:De�nition 3.11. Let D be a distribution in X(U). Then a set of p linearlyindependent ve
tor �elds, X1; : : : ; Xp 2 X(U), form a solvable symmetrystru
ture for D ifLX1 (spfX2; : : : ; Xpg �D) � spfX2; : : : ; Xpg �D;...LXp�1 (spfXpg �D) � spfXpg �D;LXpD � D:Theorem 3.12. Let 
 2 �m(U) be Frobenius integrable. Further, let X 2X(U) su
h that A(h
i)� spfXg is Frobenius integrable and X 
 6= 0. ThenX 
 is Frobenius integrable.Proof. This theorem is obvious from De�nition 3.5, Propositions 2.7 and 3.7,and Corollary 3.10.We have the following 
orollary to Theorem 3.12:Corollary 3.13. Let 
 2 �m(U) be Frobenius integrable, and suppose thereexist X1; : : : ; Xp 2 X(U) up to some p < m su
h that X1 : : : Xp 
 6= 0.If A(h
i) � spfXpg is a Frobenius integrable distribution, and for all 1 �i < p, A(h
i) � spfXi; : : : ; Xpg is also Frobenius integrable, then Xp 
,: : : , X1 : : : Xp 
 are Frobenius integrable. Moreover, fX1; : : : ; Xpg forma solvable symmetry stru
ture for A(h
i) if and only ifLXp
 = �p
;LXp�1(Xp 
) = �p�1(Xp 
);...LX1(X2 : : : Xp 
) = �1(X2 : : : Xp 
); (3)for some �1; : : : ; �p 2 C1(U).Corollary 3.13 provides a dire
t 
onne
tion between a solvable symmetrystru
ture for ker(
) = A(h
i) and one for 
 (the equations in (3) will befrequently referred to as a solvable symmetry stru
ture for 
).The papers by Sherring and Prin
e [13℄ and Basarab-Horwath [1℄ ex-tend Lie's approa
h to integrating a Frobenius integrable distribution via asolvable stru
ture of symmetries. In those papers, a Frobenius integrabledistribution is given �rst. The one-form annihilating spa
e is then generatedand all generators wedged to give a de
omposable form with a Frobeniusintegrable kernel. The result is reprodu
ed below:8



Theorem 3.14. [13℄ Let D := spfY1; : : : ; Yqg � X(U) be a q-dimensionalFrobenius integrable ve
tor �eld distribution. De�ne 
 := Y1 : : : Yq (dx1 ^� � �^dxn) 2 �n�q(U), and suppose there exists a solvable stru
ture of linearlyindependent symmetries X1; : : : ; Xn�q 2 X(U) su
h that Xn�q is a non-trivialsymmetry of D, and that for all 1 � i < n� q, Xi is a non-trivial symmetryof D � spfXi+1; : : : ; Xn�qg. For all 1 � i � n� q, de�ne !i by!i := X1 : : : Xi�1 Xi+1 : : : Xn�q 
Xi X1 : : : Xi�1 Xi+1 : : : Xn�q 
 :Then f!1; : : : ; !n�qg is dual to fX1; : : : ; Xn�qg, and for all !i up to i = n�q,!1 = d
1;!2 = d
2 �X1(
2)d
1;!3 = d
3 �X2(
3)(d
2 �X1(
2)d
1)�X1(
3)d
1;...!n�q = d
n�q mod d
1; : : : ; d
n�q�1;for some fun
tionally independent 
1; : : : ; 
n�q 2 C1(U). Moreover, onU , the submanifolds des
ribed by D generate a q-dimensional foliation ofU whose leaves have 
1; : : : ; 
n�q 
onstant.In our work, we will start with a de
omposablem-form 
 with a Frobeniusintegrable kernel. This is a
hieved by also demanding that d
 = 0 mod 
.Hen
e by Proposition 2.7, the Cau
hy 
hara
teristi
 spa
e of the di�erentialideal generated by 
 is Frobenius integrable and equal to ker(
). Using thesefa
ts, we show below in Theorem 3.15 how a solvable stru
ture of symmetriesfor 
 (as in Corollary 3.13) 
an assist in generating a simpli�ed expressionfor 
. Theorem 3.15 is the key result of this paper.Theorem 3.15. Let 
 2 �m(U) be Frobenius integrable. Suppose there existsa solvable stru
ture of linearly independent symmetries X1; : : : ; Xm 2 X(U)su
h that Xm is a non-trivial symmetry of A(h
i), and that for all 1 � i < m,Xi is a non-trivial symmetry of A(h
i)� spfXi+1; : : : ; Xmg. For all 1 � i �m, de�ne !i by !i := X1 : : : Xi�1 Xi+1 : : : Xm 
Xi X1 : : : Xi�1 Xi+1 : : : Xm 
 : (4)Then f!1; : : : ; !mg is dual to fX1; : : : ; Xmg, and for all !i up to i = m,!1 = d
1;!2 = d
2 �X1(
2)d
1;!3 = d
3 �X2(
3)(d
2 �X1(
2)d
1)�X1(
3)d
1;...!m = d
m mod d
1; : : : ; d
m�1; (5)
9



for some fun
tionally independent 
1; : : : ; 
m 2 C1(U). Finally, de�ne 
0 :=
(X1; : : : ; Xm). Then 
 = 
0d
1 ^ � � � ^ d
m.Proof. Sin
e from Lemma 3.6, 
 is de
omposable, we may write 
 = �1 ^� � � ^ �m for some linearly independent �1; : : : ; �m 2 �1(U). Now ker(
) =spfY1; : : : ; Yn�mg for some Y1; : : : ; Yn�m 2 X(U). From Lemma 3.6 andProposition 2.7, we have that A(h
i) = ker(
) is Frobenius integrable. Ap-plying Theorem 3.14 with the linearly independent symmetriesX1; : : : ; Xm 2X(U) for A(h
i) given in Theorem 3.15, we obtain thatfY1; : : : ; Yn�m; X1; : : : ; Xmgspans X(U) and is dual to��1; : : : ; �n�m; !1; : : : ; !m	 ;for some linearly independent �1; : : : ; �n�m 2 �1(U) with !1; : : : ; !m de�nedas in (4). Sin
e Yj 
 = 0 for all 1 � j � n�m, it follows that
 = 
(X1; : : : ; Xm)!1 ^ � � � ^ !m: (6)Now Theorem 3.14 implies the equations in (5), so (6) simpli�es to give
 = 
(X1; : : : ; Xm)d
1 ^ � � � ^ d
m:Remark 1. The fa
t that the symmetries in Theorem 3.15 are non-trivialmeans that the denominator is non-zero in ea
h of the de�nitions for !i.Remark 2. The expression for 
0 is easily derived sin
e 
 = 
(X1; : : : ; Xm)!1 ^ � � � ^ !m as Yj 
 = 0 for all 1 � j � (n�m) linearly independent ve
-tor �elds Y1; : : : ; Yn�m in A(h
i) that are used withX1; : : : ; Xm to span X(U).Theorem 3.15, for a given 
 and solvable symmetry stru
ture of ve
tor�elds, gives us expli
it expressions for the relations des
ribed in Proposition3 in [9℄.In later se
tions, we will illustrate Theorem 3.15 with some appli
ations.For now though, we have the following 
onsequen
e of Theorem 3.15 regard-ing the its se
ond remark:Theorem 3.16. Given some Frobenius integrable 
 2 �m(U) and a solvablestru
ture X1; : : : ; Xm 2 X(U) for A(h
i) as in Theorem 3.15, thenLXm
 = fXm d(ln j
(X1; : : : ; Xm)j)g
;LXm�1(Xm 
) = fXm�1 d(ln j
(X1; : : : ; Xm)j)g(Xm 
);...LX1(X2 : : : Xm 
) = fX1 d(ln j
(X1; : : : ; Xm)j)g(X2 : : : Xm 
):10



Proof. First we will show that for all 1 � i � m, d(!1 ^ � � � ^ !i) = 0. FromTheorem 3.15 it is obvious that d!1 = 0 and for ea
h 1 < i � m that d!i = 0mod !1; : : : ; !i�1. Thus for all i > 1,d(!1 ^ � � � ^ !i) = 0: (7)From Theorem 3.15 it is 
lear that
 = 
(X1; : : : ; Xm)!1 ^ � � � ^ !m: (8)Hen
e d� 

(X1; : : : ; Xm)� = 0: (9)Using that f!1; : : : ; !mg is dual to fX1; : : : ; Xmg and 
ontra
ting (8) withXm, we obtain !1 ^ � � � ^ !m�1 = Xm 
(�1)m�1
(X1; : : : ; Xm) :From repeating this 
ontra
tion with Xm�1 and so on down to X1, we obtainfor all 1 � i � m� 1,!1 ^ � � � ^ !i = Xi+1 : : : Xm 
(�1)((m�1)+���+i)
(X1; : : : ; Xm) :Hen
e from (7), d� Xi+1 : : : Xm 
(�1)((m�1)+���+i)
(X1; : : : ; Xm)� = 0: (10)Equation (9) implies d
 = d (ln j
(X1; : : : ; Xm)j) ^ 
; (11)while equation (10) meansd (Xi+1 : : : Xm 
) = d (ln j
(X1; : : : ; Xm)j) ^ (Xi+1 : : : Xm 
) ; (12)for all 1 � i � (m� 1). NowLXm
 = Xm d
 + d (Xm 
) ;= Xm fd (ln j
(X1; : : : ; Xm)j) ^ 
g + d (ln j
(X1; : : : ; Xm)j) ^ (Xm 
) ;= fXm d(ln j
(X1; : : : ; Xm)j)g
;where in the se
ond line we have inserted equations (11) and (12). To obtainthe third line we used the identity X (! ^ �) = (X !) ^ � + (�1)deg(!)! ^(X �) for di�erential forms �; !. 11



Finally, let 1 � i � (m� 1). Then in a similar fashion to before, we getLXi(Xi+1 : : : Xm 
) = Xi fd (ln j
(X1; : : : ; Xm)j) ^ (Xi+1 : : : Xm 
)g+ d (ln j
(X1; : : : ; Xm)j) ^ (Xi : : : Xm 
) ;whi
h simpli�es toLXi(Xi+1 : : : Xm 
) = fXi d(ln j
(X1; : : : ; Xm)j)g(Xi+1 : : : Xm 
):In general, ea
h !2; : : : ; !m in Theorem 3.15 is not exa
t. Our �nal resultsfor this se
tion examine some 
onditions on the symmetries X1; : : : ; Xm inTheorem 3.15 that for
e at least one of !2; : : : ; !m to be exa
t.Theorem 3.17. Let 
 2 �m(U) for some m � 3 su
h that 
 is Frobe-nius integrable. Let there exist a solvable stru
ture of linearly independentsymmetries X3; : : : ; Xm 2 X(U) su
h that Xm is a non-trivial symmetry ofA(h
i), and that for all 3 � i < m, Xi is a non-trivial symmetry of A(h
i)�spfXi+1; : : : ; Xmg. Also, let there exist two linearly independent ve
tor �eldsX1; X2 2 X(U) that are non-trivial symmetries of A(h
i)� spfX3; : : : ; Xmgsu
h that [X1; X2℄ = 0 mod A(h
i)� spfX3; : : : ; Xmg: (13)For all 1 � i � m, de�ne !i by!i := X1 : : : Xi�1 Xi+1 : : : Xm 
Xi X1 : : : Xi�1 Xi+1 : : : Xm 
 :Then f!1; : : : ; !mg is dual to fX1; : : : ; Xmg and for all !i up to i = m,!1 = d
1;!2 = d
2;!3 = d
3 �X2(
3)d
2 �X1(
3)d
1;!4 = d
4 �X3(
4)(d
3 �X2(
3)d
2 �X1(
3)d
1)�X2(
4)d
2 �X1(
4)d
1;...!m = d
m mod d
1; : : : ; d
m�1;for some fun
tionally independent 
1; : : : ; 
m 2 C1(U). Finally, de�ne 
0 :=
(X1; : : : ; Xm). Then 
 = 
0d
1 ^ � � � ^ d
m.Proof. We begin by showing that X1 is a non-trivial symmetry of A(h
i)�spfX2; : : : ; Xmg. Sin
eX1 is a non-trivial symmetry ofA(h
i)�spfX3; : : : ; Xmg,we have from Corollary 3.13 thatLX1 (X3 : : : Xm 
) = � (X3 : : : Xm 
) ;12



for some � 2 C1(U). Using this fa
t and equation (13) then givesLX1 (X2 : : : Xm 
) = [X1; X2℄ X3 : : : Xm 
 +X2 LX1 (X3 : : : Xm 
) ;= � (X2 : : : Xm 
) :From Theorem 3.13, our symmetries at this point satisfy Theorem 3.15.Therefore !1 = d
1;!2 = d
2 �X1(
2)d
1;!3 = d
3 �X2(
3)(d
2 �X1(
2)d
1)�X1(
3)d
1;...!m = d
m mod d
1; : : : ; d
m�1;for some fun
tionally independent 
1; : : : ; 
m 2 C1(U). To show thatX1(
2) =0, we must show thatd!2 = d� X1 X3 : : : Xm 
X2 X1 X3 : : : Xm 
� = 0: (14)This 
an be proved by observing that sin
e ker(X1 X3 : : :Xm 
) = A(h
i)�spfX1; X3; : : : ; Xmg is a Frobenius integral distribution, we therefore havethat d(X1 X3 : : :Xm 
) = 0 mod X1 X3 : : : Xm 
:Then to show thatX2 is a non-trivial symmetry ofA(h
i)�spfX1; X3; : : : ; Xmgwe use the formulaLX2 (X1 X3 : : : Xm 
) = [X2; X1℄ X3 : : : Xm 
+X1 LX2 (X3 : : : Xm 
) :Now using equation (13) and that X2 is a non-trivial symmetry of X3 : : :Xm 
, we get the desired result. Equation (14) 
an then be dedu
ed fromsimple algebrai
 manipulation, or by applying Theorem 3.15.Remark. While Theorem 3.17 assumes m � 3, it is 
lear that is still holdswhen m = 2. In this situation, there is no need for symmetries other thanX1; X2, with (13) redu
ing to [X1; X2℄ = 0 mod A(h
i). Further, the expres-sions for !i in the 
on
lusion of the theorem vanish for i > 2.We 
an generalise Theorem 3.17 in the following way:Theorem 3.18. Let 
 2 �m(U) for some m � 3, and suppose 
 is Frobeniusintegrable. For some 1 � l < m, let there exist a solvable stru
ture of m� llinearly independent symmetries Xl+1; : : : ; Xm 2 X(U) su
h that Xm is anon-trivial symmetry of A(h
i), and that for all l + 1 � i < m, Xi is a13



non-trivial symmetry of A(h
i) � spfXi+1; : : : ; Xmg. Also, let there existl linearly independent ve
tor �elds X1; : : : ; Xl 2 X(U) that are non-trivialsymmetries of A(h
i)� spfXl+1; : : : ; Xmg su
h that[Xu; Xv℄ = 0 mod A(h
i)� spfXl+1; : : : ; Xmg; (15)for all 1 � u < v � l. For all 1 � i � m, de�ne !i by!i := X1 : : : Xi�1 Xi+1 : : : Xm 
Xi X1 : : : Xi�1 Xi+1 : : : Xm 
 :Then f!1; : : : ; !mg is dual to fX1; : : : ; Xmg and for all !i up to i = l,!1 = d
1;...!l = d
l;with for ea
h i greater than l up to i = m,!l+1 = d
l+1 �Xl(
l+1)d
l �Xl�1(
l+1)d
l�1 � � � � �X1(
l+1)d
1;!l+2 = d
l+2 �Xl+1(
l+2) �d
l+1 �Xl(
l+1)d
l �Xl�1(
l+1)d
l�1 � : : :�X1(
l+2)d
1��Xl(
l+2)d
l � � � � �X1(
l+2)d
1;...!m = d
m mod d
1; : : : ; d
m�1;for some fun
tionally independent 
1; : : : ; 
m 2 C1(U). Finally, de�ne 
0 :=
(X1; : : : ; Xm). Then 
 = 
0d
1 ^ � � � ^ d
m.Proof. (Outline) The proof is similar to that of Theorem 3.17, and essentiallyinvolves repeating the proof of Theorem 3.17 l � 1 more times. To do this,from the fa
t that 
 is de
omposable and d
 = 0 mod 
, we 
an then applyCorollary 3.13 to obtain LXm = �m
;LXm�1 (Xm 
) = �m�1 (Xm 
) ;...LXl+1 (Xl+2 : : : Xm 
) = �l+1 (Xl+2 : : : Xm 
) ;and also thatLXl (Xl+1 Xl+2 : : : Xm 
) = �l (Xl+1 Xl+2 : : : Xm 
) ;LXl�1 (Xl+1 Xl+2 : : : Xm 
) = �l�1 (Xl+1 Xl+2 : : : Xm 
) ;...LX1 (Xl+1 Xl+2 : : : Xm 
) = �1 (Xl+1 Xl+2 : : : Xm 
) ;14



for some �1; : : : ; �m 2 C1(U). Next, using (15), it is easy to show thatLXm
 = �m
;LXm�1(Xm 
) = �m�1(Xm 
);...LX1(X2 : : : Xm 
) = �1(X2 : : : Xm 
):Then we may apply Theorem 3.15 to give us that f!1; : : : ; !mg is dual tofX1; : : : ; Xmg, and that for all !i up to i = m,!1 = d
1;!2 = d
2 �X1(
2)d
1;!3 = d
3 �X2(
3)(d
2 �X1(
2)d
1)�X1(
3)d
1;...!m = d
m mod d
1; : : : ; d
m�1;for some fun
tionally independent 
1; : : : ; 
m 2 C1(U). Now sin
e we knowalready that d!1 = 0, we only have to show that for ea
h 1 < j � l,d!j = d� X1 : : : Xj�1 Xj+1 : : : Xm 
Xj X1 : : : Xj�1 Xj+1 : : : Xm 
� = 0: (16)The original symmetry relations for X1; : : : ; Xm tell us that for ea
h j,A(h
i)� spfX1; : : : ; Xj�1; Xj+1; : : : ; Xmg is Frobenius integrable, sod (X1 : : : Xj�1 Xj+1 : : : Xm 
)= 0 mod X1 : : : Xj�1 Xj+1 : : : Xm 
:Finally, using (15), and in similar fashion to the end of the proof of Theo-rem 3.17, we get that for ea
h j,Xj is a non-trivial symmetry ofX1 : : : Xj�1Xj+1 : : : Xm 
. Simple algebrai
 manipulation then yields (16).Remark. As in Theorem 3.17, it is easy to see that Theorem 3.18 holds forall m � 2. However, here we 
an also say that the theorem holds if l = m,so (15) be
omes [Xu; Xv℄ = 0 mod A(h
i) for all 1 � u < v � l. In thissituation, all !i be
ome exa
t, whi
h is in a

ordan
e with the 
orollary toProposition 2 given in [1℄.The next se
tion gives a simple appli
ation of some of the ideas presentedabove.4 Di�erential forms in �m(Rm+1)In this se
tion we show that, provided we have enough symmetries, any di�er-ential form in �m(Rm+1) 
an be expressed lo
ally in terms of m fun
tionallyindependent fun
tions as in the 
on
lusion of Theorem 3.15. Further detailswill be given in Theorem 4.3 below, but �rst, 
onsider the following result:15



Lemma 4.1. Let 
 2 �m(U) for some m < n be non-zero, where U isde�ned as in previous se
tions (though the requirement that U be 
onvex isnot ne
essary here). Suppose 
 is of the form
 := 
1�2 ^ �3 ^ � � � ^ �m+1 + 
2�1 ^ �3 ^ � � � ^ �m+1 + : : :+ 
m+1�1 ^ �2 ^ � � � ^ �m;for some linearly independent �1; : : : ; �m+1 2 �1(U) and 
1; : : : ; 
m+1 2 C1(U).Then 
 is de
omposable.Proof. Let 
 2 �m(U) be as in the theorem. We 
an write
 = X ��1 ^ � � � ^ �m+1� ;where X := m+1Xi=1 (�1)i�1
iXi;for some X1; : : : ; Xm+1 2 X(U) dual to �1; : : : ; �m+1. Hen
e from Corol-lary 3.10 the result follows.From Lemma 4.1 we obtain the following useful result for m-forms in(m + 1)-dimensional spa
es also found in [8℄ by Godbillon. De�ne W to besome open neighbourhood of Rm+1 .Proposition 4.2. Let 
 2 �m(W ). Then 
 is Frobenius integrable.Proof. Let 
 2 �m(W ). Lemma 4.1 implies
 = �1 ^ � � � ^ �m;for some linearly independent �1; : : : ; �m 2 �1(W ). Now d
 is an (m + 1)-form in �m+1(W ), so we may 
omplete �1; : : : ; �m to a basis by in
ludingsome linearly independent � 2 �1(W ) with the property thatd
 = �1 ^ � � � ^ �m ^ �:Theorem 4.3. Let 
 2 �m(W ), where W to be some open, 
onvex neigh-bourhood of Rm+1 . If there exists a solvable stru
ture of m symmetries forA(h
i) as in Theorem 3.15, then we 
an 
ompute fun
tions 
0; : : : ; 
m 2C1(W ) so that 
 = 
0d
1 ^ � � � ^ d
m.Proof. We know from Proposition 4.2 and Proposition 3.6 respe
tively that
 is de
omposable and that d
 = 0 mod 
, so Theorem 3.15 gives us a dire
talgorithm for �nding 
0; : : : ; 
m. 16



5 Some ne
essary 
onditionsFor an arbitrary form di�erential form � 2 �m(U), we use ideas in the previ-ous se
tion to examine some ne
essary 
onditions for � to be de
omposableand d� = 0 mod �, so that we 
an apply Theorem 3.15. Of 
ourse if m = n,these two 
onditions trivially hold, and Proposition 4.2 and means they stillhold if m = n� 1. In this se
tion we examine the situation when m < n� 1.In what follows, we assume U is some open, 
onvex neighbourhood of Rn .Theorem 5.1. Let � 2 �m(U) for some m < n�1. If there exist n�m�1linearly independent ve
tor �elds �1; : : :�n�m�1 2 X(U) in ker(�), then � isde
omposable. Moreover, if for ea
h 1 � i � n�m� 1,L�i� = �i�; (17)for some �i 2 C1(U), then d� = 0 mod �.Proof. Let � 2 �m(U) with m < n� 1, and let there exist linearly indepen-dent �1; : : :�n�m�1 2 X(U) su
h that for all 1 � i � n�m� 1,�i � = 0: (18)Now (sp f�1; : : : ;�n�m�1g)? = sp��1; : : : ; �m+1	 ;for some �1; : : : ; �m+1 2 �1(U). Hen
e from (18), we must have� = �j1:::jm�j1 ^ � � � ^ �jm ;for some �j1:::jm 2 C1(U), with summation over 1 � j1 < � � � < jm � m+1.Therefore by Lemma 4.1, � is de
omposable.For the se
ond part of the proof, we 
hoose without loss,� = �1 ^ � � � ^ �m:We 
an 
omplete �1; : : : ; �m+1 to a basis for �1(U) by adding linearly inde-pendent �1; : : : ; �n�m�1 2 �1(U) su
h that��1; : : : ; �n�m�1; �1; : : : ; �m+1	 (19)is dual to f�1; : : :�n�m�1; Y1; : : : ; Ym+1g ; (20)for some linearly independent Y1; : : : ; Ym+1 2 X(U). Now with summationon k over 1 � k � m, we 
an writed� = �k ^ �1 ^ � � � ^ �k�1 ^ �k+1 ^ � � � ^ �m + � ^�; (21)17



for some �1; : : : ; �m 2 �2(U) and � 2 �1(U) with the property that ea
h �konly depends on the basis ve
tors �1; : : : ; �n�m�1; �m+1. Hen
e from the dualbasis property in (19) and (20), we have for ea
h k,Yj �k = 0; (22)for all 1 � j � m. By 
ombining the assumptions in (17) and (18), we havefor all i, �i d� = �i�: (23)Using the dual basis property on
e more, we get that for ea
h i and 1 � l �m+ 1, �i �l = 0. Hen
e substituting (21) into (23) gives (with sum),(�i �k) ^ �1 ^ � � � ^ �k�1 ^ �k+1 ^ � � � ^ �m + (�i �) ^� = �i�; (24)for ea
h i. Sin
e ea
h �i �k only depends on the basis ve
tors �1; : : : ; �n�m�1;�m+1, for (24) to hold we must have�i �k = 0; (25)for ea
h i and k. Hen
e from (22) and (25), ker(�k) is at least (n � 1)-dimensional. This means �k(X; Y ) = 0 for all X; Y 2 X(U). Thus �k = 0for ea
h k. Therefore d� = � ^�.Theorem 5.1 has the following two 
orollaries:Corollary 5.2. Let � 2 �m(U) su
h that m < n� 1. If there exist n�m�1 linearly independent Cau
hy 
hara
teristi
 ve
tor �elds of the di�erentialideal h�; d�i, then � is de
omposable and d� = 0 mod �.Proof. Sin
e the Cau
hy 
hara
teristi
 ve
tor �elds are in the kernel of �,Theorem 5.1 implies � is de
omposable. Now it is 
lear that (17) in The-orem 5.1 still holds for some �1; : : : ; �n�m�1 2 C1(U). Hen
e from thetheorem, d� = 0 mod �Corollary 5.3. Let � 2 �m(U) su
h that m < n� 1. If there exist n�m�1 linearly independent Cau
hy 
hara
teristi
 ve
tor �elds of the di�erentialideal h�; d�i, then the Cau
hy 
hara
teristi
 spa
e of h�; d�i is (n � m)-dimensionalProof. FromCorollary 5.2, � is de
omposable, so ker(�) is (n�m)-dimensional.The 
orollary also means � is 
losed modulo itself whi
h implies h�i =h�; d�i, and hen
e their Cau
hy 
hara
teristi
 spa
es are equal. FromProposition 2.7 the result follows.Now the dimension of the Cau
hy 
hara
teristi
 spa
e of h�; d�i is alwaysless than or equal to that of ker(�), and the maximum dimensional of ker(�)is n � m, whi
h o

urs when � is de
omposable. Theorem 5.1 therefore18



means that if ker(�) is at least (n�m� 1)-dimensional, then it is (n�m)-dimensional. Similarly, Corollary 5.3 means that if the Cau
hy 
hara
teristi
spa
e of h�; d�i is at least (n � m � 1)-dimensional, then it is (n � m)-dimensional.Next, we illustrate Corollary 5.2 with the following example:Example 5.4. Suppose U4 is some suitably 
hosen open, 
onvex neighbour-hood of R4 with 
oordinates x1; x2; x3; x4, and� := 2x2x4x3 dx3 ^ dx2 � �x4x3� dx3 ^ dx1 � 2dx4 ^ dx1+ 1x3x4dx1 ^ dx2 + 4x2dx4 ^ dx2:Now the ve
tor �eld � := 4x2 ��x1 + 2 ��x2 � 1x3x4 ��x2 ;is a Cau
hy 
hara
teristi
 of h�; d�i. Hen
e from Corollary 5.2, � is de-
omposable and d� = 0 mod �. Note from Corollary 5.3 that the Cau
hy
hara
teristi
 spa
e of h�; d�i is two-dimensional.We will now pro
eed to apply Theorem 3.15 to �. It is easy to see that��x1 is a non-trivial symmetry of �. With��x1 � = 1x3x4dx2 + x4x3dx3 + 2dx4;it is also easy to see that ��x2 is a non-trivial symmetry of ��x1 �. Now fromTheorem 3.15 and Corollary 3.13,!1 := ��x1 ���x2 ��x1 � = dx2 + (x4)2dx3 + 2x3x4dx4 = d �x2 + x3(x4)2� :Also, it is not hard to show that!2 := ��x2 ���x1 ��x2 � = dx1 + 2x2(x4)2dx3 + 4x2x3x4dx4;= d �x1 � (x2)2�+ 2x2d �x2 + x3(x4)2� :Hen
e � = 1x3x4d �x1 � (x2)2� ^ d �x2 + x3(x4)2� :6 PfaÆan equationsIn this se
tion we examine how symmetries may be used to express a dif-ferential one-form `normal form' given in (26). We begin with the followingde�nition and theorem: 19



De�nition 6.1. Let � 2 �1(U). The rankof the PfaÆan equation � = 0 atthe point p 2 U is the non-negative integer r su
h that (d�)r ^ � 6= 0 and(d�)r+1 ^ � = 0 at p.If a one-form � is exa
t, i.e. � = df for some f 2 C1(U), then it (andany linearly dependent one-form) has rank zero.Theorem 6.2. Let � 2 �1(U) and suppose the equation � = 0 is of 
onstantrank r on U . Then there exists a 
oordinate system 
1; : : : ; 
n 2 C1(U),where 2r + 1 � n, so that the equation be
omesd
1 + 
2d
3 + � � �+ 
2rd
2r+1 = 0:Theorem 6.2 is known as the Pfa� problem. A proof of this theorem maybe found in [2℄.It is easy to see that multiplying any one-form of 
onstant rank on U bya nowhere zero smooth fun
tion f leaves the rank un
hanged, using the fa
tthat for any m 2 N , we have (d(f�))m ^ (f�) = fm+1(d�)m ^�. This allowsus to express any � 2 �1(U) of 
onstant rank r on U as� = 
0(d
1 + 
2d
3 + � � �+ 
2rd
2r+1); (26)for some 
0; : : : ; 
2r+1 2 C1(U).Theorem 6.3. Let � 2 �1(U). Suppose � is of 
onstant rank r on U . De�ne
 := (d�)r ^ �. Then 
 is de
omposable and d
 = 0 mod 
.Proof. Let � 2 �1(U) with � of 
onstant rank r on U . Hen
e� = 
0(d
1 + 
2d
3 + � � �+ 
2rd
2r+1);for some 
0; : : : ; 
2r+1 2 C1(U). De�ne� := d
1 + 
2d
3 + � � �+ 
2rd
2r+1:Further, let 
 := (d�)r ^ �. We will �rst show that d
 = 0. Simple 
ompu-tation yields (d�)r = r!d
2 ^ � � � ^ d
2r+1:Hen
e 
 = � ^ (d�)r;= r!d
1 ^ d
2 ^ � � � ^ d
2r+1:We then have d
 = 0. Now
 = (
0)r+1(d�)r ^ �:Sin
e d
 = 0, we get d
 = d((
0)r+1) ^ (d�)r ^ �:But, (d(
0�))r ^ ((
0)�) = (
0)r+1(d�)r ^ �. Hen
e d
 = 0 mod 
 as 
0 isnowhere zero on U . Finally, sin
e 
 is de
omposable and 
 = (
0)r+1
, 
is therefore de
omposable. 20



Our aim is to use Theorem 6.3 with Theorem 3.15 to ultimately �ndsome 
oordinates for the Pfa� problem in Theorem 6.2. The next theoremillustrates how this may be done for one-forms that are of 
onstant rankone on U , whi
h will be later extended to one-forms of any 
onstant rankr � 1. The 
ase r = 0 involves a trivial appli
ation of Theorem 3.15, andwill therefore be ignored.To assist in �nding 
oordinates for the Pfa� problem, the following lemmawill be needed:Lemma 6.4. Let � 2 �1(U) and suppose � is of 
onstant non-zero rank r onU . Let 
 := (d�)r ^ � and X 2 X(U) su
h that X 
 = 0. Then X � = 0.Proof. Let � 2 �1(U). Suppose � is of 
onstant non-zero rank r on U , andde�ne 
 as in the lemma. Let X 2 X(U) with X 
 = 0. Now0 = X 
 = (X (d�)r) ^ �+ (X �)(d�)r:By taking the exterior produ
t with �, we obtain(X �)(d�)r ^ � = 0:Sin
e � is of rank r, (d�)r ^ � 6= 0, and hen
e X � = 0.Theorem 6.5. Let � 2 �1(U) su
h that � is of 
onstant rank one on U .Let 
 := d� ^ � and h
i be the di�erential ideal generated by 
. SupposeX1; X2; X3 2 X(U) is a solvable stru
ture of linearly independent symmetriessu
h that X3 is a non-trivial symmetry of A(h
i) with the extra 
onditionthat X3 � = 0, X2 is a non-trivial symmetry of A(h
i)�spfX3g, and X1 is anon-trivial symmetry of A(h
i)� spfX2; X3g. Then with !1; !2; !3 2 �1(U)de�ned by !1 := X2 X3 
X1 X2 X3 
 ;!2 := X1 X3 
X2 X1 X3 
 ;!3 := X1 X2 
X3 X1 X1 
 ;we have !1 = d
1;!2 = d
2 �X1(
2)d
1;!3 = d
3 �X2(
3)(d
2 �X1(
2)d
1)�X1(
3)d
1;for some fun
tionally independent 
1; 
2; 
3 2 C1(U), and� = (X2 �)�d
2 + (X1 �)� (X2 �)X1(
2)(X2 �) d
1� : (27)21



Proof. With 
 := d� ^ �, Theorem 6.3 means that 
 is de
omposable andd
 = 0 mod 
. Theorem 3.15 
an be used to obtain f!1; !2; !3g dual tofX1; X2; X3g, where!1 = d
1;!2 = d
2 �X1(
2)d
1;!3 = d
3 �X2(
3)(d
2 �X1(
2)d
1)�X1(
3)d
1;for some fun
tionally independent 
1; 
2; 
3 2 C1(U). Now from Lemma 6.4,X � = 0 for all X 2 A(h
i). And sin
e X3 � = 0, we are left with� = (X1 �)!1 + (X2 �)!2:Now X2 � 6= 0 in the neighbourhood, sin
e � is nowhere rank zero by as-sumption. Hen
e� = (X2 �)�d
2 + (X1 �)� (X2 �)X1(
2)(X2 �) d
1� :Remark 1. The extra 
ondition in Theorem 6.5 that the non-trivial symme-try X3 satis�es X3 � = 0 implies from Proposition 2.6 that the symmetry isnot a Cau
hy 
hara
teristi
 ve
tor �eld of h�; d�i. Therefore X3 d� is notsome multiple of � (as � is of rank one, it is impossible that d� = 0 mod�). Su
h a symmetry exists sin
e if 
1; : : : ; 
n are 
oordinates for U and� := 
0 (d
1 + 
2d
3) is already in normal form for some 
0 2 C1(U), thenit is easy to show that Theorem 6.5 
an be applied to su
h � with X3 
hosenas ��
2 or ��
3 � 
2 ��
1 .Remark. 2 In deriving our expression for � in (27), we do not need to 
al-
ulate 
3. This signi�
antly redu
es the number of algebrai
 manipulationsrequired.We illustrate Theorem 6.5 with an example:Example 6.6. Suppose we are in some open, 
onvex neighbourhood of R3 ,denoted by U3, with 
oordinates x1; x2; x3. De�ne on some suitably 
hosenU3, � := � x2x3(x1)2dx1 + �x1x2 + x3x1� dx2 + x1x3dx3:By dimension, (d�)2 ^� = 0, and it is easy to show that d�^� 6= 0 on someregion of U3. Suppose U3 is 
hosen su
h that d� ^ � 6= 0 everywhere. Sin
eany non-zero ve
tor �eld is a non-trivial symmetry of d� ^ � 2 �3(U3), wemay 
hoose any X3 su
h that X3 � = 0. So letX3 := x2x3(x1)2 ��x3 + x1x3 ��x122



be the symmetry. Now X2 := (x3)2 ��x3is a non-trivial symmetry of spfX3g (A(hd� ^ �i) is zero-dimensional), andby inspe
tion that X1 := ��x2is a non-trivial symmetry of spfX2; X3g. These yield!1 := X2 X3 (d� ^ �)X1 X2 X3 (d� ^ �) = dx2;and !2 := X1 X3 (d� ^ �)X2 X1 X3 (d� ^ �) = � x2(x1)3dx1 + dx3(x3)2 ;= d� x22(x1)2 � 1x3�� 12(x1)2dx2:Hen
e a simple 
al
ulation gives� = x1x3�d� x22(x1)2 � 1x3�+ � 1x2x3 + 12(x1)2� dx2� :Su
h expressions for � are in general not unique, and may be found by
hoosing di�erent symmetries. For example, we have also obtained� = x3�d�x2x1�+ x1x3d �ln ��x2x3���� :We now present a generalisation of Theorem 6.5:Theorem 6.7. Let � 2 �1(U) have 
onstant rank r on U , and de�ne
 := (d�)r ^ �. Let X1; : : : ; X2r+1 2 X(U) be a solvable stru
ture of lin-early independent symmetries su
h that X2r+1 is a non-trivial symmetry ofA(h
i), and for ea
h 1 < i < 2r + 1, Xi is a non-trivial symmetry ofA(h
i) � fXi+1; : : : ; X2r+1g. Suppose, in addition, that for the r ve
tor�elds Xr+2; : : : ; X2r+1, we have Xr+2 � = 0; : : : ; X2r+1 � = 0. For all1 � i � 2r + 1, de�ne !i by!i := X1 : : : Xi�1 Xi+1 : : : X2r+1 
Xi X1 : : : Xi�1 Xi+1 : : : X2r+1 
 :Then for all !i up to i = 2r + 1,!1 = d
1;!2 = d
2 �X1(
2)d
1;!3 = d
3 �X2(
3)(d
2 �X1(
2)d
1)�X1(
3)d
1;...!2r+1 = d
2r+1 mod d
1; : : : ; d
2r;23



for some fun
tionally independent 
1; : : : ; 
2r+1 2 C1(U), and� = (X1 �)d
1 + (X2 �)(d
2 �X1(
2)d
1)+ (X3 �)(d
3 �X2(
3)(d
2 �X1(
2)d
1)�X1(
3)d
1) + : : :+ (Xr+1 �)(d
r+1 �Xr(
r+1)(d
r � � � � �X1(
r)d
1)� : : :�X1(
r+1)d
1);whi
h when rearranged give � in the form of (26).Proof. The proof follows in a similar fashion to Theorem 6.5. The 
on-ditions Xr+2 � = 0; : : : ; X2r+1 � = 0 and Lemma 6.4 ensure that � is alinear 
ombination of d
1; : : : ; d
r+1. Further, sin
e � is of 
onstant rank r,Xr+1 � 6= 0, so we are permitted to divide by it, and hen
e express � in theform of (26).Remark. Both remarks for Theorem 6.5 may be extended to Theorem 6.7 asfollows: Firstly, from the proof of Theorem 6.3 it is 
lear that there exist rnon-trivial symmetriesXr+2; : : : ; X2r+1 of (d�)r^� in ker(�), and se
ondly, inderiving our expression for �, we do not need to 
al
ulate any 
r+2; : : : ; 
2r+1.7 Darboux systemsThis se
tion gives an algorithm based on ve
tor �elds for generating a setof 
oordinates in Darboux's theorem given below in Theorem 7.4. To beginwith, we present some preliminary material. In Bryant et al. [2℄ there is thefollowing fundamental theorem:Theorem 7.1. Let 
 2 �2(U) and let r be the natural number su
h that
r 6= 0 and 
r+1 = 0. Then there exist 2r linearly independent elements!1; : : : ; !2r 2 �1(U) su
h that
 = !1 ^ !2 + � � �+ !2r�1 ^ !2r:In what follows, we will also make use of the following lemma:Lemma 7.2. Let 
 2 �2(U) and r 2 N su
h that 
r 6= 0 and 
r+1 = 0.Also let X 2 X(U). Then X 
r = 0 if and only if X 
 = 0.Proof. Let 
 2 �2(U) with X 
r = 0 for some ve
tor �eld X 2 X(U). Thenfrom Theorem 7.1 we have
 = !1 ^ !2 + � � �+ !2r�1 ^ !2r; (28)for some linearly independent !1; : : : ; !2r 2 �1(U). This implies
r = r!!1 ^ � � � ^ !2r:Now X 
r = 0 implies that X !i = 0 for all 1 � i � 2r. Hen
e using theexpression for 
 in (28) gives X 
 = 0. Proving the 
onverse is obvioussin
e if Y is any ve
tor �eld in X(U), then Y 
r = r(Y 
) ^ 
r�1.24



Theorem 7.3. Let 
 2 �2(U) be 
losed. Suppose r is the natural numbersu
h that 
r 6= 0 and 
r+1 = 0. Further suppose we have a solvable stru
tureof 2r linearly independent symmetries X1; : : : ; X2r 2 X(U) su
h that X2r is anon-trivial symmetry of A(h
ri), and for all 1 � i < 2r, Xi is a non-trivialsymmetry of A(h
ri) � spfXi+1; : : : ; X2rg. Then Theorem 3.15 gives us analgorithm for expressing 
 solely in terms of the 2r fun
tionally independentfun
tions 
1; : : : ; 
2r 2 C1(U) and their exterior derivativesProof. Let 
 2 �2(U) be 
losed with 
r 6= 0 and 
r+1 = 0 for somer 2 N . Sin
e d
 = 0 implies that d(
r) = 0, from Proposition 2.7,ker(
r) = A(h
ri) is therefore Frobenius integrable. The fa
t that 
ris de
omposable of degree 2r means that A(h
ri) is generated by n � 2rlinearly independent ve
tor �elds. Suppose we have a set of linearly in-dependent symmetries X1; : : : ; X2r 2 X(U) su
h that X2r is a non-trivialsymmetry of A(h
ri), and for all 1 � i < 2r, Xi is a non-trivial symme-try of A(h
ri) � spfXi+1; : : : ; X2rg. Then by Theorem 3.15 we have on U ,f!1; : : : ; !2rg dual to fX1; : : : ; X2rg, where for all 1 � j � 2r,!j := X1 : : : Xj�1 Xj+1 : : : X2r 
rXj X1 : : : Xj�1 Xj+1 : : : X2r 
r ;and !1 = d
1;!2 = d
2 �X1(
2)d
1;!3 = d
3 �X2(
3)(d
2 �X1(
2)d
1)�X1(
3)d
1;...!2r = d
2r mod d
1; : : : ; d
2r�1;for some fun
tionally independent 
1; : : : ; 
2r 2 C1(U). Then by Lemma 7.2,and using the fa
t that fX1; : : : ; X2rg plus any set of generators of A(h
ri)spans X(U), we 
an therefore write
 = 
(Xk; Xl)!k ^ !l; 1 � k < l � 2r;where we are implying a double summation. This means that
 = 
kld
k ^ d
l; 1 � k < l � 2r; (29)for some fun
tions 
kl 2 C1(U). But sin
e 
 is 
losed, we must have for all� 2 A(h
ri), L�
 = d(� 
) = 0;also using Lemma 7.2. Sin
e �(
i) = 0 for all i, it follows that (with sum)0 = L�
 = �(
kl)d
k ^ d
l:Therefore �(
kl) = 0 for ea
h k and l. Hen
e 
 only depends on the 2rfun
tions 
1; : : : ; 
2r and their exterior derivatives.25



Remark. In applying Theorem 7.3, there will exist situations when it maybe diÆ
ult to express ea
h 
kl in terms of the known 
1; : : : ; 
2r.Next, 
onsider Darboux's theorem proved in [2, 5℄:Theorem 7.4. (Darboux) Let 
 2 �2(U) be 
losed so that 
r 6= 0 and
r+1 = 0 for some r 2 N. Then there exist 
oordinates 
1; : : : ; 
n su
h that
 = d
1 ^ d
2 + � � �+ d
2r�1 ^ d
2r:Theorem 7.3 may be applied to Darboux's theorem; however, the diÆ
ultyis that Theorem 7.3 expresses 
 in terms of a sum of a maximum of �2r2 � two-form 
omponents, whi
h must then be simpli�ed to r 
omponents with unitone 
oeÆ
ients if we wish to �nd a set of 
oordinates in Darboux's theorem.As an alternative approa
h extending work in [5℄ by Crampin and Piraniin their proof of Darboux's theorem (though similar proofs 
an be found inthe literature), we now look to formulate an extra
tion pro
ess for generatinga set of 
oordinates in the theorem using solvable symmetry stru
tures. Thenext three theorems will be useful in establishing this.Theorem 7.5. Let 
 2 �2(U) with 
r 6= 0 and 
r+1 = 0 for some r � 2.Suppose there exist X1; X2 2 X(U) su
h that 
(X1; X2) = 1 and (X1 
) ^(X2 
) 6= 0. If 
 is de�ned by 
 := 
 + (X2 
) ^ (X1 
), then 
r�1 6= 0and 
r = 0:Proof. Let 
 2 �2(U) su
h that 
r 6= 0 and 
r+1 = 0 for some r � 2. Usingthe de�nition for 
 in the theorem gives
r = 
r + r
r�1 ^ (X2 
) ^ (X1 
): (30)Now from 
(X1; X2) = 1 we have
r = 
r(X2 X1 
);= X2 (
r ^ (X1 
))� (X2 
r) ^ (X1 
);= X2 (
r ^ (X1 
))� (r(X2 
) ^ 
r�1) ^ (X1 
): (31)In the se
ond line we have used the property X2 (
r^ (X1 
)) = (X2 
r)^(X1 
) + (X2 X1 
)
r, and in the third, we have expanded X2 
r. If wesubstitute the end result in (31) into the expression for 
r in (30), we obtain
r = X2 (
r ^ (X1 
)): (32)By Theorem 7.1, there exist linearly independent one-forms !1; : : : ; !2r 2�1(U) su
h that 
 = !1 ^ !2 + � � �+ !2r�1 ^ !2r:Hen
e X1 
 = a1!1 + � � �+ a2r!2r for some a1; : : : ; a2r 2 C1(U). Sin
e
r = r!!1 ^ � � � ^ !2r;26



it follows that 
r ^ (X1 
) = 0. Thus from (32) we get 
r = 0.Now suppose 
r�1 = 0. Then0 = 
r�1 = 
r�1 + (r � 1)
r�2 ^ (X2 
) ^ (X1 
):This implies 
r�1 = (r � 1)
r�2 ^ (X1 
) ^ (X2 
): (33)Taking the exterior produ
t with 
 gives
r = (r � 1)
r�1 ^ (X1 
) ^ (X2 
) = 0; (34)where the se
ond equality 
omes from substituting 
r�1 in (34) with itsexpression in (33). The 
al
ulations still holds for r = 2, and hen
e we rea
ha 
ontradi
tion for all r � 2.Remark. Although Theorem 7.5 demands thatX1; X2 be su
h that 
(X1; X2) =1, we 
an relax this 
ondition by saying that all we need is to �nd two ve
tor�elds Y1; Y2 2 X(U) su
h that 
(Y1; Y2) 6= 0. Then we 
an 
hoose X1; X2 as,respe
tively, s
aled Y1; Y2 su
h that 
(X1; X2) = 1.The se
ond theorem we require 
on
erns the foliated exterior derivative,as explained by Vaisman [15℄:Theorem 7.6. Let ! 2 �1(U) and �1; : : : ; �s 2 �1(U) be s linearly indepen-dent one-forms su
h that for all 1 � i � s,d�i = 0 mod �1; : : : ; �s;(i.e. the Frobenius 
ondition holds so that ker(�1 ^ � � � ^ �s) is Frobeniusintegrable).Then if d! = 0 mod �1; : : : ; �s;then ! = df mod �1; : : : ; �s;for some f 2 C1(U).Using the foliated exterior derivative, we prove the following theorem:Theorem 7.7. Let 
 2 �2(U) be 
losed. If there exists a pair of ve
tor �eldX1; X2 2 X(U) su
h that1. LX1
 = 0;2. LX2
 = 0 mod X1 
;3. (X1 
) ^ (X2 
) 6= 0; 27



then on U , (X1 
) ^ (X2 
) = df ^ dg;for some fun
tionally independent smooth f and g.Proof. Let 
 2 �2(U) be 
losed and let there exist ve
tor �elds X1; X2 2X(U) that satisfy the three 
onditions in the theorem. Now LX1
 = 0 impliesd(X1 
) = 0, using the property LX1
 = X1 d
 + d(X1 
) and that 
 is
losed. Hen
e X1 
 = df for some smooth f .Now suppose LX2
 = 0. Then by the same argument to above, X2 
 =dg1 for some smooth g1. If, however, LX2
 6= 0, then by assumption,0 6= LX2
 = � ^ (X1 
);for some � 2 �1(U). Therefore(LX2
) ^ (X1 
) = 0:Using LX2
 = X2 d
 + d(X2 
) and the fa
t that 
 is 
losed givesd(X2 
) ^ (X1 
) = 0:Hen
e d(X2 
) = 0 mod (X1 
):Using Theorem 7.6, we then getX2 
 = dg2 mod df;for some smooth g2. Hen
e in both 
ases the result is proved.We now present the main result of this se
tion:Theorem 7.8. Let 
 2 �2(U) be 
losed with 
r 6= 0 and 
r+1 = 0 for somer 2 N. Then the following algorithm expli
itly 
omputes a set of 2r fun
tionsfor 
 des
ribed in Darboux's theorem:1. Find ve
tor �elds X1; X2 2 X(U) su
h that:(a) LX1
 = 0;(b) LX2
 = 0 mod X1 
;(
) (X1 
) ^ (X2 
) 6= 0;(d) 
(X1; X2) = 1,2. Let 
 + (X2 
) ^ (X1 
) be our new 
,3. Repeat steps 1 and 2 a further r � 2 more times until 
2 = 0,4. Apply Theorem 3.15 with a solvable stru
ture of two symmetries X3; X4 2X(U) for 
, su
h that X3 is a non-trivial symmetry of 
 and X4 is anon-trivial symmetry of X3 
 with the property that 
(X3; X4) = 1.28



Proof. Let 
 2 �2(U) be 
losed with 
r 6= 0 and 
r+1 = 0 for some r 2 N .From Theorem 7.7 and then Theorem 7.5, we 
an 
ompute 
1 2 �2(U),where 
1 = 
+ dg1 ^ df1;for some smooth f1 and g1, with 
r�11 6= 0 and 
r1 = 0. Then on
e againfrom Theorem 7.7 followed by Theorem 7.5, 
2 2 �2(U) 
an be 
omputedso that 
2 = 
+ dg1 ^ df1 + dg2 ^ df2;for some smooth f2 and g2, with 
r�22 6= 0 and 
r�12 = 0. Continuing in thisway, we rea
h a stage when 
r�1 is of the form
r�1 = 
+ dg1 ^ df1 + dg2 ^ df2 + � � �+ dgr�1 ^ dfr�1;su
h that 
r�1 6= 0 and 
2r�1 = 0. Applying step 4, 
r�1 is 
losed, andfrom Theorem 7.1, 
r�1 is also de
omposable. From Theorem 3.15 andCorollary 3.13, with X3 as a non-trivial symmetry of 
r�1 and X4 as a non-trivial symmetry of X3 
r�1 su
h that 
r�1(X3; X4) = 1, thenX3 
r�1X4 X3 
r�1 = dgr;X4 
r�1X3 X4 
r�1 = dfr + �dgr;for some smooth fr, gr and �, with
r�1 = 
r�1(X3; X4)dfr ^ dgr = dfr ^ dgr:Therefore
 = df1 ^ dg1 + df2 ^ dg2 + � � �+ dfr�1 ^ dgr�1 + dfr ^ dgr:Remark 1. In looking for two symmetries that satisfy the four 
onditionsin Theorem 7.8, 
ondition (d) 
an be relaxed a little by only requiring thatX2 X1 
 = 
onst. Then X1 or X2 may be s
aled appropriately by 
onstantswhile still satisfying the other three 
onditions. The same holds true for thetwo symmetries in step 4.Remark 2. Conditions (a) and (b) are strong requirements, and may be dif-�
ult in pra
ti
e to satisfy. Sin
e 
 is 
losed, they imply X1; X2 must be
hosen su
h that X1 
 is 
losed and X2 
 is 
losed, modulo X1 
. Hen
ethe result in Theorem 7.8 is of more theoreti
al signi�
an
e than pra
ti
aluse.We 
an provide an alternative to the requirement in step 4 in Theorem 7.8as follows: 29



Lemma 7.9. Let 
 2 �2(U) be some arbitrary 
losed two-form. Supposethere exists some X3 2 X(U) not in ker(
) su
h that su
h thatLX3
 = 0; (35)and X4 2 X(U) satis�es 
(X3; X4) = 1. ThenLX4(X3 
) = 0:Proof. LX4(X3 
) = d(X4 X3 
) +X4 d(X3 
) = X4 (LX3
) = 0;using that X4 X3 
 = 1, equation (35), and that 
 is 
losed.We now apply the algorithm in Theorem 7.8 and the modi�
ation of Step4 in Lemma 7.9 to an example. It is important to realise that the diÆ
ultpart in applying Theorem 7.8 is in �nding the �rst r� 1 pairs of symmetriesX1; X2. Nevertheless, the main purposes of this example are to illustrate:i) the 
ru
ial role Theorem 7.5 plays in redu
ing the number of terms in atwo-form by one; and ii) the 
exibility in 
hoosing X4 in Lemma 7.9.Example 7.10. Consider the following two-form 
 2 �2(U4), where U4 issome suitably 
hosen four-dimensional, open, 
onvex neighbourhood of R4with 
oordinates x1; x2; x3; x4:
 := �x1x2��x3x2 � 2� dx1 ^ dx2 + x1x2dx1 ^ dx3 � 2x1x4 dx1 ^ dx4� �x1x2�2 dx2 ^ dx3:Now it is easy to show that d
 = 0, 
2 6= 0 and 
3 = 0. We may thenpro
eed to apply Theorem 7.8. LetX1 := � 1x3 �x2x1�2 ��x2 + x2x4(x1)2x3 ��x4 :Now LX1
 = d (X1 
) ;= d� 1x3dx3 + 2x2x1x3dx1 + 1x3 �x2x1��x3x2 � 2� dx1� ;= d� 1x3dx3 + 1x1dx1� = 0;so 
ondition (a) of step 1 in Theorem 7.8 is met. Hen
eX1 
 = d �ln jx1x3j� :30



Let X2 := x3 ��x3 :We have X2 X1 
 = 1, so 
ondition (d) is satis�ed. Then using thatX2 
 = x1x3x2 dx1 + x3 �x1x2�2 dx2;it is not hard to show that (X1 
)^(X2 
) 6= 0; so 
ondition (
) is satis�ed.Also,(LX2
) ^ (X1 
) = d (X2 
) ^ (X1 
) ;= �x1x2dx1 ^ dx3 � x1x3(x2)2dx1 ^ dx2 � �x1x2�2 dx2 ^ dx3+ 2x1x3(x2)2 dx1 ^ dx2� ^ � 1x1dx1 + 1x3dx3� ;= 0;so 
ondition (b) is met. Nowd (X2 
) = 0 mod X1 
:Using the foliated derivative, this impliesX2 
 = dg1 + �1d �ln jx1x3j� ; (36)for some g1; �1 2 C1(U4). Performing a 
oordinate substitution givesX2 
 = �d�(x1)2x3x2 �+ (x1)2x3x2 d �ln jx1x3j� :Therefore(X2 
) ^ (X1 
) = �d�(x1)2x3x2 � ^ d �ln jx1x3j� = �d�x1x2� ^ d(x1x3):For other 
hoi
e of X1; X2, we may obtain an expression for the other two-form 
omponent of 
.Now de�ne 
1 := 
 + (X2 
) ^ (X1 
) as in step 2. We then get
1 = �2x1x2 dx1 ^ dx2 � 2x1x4 dx1 ^ dx4:It is 
lear that d
1 = 0 and 
21 = 0 as expe
ted, so we may pro
eed to applythe �nal step in Theorem 7.8 on 
1. De�ningX3 := x1x4 ��x4 ;31



we have LX3
1 = d (X3 
1) = d �2(x1)2dx1� = 0:This implies X3 
1 = d�2(x1)33 � : (37)Now 
hoose X4 := 12(x1)2 ��x1 ;so that X4 X3 
1 = 1. From Lemma 7.9, LX4 (X3 
1) = 0, and hen
e fromTheorem 3.15, X4 
1 = df2 + �2d�2(x1)33 � ; (38)for some f2; �2 2 C1(U4). To �nd f2, it is easy to show thatX4 
1 = �d� 1x1 ln jx2x4j� mod dx1;and hen
e 
1 = d� 1x1 ln jx2x4j� ^ d�2(x1)33 � :On
e again we may simplify this:d� 1x1 ln jx2x4j� ^ d�2(x1)33 � = 2(x1)2d� 1x1 ln jx2x4j� ^ dx1;= 2x1d �ln jx2x4j� ^ dx1;= d �ln jx2x4j� ^ d �(x1)2� :Thus 
 = d�x1x2� ^ d �x1x3�+ d �ln jx2x4j� ^ d �(x1)2� :8 SummaryUsing the idea of a solvable symmetry stru
ture we presented various algo-rithms for expressing 
ertain 
lasses of di�erential forms in terms of simpli�ed
oordinate systems. We began by reviewing Lie's symmetry approa
h andthen showed that it may applied to simplify di�erential forms whi
h are de-
omposable and 
losed modulo themselves. We then gave a result showingthat 
ertain types of symmetry stru
tures in Theorem 3.15 for
ed more thanone of the !i to be
ome 
losed, and looked at under what 
onditions a givendi�erential form was de
omposable and 
losed modulo itself.Next, we examined the problem of �nding simplifying 
oordinates for thePfaÆan problem. This was treated by imposing a spe
ial 
ondition on the32



solvable symmetry stru
ture applied to the Cau
hy 
hara
teristi
 spa
e ofthe di�erential ideal generated by the di�erential form (d�)r ^ �, where �was the PfaÆan form, and r was its rank.Finally, we looked at di�erential two-forms where the main result therewas an algorithm for �nding the 
oordinates in Darboux's theorem, derivedfrom the well-known iterative s
heme, where a pair of new 
oordinates isextra
ted ea
h time.Referen
es[1℄ Basarab-Horwath, P. Integrability by quadratures for systems of involu-tive ve
tor �elds, Ukrain. Mat. Zh. 43, No. 10, 1330{1337, 1991; trans-lation in Ukrainian Math. J., 43 (1991), No. 10, 1236{1242, 1992.[2℄ Bryant, R.L., Chern, S.S., Gardner, R.B., Golds
hmidt, H.L., GriÆths,P.A., Exterior di�erential systems, Vol. 18, Springer-Verlag, 1991.[3℄ Cartan, �E., Le�
ons sur les invariants int�egreaux , Hermann, Paris, 1922.[4℄ Cartan, �E., Les systems di�erentials exterieures at leurs appli
ationsgeometrique, Hermann, Paris, 1945.[5℄ Crampin, M. and Pirani, F.A.E., Appli
able di�erential geometry. Lon-don Mathemati
al So
iety Le
ture Note Series, 59. Cambridge Univer-sity Press, Cambridge-New York, 1986.[6℄ Duzhin, S. V. and Ly
hagin, V. V., Symmetries of distributions andquadrature of ordinary di�erential equations, A
ta Appl. Math., 24, 29{57, 1991.[7℄ Edelen, D.G.B., Applied exterior 
al
ulus, Wiley, New York, 1985.[8℄ Godbillon, C., G�eom�etrie di��erentielle et m�e
anique analytique, Her-mann, Paris, 1969.[9℄ Hartl, T., and Athorne, C., Solvable stru
tures and hidden symmetries,J. Phys. A: Math. Gen., 27, 3463{3471, 1994.[10℄ Lie, S., Vorlesungen �uber Di�erentialglei
hungen mit bekannten in-�nitesimalen Transformationen, Leipzig, Teubner, 1891.[11℄ Olver, P.J., Appli
ation of Lie groups to di�erential equations, Springer,Berlin, 1986.[12℄ Olver, P.J., Equivalen
e, invariants, and symmetry, Cambridge Univer-sity Press, 1995. 33



[13℄ Sherring, J., and Prin
e, G., Geometri
 aspe
ts of redu
tion of order,Trans. Amer. Math. So
., 334, 1, 433{453, 1992.[14℄ Sherring, J., Dimsym: symmetry determination and liner di�erentialequation pa
kage, S
hool of Mathemati
s, La Trobe University, 1993.[15℄ Vaisman, I., Cohomology and di�erential Forms, Mar
el Dekker, NewYork, 1973.

34


