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Chapter 1
PRELIMINARIES



1. PRELIMINARIES

This chapter contains some preliminary concepts which we will use during of
this work. The concept of Hilbert C*-modules are given completely from [46].
A good additional reference for this concept is [26]. Direct limit and inductive
limit of spaces are given from [30] and [9] respectively.

Also we give preliminary knowledge about Riesz spaces, Banach lattices and
Riesz algebras which will used in the structure of Riesz algebra of

supernumbers.

1.1 Hilbert C*-modules

Hilbert modules form a category in between Banach spaces and Hilbert spaces.
A Hilbert module obeys the same axioms as an ordinary Hilbert space except
that the inner product, takes values in a more general C*-algebra A than C.
Fundamental and familiar Hilbert space properties like Pythagoras equality,
self duality, and even decomposition into orthogonal complements must be
given up.

The theory of operators on Hilbert modules, generalizing the well known
theory of B(H) for an ordinary Hilbert space H, is a little tricky. In the Hilbert
space case the existence of adjoint operators is automatic, mainly because
Hilbert spaces are self-dual. Since in general a Hilbert module F need not be
self-dual, not all maps in the Banach algebra of all bounded linear maps in £
need have an adjoint. In the next of this subsection consider the letter A as a

C*-algebra.

Definition 1.1.1. A pre Hilbert A-module is a right A-module E

(which is at the same time a complex vector space) equipped with an A valued
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inner product (.|.) : E x E —» A that is sesquilinear, positive definite, and

respects the module action. In other words:

zlyr + y2) = (x|yn) + (x|y2) for x,y1,y2 € E;

2. (x|ya) = (z|y)a for z,y € E, a € A;

4. (zly) = (y|z)* for z,y € E;

L
{
3. (wley) = c(aly) for v,y € B, c € G
{
5.

zlz) > 0 for z € E, and (x|z) = 0 < 0.

Notice that the positivity condition 5 is a statement about positive elements

in the C*-algebra A. Now we notice the Cauchy-Schwartz inequality.
Lemma 1.1.1. If E is a pre Hilbert module and x,y € E, then
Il < Kzl 1 Kyl -
Proof. See lemma 15.1.3 of [46]. O
Definition 1.1.2. The norm of an element e € E in defined as
]| == |{zlz)]]>. (1.1.1)

If a pre Hilbert A-module is complete with respect to its norm, it is said to be

a Hilbert A-module.

Remark 1.1.1. Notice that ||za|| < ||z[|||a|| for x € E and a € A, because
lzall* = [{zalza)|| = lla*(zlz)al| < lla”all|[z]2)]| = flal*||=]]*.

Also, one of the most important characteristic of inner product of Hilbert

A-module is that it is separately continuous in each variable since

{znly) = ()l = [Kazn — 2l < [lz = za]llly]l



Definition 1.1.3. Let E be a Hilbert A-module. A map T : F — FE is

said to be adjointable if there exists a map T* : F — F satisfying
(z[Ty) = (T"x|y) (1.1.2)

for all z,y in E. Such a map T is then called the adjoint of T
By B(FE) we denote the set of all adjointable maps in E, whereas By(FE) is

the set of all bounded module maps in F.

Lemma 1.1.2. If T is adjointable, then its adjoint is unique and ad-
jointable with T** = T. If both T and S are adjointable, then so is ST with
(ST)* =T*S™.

If T is adjointable, then T and T™ are module maps which are bounded with

respect to the operator norm. In particular, B(E) C B,(E).
Proof. See lemma 15.2.3 of [46]. O
Proposition 1.1.3. When equipped with the operator norm
7)) = sup{IITa]l | lJol] < 13, (1.1.3)
By(E) is a Banach algebra and B(E) a C*-algebra.
Proof. See Proposition 15.2.4 of [46]. O

Proposition 1.1.4. Let T € B(FE) be an adjointable operator. Then T
is self-adjoint with positive spectrum if and only if (Tx|x) > 0 in A for all

v eF.

Proof. See proposition 15.2.5 of [46]. O



1.2 Limits

1.2.1 Direct Limit

If (G,)22, is a sequence of groups, and if for each n we have a homomorphism
T+ Gy — Gy, then we call (G,,)%2, a direct sequence of groups.
Given a such sequence and positive integers n < m, we set 7,, = Ig,
and we define 7, : G, — G, inductively by setting 7, ;11 = T Tum. If
n <m <k, we have 7, = Tk Tam-
If G" is a group and we have homomorphisms p" : G, — G’ such that

p" = p"tir,, then p" = p™1,,, for all m > n.

o
The product [] Gy is a group with the pointwise defined operations and if
k=1

o0
we let G’ be the set of all elements (xy); in [] Gy such that there is an integer
k=1

N for which xp 1 = 73(xy) for all £ > N, then G’ is a subgroup of [] Gj. Let
k=1

ex, be the unit of Gy. The set F of all (zx), € [] Gy such that there exists N
k=1

for which x, = e, for all & > N is a normal subgroup of G', and we denote

the quotient group G'/F by G. We call G the direct limit of the sequence

(Gr, Tn)52, and sometimes write G = lim G,,.
—

1.2.2 Inductive Limit

Definition 1.2.1. Let X be a vector space and M be a subset of X. M
is said to be convez if tx + (1 — t)y € M for all z,y € M and ¢ € [0, 1].
In the vector space X a linear manifold of X , is a linear subspace of X
that is not necessarily closed.
A directed set is a partially ordered set (I, <) such that if i;,i, € I then
there is an i3 € I such that i3 > ¢; and i3 > 9.

A set A C X is said balanced set if rx is in A, whenever x € A and |r| < 1.



Definition 1.2.2. An inductive system is a pair (X,{X; : i € I}),
where X is a vector space , X, is a linear manifold in X which has a topology
7; such that (X;,7;) is a locally convex space(LCS), and moreover:

(i) I is a directed set and X; C X if i < j;
(ii) If i < j and U; € 7; then U; N X; € 75;

(iii) X = U{X; :i e I}

Proposition 1.2.1. If (X, {X;,7;}) is an inductive system, let B be the
set of all convex balanced sets V' such that V N X; € 7; for all i and also let T
be the collection of all subsets U of X such that for every xy in U there is a 'V

in B with xo+V CU. Then (X, 1) is a (not necessarily Hausdorff)LCS.
Proof. See proposition IV.5.3 of [9] . O

Definition 1.2.3. If (X, {X;}) is an inductive system and 7 is the topol-
ogy defined in ( 1.2.1), 7 is called inductive limit topology and (X, ) is
said to be inductive limit of {X;};cs.

A strict inductive system is an inductive system (X, {X,, 7,}°° ) such
that for every n > 1, X, C X, 11, Tna1| X, = 7, and X, is closed in X, ;.

The inductive limit topology defined on X by such a system is called a
strict inductive limit topology and X is said to be strict inductive limit

of {X,}22,.
Proposition 1.2.2. Any strict inductive system is complete.

Proof. See Theorem 13.1 of [45] O



1.3 Riesz spaces

In this section we give some definitions and properties of Riesz space theory

to using them in the next chapters.

1.3.1 Real Riesz Spaces

Hear, all vector spaces are assumed on real numbers.

Definition 1.3.1. A partially ordered vector space (V,>) is called a
lattice if each pair of elements u,v of V' has a supremum and infimum. We

have the following notations:
uVov=sup{u,v} and uAwu=inf{u,v}.

An ordered vector space which is also a lattice is called Riesz space or a
vector lattice. Every element v in a vector lattice has modulus |v]| = vV (—v),
positive part v* = v Vv 0, and negative part v~ = (—v) V 0, and the usual
identities v = v — v, |v| = vT +v~, and v Av~ =0 are hold. We say that
v and u are disjoint if |v| A |u| = 0. It will be denoted by v L w.

Given the ordered vector space V, the subset V* = {v € V: v > 0} is
called the positive cone of V' which has the following properties:

(i) u,v € V7 implies u + v € V;

(ii) v € VT implies rv € V' for any real number r > 0;

(iii) v, —v € VT implies v = 0 (VT N (=V*) = {0}).

Definition 1.3.2. A subset U of a Riesz space V is order bounded
from above(below) if there is a vector v (called an upper(lower) bound
of U) satisfying u < v(u > v) for each u € U. A subset U of a Riesz space V'

is order bounded if U is both order bounded from above and below.



A box or order interval is any set of the form
[a,d] ={ceV: a<c<d}. (1.3.1)

Definition 1.3.3. A nonempty subset U of a Riesz space V has a supre-
mum (or a least upper bound) if there is an upper bound u of U such that
a < v for all a € U implies u < v. Clearly the supremum, if it exist, is unique

and is denoted by sup U.

Definition 1.3.4. A net {v,} in a Riesz space V' is decreasing, written
v, L if 7 > p implies v, < v,. The symbol v, 1 indicates an increasing net,
while v, 1< v (resp. v, |> v) denotes an increasing (resp. decreasing) net

that is order bounded from above (resp. below) by v.

The notation v, | v means that v, | and infv, = v. Also the notation
T

v, T v means that v, T and supv, = v.
T

Definition 1.3.5. A net {v,} in a Riesz space V' converges in order
or is order convergent to some v € V, written v, — v, if there is a net
{u,} (with the same directed set) satisfying u, | o and |v, — v| < u, for each
7. In this case v is called order limit of {v,}.

A sequence {v,}32, in V is said to be an order Cauchy sequence if
there is a sequence u,, | 0 such that |v, — v,| < u, for all m > n > 1. One
Riesz space is order complete if every order Cauchy sequence has an order
limit. Equivalently a Riesz space is order complete if every subset of it has a

supremum.

The main properties of order convergence can be find in any book of Riesz

space theory such as Theorem 10.2 of [54].

Definition 1.3.6. Let v > 0 be an element of a Riesz space V. We

say that the sequence {v,}5°, in V' converges u-uniformly to an element

8



v € V whenever, for every € > 0, there exists a natural number /N, such that
|v, — v| < eu holds for all n > N.. In this case v is called u~uniform limit of
{v,} and written as v,, — v(u-un).

It is said that the sequence {v,}32, in V converges relatively uniformly
to v € V whenever v,, converges u-uniformly to v for some v € V'*. This kind
of convergence is denoted by v, — v(un).

The element u is then called the regulator of the relatively uniform con-

vergence.

Definition 1.3.7. A sequence {v,} in V is called a u~uniform Cauchy
sequence, whenever for any € > 0, there exists a positive integer n; = nq(e)
such that |v,, — v,| < eu holds for all m,n > n;. A Riesz space is called
u-uniformly complete if every u-uniform Cauchy sequence has a u-uniform
limit. A Riesz space is said to be uniformly complete whenever, for every

positive element u, any u-uniformly Cauchy sequence has a w-uniform limit.

Definition 1.3.8. A Riesz space V is called Archimedean if %v $0
for each v € V. V is said to be Dedekind complete if every nonempty
subset of V' which is bounded from above has a supremum. Also a Dedekind
o-complete Riesz space is a space that every non-empty at most countable

subset of it which is bounded from above has a supremum.

It is interesting to note that in any Riesz space, relatively uniform conver-
gence is stable, i.e., it has the property that for any sequence v, — 0(un)
there exists a sequence of real numbers {r,}2°; such that 0 < r, 1 oo and
rntn, — 0(un). Indeed, given that v, — O(un) there exists a sequence of

positive real numbers (s, : n = 1,2,...) and an element v € V' such that

1
2

$n 4 0 and |v,| < s,u for all n, and so r,, = s, ® satisfies the above mentioned

condition. Order convergence is not necessarily stable.



Theorem 1.3.1. In an Archimedian Riesz space order convergence is
stable if and only if order convergence and relatively uniform convergence are

equivalent.
Proof. See theorem 16.3 of [28]. O

Theorem 1.3.2. If V is Archimesean, then V' is u-uniformly complete
if and only if every monotone u-uniform Cauchy sequence has an u-uniform
limat.

Proof. See theorem 39.4 of [28]. O

Lemma 1.3.3. In a Dedekind o-complete space every monotone u-uniform

Cauchy sequence is u-uniformly convergent.
Proof. See the last part of lemma 39.2 of [28]. O

Definition 1.3.9. A Riesz space V is called order separable if ev-
ery non-empty subset V possessing a supremum contains at most a countable
subset possessing the same supremum as V. It is said to be strong order
separable whenever every non-empty subset V which is bounded above con-
tains an at most countable subset having the same upper bounds as V (this

property is called property (*) in [28]).

Definition 1.3.10. A subset U of a Riesz space V is called solid set if

lu| < |v] and v € U implies u € U.

Definition 1.3.11. A subset U of a Riesz space V is order closed if
{u;} € U and u; —= w imply u € U. In a similar way U is called o-order
closed if these statements are true for sequences.

A solid linear subspace of a Riesz space is called an ideal. An order closed
ideal is called a band. An ideal J is a band if and only if {j,} C J and

0<j;T7jimplyj€J.

10



The ideal J; generated by the non-empty subset U, is
Jy = U{n[—u,u] : neN wu=|u|V---Viu| ,up,...,u €U}l

A principal ideal is an ideal generated by a singleton {u} and is denoted

by J,. For any u € V't the ideal .J, generated by u is
T = J{n[~u,u]: neN}
For any u € V the principal ideal .J, generated by u is
Jy,={veV | IA>0 with |v] <\|u|}. (1.3.2)
The band generated by an ideal J of V' is given by
By={veV | Janet {v,} CJ with 0<w, 1|v|}

Also for v € V the band By, ( will be denoted by B,) generated by ideal J, is
called principal band generated by v.
Let v € V*. Any element u € VT satisfying u A (v — u) = 0 is called a

component of v. The set C), of all components of v is a Boolean algebra.
Co={ueV"t | uA(v—u)=0} (1.3.3)

Definition 1.3.12. Any band B in the Riesz space V, having the prop-
erty that B B? =V, is called projection band. In this case, if v = b, + by
is decomposition of an arbitrary v € V as the sum of b; € B and by € B%, then
b, and b, are called the components of v in B and B¢ respectively.

The Riesz space V is said to have the projection property if every band
in V is a projection band, and V is said to have the principal projection

property if every principal band in V' is a projection band.

Theorem 1.3.4. FEvery Dedekind complete Riesz space has the projection
property.

11



Proof. See theorem 24.9(i) of [28]. O

Theorem 1.3.5. Fvery Dedekind o-complete Riesz space has the princi-

pal projection property and therefore has sufficiently many projection.
Proof. See the main inclusion theorem 25.1 and theorem 30.4 of [28]. O

Definition 1.3.13. The element e € V1 is called a strong order unit
in V' if the principle ideal generated by e is the whole space V/, i.e, if for every
e’ € V, there exists a positive number r, depending upon €', such that |¢/| < re.

The element e € V' is called a weak unit in V if v L e implies that v = 0

forveV.

Theorem 1.3.6. Let the Archimedean Riesz space V' have a strong order
unit, and let V' 1is either Dedekind o-complete or have a projection property.

Then order convergence in V' 1is stable if and only if V s of finite dimension.
Proof. See theorem 70.3 of [28]. O

Definition 1.3.14. The Riesz space V is said to have the diagonal
property whenever, given any double sequence {vn,k}g?kzl in V, any sequence
{v,}52, in V any vy € V such that v, — v, for all n("as k — o0”)
and v, —> vy, there exists for any n an appropriate k& = k(n) such that

Un,k(n) — Vo-

The Riesz space V has diagonal gap property , if under the same hypoth-
esis that v, — v, for any n and v, — v, there exists a sequence vy, k(n,)
with n; < ng < ..., an infinite sequence containing at most one member from

each sequence {v,;}32, such that vy, yn,) — vo (as i — 00).

Definition 1.3.15. If {v,;}5%_; is a double sequence of elements of a

Riesz space V' and if the element v' € V' has the property that for every n

12



there exists a positive integer k(n) such that v < vy, k@), then we will write

v <L {Un i}

The element v € V is said to have the Egoroff property, if given any
double sequence {v,x}n—; in V' such that 0 < vy, ;T |v| for n = 1,2, ... there
exists a sequence 0 < v/, 1 v such that v}, < {v,,} holds for every m (i.e., for
every m and n there exists a positive integer k(m,n) such that v, < v, pomn)
holds). The space V' is said to have Egoroff property if every element of V'
has the Egoroff property.

The space V is said to have the strong Egoroff property, if given any
double sequence {v,}py—; in V* such that v, 0 for n = 1,2,..., there
exists a sequence v/ | 0 in V, with the property that, for every pair (m,n) of

positive integers, we have v, > vy, y(mn) for an appropriate k£ = k(m,n).

Definition 1.3.16. The Riesz space V is said to have the d-property
whenever given the double sequence {v,,}7%—; in V™ such that v, ;.0 holds
for n = 1,2, ..., there is an element v' € V* with the property that, for every

n, we have v' > v, j(») for an appropriate k = k(n).

The Riesz space V is said to have the o-property whenever, given the
sequence {v,}>, in VT, there exists a sequence {r,}2, of strictly positive

numbers such that the sequence {r,v,}3° ; is bounded from above.

Theorem 1.3.7. In an Archimedean Riesz space V the following prop-
erties are equivalent:
(i) V' has the diagonal property for order convergence;
(i) V' has the d-property;

(iii) V' has the o-property and order convergence in V' is stable.

Proof. See theorem 70.2 of [28]. O

13



Theorem 1.3.8. The Riesz space V' has the strong Egoroff property if

and only if V' has the Eqoroff property and the d-property.
Proof. See theorem 68.4 of [28]. O

Theorem 1.3.9. The Archimedean Riesz space V' has the strong Eqoroff

property if and only if V' has d-property.
Proof. See theorem 68.5 of [28]. O

Theorem 1.3.10. The following conditions for Archimedean Riesz space
V' are equivalent:
(i) V' has the o-property;
(1) V' has the diagonal property for relatively uniform convergence;

(111) V' has the diagonal gap property for relatively uniform convergence.

Proof. See theorem 72.2 of [28]. O

1.3.2 Complex Riesz Spaces

Let V' be a (real) Riesz space and let V' +iV be its complexification. The space
V44V can be partially ordered coordinatewise, i.e, v1+iu; < v9+iuy whenever
v1 < uy and ve < uy. Then V + iV is a Riesz space and, for w = v+ iu( v and
u in V'), the element |w| is given by |w| = |v| + i|ul.

If V is an arbitrary Riesz space and w = v 4 tu is any element of V + iV,
we wish to define an absolute value |w]| of w such that |w| € V* and such that
if w itself is an element of V', then |w| = w V (—w). We have the following

theorem.

Theorem 1.3.11. If the Riesz space V is Archimedian and uniformly

14



complete, then

lw| = sup{Re(we ™) :  0<6< 2} =sup(vcos(d) +usin(d) ;0 < < 2r)
(1.3.4)

exists in 'V for every w =v +1u € V +iV.
Proof. See theorem 13.4 of [54]. O

Definition 1.3.17. A subset V of V' 4 iV is called an ideal if V is a
complex linear subspace of V' + ¢V and if V is a solid subspace of V. The set
of all real elements in the ideal V is denoted by V.., i.e., V, = VN V. The ideal
Vin V 4V is called a band if the real part of V, is a band in V. The band

Vin V +4V is called a projection band if V, is a projection band in V.

1.3.3 Banach Lattices

Definition 1.3.18. Let V' be a real Riesz space, equipped with a norm.
The norm in V is called a Riesz norm if |u| < |v| in V implies ||u|| < ||v]|.
Note that this implies that for any v € V the elements v amd |v| have the
same norm. Any Riesz space equipped with a Riesz norm, is called a normed
Riesz space. If the normed Riesz space V' is norm complete then V' is called

Banach lattice.

Definition 1.3.19. Let V' be a uniformly complete normed Riesz space.
Every elemnt w = u+iv in V 44V, with u,v € V, has an absolute value |w| in
V. For this element w we define the number ||w|| by ||w|| = |||w]|| as its norm.
This norm is normaly a Riesz norm on V + ¢V. If V' is Banach lattice then

V 44V will be Banach space which is called a complex Banach lattice.

Definition 1.3.20. A normed Riesz space E is said to have order con-

tinuous norm if, for any subset D | 0 we have inf(||d|| , d € D) = 0. The

15



norm is said to be o-order continuous norm if, for any sequence e, | 0 in

E, we have |le,|| { 0.

Definition 1.3.21. The Dedekind o-complete Riesz space is called a
space of countable type if every bounded subset of pairwise disjoint ele-
ments of it which are different from 0, is at most countable.

The norm in a Dedekind complete Banach lattice is Fatou if 0 < =, Tz
implies ||z,|| 1 ||z||. Equivalently if z, converges to x in order, then ||z| <
lirnTinf||:1:T||. Also the norm is weakly Fatou if there is a constant m > 1

such that 0 < x, 1 x implies ||z|| < msup ||z.||.

Definition 1.3.22. A Riesz norm on a Riesz space is an M-norm if
x,y > 0implies ||z Vy|| = max{||z||, ||y||} and is an L-norm if x,y > 0 implies
|z + y|| = |||l + |ly||.- A normed Riesz space with an M-norm (resp. an L-
norm) is called an M-space (resp. an L-space). A norm complete M-space

is called an AM-space. Similarly a norm complete L-space is an AL-space.

Proposition 1.3.12. Let V' be an Archimedian vector lattic possessing

an order unit e. The gauge function of [—e, €], given as

P.(v)=inf{re R : —re<wv<re} (veV) (1.3.5)
is an M-norm on V. (V, P,) is an AM-space (with unit e) if and only if V' is
relatively uniformly complete.
Proof. See proposition 7.2 of chapter 2 of [41]. O

Definition 1.3.23. An ordered normed space (V,C,| ||) is called an
order-unit normed space if there exists an order unit e such that || || is the
gauge of [—e,e]. Also (V,C,|| ||) is an approzimate order-unit normed space
if there is an approximate order unit {e,,7 € T, >} in C such that the given

norm || || is the gauge of the circled convex set S; = U{[—e,,e,;] : 7€ T}.
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1.3.4 Functional Calculus on Riesz spaces

Let E be a Riesz space having the principal projection property. Let 0 < e € E
be strong order unit in E, hence, the principal ideal .J, generated by e is the
whole space F, i. e., J, = E. Given the element f € E = .J,, there exist real
numbers a,b with ¢ < b and a number § > 0 such that ae < f < (b — d)e.
The interval [a,b] is then sometimes called a spectral interval of f. Let

P:a=ky <k <---<k,=D0be a partition of [a,b]. The elements

s = Zkz—l(Pk, - ki_l)e and S = ZkZ(sz - Pki_l)e
1=1 =1

are called the lower sum and upper sum belonging to f and the partition
where s < f < S. If k; — k;_1 <efori=1,2,...,n, then < S — s < €e, so
0<f—-s<eand 0< S — f <ce.

Let F be a real continuous function on the spectral interval [a, b] and let,

for:=1,2,...,n, the numbers
m; = kjjrg]?gkj F(k) M; = kj_rflg%xgkj F(k) (1.3.6)

be the minimum and maximum of F' in the interval [k;_1, k;] of the partition P
of [a, b] respectively. In rest, we sall sometimes write s(P) and S(P) to denote

that s and S depend on P.

Theorem 1.3.13. Let e be a strong order unit in the Dedekind o-complete
space E, and f € E be fized. Let [a,b] be a spectral interval for f and F be
a real continuous function on [a,b]. For any partition P of [a,b], let s = s(P)
and S = S(P) be the corresponding lower and upper sums (for f and P). Then
the set of all s(P), for all possible partitions P of [a,b], has a supremum in E
which is at the same time the infimum of all possible S(P). We shall denote

this element by F(f).

17



Proof. See theorem 34.1 of [54] O

In a similar way of integration since we have upper sums and lower sums,
this common value is denoted often with F/(f) = f: F(k)dpy,.

This method of defining F(f) for any f € E and any (real) continuous
function F on [a, b] is an example of what is known as a functional calculus.

If n is a natural number and F(k) = k™ for all k£ € [a,b], then f™ can
be define easily by method of functional calculus. Since for f and ¢ in F
the elements f2,¢g> and (f + ¢g)? are now defined, one might try to define the
product fg by

fg= %{(f +9)° = f* =g}

The properties of this new multiplication are given in section 35 of [54] which
we list them without proof.

(i) The multiplication is associative, i.e., f(g + h) = fg + fh and
(g+h)f=gf+hf forany f,g,h € E;

(ii) The order unit e in E is a multiplicative unit element;

(iii) The multiplication is positive, i. e., if f and g are positive, then fg is
positive;

(iv) The multiplication is commutative, i. e., fg = gf for all f, g € F;

(v) The multiplication is associative, i. e., (fg)h = f(gh) for all f, g € E;

(vi) | fgl < |fllg] for all f,g € E;

(vii) If g L h, then fg L h for all f € F;

(viii) For any component s of e we have s> = s (and so s" = s for
n=23...);

(ix) If f = > rrsk and g = > r).s, are e-step functions with all components
sy, pairwise disjoint, then fg = > rp7Sk;

(x) f L gifand only if fg = 0;
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(xi) If f2 =0, then f = 0. Moreover, if f* = 0 for some positive integer n,
then f =0;
(xii) For any f € F we have f*f~ = f~f* =0 and hence

===+ ) =0

(xiii) It follows from e-uniform convergence of f, to f and g, to g that f,g,
e-uniformly converge to fg;

(xiv) If f € F and there exists an element g € F such that fg = gf = e
( e is strong order unit), then g is called an inverse of f and ¢ is then denoted
by f~1. If f=! exist then it is unique;

(xv) If f > 0 and f~' exists, then f=' > 0. Also for f > 0 which f~!
exists,f > re for some positive number r. Conversly, any f € FE satisfying

f > re for some r > (0 has an inverse.

Theorem 1.3.14. Let e > 0 be given in the Dedekind o-complete Riesz
space V' and let the commutative multiplication in J, with e as unit element be
introduced as explained above. The multiplication is extended to the complexi-

fication J. +i.J, in the natural manner, i.e.,
(u+iv)(w +iz) = (vw — vx) + i(ux + vw).

Then, for any w = u + v € J, + iJ, we have |w|*> = u? +v?, i.e., |w| is the

unique positive square root of u? + v?.
Proof. See theorem 44.4 of [54]. O

Remark 1.3.1. The multiplication in J, + i.J, is commutative with e as

unit element. The further properties of it are given in corollary 44.5 of [54].

19



1.3.5 Riesz Algebra

In this subsection we give the basic definitions and results of Riesz algebra

which are given in [19].

Definition 1.3.24. A(real) Riesz algebra X is an algebra and Riesz
space with the additional property that the multiplication and ordering are

compatible, i. e. z,y € XT = zy € X where X is the positive cone of X.
C.B Hujsmans [15] proved its validity in the following instance:

Theorem 1.3.15. Let X be a real Archimedean relatively uniformly com-
plete Riesz algebra. Then

|2122] < |21]]22],
for all z1, 29 € X¢.

Theorem 1.3.16. Let X be a Riesz algebra with a strong order unit,

then
2> = 2 + ¢
for all x,y € X.

L.Venter [47] Showed that if X is a Banach lattice algebra, then the in-

equality in 1.3.15 implies that
2122/ < Iz M|zl

Now we recall some definitions and results from [8].

Definition 1.3.25. A Riesz algebra F' is called an f-algebra if F' has

the additional property that f A g =0 in F' implies

(fR)Ng=(hf)Ng=0
forall0 < h e F.
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Some preliminary properties of f-algebras are collected below:
(i) Multiplication by a positive element of A is a Riesz homomorphism;

(i) [ fg] = |f|-lg| for all f,g € F

(iii) f L g implies fg = 0;

(iv) f2=(f")?+(f)* > 0forall f € F;

(v) ff*=(f*)?>0forall f € F;

(vi) If F' is semiprime (i.e., the only nilpotent element in F' is 0 or, equiv-
alently, f?=0 in F implies f = 0), then f? < ¢? if and only if |f| < |g|;

(vii) If F'is semiprime, then f | g if and only if fg = 0;

(viii) Every unital f-algebra is semiprime.

Some of the above properties characterize the class of f-algebra amongst a
certain class of Riesz algebra. In fact, every semiprime Riesz algebra satisfying

one of the conditions (i), (ii) or (iii) is an f-algebra. Furthermore, every unital

Riesz algebra satisfying (iv) or (v) is an f-algebra as well.

Definition 1.3.26. Let F' be an f-algebra.
(a) F has property (*) if for all 0 < f, g € F satisfying 0 < f < ¢?, there
exists 0 < h € F such that f = hg.
(b) F is said to have the multiplicative decomposition property if it follows
from 0 < f < gh with 0 < g, h € F that there exists p, ¢ € F such that f = pq,

0<p<gand0<gq<h.(M.D. property).

Theorem 1.3.17. Every uniformly completely unital f-algebra has both

Property (*) and the M.D. property.
Proof. See theorems 3.11 and 3.16 of [15]. O

Theorem 1.3.18. Let F' be a uniformly complete semiprime f-algebra
and 0 < f,g € F. Then \/fg exists in F. In particular, \/f exists for all

positive f of a uniformly complete unital f-algebra.
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Proof. See theorem 4.2 of [8]. O

Corollary 1.3.19. As above, F is a uniformly complete semiprime
f-algebra.  Then +/f?+ g> exists for all 0 < f,g € F. Hence
VI2+ g2 =/f? + 9% exists for all f,g € F.

Proof. See corolary 4.3 of [8]. O

Theorem 1.3.20. Let F' be a uniformly complete semiprime f-algebra.
Then

VI2+9?>= sup (fcosf+ gsinf)

0<0<2m

forall f,g € F.

Proof. See theorem 5.2 of [8].
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Chapter 2

INTRODUCTION TO RIESZ
SUPERNUMBERS
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2. INTRODUCTION TO RIESZ SUPERNUMBERS

In introduction of this work we stated some historical remarks and appli-
cations of supermathematics. This new branch has many elements such as
supermanifolds, superalgebra, supergroup, superfunctions, supernumbers and
etc. Also it’s subbranch ”Superanalysis”, becomes a high developed branch
in recent years. As examples of source works on it we can consider the books
of Berezin [7] and Khrennikov [22]. The concept of diffrentiation and integra-
tion of functions of anti-commuting variables are studies in this area and also
it contains investigation of some vector spaces over the algebra of supernum-
bers ( as a scalar field), operators on them and its related structures such as
” super Hilbert space”. The inner product of these spaces are considered to be
supernumber-valued which we study deeply them in the next chapter. There-
fore supernumbers ( as ordinary numbers) play important role in the structure
of supermathematics.

The elements of infinite dimensional Grassman algebra is taken as super-
numbers by Dewitt [10] and in terminology of Kobayashi and Nagamachi [24],
the elements of finite and infinite dimensional o-commutative G-graded alge-
bras are called supernumbers. These spaces are called, spaces of supernumbers.
In the contexts of supermathematics, supernumbers are used instead of ordi-
nary numbers. Note that, the body of any element of Grafimann algebra is
real or complex number. It has another part (soul) which has not similarities
in ordinary numbers. Hence, supernumbers are more general than numbers.
Of course, unlike of his name, they has not behavior as ordinary numbers.
They are not comparable and invertiblity of them is meaningless. If a is a
supernumber, what is the meaning of v/a or |a| 7 Whether \/a exist always 7

In this chapter first we give some basic definitions and notions of super
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structures and then investigate the algebra of supernumbers according to ter-
minology of Kabayashi and Nagamachi [24]. Also we introduce the Riesz space,
Banach lattice and Riesz algebra structure on the algebra of supernumbers and

finally we study the Graimann algebra.

2.1 Some on Graded Structures

As stated above, supermathematics has some elements such as supervector
space, superalgebra, supermanifolds and etc. In present section we consider to
some of them which will be used in remainder of this work. Of course we give
only elementry definitions and interested readers can refer to [23, 24, 25, 42, 43].

The remainder of this thesis can be reformulate for any commutative field

which its characteristic is not equal to 2.

Definition 2.1.1. Let G be a finite additive abelian group and F be
the real or complex field. A map ¢ : G x G — F is called the sign or
commutation factor of GG if it satisfies

(i) ola+B,7) = o(e, 7)o (B,7)

(i) o, H)o(B,0) = 1
for any «, 5,7 € G. The pair (G, 0) is called signed group.

It is easy to verify that o(o,) = +1 for any @ € G. An element «
of G is called even (resp. odd) if o(a, ) = 1(resp. — 1). The even part
{a € G : o(a,a) = 1} and the odd part {a € G : o(a,a) = —1} of G are
denoted by Gy and G respectively. GGg is a subgroup of G of index at most 2

and we have G = Gy U G(disjoint union).

Definition 2.1.2. A mapping ¢ : G x G — F — {0} is called a factor

system on G, if it satisfies

(i) (e, B+7)0(5,7) = (e, B)d(a+ B, 7);
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(ii) $(0,0) =1,
for any «, 3,7 € G. Tt follows from (i) that

(i)' (e, 0) = $(0, ) = 1

()" ¢, —a) = ¢(—a, @) = d(a, B)¢(—a, a+ B);
for any a, 8 € G.

Proposition 2.1.1. Let (G, o) be an even signed group and assume that
G is finitely generated. Then there is a factor system ¢ on G such that

o(a, B) = ¢(a,B)/9(B, ) for a, B € G. Moreover, if |o(a, B)| = 1 for all
a, € G, we can choose ¢ so that |p(a, B)| =1 for all o, € G.

Proof. See [43]. O

Remark 2.1.1. If we take G = Z, and o(a, 3) = (—1)® for any «, 8 € Zy,
we obtain an important signed group which has spread usage in contexts of
supermathematics and theoretical physics. In what follows, either G = Zo,

with mentioned sign, or G is a signed group in general.

Definition 2.1.3. A vector space V is said to be G-graded if we are

given a family (V,)acq of subspaces of V' such that V' is their direct sum,

V=@V,
a€EG
An element of V' is said to be homogeneous of grade o € G if it is an
element of V,,. Let V and W be two G-graded vector spaces. A linear mapping
T :V — W is said to be homogeneous of grade o € G if T'(V3) C Wyip

for all g € G.

Let L(V,W) denote the vector space of all linear mappings of V' into W
and let L,(V, W) denote the subspace of those linear mappings of V' into W

which are homogeneous of grade a. We define L, (V, W) to be the sum of
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these subspaces, obviously this sum is directed:

Ly (V,W) = D La(V, ).

aeG

Thus L, (V,W) is a G-graded vector space. Note that L, (V, W) is equal to
L(V,W) if (for example) V,, = {0} and W, = {0} for all but a finite number
of degrees [43]. In the case where V. = W and V, = W, for all a € G, we
shall simplify the notations and write L(V') and L,-(V') instead of L(V, V') and
L,.(V, V), respectively.

Let U,V and W be three G-graded vector spaces and let h: U — V and
k:V — W be two linear mappings. If A is homogeneous of grade o and k is

homogeneous of grade [, then koh is homogeneous of degree o + [3.

Definition 2.1.4. An algebra A is called G-graded algebra if A has

direct sum decomposition A = @ A, where A, is a subalgebra of A of grade

a for any o € G with additionala(e:gndition that A, As C Ayqp forall a, € G.
A G-graded (associative) algebra A = € A, over F is called o-commutative

acG

algebra if ab = o(a, f)ba holds for any a € A,, b € Ag and o, 3 € G.

It is important to note that in the case char F=2 we must add the condition

a’? = o(a,a)a? for any a € A, [43].

Example 2.1.1. As an important example of a G-graded algebra which
is used frequently, is Graffmann algebra. The Graffmann algebra(or exterior
algebra)\,, with n generators is the associative algebra (over C) generated by

a set of n anticommuting generators {&}"_, and by 1 € C with the property

&&= —&&  foralli, g, (2.1.1)

in particular € = 0. This algebra is Zy-graded algebra which we will investigate

it later.
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Definition 2.1.5. Graded tensor product
For two G-graded algebras A and B over F, the G-graded vector space
AB= @ ( @ (Az®B,))is a G-graded algebra if, we define the multiplica-
tion by (;;Gb)ﬁzrg(;ji) = 0(f,7)(ac®bd) for B,y € Ganda € A, b€ Bg, c€ A,
and d € B. The algebra A ® B is called the graded tensor product of A

and B over F. If A and B are o-commutative, so is A ® B.

Now, let V' be a G-graded vector space. Then the G-graded vector space
L, (V), equipped in addition with the usual multiplication (i. e., composition)

of linear mappings, is a G-graded algebra.

Definition 2.1.6. A G-graded algebra A = @ A, over F is called a
e
G-graded Banach algebra if it satisfies
(i) A, is a complete normed space, for any a € G;

(ii) for any «, 5 € G and a € A,, b € Az we have [|ab|| < ||a||||b]]-

Definition 2.1.7. Tensor Algebra
Let V = @ V, be a G-graded vector space over F and T'(V') be tensor al-
gebra of ;Egver F. As is well-known, T'(V) has a natural Z x G-gradation
which is fixed by the condition that the grade of a tensor vy ® - -+ ® v,,, with
v; € Vo, «a; € Gforl <i<mn,isequal to (n,ai,...,a,). The subspace of
T(V') consisting of the homogeneous tensors of order n € Z will be denoted
by T,,(V); of course, T,,(V) = {0} if n < —1. Let I be the ideal of T'(V') gen-
erated by the elements of the form = ® y — o(«, 5).y ® © where a, f € G and
z € V,, y € Vs. The quotient algebra U(V) = T(V)/I is a o-commutative

algebra.

Definition 2.1.8. Crossed Product
If a factor system ¢ on G is given, we can construct a G-graded o-commutative

algebra C' = @ C, over F, called the crossed product of F and G as follows:
aclG
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C, = F.u, is the one dimensional vector space over ' with a generator u, of
grade .. The multiplication in C'is given by u,.ug = ¢(a, f)uqp for o, f € G.
By 2.1.2 (i)', uyp is an identity element of C.

Let Gy be the subgroup of even elements of the signed group (G, o). Since
0|, is an even sign, there is a factor system ¢ : Gy x Gy — F—{0} associated

with o|g,, that is, ¢ satisfies

(i) ¢(a, B+7)0(8,7) = dle, B)d(a + B,7)
(ii) ¢(0,0) =1
(iii) ¢(ev, B)/ (B, ) = o (e, B)
where «, 3,7 € Go. We can choose ¢ so that |¢(a, 3)| = 1 (proposition 2.1.1).
Let C = @ C, be the crossed product of F and Gy by means of ¢. Then

a€Gy
C' is a o-commutative algebra over F by (iii) of above.

Definition 2.1.9. Involution of a graded algebra
Let A= @@ A, be a G-graded o-commutative algebra over C, which means
that, for anyaZGE A, and b € Az we have ab = o(«, B)ba.
A mapping * : A — A is an involution of A, if it satisfies the following

conditions:

for any a,b € A and ¢ € C.

If moreover it satisfies
(v)a* € A, for any a € A, and a € G,

then x is called a conjugation of A. On the other hand if it satisfies
(vi)Ja* € A, for any a € A, and o € G,

then x is called a transposition of A.
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Let A and B be G-graded o-commutative algebras with a conjugation
( resp. transposition) . On the graded tensor product A ® B we define x by
(a®b)* =0o(B,a)a*Rb* for a € A,,b € Bs,a, 5 € G. Then # is a conjugation

(resp. transposition) on 4 ® B.

Definition 2.1.10. Graded modules
Let A be an associative G-graded algebra with identity. A G-graded left
A-module M is a G-graded vector space with a left action of A on M, that
is, a mapping A x M — M satisfying the following conditions:
(i) a(bm) = (ab)m
(ii) (a +b)m =am+bm , a(m+m')=am+am
(iii) 1.m =m
(iv) If m € M, and a € Az then am € M, 5.

G-graded right A-modules are defined in a similar way.

Definition 2.1.11. Let A be a G-graded algebra. A G-graded vector
space V over A is called generalized supervector space(GSVS) if it has
additional property that

av = o(a, Bva
for any a € A, and v € Vp.
A Zy-graded vector space over Grafimann algebra A, with this property

that
M= (-1 )I/\Hv\v)\

for any A € A,y and v € V) is called supervector space(SVS). If V' and
W are GSVS( or SVS) then L(V,W) is so.

Definition 2.1.12. A G-graded algebra A over a G-graded algebra B is
called generalized superalgebra(GSA) if it satisfies in the following condi-

tions:
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(i) ab = o(«, B)ba for any a € A, and b € Bg;
(ii) aa’ = o(«, f)d’a for any a € A, and o' € Ajp.

A Zy-graded algebra over the Graimann algebra is called superalgebra(SA).

A GSA A is called generalized Banach superalgebra(GBSA) if it sat-
isfies in the two condition of definition 2.1.6. We will see later that Grafmann

algebra is an example of BSA.
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2.2 Finite Dimensional Riesz Algebra of
Supernumbers

In this section we will consider an important example of finite dimensional o-
commutative GG-graded algebras which is introduced by Kobayashi and Naga-
machi in [24]. Particular case of this algebra is Grafmann algebra which has
wide usage in supermathematics and theoretical physics. We will investigate
this algebra deeply in the end of this chapter. The elements of a particular
o-commutative G-graded algebra has been called supernumbers in [24]. Su-
pernumbers, in spite of his name, do not behave as ordinary numbers. They
are incomparable and positivity of them is meaningless. In current section,
first we give the structure of the algebra of supernumbers according to [24]
and define some new norms on it [5]. Then we introduce the concept of Riesz
spaces on this algebra over the real and complex number fields. Next, with
using of its norm, we prove that it is Banach lattice. The method of functional
calculus on this Riesz space gives a new multiplication on it. Finally, we will

see that it is commutative Banach algebra.

2.2.1 The Algebra of Supernumbers

Let (G, o) be a finite additive abelian signed group with Gy and G as its even
and odd parts, respectively and F be the real or complex number field. Also
let C = @ C, be the crossed product of F and Gy, where C,, = F.u, is the
one—dimglstioonal vector space over F with generator u, of grade a.. A finite set
L is called a G-set if L is linearly ordered and there is a map g : L — G
such that any ¢ € L has a grade g(¢) € G. If g(¢) € Gy then ¢ has an even
grade and if g(¢) € G, then ¢ has odd grade. Let L be an odd G-set , that

is, each element ¢ of L has an odd grade. Suppose that V is the G-graded
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vector space over F with basis {v, ¢ € L}, where the grade of v, is g(¢).
Let B be the o-commutative algebra over V' defined by B = T(V)/K, where
K is an ideal of the tensor algebra T(V') over V generated by the elements
viv; — o(g(4),9(j))vju; with 4,5 € L. A subset M of L is a G-set in a natural
way. The ordered product [[ v, is written as vy;. Then B is a G-graded o-
commutative algebra with :lei]‘r;[ear basis {vpy : M C L}overF. f A=C®B
is the graded tensor product of crossed product C' and B over F, then A is
a finite dimensional o-commutative algebra and the elements of A are called
supernumbers.
Any element a of A is expressed uniquely as

a= Z Ao MU D V,,, (2.2.1)

MCL
a€Gy

where a, s € F and a ranges over the elements of Gy and M the subsets of L.

For a € A given as 2.2.1 we define the body and the soul of a by

b(a) = Z Uaglla ® 1 and  S(a) = Z Qo MUa @ Uy, - (2.2.2)
acGy a€Gq
$#£MCL

Any element of A is uniquely decomposed as a sum of its body and its soul.
The body of a is invertible if it is nonzero and homogeneous while the soul of
a is nilpotent. Let b = ) bg nus @ vy be another element of A. Then the

ﬁ’N
operations additivity, scalar multiplicativity and multiplicativity are defined

as follows:

a+b=2 (tar+ban)ta ® var (2.2.3)

a,M
ra = Z(ma,M)Ua QUm ; relF (2.2.4)

a,M

ab = Z( Z (a,bg NEap M N) Uy ® VK (2.2.5)

v, K Mi%r:K

a+pf=y

where M NN = ¢ and £, 1,5 are elements of F with absolute value 1.
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For a subset A of A we set b(A) = {b(a) :a € A} and s(A) = {s(a) :a € A}
which are called body and soul of A respectively.
With returning to the definition 2.1.4, A is a G-graded algebra whose
homogeneous components A, of grade o € G is the set of elements
o= ) asuug @,

McCL
BEGo

where 5+ g(M) = a with g(M) = > g(0).

leM

Example 2.2.1. An important example of a G-graded o-commutative
algebra is the Graffmann algebra over F which obtains with letting G = Zo =
{0,1},0(cr, B) = (=1)*B for o, B € Zy and L = {1,2,...,n}. Therefore we will
have Gy = {0} and C =T, the crossed product. This algebra is denoted by A,
and has a base {&1, ..., &, } such that §&; = =& fori,j =1,2,...,n and i # j.
FEvery element X of A,, is represented as

A= ) MGt D> Mkobnbe, + oo
k=1

ki,kp€L
k1<ko

+ Y Mkkilibh G+ Mzl

..... k;
...<ki

where Ay k; € F for any 1 < i < n. Note that the body of X is Ao, i.e,

b(A) =X €TF.
Forae Aand 1 <k < oo let
1
lalls = laanl*} (2.2.6)
a,M
and for k£ = oo define

lalloc = sup |aa,arl- (2.2.7)
a,M

This norms make A to be a Banach space which is proved in the following

proposition.
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Proposition 2.2.1. The algebra A with the norm || ||, for 1 < k < oo,

1s Banach space.

Proof. Let 1 <k < oo and a,b € A which have representations
a—= Zaa,Mua(X)vM and b:Zba,Mua(X)vM.
a,M a M
First we prove that ||.|z defines a norm on A. It is clear that ||al|, > 0 for
any a in A. Let a = 0, this means that a, ) = 0 for any «, M which implies
that [|a|lx = 0. Conversely if ||a]|, = 0 then Y |aq.a|* = 0. Since L and G
a,

are finite sets then |a, /¥ = 0 for any a, M and so a = 0. Now for a,b € A,

with using the Minkowski inequality we have

1
la+0lle = D laaar + banrl}7
a,M
< D a3+ bagu[*}E
a,M a,M

|k + [10]]-

= e

Also for any a € A and r € F it is clear that ||ra||x = |r|||a|lx- Therefore ||.||x
defines a norm on A that changes it to be a normed space. Now we prove
that this normed space is complete. For this we must prove that every Cauchy
sequence of elements of A, as {a,}n2,, converges to an element a of A.

For any n > 1, a, has representation as a, = )_ agf?\/[ua ® vy and we

a,M
have

Ve>0 IN>0 Vm,neN which m,n>N; |la, —anllr <e.

and sol|a, — an||f = 3 |a(an3w —agfj)\ﬂk < &*. Therefore |a&"])\4 —ag’n]\)ﬂk < &* for
a,M

any a, M. Since F is complete, so there is a4 v € F such that |a&n])w —agm| <€

for any «, M.
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Now let a = > aq,muq @ var. Therefore we have
a,M

lan = allf =D lag ar — aaml® <> e
a,M a,M

Since L and Gy are finite sets, there exists p > 0 such that Y ¥ = pe*. By
taking convenient ¢ we obtain a,, — a € A. Therefore A* isaézﬂgmplete and so
is Banach space for 1 < k < oo.

For the case k = oo, first we prove that ||.||s defines a norm on A. Positivity
is clear and also it is obvious that if @ = 0 then ||a]| = 0.

Let a € A and ||a||c = 0, this means that the supremum of a set of positive
real numbers is zero and it is possible only when all of them are zero , that is,

for any o, M we have a4, = 0 which implies a = 0.

Now if a,b € A we can write

lla + blloo = Sup |aa.nr + banr| < sup|aan| + sup [baar| = ||alloso + 116]]oo-
a,M a,M o,M
Also for r € F and a € A we have

[ralle = sup |raa,u| = |r{sup[aa,u| = |r{lafoo-
a,M «,
Therefore the algebra A with |||« is also normed space.

For completeness, let {a, }>°, be a Cauchy sequence of elements of A, that

is
Ve>0 3N >0; Vm,n € N which m,n > N; ||la, — anle < &,

n
where a, = ) a& ])\4Ua ® vpr. Now
)
o, M

|an — amlloo <6 = su]\I; |a(an3w — a(am]\)/[| <e = Va, M; |a&"])\4 — a(am]\)/[| <e.
@,

This implies that the sequence {agfj)w}z":l is Cauchy in F, then by complete-

ness of I, there is ao . € F such that agf?w — aq,n for any a, M. So
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|agf])\4 — aam| < €. Now by letting a = > aomtia ® vy, we will have
a,M

lan — amllss = sup ol — aan| < e.
Q,

This obtain completeness of A with this norm. Therefore A is Banach space.

O

In 2.2.6 by taking £ = 1 we obtain easily that A with this norm is Banach

algebra. To see this let a = Y aq muq @ vpr and b = > bg nvug ® vy be any
Oé,M 6,N

elements of A. We know that ab = 3 (D wun—r Ga,mrbs NEa,pm,N)Uy ® VK
’ a+pf=y

and we have

lablly = > 1 D tambsncapuyl

v,K MUN=K
a+pf=y

< > Y laanllbanllzas
v, K MUN=K
a+pf=y
< D laam M lbanl}
a,M ﬁaN
= llall1[bf]:-

By considering to the structure of A it is observes that the norms || || for
1 <k < o0, defined as in 2.2.6 and 2.2.7, are depend to the choice of the basis
uq for Cy and {v; : [ € L} for G-graded vector space V' and we can obtain
another norms by taking different basis for C' and V. Now by changing the
structure of A, we want to define another norm on A which be independent

from the choice of basis. For this purpose by assuming the first hypothesis, let
M| ={M'CL : cardM' = cardM}

which card M means cardinal number of M. For any M C L, the set [M] is

equivalence class of M and the collection of these equivalence classes make a
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partition for L. Let Viy ={ Y. apoyr @ ay € F}. Also for o € G set
M'e[M]

VaM = C’(Jz(X)‘/vM

)

= {vom = E QoMU @ Unpr & Qo = Coanr € B}
M'e[M]

Note that V, as is a vector space and since vyp’s for M’ € [M] are linearly
independent, v,y = 0 implies that . = 0 for any M’ € [M]. Now by letting
A= @ V,,m, where M ranges over all elements of partition, we will have the
samea’f]i\flite dimensional o-commutative G-graded algebra of supernumbers.
Every element of A can be written as a = ) v, For defining a new norm

a,M
on A first consider || ||o.ar on V, s as follows:

||Uo¢,M||o¢,M — lnf{ Z |aa,M’| D VoM = Z Ao, M Ug K v ; Ao, M7 S IF}
M'e[M] a,M’
(2.2.8)
where infimum is taken over all possible choices of the set of generators of the

G-graded vector space V' and all possible choices of the generators u, of grade

a for C,. Now for a € A, which has the form a = ) v, as, define
a,M

m(a) =Y [|vanllans (2.2.9)
a,M

Proposition 2.2.2. The equation 2.2.9 defines a norm on A and A with

this norm is a Banach space.

Proof. For proving the first part of proposition, it suffices to prove that the rela-
tion 2.2.8 is a norm on V,, »s. Let uq ar and vy ar be two elements of V;, as. They

has representation as  uqm = Y Gamta @ vy and
M'e[M]
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Vo = . bamrta ® vpp. Therefore
M'e[M]

ot = inf{ > laaur + bar|}

|ta,nr + Vo,

M'e[M]

< inf{ Z |G, nr | + Z ||}
M'€[M] M'€[M]

< inf{ Y agar|} +inf{ Y [baar|}
M'e[M] M'e[M]

= ||ua,M| a,M + ||,UOt,M||0l:M'

We can easily see that if 7 € R then ||ruaa|lanr = |7]||Uanr]|a.nr and also if

Ug,pr = 0 then ||ug ar]|aar = 0. Conversly if ||uaarlla,p = 0 then for any € > 0

there is a representation ug pr = D>, QoM Ua ®@Upp such that > |ag | <
M'e[M) M'e[M]

e. We can choose ¢ to be sufficiently small and hence |a, | < ¢ for any

M' € [M]. This implies that a,r = 0 for any M' € [M] and so usp = 0.

Therefore || ||a,m defines a norm on V, p. Now we prove that || ||oa is

complete norm on V, . For this let {vg%};;o:l be any Cauchy sequence in

Va,m. Hence for each € > 0, there is a positive integer N such that for each

m,n € N with m,n > N we have ||v£én])\4 — vém]m am < €. This implies that

there is vén])w = Y b(arf?w,ua ® vy which for any M, {bg%,}f;’:l is a Cauchy
M'e[M]
sequence in F. The completeness of ' implies that

VM’ € [M] Fbarr €F  which [B"), — boar| < e.

By choosing a suitable £ we can have |b(an3\/,, — b&mj\w < e. Now let

M'e[M]
Vam = 9, bamta @ vpp. Since at first € was arbitrary, we have
M'e[M]
(n) (m) : (n) Yoo :
|vgnr = Vanrlla,nr < €, that is, {vg ), 152, converges to ve,ar and so || ||a,ar is

a complete norm on V a.
Now m, defined in 2.2.9, is a finite sum of complete norms. Therefore it is
complete norm on A and A with this norm is Banach space. O

This norm is called mass norm on A and A with this norm will be denoted
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by A,

Remark 2.2.1. By taking G = Z, and o(«, 8) = (—=1)* for o, 8 € G we
will obtain the finite dimensional Gramann algebra A,, with L = {1,...,n}
which is the particular case of the algebra of supernumbers. In [38], Rudolph

has defined mass norm on A, and we generalize it for A.

According to [25], let % be a transposition of A, then we know that
uy = fu_, for any o € Gy. If v} = u_, holds for every a € Gy, * is

called standard transposition.

Proposition 2.2.3. If x is a standard transposition of A, then the ad-
ditive mapping — : A — A defined by @ = usea* for a € G and a € A, is

conjugation of A.
Proof. See proposition 2.4 of [25]. O

This conjugation is said to be associated with the standard transposition *
of A. In [25] one transposition * on 4 and its associated conjugation is defined
as follows:

For ¢ € C and « € Gy define (cuy)* = éu_, and extend * additively to C.
To define a transposition of B, suppose the G-set L, used to define B, has a
transposition *, that is, x is a mapping from L to L such that g(I*) = —g(I)
and [** = [ for all [ € L. Then the graded vector space V', defined by L,
has a transposition * induced from the transposition * of L; (cv;)* = éup-, for
c € Cand [ € L. Now the o-commutative algebra B of V' over C has the
transposition * given by (vy...v,)* =¢v’...v] and A = C ® B also has the

transposition * given as
(c®b)" =0(f,a)c" @b,

force Cy,b € B, a, B €G.
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Let — be the conjugation of A associated with  (that is, @ = ug,a* for
a € (). Then we have U, = u, for a € Gy and Tay = ugg(ary ® var- Where
M = {l,....,In} € Lyoyy = vy, ...0,,9(M) = g(ly) + -+ + g(lm), and
Une = Vg, - U

For a € Ac, which has the form a = ) o pta @ var, with a, s € C for

a,M
any «, M, transposition * and conjugation — are defined by

at = Zﬁa,Ma(g(M), Q) U_q ® Upre (2.2.10)
a,M
and
a= Y Ganm0(g(M),a)us ® (uzgnr) ® vir+) (2.2.11)
a,M
respectively.

2.2.2 Real Riesz Space of Supernumbers

In this subsection we use the letter A to indicate the finite-dimensional
o-commutative G-graded algebra over R which its elements are called super-
numbers according to the previous subsection. Here we equip A with Riesz
space structure. First define relation < in A as follows:

for any a,b € A, which have the form a = ) a4 mus ® vy and

a,M
b= > bamta ® vy, define a < b if and only if a,p < by for any o, M.

Alsoaéw< b means that a < b and there exists « € Gy or M C L such that
Ao 7 baar (i-e, a # b). Obviously, this relation is transitive, reflexive and
antisymmetric. Therefore, the relation < is partial order relation and (A4, <)
is partially ordered vector space. It is evident to prove that this partial
order satisfies the following conditions:

(i) for a,b,c € A, a < b implies that a + ¢ < b+ ¢;

(ii) for a,b € A and r € RY, a < b implies that ra < rb;

which change A to be an ordered vector space.
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An element a € A is called positive if aq »s > 0 for any o, M. Also it is called
totally positive if a, s > 0 for any o, M.

The set

A" = {aeA: a>0}

= {aeA: CL:Z%,MUa@)UM, o, > 0 for any o, M}
a,M

is positive cone of A and any element of A" is called positive supernum-
ber. The set of all totally positive supernumbers is denoted by A;".

The supremum and infimum of two elements a, b of A, which are denoted
by a V b and a A b respectively, are defined as below:

aVb = sup{a,b} = Z max{aao,ns, b, o @ Uar (2.2.12)

o, M

aNb = inf{a,b}:Zmin{aa,M,me}ua@)vM

a,M
This supremum and infimum are always exist. Therefore A is a lattice. So

the ordered vector space A which is also lattice will be a Riesz space and we

call it Riesz space of supernumbers.

Remark 2.2.2. Now since A is a G-graded algebra then A = @ A, and
e

we can define order relation in A, for any a € G same as A:
ifag = Y agmusg@uy and by = > apg pmug@uy are elements of A,, then

B,M B,M
aa < by if and only if ag < b for any 5, M with condition 5+ g(M) = a.

For an element a of a Riesz space A, the positive part o™, the negative
part o~ and the absolute value |a| are defined by:

at=av0= Zmax{aayM, 0}ug ® var,
a,M

a =(—-a)Vv0= Zmax{—aa,M, 0}ua ® vpr,
a,M

la| =aV (—a) = Zmax{aayM, — g\ JUg @ Upy.
a,M
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With these definitions, we have

(avb)T=atvb" (avb) =a Vb (2.2.13)

(aAD)T =at ADT (@Nb)™=a" Ab™.

Remark 2.2.3. The following identities indicate some properties of ele-
ments of A4 that are true in any Riesz spaces. For more details refer to [28]
and [54].

)at,a= € AT, a™ = (—a)” and a™ = (—a)™, |a| = | — a;

ii)a=at—a and |a|=a" +a;

(

(

(iii) —a~ <a<a';
(iv) a < bif and only if a* < bt and b~ < a™;

(v) |a|] < bif and only —b < a < b;

(vi) (a+b)" <at+bt, (a+b)” <a +b, |la|—|bl| < |a+0b] < |a|+ [b|

for any a,b € A.

Definition 2.2.1. The linear subspace A of A is called a Riesz subspace
of A if, for every pair of elements a, b in A, the elements sup(a, b) and inf(a, b)

are also in A.

Lemma 2.2.4. The body of Riesz space of supernumbers A, b(A), is a

Riesz subspace of A.

In the consideration A = @ A, of A, for any o € G, A, is a Riesz
aclG
subspace of A.
Now consider the following particular subsets of A with its usual order,

:{Znua@)vM:nEN} Z:{Zzua@)vM:zEZ}
M

a,M

@:{una@)UM:qu} RZ{Zrua®vM:r€R}
a,M

a,M
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Evidently N C Z C Q C R and these sets are totally ordered , i.e, any two

element of them are comparable. Only R is a Riesz subspace of A. Note that

in the case of Graimann algebra we have b(N) =N, H(Z) = Z, b(Q) = Q and
b(R) = R, the usual number sets.

It is evident to see that .4 hasn’t minimal or maximal elements. Therefore
according to terminology of [54] A hasn’t zero element and unit element. But
since we work with numbers, we say zero element to 0 = Y 04 prte ® vM and

a,M
unit to 1 = > 1, ptq @ var, where 1, oy =1 and 04, = 0 for any a, M.
a,M
Now we restate some definitions of Riesz space theory in language of su-
pernumbers. Reformulation of these definitions for supernumbers will be used

in later structures.

Definition 2.2.2. Two elements a and d of A are said to be weakly

disjoint, written a L, d, if |b(a)| A |b(d)| = 0, that is,

inf{sup{aq ¢, —ta,s},sup{ba.s, —bas}} =0

for any o € Gy.
Two elements a and b of A are said to be disjoint , written a L b, if |a|A|b] = 0
that is

inf{sup{aa.rr, —Ga .}, sup{ba.rr, —banr}} =0
for any o, M. For a € A, let a? be the set of all elements of A which are disjoint
with a, that is, a? = {b € A : a L b}. In fact, for given a,b € A, we have:
a lb ifandonlyif agu =0 if boy #0 and agnm #0 if byu =
0 for any o, M. We can see evidently that for any 0 # a € R, a¢ = {0}.

For any subset A of A, the sets
AY={bc A: bLla forany a in A}

and

b(AY) = {b(d) € b(A) : b(d) L b(a) for any a in b(A)}
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are called disjoint complement and weakly disjoint complement of A

respectively. Evidently we have A4 C b(A?).
Note that Z¢ = Q¢ = R? = A? = {0}. Also for zero element we have
{0}¢ = A.

Definition 2.2.3. A subset A of a Riesz space A is (weakly) order
bounded from above if there is a vector u (called an (weak) upper bound
of A) satisfying (b(a) < b(u)) a < u for each a € A. In other words u is (weak)
upper bound of A if (ane < Uay) Gamr < Ugn for any a, M. The sets
(weakly) order bounded from below are defined similarly. For example
the set N is bounded from below with zero element.

A subset A of a Riesz space A is (weakly) order bounded if A is both

(weakly) order bounded from above and below.
A weak box or weakly order interval is any set of the form

b([a,d]) = {b(c) € b(A) = b(a) <b(c) < bd)}

= {b(c) €b(A): anp < Cap < day forany a € Gy}
A box or order interval is any set of the form

la,d] = {c€eA: a<c<d}

= {ceA: aon <oy <doy forany a € Gy and M C L}.

Obviously [a,d] C b([a,d]) and for incomparable elements a,d, we have
b([a, d]) = ¢

Definition 2.2.4. A nonempty subset A of a Riesz space A has a (weak)
supremum (or a (weak) least upper bound) if there is (a)an (weak) upper
bound  (b(u))u  of  (b(A))A  such  that  (b(a) < b(v))
a < v for all (b(a) € b(A)) a € A implies (b(u) < b(v)) u < v. Clearly
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the supremum, if it exist, is unique and is denoted by supA. If b(A), the
body of A, is considered as a subset of A then weak supremum is not unique.
But if we consider b(.A) as a Riesz space independently, then weak supremum
is unique. The(weak) infimum (or (weak) greatest lower bound) of a

nonempty subset A is defined similarly and is denoted by (inf b(A))inf A.

Definition 2.2.5. A net {a,} in a Riesz space A is (weakly)decreasing,
written (a, Jy)a, § if 7 > p implies (b(a,) < b(ay,))a, < a,. In other words

(r

7 > p implies (%:b < agf) (1) < oW

o for any @) a3, < ayy, for any o, M. The symbol
(a, Tw)a, 1 indicates an (weakly) increasing net, while (a, t,< a) a, 1< a
(resp. (ar Jw> a) a, 1> a) denotes an (weakly) increasing (resp. (weakly)

decreasing) net that is (weakly) order bounded from above (resp. below) by a.

The notation (a; J, @) a, | a means that (a, {,)a, | and (inf{agz()ﬁ} = Qa4
for any «) inf{agjw} = aqo,v for any a, M. Also the notation (a, 1, a)a,; T a
means that (a, 1,)a, T and (sup{ag:z,)} = G4, for any «) sup{a(ozgw} = Qo.M

for any a, M.

Definition 2.2.6. A net {a,} in a Riesz space A (weakly) converges
in order or is (weakly) order convergent to some a € A, written (a, ——
a)a, —>+ a, if there is a net {d.} (with the same directed set) satisfying
(d: }w 0)d; | 0and (|b(a,)—b(a)| < b(d;))|ar —a| < d; for each T (equivalently
for any 7 we have (|a$3ﬁ — Gap| < dgzb for any «) |a(a73w —aan] < dg%w for any
a, M). In this case a is called (weak) order limit of {a,}.

A sequence {a, }5°, in A is said to be an (weak) order Cauchy sequence
if there is a sequence d,, | 0 such that (|b(a,) — b(an)| < b(dn))|an — am| < d,
for all m > n > 1. One Riesz space is order complete if every order Cauchy
sequence has an order limit. Equivalently a Riesz space is order complete if

every subset of it has a supremum. It is easy to see from this equivalence
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definition that A is not order complete.

The main properties of order convergence are listed in Theorem 10.2 of

[54].

Definition 2.2.7. Let u > 0 be an element of a Riesz space of
supernumbers 4. We say that the sequence {a,}>2, in A is (weakly)
converges u-uniformly to an element a € A whenever, for every € > 0, there
exists a natural number N, such that (|a}, , — @a,e| < cUqy for any a € Gy)
a2 v — G| < tqn holds for all n > N, where a, = 3 agfj)wua ® vy and

a,M
U= Y UymlUa ® vpr. In this case a is called (weakly) u-uniform limit of

a,M
{a,} and written as (a, — a(u-un)) a, — a(u-un).
It is said that the sequence {a,}>2, in A is (weakly) converges
relatively uniformly to a € A whenever a,, (weakly) converges u-uniformly

to a for some u € A*. This kind of convergence is denoted by (a, — a(un))

a, — a(un).

In next proposition we will prove that A is Archimedean and therefore the
uniqueness of uniform limit and some of its properties follows from Theorem
10.3 of [54]. The Riesz space of supernumbers has some characteristics which

we prove them now. For definitions of some concepts refer to section 1.3.

Proposition 2.2.5. The Riesz space of supernumbers A is Archimedean.

Proof. We know that every element a of A has the form a = ) aq pta @ var
a,M

and a € AT if and only if a, s > 0 for any o, M. So

1 1 1 1
—a = — Qo MUa Q@ Uy > Ao MUa D Vpyr = a
n ;/[n M M Zn—l—l M M n+1

@,
holds for any positive integer n, which means %a J. Also it is clear that
1
n

inf{la} =0 or inf{la, r} = 0 for any a, M. Therefore La | 0 which implies

A is Archimedean. O
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Proposition 2.2.6. The Riesz space of supernumbers A is Dedekind

complete.

Proof. Let A be a non-empty subset of A which is order bounded from above
by b. Hence for any a in A we have agn < bon for any o, M. Set

Ao = {aan @ a € A} for any o, M. So A, is a nonempty subset of
real line R that has an upper bound b, ;. Therefore by completeness ax-
iom of R, A, has a supremum, as S, ar, which Sy < by . Now take

S =" Samla ® vy Obviously S < b and S is the supremum of A. O
a,M

Proposition 2.2.7. The Riesz space of supernumbers A is Dedekind o-

complete.

Here we give the concepts of limit superior(limsup) and limit inferior(liminf)
in the Riesz space of supernumbers. Let {a.} be a net of supernumbers in A
with the property that b, = sgp{au} exists in A for any 7 . Evidently {b,}
is decreasing net. If there exigEsT an element b € A such that b, | b, we write

b = limsup a,. Similarly we write ¢ = liminfa, if ¢, = ir>1f{au} exists for all 7
u>T

and ¢, T c¢. In other words

limsupa, = infsupa, = Z(inf sup agf%w)ua ® v

T T
T u>T a,M w>T

o B : _ e (k)
liminfa, = sup inf a, = E (sup inf a3/ )ue ® var
7 g 7 >
Q,

The limit superior and limit inferior characterize order convergence in Dedekind

complete Riesz space, i.e., an order bounded net {a,} in A satisfies a, 5 a

if and only if @ = limsup a, = lim inf a,.

Proposition 2.2.8. The Riesz space of supernumbers A is u-uniformly

complete space(u € A").
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Proof. Since A is Archimedian, by theorem 39.4 of [28], it suffices to prove
that every monotone u-uniformly Cauchy sequence has an u-uniform limits.
This is easily obtainable by considering to the Dedekind o- completeness of A

(previous proposition)and last part of lemma 39.2 of [28]. O

Now by definition of uniformly complete we have the following.

Proposition 2.2.9. The Riesz space of supernumbers is uniformly com-

plete space.

Proposition 2.2.10. The Riesz space of supernumbers A is order sepa-

rable.

Proof. Let A be a non-empty subset of A possessing a supremum supA = S.
Hence for any a of A, a < S and so aqnr < Son for any a, M. Let
Aprr = {aan : a € A}. Therefore A,y € R and supA,y = San-
Since R is separable, A, N Q is a countable dense subset of A, s which
sup(Aa s N Q) = Sa - Now let A’ be the set of all @ € A such that its
component a, s belongs in A, a NQ, that is,

Al={aecA: a= Zaa,Mua Q@ vy and agn € Agnr NQ for any «, M}

a,M

A’ is at most countable subset of A. Since Gy and L are finite sets then the

number of the sets Ay N Q is finite. Therefore A has at most countable

subset. O

Now since A is Archimedean, the recent result and theorem 23.5 of [28]imply

the next assertion.

Proposition 2.2.11. The Riesz space of supernumbers A is strong order

separable.
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Definition 2.2.8. A subset A of a Riesz space A is called weak solid if
|b(d)| < |b(a)| and b(a) € b(A) implies b(d) € b(A). A is said to be solid set if

|d| < |a| and a € A implies d € A.

For instance the positive cone of A, A", is not solid but the sets N, Z, Q

and R are solid sets. Also for any o € G the set A, is solid.

Definition 2.2.9. A subset F' of a Riesz space F is order closed if
{r,} C F and z, =% z imply x € F. It is called weakly order closed if
{r,} C F and 2, =% z imply v € F. In a similar way F is called (weakly)
o-order closed if these statements are true for sequences.

A solid linear subspace of a Riesz space is called an ideal. An order closed
ideal is called a band. An ideal F is a band if and only if {z,} C F and

0 <z, tzrimplyz € F.

The ideal J5 generated by the non-empty subset A of A, is
JIn = U{n[—a,a] : neN, a=|u|V---Vie| ,a,...,a, €A}

A principal ideal is an ideal generated by a singleton {a} and is denoted

by J,. For any a € A" the ideal J, generated by a is
Jo = U{n[—a, al] : n €N}
For any a € A the principal ideal J, generated by A is

J, = {be A | IAn>0 with |b] < Mal}

= {be A | IAN>0 with |bam| < Aaanm| forany o, M}.
The band generated by an ideal .J of A is given by

By={ac€ A | Janet {a,} CJ with 0<a,1]a|}.
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Also for a € A the band By, ( will be denoted by B,) generated by ideal J, is
called principal band generated by a.
Let a € A'. Any element b € A" satisfying b A (a — b) = 0 is called a

component of a. The set C, of all components of a is a Boolean algebra.
C, = {be A" | bA(a—0b)=0}
= {be A" | buryr =0 or byay =ann forany a, M}
Proposition 2.2.12. The Riesz space of supernumbers A has projection
property.

Proof. This is an immediate consequence of proposition 2.2.6 and theorem

24.9(i) of[28]. 0

Proposition 2.2.13. The Riesz space of supernumbers has principal pro-

jection property.
Proof. This is obtainable from proposition 2.2.7 and Theorem 25.1 of [28]. O

Proposition 2.2.14. The Riesz space of supernumbers A has sufficiently

many projection.

Proof. Recall that a Riesz space has sufficiently many projection if every
nonzero band contains a nonzero projection band. The assertion can be obtain

from preceding proposition and Theorem 30.4(i) of[28]. O

According to principal projection property of A, any principal band gen-
erated by a € A will be projection band (B, + B¢ = A) and if a € A" then

for any b € A" the element

c=sup(bAna n=1,2,...)= Zmin{ba,M, sup(naqn) g ® var
a,M "
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exists always( by theorem 11.5 of [54]). In this case ¢ is the component of
b in B, and is denoted by Pp,(b). In fact Pp, is a projection mapping from
A into A itself which is linear and idempotent for any b € A". Therefore
Pg, : A — A is defined by
Pg,(b) = Zmin{ba,M, sup(naa,nr) Pta @ vpr
a,M n

for any b € A*.

Proposition 2.2.15. In the Riesz space of supernumbers, totally positive

elements are order unit.

Proof. Let e € A;f. We must prove that for any a € A, there is a positive real
number r, depending upon «a, such that |a| < re.

e= E Ca,MUq @ Vi €a,m >0

MCL
a€Gp

According to Archimedean property of R, there is a positive real numbers rq 5
such that |aq | < (Faar)ean for any a, M. Therefore |a| < (> rq)e and
SO € is strong unit. " O

Remark 2.2.4. Since A is finite dimentional Archimedean Dedekind o-
complete Riesz space then stablity of order convergence obtains from Theorem
70.3 of [28]. Also according to Theorem 16.3 of [28], stability of order conver-

gence implies that order convergence and relatively uniform convergence are

equivalent.

Definition 2.2.10. The element ¢ € AT is called a weak unit in A
if a 1 e implies that a = 0 for a € A. It is an immediate consequence of
definition 2.2.2 that e € A" is weak unit of A if and only if e, » # 0 for any

a, M. In fact e? = {0} if and only if e is weak unit.
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Proposition 2.2.16. The Riesz space of supernumbers has o-property.

Proof. Let {a,}22, be a sequence in A". For any n, a, has the form

_ }: (n)
Ay = Ao 11l X U
MCL
a€Gy

where a(ﬂv, € R If a, = 0 then take r, be the positive integer 1, else take
=1/ afj}v,. It is clear that r, > 0 for any n and {r,a,}>, is bounded
a,M
from above by the element > u, ® vy. O
a,M
Proposition 2.2.17. The Riesz space of supernumbers A has strong di-

agonal property.

Proof. According to remark 2.2.4, the order convergence in A is stable. By
proposition 2.2.16 and Theorem 70.2 of [28], A has d-property. Also A is

Archimedean and the Proof is complete by the Theorem 68.5 of [28]. O

Proposition 2.2.18. The Riesz space of supernumbers has diagonal prop-

erty for order convergence and relatively uniform convergence.

Proof. Since A is Archimedean, it is an immediate consequence of theorems

70.2 and 72.2 0f [28], proposition 2.2.16 and remark 2.2.4. a

Proposition 2.2.19. The Riesz space of supernumbers has strong Ego-

roff property.

Proof. Since A is Archimedean, according to previous proposition and Theo-
rem 70.2(i —> i3) of [28] A has the d-property and so by Theorem 68.5 of [28],

the assertion is obtaining. O
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2.2.3 Complex Riesz space of supernumbers

In this subsection we investigate complexification of Riesz space of supernum-

bers, A, by considering complex supernumbers.

Definition 2.2.11. Let Ac be the space of finite-dimensional o-commutative
G-graded algebra over the complex number field C which it’s elements are
called complex supernumber. Every element of Ac has the form
c = %ca,Mua ® vy where ¢or € C for any a, M. Therefore copr =

Qo + 1o, ar Where ag ar,bo 0 are elements of R for any o, M. Also it is clear

that we can write

c = E Ca,Mua®'UM

a,M
= E Ao, MUa Q@ Upr + 1 E bo, Mo @ Ups.
o, M o, M

By letting a = Y aqmtq @ vpr and b = ) by ptta ® vy we have ¢ = a + ib
a,M a7M

where a,b € A. So we can write Ac = A+iA. The operations additivity and
scalar multiplicativity are defined evidently as follows:

for any ¢, co € Ac where ¢; = ay + by and ¢y = as + iby and any r, s € R:
c1 + 2 = (a1 + az) +i(by + b)
(r+is)e= (r+is)(a+ib) = ra — sb+i(sa + rb)
The set Ac is called complexification of a real vector space A.

Now, the space Ac can be partially ordered coordinatewise, i.e, ¢; < ¢
whenever a; < a, and b; < by in A. Also the supremum and infimum of two
elements of Ac¢ can be defined evidently as:

sup(ey, ¢3) = sup(aq, az) + isup(by, by)

and

inf(cy, co) = inf(ay, az) + iinf(by, by)
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It is easy to prove that Ac is a Riesz space, and for ¢ = a + ib € Ac the
element |c| is given by |c| = |a| + i|b].

Remark 2.2.5. For a moment we restrict our attention to the complex
number field C. Let z be an element of C. Therefore z = a +1b where a,b € R.
We have the familiar absolute value |z| = (a2 4 b%)2 which is a non-negative
real number. But since C is a Riesz space the absolute value of z would be
2| = |a| + i|b] instead of (a® 4 b?)2. Also for any z(real or complex) it is
hold that |z| = 2V (—z) in accordance with a definition of Riesz space. It is
straightforward to see that

2] = sup{Re(z¢™?): 0 < 0 < 21} = sup (acos(h) + bsin(h))
0<0<2r
Now for ¢ € A¢ with above notations and considerations we obtain two
statements for absolute value of ¢. We wish to define an absolute value |c|
of ¢ such that |¢|] € A" and such that if ¢ itself is an element of A, then

le| = ¢V (—c¢). For this purpose with letting ¢ € A¢ we will have:

el = eV (=c) =Y (a2 y + b2 ) Tua ® var.

It is clear that in this case |c¢| € AT and if ¢ € A then |¢| = ¢V (—c¢).

Also for any two elements ¢, co € Ac we have

c1 Ve = sup{cy, e}
= sup{z cs,zwua ® v ,Z CS,)MUa ® vnr}
a,M a,M
= Z max{ag’)M, aff,)M}Ua Qvp + 1 Z max{bg’)M, bS)M}ua ® Uy
a,M a,M
where ¢; = ay + @by and ¢y = ap + iby. If we take ¢ = ¢; = ¢ in above

equalities it is straightforward to see that |c| = |a|+|b|. On the other hand A

is Archimedean and uniformly complete (propositions 2.2.5 and 2.2.9), hence
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according to Theorem 13.4 of [54]
lc| = sup{Re(ce ™) : 0< 0 <21} =sup(acos(d) + bsin(d) : 0 < § < 2r)

exists in A for any ¢ = a 4+ ib € Ac¢ and we have

le| = Z sup (aq,n €os(6) + bo,arsin(0))uq @ v
“— 0<h<2r

where ¢ = Y Gapta @ Uar + 1 Y, boprtia ® vy
a,M oM
Remark 2.2.6. Note that the absolute value in A+ ¢A has some properties
as the familiar absolute value for complex numbers. Some of them are listed
in below which are proved in [54], Theorems 13.5 and 13.6:
(i) |a] <|el, |b] < |e] and |¢] < |a] + ||, for which ¢ = a + ib;
(ii) |¢| = 0 if and only if ¢ = 0,|r¢| = |r||c| for any complex number r;
(iii) |1 — 2| = [er + 2| = [er| + [e2] = [ler = [ea][ = |ea| V ezl
Definition 2.2.12. A subset A of A+ iA is called an ideal if A is a
complex linear subspace of A + A and if A is a solid subspace of A. The set
of all real elements in the ideal A is denoted by A,, i.e., A, = AN A. The ideal
A in A+ iA is called a band if the real part of A, is a band in A. The band

A in A +iA is called a projection band if A, is a projection band in A.

It is clear that b(Ac) = b(A) + ib(A) and b(Ac) is a Riesz subspace of
A+iA. By letting C = {> cu, ®vyy : ¢ € C} we find out that in the
a,M

case of Gramann algebra b’(Q) =C.

Theorem 2.2.20. The complex Riesz space of supernumbers has all prop-
erties of A such as Archimedian, Dedekind completeness, projection property,

principal projection property and so on.
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According to [25], let * be the transposition on A¢ and — be its associated
conjugation. In fact for a € A, which has the form a = ) o pmta ® vpr,

a,M
with a, s € C for any o, M, transposition * and conjugation — are defined by

and

a= Ga,m0(g(M), a)tiq ® (Uzg(rry @ Var+)

respectively.
For o € G, the real part Re(Ac) and the imaginary part Im(Ac) of Ac are
defined by

RG(A(c):{CLEAc| E:a} Im(A@):{aEAC| a=—a }

Also we have Ac = Re(Ac) @ Im(Ac), Im(Ac) = iRe(Ac) where i = /—1.
Therefore an element ¢ € Ac is written as ¢ = Re(c) + Im(c) = a + ib with

a,b € Re(Ac). Since Ac = @ A, then

acG

Ac = PIRe(As) & Im(A,)]

acG

= [DRe(A)] @ [P Im(Aa)]

aceG acG

— Re(Ac) @ Im(Ac).

Now it is clear that if a € Ac and @ = a then a € Re(Ac) and in this case we

will say that a is superreal.

2.2.4 Banach Lattice of Supernumbers

We know that A is a normed space with some different norms. In this sub-
section we prove that A is a Banach lattice with some of them. First we
consider A as a real Riesz space and in the last, we consider the norms on the

complexification of A.
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We saw that, A is an Archimedean Dedekind complete Riesz space which
has the projection and principal projection properties with totally positive ele-
ments as its order units. Now it is straightforward to check that || [|x is a Riesz
norm for any 1 < k < oo, that is, if |a| < |b] in A then ||a||r < [|b]|x. To see this,
let |a] < |b| for a,b € A. This implies that

Yo ot @ var < D7 bam|tia @ var, 16, |G| < |ban]| for any «, M.
a,M a,M

So for 1 < k < oo we have |agn|® < |baar|F for any o, M and hence
S laam|” < 2 [ba|®. Therefore ||allx < ||blx. On the other hand A is
E(J)Vi"m complet: vﬂgith I |lx, and so it will be a Banach lattice. But the mass
norm on A is not Riesz norm and therefore A with this norm is not normed

Riesz space.

Proposition 2.2.21. The norm || || for 1 < k < oo in Banach lattice

A is o-order continuous.

Proof. Let {a,}5°, be a sequence of elements of A which a, | 0 in A.
Every a, has the form a, = > agfj)wua ® Vur where a,, | 0 implies that

o, M

afj}w > agf;\}l), a(ﬂv, > 0, and inf{agfj)w} = 0 for any n and for any o, M. Now

let 1 <k < oco. It is easily seen that ||ay||x > ||ans1||k- inf{agf?w} = 0 for any
a, M implies that inf{|a{"),|*} = 0 for any a, Mand so inf{ 3" |}, ¥} = 0.
n ’ n a,M ’
Therefore inf{ ) |afln3w|k}% = 0 and hence inf||a,|lx = 0 For £ = oo it is
noaM ’ n

straightforward. O

Remark 2.2.7. Theorem 17.9 of [54], Dedekind o-completeness of A and
previous proposition imply that || ||x is an order continuous norm on A. Also
with using theorem 17.8 of [54] we obtain that 4 is super Dedekind com-
plete. Since A is Banach lattice, theorem 16.2 of [54] implies the Riesz-Fischer

(0]
property for A, that is, the property that convergence of > ||a,|| implies the
1
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o0
existence of Y a,, or equivalently for any sequence {a,}$°,; of positive ele-

1
o0

ments in A for which Y’ ||a,|| converges, the order limit ) a,, exists. Lemma
1

16.1 of [54] indicate that || Y  a,|| < > ||as|| for any such sequences.

The Riesz space of supernumbers is Dedekind complete Banach lattice with
order continuous norm || ||z. Hence A has countable type property and also
its norm is Fatou(definition 1.3.21). It is straightforward to see that for any
1 <k < o0, the norm || || is not M-norm or L-norm. Since A is Archimedean
relatively uniformly complete Riesz space with totally positive supernumbers
as its order units, proposition 7.2 of [41] indicate that for any totally positive

e, the gauge function of [—e, €], given as
P.(a)=inf{reR : —re<a<re} (2.2.14)

is an M-norm and A with this norm is AM-space. Now since A is Banach
lattice with the norms || ||, and P,, for any e € A/, they are equivalent.

We know that every totally positive supernumber of A is its order unit and
P., defined as above, is the gauge function of [—e, €], therefore (A, A", P,) is
order unit normed space. Now by theorem 9.11 of [52], there is a compact
convex set K in a locally convex space such that (A, A", P,) is isometrically
order-isomorphic to A(K) where A(K) is the closed subspace of the set of all
real valued continuous functions on K, consisting of all affine functions.

The Riesz space of supernumbers has some topologies which are equivalent.
First of them is order topology, defined by order closed subsets of A. The second
is relatively uniform topology which is defined by relatively uniformly closed
subsets. Since order convergence in A is stable, this two kind of topologies are
equivalent. They satisfies in T}-separation axiom. We know that A is a Banach
lattice with the norms || || for 1 < k < oo and P, for e € A", therefore they

are equivalent and so induced topology by them are same. On the other hand,
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since A is finite dimensional, all topologies on A are equivalent.
Every strong order unit e of ordered topological vector space A is an interior
point of positive cone A* and the order box [—e,e] is a neighborhood of 0.

The lattice operations

(a,b) = aVb , (a,b)—aAb, a—~a" , aa , a— |a

are continuous in order topology. Uniformly continuity of them follows by
proposition 5.2 of [41].

Now consider to Ac as a complexification of real Riesz space A. We know
that A is uniformly complete Riesz space and every element a = b + ic of Ac
has an absolute value |a| in A. For this element a define the number ||al|c by
llal|c = |||a]||]. This defined a Riesz norm on Ac¢. Since A is Banach lattice,
thus Ac will be Banach lattice so which is called complex Banach lattice
of supernumbers. Exercise 15.12 of [54] states some properties of complex

Banach lattices.

Proposition 2.2.22. The norm of Ac is a o-order continuous norm.

Proof. Let {a,}2°, be a sequence in Ac¢ such that a, | 0. For any n,
an = a\” +ial" and a, | 0 implies that a{™ | 0 and a{” | 0 in A. Therefore
lan| 4 0. Since the norm of A is Riesz norm, we will have [[|a,||| I 0 which

means that ||a,||c 4 0. O

2.2.5 Riesz Algebra of Supernumbers

We know that the multiplication in the algebra of supernumbers has not
multiplicative unit and so the inverse of supernumbers is not defined. But, as
we stated in the first of current chapter, we wish these supernumbers behave

as ordinary numbers. Therefore in this subsection by using the method of
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functional calculus in Riesz spaces we will obtain a new multiplication on A
to gain our goal. This new multiplication make a new algebric structure to A
which is called Riesz algebra. In the subsection 1.3.4 we saw that the method
of functional calculus arises for such Riesz spaces which they have strong order
unit and principal projection property. In this Riesz spaces, the principal ideal
generated by an order unit element is the whole space. Also the strong units
of a Riesz spaces is not unique and we can use different strong order units to
obtain different results.

Remmember that the Riesz space of supernumbers, has principal projec-
tion property and every totally positive element is its strong order unit. We
are familiar with the sets N, Z,Q,R and C as supernatural, superinteger, su-
perrational, superreal and supercomplex supernumbers respectively. Also we
know that the supernumber 1 is strong order unit. Then we can use it for
reformulating of functional calculus to Riesz space of supernumbers. We do it
now and for this first we consider the Riesz space of supernumbers A over real
number field R.

The set C of all components of 1 is
Ci={ae A" | aumw =0 or agy =1 forany o, M}

which is Boolean algebra. Evidently 0 , 1 € (). The principal ideal J;

generated by 1 is whole space A | i. e., J; = A.
Ji={ae A | IA>0 with |agn| <A for anya, M}.

Given an element a € J; = A, there exist real numbers r,¢ with » < ¢t and a

number § > 0 such that r1 <a < (t — §)1. For example we can take

r:m]i\?{aa,M}—l ; t:rolzl’%}({aa,M}le ;o 0=1

@,
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The interval [r,t] C R is called spectral interval of a. Let P :r =kq < ky <
-++ < ky, =t be a partition of [r,?] and Py be the band projection onto the

band generated by (k1 — a)™ for any &k € [r,¢]. In fact, for any b € A™,
Pib) = sup(b A [n(kL — a)*]) = b A supln(kl — a)*]

= Z min{bg, a7, sup[n(kl — a)} /] e ® var
a,M n

= Z min{b, s, sup[n max{k — ann, 0} }ua ® var.
a,M n

The elements s = 3 kj_1(Py; — Pr,_,)1 and S = Y k;(Py; — P,_,)1 are called
j=1 j=1

lower sum and upper sum belonging to a and partition P where s < a < S.
Ifkj —kj-i<eforj=1,2,...,mthen0<a—-s<ecland 0<S —a <cel.

Let F' be a continuous real valued function on the spectral interval [r,¢]

and consider the numbers

mj =, min F(k)  M;= L F(k) (2.2.15)

for j =1,2,...,m. Also let
s=Y mi(Py; — P, )Ll and  S=Y M;(P, —Py,_,)L (22.16)
j=1 j

J=1

be the corresponding lower and upper sums.

Let s(P) and S(P) denote the lower and upper sums depending on P, respec-
tively. According to theorem 34.1 of [54], the set of all s(P), for all partitions P
of [r, t], has a supremum in A which is at the same time infimum of all possible
S(P) for all partitions. This common value is denoted by F'(a) and expressed
with

F(a) = /tF(k) dPy.

This method of defining F(a) for any a € A and any real continuous function
F on [r,t] is known as a functional calculus. By taking F'(k) = k™ for all

k € [r,t] and natural number n, we can define a” for any a € A.
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Proposition 2.2.23. For any a € A", there exists b € A" such that

a = b>.

Proof. For a € A" we can take [0,¢] as its spectral interval. The function
F(k) = k= is a continuous real valued function on [0,¢]. Hence by letting

b = F(a) the assertion will be obtain. O

For a,b € A, the elements a® , b* and (a + b)? are defined as above and
the product ab can be define by ab = 1{(a + b)* — a* — b*}. Distributivity,
associativity and commutativity are hold for this multiplication. The strong
order unit 1 is as its multiplicative unit. Also we have the following statements:

1) |ab| < |al|b| for all a,b € A;

2) for positive elements a,b € A" the element ab is in A™;

4) If a™ = 0 for some n € N, then a = 0;

(1)
(2)
(3) a L bif and only if ab = 0;
(4)
(5)

5) ata™ =a~at =0 for any a € A and hence a® > 0.

If a € A and there exists an element b € A such that ab = ba = 1, then

b is called an inverse of a and is denoted by a!.

This element, if it exists,
is unique. If @ > 0 and a ! exists then a > rl for some positive number
r. Conversely, any a € A satisfying a > r1 for some r > 0 has an inverse.
Therefore a € A is invertible if and only if there is an element 0 < r € R such
that aq a > r for any o, M.

According to above argument and definition 1.3.24 A will be a Riesz algebra
which we call it Riesz algebra of supernumbers. Also (3) and (4) of above
imply that A is a f-algebra. We know that A is unital with unit element 1
and since it is uniformly complete, it has property (*) and M.D. (According
to terminology of [8]). Theorem 4.2 and corollary 4.3 of [8] indicate that for

every positive supernumber a, the elements \/a and v/a? + b? always exist.
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Proposition 2.2.24. The set A is commutative Banach algebra.

Proof. A is Archimedean uniformly complete Riesz algebra (with product in-
duced by functional calculus) and also is Banach lattice. L. Venter [47],
showed that in any Banach lattice algebra X, ||z12|| < ||z1]/|22|| holds for
any zi,2o € Xc. On the other hand we know that the new product in A is

associative and commutative. Therefore we have our aim. O

Now let A be the Riesz space of supernumbers over the complex number
field. The complexification of A as a complex Riesz space is considered in
2.2.3. Since A is a Dedekind o-complete Riesz space, as previous argument,
let 1 > 0 be the strong order unit in A4 and let the commutative multiplication
in J; with 1 as unit element be introduced as explained before. Therefore
according to theorem 44.4 of [54] the multiplication can be extended to the

complexification .J; 4 4.J; in a natural way, i. e.,
(a +ib)(c + id) = (ac — bd) + i(ad + be).
Then, for any h = a +1ib € J; +i.J; we have
|h)? = a* + b,

i. e., |h] is(unique) positive square root of a? + b2.

In corollary 44.5 of [54], some properties of this multiplication are men-
tioned.

(i) [huha| = | ||ho| for all by, hs € Jy +iJy;

(ii) h1he = 0 if and only if |hq| L |hal;

(iii) A* = 0 for some natural number k implies that h = 0.

This last argument indicate that Ac is also Riesz algebra. Theorem 5.2 of

[8] indicates that

Va?+b?> = sup (acos(f) + bsin(6))

0<0<2n
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for all a,b € A and this means that the absolute value of any complex su-
pernumber z = a + ib can be define |2| = Va2 + b2 in a natural way. Also it
is straightforward to see that Ac is also uniformly complete semiprime unital
f-algebra ( see [8]).

We can easily reformulate the concept of functional calculus to Ac. For
a,1lc € Ac we have a = a; +iay and 1 = 1 4 i1 where a;,a; € Aand 1 € R.
Let F' be a complex valued continuous function on the spectral interval [r, t]
of a. On the One hand for any k € [r,t], F(k) = fi(k) + iFx(k) € C which
F) and F, are continuous real valued functions on [r,#]. On the other hand
rle < a < (t—0)1le implies that r1 < ay < (t—§)1 and rl < ay < (¢t — 0)1.
Indeed [r,t] is also spectral interval of both a; and ay. We want to define
F(a) for a € Ac. For this by using the method of functional calculus of A we
can associate Fj(a1) to ay, Fy(as) to ay and finally F(a) = Fi(ay) + iFy(as)
to a. About invertiblity of any a € A¢ we have the following assertion: a =

ay + iay € Ac is invertible if and only if a; and a, are invertible.
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2.3 Infinite Dimensional Riesz Algebra of
Supernumbers

The elements of infinite dimensional o-commutative G-graded algebra is also
called supernumbers in [31]. Therefore investigation of properties of these su-
pernumbers seems is natural. In current section we do this and prove the
similar propositions for infinite dimensional supernumbers. Indeed, the struc-
ture of Riesz spaces, Banach lattices, Riesz algebras and functional calculus
on this algebra will be obtain. As an important result we will see that this

algebra is commutative Banach algebra.

2.3.1 Infinite Dimensional Algebra of Supernumbers

Let us consider a strict increasing sequence of finite Gi-sets L,,n = 0,1,...
where Ly = ¢. Let L = UL,. For a finite subsets M of L we define the
height h(M) of M by h(M) = min{n : M C L,}. Let B, = By, and
A, = C ® B, (according to construction for any n). Since there is a natural
inclusion mapping i, : A, — A,.1, we have an increasing sequence of finite
dimensional o-commutative Banach algebras A,,. We consider the countable
strict inductive limit A of this sequence {A, }(see subsection 1.2.2 ). A is the
union of A,’s and the topology of A is defined as follows: a subset A of A,
assumed to be convex, is a neighbourhood of zero if and only if, for every
n=1,2,..., the intersection A N A, is a neighbourhood of zero in the Banach
space A,. Actually, this topology is defined by the following system of norms
on A.

Let w = {w,} be an increasing sequence of positive integers, then we define
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a norm P,(a) on A by
Py(a) = wianltanl, (2.3.1)
a,M

where a = ) aqnmuq @ vy € A. The space I, spanned by the elements of
a,M
the form u, ® vy, with A(M) = n is an ideal of A,. Every element a of A is

written uniquely as a = ) a,, a, € I, and we have
n

Py(a) = wallan (2.3.2)

where ||a,]|| is the norm of a,.
Now ranging over all the increasing sequences w of positive integer, {U,} is a
fundamental system of neighborhoods of zero in A, where

U,={ac A: P,(a) <1}
Proposition 2.3.1. P,(ab) < P,(a)P,(b).

Proof. Let a = ) agmuqa®@upy and b = ) bg nug @ vy be arbitrary elements
a,M 67N

of A. Then

ab = Z( Z (oMb, NEa,8,M,N ) Uy @ VK,

KCL MUN=K
v€Go a+B=y

where o, 5 € Gy, M,N C L, MNN = ¢ and €, n, are elements of F with

absolute value 1. Thus we have

Po(@po() = QO wninlaaml) (D wamlbsnl)
o, M B,N

= Z Wh(M)Wh(N) |aa,Mb,3,N|
a,B,M,N

Z wh(MuN) |aa,Mbﬁ,N
o,B,M,N

Y laambsn])

KCL MUN=K
v€Go a+B=vy

P,(ab).

v

v

v
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The multiplication in A is induced from those of A,, and it is continuous

in A as easily seen from above proposition. A is a G-graded algebra as follows:

A= @ A, which A, = |J (A,)a. Clearly A is o-commutative. Thus, A is

aclG n=1
a o-commutative locally convex topological algebra.

Proposition 2.3.2. A is complete.

Proof. Since A is a countable strict inductive limit of Banach spaces, it is

complete by proposition 1.2.2. O

This topological algebra A is not Banach algebra but it is complete and its
topology is defined by a system of Banach norms [31]. Again with refereing
to [5] we can have the following norms on A. Evidently with using || || for

1 <k < oo, we obtain that

P¥)(a) = " wnllan]lx (2.3.3)

defines a norm on A.

In a similar way of finite dimensional case, we can define the mass norm
on infinite dimensional A, which be independent from the choice of basis
{vl(n) : 1 € L,} for G-graded vector spaces V},, over F for any n, and base u,
of grade a for C\,. For this purpose , by considering the first hypothesis, we
can follow our investigation.

For M C L, let [M], = {M' C L, : cardM' = cardM} which is
an equivalence class for L,. The set of all such equivalence classes makes a

partition for L,. Now for M C L, let
V]\(;) = { Z a%v](&,) : ag\? € F}.
M'e[M]
Also for a € Gy and M C L, set

VOET;\)/[ = {Uf(xnz)\/[ = a&%ua ® U](\Z? : afﬁ}w, = caag\r/}) € F}.
M'e[M],
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This set, VOEZ\)/,, is a vector space for any n. We know that , for any n, the set

A, =P VOE% is a finite dimensional o-commutative G-graded algebra where
a,M

M ranges over all elements of partition of L,. Any a, € A, has the form

an = Y, v((ln])v[ For defining the mass norm on A first we define the norm
o, M

| ||a,n o0 VO%)/[ in the same as

loillane =inf{ D" lael = Vi = Y alhpua ® vy agy € FY
M'e[M], M'e[M],

(2.3.4)

where infimum is taken over all possible choices of basis for V,, and C,. We

have the mass norm
ma(an) = 3 [0 o (2.3.5)
a,M
on A,, and the norm

my(a) = anmn(an) (2.3.6)

on A for a = > a, € A. This last norm is called mass norm on infinite
n

dimensional A.

2.3.2 Infinite Dimensional Riesz Space and Banach

Lattice of Supernumbers

Now since A is the strict inductive limit of a sequence {A,}, by proposition
11.9 of [52] and its preceding argument A is a locally convex Riesz space. Of
course we can define a relation < in A as follows:

for any a,b € A,a < b if and only if a, < b, in I, for any n. A with this
relation is an ordered vector space. An element a € A is called positive if a,,
is positive for any n. Also it called totally positive if a, is totally positive

in I,, for any n. The set

At={ae A : a, el forany n}
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is the positive cone of A. Also A, denotes the set of totally positive super-
numbers. The supremum and infimum of two elements a,b of A, are defined

as follows:

aVb=sup{a,b} = Zsup{an, b} ;3 aAb=inf{a,b} = Zinf{an, bn}
! ! (2.3.7)
These supremum and infimum are exist always. Therefore A is a lattice and
so it will be Riesz space which we call it infinite-dimensional Riesz space
of supernumbers.
For an element a of A, the positive part a™, the negative part a~ and the
absolute value |a| are defined by

n n

n
where a = a,.
n

In a similar way of finite dimensional case we can see easily the following

identities in the same as 2.3.2 fora,b € A : (aVh)t = a™VbT (aVb)~ =
a Vb
(anb)t =at ADT (aAb)” =a Ab It is straightforward to see that

any norms P, and chk) for 1 < k < oo are Riesz norms. Also we can see

evidently that these norms are not M-norm or L-norm. On the other hand
A is complete with these norms and so A will be Banach lattice. This last
statement implies that the norms P, and Pu(,k) for 1 <k < oo are equivalent.

In proposition 2.2.15 we proved that every totally positive supernumber is
strong order unit of finite dimensional Riesz space of supernumbers. This is
true for infinite-dimensional case. To see this let e be a totally positive element
of A. Then by definition e, is a totally positive element of I,, for any n and

so P, , defined as in 2.2.14, is an M-norm on A,. Now since A is a strict
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inductive limit of A,,,
Pa) = waPe,(an) (2.3.7)
n
defines a norm on A. It is straightforward to see that if e is a totally positive
element of A and a is an arbitrary element of A, then |a| < P{”(a)e.

For weak units of infinite-dimensional A, we have simpler condition. Let
e € AT. Then e has the form e = Y e, where ¢, € IF. Also let a € A and
a L e then a, L e, for any n. There?ore e € AT is weak unit of A if and only
if e, is a weak unit in A,, for any n.

Beforehand we saw some particular subsets of finite dimensional Riesz space
of supernumbers which were the similarities of ordinary real(or complex) num-
bers. Here we consider to the similar subsets for infinite dimensional A. First
recall that

N:{Znua@)vM:nEN} Z:{Zzua@)vM:zEZ}
a,M

a,M

@:{una@”}M:qEQ} KZ{Zrua@)vM:rER}
a,M

a,M

Q:{Zcua@)vM:cE(C}.

a,M

Evidently NC Z C Q C R.

Remember the structure of A. For any n, the set A, is a finite dimen-
sional o-commutative G-graded algebra and we can have the usual subsets
N(”),Z(”),@(") and R™ of A, as above. Tt is easily seen that the following

inclusions are hold for any n.

N® ¢ NoHD g™ ¢ gt g c it R ¢« R,

We introduce the following subsets of A:
v - e, 2=z, o= =Jg", B~ - |Jr®.
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The set R™ is a Riesz subspace of A, for any n, and hence R* will be Riesz
subspace of A.

If we choose the complex field as our background, then with a similar
argument, we have c™ ¢ A((Cn) and C™ < C™Y for any n. Also the set
C*® = UQ(") is a Riesz subspace of Ac.

Wensaw that 1 = > lu, @ vy € {ZQ’M nue @ var : n € N}, Therefore in
particular we can ha\?éﬂ/i =>1,€N®C Awhere 1, € N™ for any n. This

element is strong order unit of A and will be used next.

Definition 2.3.1. Two elements a and d of A are weakly disjoint, if
and only if |b(a)| A |b(d)| = 0, that is, b(a,) Ly, b(dy) in I, for any n.
They called disjoint, written a L d, if and only if |a| A |d] = 0, that is,
a, L dyin I, for any n. For a € A, let a be the set of all elements of A which

are disjoint with a, that is, a? = {b € A:a L b}.

Definition 2.3.2. A subset A of a Riesz space A is (weakly) order
bounded from above if there is a vector u (called an (weak) upper bound
of A) satisfying (b(a) < b(u)) a < u for each a € A. In other words u is (weak)
upper bound of A if (b(a,) < b(u,))a, < u, in I, for any n. The (weakly)
order bounded from below are defined similarly. A subset A of a Riesz
space A is (weakly) order bounded if A is both (weakly) order bounded

from above and below.

A weak box or weak order interval is any set of the form

b([a,d]) = {b(c) € b(A) : bla) <b(c) < b(d)}

= {b(c) € b(A): bla,) <b(c,) <b(dy,) in I,; for any n }.
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A box or order interval is any set of the form

la,d] = {ce A: a<c<d}

= {ceA: a,<c, <d,in I, for any n}.

Obviously [a, d] C b([a,d]) and for incomparable elements a, d we have [a,d] =
b([a, d]) = ¢

Definition 2.3.3. A nonempty subset A of a Riesz space A has a (weak)
supremum (or a (weak) least upper bound) if there is (a)an (weak) upper
bound (b(u))u of (b(A))A such that (b(a) < b(v)) a < v for all (b(a) € b(A))
a € A implies (b(u) < b(v)) u < v. Clearly the supremum, if it exist, is unique
and is denoted by sup A. If b(A), the body of A, is considered as a subset of
A then the weak supremum is not unique. But if we consider b(A) as a Riesz
space independently, then weak supremum is unique. The(weak) infinum (or

(weak) greatest lower bound) of a nonempty subset A is defined similarly

and is denoted by (inf b(A))inf A.

Definition 2.3.4. A net {a,} in a Riesz space A is (weakly)decreasing,
written (@, ly)a;  if 7 > p implies (b(a;) < b(ay,))ar < a,. In other words
7> pimplies (b(ay”) < b(a¥) in I, for any n where a, = 3 a7, The symbol
(ar Tw)a, 1 indicates an (weakly) increasing net, while (naT tw<a)a- 1< a
(resp. (ar Jw> a) a, > a) denotes an (weakly) increasing (resp. (weakly)

decreasing) net that is (weakly) order bounded from above (resp. below) by a.

The notation (a, |, @) a, | a means that (a, Jy)a, | and
(inf{b(a)} = b(ay))inf{a’} = a, in I, for any n. Also the notation
(ar Tw a)a, T a means that (a, T,)a, T and (sup{b(a'")} = a,) sup{ai’} = a,,

T T

in I, for any n.

Definition 2.3.5. A net {a,} in a Riesz space A (weakly)converges in
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order or is (weakly) order convergent to some a € A, written
(ar =% a)a, -2 a, if there is a net {d,} (with the same directed set) sat-
isfying (d; | 0)d; | o and (|b(a;) — b(a)| < b(d;))|a, — a|] < d, for each T
[equivalently for any 7 we have (|b(a'") — b(a,)| < b(d)) a8 — an| < 5 in
I, for any n.] In this case a is called (weak) order limit of {a,}.

A sequence {a;}2, in A is said to be an (weak)order Cauchy sequence
if there is a sequence dj | 0 such that (|b(a;) — b(ag)| < b(dg))|ar — ax| < dy
for all k > [ > 1. Equivalently (|b(al’) — b(a{)| < b(d))]al) — o] < dP
for all kK > [ > 1 and for all n. One Riesz space is order complete if every
order Cauchy sequence has an order limit. Equivalently a Riesz space is order
complete if every subset of it has a supremum. It is easy to see from this

equivalence definition that A is not order complete.

Definition 2.3.6. Let © > 0 be an element of a Riesz space of super-
numbers A. We say that the sequence {a;}32, in A is (weakly) converges
u-uniformly to an element a € A whenever, for every ¢ > 0, there exists
a natural number K. such that (|b(ax) — b(a)| < eb(u)) |ax — a] < eu holds
for all n > K.. In this case a is called (weakly) u-uniform limit of {a,}
and written as (ay — a(u-un)) ar —> a(u-un). It is said that the sequence
{ar}2, in A is (weakly) converges relatively uniformly to a € A when-
ever a (weakly) converges u-uniformly to a for some v € A*. This kind of

convergence is denoted by (a, — a(un)) a; — a(un).
Now we find out some characteristics of A by means of propositions.

Proposition 2.3.3. The infinite dimensional Riesz space of supernum-

bers is Archimedean.

Proof. Every element a of A has the form a = ) a, where a, € I, C A,.

n
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Also a € A" if and only if a,, > 0 in I, for any n. So

1 1 1 1 1 1
D DLED BrED Dire e DO R o

n n

holds for any positive integer m, which means %a 4. Also we have
el e 1 . 1 1
1gfaa = 1ngZan = 1£11f2 Ean = Z%fgan =0.
n n n
For any n, I,, is Archimedean and hence A is so. O

Proposition 2.3.4. A is Dedekind complete Riesz space.

Proof. Let A be a nonempty subset of A which is order bounded from above
by b. Hence for any a in A we have a < b. Therefore a,, < b, in I, for any
n. Let A, = {a, € I, : a € A}. Evidently A, is nonempty set which is
bounded from above by b,. Dedekind completeness of I,, implies that A, has
a supremum as s, € [, such that s, < b,. It is clear that s = > s, is an

element of A and s < b. So supremum of A is s and hence A is Dedekind

complete. m

Proposition 2.3.5. A is Dedekind o-complete.

Remark 2.3.1. Archimedean property and Dedekind o-completeness of A
with theorem 39.4 and lemma 39.2 of [28] imply the u-uniform completeness

of A, for any u € A". Uniformly completeness of A follows from definition.

Proposition 2.3.6. A is order separable.

Proof. Let A be a non-empty subset of A possessing a supremum sup A = s.
Hence for any a € A, a < s and so a, < s, for any n = 1,2,.... Let

A, = {a, : a € A}. Therefore A, C I, and has a supremum s,. Order
separability of I,, implies that A, has at most countable subset A] possessing
the same supremum as A,,. Now take A'={a€ A : a, € Al, for any n}.

This set is almost countable subset of A. O
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Remark 2.3.2. Since A is Dedekind complete, Theorem 24.9(i) of [28§]
implies that A has projection property. Also Dedekind o-completeness of A
and Theorem 25.1 of [28] imply the principal projection property. Theorem

30.4 of [28] implies that A has sufficiently many projection.

Proposition 2.3.7. The norms P, and P in Banach lattice A are

o-order continuous.

Proof. Let {a;,,}2°_, be a sequence in A. For any m, a,, = > al™. Let ap, | 0
in A. Then by definition a,, < a,,1 for any m and inf a,, = 0. In other words
m
a™ < o™ for any m,n and infa!™ = 0 for any n. This says that a{™ | 0
m

for any n. If w = {w,} be an increasing sequence of positive numbers then

wplla™ || 1 0 for any n and therefore P (ay,) | 0. O

By using remark 2.2.7 for A we can obtain similarly that the norms on 4
are order continuous and also A has Riesz-Fischer property. Now because of
A is Dedekind complete Banach lattice with order continuous norms P, and
P then A has countable type property (Exercise 4(e), CHA. II of [41]). Also
order continuity of norm of Banach lattice implies Fauto Property for norm.
Since A is infinite dimensional Archimedean Dedekind o-complete Riesz space
which has order unit, order convergence in A is not stable(theorem 70.3 of
[28]). For investigation of Egoroff and Diagonal Properties for A, we have the

following proposition and remark.

Proposition 2.3.8. The infinite dimensional Riesz space of supernum-

bers has o-property.

Remark 2.3.3. Since the order convergence in A is not stable then it hasn’t
the d-property by theorem 70.2 of [28] which this and Archimedean property

of A imply that A hasn’t strong Egoroff property. Theorem 68.8 of [28] implies

76



that the order convergence hasn’t diagonal and diagonal gap properties. On
the other hand since A has o-property therefore A has diagonal and diagonal

gap property for relatively uniform convergence.

2.3.3 Riesz Algebra Structure

Now we want to reformulate the concept of functional calculus for infinite
dimensional Riesz space of Supernumbers A. Recall that any element a € A

has the unique form a = ) a,, where a,, € I,, for any n. By considering the
n

stated definitions in subsection 1.3.5 we can work in a similar way.

For any a € A the principal ideal J, generated by a is

Jo = {be A | IAN>0 with [b] < Aa|}
= {becA | IAN>0 with |b,] < Aa,| forany n}

C {becA | b,€J,, forany n}.

If a is strong order unit in A then .J, = A. Now for a € A™, the set C, of all

components of a will be as follows:

C, = {beA* | bA(a—b) =0}

= {be A" | b,€C, forany n}.
The band generated by an ideal .J of A is given by

By = {a€ A | Janet {a,} CJ with 0<a,?|a|}
= {a€ A | Janet {a,} CJ with 0<a,Tand

sup{a, } = |a,|in I, for any n}.

According to remark 2.2.13 A has principal projection property, therefore any

principal band generated by an element a will be projection band and if a € A"
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then for any b € A" the element

Pg,(b) = sup(bAma m=1,2,...)
= ZPBan(bn)

exists always.
We know that every totally positive supernumbers is strong order unit of A.
We will use the element 1 =) 1, € A in the same way as finite dimensional

n

case. The set C; of all components of 1 is

C, = {ae A" | aA(l—a)=0}

= {ac A" | a,eC, forany n}.

Evidently 0,1 € Cy. The principal ideal J; generated by 1 is the same A, i.

e., J1 = A and we have

Ji = {ae A | IA>0 with |a| <AL}

= {a€e A | IN>0 with |a,| <A, forany n}

C {acA | a,€Jy, forany n}.

Given an element a € J; = A, there exist a spectral interval [r,¢] for a and
partition P : r = kg < ky < -+» < ky, = t for [r,t]. Let P be the band
projection onto the band generated by (k1 —a)™ for any k € [r,t]. In fact, for

any b e AT

m

Py(b) = sup(b A [m(kL—a)T]) =D (b A sglp(m(kln —an))" =Y Pu(ba).

n

If F' be a continuous real valued function on [r,¢], in a similar way of finite
dimensional case we can have upper and lower sums as 2.2.16 for given P.
Therefore since A is Dedekind o-complete, according to theorem 34.1 of [54],

the sets of all lower and upper sums, induced by different partitions of [r,¢],
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have supremum and infimum in A respectively which are equal. This common
value is denoted by F'(a). Similar results as section 2.2.5 are hold and A will
be a Riesz algebra too. Also it has similar proof as finite dimensional case that

A is a commutative Banach algebra with this new multiplication.
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2.4 Graflmann Algebra

In this section we consider to an important algebra which has wide usage in
theoretical physics and Mathematics. Of course physicists and mathemati-
cians use this algebra instead of number fields. So it’s elements is also called
supernumbers. In example 2.2.1 we saw that its structure is in accordance
of o-commutative G-graded algebras. Here, we consider to structure of this

algebra in more details.

2.4.1 Finite dimensional Graimann algebra

The GraBmann algebra(or exterior algebra)A, with n generators is the
associative algebra (over C) generated by a set of n anticommuting generators

{&}7-, and by 1 € C with the property

& = —§&  forall i, j, (2.4.1)

in particular & = 0.

It follows from 2.4.1 that any element of A, is linear combination of
monomials &y, &my-e&m, With 1 < my < mg < --+ < my < n and the unit
such that 1 < k < n. Since all monomials among &; follow from 2.4.1, these
monomials are linearly independent. Consequently, together with the unit,
they form a basis of A,, as a linear space. Since their number is equal to the
number of subsets of n elements, we have dim A,, = 2™.

Any element ¢ € A,, may be written as

q= Q(f) = Z Z Qs ...y §ma Ema -y - (2'4'2)

kZU mM1y...,Mp

The term corresponding to & = 0 is proportional to the unit. The relation
q = q(&) shows the fact that ¢ is expressed in the form of a polynomial in &,,.

In what follows we see that polynomials ¢ = ¢(£) has many formal properties
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of the usual functions. We shall call them functions of anticommuting
variables. The expression in elements of A, in the above form is not unique
in general. This becomes unique if supplementary conditions are imposed on
coefficients ¢y, ,..m,. For instance, we may require that ¢, . mn, = 0 whenever

the relation m; < mgy < --- < my fails or that g, ., are skew-symmetric

k
with respect to indices my,...,my (i. €., Gm,,..m, change the sign under per-
mutation of any two indices). In what follows we always assume first condition

(le,...,m;c =0ifm; <mg <--- < my falls) Let

(2.4.3)
Therefore with this condition any element ¢ € A,, can be written uniquely as

q = Z Z qm1,...,mk§m15m2“'£mk (2'4'4)

k>0 MM
- o mi<ma<--<myg

e q{) + Z qml,...,mkgmlng...fmk (245)

(M1 ey )E My,
such that gy € C is the number for £ = 0. A. Rogers in [36] defined a norm on
A,, as follows:
lal = > |Gmm] o] for g€ A,
(my,...,mp)EMp
This norm makes A, to be Banach algebra which sometimes called Rogers
norm and (A,,|| ||), the Rogers algebra.

Now we return to example 2.2.1 and consider to the o-commutative G-
graded algebra structure of A,,. Indeed we shall show that these two kind of
representing of Grafimann algebra are coincide.

Let G = Zo = {0,1} and o(a, B) = (=1)*? for o, 3 € Z,. Note that
(=1)° = 1 and (—=1)" = —1. Therefore according to definition of finite

dimensional o-commutative G-graded algebra (introduced in section 2.2 ) we
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will have Gy = {0} and the factor system ¢ is trivial (¢(«,5) = 1 for all
a, f € Zs). Also the crossed product C'is equal to the base field C.

Now let L be a finite linearly ordered odd Zs-set, that is, each element [ of
L has odd grade:

g: L — 7y VieL ; g(l)=1

Let V' be the Zy-graded vector space over C with basis {§;, : [ € L} where the
grade of v; is g(I). Let B be quotient algebra over V' defined by B = T'(V)/I,
where I is the ideal of the tensor algebra T'(V') over V generated by the elements
& — (—=1)9090)¢, € which is equal with && + &&. Let M be a subset of
L. The ordered product [] wpis written as vy, that is, if M = {l1,1s,..., 1}
then vy = v v, ... 0 Eseli\gh that I; < Iy < .-+ < l;. Hence B is a Zo-
graded (—1)*-commutative algebra with a linear basis {vy; | M C L} over C.
Remember that with this assumptions, the crossed product C' is the same C.
Let A = C ®c B = B. Since B is the o-Graimann algebra over V, if L has n

element then B is the same Graimann algebra A,,. As in 2.2.1 any element of

A = B = A, is expressed uniquely as

q= Z Qoa,MUq @ Uy = Z qMUM
a,M M

where o € Gy = {0} ,qmr = qo,mup With uy = 1 and summation is taken over
all subsets M of L and ¢, € C.
According to equation 2.2.2 the body and the soul of ¢ are as follows:
b(q) = Z Ga,0Ua ® 1= qouwl =q¢ggl  qg€C, ue€C
aceGo

and

s(q) = ZQa,Mua v, = Z Go, MUy Q Upp = Z qMUM-
M=0

M#D M+#®
a€Gy
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2.4.2 Infinite dimensional Graflimann algebra

The concept of infinite dimensional Grafimann algebra is defined in two ways.
A. Rogers in [37] took it to be the direct limit of finite dimensional Graimann
algebras and Nagamachi and Kobayashi [32] took it to be the inductive limit
of them. Here we give the Rogers approach and in the next chapter we will
see the Nagamachi and Kobayashi’s terminology.

Let m and n be two positive integers, with n > m. The Grafimann algebras
A, and A,, generated by the sets {flin) ci=1,2,..,n}U{1™} and {{Z-(m) ti=
1,2,...,m} U {10™} respectively, are assumed as previous subsection. Then
there is a natural injection jn, : A, — A,, which is the unique algebra

homomorphism satisfying

A, naturally has a A,,-module structure with, given A(® € A, and A\(™ € A,,;
Am) () — jmn()\(m)))\(n)_

This means that every Grafimann algebra with n generators can be embedded
in a GraBmann algebra with n+1 generators. Therefore the set {Ay, Ay, A3, ...}
make a direct system and according to subsection 1.2.1, we can consider the
direct limit of this direct system. We will denote by A, the direct limit of this

sequence, i.e., Apo = limA,,.
_)
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Chapter 3
SUPER HILBERT SPACE
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3. SUPER HILBERT SPACE

During of suberization of elements of ordinary mathematics, some authors
consider to Hilbert space. Suberization of Hilbert space is done by differ-
ent authors. The first notion of ”"Super Hilbert Space” has been consid-
ered by Dewitt [10]. He defines a super Hilbert space #H basically as a Zs-
graded A,-module, where n is possibly infinite, with a A,-valued inner product.
Others are gave different definitions. Khrennikov, in [20] and [21] defined a
super Hilbert space to be a Banach(commutative) A-module which is isometric
to the space f5(A) of square-summable sequences in A with the inner product
(r,y) = Y. zuy: and norm ||z||* = (z,z). According to Schmitt definition,
[44], a super Hilbert space is just a complex Zs-graded ordinary Hilbert space.
Nagamachi and Kobayashi formulated and refined Dewitt’s definition by taking
also into account the topological and norm structure on super Hilbert spaces
[32]. El Gradechi and Nieto [11] defined a super Hilbert space to be a direct
sum ‘H = Hy @ H, of two complex Hilbert spaces (Hy, (.,.)o) and (Hy, (., .)1)
equipped with the super hermitian form ((.,.)) = (.,.)o +4(.,.);. Samsonov
considered the super Hilbert space as a Zs-graded infinite dimensional linear
space equipped with a super- hermitian form (superscalar product) and in
some sense complete [40]. The last definition of super Hilbert space is given
by Rudolph, [38], which is a module over a Grammann algebra endowed with
a Grafmann number-valued inner product.

The aim of present chapter is investigation of these definitions in a mathe-
matical framework. Of course super Hilbert spaces, as ordinary Hilbert spaces,
have many applications in theoretical physics and Quantum physics. But we
do not work in this area. Also some of definitions has more implicit exam-

ples which require many other information about physics. Therefore we argue

85



only the basic structure of definitions. The last definition of super Hilbert
space, which is given by Rudolph, has a mathematical framework and is more
general than others such that many of examples of other definitions can be
considered as an example of it. In current chapter we give different definitions
of super Hilbert space with more focus on Rudolph’s. The last section include

comparison between different definitions of super Hilbert space.

3.1 Dewitt

In this section we consider the definition of super Hilbert space according
to Bryce Dewitt. As stated above, his definition is the first which is given.
We need some terminology to understand it. Therefore we state some no-
tions about supernumbers, which are elements of infinite dimensional Graf-
mann algebra, and supervector spaces, which are Zs-graded vector spaces over

GrafBmann algebra.

3.1.1 Supernumbers

Let &,7=1,...,n be a set of generators for an algebra, which anticommute:

&&= =& (&)* =0 for all i, ;. (3.1.1)

The algebra is called a Gralmann algebra and will be denoted by A,,. We
shall usually, though not always, deal with the formal limit n — oco. The
corresponding algebra will be denoted by A. The elements 1,&;, &;;, . .., where
the indices in each product are all different, form an infinite basis for A..
The elements of A, are called supernumbers. Every supernumber can be

expressed in the form z = zp + z;, where zp is an ordinary complex number
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and
0

1
zs = Z anh"-aangan s 60417 (312)

n=1
the ¢’s also being complex numbers. The number zp is called the body and
remainder zg will be called the soul of the supernumber z. For n finite the

soul of supernumber is always nilpotent: 227! = 0.

Any supernumber may be split into its even and odd parts; z = u+v where

=1
u=2zp+ Z (2n)'qa27---ya2n5a2n o Eay (3.1.3)
n=1 '
and
- 1
v= Z mqal7'--;a2n+1§a2n+l H -gal- (314)
n=0 '

Odd supernumbers anticommute among themeselves and will be called
a-numbers. Even supernumbers commute with everything and will be called
c-numbers. The set of all c-numbers is commutative subalgebra of A,,, which
will be denoted by C.. The set of all a-numbers will be denoted by C,; it is
not subalgebra. The product of two c-number, or two a-number is a c-number.
The product of an a-number and a c-number is an a-number.

For any zi, 2o € A, the rules complex conjugation is valid:
(214 22)" =27 + 2 (2129)" = 25 2]. (3.1.5)

The complex conjugate of the body of a supernumber will be taken to be as
its ordinary complex conjugate, and the generators of A, will be assumed to
be real;

§ =& foralli. (3.1.6)

Evidently; (&...&)* = &;...& and from this, together with the anticommu-
tation law (&€ = —¢&;&;), one may infer that the basis element &, ...&,, is
real when in(n — 1) is even and imaginary when in(n — 1) is odd. (As for

ordinary numbers, a supernumber 2z is said to be real if 2* = 2 and imaginary
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if 2* = —z). A general element of A is real if and only if both of its body
and soul are real. The soul will be real if and only if the coefficients ¢,, . .,
in the expansion 3.1.2 are real when %n(n — 1) is even and imaginary when
in(n — 1) is odd.

We shall denote by R. the subset of all real elements of C. and by R, the

subset of all real elements of C',. The set R, is a subalgebra of C..

3.1.2 Supervector space

Definition 3.1.1. A supervector space is a set V' of elements called
supervectors, together with a collection of mappings, having properties as
follows:

(a) There exists a binary operation mapping + : V' x V' — V| called addition,
which V' is a commutative group.

(b) For every supernumber A € A, there exist two mappings, A, : V — V
and \g : V. — V, called left multiplication and right multiplication respec-

tively and conventionally expressed by the notation
AL(v) = Av Ar(v) =vA forallveV (3.1.7)

These mappings satisfy the linear laws:

(a+Blv=av+pv via+p)=va+vp (3.1.8)
alu+v) =au+av (u+v)a =ua+va (3.1.9)
(aB)v =a(fv) =afv  v(aB) = (va)f = vaf (3.1.10)
lv=v vl =v (3.1.11)

for all o, f € Ay and for all u,v € V. In 3.1.11, 1 is the ordinary number one.

(c) Left and right multiplication are related. Firstly

(av)B =a(vB) =avB  foralla,f € A and forallv e V.  (3.1.12)
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Secondly, if « is a c-number then it commutes with all supervectors. That is
av=va  forallaeC. andallvelV. (3.1.13)

Thirdly, for every w in V, there exist unique supervectors v and u in V' such

that
w=u-+wv, au = uw and av = —va, for a € C.. (3.1.14)

The supervectors u and v are called, respectively, the even and odd parts of w.
If the odd part of a supervector vanishes(i.e., equals to the zero supervector)
the supervector is said to be of type c. If its even part vanishes it is said to be of
type a. The zero supervector is the only supervector which is simultaneously
c-type and a-type.

A supervector that has a definite type will be called pure. Similarly, a
supervector that is either a c-number or an a-number will be called pure.
For pure supernumbers and supervectors equations 3.1.13 and 3.1.14 may be
summarized into formula

av = (—=1)"va. (3.1.15)

(d) There exists a mapping * : V. — V called complex conjugation con-

ventionally written in the form *(v) = v* for all v € V' which satisfies

*k

v =v; (v+u) =v"+u; (av) =via’; (va)t = o™

for all u,v € V and all @ € A,. It is easy to verify that the complex conjugate
of a pure supernumber is pure, the type remaining unaffected by the complex
conjugation mapping. A supervector z will be said to be real if z* = z,
imaginary if z* = —z, and complex otherwise. A complex supervector can
always be decomposed into its real and imaginary parts. Note that the product

of a real c-number and a real supervector is a real supervector. The product of
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a real a-number and a real c-type supervector is a real a-type supervector, but
the product of a real a-number and a real a-type supervector is an imaginary

c-type supervector.

3.1.3 Dual supervector space

Let V be a supervector space. The supervector space dual to V', denoted by
V*, is defined to be the set of all mappings w : V. — A, conventionally

expressed by the notion
wv)=vw  forallveV, (3.1.16)
which satisfy the linear laws
(aw).w = a(v.w) (v1 + v2).w = V1.W + Vo.w

for all @ in A, and all vy,v, € V. v.w is called the inner product of v and w.
The set V* has the structure of supervector space. The unique even and

odd parts of w are defined by
w=wy+w wwy=(uvw)+ (vw) ww—1=(vw)+ (v.w)

for all w € V, where w = u + v, u and v are even and odd parts of w,
respectively. The c-type elements of V* map c-type elements of V' into c-
numbers and a-type elements of V' into a-numbers. With a-type elements of

V* the association is reversed. From these facts we have
aw = (—1)*wa.

Also vw* = (=1)"(v*.w)* for allv € V and all w € V*.
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3.1.4 DeWitt’s super Hilbert spaces

As we stated beforehand, the first definition of super Hilbert space is given by
Bryce Dewitt [10]. He used the Dirac notation for his work and many mathe-
matics students are not familiar with it. Rudolph [38] brings his definition in

a usual notation and we will use it.

Definition 3.1.2. A super Hilbert space 7 is a supervector space
for which the notion of a real (or imaginary) supervector is undefined and for
which the complex conjugation mapping is replaced by an inner product, i.e.,
by a one-to-one mapping * : H — H*, from H to its dual H*, which satisfies
the following axioms:

(1) {z,y1 4+ y2) = (2, y1) + (2, y2), for x, 41,92 € H;
(2) (x,ay) = alz,y) = (a*x,y), for x,y € H,a € C;
(3) (x,yq) = (z,y)q for all z,y € H,q € A,.
(4) (z,y) = (y,2)", for 7,y € H;
(5)

5) (z,z)p > 0 for + € H; v € H has nonvanishing body if and only if

(6) (x4, yr)qr = (=1)"+) g, (z,, 5,) for all pure z, € H,,y, € H, and g € A,,,

deg(q;) = t.

DeWitt moreover requires that the body of H is an ordinary complex
Hilbert space. As has already remarked, super Hilbert spaces are general-
ization of ordinary Hilbert spaces. Every element x € H is called physical if it
merely has non vanishing body. Physical elements of 2 are also called state
vectors. It is easy to show that if z is physical, it can be normalized( i.e.,
multiplied by an appropriate supernumber with nonvanishing body) so that
(x,z) = 1.

Also it is easy to see that sesqui-A-linearity implies (xp,yp) = (x,y)p for
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all x,y € H.

3.1.5 Linear operators

A mapping T : H — H is said to be a linear operator if and only if, for all

z,y € H and all o € A,
T(xa)=Tx)a T(x+y)=T(z)+T(y), (3.1.17)

where Tz is shortand for T'(z). A linear operator acting on H may equally

well be regarded as acting on H* through the rule
(wlz) =w(T(x)) = wTz,

for all z € H and all w € H*. Evidently T is also a linear operator when
acting on ‘H*. Linear operators may be combined with each other and with
supernumbers. Hence the set of all linear operators costitutes what may be
called superalgebra.

The adjoin T* of a linear operator T is defined by T*x = (Tz)* for all
x € H. T is also a linear operator. The operator T is said to be self-adjoint

if and only if 7% =T

3.1.6 Physical observables

A linear operator T', whenever c-type or a-type will be called physical ob-
servable if and only if

(i) it is self-adjoint;

(ii) all its eigenvalues are c-numbers;

(iii) for every eigenvalue, there is at least one corresponding physical eigen-

vector;
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(iv) the set of physical eigenvectors that correspond to soulless eignvalues,
contains a complete basis.

The soulless eigenvalues will be called physical eignvalues.
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3.2 Khrennikov’s Hilbert Super space

In this section we review the definition of Hilbert super space which is given
by Andrev Khrennikov in [20] and [21]. He considered superspaces over com-
mutative superalgebras, commutative supermodules and commutative Hilbert
supermodules. By using of them, he obtained three versions for Hilbert super-
space. Here we bring them.

Let A be a vector space over a field F(R or C) with a given decomposition
into the direct sum of subspaces Ay and A; : A = Ag @ A (a Zy-graded space).
Any element a in A is said to be of even pairity |a| = 0 and any element a in
A1 is said to be of odd parity |a| = 1. The elements in Ay and A; are said to

be homogeneous.

Definition 3.2.1. Commutative Banach Superalgebra
A superalgebra is a space A = Aqg & A; endowed with the structure of an
associative algebra with identity and an even multiplication operator (i.e.,
lab] = |a||b] mod 2 for any homogeneous elements a,b). The supercommu-
tator [a,b] of homogeneous elements a and b in the superalgebra A is defined
as

[a,b] = ab — (—1)1*1"pq. (3.2.1)

A superalgebra A is commutative if [a,b] = 0 for arbitrary homogeneous ele-
ments a,b € A. In the remainder of this section it is assumed that A = Ag® A,

is a Banach CSA.

Example 3.2.1. Infinite dimensional Gralimann algebra
Let (qj);-";l be a system of anticommuting generators. We denote by A the
linear space consisting of the series ¢ = Y. cpq" with v = (r1,...,rn,...) ,
r

r; =01, |[r| < oo, ¢, €F, ¢" =¢qi"...q... and ||q]| = > |cr| < 0o. The
r

subspaces Ng and Ay consists of the series with even and odd |r| respectively.
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The topology in A = Ao ® Ay defined by the norm || || agrees with the algebric

structure and the grading.

Definition 3.2.2. The space A} x AT is called a superspace over the

CSA A and is denoted by Fy™.

Definition 3.2.3. commutative supermodule(CSM)
A supermodule is a two-sided unitary Z,-graded module m = mg & m; over
a superalgebra A = Ay ® A, in which the multiplication by elements of A is
even. A supermodule m = mg @ my over a CSA A = Ay ® A is said to be
commutative if [a, \] = 0 for any homogeneous elements a € m and A € A,

where the supercommutator [ | is defined as in 3.2.1.

In what follows we shall assume that all CSM’s are endowed with locally

convex topologies which agree with the algebric structure and grading.

Definition 3.2.4. A space F™"1 = mg X n;, where m = mgy @ m; and

n = ng ® n; are CSM, is called a superspace over the CSM’s m and n.

Definition 3.2.5. The CSM m and n are said to be dual to one another
if there exists a bilinear form (.,.) : m X n — A continuous on compact sets

which separates points of the CSM and satisfies the condition

(Aup, vy) = Au, pv)y (3.2.2)

for any A\, pu,v € A and u € m,v € n.

The form (.,.) is called a duality form. We can also introduce a duality form
(.,.) :n xm — A by setting (u,v) = (—=1)"I’l(v, ) for homogeneous v € m
and u € n. Condition 3.2.2 is also true for this duality form. Superspaces over

dual CSM are called dual superspace.
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On superspaces V' = F""1 and W = FPo?% where m,n and p, g are dual
CSM’s, the duality form is defined as
(v, w) = (mov, Mow) + (mv, TW)

where 7y and m; are projections onto the even and odd parts of a Z,-graded

space.

Definition 3.2.6. Hilbert Superspace
A superspace Z is said to be Hilbert if it is complete and the duality form 3.2.2
is defined on Z x Z.

Let us suppose that compatible involutions * that converse pairity are
defined on a Banach CSA algebra A and on a Hilbert superspace Z. The form
(z1,21) = (21, 23) is called the Ap-product. This is a natural generalization of

the inner product on a Hilbert space.

Example 3.2.2. We denote by Lo(R™,A) the space of functions

¢ : R* — A such that

1|2 = / l6(@)[2d"z < oo.

The space Ly(R™, A) is a Hilbert superspace with the Ag-product

(#1, d2) = /(7r0¢1(x)7r0¢’5(x) + mioy (2) T 0y (2))d" .

Definition 3.2.7. The Banach algebra B is called a ) -algebra if for

every elements bq,...,b,, € B,

oIl = mas 13" Absl A€ A
= sl <1 " =
Let A be a CSA. We introduce the Banach spaces of sequences of elements of

A, which are the superanaloges of the standard Banach spaces of the numerical

sequences ¢y, m, {p:
coN) ={x=(21,...,2p,...) EA®: =z, — 0}
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m(A) ={z = (z1,...,7n,...) €A% [[z]lc = sup [|za] < oo};

= 1
LA ={z=(x1,. ... 2n,...) EA®: lzlly = O llzall?)? < oo} p>1.
n=1
Proposition 3.2.1. The spaces of A-sequences co(A), m(A), €,(A),p <1

are commutative Banach supermodules over the CSA A.

Definition 3.2.8. Coordinate Hilbert Module
The Banach commutative supermodule £(A) (with the norm [|z]|3 = > [|=]|?)

n=1
is called the coordinate Hilbert supermodule. A scalar product (A-valued)

in l5(A) is defined by the duality

(@.9) =D Tnln. (3.2.3)

This scalar product has the following properties:

(0, yy) = ofx, By)y  forany o, 8,7 € Az, y € L(A); (3.2.4)
(w,y) = (=1l (y,z) for any 2,y € lr(N); (3.2.5)
The canonical basis e, = (0,...,1,...) in f3(A) is orthonormal with re-

spect to this inner product. The above properties are called A-linearity and

supersymmetry respectively.

Definition 3.2.9. Hilbert supermodules
Let M = My & M; be a commutative supermodule; then a bilinear form
(r,y) : M x M — A, which has the above properties, is called the scalar
product on M. The triplet (M, {(.,.),||.||), where M is a scalar product on
M, is called the Hilbert commutative supermodule if there exist the A-
isomorphism y : M — l5(A), such that (ymq, yms) = (my, ms), [|[ym|| = ||m/||
(i.e, the operator v is unitary with respect to scalar products and isomorphic

with respect to the norm).
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It follows from definition of the Hilbert supermodules that in M exists
the orthonormal basis a, = 7(~"e,. Now we obtain the superanalog of Riesz

theorem.

Theorem 3.2.2. Let A be a ) -algebra. Then, for any A-linear continu-
ous functional f on the commutative Hilbert supermodule M = My @ M, there

exist a unique element uw € M such that

f(z) =({z,u), ze€M (3.2.6)
and, moreover, ||f|l = sup [[(z,w)|| = [lull. Conversely, if u € M, then
llz[|<1

the above formula defines the A-linear continuous functional f such that
Il = ||ul|. Therefore, the equality 3.2.6 defines the isomorphism f — u
between modules M' = (M")g & (M"); and M = My & M, where M' denotes

the set of all A-linear continuous functionals on M.

Proposition 3.2.3. In any commutative Hilbert supermodule the Cauchy

Bonyakouvski inequality

Iz, )| < [zl

holds.

Example 3.2.3. The space
LA(Rn dl‘ == {f Zfa « fa € A}

where @, () are Hermite functions on R™, with the norm || f||*> = Z | fall?,
and the scalar product (f, g) fRn x)dz is a commutative Hzlbert super-

module.

Let A be a complex Banach CSA with involution %, compatible with the

Zo-gradation. Involution in A induces involution in f5(A). We introduce a
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scalar product, which is compatible with involution % (an analog of the scalar

product on a complex Hilbert space), under the assumption that

(2,9) =Y Taty-
n=1

This scalar product possess a normal symmetry property

(z,y)" = (y,7)

and a property of A-antilinearity

(Az, pya) = Mxa™, y)u*.

Using the space ¢5(A) with the scalar product (.,.), one defines the commuta-

tive Hilbert supermodules with involution.

Definition 3.2.10. Hilbert supermodule with involution
Let M = My & M; be a commutative supermodule, then a bilinear form
(x,y) : M x M — A, which has the above properties, is called the scalar
product on M. The triplet (M, (.,.),|| ||), where (.,.) is a scalar product on
M, is called commutative Hilbert supermodule with involution if there

exists a A-isomorphism v : M — ¢5(A), such that

(yma,yma) = (my,ma) —, [lyml| = [Iml].

Definition 3.2.11. Self adjoint operators in Hilbert supermod-
ules with involution
Let a be a continuous left A-linear operator in the commutative Hilbert su-
permodule M with involution *. The adjoint operator a* is defined by the
equation (azx,y) = (x,a*y). This operator is continuous and left A-linear in
M, if the CSA A is a ) -algebra. As usual, the operator a is called self adjoint

if a = a*.
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Following of first definitions of current section, one can define the Hilbert

superspace over a pair of commutative Hilbert supermodules.

Definition 3.2.12. A space AMo-M = My x Ny, where M = My@® M, and
N = Ny & N; are commutative Hilbert supermodules, is called a superspace

over the CHSM M and N.

Definition 3.2.13. Two CHSM M and N are said to be dual to one
another if there exists a bilinear form ((.,.)) : M x N — A continuous on

compact sets which seperates points of the CHSM and satisfies the condition

(Aup, vy) = AMu, pv)y (3.2.7)

for any A\, u,vy€ Aand u € M, v € N.

AHilbert superspace over a pair of commutative Hilbert supermodules
is a superspace Z over the CHSM such that it is complete and the duality form
3.2.7 is defined on Z x Z.
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3.3 Schmitt

In this section we consider to the definition of super Hilbert space given by
Thomas Schmitt. He considered to Hermitian structures on his work [44] which
did not used in definition of super Hilbert space. His definition need not to

have any preknowledge and so we give it directly.

Definition 3.3.1. A super Hilbert space is a complex Zgy-graded vector

space H = Hy ® H; together with a C-linear pairing
Hx H—C, (h, k) = (h|k)

such that
(i) (Rk) = (E|h)  for h,k € H;
(ii) (h|h) >0 for h € H,h # 0;
(iii) H is complete with respect to the topology defined by the norm

hoe |[Bl] = (hlR)®.
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3.4 Nagamachi and Kobayashi

In this section we consider the definition of Hilbert superspace given by Shigeaki
Nagamachi and Yuji Kobayashi’s in them paper [32]. It consists more topo-
logical aspects of Hilbert superspace than algebric. One of remarkable notes
in this paper is that they consider infinite dimensional Gralmann algebra as
inductive limit topology of finite dimensional Gramann algebras which was
introduced in them paper [31] which we investigate it in section 2.3 of previ-
ous chapter. Of course as we seen beforehand, the concept of infinite dimen-
sional Grafimann algebra was considered to be direct limit of finite dimensional
GraBmann algebras by Rogers in [37] and we saw it in section 2.4 of previous

chapter.

3.4.1 Preliminaries

The algebra A = A5 @ A7 is a Zs-graded and a direct sum of the even part Ag
and the odd part Aj. Every A € A is a sum of the body b(A) which is in C
and the soul s(\) which is nilpotent. The mapping b: A — C is a surjective
algebra homomorphism. For the infinite-dimensional A, we need a suitable
topology on it. We employ the inductive limit topology of finite dimensional
Grafimann algebras, which introduced in subsection 1.2.2.

Let A(™ be the subalgebra of A generated by &i,...,&, and I, be the ideal
of A generated by &,. Then we have A™® = A1) @ I, and every element
of A is uniquely written as

A=A s MEL (3.4.1)
n>0

Each A™ is a Banach algebra with the Rogers norm defined by

Al = Z lgpe| sfor A= ZCIMfM, (3.4.2)
M M
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where &y =&, .. &, qu € Cand M = {ly,.... 1}, L < <lp<n.

We consider the inductive limit topology of the sequence {A™} on A,
that is, the finest locally convex topology on A such that every injection
¢, - AW — A is continuous, which is equivalent to the finest locally convex
topology on A such that every injection v, : I, — A = >_ @I, is continuous
(the direct sum topology on A = > @1,). This topologny is defined by the

n

following system {p,} of norms on A. Let w = {w,} ba an arbitrary increasing

sequence of positive integers and define a norm P, ()\) on A by

Py(N) = wallAll, (3.4.3)

where A is expressed as 3.4.1 and ||\,|| is the Rogers norm of A,. Since each
norm satisfies P, (Au) < P, (\)P,(p) for A\, p € A and A is a topological algebra.

Note that the body map b : A — C is continuous. The algebra A has the
following fundamental properties which are essential in our discussions:

(i) A is a complete and nuclear space;

(ii) The soul of every element of A is nilpotent;

(iii) any bounded set of A is contained in A™ for some n.

In the following we assume that A has a continuous involution * satisfying
A =X A+ p) =X+ u"; (A =2e\; (W) =p* N5 Py(\) = P,y(\)

for ,ue A, X €A, forany A€ A, and a € Z.

If we define an involution * for generators &, by

g;n_1 = §2na g;n = g?n—la (Cgll B glm)* = Egl*m T é.l*l’

and extend it additively to A, then A is a Gralmann algebra with a continuous

involution * having the above properties.
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3.4.2 Hilbert superspace

In this subsection we give the definition of Hilbert superspace and study some

of its properties.

Definition 3.4.1. A Zy-graded A-module H = & H, is called an

aEZo
inner product superspace if it has a Zs-graded inner product

(.,.) : Ha X Hg —> Ag_, satisfying the following conditions:
i) (g, f)=(f,9)" (symmetric);
i) (f,g+h)=(f,9)+(f,h)  (biadditive);

i) (f,g\) = (f, g)\ (sesquilinear);
(iv) bo(f, f) >0 (positive definite);

)
(
(
(

forf,g,h € H and X € A, where b(f, f) is an abbreviation of b((f, f)).

One of the most important notions that we interested to it, is the pos-
itive definiteness of, only, body of inner product (not inner product itself).
As we seen earlier, Dewitt’s definition has similar restriction. We know that
Nagamachi and Kobayashi introduced a general algebra, the oc-commutative G-
graded algebra, which Gralmann algebra is particularly a Zs,-garaded
(—1)*-commutative algebra with o, 3 € Z,. They restrict themselves to
Grafimann algebra. Why?. Maybe one of them reason was that the posi-
tivity of supernumbers, as an element of o-commutative G-graded algebra, is
meaningless even for its body. While the body of any Graimann number is a
complex number which it can be positive. In the next chapter we will try to
correct this. For an inner product superspace H we define the soul s(#) and

the body b(#H) as follows:
s(Hy={heHH | hA=0 forsome 0 £\ A },

b(H) = H/s(H).
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An element h of H is called a supervector and if h € s(H), it is called a soul
vector. Since s(H) is a Zo-graded subspace of 1 over C, b(H) is a Zy-graded

vector space over C.

Definition 3.4.2. Let {F,} be the system of norms which defines the
topology of A. The system of open neighborhoods of 0 is generated by the

following family of sets:

Ulh,w,e) ={geH | P,((g,h)) <e},

where € > 0 and h € H. The o-topology is the weakest among those topolo-

gies under which the inner product (.,.) is separately continuous.

Definition 3.4.3. A Z,-graded subspace H of H over C is a base
pre-Hilbert space (base Hilbert space) of H if the following conditions
are satisfied:

(i) H is a pre-Hilbert (Hilbert) space with the inner product (.,.) of H, this
means that (f,g) € C for all f,g € H, (and H is complete).

(ii) The norm topology of the pre-Hilbert (Hilbert) space H is stronger
than the induced topology of #.

(iii) (H,h) = 0 implies h = 0 for h € H.

A complete orthonormal basis of H is called a complete orthonormal

basis of H.

Definition 3.4.4. An inner product superspace H is called a

(pre)-Hilbert superspace if it has a base (pre-)Hilbert space H.

Since the algebra A of supernumbers is not a field, a A submodule of a
Hilbert superspace is not always a free A-module. This causes some difficulties

in treating subsuperspaces.
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Definition 3.4.5. A Zs-graded submodule ® of H is called a Hilbert
subsuperspace of #, if the following conditions are satisfied:
(i) @ is a Hilbert superspace with the inner product (.,.) of #;

(ii) The topology of ® coincides with the induced topology from H.
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3.5 El Gradechi and Nieto

This section is devoted to definition of super Hilbert space according to A. M.
Elgradechi and M. Nieto’s terminology. They considered this space as a direct
sum of two complex Hilbert spaces equipped with a super Hermitian form. In
[11], they gave some examples of this space which are used in physics.

Here we give some basic definitions to approach to them definition. Of
course for this we use also [17] and [35].

A complex superalgebra is a complex vector superspace (i.e. a Zy-graded
linear space) B = By & B; equipped with a Zy-compatible product, namely,
By - B, C Biyy; B is considered associative and possesses a unity. Note that, By
(resp. By) is called the even (resp. odd) part of B. Accordingly, elements of B,
(resp. By) are called even (resp. odd) elements of B. A homogeneous element
of B is either even or odd. The parity (or degree of such an element u € By,
denoted €(u), is defined by €(u) = k. The superalgebra B is supercommutative
if

wvy = (—1) Wy, (3.5.1)
for v and v two homogeneous elements of B.

The complex supercommutative superalgebra with unit B considered in the
present section is the complex Grafmann algebra [7] generated by (6, x) and
their complex conjugates (, x). These are anticommuting, and hence nilpotent
variables. In other words B is the complex exterior algebra over C* = C? @@2.
Its even (resp. odd) part is spanned by the products of an even (resp. odd)
number of generators, and the dimension of B is 16. The decomposition of any

element # € B in a given basis of B, assumes the following form
0=0-1+0,, (3.5.2)
where, the purely nilpotent component 6,,; is called the soul of 6, while the
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component 0 along the identity of B is called the body of 6.
Finally, all vector superspaces appearing in this work are considered as
left B-modules. Let V = V; @& Vi be such a B-module. Then, for v and ©

homogeneous elements in V' and B respectively, we have,
Qv = (—1)®@)y0. (3.5.3)

There is a natural way of defining a bracket [,] in a superalgebra U, i.e.,
be equality
[a,b] = ab — (—1)(degadeg)y, (3.5.4)

A superalgebra is called commutative if [a,b] = 0 for all a,b € U. Asso-
ciativity of a superalgebra is defined as for an algebra. For an associative

superalgebra U we have the following important identity:
[a, bc] = [a, b]c + (—1)degadegvyry o

Example 3.5.1. Let A,, = A(n) be the Graffmann algebra in n variables
&, .o. oy &n. Then A(n) becomes Zo-graded if we set degé; = 1,i=1,...,n. The
result is called Graflmann superalgebra. It is commutative and associative.

Evidently A(m) @ A(n) = A(m +n).

Definition 3.5.1. Lie superalgebra
A Lie superalgebra is a superalgebra G = Gy @ G7 with an operation [., .|
satisfying the following axioms:
[a,b] = —(—1)degadegyyfy g] (anticommutativity)

[a, [b, c]] = [[a, ], c] — (—1)(de8a)deNp (4. ¢]] (Jacobi identity)

Example 3.5.2. If U is an associative superalgebra, then the bracket
3.5.4 turns U into a Lie superalgebra. We denote the resulting Lie superalgebra

by UL-
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Example 3.5.3. Let G be a Lie superalgebra and A(n) a Graffmann

superalgebra. The G ® A(n) is also a Lie superalgebra.

Definition 3.5.2. Let G = Gy ® GG; be a Lie superalgebra over R and
V =V;@ Vi be a Zsy-graded linear space. A linear representation p of a Lie
superalgebra G in V' is a homomorphism p : G — ¢(V'). For brevity we often
say in this case that V' is a G-module, and instead of p(g)(v) we write g(v),

for g € G,v € V. Note that by definition, G;(V;) C Vi, for i,j € Z, and

(91, 92)(0) = g1 (g (v)) — (—1)(deBodeBo g, (4, (1)),

Note also that the map ad : G — ¢(G) for which (ad g)(a) = [g, a] is a linear

representation of G. It is called the adjoint representation.

Definition 3.5.3. We call a representation (p, V') of G superunitary if
V =1, @V admits a non-degenerate bilinear form (.,.) which satisfies:
1) super Hermitian condition, i. e., (u,v) = —(—1)degwdegy)(y y).
2) The form is homogeneous of degree zero, i. e., (u,v) # 0 only if degu +
degv = 0 for u,v € V and homogeneous;
3) The form is positive definite on V;. There is a constant § = 41 depending
only on (p, V) such that §/—1(.,.) is positive definite on Vi;

4) The operators {p(g) | g € G} leave (.,.) invariant:
(p(g)u,v) + (~1) 1BV B w, p(g)0) =0, (35.5)
for homogeneous g € G' and u,v € V.
Here we call (.,.) a super Hermitian form when

(u, v) = (—1)degudegn iy, )

holds. Let V' =V, @ Vi be a superspace over R (or C). A bilinear form b on

V' is called super skew symmetric if b satisfies
b(u, v) = —(~1)1BVAEp(v, u),
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where u,v € V' are homogeneous elements.

Definition 3.5.4. A super Hilbert space is a pair (#, ({.,.))), where
H = Hy ® Hy is a superspace equipped with a super Hermitian form
<<'7 >> = <<? >>5 + Z<<7 '>>T7 such  that (Hﬁa (HJ <<7 >>)5 and
(H1, (H, ({.,.)))7) are both Hilbert spaces.
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3.6 Samsonov

This section contains the definition of super Hilbert space, which is given by

Boris F. Samsonov in his paper [40].

3.6.1 Basic definitions

Let A be a Zsy-graded linear space A = A; @ A,. When an element A € Ag, it is
called even[parity p(\) = 0] and when A\ € A, it is called odd[parity p()\) = 1].
The elements from Ay and A; are called homogeneous. When the structure of
associative algebra with unit e € Ay and even multiplication operation [i.e.,
p(An) = p(A)p(p), mod 2 for homogeneous A and p| is introduced in A, it is
called superalgebra. Superalgebra A is called commutative if supercommutator
A p] = A — (=1)POPW X = 0 for homogeneous A, € A. Further, the
commutative superalgebra A = A; & A, is supposed to be a Banach space with
the norm [[Au|| < ||A|l]|ell, A, v € A, ]le]] = 1. The components Ay and Ay are
closed subspaces in A. When A is defined over the real number field R we
obtain the real superalgebra A(R), and for the case of complex number field
C we obtain A(C).

Given a real superalgebra A(R), real superspace R}"" of dimension (m, n)

over A(R) is defined as follows:

A complex superspace C}"" over A(C) is defined in the same way but with
the help of the complex superalgebra A(C). If for every point

X =(2,8) = (21,.. ., 2m, &1, .., &) € RY™ we introduce the norm

IXIP = 2l + € = 3 sl + D lielP (36.2)
k=1 j=1
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then RY"" becomes a Banach space. Every connected open set O C R{"" is
called domain in R{"".

Let us have two superspaces R and R7 " with the norms ||.|| and ||.||’,
A C A, and a domain O in R?"". Function f(X) : O — R is called
continuous in the point X € O if ||f(X + H) — f(X)|" — 0 when ||H|| — 0.
The same function is called superdifferentiable from the left in the point X € O

if elements Fj(X) € RT,,’",, k=1,...,m+ n, such that

m+n
FX+H)=f(X)+ ) HF(X)+7(X, H), (3.6.3)
k=1
where ||7(X, H)||'/||H|| — 0 when ||H|| — 0 exist. The functions Fj(x) are

called left partial superderivatives of f with respect to X} in the point X € O:

@ =25 Fy

_9f(X)
 O0Xpyj

k=1,....m, j=1,...,n. (3.6.4)

m+n

The expression Y, Hpdf(X)/0Xy is called left superdifferential of the function
k=1
f(X) in rhe point X.

One can find more details about superanalysis in [48], [49] and [50].

3.6.2 Hilbert superspace

Consider the real superspace Ry defined over A(R) = Ag(R) ® A;(R) where
Ap(R) = R and A;(R) has two generators & and & with the properties
€2 =€ = ¢4 E€ = O,E = £. The complex superspace (C/l\’1 is defined over
A(C) = Ay(C) ® Ay (C) where Ay(C) = C and A;(C) has the same generators
€ and €.
Consider now functions from ]R,l\’l to (C[l\’1 of the following form:

WOt 2,&, &) = ap(,t), (v, t) € H® and (¢, z,£,€) = Ep(x,t), p(z,t) € H'.
We shall designate the collection of the functions WO(t, x, £, €) and W'(t, z, &, €)

as Hy and Hi, respectively. It follows from these constructions that Hg and
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Hy are linear spaces (over the field C), and Hy; = Hy® Hy is a Zo-graded linear
space of functions. The elements from Hy and Hy are called homogeneous with
the parity p(®) =0 when ® € Hj and p(®) = 1 when ¢ € Hj.

Define in the space H; scalar product (super-Hermitian form) as follows:

(q)1|q)2) = /(}Tl(ta Z, gag)q)2 (ta Z, f,g)ze_l&dxdfdg eC (365)

Since the integration in superspaces is developed in references [48], [49] and [50]
for sufficiently smooth functions (it is a supergeneralization of various integral
constructions based on Rimann integral and not on Lebesgue integral) we
should make more precise the sence of integral in 3.6.5. If functions ®; and

®, are defined by their homogeneous components

q)l(xafag) = (I)?(xafag) + (I)ll(xafag)a

where ®)(z,&,€) = V() € Hg, and ®}(z,£,€) = x} () € Hy,l = 1,2, and
functions xJ(z),j = 0,1 are sufficiently smoth, then we may interpret the
integral 3.6.5 in the sence defined in [48], [49] and [50]. In our case this integral
becomes equal to a product of two integrals. The first one is a conventional
integral with respect to the variables £ and &. The only integral with respect
to the GraBmann variables different from zero is [ £€dédE = 1. Thus, for the

integral 3.6.5 we obtain the expression
(P1|@2) = (7[D3)0 + (P1]Dy)1, (3.6.6)
(@3]®5); = (xibxz)y, xi € H', 1=1,2, i,j=0,1
We note that the spaces Hy and Hy are mutually orthogonal with respect to
the scalar product 3.6.5 and are complete in the sence we shall make more

precise so that (.|.);,j = 0,1, are the restrictions of the scalar product 3.6.5

on the spaces H;.
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In the case when functions yJ € Ly(R) are not sufficiently smooth for
applying the definition of the integral given in [48], [49] and [50], we directly
apply the formula 3.6.6 for calculating the integral 3.6.5. We remind the reader
that the scalar product (.|.) in Ly(R) is defined with the help of the Lebesgue
integral. We will notice that the formula 3.6.6 is in accord with the definition
of the super-Hermitian form in the abstract Hilbert superspace given in [11].
The super-Hermitian form in 3.6.6 is positive definite in the sense that the
Hermitian forms (.|.);, 7 = 0, 1, from which it is expressed are positive definite.

The super-Hermitian form generates a norm in H,. For every ® = ®°4+®! ¢

H,, ®° =x"(z,t), and ' = & (x,t) we put by definition
12]* = |(@]®)] = [IX"[I5 + [Ix"II7, (3.6.7)

where ||.||; are the norms in H7,j = 0,1, generated by the appropriate scalar
products. It is not difficult to see that the properties of the norm so defined
correspond to the axioms of the conventional norm:

(i) [[®]] = 0;

(ii) ||®|] = 0 if and only if ® = 0;

(iii) [le®[] = [el.[[ @[], Vce C

(iv) [|@1 + @ < (|94 [] + [|D2].

It follows that Hj is a normed space in the usual sense. Conditions (i), (iii) and
(iv) mean that the norm is a convex functional in Hy. Condition (ii) means
that the set {||.||} formed from a single convex topological space. Just in this
sense we shall understand the completeness of the space H, which we shall call
the Hilbert superspace. This signifies that the space H, contains only linear
functionals of the variable & with the coefficients from H. Since the functions
WO (t,2,6,€) = y(x,t) and WUl (¢,2,&,) = Ep,(x,t) form bases in the spaces

Hy and Hi, respectively, we have obtained a separable Hilbert superspace.
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3.7 Rudolph

In this section we consider the last definition of super Hilbert space which
is given by Oliver Rudolph in [38]. Unlike of previous definitions, Rudolph’s
terminology has mathematical framework.!

A super Hilbert space in sense of Rudolph, is a module over a Graimann
algebra endowed with a Graimann number-valued inner product. Of course
it is almost analog of Hilbert C*-modules with some differences. As it is
well-known, in Hilbert C*-modules, positive definiteness of inner product has
meaning and hence the Cauchy Schwartz inequality is valid which implies the
continuity of inner product with respect to the both arguments. By using
of this inequality it is proved that the set of all adjointable operators on a
Hilbert C*-module forms a C*-algebra. But in the Rudolph’s definition, the
positive definiteness of GraBmann number-valued inner product is weaker (it
holds only for its body) and hence the Cauchy Schwarz inequality is valid only
for body of inner product which this implies that the inner product is not
always continuous. Also the set of all adjointable operators makes only an
involutive Banach algebra with continuous involution.

Rudolph has mentioned some interesting examples for super Hilbert space

which are slightly complex. In fact he makes them for applying in physics.

3.7.1 Exterior Algebra with mass norm

In the present subsection we give the structure of exterior algebra endowed
with mass norm according to [12].

For any vector space V', we can construct a particular graded algebra

IConsider to this note that the Rudolph’s paper is expressive alone and then we will use
in some where it without any explanation. Also he used the concept of super Hilbert space
to the Schrdinger representation of spinor quantum field theory in section 6 of his paper,
which we do not investigate it, because of we are not work on physics.
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®.V = @ ®,V called the Tensor algebra of V' where ®,V is the n fold
n=0
tensor product with all n factors equal to V. We define multiplication in ®,V

so that its restriction to ®,,V X ®,V is simply the (bilinear) composition

The set ®yV = R is as unit element of the ring ®.V ( associative algebra).

In the associative tensor algebra ®,V we consider the two sided ideal
UV generated by all the elements x ® x in ®,V corresponding to x € V. The
quotient algebra

AV =@, VUV

is called the exterior algebra of the vector space V. Clearly UV is a homo-

geneous ideal, in fact

UV =By (®,V NUV)

and therefore

AV =@ g Am V.

where

AV =@, V/(®@,V NUV);

in particular AgV = R and AV = V. The elements of A,V are called
m-vectors of V. The multiplication in A,V is called exterior multiplication
and denoted by the wedge symbol A. It follows that if vy,...,v,, € V, then
the canonical homomorphism maps the product v; ® --- ® v,,, € ®,,V on to
the product v; A --- A v, € ALV, Clearly A,V is the vector space generated
by all such products.

If u and v belong to V', then u®v+v®@u = (u+v)@(u+v)—uQu—vQV € UV,

hence u A v = —v A u. Therefore

(Vpr1 A  Atpyg) A (U1 Av e Avp) = (1PN (ur Av o= Avy) A (Uppa A A vpeg)
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whenever v, ...v,4, € V, which implies that the anticommutative law holds
for exterior multiplication. Among all anticommutative associative algebras
with a unit, whose direct summand of index 1 is linearly isomorphic to V', the
exterior algebra A,V is characterized (up to isomorphism) by the following
property:

For every anticommutative associative algebra A with a unit element, each
linear map of V" into A; can be uniquely extended to a unit preserving algebra
homomorphism of A,V into A, carrying A,V into A,, for each m. Such an
extension is unique because the algebra A,V is generated by V U {1}.

If e1,e5,... form a basis of V, then the products
ex =exa) Vexe V- Vexm)

corresponding to all increasing m termed sequences A form a basis of A,,,V. In
fact A,V has a basis equipotent with the set I(n, m) of all increasing maps of
{1,...,m} into {1,...,n}.

An element of A,V is called simple (or decomposable if and only if
it equals the exterior product of m elements of V. With each £ € A,V we

associate the vector subspace
T=Vn{v:&EVe=0}

A nonzero m-vector £ is simple if and only if its associated subspace T has
dimension m; in this case £ equals the exterior product of m suitable base
vectors of T. The associated subspaces of two nonzero simple m-vectors & and
n are equal if and only if £ = cn with 0 #€ R.

If ¢ is a nonzero simple m-vector and 7 is a nonzero simple n-vector, then
&V n # 0if and only if the subspace associated with £ A n is the direct sum

of the two subspaces associated with & and 7. The subspace associated with
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a nonzero simple m-vector ¢ is contained in the subspace associated with a
nonzero simple n-vector n if and only if n = ¢ V ( for some ¢ € A, _,,V.

A nonzero simple m-vector £ € A,V is called complex if and only if the
R vector subspace of V' with £ is a C vector subspace of V. It follows that &
is complex if and only if m is even, say m = 2p, and & = rvyiv, V--- Vv, V iy,
for some r € R and vy,...,v, € V. Moreover sign(r) is uniquely determined
by £. We term £ positive in case r > 0.

Now for defining the mass norm on A,,V, we need to know some notions.

An m-linear function f which maps the m fold cartesian product V'™ of a
vector space V' into some other vector space W, is called alternating if and only
if f(v1,...,vm) = 0 whenever vy,...,v, € V and v; = v; for some i # j. Let
A™(V, W) be the vector space of all m-linear alternating functions mapping

V™ into W and define
NV, W) =@no A" (V. W),
Note that A°(V, W) = W. Most frequently we use w = R; hence we abbreviate
AN*(V,R) = A"V and A" (V,R) = A*V.

The elements of A"V are called m-covectors of V. According to 1.4.1 of [12] we
have A"(V, W) < Hom(A,,V, W) and so in an extension of the usual notation
(C,h) = h(C) for ¢ € AV, h € Hom(A,,V,W). Next we discuss the manner
in which inner products for the spaces A,V are induced by the given inner
product for V. The polarity 3 : V — AV can be uniquely extended to a unit
preserving algebra homomorphism v : A,V — A*V| which is the direct sum
of linear maps v, : A,V — A™V. Composing 7,, with AV = AY(A,,V)

which satisfy the condition

(€, Bm(n)) = (1, B ()
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for £,m € N, V. Thus 3, is a polarity, and we define a symmetric bilinear

function e on A,V x A,V by the formula

§on = (£ Pm(n)) (3.7.1)

for £, € N\,V. Now if eq,..., e, form an orthonormal base for V', then the
base vectorsey of A, V', corresponding to A € I(n,m), are likewise orthonormal.
For any m-vectors £ and 7 the representations
E= D &en = D> me
AeI(n,m) Ael(n,m)
are the bilinearity of e lead to the formula
on= Z ET-

XeI(n,m)

In case £ = 1 # 0, we obtain £ @ £ = Y (£,)? > 0. So e is in fact an inner

)
product for A,,V, and we can define

€l = (o) = (D (&))"

A

Now let & be a p-vector and n a g-vector. In case £ or n is simple, then
€Al < |€]-In|.- In case £ and n are simple and nonzero, equality holds
if and only if the subspaces associated with £ and n are orthogonal. Al-
ways |€ An| < ()2]€].]n]. For proof and more details refer to [12]. The set
C =N VN{: ||| < 1} is the convex hull of the compact connected set

S =AnV N{E: £issimple and || < 1}, hence C consists of all finite sums

N N

Zci& with fiES, c; > 0, ZCZZI

i=1 i=1
and N < dim A, V = (7). It follows that for each £ € A,V there exist simple

m-vectors &1, ...,&y with

N N
=Y & lEl=>_l&l-
i=1 i=1
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Consequently

N N
€]l == inf{) |&] : & are simple and £ = £} (3.7.2)
i=1

=1

If £ € A,V and n € AV, then

1€ A nlHIEN- Il (3.7.3)

This norm is called Mass norm on exterior algebra.

3.7.2 Grafimann algebra

Recall that the Gramann algebra (or exterior algebra) A, with n generators is
the algebra (over C) generated by a set of n anticommuting generators {&;}7,
and by 1 € C
&&= —¢;&, for all i, j.

Also for countably infinite set of generators, which will be denoted by A, it
is defined by the direct limit of finite dimensional Grafimann algebras. In the
rest of this section we shall write A, where n € NU {oo} is possibly infinite
unless indicated otherwise. We saw in section 2.4 of previous chapter that
the Gralmann algebra carries a natural Zs-grading: A, = A, o ® A, 1, where
A, consists of the even (commuting) elements in A,, and A, ; consists of the
odd (anticommuting) elements of A,, i.e., for a, € A,,, and as € A, 5 we have
aras; = (—1)"asa, € Apyismodz)- We also write deg(a,) = r if a, € A,,, and
call deg(a,) the degree of a, (this degree is called somewhere, the parity of a,.).
Let

M? = {(my,...,mp) [0<k<n,m eN1<m <---<my <n}. (3.74)

n

Every element ¢ € A,, can be uniquely written as

q = Z qml,---,mkgml T fmka

(mlﬁ"' ,mk)GMS
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where g, ....m, € C with g5 = ¢p( the body of ¢). If p is another element of
A,, with representation p = Z(ml’._.’mk)eMg D e mp&ma - - Emy,» the addition,
scalar multiplication and multiplication on A,, are defined as follows:

pra= Y D+ G ) e

(m17"' 7mk)€M,(—)L

cq = Z (Cthw,mk)gml te 'gmka

(m17"' 7mk)€M7pL

pa= Y D) DI pon) e otm) o tmig ) om) (3.7:5)

(m17"'7mk)€M7oL k=0 o
gml e gmkgmlﬁ_l T 'gmm

where the sum >’ runs over all permutations o of (mq,...,my) such that
a

(o(my),...,0(m,)) € MY. Recall that sgn(c) is the number of pairs (7, ) such

that 4 < j and o(i) > o(j) for i, j € {my,...,m,}. Note that if we take
M, ={(my,-- ,m) |1 <k<nm eN1<m <---<my<n}, (3.7.6)
then every ¢ € A,, can be written as

g=qpl+as=aqpl+ D Qoo Emps (3.7.7)

(ma - my ) EMn

where ¢g, ¢, ....m, € C. Now for each 1 < k < oo we can define

1/k
lale = {lasl"+ Dty m, | (3.7.8)
(mla"'amk‘)eMn
and for Kk = o0,
[dlo = SUD |Gy, |- (3.7.9)

(ml 7-'-7mk')€Mn

If n is finite, it is straightforward to verify that each |- |, defines a norm on
A,, and that A,, becomes a complex Banach space with each of the norms |- |,

1 < k < o0, which we denote by A, (k) respectively. In fact we proved this

121



assertion in proposition 2.2.1 of previous chapter in general case for the o-
commutative G-graded algebra A. In the case of A, |- |, defines a seminorm
on A, and we denote the set of all ¢ € Ay, for which the above expression for
lq| satisfies |g|, < 00 by A (k). Again it is easy to see that Ay (k) with the
norm | - |, is a Banach space for all 1 < xk < co.

Define an involution on A, as a map * : A, — A,, which satisfies in

following conditions:

(i) (¢7)" =

(i) (gp)* = p"q";
(iii) (aq)” = ag™;
(iv) 17

(v) & =&, for all i

(vi) * extends linearly to all of A,

where p,q € A, and a € C.

The norms | - |, in (3.7.8) depend implicitly on the choice of the set of
generators of the Grafimann algebra and are not invariant under a change of
the set of generators of A,,. Since for fix ¢ € A,,, its coefficient may be vary by
varying of generators of A,, and hence its norm is also may be not invariant.

For n finite, A, is finite dimensional and so not only all the norms in
3.7.8 are equivalent and therefore generate the same topology on A, for all
1 < k < 00, but the resulting topology is in fact independent of the choice of
generators of the Graflimann algebra.

For n finite there is an isomorphism x : A, — A, known as the Hodge

star operator. Consider the ordered sequence {&;,---,&,} of all generators

of A, then % is defined on the element &; &, - -- &, by

*[gilflé e gzd] = £j1§j2 e Sjnfda
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where (j1,-+-,jn_q) is chosen such that (iy,--- ,ig,j1,***,Jn_q) IS an even
permutation of (1,---,n). We extend * to all of A,, by conjugate linearity, i.e.,
we require that x[ag] := ax[g] for o € C and ¢ € A,, and that  is a real linear
transformation. Let ¢ € A,, be expressed as in 3.7.7. Then the action of x on
q is as follows:
A =Tpl+ Y Tyl -

(11 e g )€ M
such that (my,...,mg,m},...,m}_,) is an even permutation of (1,...,n). It
is well-known that the Hodge star operator is independent of the basis used
to define it. Also this operator is continuous in the unique topology induced
by the norms 3.7.8. To see this let {g,}>2, be a sequence of elements of A. It
can be represented as

=1+ > g

(mly"'ymk)eM’ﬂ
Let ¢, — ¢ € A in the norm 3.7.8. So for any £ > 0 there exists positive N
such that for any n > N, |¢, — ¢lx < oo. This implies that

qg%) — qp and ¢, — Gmy - m,, 10 C for any (my,---,my) € M,. Since

the complex conjugation is a continuous function, we obtain that agb) — qp

and q,(ﬁfmk — Gy . m,, 0 C for any (my,---,my) € M,. On the other
hand, the action of Hodge star operator on {¢,}5°; and ¢ implies that
Aol =@+ D A G

(m,--;my ) €Mp

and

*[q] =qpl + Z qmla"'ymkgmll o gm;sz

(m17"' 7mk)€Mn

Above discussion, simply imply |*[g,] —*[¢]|[x — 0 and hence the Hodge star

operator is continuous. For k£ = oo, we can easily obtain this continuity.

123



Now we want to define a new norm on A, which be invariant under change
of generators. For this purpose, note that, the Graimann algebra can also be
written as a direct sum

An - 69?:0\/1" )

where V, is the complex vector space spanned by the elements of the form
Emy - &m,, 1 fixed. Therefore any ¢ € A, can be uniquely decomposed as
q=>."_,q with ¢, € V,. Any choice of a basis of V; may serve as a possible
choice of (possibly complex) generators of A,. For defining the required norm,

firstly, it is known that there is a norm || - ||, on V, given by, [12, 51],

g || = inf Z [

(mly"' 7mr)€Mn

, (3.7.10)

for ¢, € V, where the infimum is taken over all possible choices of the set of
generators of the Grafimann algebra. To see that this defines a norm on V,.,
it is easily seen that it is a seminorm, i. e., subadditive positive or zero and
satisfies ||ag,||, = |al||g-||-- To show that it is a norm, it has be shown that
llg-||; = 0 implies ¢, = 0. Assume ||g.||, = 0. Then for every ¢ > 0 there is
representation of ¢, analogous to 3.7.7 such that the sum on the right hand side
of 3.7.10 (without the infimum) is smaller than (or possibly equal to)e. AS e
can be arbitrarily small and as the terms in the expansion in 3.7.7 are linearly
independent and as for all complex numbers a, b we have ||a +b|| < ||al| + ||b||,
this is only possible if ¢, = 0. Thus equation 3.7.10 defines a norm on V,.. The

norm || - ||, satisfies

||QTps||r+s S ||qr||r||ps||sa

for all ¢. € V,. and py € Vg, see [12, 51]. Now define a seminorm on A,, by

lall == llarllr- (3.7.11)
r=0
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For n finite it is obvious that || - || is a norm on A,. This norm || - || is called the
mass (norm) on A, (n finite). By construction the mass norm is independent
of the choice of the set of generators of A,,.

If n = oo, then every finite subset {&,,---&,  } U {1} of the set of all
generators {&;}; of Ay generates an m-dimensional Graimann subalgebra of
Ao denoted by A;, ... ;... The collection of all such Grafimann subalgebras of
A, forms a directed set and the canonical imbedding morphisms obviously
preserve the mass norm. We consider the algebraic direct limit A, of this
directed set. Indeed, A; ..;. C Aj .. and 2 0 Ay i — Ny
is canonical imbedding morphism which satisfies +(||¢||) = ||¢(¢)|| for any
q € Aj,....;,,- The mass norm on the finite dimensional Gramann subalge-
bras induces a mass norm || - || on A,. We denote the completion of A, with
respect to the mass norm by AZ. Obviously, A7 consists of all ¢ € A, with
lall = -2 llgr]l» < oo. The norm on A is again called the mass norm.

We can see that the mass norm is submultiplicative

lpall = D M@l <D Ipe karlls

r k<r

< DD Moesllesllale < 2 pellellaslle = lpllllall-
k

r  k<r r

3.7.3 Hilbert A modules

Definition 3.7.1. A pre-Hilbert A module is a Zs-graded right A
module F = Ey® E equipped with a A-valued inner product (-,-) : ExFE — A
that is sesquilinear, definite, and whose body is Hermitian and positive. In
other words:

i) (x5 +y2) = (z,m1) + (z,92), and (y1 + y2,7) = (y1,2) + (Y2, 2) for
T, Y1, Y2 € E;

i) (z, ) = oz, y) = (a*z,y), for 7,y € E,a € C
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111) <‘T7y>B = <yax>*B? for T,y € E;

iv) (z,z)p > 0 for x € F and (z,z) = 0 if and only if z = 0.

An element x of a pre-Hilbert A module £ = Ey @& F; is called even if
x € FEy and odd if v € E;, respectively.

Immediate consequences of Definition 3.7.1 are that every pre-Hilbert A
module is a complex vector space and that every element x of a pre-Hilbert A
module E can be uniquely written as a sum of an even and an odd element of
E ie., xr=x9+ x, where xqg € Ey and z; € E|.

We may now use a norm || - |5 defined on A to define a function Pg on a

pre-Hilbert A module E by
Pg(z) = [z, 2)]la- (3.7.12)

For instance, if A equals A, orA, (k) endowed with the norm | - |,, then this

function on FE is given by

Pl (x) := |(z, )]s, (3.7.13)
for x € F and 1 < k < co. The function

P?(z) := |[{z,z)|| (3.7.14)

corresponding to the mass norm on A = A,, or A = A7, in Equation 3.7.11 is
called the mass function on the Hilbert A module F.

Remark 3.7.1. Tt is important to note that, unlike the theory of Hilbert
C*-modules, the equation 3.7.12 is not a norm on E. Because, as we see as
soon as, the Cauchy-Schwartz inequality is not hold in general and hence the
function P is not subadditive. But it is easy to see that P has other properties

of a norm.
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Lemma 3.7.1 (Cauchy-Schwartz inequality). If E is a pre-Hilbert

A module and x,y € E, then

(=, 9) 8> < (2, 2)8(y, y) -
Proof. Let p, == (z,2)p,py == (¥, ¥)B, ¢ := (z,y)p and A € R, then
0 < (z —yAg",x —yAg*)p = px — 2Xqq" + Nqpyq”,
Adding 2Aqq* on both sides and taking norms yield
2 |g|* < 2[Mlgl* < [pa + Napyal < pal + N|ql?|py - (3.7.15)

Now since |p,| is positive, we multiply both sides of 3.7.15 to it and add (|g|)?
to obtain

(Mallpy| = 1a1)* = (lal)® = Ipallpy|.

If |p,| # 0, then setting \ := \p_ly| yields the required inequality. Moreover, we
find that |p,| = 0 and |p,| # 0 implies |¢g| = 0 (let A = 1). From symmetry
considerations (or from Equation 3.7.15) we also get that |p,| = 0 and |p,| # 0
implies |¢| = 0. In the case that |p,;| = |p,| = 0 we infer from Equation 3.7.15

by taking A to be positive that |¢| = 0. O

On any pre-Hilbert A module E there is a body operation, i.e., a linear map
B : E — Ey,x — xp such that (z\)p = zpAp for all A € A [32]. First define
the soul s(F) and the body b(E) of E by

s(E) = {x € Elz\ =0 for some A € A, \ # 0},
b(E) := E/s(E).
The body operation B : E — Ej is the canonical surjection from E to b(E).
If the inner product of E satisfies (xg,yp) = (x,y)n, then the body of E

endowed with the induced inner product is a pre-Hilbert space whose com-

pletion is a Hilbert space (by virtue of the Cauchy-Schwartz inequality). To
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see this, let the inner product has the mentioned property. We know that the

body operation B : E — FEj has the following properties:

B(z+vy) = (r+vy)p = B(x) + B(y) B(z)\) = B(z)B(y)

where z,y € F and A € A.

We can see easily that, if x,yg, 2 € E then

(@ +yp,28) =((r+y)p,zB) = (r+y,2)p=B((z,2) +(y,2))

= (z,2)p+ (¥, 2)B = (¥, 28) + (U, 2B).

The other conditions of inner product is straightforward.
But even if the inner product does not respect the body operation, we can

prove

Proposition 3.7.2. Let E be a pre-Hilbert A module. Then there exists

a map x — [z] from E into a dense subspace of a Hilbert space H such that

<[‘T]7 [y]>H = <l‘7y>Ba
for all x,y € E, where (-,-) i denotes the inner product on H.

Proof. Let N :={z € E|{x,2)p = 0}. Let [z] := 2+ N. Then (-, )p induces a
well-defined inner product on E/AN by virtue of Lemma 3.7.1. Therefore E/N

with this inner product is a pre-Hilbert space. O

Definition 3.7.2. Let E be a pre-Hilbert A module and || - || a norm on
E, then F is said to be a Hilbert A module if F is complete with respect to

its norm. A Hilbert submodule of a Hilbert module F is a closed submodule

of .
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Definition 3.7.3. Let E and F be Hilbert A modules. A C-linear map
O : E — FE is called an operator on F. We denote the set of all bounded
operators on E by L(F). An operator T : E — F is called unitary if
(T'(x), T(y)) = (x,y) forall z,y € E. An operator S is called weakly unitary
if (S(x),S(y))p = (x,y)p for all z,y € E. A (Hilbert) module map is a
linear map 7' : E — F which respects the module action: T'(zq) = T'(x)q, for

x € E qeA.

Definition 3.7.4. A Hilbert A module E is said to satisfy the strong

definiteness condition if (z,z)p = 0 implies z = 0 for all x € E.

Every Hilbert A module E satisfying the strong definiteness condition be-

comes a pre-Hilbert space with respect to the norm || - ||% := (-,-) 5.

Every Hilbert A module F is endowed with a Z,-grading £ = F, @& F;.
This induces a Zy-grading on L(E): every operator T : E — E can be written
as sum of an even map Ty : E; — E; and an odd map T : E; — E;1(moa2),
i.e. T =T, + T, where Ty and T are defined by Tyu := (T'ug)o + (T'uy); and

Tyu := (T'ug)1 + (T'uy)o respectively where u = ug + uy.

Definition 3.7.5. Let E be a Hilbert A module. An operator T : E — FE
is said to be adjointable if there exists an operator 7% : E — E satisfying
(x,Ty) = (T*x,y) for all z,y € E. Such an operator T* is called an adjoint
of T. We denote the set of all adjointable operators on E by B(E). An
adjointable operator T' € B(E) is called self-adjoint if T* =T.

An operator T : F — FE is said to be weakly adjointable if there exists
an operator T : E — E satisfying (x,Ty)p = (T'z,y)p for all z,y € F.
Such an operator T is called a weak adjoint of T. We denote the set of all

weakly adjointable operators on E by B, (F). A weakly adjointable operator
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T € B,(E) is called weakly self-adjoint if 7" =T.

Remark 3.7.2. Obviously, any adjointable operator is also weakly ad-
jointable. Thus, B(F) C B,(F). Accordingly we also expect that the set
B, (F) plays a distinguished role and that the operators representing physical

observables or physical operations will be elements of B, (FE).

The following Lemma can be proven in analogy to the corresponding result

for Hilbert C*-modules, see [46].

Lemma 3.7.3. (a) Let E be a Hilbert A module and T : E — E be an

adjointable operator. The adjoint T* of T is unique. If bothT : E — FE and
S : E — E are adjointable operators, then ST is adjointable and (ST)* =
T*S*.
(b) Let E be a Hilbert A module satisfying the strong definiteness condition and
Ty : E — E be a weakly adjointable operator. Then the weak adjoint T of T,
1s unique. If both Ty : E — E and Sy, : E — E are adjointable operators, then
SwTy is adjointable and (S,T,)" = T} ST .

Proof. (a) Assume that T and T* are adjoints of T, then
0= <Tl‘7y> - <T*1‘,y> = <(T o T*)$7y>7

for all 2,y € E. Let y = (T — T*)x. This implies T = T*. Also
(STx,y) = (Tz,S*y) = (x,T*S*y) which implies that (ST)* = T*S*. A

similar argument proves (b). O

3.7.4 Super Hilbert spaces

The Definitions 3.7.3 and 3.7.5 are analogous to parallel definitions in the the-

ory of Hilbert C*-modules [46] and [26]. However, the positivity requirement
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in the definition of a Hilbert A module is weaker than the positivity require-
ment for Hilbert C*-modules and all results for Hilbert C*-modules depending
on the positivity of the inner product may in general not be valid for a Hilbert
A module. The Cauchy-Schwartz inequality in Lemma, 3.7.1 is a first example.
As a consequence of the failure of the general Cauchy-Schwartz inequality the
inner product on a pre-Hilbert A module may in general not be continuous in
each argument and therefore in general an inner product on a pre-Hilbert A
module does not extend to an inner product on its completion. In the sequel

we shall be mainly interested in inner products which are continuous.?

Definition 3.7.6. We shall call a (pre-) Hilbert A module H a super
(pre-) Hilbert space if the inner product on H is continuous, i.e., if there

exists a constant C' > 0 such that ||{z, y)|| < C||z||||y||-

Remark 3.7.3. It is important to note that if 7 is a super (pre-) Hilbert
space, then the function ||.|H defined on #, as in 3.7.12, is a norm on H. It
suffices to show its subadditivity which it can be obtain from continuity of
inner product. The completion of a super pre-Hilbert space is a Hilbert space.

We have already noticed above that the physical transition amplitudes are

given by the body of the inner product of a Hilbert A module. This gives rise

to the following definition.

Definition 3.7.7. Let H be a super Hilbert space. An element z € H is
called physical if (x,z)p # 0. An element g € H with ¢ # 0 and (g, 9)p =

is called a ghost.

2Tn the next chapter we will see that by using the theory of Riesz spaces on Gramann
algebra, in particular, Hilbert A-modules behave exactly as Hilbert C*-modules, i.e, the
positivity of inner product holds. Also we shall prove the Cauchy-Schwartz inequality in
general which implies the continuity of inner product on a pre-Hilbert A-module.
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Example 3.7.1. Let n be finite. The Graffmann algebra A, endowed
with the mass norm || - || becomes a super Hilbert space with the inner product
(-,-) given by

(p, q) = x[p*[q]] (3.7.16)
for all p,q € A,, where x denotes the Hodge star operator. First we want see

explicit version of this inner product. Let p,q € A, with following representa-

tions:

P = pBl + Z pml,---,mkfml T gmka

(ma s ;my) €My

and

QZQB1+ Z qml,---,mkgml fmka

(i, mp)€ My

Then according to action of Hodge star operator we will have

A =Tpl+ Y Tyl -

(m1,-,my)EMn
such that (my,...,mg,ml,...,ml ) is an even permutation of (1,...,n). On

the other hand

prld= D> D DD pon) e ol Totmens), - otme)

(mq,,mE)eEM? k=0 o
fml Tt gmkgkarl o fmra

where the sum »' runs over all permutations o of (my,...,my) such that

a

(o(my),...,0(m,)) € M? where M? is as in 8.7.4. The action of Hodge star

operator on this element can be shown as

pxldl= Y DD DI ot otmBotm), - otme)

(m17"'7mk)€M19L k=0 o
gml e gmkgmlﬁ_l t 'gmr-

The submultiplicativity of the mass norm implies

1o, )| < [lpllllqll
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for all p,q € A,,. By considering to the inner product 3.7.16 we see that
@a)s=+gx[dls=les+ D ltmim, ™
(11 ymp )€ Mn

It is easily seen that if {(q,q)p = 0 then q¢ = 0 which this implies that A,
satisfies the strong definiteness condition. Also we can check all conditions of
definition 3.7.1, for the inner product 3.7.16. Now it remains to check that the
inner product is continuous and this obtain easily from the continuity of Hodge
star operator.

More general super Hilbert spaces can be constructed by building the tensor
product A, ® $ of A, with a complex Hilbert space $. The inner product of
A, ® 9 is given on simple tensors by (p@ p, qRY) = (p, q){p, V), for p,q € A,
and @, € 9, and extended to arbitrary elements of A, ® $ by linearity and
continuity. We omit the details of the construction as a more general example

will be given below in Fxample 3.7.5.

Example 3.7.2. Consider a measure space (X,<2), where X is a set and
Q a o-algebra of subsets of X, endowed with a o-finite measure j. FEvery

function f: X — A, can be expanded as

f(ZL') = fB(x) + Z fml,---,mk (x)fml te 'gmka

(ma - my ) EMn

with complez-valued functions fp : X — C and fo,...m, : X — C. We

k

restrict ourselves here to the case that n is finite. Now consider the set E of

all functions f : X — A, such that fp and all fp,, .. m, are square integrable

k

with respect to p. This requirement is independent of the basis chosen. We

define a A, -valued inner product on E by

(f.9) = / F ()" g(a)dp), (3.7.17)
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for all f,g € E. This inner product can be explicitly rewritten as follows. Let

f, g € E which have representations as:

f(l') - fB(x)l + Z fml,---,mk (x)fml te 'fmka

f*(l') - fB(x)l + Z f_ml,---,mk (x)fmk o 'gmla

fml o gmkgkarl o 'fmra

where M is as 3.7.4. Now we have

(f.9) = / 7 (@)g(@)dp(z) =
S S| / Fotoms) e ) () s ey ()]

(m1,~~~,mk.)EM8 k=0 o
gml e gmkgmlﬁ_l t 'gmr

and we can see easily that

(f, f)= Z ZZ 1) 597 / | fotma ), o(mn ()2 dp]

(mlﬁ ° ,mk)eMO k=0 o
s Emimpns = Eme-

If A, is furnished with the Rogers norm |- |1, then define

I1:= \/ J T R CX AT

M) EMO

Further let N :={f € E|||f|| = 0}. It is easy to see that Equation 3.7.18 de-

fines a norm on EJN and that E/N equipped with the norm (3.7.18) becomes
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a super Hilbert space®. Indeed, let f,g € E, then

|<f7g>|1 - Z ZZ,(_]‘)Sgn(U)/f;(ml),---,U(mk)gg(mk+l)""7U(m7‘)d'u

(my,- mp)eMQ k=0 o

Z ZZ,/ |fU(m1)""7U(mk)| |gg(mk+l)a"'7g(mr)

(mlﬁ.“)mT)EMg k=0 ¢

S Z ZZ, |:/ |f0(m1),---,a(mk)|2d/l'/|ga(mk+1),~~~,a(m,)|2d/$:|

(mq,,mp)eMQ k=0 o

< [If1llg]

IN

dp

Y

where the sum Z; in the first three lines runs over all permutations o of
(1, my) such that (o(my), -, o(my)) € MY and (o(misr), -+, o(imy) €
M. If we replace (3.7.17) by (f,g) = [ *[f(x)]g(z)dp(z), a similar argument
holds.

Example 3.7.3. Forn infinite we also can make A7 a super Hilbert space
by defining an appropriate inner product. For simplicity we assume that the
set of all generators is countable {&; }ien. The generalization of the following
to the situation where the set of generators is uncountable is obvious. First of
all we observe that the inner product (3.7.16) is not well-defined as the Hodge
star operator is not defined on A% This difficulty can be overcome by suitably
imbedding A2 into the direct sum A7 @ A of two copies of AT.. The basic
idea is to introduce the formal infinite product of all generators s = [, &
We do not make any attempt to give a precise meaning to this infinite product
of Grafgmann numbers and just introduce &5 as an auxiliary object which has
certain properties we would expect from the product of all generators of the

Grafimann algebra. Namely, we require that ¢~ = qpés for all ¢ € AZ.

3 It is important to note that the norm 3.7.18 is not induced from the inner product 3.7.17.
Although it may be preferable to have a norm induced by the inner product, but Rudolph’s
intention with his paper was to provide a general framework for super Hilbert spaces that
may arise in theoretical physics. For that reason he wanted to be quite general and not too
restrictive. Therefore he also allow super Hilbert spaces where the norm is not induced by
the inner product and current example is as an example for such a situation.
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Analogously we define cofinite products of the generators of the Graffmann
algebra, i.e., infinite products obtained from &, by removing at most finitely
many terms in the product. E.g., the infinite product Hi?él & of all generators
except &1 1s denoted by 51 = 8%1500. We require

0 0 0 0

06,0¢;  9€; 06
and &éz =&y and &% = —a%_fi, for all i # j. Moreover we require & to be
even. Therefore the algebra x[AT] generated by the a%- and 1 s isomorphic to
AT

Now we are able to define the action of the Hodge star operator on AZ by

setting
. . 0 0
A =apéa+ > G g G (3.7.19)
(m1,-+,mp)EMoo mg my
for all ¢ € AZ. Moreover, we require x[x[q]] = q, for all q. The algebra

generated by the a% is isomorphic to AT with the isomorphism given by the
Hodge star operator (3.7.19).
The inner product (p,q) = x[p[q]], for all p,q € A% is now well-defined.

Notice that although %[q] ¢ AT for all ¢ € A

[oops

the inner product satisfies
(p,q) € A if p,q € A. Since, by virtue of the properties of the mass norm,
we also have ||[(p, Q|| < |Ipllllg|| for all p,q € A and since
@as=lasl’+ D gl
(ma,-mr)EMn
we see that A" with the inner product (3.7.16) is a super Hilbert space satis-

fying the strong definiteness condition.

Example 3.7.4. x[A] can be made a super Hilbert space (over A7) by
setting

(p,q) = *[plq,
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for all p,q € x[A] (when we identify & formally with 1 € C). Obviously

*[AZ] satisfies the strong definiteness condition.
Recall the following definition.

Definition 3.7.8. Given normed spaces U, V', a norm con U ® V' is said

to be a cross-norm if c(u ® v) = ||u||||v]|(v € U,v € V).

Example 3.7.5. We are now going to construct the tensor product of
two super Hilbert spaces Hi and Hy. We denote the inner products on Hy and
Ho by (-,-)1 and (-, -)s respectively, and the norms on Hy and Hy are denoted
by || - |l1 and || - ||2 respectively.

The algebraic tensor product Hi ®qiq Ho of Hi and Hy is defined as usual
as the set of all finite sums of the form Y .p; ® ¢; with p; € Hy and ¢; € Hs.

We define a function pn on Hi ®qg Ha by

pi(t) := inf {Z 1pill1llgll2 [t = Zpi ® g } : (3.7.20)

8 a cross norm on Hy Qqq Ho and the completion of Hi ®qg Ho with respect

to pu is a Banach algebra which we denote by "y ®,, Ho (for a proof, see, e.g.,
Proposition T.3.6 in [{6]). The inner products on Hy and Ho induce an inner

product on Hi Qag Ha given by

(a,b) = Z<piatj>1 ® (gi, 55)2

1]
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ifa=3,pi®qg andb=>3";t;®s;. As
p(a, b)) = inf{2||cz||1||dz||2 <aab>=ZCz®dl}
! I

restr.inf »  [[(pi, t3)1ll1 (> 5720l
i

IN

IN

restr.inf Y [Ipilllaillzlitj 115512
ivj

= restr.inf <Z||pz”1||qz”2) <Z||t]||1||8]||2>
= p(a)u(b),

where the infimum in the first line runs over all possible decompositions of
(a,b) as sums over elementary tensors, whereas the ‘restricted infima’ in the
following three lines run over all decompositions of a and b into sums of ele-
mentary tensors. Consequently the inner product p1 on Hy®aqqHs is continuous
and can be extended to the completion Hi @, Ha of Hi Qag Hao. We denote
this extension also by p. Therefore Hi ®, Ha is a super Hilbert space when
endowed with the norm .

When both H, and Hsy satisfy the strong definiteness condition, both H,
and Ho are pre-Hilbert spaces with respect to the body of their inner products.
Therefore also the body pg of 1t is a complez-valued scalar product on Hi®q19Ho
and, by virtue of the Cauchy-Schwartz inequality, ug can be extended to a
complez-valued scalar product fip on Hy ®, Ha. fip obviously coincides with
the body of the extension of jn to H1®,Hs. Therefore we conclude that H,®,Hs
s a super Hilbert space satisfying the strong definiteness condition.

In Section 6 we shall be interested in the case Hy = AT and Hy = % [AT].
The norm fi, arising from the mass norms on AZ and x[A7] via Equation
3.7.20 is called the mass norm on A2 ®, *[AZ]. It follows from our
discussion above that A7 ®,, *[AZ] is a super Hilbert space satisfying the

strong definiteness condition. We shall see in Section 6 that in the functional
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Schrodinger representation of spinor quantum field theory the super Hilbert

space AL ®,,,. = [AL] arises naturally as the quantum theoretical state space.

Proposition 3.7.4. Let H be a super Hilbert space and T : H — H be an
adjointable operator. Then T and T™ are bounded with respect to the operator

norm

17| := sup{ | T[] | [l]| < 1} (3.7.21)

If Equation 3.7.12 holds, then ||T|| = ||T*||.

Proof. Let z),x,y € H, such that vy, — = and Tx) — y. The inner product

of a super Hilbert space is separately continuous in each variable. Thus
0= (T"e,xy)—(T"e,x)) = (e, Tx))— (T e,x)) — (e,y)—(T"e,x) = (e, y—Tz),

for all e € H. Putting e = y — T'x implies y = Tx. The boundedness of T" and
T* follows now from the closed graph theorem. As ||Txz||? = |[(T*Tx,z)| <

17Tl < IT*[ITNllz]]?, we find [T]} < ||| But then also ||T*|| <

O

17 = IT1l-
A similar argument proves

Proposition 3.7.5. Let H be a super Hilbert space satisfying the strong
definiteness condition and T : H — H be a weakly adjointable operator. Then
T and T are bounded with respect to the operator norm in Equation 3.7.21

and with respect to the norm
||l := sup{|(Tz, Tz)p|"? | |l]] < 1} (3.7.22)
and || Ty = |1 T7]|.-

Proof. The boundedness of T and TT with respect to the norm in Equation
3.7.21 follows as in the proof of Proposition 3.7.4. The boundedness with

respect to || - ||, follows from ||¢||g < ||¢|| for all ¢ € A. O
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Proposition 3.7.6. Let H be a super Hilbert space. When equipped with
the operator norm (3.7.21) B(H) is an involutive Banach algebra with contin-

wous involution.

Proof. Tt is easy to see that (3.7.21) defines a norm on B(#H). The operator
norm is clearly submultiplicative. It remains to show that B(?) is norm com-
plete. If (T},)nen is a Cauchy sequence of adjointable operators, then (7,2),en
and (T x)nen are Cauchy sequences in H for every € H. We call the limits
Tz and Tx respectively. Since (y, Tz) = lim(y, T,x) = lim(T}'y, ) = (Ty, z),
we see that T is adjointable and T* = T. This shows that B(#) is norm
complete. From ||T,, — T|| = ||T,y — T*|| it is easy to see that the involution is

continuous. O

3.7.5 Physical observables

Definition 3.7.9. Let E be a Hilbert A module and T € B, (F). Then
we say that a GraBmann number ) is a spectral value for T" when T'— Al does
not have a two-sided inverse in B,,(FE). The set of spectral values for T is called
the spectrum of 7" and is denoted by sp(7"). The subset sp(T) :=sp(T)NC

is called the complex spectrum of 7T'.

It is well-known that a Gralimann number ¢ € A,,, n finite, has an inverse if
and only if its body ¢p is nonvanishing [10]. Therefore the following proposition
that the spectrum of a bounded module map 7" on a Hilbert A,, module, n

finite, is fully determined by the complex spectrum of 7" is not surprising.

*As we saw in 1.1.3, the set of all adjoitable operators on Hilbert C*-modules forms a C*-
algebra and we know that proving the C*-condition needs the Cauchy-Schwartz inequality.
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Proposition 3.7.7. Let E be a Hilbert A,, module, n finite, and T €
B, (FE) be a Hilbert module map. Then X\ € sp(T) if and only if g € spe(T).

Proof. : Let A ¢ sp(T). Then T — AI has a two-sided inverse in B, (F),
denoted by T’} . Evidently Ty ! is a module map. Now let s be a GraBmann
number with vanishing body. Then T}, | := (302 (=T, 's)") Ty ! is a left
inverse for T—(\—s)I and T/(_187R =Ty (0 o (=sTy 1)) is a right inverse for
T —(A—s)I. Both sums are actually finite. This follows from the bodylessness
of s and from the fact that T, ! is decomposable into an even and an odd part:
' = T/\’,& + T/\’l1 Therefore the left and right inverse exist for all s € A,
with sp = 0. As T;js,L (T — (A= 9)I) T;_IS,R = T;_IS,R = T;js,L the left and
right inverse coincide. This proves that A ¢ sp(T) implies A — s ¢ sp(7T') for

all s € A,, with sz = 0. O

Example 3.7.6. Consider A,, endowed with the inner product (3.7.16).
Let &, .-+ ,&, denote the set of generators of A,,. Consider the module map
51 A, — An,flq = &1q. Obuviously 0 is the only complex spectral value
of fl and, as fl — sI does not have an inverse for all bodyless s € A, all
Graffmann numbers with vanishing body are spectral values for él. The ele-

ment & -+ &, € Ny, is an “Figenstate” for él for any bodyless spectral value:
E1&1 & =86 & =0, for all s € A, with sy = 0.
Definition 3.7.10. Let H be a super Hilbert space. A physical ob-

servable on H is a weakly self-adjoint operator O : H — H.

Proposition 3.7.8. Let H be a super Hilbert space and let H be the
Hilbert space from Proposition 3.7.2. Then there exists a * homomorphism ¢
from B,(H) N L(H) (equipped with the norm || - ||,) into the C*-algebra B(H)

of bounded operators on H.
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Proof. : Let N := {x € H|[(z,z)p = 0} and let T € B,(H). For n € N we
have by virtue of Lemma 3.7.1: |(Tn,Tn)p|? < (T'Tn,T'Tn)p(n,n)p = 0.
Thus T'(N) € N. This shows that every T' € B,,(H) induces a bounded linear
operator on H /N which we denote by ¢(T) via ¢(T)(z+N) := T'(x)+N. The
operator ¢(T') can be uniquely extended to a bounded linear operator ¢(7T") on
H (compare, e.g., Theorem 1.5.7 in [18]). Obviously, the correspondence ¢ is
linear, multiplicative and satisfies o(TT) = p(T)* and ¢(I) = Iz, ie., pisa *

homomorphism. O

Proposition 3.7.9. Let H be a super Hilbert space satisfying the strong
definiteness condition. Then the * homomorphism ¢ from Proposition 3.7.8 is
an isometric isomorphism from By, (M) to the C*-algebra B(H). Hence By, (H)

is a C*-algebra with norm ||T |y, := sup{|(Tz, Tx)p|"/?|||z|| < 1}.

Proof. : This follows, e.g., from Theorem 1.5.7 in [18]. O
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Chapter 4

GENERALIZED SUPER
HILBERT SPACE
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4. GENERALIZED SUPER HILBERT SPACE

4.1 Introduction

As we saw in previous chapter, in defining of super Hilbert space, some au-
thors restrict themselves to positivity of body of Grafimann number valued
inner product. The induced spaces have many applications which more fully
discussed in related papers. In fact we can say that, most of ideas in defining
of super Hilbert space are revealed by necessity and so some mathematical
structures are ignored. But we wish to have not any restriction. Also we wish
our work be a generalization of ordinary mathematics.

The aim of present chapter is devoted to two purpose. First we want to work
with the algebra of supernumbers, in general, instead of the Gralman algebra.
The second purpose is extending the positivity of body of inner product to

positivity of inner product in ordinary meaning.

4.2 Some definitions

We saw in chapter 2 that the finite and infinite dimensional o-commutative
G-graded algebras are Riesz spaces and Banach lattices with some order con-
tinuous norms. Also by using the method of functional calculus on them we
obtained a new multiplication on A which makes it to be a Riesz algebra. Also
we proved that the Riesz algebra of supernumbers is a commutative Banach
algebra with respect to this new multiplication. Therefore we can use the su-
pernumbers freely. They behave as ordinary numbers and have unit element,

inverse and other characteristics of ordinary numbers.
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During of present chapter we assume the letter A denotes the Riesz algebra
and Banach algebra of supernumbers. For giving some examples we need the
following definitions which can be fined in [24].

Let I ={1,...,p,p+1,...,p+ q} be a G-set such that g(i)are even for
i=1,...,pand odd fori =p+1,...,p+¢q. Let X = A; = @Ag(i) be the
direct sum of Ag;). The X is a Banach space by the product to;)E()Ilogy induced
from A and is called superspace over A.

For a point z = (z(]i € I) in a superspace X, b(z) = (b(z®")|i € I) and
s(z) = (s(z™)|i € I) are called the body and the soul of z, respectively. Let
U be a (connected open) domain of X. Here b(U) = {b(z)|z € U} is called

the body of U. Then b(U) is contained in the even part
Up={(zW,..., 2@ 0,...,0) (W,..., 2@ 20+D 2r+0) c}

of U.

Let (zM), ...,z 0,...,0) be in b(X). Then z = #Pu,; for some 2 € F.
The mapping ~ which sends x to the point & = (i(l), . ,i(”)) is a homeomor-
phism of b(X') onto the (real or complex) p-dimensional space F¥. For a domain
V of b(X),V = {&|z € V} is a domain of F?. We sometimes write the odd coor-
dinates x(P+9) as
¢U) and express a point of X as (z,&) = (zM,... 2@ M £@) in or-
der to distinguish between the even and odd coordinates.

Let U be a domain of X. Here AY denotes the set of functions( superfields)
on U which take their values in A. A function f € AY is said to be homoge-
neous of grade o € G, if f(z) € A,, for all z € U. Thus AY is naturally a
o-commutative GG-graded algebra over .

For a domain V of b(X), AY also denotes the set of A-valued functions
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defined on V. A function f € AY is written uniquely as
F@) =Y fan@ua®Var  (@eV) (4.2.1)
o, M

where o € Gy, M C L, and f, p(x) € F. The functions fa,M, which are defined

by fa,M = fam(2) for x € V, are F-valued functions on the domain V.

4.3 Generalized super Hilbert space

In present section we consider the structure of Riesz algebra of supernumbers
with defined Riesz norms on it. It is obvious that the A is considered as an

algebra over real or complex field.

Definition 4.3.1. A generalized Super pre-Hilbert space(GSpHS)

isa GSM E = @ E, equipped with an A-valued mapping (,): Ex E — A
which is C—linea:erositive definite and Hermitian form. In fact it has the
following conditions:

(i) (x, 11 + y2) = (z,y1) + (z,y2) and (1 + z2,y) = (x1,y) + (X2, y)for all
T, L1, T2, Y, Y1, Y2 € F

(i) (z, cy) = (z,y)c and (cz,y) = ¢(x,y) for any z,y € F and ¢ € C;

(iii) (z,y) = (y, ) for any z,y € E;

(iv) (z,z) > 0in A for any z € F and if (x,z) = 0 then x = 0.

An element = of GSpHS E = € E, is called homogeneous of grade
e

a € Gifr € E,. Also any x € E can be written uniquely as x = Y x, where
e

Tq € E,. Now we prove the following famous lemma.

Lemma 4.3.1. Cauchy-Schwartz Inequality
If E is a GSpHS and x,y € E, then

Kz ) < e ) Ky, ).
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Proof. 1f (x,y) = 0, this is trivial. If (x,y) # 0 the inequality follows from the
positivity of Ac-valued inner product. We have the following inequality for

any a € A.

0 <(z+ay,z+ay) = (z,r) + alz,y) + aly, z) + aaly,y)

Now by letting a = ﬁ and taking norm we will have

0< (na)— 0@ Eey) @)y

1y )l 1y, v) ] 1<y, )|

and so

Kz I < Nz, ) Ky, ).

O

We can define some real valued norms on E by using the different norms

of A. If || || 4 denotes the norm of A, then for any = € E,

211 = [z, 2)]|.4 (4.3.1)

defines a norm on E. Unlike equation 3.7.12, this is naturally like as the theory
of Hilbert C*-modules and we can see easily the subadditivity property by using
the Cauchy-Schwartz inequality. It is important to note that Cauchy-Schwartz
inequality yields automatically the continuity of inner product with respect to
its components. As some examples for equation 4.3.1, for any 1 < k£ < oo and
x € E define

el = Iz, 2)]1; (43.2)

If m denote the mass norm on A then for any z € F we can have

m(z) = m((z, )2 (4.3.3)
We know from 2.2.14 that for strong order unit 1 € A the equations
P(a)=inf{reR : —rl<a<rl} (4.3.4)
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and
PP(a) = waPy (an) (4.3.5)
define an M-norm on A in the finite and infinite dimensional cases respectively.

Therefore if use them for A, we will obtain new norm on F.

Definition 4.3.2. Let E be a GSpHS and | || a norm on it. Then E'is
said to be generalized super Hilbert space(GSHS) if F is complete with

respect to its norm.

As a trivial example, the finite dimensional o-commutative G-graded alge-

bra A over F(R or C) is a GSHS with inner product defined as

b> = Zaa,Mba,Mua & Um (436)
a,M

Example 4.3.1. Let X be a superspace over A and U be a domain of
b(X), the body of X. Any f € AU has the form of 4.2.1. Define an inner

product on AV as follows

(f,9) = Z )Gt () e ® Vpr (4.3.7)

where f,g € AV as we saw above. It is easily seen that AV is GSHS.

Example 4.3.2. Let W be a subset of U C b(X) such that W is a
measurable subset of RP. Let f € AY be integrable on W, that is, all me are

integrable on W . According to definition 4.5 of [24] we have

/Wf(x)dx = /f W PNz . dg®) (4.3.8)

_ / Fart(ED L FPYaED | g (0 © o).

Denote by A%, the set of all integrable superfields f € AV over W. This set

is subspace of AV and also is GSM. We equip it with following inner product
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which make it to be GSHS. For this let f,g € A%, and define

= Z[/ }”ayM(;zﬂ) BN G (D 2P dEW L dE P (ug @ vyy).
w

(4.3.9)

Example 4.3.3. Here we consider graded tensor product of two GSHS.
Let Hy and Hy be two GSHS equipped with inner products (,)1 and (,)

respectively. Hy and Hy are G-graded A-modules. Therefore Hy = € H1 and
BEG

= @ H2 which Hj and H? are subspaces of Hy and Hy respectively for
yeG

any B € G and v € G. We can restrict inner products {(,); and {,)s to Hé

and Hg respectively which make them to be ordinary Hilbert spaces. Therefore

the algebraic tensor product Hé ® H3 can be define in a natural way for any

B,v € G. The graded tensor product of Hy and Hy is defined by

H, &, H, = P( P (Hje HY))

aceG f+y=«

which is also GSM over A. Now let hy, ki € H, and ho, ko € Hy. We have

B ST TR SIS SIS It

BeG BeG YEG vEG
where hé,ké € Hé for any B € G and h?y,kg € H2 for any v € G. The inner
product

(hy @ b2, ks @ k2) = (hp, kg) (h2, k2)
makes Hé ®H§ to be Hilbert space for any B,v € G. Now define inner product
on Hy ®g Hy as follows:
(hi@ha ki @ks) = > > (hh®h2, k@ k)

a€CG B+y=a

= D 2 (i k)l ).

o€l f+y=a

By this inner product the graded tensor product of two GSHS will be GSHS.
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4.4 Linear operators

Definition 4.4.1. Let F and F be two GSHS. An A-linear map
T : FE — Fis called an operator on E into F. A-linear means that
(1) T(x+y) =Tx+ Ty for any z,y € E;
(2) T(ax) = aTz for x € E and a € A,
(3) T(xa) = o(a, )T (x)a for any x € E, and a € Ag and o, 5 € G.

Moreover T is called grade preserving if TE, C F, for any a € G. For
brevity we shall usually say operator instead of A-linear operator and otherwise
we shall say explicitly. Evidently the set L(E, F') of all operators from F into
F is a vector space and the set of all grade preserving operators of E into F
is a subspace of it which we denote by L,,(E, F).

Now T : E — F is said to be homogeneous of grade o € G if
T(Eg) C Foyp for all § € G. Let Lo(E, F) denote the subspace of L(E, F)
consisting of all homogeneous operators of grade «. By defining L, (E, F) =
@D L.(E, F), we obtain a G-graded vector space(GSV). Note that L, (E, F')
;lseiqual to L(E, F) if E, = {0} and F, = {0} for all but a finite number of
degrees [43]. Since at first we assume that G is finite group, then we will have
the equality. Therefore every operator T' € L(FE, F) can be written uniquely
as T = E:GTQ which T, € L,(E, F) for any «. If E = F then the G-graded

ac

vector space L(F, F), will be denoted by L(E), equipped in addition with the

usual multiplication(i. e., composition) is generalized superalgebra(GSA).

Definition 4.4.2. An operator 7' : E — F' is called unitary if
(Tz,Ty) = (z,y) (4.4.1)
for all z,y € E. Also an operator S : E — F is called weakly unitary if

b({Tx, Ty)) = b({, y)) (4.4.2)
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for all z,y € E. An operator T': E — F' is called graded unitary if

(T, Ty) = o(a, B){z, y) (4.4.3)

forall x € E,,y € Eg and o, 8 € G. It is called weakly graded unitary if

b((Tx,Ty)) = (e, B)b({z,y)) (4.4.4)
forallx € E,,y € Eg and o, 8 € G.

Definition 4.4.3. Let E be a GSHS. An operator T' € L(F) is said to

be adjointable if there exists an operator 7% : E — E satisfying
(v, Ty) = (T"z,y) (4.4.5)

for all x,y € E. Such an operator 7™ is called an adjoint of 7" and 7T is called
self adjoint if 7" = T*. We have the following properties:

(i) (aTy + bTo)* = aTy + bTy ;

(ii) (Tyz, Toy)* = (Tyw, Tiy) ;

(i) (T) = T,
for any T,T) and T, in L(E). The set of all adjointable operators will be
denoted by B(E).

An operator S : E — F is said to be weakly adjointable if there is an

operator S; : E' — E satisfying

b({z, Sy)) = b({S,,2,)) (4.4.6)

for all z,y € E. Such operator is called weak adjoint of S. If S; = S then

it called weakly self adjoint. The set of all weakly adjointable operators is
denoted by B (E).

Definition 4.4.4. An operator 7" on E is called generalized super

adjointable(GSa) if there is an operator T : F — E satisfying

(0, Ty) = o(a, B){Tw,y) (4.4.7)
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forallz € E,,y € Eg and o, 8 € G.

A homogeneous operator T of grade « is called self GSa if T = o(a,a)T.
We have the following properties:

(i) (aTy + bTy) = @l + bT for any Ty, Ty € L(E) and a,b € A;

(ii) (Tlx:T2y> = o(a, B)(Tyx, Tyy) for all homogeneous operators Ty, Ty of

grade a, [ respectively;

(iii) T = o(a, )T for homogeneous operator T of grade a € G.
The set of all generalized super-adjointable operators on E will be denoted
by Bgsq(E). Also an operator T' is weakly GSa if there exists an operator

Ty : E — FE satisfying

b({z, Ty)) = o(a, B)b({Twr,y)) (4.4.8)

for all z € E,,y € Eg and o, 3 € G. The set of all weakly GSa operators is
denoted by B¥g,(F). A homogeneous operator T of grade « is called weakly

self-GSa if T, = o(a, a)T. Evidently we have the following inclusions:
B(E) - Bw(E) & BGSa(E) - BZSG(E)

Definition 4.4.5. An adjointable or GSa operator T is called positive
operator if (Tz,z) > 0 for all z € E. It is called weakly positive if
b((Txz,z)) > 0 for all x € F, and strictly positive if (T'z,z))0 for some

zeFl.

Proposition 4.4.1. Let H be o GSpHS and T : H — H be an ad-
jointable operator. Then T and T* are bounded with respect to the operator

norm

1T = sup{[|T=[] | [lf <1} (4.4.9)

and B(H) is a C*-algebra.
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Proof. Let x,,x,y € H, such that xr, — x and Tz, — y. The inner product

of a GSpHS is separately continuous in each variables. Thus
0= (T"¢e,x,) — (T"e,x;) = (e, Tx;) — (T"e,x,).

Therefore
(h,yy — (T*h,x) = (h,y — Tx) for all h € H.

Let h = y — Tx, then (h,y —x) = 0 implies that (y — Tz,y —z) = 0. So
y = Tx. The boundedness of T" and T follows from the closed graph theorem.
Submultiplicativity of operator norm is easy. According to Cauchy-schwarz

inequality we have ||T|| = ||T*|. Since
IT2|* = (T2, Tx)|| = [(T*Tx, )| < |(T*Tz, T*Tx)|[|[{z, 2)|] < (4.4.10)

1T Ta[[l]| < 7T < (7T

Then ||T|| < ||T*||. Also we can have ||[T*|| < |[|T*| = ||T]|-

To establish the C*-equation, use submultiplicativity of operator norm to
get |T*T|| < IT*|IIT|| = |IT||>. On the other hand 4.4.10 implies that also
IT||> < |IT*T||. Tt remains to show that B(H) is norm complete. If (T7,)nen
is a Cauchy sequence of adjointable operators, then (7,2),eny and (T x)pen
are Cauchy sequences in H for € H. We call the limits Tz and Tx respec-
tively. Since (y,Tz) = lim{y, T,z) = lim(T}*y,z) = (Ty,x), we see that T
is adjointable and T* = T. This shows that B(H) is norm complete. From

T, — t|| = ||T;F — T*|| it is easy to see that the involution is continuous. [

Proposition 4.4.2. If E be a GSpHS and T be an adjointable operator,
then T is self-adjoint if and only if (Tx,z) € Re(Ac) for all x € E.

Proof. It T is self-adjoint then (Tx,z) = (x,Tz) = (Tx,x) hence (Tx,x) €
RG(A@) .
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For converse, assume that (T'z,z) € Re(Ac) for any = € E. If ¢ € C and

x,y € F, then
(T(x+cy),xz+cy) = (Tz,z) + c(Tx,y) + Ty, x) + cc(Ty, y) € Re(Ac).

So this expression equals with its conjugation in Ac. Using the facts that

(Tz,z) and (Ty,y) are in Ac yield

ATx,yy +(Ty,z)y = ¢&(Tx,y)+ c(Ty,x)
= Wy, Tx)+ c(x,Ty)

= Ty, z) + (T z,y)
By first taking ¢ = 1 and ¢ = i, we obtain two equations:
(Tz,y) + (Ty,z) = (T"y,x) + (T"x,y)

i(Tx,y) —i{Ty,x) = —i{T"y,x) +i{T"x,y)

A little arithmetic implies (T'z,y) = (T*z,y), and so T = T™*. O

154



ABSTRACT AND TITLE
PAGE IN PERSIAN

155



Bibliography

[1] A. Abdollahi and M. Bashour,Riesz Supernumbers , Submmitted.
[2] —— The Riesz algebra of supernumbers, Submmitted.

[3] ——— An introduction to Riesz space of Supernumbers , 32th Irinian

Mathematics conference, Mazandaran university, 27-30 August 2001

[4] ——— , More about Riesz space of supernumbers,12th seminar of Math-

ematical Analysis and its application, Gilan university, Feb. 2002

[5] M. Bashour, An introduction to supernumbers;,11th seminar of Mathe-

matical Analysis and its application,Yazd university, 3-4 Feb. 2001
6] F.A. Berezin ,The Method of Second Quantization, Academic Press,1966

[7] ——— Introduction to Superanalysis, D.Reidel Publishing Com-
pany,1987 (English Edition).

[8] F. Beukers, C.B. Hujsmans and Ben de Pagter, Unital embedding and
complexification of f-algebras, Math. Z. 183(1983)131-144.

9] J.B. Conway , A Course in Functional Analysis, second edition ,Springer-

Verlag,1990
[10] B. Dewitt, Supermanifolds, 2nd ed. Cambridge University Press, 1992.

[11] A.M.El Gradechi,L..M.Nieto,Supercohrent States,Super Kihler Geometry
and Geometric Quantization.Commun.Math.Phys.175(1996)521-564

[12] H.Federer,Geometric Measure Theory, Berlin,Springer,1969

[13] D. H. Fremlin, Topological Riesz spaces and measure theory, Cambridge:
Cambridge University Press, 1974.

156



[14] C. B. Huijsmans and B. De Pagter, Ideal theory in f-algebras. Trans.
Amer. Math. Soc. 269(1982)225-245

[15] C. B. Huijsmans and B. DE Pagter, Ideal theory in f-algebras, Trans.
Amer. Math. Soc. 269(1982)225-245

[16] C. B. Huijsmans, An inequality in complex Riesz algebra, studia Sci.

Math. Hungar 20(1985)29-32.
[17] V. Kagc, Lie superalgebras, Adv. math. (1977)11-90

[18] Kadison, R.V., Ringrose, J.R.,Fundamentals of the Theory of operator
algebra, Academic Press,1983

[19] P. Kirwan, Complezification of multilinear and polynomial mappings on

normed spaces, phD Thesis, Waterford Institute of Technology

[20] A.Yu.Khrennikov , Functional Superanalysis, Russian math.survay

43:2(1988)103
[21] ——— The Hilbert Super Space, Sov.Phys.Dokl.36 (1991)759-760

[22] —— Superanalysis(English Edition) Kluwer Academic Publishers,
Dordreht/Boston/London 1999.

[23] Y. Kobayashi and S. Nagamachi, Lie groups and Lie algebras with gener-
alized supersymmetric parameters, J. Math. Phys. 25, 3367 (1984).

[24] ——— Analysis on generalized superspace, J. Math. Phys. 21, 2247
(1986).

[25] ——— Generalized complex superspace-Involution of superfields, J.

Math. Phys. 28, 1700 (1987).

[26] E.C. Lance, Hilbert C*-modules. London Mathematical Society Lecture
Notes Series 210.Cambridge:Cambridge University Press,1995

[27] D.A. Leites, Introduction to the theory of supermanifolds Russian. Math.
Surveys. 35:1(1980), 1-64.

[28] W. A. J. Luxemburg and A. C. Zaanen,Riesz Spaces I, North-Holland
Mathematical Library,1971.

157



[29] I.L. Martin,Proc.Roy.Soc.A251(1959)536.

[30] Gerard J. Murphy,C*-algebra and operator theory, Academic Press,
INC,1990

[31] S. Nagamachi and Y. Kobayashi, Usage of Infinite-Dimensional Nuclear
Algebras in Superanalysis, Lett. Math. Phys. 14 (1987) 15-23.

[32] — Hilbert Superspace J.Math.Phys.33(1992)4274-4282

[33] M.A. Naimark, Normed Algebra, Wolters-Noordhoff Publishing Gronin-
gen, The Netherland, 1972(English Edition)

[34] P.M. Nieberg, Banach lattices, Springer verlag 1991

[35] K. Nishiyama, Characters and super-characters of discrete series represen-

tations for orthosymplectic Lie superalgebras, J. Algebra 141(1991)339

[36] A. Rogers, A Global Theory of Supermanifolds, J.Math.Phys.
21(1980)1352-1365

[37] ——— Graded manifolds, supermanifolds and infinite-dimensinal Grass-

mann algebras, Comm. Math. Phys. 105(1986)375-384.

[38] O. Rudolph, Super Hilbert Space, Commun.Math.Phys. 214(2000)449-
467

[39] Christian Smann, A New Representation of the Supersymmetric Fock
Space by Using Supermathematics, Thesis of Master of Arts, The Uni-

versity of Texa at Austin

[40] B. F. Samsonov, Supersymmetry and Supercohrent States of a Nonrela-

tivistic Free Particle. J.Math.Phys.38(1997)4492-4503

[41] H.H.Schaefer,Banach lattices and positive operators, Springer-Verlag, 215,
1974.

[42] M. Scheunert, W. Nahm and V. Rittenberg, Graded Lie algebras: Gener-
alization of Hermitian representations, J.Math.Phys, 18(1977)146

[43] M. Scheunert, Generalized lie algebras, J.Math.Phys, 20(1979)712.

158



[44] T. Schmitt, Supergeometry and hermitiean conjugation J.Geom.Phys.
7(1990)141-169

[45] F. Treves, Topological vector space, Distributions and Kernels. Academic

Press (1967)

[46] N.E. Wegge-Olsen, K-Theory and C*-Algebras. Oxford University
Press, 1993

[47] L. Venter, A multiplication inequality in complex Banach lattice algebras,

Qua. Math. 8(1985)275-281.

[48] V.S. Vladimirove and I.V. Volovich, Superanalysis , Soviet Math. Dokl.
28(1983)558-562.

[49] ——— Superanalysis I, Theoret. and Math. Phys. 59(1984)317-335.
[50] ———— Superanalysis II, Theoret. and Math. Phys. 60(1984)743-755.

[51] H. Whitney, Geometric Integration Theory, Princeton,New Jersey: Prince-
ton University Press, 1957 .

[52] Yau-Chuen Wong and Kung-Fu NG, Partially ordered topological vector
spaces, Clarendon press.Oxford, 1973 .

[53] A. C. Zaanen,Riesz Spaces II, Amesterdam: North Holland Mathematical
Library,1983.

[54] ———— Introduction to Operator Theory in Riesz Spaces, Springer-Verlag
1997.

159



