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� DIFFERENTIAL GEOMETRY

Preface

This book is an introduction to aspects of di�erential geometry in
an elementary and novel manner� The main idea is to introduce the
concept of a manifold and apply it to the study of Lie groups� The book
was developed as a set of lecture notes for a third�year undergraduate
lecture course at the University of Nottingham� Riemannian geometry
is not treated��

The emphasis is on de�nitions and examples� and the abstract for�
malism has been reduced to a minimum� Most textbooks take the line
that a di�erentiable manifold is a topological manifold with a di�eren�
tial structure� To eliminate bizarre examples� the topological space is
required to be Hausdor� and have a countable base of open subsets�
All this is extremely technical� and a theorem of Whitney asserts that
any manifold of this type is isomorphic to a submanifold of a Euclidean
space� Rn ���� Moreover� most examples of manifolds occur naturally
in this way�

The de�nition of a manifold used here is a locally Euclidean subset
of Rn � This clear and concise de�nition was given by John Milnor in a
book which was the inspiration for the present work ����

The sections on the special geometries� and the style generally was
in�uenced by Elmer Rees� book on geometry ���� Aside from the main
development of the book� there are brief excursions into singularity and
catastrophe theory� and into the subject of computer vision� based on
a specialist book on the subject ����

There are many exercises distributed in the text� The simpler exam�
ples are designed to be done immediately in the lecture room� Students
�nd this gives an opportunity to review and digest what has just been
said� Also it gives the lecturer a valuable opportunity for feedback�
The longer exercises are there to change the learning from passive to
active mode�
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 DIFFERENTIAL GEOMETRY

�� Vector space geometry

Vector spaces� A vector space is a set V � with two operations� addi�
tion of vectors� and multiplication by scalars� In this book the scalars
are always taken to be the real numbers� R �

The �rst example of interest is the Euclidean space V � Rn � This
has a standard basis set of vectors

�� �� �� � � � � ��� �� �� �� � � � � ��� � � � � �� �� �� � � � � ���

A second set of examples of vector spaces arises by taking V to be a
linear subspace of Rk � In this example� V does not have a standard�
or uniquely speci�ed� basis� Examples of this type turn out to be of
major importance in di�erential geometry� Therefore it is important
to understand the precise nature of the di�erence between the vector
space Rn � and these more general examples�

In general� a vector space possesses many di�erent basis sets of vec�
tors� Every basis contains the same number of elements� called the
dimension of V �

Linear mappings of vector spaces ��V �W are those that preserve
the structure� i�e�� the addition of vectors and multiplication by scalars�
An isomorphism is a linear mapping which has an inverse�

Suppose V is a vector space of dimension n� Choosing an ordered
basis set of vectors e�� e�� � � � en for V is the same thing as specifying a
linear isomorphism R

n � V � Given the basis� the linear isomorphism is
de�ned to be the linear map speci�ed by mapping �� �� �� � � � � �� �� e��
etc�� � � � � �� �� �� � � � � �� �� en� This isomorphism R

n � V can also be
written

a�� a�� � � � � an� ��
nX
i��

aiei�

The general linear group� Consider the set of all isomorphisms
R
n � R

n � This is a group� called the general linear group GLn��
Let us check that GLn� is a group�

�� The composition of two isomophisms �� and �� is the map
v �� ����v��� This linear map is called ���� and is also an
isomorphism�

�� The composition of maps is associative
�� The identity mapping e�Rn � R

n is the identity element of the
group�

�� The inverse of an element � � GLn� is the inverse mapping�
i�e��

���� � ���� � e�
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A linear map Rn � R
n has a matrix� and conversely� an n�nmatrix

determines a linear map� The linear map determined by the matrix of
numbers �

���� ��� � � �
��� ��� � � �
� � �

�
A

takes the point x � x�� x�� � � �xn� � R
n to �x� � y�� y� � � � yn�� where

yi �
nX

j��

�ijxj � � � i � n�

So using this identi�cation of linear maps on R
n with matrices�

GLn� can be thought of as the group of invertible n� n matrices�
Now suppose V is a general �nite�dimensional vector space� Then

there is an isomorphism V � R
n � but this is not unique� Suppose

��� �� are any two isomorphisms� If v � V � how are x � ��v� and
y � ��v� related� Obviously y � ���

��
� x�� i�e� they are related by

a mapping in GLn�� Any element of GLn� could arise in this way�
Thus elements of the group GLn� relate the coordinate representations
x � ��v� and y � ��v� of V �

Notation� The general convention will be used that if a � Rn � then
the letters a�� � � � an will be used for the coordinates of a� i�e��

a � a�� a�� � � � an��

Vectors elements of Rn� are generally written as horizontal row vectors�
Sometimes they are written vertically� as column vectors� There is
no di�erence in meaning intended� it is conventional to do this when
multiplying a matrix with a vector�

Exercise �� De�ne the map y � �x� by

y�� y�� �

�
a b
c d

��
x�
x�

�
ad� bc �� ��

Which equation in y� and y� de�nes the image of the points satisfying
x�� � x�� � � under the map ��

Geometry� As a general principle� �The objects of a geometry are
those which retain their form under the transformations being consid�
ered�� Some examples�

�� Circles are not objects of vector space geometry� As we saw in
exercise �� the image of a circle need not be a circle under a
linear isomorphism�
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�� A linear subspace S � R
n has the de�ning property

s�� s� � S � �s� � �s� � S

This property is preserved under linear mappings �� so the set
�S� � f�x� j x � Sg is a linear subspace if S is� Therefore
linear subspaces are objects of vector space geometry�

Solution to exercise �� The values of x� and x� for a given point
y�� y�� can be calculated using the inverse matrix�

x�� x�� �
�

ad� bc

�
d �b
�c a

��
y�
y�

�
�

Substituting these values into the equation x�� � x�� � � gives

�

ad � bc��
�
dy� � by��

� � �cy� � ay��
�
�
� ��

This is a more complicated equation than that for x�� x��� In general
it will not be a circle but will give an ellipse�

�� Affine Geometry

The a�ne geometry is the second of the �special geometries� which
we are going to study� As in vector space geometry� there is a group of
transformations which characterises a�ne geometry�

A�ne geometry is not too di�erent to vector space geometry� In
vector space geometry� the origin plays a distinguished role� However
in many applications there are objects in Euclidean space Rn e�g�
ordinary �space� of physics� but it does not really matter where the
origin is�

A�ne subsets of Rn �
An a�ne subset A � R

n is a subset of Rn with the property that
if a� b � A� then �a � �b � A for all �� � � R such that � � � � �� In
other words� the straight line through any two points of A is also in A�
Some examples�

�� A linear subspace L � R
n � �a� �b � L without any condition

on �� ���
�� The set x � L � fx � l j l � Lg for a linear subspace L� This

follows from the calculation

�x� l�� � �x � l�� � x� �l� � �l� � x� L�
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The second example is more general than the �rst because x�L need
not contain the origin� It is in fact the most general type of example�
All a�ne subsets are of the form of example �� To show that this is
true� �x an element a � A and de�ne

TAa � A� a � fx� a j x � Ag�
This is called the tangent space to A at a� What we have to show is
that this tangent space is a linear subspace of Rn �

Proof� Suppose � � R and x � a � TAa� Then the scalar multiple
�x� a� � TAa because

�x� a� � a � �x� �� ��a � A�

Now suppose x� a� y� a � TAa� Then the sum x� a� � y� a� is in
TAa because

x� a� y � a� a � x� y � a � �

�
x� y

�

�
� a � A�

This shows that a�ne subsets are just �linear subspaces with the
origin shifted�� This readily suggests that if a� b � A� then TAa � TAb�
This is true because b� a � TAa� and so if x� a � TAa� so is

x� a�� b � a� � x� b�

Exercise �� Show that for each k 	 ��

kX
i��

�iai � A if ai � A� and
kX
�

�i � ��

A�ne maps� An a�ne map R
n � R

m is de�ned to be a map satis�
fying

f�a� �b� � �fa� � �fb�� �� � � ��

The a�ne maps preserve a�ne subsets� and in particular they map
straight lines to straight lines�

If an a�ne map is invertible� it is called an a�ne isomorphism� The
set of all a�ne isomophisms Rn to itself is a group� called the a�ne
group An�� This group characterises a�ne geometry�

It is possible to de�ne a notion of an �a�ne space� by giving axioms�
in a similar way to the de�nition of a vector space� such that the a�ne
subsets of Rn are examples� We do not need to go into this�

There are two important examples of a�ne isomorphisms of Rn

�� translations x �� x� c� for a constant c � R
n

�� linear isomorphisms in GLn�
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More examples can be made by combining these two� In fact� every
a�ne map R

n � R
m is a linear map R

n � R
m composed with a

translation of Rm � The proof is an exercise�

Exercise �� Prove that if f is an a�ne map� then the map df de�ned
by

x �� fx�� f��

is linear�

Example� The most general a�ne map f �R � R is given by the
formula fx� � ax � b� Then dfx� � ax� The coe�cient a in this

linear map is df
dx � for any x�

c
b

a

d

Example� In the �gure on the left� there are two concentric circles�
x�� � x�� � constant� The line intersects the region between the circles
in two segments� it is easy to see that the lengths of the two segments
are equal� This is because the diagram is symmetrical about an axis�
vertical in the diagram�

Newton wanted to know if the same property is true for the con�
centric ellipses shown on the right� These are given by x��e�

� � x�� �
constant for some e � R � He proved that they are by applying a linear
transformation L

x�� x�� �� x��e� x��

to the right hand diagram� Since this transformation is a�ne� the line
is mapped to a line� From the left�hand diagram

La� � Lb� � Lc� � Ld��

Since L is linear� a� b � c� d� and so the lengths of the two segments
on the right are equal� Newton used this to show that there is no
gravitational force inside an ellipsoidal shell of matter�
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Solution to exercise �� There are two strategies for this

�� Induction� Assume it is true for k � �� Then

kX
i��

�iai � �� �k�
k��X
i��

�iai
�� �k

� �kak � A�

The special case �k � � can be treated by picking another
term to leave out of the sum� since not all �i can equal �� The
induction starts with k � � being the de�nition�

�� Tangent space�

X
�iai � b �

X
�iai � b� � TAb�

since TAb is a linear subspace� Hence
P

�iai � A�

Solution to exercise ��

df�x� �y� � f�x� �y � �� �� ���� � f��

� �fx� � �fy� � �� �� ��f�� � f��

� �dfx� � �dfy�

Exercise �� Let a� b� c � R� be three points which are not collinear
do not lie on a line�� Let A�B�C be any three points in R

n � Work out
how to de�ne an a�ne map R� � Rn such that

a �� A� b �� B� c �� C�

What can you say about the image of your map�

Exercise �� Colours can be obtained by mixing red� green and blue
in any desired proportions� which are given by numbers adding up to
�� Draw a diagram to represent the possible colours� and plot a point
to represent ��� blue� ��� red� ��� green� Explain how the point is
plotted�
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�� Euclidean Geometry

Euclidean geometry is the study of �gures in R
n using the concept

of distance� The length of a vector is jxj � x�� � x�� � � � � x�n�
����

and the distance between two points x and y is de�ned to be dx� y� �
jx�yj� The latter concept does not require the origin as a distinguished
point� To be more precise� the concept of distance is invariant under
translations� dx� a� y � a� � dx� y��

The space R
n with the distance function d is called n�dimensional

Euclidean space� The ��dimensional Euclidean space is very familiar
as it is a mathematical model of space for the positions of objects in
physics�

Euclidean space is a metric space� Mappings f �Rn � Rm which
preserve the distance function�

dfx�� fy�� � dx� y�

are called isometries� The motions of rigid bodies in physics are exam�
ples of isometries�

An isometry is injective� since fx� � fy� implies

dx� y� � dfx�� fy�� � ��

which implies that x � y� Moreover�

Theorem� An isometry Rn � Rm is an a�ne map

Proof� Let p be an a�ne linear combination of x� y � R
n � i�e�� p �

�x� �y� with �� � � �� Then p is the unique point such that

dx� p� � j�jdx� y� and dy� p� � j�jdx� y��

If f is an isometry� then it follows that

dfx�� fp�� � j�jdfx�� fy�� and dfy�� fp�� � j�jdfx�� fy���

which shows that fp� � �fx� � �fy�� i�e�� f is a�ne�

From this theorem� one can easily deduce that any isometry f �Rn �
R
n must be invertible� Recall that an a�ne map is a composition of

the linear map df with a translation� Since translations are always
invertible isometries� it hinges on whether df is invertible� However df
is linear and injective� so it must be invertible�
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The Euclidean group� The set of all isometries of n�dimensional
Euclidean space to itself� is called the Euclidean group� En�� It is a
subgroup of An��

There are a�ne isomorphisms which are not isometries� For exam�
ple� in � dimension� fx� � ax � b is not an isometry unless a � 
��
The linear transformation L in Newton�s example above� or the trans�
formation in exercise � of section � are examples in more than one
dimension�

Clearly� a Euclidean transformation is a composition of a linear i�
sometry followed by a translation� Hence it is important to characterise
the linear isometries� Linear isometries preserve the square of the dis�
tance of a point from the origin� This quadratic form can be written
in various ways�

dx� ��� � jxj� �
nX
i��

x�i � x � x

Orthogonal group� An orthogonal transformation of Rn is a linear
map L�Rn � R

n which preserves distances to the origin� i�e�

jLx�j � jxj for all x�

The set of all linear maps L�Rn � Rn which preserve the distance to
the origin is a group called the orthogonal group� On��

For linear maps� preserving the distances to the origin actually im�
plies that all distances are preserved� since jLx��Ly�j � jLx�y�j �
jx � yj� Thus orthogonal transformations are isometries and hence
invertible��

Polarization� Orthogonal transformations actually preserve all dot
products� This follows from the �polarization identity�

x� y� � x � y� � x� � y� � �x � y

This shows that Lx� � Ly� � x � y�
Summary� We have seen in three cases� vector space geometry� a�ne
geometry and Euclidean geometry� that the geometry is characterised
by a group of transformations which preserves the structure of interest
such as linearity or distances��

�The properties of objects in a geometry are those which do not
change under the transformations of the geometry��
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Exercise �� Let x �� y � R
� � Draw a diagram to show the set of

points p satisfying dx� p� � j�jdx� y� and the set of points p satisfying
dy� p� � j�jdx� y�� Explain why there is only one point p satisfying
both equations if �� � � �� Be sure to include the cases where � or �
is negative�

Exercise �� Let L�Rn � Rn be an orthogonal map� Write the relation
Lx� �Ly� � x � y in terms of the vector components xi and yi and the
matrix Lij

Show that this orthogonal matrix satis�es

nX
i��

LijLik � �jk�

where �ik is the identity matrix� Conversely� check that any such matrix
gives an orthogonal transformation�

Take the determinant of each side of this equation to �nd the possible
values for detL� and give an example of a � � � orthogonal matrix
exhibiting each of these values�

Exercise �� Show that all elements of O�� are either

�
cos � sin �
� sin � cos �

�

for some value of � or have another form� which you should �nd�
Give a geometrical interpretation of both forms� Find an element of

GL�� with determinant � which is not in O���

�� The projective line

The last of the four special geometries studied here is projective
geometry� The space for this projective geometry is projective space�
which is distinct from Euclidean space� and there is one such space
in each dimension� The one�dimensional space is called the projective
line�

Motivation� The projective line can be introduced by considering pro�
jections� such as arise in perspective drawing� Consider two straight�
lines m and l in R� � which meet� and a point p which lies on neither
line� The projection from line l to line m through the point p takes
a �� b� as shown in the diagram�
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a

p

b

d

m

l
c

This does not quite de�ne a map l� m because the point c� lying on
a parallel to m through p� does not project onto m� However consider
the map

l � fg � m � fg
which takes

a �� b as shown� for a �� c�
c �� 
 �� d�

This map is a bijection� the inverse being the projection from m to l�
In�nity is to be regarded as an extra abstract point� which is added to
each line in order to make the projection well�de�ned�

Example� A concrete example is given by considering p to be the
origin� l to be the line � �� �

�x�� � � ��y�
�
� with x�� y� not both ��

and m to be the line �� �� ��� ��� for �� �� � R �
The projection from l to m is given by

�
�x�� �� ��y�

� �� �
�

�� ��

x�
y�
� �

�

with also x�� �� ��  and  �� �x��y�� ���
The parameter for each line gives an identi�cation of each line with

R � The projection takes parameter � on line l to parameter

�� �
�

�� ��

x�
y�

on line m�
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The de�nition� The projective line P � is de�ned to be the set of
equivalence classes of the plane with the origin removed� R� n f�g�
under the relation v � �v� for � �� � � R � If a point p � P � is the
equivalence class of x� y�� this is written p � �x � y�� and is called the
ratio of x and y�

The pair of numbers x� y� are also called homogeneous coordinates
for the points p � P �� It is worth noting that these are not coordinates
in the strict sense to be used later on� because x� y� is not uniquely
determined by a given point p � P �� However the term �homogeneous
coordinates� is standard in this situation� and so we shall use it�

Each point of the projective line can be identi�ed with a unique line
through the origin in R� � and this is a useful way of thinking of the
projective line�

The projective line P � can be viewed as R � fg in many di�erent
ways� Take any two linearly independent vectors u and v� Then the
line l�R � R�

� �� �u� �� ��v

is not through the origin� This determines a map R � R
� � P � by

taking equivalence classes�

l

0

There is one point of P � not in the image of this map� namely the
equivalence class of vectors parallel to l� This point is identi�ed with
�

Projective transformations� Elements of GL�� preserve the equiv�
alence relation v � �v in the de�nition of P �� i�e� if A � GL��� then
Av � �Av is true whenever v � �v� Therefore A determines a trans�
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formation of P �� If A �

�
a b
c d

�
� then the transformation is

�x � y� �� �ax� by � cx� dy�

Inhomogeneous coordinates� As noted above� the homogeneous co�
ordinates x� y� of a point �x � y� in P � are not uniquely determined�
However the inhomogenous coordinate z � x�y is uniquely determined
by �x � y�� This is a real number if y �� �� If y � �� it can be taken to
be �

Using the inhomogeneous coordinate to identify P � with R � fg
is the same as considering the identi�cation determined by the line m
given by � �� �� �� in the example above� This is because

�x � y� � �x�y � ���

Using the inhomogeneous coordinate� the formula for a projective
transformation becomes

� �
x

y
�� ax � by�

cx � dy�
�

a�� b�

c�� d�
�

Taking the special case a � x��y�� b � �� c � ��� d � � gives the
formula given in the example�

Question� Why should the formula in the example be a projective
transformation� This point has not been made clear so far� but is
worth thinking about�

Exercise �� Which matrices A � GL�� give projective transforma�
tions for which �� � �� �� �� � ��� Give the formula for the transformation
using the inhomogeneous coordinate� What type of transformation of
R is this� Determine all the projective transformations for which both
�� � �� �� �� � �� and �� � �� �� �� � ���

�� Projective Geometry

The considerations for the projective line extend to the case of more
than one dimension in a straightforward way�

The n�dimensional projective space Pn is de�ned to be the set
of equivalence classes in R

n�� n f�g under the relation v � �v� for
� �� � � R � The general linear transformations A � GLn � �� give
mappings of Rn�� which respect the equivalence relation� and so deter�
mine bijections of Pn� These are called projective transformations� and
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the set of all projective transformations is called the projective group�
PGLn� ���

More than one element of the group GLn��� gives rise to the same
projective transformation� This means that PGLn � �� is not equal
to GLn � ��� but is a quotient group� Matrices that give the same
projective transformation as A � GLn � �� are the scalar multiples�
�A� for � �� ��

A point

�x� � x� � � � � � xn��� � Pn

has homogeneous coordinates x�� x�� � � � � xn���� and inhomogeneous
coordinates x��xn��� x��xn��� � � � � xn�xn��� which are valid if xn�� ��
�� The points

�x� � x� � � � � � xn � ��

are called �points at in�nity�� and there are� for n � �� more than one
of them�

Example� In the projective plane P �� the points �� � � � �� and �� �
� � �� are both points at in�nity� but �� �� �� �� ��� �� �� for any �� so
�� � � � �� �� �� � � � ���

Equations in projective geometry�
Historically� one of the reasons for the development of projective

geometry was its use in simplifying equations� Consider for example
the inhomogeneous equation

au� � buv � cv� � du� ev � f � �

whose solutions are points u� v� � R
� � This equation can be rewritten

in terms of � variables by the substitution u � x�z� v � y�z as

Qx� y� z� � ax� � bxy � cy� � dxz � eyz � fz� � ��

This equation is homogeneous� meaning that all the terms are of the
same degree� This implies that if x� y� z� is a solution� then so is
�x� �y� �z�� Therefore x� y� z� can be regarded as the homogeneous
coordinates in projective space P �� and the solutions de�ne a subset of
P ��

The importance of writing the equation in this form is that projective
transformations can be applied to homogenous equations� which allows
the coe�cients a� b� c� d� e� f in this example� to be simpli�ed�
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The function Q in the homogeneous equation is a quadratic form on
R
� � A projective transformation of P � is given by a linear transfor�

mation L of R� � If the image of x� y� z� is x�� y�� z�� � Lx� y� z� the
equation for x� y� z can be reexpressed as an equation amongst the new
variables x�� y�� z�� This new equation is also homogeneous of degree
two� and is given by a new quadratic form Q� on R

� obtained from Q
by a similarity transformation� Q�x�� y�� z�� � QL��x�� y�� z��� � ��
Quadratic forms are similar to a �nite number of canonical forms�

Example� If the quadratic formQ is positive de�nite� then it is similar
to

x� � y� � z� � ��

and the original equation in inhomogeous coordinates becomes

u� � v� � � � �

after the projective transformation� In this case there are no solutions
for �x � y � z� � P ��

Exercise �� The points of Pn � f�x� � x� � � � � � xn���g can be split
into two disjoint subsets� as xn�� �� � or xn�� � �� Give a bijection
of the �rst subset with Rn � The second subset is called the �points at
in�nity�� Find a bijection of the points of in�nity with Pn���

Give a decomposition

Pn �� R
n � R

n�� � R
n�� � � � �R� � R

� �

Exercise �� Explain how the equation for a line in R
�

ax� � bx� � c � �

for constants a� b� c � R can be written as an equation in P �� How many
points in P � solve the corresponding equation which do not correspond
to solutions in R��

Give the equations of two parallel lines in R
� � Where do these lines

meet in P ��

Exercise �� Show that the equation of the line joining two distinct
points �a� � b� � c��� �a� � b� � c�� in P � is

det

�
� x y z
a� b� c�
a� b� c�

�
A � ��
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�� Smooth functions

The functions we are mainly concerned with are those that can be
di�erentiated� One could work with the set of all di�erentiable func�
tions� but this is inconvenient� because the derivative of a di�erentiable
function need not be itself di�erentiable� Therefore we shall work with
functions which can be di�erentiated any number of times� These are
called smooth functions�

Functions of one variable�

De�nition� A function f �R � R is smooth if f and each derivative
dnf
dxn exists for every x � R and is a continuous function of x�

Often you can show a function is smooth by giving the formula for
all the derivatives�

Examples� Most familiar functions from calculus are smooth�

�� Polynomials are smooth� as dnf
dxn � � for n greater than the

order of the polynomial�
�� The standard functions sinx�� cosx�� expx� etc�� are smooth�
�� More generally� an analytic function de�ned on C de�nes two

smooth functions� its real and imaginary parts� when its domain
of de�nition is restricted to the real axis�

Exercise �� Are these functions smooth�

��
pjxj x � R

�� cos�� x � � 	 x 	 �
��

x ��
�
e���x� x � �

� x � �

The second example illustrates a use of the inverse function theorem
for one variable

dy

dx
� ��

�
dx

dy

�
�

this will subsequently be generalised to Rn � It is also worth noting that
it makes sense to ask about the smoothness of a function de�ned only
on a part of R � namely the open interval �� 	 x 	 ��

The properties of di�erentiable functions carry over in a straightfor�
ward way to the case of smooth functions� Given smooth functions f �
g� then the following are smooth�

�� Linear combinations x �� �fx� � �gx�
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�� Product fg�x �� fx�gx�
�� Composite f � g�x �� fgx��

The second of these is proved by using the Leibnitz rule� which gives
a formula for the derivative�

dfg�

dx
� f

dg

dx
� g

df

dx
�

This can be used to give a proof that fg is smooth if f and g are�
Iterating Leibnitz rule gives

dnfg�

dxn
�

nX
k��

�
n
k

�
dkf

dxk
dn�kg

dxn�k
�

The right�hand side is the sum of a product of continuous functions
and so is continuous�

The third of these is similarly related to the chain rule� which gives
the derivative of a function of a function� Let f be given as a function
of y� g be given as a function of x�

df � g�
dx

�
df

dy
gx��

dg

dx

The notation is potentially confusing� The formula df
dy gx�� mean�

s write f as a function of y� di�erentiate it with respect to y� then
substitute gx� everywhere for y� For example� if fy� � y� � y and
gx� � cosx�� then

df

dy
� y� � ��

df

dy
gx�� � gx�� � � � cos�x� � ��

Functions of several variables�
If f �Rn � R

m is a function� then it has m component functions
fi�R

n � R � i � � � � �m� given by

fx� � f�x�� f�x�� � � � � fmx�� �

De�nition� A function f �Rn � Rm is smooth if the components
f�� f�� � � � � fm� of f and each of their partial derivatives

fi�

fi

xj

�

�fi


xj
xk
� � � �

i � �� � � �m
j� k � �� � � �n

exist and are continuous functions of x�
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Exercise �� Work out the partial derivatives for the components of a
linear map f �Rn � R

m given by

fi� x�� � � � � xn� ��
nX

j��

Lijxj �

Show that a linear map is smooth�

Smooth functions can be combined in a similar way to the one�
variable case� by linear combinations �f � �g of two functions f � g
from Rn to Rm � by the product fg of two functions Rn � R � and by
composition of f �Rn � R

m with g�Rm � R
k to give a smooth function

g � f �Rn � Rk �

Exercise �� Which of the following functions R� � R are smooth�

��
p
x� � y�

��
p
� � x� � y�

�� ey sinx

The chain rule for several variables� First� consider a special case�
Let c�R � R

m and h�Rm � R be smooth functions� Then the com�
posite is

h � c� t �� h
�
c�t�� c�t�� � � � � cmt�

�
�

The chain rule for di�erentiating this is

dh � c�
dt

�
mX
i��


h


xi

�
ct�
�dci
dt

�

This formula is a sum of a product of continuous functions and is there�
fore a continuous function� By repeated application of this formula� and
the Leibnitz rule� one can arrive at a formula for the n�th derivative�
thus showing that h � c is smooth�

Exercise �� Put ct� � t�� t��� and suppose h is a smooth function
R
� � R such that hct�� � t�

�� Di�erentiate both sides of hct�� � t� using the chain rule�
�� Set t � �� What does this tell you about h� How does this

relate to the image of c�
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The general case� If g�Rn � R
m is a smooth function of x and

f �Rm � R
k a smooth function of y� then





xj
f � g�i � 



xj
fi � g� �

mX
l��


fi

yl

�
gx�

� 
gl

xj

This follows from setting ct� � gx�� � � � � xj � t� � � � � � � � � xn�� h � fi�
and computing

d

dt

�
h � c�

at t � �� The formula can be interpreted as the multiplication of a
k �m matrix with an m� n matrix��

� �f�
�y�

� � � �f�
�ym

� � � � � �
�fk
�y�

� � � �fk
�ym

�
A
�
� �g�

�x�
� � � �g�

�xn
� � � � � �
�gm
�x�

� � � �gm
�xn

�
A

Exercise �� Consider the functions

g�U � R
� � U � fr� ��jr � �g

r� �� �� r cos �� r sin ��

f �R� � R
�

x� y� �� x� � y�� xy�

�� Give reasons to show that f and g are smooth�
�� Calculate

� �g�
�r

�g�
��

�g�
�r

�g�
��

�
�

�
�f�
�x

�f�
�y

�f�
�x

�f�
�y

	

�� Work out a formula for f�g� and its matrix of partial derivatives�
without using the chain rule� Show the chain rule is satis�ed
by multiplying matrices�

Di�eomorphisms�
A smooth functions f with a smooth inverse f�� is called a di�eo�

morphism� This satis�es

f � f�� � identity and f�� � f � identity�
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It can be regarded as de�ning new coordinates� The �gure shows the
x�� x���coordinate axes of R

� and the new axes for u�� u�� � fx�� x���
for some di�eomorphism f � Geometric objects de�ned in terms of the
old coordinates can be de�ned in terms of the new coordinates� and
vice versa� using x�� x�� � f��u�� u���

1

u

x

x

u

22

1

Exercise 	� Suppose f �Rn � R
n is a di�eomorphism� with inverse g�

Apply the chain rule to f � g� What can you say about the matrix of
partial derivatives of f�

Solution to exercise ��

�� The function is not di�erentiable at x � ��

lim
x��

fx� � f��

x
� lim

p
jxj
x

� 
�

�� If x � cos y� then dx
dy � � sin y � �p�� x� �� �� The in�

verse function theorem tells us that dy
dx � ��p

��x� � This formula

can be repeatedly di�erentiated to give formulae for the n�th
derivative� since x� 	 ��

�� All the derivatives of the function exp���x�� converge to � as
x� �� so the given function is smooth�

Solution to exercise �� �fi
�xj

� Lij � a constant� All further derivatives
are zero�
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Solution to exercise ��

��

�t

h


x�
� �t�


h


x�
� ��

�� Setting t � � gives � � �� Hence h cannot be smooth� However
a continuous h can be found� An example is hx�� x�� � �

p
x���

The image of c has a cusp at t � �� a point where the curve is
not smooth� The curve is called the semicubical parabola�

-1

-0.5

0

0.5

1

y

-1 -0.5 0 0.5 1
x

�� The derivative

A function f �Rk � R
l has a derivative dfx at a given point x � R

k

if there is a linear map dfx�R
k � R l and a continuous function ��Rk �

R
l such that

fx� h�� fx� � dfxh� � jhj�x� h��

and
�x� � ��

The formula can be solved for � as long as h �� �� and this formula
for � is continuous where h �� � assuming f is�� So the crucial point of
the de�nition is that the error � converges to � as h� ��

Lemma� The derivative is unique�

Proof� Suppose another linear map L also satis�es the de�nition� with
error ��� Then

dfxh�� Lh� � jhj��x� h�� ��x � h�
�
�
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Consider h � ty for a �xed vector y and t� � � R � Then this becomes

t
�
dfxy� � Ly�

�
� tjyj��x� ty�� ��x � ty�

�
�

For t �� �� the number t cancels on both sides� giving

dfxy� � Ly� � jyj��x� ty�� ��x � ty�
�
�

But as � and �� are continuous� this equation is also true at t � �� At
t � �� the right�hand side is zero� It follows that dfx � L�

For a �xed point p� the map Rk � R l

x �� fp� � dfpx� p�

is an a�ne map which approximates f at p� Clearly� if f is itself a�ne�
then the approximation is exact� and the derivative is the linear map
df de�ned earlier for a�ne maps� and does not depend on p� However
if f is not a�ne� then the linear map dfp does vary with p�

x
p

y

y=f(x)

The a�ne approximation to f at p

Exercise �� Let f �Rn � R
m be a linear map� Use the de�nition to

show that dfx � f � for any x�
Let h�Rn � Rm be an a�ne map� Show that dhx � dhy� for any

x� y � R
n � and that this linear map coincides with the map named dh

in the section on a�ne maps�

Lemma� If f �Rk � R l is a smooth function� then the derivative dfx
exists for every x� and has as its matrix the partial derivatives�

� �f�
�x�

� � � �f�
�xk

� � � � � �
�fl
�x�

� � � �fl
�xk

�
A �
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Proof� Given h � R
k � de�ne a sequence of vectors

h� � �

h� � h�� �� �� � � � � ��

h� � h�� h�� �� � � � � ��

���

hk � h�� h�� h�� � � � � hk� � h

The superscript is used to distinguish di�erent vectors hn� as distinct
from the subscript� which denotes the components hn of h as usual� The
sequence of vectors is constructed so that it interpolates between � and
h� with each successive pair hn� hn�� di�ering only in one coordinate�
hn� Then� using the mean value theorem for this coordinate�

fix� hn�� fix� hn��� � hn

fi

xn

x� cn��

where the vector cn lies on the line between hn and hn���

h

h

c

n-th axis

other axes

n

n-1

n

0

Summing this equation over n gives

fix� h�� fix� �
kX

n��

hn

fi

xn

x � cn��

This expression gives the i�th component of a vector obtained by a ma�
trix of partial derivatives acting on the vector h� The partial derivatives
are evaluated at points x� cn�

For jhj �� �� de�ne � � ��� ��� � � � � �k� by the equation

�� fix � h�� fix� �
kX

n��

hn

fi

xn

x� � jhj�i�
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Then

�i �
X
n

hn
jhj
�

fi

xn

x � cn�� 
fi

xn

x�

�

which converges to zero as h � �� because the di�erence of partial
derivatives converges to zero� and �� � hn�jhj � �� This shows that
the vector � is continuous if �x� is de�ned to be zero�

Equation �� is just the i�th component of the equation de�ning
the derivative� with the linear map dfx given by the matrix of partial
derivatives at x�

Chain rule for derivatives� In the light of this lemma� results about
the partial derivatives can be transcribed into the new notation� The
chain rule becomes

df � g�x � dfg�x� � dgx�
Exercise �� Let f �R � R � What is df��� in the usual df

dx notation�

Exercise �� Let fx� y� � x� � y�� x� � y��� Calculate df�x�y� using
partial derivatives� Work out a formula for � in the de�nition of the
derivative of f � and verify that �� � as h� ��

Exercise �� Give a proof of the chain rule by applying the de�nition
of the derivative to df � g�x� dfg�x� and dgx� and manipulating the
three error terms�

�� Open sets

Quite often we need to de�ne smooth mappings not on the whole of
R
n � but on certain subsets� For example x �� cosx is a di�eomorphism

of the open interval � 	 x 	 � to the open interval �� 	 y 	 ��
Another requirement is to discuss the behaviour of a function is a

�small region around a point��

Balls� In Euclidean space Rn � the distance dx� y� � jx � yj can be
used to say when points are close� If r is a number greater than zero�
then the ball of radius r at x � Rn is de�ned to be

Brx� � fy � R
n j dx� y� 	 rg

The ball is the subset of points closer to x than the radius r�
However� as we have already seen� there are many maps of interest�

a�ne maps for example� which do not preserve distances� Therefore
it is necessary to have adopt a sophisticated approach to the idea of
closeness of points�
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Open subsets of R
n � An open subset P of Rn is de�ned to be a

subset which is a union of balls in R
n � Brx�� for points x � R

n � and
radii r � �� Note that the union can be over any set of balls� not
restricted to �nite or countable� and of course x and r vary�

Examples�

�� A ball
�� The intersection of two balls
�� The empty set
�� The whole of Rn

The second example is an open subset for the following reason� If
p � P � Brx� � Br�x

��� then p is the centre of a ball of radius
minr � dp� x�� r� � dp� x���� which is contained in P �

p

So P is the union of all the balls constructed in this way for each
p � P �

A point y � Y is called an interior point of Y if there is an r such
that Bry� � Y � The set Y is an open set if and only if every point of
Y is interior�

Exercise �� Which of the following subsets of the plane R� are open
sets� Points x� y� such that�

�� x 	 �
�� x � �
�� x� �y � �
�� x� � y�

�� xn � yn � � for every positive even integer n�

If U � R
n is an open subset� then a function de�ned on U � rather

than the whole of Rn � can be di�erentiated in just the same way for any
point x � U � For example� to de�ne a partial derivative of f �U � R �


f


xj
� lim

h��

fx�� � � � � xj � h� � � � � xn�� fx�

h

the function f needs to be evaluated at points close to x along a line
parallel to the xj axis� Such points are in the set U � because it contains
the whole of a ball centred on x�
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This means that all of the previous de�nitions for di�erentiation also
make sense for functions de�ned on an open subset of Rn �

Example� The function f �R� � R� de�ned by x� y� �� x�� y� is a
smooth map but is not a di�eomorphism� However if U is the open
subset of R� de�ned by x � �� then the same formula gives a di�eo�
morphism U � U � The inverse function is x� y� �� 

p
x� y��

Open subsets of X � Rn � Now let X be a subset of Rn � not nec�
essarily an open subset� For example� X could be an a�ne subset of
a lower dimension� or a manifold see below�� An open subset of X is
simply any set of the form X � U � where U is an open subset of Rn �

Now consider X � Rn � Y � Rk and f �X � Y a continuous map�
ping� If V � Y � its inverse image� f��V � is the set of all points x � X
which map into V �

Continuous mappings respect open sets in the following way�

Proposition� For f �X � Y � the inverse image of an open subset

V � Y is an open subset of X�

The situation is simpler if f has a continuous inverse mapping f���

Proposition� Let X � Rn and Y � Rk � If the continuous function

f �X � Y has a continuous inverse f��� then U � X is an open subset

of X if and only if fU� � Y is an open subset of Y �

	� Inverse function theorem

Suppose f �Rn � Rn is a di�eomorphism� Then the derivative dfx
is an invertible linear map for each x� Is the converse true� Suppose f
is a smooth map and dfx is invertible for all x� Is it a di�eomorphism�

If n � �� this is true� The inverse function theorem for one variable
is

Theorem� If f �R � R has non�zero derivative df
dx for every x� then

the inverse function exists and is di�erentiable�

It is not too hard to extend this to proving that the inverse is smooth�
If n � �� it is not true� Consider the mapping

gx� y� � ex cos y� ex sin y��

This has derivative

dg�x�y� �

�
ex cos y �ex sin y
ex sin y ex cos y

�
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which is invertible� However� gx� y� � gx� y � ����
This shows the inverse can not exist on the whole of R� � However�

the idea of the de�nition of the derivative is that a smooth function
f is approximated near a point x by an a�ne map� If x is a regular
point� this a�ne map is invertible� so we expect the original function
f to be invertible when its domain and range are restricted to some
su�ciently small regions around x and fx��

Inverse Function Theorem� If U � R
n and V � R

n are open sub�

sets� f �U � V is smooth� x � U and dfx is invertible� then there are

open subsets U � � U � V � � V such that x � U � and f restricted to U �

is a di�eomorphism to V ��

Exercise �� Are the following functions R� � R
� di�eomorphisms�

If not� is there an open set containing the origin on which the function
is a di�eomophism to its image� Give the reasons for your answers�

�� x� y� �� x� y�� y�
�� x� y� �� x� x�� x�
�� x� y� �� x� x�� y�
�� x� y� �� x� � yx� y�
�� x� y� �� x� � yx� x� y�

Exercise �� Consider gx� y� � ex cos y� ex sin y�� Verify that dg�x�y�
is invertible for all x� y� � R� � State how the inverse function theorem
applies to the behaviour of g near to the point x� y�� Now verify
that the inverse function theorem is true in this case by giving explicit
formulae and a domain for the inverse function�

�
� Catastrophe theory

Let f be a smooth function from R
n to R

n � The points x � R
n for

which the linear map dfx is not invertible are called singular points of
f � The corresponding y � fx� are called singular values of f � Points
which are not singular are called regular points� and values of y which
are not singular values are called regular values of f �

We shall study two basic examples in R� �

�� The standard fold

y�� y�� � fx�� x�� � x��� x���

The matrix of partial derivatives is�
�x� �
� �

�
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This is non�invertible singular� for x� � �� giving the singular
points� The singular values are on the line y� � �� The be�
haviour of f can be plotted in the y��y� plane� For each y�� y���
the number of points x�� x�� such that y�� y�� � fx�� x�� are
plotted� It is noteworthy that the singular values lie where the
number changes� The resulting diagram is called a bifurcation
diagram�

�� The standard cusp

y�� y�� � gx�� x�� � x�� � x�x�� x���

Exercise �� Calculate the determinant of the matrix of partial deriva�
tives of the standard cusp g to �nd an equation in x�� x�� for the sin�
gular points of g� and an equation in y�� y�� for the singular values of
g�

Verify that the number of points mapping to y�� y�� is the number
of roots of the cubic

t� � y�t � y��

Compute the stationary points of ht� � t� � y�t� and draw its graph
for y� 	 �� y� � � and y� � �� For each of the three cases� work out
the ranges of y� for which ht� � y� has one� two or three solutions�

Draw the bifurcation diagram for g�

Exercise �� Give an example to show that a function can map a reg�
ular point to a singular value�

If g�R� � R� is the standard cusp� with the coordinates named as
y � gx�� then using new coordinates x� � h��x� results in a more
general form of cusp� y � ghx���� with the same bifurcation diagram
but di�erent regular points� This follows from the chain rule� the
matrix


g � h�i

x�j

is singular at a point x� if and only if the matrix


gi

xj

is at the corresponding value x � hx��� Similarly� one can change the
y coordinates� by y� � ly� which results in the cusp y� � lgx�� with
di�erent singular values� but corresponding smoothly with the singular
values for the standard cusp g�
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Whitney
s theorem� Whitney showed that a generic smooth func�
tion F �R� � R

� has singular points which are all either cusps or folds�
expressed in some coordinates x�� y�� which are related to the standard
x� y coordinates of the standard cusp or fold by a di�eomorphism�

The adjective generic refers to a �typical� function F � This means
that if a function f does not obey Whitney�s theorem� then there is a
function � with arbitrarily small values� such that F � f � � does�

This result is fairly di�cult to state precisely� and also hard to prove�
We shall just explore its content with examples and applications of the
idea�

Surface projections� The standard fold and cusp can be viewed as
projections of smooth surfaces in three�dimensional space� The fold
and cusp are the composite mappings R� � R

� � R
�

x�� x��� x��� x�� x��� x��� x��

x�� x��� x�� � x�x�� x�� x��� x�� � x�x�� x��

The �rst map in each line parameterises a smooth surface in three�
dimensional space� and the second map projects it onto the plane R�

by ignoring the third coordinate value� as one would see by viewing
the surface from a direction along the third coordinate axis� Here are
two views of the cusp surface in R� � The second view is the projection
given above�
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According to Whitney�s theorem� the projection of any surface to
the plane will generically have singularities of these types� This can be
seen by examples� or by experimenting with real objects� The �gure
shows the projection of a glass torus� in which four cusp points can be
seen� with the lines corresponding to folds�

Exercise �� List a number of qualitatively di�erent ways that the
pattern of folds and cusps can change when you rotate an object� Hint�
start by considering walking past a camel with two humps�

Other patterns of change can be obtained by viewing the camel
humps in di�erent ways�
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Exercise �� Consider the stationary points of the function

V x� �
�

�
x� �

�

�
ax� � bx

for constants a� b � R � How does the number of these vary as the pa�
rameters a� b vary� Draw the graph of V for each qualitatively di�erent
set of parameters a� b��

Find the equation satis�ed by the stationary points of V � How do
these values a� b� x� relate to the standard cusp� The minimum points
can be thought of as places where a ball rolling in the potential V x�
comes to rest� Suppose the ball sits at a minimum point� and the
parameters a� b� are varied slowly and smoothly�

How do the minima of V behave as a� b� vary� Answer this question
by drawing various possible trajectories for a curve in the a�b plane the
bifurcation diagram�� Assume that if the minimum point at which the
ball sits disappears� then the ball jumps to a new minimum point by
rolling downhill�

Show how the following phenomena occur

�� Catastrophes� Discontinuous jumps in the position of the ball
as just described��

�� Memory� The position of the ball depends on its past history
as well as the values of a� b��

�� Hysteresis� Reversing the path of the parameters a� b� does
not reverse the path of the ball�

�� Divergence� The �nal position of the ball depends not only on
the initial position and the �nal parameters� but also on the
path taken by the parameters in the a�b plane

Exercise �� Use the library to �nd practical applications of the cusp
catastrophe described in the previous question� Which of the described
phenonema occur in your examples�
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��� Manifolds

Examples of surfaces� Some examples of surfaces have already been
used� for example in the discussion of the cusp singularity� If f �R� � R

is a smooth function� then the graph of f � namely the set of points
x� y� z� � R� such that z � fx� y�� is a surface� Let us name this set
M �

The set M has parameters and coordinates� de�ned as follows� The
function ��R� � M de�ned by x� y� �� �

x� y� fx� y�
�
is called a pa�

rameterisation of M � The function ��M � R
� given by�

x� y� fx� y�
� �� x� y�

is called a coordinate function or just coordinates� for M � Each com�
ponent of this function is called a coordinate� i�e�� the functions giving
the value of x or y� The parameterisation and coordinate functions just
de�ned are inverses of each other�

R
� ���M

��� R
�

is the identity map�
There are more general surfaces than graphs of functions� however�

Just one example will su�ce for now� the sphere S� � R� de�ned by

fx� y� z� j x� � y� � z� � �g�

Clearly� the sphere is not the graph of any function� Also� the sphere
does not have a parameterisation in the same way� there is no smooth
bijection R

� � S��
The property the sphere does have is that there are locally param�

eterisations and coordinates� For each point p � S�� there is an open
subset V of the sphere containing p� and an open subset U � R� � and
a parameterisation

��U � V�

Example� The spherical polar parameterisation is the map U � V �
S� de�ned by

�� �� �� sin � sin�� sin � cos�� cos ��

and is de�ned on the set U � R
� given by � 	 � 	 �� � 	 � 	 ��� The

image V is the open subset of the sphere given by excluding the points
x� y� z� such that x � � and y � ��
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Spherical polar coordinates are the inverse of this mapping� V � U �

The de�nition of a manifold will generalise this idea� A manifold is
a subset of Rn which has local parameterisations and coordinates from
open subsets of Rk � We say that a manifold is a �locally Euclidean�
subset of Rn �

Functions de�ned on subsets of Rn �

Smooth functions have been de�ned already when the domain is an
open subset of Rn � Now follows the de�nition for an arbitrary subset�

De�nition� Let X be any subset of Rn � A function f �X � Y � R
m is

called smooth if for every point x � X there is an open subset U � Rn

so that U contains x� and a smooth function F �U � R
m which agrees

with f on the open subset V � U �X of X�

X

x

U

As before� if f is smooth and f�� is also smooth� then f is called a
di�eomorphism�

Exercise �� Let L � Rn be a linear subspace� and f �L� Rm a linear
map� Is f smooth�

Exercise �� De�ne X � fx� y�jxy � �g � R
� � and f �X � R by

x� y� ��
p
x� � y�� Is f smooth�

Exercise �� De�ne X � ft�� t�� j t � Rg� and the function f �X � R

by t�� t�� �� t� Is f smooth�

Exercise �� A function is de�ned on the line L � R
� which passes

through two distinct points a� b � R
� by

f�a� �� ��b� � ��

What is the de�nition of a smooth function de�ned on L� Construct a
function F on the whole plane which agrees with f on L�
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De�nition of a manifold� A set X � R
k is called a manifold of di�

mension n if for every x � X there is an open subset U � X containing
x� and an open subset V � Rn � such that there is a di�eomorphism
from U to V �

This di�eomorphism is called a coordinate function� and its inverse
a parameterisation of X�

Terminology� The open subsets U � X in the de�nition of a man�
ifold� together with the di�eomorphism to V � R

n � are often called
coordinate charts� or just charts� A collection of charts is said to cover
X if every point x � X is in at least one of them� Such a collection
is called an atlas for X� Coordinate charts are also called coordinate
patches�

Part of an atlas

Examples of manifolds�

Open subsets� The most elementary examples of manifolds are given
by taking X � R

n to be an open subset� Then U � V � X and the
di�eomorphism in the de�nition is the identity map� These examples
include Rn itself�

Graphs� A large class of examples of manifolds are given by the
graph of a smooth function de�ned on an open subsetW � R

n � f �W �
R
m � This is the set X � f�w� fw��jw � Wg � R

n�m � The diagram
shows a one�dimensional example�

To show that this set is a manifold� take U � X and V � W in the
de�nition of a manifold� The parameterisation is x �� �

x� fx�
�
and its

inverse is
�
x� fx�

� �� x�
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x

y

y=f(x)

The graph of a function

Example� The upper hemisphere Un � Rn�� is the subset

n��X
i��

x�i � �� xn�� � ��

This is the graph of the function B���� R de�ned by

x�� � � � xn� ��
vuut��

nX
i��

x�i �

Spheres� The n�dimensional sphere Sn � Rn�� is de�ned as the set
of all points satisfying

n��X
i��

x�i � ��

Sn is a manifold� This is because any point x � Sn is contained in a
hemisphere for one of the axes� For example� if xn�� � � then x � Un�
If xn�� 	 �� then x is contained in the lower hemisphere Ln � �Un�
If xn�� � �� there is another coordinate� xk� which is not zero� and
then x is contained in a hemisphere de�ned by taking xk to be the
independent variable� instead of xn���

Therefore Sn is the union of a number of open subsets U the hemi�
spheres� which are di�eomorphic to an open subset of Rn � as required
in the de�nition of a manifold�

Torus� Manifolds of dimension � are called surfaces� These arise
most naturally as subsets of R� � according to our everyday experience�
An example we have already met is S� � R

� � Another example is the
torus� This can be drawn by �rst drawing a circle of radius � in the
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x � y plane� then taking each of these points as the centre of another
circle of radius �� lying in a plane through the z�axis�

Following this idea through� leads to a de�nition of T � R� as the
subset of points satisfying
p

x� � y� � �
��

� z� � �

It is possible to show that T is a manifold directly� by �nding a set of
coordinate charts which cover T � as was done for the sphere� It also
follows from an exercise below�

z

x

y

Groups� The groups which arise in the special geometries have sets of
elements which are labelled by continuous parameters� In this situation�
it is natural to ask whether these sets are manifolds� The group GLn�
is the set of all invertible matrices� thus the matrix entries can be taken

as n� coordinates� This is a map GLn�� Rn� given by�
� a�� � � � a�n

���
an� � � � ann

�
A �� �

a��� a��� � � � � ann
�

It is often convenient to regard GLn� as a subset of Rn� � as the re�
arrangement of the matrix entries as a vector is of little consequence�

The condition on the matrix A for it to be invertible is detA �� ��
which is a polynomial equation in the matrix entries� For example� for
n � �� this is

a��a�� � a��a�� �� ��
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This de�nes an open subset of Rn� � In general� this is because the map

det�Rn� � R is continuous� and GLn� is the inverse image of R n f�g�
an open set� Thus GLn� is an n��dimensional manifold�

Various subgroups of GLn� are also manifolds� For example� the
group of n � n orthogonal matrices� On�� is a manifold of dimension
�
�nn� ���

Alternative de�nition� Many books use an alternative de�nition of
manifold� as a set X which is a topological space� and an atlas of
coordinate charts for X� Thus X is not regarded as a subset of Rn �
There are conditions on the atlas for this de�nition to make sense� and
the main disadvantage of this method is that these conditions require
much more technical e�ort to explain� There is no more generality in
this as the set of manifolds obtained by the alternative de�nition is
equivalent to the set of manifolds de�ned here�

Exercise �� Let U � R� be the upper hemisphere

fx� y� z�jx� � y� � z� � �� z � �g

The map f �U � R
� is de�ned by x� y� z� �� x�z� y�z�� Give a formula

for the inverse function f��� Is f�� smooth�

Exercise 	� The spiral S � R
� is the set of points of the form

e� cos �� e� sin ���

for � � R � Sketch S� Now consider the function f �S � R de�ned by
e� cos �� e� sin �� �� �� Consider a point x � S� and suppose the ball
Brx� does not contain the origin r � jxj�� Show that there is a map
F �Brx�R

�� � R which agrees with f by giving an explicit formula�
What goes wrong if r � jxj�

Is the original function f smooth� Is S a manifold�

Exercise �� Give a set of parameters for the elements of the a�ne
group An�� Hence describe An� as a subset of Rk for some k�

Exercise �� In complex analysis� it is often convenient to add a single
extra point �at in�nity� to the complex plane� so that any set of points
of increasing radius from the origin converges to the extra point �
What manifold do think C � fg should be�
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Maps of manifolds�
If M � R

m and N � R
n are manifolds� then we have essentially

already de�ned a smooth map M � N � it is a smooth map M � Rn �
as de�ned previously� such that the image lies in N � If f �M � N is a
smooth map with a smooth inverse� then it is called a di�eomorphis�
m� and M and N are said to be di�eomorphic� For example� S� is
di�eomorphic to an ellipsiod

fx� y� z� j ax� � by� � cz� � �g�
determined by constants a� b� c � �� The di�eomorphism is the linear
map

x� y� z� ��
�

xp
a
�
yp
b
�
zp
c

�
�

The torus and the sphere are an example of two manifolds which are
not di�eomorphic� This is intuitively obvious as the torus has a hole
through the middle but the sphere does not� but proving it requires
some thought� Here is an argument which can be made into a proof�
Suppose f �T � S� is a di�eomorphism� The torus T has two circles
on it which cross at only one point e�g�� given by z � � and y � ���
The images of these circles would be two circles on the sphere which
cross at only one point� Draw one circle on a sphere� It is �obvious�
that one cannot draw a second circle to cross it at only one point�

Product of manifolds� If M � R
k and N � R

l are manifolds� then
so is M �N � Rk�l � As an example� S��S� is the subset of R� given
by

x� � y� � �� z� � t� � ��

Exercise � How can S� � S� � R
� be parameterised� Find a di�eo�

mophism S� � S� � T �

Exercise ��� Give a di�eomorphism between the manifold D � R
	

given by
w� � x� � y� � z� � t� � �

and S� � R �

Solution to exercise �� Let L� be a complementary subspace� so that
Rn � L � L�� Decompose a vector  � Rn as  � l � l�� l � L� l� � L��
and set F � � fl�� This map is de�ned on the whole of Rn certainly
an open subset�� agrees with f � and is smooth� Note that since there
are many choices of complementary subspaces L�� there are many linear
extensions F � There are also choices of F which are not linear�
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��� Discrete Quotients

Let M � R
m � N � R

n and f �M � N a smooth map� The maps
we are interested in are maps which are isomorphisms on a su�ciently
small scale�

De�nition� A local di�eomorphism f �M � N is a map such that for
each x �M there is an open subset U �M containing x and an open
subset V � N � so that f restricts to a di�eomorphism U � V �

If the local di�eomorphism f is onto� we say that N is a discrete
quotient ofM � In the rest of this section� this is abbreviated to quotient�
though the term quotient can apply to more general onto maps� If
y � N � we say that f identi�es the points f��y� �M in the quotient�

Example� The simplest example is the map R � S� given by

� �� cos �� sin ���

The points � � ��n� n � Z� are identi�ed to a single point in S��

There is a purely topological notion of a quotient space� Namely�
given a topological space X and an onto map f to a set Y � then there
is the quotient topology of Y de�ned by making V � Y open whenever
f��V � is� This could give a possibly con�icting notion of quotient� so
it is important to show that these coincide�

Theorem� Let f be a local di�eomorphism of M onto N � Then N has

the quotient topology�

Proof� This is proved by showing that f maps open sets to open sets�
This is called an open mapping� Then the result follows easily from
this� The details are in the following two lemmas

Lemma� A local di�eomorphism is an open mapping�

Proof� For each x � M � let Ux be the open set containing x on which
f is a di�eomorphism� Then if U �M is any open set�

U � �x�UUx � U
and

fU� � �x�UfUx � U��

Since f is a homeomorphism Ux � fUx�� fUx �U� is an open subset
of fUx� and hence an open subset of N � Hence fU� is an open subset
of N �
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Lemma� If f �M � N is an open mapping and is onto� then N has

the quotient topology�

Proof� Let V � N be a subset such that U � f��V � is open� Then
fU� is open since f is an open mapping� and V � fU� since f is
onto� Hence a subset of N which is open in the quotient topology is
open in the given topology of N � The converse follows from the fact
that f is continuous�

However the condition of local di�eomorphism is much stronger than
being a purely topological statement� For example x �� x� is a homeo�
morphism but not a local di�eomorphism� But the topological notion
of a quotient space is a useful half�way house to give a description of
N �

De�nition� A fundamental domain for a quotient f �M � N is a
closed subset D �M such that fD� � N but f only identi�es points
on the boundary 
D of D�

For example� the interval ��� ��� is a fundamental domain for the
map R � S� above� The boundary is the endpoints of the interval�
f�� ��g and these two points are identi�ed to one point in the quotient�

This example can be generalised to products of the circle� for exam�
ple R� � S� � S�� A fundamental domain is a square with opposite
edges identi�ed� and all four corners identi�ed to one point�

Projective space� So far� Pn has been described simply as a set� Now
it can be described as a manifold� obtained as a quotient of the sphere�
Recall that Pn is de�ned as the set of lines through the origin in R

n�� �
Each line intersects the sphere Sn in exactly two points� 
x�

So to construct projective space as a manifold� it is su�cient to �nd
a quotient of the sphere� f �Sn � Qn � Rk � This map to Rk has
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the property that fx� � f�x�� So to construct such a map� a good
starting point is to �nd a set of functions Sn � R with this property�

Let x � x�� � � � � denote points on Sn� Then the functions xjxk for
any choice � � j� k � n � � give a function with same value on 
x�
De�ne f �Sn � R

�

�
�n����n��� to be the map

x�� x�� � � � � xn��� �� x��� x�x�� x�x�� � � � � x
�
n����

and de�ne Qn to be the image of f �
Now a number of questions need to be settled to show this construc�

tion works�

�� Is f a local di�eomorphism�
�� Is Qn a manifold�
�� Are any other points identi�ed� beside 
x � Sn�

The answer to �� is yes due to the following construction� The map
f can be locally inverted by explicit formulae� which will be given here
for n � �� The function f �S� � Q� is the map

x�� x�� x�� �� x��� x�x�� x�x�� x
�
�� x�x�� x

�
�� � y�� y�� y�� y�� y	� y
��

Assume that x� � �� Then x � S� can be calculated from

x� �
x�x�p
x��
� x� �

x�x�p
x��
� x� �

q
x���

Therefore the inverse of f is locally

y�� y�� y�� y�� y	� y
� ��
�

y�p
y

�
y	p
y

�
p
y


�
�

This formula clearly extends to points in an open subset of R
 and so
indeed provides the smooth inverse to f for the hemisphere x� � ��

The answer to the question �� is yes by the following general result�

Lemma� Let M be a manifold� and N a subset of Rk � If there is a

local di�eomorphism f �M � N � then N is manifold�

Proof� Suppose f restricts to a di�eomorphismU � V for open subsets
U and V � Let x � U � Then there is a coordinate chart de�ned on an
open subset U � � M � with x � U �� Of course� U and U � need not
coincide� but one can restrict both maps to the intersection� U �� �
U � U �� Then U �� is di�eomorphic to an open subset of Rn � and to an
open subset fU ��� of N � This provides a coordinate chart around the
point fx� � N �

Finally� it is an algebraic exercise to settle question ���
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Exercise �� Show that the only points identi�ed in the map Sn � Qn

are 
x� What is a fundamental domain for this quotient� How are the
boundary points in your fundamental domain identi�ed�

Exercise �� Show that the inhomogeneous coordinates for Pn give
coordinates for the manifold Qn�

These calculations show that Qn really �is� Pn� viewed as a mani�
fold� Calculations can be done using the inhomogeous coordinates� as
previously� but now with the understanding that these are coordinate
charts on a manifold�

Exercise �� Draw the subset Q� � R
� �

Exercise �� Find a map S� � S� which is a local di�eomorphism�
but is not a bijection� Is this possible for a map R � R�

Exercise �� De�ne M � P � by the equation

x� � y� � z� � t� � w� � ��

Find an onto map S� � S� �M � and describe the quotient of S� � S�

this de�nes�

��� The tangent space

Tangent vectors� A curve is a map c� I � R
k � where I � R is an

open interval� say fa 	 t 	 bg� Its tangent vector at a given parameter
t is

dc

dt
�

�
dc�
dt

� � � � �
dck
dt

�
�

Now suppose f �Rk � R
l is any smooth function� It carries the curve

c into a curve c� in R l � namely c�t� � fct��� The tangent vector for
curve c� � f � c can be calculated by the chain rule by

dc�t � dfc�t� � dct�

so that
dc�

dt
� dc�t�� � dfc�t� dct��� � dfc�t�

�
dc

dt

�
�

Therefore the derivative of f � dfx� can be interpreted as a linear
mapping of tangent vectors� for curves passing through the point x �
Rk �
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Tangent space� Let M � R
k be a manifold� and x � M � Then

a vector v � R
k is said to be tangent to M at x if there is a curve

c� I �M such that ct� � x for some t � I� and dc
dt � v�

De�nition� The tangent space at x �M � denoted TMx� is the subset
of Rk consisting of all vectors which are tangent to M at x�

Exercise �� Show that � � TMx�

Lemma� TMx � Rk is a linear subspace�

Proof� Let p�U � M be a parameterisation� for an open subset U �
Rm � such that u � U is mapped to x� It will be shown that

TMx � Image dpu� �

which is a linear subspace�
Firstly� if c is a curve in M with c�� � x� then for values of t

su�ciently close to �� ct� � p � p�� � ct�� so at t � �

dc

dt
� dpu

�
dp�� � c�

dt

�
� Image dpu� �

Conversely� if v � Image
�
dpu
�
� then v � dpu� for some  � R

m �
The curve ct� � pu � t� has tangent vector

dc

dt
� dpu� � v

at the parameter value t � ��

Exercise �� Use the chain rule to show that the dimension of TXx

is the dimension of X� Use the fact that a parameterisation has an
inverse�

Examples of tangent spaces� The tangent space to Rn at any point
is Rn itself� as the identity map is a parameterisation� and the derivative
of this is also the identity map�

The tangent space to an a�ne subset A � R
k at any point x � A is

the subspace TA � fa�xja � Ag introduced earlier� It is independent
of x� This follows because an a�ne subset can be parameterised by an
a�ne map ��Rn �� A � Rk � Then d�x is just the map

d�� y �� �y� � �x�

introduced earlier� The image of this map is the set of points f�y� �
�x�g for a �xed x and all y � R

n � which is the de�nition of TA�
Manifolds M � R

k can occur as the solutions to an equation F � ��
where F �Rk � R l � Then dFxv� � � for any vector v � TMx� If
v � dc

dt � then F � c � �� so dF�c
dt � dFxv� � �� This gives a method of

determining linear equations for TMx�
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Example� The sphere is given by F �Rn�� � R

F �

�
n��X
i��

x�i

	
� � � ��

Then dFxv� � �
P

xivi� � �x � v � �� This is one linear equation in
Rn�� and hence determines an n�dimensional linear subspace� Since
TSn

x also has dimension n� it follows that these two spaces are equal�
Hence TSn

x is the set of all vectors satisfying x � v � ��

Exercise �� Show that the maps S� � R
� given by

u� x�� x�� x�� x�� �� �x���x�� x�� x��

v� x�� x�� x�� x�� �� x���x���x�� x��
w� x�� x�� x�� x�� �� �x�� x���x�� x��

determine three vector �elds on S�� Do ux�� vx�� wx� form a basis
for TS�

x�

Di�erentiation on manifolds�

De�nition� LetM � Rk � N � R l be manifolds� and f �M � N � Then
the derivative of f at x � M is the linear map dfx�TMx � TNf�x�

which satis�es

dfx

�
dc

dt

�
�

df � c�
dt

�

where c is any curve through x�

In this de�nition� it is necessary to check that a linear map with
these properties exists� Suppose F is de�ned on an open subset of Rk

and agrees locally with f � Then we can use the chain rule for Rk on F

dfxv� �
df � c�

dt
�

dF � c�
dt

� dFc�t�

�
dc

dt

�
� dFxv��

This shows that the derivative in this more general situation man�
ifolds� is just the restiction of dFx to TMx� This proves that a linear
map with these properties exists� One might worry that this depends
on the choice of F � however the de�nition of dfx determines its values
on all vectors tangent to M uniquely without reference to F �

Exercise �� Show that the chain rule holds for maps of manifolds�
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Vector �elds� A vector �eld on a manifold is a choice of a tangent
vector at each point of M � More precisely� a vector �eld on a manifold
M � Rk is a smooth map v�M � Rk such that vx� � TMx for each
x �M �

The tangent bundle� The tangent spaces for the di�erent points
x �M are generally di�erent subspaces of Rk �

In general� the tangent spaces can be �glued together� to form the
tangent bundle of a manifold� TM � R

�k � R
k � R

k � This is de�ned
to be the set of all points x� v�� for x � M and v � TMx� A vector
�eld can be described as a map M � TM � as

x �� x� vx���

Exercise �� Describe the tangent bundle TS� � R
� explicitly by giv�

ing two equations for the subset� Give a vector �eld on S� which is
nowhere zero� i�e�� the tangent vector at every point is not ��

If V is a one�dimensional vector space� explain how a choice of vector
in V determines a linear isomorphism R � V � Use your vector �eld to
give a di�eomorphism S� � R � TS��

Exercise 	� Let f �Rn � R
m be a smooth function� Show that the

graph G � Rn�m of f is a manifold�
For a point g � G� which function is TGg the graph of�
Explain how you would show that the subset of R� given by

x� � y� � z� � �

is a manifold�
Give an explicit description of the tangent space at the point x �

y � �
�
p
�
� z � �� with numerical coe�cients in the equation that you

use�

Exercise �� A robot arm in the plane has its elbow at x � R
� and

hand at y � R
� � These are constrained by jxj � � and jy � xj � ��

Let X � fx� y�g � R
� be the set of con�gurations for the arm� Which

standard manifold is X di�eomorphic to�
The arm is controlled by a motor which sets the angle of the upper

arm x relative to a �xed axis� and a second motor which sets the angle
of the lower arm y � x� relative to the upper arm� Explain how the
hand y can be moved in a given direction in the plane given by a tangent
vector v by giving a direction in the space of angles controlled by the
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motors� At what points y does this control mechanism fail to work for
some tangent v�

How would you draw a circle of very small radius at the point y �
�� ��� Explain why this does not work at the origin y � ��

Exercise �� Two solid bodies touch at a single point p� Assume the
boundaries of the solid bodies can be modelled as smooth surfaces�
What can you say about the relation between the tangent spaces of the
two boundary surfaces at p� Give at least one concrete example�
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��� Lie Groups

A group is a set G with maps ��G�G� G and ��G� G giving the
multiplication and inverse of group elements� and an element e � G�
the identity� all satisfying the usual axioms� The usual notation is
�a� b� � ab and �a� � a���

De�nition� A Lie group is a group in which G is a manifold and �
and � are smooth maps�

In the same way� one can de�ne �Lie� versions of all the elementary
de�nitions in group theory� For example� a subgroup H � G which is
also a Lie group is called a Lie subgroup of G� A homomorphism of Lie
groups F � G is a group homomorphism which is also a smooth map�

Examples of Lie Groups�
The group GLn� is a Lie group� The coordinates for GLn� are the

matrix entries� The map � is smooth because a matrix entry for the
product �a� b� is a polynomial in the matrix entries for a and b� Also�
� is smooth because the matrix entries for a�� are polynomials divided
by det a� which is never zero for elements of GLn��

The vector space Rn is a Lie group� with �a� b� � a� b� �a� � �a�
This group is called the translation group� Tn��

Exercise �� Show An� is a Lie group�

Further examples of Lie groups arise as subgroups of GLn�� These
will be discussed later� The Euclidean groups En� and the projective
groups PGLn� are also Lie groups�

Actions of Lie groups�
Let M be a manifold� and G a Lie group� An action of G on M is a

map ��G�M �M satisfying

�� � �g� h�� x� � � g� �h� x��
�� �e� x� � x

Each element g � G provides a smooth map

�g�x �� �g� x��

called the action of g� The conditions �� and �� can be written

��gh� � �g � �h
�e � identity �
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Since �e � �g��g � �g�� � �g� the action of g�� is the inverse of the
action of g� Therefore� the action of g � G is a di�eomorphism� The
conditions satis�ed by an action can be stated alternatively as saying
that there is a homomorphism from G to the group of all di�eomor�
phisms of M �

Classi�cation of actions� There are three properties an action may
have

�� E�ective� If g � G is such that �g � identity� then g � e�
�� Free� If �g� x� � x for some x �M � then g � e�
�� Transitive� For all x� y � M � there exists g � G such that

�g� x� � y�

The �rst property� e�ective� is that every element of G except the
identity does �something somewhere�� This property is automatic for
any action de�ned as the set of all transformations of a manifold of a
particular kind� The action of GLn� on Pn�� is not e�ective because
all multiples of the identity in GLn� act as the identity in Pn���

A �xed point for an element g � G is a point x � M such that
�g� x� � x� For example� the rotations of a sphere about the z�axis
have the north and south poles as �xed points�

An action is free if every element except e has no �xed points� For
example� the action of Tn� on Rn by translations is free� By contrast�
the action of O�� on S� is not� because of the �xed points for rotations
just mentioned�

The orbit of a point x � M is the set of all points f�g� x�jg � Gg�
An action is transitive if there is only one orbit� For example� the
action of Tn� on R

n by translations is transitive� as is the action of
O�� on S�� However if you take the subgroup of rotations about the
z�axis� this is not transitive�

orbitsgfixed point for every 

Exercise �� Are the following actions e�ective� free or transitive�

�� GLn� acting on Rn
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�� The group of rotations about the z axis in R
� acting on the

sphere� S��
�� A Lie group G acting on G by multiplication in the group�

�g� h� � gh�
�� A Lie group G acting on G by conjugation� �g� h� � ghg���

��� Flows

A �ow is an action of the group T�� on a manifold� Let ��R�M �
M be the action� Then each point x �M gives a curve

�x�R �M

t �� �t� x��

Since �x�� � ��� x� � x� the curve gives all points on the orbit of x
under the �ow� The curve has tangent vector

vx� �
d�x

dt
�� � TMx�

A vector �eld� called the velocity vector �eld of the �ow is de�ned by
the function x �� vx��

Example� A river �ows smoothly of course� along a waterway M �
The function �t� x� gives the position at time t of the molecule of water
which is at the point x at time �� The vector vx� gives the velocity of
the water passing the point x at any value of the time parameter�

This follows from the property of a group action that

�xt� � �yT � t� for x � �T� y��

i�e�� the curve through x is the same as the curve through y with the
parameter shifted by t �� T � t� Then

d�y

dt
T � �

d�x

dt
�� � vx��

Ordinary di�erential equation� Given a vector �eld v on a manifold
and a point x �M � the problem is to �nd a curve c� I �M such that
c�� � x� I � R is an open interval containing �� and the tangent vector
at any parameter t agrees with the vector �eld� i�e�

dc

dt
t� � v

�
ct�
�
�

Such a curve is called an integral curve of the ordinary di�erential
equation� If it exists� the integral curve is unique� The proof of this�
not given here� involves some analysis�� If the vector �eld v is the
velocity of a �ow� then the solution is given by ct� � �xt�� Therefore�
the velocity vector �eld of a �ow speci�es the �ow uniquely�
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Example� The di�erential equation on R

dc

dt
� ac�

with a � R a constant� has solution ct� � xeat� which is determined
by the �ow �t� x� � eatx�

Exercise �� Solve the equation

dc

dt
� ac�

and show that the solutions do not determine a �ow�

Example� In mechanics� Newton�s equations for the position of n par�
ticles x � R�n can be written as the ordinary di�erential equation

dx

dt
� p�

dp

dt
� fx��

The function f gives the forces on the particles as a function of the
positions� and is determined by the particular problem� This is an
ordinary di�erential equation in a subset of R
n �

In Newton�s theory of gravity� there is a formula for f determined
by the inverse square law� The integral curves of this equation account
for the orbits of the planets� amongst other phenomena� For n 	 ��
the integral curves cannot always be de�ned for all t � R � There is�
suprisingly� a con�guration of � bodies for which the orbits become
progressively more violent� and one of the bodies �reaches in�nity� in a
�nite interval of time�

Vector �eld as an operator� Suppose M � R
k is a manifold� and

v is a vector �eld on M � If ��M � R is a function� then the vector
�eld can be regarded as a di�erential operator which acts on � to give
a new function� called Dv��

Dv�x� � d�x
�
vx�

�
�

kX
i��


�


xi
vix��

This operation can be thought of as di�erentiating � in the direction
given by v�
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This can be substantiated as follows� Let ��R �M �M be a map�
which could be a �ow� Then it de�nes a vector �eld by

vx� �
d�x

dt
��

as before� Now di�erentiating � along each curve �x� one �nds

d

dt
� � �x� �� � d�x

�
d�x

dt

�
� Dv��

Exercise �� Take M � S�� and the rotation ��R � S� � S�

t� x�� x�� x�� �� x� cos t� x� sin t��x� sin t� x� cos t� x��

Calculate the vector �eld v and an expression for Dv��

Partial di�erential equation�

Suppose ��M � R is a function which is constant along a �ow ��
i�e�� �

�
�xt�

�
� �x� for each x� t� This gives the �rst order partial

di�erential equation
kX

i��

vi

�


xi
� ��

This equation can be used to solve the ordinary di�erential equation
given by v� The integral curves of the ordinary di�erential equation
must lie in the subset �x� � constant� for each solution � of the
partial di�erential equation�

Example� In R
� � the equation is

v�x�� x��

�


x�
� v�x�� x��


�


x�
� ��

In most cases� a solution to this equation will give a ��manifold as the
set of points �x�� x�� � constant� which can be taken as the image
of a curve� given by this implicit equation� The di�erence between
a solution to this equation and a solution to the ordinary di�erential
equation is that no parameterisation of the curve is speci�ed�



�
 DIFFERENTIAL GEOMETRY

Symmetries of a di�erential equation� Lie groups of symmetries
for a di�erential equation can often be used to reduce the number of
equations or independent variables� In the simplest cases� the equa�
tions will reduce to an equation in one variable which can be solved by
integration�

A transformation � �M � M is a symmetry of an equation if it
transforms solutions to solutions� For an ordinary di�erential equation�
this means that if the curve c�R � M is a solution� then so is � � c�
Suppose that these solutions arise from a �ow� so that c � �x� Then
� � c must be the curve determined by the �ow through the point � x��
i�e�� ���x�� This condition can be written

� �t� x�� � �
�
t� � x��

�
for all x� t� or

� � �t � �t � ��
Now suppose � is itself any one of the transformations of a second

�ow ��� Then
��s � �t � �t � ��s�

for all s� t� � R
� � Two �ows which satisfy this condition are said to

commute� The map on either side of this equality can be taken to
de�ne an action � of the group T�� � R� ��� on M �

Exercise �� Show that ��s�t���u�v� � ��s�u�t�v�� a condition for this
to be an action�

Exercise �� Write down two �ows on R
� which are distinct and

�� commute
�� do not commute

Solution to exercise �� The equation has the solution ct� � x���
atx�� which is de�ned only as long as at 	 ��x� Clearly ct� is in�nitely
large as this limit is reached� and the solution does not exist for all t�
Hence the solutions are not determined by a �ow�

��� One�parameter subgroups

A one�parameter subgroup of a Lie group is a homomorphism h�R �
G� i�e�� a curve where h�� � e and hs�ht� � hs � t�� Since ht� ��
ht�n�

�n
� the one�parameter subgroup is determined by its values for t

arbitrarily close to �� This section will show that it is in fact determined
by its tangent vector at h�� � e�
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One�parameter subgroups play a central role in the theory of Lie
groups� For example� if G acts on a manifold M by ��G �M � M �
then a one�parameter subgroup determines a �ow by

t� x� �� �
�
ht�� x

�
�

For a �xed x �M � de�ne �x�G�M by g �� �x� g�� Then the integral
curve of the �ow through x is ct� � �x

�
ht�
�
� The velocity vector is

dc

dt
�� � d�xe

�
dh

dt
��

�
� TMx�

This vector �eld on M is determined completely by the tangent vector

dh

dt
�� � TGe�

Lemma� A one�parameter subgroup h is determined uniquely by its

tangent vector dh�dt at the origin�

Proof� Let M � G and the action �g� x� � gx be the group multipli�
cation� Then the �ow is t� x� �� ht�x and the integral curve through
e is just h itself� However� the �ow is determined uniquely by its ve�
locity vector �eld� which by the preceding argument is determined by
dh�dt���

Tangents to GLn�� Recall that GLn� � Rn� � the latter regarded as

the set of all n�nmatrices� Since it is an open subset� T GLn�x � Rn� �
A tangent vector can likewise be regarded as an n� n matrix�

For example� if c�R � GLn� is a curve� with

ct� �

�
� c�� c�� � � �
c�� � � � � � �
���

���

�
A

then

dc

dt
�

�
B�

dc��
dt

dc��
dt � � �

dc��
dt � � � � � �
���

���

�
CA � T GLn�c�t��

For GLn�� it is easy to show the converse of the preceding lemma
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Lemma� Any vector A � T GLn�e is tangent to a one�parameter sub�

group�

Proof� The one�parameter subgroup is given by

ht� � exptA� �
�X
n��

tnAn

n�
�

In this formula� An refers to the matrix product� The sum is easily
seen to converge� and

dh

dt
t� �

�X
n��

ntn��

n�
An � A

�X
n��

tn��

n� ���
An�� � Aht��

so that dh�dt � A when t � ��

Exercise �� Multiply the exponential series to show that hs�ht� �
hs� t��

This shows that for GLn�� the one�parameter subgroups are in ���
correspondence with elements of the tangent space at e � GLn��

�� Subgroups of GLn�

The following subgroups are all Lie groups�

Special linear group� The special linear group SLn� � GLn� is the
subgroup of matrices with determinant equal to one� Since

det expA�� � exp traceA��

for any matrix A� then expA� � SLn� if and only if traceA� � ��
Hence T SLn�e � T GLn�e is the linear subspace given by the linear
condition

traceA� � ��

Orthogonal group� The orthogonal group On� is the group of n�n
matrices which satisfy the condition

MTM � e�

Suppose c�R � On� is a curve with c�� � e and tangent equal to A
at e� Then at t � ��

� �
d

dt

�
ct�T ct�

�
�

�
dc

dt

�T

c�� � cT ��
dc

dt
� AT e� eA � AT �A�



DIFFERENTIAL GEOMETRY ��

so that A is an antisymmetric matrix� Conversely� if A is an antisym�
metric matrix� then

expA�T � expAT � exp�A� � expA����

so expA is orthogonal� This shows that T On�e � T GLn�e is the
linear subspace given by the condition AT �A � ��

The special orthogonal group� SOn�� is de�ned to be the intersection
On� � SLn�� the orthogonal matrices of determinant �� Since det is
continuous� and the only values it takes in On� are 
�� any curve c
which passes through the point e must have detct�� � � for all t�
Therefore� T SOn�e � T On�e�

The group SO�� is called the rotation group� To justify this name�
we prove the following

Theorem� Every rotation has an axis�

Proof� Let M � SO��� The characteristic polynomial of M has at
least one real root� so that M has an eigenvector v� Since M is an
isometry� the eigenvalue is 
�� If the eigenvalue is �� then v is the axis�
The matrix M acts in the plane orthogonal to v� In an orthonormal
basis which includes v� M is

�
� � � �

� a b
� c d

�
A �

Since the determinant of M is �� so is the determinant of

�
a b
c d

�
�

which gives an element of SO��� for which the formulae give explicitly
a rotation in this plane�

If the eigenvalue is �� then M acts in the orthogonal plane again�
but with determinant ��� This gives a re�ection in this plane� and the
explicit formulae show that there is a re�ection axis� Mv � v� This
returns to the previous case with v the axis�

Unitary group�
By taking real and imaginary parts of the components of a complex

vector� C n can be regarded as R
�n � Thus an invertible matrix with

complex entries determines an element of GL�n��

Example� An invertible ��� matrix is just a non�zero complex num�
ber c � c� � ic�� This acts on x � x� � ix� � C by multiplication of
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complex numbers� This amounts to the formula

x�� x�� ��
�
c� �c�
c� c�

��
x�
x�

�

which de�nes an element of GL���

The unitary group� Un�� is de�ned to be the group of unitary n�n
complex matrices� These satisfy U�� �  UT �

The special unitary group SUn� � Un� is the subgroup of unitary
matrices with determinant one�

Exercise �� What complex numbers correspond to elements of U���

Exercise �� Show that elements of SU�� can be written in the form�
a b
� b  a

�
� where a and b are complex numbers� Give a di�eomorphism

SU��� S��

�� The commutator

The condition that two �ows commute can be written entirely in
terms of their velocity vector �elds� Let v and v� be the velocity vector
�elds of �ows �� �� on a manifold M �

De�nition� Let M � R
k � and v� v��M � R

k be vector �elds on M �
The commutator of v and v� is de�ned to be the function �v� v���M �
R
k given by

Dvv
� �Dv�v�

The coordinate expression is that the j�th component of �v� v�� is

X
i

vi

v�j

xi

� v�i

vj

xi

�

Theorem� The two �ows � and �� commute if and only if the com�

mutator �v� v�� of their velocity vector �elds is zero�

Proof� Pick x � M � and let ys� t� � ��s� �t� x��� The behaviour of y
for small values of s and t near � is determined by the second derivative
��y
�s�t at �� ��� This is calculated in the following way�


y


s
�� t� � v� �t� x�� �



DIFFERENTIAL GEOMETRY ��

and so

�y


t
s
�� �� � dv�x

�d�
dt

�
� dv�x

�
vx�

�
Likewise if zs� t� � �t� ��s� x��� then


�z


s
t
� dvx

�
v�x�

�
�

If the �ows commute� then ys� t� � zs� t�� Since these mixed second
order partial derivatives are equal� the result that �v� v�� � � follows�

Conversely� assume that �v� v�� � �� According to a previous argu�
ment� it is su�cient to show that each transformation ��s is a symmetry
of the ordinary di�erential equation determined by the vector �eld v�

d

dt
��s � �x� � v � ��s � �x� for all s�

Note that at s � �� this equation reduces to the de�ning equation for
v� namely

d�x

dt
� v � �x�

and so certainly holds�
Using the chain rule� the condition is equivalent to

d ��s�x vx�� � v ��sx�� � for all s � R � x �M �

Consider
�s� � d ��s�x vx�� � v ��sx��

Some di�erentiation� and using the hypothesis �v� v�� � � shows that

d�

ds
� dv����s�x� �s�� �

Since ��� � �� this ordinary di�erential equation has the unique solu�
tion �s� � � for all s � R �

Example� For the �ow given by rotations of S� about the x��axis� the
vector �eld is vx�� x�� x�� � x���x�� ��� Consider a second �ow given
by rotations about the x��axis� This vector �eld is v�x�� x�� x�� �
�� x���x��� The commutator is given by�X

i

vi

v��

xi

� v�i

v�

xi

�
X
i

vi

v��

xi

� v�i

v�

xi

�
X
i

vi

v��

xi

� v�i

v�

xi

	
�

�x�� �� x���
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This is not zero� so the �ows do not commute�

The preceding theorem gives an interpretation of the vanishing of
the commutator of two vector �elds� in the case when they generate
�ows� The commutator of two vector �elds is also important when it
does not vanish� The main fact is

Theorem� The commutator of two vector �elds on M is also a vector

�eld on M �

This fact will be proved below� Note that in the example� calculating
Dvv

�x� gives �� �� x�� and Dv�vx� � x�� �� ��� neither of which are
tangent to S�� Only the di�erence of these gives a vector �eld on S��

The commutator has an interpretation in terms of vector �elds acting
on functions� If v and v� are thought of as operators acting on functions�
then taking an arbitrary function ��M � R � we calculate the di�erence
of v� acting followed by v acting and v acting followed by v� acting� This
is also called a commutator� namely the commutator of the �rst order
di�erential operators given by v and v��

DvDv����Dv�Dv�� �
X
ij

vi




xi

�
v�j


�


xj

�
� v�i





xi

�
vj


�


xj

�

� vi

v�j

xi


�


xj
� v�i


vj

xi


�


xj
� D�v�v���

as the terms involving second derivatives of � cancel� So the commu�
tator of the �rst order di�erential operators acting on � is just �v� v��
acting on ��

This gives an argument about why the commutator is a vector �eld�
If the manifold is de�ned by an equation � � �� then certainly Dv�� � �
and DvDv��� � �� and so D�v�v��� � �� Hence �v� v�� is tangent to M �

For S�� � � x � x� �� which explains the example�
More generally� we could take M � Rk to be given by an equation

� � � for some ��Rk � R
l � This would give a proof if we knew that all

manifolds can be de�ned in this way which they can� at least locally��
A slight modi�cation of this idea gives the proof�

Proof of theorem� For each point x � M � R
k � there is locally a coor�

dinate function f from M to R
m � and its inverse� a parameterisation

�� from R
m to M � �Locally� means that these are de�ned on open

subsets around x or its image�� Let ��Rk � M be � � F � where F is
any local extension of f to Rk � Then a vector v is a tangent vector to
M if and only if

d�xv� � v
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This is because � is the identity map on M � and TMx is the image of
d�x� This equation is equivalent to writing

Dv� � v

for a vector �eld de�ned locally i�e�� on the open subset of M where �
is de�ned��

Then

D�v�v��� � DvDv����Dv�Dv�� � Dvv
� �Dv�v � �v� v���

so that �v� v��x� � TMx�

The mapping formula�
Let v be a vector �eld on M � and f �M � N be a mapping� and w

a vector �eld on N �
Then w is said to be f �related to v if wfx�� � dfx

�
vx�

�
� For

example� if f is a di�eomorphism� then given v� there is a unique f �
related vector �eld on N called the induced vector �eld

wy� � dfx
�
vx�

�
� where x � f��y��

Exercise� Show that if g�N � P is another di�eomorphism and z is
the vector �eld induced on P from w� then z is equal to the vector �eld
induced by g � f from v�

The mapping formula for the commutator is�

Lemma �Mapping formula�� If f �M � N is a mapping� v� v� are
vector �elds on M � and w on N is f �related to v� w� f �related to v��
then �w�w�� is f �related to �v� v���

Proof�

dfx�v� v
��x�� � D�v�v��f

evaluated at the point x� But this function is

D�v�v��f � DvDv�f��Dv�Dvf� � Dvw
� � f��Dv�w � f�

At the point x� the right�hand side is

dw� � f�xvx�� � dw � f�xv�x��
�


dw�f�x� � dfx

�
vx�� � �dwf�x� � dfx

�
v�x��

� �w�w��fx���
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�	� Computer vision

An optical image is the projection of a three�dimensional scene un�
der a smooth map ��R� � R

� � A variety of possible ��s can occur�
depending on the camera� It is assumed that various features points�
lines� curves� surfaces� corners� smooth singularities� etc�� can be recog�
nised in the image� The ���d recovery problem� is to say where these
features are in R� which give rise to the optical image�

An assumption is usually made about the nature of the scene� as a
hypothesis which can be then given a mathematical formulation� For
example� it could be that the scene is a face� a microscope slide contain�
ing cells� an aerial photograph� or a stack of books to be counted� From
this assumption� you have a hypothesis about the scene containing a
number of continuous parameters�

For example� if the scene is a cell which is a assumed to be spherical�
then the parameters might be the radius of the cell and the position
of its centre� If the cell is not assumed spherical� then additional pa�
rameters would be needed for its shape and its angular orientation in
space�
The ��d recovery problem can be thought about in two ways

�� ��d Euclidean geometry� Find the set of all objects in R� which
could give rise to the image� For example� if the scene con�
sists of rigid bodies bodies for which the distance between the
constituent parts does not change� then the Euclidean group
E�� acts on the set of all possible positions for each body� and
the recovery problem would reduce to �nding the possible Eu�
clidean transformations which take each object from a standard
position to its actual position�

�� ��d Non�Euclidean geometry� For each possible three�dimen�
sional object� �nd the range of possible images� See which of
these �ts the given image� For example� if the camera gives a
projection along straight lines� then the image can be regard�
ed as a parameterisation of part of the projective plane� P ��
Projective transformations can be applied to the images�

More information can be gained if the image varies with time� One
of the ways of converting this information into an easily usable form
is to look at the velocity vector for each point in the scene� or image�
The velocity vector of the motion of the points in the image is called
the optical �ow� The geometry of the scene and the camera projection
places constraints on the set of possible optical �ows�

The ��d recovery problem in this instance is the determination of the
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scene at time t given the image at time t and the optical �ow at time
t� This problem is often called �shape from motion�� More information
can be gained about the scene if one knows the optical �ow at a point
in time as well as just the image�

In practice� the calculations would be done with a computer� In all
but the simplest situations� the equations are exceedingly complicated
and do not have a simple solution which can be obtained on paper� A
computer program might also take into account other attributes for the
image� such as colour� texture� shading� shadows� or statistical data�

Shape from motion�
The motion of a rigid body in in R

� is given by transformations of
R� in the Euclidean group E��� This is

x ��Mx� a�

where M � O�� and a � R
� � Suppose that these vary with time t � R �

such that M � identity� and a � � at t � �� Clearly� a curve in the
Euclidean group E�� is equivalent to a curveMt� in O�� and a curve
at� in R� � The curve through point x is ct� � Mt�x � at�� which
has tangent

dc

dt
�� �

�
dM

dt
��

�
x�

da

dt
���

De�ne the matrix

! �
dM

dt
��

and the vector

 �
da

dt
���

As ! is a tangent to O�� at e it is an antisymmetric matrix� As there
is a curve in O�� with any antisymmetric matrix as tangent� ! can be
any antisymmetric matrix� Likewise�  is tangent to R� and can be any
vector� Thus the vector �elds which can arise as velocity vector �elds
for rigid body motions are v�R� � R

�

v�x �� !x� �

Exercise ��

�� Write ! �

�
� � �� ���
��� � ��
�� ��� �

�
A� Write out !x in components

and show it is the vector cross product of � and x�
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The scene is a surface in R
� � the plane an a�ne subset� given by

Z � pX � qY � r�

and the camera is the projection ��R� � R
� given by

X�Y� Z� �� X�Y ��

�� The points in the plane move by a rigid body motion depending
on a parameter t� time� Explain why the plane remains a plane
for all times t�

It is assumed that the plane can always be described by Z � pX �
qY � r�

�� Does this assumption place any restriction on the rigid body
motions�

The points in the plane can be parameterised by the corresponding
points in the optical image� R� � by a map ��R� � R� � so that

��X�Y �� � X�Y ��

�� Write an explicit formula for ��

As the points in the plane move� so do the points in the optical image�
This is given by

X�Y � �� �
�
M�X�Y � � a

�
�

�� Explain why this is the correct formula� Di�erentiate this ex�
pression with respect to t� at t � �� assuming as above the
M�� � identity� and a�� � �� and obtain a vector �eld w on
R
� � the optical �ow�

As a special case� you should get for r � �

X�Y � �� �� �� �

�
� �� ���
��� � ��

��� X
Y

pX � qY

�
A �

�� Explain why it should be impossible to determine r from the
optical image or the optical �ow� Why does r appear in your
formula�
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Now make the simplifying assumption that r � � for all time� From
measuring the optical �ow you can determine the parameters A� B� C�
D� E� F in an optical �ow

X�Y � �� E�F � �

�
A B
C D

��
X
Y

�
�

	� Look at the four diagrams of an optical �ow� Give parameters
which give formulae for these optical �ows�


� Express A�B�C�D�E� F in terms of p� q and �� Show that these
equations are solved by

�� �
�

�



R 


p
jSj� � T �

�
�� � i�� � k exp i

�
�

�
�

�

�
argS� � �

�
arg��� �R� iT �

�

p� iq �
�

k
S exp i

�
�

�
� �

�
argS� �

�

�
arg��� �R� iT �

�
�

where

T � A�D

R � C �B

S � A�D� � iB � C��

k is indeterminate� and there are two solutions� 
� for each
choice of k�

�� Interpret R� S� T in the four diagrams of optical �ow�
��� Suppose the mapping of the surface to the optical image had

not been non�singular� Would you expect the optical �ow to be
a smooth vector �eld�


