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PREFACE

This book is an introduction to aspects of differential geometry in
an elementary and novel manner. The main idea is to introduce the
concept of a manifold and apply it to the study of Lie groups. The book
was developed as a set of lecture notes for a third-year undergraduate
lecture course at the University of Nottingham. Riemannian geometry
is not treated.’

The emphasis is on definitions and examples, and the abstract for-
malism has been reduced to a minimum. Most textbooks take the line
that a differentiable manifold is a topological manifold with a differen-
tial structure. To eliminate bizarre examples, the topological space is
required to be Hausdorff and have a countable base of open subsets.
All this is extremely technical, and a theorem of Whitney asserts that
any manifold of this type is isomorphic to a submanifold of a Euclidean
space, R™ [1]. Moreover, most examples of manifolds occur naturally
in this way.

The definition of a manifold used here is a locally Euclidean subset
of R™. This clear and concise definition was given by John Milnor in a
book which was the inspiration for the present work [2].

The sections on the special geometries, and the style generally was
influenced by Elmer Rees’ book on geometry [3]. Aside from the main
development of the book, there are brief excursions into singularity and
catastrophe theory, and into the subject of computer vision, based on
a specialist book on the subject [4].

There are many exercises distributed in the text. The simpler exam-
ples are designed to be done immediately in the lecture room. Students
find this gives an opportunity to review and digest what has just been
said. Also it gives the lecturer a valuable opportunity for feedback.
The longer exercises are there to change the learning from passive to
active mode.
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1. VECTOR SPACE GEOMETRY

Vector spaces. A vector space is a set V', with two operations: addi-
tion of vectors, and multiplication by scalars. In this book the scalars
are always taken to be the real numbers, R.

The first example of interest is the Euclidean space V = R". This
has a standard basis set of vectors

(1,0,0,...,0),(0,1,0,...,0),...,(0,0,0,...,1).

A second set of examples of vector spaces arises by taking V to be a
linear subspace of R¥. In this example, V does not have a standard,
or uniquely specified, basis. Examples of this type turn out to be of
major importance in differential geometry. Therefore it is important
to understand the precise nature of the difference between the vector
space R", and these more general examples.

In general, a vector space possesses many different basis sets of vec-
tors. Every basis contains the same number of elements, called the
dimension of V.

Linear mappings of vector spaces ¢: V' — W are those that preserve
the structure, i.e., the addition of vectors and multiplication by scalars.
An isomorphism is a linear mapping which has an inverse.

Suppose V is a vector space of dimension n. Choosing an ordered
basis set of vectors ey, es,...e, for V is the same thing as specifying a
linear isomorphism R” — V. Given the basis, the linear isomorphism is
defined to be the linear map specified by mapping (1,0,0,...,0) — ey,
etc., ..., (0,0,0,...,1) — e,. This isomorphism R® — V can also be

written
n

(al,ag, .. ,an) — Zaiei.
1=1
The general linear group. Consider the set of all isomorphisms
R"® — R™. This is a group, called the general linear group GL(n).
Let us check that GL(n) is a group.

(1) The composition of two isomophisms ¢; and ¢2 is the map
v +— ¢2(¢1(v)). This linear map is called ¢2¢; and is also an
isomorphism.

(2) The composition of maps is associative

(3) The identity mapping e: R” — R™ is the identity element of the
group.

(4) The inverse of an element ¢ € GL(n) is the inverse mapping,
ie.,

pp = p=re.
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A linear map R™ — R” has a matrix, and conversely, an n X n matrix
determines a linear map. The linear map determined by the matrix of
numbers

P11 P12

21 P22

takes the point © = (z1,z2,...2,) € R" to ¢(z) = (y1,y2 - . - yn ), where
n

yi:Z¢ij$ja 1<i<n.

i=1

So using this identification of linear maps on R™ with matrices,
GL(n) can be thought of as the group of invertible n X n matrices.

Now suppose V is a general finite-dimensional vector space. Then
there is an isomorphism V' — R", but this is not unique. Suppose
¢1, ¢ are any two isomorphisms. If v € V, how are x = ¢1(v) and
y = ¢2(v) related? Obviously y = ¢o¢7 (), i.e. they are related by
a mapping in GL(n). Any element of GL(n) could arise in this way.
Thus elements of the group GL(n) relate the coordinate representations

r = ¢1(v) and y = ¢o(v) of V.

Notation. The general convention will be used that if a € R™, then
the letters aq,...a, will be used for the coordinates of a, i.e.,

a=(ay,as,...a,).

Vectors (elements of R™) are generally written as horizontal row vectors.
Sometimes they are written vertically, as column vectors. There is
no difference in meaning intended; it is conventional to do this when
multiplying a matrix with a vector.

Exercise 1. Define the map y = ¢(z) by

(yl,yz):<z Z) <2;> ad — bc # 0.

Which equation in y; and y, defines the image of the points satisfying
z2 + 22 = 1 under the map ¢?

Geometry. As a general principle: “The objects of a geometry are
those which retain their form under the transformations being consid-
ered.” Some examples:

(1) Circles are not objects of vector space geometry. As we saw in
exercise 1, the image of a circle need not be a circle under a
linear isomorphism.
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(2) A linear subspace S C R™ has the defining property
S1,50 €S = As1 +use €85

This property is preserved under linear mappings ¢, so the set
#(S) = {¢(x) | z € S} is a linear subspace if S is. Therefore
linear subspaces are objects of vector space geometry.

Solution to exercise 1. The values of 1 and x5 for a given point
(y1,y2) can be calculated using the inverse matrix:

B 1 d —=b Y1
(m17x2)_ad_bc<_c a><y2>

Substituting these values into the equation x$ + 23 = 1 gives

m ((dyl — by2)2 + (—cy1 + ay2)2) — 1.

This is a more complicated equation than that for (z1,z2). In general
it will not be a circle but will give an ellipse.

2. AFFINE GEOMETRY

The affine geometry is the second of the ‘special geometries’ which
we are going to study. As in vector space geometry, there is a group of
transformations which characterises affine geometry.

Affine geometry is not too different to vector space geometry. In
vector space geometry, the origin plays a distinguished role. However
in many applications there are objects in Euclidean space R" (e.g.
ordinary ‘space’ of physics) but it does not really matter where the
origin is.

Affine subsets of R".

An affine subset A C R" is a subset of R” with the property that
if a,b € A, then Aa+ pub € A for all \,u € R such that A+ p = 1. In
other words, the straight line through any two points of A is also in A.
Some examples:

(1) A linear subspace L € R™. (Aa + ub € L without any condition

on \, ).
(2) The set x + L = {x + 1|1 € L} for a linear subspace L. This
follows from the calculation

Me+hL)+plx+l)=x+ ANy 4+ ply € z+ L.
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The second example is more general than the first because x+ L need
not contain the origin. It is in fact the most general type of example.
All affine subsets are of the form of example 2. To show that this is
true, fix an element a € A and define

TA,=A—a={x—a|x € A}.

This is called the tangent space to A at a. What we have to show is
that this tangent space is a linear subspace of R”.

Proof. Suppose A € R and + — a € TA,. Then the scalar multiple
Az —a) € TA, because

Mz —a)+a=X x+(1-Na € A.

Now suppose z —a, y —a € T A,. Then the sum (x —a) + (y —a) is in
T A, because

x—a+y—a+a:x+y—a:2<%+y> —a € A
This shows that affine subsets are just ‘linear subspaces with the
origin shifted’. This readily suggests that if a,b € A, then TA, = T A,.
This is true because b —a € TA,, and soif x —a € TA,, so is

(x —a)—(b—a)=x—b.

Exercise 1. Show that for each £ > 1,
k

k
D Nia; € A ifa; € A, and ) X\ =1.
=1 1

Affine maps. An affine map R® — R™ is defined to be a map satis-
fying

f(Aa+ pb) = Af(a) + pnf(b), A+p=1
The affine maps preserve affine subsets, and in particular they map
straight lines to straight lines.

If an affine map is invertible, it is called an affine isomorphism. The
set of all affine isomophisms R"™ to itself is a group, called the affine
group A(n). This group characterises affine geometry.

It is possible to define a notion of an ‘affine space’ by giving axioms,
in a similar way to the definition of a vector space, such that the affine
subsets of R are examples. We do not need to go into this.

There are two important examples of affine isomorphisms of R”

(1) translations = +— z + ¢, for a constant ¢ € R”
(2) linear isomorphisms in GL(n)
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More examples can be made by combining these two. In fact, every
affine map R® — R™ is a linear map R® — R™ composed with a
translation of R™. The proof is an exercise:

Exercise 2. Prove that if f is an affine map, then the map df defined
by

z — f(z) — f(0)
is linear.

Example. The most general affine map f:R — R is given by the

formula f(z) = axz +b. Then df(xz) = az. The coefficient a in this

. . df
linear map is g, for any x.

L

Example. In the figure on the left, there are two concentric circles,
x? + 2 = constant. The line intersects the region between the circles
in two segments; it is easy to see that the lengths of the two segments
are equal. This is because the diagram is symmetrical about an axis,
vertical in the diagram.

Newton wanted to know if the same property is true for the con-
centric ellipses shown on the right. These are given by (x1/e)? + z2 =
constant for some e € R. He proved that they are by applying a linear
transformation L

(z1,72) = (z1/€, T2)

to the right hand diagram. Since this transformation is affine, the line
is mapped to a line. From the left-hand diagram

Since L is linear, a — b = ¢ — d, and so the lengths of the two segments
on the right are equal. Newton used this to show that there is no
gravitational force inside an ellipsoidal shell of matter.



4asiAL 4L AdiAviadA N A A4S AL LAVALALI L ALA e

Solution to exercise 1. There are two strategies for this
(1) Induction. Assume it is true for £ — 1. Then

k k—1 \oas
Na; = (1= L A A.
; a ( k);1_>\k+ KOk €

The special case A\, = 1 can be treated by picking another
term to leave out of the sum, since not all A\; can equal 1. The
induction starts with & = 2 being the definition.

(2) Tangent space.

Z)\iai —b= Z)\z(az — b) c TAb,

since T'Ap is a linear subspace. Hence Y \;a; € A.

Solution to exercise 2.

df( Az + py) = f(Az + py + (1 — X — p)0) — £(0)
= Af(x) + pf(y) + (1= X—p)f(0) — £(0)
= Adf(z) + pdf(y)

Exercise 3. Let a,b,c € R? be three points which are not collinear
(do not lie on a line). Let A, B, C be any three points in R”. Work out
how to define an affine map R? — R” such that

ar— A, b— B, c— C.

What can you say about the image of your map?

Exercise 4. Colours can be obtained by mixing red, green and blue
in any desired proportions, which are given by numbers adding up to
1. Draw a diagram to represent the possible colours, and plot a point
to represent 1/2 blue, 1/4 red, 1/4 green. Explain how the point is
plotted.
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3. EUCLIDEAN GEOMETRY

Euclidean geometry is the study of figures in R™ using the concept
of distance. The length of a vector is |z| = (z? + z2 + ... 22)!/2,
and the distance between two points x and y is defined to be d(z,y) =
|z —y|. The latter concept does not require the origin as a distinguished
point. To be more precise, the concept of distance is invariant under
translations, d(x + a,y + a) = d(z,y).

The space R™ with the distance function d is called n-dimensional
Euclidean space. The 3-dimensional Euclidean space is very familiar
as it is a mathematical model of space for the positions of objects in
physics.

Euclidean space is a metric space. Mappings f:R" — R™ which
preserve the distance function,

d(f(z), f(y)) = d(z,y)

are called isometries. The motions of rigid bodies in physics are exam-
ples of isometries.
An isometry is injective, since f(z) = f(y) implies

d(l‘,y) - d(f(x)’ f(y)) =0,

which implies that x = y. Moreover,
Theorem. An isometry R — R™ s an affine map

Proof. Let p be an affine linear combination of xz,y € R", ie., p =
Ax + py, with A+ p = 1. Then p is the unique point such that

d(e,p) = |uld(z,y) and  d(y,p) = Nd(z,y).

If f is an isometry, then it follows that

d(f(2), f(p)) = |uld(f(2), f(y)) and d(f(y), f(p)) = [Ad(f(z), f()),

which shows that f(p) = A\f(z) + uf(y), i.e., f is affine.

From this theorem, one can easily deduce that any isometry f: R” —
R™ must be invertible. Recall that an affine map is a composition of
the linear map df with a translation. Since translations are always
invertible isometries, it hinges on whether df is invertible. However d f
is linear and injective, so it must be invertible.
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The Euclidean group. The set of all isometries of n-dimensional
Euclidean space (to itself) is called the Euclidean group, E(n). It is a
subgroup of A(n).

There are affine isomorphisms which are not isometries. For exam-
ple, in 1 dimension, f(xz) = az + b is not an isometry unless a = +1.
The linear transformation L in Newton’s example above, or the trans-
formation in exercise 1 of section 1 are examples in more than one
dimension.

Clearly, a Euclidean transformation is a composition of a linear i-
sometry followed by a translation. Hence it is important to characterise
the linear isometries. Linear isometries preserve the square of the dis-
tance of a point from the origin. This quadratic form can be written
in various ways:

d(z,0)? = |z|* = Z:c

Orthogonal group. An orthogonal transformation of R™ is a linear
map L:R® — R" which preserves distances to the origin, i.e.

|L(z)| = |z| for all z.

The set of all linear maps L: R® — R™ which preserve the distance to
the origin is a group called the orthogonal group, O(n).

For linear maps, preserving the distances to the origin actually im-
plies that all distances are preserved, since |L(z)— L(y)| = |L(x —y)| =
|z — y|. Thus orthogonal transformations are isometries (and hence
invertible).

Polarization. Orthogonal transformations actually preserve all dot
products. This follows from the ‘polarization identity’

(z—y) - (z—y)=2"+y"— 22y

This shows that L(z) - L(y) = x - y.

Summary. We have seen in three cases, vector space geometry, affine
geometry and Euclidean geometry, that the geometry is characterised
by a group of transformations which preserves the structure of interest
(such as linearity or distances).

“The properties of objects in a geometry are those which do not
change under the transformations of the geometry.”
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Exercise 1. Let * # y € R2. Draw a diagram to show the set of
points p satisfying d(z, p) = |u|d(z,y) and the set of points p satisfying
d(y,p) = |A|d(x,y). Explain why there is only one point p satisfying
both equations if A + ¢ = 1. Be sure to include the cases where A or p
is negative.

Exercise 2. Let L: R™ — R" be an orthogonal map. Write the relation
L(z) - L(y) = = -y in terms of the vector components z; and y; and the
matrix Lij

Show that this orthogonal matrix satisfies

Z Li;j Ly, = bjk,
=1

where ;1 is the identity matrix. Conversely, check that any such matrix
gives an orthogonal transformation.

Take the determinant of each side of this equation to find the possible
values for det L, and give an example of a 3 X 3 orthogonal matrix
exhibiting each of these values.

Exercise 3. Show that all elements of O(2) are either

cosf sinf
—sinf cosf

for some value of 6 or have another form, which you should find.

Give a geometrical interpretation of both forms. Find an element of
GL(2) with determinant 1 which is not in O(2).

4. THE PROJECTIVE LINE

The last of the four special geometries studied here is projective
geometry. The space for this projective geometry is projective space,
which is distinct from Euclidean space, and there is one such space
in each dimension. The one-dimensional space is called the projective
line.

Motivation. The projective line can be introduced by considering pro-
jections, such as arise in perspective drawing. Consider two (straight)
lines m and ! in R?, which meet, and a point p which lies on neither
line. The projection from line [ to line m through the point p takes
a — b, as shown in the diagram.
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This does not quite define a map [ — m because the point ¢, lying on
a parallel to m through p, does not project onto m. However consider
the map
[U{o0} = mU {0}

which takes

a+—b as shown, for a # ¢, 00
¢ — 00

00 — d.

This map is a bijection, the inverse being the projection from m to [.
Infinity is to be regarded as an extra abstract point, which is added to
each line in order to make the projection well-defined.

Example. A concrete example is given by considering p to be the
origin, [ to be the line \ — ()\xo, (1— )\)yo), with xg, yo not both 0,
and m to be the line A" — (A} 1), for A\, A" € R.

The projection from [ to m is given by

A iy
Aanl_AyO '_>< _71>
with also (z¢,0) — oo and 0o +— (—zg/yo, 1).
The parameter for each line gives an identification of each line with
R. The projection takes parameter A on line [ to parameter

AT

N =
(1_>\) Yo

on line m.
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The definition. The projective line P! is defined to be the set of
equivalence classes of the plane with the origin removed, R? \ {0},
under the relation v ~ pv, for p # 0 € R. If a point p € P! is the
equivalence class of (z,y), this is written p = [z : y|, and is called the
ratio of = and y.

The pair of numbers (z,y) are also called homogeneous coordinates
for the points p € P. It is worth noting that these are not coordinates
in the strict sense to be used later on, because (z,y) is not uniquely
determined by a given point p € P!. However the term ‘homogeneous
coordinates’ is standard in this situation, and so we shall use it.

Each point of the projective line can be identified with a unique line
through the origin in R?, and this is a useful way of thinking of the
projective line.

The projective line P! can be viewed as R U {co} in many different

ways. Take any two linearly independent vectors u and v. Then the
line I: R — R?

A= Adu+ (1= Ao

is not through the origin. This determines a map R — R? — P! by
taking equivalence classes.

There is one point of P! not in the image of this map, namely the
equivalence class of vectors parallel to [. This point is identified with
00.

Projective transformations. Elements of GL(2) preserve the equiv-
alence relation v ~ pv in the definition of P!, i.e. if A € GL(2), then
Av ~ pAv is true whenever v ~ pv. Therefore A determines a trans-
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a
C

formation of P!. If A = < Z), then the transformation is

[z :y] — [ax + by : cx + dy]

Inhomogeneous coordinates. As noted above, the homogeneous co-
ordinates (z,y) of a point [z : y] in P! are not uniquely determined.
However the inhomogenous coordinate z = z/y is uniquely determined
by [z : y]. This is a real number if y # 0. If y = 0, it can be taken to
be oo.

Using the inhomogeneous coordinate to identify P! with R U {oo}
is the same as considering the identification determined by the line m
given by A — (A, 1) in the example above. This is because

[z :yl =[z/y: 1].

Using the inhomogeneous coordinate, the formula for a projective
transformation becomes
r  (ax+by) (aX+Db)

A= — = )
Y ~ (cz + dy) (cA +d)

Taking the special case a = xg/yp, b = 0, ¢ = —1, d = 1 gives the
formula given in the example.

Question. Why should the formula in the example be a projective
transformation? This point has not been made clear so far, but is
worth thinking about.

Exercise 1. Which matrices A € GL(2) give projective transforma-
tions for which [1 : 0] — [1 : 0]? Give the formula for the transformation
using the inhomogeneous coordinate. What type of transformation of

R is this? Determine all the projective transformations for which both
[0:1] — [0:1] and [1:0] — [1:0].

5. PROJECTIVE GEOMETRY

The considerations for the projective line extend to the case of more
than one dimension in a straightforward way.

The n-dimensional projective space P™ is defined to be the set
of equivalence classes in R"*! \ {0} under the relation v ~ pwv, for
p # 0 € R. The general linear transformations A € GL(n + 1) give
mappings of R*t! which respect the equivalence relation, and so deter-
mine bijections of P™. These are called projective transformations, and
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the set of all projective transformations is called the projective group,
PGL(n + 1).

More than one element of the group GL(n+ 1) gives rise to the same
projective transformation. This means that PGL(n + 1) is not equal
to GL(n + 1), but is a quotient group. Matrices that give the same
projective transformation as A € GL(n + 1) are the scalar multiples,

AA, for X # 0.

A point
21 im0 : ... 2py1] € P
has homogeneous coordinates (z1,z2,...,Z,+1), and inhomogeneous
coordinates (z1/Tp11,%2/Tnt1,--- »Tn/Tne1) which are valid if z,, 11 #
0. The points
(1 ix9 ...t 2y 0]

are called ‘points at infinity’, and there are, for n > 1, more than one
of them.

Example. In the projective plane P2, the points [1 : 0 : 0] and [1 :
1 : 0] are both points at infinity, but (1,0,0) # u(1,1,0) for any p, so
[1:0:0]#[1:1:0].

Equations in projective geometry.

Historically, one of the reasons for the development of projective
geometry was its use in simplifying equations. Consider for example
the inhomogeneous equation

au? +buv +cv’ +du+ev+ f =0

whose solutions are points (u,v) € R%. This equation can be rewritten
in terms of 3 variables by the substitution v = z/z, v = y/z as

Q(z,y, 2) = ax® + bxy + cy® + dzz + eyz + f2° = 0.

This equation is homogeneous, meaning that all the terms are of the
same degree. This implies that if (x,y,z) is a solution, then so is
(pz, py, pz). Therefore (z,y,z) can be regarded as the homogeneous
coordinates in projective space P?, and the solutions define a subset of
P2

The importance of writing the equation in this form is that projective
transformations can be applied to homogenous equations, which allows
the coefficients (a,b,c,d, e, f in this example) to be simplified.
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The function () in the homogeneous equation is a quadratic form on
R3. A projective transformation of P? is given by a linear transfor-
mation L of R3. If the image of (z,y,2) is (2',y',2") = L(z,y, 2) the
equation for x,y, z can be reexpressed as an equation amongst the new
variables z’,4’, 2’. This new equation is also homogeneous of degree
two, and is given by a new quadratic form @’ on R3 obtained from @
by a similarity transformation: Q'(z',v’,2') = Q(L~(2',y',2")) = 0.
Quadratic forms are similar to a finite number of canonical forms.

Example. If the quadratic form () is positive definite, then it is similar
to

w2 +y? +22 =0,
and the original equation in inhomogeous coordinates becomes

w402 4+1=0

after the projective transformation. In this case there are no solutions
for [z :y: 2] € P2

Exercise 1. The points of P™ = {[x1 : 2 : ... : £,11]} can be split
into two disjoint subsets, as z,+1 # 0 or x,41 = 0. Give a bijection
of the first subset with R™. The second subset is called the ‘points at
infinity’. Find a bijection of the points of infinity with P?~1.

Give a decomposition

PrRPUR*TUR2U...REURC.

Exercise 2. Explain how the equation for a line in R?
ary +bxys+c=0

for constants a, b, ¢ € R can be written as an equation in P2. How many
points in P2 solve the corresponding equation which do not correspond
to solutions in R2?

Give the equations of two parallel lines in R?2. Where do these lines
meet in P??

Exercise 3. Show that the equation of the line joining two distinct

points [ay : by : c1], [ag : ba : c2] in P? is

T Yy y4
det a b1 C1 =0.
a9 b2 Co
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6. SMOOTH FUNCTIONS

The functions we are mainly concerned with are those that can be
differentiated. One could work with the set of all differentiable func-
tions, but this is inconvenient, because the derivative of a differentiable
function need not be itself differentiable. Therefore we shall work with
functions which can be differentiated any number of times. These are
called smooth functions.

Functions of one variable.
Definition. A function f:R — R is smooth if f and each derivative
d" f

dx™

exists for every x € R and is a continuous function of x.

Often you can show a function is smooth by giving the formula for
all the derivatives.

Examples. Most familiar functions from calculus are smooth:
d"f _

dx™

(1) Polynomials are smooth, as 0 for n greater than the
order of the polynomial.

(2) The standard functions sin(z), cos(x), exp(z) etc., are smooth.

(3) More generally, an analytic function defined on C defines two
smooth functions, its real and imaginary parts, when its domain

of definition is restricted to the real axis.

Exercise 1. Are these functions smooth?

(1) Vil ceR

(2) coslz -1l<z<1
(3) 2
{e‘l/‘” z >0
I
0 z <0

The second example illustrates a use of the inverse function theorem

for one variable 4 1
o),
dz dy

this will subsequently be generalised to R™. It is also worth noting that
it makes sense to ask about the smoothness of a function defined only
on a part of R, namely the open interval —1 < z < 1.

The properties of differentiable functions carry over in a straightfor-
ward way to the case of smooth functions. Given smooth functions f,
g, then the following are smooth:

(1) Linear combinations z — Af(x) + pug(x)
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(2) Product fg:x — f(z)g(x)

(3) Composite fog:x — f(g(x))

The second of these is proved by using the Leibnitz rule, which gives
a formula for the derivative:

d(fg)
dx

This can be used to give a proof that fg is smooth if f and g are.
Iterating Leibnitz rule gives

o) g () 4T 4
dzn — k) dx* dzn—*"

The right-hand side is the sum of a product of continuous functions
and so is continuous.

The third of these is similarly related to the chain rule, which gives
the derivative of a function of a function. Let f be given as a function
of y, g be given as a function of .

d(fog) df
&~ dQ (g(af)) dm

df

f da:

The notation is potentially confusing. The formula g—i(g(x)) mean-
s write f as a function of y, differentiate it with respect to y, then
substitute g(x) everywhere for y. For example, if f(y) = y> + y and
g(x) = cos(x), then

% =y 1L g (e(@) = g(@)’ +1=cos’(@) + 1.

Functions of several variables.
If f:R* — R™ is a function, then it has m component functions
fi:R®* - R, ¢ =1...m, given by

f(:C) - (fl(x)afZ(x)’ K ,fm(l‘)) .

Definition. A function f:R"™ — R™ is smooth if the components
(f1, f2y.-., fm) of f and each of their partial derivatives

ofi  0°f; i=1,...m
’8xj’8a:j8xk"" j,k‘:1,...n

fi

exist and are continuous functions of z.
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Exercise 2. Work out the partial derivatives for the components of a
linear map f:R"” — R™ given by

n
fir(m1,... wn) = > Lijx;.
=1

Show that a linear map is smooth.

Smooth functions can be combined in a similar way to the one-
variable case, by linear combinations Af 4+ ug of two functions f, g
from R” to R™, by the product fg of two functions R — R, and by
composition of f: R® — R™ with g: R™ — RF to give a smooth function
go f:R* — RF,

Exercise 3. Which of the following functions R? — R are smooth?

(1) V2 +y?
(2) V1+a?+y?

(3) ey sinz

The chain rule for several variables. First, consider a special case.
Let c:R — R™ and h:R™ — R be smooth functions. Then the com-
posite is

hoc:t— h(Cl(t),Cz(t), . ,cm(t)).

The chain rule for differentiating this is

hoc i dcl

This formula is a sum of a product of continuous functions and is there-
fore a continuous function. By repeated application of this formula, and
the Leibnitz rule, one can arrive at a formula for the n-th derivative,
thus showing that h o ¢ is smooth.

Exercise 4. Put c(t) = (t?,t3), and suppose h is a smooth function
R? — R such that h(c(t)) = t.

(1) Differentiate both sides of h(c(t)) = ¢, using the chain rule.
(2) Set t = 0. What does this tell you about h? How does this
relate to the image of c?
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The general case. If g:R™ — R™ is a smooth function of x and
f:R™ — R* a smooth function of y, then

0 0 8fz agl
axj (fog) 8 flog Zayl 8.’,UJ
This follows from setting c(t) = g(z1,... ,z; +t,...,... ,xn), h = fi,
and computing
d
T (h o c)

at ¢ = 0. The formula can be interpreted as the multiplication of a
k X m matrix with an m X n matrix.

% 8f1 891 3g1
8y1 IS 8ym 8%1 .« . axn
Ok Ofk 9gm 99m
0y1 o O0Ym o1 T oz,

Exercise 5. Consider the functions

g:U — R?, U=A{(r0)|r >0}
(r,0) — (rcosf,rsinf)

f:R? - R?
(z,y) — (2 — y*, 2y)

(1) Give reasons to show that f and g are smooth.

(2) Calculate
0g1 0g1 9fs Of1
or 00 ox Jy
992 dg2 || 9f2 Of2
or o0 oz Oy

(3) Work out a formula for fog, and its matrix of partial derivatives,
without using the chain rule. Show the chain rule is satisfied
by multiplying matrices.

Diffeomorphisms.
A smooth functions f with a smooth inverse f~! is called a diffeo-
morphism. This satisfies

fo f~! =identity and f~1o f = identity.
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It can be regarded as defining new coordinates. The figure shows the
(x1, z2)-coordinate axes of R? and the new axes for (uy,us) = f(z1,z2),
for some diffeomorphism f. Geometric objects defined in terms of the
old coordinates can be defined in terms of the new coordinates, and
vice versa, using (z1,z2) = f~H(uy, uz).

Exercise 6. Suppose f:R" — R" is a diffeomorphism, with inverse g.
Apply the chain rule to f o g. What can you say about the matrix of
partial derivatives of f7?

Solution to exercise 1.
(1) The function is not differentiable at x = 0:

lim f(@) = 1(0) = lim - = = +o00.
z—0 T x
(2) If z = cosy, then g—;’ = —siny = —vV1—22 # 0. The in-

~1
Ji—a?
can be repeatedly differentiated to give formulae for the n-th

derivative, since z2 < 1.
(3) All the derivatives of the function exp(—1/z?) converge to 0 as
x — 0, so the given function is smooth.

verse function theorem tells us that j—z = . This formula

Solution to exercise 2. gj: ; = L;;, a constant. All further derivatives

are zero.
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Solution to exercise 4.

. Oh Oh
22— + 3t — =1.
(9.’131 * 8:132
(2) Setting t = 0 gives 0 = 1. Hence h cannot be smooth. (However
a continuous h can be found. An example is h(z1,z2) = ¢x3.)
The image of ¢ has a cusp at £ = 0, a point where the curve is

not smooth. The curve is called the semicubical parabola.

7. THE DERIVATIVE

A function f:R* — R has a derivative df, at a given point z € RF
if there is a linear map df,: R¥ — R’ and a continuous function e: R¥ —
R! such that

f(@+h) — f(z) = dfs(h) + |hle(z + h),
and
e(z) = 0.

The formula can be solved for € as long as h # 0, and this formula
for € is continuous where h # 0 (assuming f is). So the crucial point of
the definition is that the error € converges to 0 as h — 0.

Lemma. The derivative is unique.

Proof. Suppose another linear map L also satisfies the definition, with
error ¢ . Then

df,(h) = L(h) = |h|(e(z + h) — €' (z + R)).



Consider h = ty for a fixed vector y and ¢t — 0 € R. Then this becomes

t(dfze(y) — L(y)) = tlyl(e(z + ty) — €' (z + ty)).

For ¢ # 0, the number ¢ cancels on both sides, giving

dfa(y) — L(y) = lyl(e(z + ty) — €'(z + ty)).
But as € and €' are continuous, this equation is also true at t = 0. At

t = 0, the right-hand side is zero. It follows that df, = L.
For a fixed point p, the map R¥ — RR!

z = f(p) + dfp(z —p)

is an affine map which approximates f at p. Clearly, if f is itself affine,
then the approximation is exact, and the derivative is the linear map
df defined earlier for affine maps, and does not depend on p. However
if f is not affine, then the linear map df, does vary with p.

y

p
The affine approximation to f at p

Exercise 1. Let f:R® — R™ be a linear map. Use the definition to

show that df, = f, for any =.

Let h:R" — R™ be an affine map. Show that dh, = dh,, for any
x,y € R™, and that this linear map coincides with the map named dhA
in the section on affine maps.

Lemma. If f:RF — R! is a smooth function, then the derivative df,
exists for every x, and has as its matrix the partial derivatives

of1 of1
0x1 U oxy
9fi 9fi

8:[:1 vt 8:Ek
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Proof. Given h € RF define a sequence of vectors

hO:O
= (h1,0,0,...,0)
= (h1, h2,0,...,0)

h* = (hi,ha, hs, ..., h) = h

The superscript is used to distinguish different vectors h™, as distinct
from the subscript, which denotes the components h,, of h as usual. The
sequence of vectors is constructed so that it interpolates between 0 and
h, with each successive pair h”, h”~! differing only in one coordinate,
hy. Then, using the mean value theorem for this coordinate,

filz +h™) — fi(x + h""1) = h, af (z 4 c"),

where the vector ¢” lies on the line between A™ and A"~ L.

n-th axis
® K"
c"e
hn—l
0 ° other axes

Summing this equation over n gives

S Ofi L,
fi(x-l-h)—fi(m):Zhnax (x +c™).
n=1 n

This expression gives the ¢-th component of a vector obtained by a ma-
trix of partial derivatives acting on the vector h. The partial derivatives
are evaluated at points x + c™.

For |h| # 0, define € = (€1, €2, ... ,€;) by the equation

(+) filz + 1) - fi(z) = Zhnggi (2) + [hle:.
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Then

_Z\h\ (o) = 52w

which converges to zero as h — 0, because the difference of partial
derivatives converges to zero, and —1 < h,,/|h| < 1. This shows that
the vector € is continuous if €(x) is defined to be zero.

Equation (%) is just the i-th component of the equation defining
the derivative, with the linear map d f, given by the matrix of partial
derivatives at .

Chain rule for derivatives. In the light of this lemma, results about
the partial derivatives can be transcribed into the new notation. The
chain rule becomes

d(f © g)x = dfg(:v) o dg:c
Exercise 2. Let f:R — R. What is df1(2) in the usual % notation?

Exercise 3. Let f(z,y) = (2* + y?,2* — y?). Calculate df, ,) using
partial derivatives. Work out a formula for € in the definition of the
derivative of f, and verify that e — 0 as h — 0.

Exercise 4. Give a proof of the chain rule by applying the definition
of the derivative to d(f o g), dfy() and dg,, and manipulating the
three error terms.

8. OPEN SETS

Quite often we need to define smooth mappings not on the whole of
R™, but on certain subsets. For example x — cos x is a diffeomorphism
of the open interval 0 < x < 7 to the open interval —1 <y < 1.

Another requirement is to discuss the behaviour of a function is a
‘small region around a point’.

Balls. In Euclidean space R™, the distance d(z,y) = |z — y| can be
used to say when points are close. If r is a number greater than zero,
then the ball of radius r at z € R™ is defined to be

By(z) ={y € R" | d(z,y) <r}

The ball is the subset of points closer to z than the radius r.

However, as we have already seen, there are many maps of interest,
affine maps for example, which do not preserve distances. Therefore
it is necessary to have adopt a sophisticated approach to the idea of
closeness of points.
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Open subsets of R". An open subset P of R" is defined to be a
subset which is a union of balls in R, B,.(z), for points x € R™, and
radii » > 0. Note that the union can be over any set of balls, not
restricted to finite or countable, and of course x and r vary.

Examples.

(1) A ball

(2) The intersection of two balls

(3) The empty set

(4) The whole of R”

The second example is an open subset for the following reason. If
p € P = B.(x) N B(z'), then p is the centre of a ball of radius
min(r — d(p, x),r — d(p,x’)), which is contained in P.

So P is the union of all the balls constructed in this way for each
p e P.

A point y € Y is called an interior point of Y if there is an r such
that B,(y) C Y. The set Y is an open set if and only if every point of
Y is interior.

Exercise 1. Which of the following subsets of the plane R? are open
sets? Points (x,y) such that:

(1) >0

(2) >0

3) z+2y=0

(4) 2* >y’

(5) 2™ 4 y™ > 1 for every positive even integer n.

If U C R™ is an open subset, then a function defined on U, rather
than the whole of R, can be differentiated in just the same way for any
point x € U. For example, to define a partial derivative of f: U — R,

af — Im flz1,...,zj+h,... ,z,) — f(x)
8.’17] h—0 h

the function f needs to be evaluated at points close to = along a line
parallel to the z; axis. Such points are in the set U, because it contains
the whole of a ball centred on .
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This means that all of the previous definitions for differentiation also
make sense for functions defined on an open subset of R”.

Example. The function f:R? — R? defined by (z,y) — (22,y) is a
smooth map but is not a diffeomorphism. However if U is the open
subset of R? defined by = > 0, then the same formula gives a diffeo-
morphism U — U. The inverse function is (z,y) — (\/z,y).

Open subsets of X C R™. Now let X be a subset of R™, not nec-
essarily an open subset. For example, X could be an affine subset of
a lower dimension, or a manifold (see below). An open subset of X is
simply any set of the form X N U, where U is an open subset of R”.

Now consider X C R*, Y ¢ R*¥ and f: X — Y a continuous map-
ping. If V C Y, its inverse image, f (V) is the set of all points z € X
which map into V.

Continuous mappings respect open sets in the following way:

Proposition. For f: X — Y, the inverse image of an open subset
V CY is an open subset of X.

The situation is simpler if f has a continuous inverse mapping f~'.

Proposition. Let X ¢ R® and Y C RF. If the continuous function

f: X =Y has a continuous inverse f~1, then U C X 1is an open subset
of X if and only if f(U) CY is an open subset of Y.

9. INVERSE FUNCTION THEOREM

Suppose f:R™ — R” is a diffeomorphism. Then the derivative df,
is an invertible linear map for each x. Is the converse true? Suppose f
is a smooth map and df, is invertible for all x. Is it a diffeomorphism?
If n = 1, this is true. The inverse function theorem for one variable
1S
Theorem. If f:R — R has non-zero derivative % for every x, then
the inverse function exists and s differentiable.

It is not too hard to extend this to proving that the inverse is smooth.
If n > 1, it is not true. Consider the mapping

g(x,y) = (e” cosy, e” siny).

This has derivative

d [ €e*cosy —ePsiny
I(zy) = | e siny e*cosy
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which is invertible. However, g(x,y) = g(z,y + 27).

This shows the inverse can not exist on the whole of R?. However,
the idea of the definition of the derivative is that a smooth function
f is approximated near a point z by an affine map. If x is a regular
point, this affine map is invertible, so we expect the original function
f to be invertible when its domain and range are restricted to some
sufficiently small regions around z and f(z).

Inverse Function Theorem. If U C R" and V C R" are open sub-
sets, f:U — V is smooth, x € U and df, is invertible, then there are
open subsets U' C U, V' C V such that x € U’ and f restricted to U’
is a diffeomorphism to V'.

Exercise 1. Are the following functions R> — R? diffeomorphisms?
If not, is there an open set containing the origin on which the function
is a diffeomophism to its image? Give the reasons for your answers.

(1) (z,y) = (= +9°,y)

(2) (z,y) — (z+2°,2)

(3) (m, y) — (z +2%,y)

(4) (z,y) — (z° +yz,y)

(5) (z,y) — (2® +yz + z,y)

Exercise 2. Consider g(z,y) = (e” cosy, e”siny). Verify that dg, )
is invertible for all (z,y) € R?. State how the inverse function theorem
applies to the behaviour of g near to the point (z,y). Now verify
that the inverse function theorem is true in this case by giving explicit
formulae and a domain for the inverse function.

10. CATASTROPHE THEORY

Let f be a smooth function from R” to R®. The points € R" for
which the linear map df, is not invertible are called singular points of
f. The corresponding y = f(z) are called singular values of f. Points
which are not singular are called regular points, and values of y which
are not singular values are called regular values of f.

We shall study two basic examples in R?.

(1) The standard fold

(y1,92) = f(®1,22) = (ﬁ,@)-

The matrix of partial derivatives is

2.’1710
0 1
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This is non-invertible (singular) for z; = 0, giving the singular
points. The singular values are on the line y; = 0. The be-
haviour of f can be plotted in the y;-y, plane. For each (y1,y2),
the number of points (z1, z2) such that (y1,y2) = f(z1,z2) are
plotted. It is noteworthy that the singular values lie where the
number changes. The resulting diagram is called a bifurcation
diagram.
(2) The standard cusp

Y1,Y2) = g\r1,T2) = 1 T T2T1,T2).
( ) = g( ) = (27 + )

Exercise 1. Calculate the determinant of the matrix of partial deriva-
tives of the standard cusp g to find an equation in (z1,x) for the sin-
gular points of g, and an equation in (y1,y2) for the singular values of
g.
Verify that the number of points mapping to (y1,y2) is the number
of roots of the cubic
3+ yot = y1.

Compute the stationary points of h(t) = t3 + yot, and draw its graph

for yo < 0, y2 = 0 and yo > 0. For each of the three cases, work out

the ranges of y; for which h(t) = y; has one, two or three solutions.
Draw the bifurcation diagram for g.

Exercise 2. Give an example to show that a function can map a reg-
ular point to a singular value.

If g:R?> — R? is the standard cusp, with the coordinates named as
y = g(z), then using new coordinates 2’ = h~1(z) results in a more
general form of cusp, y = g(h(z")), with the same bifurcation diagram
but different regular points. This follows from the chain rule: the
matrix

d(goh);

/
o
is singular at a point z’ if and only if the matrix

dgi
BZUJ'

is at the corresponding value x = h(z’). Similarly, one can change the
y coordinates, by y’ = l(y) which results in the cusp 3’ = I(g(z)) with
different singular values, but corresponding smoothly with the singular
values for the standard cusp g.
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Whitney’s theorem. Whitney showed that a generic smooth func-
tion F: R?> — R? has singular points which are all either cusps or folds,
expressed in some coordinates z’, y’, which are related to the standard
x, y coordinates of the standard cusp or fold by a diffeomorphism.

The adjective generic refers to a ‘typical’ function F'. This means
that if a function f does not obey Whitney’s theorem, then there is a
function € with arbitrarily small values, such that F' = f 4+ € does.

This result is fairly difficult to state precisely, and also hard to prove.
We shall just explore its content with examples and applications of the
idea.

Surface projections. The standard fold and cusp can be viewed as
projections of smooth surfaces in three-dimensional space. The fold
and cusp are the composite mappings R? — R3 — R?

(mlamZ) - (117%,372,.’171) - (117%,{132)

(mlamZ) - (117? + .’172.’13'1,1172,.’171) - (117? + 37237171’.2)

The first map in each line parameterises a smooth surface in three-
dimensional space, and the second map projects it onto the plane R?
by ignoring the third coordinate value, as one would see by viewing
the surface from a direction along the third coordinate axis. Here are
two views of the cusp surface in R3. The second view is the projection
given above.
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According to Whitney’s theorem, the projection of any surface to
the plane will generically have singularities of these types. This can be
seen by examples, or by experimenting with real objects. The figure
shows the projection of a glass torus, in which four cusp points can be
seen, with the lines corresponding to folds.

Exercise 3. List a number of qualitatively different ways that the
pattern of folds and cusps can change when you rotate an object. Hint:
start by considering walking past a camel with two humps.

Other patterns of change can be obtained by viewing the camel
humps in different ways.
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Exercise 4. Consider the stationary points of the function

V(z)= 3334 + %aazQ + bx
for constants a,b € R. How does the number of these vary as the pa-
rameters a, b vary? Draw the graph of V for each qualitatively different
set of parameters (a,b).

Find the equation satisfied by the stationary points of V. How do
these values (a, b, x) relate to the standard cusp? The minimum points
can be thought of as places where a ball rolling in the potential V(x)
comes to rest. Suppose the ball sits at a minimum point, and the
parameters (a, b) are varied slowly and smoothly.

How do the minima of V' behave as (a,b) vary? Answer this question
by drawing various possible trajectories for a curve in the a-b plane (the
bifurcation diagram). Assume that if the minimum point at which the
ball sits disappears, then the ball jumps to a new minimum point by
rolling downhill.

Show how the following phenomena occur

(1) (Catastrophes) Discontinuous jumps in the position of the ball
(as just described).

(2) (Memory) The position of the ball depends on its past history
as well as the values of (a,b).

(3) (Hysteresis) Reversing the path of the parameters (a,b) does
not reverse the path of the ball.

(4) (Divergence) The final position of the ball depends not only on
the initial position and the final parameters, but also on the
path taken by the parameters in the a-b plane

Exercise 5. Use the library to find practical applications of the cusp
catastrophe described in the previous question. Which of the described
phenonema occur in your examples?
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11. MANIFOLDS

Examples of surfaces. Some examples of surfaces have already been
used, for example in the discussion of the cusp singularity. If f: R? — R
is a smooth function, then the graph of f, namely the set of points
(z,y,2) € R3 such that z = f(z,y), is a surface. Let us name this set
M.

The set M has parameters and coordinates, defined as follows. The
function 7: R? — M defined by (z,y) — (x,y, f(a:,y)) is called a pa-
rameterisation of M. The function ¢: M — R? given by

(z,y, f(z,y) — (z,y)

is called a coordinate function (or just coordinates) for M. Each com-
ponent of this function is called a coordinate, i.e., the functions giving
the value of x or y. The parameterisation and coordinate functions just
defined are inverses of each other,

is the identity map.
There are more general surfaces than graphs of functions, however.
Just one example will suffice for now: the sphere $? C R3? defined by

{(z,y,2) [ 2" +y* + 2" = 1},

Clearly, the sphere is not the graph of any function. Also, the sphere
does not have a parameterisation in the same way; there is no smooth
bijection R? — S2.

The property the sphere does have is that there are locally param-
eterisations and coordinates. For each point p € S?, there is an open
subset V of the sphere containing p, and an open subset U C R?, and
a parameterisation

U — V.

Example. The spherical polar parameterisation is the map U — V C
52 defined by

(0, ¢) — (sin B sin ¢, sin f cos ¢, cos )

and is defined on the set U C R? given by 0 < 8 < 7, 0 < ¢ < 27. The
image V is the open subset of the sphere given by excluding the points
(z,y,z) such that z =0 and y > 0.
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Spherical polar coordinates are the inverse of this mapping, V — U.

The definition of a manifold will generalise this idea. A manifold is
a subset of R™ which has local parameterisations and coordinates from
open subsets of R¥. We say that a manifold is a ‘locally Euclidean’
subset of R"™.

Functions defined on subsets of R".
Smooth functions have been defined already when the domain is an
open subset of R®. Now follows the definition for an arbitrary subset.

Definition. Let X be any subset of R”. A function f: X — Y C R™ is
called smooth if for every point x € X there is an open subset U C R"
so that U contains z, and a smooth function F: U — R™ which agrees

with f on the open subset V =U N X of X.

U

As before, if f is smooth and f~! is also smooth, then f is called a
diffeomorphism.

Exercise 1. Let L C R” be a linear subspace, and f: L — R™ a linear
map. Is f smooth?

Exercise 2. Define X = {(z,y)lry = 1} € R?, and f: X — R by
(z,y) — v/x2 + y2. Is f smooth?

Exercise 3. Define X = {(¢%,#3) | t € R}, and the function f: X — R
by (t2,t3) — t. Is f smooth?

Exercise 4. A function is defined on the line L C R? which passes
through two distinct points a,b € R? by

f(a + (1 —X)b) = \?

What is the definition of a smooth function defined on L? Construct a
function F' on the whole plane which agrees with f on L.
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Definition of a manifold. A set X C RF is called a manifold of di-
mension n if for every x € X there is an open subset U C X containing

x, and an open subset V C R”, such that there is a diffeomorphism
from U to V.

This diffeomorphism is called a coordinate function, and its inverse
a parameterisation of X.

Terminology. The open subsets U C X in the definition of a man-
ifold, together with the diffeomorphism to V' C R™, are often called
coordinate charts, or just charts. A collection of charts is said to cover
X if every point x € X is in at least one of them. Such a collection
is called an atlas for X. Coordinate charts are also called coordinate
patches.

Part of an atlas
Examples of manifolds.

Open subsets. The most elementary examples of manifolds are given
by taking X C R™ to be an open subset. Then U = V = X and the
diffeomorphism in the definition is the identity map. These examples
include R" itself.

Graphs. A large class of examples of manifolds are given by the
graph of a smooth function defined on an open subset W C R"*, f: W —
R™. This is the set X = {(w, f(w))|lw € W} C R**™. The diagram
shows a one-dimensional example.

To show that this set is a manifold, take U = X and V = W in the
definition of a manifold. The parameterisation is z — (z, f(z)) and its
inverse is (z, f(z)) — .
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y=f(x)

-~ =

The graph of a function

Example. The upper hemisphere U™ C R**! is the subset

n+1
1=1

This is the graph of the function B;(0) — R defined by

Spheres. The n-dimensional sphere 8™ C R*t! is defined as the set
of all points satisfying
Z r? = 1.

S™ is a manifold. This is because any point x € S™ is contained in a
hemisphere for one of the axes. For example, if 2.1 > 0 then x € U".
If 2,41 < 0, then z is contained in the lower hemisphere L™ = —U™".
If xp,+1 = 0, there is another coordinate, xj, which is not zero, and
then x is contained in a hemisphere defined by taking zj to be the
independent variable, instead of =, 4.

Therefore S™ is the union of a number of open subsets U (the hemi-
spheres) which are diffeomorphic to an open subset of R, as required
in the definition of a manifold.

Torus. Manifolds of dimension 2 are called surfaces. These arise
most naturally as subsets of R3, according to our everyday experience.
An example we have already met is S? C R3. Another example is the
torus. This can be drawn by first drawing a circle of radius 2 in the
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x — y plane, then taking each of these points as the centre of another
circle of radius 1, lying in a plane through the z-axis.

Following this idea through, leads to a definition of T C R3 as the
subset of points satisfying

2
(\/x2—|—y2—2) +22=1

It is possible to show that T is a manifold directly, by finding a set of
coordinate charts which cover T', as was done for the sphere. It also
follows from an exercise below.

V4

Groups. The groups which arise in the special geometries have sets of
elements which are labelled by continuous parameters. In this situation,
it is natural to ask whether these sets are manifolds. The group GL(n)
is the set of all invertible matrices; thus the matrix entries can be taken

as n? coordinates. This is a map GL(n) — R™ given by

aill “e a1n
= (all,alg, <. ,ann)

anl e ann

It is often convenient to regard GL(n) as a subset of R" , as the re-
arrangement of the matrix entries as a vector is of little consequence.
The condition on the matrix A for it to be invertible is det A # 0,
which is a polynomial equation in the matrix entries. For example, for
n = 2, this is
ai1622 — ai2621 7 0.
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This defines an open subset of R"”. In general, this is because the map
det: R™ — R is continuous, and GL(n) is the inverse image of R \ {0},
an open set. Thus GL(n) is an n?-dimensional manifold.

Various subgroups of GL(n) are also manifolds. For example, the

group of n x n orthogonal matrices, O(n), is a manifold of dimension

sn(n —1).

Alternative definition. Many books use an alternative definition of
manifold, as a set X which is a topological space, and an atlas of
coordinate charts for X. Thus X is not regarded as a subset of R™.
There are conditions on the atlas for this definition to make sense, and
the main disadvantage of this method is that these conditions require
much more technical effort to explain. There is no more generality in
this as the set of manifolds obtained by the alternative definition is
equivalent to the set of manifolds defined here.

Exercise 5. Let U C R3 be the upper hemisphere
(@ 2)a® +3° + 22 = 1,2 > 0}

The map f: U — R? is defined by (z,y, 2) — (z/z,y/z). Give a formula
for the inverse function f=!. Is f~! smooth?

Exercise 6. The spiral S C R? is the set of points of the form
(e? cos B, e? sin §),

for # € R. Sketch S. Now consider the function f:S5 — R defined by
(€? cosf,e? sinf) +— 6. Consider a point z € S, and suppose the ball
B,.(x) does not contain the origin (r < |z|). Show that there is a map
F: B,(x;R?) — R which agrees with f by giving an explicit formula.
What goes wrong if r > |z|?

Is the original function f smooth? Is S a manifold?

Exercise 7. Give a set of parameters for the elements of the affine
group A(n). Hence describe A(n) as a subset of R¥ for some k.

Exercise 8. In complex analysis, it is often convenient to add a single
extra point ‘at infinity’ to the complex plane, so that any set of points
of increasing radius from the origin converges to the extra point oo.
What manifold do think C U {oco} should be?
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Maps of manifolds.

If M Cc R™ and N C R" are manifolds, then we have essentially
already defined a smooth map M — N: it is a smooth map M — R",
as defined previously, such that the image liesin N. If f: M — N is a
smooth map with a smooth inverse, then it is called a diffeomorphis-
m, and M and N are said to be diffeomorphic. For example, S? is
diffeomorphic to an ellipsiod

{(z,y,2) | az” + by” + cz* =1},

determined by constants a,b,c > 0. The diffeomorphism is the linear
map

(w2 o (o 2 )
J;, y, z \/&’ \/B, \/E *

The torus and the sphere are an example of two manifolds which are
not diffeomorphic. This is intuitively obvious as the torus has a hole
through the middle but the sphere does not, but proving it requires
some thought. Here is an argument which can be made into a proof.
Suppose f:T — S? is a diffeomorphism. The torus T has two circles
on it which cross at only one point (e.g., given by z = 0 and y = 0).
The images of these circles would be two circles on the sphere which
cross at only one point. Draw one circle on a sphere. It is ‘obvious’
that one cannot draw a second circle to cross it at only one point.

Product of manifolds. If M C R¥ and N C R' are manifolds, then
sois M x N C R¥*!. As an example, S' x S! is the subset of R* given
by

2 +y? =1, 242 =1.

Exercise 9. How can S x S! C R?* be parameterised? Find a diffeo-
mophism St x S! — T.

Exercise 10. Give a diffeomorphism between the manifold D C R®
given by

and S3 x R.

Solution to exercise 1. Let L’ be a complementary subspace, so that
R™ = L + L'. Decompose a vector £ e R* as =1+, le L, 1I' € L',
and set F'(¢) = f(I). This map is defined on the whole of R™ (certainly
an open subset), agrees with f, and is smooth. Note that since there
are many choices of complementary subspaces L', there are many linear
extensions F'. There are also choices of F' which are not linear.
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12. DISCRETE (QUOTIENTS

Let M C R™, N C R*” and f: M — N a smooth map. The maps
we are interested in are maps which are isomorphisms on a sufficiently
small scale.

Definition. A local diffeomorphism f: M — N is a map such that for
each x € M there is an open subset U C M containing x and an open
subset V' C N, so that f restricts to a diffeomorphism U — V.

If the local diffeomorphism f is onto, we say that IV is a discrete
quotient of M. In the rest of this section, this is abbreviated to quotient,
though the term quotient can apply to more general onto maps. If
y € N, we say that f identifies the points f~!(y) C M in the quotient.

Example. The simplest example is the map R — S! given by
0 — (cos@,sinf).

The points § + 27n, n € Z, are identified to a single point in S*.

There is a purely topological notion of a quotient space. Namely,
given a topological space X and an onto map f to a set Y, then there
is the quotient topology of Y defined by making V' C Y open whenever
f~Y(V) is. This could give a possibly conflicting notion of quotient, so
it is important to show that these coincide.

Theorem. Let f be a local diffeomorphism of M onto N. Then N has
the quotient topology.

Proof. This is proved by showing that f maps open sets to open sets.
This is called an open mapping. Then the result follows easily from
this. The details are in the following two lemmas

Lemma. A local diffeomorphism is an open mapping.

Proof. For each x € M, let U, be the open set containing x on which
f is a diffeomorphism. Then if U C M is any open set,

U=U,cpU,NU
and

fU) =Uper f(U, NT).

Since f is a homeomorphism U, — f(U,), f(U, NU) is an open subset
of f(U,) and hence an open subset of N. Hence f(U) is an open subset
of N.
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Lemma. If f: M — N is an open mapping and is onto, then N has
the quotient topology.

Proof. Let V. C N be a subset such that U = f~}(V) is open. Then
f(U) is open since f is an open mapping, and V = f(U) since f is
onto. Hence a subset of N which is open in the quotient topology is
open in the given topology of N. The converse follows from the fact
that f is continuous.

However the condition of local diffeomorphism is much stronger than
being a purely topological statement. For example = — 23 is a homeo-
morphism but not a local diffeomorphism. But the topological notion
of a quotient space is a useful half-way house to give a description of

N.

Definition. A fundamental domain for a quotient f:M — N is a
closed subset D C M such that f(D) = N but f only identifies points
on the boundary 0D of D.

For example, the interval [0,27] is a fundamental domain for the
map R — S! above. The boundary is the endpoints of the interval,
{0, 27} and these two points are identified to one point in the quotient.

This example can be generalised to products of the circle, for exam-
ple R? — S' x S'. A fundamental domain is a square with opposite
edges identified, and all four corners identified to one point.

Projective space. So far, P™ has been described simply as a set. Now
it can be described as a manifold, obtained as a quotient of the sphere.
Recall that P™ is defined as the set of lines through the origin in R**1.
Each line intersects the sphere S™ in exactly two points, £x.

/

So to construct projective space as a manifold, it is sufficient to find
a quotient of the sphere, f:S™ — Q™ C RF. This map to R¥ has
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the property that f(x) = f(—xz). So to construct such a map, a good
starting point is to find a set of functions S™ — R with this property.

Let = (x1,...) denote points on S™. Then the functions z;z; for
any choice 1 < 7,k < n 4+ 1 give a function with same value on +z.
Define f: 5" — Rz(n+1)(n+2) {5 be the map

(11’71,372, s 737n—+—1) = (37%,21311132,3713’33,. .. 7$727,+1)7

and define Q™ to be the image of f.

Now a number of questions need to be settled to show this construc-
tion works.

(1) Is f a local diffeomorphism?

(2) Is @™ a manifold?

(3) Are any other points identified, beside +z € S™?

The answer to (1) is yes due to the following construction. The map

f can be locally inverted by explicit formulae, which will be given here
for n = 2. The function f:5% — Q? is the map

(.’Ifl,a’fz,.’l?:g) = (117%,-31711172,.’171.’173,37%,.’172.’173,117%) - (y17y27y37y47y57y6)-

Assume that z3 > 0. Then = € S? can be calculated from

o= L1L3 T — ToX3 o .’,U2
1 — ’ 2 — ’ 3 — 3-
/2 /2 V
Z3 Z3
Therefore the inverse of f is locally

Y3  Ys
(ylayQay3)y4)y5ay6) = < ) .

Y T —>V Y6
VY6 /Ye

This formula clearly extends to points in an open subset of R® and so
indeed provides the smooth inverse to f for the hemisphere z3 > 0.
The answer to the question (2) is yes by the following general result.

Lemma. Let M be a manifold, and N a subset of R¥. If there is a
local diffeomorphism f: M — N, then N is manifold.

Proof. Suppose f restricts to a diffeomorphism U — V for open subsets
U and V. Let x € U. Then there is a coordinate chart defined on an
open subset U’ C M, with x € U’. Of course, U and U’ need not
coincide, but one can restrict both maps to the intersection, U"” =
UNU'. Then U" is diffeomorphic to an open subset of R", and to an
open subset f(U") of N. This provides a coordinate chart around the
point f(x) € N.

Finally, it is an algebraic exercise to settle question (3).
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Exercise 1. Show that the only points identified in the map S™ — Q"
are +x. What is a fundamental domain for this quotient? How are the
boundary points in your fundamental domain identified?

Exercise 2. Show that the inhomogeneous coordinates for P™ give
coordinates for the manifold Q™.

These calculations show that Q™ really ‘is’” P™, viewed as a mani-
fold. Calculations can be done using the inhomogeous coordinates, as
previously, but now with the understanding that these are coordinate
charts on a manifold.

Exercise 3. Draw the subset Q! C R3.

Exercise 4. Find a map S' — S! which is a local diffeomorphism,
but is not a bijection. Is this possible for a map R — R?

Exercise 5. Define M C P* by the equation
4yl 22— —wr=0.

Find an onto map S? x S' — M, and describe the quotient of 2 x S?!
this defines.

13. THE TANGENT SPACE

Tangent vectors. A curve is a map ¢:I — R¥, where I C R is an
open interval, say {a < t < b}. Its tangent vector at a given parameter

tis
de  (de deg
dt  \dt’ 7 dt )
Now suppose f:RF — R! is any smooth function. It carries the curve

c into a curve ¢ in R, namely ¢/(t) = f(c(t)). The tangent vector for
curve ¢/ = f o ¢ can be calculated by the chain rule by

dc} = dfeqy o dey,

so that 1 d
. C

Therefore the derivative of f, df,, can be interpreted as a linear

mapping of tangent vectors, for curves passing through the point x €
R* .
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Tangent space. Let M C RF be a manifold, and £ € M. Then
a vector v € RF is said to be tangent to M at z if there is a curve
c:I — M such that ¢(t) =  for some ¢ € I, and ¢ = v.

Definition. The tangent space at © € M, denoted T'M,, is the subset
of R* consisting of all vectors which are tangent to M at z.

Exercise 1. Show that 0 € TM,.
Lemma. TM, C R* is a linear subspace.

Proof. Let p:U — M be a parameterisation, for an open subset U C
R™, such that u € U is mapped to x. It will be shown that

T M, = Image (dp,),

which is a linear subspace.
Firstly, if ¢ is a curve in M with ¢(0) = =z, then for values of ¢
sufficiently close to 0, ¢(t) = pop~Loc(t), soat t =0

de d(p~toc)
— =dpy, | ————= I dpy) .

Conversely, if v € Image(dpy), then v = dp,(§) for some £ € R™.
The curve ¢(t) = p(u + t£) has tangent vector

de
E = dpu(é) =

at the parameter value ¢t = 0.

Exercise 2. Use the chain rule to show that the dimension of T°X,
is the dimension of X. Use the fact that a parameterisation has an
inverse.

Examples of tangent spaces. The tangent space to R" at any point
is R™ itself, as the identity map is a parameterisation, and the derivative
of this is also the identity map.

The tangent space to an affine subset A C R¥ at any point = € A is
the subspace TA = {a — z|a € A} introduced earlier. It is independent
of x. This follows because an affine subset can be parameterised by an
affine map ¢:R"” — A C R¥. Then d¢, is just the map

dp:y — ¢(y) — ¢()
introduced earlier. The image of this map is the set of points {¢(y) —
¢(z)} for a fixed x and all y € R™, which is the definition of T A.
Manifolds M C RF can occur as the solutions to an equation F = 0,
where F:R¥ — R!. Then dF,(v) = 0 for any vector v € TM,. If
v = %, then F'oc =0, so % = dF,(v) = 0. This gives a method of
determining linear equations for T'M,,.
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Example. The sphere is given by F:R*T1 — R

n+1
F = (Zx2> —1=0.
=1

Then dF,(v) = 2(D_ x;v;) = 2z - v = 0. This is one linear equation in
R?*! and hence determines an n-dimensional linear subspace. Since
TS? also has dimension n, it follows that these two spaces are equal.
Hence T'S7 is the set of all vectors satisfying = - v = 0.

Exercise 3. Show that the maps S — R* given by

u: (xla L2,T3, 1:4) — (_1:43 —I3,T2, 171)

v: (3317 L2, L3, 334) = (.’L'g, —L4, —T1, 3’32)
w: (331733273337374) = (—.’L'Q,ﬂ'fl, _3347333)

determine three vector fields on S$3. Do u(z), v(z), w(z) form a basis
for T.S37

Differentiation on manifolds.

Definition. Let M C R¥, N C R! be manifolds, and f: M — N. Then
the derivative of f at x € M is the linear map df,;: TM, — TNy,

which satisfies 1 A(f o)
c oc
dfy; | — | = ——.
n (%) -G
where c is any curve through x.

In this definition, it is necessary to check that a linear map with
these properties exists. Suppose F is defined on an open subset of R*
and agrees locally with f. Then we can use the chain rule for R on F

d(foc d(Foc de
dfx(v) = (];t ) = (dt ) = ch(t) <E> = de(v)

This shows that the derivative in this more general situation (man-
ifolds) is just the restiction of dF, to T'M,. This proves that a linear
map with these properties exists. One might worry that this depends
on the choice of F'; however the definition of df, determines its values
on all vectors tangent to M uniquely without reference to F'.

Exercise 4. Show that the chain rule holds for maps of manifolds.
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Vector fields. A vector field on a manifold is a choice of a tangent
vector at each point of M. More precisely, a vector field on a manifold
M C R¥ is a smooth map v: M — R¥ such that v(z) € TM, for each
x e M.

The tangent bundle. The tangent spaces for the different points
x € M are generally different subspaces of R¥.

In general, the tangent spaces can be ‘glued together’ to form the
tangent bundle of a manifold, TM C R?* = R* x R*¥. This is defined
to be the set of all points (z,v), for x € M and v € TM,. A vector
field can be described as a map M — T M, as

z — (z,v(z)).

Exercise 5. Describe the tangent bundle T'S* C R?* explicitly by giv-
ing two equations for the subset. Give a vector field on S' which is
nowhere zero, i.e., the tangent vector at every point is not 0.

If V is a one-dimensional vector space, explain how a choice of vector
in V' determines a linear isomorphism R — V. Use your vector field to
give a diffecomorphism S x R — T'S*.

Exercise 6. Let f:R" — R™ be a smooth function. Show that the
graph G C R*"™ of f is a manifold.

For a point g € GG, which function is TG the graph of?

Explain how you would show that the subset of R? given by

Pyttt =1

is a manifold.
Give an explicit description of the tangent space at the point x =
Yy = %, z = 0, with numerical coefficients in the equation that you

use.

Exercise 7. A robot arm in the plane has its elbow at z € R? and
hand at y € R?. These are constrained by |z| = 1 and |y — z| = 1.
Let X = {(x,y)} C R* be the set of configurations for the arm. Which
standard manifold is X diffeomorphic to?

The arm is controlled by a motor which sets the angle of the upper
arm x relative to a fixed axis, and a second motor which sets the angle
of the lower arm (y — z) relative to the upper arm. Explain how the
hand y can be moved in a given direction in the plane given by a tangent
vector v by giving a direction in the space of angles controlled by the
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motors. At what points y does this control mechanism fail to work for
some tangent v?

How would you draw a circle of very small radius at the point y =
(1,0)? Explain why this does not work at the origin y = 0.

Exercise 8. Two solid bodies touch at a single point p. Assume the
boundaries of the solid bodies can be modelled as smooth surfaces.
What can you say about the relation between the tangent spaces of the
two boundary surfaces at p? Give at least one concrete example.



4asiAL 4L AdiAviadA N A A4S AL LAVALALI L ALA el

14. LiE GROUPS

A group is a set G with maps u: G XxG — G and 0: G — (G giving the
multiplication and inverse of group elements, and an element e € G,
the identity, all satisfying the usual axioms. The usual notation is
p(a,b) = ab and o(a) = a=1.

Definition. A Lie group is a group in which G is a manifold and u
and o are smooth maps.

In the same way, one can define ‘Lie’ versions of all the elementary
definitions in group theory. For example, a subgroup H C G which is
also a Lie group is called a Lie subgroup of G. A homomorphism of Lie
groups F' — G is a group homomorphism which is also a smooth map.

Examples of Lie Groups.

The group GL(n) is a Lie group. The coordinates for GL(n) are the
matrix entries. The map p is smooth because a matrix entry for the
product p(a,b) is a polynomial in the matrix entries for a and b. Also,
o is smooth because the matrix entries for a~! are polynomials divided
by det a, which is never zero for elements of GL(n).

The vector space R" is a Lie group, with u(a,b) =a+b, o(a) = —a.
This group is called the translation group, T(n).

Exercise 1. Show A(n) is a Lie group.

Further examples of Lie groups arise as subgroups of GL(n). These
will be discussed later. The Euclidean groups E(n) and the projective
groups PGL(n) are also Lie groups.

Actions of Lie groups.
Let M be a manifold, and G a Lie group. An action of G on M is a
map \: G X M — M satisfying

(1) A(ulg, h),z) = X(g, A(h, z))

(2) Ae,z) ==

Each element g € GG provides a smooth map
Agix — Mg, ),

called the action of g. The conditions (1) and (2) can be written

Ae = identity .



A 4asiAL LA AdiAviadA VN A A4S AL LAVALALL L ALA

Since Ae = Ag—15 = Agj—1 0 Ay, the action of g~ ! is the inverse of the

action of g. Therefore, the action of g € G is a diffeomorphism. The
conditions satisfied by an action can be stated alternatively as saying

that there is a homomorphism from G to the group of all diffeomor-
phisms of M.

Classification of actions. There are three properties an action may
have

(1) Effective. If g € G is such that \; = identity, then g = e.

(2) Free. If A(g,x) = x for some € M, then g = e.

(3) Transitive. For all z,y € M, there exists g € G such that

Mg, z) =y.
The first property, effective, is that every element of G except the
identity does ‘something somewhere’. This property is automatic for
any action defined as the set of all transformations of a manifold of a
particular kind. The action of GL(n) on P"~! is not effective because
all multiples of the identity in GL(n) act as the identity in P"~1.

A fixed point for an element g € G is a point * € M such that
A(g,x) = z. For example, the rotations of a sphere about the z-axis
have the north and south poles as fixed points.

An action is free if every element except e has no fixed points. For
example, the action of T(n) on R™ by translations is free. By contrast,
the action of O(3) on S? is not, because of the fixed points for rotations
just mentioned.

The orbit of a point € M is the set of all points {\(g,z)|g € G}.
An action is transitive if there is only one orbit. For example, the
action of T(n) on R™ by translations is transitive, as is the action of
O(3) on S2. However if you take the subgroup of rotations about the
z-axis, this is not transitive.

fixed point for every g ~—— orbits

Exercise 2. Are the following actions effective, free or transitive?
(1) GL(n) acting on R™
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(2) The group of rotations about the z axis in R® acting on the
sphere, S2.

(3) A Lie group G acting on G by multiplication in the group:
A(g; h) = gh.

(4) A Lie group G acting on G by conjugation: (g, h) = ghg~1.

15. FLows

A flow is an action of the group T(1) on a manifold. Let \: Rx M —
M be the action. Then each point z € M gives a curve
AR — M
t— At,x).
Since A*(0) = A\(0,x) = x, the curve gives all points on the orbit of =
under the flow. The curve has tangent vector

d\”?
v(z) = " (0) € TM,.

A vector field, called the velocity vector field of the flow is defined by
the function z — v(z).

Example. A river flows smoothly (of course) along a waterway M.

The function \(¢, z) gives the position at time ¢ of the molecule of water

which is at the point x at time 0. The vector v(z) gives the velocity of

the water passing the point x at any value of the time parameter.
This follows from the property of a group action that

AP (t) = AT + t) for x = A\(T,y),
i.e., the curve through z is the same as the curve through y with the
parameter shifted by ¢ +— 17"+ ¢. Then
d\Y d\*
1) = S (0) = of)

Ordinary differential equation. Given a vector field v on a manifold
and a point x € M, the problem is to find a curve c: I — M such that
c(0) = z, I C R is an open interval containing 0, and the tangent vector
at any parameter t agrees with the vector field, i.e.

dc
E(t) = v(c(t))-

Such a curve is called an integral curve of the ordinary differential
equation. If it exists, the integral curve is unique. (The proof of this,
not given here, involves some analysis). If the vector field v is the
velocity of a flow, then the solution is given by ¢(t) = A*(t). Therefore,
the velocity vector field of a flow specifies the flow uniquely.




Example. The differential equation on R

de _
dt

ac,

with a € R a constant, has solution ¢(t) = ze®, which is determined
by the flow A(¢,z) = e*x.

Exercise 1. Solve the equation

de
— ac?

i
and show that the solutions do not determine a flow.

Example. In mechanics, Newton’s equations for the position of n par-
ticles € R3" can be written as the ordinary differential equation

dx dp
T b, FT f(z).

The function f gives the forces on the particles as a function of the
positions, and is determined by the particular problem. This is an
ordinary differential equation in a subset of R%”.

In Newton’s theory of gravity, there is a formula for f determined
by the inverse square law. The integral curves of this equation account
for the orbits of the planets, amongst other phenomena. For n > 4,
the integral curves cannot always be defined for all ¢ € R. There is,
suprisingly, a configuration of 4 bodies for which the orbits become
progressively more violent, and one of the bodies ‘reaches infinity’ in a
finite interval of time.

Vector field as an operator. Suppose M C R* is a manifold, and
v is a vector field on M. If ¢: M — R is a function, then the vector
field can be regarded as a differential operator which acts on ¢ to give
a new function, called D, ¢.

D,(z) = do, (v(z)) = Z 8—%%(3:).

This operation can be thought of as differentiating ¢ in the direction
given by v.
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This can be substantiated as follows. Let A\: R x M — M be a map,
which could be a flow. Then it defines a vector field by

o(w) = 2 (0)

as before. Now differentiating ¢ along each curve A”, one finds

d - B dA*\
&(gbo)\ )(0)—d¢$<dt > = Dyo.

Exercise 2. Take M = 52, and the rotation \: R x $? — §?
(t,z1,x9,23) — (21 cost + zosint, —zy sint + x5 cost, r3)

Calculate the vector field v and an expression for D, ¢.

Partial differential equation.
Suppose ¢: M — R is a function which is constant along a flow A,
e., p(A*(t)) = ¢(x) for each z, t. This gives the first order partial

differential equation
k

0
Zvi@xi = 0.

1=1

This equation can be used to solve the ordinary differential equation
given by v. The integral curves of the ordinary differential equation
must lie in the subset ¢(z) = constant, for each solution ¢ of the
partial differential equation.

Example. In R?, the equation is

0
01(331,.’132)— + Uz($1,$2)—¢ = 0.

0x1 O0xa

In most cases, a solution to this equation will give a 1-manifold as the
set of points ¢(x1,z2) = constant, which can be taken as the image
of a curve, given by this implicit equation. The difference between
a solution to this equation and a solution to the ordinary differential
equation is that no parameterisation of the curve is specified.
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Symmetries of a differential equation. Lie groups of symmetries
for a differential equation can often be used to reduce the number of
equations or independent variables. In the simplest cases, the equa-
tions will reduce to an equation in one variable which can be solved by
integration.

A transformation 7: M — M is a symmetry of an equation if it
transforms solutions to solutions. For an ordinary differential equation,
this means that if the curve ¢:R — M is a solution, then so is 7 o c.
Suppose that these solutions arise from a flow, so that ¢ = A\*. Then
7o ¢ must be the curve determined by the flow through the point 7(x),
i.e., \"(*) This condition can be written

T(A(t, 7)) = A(t, (m(2)))

for all z, t, or
TOAN =N OT.

Now suppose 7 is itself any one of the transformations of a second
flow \'. Then
)\;OAt :)\tOA;.

for all (s,t) € R?. Two flows which satisfy this condition are said to
commute. The map on either side of this equality can be taken to
define an action A of the group T(2) = (R?,+) on M.

Exercise 3. Show that A A, v) = A(s4u,t40), @ condition for this
to be an action.

Exercise 4. Write down two flows on R? which are distinct and

(1) commute
(2) do not commute

Solution to exercise 1. The equation has the solution ¢(t) = z/(1 —
atx), which is defined only as long as at < 1/z. Clearly c(t) is infinitely
large as this limit is reached, and the solution does not exist for all ¢.
Hence the solutions are not determined by a flow.

16. ONE-PARAMETER SUBGROUPS

A one-parameter subgroup of a Lie group is a homomorphism h: R —
G, i.e., a curve where h(0) = e and h(s)h(t) = h(s +t). Since h(t) =
(h(t/n))", the one-parameter subgroup is determined by its values for ¢
arbitrarily close to 0. This section will show that it is in fact determined
by its tangent vector at h(0) = e.
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One-parameter subgroups play a central role in the theory of Lie
groups. For example, if G acts on a manifold M by \:G x M — M,
then a one-parameter subgroup determines a flow by

(t,z) — A(h(t),z).

For a fixed z € M, define A*: G — M by g — A(z, g). Then the integral
curve of the flow through z is ¢(t) = A" (h(t)). The velocity vector is

de dh
—(0) =d\? | — TM,.
o) - ax (F0) e

This vector field on M is determined completely by the tangent vector

dh
—(0) e TG,

dt( ) ‘

Lemma. A one-parameter subgroup h is determined uniquely by its
tangent vector dh/dt at the origin.

Proof. Let M = G and the action \(g,z) = gz be the group multipli-
cation. Then the flow is (¢,x) — h(t)z and the integral curve through
e is just h itself. However, the flow is determined uniquely by its ve-
locity vector field, which by the preceding argument is determined by

dh/dt(0).

Tangents to GL(n). Recall that GL(n) C R"", the latter regarded as

the set of all n.x n matrices. Since it is an open subset, T GL(n), = R™ .
A tangent vector can likewise be regarded as an n X n matrix.
For example, if c: R — GL(n) is a curve, with

C11 €12
c(t) = | C21

then
deis decio
de d(gt at
& = d_il GTGL(n)C(t)

For GL(n), it is easy to show the converse of the preceding lemma
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Lemma. Any vector A € T GL(n). is tangent to a one-parameter sub-
group.

Proof. The one-parameter subgroup is given by

o0 " A"
h(t) = exp(tA) = > -
n=0 ’

In this formula, A™ refers to the matrix product. The sum is easily
seen to converge, and

tn_l

dh gy = i M gn 4 i AP = An(t)
dt 7/ n! - — (n—1) B ’

n=1

so that dh/dt = A when t = 0.

Exercise 1. Multiply the exponential series to show that h(s)h(t) =
h(s+1).

This shows that for GL(n), the one-parameter subgroups are in 1 —1
correspondence with elements of the tangent space at e € GL(n).
17 SUBGROUPS OF GL(n)
The following subgroups are all Lie groups.

Special linear group. The special linear group SL(n) C GL(n) is the
subgroup of matrices with determinant equal to one. Since

det (exp(A)) = exp (trace(A))

for any matrix A, then exp(A) € SL(n) if and only if trace(4) = 0.
Hence T'SL(n). C T GL(n), is the linear subspace given by the linear
condition

trace(A) = 0.

Orthogonal group. The orthogonal group O(n) is the group of n xn
matrices which satisfy the condition

MTM =e.

Suppose ¢:R — O(n) is a curve with ¢(0) = e and tangent equal to A
at e. Then at t = 0,

0= T (c(t)e(t)) = <%> c(0) + CT(O)% =ATe +ed= AT 4 A,
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so that A is an antisymmetric matrix. Conversely, if A is an antisym-
metric matrix, then

(exp A)" = exp AT = exp(—A) = (exp A) 7,

so exp A is orthogonal. This shows that T"O(n). C T GL(n), is the
linear subspace given by the condition A7 4+ A = 0.

The special orthogonal group, SO(n), is defined to be the intersection
O(n) N SL(n), the orthogonal matrices of determinant 1. Since det is
continuous, and the only values it takes in O(n) are £1, any curve ¢
which passes through the point e must have det(c(t)) = 1 for all ¢.
Therefore, T'SO(n)e = T O(n)e.-

The group SO(3) is called the rotation group. To justify this name,
we prove the following

Theorem. Fvery rotation has an axis.

Proof. Let M € SO(3). The characteristic polynomial of M has at
least one real root, so that M has an eigenvector v. Since M is an
isometry, the eigenvalue is £1. If the eigenvalue is 1, then v is the axis.
The matrix M acts in the plane orthogonal to v. In an orthonormal
basis which includes v, M is

o o=
o 8 o
ST i an)

c d
which gives an element of SO(2), for which the formulae give explicitly
a rotation in this plane.

If the eigenvalue is —1 then M acts in the orthogonal plane again,
but with determinant —1. This gives a reflection in this plane, and the
explicit formulae show that there is a reflection axis, Mv = v. This
returns to the previous case with v the axis.

Since the determinant of M is 1, so is the determinant of (a b),

Unitary group.

By taking real and imaginary parts of the components of a complex
vector, C" can be regarded as R*". Thus an invertible matrix with
complex entries determines an element of GL(2n).

Example. An invertible 1 x 1 matrix is just a non-zero complex num-
ber ¢ = ¢1 + ico. This acts on x = x1 + ix9 € C by multiplication of
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complex numbers. This amounts to the formula

1 —C2 L1
(fL'l, 332) =
Co C1 Lo

which defines an element of GL(2).

The unitary group, U(n), is defined to be the group of unitary n x n
complex matrices. These satisfy U~! = U7

The special unitary group SU(n) C U(n) is the subgroup of unitary
matrices with determinant one.

Exercise 1. What complex numbers correspond to elements of U(1)?
Exercise 2. Show that elements of SU(2) can be written in the form

—b a
SU(2) — S3.

b . . .
( @ > , where a and b are complex numbers. Give a diffeomorphism

18 THE COMMUTATOR

The condition that two flows commute can be written entirely in

terms of their velocity vector fields. Let v and v’ be the velocity vector
fields of flows A, A’ on a manifold M.

Definition. Let M C R*, and v,v': M — R* be vector fields on M.
The commutator of v and v’ is defined to be the function [v,v']: M —
R* given by

D,v" — Dyv.

The coordinate expression is that the j-th component of [v,v'] is

/

(% — v,
3

Theorem. The two flows A and X' commute if and only if the com-
mutator [v,v'] of their velocity vector fields is zero.

Proof. Pick © € M, and let y(s,t) = X (s, A(¢t,z)). The behaviour of y

for small values of s and ¢ near 0 is determined by the second derivative

g sth at (0,0). This is calculated in the following way.

dy /
%(O’t) =v (A(t’ "B)) )
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and so

0%y , 1dA ,
ETEp (0,0) = duo, (E) = dv,, (v(z))
Likewise if z(s,t) = A(t, A'(s, z)), then
0?2 ,
9501 dv, (v'(z)).

If the flows commute, then y(s,t) = z(s,t). Since these mixed second

order partial derivatives are equal, the result that [v,v'] = 0 follows.
Conversely, assume that [v,v'] = 0. According to a previous argu-

ment, it is sufficient to show that each transformation A/ is a symmetry

of the ordinary differential equation determined by the vector field v,

d M oX)=wvol o)¥, forall

E(so )=wvoA, oA foralls.

Note that at s = 0, this equation reduces to the defining equation for

v, namely

=vo\*,

dt

and so certainly holds.
Using the chain rule, the condition is equivalent to

d (X)), (v(z)) =v(N,(z)), forallse R,z e M.

Consider
P(s) = d (X)), (v(z)) — v (Ns(2))

Some differentiation, and using the hypothesis [v,v'] = 0 shows that

d
L = Aol (8(5)).

Since ¢(0) = 0, this ordinary differential equation has the unique solu-
tion ¢(s) =0 for all s € R.

Example. For the flow given by rotations of S? about the x3-axis, the
vector field is v(x1, x2, x3) = (22, —x1,0). Consider a second flow given
by rotations about the xj-axis. This vector field is v'(z1,x2,23) =
(0,3, —x2). The commutator is given by

( ov} , 0v1 Ovy  ,0v ovs , 0vs >

V; — U; V; — U; V; U;
- axz ’ axz ’ - 8a;z ! 8:1,*@ ’ - 8:1,*@ ! 8a;z
) ) )

(-.’l?g, 07 1171)-



A 4asiAL LA AdiAviadA VN A A4S AL LAVALALL L ALA

This is not zero, so the flows do not commute.

The preceding theorem gives an interpretation of the vanishing of
the commutator of two vector fields, in the case when they generate
flows. The commutator of two vector fields is also important when it
does not vanish. The main fact is

Theorem. The commutator of two vector fields on M 1is also a vector

field on M.

This fact will be proved below. Note that in the example, calculating
D,v'(x) gives (0,0,z1) and D, v(x) = (z3,0,0), neither of which are
tangent to S2. Only the difference of these gives a vector field on S2.

The commutator has an interpretation in terms of vector fields acting
on functions. If v and v’ are thought of as operators acting on functions,
then taking an arbitrary function ¢: M — R, we calculate the difference
of v" acting followed by v acting and v acting followed by v" acting. This
is also called a commutator, namely the commutator of the first order
differential operators given by v and v’.

B 0 y 09\  , 0 99
D, (Dv’§b) — Dy (Dv¢) - Z vi ox; <vj 826]') o O; <vj (9£Cj>

(¥]

o ¢ Ov; ¢
= v, — — ol = =D .,
v 0x; 8@,- ‘0x; 8.’17]' [v,v ]¢

as the terms involving second derivatives of ¢ cancel. So the commu-
tator of the first order differential operators acting on ¢ is just [v,v’]
acting on ¢.

This gives an argument about why the commutator is a vector field.
If the manifold is defined by an equation ¢ = 0, then certainly D, ¢ =0
and D, (D, ¢) = 0, and so Dy, ,¢ = 0. Hence [v,v'] is tangent to M.
For S?, ¢ = x - = — 1, which explains the example.

More generally, we could take M C R¥ to be given by an equation
¢ = 0 for some ¢: R¥ — R'. This would give a proof if we knew that all
manifolds can be defined in this way (which they can, at least locally).
A slight modification of this idea gives the proof.

Proof of theorem. For each point z € M C RF, there is locally a coor-
dinate function f from M to R™, and its inverse, a parameterisation
7, from R™ to M. (‘Locally’ means that these are defined on open
subsets around z or its image.) Let ¢:RF — M be 7o F, where F is
any local extension of f to R¥. Then a vector v is a tangent vector to
M if and only if

dip,(v) = v
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This is because v is the identity map on M, and T M, is the image of
dm,. This equation is equivalent to writing

D,y =wv
for a vector field defined locally (i.e., on the open subset of M where v
is defined).
Then

D[v,v’]w = Dv(Dv’w) - Dv’(Dvw) = val — Dyv = [Ua Ul]a

so that [v,v'](x) € TM,.

The mapping formula.

Let v be a vector field on M, and f: M — N be a mapping, and w
a vector field on N.

Then w is said to be f-related to v if w(f(z)) = dfs(v(z)). For
example, if f is a diffeomorphism, then given v, there is a unique f-
related vector field on N called the induced vector field

w(y) = dfz(v(z)), where z= f"'(y).

Exercise. Show that if g: N — P is another diffeomorphism and z is
the vector field induced on P from w, then z is equal to the vector field
induced by g o f from v.

The mapping formula for the commutator is:

Lemma (Mapping formula). If f: M — N is a mapping, v,v’ are
vector fields on M, and w on N is f-related to v, w' f-related to v’,

then [w,w'] is f-related to [v,v'].

Proof.
dfe([v,v'](#)) = Dpp,or) f

evaluated at the point x. But this function is
D[v,v’]f = Dv(Dv’f) - Dv’(va) - Dv(wl © f) - Dv’(w © f)
At the point x, the right-hand side is
d(w' o f)a(v(x)) — d(w o f)a(v'(2))
_ (dw}(x) 0 dfx) (v(z)) = (dwp(z) 0 dfs) (v/(x))
= [w, w'](f(2)).
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19. COMPUTER VISION

An optical image is the projection of a three-dimensional scene un-
der a smooth map m:R3 — R2. A variety of possible 7’s can occur,
depending on the camera. It is assumed that various features (points,
lines, curves, surfaces, corners, smooth singularities, etc.) can be recog-
nised in the image. The ‘3-d recovery problem’ is to say where these
features are in R?® which give rise to the optical image.

An assumption is usually made about the nature of the scene, as a
hypothesis which can be then given a mathematical formulation. For
example, it could be that the scene is a face, a microscope slide contain-
ing cells, an aerial photograph, or a stack of books to be counted. From
this assumption, you have a hypothesis about the scene containing a
number of continuous parameters.

For example, if the scene is a cell which is a assumed to be spherical,
then the parameters might be the radius of the cell and the position
of its centre. If the cell is not assumed spherical, then additional pa-
rameters would be needed for its shape and its angular orientation in
space.

The 3-d recovery problem can be thought about in two ways

(1) 3-d Euclidean geometry. Find the set of all objects in R3 which
could give rise to the image. For example, if the scene con-
sists of rigid bodies (bodies for which the distance between the
constituent parts does not change) then the Euclidean group
E(3) acts on the set of all possible positions for each body, and
the recovery problem would reduce to finding the possible Eu-
clidean transformations which take each object from a standard
position to its actual position.

(2) 2-d Non-Euclidean geometry. For each possible three-dimen-
sional object, find the range of possible images. See which of
these fits the given image. For example, if the camera gives a
projection along straight lines, then the image can be regard-
ed as a parameterisation of part of the projective plane, P2.
Projective transformations can be applied to the images.

More information can be gained if the image varies with time. One
of the ways of converting this information into an easily usable form
is to look at the velocity vector for each point in the scene, or image.
The velocity vector of the motion of the points in the image is called
the optical flow. The geometry of the scene and the camera projection
places constraints on the set of possible optical flows.

The 3-d recovery problem in this instance is the determination of the
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scene at time ¢ given the image at time ¢ and the optical flow at time
t. This problem is often called ‘shape from motion’. More information
can be gained about the scene if one knows the optical flow at a point
in time as well as just the image.

In practice, the calculations would be done with a computer. In all
but the simplest situations, the equations are exceedingly complicated
and do not have a simple solution which can be obtained on paper. A
computer program might also take into account other attributes for the
image, such as colour, texture, shading, shadows, or statistical data.

Shape from motion.

The motion of a rigid body in in R3 is given by transformations of
R? in the Euclidean group E(3). This is

x— Mz + a,

where M € O(3) and a € R3. Suppose that these vary with time t € R,
such that M = identity, and a = 0 at t = 0. Clearly, a curve in the
Euclidean group E(3) is equivalent to a curve M (¢) in O(3) and a curve
a(t) in R3. The curve through point z is ¢(t) = M(t)x + a(t), which

has tangent
dc dM da

Define the matrix

dM
0= —
7 0
and the vector 1
a
£ = E(O)'

As Q is a tangent to O(3) at e it is an antisymmetric matrix. As there
is a curve in O(3) with any antisymmetric matrix as tangent, {2 can be
any antisymmetric matrix. Likewise, ¢ is tangent to R® and can be any
vector. Thus the vector fields which can arise as velocity vector fields
for rigid body motions are v: R? — R3

vie — Qe+ &
Exercise 1.
0 w3 —Ww9
(1) Write Q = | —ws 0 wi |. Write out Qz in components
w2 —Ww1 0

and show it is the vector cross product of w and =x.
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The scene is a surface in R?, the plane (an affine subset) given by
Z =pX +qY +r,
and the camera is the projection m:R3> — R? given by

(X,Y,Z) — (X,Y).

(2) The points in the plane move by a rigid body motion depending
on a parameter ¢, time. Explain why the plane remains a plane
for all times t.

It is assumed that the plane can always be described by Z = pX +
qY +r.
(3) Does this assumption place any restriction on the rigid body
motions?

The points in the plane can be parameterised by the corresponding
points in the optical image, R?, by a map ¢: R? — R3, so that

r(6(X,Y)) = (X,Y).

(4) Write an explicit formula for ¢.

As the points in the plane move, so do the points in the optical image.
This is given by
(X,Y) > n(M¢(X,Y) +a).

(5) Explain why this is the correct formula. Differentiate this ex-
pression with respect to ¢, at ¢ = 0, assuming as above the
M (0) = identity, and a(0) = 0, and obtain a vector field w on
R?, the optical flow.

As a special case, you should get for r =0

0 w3 —W2 X
(X,Y) = (&1,82) + —ws 0w Y
pX +qY

(6) Explain why it should be impossible to determine r from the
optical image or the optical low. Why does r appear in your
formula?
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Now make the simplifying assumption that » = 0 for all time. From
measuring the optical flow you can determine the parameters A, B, C,
D, E, F in an optical flow

(X,V) > (E,F) + <é g) (iﬁ)

(7) Look at the four diagrams of an optical flow. Give parameters
which give formulae for these optical flows.

(8) Express A, B,C, D, E, F in terms of p, g and w. Show that these
equations are solved by

wy = % (R+ VISP -T2

1 1
w1 + iwe = kexpi <% + o) arg(S) — o) arg(2ws — R — 2T)>
. 1 (1 1 '
p+iqg= ESexpz <Z — §arg(S) + §arg(2w3 — R - zT)) :
where
T=A+D
R=C-B

S=(A-D)+i(B+0),

k is indeterminate, and there are two solutions, +, for each
choice of k.
(9) Interpret R, S, T in the four diagrams of optical flow.
(10) Suppose the mapping of the surface to the optical image had
not been non-singular. Would you expect the optical flow to be
a smooth vector field?



