
http://www.cambridge.org/9780521840729


This page intentionally left blank



P1: KDF

0521840724pre CY492/Beals 0 521 84072 4 June 18, 2004 14:4 Char Count= 0

ANALYSIS

This self-contained text, suitable for advanced undergraduates, provides an exten-
sive introduction to mathematical analysis, from the fundamentals to more advanced
material. It begins with the properties of the real numbers and continues with a rig-
orous treatment of sequences, series, metric spaces, and calculus in one variable.

Further subjects include Lebesgue measure and integration on the line, Fourier
analysis, and differential equations. In addition to this core material, the book in-
cludes a number of interesting applications of the subject matter to areas both within
and outside of the field of mathematics. The aim throughout is to strike a balance
between being too austere or too sketchy, and being so detailed as to obscure the es-
sential ideas. A large number of examples and nearly 500 exercises allow the reader
to test understanding and practice mathematical exposition, and they provide a
window into further topics.

Richard Beals is James E. English Professor of Mathematics at Yale University. He
has also served as a professor at the University of Chicago and as a visiting professor
at the University of Paris, Orsay. He is the author of more than 100 research papers
and monographs in partial differential equations, differential equations, functional
analysis, inverse problems, mathematical physics, mathematical psychology, and
mathematical economics.
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Preface

This text contains material for a two- or three-semester undergraduate course. The
aim is to sketch the logical and mathematical underpinnings of the theory of series
and one-variable calculus, develop that theory rigorously, and pursue some of its
refinements and applications in the direction of measure theory, Fourier series, and
differential equations.

A good working knowledge of calculus is assumed. Some familiarity with
vector spaces and linear transformations is desirable but, for most topics, is not
indispensable.

The unstarred sections are the core of the course. They are largely independent
of the starred sections. The starred sections, on the other hand, contain some of the
most interesting material.

Solving problems is an essential part of learning mathematics. Hints are given
at the end for most of the exercises, but a hint should be consulted only after a real
effort has been made to solve the problem.

I am grateful to various colleagues, students, friends, and family members for
comments on, and corrections to, various versions of the notes that preceded this
book. Walter Craig enlightened me about the difference between clarinets and
oboes, and the consequences of that difference. Eric Belsley provided numerous
corrections to the first version of the notes for Chapters 1–9. Other helpful comments
and corrections are due to Stephen Miller, Diana Beals-Reid, and Katharine Beals.
Any new or remaining mistakes are my responsibility.

I had the privilege of first encountering many of these topics in a course taught
by Shizuo Kakutani, to whom this book is respectfully dedicated.
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1

Introduction

The properties of the real numbers are the basis for the careful development of
the topics of analysis. The purpose of this chapter is to engage in a preliminary
and rather informal discussion of these properties and to sketch a construction that
justifies assuming that the properties are satisfied. Along the way we introduce
standard notation for various sets of numbers.

1A. Notation and Motivation

First, we use IN to denote the set of natural numbers or positive integers:

IN = {1, 2, 3, 4, . . . }.
In this set there are two basic algebraic operations, addition and multiplication.
Each of these operations assigns to a pair of positive integers p, q an integer,
respectively, the sum p + q and the product p · q or simply pq. Further operations,
such as powers, may be defined from these. There are then many facts, such as

1 + 2 = 3, 1 + 2 + 4 = 7, 1 + 2 + 4 + 8 = 15, 1 + 2 + 4 + 8 + 16 = 31, . . . .

More interesting, from a mathematical point of view, are general statements, like

1 + 2 + 22 + 23 + · · · + 2n = 2n+1 − 1, all n ∈ IN. (1)

Within IN, there is also an order relation, denoted <, defined as follows. If m and
n are elements of IN, then m < n if and only if there is p ∈ IN such that m + p = n.
If so, we also write n > m. It is easy to convince oneself that this has the properties
that define an “order relation” – given elements m, n of IN, exactly one of the
following is true:

m < n, or n < m, or m = n. (2)

1
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2 Introduction

Moreover, the relation is transitive:

m < n, n < p ⇒ m < p. (3)

(The one-sided arrow ⇒ means “implies.”)
Implicit in this discussion is the following fact: Given positive integers p and q,

the equation p + r = q does not generally have a solution r in IN; the necessary
and sufficient condition is that p < q. Of course one can get around this difficulty
by introducing ZZ, the set

ZZ = {0, 1, −1, 2, −2, 3, −3, . . . }
of all integers. The operations of addition and multiplication extend to this larger
set, as does the order relation. Within this larger set one can make new statements,
such as

1 − 2 + 22 − 23 + 24 − · · · + (−2)n = 1 − (−2)n+1

3
. (4)

The left side of this equation is clearly an integer, so the right side must also be an
integer, despite the fact that not every integer is divisible by 3.

A more general way to put the statement about divisibility is this: Given integers
p and q, the equation qr = p does not generally have a solution r in the set ZZ. To
remedy this we must enlarge our set once more and go to IQ, the set

IQ = {p/q : p ∈ ZZ, q ∈ IN}
of rational numbers. The operations of addition and multiplication extend to the
larger set, as does the order relation. Here we may make a statement that generalizes
(1)–(3):

1 + r + r2 + r3 + · · · + rn = 1 − rn+1

1 − r
if r ∈ IQ and r �= 1. (5)

The identities (1)–(5) are purely algebraic. The last one leads to a kind of state-
ment that has a different character. Suppose that r is “small”: Specifically, suppose
that |r | < 1. Then successive powers of r get smaller and smaller, so that one might
be tempted to write

1 + r + r2 + r3 + · · · = 1

1 − r
, if r ∈ IQ and |r | < 1. (6)

Here the ellipsis · · · means that the addition on the left is imagined to be carried out
for all powers of r , that is, there are infinitely many summands. The reader may or
may not feel that it is clear what the left side means and why it is equal to the right
side; these points will be discussed in much detail in Chapter 4.
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Consider two more examples of statements like (6):

1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ 1

7
− · · · = s1; (7)

1 + 1

3
− 1

2
+ 1

5
+ 1

7
− 1

4
+ 1

9
+ 1

11
− 1

6
+ · · · = s2. (8)

Note that the second (formal) sum has exactly the same summands as the first, except
that they are written in a different order. We know that addition is associative and
commutative, so it would seem that if the sums mean anything, then clearly s1 = s2.
Now group the terms in (7):

s1 = 1 −
(

1

2
− 1

3

)
−

(
1

4
− 1

5

)
−

(
1

6
− 1

7

)
− · · ·

= 1 − 1

2 · 3
− 1

4 · 5
− 1

6 · 7
− · · · . (9)

Each expression in parentheses is positive, so we should have s1 < 1. Similarly,
in (8),

s2 = 1 +
(

1

3
− 1

2
+ 1

5

)
+

(
1

7
− 1

4
+ 1

9

)
+

(
1

11
− 1

6
+ 1

13

)
+ · · ·

= 1 + 1

2 · 3 · 5
+ 1

4 · 7 · 9
+ 1

6 · 11 · 13
+ · · · . (10)

Each expression in parentheses is positive, so we should have s2 > 1. It is tempting
to conclude that either the processes we are describing do not make sense or
that there is some subtle flaw in the argument that purports to show that s1 �= s2.
However, the processes do make sense, and there is no flaw in the argument. In
fact, in Chapter 4, Section D, we will show how to prove that

1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ 1

7
− · · · = log 2;

1 + 1

3
− 1

2
+ 1

5
+ 1

7
− 1

4
+ 1

9
+ · · · = 3

2
log 2,

where log 2 means the natural logarithm. In Chapter 5, Section D, we will show
how to obtain different proofs of these identities. (We also present an argument for
the “identity”

1 + 2 + 3 + 4 + 5 + 6 + 7 + · · · = − 1

12
,

but this last should not be taken too seriously.)
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There are a number of points to be made in this connection:

� Care must be taken with infinite repetition of algebraic operations.
� When care is taken, the results may be paradoxical but they are consistent, and often

important.
� The addition of rational numbers can lead to an irrational sum, when it is extended to the

case of infinitely many summands. Here is another example, also proved later:

1 + 1

4
+ 1

9
+ 1

16
+ 1

25
+ 1

36
+ · · · = π2

6
. (11)

Let us pause to examine (11). Without worrying, at the moment, about the equality
between the left and right sides, consider how one might conclude that the left side
should have some meaning. The sequence of rational numbers

r1 = 1, r2 = 1 + 1

4
, r3 = 1 + 1

4
+ 1

9
, r4 = 1 + 1

4
+ 1

9
+ 1

16
, . . .

is increasing: r1 < r2 < r3 < . . . . We show later that this sequence is bounded
above; in fact, rn < 2 for every n. There is a standard representation of rationals as
points on a line. We might expect geometrically that there is a unique point on the
line with the property that, as n increases, the rationals rn come arbitrarily close
to this point. [Warning: Statements like “come arbitrarily close” need, eventually,
to be made precise.] Then the left-hand side of (11) should be taken to mean the
number that corresponds to this point. Thus, to be sure that things like the left side
of (11) have a meaning, we want to be sure that any bounded, increasing sequence
of numbers has a limit. (This is one version of what can be called the “no-gap”
property of the real numbers. Starting in Chapter 2 we will take as basic a different,
but equivalent, version, the “Least Upper Bound Property.” See Figure 1.)

Another example of a bounded, increasing sequence is

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . . .

x 1 x 2 x 3 x 4 x 5

Figure 1. Heading for a gap.
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Assuming that this sequence is headed where we expect, the limit π is known not
to be a rational number. What justification do we have for asserting the existence of
such numbers, and for thinking that we can add and multiply them in the usual ways,
with the usual rules, such as (x + y) + z = x + (y + z), without encountering a
contradiction? These questions will be discussed in the next two sections.

Exercises

1. Prove the identity (1) by induction on n.
2. Prove by induction that the numerator in the right side of (4) is always divisible by 3.
3. (a) Prove the identity (5) by induction.

(b) Give a second proof of the identity (5).
4. Derive and prove a general form for the expressions in parentheses in the sum (9), thus

verifying that these expressions are positive.
5. Derive and prove a general form for the expressions in parentheses in the sum (10), thus

verifying that these expressions are positive.

1B∗. The Algebra of Various Number Systems

We begin by examining the “usual rules.” The basic properties of addition and
multiplication in IN can be summarized in the following axioms (statements of
properties). It is understood for the moment that m, n, and p denote arbitrary
elements of IN.

A1: Associativity of addition. (m + n) + p = m + (n + p).

A2: Commutativity of addition. m + n = n + m.

M1: Associativity of multiplication. (mn)p = m(np).

M2: Commutativity of multiplication. mn = nm.

D: Distributive law(s). m(n + p) = mn + mp; (m + n)p = mp + np.

[Note that either part of D follows from the other part, together with M2.]
The order relation in IN has the defining characteristics of an order relation. Again

m and n denote arbitrary elements of IN,

O1: Trichotomy. Exactly one of the following is true: m < n, n < m, or m = n.

O2: Transitivity. If m < n and n < p, then m < p.
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The order relation has connections with addition and with multiplication:

m < m + n; m < n ⇒ mp < np, all m, n, p ∈ IN. (12)

We shall take the positive integers and these properties for granted. One can
then construct the set of all integers as follows. The ingredients are all the formal
expressions m − n, where m and n are positive integers. This formal expression can
be thought of as representing the “solution” x of the equation n + x = m. We do
not want to consider these as all representing different things (consider 1 − 1 and
2 − 2), so we identify the expressions m − n and m ′ − n′ under a certain condition:

m − n ≡ m ′ − n′ if m + n′ = n + m ′. (13)

The set ZZ may be thought of, for now, as the set of such expressions, subject to the
“identification” rule (13).

Addition and multiplication of these expressions are defined by

(m − n) + (p − q) = (m + n) − (p + q); (14)

(m − n) · (p − q) = (mp + nq) − (mq + np). (15)

These rules associate to any pair of such expressions an expression of the same
form. It can be checked that

if m − n ≡ m ′ − n′ and p − q ≡ p′ − q ′, then

(m − n) + (p − q) ≡ (m ′ − n′) + (p′ − q ′) and

(m − n) · (p − q) ≡ (m ′ − n′) · (p′ − q ′). (16)

Therefore, the operations (14) and (15) are compatible with the “identifications”
and may be considered as operations in ZZ.

The order relation may be extended to ZZ, using the definition

m − n < p − q if m + q < n + p. (17)

This order relation is also compatible with the identification:

if m − n ≡ m ′ − n′ and p − q ≡ p′ − q ′, then

(m − n) < (p − q) ⇒ m ′ − n′ < (p′ − q ′). (18)

If we identify a positive integer m with (any and all of) the expressions
(m + n) − n, n ∈ IN, then the operations (14) and (15) are compatible with the
operations in IN, so IN may be considered as a certain subset of ZZ. The properties
A1, A2, M1, M2, D, O1, 02 can be �proved for ZZ, using the properties for IN and the
definitions. The important point is that ZZ has additional properties, also provable,
that are not true for IN. (At the risk of introducing confusion, we now let z denote
an arbitrary element of ZZ.)
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1B∗. The Algebra of Various Number Systems 7

A3: Neutral element for addition. There is an element 0 with the property that
z + 0 = z, all z ∈ ZZ.

A4: Additive inverses. For each z ∈ ZZ there is an element −z with the property
that z + (−z) = 0.

The role of the neutral element is played by any of the expressions m − m, and the
role of the additive inverse of m − n is played by n − m, or by any other expression
n′ − m ′ with the property that m + n′ = n + m ′.

(Any set A that has an operation of addition that satisfies A1–A4 is called a com-
mutative group. If A also has an operation of multiplication and satisfies M1, M4,
and D as well, then it is called a commutative ring. If one drops the commutativity
of multiplication, M2, one has a plain ring.)

There is an interplay between the order relation and the algebraic operations in
ZZ, summarized in two properties that can be derived using (some of) A1–A4, M1,
M2, D, O1, O2, and (12).

O3: Order and addition. If m < n, then m + p < n + p.

O4: Order and multiplication. If m < n and p > 0, then mp < np.

This type of method can be extended to a construction of the rational numbers
as well. Consider expressions of the form m/n, where n is a positive integer and m
is any integer; this expression represents the “solution” x of the equation nx = m.
Again it is necessary to introduce an identification:

m/n ≡ m ′/n′ if mn′ = nm ′. (19)

The set IQ of rational numbers can be thought of as the set of expressions m − n,
subject to this identification rule.

Addition and multiplication in IQ are defined by

m

n
+ p

q
= mq + pn

nq
(20)

m

n
· p

q
= mp

nq
, (21)

and the order relation is defined by

m

n
<

p

q
if mq < np. (22)

The operations (20) and (21) and the order (22) are compatible with the identification
rule (19), so the operations and order may be viewed as being defined in IQ.
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We may consider ZZ as a subset of IQ by identifying m ∈ ZZ with the expressions
mn/n, where n belongs to IN. The operations and order in ZZ are consistent with
those in IQ under this identification. The set IQ with the operations (20), (21), and
the order relation (22) has all the preceding properties A1–A4, M1, M2, D, 01–O4.
Again, there are new algebraic properties. Here r denotes an element of IQ:

M3: Neutral element for multiplication. There is an element 1 such that r · 1 =
r , all r .

M4: Multiplicative inverses. For each r �= 0, there is an element r−1 such that
r · r−1 = 1.

In fact, the multiplicative neutral element is represented by any n/n, the rational
that is identified with the integer 1. A multiplicative inverse of m/n is n/m if m > 0,
or (m/n)−1 = (−n)/(−m) if m < 0.

There is another important property to be noted concerning IQ.

O5: The Archimedean property. If r and s are positive rationals, then there is a
positive integer N such that Nr > s.

(If we think of s as the amount of water in a bathtub and r as the capacity of a
teaspoon, this says that we can bail the water from the bathtub with the teaspoon in
at most N steps. Of course N may be large.) To verify O5, suppose that r = m/n
and s = p/q. Then Nr = (Nm)/n, and, in view of (22), we need to find N so that
Nmq is larger than np. Obviously N = np + 1 will do.

As we have noted, we need to go from IN to ZZ to IQ in order to guarantee that
simple algebraic equations like a + x = b and ax = b have solutions. However, IQ
is still not rich enough to do more interesting algebra. In fact, the equation r2 = 2
does not have a solution r ∈ IQ. Suppose that it did have a solution r = p/q, where
p and q are integers and q is positive. We may assume that r is in lowest terms,
that is, that p and q have no common factors. Then p2 = 2q2, so p is even. Thus,
p = 2m with m an integer. Then 4m2 = 2q2, so 2m2 = q2, so q is also even, and
so p and q have the common factor 2, a contradiction.

Now it is possible to find an increasing sequence of rationals

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, . . .

whose squares get “arbitrarily close” to 2. (The reader is invited to formulate a
more precise form of this statement.) As before, we would like to be able to assert
that (a) this sequence has a number x as it limit and (b) x2 = 2.
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Note what has happened in this section: In effect, we took the positive integers ZZ
and their operations as raw material and sketched how to construct the remaining
integers and the rationals. The construction allows us to prove the various algebraic
and order properties of ZZ and IQ from properties of IN. In the next section we sketch
a construction of the real numbers from the rationals, in order to fill in the gaps like√

2 and π .

Exercises

1. Prove the assertion (16).
2. Use the definition (14) and the identification (13) to prove A1 and A2 for the

integers ZZ.
3. Use the definition (15) and the identification (13) to prove M1 and M2 for the

integers ZZ.
4. Verify A3 and A4 for the integers ZZ.
5. Prove from axioms A1–A4 that 0 is unique: If z + 0′ = z, then 0′ = 0.
6. Prove from A1–A4 that, given integers m and n, the equation m + x = n has a unique

solution x ∈ ZZ.
7. Use (12) and the remaining axioms for ZZ to prove O3 and O4 for ZZ.
8. Prove the analogue of assertion (16) for the rationals IQ.
9. Use the definition (20) and the identification (19) to prove A1 and A2 for IQ.

10. Use the definition (21) and the identification (19) to prove M1 and M2 for IQ.
11. Use axioms A, M, and D to prove that r · 0 = 0.
12. Prove from axioms A, M, and D that, for any rationals r, s, if r �= 0, then the equation

r x = s has a unique rational solution x .
13. Prove that there is no rational r such that r2 = 3.
14. Prove that there is no rational r such that r3 = 2.

1C∗. The Line and Cuts

The usual geometric representation of the various number systems above uses a
horizontal line. Imagine such a line with one point marked as the origin. Choose a
unit of length, and march to the right from the origin in steps of unit length, denoting
the corresponding points as 1, 2, 3, . . . . Similarly, points obtained by going to the
left from the origin in steps of unit length are denoted −1, −2, −3, . . . . This gives
us a representation of ZZ. The order relation p < q has the geometric meaning that
p is to the left of q. The distance between p and q is the absolute value |p − q|.
Points corresponding to the remaining rationals are easily introduced: If we divide
the interval with endpoints 3 and 4 into five equal subintervals, the first of these has
endpoints 3 and 3 + 1/5 = 16/5 and so on.

The integers ZZ determine a partition of the line into disjoint half-open intervals
In , where In = [n, n + 1) consists of all points that lie at or to the right of n but
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strictly to the left of n + 1. Given a point x of the line, the integral part of x , denoted
[x], is the unique integer [x] = n such that x belongs to In: The point x is at or to
the right of the integer n, and its distance from n is less than 1. It is important to
note that this may be sharpened if we proceed to the rationals: Each point x on the
line may be approached as closely as we like by rational points. In fact, partition
the interval with endpoints [x] and [x] + 1 into 10k equal subintervals. The point
x lies in one of these subintervals and is therefore at distance less than 10−k from
one of the endpoints of that subinterval, which are rational numbers.

The preceding is the basis for one of the first constructions of the reals, due to
Dedekind. We want the reals to account for all points on the line, and we want the
line to have no gaps: Any sequence of points moving to the right, but staying to the
left of some fixed point, should have a limit. We also want to extend the algebraic
operations and the order relation to this full set of points, again so that < means “to
the left of.”

Our starting point for this process can only be the rationals themselves; they must
be the scaffolding on which the real numbers are constructed. In order to see how
to proceed, we begin by imagining that the goal has already been accomplished.
Then, for any point x in the line, we could associate to the point, or real number,
x a set S of rationals – all rationals that lie strictly to left of x. If x and x ′ are
distinct points, then there is a rational r strictly between them. (Choose k so large
that 1/10k is smaller than the distance between x and x ′, and look at the rational
points m/10k , m ∈ ZZ.) Therefore, the set S that corresponds to x and the set S′ that
corresponds to x ′ are different: r belongs to S′ but not to S. Notice also that the set
S that corresponds to x has the following properties:

(C1) S is not empty and is not all of IQ.
(C2) If r is in S, s is in IQ, and s < r , then s is in S.
(C3) S has no largest element.

We call a subset of the rationals that has these three properties, (C1), (C2), and
(C3), a cut. (Actually, Dedekind considered both S and the set T consisting of all
rationals to the right of x ; the pair together partitions the rationals not equal to x
into two subsets that correspond to the act of cutting the line at the point x .)

Now, conversely, suppose that S is a cut, a subset of the rationals that has the
three properties (C1), (C2), and (C3). Then we expect there to be a unique point x
such that S consists precisely of the rationals strictly to the left of x . To see this,
construct a sequence of rationals as follows. Conditions (C1) and (C2) imply that
there is a largest integer r0 such that r0 ∈ S. Then r0 + 1 is not in S. Next, there is
an integer p, 0 ≤ p ≤ 9 such that

r1 = r0 + p

10
∈ S, r0 + p + 1

10
/∈ S.
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Continuing in this way, we can produce a sequence of rationals rn such that r0 ≤
r1 ≤ r2 ≤ . . . and

rn ∈ S, rn + 1

10n
/∈ S.

Because of the no-gap condition, we expect this sequence to have a limit x . (In fact,
the rn’s are successive parts of what should be the decimal expansion of x .) A bit
of thought shows that a rational should belong to S if and only if it is smaller than
some rn , which is true if and only if is to the left of x .

Our discussion to this point says that if we had attained our goal, then there would
be a 1–1 correspondence between real numbers on one hand and cuts on the other.
We now turn the procedure around. We take as our objects the cuts themselves –
the subsets of IQ that satisfy (C1), (C2), and (C3). One can introduce algebraic
operations and an order relation among the cuts and demonstrate the properties
listed in the previous section. For example, the sum of two cuts S and S′ is defined
to be the set of rationals

S + S′ = {s = r + r ′ : r ∈ S, r ′ ∈ S′}. (23)

The rational r can be identified with the cut it induces, which we denote by r∗:

r∗ = {s ∈ IQ : s < r}. (24)

In particular, 0∗ turns out to be the neutral element for addition of cuts, and 1∗ the
neutral element for multiplication of cuts.

The order relation is simple: If S and S′ are cuts, then we set S < S′ if S ⊂ S′

and S �= S′. (The notation S′ ⊂ S means that S′ is a subset of S, but not necessarily
a proper subset.)

Defining multiplication of cuts is a bit tricky. (The obvious simple adaptation
of the sum rule has a problem: The product of two very negative numbers is very
positive.) The usual practice is to start by finding a good definition for S · S′ when
S and S′ are both positive, that is, 0∗ < S, 0∗ < S′. [The reader may try to find such
a definition and to verify the multiplicative and distributive properties M1–M4, D;
see the exercises.]

One can verify that the set of all cuts, with the indicated addition and order relation
(and the multiplication to which we have merely alluded), satisfies all the properties
listed in the previous section. Of course IQ already had all these properties. The key
here is that the set of all cuts satisfies the no-gap condition. We do not verify this in
detail here, because we have not yet defined what we mean for a sequence to have
a limit, but it is easy to specify what the limit is. Suppose that {Sn} is a sequence of
cuts that is increasing and bounded above:

S1 ⊂ S2 ⊂ S3 ⊂ . . . ⊂ Sn ⊂ T, all n, (25)
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for some fixed cut T . Then one can show that the union

S =
∞⋃

n=1

Sn = S1 ∪ S2 ∪ S3 ∪ · · · (26)

is a cut and should be considered to be the limit of the cuts Sn .
The same idea leads to the proof of a second version of the no-gap condition, the

Least Upper Bound Property, stated in the next chapter. Thus, what we have done
in this section is to indicate how one can, starting with IQ, construct a collection of
objects IR that satisfies all the conditions listed in the next section and that contains
(a copy of) IQ itself.

Exercises

1. Suppose that S and S′ are two cuts. Prove that either S ⊂ S′ or S′ ⊂ S, or S = S′.
2. Suppose that S and S′ are cuts. Prove that S + S′ is a cut, that is, that it is a subset

of the rationals that has the three properties (C1), (C2), and (C3).
3–6. Prove some or all of the addition properties A1–A4 for cuts.

7. Check the compatibility of addition for rationals and the corresponding cuts:
(r + s)∗ = r∗ + s∗.

8. Define the product of positive cuts. Check that your definition gives a cut, and that
S · 1∗ = α for every nonnegative cut S.

9. Check the compatibility of multiplication for positive rationals and the correspond-
ing cuts.

10–12. Prove some or all of M1, M2, and D for positive cuts.
13. Define the absolute value |S| of a cut and use it to extend the definition of the

product to any two cuts. (Hint: Define the product with 0∗ separately.)
14–18. Prove some or all of axioms M and D for arbitrary cuts.

19. Suppose that S1, S2, . . . and T are cuts that satisfy (25). Prove that the set S in (26)
is a cut, and that it is the smallest cut such that every Sn is smaller than S.

20. Another approach to constructing the reals is to take all formal decimal expan-
sions. (To remove ambiguities like 1 versus .9999 . . . , we could take nonterminat-
ing formal decimal expansions.) Discuss the difficulties in defining the algebraic
operations. For example, what would be the first term in the decimal expansion
corresponding to

.997999194 . . . + .002000805 . . . ?

Is there some stage (preferably specifiable in advance) at which you would be sure
to have enough information to know whether the sum is greater than 1?

1D. Proofs, Generalizations, Abstractions, and Purposes

Why do we want proofs? Consider assertions like (4). This is actually an infi-
nite family of assertions, one for each positive integer n. Any single one of these
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assertions could be checked by performing the required arithmetic. If one checked
the first thousand or so, one might become quite confident of the rest, but that
is not sufficient for mathematical certainty. (There are statements that are valid
up to very large integers but not for all integers. A simple example: “n is not di-
visible by 10100.”) Certainty can be established in at least two ways. One way is
by mathematical induction: Statement (4) is clearly true if n = 1, and by adding
(−2)n+1 to each side and regrouping the right side one obtains the truth of each
subsequent statement from the truth of the one that precedes it. Since the first
statement is true, so is the second; since the second statement is true, so is the
third; and so on. On the other hand, (4) is a special case of the more general se-
quence of statements (5). Now (5) can also be proved by mathematical induction.
Another way to prove (5) for any given positive integer n is to multiply both sides
by 1 − r .

Not only do general statements like (5) need to be proved if we are to rely on
them, but, as we have just remarked, there may be more than one way to prove
such a statement. In addition to general techniques that work in many cases, like
mathematical induction, there are specialized tricks that may give more insight into
particular problems. We can deduce (4) as a special case of (5) – but only if (5) has
been soundly demonstrated. Because of the cumulative nature of mathematics, we
want to be very careful about each step we take.

What makes a proof a proof? A proof is simply an argument that is designed to
convince, to leave no doubt. A proof by induction is very convincing if it is carried
out carefully – and if the listener or the reader is familiar with the technique and has
confidence in it. Such a proof demands some sophistication of both the presenter
and the presentee. The second proof of (5) mentioned above is clear and convincing
to anyone who is comfortable with algebraic manipulation, and may even suggest
how (5) was discovered.

How does one learn to “do” proofs? By observation and practice, practice,
practice.

The purpose of this book is to proceed along the path from properties of the
number system to the most important results from calculus of one variable, with
each step justified, and with enough side excursions to keep the walk interesting.
Definitions are crucial. They give precise meaning to the terms we use. Many results
follow fairly directly from the definitions and a bit of logical thinking. One thing to
keep in mind: The more general the statement of a result, typically the simpler its
proof must be. The reason is that the proof cannot take advantage of any of those
features of special examples that have been abstracted (i.e., removed) in defining
the general concepts.

Proving the equality of real numbers (or of sets) is often best accomplished by
proving two inequalities: We may prove that number a = number b or that set
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A = set B by proving

a ≤ b and b ≤ a,

or

A ⊂ B and B ⊂ A.

In some brief excursions, in order to get some more interesting results or examples,
we will break the logical development and use things like the integral and the natural
logarithm before they have been introduced rigorously. No circularity is involved:
These results will not be used to develop the later theory.

Exercise

1. Another way to show equality: Prove that the real numbers a and b are equal if and only
if, for each positive real ε, the absolute value |a − b| satisfies |a − b| < ε.
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2

The Real and Complex Numbers

The previous chapter was somewhat informal. Starting in this chapter we develop
the subject systematically and (usually) in logical order. This does not mean that
every step in every chain of reasoning will be written out and referred back to the
axioms or to results that have already been established. Such a procedure, though
possible, is extremely tedious. The goal, rather, is to include enough results – and
enough examples of reasoning – so that it may be clear how the gaps might be filled.

2A. The Real Numbers

Our starting point is the real number system IR. This is a set that has two algebraic
operations, addition and multiplication, and an order relation <. Let a, b denote
arbitrary elements of IR. Addition associates to any pair a, b a real number denoted
a + b, while multiplication associates a real number denoted a · b or simply ab.
That < is a relation simply means that certain ordered pairs (a, b) of elements of
IR are selected, and for these pairs (only) we write a < b. These operations and the
order relation satisfy the following axioms, or conditions, in which a, b, c denote
arbitrary elements of IR.

A1 (a + b) + c = a + (b + c).
A2 a + b = b + a.
A3 There is an element 0 such that, for all a, a + 0 = a.
A4 For each a ∈ IR there is an element −a ∈ IR such that a + (−a) = 0.
M1 (ab)c = a(bc).
M2 ab = ba.
M3 There is an element 1 �= 0 in IR such that, for all a, a · 1 = a.
M4 For each a such that a �= 0, there is an element a−1 ∈ IR such that a · a−1 = 1.
D (a + b)c = ac + bc; a(b + c) = ab + ac.
O1 For any a and b, exactly one of the following is true: a < b, b < a, or a = b.
O2 If a < b and b < c, then a < c.

15
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O3 If a < b, then a + c < b + c.
O4 If a < b and 0 < c, then ac < bc.
O5 If 0 < a and 0 < b, then there is a positive integer n such that b < a + a + a + · · · + a

(n summands).

There is one more axiom that is satisfied by IR, but to state it we need to define
some terms. Note, by the way, that we may refer to the elements of IR as numbers
or as points (thinking of the representation of IR as a line). Also, we write a ≤ b
to mean that either a < b or a = b, we write b > a if a < b, and we write b ≥ a
if a ≤ b.

Definition. Suppose that A is a nonempty subset of IR. A number b ∈ IR is said
to be an upper bound for A if for every a in A we have a ≤ b. If A has an upper
bound, then it is said to be bounded above.

The number b is said to be a least upper bound for A if it is an upper bound and
if b ≤ b′ for every upper bound b′. There is at most one such number, and it is also
called the supremum of A and denoted

b = sup A.

The definitions of lower bound, bounded below, and greatest lower bound or
infimum are defined similarly, with ≤ replaced by ≥. The infimum c, when it exists,
is denoted

c = inf A.

The last property in our list of properties of IR is the Least Upper Bound Property.

O6 If A is any nonempty subset of IR that is bounded above, then there is a least upper
bound for A.

[There is an apparent asymmetry here, but property O6 implies the similar Great-
est Lower Bound Property, and vice versa. In fact, if A is nonempty and bounded
below, then its greatest lower bound is precisely the supremum of the set of its
lower bounds, and so on. See Exercise 4.]

All the usual algebraic rules for manipulating real numbers and solving sim-
ple equations and inequalities can be deduced from these axioms. Here are some
examples.

Proposition 2.1

(a) Given a and b in IR, there is a unique x ∈ IR such that a + x = b.
(b) Given a and b in IR, if a �= 0, then there is a unique y ∈ IR such that ay = b.
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Proof: If a + x = b, then

b + (−a) = (a + x) + (−a) = (x + a) + (−a) = x + (a + (−a)) = x + 0 = x ;

so if there is a solution x , then it is unique: x = b + (−a). On the other hand,

a + (b + (−a)) = a + ((−a) + b) = (a + (−a)) + b = 0 + b = b + 0 = b,

so x = b + (−a) is a solution. A similar argument shows that if a �= 0, then y =
a−1b is the unique solution to ay = b. �

Corollary 2.2

(a) The additive and multiplicative neutral elements 0 and 1 are unique.
(b) The additive inverse −a and (if a �= 0) the multiplicative inverse a−1 are unique.
(c) For any a, −(−a) = a; if a �= 0, then (a−1)−1 = a.
(d) For any a ∈ IR, a · 0 = 0 and (−1) · a = −a.

Proof: According to Proposition 2.1, a + x = a and ay = a (if a �= 0) have
unique solutions; this proves (a). Part (b) also follows from uniqueness. Part (c)
follows from commutativity and uniqueness. Finally,

a · 0 + 0 = a · 0 = a · (0 + 0) = a · 0 + a · 0;

a + (−1) · a = 1 · a + (−1) · a = (1 + (−1)) · a = 0 · a.

Uniqueness implies that a · 0 = 0, which, in turn, implies that (−1) · a = −a. �

With these results as encouragement we streamline things by (usually) writing
b − a for b + (−a), (often) writing 1/a for a−1, and so on. Next we consider some
properties of the order relation.

Proposition 2.3

(a) For any a ∈ IR, exactly one of the following is true: 0 < a, 0 < (−a), or a = 0. More-
over, 0 < a if and only if −a < 0.

(b) For any a and b in IR, a < b if and only if 0 < b − a.

Proof: This uses O3. If a < 0, then 0 = a + (−a) < 0 + (−a) = −a. This ar-
gument implies both statements of part (a). If a < b, add −a to both sides. If
0 < b − a, add a to both sides. �

We say that a ∈ IR is positive if 0 < a and negative if a < 0.
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Proposition 2.4. If a and b are positive, then the sum a + b and the product ab
are positive.

Proof: Using O2 and O3, we see that 0 < a implies b < a + b, while 0 < b
and b < a + b imply 0 < a + b. As for the product, by O4 and Corollary 2.2(d),
0 = a · 0 < a · b. �

Because of transitivity (O2), it is reasonable to write chains of inequalities like
a < b < c < · · · .

Corollary 2.5. 0 < 1 < 1 + 1 < 1 + 1 + 1 < · · · .

Proof: By the preceding results, either 1 or −1 is positive, and if −1 were
positive, then so would be (−1)(−1) = −(−1) = 1. Thus 1 must be positive and
the remaining inequalities follow from successive applications of O3. �

The following is a particularly important fact about the ordering, which will be
used very frequently.

Proposition 2.6. If 0 < a < b, then 0 < 1/b < 1/a.

Proof: If 1/b were negative, we could multiply the inequality 1/b < 0 by b and
conclude that 1 < 0. Similarly, 1/a and 1/ab are positive. The second statement
follows, since 1/a − 1/b = (b − a)/ab is the product of positive numbers. �

Remarks. 1. Axioms A1–A4, M1–M4, and D are the axioms for a field. Axiom
A3 requires that a field have at least one element, 0, and M3 requires that it have at
least one additional element, 1. In fact, there is a field that has exactly two elements,
denoted 0 and 1. Addition and multiplication are determined in part by the axioms
(0 + 1 = 1 and so on) and completed by 1 + 1 = 0 and 0 · 1 = 0 = 1 · 0.

2. Axioms A1–A4, M1–M4, D, and O1–O4 are the axioms for an ordered field.
An ordered field must have infinitely many elements. See Corollary 2.5.

3. So far we have taken the reals as simply an abstract set, with two operations
and an order, that satisfies the preceding axioms. Thus, a priori it has no relation
to IQ or even to IN and ZZ. Here is how to remedy that situation. Suppose that n is a
positive integer and a belongs to IR. Let na or n · a denote a + a + · · · + a, where
there are n summands. If n is a negative integer, we let n · a denote −(−n)a. (We
are letting 1 denote either the multiplicative neutral element of IQ or that of IR, but
context should make clear which is meant.) We can assign to a rational number
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r = m/n the real number (m · 1)(n · 1)−1, which we denote by r̃ . With some labor
one can prove the following, for any rationals r and s.

(a) r̃ = s̃ if and only if r = s.
(b) ˜(r + s) = r̃ + s̃ and (̃rs) = r̃ s̃.
(c) r < s if and only if r̃ < s̃.

In other words, the subset ĨQ = {r̃ : r ∈ IQ} of IR, using the operations and order
from IR, is an exact copy of IQ. From now on we identify IQ with this copy and
consider it to be a subset of IR.

4. The preceding axioms characterize IR. This means that if IR′ were another set
having two operations and an order that satisfied all the preceding axioms, then
there would be a 1–1 correspondence between elements IR and elements of IR′ that
takes sums to sums, products to products, and preserves the order relation. In other
words, IR and IR′ can be regarded as identical. [Here is how this result is proved.
First, as before, consider IQ as a subset of IR. Any given a ∈ IR can be obtained as
a supremum of a set of rationals as follows:

a = sup{r ∈ IQ : r < a}. (1)

Now, if IR′ is a second such set, we may first identify a subset of it with the rationals
and then use (1) to see how to associate to any a ∈ IR a corresponding element
a′ ∈ IR′.]

At the end of Section 1B we showed that there is no rational solution of the
equation x2 = 2. The situation is different in IR.

Theorem 2.7: Existence of n-th roots. Suppose that b is a positive real num-
ber and n is a positive integer. There is a unique positive real number a such
that an = b.

Proof: For any real numbers x and y,

yn − xn = (y − x)(yn−1 + yn−2x + yn−3x2 + . . . + yxn−2 + xn−1). (2)

[Notice that this formula implies the formulas at the beginning of Section 1A!] If
0 < x < y, then it follows from (2) that yn − xn is the product of positive factors
and therefore is positive. Therefore, there can be at most one positive solution to
an = b. To show that there is a solution, we note that the set A below is bounded
above (prove!) and take advantage of the Least Upper Bound Property. Set

a = sup A, where A = {x ∈ IR : xn < b}. (3)

We show that an = b by showing that an cannot be smaller or larger than b.
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First, suppose that x is positive and xn < b. We shall choose y > x such that
yn < b. This will show that x is not an upper bound for the set A, so x �= a and
therefore an ≥ b. For this purpose, we may assume to begin with that y ≤ x + 1.
It follows from this and from (2) that

yn = xn + (yn − xn) ≤ xn + (y − x)
[

n(x + 1)n−1
]
, (4)

since there are n terms in the summation on the right-hand side of (2). Therefore,
if x < y ≤ x + 1 and also

y − x <
b − xn

n(x + 1)n−1
, (5)

it follows that yn < b. To accomplish this we can take y to be the smaller of the
numbers x + 1 and x + 1

2 c, where c is the right-hand side of (5). Thus an ≥ b.
Finally, suppose that y is positive and yn > b. If we show that there is a positive

x such that x < y and b < xn , it follows that x is an upper bound for A. But then
y is not the least upper bound, so y �= a and consequently an ≤ b. The proof that
such a number x can be chosen is similar to the previous part of the proof and is
left as an exercise. �

Remark. There are other (and, in some respects, better) ways to prove Theo-
rem 2.7. However, any proof relies ultimately on the Least Upper Bound Property
(or some equivalent property) of the reals. The advantage of this proof is that
it makes that reliance explicit and does not depend on introducing notions like
continuity and connectedness.

Exercises

1. Show that, for any positive reals x and y, there is a positive integer n such that x/n < y.
2. Show that, for any reals x and y with x < y, there are a rational r and an irrational t

such that x < r < y and x < t < y.
3. Show that the Archimedean axiom O5 follows from the Least Upper Bound Property

O6, together with the other axioms for the reals.
4. (a) Suppose that A and B are nonempty subsets of IR. Define subsets −A = {−x : x ∈ A}

and A + B = {x + y : x ∈ A and y ∈ B}. Show that if A and B are bounded above, then
inf(−A) = − sup(A) and sup(A + B) = sup(A) + sup(B).
(b) Use part (a) to prove the Greatest Lower Bound Property: Any nonempty subset of
IR that is bounded below has a greatest lower bound.

5. The Nested Interval Property: Suppose that I1, I2, I3, . . . is a sequence of bounded closed
intervals of reals, In = [an, bn], where an ≤ bn . Suppose that I1 ⊃ I2 ⊃ . . . ⊃ In . . . ,

and suppose that the lengths |In| = |bn − an| have limit zero. (This means that, for any
ε > 0, there is an integer N such that |In| < ε if n ≥ N .) Show that there is exactly one
real number x that belongs to all the intervals.



P1: KaD

0521840724c02 CY492/Beals 0 521 84072 4 June 18, 2004 14:21 Char Count= 0

2B∗. Decimal and Other Expansions; Countability 21

6. Assume the axioms for the reals except for the Least Upper Bound Property O6; assume
instead the Nested Interval Property, formulated in Exercise 5. Prove the Least Upper
Bound Property as a consequence.

7. (a) Suppose that x > 0 and x2 < 2. Prove that there is a real y > x such that y2 < 2.
Show that y may be chosen to be rational.
(b) Suppose that x > 0 and x2 > 2. Prove that there is a real 0 < y < x such that
y2 > 2. Show that y may be chosen to be rational.

8. Use the preceding exercise to show that if a = sup(A), where A = {r ∈ IQ : r >

0 and r2 < 2}, then a2 = 2. This demonstrates that IQ does not have the Least Upper
Bound Property.

9. Prove that n ∈ ZZ+ implies 2n > n; prove that for any integer n ≥ 4, 2n ≥ n2.
10. Prove that for any positive h and any integer n ≥ 0, (1 + h)n ≥ 1 + nh.

11. Prove that for any positive h and any integer n ≥ 0,

(1 + h)n ≥ 1 + nh + n(n − 1)

2
h2.

12. Suppose that a is positive and n ≥ 2 is an integer. Suppose that an = n. Prove that
1 < a < 1 + √

2/(n − 1).
13. Let N = 108. Compute N 1/N to three decimal places.
14. True or false? For every ε > 0 there are positive integers m and n such that the inequality

|√n − √
m − π | < ε is true.

15. Show that there are no rationals r and s such that r2 = 8 or s3 = 6.
16. Suppose that x > 0 and x3 + x = 4. Prove that x is irrational.
17. Show that there is at most one real x such that x5 + x3 + 3 = 0, and it cannot be

rational.
18. There is an investment strategy called “dollar cost averaging” based on the claim that

investing a fixed amount of money in a stock at each of n times results in an average
price per share that is less than the mean of the prices at the various times. Discuss.

2B∗. Decimal and Other Expansions; Countability

Suppose that x is a real number. We may deduce from the Archimedean prop-
erty O5 and the other properties of the reals that there is a unique integer m
such that m < x ≤ m + 1. Geometrically, this simply says that the half-open in-
tervals (m, m + 1] partition the line. (We use here the reasonably standard interval
notation:

(a, b] = {x ∈ IR : a < x ≤ b}, [a, b] = {x ∈ IR : a ≤ x ≤ b}, (6)

and so on.) Partitioning the interval (m, m + 1] into ten half-open subintervals of
length 1/10, or simply looking at the algebra, we see that there is a unique integer a1,
0 ≤ a1 ≤ 9, such that m + a1/10 < x ≤ m + a1/10 + 1/10. Continuing, we find
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a unique sequence of integers m, a1, a2, . . . that is characterized by the properties

m + a1

10
+ a2

102
+ · · · + ak

10k
< x ≤ m + a1

10
+ a2

102
+ · · ·

+ ak

10k
+ 1

10k
, 0 ≤ a j ≤ 9. (7)

If we also write the integer part m in its decimal form, the result is the decimal
expansion of x .

For convenience, suppose that m = 0, that is, 0 < x ≤ 1. We write, formally,

x = .a1a2 . . . ak . . . = a1

10
+ a2

102
+ · · · + ak

10k
+ · · · . (8)

(Notice that our procedure gives .999 . . . as the decimal expansion of 1, .4999 . . .

as the decimal expansion of 1/2, and so on. In fact, this construction guarantees
that there are infinitely many ak’s that are not zero.)

One justification for writing (8) is the following: The sequence of rationals

r1 = a1

10
, r2 = a1

10
+ a2

102
, r3 = a1

10
+ a2

102
+ a3

103
, . . . (9)

satisfies

r1 ≤ r2 ≤ r3 . . . ≤ 1; x = sup{r1, r2, r3, . . .}. (10)

Conversely, suppose that {a1, a2, a3, . . .} is a sequence of integers such that
0 ≤ ak ≤ 9 and infinitely many of the ak’s are not zero. Define rationals rk by (9).
These satisfy the first part of (10), and we may use the second part of (10) to define
a number x . It is not difficult to show that this number x has the expansion (8). In
other words there is a 1–1 correspondence between the real numbers in the interval
(0, 1] and the decimal expansions .a1a2 . . . that have infinitely many nonzero terms.
Geometrically, we can look on the decimal expansion as specifying a sequence of
intervals: The first term identifies that one of the ten equal subintervals of (0, 1]
that contains x , the second indentifies that one of the ten equal subintervals of the
first that contains x , and so on. Together these successive intervals locate x to any
degree of accuracy.

There is nothing special about the number 10 in this discussion, other than the
fact that it is an integer larger than 1. If we split successive intervals into two or
three equal subintervals and continue as above, we obtain the binary expansion

x = b1

2
+ b2

22
+ b3

23
+ · · · ; each bk = 0 or 1, (11)

or the ternary expansion

x = c1

3
+ c2

32
+ c3

33
+ · · · ; each ck = 0, 1, or 2. (12)
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We have mentioned several times the concept of a 1–1 correspondence. This
concept allows one to make precise the idea that two sets have the same number
of elements. In fact, one can view the usual process of counting as the process of
establishing a 1–1 correspondence between the objects being counted and one of
the standard sets

∅, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, . . . ,

where ∅ denotes the empty set, the set with no elements. One can extend the idea to
infinite sets. In particular, an infinite set is said to be countable if it can be put into
1–1 correspondence with the set IN of positive integers. Otherwise, it is said to be
uncountable.

This notion has some surprising features. The relation n ↔ n + 1 establishes a
1–1 correspondence between IN and the “smaller” set consisting of integers ≥ 2,
while the relation n ↔ 2n establishes one with the “much smaller” set of even
integers. In the other direction, listing

0, 1, −1, 2, −2, 3, −3, 4, −4, . . .

shows how to establish a 1–1 correspondence between IN and the “much larger”
set of all integers; in other words, ZZ is countable. In fact IQ is countable. It is not
difficult to see how to write a list; another approach is to note that the correspondence
2m−1(2n − 1) ↔ m/n establishes that the positive rationals are countable.

Not all infinite sets are countable, however. Georg Cantor, who founded set
theory, proved the following.

Theorem 2.8. The set IR of real numbers is uncountable.

Proof: If IR were countable, then the interval (0, 1] would be countable. If so,
then one could make a list of all the corresponding decimal expansions



.a1a2a3a4 . . .

.b1b2b3b4 . . .

.c1c2c3c4 . . .

. . .

However, we can find a number not on the list by constructing its decimal expansion
.x1x2x3x4 . . . according to the simple rules x1 �= a1, x2 �= b2, x3 �= c3, and so on.
This expansion differs in its k-th place from the k-th expansion on the list for every
k. (We also choose so that each of these expansions has infinitely many nonzero
terms, as does the new one being constructed.) It follows that x is not on the list. �
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Exercises

1. Show that any rational in the interval (0, 1] can be expressed as a finite sum r = 1/q1 +
1/q2 + . . . + 1/qN , where the q j are integers and q1 < q2 < . . . < qN .

2. Discuss the probability that a real number chosen at random from the interval [0, 1] has
no 7’s in its decimal expansion.

3. Give a proof of Theorem 2.8 using binary expansions. Be careful about the possibility
of two binary expansions representing the same real number.

2C∗. Algebraic and Transcendental Numbers

We may think of the rational numbers as the subset of IR whose elements are all
solutions of equations nx − m = 0, where n is a positive integer and m is any
integer. More generally, a real number is said to be algebraic if it is a solution of a
polynomial equation with integer coefficients:

ak xk + ak−1xk−1 + · · · + a1x + a0 = 0, ak ∈ IN, ak−1, . . . , a0 ∈ ZZ. (13)

If x is a solution of (13) but not a solution of any such equation having degree less
than k, then x is said to be algebraic of degree k. Thus the rationals are precisely
the real numbers that are algebraic of degree 1.

So far the only real number that we have shown to be irrational is
√

2. How-
ever,

√
2 is a solution of x2 − 2 = 0, so it is algebraic. A real number that

is not algebraic is said to be transcendental. It is not obvious that there are
any transcendental numbers. Late in the nineteenth century, the number e was
shown to be transcendental by Hermite and π was shown to be transcendental by
Lindemann. We give here two proofs that there are transcendental numbers. The
first is a counting argument: There are not enough algebraic numbers to account
for all real numbers.

Theorem 2.9. The set of algebraic numbers is countable.

Proof: Define the weight of the polynomial in (13) to be the integer k + ak +
|ak−1| + · · · + |a0| − 1. Thus the minimum possible weight is 1, the weight of the
polynomial x . The polynomials of weight 2 are x2, x + 1, x − 1, and 2x , and those
of weight 3 are x2 ± 1, x ± 2, 2x ± 1, and 2x2. There are finitely many possible
polynomials (13) of any given weight w . Each of these has degree less than w and
therefore has at most w − 1 roots. This allows us to list the algebraic numbers in
a systematic way: For weights 1, 2, 3 we get 0, ±1, ±2, ±1/2. Going to weight 4
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we obtain a few irrationals; for example, the polynomials x2 − 2 and x2 + x + 1
have real roots ±√

2 and (−1 ± √
5)/2. �

Theorem 2.9 tells us that in some sense “most” reals are transcendental, but
it does not exhibit any transcendental number. The first examples were given by
Liouville, based on his theorem about approximation by rationals.

Theorem 2.10. Suppose that x is an algebraic real number of of degree k ≥ 2.
Then there is a constant K > 0 such that, for every rational r , if r = p/q in lowest
terms, then

|x − r | ≥ K

qk
. (14)

Proof: The proof can be made purely algebraic, but it is quicker to appeal to
calculus – specifically, the Mean Value Theorem. Notice that (14) is true with any
K ≤ 1 if |x − r | ≥ 1, so we may assume that |x − r | ≤ 1.

Let P denote the polynomial in (13) and suppose that P(x) = 0. There is a
constant L such that the derivative P ′ satisfies |P ′(s)| ≤ L if |s − x | ≤ 1. Now
suppose that |x − r | ≤ 1. The Mean Value Theorem says that

P(r ) = P(r ) − P(x) = (r − x)P ′(s), (15)

where s is some number between r and x . It follows that

|r − x | ≥ |P(r )|
L

. (16)

However, if r = p/q, then qk P(r ) is a (nonzero) integer, so |P(r )| ≥ 1/qk . There-
fore (14) holds, with K taken to be the smaller of 1 and 1/L . �

Remark. The preceding theorem is also valid for k = 1 if we add the conditions
that r = p/q is in lowest terms and that q is sufficiently large; this is necessary to
rule out r = x .

Corollary 2.11. The number with decimal expansion

.1100010000000000000000010000000000000000000 . . . (17)

(where the k-th one in the expansion occurs in the k! place) is transcendental.

Proof: Let x be the number with decimal expansion (17). We leave it to the
reader to check that for any positive integer k and any constant K the sequence
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of rationals

r1 = 1

10
, r2 = 1

10
+ 1

102
, r3 = 1

10
+ 1

102
+ 1

106
,

r4 = 1

10
+ 1

102
+ 1

106
+ 1

1024
, · · ·

eventually violates (14). Therefore x is not algebraic of any degree. �

Remark. The algebraic numbers form a field: the sum, product, difference, and
quotient of algebraic numbers is algebraic; see the exercises.

Exercises

1. Suppose that x is algebraic of degree n. Prove that −x and (if x �= 0) 1/x are also
algebraic of degree n.

2. Suppose that x is a real number. Prove that the following are equivalent:
(i) x is algebraic of degree ≤ n;

(ii) 1, x , x2, . . . , xn , xn+1 are linearly dependent over IQ;
(iii) every nonnegative integer power of x is a linear combination of 1, x , x2, . . . , xn

with rational coefficients.
(iv) there are rational numbers y1, y2, . . . , yn such that every nonnegative integral power

of x is a linear combination of the yk with rational coefficients.
3. Use the preceding exercise to show that 21/3 + 31/2 is algebraic of degree at most 6. In

fact, if x and y are real numbers that are algebraic of degrees m and n, respectively, then
x + y and xy are algebraic of degree ≤ mn.

2D. The Complex Numbers

To start, we take as the complex numbers the set IC of all expressions a + ib, where
a and b are real numbers and i is simply a place marker; we could equally well
write this as an ordered pair (a, b). In the set IC we define operations

(a + ib) + (c + id) = (a + c) + i(b + d);

(a + ib)(c + id) = (ac − bd) + i(ad + bc). (18)

Proposition 2.12. IC satisfies the field axioms A1–A4, M1–M4, and D.

Proof: Most of this is routine checking. The neutral elements for addition and
multiplication respectively are 0 + i0 and 1 + i0. If a + ib �= 0 + i0, which is the
same as saying a2 + b2 �= 0, then the multiplicative inverse is

(a + ib)−1 = a

a2 + b2
+ i

−b

a2 + b2
. � (19)
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The correspondence that assigns to a ∈ IR the complex number a + i0 takes
sums to sums, products to products, and the neutral elements for addition and
multiplication in IR to the neutral elements of IC. Therefore we may identify a
with a + i0 and consider IR as a subset of IC. Using the definition (18), one can
check easily that (0 + i1)2 = −1 + i0, the complex number identified with the real
number −1.

From now on we will make no distinction between a and a + i0, and we will also
write ib for 0 + ib and ±i for (±1) · i . Thus i2 = −1. Moreover, we may denote
complex numbers in general by single letters z, w, . . . or even a, b, . . . . Also, we
may denote z−1 by 1/z.

Definitions. Suppose that x and y are real and let z = x + iy. Then x and y are
called the real part and imaginary part of z:

x = Re z y = Im z.

The complex number z̄ = x − iy is called the complex conjugate of z. The real
number |z| =

√
x2 + y2 is called the modulus of z.

There is a potential conflict of notation here, since a real number x with absolute
value |x | can also be considered as a complex number x = x + i0 with modulus
|x + i0|, but in fact these are the same, namely,

√
x2.

Various useful algebraic facts are summed up in the following.

Proposition 2.13. For any complex numbers z and w,

z = Re z + iIm z; (20)

Re z = 1
2 (z + z̄), Im z = 1

2i (z − z̄); (21)

z + w = z̄ + w̄, zw = z̄w̄ ; (22)

|z|2 = zz̄; |z| = |z̄|; (23)

|zw | = |z| |w |; if w �= 0, then |z/w | = |z|/|w |; (24)

if z �= 0, then z−1 = z̄/|z|2. (25)

Proof: Each identity in (20)–(23) is either an easy consequence of the definitions
or is easily checked by calculation. The first identity (24) is a consequence of the
first identity in (23) and the second identity in (24) follows from the first. The
identity (25) follows from the first identity (23). �

We may identify the complex number z = x + iy with the point (x, y) in the
(coordinatized) plane IR2. Then the geometric interpretation of complex conjugation
is a reflection about the horizontal coordinate axis. The geometric interpretation of
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|z| is that it is the Euclidean distance from the point z to the origin (Pythagorean
Theorem). More generally, |z − w | is the Euclidean distance between the points z
and w .

The following inequalities are elementary but very important. The third, (28),
is known as the triangle inequality for the modulus. With the interpretation of the
modulus as the distance it may seem geometrically evident, but it is important to
prove it.

Proposition 2.14. For any complex numbers z and w,

|Re z| ≤ |z|, |Im z| ≤ |z|; (26)

|z| ≤ |Re z| + |Im z|; (27)

|z + w | ≤ |z| + |w |. (28)

Proof: Let x = Re z, y = Im z. Then |z| =
√

x2 + y2 is clearly larger than or
equal to both |x | and |y|. Conversely, (27) follows from squaring both sides. To
prove (28) we square and then use Proposition 2.13 together with (26) to obtain

|z + w |2 = (z + w)(z̄ + w̄) = zz̄ + (zw̄ + wz̄) + ww̄

= |z|2 + 2Re (zw̄) + |z|2 ≤ |z|2 + 2|zw̄ | + |w |2
= |z|2 + 2|z||w | + |w |2 = (|z| + |w |)2.

Remarks. We have not introduced an order into IC. It is not possible to do so in
such a way that IC becomes an ordered field, that is, so that O1–O4 are satisfied
(see Exercise 2). An inequality z < w or z ≤ w has no meaning unless w and z are
both real. Note that the inequalities in the preceding proposition all involve real
numbers!

From now on we shall frequently use the following convention: Whenever a
complex number is written in the form z = x + iy, then it is understood that x and
y are real, the real and imaginary parts of z.

Exercises

1. Prove that an ordered field cannot be finite.
2. Prove that there is no way to choose an ordering in IC such that it becomes an ordered

field.
3. Suppose that z = x + iy with x and y real. Show that max {|x |, |y|} ≤ |z| ≤ |x | + |y|.
4. (a)–(d) Prove Proposition 2.13 in detail.
5. Suppose that z is a nonzero complex number. Show that there is a unique pair r ∈ IR,

w ∈ IC such that r > 0, |w | = 1, and z = rw . This is called the polar decomposition of z.
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6. Let S = {z ∈ IC : |Im z| ≤ Re z} and T = {z2 : z ∈ S}. Describe these sets in terms of
the modulus and argument of their elements.

7. For complex z, show that |z − i | = |z + i | if and only if z is real; give a geometric
interpretation of this result.

8. Suppose that a, b, and c are complex numbers such that |a| = |b| = |c| = 1 and
a + b + c = 0. Prove that |a − b| = |b − c| = |c − a| and discuss the geometric
meaning.

9. Let f (z) = (z − i)/(z + i) for complex z �= −i . Show that, for each complex number
w �= 1, there is a unique z such that f (z) = w . Show that the image of the real line f (IR)
is the unit circle {z : |z| = 1}. Find the image of the upper half-plane {z : Im z > 0}.

10. (a) Suppose that A and C are real and B is complex. Prove that the set of complex z’s
such that Azz̄ + B̄z + Bz̄ + C = 0 is either a circle, a straight line, or the empty set.
(b) Prove conversely that any circle or straight line in the complex plane can be described
by an equation of this form.

11. Suppose that a, b, c, and d are complex numbers such that ad − bc �= 0. Define a
function f by f (z) = (az + b)/(cz + d) whenever cz + d �= 0. Prove that if S is a
circle or straight line in the complex plane, then the image f (S) = { f (z) : z ∈ S} is a
circle or straight line.
The following set of exercises gives a nonrigorous preview of material that will be
developed rigorously in Chapter 9. Earlier we have used “show” as a synonym for
“prove,” but in these exercises it has a looser meaning.

12. Use the power series expansions of sin t and cos t to justify defining eit = cos t + i sin t
for real t .

13. Show that |eit | = 1 and eit+is = eit eis .
14. Use Exercises 3, 12, and 13 to show that each complex z �= 0 can be written as reit ,

where r > 0, t ∈ IR. Relate this to polar coordinates in the plane.
15. Show that for any n ∈ IN there are exactly n complex solutions to the equation zn = 1.
16. Show that for any complex w �= 0 and any n ∈ IN there are exactly n complex solutions

to the equation zn = w .
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Real and Complex Sequences

The goal of this chapter is to establish the basic definitions and results concerning the
convergence of real and complex sequences. These include monotone sequences,
upper and lower limits of real sequences, the Cauchy criterion, and subsequences.

3A. Boundedness and Convergence

A complex sequence is a collection of complex numbers a1, a2, a3, . . . indexed by
the integers 1, 2, 3, . . . . We denote such a sequence by {an}∞n=1 or {an}∞1 or simply
by {an}. We also consider sequences {an}∞n=0 indexed by the nonnegative integers
0, 1, 2, 3, . . . . Such a sequence is said to be real if each of its terms an is real.

Definitions. A complex sequence {an} is said to be bounded if there is a real K ≥ 0
such that |an| ≤ K , all n. A real sequence {an} is said to be bounded above if there
is a real M such that an ≤ M , all n; it is said to be bounded below if there is a real
L such that L ≤ an , all n.

The first of the following two sequences is bounded below but not bounded, and
the second is bounded:

1, 2, 3, 4, . . . ; 1, 0, −1, 1, 0, −1, 1, 0, −1, . . . . (1)

It is fairly obvious that a real sequence is bounded if and only if it is bounded
both above and below. Moreover, a complex sequence {an} is bounded if and only
if the two real sequences {Re an} and {Im an} are bounded.

Definition. The complex sequence {an} is said to converge or to be a convergent
sequence if there is a complex number a with the property that for each ε > 0
there is an integer N such that n ≥ N implies |an − a| < ε. [This is one of the most
important definitions in the subject.] If so, a is said to be the limit of the sequence.

30
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Remarks. 1. Neither of the sequences (1) has a limit, according to this definition.
Later we will modify the definition and give a sense to saying that the first sequence
has limit +∞.

2. It can be tempting to think of the preceding definition as saying that the terms
of the sequence get progressively closer to the limit, but this is not necessarily the
case. Let an = 1/n if n is an odd positive integer and an = 0 if n is even, so that
the sequence is

1, 0, 1/3, 0, 1/5, 0, 1/7, 0, . . . . (2)

Then the limit is 0, but each even term is closer to the limit than is any odd term.
3. We have been speaking of “the limit.” In fact, suppose that both a and a′ are

limits for the sequence {an}. Given any ε > 0, choose N and N ′ so that |an − a| < ε

if n ≥ N and |an − a′| < ε if n ≥ N ′. Choose n ≥ N + N ′. Then

|a − a′| = |(a − an) + (an − a′)| ≤ |a − an| + |an − a′| < ε + ε = 2ε.

Since this inequality is true for every ε > 0, it follows that a = a′. [This method
of proving equality is used frequently.] Thus, if there is a limit, it is unique.

4. Here are some important examples of convergent sequences. The proofs are
left as exercises.

lim
n→∞ 1/n = 0; (3)

lim
n→∞ an = 0 if |a| < 1; (4)

lim
n→∞ a1/n = 1 if a > 0; (5)

lim
n→∞ n1/n = 1. (6)

The question of convergence can be reduced to the question of convergence of
real sequences.

Proposition 3.1. A complex sequence {bn + icn} has limit b + ic if and only if the
real sequences {bn} and {cn} have limits b and c, respectively.

Proof: This is a good exercise in using the definitions, together with the inequal-
ities (26) and (27) of Chapter 2. �

Definition. A real sequence {an}∞n=1 is said to be nondecreasing if

a1 ≤ a2 ≤ a3 ≤ . . . ≤ an, all n. (7)
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The sequence is said to be nonincreasing if

a1 ≥ a2 ≥ a3 ≥ . . . ≥ an, all n. (8)

It is said to be monotone if it is either nondecreasing or nonincreasing.
Note that a nondecreasing sequence is bounded below (but not necessarily above)

and a nonincreasing sequence is bounded above (but not necessarily below).
The following theorem is the starting point for most of the theory of convergence.

(Note that it is the “no-gap” condition, as formulated in Chapter 1.)

Theorem 3.2: Convergence of bounded monotone sequences. Any bounded
monotone sequence of reals is convergent.

Proof: Assume that {an} is bounded and nondecreasing. Let a be the least upper
bound of the set of numbers {a1, a2, . . . }. If ε is positive, then the number a − ε is
less than a and therefore is not an upper bound for this set. Consequently, there is
some index N such that aN > a − ε. This, the inequalities (7), and the fact that a
is an upper bound imply that for any integer n ≥ N

a − ε < aN ≤ an ≤ a.

Therefore n ≥ N implies |an − a| < ε, and a is the limit. The nonincreasing case
is proved in a similar way. �

We shall see in the next section that a convergent sequence is necessarily bounded,
so a monotone sequence is convergent if and only if it is bounded.

Exercises

1. Suppose that {xn}∞1 is a sequence of real numbers with limit x , and suppose that
a ≤ xn ≤ b, all n. Prove that a ≤ x ≤ b.

2. Suppose that zn = xn + iyn , with xn and yn real. Prove that limn→∞ zn = x + iy with
x and y real if and only if limn→∞ xn = x and limn→∞ yn = y.

3–6. Prove (3) to (6), using Exercises 10–12 of Section 2A.
7. Suppose that {zn}∞1 is a complex sequence with limit z0. Prove directly from the

definitions that (a) limn→∞ z2
n = z2

0 and (b) limn→∞ zk
n = zk

0, k ∈ IN.
8. Suppose that |z| < 1. Prove that limn→∞ zn = 0
9. Determine: (a) limn→∞[

√
n2 + 2n − n], (b) limn→∞(2n + n)/(3n − n), and

(c) limn→∞(n!)1/n .
10. Prove that Theorem 3.2 is equivalent to the Least Upper Bound Property. More pre-

cisely, assume all the axioms for the reals from Section 2A except O6, and assume
that Theorem 3.2 is valid. Show that O6 is a consequence of these assumptions.
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11. Prove that the following limits exist, and evaluate them:

(a) lim
n→∞

(
n2 + 3n + 5

n2 + 4n + 7

)n

.

(b) lim
n→∞

{(
1 + 1

n

) (
1 + 2

n

)
· · ·

(
1 + n

n

)}1/n

.

12. Suppose that x1 = 1 and xn+1 = √
2 + xn , n = 1, 2, . . . . Prove that the sequence

{xn}∞1 converges and find its limit.
13. Suppose that x1 = 1 and xn+1 = 1 + 1/xn , n = 1, 2, . . . . Prove that the sequence

{xn}∞1 converges and find its limit.
14. Let x1 = 1, x2 = 2, and xn+2 = 1

3 xn + 2
3 xn+1, n = 1, 2, . . . . Prove that the sequence

{xn}∞1 converges and find its limit.
15. Let positive a and x1 be given, and let xn+1 = (a + xn)/(1 + xn), n = 1, 2, . . . . Prove

that the sequence {xn}∞1 converges and find its limit.
16. Let positive a and x1 be given, and let xn+1 = 1

2 (xn + a/xn), n = 1, 2, . . . . Prove that
the sequence {xn}∞1 converges and find its limit.

3B. Upper and Lower Limits

Suppose that {xn} is a bounded real sequence. Then all its terms are contained in
the closed interval [a1, b1], where

a1 = inf{x1, x2, x3, . . . }; b1 = sup{x1, x2, x3, . . . }.

It follows from the definitions that this is the smallest closed interval that contains
all the terms xn . Similarly, if we omit the first m − 1 terms x1, x2, . . . , xm−1, then
the remaining terms are contained in a smallest closed interval [am, bm], where

am = inf{xm, xm+1, xm+2, . . . }, bm = sup{xm, xm+1, xm+2, . . . }. (9)

Consider, as an example, the sequence (2). For it we have an = 0 for every n,
while b2k−1 = b2k = 1/(2k − 1), k = 1, 2, . . . . For the second sequence in (1), on
the other hand, an = −1 and bn = 1, all n.

It follows from the definitions that the intervals [an, bn] are nested:

a1 ≤ a2 ≤ a3 ≤ . . . ≤ an ≤ bn ≤ . . . ≤ b3 ≤ b2 ≤ b1, all n. (10)

Thus the nondecreasing sequence {an} is bounded above by each bm . According
to Theorem 3.2 and its proof, {an} converges to its least upper bound a ≤ bm .
Similarly, the nonincreasing sequence {bn} converges and has limit b ≥ a. These
limits are called, respectively, the lower limit and upper limit of the sequence {xn}
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and denoted by lim infn→∞ xn and lim supn→∞ xn . Summarizing,

lim inf
n→∞ xn = lim

n→∞
[

inf{xn, xn+1, . . . }
] ≤ lim

n→∞
[

sup{xn, xn+1, . . . }
]

= lim sup
n→∞

xn. (11)

Note that (10) and (11) imply

am ≤ lim inf
n→∞ xn ≤ lim sup

n→∞
xn ≤ bm all m. (12)

The following is a useful characterization of the upper and lower limits.

Proposition 3.3. Let {xn} be a bounded real sequence. The lower limit
lim infn→∞ xn is the unique real number a that has the following two properties.

(a∗) For each ε > 0 there are only finitely many indices n such that xn ≤ a − ε.
(a∗∗) For each ε > 0 there are infinitely many indices n such that xn < a + ε.

The upper limit lim supn→∞ xn is the unique real number b that has the following
two properties.

(b∗) For each ε > 0 there are only finitely many indices n such that xn ≥ b + ε.
(b∗∗) For each ε > 0 there are infinitely many indices n such that xn > b − ε.

Proof: Suppose first that a has properties (a∗) and (a∗∗). Property (a∗) implies
that no number c smaller than a can have property (a∗∗) (choose ε = (a − c)/2, so
a − ε = c + (a − c)/2). Property (a∗∗) implies that no number larger than a can
have property (a∗). Therefore there is at most one such number a.

Now take a to be the lower limit of {xn}, that is, the least upper bound of the
sequence {an} of (9). Given ε > 0, the smaller number a − ε is not an upper bound,
so there is some N such that

a − ε < aN = inf{xN , xN+1, . . . }.
This proves (a∗). On the other hand, given an index N , we deduce from the fact
that aN ≤ a < a + ε that there is some index n ≥ N such that xn < a + ε. This
proves (a∗∗).

The proof that the upper limit is the unique number that has properties (b∗) and
(b∗∗) is very similar and is left as an exercise. �

This leads to one criterion for convergence.

Proposition 3.4. A bounded real sequence {xn} converges if and only if its upper
and lower limits are equal.
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Proof: Suppose first that the upper and lower limits are each equal to x . Then,
given ε > 0, it follows from Proposition 3.3 that there are only finitely many indices
n for which xn ≤ x − ε or xn ≥ x + ε. Consequently, if N is large enough, n ≥ N
implies |xn − x | < ε and x is the limit.

Conversely, suppose that {xn} converges to x . This means, of course, that, given
ε > 0, there is an index N such that n ≥ N implies x − ε < xn < x + ε. Therefore
x has the properties, listed in the statement of Proposition 3.3, that characterize the
upper and lower limits. �

Remark. The criterion in Proposition 3.4 is of limited practical interest – one
would have to be able to determine the upper and lower limits – but it plays a key
role in the next section.

Exercises

1. For each of the following real sequences {xn}∞1 , determine

yn = inf{xn, xn+1, xn+2, . . . }, zn = sup {xn, xn+1, xn+2, . . . }.
Also determine lim infn→∞ xn and lim supn→∞ xn .
(a) xn = (−1)n + 1

n .
(b) xn = (−1)n − 1

n .
(c) xn = (−1)n[1 + 1

n ].
2. Can both sequences {an} and {bn} of (9) be strictly monotone?
3. Suppose that {an}∞1 and {bn}∞1 are bounded real sequences.

(a) Prove that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

(b) Show by example that strict inequality can occur.
(c) Can strict inequality occur if one of the sequences converges?

4. Suppose that {an}∞1 and {bn}∞1 are bounded nonnegative sequences. Prove that

lim sup
n→∞

anbn ≤ lim sup
n→∞

an · lim sup
n→∞

bn.

5. Prove the second part of Proposition 3.3.

3C. The Cauchy Criterion

The definition of convergence of a sequence involves its limit. How can one tell
whether a series converges if one has not already determined the limit? An answer to
this question was given by Cauchy, and the concept he introduced has been named
accordingly.
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Definition. A complex sequence {an} is said to be a Cauchy sequence if for each
ε > 0 there is an index N such that, if the indices n and m are each greater than or
equal to N , then |an − am | < ε.

Remark. It is easy to see that {bn + icn} is a Cauchy sequence if and only if the
associated real sequences {bn} and {cn} are Cauchy sequences.

Proposition 3.5. If {an} converges, then it is a Cauchy sequence.

Proof: Given ε > 0, choose N so large that n ≥ N implies |an − a| < ε/2 and
use the triangle inequality. �

Proposition 3.6. If {an} is a Cauchy sequence, then it is bounded.

Proof: Choose N so large that n, m ≥ N imply |an − am | < 1. In particular,
n ≥ N implies that |an| = |aN + (an − aN )| < |aN | + 1, and so for every n

|an| < 1 + max{|a1|, |a2|, . . . , |aN |}. �

Corollary 3.7. Every convergent sequence is bounded.

Now we come to the basic result on convergence of complex sequences.

Theorem 3.8: Convergence of Cauchy sequences. If the complex sequence {zn}
is a Cauchy sequence, then it converges.

Proof: Suppose that {zn} = {xn + iyn} is a Cauchy sequence. Then the real se-
quences {xn} and {yn} are Cauchy sequences. If they converge, say to x and to y,
then {zn} converges to x + iy (Proposition 3.1). Consequently, it is enough to prove
that any real Cauchy sequence converges.

Suppose that {xn} is a real Cauchy sequence. Then it is bounded, so it has upper
and lower limits a and b. We only need to show that a = b. Let {an} and {bn} be
the sequences (9). Given ε > 0, choose N so that n ≥ N implies xN − ε < xn <

xN + ε. It follows from this, the definitions of an and bn , and (12) that

xN − ε ≤ aN ≤ a ≤ b ≤ bN ≤ xN + ε

and therefore |b − a| < 2ε. This is true for every ε > 0; so a = b and, by Propo-
sition 3.4, the sequence {xn} has limit x = a. �
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Exercises

1. Suppose that {an} is a convergent sequence whose terms are positive and nondecreasing.
Suppose that {bn} is a complex sequence with the property that, for each n, |bn+1 − bn| ≤
an+1 − an . Prove that {bn} converges.

2. Prove that Corollary 3.13, for real sequences, is equivalent to the Least Upper Bound
Property. More precisely, assume all the axioms for the reals from Section 2A except O6,
and assume that Corollary 3.13 is valid for real sequences. Show that O6 is a consequence
of these assumptions.

3D. Algebraic Properties of Limits

Definition. If {an} and {bn} are two complex sequences, the sum, difference, and
product are the sequences with terms an + bn , an − bn , and anbn , respectively. If
no term of bn is zero, then the quotient is the sequence with terms an/bn .

Theorem 3.9. Suppose that {an} and {bn} are convergent complex sequences with
limits a and b, and suppose that c is a complex number. Then

lim
n→∞ c an = c a; (13)

lim
n→∞(an ± bn) = a ± b; (14)

lim
n→∞(anbn) = ab. (15)

Moreover, if bn 	= 0, all n, and b 	= 0, then

lim
n→∞

an

bn
= a

b
. (16)

Proof: The assertions (13) and (14) are left as exercises. To prove (15), observe
that

|anbn − ab| = |(anbn − abn) + (abn − ab)| ≤ |anbn − abn| + |abn − ab|
= |an − a||bn| + |a||bn − b|. (17)

We know that if n is large enough, then |bn| = |b + (bn − b)| will be less than
|b| + 1. Given ε > 0 we can choose N so large that n ≥ N implies |bn| ≤ |b| + 1
and also

|an − a| <
ε

2|b| + 2
, |bn − b| <

ε

2|a| + 2
. (18)

It follows that n ≥ N implies |anbn − ab| < ε.
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The proof of (16) is somewhat similar. Note that if n is large, |bn − b| ≤ 1
2 |b|,

which implies that |bn| ≥ 1
2 |b|. For such n,

∣∣∣∣an

bn
− a

b

∣∣∣∣ =
∣∣∣∣anb − abn

bbn

∣∣∣∣
=

∣∣∣∣ (anb − ab) + (ab − abn)

bbn

∣∣∣∣ ≤
∣∣∣∣anb − ab

bbn

∣∣∣∣ +
∣∣∣∣ab − abn

bbn

∣∣∣∣
= |b||an − a|

|bn||b| + |a||bn − b|
|b||bn| ≤ |an − a| 2

|b| + |bn − b| |a|
2|b|2 .

As in the proof of (16), we can control the size of the last expression by choosing
n so large that |an − a| and |bn − b| are sufficiently small. �

Remark. Note the trick of breaking the “double” variation anbn − ab into two
“single variations” by subtracting and adding abn , and the simple modification for
dealing with an/bn − a/b.

The following result is a partial generalization of (13) that will be used when we
come to power series. The proof is left as an exercise.

Proposition 3.10. If {bn} is a bounded real sequence and {an} is a positive sequence
with limit a, then

lim inf
n→∞ anbn = a lim inf

n→∞ bn; lim sup
n→∞

anbn = a lim sup
n→∞

bn. (19)

Exercises

1. Prove (13) and (14).
2. Prove Proposition 3.10.
3. Suppose that {zn}∞1 is a complex sequence with limit z. Let {wn}∞1 be the sequence of

arithmetic means wn = (z1 + z2 + . . . + zn)/n. Prove that limn→∞ wn = z.
4. Suppose that limn→∞ zn = z. Let

wn =
n∑

k=0

2−n

(
n

k

)
zk,

where
(n

k

)
is the binomial coefficient n!/k!(n − k)!. Prove that limn→∞ wn = z.

5. Suppose that {zn}∞1 and {wn}∞1 are complex sequences with limits z and w , respectively.
Show that the following limit exists:

lim
n→∞

z1wn + z2wn−1 + z3wn−2 + . . . + znw1

n
.
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3E. Subsequences

Definition. A subsequence of a sequence {an} is a sequence {bn} whose terms are
among the terms of {an}, with increasing indices. In other words, there is a sequence
{nk}∞k=1 of positive integers such that

n1 < n2 < n3 < . . . < nk < . . . , bk = ank . (20)

(In particular, any sequence is a subsequence of itself, with each nk = k.)
For example, the first sequence (1) has among its subsequences the sequences

2, 4, 6, 8, 10, . . . ; 1, 4, 9, 16, 25, . . . ,

and the second sequence (1) has among its subsequences the sequences

1, 1, 1, 1, 1, 1, . . . ; −1, 0, −1, 0, −1, 0, . . . .

Proposition 3.11. A complex sequence {an} converges to a if and only if each of
its subsequences converges to a.

Proof: If {an} converges to a, it is very easy to prove that each subsequence
has limit a. Conversely, {an} is a subsequence of itself, so the convergence of each
subsequence trivially implies the convergence of the sequence {an} itself. �

For bounded real sequences there is a close relationship between the convergent
subsequences and the upper and lower limits of the original sequence, as indicated
in the next proposition. The proof is left as an exercise.

Proposition 3.12. Suppose that {xn} is a bounded real sequence.

(a) If {yn} is any convergent subsequence, then

lim inf
n→∞ xn ≤ lim

n→∞ yn ≤ lim sup
n→∞

xn.

(b) There is a subsequence that converges to lim infn→∞ xn and also a subsequence that
converges to lim supn→∞ xn.

A particular consequence of part (b) is important.

Corollary 3.13: The Bolzano-Weierstrass Theorem. Each bounded real or com-
plex sequence has a convergent subsequence.

Proof: The real case follows from Proposition 3.12. For a complex sequence
{xn + iyn}, choose a subsequence whose real parts converge and then a subsequence
of that one whose imaginary parts converge. �
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Exercises

1. Prove Proposition 3.12.
2. Suppose that {xn}∞1 is a real sequence, and suppose that for each k ∈ IN there is a

subsequence of {xn}∞1 that converges to 1/k. Prove that there is a subsequence that
converges to 0.

3. Suppose that {xn}∞1 is a bounded real sequence. For each m ∈ IN, let Sm be the set
{xm, xm+1, xm+2, . . . }.
(a) Suppose that for some m, the set Sm does not contain its least upper bound. Show

that {xn}∞1 has a strictly increasing subsequence.
(b) Suppose that for all m, Sm does contain its least upper bound. Show that {xn}∞1

has a nonincreasing subsequence. Conclude that every bounded real sequence has a
monotone subsequence.

4. Suppose that {xn}∞1 is a bounded real sequence and b = lim supn→∞ xn . Show that there
is a monotone subsequence converging to b.

3F. The Extended Reals and Convergence to ±∞
It is sometimes convenient to consider the extended real numbers; by definition,
this is the set that is the union of IR and the two-element set {−∞, +∞}. In this
enlarged set one extends the standard algebraic operations and the order relation to
include the following:

a + (+∞) = (+∞) + a = +∞, all a ∈ IR; (21)

a + (−∞) = (−∞) + a = −∞. all a ∈ IR; (22)

a · (+∞) = +∞ if a > 0; = −∞ if a < 0; (23)

a · (−∞) = −∞ if a > 0; = +∞ if a < 0; (24)

a/(±∞) = 0 all a ∈ IR; (25)

(+∞) + (+∞) = +∞; (−∞) + (−∞) = −∞; (26)

(+∞) · (+∞) = +∞ = (−∞) · (−∞); (27)

(+∞) · (−∞) = −∞ = (−∞) · (+∞). (28)

The various field axioms remain valid when each of the expressions that occur
is defined, but 0 · (±∞), (±∞) · 0, (+∞) + (−∞), and (−∞) + (+∞) are not
defined. [There is a reason why they are not defined; we return to this point shortly.
In particular, do not yield, yet, to the temptation to set 0 · (±∞) equal to 0.]

Definition. A real sequence {xn} is said to have limit +∞ if for each real M
there is a positive integer N such that n ≥ N implies xn ≥ M . Similarly, {xn}
is said to have limit −∞ if for each real L there is N ∈ IN such that n ≥ N
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implies xn ≤ L . In these cases we write limn→∞ xn = +∞ or limn→∞ xn = −∞,
respectively.

For example, the first sequence in (1) has limit +∞. The various parts of Theo-
rem 3.9 remain valid for real sequences when some or all of the limits are ±∞,
Some of these are included among the exercises. To see what might go wrong,
consider the sequences with terms

an = 0, bn = 1/n, cn = n, dn = n2, n ∈ IN.

Then {an} and {bn} both have limit 0 and {cn} and {dn} both have limit +∞, while
{ancn} and {andn} have limit 0, {bncn} has limit 1, and {bndn} has limit +∞. Thus
there is no way we can define 0 · (+∞) to make the limit of the product equal to
the product of the limits in all these examples.

Note that a nondecreasing real sequence either has a finite limit or has limit
+∞. The proof is left as an exercise.

Remark. The plus sign is often omitted when writing +∞.

Exercises

1. Suppose that all xn’s are positive. Prove that {xn}∞1 has limit ∞ if and only if {1/xn}∞1
has limit 0.

2. Prove that any nondecreasing real sequence has a limit, allowing +∞ as a possible
limit.

3. Prove (14) and (15) when {an} and {bn} are real sequences and {an} has limit a ∈ IR,
a > 0, while {bn} has limit +∞.

4. Suppose that {xn}∞1 is a sequence of positive reals with limit x ≥ 0 (allowing x = +∞).
Prove that limn→∞(x1x2 · · · xn)1/n = x .

5. Suppose that {zn}∞1 is a complex sequence with limit z and suppose that {an}∞1 is a
positive sequence such that limn→∞(a1 + a2 + . . . + an) = +∞. Prove that

lim
n→∞

a1z1 + a2z2 + . . . anzn

a1 + a2 + . . . + an
= z.

6. Prove
(a) limn→∞ xn/nk = +∞ if x > 1 and k ∈ IN;
(b) limn→∞ nk xn = 0 if |x | < 1 and k ∈ IN;
(c) limn→∞ x1/n = 1 if x > 0.

7. Use the preceding and/or succeeding exercise to rank the following in order of size
for very large positive integers n; you may use the fact from the next section that
limn→∞(1 + 1

n )n = e = 2.718 . . . :

n! n100 nn/2 2n
(n

2

)n
nn.
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8. Suppose that an , and bn are positive, all n ∈ IN. Suppose that there are positive constants
r and N with r < 1 such that

an+1

an
≤ r

bn+1

bn
if n ≥ N .

Show that limn→∞ an/bn = 0.
9. Suppose that {xn}∞1 is a real sequence such that xn+m ≤ xn + xm for each pair of in-

dices n and m. Prove that either the sequence {x/n}∞n=1 converges or else limn→∞ xn
n

= −∞.

3G. Sizes of Things: The Logarithm

The derivative, integration, the Fundamental Theorem of Calculus, the exponential,
and the (natural) logarithm are all treated rigorously in Chapter 8, but they are not
likely to be new to any reader of this book. To add to our repertoire in treating
limits and in comparing the sizes of things, it is very useful to jump ahead and to
use various facts about the logarithm.

We write log x for the natural logarithm (base e), which is often written ln x . It
is defined for all positive x and has the properties

log 1 = 0;
d

dx
log x = 1

x
; elog x = x . (29)

It follows from the first two of these properties that

log x =
∫ x

1

dt

t
. (30)

It will be useful to have a good estimate of log x when x is close to 1. We take
x = 1 + h and assume that h is positive. Then (30) becomes

log(1 + h) =
∫ 1+h

1

dt

t
. (31)

The interval of integration has length h, and on this interval the integrand is between
1/(1 + h) and 1 (see Figure 2). Therefore,

h

1 + h
< log(1 + h) < h, if h > 0. (32)

It follows from (32) that

a

n + a
< log

(
1 + a

n

)
<

a

n
, if a ≥ 0;

lim
n→∞ n log

(
1 + a

n

)
= a. (33)
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Figure 2. Estimating log(1 + h).

Exponentiating, we get

ena/(n+a) <
(

1 + a

n

)n
< ea;

lim
n→∞

(
1 + a

n

)n
= ea. (34)

Exercise

1. Prove that limn→∞ n [n1/n − 1] = +∞.

Additional Exercises for Chapter 3

1. Suppose that F(x) = ax(1 − x), where 0 ≤ a ≤ 4.
(a) Show that if x ∈ I , where I is the unit interval [0, 1], then F(x) ∈ I . This means

that we can define sequences in I by choosing any x1 ∈ I and letting xn+1 = F(xn),
n ≥ 1.

(b) Prove that if 0 ≤ a ≤ 1, then, for any choice of x1 ∈ I , limn→∞ xn = 0.
(c) Prove that if 1 < a ≤ 3, then there are exactly two points y in I such that F(y) = y,

and for any 0 < x1 ≤ 1 the sequence converges to the larger of these two points.
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(d) Prove that for 3 < a ≤ 4 there are two points as in (c) and also two distinct points p
and q in I such that F(p) = q and F(q) = p. Show that for 3 < a < 1 + √

6 and
any x1 in I , either the sequence stays at one of the two fixed points of (c), or else its
even terms converge to one of the points p or q and its odd terms converge to the
other.

Exercises 2–6 deal with the Fibonacci sequence. This is the sequence {Fn}∞1 that
is characterized by the equation (*) Fn+2 = Fn + Fn+1 together with the starting
conditions F1 = F2 = 1.

2. For what values of r does the sequence {rn}∞n=1 satisfy the equation (*)?
3. Show that if sequences {xn}∞1 and {yn}∞1 both satisfy the equation (*) and a and b are

constants, then the sequence {cn}∞1 with terms cn = axn + byn also satisfies (*).
4. Show that there are constants a, b, r , and s such that Fn = arn + bsn for every n ∈ IN,

while r > 1 and |s| < 1.
5. Compare Fn in size to (8/5)n and (13/8)n . Compute limn→∞ Fn+1/Fn .
6. Are 17/12 and 41/29 good approximations to

√
2? Discuss the reason for this in

connection with the sequence {Gn}∞1 defined by G1 = G2 = 1, Gn+2 = Gn+1 + 1
4 Gn .

Exercises 7–13 deal with the Mandelbrot set. This is the set M of all complex
numbers c with the property that the sequence of complex numbers {zn}∞0 defined
as follows is bounded: z0 = 0, zn+1 = z2

n + c. (See almost any book or article on
“fractals.”)

7. Compute the sequence for each of the choices: c = 0, c = −1, c = i , c = −i , c = −2.
8. Which of the following is in M : 1

4 , 1
3 , − 1

3 , 1 + i?
9. Prove that if c is positive, then the sequence is strictly increasing. Assuming that the

limit is finite, compute it as a function of c.
10. Prove that M ∩ [0, ∞) = [0, 1

4 ].
11. Prove that M ∩ (−∞, 0] = [−2, 0].
12. Prove that if c ∈ IC and |c| > 2, then c /∈ M .
13. Prove that if for some m ∈ IN, |zm | > 2, then c /∈ M .



P1: IwX

0521840724c04 CY492/Beals 0 521 84072 4 June 18, 2004 14:45 Char Count= 0

4

Series

The principal concepts and techniques of infinite series are introduced here, in-
cluding the standard convergence tests and the difference between absolute and
conditional convergence. Using Euler’s constant, we evaluate some of the series
introduced in the first chapter.

4A. Convergence and Absolute Convergence

If {an} is a complex sequence, we associate to it the series denoted by
∑∞

1 an . For
the moment this is just a formal expression. To give it meaning, we look at the
sequence {sn} of partial sums

s1 = a1, s2 = a1 + a2, . . . , sn =
n∑

k=1

ak . (1)

The series
∑∞

1 an is said to be convergent, or to converge, if the sequence of partial
sums converges. If {sn} has limit s, then s is said to be the sum of the series

∑∞
1 an

and one writes

∞∑
n=1

an = lim
n→∞

n∑
k=1

ak = s. (2)

Otherwise the series is said to diverge or to be divergent.

Remarks

1. For a convergent series the expression
∑∞

1 an does double duty. It stands for the series
itself (with terms an and partial sums (1)) and also for the complex number that is its
sum, depending on the context.

45
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2. Consider an = bn + icn . The real parts of the partial sums are the partial sums of the real
series

∑∞
1 bn , and so on, so

∑∞
1 an converges if and only if both

∑∞
1 bn and

∑∞
1 cn

converge (Proposition 3.1).
3. The terms of a series can be recovered from the partial sums:

a1 = s1, an = sn − sn−1 if n > 1. (3)

Therefore, for a series
∑∞

1 an to be convergent, it is necessary that limn→∞ an = 0. We
shall see later that this condition is not sufficient.

4. We also deal frequently with series whose terms are indexed by the nonnegative integers
0, 1, 2, . . . . This requires minor modifications in the notation and in (1)–(3).

The simplest examples of convergent series are the geometric series.

Theorem 4.1: Geometric series. Let z be a complex number. The series
∑∞

0 zn

converges if and only if |z| < 1. If so, the sum is 1/(1 − z).

Proof: If |z| ≥ 1, then the terms of the series do not have limit 0 and so the series
diverges.

Suppose that |z| < 1. The partial sums are

sn =
n∑

k=0

zn = 1 − zn+1

1 − z

(equation (5) of Chapter 1) and limn→∞ zn+1 = 0, so the limit is 1/(1 − z). �

In principle, the theory of series is contained in the theory of sequences: One
looks at the sequence of partial sums. We have not yet developed the theory of
sequences far enough to include much useful information about series, but we can
obtain some algebraic properties from Theorem 3.9.

Theorem 4.2. Suppose that
∑∞

1 an and
∑∞

1 bn are convergent and c is a complex
number. Then the series

∑∞
1 can,

∑∞
1 (an + bn), and

∑∞
1 (an − bn) are convergent

and

∞∑
n=1

can = c
∞∑

n=1

an;
∞∑

n=1

(an ± bn) =
∞∑

n=1

an ±
∞∑

n=1

bn. (4)

Definition. The series
∑∞

1 an is said to be absolutely convergent, or to converge
absolutely, if the real series

∑∞
1 |an| converges.
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This definition would be unfortunate if there were a series that was absolutely
convergent but not convergent, since the former sounds like a stronger condition.
In fact it is a stronger condition.

Theorem 4.3: Absolute convergence. If the series
∑∞

1 an is absolutely conver-
gent, then it is convergent and the sum satisfies

∣∣∣∣∣
∞∑

n=1

an

∣∣∣∣∣ ≤
∞∑

n=1

|an|. (5)

Proof: Let {sn} be the sequence of partial sums of
∑∞

1 an and let {tn} be the
sequence of partial sums of

∑∞
1 |an|. To show convergence, we show that {sn} is a

Cauchy sequence. In fact, if m < n, then

|sn − sm | = |am+1 + am+2 + . . . + an|
≤ |am+1| + |am+2| + . . . + |an| = tn − tm = |tn − tm |. (6)

But {tn} is a Cauchy sequence, so (6) is small if n and m are large.
The inequality (5) follows from the inequalities |sn| ≤ tn for the partial

sums. �

Notice that the terms of
∑∞

1 |an| are nonnegative. Thus the following theorem
specializes to give a necessary and sufficient condition for absolute convergence.

Theorem 4.4: Series with nonnegative terms. If bn ≥ 0 for all n, then
∑∞

1 bn

converges if and only if the sequence of partial sums is a bounded sequence.

Proof: The sequence of partial sums in this case is nondecreasing, so it has a
(finite) limit if and only if it is bounded (Theorem 3.2). �

If the terms bn are nonnegative, then divergence of
∑∞

1 bn means that the partial
sums have limit +∞. In this case one writes

∞∑
n=1

bn = ∞.

It is important to remember that this notation presupposes that all bn’s are
nonnegative.
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Exercises

1. Suppose that {sn}∞1 is the sequence of partial sums of the series
∑

an . Suppose that
limn→∞ an = 0 and that limn→∞ s2n exists. Prove that the series converges.

2. Find the sum of the series
∑∞

1 1/n(n + 1).
3. Suppose that a1 ≥ a2 ≥ a3 ≥ . . . , and suppose that limn→∞ an = 0. Show that if

∑∞
1 an

converges, then limn→∞ nan = 0. (This is easy if you know that limn→∞ nan exists, but
why should it exist?)

4B. Tests for (Absolute) Convergence

Theorem 4.4 is the basis for the first general test for convergence.

Theorem 4.5: Comparison Test. Suppose that bn ≥ 0 for all n, and suppose that
there are constants M and N such that

|an| ≤ M bn, all n ≥ N (7)

and
∑∞

1 bn converges. Then
∑∞

1 an converges.

Proof: It follows from the assumptions that the partial sums of
∑∞

1 bn are
bounded, and (7) can be used to show easily that the partial sums of

∑∞
1 |an| are

bounded. Therefore
∑∞

1 an is absolutely convergent, and hence convergent. �

The Comparison Test is not of much use without a stock of convergent series
available for comparison. The only nontrivial positive series that we have, so far,
are the geometric series

∑
rn , with 0 < r < 1. The next two tests take advantage

of these series.

Theorem 4.6: Ratio Test. Suppose that an �= 0 for all n. Then

lim sup
n→∞

|an+1|
|an| < 1 implies that

∞∑
n=1

an converges;(a)

|an+1|
|an| ≥ 1 for n ≥ N implies that

∞∑
n=1

an diverges.(b)

In particular, if the limit L = limn→∞ |an+1|/|an| exists, then the series converges
if L < 1 and diverges if L > 1.

Proof: Suppose that the condition in (a) is satisfied and choose r so that

lim sup
n→∞

|an+1|
|an| < r < 1.
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Only finitely many of the quotients can exceed r (Proposition 3.3), so there is
N ∈ IN such that the quotient is ≤ r for n ≥ N . This means that, for each n > N ,

|an| ≤ r |an−1| ≤ r (r |an−2|) = r2|an−2| ≤ . . . ≤ rn−N |aN | = M rn,

M = r−N |aN |.

The Comparison Test and the convergence of
∑∞

0 rn imply convergence.
Now suppose that the condition in (b) is satisfied. Then |an| ≥ |aN | for n ≥ N ,

so the terms of the series do not have limit 0. �

Examples

1.
∑∞

0 1/n!. The ratio is 1/(n + 1), so the series converges.
2.

∑∞
1 1/n. The ratio is n/(n + 1) = 1/(1 + 1/n), which is < 1 but has limit 1, so the ratio

test is inconclusive. The same is true for
∑∞

1 1/n2.

The next test is usually harder to apply than the Ratio Test, but it is important, in
principle, for power series.

Theorem 4.7: Root Test

lim sup
n→∞

|an|1/n < 1 implies that
∞∑

n=1

an converges;(a)

lim sup
n→∞

|an|1/n > 1 implies that
∞∑

n=1

an diverges.(b)

In particular, if the limit L = limn→∞ |a|1/n exists, then
∑∞

1 an converges if L < 1
and diverges if L > 1.

Proof: If the condition in (a) is satisfied, choose r such that

lim sup
n→∞

|an|1/n < r < 1.

By Proposition 3.3 once more, this implies that |an|1/n ≤ r for n ≥ N . Thus |an| ≤
rn for n ≥ N , and the Comparison Test implies convergence.

If the condition in (b) is satisfied, then |an| ≥ 1 for infinitely many values of n,
by Proposition 3.3, so the terms do not have limit 0. �

Example.
∑∞

1 1/n. By Exercise 5 of Section 3F, limn→∞ n1/n = 1, so the Root
Test is inconclusive. The same is true for the series

∑∞
1 1/n2.
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Neither the Ratio Test nor the Root Test tells us whether
∑∞

1 1/n or
∑∞

1 1/n2

converges or diverges. The terms of these series are positive, so all we need deter-
mine is whether or not the partial sums are bounded. For large m,

1 + 1

2
+ 1

3
+ 1

4
+ . . . + 1

2m

= 1 + 1

2
+

(
1

3
+ 1

4

)
+

(
1

5
+ 1

6
+ 1

7
+ 1

8

)
+ . . . +

(
1

2m−1 + 1
+ . . . + 1

2m

)

> 1 + 1

2
+ 1

2
+ 1

2
+ . . . + 1

2
= 1 + m

2
.

Therefore, the partial sums are unbounded and the harmonic series diverges:

∞∑
1

1

n
= ∞, (8)

On the other hand,

1 + 1

4
+ 1

9
+ 1

16
+ . . . + 1

(2m+1 − 1)2

= 1 +
(

1

4
+ 1

9

)
+

(
1

16
+ 1

25
+ 1

36
+ 1

49

)

+ . . . +
(

1

22m
+ . . . + 1

(2m+1 − 1)2

)

< 1 + 2

22
+ 4

42
+ 8

82
+ . . . + 2m

(2m)2
<

∞∑
m=0

1

2m
= 2,

so the partial sums are bounded and the series
∑∞

1 1/n2 converges.
The two procedures just outlined can be used to prove the next theorem.

Theorem 4.8: 2m test. Suppose that the real sequence {am} is nonincreasing and
has limit 0:

a1 ≥ a2 ≥ a3 ≥ . . . ≥ an ≥ 0; lim
n→∞ an = 0.

Then
∑∞

1 an converges if and only if the series
∑∞

m=0 2m a2m converges.

Example. Consider
∑∞

1 1/nb, where b > 0. Then an = n−b, so

∞∑
m=0

2m a2m =
∞∑

m=0

2m

(2m)b
=

∞∑
m=0

(
1

2b−1

)m

.
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The last series is a geometric series and it converges if and only if 2b−1 > 1, that
is, b > 1. In particular, this shows again that

∑∞
1 1/n diverges while

∑∞
1 1/n2

converges.
One good proof deserves another. Let us take a second look at the series

∑∞
1 1/nb

by picturing a sequence of rectangles in the plane. Each rectangle has its base on
the horizontal axis, identified with the real line. The n-th rectangle has as its base
either the interval [n − 1, n] or the interval [n, n + 1] and has height 1/nb. This
picture demonstrates the inequalities

∫ n+1

1

dx

xb
≤

n∑
k=1

1

kb
≤ 1 +

∫ n

1

dx

xb
. (9)

Performing the integration, one sees once again that the partial sums of
∑∞

1 1/nb

are bounded if and only if b > 1.
The preceding argument can also be put into the form of a general convergence

test. (See Figure 3.)

0 1 2 3 4

a1

a2

a3

a4

a5

Figure 3. The integral test.
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Theorem 4.9: Integral test. Suppose that f is a nonnegative nonincreasing con-
tinuous function defined for x ≥ 1 and suppose that an = f (n) for all n ∈ IN. Then∑∞

1 an converges if and only if the improper integral
∫ ∞

1 f (x) dx is finite.

[The cautious and logically minded reader will note that we have not defined
several of the terms used here and do not do so until later sections. The good news
is that no use is made of Theorem 4.9 in any of the developments leading up to
those sections, so the reasoning is not circular. On the other hand, Theorem 4.9 is a
beautiful reminder of the analogy between summation and integration – and it may
be helpful in some of the exercises.]

Some General Remarks About Deciding Convergence or Divergence

No convergence test has all the answers. For series with positive terms, it is vital to
know how fast the terms go to zero. Remember that, for comparison, an inequality

|an| ≤ 1000000

n2

is good enough for convergence, and an inequality

an ≥ 1

1000000 n

is good enough for divergence. In examining the terms of a series, note what is
important and what is not for large n: If an expression like 2n − n2 appears in a
numerator or denominator, 2n is important and n2 is not (why?). Sometimes simply
clearing out the unimportant terms will give the answer. For example, in the case
of n2 − n, one can use the inequalities

n2

2
≤ n2 − n ≤ n2 for n ≥ 2

to replace n2 − n in a denominator by the simpler term n2.

Exercises

In Exercises 1–18, determine whether the series converges or diverges.

1.

∞∑
n=1

n3

3n
.

2.

∞∑
n=1

(n!)2

(2n)!
.
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∞∑
n=1

(n!)2(15)n/2

(2n)!
.3.

∞∑
n=1

(n − √
n)

(n2 + 5n)
.4.

∞∑
n=1

√
n + 1 − √

n

n
.5.

∞∑
n=1

2nn!

nn
.6.

∞∑
n=1

3nn!

nn
.7.

∞∑
n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · 2n
.8.

∞∑
n=1

2 · 4 · 6 · · · 2n

1 · 3 · 5 · · · (2n + 1)
.9.

∞∑
n=1

(log n)− log n.10.

∞∑
n=1

(log n)− log log n.11.

∞∑
n=1

(
1 − log n

log(n + 1)

)
.12.

∞∑
n=1

1

n1+1/n
.13.

∞∑
n=1

(
n1/n − 1

)
.14.

∞∑
n=1

√
n
(
n1/n2 − 1

)
.15.

∞∑
n=1

(
1 − a

)(
1 − a

2

)(
1 − a

3

)
· · ·

(
1 − a

n

)
, a > 0.16.

∞∑
n=1

a(a + 1)(a + 2) · · · (a + n − 1)

b(b + 1)(b + 2) · · · (b + n − 1)
, a, b > 0.17.

∞∑
n=1

a(a + 1) · · · (a + n − 1) · c(c + 1) · · · (c + n − 1)

b(b + 1) · · · (b + n − 1) · d(d + 1) · · · (d + n − 1)
, a, b, c, d > 0.18.

For what, if any, values of a > 0 do the following series converge?19.

(a)
∞∑

n=2

1/n(log n)a . (b)
∞∑

n=3

1/n log n(log log n)a .
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20. For what, if any, values of the real numbers a and b do the following series converge?

(a)
∞∑

n=1

(
1

n
+ a

n + 1

)
. (b)

∞∑
n=1

(
1

n
+ a

n + 1
+ b

n + 2

)
.

21. Do the following two series converge or diverge?

(a) 1 − 1√
2

+ 1√
3

− 1√
4

+ 1√
5

− 1√
6

+ · · · .

(b) 1 + 1√
3

− 1√
2

+ 1√
5

+ 1√
7

− 1√
4

+ · · · .

22. Does the following series converge or diverge?

1 + 1

32
− 1

2
+ 1

52
+ 1

72
− 1

4
+ · · · + 1

(4n + 1)2
+ 1

(4n + 3)2
− 1

2n + 2
+ · · · .

23. Is there any real constant a such that the following series converges?

1 + 1√
3

− a√
2

+ 1√
5

+ 1√
7

− a√
4

+ · · · .

24. Prove Theorem 4.8, the 2m test.
25. Prove Theorem 4.9, the integral test. (Assume the standard properties of the definite

integral.)
26. Let M be the subset of IN consisting of those integers n such that no digit of n in its

decimal expression is 5. Prove that
∑

n∈M 1/n converges.

4C∗. Conditional Convergence

A series that converges but that is not absolutely convergent is said to be condition-
ally convergent, or to converge conditionally.

The alternating harmonic series
∑∞

1 (−1)n−1/n that we saw in Section 1A
is not absolutely convergent. On the other hand, look at the grouping of terms
there:

1 −
(

1

2
− 1

3

)
−

(
1

4
− 1

5

)
−

(
1

6
− 1

7

)
−

(
1

8
− 1

9

)
− · · · (10)

= 1 − 1

2 · 3
− 1

4 · 5
− 1

6 · 7
− 1

8 · 9
− · · · .

The regrouped series converges by comparison to
∑∞

1 1/n2, and this suggests
that the original series (10) converges. In fact, it shows that the odd partial sums
{s2n+1} converge; and since the terms have limit 0, it is not difficult to show that
the full sequence of partial sums converges and has sum < 1. Thus the series (10)
is conditionally convergent.



P1: IwX

0521840724c04 CY492/Beals 0 521 84072 4 June 18, 2004 14:45 Char Count= 0

4C∗. Conditional Convergence 55

Similarly, the regrouping

1 + 1

3
− 1

2
+ 1

5
+ 1

7
− 1

4
+ 1

9
+ 1

11
− 1

6
+ · · ·

= 1 +
(

1

3
− 1

2
+ 1

5

)
+

(
1

7
− 1

4
+ 1

9

)
+

(
1

11
− 1

6
+ 1

13

)
+ · · ·

= 1 + 1

2 · 3 · 5
+ 1

4 · 7 · 9
+ 1

6 · 11 · 13
+ · · · (11)

shows that the last series converges (by comparison with
∑∞

1 1/n3); one can con-
clude first that the subsequence {t3n+1} of the sequence of partial sums of (11)
converges and then that the series (11) itself converges. Moreover, its sum is > 1.
In other words, we have recovered the paradox of Chapter 1 and have shown that
indeed these two (infinite) sums are different even though the summands are the
same. We return to this question in a moment, after turning to the single most useful
criterion for conditional convergence.

Theorem 4.10: Alternating series. Suppose that the real sequence {an} is non-
increasing and has limit 0:

a1 ≥ a2 ≥ a3 ≥ . . . ≥ an ≥ 0; lim
n→∞ an = 0. (12)

Then the alternating series
∑∞

1 (−1)n−1an converges. Moreover, if {sn} is the se-
quence of partial sums, then

s2n ≤
∞∑

n=1

(−1)n−1an ≤ s2n−1 all n. (13)

Proof: It is easy to see by induction that

s2 ≤ s4 ≤ · · · ≤ s2n ≤ s2n−1 ≤ · · · ≤ s3 ≤ s1 (14)

for all n. It follows that the upper and lower limits of {sn} lie between s2n and
s2n−1 for every n. But s2n−1 − s2n = a2n has limit 0. Therefore, the upper and
lower limits are the same, and the sequence converges. The inequality (13) follows
from (14). �

Let us return to the paradox concerning the series (10) and (11). Note that (11)
is a rearrangement of (10), in the following sense.

Definition. A series
∑∞

1 bn is said to be a rearrangement of the series
∑∞

1 an if
there is a 1–1 mapping of IN onto itself, n → σ (n), such that bn = aσ (n), all n. In
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other words, each index m occurs exactly once among the integers σ (n), so each
indexed term am occurs exactly once as an indexed term bn .

Absolutely and conditionally convergent series have completely different behav-
iors under rearrangement.

Theorem 4.11. Suppose that
∑∞

1 an is absolutely convergent and that
∑∞

1 bn is
a rearrangement. Then

∑∞
1 bn converges and has the same sum as

∑∞
1 an.

Proof: Let {sn} be the sequence of partial sums of
∑∞

1 an and let s be the limit.
Let {tn} be the sequence of partial sums of

∑∞
1 bn . Given ε > 0, choose M so large

that

∞∑
n=M+1

|an| < ε/2. (15)

It follows from this that |sM − s| < ε/2. Choose N so large that every one of the
first M terms of {an} occurs among the first N terms of {bn}. It follows that for
n ≥ N the difference |tn − sM | is no larger than the left-hand side of (15), and
therefore

|tn − s| ≤ |tn − sM | + |sM − s| < ε/2 + ε/2 = ε. �

The next theorem shows that it is not at all remarkable that the series (10) and
(11) have different limits.

Theorem 4.12: Riemann’s Rearrangement Theorem. Suppose that
∑∞

1 an is a
conditionally convergent real series. For each real number s, there is a rearrange-
ment of

∑∞
1 an that converges and has sum s.

Proof: Let p1, p2, . . . and q1, q2, . . . enumerate, in order, the positive and negative
terms, respectively, of

∑∞
1 an . The nonnegative series

∑∞
1 pn and

∑∞
1 (−qn) both

diverge. In fact, if both were convergent, it would follow that
∑∞

1 |an| converges,
that is,

∑∞
1 an would be absolutely convergent. On the other hand, if one of these

series converged and the other diverged, it would follow that the partial sums of∑∞
1 an diverge either to +∞ or to −∞. The convergence of

∑∞
1 an itself implies

that {pn} and {qn} have limit 0. With these facts in mind we can rearrange
∑∞

1 an

to sum to s by constructing a sequence of terms as follows. Choose terms p1,
p2, . . . up to the first index k1 such that

s < p1 + p2 + · · · + pk1 .
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This will eventually occur, because
∑∞

1 pn = ∞. Second, choose q1, q2, . . . up to
the first index l1 such that

(p1 + p2 + · · · + pk1 ) + (q1 + q2 + · · · ql1 ) < s.

Third, choose just enough new p’s to get to the right of s, and then choose just
enough new q’s to get to the left of s, and continue. At each phase of the 2n-th step
of this construction, the difference between s and the partial sum of the new series
has absolute value smaller than max{pkn , |qln |}, and at each phase of the 2n + 1-st
step, the difference has absolute value smaller than max{pkn+1, |qln |}. These have
limit 0, so the rearranged series has sum s. �

Exercise

1. Suppose that the real series
∑∞

1 an is conditionally convergent. Show that it has a
rearrangement that diverges to +∞.

4D∗. Euler’s Constant and Summation

Let us take another look at the harmonic series
∑∞

1 1/n. As in (9), we can see that
its partial sums are approximated by integrals. Here we look at

n∑
k=1

1

k
>

n∑
k=1

∫ k+1

k

dx

x
=

∫ n+1

1

dx

x
= log(n + 1),

where, again, log(n + 1) denotes the natural logarithm. Let us look at the difference

γn =
n∑

k=1

1

k
− log(n + 1) =

n∑
k=1

∫ k+1

k

(
1

k
− 1

x

)
dx

=
n∑

k=1

∫ k+1

k

x − k

xk
dx . (16)

This identity makes it clear that the sequence {γn} is positive and strictly increasing.
Moreover, the integrand of the k + 1-th summand is ≤ 1/x(k + 1) ≤ 1/(x − 1)2,
so the sequence is bounded with limit

0 < γ < 1 +
∫ ∞

2

dx

(x − 1)2
= 2.

The constant γ is called Euler’s constant and has value .5772 . . . . Not much is
known about γ – even whether it is rational – but its very existence allows us to
obtain exact evaluations of the series (10) and (11). In fact, let {sn} be the partial
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sums of the harmonic series. According to (16), sn = log(n + 1) + γn . Therefore

1 − 1

2
+ 1

3
− 1

4
+ . . . + 1

2n − 1
− 1

2n

=
(

1 + 1

2
+ 1

3
+ . . . + 1

2n

)
− 2

(
1

2
+ 1

4
+ 1

6
+ . . . + 1

2n

)

= s2n − 2(sn/2) = s2n − sn = (log(2n + 1) + γ2n) − (log(n + 1) + γn)

= log
2n + 1

n + 1
+ (γ2n − γn).

Because {γn} converges, it follows that the limit of the preceding is log 2, that is,

1 − 1

2
+ 1

3
− 1

4
+ · · · + 1

2n − 1
− 1

2n
+ . . . = log 2,

as promised in Chapter 1.
We leave as an exercise the similar, slightly trickier, argument that shows that

the series (11) has sum (3 log 2)/2.

Exercise

1. Prove that the sum of the series (11) is (3 log 2)/2.

4E∗. Conditional Convergence: Summation by Parts

The following generalizes the theorem on alternating series. The idea is due to Abel.

Theorem 4.13. Suppose that the sequence {an} has the properties

a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ 0; lim
n→∞ an = 0, (17)

and suppose that the sequence {Bn} of partial sums of the series {bn} is bounded.
Then the series

∑∞
1 anbn converges.

Before getting to the proof we consider two examples. First, for alternating
series

∑∞
1 (−1)n−1an we take bn = (−1)n−1. Then the partial sums are B2n−1 = 1

and B2n = 0, so Theorem 4.13 implies Theorem 4.10. Next, consider the series

z + z2

2
+ z3

3
+ z4

4
+ · · · , (18)

where z is some complex number. The ratio |an+1|/|an| for this series is |z|(1 + 1/n),
which has limit |z|, so the series converges absolutely if |z| < 1 and the terms do
not have limit 0 if |z| > 1. Therefore the interesting question is: What happens if
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|z| = 1? For z = 1, (18) is the (divergent) harmonic series and for z = −1 it is the
(convergent) alternating harmonic series. For other z’s having modulus 1 we try
Theorem 4.13 with an = 1/n and bn = zn . Then

|Bn| =
∣∣∣∣∣

n∑
k=1

zk

∣∣∣∣∣ = |z − zn+1|
|1 − z| ≤ |z| + |z|n+1

|1 − z| = 2

|1 − z| .

Thus (18) converges if and only if |z| < 1 (absolute convergence) or |z| = 1 but
z �= 1 (conditional convergence).

Proof of Theorem 4.13: Note that bn = Bn − Bn−1. If m < n, the difference
between the n-th and m-th partial sums of

∑∞
1 anbn is

am+1bm+1 + am+2bm+2 + . . . + an−1bn−1 + anbn

= am+1(Bm+1 − Bm) + am+2(Bm+2 − Bm+1) + . . . + an(Bn − Bn−1)

= −am+1 Bm + (am+1 − am+2)Bm+1 + . . . + (an−1 − an)Bn−1 + an Bn. (19)

Suppose that |Bk | ≤ K , all n. Note that the ak’s and the ak − ak+1’s are nonnegative.
Take the modulus of each side in (19) to see that the modulus of this difference
between partial sums is at most

[am+1 + (am+1 − am+2) + · · · + (an−1 − an) + an] K = 2am+1 K .

But {am} has limit 0, so the sequence of partial sums of
∑∞

1 anbn is a Cauchy
sequence. �

The computation (19), which converted the sum of terms akbk into a sum of
terms involving sums of the bk’s and differences of the ak’s, is called summation
by parts. It is closely analogous to integration by parts, which converts the integral
of a product f g into the integral of f ′G, where G is an integral of g and f ′ is the
derivative of f .

Additional Exercises for Chapter 4

1. Suppose that b is positive and an = 1/nb. Compute the limit

lim
n→∞ n

(
an

an+1
− 1

)
.

2. (Raabe’s test) Suppose that an > 0, all n. Prove that
∑∞

1 an converges if

lim inf
n→∞ n

(
an

an+1
− 1

)
> 1

and diverges if n(an/an+1 − 1) ≤ 1, all n ≥ N .
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3. (Gauss’s test) Suppose that an > 0, all n. Suppose that p > 1 and that

n p

∣∣∣∣ an

an+1
− 1 − α

n

∣∣∣∣
is bounded. Prove that

∑∞
1 an converges if α > 1 and diverges if α ≤ 1.

4. (Bertrand’s test) Suppose that an > 0, all n. Prove that
∑∞

1 an converges if

lim inf
n→∞ log n

{
n

(
an

an+1
− 1

)
− 1

}
> 1

and diverges if

lim sup
n→∞

log n

{
n

(
an

an+1
− 1

)
− 1

}
< 1.
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Power Series

We shall use power series to define some of the most important functions of analysis.
To begin, we establish the basic properties: radius of convergence, differentiation,
and products.

5A. Power Series, Radius of Convergence

Suppose that {an}∞0 is a complex sequence indexed by the nonnegative integers.
The associated power series is (are) the series

∞∑
n=0

anzn = a0 + a1z + a2z2 + a3z3 + · · · , z ∈ IC. (1)

(The standard convention is that z0 = 1 even for z = 0.) An example is the geometric
series

∑∞
0 zn . An application of the Ratio Test shows that the geometric series

converges if |z| < 1 and diverges if |z| > 1. This dichotomy is characteristic of
power series.

Theorem 5.1: Radius of convergence. Suppose that {an}∞0 is a complex sequence.
There is an extended real R, 0 ≤ R ≤ ∞, such that the series (1) converges abso-
lutely when |z| < R and diverges when |z| > R. The number R, called the radius
of convergence of the series, is

R = 1

lim supn→∞ |an|1/n
. (2)

In particular, R = 0 means that (1) converges only for z = 0 and R = ∞ means
that (1) converges for every complex z.

61
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Proof: This is a simple application of the Root Test, taking into account the
presence of the powers zn . In fact,

lim sup
n→∞

|anzn|1/n = lim sup
n→∞

|an|1/n|z| =
(

lim sup
n→∞

|an|1/n
)
|z|.

This upper limit is less than 1 if |z| < R and greater than 1 if |z| > R. �

Remarks. 1. Theorem 5.1 says nothing about convergence when |z| = R, if R is
positive and finite. The reason is that it depends on the particular series. Consider
three examples:

∞∑
n=0

zn,

∞∑
n=1

zn

n
,

∞∑
n=1

zn

n2
.

(For the last two, the coefficient of z0 is 0.) Suppose that |z| = 1. The first diverges,
since the terms have modulus 1. The third converges absolutely, by comparison
to

∑∞
1 1/n2. The second diverges when z = 1 (harmonic series) and converges

when z = −1 (alternating harmonic series). Indeed, the second series converges
conditionally for all z such that |z| = 1 but z �= 1 (see Section 4E).

2. Although (2) gives a definitive formula for R, it is frequently hard to compute.
The following theorem is often useful.

Theorem 5.2. Suppose that {an}∞0 is a complex sequence with the properties:
an �= 0 for n ≥ N and

lim
n→∞

|an+1|
|an|

exists (possibly = ∞). Then the radius of convergence of
∑∞

n=0 anzn is the
reciprocal

R = lim
n→∞

|an|
|an+1| . (3)

Proof: This is an application of the Ratio Test and is left as an exercise.

Examples. The series
∑∞

0 n! zn has radius of convergence R = 0. The series∑∞
0 zn/n! has radius of convergence R = ∞, as do the series

∞∑
n=0

(−1)n z2n

(2n)!
= 1 − z2

2
+ z4

24
− z6

720
+ · · · ;

∞∑
n=0

(−1)n z2n+1

(2n + 1)!
= z − z3

6
+ z5

120
− z7

5040
+ · · · .

[We shall have much to say about these series in Chapter 9.]
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Exercises

In Exercises 1–8, determine the radius of convergence.
∞∑

n=0

nazn, a real.1.

∞∑
n=1

3nzn/n3.2.

∞∑
n=0

an2
zn, a > 0.3.

∞∑
n=0

(n!)2

(2n)!
zn.4.

∞∑
n=0

n! zn!.5.

∞∑
n=1

n!

nn
zn.6.

∞∑
n=0

a(a + 1)(a + 2) · · · (a + n − 1) zn, a > 0.7.

∞∑
n=0

a(a + 1)(a + 2) · · · (a + n − 1)

b(b + 1)(b + 2) · · · (b + n − 1)
zn, b /∈ ZZ.8.

9. Prove Theorem 5.2
10. Suppose that

∑∞
0 anzn has radius of convergence R and 0 < r < R.

(a) Prove that there is a constant K such that |z| ≤ r implies | ∑∞
0 anzn| ≤ K. (In fact,

one can take K = ∑∞
0 |an|rn , but why is this finite?)

(b) Prove that for any given k ∈ IN there is a constant Kk such that∣∣∣∣∣
∞∑

n=k

anzn

∣∣∣∣∣ ≤ Kk |z|k if |z| ≤ r.

5B. Differentiation of Power Series

Suppose that
∑∞

0 anzn is a power series with radius of convergence R > 0. Then
it defines a function of z in the disk of radius R centered at the origin (the disk of
convergence):

f (z) =
∞∑

n=0

anzn = a0 + a1z + a2z2 + a3z3 + · · · , |z| < R. (4)

We show here that this series may be differentiated term by term. The derivative
of a function of a complex variable is defined in the same way as for a function of
a real variable, as the limit of difference quotients. Suppose that f is defined for
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|z| < R. Given a point z with |z| < R, the complex number c is the derivative of
f at z, written c = f ′(z), if

lim
w→z

f (w) − f (z)

w − z
= c.

The more precise version of this is, for each ε > 0 there is a δ > 0 such that,
whenever 0 < |z − w | < δ and |w | < R, it follows that∣∣∣∣ f (w) − f (z)

w − z
− c

∣∣∣∣ < ε. (5)

If the usual rules of calculus applied even for infinite sums, we could expect that
the derivative of (4) would be the power series

∞∑
n=0

(n + 1)an+1zn =
∞∑

n=1

nanzn−1 = a1 + 2a2z + 3a3z2 + · · · . (6)

In fact this is correct. To prove it we first show that (6) and its formal derivative
both converge.

Lemma 5.3. If the series (1) has radius of convergence R, then the series

∞∑
n=0

(n + 1)an+1zn,

∞∑
n=0

(n + 2)(n + 1)an+2zn (7)

also have radius of convergence R.

Proof: The second series in (7) has the same relation to the first as the first does
to the series (6), so we only need to consider the first. Multiplication by z gives the
series

∑∞
0 nanzn , which therefore converges for the same values of z and has the

same radius of convergence as
∑∞

0 (n + 1)an+1zn itself. By Proposition 3.2,

lim sup
n→∞

|nan|1/n =
(

lim
n→∞ n1/n

)(
lim sup

n→∞
|an|1/n

)
= 1 · lim sup

n→∞
|an|1/n,

so this series has radius of convergence R. �

Theorem 5.4: Differentiation of power series. If the power series
∑∞

0 anzn has
radius of convergence R > 0, then the associated function f (z) = ∑∞

0 anzn is
differentiable at each point of the disk of convergence and

f ′(z) =
∞∑

n=1

nanzn−1 = a1 + 2a2z + 3a3z2 + · · · , |z| < R. (8)
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Proof: Given z with modulus |z| < R, we fix a number r , |z| < r < R. Sup-
pose that |w − z| < r − |z|. This implies that |w | < r . We want to show that the
modulus of

f (w) − f (z)

w − z
−

∞∑
n=1

nanzn−1 (9)

is small when |z − w | is small. Now f is defined by (4), and we may use the
algebraic properties (Theorem 4.2) to write (9) as the sum of a series whose terms
are

an

(
wn − zn

w − z
− nzn−1

)
= an(wn−1 + wn−2z + · · · + zn−1 − nzn−1)

= an[(wn−1 − zn−1 + (wn−2 − zn−2)z + · · · + (w − z)zn−2] (10)

= an(w − z)

[
wn−1 − zn−1

w − z
+ wn−2 − zn−2

w − z
z + · · · + w − z

w − z
zn−2

]
.

Since |z| < r and |w | < r ,∣∣∣∣wk − zk

w − z

∣∣∣∣ = |wk−1 + wk−2z + · · · + zk−1| < k rk−1. (11)

It follows from (11) that (10) has modulus

< |w − z| |an| [(n − 1)rn−2 + (n − 2)rn−3 r + · · · + 2r rn−3 + rn−2]

= |w − z| |an| rn−2 [(n − 1) + (n − 2) + · · · + 1]

= 1
2 n(n − 1) |an| |w − z| rn−2. (12)

The power series with coefficients |an| has the same radius of convergence as that
with coefficients an . Therefore we deduce from Lemma 5.3 that

∞∑
n=2

n(n − 1)|an|rn−2 = K < +∞. (13)

Putting all this together we obtain∣∣∣∣∣ f (w) − f (z)

w − z
−

∞∑
n=1

nanzn−1

∣∣∣∣∣ < 1
2 K |w − z| if |w − z| < r − |z|, (14)

and it follows that the derivative is given by (8). �

Consider the converse situation: Suppose that we know that a function like f (z) =
1/(1 − z) is given by a power series; how can we determine the coefficients of the
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series from the function itself? It is clear from (1) that f (0) = a0. Differentiating
gives f ′(0) = a1, f ′′(0) = 2a2, f ′′′(0) = 3 · 2a3, and so on.

Corollary 5.5: Coefficients and derivatives. If the power series
∑∞

0 anzn has a
positive radius of convergence and define the function f , then

ak = f (k)(0)

k!
, k = 0, 1, 2, . . . . (15)

Exercises

1. For |w − 1| < 1, let f (w) =
∑∞

n=1(w − 1)n/n. Find f ′(w).
2. Determine the coefficients {an}∞0 of the power series whose sum is (1 − z)−2.
3. Determine the sum of the series

∑∞
0 (n + 2)(n + 1)zn , |z| < 1.

4. Prove that, for any positive integer k,

∞∑
n=0

(
k + n

k

)
zn = 1

(1 − z)k
, |z| < 1.

5. Suppose that
∑∞

0 anzn has radius of convergence R > 0, and suppose that |z0| = r < R.
Define

g(z) =
∞∑

n=0

an (z − z0)n, |z − z0| < R − r.

Prove that g is given by a convergent power series

g(z) =
∞∑

n=0

bn zn

whose radius of convergence is at least R − r .
6. Suppose that the function f is defined by a convergent power series and suppose that

f (z + w) = f (z) f (w) for all complex z, w .
(a) Prove directly from this assumption that there is a constant a ∈ IC such that f ′(z) =

a f (z), all z. (In fact, a = f ′(0).)
(b) Use (a) to prove that f (z) = ∑∞

0 (az)n/n!.
7. Determine the coefficients of the power series that defines a function with the following

properties: f ′′(z) = − f (z), f (0) = 1, f ′(0) = 0.

5C. Products and the Exponential Function

We begin by defining the product of two series and then apply the result to products
of power series. Consider the formal product

(a0 + a2 + a2 + · · · ) (b0 + b2 + b2 + · · · ). (16)



P1: IwX/Jzy P2: Kcz

0521840724c05 CY492/Beals 0 521 84072 4 April 19, 2004 17:8 Char Count= 0

5C. Products and the Exponential Function 67

Each term a j bk occurs in the formal product. To be able to consider this as a series
we need to group these terms so as to sum over a single index. One way is to group
the a j bk’s whose indices have the same sum. The result is the formal series

a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + · · · . (17)

This series
∑∞

0 cn with terms

cn = a0bn + a1bn−1 + · · · + an−1b1 + anb0 (18)

is called the Cauchy Product or simply the product of the series
∑∞

0 an and
∑∞

0 bn .
One might expect that the product of convergent series is convergent, with its

sum equal to the product of the two sums. Now the alternating series

∞∑
n=0

(−1)n

√
n + 1

= 1 − 1√
2

+ 1√
3

− 1√
4

+ · · ·

converges, but the term cn−1 in the product of this series with itself is

cn−1 = (−1)n−1

(
1√
n

+ 1√
2

1√
n − 1

+ · · · + 1√
n

)
.

There are n summands in parentheses, each ≥ (1/
√

n)2, so |cn−1| ≥ 1 and the
product diverges.

This discouraging situation cannot arise if one of the factors is absolutely con-
vergent, by a theorem of Mertens.

Theorem 5.6: Products of series. If the series
∑∞

0 an is absolutely convergent
with sum A and the series

∑∞
0 bn converges with sum B, then the product series∑∞

0 cn converges, and its sum is AB.

Proof: Let {An}, {Bn}, and {Cn} be the sequences of partial sums. Since An Bn

has limit AB, it is enough to show that An Bn − Cn has limit 0. Suppose that m < n.
Then

An Bn − Cn =
∑

j,k≤n; j+k>n

a j bk =
n∑

j=1

a j

(
n∑

k=n− j+1

bk

)

=
m∑

j=0

a j (Bn − Bn− j ) +
n∑

j=m+1

a j (Bn − Bn− j ). (19)
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Let K be a bound for the |Bn| and let L = ∑∞
0 |an|. Given ε > 0, choose m so

large and then n so large that

∞∑
j=m+1

|a j | < ε; |Bn − Bn− j | < ε if 0 ≤ j ≤ m.

Because of these choices, the first sum in the last line of (19) has modulus ≤ Lε

and the second sum has modulus ≤ 2K ε. Therefore Anbn − Cn has limit 0. �

We turn now to the product of power series.

Theorem 5.7: Multiplication of power series. The product of the power series∑∞
0 anzn and

∑∞
0 bnzn is the power series

∑∞
0 cnzn,

cn = a0bn + a1bn−1 + · · · + an−1b1 + anb0.

The radius of convergence of the product is at least as large as the smaller of the
radii of convergence of the factors.

Proof: The first statement follows from the definition of the product: In formula
(18), the term a j bn− j is to be replaced by

(a j z
j ) (bn− j z

n− j ) = a j bn− j z
n.

The second statement follows from Theorem 5.6. �

Consider the apparently unrelated matter of powers of a positive number. The
positive integer powers of a > 0 satisfy the equations am+n = aman . This equation
carries over to all integral powers if and only if one defines a0 = 1, a−n = 1/an ,
n ∈ IN. The equation carries over to all rational powers if and only if one defines
am/n = (a1/n)m , m ∈ ZZ, n ∈ IN. We now try to extend this to real powers; if f (z) =
ax has been defined, we want f (x + y) = f (x) f (y), for all real x and y.

Let us be more ambitious and look for functions f , defined for all complex z,
that satisfy

f (z + w) = f (z) f (w), all complex z, w . (20)

In fact, we shall find every such function that is defined by a convergent power
series, by determining what the coefficients can be. Suppose that f (z) = ∑∞

0 anzn .
Fix z and w for the moment and consider f (t z + tw) for complex t . This is a power
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series in t and (20) is equivalent to

∞∑
n=0

an(z + w)ntn =
∞∑
0

(
n∑

j=0

a j an− j z
j wn− j

)
tn, t, z, w ∈ IC. (21)

Corollary 5.5 implies that the power series in t in (21) are equal if and only if the
coefficients are the same:

an(z + w)n =
n∑

j=0

a j an− j z
j wn− j , n = 0, 1, 2, . . . . (22)

This is true for all z and w if and only if the coefficients of each z j wn− j are the
same after the left-hand side is expanded. This means

j! a j · (n − j)! an− j = n! an, all n, all j ≤ n. (23)

Set bk = k! ak . The equations (23) are equivalent to the equations bmbn = bn+m .
Let b1 = a1 = a be given. Then the unique solution is bm = am , m ≥ 0. Thus
am = am/m!. What we have shown is that a function f given by a convergent
power series satisfies (20) if and only if it has the form

∞∑
n=0

anzn

n!
= 1 + az + (az)2

2
+ (az)3

6
+ · · ·

= E(az), for some complex a,

where

E(z) =
∞∑

n=0

zn

n!
= 1 + z + z2

2
+ z3

6
+ z4

24
+ z5

120
+ · · · . (24)

This series converges for every z ∈ IC.

Theorem 5.8: The exponential function. The function E defined by (24) has the
properties

E(z + w) = E(z) E(w), all z, w ∈ IC; E(r ) = er all r ∈ IQ. (25)

Here e is the positive real number

e = E(1) = 1 + 1 + 1

2
+ 1

6
+ 1

24
+ 1

120
+ · · · + 1

n!
+ · · · · (26)

Proof: We showed above that the functions f (z) = E(az) are the only solutions
of (20) given by power series; in particular, E itself satisfies (20). Note that x > 0
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implies E(x) > 0. Repeated application of (20) gives, for m, n ∈ IN,[
E(1/n)

]n = E(1/n)E(1/n) . . . E(1/n) = E(1/n + 1/n + . . . + 1/n)

= E(1) = e;[
E(1/n)

]m = E(1/n)E(1/n) . . . E(1/n) = E(1/n + 1/n + . . . + 1/n)

= E(m/n).

The first of these equations tells us that E(1/n) = e1/n and the second then
gives E(m/n) = em/n . Now E(0) = 1 = e0 and E(−m/n)E(m/n) = E(0) = 1,
so E(−m/n) = 1/E(m/n) = e−m/n . �

Exercises

1. Determine the coefficients {an}∞0 of the power series whose sum is (1 − z)−2 for |z| < 1,
by squaring (1 − z)−1.

2. Determine the coefficients of the power series that defines a function with the following
properties: f ′′(z) = 2 f ′(z) − f (z), f (0) = 0, f ′(0) = 1. How is this function related to
the exponential function?

3. Prove that e is irrational. (Show that if {sn}∞0 is the sequence of partial sums of
∑∞

0 1/n!,
then

0 < e − sn <
1

(n + 1)!

(
1 + 1

n + 1
+ 1

(n + 1)2
+ · · ·

)
= 1

n! n
.

If e were the rational p/q , then q! e and q! sq would be [distinct] integers.)
4. (Abel’s product theorem) Suppose that the series

∑∞
0 an and

∑∞
0 bn converge and have

sums A and b, respectively. Suppose also that the Cauchy Product
∑∞

0 cn converges,
with sum C . Prove that C = AB. (None of these series is assumed to be absolutely
convergent.)

5D∗. Abel’s Theorem and Summation

Here we look a second time at the problem of summing the alternating harmonic
series

∑∞
1 (−1)n−1/n. This time we consider the associated power series

f (z) =
∞∑

n=1

(−1)n−1 zn

n
= z − z2

2
+ z3

3
− z4

4
+ · · · . (27)

The radius of convergence is 1 and the derivative is the geometric series

f ′(z) = 1 − z + z2 − z3 + . . . =
∞∑

n=0

(−z)n = 1

1 + z
.
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Note that f (0) = 0. Thus we may integrate to obtain

f (x) =
∫ x

0

dt

1 + t
= log(1 + x), 0 ≤ x < 1. (28)

It is tempting now to take the limit on both sides and conclude that
∑∞

1 (−1)n−1/n =
log 2. But can one justify this procedure?

Theorem 5.9: Abel’s Summation Theorem. Suppose that the power series∑∞
0 anzn has radius of convergence 1 and suppose that the series

∑∞
0 an con-

verges. Then

lim
x→1, x<1

∞∑
n=0

anxn =
∞∑

n=0

an. (29)

Proof: Let {Bn} be the sequence with terms

Bn =
∞∑

k=n

ak = an + an+1 + an+2 + · · · . (30)

Note that an = Bn − Bn+1. Given ε > 0, choose m so large that n ≥ m implies
|Bn| < ε and fix m. For n > m,

n∑
k=0

ak −
n∑

k=0

ak xk =
m∑

k=0

ak(1 − xk) +
n∑

k=m+1

ak(1 − xk). (31)

Since m is fixed, the first of the two sums on the right has limit 0 as x → 1. The
proof will be complete if we show that for each n > m the modulus of the second
of these sums is < 2ε. To do so we set yk = 1 − xk and note that

0 < yk ≤ 1; 0 ≤ xk − xk+1 = yk+1 − yk < 1, if 0 ≤ x < 1. (32)

We reorganize the second sum:

am+1 ym+1 + am+2 ym+2 + · · · + an yn

= (Bm+1 − Bm+2)ym+1 + · · · + (Bn − Bn+1)yn

= Bm+1 ym+1 + Bm+2(ym+2 − ym+1) + · · · + Bn(yn − yn−1) − Bn+1 yn. (33)

Because of (32) and the fact that |Bk | < ε for k > m, the modulus of the
sum (33) is at most

ε [ym+1 + (ym+2 − ym+1) + · · · + (yn − yn−1) + yn] = 2ε yn ≤ 2ε. �
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The reader is invited to critique the following argument. Differentiating the
geometric series

∑
zn = 1/(1 − z) gives

1

(1 − z)2
=

∞∑
n=1

n zn−1.

Taking z = −1, we get

1

4
=

∞∑
n=1

(−1)n−1 n = 1 − 2 + 3 − 4 + 5 − 6 + · · · .

This allows us to evaluate

S = 1 + 2 + 3 + 4 + 5 + 6 + · · · .
In fact,

1
4 = 1 − 2 + 3 − 4 + 5 − 6 + · · ·

= (1 + 2 + 3 + 4 + 5 + 6 + · · · ) − 2(2 + 4 + 6 + 8 + · · · )

= (1 + 2 + 3 + 4 + 5 + 6 + · · · ) − 4(1 + 2 + 3 + 4 + 5 + 6 + · · · )

= −3S.

Thus S = −1/12, as promised in Chapter 1A.

Exercises

1. Use the method of Section 5D to obtain the evaluation

1 + 1

3
− 1

2
+ 1

5
+ 1

7
− 1

4
+ · · · = 3

2
log 2.

2. Prove the following partial converse of Abel’s Theorem, due to Tauber: Suppose that∑∞
0 anzn has radius of convergence 1. Let f (x) = ∑∞

0 anzn for 0 ≤ x < 1 and suppose
that:

lim
0≤x<1, x→1

f (x) = A; lim
n→∞ n an = 0.

Prove that
∑∞

0 an = A. (This was the first “Tauberian theorem.” Hardy and Littlewood
showed that the result is still true if the second condition is weakened to |an| ≤ K/n.)
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Metric Spaces

Some of the concepts with which we have been concerned are not special to the real
or complex numbers but are connected to the general idea of distance, in particular
the notion of objects being very close to each other. These ideas can be made
general and precise. The abstract concept allows us to develop once and for all
a vocabulary and basic results that apply in many circumstances beyond the real
numbers. In particular, there are various useful senses in which functions might be
considered as being very close to each other (or not).

6A. Metrics

The abstract setting for the notion of distance is a set S, whose elements may be
referred to as points. A distance function or metric on S is a function that assigns
to each pair of points p and q in S a real number d(p, q) and has the properties,
for all p, q, and r in S:

D1 (Positivity) d(p, q) ≥ 0; d(p, q) = 0 if and only if p = q.
D2 (Symmetry) d(p, q) = d(q, p).
D3 (Triangle inequality) d(p, r ) ≤ d(p, q) + d(q, r ).

Definition. A metric space is a pair (S, d), where d is a metric defined on the set S.

Examples

1. If S is an arbitrary set, the discrete metric on S is defined by d(p, p) = 0, while d(p, q) =
1 if q �= p.

2. Suppose that S consists of all strings of length n of 0’s and 1’s; two such strings of length
5 are 00101 and 10110. Let d(p, q) be the number of places in which the strings differ;
for our example, d(p, q) = 3. (If q is supposed to be a copy of p, d(p, q) is the number
of errors.)

73
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3. If (S, d) is a metric space and A is any subset of S, then A inherits the metric d and
(A, d) is a metric space.

4. The standard metric in IC and its subsets is d(z, w) = |z − w |. This gives the standard
metric d(x, y) = |x − y| in IR and its subsets. If we identify IC with the plane

IR2 = {x = (x1, x2) : x j ∈ IR}
in the usual way, then the standard metric takes the form

d(x, y) =
√

(y1 − x1)2 + (y2 − x2)2.

5. Another example of a metric in IR2 is

d1(x, y) = |y1 − x1| + |y2 − x2|.
(If one thinks of this as the sum of the east/west and north/south distances, it is an
appropriate notion of distance in a city that is laid out in a rectangular grid [and has no
vacant lots].)

6. If V is a vector space over the real (or complex) numbers, a norm on V is a function from
V to the nonnegative reals, v → ||v||, that has the following properties for any vectors
v and w in V and any scalar a in IR (or IC):

||v|| ≥ 0, ||v|| = 0 ⇐⇒ v = 0;(i)

||av|| = |a| · ||v||;(ii)

||v + w|| ≤ ||v|| + ||w||.(iii)

A norm on V induces a metric on V : d(v, w) = ||v − w|| (as the reader should verify).
Examples 4 and 5 are special cases.

Remarks. 1. It is common practice, when the metric is understood, to refer to the
set S alone as a metric space. For example, when we consider IC and its subsets
as metric spaces, then we mean the standard metric unless we specify some other
metric (e.g., the discrete metric). When we speak of an abstract set S as a metric
space, S is considered as having some metric denoted d, or sometimes dS .

2. It is usually easy to check properties (D1) and (D2) of a proposed metric. The
triangle inequality may be more difficult, as in IC.

Exercises

1. Define two functions d1 and d∞ on IRn × IRn by

d1(x, y) =
n∑

j=1

|x j − y j |, d∞(x, y) = sup{|x j − y j |, 1 ≤ j ≤ n}.

(a) Show that these are both metrics on IRn .
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(b) Show that they are equivalent metrics in the sense that there is a positive constant C
(which may depend on n) such that

C−1d1(x, y) ≤ d∞(x, y) ≤ Cd1(x, y), all x, y.

2. Given a metric d on S, define d∗ by d∗(p, q) = d(p, q)/[1 + d(p, q)]. Prove that d∗ is
also a metric on S. Is it necessarily equivalent to d, in the sense of the preceding exercise?

3. Verify that a norm on a vector space induces a metric, as described above.

6B. Interior Points, Limit Points, Open and Closed Sets

Consider the following subsets of the complex plane:

A = {z : |z| < 1}; B = {z : |z| ≤ 1};
(1)

C = {z : 0 < |z| ≤ 1}; D = {z : |z| ≤ 1; Re z ∈ IQ}.

These sets are qualitatively different. The concepts introduced in this section help
to specify the differences in a precise way.

The basic concept is that of a neighborhood of a point in a metric space S. Given
p ∈ S and r > 0, the r-neighborhood of p is the set of points at distance < r
from p:

Nr (p) = {q ∈ S : d(p, q) < r}.

Thus the set A in (1) is N1(0) in IC.

Definition. A point p is said to be an interior point of a subset A of S if there is
ε > 0 such that Nε(p) ⊂ A. In other words, each point of S that is sufficiently close
to p belongs to A. The set A is said to be open if each of its points is an interior
point.

Note that if p is an interior point of A, then it is an interior point of any larger
set B, A ⊂ B ⊂ S.

Examples. 1. The set A in (1) is open. The interior points of B are the points of A,
the interior points of C are the nonzero points of A, and D has no interior points.

2. In any metric space S, the set S itself is open. The empty subset ∅ is also open –
because for a set not to be open it must have some point that is not an interior point.

3. In IR, open intervals (a, b) = {x : a < x < b} are open sets while the intervals
[a, b), (a, b], (a, b] are not.

4. No nonempty subset of IR is open when considered as a subset of IC.
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Remark. It can be helpful in working with these concepts to picture S as the plane
and to make sketches. Sketches cannot substitute for proofs, but they can help to
clarify concepts and to suggest proofs.

The following summarizes all but two of the basic general facts about open sets.

Proposition 6.1. In a metric space S:

(a) Each neighborhood Nr (p) of a point p in S is an open set.
(b) The intersection of a finite collection A1, A2, . . . , An of open sets is open.
(c) The union of any collection A of open sets is open.

Proof: (a) Suppose that q belongs to Nr (p). Let s = r − d(p, q), which is pos-
itive by assumption. If q ′ is in Ns(q), then the triangle inequality

d(p, q ′) ≤ d(p, q) + d(q, q ′) < d(p, q) + [r − d(p, q)] = r

implies that q ′ is in Nr (p). Thus q is an interior point of Nr (p).
(b) If p is a point of the intersection, then there are positive numbers r j such

that Nr j (p) ⊂ A j . Let r be the smallest of the r j ’s. Then Nr (p) is included in the
intersection.

(c) A point p that belongs to the union belongs to one of the open sets A and is
therefore an interior point of the union, which is larger. �

Example. In connection with (b), consider the intersection of the sequence of open
sets An = N1+1/n(0) ⊂ IC. The intersection is the set B of (1), which is not open.

Definition. The interior of a subset B of S is the set whose elements are the interior
points of B.

Proposition 6.2. The interior of a set B is an open set and is the largest open set
that is a subset of B.

Proof: Let A be the interior of B. If p is in A, then a neighborhood Nr (p) is a
subset of B. By Proposition 6.1(a), each point of this neighborhood is an interior
point of the neighborhood and therefore of B. Thus each point of the neighborhood
is an interior point of B, so Nr (p) ⊂ A.

If C ⊂ B is open, then each point of C is an interior point of B and so belongs
to A. �

Definitions. A point p in S is said to be a limit point of a subset B of S if for
each ε > 0 there is a point q in B, q �= p, such that q ∈ Nε(p). An equivalent
formulation is that p is a limit point of B if it is the limit of a sequence of distinct
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points from B. (See Section 6D for the general definition of limit. The proof of
equivalence is left as an exercise.) A subset B of S is said to be closed if each limit
point of B belongs to B.

Note that if p is a limit point of B, then p is a limit point of every larger set C ,
B ⊂ C ⊂ S.

Examples. 1. For each of the sets in (1), B is the set of limit points. Thus B is
closed and the others are not. In particular, C and D are neither open nor closed.

2. In any metric space S, the set S itself is closed. The empty subset ∅ is also
closed. Thus S and ∅ are both open and closed. [The reader should conclude from
this and the preceding that common English usage is no substitute for careful
thinking when handling these very precise concepts.]

3. In IR, closed intervals [a, b] = {x : a ≤ x ≤ b} are closed sets while other
types of bounded intervals are not.

4. In any metric space, any set that consists of a single point, or of finitely many
points, is a closed set.

The following is the one remaining basic property of open sets; it is also the one
general relationship between open sets and closed sets. Recall that the complement
of a subset A ⊂ S is the set Ac = {p ∈ S : p �∈ A}.

Proposition 6.3. A subset A of a metric space S is open if and only if its complement
is closed.

Proof: We begin with an observation about points of the complement that follows
immediately from the definitions: A point p in A is either a limit point of Ac or an
interior point of A, but not both. Thus, if A is open, then its points are not limit
points of Ac, so limit points of Ac belong to Ac. If Ac is closed, then points of A
are not limit points of Ac, so they are interior points of A and A is open. �

Remarks. The preceding proof illustrates two points. First, general results of this
type are direct consequences of the definitions, which is a good reason to study
the definitions. Second, it can be tempting to try indirect proofs (“suppose that A
is open but Ac is not closed . . .”). One could give indirect proofs of both parts of
the preceding proposition, but when a direct proof is possible it is almost always
shorter and more to the point.

The following contains all but one of the remaining basic general properties of
closed sets.
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Proposition 6.4. In any metric space S:

(a) The union of a finite collection B1, B2, . . . , Bn of closed sets is closed.
(b) The intersection of any collection of closed sets is closed.

Proof: (a) If p does not belong to the union of the B j , then for each j there is
ε j > 0 such that Ne j (p) is included in Bc

j . Let ε be the smallest of the ε j . Then
Nε(p) ⊂ Bc, so p is not a limit point of the union. [What has happened here is
that Proposition 6.1(b) and Proposition 6.3 have been combined in a somewhat
disguised way. An alternative is to use them with no disguise.]

(b) If p is a limit point of the intersection, it is a limit point of each of the closed
sets; therefore it belongs to each, and therefore it belongs to the intersection. �

Example. In connection with (a), consider the union of the sequence of closed
intervals [−1 + 1/n, 1 − 1/n] in IR.

Definition. The closure of a subset A of S is the set whose points are the points of
A together with the limit points of A.

The following is the final basic property of closed sets.

Proposition 6.5. The closure of a set A is closed and is the smallest closed set that
includes A.

Proof: Suppose that p is not in the closure of A. Then it has a neighborhood
Nr (p) that is included in Ac. This neighborhood is open, so none of its points is
in the closure of A. Thus the complement of the closure is open, so the closure is
closed.

If C ⊃ A is closed, then each limit point of A is a limit point of C and therefore
a point of C , so C includes the closure of A. �

Exercises

1. Suppose that S is a finite set with metric d. Prove that every subset of S is open.
2. Prove that p is a limit point of B if and only it is the limit of a sequence of distinct points

from B.
3. Suppose that r is positive and p is a point of the metric space S. Prove that the subset

A = {q ∈ S : d(p, q) ≤ r} is closed. Prove that B = {q ∈ S : d(p, q) > r} is open.
4. Show that a point p is in the closure of a set A if and only if every neighborhood Nε(p)

contains a point of A.
5. Prove that a subset of IR has no interior points as a subset of IC.
6. Prove that any limit point in IC of a subset of IR must belong to IR.
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7. Suppose that A is a closed subset of IR that is bounded above. Prove that the least upper
bound belongs to A.

8. Determine the closure of the set S in IR2 that is the graph of the function sin(1/x),
S = {(x, sin(1/x)) : x �= 0}.

9. Let int (A) denote the interior of a set A and cl (A) the closure. Find a subset of IR2 such
that as many as possible of the following sets are distinct:

A, int (A), cl (A), cl (int (A)), int (cl (A)), int (cl (int (A))), cl (int (cl (A))).

10. The boundary of a set A is the set ∂ A that is the intersection of the closure of A and
the closure of the complement Ac.
(a) Show that a point p is in ∂ A if and only if each neighborhood Nε(p) contains points

both of A and of Ac.
(b) Show that ∂ A = ∅ if and only if A is both open and closed.

11. Is it true (always? sometimes?) that the boundary of the neighborhood Nr (p) is the
“sphere” {p : d(p, q) = r}?

12. Show that there is a proper subset A of IQ with ∂ A = ∅. (A subset A of a set B is proper
if A �= ∅ and A �= B.)

13. A metric space with the property that no proper subset A has ∂ A = ∅ is said to be
connected. Show that the unit interval [0, 1] is connected; show that IRn is connected.

6C. Coverings and Compactness

Throughout this and the remaining sections S is a metric space and other sets are
subsets of S unless otherwise specified. To avoid a few uninteresting technical
glitches, we assume that S is not empty.

Definitions. A collection U of subsets of S is said to cover a subset B of S if each
point of B belongs to at least one set from the collection U . If so, U is said to be a
cover of B. If U is a cover and each set in the collection is open, then U is said to
be an open cover.

A collection of sets V that consists of some or all of the sets in a cover U is said
to be a subcover if it is also a cover of B.

A cover U of B may consist of finitely many or infinitely many sets. A finite
subcover is a subcover that consists of only finitely many sets from U .

Examples. 1. The collection S consisting of S alone is a cover for any subset B.
2. For any nonempty B, the collection N of all neighborhoods Nr (p), p ∈ B,

r > 0, is an open cover of B. Note that B is bounded (see below) if and only if there
is a subcover that consists of a single set from N . The collection N1 consisting of
all N1(p), p ∈ B, is a subcover.

Definition. A set B is compact if each open cover of B contains a finite subcover.
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Remark. It follows that a set is not compact if some cover has no finite subcover.
Viewed as an adversarial procedure, to show compactness one must deal in principle
with whatever clever cover one’s adversary produces; to disprove compactness one
gets to choose an open cover to confound the adversary. For example, choosing the
open cover of IR that consists of all intervals (n − 1, n + 1), n ∈ ZZ, allows one to
demonstrate that IR is not compact.

Compactness is an important concept, though its meaning and the reason for
its importance become apparent only gradually. We begin by relating it to earlier
concepts.

Definition. A set B is said to be bounded if there is a point p in S and a radius
r > 0 such that B is a subset of Nr (p).

Proposition 6.6. If B is compact, then it is closed and bounded.

Proof: Suppose that p belongs to the complement Bc. Let U be the collection
{Un}, where

Un = {q ∈ S : d(p, q) > 1/n}, n ∈ IN.

These sets are open (see Exercise 3 of Section 6B), and since p is not in B, they
cover B. There is a finite subcover. But U1 ⊂ U2 . . ., so the subcover contains a
largest set Un and B ⊂ Un . Then N1/n(p) is included in Bc. We have proved that
Bc is open, so B is closed.

Now choose any point p in S, and letV be the collection {Vn}, where Vn = Nn(p).
Then V is an open cover of B and there is a finite subcover. Now V1 ⊂ V2 ⊂ . . . ,
so there is a largest Vn in the subcover and B ⊂ Vn . Thus B is bounded. �

Remark. The converse is not true. In some metric spaces there are closed, bounded
sets that are not compact. We pass to a useful fact and then prove an important partial
converse.

Proposition 6.7. Any closed subset of a compact set is compact.

Proof: Suppose that B is compact and C is a closed subset of B. The complement
Cc is open. Suppose that U is an open cover of C . Adding Cc to this collection
gives us an open cover V of B. There is a finite subcover, which we may assume
consists of sets U1, . . . , Un from U , together with Cc. Each point of C belongs to
one of these sets, but not to Cc, so U1, . . . , Un cover C . �

The following is the partial converse to Proposition 6.6.
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Theorem 6.8: Heine-Borel Theorem. A subset of IR or IC that is closed and
bounded is compact.

Proof: It is enough to consider subsets of IC. If C is bounded, it is contained in
a sufficiently large square with side length R centered at the origin:

B = {z = x + iy : |x | ≤ R/2, |y| ≤ R/2 }.
If C is closed, then it is compact provided that B is compact, which we now prove.
Suppose that U is a collection of open sets and suppose that no finite subcollection
covers B. We shall see that U itself does not cover B. Let us say that a subset
D ⊂ B is elusive if no finite subcollection of U covers D. Thus B is assumed
elusive and the goal is to chase down an elusive point of B. To do so we select a
sequence of closed squares Bn . Let B0 = B, with side of length R. There are four
closed squares with side of length R/2 that cover B. Since B is elusive, at least
one of these smaller squares is elusive. Choose an elusive one and denote it by B1.
Continuing, we obtain elusive closed squares

B0 ⊃ B1 ⊃ B2 ⊃ · · · ; Bn has side of length R/2n.

(See Figure 4.) The centers of these squares are a Cauchy sequence {zn} that con-
verges to a point z that must belong to each of the closed sets Bn . This is our elusive
point. But z cannot be so elusive: It must belong to one of the open sets U from the
collection U . Then U would include a neighborhood of z, and that neighborhood
would include Bn when n is large enough, contradicting the elusiveness of Bn . �

Note that the same idea applies to IR and to higher dimensional spaces IRn: In
IR3, use eight smaller closed cubes to cover a given closed cube, and so on.

Exercises

1. (a) Suppose that A is a finite subset of a metric space S. Prove that A is compact.
(b) Suppose that the space S has the discrete metric and A is a compact subset of S.

Prove that A is finite.
(c) Use (b) to give an example of a closed, bounded set that is not compact.

2. Prove that the union of two compact subsets of a metric space is compact.

6D. Sequences, Completeness, Sequential Compactness

Many concepts from the study of real and complex sequences carry over to metric
spaces. A sequence in S is, of course, a collection {pn} of points of S indexed by
the positive or nonnegative integers. The sequence {pn} is said to converge, or to
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Figure 4. In search of an elusive square.

be convergent, if there is a point p ∈ S such that for each ε > 0 there is an index
N such that n ≥ N implies pn ∈ Nε(p). The point p is unique and is said to be the
limit of the sequence. We write p = limn→∞ pn .

A sequence {pn} is said to be bounded if it is bounded as a set of points, that is,
there is q ∈ S and r > 0 such that each pn is in Nr (q). The sequence is said to be a
Cauchy sequence if for each ε > 0 there is an index N such that m, n ≥ N implies
d(pm, pn) < ε.

The following two propositions can be proved in general by the same arguments
that were used in Chapter 3 to prove them in IC.

Proposition 6.9. Each convergent sequence is a Cauchy sequence.

Proposition 6.10. Each Cauchy sequence is bounded.

Definition. A metric space is said to be complete if each Cauchy sequence in S
has a limit (in S). A subset B is said to be complete if each Cauchy sequence in B
has a limit in B.
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Theorem 3.8 can thus be restated: IC is complete. This implies and is implied by
the fact that IR is complete.

Definition. The notion of a subsequence is defined as before. A set B is said to be
sequentially compact if each sequence in B has a subsequence that converges to a
point of B.

Theorem 6.11. A subset of a metric space is compact if and only if it is sequentially
compact.

Partial proof: We prove the more often used part: Compactness implies sequen-
tial compactness. The other implication is left as Exercises 6–9.

Suppose that A ⊂ S is not sequentially compact. Then there is a sequence {pn} in
A such that no subsequence has limit in A. A consequence (Exercise 3) is that each
point p ∈ A has a neighborhood Up = Nε(p)(p) with the property that there are
only finitely many values of the index n such that pn belongs to Up. The collection
U of these sets Up is an open cover of A. Any finite subcollection contains pn for
only finitely many values of n. Therefore no finite subcollection covers A, so A is
not compact. �

Theorems 6.8 and 6.11 combine to give another proof of the Bolzano-Weierstrass
Theorem (Corollary 3.13), namely, any closed and bounded set of IRn or ICn is
sequentially compact.

Exercises

1. Prove that p is in the closure of B if and only if there is a sequence in B that converges
to p. (You will need to consider two cases.)

2. Suppose that the sequence {pn} in S has a limit p. Let A = {p, p1, p2, . . . }. Prove that
A is compact.

3. Show that IQ is not complete.
4. By Exercise 2 of Section 6A, d(x, y) = |x − y|/(1 + |x − y|) defines a metric on IR.

(a) Show that IR is bounded with respect to d.
(b) Show that IR is complete with respect to d.
(c) Show that IR is not compact with respect to d.

5. Suppose that S is complete. Show that B ⊂ S is complete if and only if B is closed.
6. Suppose that the {pn} is a sequence in S and suppose that p is a point with the property

that for each ε > 0 and each index N there is some n > N such that pn ∈ Nε(p). Prove
that some subsequence of {pn} converges to p.

7. A subset B of S is said to be totally bounded if for each ε > 0 there are finitely many
points p1, p2, . . . pn such that the neighborhoods Nε(p) cover B. Adapt the proof of
Theorem 6.8 to show that if B is complete and totally bounded, then it is compact.
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8. Suppose that B is not totally bounded. Prove that there is a sequence {pn} in B that has
no convergent subsequence.

9. Suppose that B is not complete. Prove that there is a sequence {pn} in B such that no
subsequence converges to a point of B. Deduce from this and Exercises 6 and 7 that a
set that is not compact is not sequentially compact.

10. Suppose that B is compact. Prove that it is complete and totally bounded.
11. Suppose that the sequence {pn} in S has the property that

∑∞
1 d(pn, pn+1) is finite.

Prove that {pn} is a Cauchy sequence.
12. (Banach Fixed Point Theorem, or Contraction Mapping Theorem) Suppose that S is a

complete metric space and is not empty. Suppose that f is a function from S to itself
that is a strict contraction, meaning that there is a constant 0 < r < 1 such that

d( f (p), f (q)) ≤ r · d(p, q), all p, q ∈ S.

Prove that there is a fixed point, a point p0 such that f (p0) = p0. Prove that there is
only one such point.

13. Suppose that 0 < a < 1 and define f (x) = (x2 + a)/2. Show that f has a fixed point
in the interval [0, a], and find it.

6E∗. The Cantor Set

Let C0 ⊂ IR be the closed unit interval [0, 1] and consider the sequence of sets
C0 ⊃ C1 ⊃ . . . constructed as follows. Remove the open middle third interval from
C0, leaving the set

C1 = [
0, 1

3

] ∪ [
2
3 , 1

]
.

Remove the open middle third of each of these intervals, leaving the the set

C2 = [
0, 1

9

] ∪ [
2
9 ,

1
3

] ∪ [
2
3 ,

7
9

] ∪ [
8
9 , 1

]
.

Continue. Then Cn is the union of 2n closed intervals, each of length 1/3n . The
(standard) Cantor set is the intersection

C =
∞⋂

n=0

Cn = C0 ∩ C1 ∩ C2 ∩ · · · . (2)

Thus C is a subset of Cn for every n; put very loosely, it is what is left after the
procedure of removing middle thirds of intervals is carried to completion. The total
length of the intervals that make up Cn is (2/3)n , which has limit 0, and the total
length of the middle third interval that have been removed is

1

3
+ 2 · 1

9
+ 4 · 1

27
+ · · · = 1

3

(
2

3
+ 4

9
+ · · ·

)
= 1.

Thus one might think that C has very few points.
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Proposition 6.12. The Cantor set C is compact and uncountable.

Proof: Each Cn is a union of finitely many closed sets, so it is closed and the
intersection C is a closed, bounded subset of IR, and hence it is compact.

Suppose that x belongs to (0, 1] and consider its ternary expansion

x = c1

3
+ c2

32
+ c3

33
+ · · ·

(see Section 2B). Note that c1 = 1 if and only if x belongs to the interval (1/3, 2/3].
Suppose that c1 = 2. Then c2 = 1 if and only if x belongs to the interval (7/9, 8/9].
In fact, one can check that if there are no 1’s in its ternary expansion, then x belongs
to C . Conversely, if x belongs to C , then either it has no 1’s in its ternary expansion or
it is one of certain endpoints 2/3, 2/9, 8/9, . . . . Ignoring these (countably many!)
exceptional points, we assign to the point with ternary expansion .02200020220 . . .

the point with binary expansion .01100010110 . . . , and so on. This provides a
1–1 correspondence between a subset of C and the entire uncountable interval
(0, 1]. So C is uncountable. �

Exercise

1. Discuss the result of removing the second of ten equal subintervals at each step, instead.
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Continuous Functions

The notion of continuity of a function at a point makes sense whenever both the
domain and the range of the function are metric spaces. Continuity and related issues
are discussed from a general point of view in this chapter. In some circumstances,
continuous functions themselves constitute a natural metric space. The Weierstrass
Polynomial Approximation Theorem can be viewed in this context.

7A. Definitions and General Properties

Suppose that S and T are two sets. By a function f from S to T we mean an
assignment to each point p ∈ S of a unique point of T , denoted f (p). The associated
notation is f : S → T , which is read “ f is a function from S to T ,” or “ f maps S
to T .”

Suppose that S and T are metric spaces and f is a function from S to T . The
function f is said to be continuous at p if for each ε > 0 there is δ > 0 such that
dS(p, p′) < δ implies dT ( f (p), f (p′)) < ε. The function f is said to be continuous
if it is continuous at each point of S. If A is a subset of S and g is a function from
A to T , then we extend these definitions to g by considering A itself as a metric
space, with the metric it inherits from S.

From now on we take S and T to be metric spaces and derive a number of results
that are exercises in the use of the various definitions.

Proposition 7.1: Continuity and sequences. A function f from S to T is contin-
uous at a point p in S if and only if, for each sequence pn in S that has limit p, the
sequence { f (pn)} has limit f (p).

Proof: Suppose first that f is continuous at p. It is a very easy exercise in the
use of the definitions to show that if limn→∞ pn = p, then limn→∞ f (pn) = f (p):
See Exercise 1.

86
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Conversely, suppose that f is not continuous at p. Then there is some ε > 0
with the property that for each δ > 0 there is a point p′ ∈ Nδ(p) such that
dT ( f (p), f (p′)) ≥ ε. Therefore, for each n ∈ IN we may choose pn ∈ N1/n(p)
such that dT ( f (p), f (pn)) ≥ ε. The sequence {pn} converges to p, but { f (pn)}
does not converge to f (p). �

Suppose that f is a function from S to T . Given any set B ⊂ T , we define a set
f −1(B) to be the set of points of S that are taken into B by f :

f −1(B) = {p ∈ S : f (p) ∈ B}. (1)

This set is called the inverse image of B by f , or just the inverse image, if f is
understood. Notice that f −1, as defined here, is a function defined on subsets of T ,
not a function on (points of) T .

Proposition 7.2: Continuity and open sets. A function f from S to T is contin-
uous if and only if it is has the property: The inverse image of each open set in T
is open in S.

Proof: Suppose that f is continuous and that B ⊂ T is open. Suppose that p
is in f −1(B). Then f (p) belongs to the open set B so there is ε > 0 such that
Nε( f (p)) ⊂ B. By continuity, there is δ > 0 such that p′ ∈ Nδ(p) implies f (p′) ∈
Nε( f (p)) ⊂ B. Therefore Nδ(p) is included in f −1(B). This proves that f −1(B) is
open.

Conversely, suppose that the inverse image of each open set is open. Given p ∈ S
and ε > 0, let B = Nε( f (p)). This is an open subset of T , so f −1(B) is open in S.
Now p belongs to f −1(B), so there is δ > 0 such that Nδ(p) ⊂ f −1(B). But this
means that dT ( f (p), f (p′)) < ε when dS(p, p′) < δ, so f is continuous at p. �

If f is a function from S to T and g is a function from T to U , the composition
of f and g is the function denoted by g( f ) or g ◦ f :

g( f ) : S → U, [g( f )](p) = g( f (p)), p ∈ S.

Proposition 7.3: Composition of continuous functions. Suppose that S, T , and
U are metric spaces and that the functions f mapping S to T and g mapping T to
U are continuous. Then the composition g( f ) is continuous from S to U.

Proof: Suppose that C is an open subset of U . Then B = g−1(C) is open in T ,
and so f −1(B) = f −1(g−1(B)) is open in S. It is easy to check that(

g( f )
)−1

(C) = f −1
(
g−1(C)

)
.
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Thus inverse images of open sets under g( f ) are open and so g( f ) is con-
tinuous. �

Definition. A function f from S to T is said to be bounded if the image set
f (S) = { f (p) : p ∈ S} is a bounded subset of T .

Theorem 7.4: Continuity and compactness. Suppose that A is a compact subset
of S and that f is a continuous function from A to T . Then the image f (A) =
{ f (p) : p ∈ A} is a compact subset of T . In particular, f is bounded.

Proof: Suppose thatV is an open cover of f (A). Let U be the collection of subsets
of S consisting of the inverse images of the sets in the collection V . Proposition 7.2
implies that these sets are open. Given any point p in A, f (p) belongs to some V
from the collection V , so p belongs to the set f −1(V ) from the collection U . Thus
U is an open cover of A. Let {U1, . . . , Un} be a finite subcover. Then each U j is
f −1(Vj ) for some Vj in the collection V , and the collection {Vj } is a finite subcover
of f (A). �

Definition. A function f from S to T is said to be uniformly continuous if for each
ε > 0 there is a δ > 0 such that dS(p, p′) < δ implies that dT

(
f (p), f (p′)

)
< ε.

Continuity says that, for each p and each ε > 0, there is δ > 0 . . . . Uniform
continuity says that, for each ε > 0, there is δ > 0 . . . . It is obvious from the
definitions that uniform continuity implies continuity. The converse is not true.

Examples. 1. The function from IR to IR defined by f (x) = x2 is continuous but is
not uniformly continuous. In fact, given any δ > 0, suppose that |y − x | = δ/2 < δ.
Then

| f (y) − f (x)| = |y2 − x2| = |(y − x)(y + x)| = 1
2δ |y + x |,

which is larger than 1 whenever y > x > 1/δ.
2. The function from (0, 1) to IR defined by g(x) = 1/x is continuous but not

uniformly continuous. Points x, y that are very close to 0 (and thus close to each
other) can be sent to points g(x), g(y) that are very far apart.

These examples show that the following theorem contains useful information.

Theorem 7.5: Compactness and uniform continuity. If A is compact and f is
a continuous function from A to T , then f is uniformly continuous.
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Proof: Given ε > 0, we create an open cover of A as follows. For each p in
A, choose δ(p) > 0 such that if p′ is in the neighborhood Vp = N2δ(p)(p), then
dT ( f (p), f (p′)) < ε/2. Let U be the collection of neighborhoods Up = Nδ(p)(p).
There is a finite subcover, corresponding to points p1, . . . , pn . Let δ be the smallest
of the numbers δ(p j ). Suppose now that dS(p, p′) < δ. Choose p j so that p belongs
to Up j . The triangle inequality and the choices we made imply that both p and p′

are in Vp j . Therefore

dT ( f (p), f (p′)) ≤ dT ( f (p), f (p j )) + dT ( f (p j ), f (p′)) <
ε

2
+ ε

2
= ε. �

Exercises

1. Prove that if f is continuous at p and limn→∞ pn = p, then limn→∞ f (pn) = f (p).
2. Prove that f : S → T is continuous if and only if the inverse image of each closed set

is closed.
3. Suppose that f : S → T and g : T → U . Suppose that f is continuous at the point

p ∈ S (but is not assumed to be continuous elsewhere) and suppose that g is continuous
at the point q = f (p). Prove that g( f ) is continuous at p.

4. Suppose that a is a point of the metric space S. Define g(p) = d(a, p), p ∈ S. Prove
that g is uniformly continuous.

5. Suppose that A is an unbounded subset of S. Show that there is a uniformly continuous,
real-valued function on A that is not bounded.

6. Suppose that B is a subset of S that is not closed. Show that there is a bounded, uniformly
continuous real-valued function on B that does not attain a minimum.

7. Suppose that B is a subset of S that is not closed. Show that there is a continuous,
real-valued function on B that is not bounded.

8. Suppose that B is a subset of S that is not closed. Show that there is a continuous
real-valued function defined on B that is not uniformly continuous.

9. Find a bounded, continuous function f : IR → IR such that f (IR) is neither open nor
closed.

10. Find a closed, bounded subset B of IQ and a continuous, real-valued function f defined
on B such that f is not bounded.

11. Suppose that S has the discrete metric. Show that every function from S to a metric
space is uniformly continuous.

12. Find an unbounded set A such that every function from A to a metric space is uniformly
continuous.

13. Suppose that A is a nonempty subset of the metric space S. Define the distance from a
point p of S to the set A to be

dA(p) = inf{d(p, q) : q ∈ A}.
Prove that dA(p) = 0 if and only if p is in the closure of A. Prove that dA is a uniformly
continuous function on S.
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14. Suppose that f is a real-valued uniformly continuous function on a set A.
(a) Suppose that {pn}∞1 is a Cauchy sequence in A. Show that { f (pn)}∞1 is a Cauchy

sequence in IR.
(b) Show that there is a continuous real-valued function g defined on the closure of A

such that, for each p in A, g(p) = f (p). Show that g is unique.
15. Suppose that A is a dense subset of the metric space S, and suppose that f : A → IR

is uniformly continuous. Prove that there is a unique continuous function g : S → IR
such that g = f on A.

7B. Real- and Complex-Valued Functions

If f and g are functions from S to IC, we define the sum and difference functions
f ± g and the product function f g by

[ f ± g](p) = f (p) ± g(p), [ f g](p) = f (p) g(p), p ∈ S.

If c ∈ IC, we define c f by [c f ](p) = c · f (p), p ∈ S. The function | f | is defined
to have value | f (p)| at p ∈ S. If g(p) 	= 0, all p ∈ S, we define the quotient f/g
by [ f/g](p) = f (p)/g(p), p ∈ S.

Functions that take real values are a special case of the preceding.

Proposition 7.6: Continuity and algebra. Suppose that f and g are continuous
functions from S to IC and suppose that c is complex. Then the functions c f , | f |,
f ± g, and f g are continuous. If g(p) 	= 0, all p ∈ S, then f/g is continuous.

Proof: It is enough to prove that each of these functions is continuous at each
point p ∈ S. According to Proposition 7.1, it is enough to examine convergent
sequences {pn}, limn→∞ pn = p. Given such a sequence, we may define an =
f (pn), bn = g(pn) and apply Theorem 3.9 on algebraic properties of limits. �

Remark: The function f : IC → IC defined by f (z) = z, all z, is continuous: Given
ε > 0, take δ = ε. It follows from Proposition 7.6 that any polynomial function
h(z) = ∑n

0 anzn is continuous. [On the other hand, we proved in Chapter 5 that any
function defined by a convergent power series is differentiable; a similar but simpler
proof shows that it is continuous. A polynomial is a power series with only finitely
many nonzero coefficients, so the continuity of polynomials is a very special case.]

Theorem 7.7: Maximum and minimum. Suppose that A is a compact subest of
S and that f is a continuous function from A to IR. Then f attains its minimum and
maximum values: There are points pmin, pmax in A such that

f (pmin) ≤ f (p) ≤ f (pmax), all p ∈ A. (2)
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Proof: According to Theorem 7.4, the image f (A) is a compact subset of IR;
therefore, it is closed and bounded. A closed, bounded set in IR contains its least
upper bound (Exercise 7 of Section 6B). Thus there is a point pmax in A such that
f (pmax) is the least upper bound of f (A). Similarly, there is a point pmin in A such
that f (pmin) is the greatest lower bound. �

Exercises

1. Suppose that f is a real-valued function on IR that is additive: For any real x, y,
f (x + y) = f (x) + f (y). Prove that if f is continuous, then there is a constant a such
that f (x) = ax for all real x .

2. Suppose that f is a continuous real-valued function on IR, and suppose that for any x
and y in IR,

f (x + y) + f (x − y) = 2
[

f (x) + f (y)
]
.

Prove that there is a constant a such that f (x) = a x2 for all real x .
3. A real-valued function f defined on an open interval (a, b) is said to be convex if

f
(
t x + (1 − t)y

) ≤ t f (x) + (1 − t) f (y)

for all x, y ∈ (a, b) and each t ∈ (0, 1). Prove that any convex function is continuous.
4. Prove that any increasing convex function of a convex function is convex.
5. Suppose that f is a continuous real-valued function defined on an open interval (a, b),

and suppose that

f
( x + y

2

)
≤ f (x) + f (y)

2
, all x, y ∈ (a, b).

Prove that f is convex.
6. Suppose that the power series

∑∞
0 anzn has radius of convergence R > 0. Let A be

the disk {z ∈ IC : |z| < R}. Give two proofs that f (z) = ∑∞
0 anzn is a continuous func-

tion on A.

7C. The Space C(I)

Suppose that A is a compact set in a metric space S. Let C(A; IC) denote the
set whose elements (points) are the continuous functions from A to IC. Similarly,
C(A; IR) denotes the set whose elements are the continuous functions from A to IR.
For convenience we use the notation C(A) to denote either space of functions.

We look first at the following special case:

I = [a, b] = {x ∈ IR : a ≤ x ≤ b};
C(I ) = C(I, IR) = { f : f : I → IR; f continuous }. (3)
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(We assume that a < b, so the interval I is not trivial.) A “point” of C(I ) is a
continuous real-valued function f on I . Such a function may be visualized by
identifying it with its graph, pictured as a continuous curve in the plane.

The standard metric in C(I ) is obtained by starting with the norm

|| f || = sup{| f (x)| : x ∈ I }. (4)

This is well defined and finite, by Theorem 7.4. Then define

d( f, g) = || f − g|| = sup{| f (x) − g(x)| : x ∈ I }. (5)

It is not difficult to check that the norm || f || has the properties, listed in Sec-
tion 6A, that define a norm:

|| f || ≥ 0, || f || = 0 ⇐⇒ f ≡ 0; (6)

||c f || = |c| · || f ||, c ∈ IR; (7)

|| f + g|| ≤ || f || + ||g||. (8)

The distance between f and g is precisely the maximum vertical distance between
their graphs.

A metric can be defined in the same way in C(A; IC) or C(A; IR):

|| f || = sup{| f (p)| : p ∈ A}; d( f, g) = || f − g||.
The single most important fact about these spaces of functions is the following.

Theorem 7.8. For any compact A, the spaces C(A; IR) and C(A; IC) are complete.

Proof: Suppose that { fn} is a Cauchy sequence in C(A; IC). (The proof is exactly
the same for C(A; IR).) For each p ∈ A, the sequence { fn(p)} is a Cauchy sequence
of complex numbers, in fact,

| fn(p) − fm(p)| ≤ || fn − fm || = d( fn, fm).

Given any ε > 0, we can choose N so large that n, m ≥ N implies d( fn, fm) < ε.
Therefore we may define f (p) = limn→∞ fn(p). For each p and each m,

| f (p) − fm(p)| = lim
n→∞ | fn(p) − fm(p)| ≤ ε

if m ≥ N , so d( f, fm) ≤ ε if m ≥ N . This would complete the proof – except
that it is necessary to show that f is continuous. To do so, we argue as follows.
Given any ε > 0, choose N as before. The function fN is uniformly continuous, so
there is δ > 0 such that dS(p, q) < δ implies | fN (p) − fN (q)| < ε. Suppose that
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dS(p, q) < δ. Then, by what has already been shown,

| f (p) − f (q)| ≤ | f (p) − fN (p)| + | fN (p) − fN (q)| + | fN (q) − f (q)|
≤ ε + ε + ε = 3ε.

Therefore f is (uniformly) continuous. �

Example. Let I = [0, 1] and let fn in C(I ), n = 1, 2, . . . be defined by fn(x) = xn ,
x ∈ I . Then fn(x) has limit f (x) = 0 for 0 ≤ x < 1 and f (x) = 1 for x = 1. This
limit function is not continuous – but this does not contradict Theorem 7.8. (Why?)

We know that any real number can be approximated by rationals. More precisely,
given a real x and any ε > 0, we can find a rational r (for example, a partial sum of
the decimal, or binary, or ternary expansion of x) such that |x − r | < ε. This gives
one the comforting feeling that the reals are not so mysterious after all. Elements of
C(I ), viewed simply as all possible graphs, with all sorts of cusps and corners, may
seem yet more mysterious, but they too can be approximated arbitrarily closely by
less exotic objects.

Theorem 7.9: Weierstrass Polynomial Approximation Theorem. Suppose that
a and b are real, a < b, and suppose that f is a continuous real-valued function
on [a, b]. Given any ε > 0, there is a polynomial P such that || f − P|| < ε:

∣∣ f (x) − P(x)
∣∣ < ε, all x, a ≤ x ≤ b.

There are a number of ways to prove this theorem. One is given in the next section.
A subset A of S is said to be dense in S if S is the closure of A. This is the same as

saying that, for any point p in S and any ε > 0, there is a point q ∈ A that belongs
to Nε(p). Thus IQ is dense in IR. Theorem 7.9 says: Polynomials are dense in the
space of real-valued continuous functions on [a, b].

Remark. The notion of convergence of a sequence of real- or complex-valued
functions that corresponds to the metric can be generalized beyond compact sets
and continuous functions. If S is any set and if { fn}∞0 and f are functions from S
to R or to IC, then the sequence { fn} is said to converge uniformly to the function
f if for each ε > 0 there is an index N such that n ≥ N implies

| fn(p) − f (p)| < ε, all p ∈ S.

Thus a sequence { fn} in the space C(A) converges to f with respect to the metric
(4) if and only if it converges uniformly to f .
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In particular, it is easy to see that the Weierstrass Polynomial Approximation
Theorem may be reformulated in the following way: If f is a continuous real-
valued function on [a, b], there is a sequence {Pn} of polynomials that converges
to f uniformly on [a, b].

Exercises

1. Which of the following sequences of functions f1, f2, f3, . . . converges uniformly on
the interval [0, 1]?

fn(x) = nx2(1 − x)n.(a)

fn(x) = n2x(1 − x2)n.(b)

fn(x) = n2x3e−nx2
.(c)

fn(x) = x2

x2 + (1 − nx)2
.(d)

2. Let I = [0, 1] and A = { f ∈ C(I ) : | f (x)| ≤ 1, all x ∈ I }.
(a) Show that A is closed and bounded.
(b) Show that the sequence ( fn)∞n=0 with fn(x) = xn is a sequence in A that has no

convergent subsequence. (In fact, for fixed m the distance d( fn, fm) increases as
n → ∞.)

3. Let I and A be the same as in the preceding exercise. Let Un = { f ∈ C(I ) : | f (0) −
f (1/n)| < 1}, n ∈ IN. Show that {Un} is an open cover of A but there is no finite
subcover.

4. Let Pn denote the subspace of C(I ) consisting of functions that are polynomials of
degree ≤ n.
(a) Prove, for n = 0, n = 1, and n = 2, that this is a closed subset.
(b) Give a strategy for proving the result for general n.

5. Show that functions whose graphs are polygonal lines in IR2 are dense in C(I ).
6. A metric space is said to be separable if it has a countable dense subset. Thus IR is

separable, since IQ is countable and dense.
(a) Prove that IC is separable.
(b) Prove that C(I ) is separable.

7. Consider the set of all real polynomials that have only terms of even degree, for example,
x6 − 3x2 + 7, but not x + 2 or 2x4 − x3 + 4.
(a) Prove that these polynomials are dense in C(I ) if I = [0, 1].
(b) Is this true when I = [−1, 1]?

8. Define a sequence of polynomials P0, P1, P2, . . . by P0(x) ≡ 0 and

Pn+1(x) = Pn(x) + x2 − (
Pn(x)

)2

2
, n = 0, 1, 2, . . . .

Prove that this sequence converges uniformly to the function |x | on the interval [−1, 1].
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7D∗. Proof of the Weierstrass Polynomial Approximation Theorem

The following proof is due to S. N. Bernstein. To simplify matters slightly, we
observe that we may take the interval I to be the interval [0, 1]. In fact, given
a < b, let

ϕ(t) = (1 − t)a + tb, 0 ≤ t ≤ 1; ψ(x) = (x − a)

(b − a)
, a ≤ x ≤ b.

Then f is a continuous function on [a, b] if and only if g = f (ϕ) is a continuous
function on [0, 1]. If polynomials {Pn} converge uniformly to g on [0, 1], then the
functions Qn = Pn(ψ) are polynomials that converge to f = g(ψ) on [a, b].

Thus, suppose that f is a continuous real-valued function on I = [0, 1]. We
define a sequence of polynomials as follows:

Pn(x) =
n∑

k=0

f

(
k

n

) (
n

k

)
xk(1 − x)n−k, n ∈ IN. (9)

(See Figure 5.) As usual,
(n

k

)
denotes the binomial coefficient n!/k! (n − k)!. Note

that Pn is a polynomial of degree ≤ n, because each of the functions xk(1 − x)n−k

is a polynomial of degree n.

Figure 5. P20 f for f (x) = |x | on [−1, 1].
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These polynomials have a nice probabilistic interpretation, which is discussed
below. Let us show that they converge uniformly to f .

A key step is to compute these polynomials in three cases: the cases f (x) = xν ,
x ∈ I , where ν = 0, 1, 2. These lead to the three sums evaluated next.

Lemma 7.10. For each real x

n∑
k=0

(
n

k

)
xk(1 − x)n−k = 1; (10)

n∑
k=0

k

(
n

k

)
xk(1 − x)n−k = nx ; (11)

n∑
k=0

k2

(
n

k

)
xk(1 − x)n−k = n(n − 1)x2 + nx . (12)

Proof: The identity (10) is immediate, because the left side is just the binomial
expansion of [x + (1 − x)]n . To verify (11), notice that

k

(
n

k

)
= n!

(k − 1)! (n − k)!
= n · (n − 1)!

(k − 1)! (n − 1 − (k − 1))!
= n

(
n − 1

k − 1

)
. (13)

Note also that we may take the sum in (11) starting from k = 1. Let j = k − 1 and
use (13) to rewrite the left-hand side of (11) as

n−1∑
j=0

n

(
n − 1

j

)
x j+1(1 − x)n−1− j = nx [x + (1 − x)]n−1 = nx .

Note that k2 = k(k − 1) + k, so the final identity (12) can be deduced immediately
from (11) together with

n∑
k=0

k(k − 1)

(
n

k

)
xk(1 − x)n−k = n(n − 1)x2. (14)

To obtain (14) we proceed as before. As in (13),

k(k − 1)

(
n

k

)
= n(n − 1)

(
n − 2

k − 2

)
.

The sum in (14) may be taken starting with k = 2 and written with j = k − 2 to
convert it to n(n − 1)x2[x + (1 − x)]2. �

To prove uniform convergence we need to investigate the difference Pn(x) −
f (x), x ∈ I . Now Pn(x) is the sum (9). We take advantage of (10) to write
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f (x) = f (x) · 1 as a sum and obtain

Pn(x) − f (x) =
n∑

k=0

f

(
k

n

) (
n

k

)
xk(1 − x)n−k −

n∑
k=0

f (x)

(
n

k

)
xk(1 − x)n−k

=
n∑

k=0

[
f

(
k

n

)
− f (x)

] (
n

k

)
xk(1 − x)n−k . (15)

For any given (small) δ > 0 let us break the last sum into two parts:

∑
|x−k/n|<δ

[
f

(
k

n

)
− f (x)

] (
n

k

)
xk(1 − x)n−k

+
∑

|x−k/n|≥δ

[
f

(
k

n

)
− f (x)

] (
n

k

)
xk(1 − x)n−k . (16)

We shall see that the first sum in (16) is small if δ is small, because of continuity. For
fixed δ > 0, the second is small when n is large, because the weights

(n
k

)
xk(1 − x)n−k

are small when k/n is not close to x . To quantify this, suppose that ε > 0 is given.
Choose δ > 0 so small that, for x, y ∈ I , |x − y| < δ implies | f (x) − f (y)| < ε/2.
Then the first sum in (16) has absolute value less than

ε

2
·

n∑
k=0

(
n

k

)
xk(1 − x)n−k = ε

2
.

Now | f (x)| ≤ || f ||, all x ∈ I , so the second sum in (16) has absolute value at most

2|| f ||
∑

|x−k/n|≥δ

(
n

k

)
xk(1 − x)n−k . (17)

We fix δ and turn to the second sum in (16). Now we use the fact that δ−2(x − k/n)2

is nonnegative for all k and is ≥ 1 for the values of k that occur in the sum (17).
Therefore

∑
|x−k/n|≥δ

(
n

k

)
xk(1 − x)n−k ≤ 1

δ2

n∑
k=0

(
x − k

n

)2 (
n

k

)
xk(1 − x)n−k

= 1

δ2

n∑
k=0

(
x2 · 1 − 2x

n
· k + 1

n2
· k2

) (
n

k

)
xk(1 − x)n−k

= 1

δ2

[
x2 − 2x

n
· (nx) + 1

n2
· (n(n − 1)x2 + nx)

]

= x(1 − x)

nδ2
≤ 1

4nδ2
(18)
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for x ∈ I ; we have made use of (10)–(12). Therefore, the absolute value of (16) is
less than ε for every x ∈ I , provided that n ≥ ε/2 || f || δ2. We have proved that the
polynomials Pn converge uniformly to f on the interval I .

Going back to a function f that is defined and continuous on an interval [a, b],
one can see from the remarks at the beginning of this section that the corresponding
Bernstein polynomials that converge uniformly to f on [a, b] are

Pn(x) =
n∑
k

(
n

k

)
f

(
a + k

n
(b − a)

) (
x − a

b − a

)k (
b − x

b − a

)n−k

. (18)

Here is the promised probabilistic interpretation. Fix x ∈ I . Suppose that one has
a coin that has probability x of coming up heads and probability 1 − x of coming
up tails when tossed. The probability of any particular string of n tosses that result
in k heads is xk(1 − x)n−k . The number of ways that k heads can come up in n
tosses is

(n
k

)
. Therefore, the probability of k heads in n tosses is

(n
k

)
xk(1 − x)n−k .

Thus (10) gives the probability of getting some number of heads (0 ≤ k ≤ n) in
n tosses, while (11) gives the expected number of heads in n tosses – that is, the
expected average over many repetitions of n tosses.

The inequality (18) gives an estimate of how little likelihood there is that the
proportion of heads will differ from the probability x by more than δ and shows
that this becomes less and less likely as n increases.

Finally, suppose that the coin is to be tossed n times and there will be a payoff
of f (k/n) if the number of heads is k. Then the expected payoff is Pn(x). This is
why one could expect Pn(x) to be close to f (x) if n is large.

Exercise

1. (a) Compute the Bernstein polynomials Pn (see (9)) for the function f (x) = ex on [0, 1].
(b) Show that for any ε > 0 it is true for large enough n that

(
1 + x

n

)n
≤ Pn(x) ≤

(
1 + x + ε

n

)n

, 0 ≤ x ≤ 1.



P1: KaD/Jzy P2: Kcz

0521840724c08 CY492/Beals 0 521 84072 4 June 16, 2000 14:59 Char Count= 0

8

Calculus

In this chapter we present a rapid review of the theoretical foundations of differential
and integral calculus in one variable. This includes the Mean Value Theorem and the
Generalized Mean Value Theorem, various versions of the Fundamental Theorem,
and Taylor expansions.

8A. Differential Calculus

Suppose that f is a real- or complex-valued function defined in a neighborhood of
a point x ∈ IR. Then f is said to be differentiable at x with derivative f ′(x) if for
each ε > 0 there is δ > 0 such that∣∣∣∣ f (y) − f (x)

y − x
− f ′(x)

∣∣∣∣ < ε if 0 < |y − x | < δ. (1)

This can be rewritten somewhat informally as

lim
y→x

f (y) − f (x)

y − x
= f ′(x). (2)

Remarks

1. Differentiability at x implies continuity at x , as is easily seen by multiplying (1) by
|y − x |.

2. A complex-valued function is differentiable at x if and only if its real and imaginary parts
are differentiable at x . Thus, considering complex-valued functions does not introduce
any genuine complications here, and it will be convenient later.

Proposition 8.1: Differentiation and algebra. Suppose that f and g are real-
or complex-valued functions defined in a neighborhood of the point x in IR, and
suppose that c is complex. If f and g are both differentiable at x, then c f , f ± g,

99
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and fg are differentiable at x and

[c f ]′(x) = c · f ′(x); (3)

[ f ± g]′(x) = f ′(x) ± g′(x); (4)

[ f g]′(x) = f (x)g′(x) + f ′(x)g(x). (5)

If g(x) �= 0, then 1/g is defined in a neighborhood of x and
[

1

g

]′
(x) = − g′(x)

g(x)2
. (6)

Proof: The identities (3) and (4) are very easy. The usual trick of adding and
subtracting a term leads to

f (y)g(y) − f (x)g(x)

y − x
= f (y)

[
g(y) − g(x)

y − x

]
+

[
f (y) − f (x)

y − x

]
g(x),

which leads to (5), Leibniz’s rule.
By assumption, g is continuous at x , so g(x) �= 0 implies that g is nowhere zero

in some neighborhood of x , and thus 1/g is defined there. Now

1/g(y) − 1/g(x)

y − x
= − 1

g(y)g(x)
· g(y) − g(x)

y − x
,

which leads to (6). �

In what follows we shall make use of Proposition 8.2 in conjunction with the
(obvious) facts: f (x) = constant implies f ′ = 0, while f (x) = x for all x implies
f ′ = 1.

Proposition 8.2: Chain rule. Suppose that g is real-valued and that the compo-
sition f (g) is defined in a neighborhood of x ∈ IR. Suppose that g is differentiable
at x and that f is differentiable at g(x). Then f (g) is differentiable at x and
[ f (g)]′(x) = f ′(g(x)) g′(x).

Proof: Differentiability of f at g(x) implies that

f (g(y)) − f (g(x)) = [ f ′(g(x)) + r (y)] · [g(y) − g(x)],

where the error term r (y) has limit 0 as g(y) approaches g(x). Since g is continuous
at x , we conclude that r (y) has limit 0 as y → x . Therefore the difference quotient

f (g(y)) − f (g(x))

y − x
= [

f ′(g(x)) + r (y)
] g(y) − g(x)

y − x

has limit f ′(g(x)) g′(x) as y → x . �
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Theorem 8.3: Rolle’s Theorem. Suppose that f is real-valued and continuous on
the closed interval [a, b] ⊂ IR and differentiable at every point of the open interval
(a, b). Suppose also that f (a) = f (b). Then there is a point c ∈ (a, b) such that
f ′(c) = 0.

Proof: If f is constant on the interval, then f ′ vanishes at every point of the
open interval. Because [a, b] is compact, we know that f attains it minimum and
maximum values. If f is not constant, then either the maximum value is larger
than f (a) or the minimum value is smaller than f (a), or both. Suppose that the
maximum value is larger than f (a). Then any point c at which it is attained lies in
(a, b). Let c be such a point. The numerator of the difference quotient

f (y) − f (c)

y − c
, y ∈ [a, b]

is always ≤ 0 and the denominator can have either sign. We have assumed the
existence of the limit f ′(c) as y → c, so the only possible limit is 0. The same
argument applies if f attains a minimum < f (a). �

Theorem 8.4: Mean Value Theorem. Suppose that f is real-valued and contin-
uous on the closed interval [a, b] ⊂ IR and differentiable at every point of the open
interval (a, b). Then there is a point c ∈ (a, b) such that

f (b) − f (a)

b − a
= f ′(c). (7)

Proof: Let g be the function defined on [a, b] by

g(x) = f (x) − f (b) − f (a)

b − a
(x − a).

Note that g(a) = g(b) = f (a). By Rolle’s Theorem there is a point c ∈ (a, b) such
that

0 = g′(c) = f ′(c) − f (b) − f (a)

b − a
. �

The Mean Value Theorem (MVT) is fundamental for the theory of calculus. The
reader who doubts this is invited to consider the following corollaries and find
rigorous proofs that do not make use of the MVT. Note that the MVT implies
Rolle’s Theorem; on the other hand, we used Rolle’s Theorem to prove the MVT.

Corollary 8.5. If f ′(x) = 0, all x in the interval (a, b), then f is constant on (a, b).
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Proof: It is enough to prove this for the real and imaginary parts of a function,
so suppose that f is real. Given x and y in (a, b), with x < y, apply the MVT to f
on the interval [x, y] to conclude that f (y) − f (x) = 0. �

Definition. A real-valued function f on the interval (a, b) is said to be

nondecreasing if x, y ∈ (a, b), x < y implies f (x) ≤ f (y);
strictly increasing if x, y ∈ (a, b), x < y implies f (x) < f (y);
nonincreasing if x, y ∈ (a, b), x < y implies f (x) ≥ f (y);
strictly decreasing if x, y ∈ (a, b), x < y implies f (x) > f (y).

A function that is either nonincreasing or nondecreasing is said to be monotone; a
function that is either strictly increasing or strictly decreasing is said to be strictly
monotone.

It follows easily from the definitions that if f is nondecreasing and is differ-
entiable at x , then f ′(x) ≥ 0; if f is nonincreasing and differentiable at x , then
f ′(x) ≤ 0. The converse results follow from the MVT.

Corollary 8.6. Suppose that the real-valued function f on the interval (a, b) is
differentiable at each point of (a, b). Then

f ′(x) ≥ 0, all x ∈ (a, b) implies that f is nondecreasing;
f ′(x) > 0, all x ∈ (a, b) implies that f is strictly increasing;
f ′(x) ≤ 0, all x ∈ (a, b) implies that f is nonincreasing;
f ′(x) < 0, all x ∈ (a, b) implies that f is strictly decreasing.

The following generalization of the MVT is also useful.

Theorem 8.7: Generalized Mean Value Theorem. Suppose that f and g are
continuous real-valued functions on the interval [a, b] that are differentiable at
every point of (a, b). Suppose also that g′(x) �= 0, all x ∈ (a, b). Then there is a
point c ∈ (a, b) such that

f (b) − f (a)

g(b) − g(a)
= f ′(c)

g′(c)
. (8)

Proof: Notice that MVT and the assumption that g′ �= 0 on (a, b) imply that
g(b) − g(a) �= 0, so the left hand side of (8) is well-defined. Define h : [a, b] → IR
by

h(x) = f (x)
[
g(b) − g(a)

] − g(x)
[

f (b) − f (a)
]
.
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Then h(a) = f (a)g(b) − f (b)g(a) = h(b), so by Rolle’s Theorem there is c ∈
(a, b) such that

0 = h′(c) = f ′(x)
[
g(b) − g(a)

] − g′(x)
[

f (a) − f (b)
]
;

divide by [g(b) − g(a)] g′(x). �

Note that MVT is the case g(x) = x of the Generalized Mean Value Theorem
(GMVT). The GMVT is the basis for a well-known method for calculating limits.

Corollary 8.8: L’Hôpital’s Rule. Suppose that the real-valued functions f and g
are differentiable at each point of the interval (a, b), that g(x) �= 0 and g′(x) �= 0
for x in (a, b), and that

lim
x→a+ f (x) = 0 = lim

x→a+ g(x). (9)

Then

lim
x→a+

f (x)

g(x)
= lim

x→a+
f ′(x)

g′(x)
(10)

whenever the limit on the right side exists. (The limits here are limits from the right
at a.)

Proof: The assumption (9) means that if we define f (a) = 0 = g(a) then f and
g are continuous on the interval [a, b). Suppose that the limit on the right side in
(10) exists and equals L . Given any ε > 0, choose δ > 0 such that∣∣∣∣ f ′(c)

g′(c)
− L

∣∣∣∣ < ε if a < c ≤ a + δ.

For any x ∈ (a, a + δ) we may apply the GMVT on the interval [a, x] to conclude
that ∣∣∣∣ f (x)

g(x)
− L

∣∣∣∣ < ε. �

Remark. It can be useful to know that the conclusion (10) is also true if f and g
are differentiable on (a, ∞) and instead of (9) we have

lim
x→∞ f (x) = ∞ = lim

x→∞ g(x), (9′)

when the limit on the right in (10) exists. In fact, given 0 < ε < 1, choose b so
large that | f ′(c)/g′(c) − L| < ε for all c > b. Note that (9′) implies that, for all
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sufficiently large x ,

| f (b)| < ε| f (x)|, |g(b)| < ε|g(x)|.
Then ∣∣∣∣ f (x)

g(x)
− f (x) − f (b)

g(x) − g(b)

∣∣∣∣ =
∣∣∣∣ f (x)g(b) − f (b)g(x)

[g(x) − g(b)]g(x)

∣∣∣∣
≤ 2ε

∣∣∣∣ f (x)

g(x) − g(b)

∣∣∣∣ ≤ 2ε

1 − ε

∣∣∣∣ f (x) − f (b)

g(x) − g(b)

∣∣∣∣ .
Then again the GMVT leads to the result.

Exercises

1. Compute the following limits, with justification. (In (f), assume that f ′′(x) is continuous.)

lim
x→1

x log x

ex − e
.(a)

lim
x→0

log(1 + x) − x

sin(x2)
.(b)

lim
x→∞ x−a log x, a > 0.(c)

lim
x→0

xa log x, a > 0.(d)

lim
x→0

1 − cos x

x sin x
.(e)

lim
h→0

f (x + h) + f (x − h) − 2 f (x)

h2
.(f)

2. Suppose that f is a real-valued function on IR whose derivative exists at each point and
is bounded. Prove that f is uniformly continuous.

3. (a) Suppose that f : IR → IR is continuous and lim|x |→∞ f (x) = 0. Prove that f is
uniformly continuous.

(b) Find a bounded function f : IR → IR such that f is differentiable at every point and
uniformly continuous, but f ′ is not bounded.

4. (a) Suppose f : IR → IR and | f (x)| ≤ x2, all x . Prove that f is differentiable at x = 0.
(b) Find a function f : IR → IR that is differentiable at one point and not continuous at

any other point.
5. Suppose that f is differentiable at each point of (a, b) and suppose that the derivative is

never 0. Prove that f is either strictly increasing or strictly decreasing on the interval.
(Notice that f ′ is not assumed to be continuous.)

6. Suppose that f is differentiable at each point of the interval [a, b] and suppose that
f ′(a) < c < f ′(b). Prove that there is a point x in (a, b) such that f ′(x) = c. (Notice
that f ′ is not assumed to be continuous.)
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7. Let f (0) = 0 and f (x) = sin(1/x) if x �= 0. Let g(x) = ∫ x
0 f . Prove that g is differen-

tiable at every point, but the derivative is not continuous at x = 0.

8B. Inverse Functions

The following theorem is basic.

Theorem 8.9: Intermediate Value Theorem. If f is a continuous real-valued
function on the interval [a, b] and f (a) �= f (b), then for each real number c between
f (a) and f (b) there is a point x in the interval (a, b) such that f (x) = c.

Proof: Let g(x) = f (x) − c; we want a point where g(x) = 0. We construct a
sequence of intervals as follows: Let I0 = [a, b]. If g vanishes at the midpoint of
this interval, then we may stop. Otherwise, g changes sign (has different signs at the
two endpoints) on one of the two closed subintervals of length (b − a)/2 that cover
I0. Denote this subinterval by I1 and continue. Either we reach in finitely many
steps a midpoint at which g = 0 or we obtain a sequence of intervals In = [an, bn]
of length (b − a)/2n , on each of which g changes sign. The sequences {an} and
{bn} have a common limit x . By continuity and the change of sign condition,
g(x) = 0. �

We use the term interval, without qualification, to mean any of the possibil-
ities (a, b) with −∞ ≤ a < b ≤ +∞, (a, b] with −∞ ≤ a < b < +∞, [a, b)
with −∞ < a < b ≤ +∞, or [a, b], −∞ < a < b < +∞. Thus one possibility
is (−∞, +∞) = IR.

Corollary 8.10. If f is a continuous real-valued function on an interval I , then
the image f (I ) = { f (x) : x ∈ I } is an interval.

Theorem 8.11: Inverse functions. If f is a continuous strictly monotone real-
valued function on an interval I , then f has an inverse function g: g is defined on
the interval f (I ) and

g( f (x)) = x, x ∈ I ; f (g(y)) = y, y ∈ f (I ). (11)

The function g is also continuous and strictly monotone.
If f is differentiable at an interior point x of I and f ′(x) �= 0, then g is differen-

tiable at f (x) and

g′( f (x)) = 1

f ′(x)
. (12)
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Proof: Suppose that f is strictly increasing. It follows from this that for each y
in the interval f (I ) there is a unique x ∈ I such that f (x) = y; set x = g(y). Then
(11) is satisfied. The function g is strictly increasing. For continuity, suppose that
y = f (x) ∈ f (I ) and ε > 0 are given. Suppose that x is an interior point; a slight
change in the argument will deal with an endpoint. Choose x1 and x2 in I such that

x − 1
2ε ≤ x1 < x < x2 ≤ x + 1

2ε.

Set y j = f (x j ) and let δ be the smaller of y2 − y and y − y1. Then |y′ − y| < δ

implies that y′ is in the interval (y1, y2), so g(y′) is in the interval (x1, x2), so
|g(y′) − g(y)| < ε.

Finally, suppose that x is an interior point and f ′(x) exists and is positive. Each
y′ close to y is f (x ′) for x ′ = g(y′) close to x , so

g(y′) − g(y)

y′ − y
= x ′ − x

f (x ′) − f (x)

and the limit is (12). �

Remark. The function f (x) = x3 is strictly increasing on IR and differentiable at
every point, but the derivative vanishes at x = 0 and the inverse function g(y) = y1/3

is not differentiable at y = f (0) = 0.
As an example, consider the real exponential function from Section 5C:

ex = E(x) =
∞∑

n=0

xn

n!
= 1 + x + x2

2
+ x3

6
+ x4

24
+ x5

120
+ · · · · (13)

Theorem 8.12. The exponential function is a continuous strictly increasing func-
tion from IR onto (0, +∞). The inverse function log y has derivative 1/y at the
point y > 0.

Proof: It follows from (13) that ex > 0 for x ≥ 0. But since e−x ex = ex−x = 1,
it follows that e−x = 1/ex and the function also takes positive values on (−∞, 0).
Differentiating (13), one sees that the derivative is ex , and hence positive, so the
function is continuous and strictly increasing. Next, (13) implies ex > 1 + x when
x > 0, so e−x < 1/(1 + x) and

lim
x→+∞ ex = +∞; lim

x→−∞ ex = 0.

Thus the image is (0, +∞). The inverse function g(y) = log y satisfies g′(y) =
1/ f ′(g(y)) = 1/ f (g(y)) = 1/y. �
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Exercises

(For some of the following exercises, integration is assumed.)

1. Define f : (−π/2, π/2) → IR by f (0) = 0 and

f (x) = x − sin x

1 − cos x
, if x �= 0.

(a) Show that f is continuous at x = 0.
(b) Show that f is strictly increasing and the image of the interval is all of IR.

2. Prove that for every a ≥ 0 there is a unique b ≥ 0 such that

a =
∫ b

0

dx

(1 + x3)1/5

3. (a) Prove that every polynomial of odd degree, having real coefficients, has a real root.
(b) Prove that every polynomial of even degree, having real coefficients, attains a max-

imum or a minimum.
(c) Give another proof of (a).

4. Suppose that a0, a1, a2, . . . , an are real numbers such that

a0 + a1

2
+ a2

3
+ · · · + an

n + 1
= 0.

Prove that the polynomial an xn + an−1xn−1 + · · · + a1x + a0 has a root in the interval
(0, 1).

5. Suppose that f is a continuous real-valued function on IR and suppose that f (x) is
rational whenever x is irrational. Prove or disprove: f must be constant.

8C. Integral Calculus

Suppose that I = [a, b] is a closed, bounded interval. Recall that a function f from
I to IR is said to be bounded if its image f (I ) is bounded. This means that there is
a constant M such that | f (x)| ≤ M , all x ∈ I . Suppose that f is bounded.

Definitions. A partition of the interval [a, b] is a collection P of points
x0, x1, . . . , xn such that

a = x0 < x1 < x2 < · · · < xn = b.

The lower sum L( f, P) and upper sum U ( f, P) of f with respect to the partition
P are the numbers

L( f, P) =
n∑

k=1

mk (xk − xk−1), mk = inf{ f (x) : x ∈ [xk−1, xk]}; (14)

U ( f, P) =
n∑

k=1

Mk (xk − xk−1), Mk = sup{ f (x) : x ∈ [xk−1, xk]}. (15)
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Note that
∑n

1(xk − xk−1) = b − a. It follows immediately that, for each parti-
tion P ,

m (b − a) ≤ L( f, P) ≤ U ( f, P) ≤ M (b − a),

m = inf{ f (x) : x ∈ [a, b]}; M = sup{ f (x) : x ∈ [a, b]}. (16)

Examples

1. If f (x) = c for all x in [a, b], then for every P the lower and upper sums are L( f, P) =
U ( f, P) = c .

2. Suppose that f is defined for x ∈ [0, 1] by f (x) = 1 when x ∈ IQ and f (x) = 0 when
x �∈ IQ. Then, for every partition P , L( f, P) = 0 and U ( f, P) = 1.

Definition. A partition P ′ is said to be a refinement of the partition P if each point
of P also belongs to P ′.

Lemma 8.13. If P and P ′ are partitions of [a, b] and P ′ is a refinement of P, then

L( f, P) ≤ L( f, P ′) ≤ U ( f, P ′) ≤ U ( f, P). (17)

Proof: Note that (16) is a special case of Lemma 8.13. In fact, P is a refinement of
the trivial partition that consists of y0 = a, y1 = b. The general case of Lemma 8.13
follows by applying the analogue of (16) to each subinterval [xk−1, xk] determined
by P . �

Corollary 8.14. If P and P ′ are any two partition of [a, b], then

L( f, P) ≤ U ( f, P ′). (18)

Proof: Choose a partition P ′′ that is a refinement both of P and of P ′. Then

L( f, P) ≤ L( f, P ′′) ≤ U ( f, P ′′) ≤ U ( f, P ′). � (19)

The inequality (16) shows that the upper and lower sums with respect to all
possible partitions form a bounded set.

Definition. The lower integral
∫ b

a f and the upper integral
∫ b

a f of f on the interval
[a, b] are defined to be

∫ b

a
f = sup

P
{L( f, P)};

∫ b

a
f = inf

P
{U ( f, P)}, (20)
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where the supremum and infimum are taken over all partitions P of the inter-
val [a, b].

Proposition 8.15.
∫ b

a f ≤ ∫ b
a f .

Proof: First, fix a partition P . The inequality (19) shows that L( f, P) is a lower
bound for the upper sums, so L( f, P) ≤ ∫ b

a f . This is true for every partition P ,
so the upper integral is an upper bound for the lower sums. This proves

∫ b
a f ≤∫ b

a f . �

Definitions. A bounded real-valued function f on an interval [a, b] is said to be
integrable on [a, b] in the sense of Riemann, or Riemann integrable if

∫ b
a f = ∫ b

a f .
If so, then the common value is denoted

∫ b
a f or by

∫ b
a f (x) dx (or by

∫ b
a f (t) dt ,

etc.) and is called the integral of f on the interval [a, b].

In the second example above,
∫ b

a f = 0 and
∫ b

a f = 1, so the function is not
integrable.

Proposition 8.16. A bounded real-valued function f on an interval [a, b] is
Riemann integrable if and only if for each ε > 0 there is a partition P such that

U ( f, P) − L( f, P) < ε. (21)

Proof: Suppose that f is Riemann integrable on [a, b]. Given ε > 0, it follows
from the definitions of the lower and upper integrals that there are partitions P ′ and
P ′′ such that(∫ b

a
f

)
− ε

2
< L( f, P ′); U ( f, P ′′) <

(∫ b

a
f

)
+ ε

2
.

Let P be a refinement of P ′ and of P ′′. Then(∫ b

a
f

)
− ε

2
< L( f, P ′) ≤ L( f, P) ≤ U ( f, P) ≤ U ( f, P ′′) <

(∫ b

a
f

)
+ ε

2
,

which implies that U ( f, P) − L( f, P) < ε.

Conversely, (21) implies that 0 ≤ ∫ b
a f − ∫ b

a f < ε. If this is true for each
ε > 0, then

∫ b
a f = ∫ b

a f . �

Theorem 8.17: Integrability of continuous functions. If f is a continuous real-
valued function on an interval [a, b], it is Riemann integrable on [a, b].
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Proof: Since the interval [a, b] is compact, it follows that f is bounded and
uniformly continuous. Given ε > 0, there is a δ > 0 such that if x and y are points
of [a, b] at distance < δ, then | f (x) − f (y)| < ε/(b − a). This means that if the
partition P is chosen so that each of its intervals [xk−1, xk] has length < δ, then the
mk and Mk of (14) and (15) differ by < ε/(b − a). Therefore (21) is satisfied. �

The following algebraic properties follow fairly readily from the definitions and
from Lemma 8.13 and Proposition 8.16.

Proposition 8.18: Algebraic properties of the integral. Suppose that f and g
are Riemann integrable functions on [a, b] and suppose that c is real. Then the
functions c f , f ± g and | f | are Riemann integrable on [a, b] and

∫ b

a
c f (x) dx = c

∫ b

a
f (x) dx ; (22)

∫ b

a

[
f (x) ± g(x)

]
dx =

∫ b

a
f (x) dx ±

∫ b

a
g(x) dx ; (23)

∣∣∣∣
∫ b

a
f (x) dx

∣∣∣∣ ≤
∫ b

a
| f (x)| dx . (24)

Moreover,
∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx if f (x) ≤ g(x) for all x ∈ [a, b] (25)

The additivity of the integral suggests an appropriate extension to complex-
valued functions.

Definition. A bounded complex-valued function f on an interval [a, b] is Riemann
integrable if the real and imaginary parts are Riemann integrable. If so, we set

∫ b

a
f (x) dx =

∫ b

a
Re f (x) dx + i

∫ b

a
Im f (x) dx . (26)

In particular, f is Riemann integrable if it is continuous. �

The next result shows a different kind of additivity of the integral. It is easily
proved by using partitions that include the point b.

Proposition 8.19. Suppose that a < b < c. A bounded function f on the interval
[a, c] is Riemann integrable on [a, c] if and only if it is Riemann integrable on each
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of the subintervals [a, b] and [b, c]. If so, then∫ c

a
f (x) dx =

∫ b

a
f (x) dx +

∫ c

b
f (x) dx . (27)

The identity (27) is very useful and can be made more useful by dropping the
conditions a < b < c. To do so, we assume that f is Riemann integrable on [a, b]
and define∫ c

c
f (x) dx = 0, c ∈ [a, b];

∫ a

b
f (x) dx = −

∫ b

a
f (x) dx . (28)

Then it can be checked, case by case, that (27) is valid for any triple of real numbers
a, b, and c for which all three integrals are defined.

Theorem 8.20: Differentiation of the integral. Suppose that f is a continuous
real- or complex-valued valued function on the interval I . Suppose that a is a point
of I and let F be defined by

F(x) =
∫ x

a
f (t) dt, x ∈ I. (29)

Then F is differentiable at every interior point x of I and F ′(x) = f (x).

Proof: Fix an interior point x of I . For y close to x we use (27) to conclude that

F(y) − F(x)

y − x
= 1

y − x

[∫ y

a
f (t) dt −

∫ x

a
f (t) dt

]

= 1

y − x

∫ y

x
f (t) dt,

and it follows that

F(y) − F(x)

y − x
− f (x) = 1

y − x

∫ y

x

[
f (t) − f (x)

]
dt. (30)

Given any ε > 0, we can choose δ > 0 such that |y − x | < δ implies that the
integrand in (30) has modulus < ε at each point. Then the modulus of the right side
of (30) is < ε. �

Corollary 8.21: Fundamental Theorem of Calculus. Suppose that f and G
are continuous real- or complex-valued functions on [a, b]. Suppose that G is
differentiable at each x ∈ (a, b) and G ′(x) = f (x). Then∫ b

a
f (x) dx = G(b) − G(a). (31)
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Proof: Let F be defined by (29). Then the difference F − G has derivative 0, so
F − G is constant. Therefore F(b) − G(b) = F(a) − G(a) = −G(a), or F(b) =
G(b) − G(a). �

Remark. Another way to state this result is that

f (x) = f (a) +
∫ x

a
f ′(t) dt if f ′ is continuous. (32)

As an example, we obtain the integral form of the natural (base e) logarithm:

log x =
∫ x

1

dt

t
, x > 0. (33)

Exercises

1. (a) Suppose that f is a continuous real-valued function on the interval [a, b]. Prove that
there exists x ∈ [a, b] such that

∫ b
a f = f (x)(b − a).

(b) Give another proof.
2. Let f (0) = 0 and f (x) = sin(1/x) for x in the interval (0, 1]. Prove that f is integrable

on the interval [0, 1].
3. Suppose that f is continuous and nonnegative on the interval [a, b], where a < b, and

suppose that
∫ b

a f = 0. Prove that f ≡ 0 on [a, b].
4. Let g(1/n) = 1 for n ∈ IN and g(x) = 0 otherwise. Prove that g is integrable on the

interval [0, 1].
5. Let f (p/q) = 1/q if the fraction p/q is in lowest terms and f (x) = 0 for irrational x .

Prove that f is continuous at x if and only if x is irrational or x = 0.
6. Prove that the function in Exercise 5 is not differentiable at any point.
7. Prove that the function in Exercise 5 is integrable on the interval [0, 1].
8. Suppose that f is continuous, nonnegative, and nondecreasing at each point of [0, ∞).

Prove that ∫ x

0
f (t) dt ≤ x f (x), all x ≥ 0.

8D. Riemann Sums

The proof of Theorem 8.17 shows that if f is continuous on [a, b], then, for a given
ε > 0, any partition P all of whose intervals are small enough will give upper and
lower sums within ε of

∫ b
a f . In particular, one might work (conceptually, at least)

with partitions into equal subintervals. For a given n ∈ IN, let Pn denote the partition
into n equal subintervals. Thus

x j = a + j

n
(b − a), j = 0, 1, 2, . . . , n.
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(Note that these points are different for different values of n as well as for different
values of j ; we ought to, but will not, use a notation like x (n)

j .) A corresponding
Riemann sum is

Rn( f ) =
n∑

j=1

f (x∗
j )(x j − x j−1), x∗

j ∈ [x j−1, x j ].

This depends on the choice of the points x∗
j , as well as on n and f .

Clearly

L( f, Pn) ≤ Rn( f ) ≤ U ( f, Pn).

It follows from this and from the proof of Theorem 8.17 that

lim
n→∞ Rn( f ) =

∫ b

a
f

whenever f is continuous on [a, b].

Remark. There is a potential trap here. Let us return to Example 2 in Section 8C,
on the interval [0, 1]. Here, given n, the endpoints x j = j/n of the subintervals
are rational, as are the midpoints. Therefore, if we look at the Riemann sums with
the x∗

j ’s at the endpoints or midpoints of the subintervals, then each Rn f = 0. In
other words, to see the failure of integrability it is necessary to look at more general
choices of the points x∗

j .

Exercises

1. Determine the limit

lim
n→∞

n∑
k=1

(
k

n

)2 1

n
.

2. Prove that

lim
N→∞

N∑
n=−N

(
1

N + in
+ 1

N − in

)
= 2

∫ 1

−1

dt

1 + t2
.

8E∗. Two Versions of Taylor’s Theorem

Suppose that I is an open interval and that f is a complex-valued function on I with
the property that f and its successive derivatives f ′, f ′′, . . . f (n) are continuous on I .
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Figure 6. Taylor polynomials for sin x at a = 0.

At any given point a ∈ I , the n-th Taylor polynomial of f at a is the polynomial

T (n)
f,a (x) =

n∑
k=0

f (k)(a)

k!
(x − a)k

= f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + · · · + f (n)(a)

n!
(x − a)n. (34)

See Figure 6.

Proposition 8.22. The Taylor polynomial T (n)
f,a is the unique polynomial p of degree

at most n that has the property that

p(k)(a) = f (k)(a), k = 0, 1, 2, . . . , n. (35)

Proof: One checks, by the simple expedient of differentiating, that p = T (n)
f has

the property (35). Conversely, if p is a polynomial of degree at most n that satisfies
(35) and we set q(x) = p(x − a), then (35) determines qk(0), 0 ≤ k ≤ n, which in
turn determines the coefficients of q. Thus p = T (n)

f . �
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Theorem 8.23: Taylor’s formula with remainder. Suppose that f is a complex-
valued function on an interval I with the property that f and its derivatives of
order ≤ n are continuous, and suppose that a and x are points of I . Then there is
a point c between a and x such that

f (x) = f (a) + f ′(a) (x − a) + f ′′(a)

2
(x − a)2 + · · · + f (n−1)(a)

(n − 1)!
(x − a)n−1

+ f (n)(c)

n!
(x − a)n. (36)

Proof: For n = 1 this is just the Mean Value Theorem. Suppose that n ≥ 2.
Let g(x) = f (x) − T (n−1)

f,a (x) and h(x) = (x − a)n . Then g(a) = h(a) = 0. By the
Generalized Mean Value Theorem there is a point c1 between a and x such that

g(x)

h(x)
= g(x) − g(a)

h(x) − h(a)
= g′(c1)

h′(c1)
.

Now g′ and h′ both vanish at a, so there is a point c2 between a and c1 such that

g(x)

f (x)
= g′(c1)

h′(c1)
= g′′(c2)

h′′(c2)
.

Continuing, we eventually reach a point c = cn such that

g(x)

h(x)
= g(n)(c)

h(n)(c)
= f (n)(c)

n!
.

Multiplication by (x − a)n converts this last equation to (36). �

Remark. Since continuity of the derivative is not required in the GMVT, we do
not need to assume in Theorem 8.23 that f (n) is continuous, only that it exists at
each point between a and x .

Just as the previous version of Taylor’s formula starts with the Mean Value
Theorem, the next version starts with the Fundamental Theorem of Calculus in the
form (32). To extend (32) we can use integration by parts.

Theorem 8.24: Integration by parts. Suppose that I is an interval and that f
and g are complex-valued functions on I whose first derivatives are continuous.
Suppose that a and b are points of I . Then∫ b

a
f (x) g′(x) dx = f (x) g(x)

∣∣∣∣
b

a

−
∫ b

a
f ′(x)g(x) dx. (37)

Proof: This results from integrating Leibniz’s rule in the form f g′ = ( f g)′ −
f ′g. �
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Fix a and x and set hk(t) = (x − t)k , so that hk(a) = 0 for k ≥ 1 and hk is the
derivative (with respect to t) of −hk+1/(k + 1). Starting from (32) we obtain

f (x) = f (a) +
∫ x

a
f ′(t) dt

= f (a) −
∫ x

a
f ′(t) h′

1(t) dt

= f (a) + f ′(a)h1(a) +
∫ x

a
f ′′(t)h1(t) dt

= f (a) + f ′(a) (x − a) − 1

2

∫ x

a
f ′′(t) h′

2(t) dt

= f (a) + f ′(a) (x − a) + 1

2
f ′′(a) (x − a)2 + 1

2

∫ x

a
f ′′′(t) h2(t) dt.

Continuing, one arrives at the following result.

Theorem 8.25: Taylor’s formula with integral remainder. Suppose that f is a
complex-valued function on an interval I with the property that f and its deriva-
tives of order ≤ n are continuous, and suppose that a and x are points of I .
Then

f (x) = f (a) + f ′(a) (x − a) + f ′′(a)

2
(x − a)2 + · · · + f (n−1)(a)

(n − 1)!
(x − a)n−1

+ 1

(n − 1)!

∫ x

a
f (n)(t) (x − t)n−1 dt. (38)

Exercises

1. (a) Prove that, for every positive integer n, limx→∞ xne−x = 0.
(b) Give another proof.

2. Let f (x) = 0 when x ≤ 0 and f (x) = exp(−1/x) for x > 0. Prove that f and all its
derivatives are continuous at x = 0. What are the Taylor polynomials for f at a = 0?

3. Suppose that f is a bounded real-valued function on IR, and suppose that its first and
second derivatives are bounded and continuous. Prove that

sup
x∈IR

| f ′(x)|2 ≤ 4 sup
x∈IR

| f (x)| · sup
x∈IR

| f ′′(x)|.

Additional Exercises for Chapter 8

1. Suppose that f is real-valued and continuous on [0, 1], and f (0) = f (1) = 0. Suppose
that the second derivative f ′′ exists and is nonnegative at each point of (0, 1). Prove that
either f is constant on the interval or else f (x) < 0 for all x ∈ (0, 1).
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2. Suppose that f is real-valued on (a, b) and f ′′(x) ≥ 0 for all x ∈ (a, b). Prove that f is
convex (see Exercise 3 of Section 7B).

3. Suppose that f is continuous from [a, b] to [c, d], and suppose that ϕ is continuous and
convex on [c, d]. Prove Jensen’s inequality:

ϕ

(
1

b − a

∫ b

a
f (x) dx

)
≤ 1

b − a

∫ b

a
ϕ
(

f (x)
)

dx .

4. Suppose that f is a continuous real-valued function defined on the unit square in
IR2: {(x, y) : 0 ≤ x, y ≤ 1}. Let

F(x) =
∫ 1

0
f (x, y) dy, 0 ≤ x ≤ 1.

Prove that F is continuous.
5. Suppose that L is a real-valued function on (0, ∞) with the properties:

(i) L(xy) = L(x) + L(y), all positive x and y;
(ii) L ′(1) exists and = 1.
Prove that L(1) = 0, and L ′(x) = 1/x for all x > 0.

6. Conversely, suppose that L(x) is defined to be
∫ x

1 dt/t for x > 0. Prove that L has the
two properties of the preceding exercise.

7. Suppose that { fn}∞1 is a sequence in the space C(I ) of continuous functions on the
interval I = [a, b], with limit f . Prove that

lim
n→∞

∫ b

a
fn =

∫ b

a
f.

(In other words, for a uniformly convergent sequence, the limit of the integrals is the
integral of the limit.)

8. Find an example of a sequence of real-valued continuous functions fn on [0, 1] such
that limn→∞ fn(x) = 0, all x ∈ [0, 1], but

∫ 1
0 fn(x) dx = 1, all n. Compare with the

preceding exercise.
9. Suppose that h is a continuous real-valued function on IR. Define a function H on the

metric space C([a, b]) by

H ( f ) =
∫ b

a
h( f (x)) dx .

Prove that H is continuous.
10. Let I = [0, 1] and let L( f ) be defined for f in C(I ) by

L( f ) =
∫ 1

2

0
f (x) dx −

∫ 1

1
2

f (x) dx .

This is a continuous function on C(I ). Let A be the bounded closed subset A =
{ f ∈ C(I ) : || f || ≤ 1}. Show that

sup
f ∈A

L( f ) = 1; but L( f ) < 1, all f ∈ A.
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11. Suppose that f is a continuous real-valued function on [a, b], and suppose that for
every nonnegative integer n

∫ b

a
xn f (x)dx = 0.

Prove that f (x) = 0, all x ∈ [a, b].
12. Define d1( f, g) for f and g in C([a, b]) by

d1( f, g) =
∫ b

a

∣∣ f (x) − g(x)
∣∣ dx .

Show that d1 is a metric on C([a, b]), but that C([a, b]) is not complete with respect
to d1.
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Some Special Functions

So far we have dealt with few particular functions, apart from polynomials and
the exponential functions. Here the basic trigonometric functions make their ap-
pearance, in a way that is particularly efficient for establishing their properties
rigorously (but manages to hide the geometry until late in the game). One applica-
tion is the Fundamental Theorem of Algebra; a second is Euler’s product formula,
which gives an evaluation of another of the series from Chapter 1.

9A. The Complex Exponential Function and Related Functions

We return to the function E(z) = ∑∞
0 zn/n! of Section 5C. Based on the justifica-

tion given there, we define ez = E(z). Now

ex+iy = E(x + iy) = E(x) · E(iy) = ex eiy,

so to understand the complex exponential function we need to understand the real
exponential function ex and the function eiy . We know that ex is a strictly increasing
function from IR to (0, +∞) that is its own derivative, so in this section we examine
eix , x ∈ IR. The power series is absolutely convergent for all x . We may group the
real and imaginary parts to find that

eix =
∞∑

n=0

i nxn

n!
= 1 + i x − x2

2
− i x3

6
+ x4

24
+ i x5

120
− x6

720
+ i x7

5040
+ · · ·

= C(x) + i S(x),

where C and S are the functions from IR into IR defined by the power series

C(x) =
∞∑
0

(−1)nx2n

(2n)!
= 1 − x2

2
+ x4

24
− x6

720
+ · · · ; (1)

S(x) =
∞∑
0

(−1)nx2n+1

(2n + 1)!
= x − x3

6
+ x5

120
− x7

5040
+ · · · . (2)

119
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We will not assume that these functions are familiar in any way. Instead, we derive
their properties from first principles. Notice that the complex conjugate of eix is
e−i x for real x . It follows that we can also write the real and imaginary parts in
terms of the exponential function itself:

C(x) = 1
2 (eix + e−i x ); S(x) = 1

2i (eix − e−i x ). (3)

Proposition 9.1. The functions C and S are differentiable and have the properties

C ′(x) = −S(x), S′(x) = C(x), all x ∈ IR; C(0) = 1, S(0) = 0. (4)

C(x)2 + S(x)2 = 1 all x ∈ IR. (5)

Proof: The identities (4) come from term-by-term differentiation of the power
series (1) and (2), and from evaluation at x = 0.

One can deduce (5) in several ways; here are two. First, since eix = C(x) + i S(x),
we have

C(x)2 + S(x)2 = |eix |2 = eix e−i x = eix−i x = e0 = 1.

Second, we derive (5) from (4). Set g(x) = C(x)2 + S(x)2. Then

g′ = 2C C ′ + 2S S′ = −2C S + 2S C = 0, g(0) = 1 + 0 = 1.

Therefore g is constant and g(x) = 1, all x . �

It is not surprising that one can deduce (5) directly from (4). In fact, the next
result shows that the properties (4) completely determine the pair of functions C
and S.

Proposition 9.2: Uniqueness of C and S. If C1 and S1 are two real-valued
differentiable functions with the properties C ′

1 = −S1, S′
1 = C1, C1(0) = 1, and

S1(0) = 0, then C1 = C and S1 = S.

Proof: Let h be the function h = (C − C1)2 + (S − S1)2. Then h(0) = (1 −
1)2 + 0 = 0, so it is enough to show that h is constant. But

h′ = 2(C − C1)(−S + S1) + 2(S − S1)(C − C1) = 0. �

Lemma 9.3. There is a positive number x0 such that

C(x) > 0, 0 ≤ x < x0; C(x0) = 0;
(6)

S(x) > 0, 0 < x ≤ x0; S(x0) = 1.
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Proof: The series that defines the function C is an alternating series so long as
x is in the interval [0, 1], so on this interval C(x) > 1 − x2/2 ≥ 1/2. Suppose now
that C is nonnegative on the interval [1, a], where a > 1. Since S′ = C , it follows
that S is nondecreasing on this interval. The series that defines S(1) is an alternat-
ing series, so S(1) > 1 − 1/6 = 5/6. Therefore C ′(x) = −S(x) ≤ −5/6 on [1, a]
and so

0 ≤ C(a) = C(1) +
∫ a

1
C ′(x) dx < 1 − 5(a − 1)/6,

which implies a < 11/5. Therefore C becomes negative somewhere on the interval
[1, 11/5]. By continuity and the Intermediate Value Theorem, there is a smallest
number x0 in this interval at which C vanishes. Thus C = S′ is positive on [0, x0),
and it follows that S is strictly increasing on this interval and hence positive on
(0, x0]. Since C2 + S2 = 1 and C(x0) = 0, it follows that S(x0) = 1. �

We now define the number π to be 2x0; thus, π/2 is the smallest positive number
at which the function C vanishes. We shall eventually relate π to the circle. (The
proof of Lemma 9.3 shows that for π as just defined, 2 < π < 22/5.)

Proposition 9.4. The functions S and C have the properties, for all real x,

C
(
x + 1

2π
) = −S(x), S

(
x + 1

2π
) = C(x); (7)

C(x + π ) = −C(x), S(x + π ) = −S(x); (8)

C(x + 2π ) = C(x), S(x + 2π ) = S(x). (9)

Proof: Set C1(x) = S(x + 1
2π ) and S2(x) = −C(x + 1

2π ). These functions have
the properties (4), so they coincide with S and C . This proves (7). The remaining
identities are consequences of (7). For example,

C(x + π ) = C
((

x + 1
2π

) + 1
2π

) = −S
(
x + 1

2π
) = −C(x). �

We can now demonstrate the geometric significance of these functions.

Theorem 9.5. The function F : [0, 2π ] → IR2, defined by F(x) = (C(x), S(x)),
takes this interval onto the circle with center (0, 0) and radius 1. As x increases,
F(x) moves in the direction of increasing argument and the length of the arc of the
circle from F(0) to F(x) is x.



P1: IwX

0521840724c09 CY492/Beals 0 521 84072 4 June 16, 2000 15:27 Char Count= 0

122 Some Special Functions

In view of this result we set

cos x = C(x), sin x = S(x) (10)

and note that these quantities have their usual geometric significance. It follows that
one can link these trigonometric functions to the complex exponential function:

eix = cos x + i sin x ; cos x = eix + e−i x

2
; sin x = eix − e−i x

2i
. (11)

One consequence of this linkage is to relate the addition formula for the exponential
to the addition formulas for sine and cosine:

cos (x + y) + i sin(x + y) = ei(x+y) = eix eiy

= (cos x + i sin x)(cos y + i sin y)
= (cos x cos y − sin x sin y) + i(cos x sin y + sin x cos y).

Equate the real and imaginary parts on left and right to obtain

cos(x + y) = cos x cos y − sin x sin y;

sin(x + y) = cos x sin y + sin x cos y. (12)

Proof of Theorem 9.5: Since C2 + S2 = 1, the function F maps into the unit
circle. The Intermediate Value Theorem and Proposition 9.4 imply that this map
hits every point and proceeds in the counter-clockwise direction. For example, if
a2 + b2 = 1 and a, b > 0, then there is a unique x ∈ (0, 1

2π ) such that C(x) = a
and then necessarily S(x) = b.

To prove the statement about arc length, we must first give a reasonable definition
of arc length. Given x ∈ [0, 2π ] and n ∈ IN, set

xkn = k

n
x, k = 0, 1, 2, . . . , n.

Thus xkn − xk−1,n = x/n. By continuity, as n increases, the adjacent points of
{F(xkn) : 0 ≤ k ≤ n} become close on the circular arc joining F(0) to F(x). Thus
it is reasonable to take the length of the arc to be

lim
n→∞

n∑
k=1

∣∣F(xkn) − F(xk−1,n)
∣∣, (13)

provided this limit exists, where | | denotes the euclidean norm. Thus∣∣F(t) − F(s)
∣∣2 = [

C(t) − C(s)
]2 + [

S(t) − S(s)
]2

.

By the Mean Value Theorem there are points t ′, t ′′ between s and t such that∣∣F(t) − F(s)
∣∣2 = [

C ′(t ′)(t − s)
]2 + [

S′(t ′′)2(t − s)
]2

= [S(t ′)2 + C(t ′′)2] (t − s)2.
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Applying the Mean Value Theorem once again,∣∣C(t ′′)2 − C(t ′)2
∣∣ ≤ 2 |t ′′ − t ′| ≤ 2 |t − s|.

Since S(t ′)2 + C(t ′)2 = 1, we find that∣∣ ∣∣F(t) − F(s)
∣∣2 − (t − s)2

∣∣ ≤ 2|t − s|3,
so ∣∣ ∣∣F(t) − F(s)

∣∣ − |t − s| ∣∣ ≤ 2|t − s|3∣∣F(t) − F(s)
∣∣ + |t − s| ≤ 2(t − s)2.

It follows from the preceding that∣∣∣∣∣
n∑

k=1

∣∣F(xkn) − F(xk−1,n)
∣∣ − x

∣∣∣∣∣ ≤ 2x2

n
,

and so the limit (13) is x . �

Exercises

1. Show that ez1 = ez2 if and only if z1 − z2 = 2nπ i for some integer n.
2. Suppose that w is a nonzero complex number.

(a) Find all complex z such that ez = w .
(b) Writing z = x + iy, show that ex and y are polar coordinates of the point

(Re w, Im w) ∈ IR2.
3. Show that, for any complex w �= 0 and any positive integer n, the equation zn = w has

exactly n distinct complex solutions z, and find them explicitly.
4. The hyperbolic functions hyperbolic sine (“sinh”) and hyperbolic cosine (“cosh”) are

defined by

cosh x = 1
2 (ex + e−x ), sinh x = 1

2 (ex − e−x ).

(a) Prove that cosh2 x − sinh2 x ≡ 1.
(b) Prove that cosh(x + y) = cosh x cosh y + sinh x sinh y.
(c) Prove that sinh(x + y) = sinh x cosh y + cosh x sinh y.

5. Extend (11) to arbitrary complex z:

cos z = 1
2 (eiz + e−i z), sin z = 1

2i (eiz − e−i z).

(a) Determine the power series expansions of these functions.
(b) Prove that eiz = cos z + i sin z for all z ∈ IC.
(c) Prove that the addition formulas (12) extend to all complex values of the arguments.
(d) Prove that (cos z)2 + (sin z)2 = 1, all z ∈ IC.
(e) Give a second proof of (d).
(f) Show that cos(i x) = cosh x and sin i x = i sinh x , x ∈ IR.
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6. For what real (or complex) values of x does the series
∑∞

1 2n sin(3−n x) converge?
7. True or false? For each w ∈ IC there is z ∈ IC such that cos z = w . Find all solutions,

when there are any.
8. Prove:

sin
(

1
2 x

)
[1 + 2 cos x + 2 cos 2x + 2 cos 3x + · · · + 2 cos nx] = sin

(
nx + 1

2 x
)
.

9B∗. The Fundamental Theorem of Algebra

Starting from IQ, one has to enlarge the field of numbers in order to have solutions
even to simple equations like x2 − 2 = 0. Even from IR one has to go to IC to have
a solution to x2 + 1 = 0. How does one know when to stop?

Theorem 9.6: Fundamental Theorem of Algebra. A polynomial

zn + an−1zn + · · · + a1z + a0, a0, a1, . . . , an−1 ∈ IC (14)

of degree n ≥ 1 has n complex roots r1, . . . , rn (counting multiplicity); it can be
factored as

(z − r1)(z − r2) . . . (z − rn). (15)

Proof: The key step is to show that the polynomial p(z) defined by (14) has at
least one root r . To see that this is the case, note that

|z| ≥ R = 1 + 2|a0| + |a1| + · · · + |an−1| ⇒
|p(z)| ≥ |zn| − |an−1zn−1 + · · · + a0|

(16)
≥ |zn| − [|an−1| + · · · + |a0|] |z|n−1

≥ |z| − [|an−1| + · · · + |a0|] ≥ |a0| = |p(0)|.

The continuous function |p|, restricted to the closed disk {z : |z| ≤ R}, attains a
minimum at a point z = r and (16) implies that the minimum is a global minimum:
|p(r )| ≤ |p(z)|, all z ∈ IC. We shall see that this is only possible if p(r ) = 0. In fact,
suppose that s is such that p(s) �= 0. The polynomial p may be written in the form

p(z) = b0 + bk(z − s)k + bk+1(z − s)k+1 + · · · + (z − s)n, bk �= 0,

where b0 = p(s) �= 0. Suppose that c is chosen with |c| = 1 and let z − r = εc,
where 0 < ε < 1. Then

p(s + εc) = b0 + (bkck)εk + h(ε, c)εk+1, |h(ε, c)| ≤ K .
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We can choose c so that ck = −ρb0/bk , where ρ > 0 (see Exercise 3 of Section 9A).
Then

p(r + εc) = b0(1 − εkρ) + h(ε, c)εk+1, (17)

and for small positive ε the expression on the right side of (17) will have modulus
smaller than |b0|: It will be closer to the origin by a small multiple of εk . This proves
that at a point r where p(z) has minimum modulus, necessarily p(r ) = 0. Thus p
has at least one root.

Given a root r1 for p, let an = 1 and note that

p(z) = p(z) − p(r1) =
n∑

k=1

ak
(
zk − rk

1

) = (z − r1)p1(z),

where p1 is the polynomial of degree n − 1:

p1(z) =
n∑

k=1

ak
[
zk−1 + zk−2r1 + · · · + rk−1

1

]
.

The proof is completed by finding a root r2 for p1 and continuing. �

9C∗. Infinite Products and Euler’s Formula for Sine

Our aim in this section is to prove Euler’s formula for the sine function:

sin x = x
∞∏

n=1

(
1 − x2

π2n2

)
(18)

= x

(
1 − x2

π2

) (
1 − x2

4π2

) (
1 − x2

9π2

)
. . . .

There is at least some plausibility to (18) because it appears that the right-hand side
vanishes if and only if x is an integer multiple of π . If we accept that (18) has a
precise meaning and that the product can be expanded out, then

x −
( ∞∑

n=1

1

π2n2

)
x3 + · · · = sin x = x − x3

6
+ · · · . (19)

Comparing the coefficients of x3,

∞∑
n=1

1

n2
= π2

6
. (20)

(Several confirmations of this result are given in the exercises for Chapter 13.)
There are three main steps to justifying (18). One is to give a meaning to an infinite
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product. Consider a formal product

∞∏
n=1

bn = b1b2b3 · · · · . (21)

In analogy with infinite series, one might take this to mean the limit of the partial
products

pn =
n∏

k=1

bk = b1b2 · · · . . . · bn. (22)

Notice, however, that if some bm = 0, then pn = 0 for all n ≥ m, no matter what
the other factors are. Moreover, if |bn| ≤ r < 1 for all large enough n, then the pn’s
converge to 0, but this is not a particularly interesting result. For these reasons one
defines a formal product to be convergent if and only if for each ε > 0 there is an
index N such that

|bmbm+1 · . . . · bn − 1| < ε if n ≥ m ≥ N . (23)

This condition implies that the partial products (22) converge and that the limit is
zero if and only if some factor bm = 0. We also write the limit as

∏∞
1 bn . In partic-

ular, (23) implies that limn→∞ bn = 1. For this reason the factors bn are commonly
written in the form bn = 1 + an . Note that

|(1 + am)(1 + am+1) · . . . · (1 + an) − 1|
≤ (1 + |am |)(1 + |am |) · . . . · (1 + |an|) − 1. (24)

The product
∏∞

1 (1 + an) is said to be absolutely convergent if
∏∞

1 (1 + |an|) is
convergent. It follows from (24) that absolute convergence implies convergence.
Now the product

∏n
m(1 + |am |) is close to 1 if and only if its logarithm is close to

zero. Since

a

1 + a
≤

∫ a

0

dt

1 + t
≤ a, if a ≥ 0,

it follows that

a

2
≤ log(1 + a) ≤ a if 0 ≤ a ≤ 1 (25)

Taking all this into consideration, we obtain the following criterion.

Proposition 9.7. The product
∏∞

1 (1 + an) is absolutely convergent if and only if
the series

∑∞
1 an is absolutely convergent.
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In particular, the infinite product in (18) is absolutely convergent for every real x
(in fact, for every complex x as well). Moreover, one can use the estimates above
to justify the expansion of this product as a power series in x . It remains to prove
that the value of the product is sin x . The next step is to represent the complex
exponential function as a limit of products.

Proposition 9.8. For any complex z,

lim
n→∞

(
1 + z

n

)n
= ez. (26)

Proof: For real z this was done in Section 3G. In general,

ez −
(

1 + z

n

)n
=

∞∑
k=0

zk

k!
−

n∑
k=0

(
n

k

)
zk

nk
=

n∑
k=0

cnk
zk

k!
+

∞∑
k=n+1

zk

k!
, (27)

where

0 ≤ cnk = 1 − n!

(n − k)! nk
= 1 −

k−1∏
j=0

n − j

n
≤ 1.

Note that for each fixed k, limn→∞ cnk = 0. Given z and given ε > 0, we may
choose m so large that

∑∞
m+1 |z|k/k! < ε. Then as n → ∞ the sum of the first m

terms in the extreme right-hand side of (27) converges to 0 while the sum of the
remaining terms has modulus < ε for every n. Therefore (27) has limit 0. �

Because of (26),

sin x = eix − e−i x

2i
= lim

n→∞ Pn(x),

where Pn is the polynomial

Pn(x) = 1

2i

(
1 + i x

n

)n

− 1

2i

(
1 − i x

n

)n

. (28)

(See Figure 7.) This polynomial vanishes for x = 0 and also when [(1 − i x/n)/
(1 + i x/n)]n = 1, that is, when

x = i n
w − 1

w + 1
, wn = 1. (29)

Suppose that n = 2m is even. Then Pn has degree n − 1 = 2m − 1 and
the roots of 1 that give the 2m − 2 nonzero roots of Pn are w = eikπ/m ,
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Figure 7. P11 (x) and sin x .

k = ±1, . . . k = ±(m − 1). The associated roots x are

xk,n = i n
e−ikπ/m − 1

e−ikπ/m + 1
= i n

e−ikπ/2m − eikπ/2m

e−ikπ/2m + eikπ/2m

= n tan(kπ/n) k = ±1, ±2, . . . ± (m − 1).

Note that Pn(x)/x = 1 at x = 0. Consequently, the polynomial Pn = P2m can be
factored as

P2m(x) = x
m−1∏
k=1

(
1 − x2

[2m tan(kπ/2m)]2

)
. (30)

Thus we have proved that

sin x = lim
m→∞ x

m−1∏
k=1

(
1 − x2

[2m tan(kπ/2m)]2

)
. (31)

Note that for each fixed k, limn→∞ n tan(kπ/n) = kπ , so each factor in (31) con-
verges to a factor of the product (18). We leave it to the reader to complete the proof
by getting an appropriate estimate for the tail of the product expansion.
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Exercises

1. Carry the expansion (19) out further and show that
∑∞

1 1/n4 = π4/90.
2. Fill in the details of the proof of the Euler product formula: Prove that, for any fixed x

and any ε > 0, there is an N such that∣∣∣∣∣
m−1∏

N

(
1 − x2[

2m tan(kπ/2m)
]2

)
− 1

∣∣∣∣∣ < ε

for every m > N . Conclude that, for large m, P2m(x) is close both to sin x and to the
Euler product.

3. The Gamma function is the function defined for s > 0 by the integral

�(s) =
∫ ∞

0
e−x xs dx

x
.

It is useful in many computations.
(a) Show that �(s + 1) = s �(s).
(b) Show that for positive integers n, �(n) = (n − 1) !.
(c) Prove the identity

s−a = 1

�(a)

∫ ∞

0
e−sx xa dx

x
, s > 0, a > 0.

4. Prove that � is strictly decreasing on the interval (0, 1) and strictly increasing on the
interval (1, ∞).

5. (a) Show that

�
(

1
2

) =
∫ ∞

−∞
e−x2

dx .

(b) Evaluate �(1/2).
6. The Beta function is the function defined for a > 0, b > 0 by

β(a, b) =
∫ 1

0
ta−1 (1 − t)b−1 dt.

It comes up in various calculations.
(a) Show that ∫ x

0
ya−1(x − y)b−1 dy = β(a, b) xa+b−1.

(b) Use (a) and a change of variables in the double integral to prove that

β(a, b) �(a + b) = �(a) �(b).

7. Evaluate the following integral in terms of Gamma functions:∫ ∞

0
sa−1 (1 + s)−1−b ds, a > 0, b > 0.
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8. The hypergeometric function is the function F defined for complex a, b, c, and z by
the series

F(a, b, c; x) =
∞∑

n=0

(a)n (b)n

(c)n n !
zn,

where

(p)0 = 1, (p)n = p(p + 1)(p + 2) · · · (p + n − 1), n = 1, 2, 3, . . . ,

and it is assumed that c is not a negative integer.
(a) Prove that the radius of convergence of this series is at least 1.
(b) Under what conditions on a, b, c is the radius of convergence larger than 1?
(c) Verify that

(a)n = �(a + n)

�(a)
.

9. Prove that for a > 0 and |z| < 1, f (a, b, b, z) = (1 − z)−a .
10. Use Exercises 6(b), 8(c), and 9 to prove the identity

F(a, b, c; z) = 1

β(b, c − b)

∫ 1

0
ta−1(1 − t)c−b(1 − t z)−a dt

for a > 0, c > b > 0, |z| < 1.
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Lebesgue Measure on the Line

The notions of length, area, and volume are more subtle than one might think, if
one tries to extend them from simple sets to more general sets in the line, plane,
or 3-space. For various reasons it is important to find such extensions, however,
especially in connection with integration. In this chapter we introduce the basic
construction and properties for subsets of the line.

10A. Introduction

The formulation of the integral in Chapter 8, due to Riemann, Darboux, and others,
is adequate for many purposes. It assigns a number – the (definite) integral –
to each bounded, piecewise continuous function on a bounded real interval. The
procedure can be rephrased in the following way: Approximate the given function
from above and below by step functions, that is, functions that are constant on each of
finitely many subintervals whose union is the original interval. These approximating
functions have integrals that should approach the desired value.

We have already introduced the standard example for which this procedure breaks
down, the function

f : [0, 1] → IR, f (x) =
{ 1 if x is rational,

0 if x is irrational.

Approximation from above gives numbers ≥ 1, and from below it gives num-
bers ≤ 0.

This example may seem artificial, but consider it in the following way. If the
function g takes only the values 0 and 1, then its integral should be the total length
of the set A = {x : g(x) = 1}, since it represents the area of a figure of height 1
and base A. Therefore, trying to integrate this function f amounts to trying to
determine the total length of the set consisting of all rationals in the interval [0, 1],

131
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a geometric question that is not a priori meaningless. If there is a reasonable notion
of total length, we can also ask whether the sum of the total length of IQ ∩ [0, 1]
plus the total length of IQc ∩ [0, 1] is 1, the length of [0, 1]; as usual, IQ denotes the
rationals and IQc denotes the complementary set (in IR), that is, the irrationals.

It is important to be aware that reasonable-sounding geometric questions of this
kind do not necessarily have answers. For example, consider the question of volume
in 3-space IR3. A precise formulation of the question is, can we assign to each subset
A of IR3 a number, denoted vol (A), that has the properties one would expect of
volume:

(i) For each A, 0 ≤ vol (A) ≤ ∞.
(ii) If A and B are disjoint, then vol (A ∪ B) = vol (A) + vol (B).

(iii) If A and B are congruent, then vol (A) = vol (B).
(iv) If A is an open ball {x ∈ IR3 : ||x − a|| < r}, where a is in IR3 and r > 0, then 0 <

vol (A) < ∞.

The answer is no, it is not possible to accomplish this. The impossibility is shown
by the following paradoxical result. We denote the congruence of sets A and B by
A ∼= B, meaning that there is a combination of translations and rotations of IR3 that
takes A onto B.

Theorem of Banach and Tarski. Let A, B and C be pairwise disjoint closed
balls of radius 1 in IR3. There are pairwise disjoint sets A1, A2, . . . , A7, B1, B2, B3,

C1, C2, C3, C4 such that

A = A1 ∪ A2 ∪ · · · ∪ A7, B = B1 ∪ B2 ∪ B3, C = C1 ∪ C2 ∪ C3 ∪ C4;

A1
∼= B1, A2

∼= B2, A3
∼= B3, A4

∼= C1, A5
∼= C2, A6

∼= C3, A7
∼= C4.

In other words, we can disassemble one ball of radius 1 into seven pieces, move
the pieces around by rotations and translations, and assemble them into two balls of
radius 1. A proof is sketched in the Appendix. (In fact, it is possible to accomplish the
same result with as few as five pieces, but no fewer. For more detail, see S. Wagon,
The Banach-Tarski Paradox, Encyclopedia of Mathematics, vol. 24, Cambridge
University Press, 1985.)

Exercise

1. Show that the Banach-Tarski theorem implies the impossibility of assigning volume to
arbitrary subsets of IR3 in such a way that properties (i)–(iv) are valid.
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10B. Outer Measure

If I is an interval with endpoints a, b, a ≤ b, the length of I is b − a. This also
makes sense for the empty set ∅ = (a, a) and for infinite intervals:

|I | = b − a if I = (a, b), [a, b), (a, b], or [a, b].

We use the conventions ∞ − a = ∞, and so on, from Section 3F.
Suppose that A is a subset of IR that is covered by intervals I1, I2, . . . , IN , that is,

A ⊆ ∪N
n=1 In . Then the “total length” of A should be at most

∑N
n=1 |In|. One might

even take the greatest lower bound of all such numbers as the definition of the total
length of A. However, this procedure has undesirable features. The set of rationals
in [0, 1] and the set of irrationals in [0, 1] would each be assigned total length 1, as
would the interval itself. Lebesgue took the important step of allowing countable
covers.

Definition. If A is a subset of IR, the outer measure of A, denoted m∗(A), is the
infimum of all the numbers

∞∑
k=1

|Ik |,

which can be obtained by choosing a sequence of open intervals {Ik} that covers A:

A ⊆
∞⋃

k=1

Ik .

Here some of the intervals Ik (or all of them, if A = ∅) may be empty. In particular,
m∗(∅) = 0.

The following settles the question of the total length of the set of rationals in the
unit interval or of all of IQ.

Example 1. Suppose that A has at most countably many points. Then m∗(A) = 0.
In fact, let (xk)∞k=1 be an enumeration of the points of A. Given ε > 0, let Ik be an
open interval of length ε/2k that contains the point xk . The collection {Ik} covers
A, and

∑ |Ik | = ∑
ε/2k = ε, so m∗(A) ≤ ε.

In view of this example, it is fair to ask whether every set can be covered in some
very clever way so as to show that its outer measure is zero. This is not the case.

Example 2. If A is an interval, then m∗(A) = |A|. To see this, suppose that A
is a bounded, closed interval; the remaining cases can be deduced from this one
and are left as an exercise. Suppose that A = [a, b]. Given ε > 0, we can choose
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I1 = (a − ε/2, b + ε/2) and Ik = ∅ for k > 1 to see that m∗(A) ≤ b − a + ε. Thus
m∗(A) ≤ b − a = |A|.

The converse is trickier. Suppose that (Ik)∞k=1 is a cover of A by open inter-
vals. Since A is compact, there is a finite subcover. Renumbering, assume that I1,
I2, . . . , IN cover A. Renumbering again and again as we go along, we may assume
that the left endpoint a is in I1 and either the right endpoint b is in I1 or else the
right endpoint of I1 is less than b and belongs to I2. Continuing to renumber, we
eventually have points

a = a1 < a2 < · · · < an+1 = b, (a j , a j+1) ⊆ I j .

Then

|A| = b − a = an+1 − a1 =
n∑

j=1

(a j+1 − a j ) ≤
n∑

j=1

|I j | ≤
∞∑
j=1

|I j |,

so m∗(A) ≥ |A|.

Example 3. The standard Cantor set C of Section 6E has m∗(C) = 0. In fact, C =⋂∞
n=0 Cn , where C0 = [0, 1], C1 = [0, 1

3 ] ∪ [ 2
3 , 1], and in general Cn+1 consists of

the intervals of Cn with their open middle thirds removed. Thus Cn is the union
of 2n closed intervals of total length ( 2

3 )n . Since C ⊂ Cn , it follows that m∗(C) ≤
( 2

3 )n → 0.

Example 4. Suppose that A is a subset of IR and h is real. The translate of A by h
is the set

A + h = {x + h : x ∈ A}.
If I is an interval, then so is I + h, and the length is unchanged. If the intervals
cover A, then their translates by h cover A + h. Therefore,

m∗(A + h) = m∗(A).

Here is a summary of the basic properties of outer measure. Some are obvious
from the definition and some have been established in the examples, so only the
third property needs to be discussed.

Properties of outer measure

0 ≤ m∗(A) ≤ +∞.(i)

A ⊂ B implies m∗(A) ≤ m∗(B).(ii)

A ⊂
∞⋃

n=1

An implies m∗(A) ≤
∞∑

n=1

m∗(An).(iii)
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m∗(A) = |A| if A is an interval.(iv)

m∗(A + h) = m∗(A).(v)

To establish property (iii), assume that ε > 0 is given. Choose a cover (In,k)∞k=1

of An such that

∞∑
k=1

|In,k | ≤ m∗(An) + ε

2n
.

Then (In,k)∞n,k=1 is a countable cover of A of total length ≤ [
∑

m∗(An)] + ε.
There is one key property that one would like to have that is not on this list, and

indeed is not necessarily true. Suppose that A and B are disjoint subsets of IR. We
would like to have

m∗(A ∪ B) = m∗(A) + m∗(B),

but this is not always the case. Rather than try to remedy this by modifying m∗, we
restrict the class of subsets that we work with.

Exercises

1. Show that using closed intervals rather than open intervals in the definition of outer
measure would not change the evaluation m∗(A).

2. Using the result for closed, bounded intervals, prove that for every interval I, m∗(I ) = |I |.
3. Show that for any two sets A and B with union [0, 1], the outer measures satisfy m∗(A) ≥

1 − m∗(B).
4. In Example 2 we saw that if I1, . . . , In are open intervals whose union contains a given

bounded closed interval A, then |A| ≤ ∑n
k=0 |Ik |. Give another proof of this fact, by

induction on n.
5. Suppose that I1 and I2 are disjoint open intervals, and suppose that A1 is a subset of

I1 and A2 is a subset of I2. Prove, directly from the definition, that m∗(A1 ∪ A2) =
m∗(A1) + m∗(A2).

6. Suppose that A is an open subset of IR. Prove that A is a countable union of disjoint open
intervals (some or all of which may be empty).

7. Prove that if the open set A is the union of a sequence of disjoint open intervals I1,
I2, . . . , then m∗(A) = ∑∞

n=1 |In|.
8. Prove that for any subset B of IR, m∗(B) = inf{m∗(A) : A open, A ⊃ B}.
9. The Cantor set, Example 3 of Section 10B, is a closed subset of [0, 1] that is nowhere

dense, that is, it contains no nonempty open intervals. For the standard Cantor set,
m∗(C) = 0. Show that there is a fat Cantor set, a closed nowhere dense subset A ⊂ IR of
the interval [0, 1], such that m∗(A) > 0. In fact, show that for each ε > 0 there is such a
set with outer measure m∗(A) > 1 − ε.
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10. Let A = {x ∈ [0, 1] : no fives occur in the decimal expansion of x}. Find m∗(A).
11. Suppose that A is a bounded set and m∗(A ∩ I ) ≤ 1

2 m∗(I ) for every interval I . Prove
that m∗(A) = 0. What if A has the indicated property but is not bounded?

10C. Measurable Sets

Suppose that A and E are two subsets of IR. Let Ac denote the complement in IR.
Then E is the union of the two disjoint pieces E ∩ A and E ∩ Ac, but its outer
measure is not necessarily the sum of the outer measure of the pieces. It turns out
to be useful to select precisely those subsets A that do split every set E additively.

Definition. A subset A of IR is measurable if, for every subset E of IR,

m∗(E) = m∗(E ∩ A) + m∗(E ∩ Ac). (1)

Notice that, from property (iii) above, we always have

m∗(E) ≤ m∗(E ∩ A) + m∗(E ∩ Ac).

Therefore, to prove that a given set A is measurable, it is sufficient to prove

m∗(E ∩ A) + m∗(E ∩ Ac) ≤ m∗(E), for all E ⊂ IR. (2)

Examples. The empty set and IR are measurable. (Why?) If A is measurable, so is
its complement. (Why?) If m∗(A) = 0, then A is measurable. (Why?)

We denote the collection of all measurable subsets of IR by M. In this section we
prove one concrete and several abstract results on measurability of sets, beginning
with the concrete result.

Proposition 10.1. Every interval is measurable.

Proof: Suppose that A is an interval and E is any subset of IR. Suppose that (Ik)∞1
is a cover of E by open intervals and suppose that ε > 0 is given. Now A ∩ Ik is
an interval and Ac ∩ Ik is either an interval or a union of two intervals, so it is easy
to see that there are open intervals I ′

k , I ′′
k , and I ′′′

k such that

A ∩ Ik ⊂ I ′
k, Ac ∩ Ik ⊂ I ′′

k ∪ I ′′′
k , |I ′

k | + |I ′′
k | + |I ′′′

k | ≤ |Ik | + ε/2k .

Therefore A ∩ E ⊂ ⋃
k I ′

k , Ac ∩ E ⊂ ⋃
k(I ′′

k ∪ I ′′′
k ), and

∞∑
k=1

(
|Ik | + ε

2k

)
≥

∞∑
k=0

|I ′
k | +

∞∑
k=1

(|I ′′
k | + |I ′′′

k |) ≥ m∗(A ∩ E) + m∗(Ac ∩ E).

Since this is true for every E and every ε > 0, we obtain (2). �
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The abstract results mentioned above are the following five propositions. The
first was already noted.

Proposition 10.2. If A is measurable, then so is Ac.

Proposition 10.3. If A and B are measurable, then so are A ∪ B and A ∩ B.

Proof: Suppose that E is a subset of IR. Because A is measurable,

m∗(E ∩ (A ∪ B)) = m∗((E ∩ (A ∪ B)) ∩ A)) + m∗((E ∩ (A ∩ B) ∩ Ac))

= m∗(E ∩ A) + m∗(E ∩ B ∩ Ac). (3)

On the other hand,

m∗(E) = m∗(E ∩ A) + m∗(E ∩ Ac)

= m∗(E ∩ A) + [
m∗(E ∩ Ac ∩ B) + m∗(E ∩ Ac ∩ Bc)

]
= [

m∗(E ∩ A) + m∗(E ∩ B ∩ Ac)
] + m∗(E ∩ (A ∪ B)c)

= m∗(E ∩ (A ∪ B)) + m∗(E ∩ (A ∪ B)c).

(At the next to last step we used Ac ∩ Bc = (A ∪ B)c and at the last step we used
(3).) This shows that A ∪ B is measurable. Using Proposition 2 we also have Ac

and Bc measurable, so both Ac ∪ Bc and A ∩ B = (Ac ∪ Bc)c are measurable. �

Proposition 10.4. Suppose that A1, A2, . . . , AN are pairwise disjoint measurable
sets and suppose that E is a subset of R. Then

m∗
(

E ∩
N⋃

k=1

Ak

)
=

N∑
k=1

m∗(E ∩ Ak).

Proof: Let Bn = ⋃n
k=1 Ak for 1 ≤ n ≤ N . By induction, each Bn is measurable.

The desired equality is obtained by induction, using Proposition 3. In fact, if

m∗(E ∩ Bn) =
n∑

k=1

m∗(E ∩ Ak),

then

m∗(E ∩ Bn+1) = m∗(E ∩ Bn+1 ∩ Ac
n+1

) + m∗(E ∩ Bn+1 ∩ An+1)

= m∗(E ∩ Bn) + m∗(E ∩ An+1) =
n+1∑
k=1

m∗(E ∩ Ak). �
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Proposition 10.5. Suppose that (An)∞n=1 is a sequence of pairwise disjoint mea-
surable sets. Then the union

⋃∞
n=1 An is measurable and

m∗
( ∞⋃

n=1

An

)
=

∞∑
n=1

m∗(An). (4)

Proof: Let Bn = ⋃n
k=1 Ak and let B = ⋃∞

k=1 Ak . For any E ⊂ IR, since BN is
measurable, we can use Proposition 10.4 to obtain

m∗(E) = m∗(E ∩ BN ) + m∗(E ∩ Bc
N

) =
[

N∑
n=1

m∗(E ∩ An)

]
+ m∗(E ∩ Bc

N

)
.

Now Bc
N ⊃ Bc, so we may take the limit as N → ∞ to get

m∗(E) ≥
[ ∞∑

n=1

m∗(E ∩ An)

]
+ m∗(E ∩ Bc) ≥ m∗(E ∩ B) + m∗(E ∩ Bc),

since E ∩ B = ⋃∞
n=1(E ∩ An). Therefore B is measurable. Moreover,

m∗(E) = m∗(E ∩ B) + m∗(E ∩ Bc) ≤
[ ∞∑

n=1

m∗(E ∩ An)

]
+ m∗(E ∩ Bc),

so we have equality:

m∗(E) =
[ ∞∑

n=1

m∗(E ∩ An)

]
+ m∗(E ∩ Bc). (5)

Taking E = B in (5), we obtain (4). �

Proposition 10.6. Suppose that (Bn)∞n=1 is any sequence of measurable sets. Then
the intersection

⋂∞
n=1 Bn and the union

⋃∞
n=1 Bn are also measurable.

Proof: Let A1 = B1, A2 = B2 ∩ Bc
1 , . . . , An = Bn ∩ (B1 ∪ B2 ∪ · · · ∪ Bn−1)c,

and so on. Then it is easy to check that the sets An are pairwise disjoint and
n⋃

k=1

Ak =
n⋃

k=1

Bk, all n.

Propositions 10.2 and 10.3 imply that each An is measurable, and Proposition 10.5
gives the measurability of

⋃∞
n=1 An = ⋃∞

n=1 Bn .
For the intersection, we have

∞⋂
n=1

Bn =
( ∞⋃

n=1

Bc
n

)c

.

Thus the intersection is also measurable. �
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Exercises

1. Prove that m∗(A) = 0 implies that A is measurable.
2. Suppose that A is a subset of IR with the property that for every ε > 0 there are measurable

sets B and C such that

B ⊂ A ⊂ C, m(C ∩ Bc) < ε.

Show that A is measurable
3. Select a sequence (εn)∞1 of 0’s and 1’s at random in such a way that each εn has probability

one-half of being 0. Let x = ε1/2 + ε2/4 + ε3/8 + · · · · Show that the probability that
x lies in the subinterval [a, b] ⊂ [0, 1] is b − a.

10D. Fundamental Properties of Measurable Sets

Suppose that A is a measurable set. Then its (Lebesgue) measure is defined to be
its outer measure, denoted by m:

m(A) = m∗(A) if A is measurable.

We have verified the first three of the following properties of measurable sets, and
the remaining properties will be proved in this section.

I. Complements, countable unions, and countable intersections of measurable sets are
measurable.

II. Any interval is measurable, and its measure is its length.
III. Countable additivity: If (An)∞n=1 is a sequence of pairwise disjoint measurable sets,

then

m

( ∞⋃
n=1

An

)
=

∞∑
n=1

m(An).

IV. Continuity: Suppose that {An}∞1 and {Bn}∞1 are sequences of measurable sets such that
A1 ⊃ A2 ⊃ A3 · · · and B1 ⊂ B2 ⊂ B3 . . . , and suppose that m(A1) is finite. Then

m

( ∞⋂
n=1

An

)
= lim

n→∞ m(An), m

( ∞⋃
n=1

Bn

)
= lim

n→∞ m(Bn).

V. Translation invariance: If A is measurable and h is real, then the translate A + h is
measurable and m(A + h) = m(A).

VI. Open subsets and closed subsets of IR are measurable.
VII. Approximation: If A is measurable, then for any ε > 0 there exist a closed set B and

an open set C such that

B ⊂ A ⊂ C, m(C ∩ Bc) < ε.

In particular, m(B) ≥ m(A) − ε and m(C) ≤ m(A) + ε. If m(A) is finite, then B can
be taken to be bounded.
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Proof of continuity: With (Bn)∞n=1 as in the statement, set

C1 = B1, Cn+1 = Bn+1 ∩ Bc
n .

Then the Cn’s are pairwise disjoint and BN = C1 ∪ C2 ∪ · · · ∪ CN . It follows that⋃∞
n=1 Bn = ⋃∞

n=1 Cn and so

m

( ∞⋃
n=1

Bn

)
= m

( ∞⋃
n=1

Cn

)
=

∞∑
n=1

m(Cn) = lim
N→∞

N∑
n=1

m(Cn) = lim
N→∞

m(BN ).

Next, suppose that (An)∞n=1 is a sequence as in the statement. Let A = ⋂∞
n=1 An

and set Bn = A1 ∩ Ac
n . Then B1 ⊂ B2 ⊂ · · · and

⋃∞
n=1 Bn = A1 ∩ Ac. Moreover,

A1 = An ∪ Bn and An ∩ Bn = ∅. Therefore

m(A1) = m(A) + m(A1 ∩ Ac) = m(A) + lim
n→∞ m(Bn).

But also m(A1) = m(An) + m(Bn) and m(An) has a limit since it is a bounded,
nonincreasing sequence. Thus

m(A1) = lim
n→∞ m(An) + lim

n→∞ m(Bn).

Since m(A1) is finite, it follows from these last two equations that lim m(An) =
m(A). �

Proof of translation invariance: Suppose that A is measurable and E is a subset
of IR. Note that

E ∩ (A + h) = [
(E − h) ∩ A

] + h, E ∩ (A + h)c = [
(E − h) ∩ Ac

] + h.

It follows from the measurability of A and the translation invariance of m∗ (see (5))
that m∗(E) = m∗(E ∩ (A + h)) + m∗(E ∩ (A + h)c), as desired. �

Proof that open and close sets are measurable: Since the complement of an
open set is closed, we only need to consider open sets. Given A open and a point
x ∈ A, choose an interval Ix having rational endpoints, such that x ∈ Ix ⊂ A. There
are at most countably many distinct such intervals that arise, so they can be num-
bered as a sequence (In)∞n=1, and A is the union of the sequence of measurable
sets (In)∞n=1. �

Proof of the approximation property: Suppose first that A ⊂ J , where J is
a bounded closed interval. By definition, m(A) = m∗(A), and so there are open
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intervals (In)∞n=1 with A ⊂ ⋃∞
n=1 In = C such that

m(A) ≤ m(C) ≤
∞∑

n=1

|In| < m(A) + ε

2
.

Similarly, there is an open set C ′ ⊃ J ∩ Ac such that m(C ′) < m(J ∩ Ac) + ε/2.
Then B = J ∩ (C ′)c is closed and B ⊂ A, while

m(J ) = m(C ′) + m(B) < m(J ∩ Ac) + m(B) + ε/2.

But also m(J ) = m(J ∩ Ac) + m(A), so m(A) < m(B) + ε/2. Then

m(C ∩ Bc) = m(C ∩ Ac) + m(A ∩ Bc) = m(C) − m(A) + m(A) − m(B) < ε.

Now we drop the assumption that A is bounded. Let An = A ∩ [n, n + 1], n ∈ ZZ.
By what has just been proved, there are closed sets Bn and open sets Cn such that

Bn ⊂ An ⊂ Cn, m
(
Cn ∩ Bc

n

)
<

ε

2|n|+2
.

Then B = ⋃∞
n=−∞ Bn is closed, C = ⋃∞

n=−∞ Cn is open, and these sets have the
desired properties. If m(A) is finite, then the continuity property implies that

lim
N→∞

m

(
B \

N⋃
n=−N

Bn

)
= 0.

Therefore we may replace the countable union B by the bounded set
⋃N

−N Bn if N
is taken to be sufficiently large. �

Exercises

1. Give an example of a sequence (An)∞n=1 with A1 ⊃ A2 ⊃ · · · such that each m(An) is
infinite but

⋂∞
n=1 An = ∅.

2. Given a subset E ⊂ IR, let En = E ∩ [−n, +n] for n ∈ ZZ. Show that m∗(E) =
limn→∞ m∗(En).

3. Suppose that (An)∞1 is a sequence of subsets of IR. Define

lim sup
n→∞

An = {x : x belongs to An for infinitely many values of n}.
lim inf

n→∞ An = {x : x belongs to An for all but finitely many values of n}.
(a) Give an example to show that these sets may be different.
(b) Show that if each An is measurable, then so are lim inf An and lim sup An . In fact,

show that

lim inf
n→∞ An =

∞⋃
n=1

( ∞⋂
m=n

Am

)
,

and find a similar expression for lim sup An .
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4. The symmetric difference of sets A, B is defined to be the set

A�B = (A ∩ Bc) ∪ (B ∩ Ac)

of points belonging to one of the two sets but not both. Show that

d(A, B) = m(A�B)

defines a semi-metric on the family M of all measurable subsets of IR that have finite
measure. (A semi-metric on a set X is a function d defined on pairs of elements of X
such that d(x, y) ≥ 0, d(x, y) = d(y, x), and d(x, z) ≤ d(x, y) + d(y, z).)

5. Show that (M, d) is complete: If (An)∞1 is a Cauchy sequence in M, then there is a set
A ∈ M such that limn→∞ d(An, A) = 0.

10E∗. A Nonmeasurable Set

Is every subset of IR measurable? Here is the standard counterexample. Define an
equivalence relation for real numbers by setting

x ≈ y if x − y is rational.

This allows us to partition IR into disjoint nonempty sets Eα, with

x, y ∈ Eα for some α if and only if x ≈ y.

For any real x , let [x] denote the largest integer ≤ x . Then

x ≈ x − [x] and x − [x] ∈ [0, 1).

We “construct” a set A, using the Axiom of Choice, by choosing one element from
each set Eα ∩ [0, 1). Let (xn)∞n=1 be an enumeration of the rationals in the interval
(−1, 1) and set

An = A + xn.

The sets (An)∞n=1 are pairwise disjoint. In fact, if there were a point x ∈ Am ∩
An , then for some points x ′, x ′′ in A, x = x ′ + xm = x ′′ + xn , so x ′ − x ′′ = xm −
xn ∈ IQ, so x ′ ≈ x ′′, so xm = xn , and so n = m.

There are inclusions

(0, 1) ⊂
∞⋃

n=1

An ⊂ (−1, 2).

In fact, by construction, for each x ∈ (0, 1), there is a unique x ′ ∈ A ⊂ [0, 1) such
that x − x ′ ∈ IQ. Then x − x ′ = xn for some n, and so x ∈ An . The other inclusion
is obvious, since A ⊂ [0, 1) and |xn| < 1, all n.
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The set A is not measurable. In fact, suppose it were. Then the inclusions and
the fact that the An are pairwise disjoint imply

1 = m((0, 1)) ≤ m

( ∞⋃
n=1

An

)
=

∞∑
n=1

m(An) ≤ 3 = m
(
[−1, 2]

)
.

But m(An) = m(A + xn) = m(A) for all n, so the preceding inequality is

1 ≤ m(A) + m(A) + m(A) + · · · ≤ 3.

Neither m(A) = 0 nor m(A) > 0 is possible here, so A cannot be measurable.
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Lebesgue Integration on the Line

We motivated the concept of measure in connection with integration. In this chapter
we take advantage of the properties of measure to define and establish properties
of the corresponding integration concept.

11A. Measurable Functions

If f is a function from IR to IR and A is a subset of IR, recall that the inverse image
f −1(A) is the set defined by

f −1(A) = {x ∈ IR : f (x) ∈ A}.
This mapping from sets to sets preserves complements and countable (indeed arbi-
trary) unions and intersections:

f −1(Ac) = ( f −1(A))c,

f −1

( ∞⋃
n=1

An

)
=

∞⋃
n=1

( f −1 An),

f −1

( ∞⋂
n=1

An

)
=

∞⋂
n=1

( f −1 An).

To motivate what follows, suppose that f is a bounded continuous function de-
fined on the interval I = [0, 1). Consider the problem of trying to integrate f ; in
fact, suppose that we want to compute the integral to a prescribed accuracy, say
within 1/1000. The standard method says: Cut the interval I into disjoint subinter-
vals of length ≤ δ and compute a corresponding Riemann sum or Darboux upper
and lower sums. Then, for δ sufficiently small, the accuracy will be within 1/1000 –
but how small must δ be?

144
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Here is another method: Divide the range of f into disjoint intervals I j =
[a j , a j+1) of length < 1/1000 and let A j = f −1(I j ). Then the function g that
takes the value a j on the set A j comes within 1/1000 of f on the whole interval I ,
so its integral should be within 1/1000 that of f . In many cases each A j is a union
of finitely many disjoint intervals, so that∫ 1

0
g(x) dx =

∑
j

a j m(A j ). (1)

We shall see that in all cases the continuity of f implies that the sets A j are
measurable and therefore the sum in (1) makes sense. Moreover, even if we do
not assume continuity, this sum should give a good approximation to the integral –
whatever we mean by the integral – so long as the sets A j are measurable.

Recall that f is continuous if and only if f −1(A) is open whenever A is open.
This fact, and the preceding remarks about integration, lead us to formulate the
following definition of a “reasonable” function.

Definition. A real-valued function f defined on IR is measurable if, for each open
subset A of IR, the inverse image f −1(A) is measurable.

Note that if f is continuous, then it is measurable, since open sets are measurable.
There are a number of equivalent formulations of this condition:

(i) f −1(A) is measurable whenever A is open.
(ii) f −1(A) is measurable whenever A is closed.

(iii) f −1(A) is measurable whenever A is an interval.
(iv) f −1(A) is measurable whenever A is an open interval.
(v) f −1(A) is measurable whenever A is an interval of the form (a, +∞).

In fact, (i) and (ii) are equivalent by taking complements, while (i) and (ii) imply
(iii) because open intervals are open sets, closed intervals are closed sets, and a half-
open interval is the intersection of an open interval and a closed interval. Obviously
(iii) implies (iv) and (iv) implies (v). To complete the circle we show that (v) implies
(i). Note that

(−∞, b) =
∞⋃

n=1

(
b − 1

n , +∞)c
, (a, b) = (−∞, b) ∩ (a, +∞),

so (v) implies (iv). Any open set in IR is a countable union of open intervals (see
Exercise 6 of Section 10B), so (iv) implies (i) and the circle is complete.
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Definition. If f and g are real-valued functions on IR, then the functions f ∧ g
and f ∨ g are defined by

( f ∧ g)(x) = min{ f (x), g(x)}, ( f ∨ g)(x) = max{ f (x), g(x)}.

Proposition 11.1. Suppose that f and g are measurable functions, and suppose that
c is real. Then the functions c f , f + g, f g, | f |, f ∧ g, and f ∨ g are measurable.

Proof: We leave c f and f g as an exercise and check condition (v) for the re-
maining functions. It is convenient here and later to have a shorthand notation:

{ f > a} = {x ∈ IR : f (x) > a} = f −1(a, +∞).

Then

{| f | > a} = { f > a} ∪ { f < −a},
{ f ∧ g > a} = { f > a} ∩ {g > a},
{ f ∨ g > a} = { f > a} ∪ {g > a},

so | f |, f ∧ g, and f ∨ g are measurable. As for the sum f + g , note that

f (x) > r, g(x) > a − r implies ( f + g)(x) > a.

Conversely, if ( f + g)(x) > a , then there is a rational r such that f (x) > r >

a − g(x) . Therefore

{ f + g > a} =
⋃
r∈ IQ

({ f > r} ∩ {g > a − r}),
which is a countable union of measurable sets. �

It will be convenient to extend our notion of a measurable function somewhat,
by allowing our functions to take the values ±∞ as well as values in IR. We may
take (v) above as the definition, but with the interval A taken to include ∞. The
preceding results do not change, although we must assume that the functions are
such that the sum and product are defined; this is not automatic, because ∞ + (−∞)
and 0 · (±∞) are not defined.

Proposition 11.2. Suppose that ( fn)∞n=1 is a sequence of measurable functions and
suppose that, for each real x, limn→∞ fn(x) = f (x). Then f is measurable.

Proof: Suppose that f (x) > a . Then for some m ∈ IN, f (x) is greater than
a + (1/m). Therefore there is N such that fn(x) > a + (1/m) for all n ≥ N . This
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shows

{ f > a} ⊂
∞⋃

m=1

∞⋃
N=1

∞⋂
n=N

{
fn > a + 1

m

}
.

Conversely, if x belongs to the set on the right, then for some m and some N we
have fn(x) > a + (1/m) for all n ≥ N , so the limit f (x) is ≥ a + (1/m) > a.

Therefore the two sets above are equal and thus { f > a} is measurable. �

Proposition 11.3. Suppose that ( fn)∞n=1 is a sequence of measurable functions. Let

g(x) = inf
n

{ fn(x)}, h(x) = sup
n

{ fn(x)}.

Then g and h are measurable.

(It is in results like this that it is convenient to allow the values ±∞ , so that g
and h are always defined at every point.)

Proof: For any a ∈ IR,

{g < a} =
∞⋃

n=1

{ fn < a}, {h > a} =
∞⋃

n=1

{ fn > a}. �

Exercises

1. Prove that the indicator function 1A of a subset A of IR is measurable if and only if the
set A is measurable.

2. Suppose that f is a function from IR to the extended reals, IR ∪ {−∞, +∞}. Reinterpret
criterion (v) for such a function. Show that if f is measurable according to the new
criterion (v), then the sets { f = −∞} and { f = +∞} are measurable.

3. Suppose that f and g are real-valued functions on IR such that f is continuous and g is
measurable. Prove that the composition f (g) is measurable.

4. Suppose that f and g are measurable real-valued functions.
(a) Suppose that A is an open subset of IR2. Prove that {x ∈ IR : ( f (x), g(x)) ∈ A} is a

measurable set.
(b) Suppose that H is a continuous real-valued function on IR2. Prove that the function

h defined by h(x) = H ( f (x), g(x)) is measurable.
(c) Deduce from (b) that the sum f + g and the product f g are measurable.

5. As hinted at in the discussion about integration, f −1(I ) may not consist of finitely many
disjoint intervals, even when f is a continuous function defined on a closed bounded
interval and I is an interval. Give an example.

6. Prove Egorov’s Theorem: Suppose that { fn} is a sequence of measurable functions that
converge to f at each point of a set A that has finite measure. Prove that for any positive
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ε there is a set B ⊂ A such that m(B) < ε and fn converges to f uniformly on the
difference set A \ B = A ∩ Bc.

11B∗. Two Examples

It might seem that a more natural requirement for the measurability of a function
f would be that f −1(A) be measurable for every measurable A. This turns out to
be too restrictive. Let us define g : [0, 1] → [0, 1] as follows. Any number x in the
interval [0, 1] has a binary expansion

x =
∞∑

n=1

εn

2n
, each εn = 0 or 1.

This expansion is unique if we take the expansion that terminates whenever possible,
that is, when x = p/2n for some integers p, n. Then set

g(x) =
∞∑

n=1

2εn

3n
.

This function is strictly increasing, continuous except at the points p/2n for 0 <

p ≤ 2n, and maps [0, 1] to the Cantor set C. We extend g by taking g(x) = 0 if
x /∈ [0, 1]. Suppose now that B is a subset of (0, 1] that is not measurable and
let A = g(B). Then A ⊂ C , so m∗(A) = 0 and thus A is measurable. Now g is
strictly increasing. Therefore g is 1–1 on (0, 1] and g−1(A) = B. But g is not an
evil function. In fact, it is a pointwise limit of the step functions

gn(x) =
n∑

k=1

2εn

3n
.

Thus, to require that inverse images of measurable sets be measurable would be to
rule out even some limits of step functions.

The function g above is closely related to another interesting example. Define f
by taking the ternary expansion of x ∈ [0, 1] :

x =
∞∑

n=1

εn

3n
, εn = 0, 1, or 2.

We opt for the terminating expansion if and only if the last (nonzero) digit of the
terminating expansion is 2. If x belongs to the Cantor set C , that is, if no εn = 1,
we define

f (x) = 1

2

∞∑
n=1

εn

2n
.
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On the complement, which is the union of the successive middle third intervals, we
define f on an interval to be its value at the endpoints ( f takes the same value at
each endpoint). Thus f = 1/2 on the interval ( 1

3 ,
2
3 ), f = 3/4 on ( 7

9 ,
8
9 ), and so on.

This function f has the properties

f maps [0,1] onto [0,1];
f is nondecreasing;
f ′(x) exists and = 0 except on a set having measure 0.

In fact, clearly f ′(x) = 0 for X ∈ [0, 1] ∩ Cc. Except at countably many points of
[0, 1], f (g(x)) = x .

Exercises

1. Prove that the function g in Section 11B is continuous except at the points p/2n .
2. Show that the composition of two measurable functions may not be measurable.

11C. Integration: Simple Functions

A starting point for the theory of the (definite) Riemann integral is the integral of
a step function, that is, a function that is constant on intervals, using the geometric
notion of the length of an interval. We have extended the latter notion to a much
larger collection of sets, so we have a much larger collection of basic functions at
our disposal.

Definition. The indicator function of a subset A of IR is the function

1A(x) = 1 if x ∈ A, = 0 if x /∈ A.

Definition. An integrable simple function (ISF) is a function of the form

f = a11A1 + · · · + an1An , (2)

where the aj’s are real numbers and the Aj’s are disjoint measurable sets having
finite measure.

Definition. The integral of an ISF of the form (1) is∫
f =

∫
IR

f =
∫

IR
f (x) dx =

n∑
k=1

ak m(Ak). (3)
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Strictly speaking, we should first verify that the sum in (3) depends only on the
function f and not on the particular way of expressing it in the form (2). Suppose
in fact that

m∑
j=1

a j 1A j ≡
n∑

k=1

bk1Bk , (4)

where the Aj’s, and Bk’s are measurable sets with finite measure, while the sets {Aj }
are pairwise disjoint, as are the sets {Bk}. The equality (4) then implies that a j = bk

if A j ∩ Bk is not empty. Therefore

m∑
j=1

a j m(A j ) =
m∑

j=1

(
n∑

k=1

a j m(A j ∩ Bk)

)
=

m∑
j=1

(
m∑

k=1

bk m(A j ∩ Bk)

)

=
n∑

k=1

bk

(
m∑

j=1

m(A j ∩ Bk)

)
=

n∑
k=1

bk m(Bk).

Here is a collection of basic properties of integrable simple functions. The veri-
fications, which are easy, are left as an exercise.

I. If f and g are ISFs and c is real, then c f and f + g are ISFs and∫
c f = c

∫
f,

∫
( f + g) =

∫
f +

∫
g.

Moreover, | f | is an ISF and ∣∣∣∣∫ f

∣∣∣∣ ≤
∫

| f |.

II. If f and g are integrable simple functions and f ≤ g, then
∫

f ≤ ∫
g.

III. If f is an ISF and fa is its translate by a ∈ IR, fa(x) = f (x − a), then fa is an ISF and∫
fa =

∫
f.

Example. Let f be the function mentioned in the introduction to Chapter 10,
extended to the line: f (x) = 1 if x is rational, f (x) = 0 if x is irrational. Then
f = 1 IQ is an ISF with integral

∫
f = m( IQ) = 0, since IQ is countable.

Exercise

1. Verify the properties I, II, and III of integrable simple functions.
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At this point we can introduce a notion of the integral for any nonnegative measur-
able function.

Definition. If f : IR → IR is a nonnegative measurable function, then
∫

f is the
supremum

sup

{∫
g : g is an ISF such that 0 ≤ g ≤ f

}
. (5)

(In particular, it is possible that
∫

f = +∞.)
Notice that there is no conflict in notation, because if f is itself an ISF, then, for

any g as in (5),
∫

g ≤ ∫
f ; on the other hand, in this case we can take g = f , so

the supremum is
∫

f as defined earlier.
Once again we begin with basic properties.
If f and g are nonnegative measurable functions and a > 0, then∫

a f = a
∫

f,
∫

( f + g) =
∫

f +
∫

g.

Moreover, if f ≤ g, then
∫

f ≤ ∫
g.

The only one of these statements that is not fairly obvious is additivity. The proof
of additivity requires a result on approximation that is of interest in itself. (The idea
here is the one we already used at the beginning of Section 11A in discussing how
to approximate a Riemann integral.)

Lemma 11.4. Suppose that f is a bounded measurable function and A is a set
with finite measure. For any ε > 0, there are integrable simple functions f1 and f2

such that f1 ≤ f ≤ f2 on A and f2 − f1 ≤ ε at every point.

Proof: Choose M so that | f (x)| ≤ M for all x’s and decompose the inter-
val [−M, +M] into disjoint subintervals I1, I2, . . . , In of length ≤ ε. Let Ak =
A ∩ f −1(Ik) and let

f1 =
n∑

k=1

ak1Ak , f2 =
n∑

k=1

bk1Ak ,

where ak and bk are the left and right endpoints of the interval Ik . �

Proof of additivity: Suppose that f and g are nonnegative measurable functions,
and suppose that f1, g1 are ISFs such that 0 ≤ f1 ≤ f and 0 ≤ g1 ≤ g. Then f1 +
g1 ≤ f + g, so ∫

f1 +
∫

g1 =
∫

( f1 + g1) ≤
∫

( f + g).
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(We used additivity of the integral for ISFs.) Take the supremum over all such ISFs
to deduce that ∫

f +
∫

g ≤
∫

( f + g).

To prove the reverse inequality, suppose that h is an ISF and 0 ≤ h ≤ f + g. Let
A be the set where h is positive; it has finite measure. Now h is bounded, so the
functions h ∧ f and h ∧ g are bounded. We can use the lemma to choose ISFs
f1, g1 such that

0 ≤ f1 ≤ h ∧ f ≤ f1 + ε, 0 ≤ g1 ≤ h ∧ g ≤ g1 + ε.

Now h ≤ f + g, so h ≤ h ∧ f + h ∧ g ≤ f1 + g1 + 2ε1A and so∫
h ≤

(∫
f1 +

∫
g1

)
+ 2ε m(A) ≤

(∫
f +

∫
g

)
+ 2ε m(A).

Taking first the infimum over ε > 0 and then the supremum over h ≤ f + g, we
obtain the remaining inequality∫ ∫

( f + g) ≤
∫

f +
∫

g. �

The additivity property will be important as we extend the definition of integration
to functions that change signs. For any real-valued or extended-real-valued function
f on R, define nonnegative functions

f +(x) = f (x) if f (x) > 0, f +(x) = 0 if f (x) ≤ 0;

f −(x) = − f (x) if f (x) < 0, f −(x) = 0 if f (x) ≥ 0.

These functions are measurable if f is, and

f = f + − f −, | f | = f + + f −.

Definition. A measurable function f is integrable if
∫ | f | < +∞. Note that func-

tions f ± satisfy 0 ≤ f ± ≤ | f |, so f is integrable if and only if
∫

f + < +∞ and∫
f − < ∞.

Definition. If f is integrable, its integral
∫

f is defined to be
∫

f + − ∫
f −. (This

is consistent with the earlier definition, since f ≥ 0 implies f + = f and f − = 0.)

Basic properties of integrability and the integral

I. Suppose that f and g are integrable and a is real. Then a f and f + g are integrable
and

∫
a f = a

∫
f ,

∫
( f + g) = ∫

f + ∫
g.
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II. If f and g are integrable and f ≤ g, then
∫

f ≤ ∫
g. Also,

∣∣ ∫ f
∣∣ ≤ ∫ | f |.

III. If f is integrable and fa is its translate by a ∈ IR, then fa is integrable and∫
fa =

∫
f.

These properties require some proof. We concentrate on additivity, which is not
obvious, since in general ( f + g)± �= f ± + g±. First, note that | f + g| ≤ | f | +
|g|; so if f and g are integrable, so is f + g. Next, note that

( f + g)+ − ( f + g)− = f + g = ( f + − f −) + (g+ − g−).

Therefore

( f + g)+ + f − + g− = ( f + g)− + f + + g+.

All the functions in the preceding identity are nonnegative, so∫
( f + g)+ +

∫
f + +

∫
g− =

∫
( f + g)− +

∫
f + +

∫
g+.

This identity implies∫
( f + g)+ −

∫
( f + g)− =

[∫
f + −

∫
f −

]
+

[∫
g+ −

∫
g−

]
,

so
∫

( f + g) = ∫
f + ∫

g.

Now f ≤ g implies g − f ≥ 0, so
∫

g − ∫
f = ∫

(g − f ) ≥ 0. Since −| f | ≤
f ≤ | f |, we have also | ∫ f | ≤ ∫ | f |. Property III follows from the corresponding
property of ISFs.

So far we have defined integration only over the entire line. The restriction to
subsets is easy.

Definitions. Suppose that A is a measurable set. A function f defined on A is
measurable if f −1((a, +∞]) is measurable for every a > 0. Equivalently, f is
measurable if the function f̃ , obtained by extending f to vanish on the complement
Ac, is measurable. The function f is said to be integrable if f̃ is integrable; if so,
the integral

∫
A f is defined to be

∫
f̃ .

If f is an integrable function on IR, the integral of f over A is the integral of
the restriction of f to A, or, equivalently,

∫
f 1A. (In the product f 1A we vio-

late an earlier stricture and use the convention that 0 · (±∞) = 0. Thus f 1A ≡ 0
on Ac.)
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Exercises

The functions in Exercises 1–9 are assumed to be nonnegative, measurable functions
on IR. It may be be assumed that if fn is a sequence of such functions with the
properties

(i) f1 ≤ f2 ≤ · · · ≤ fn . . . ;
(ii) limn→∞ fn(x) = f (x), all x ;

(iii) each fn vanishes outside a bounded closed interval In = [an, bn] and is continuous on
that interval, where {In} is an increasing sequence with union I ,

then the integral of f is the limit of the Riemann integrals:∫
I

f = lim
n→∞

∫ bn

an

fn(x) dx .

(This will follow from the results in Sections 11E and 12B.)

1. For what values of the exponent a > 0 is
∫

f < ∞, where f (x) = x−a if 0 < x < 1
and f (x) = 0 otherwise?

2. For what values of the exponent b > 0 is
∫

f < ∞, where f (x) = x−b if x > 1 and
f (x) = 0 otherwise?

3. Find a function f that vanishes outside the interval [0, 1], such that
∫

f is finite but∫
f 2 is not finite.

4. Show that if f is bounded and
∫

f < ∞, then
∫

f 2 < ∞.
5. Find a bounded function g such that

∫
g2 < ∞ but

∫
g = ∞.

6. Show that if g vanishes outside a bounded interval and
∫

g2 < ∞, then
∫

g < ∞.
7. Suppose that

∫
f < ∞. For any a > 0, let Ea = {x : f (x) > a}. Prove that

m(Ea) ≤ 1

a

∫
f.

8. Find a function f such that m(Ea) ≤ 1/a, all a > 0, where Ea is as in the preceding
exercise but

∫
f = +∞.

9. Suppose that f is continuous and
∫

f < +∞. Is it always true that

lim
|x |→∞

f (x) = 0?

10. Suppose that
∫

fn → 0, and suppose that ε > 0 is given. Prove that

lim
n→∞ m

({x : fn(x) > ε}) = 0.

11. Let f (x) = sin x/x for x �= 0. Show that the limit

lim
N→∞

∫ N

−N
f (x) dx

exists and is finite but f is not an integrable function.
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11E. Convergence Theorems

The first theorem proved in this section is the single most important convergence
theorem of integration theory. We begin with a very special case.

Lemma 11.5. Suppose that g is a nonnegative ISF and suppose that ( fn)∞n=1 is a
sequence of measurable functions such that

g ≥ f1 ≥ f2 ≥ · · · ≥ fn ≥ · · · ≥ 0; lim
n→∞ fn(x) = 0, all x .

Then limn→∞
∫

fn = 0.

Proof: Since g is an ISF, it is bounded; say 0 ≤ g(x) ≤ M, all x . Moreover, the
set A = {g > 0} has finite measure. Given ε > 0, let An = { fn > ε}. Our assump-
tions imply

A ⊃ A1 ⊃ A2 ⊃ · · · ;
∞⋂

n=1

An = ∅.

Therefore (by continuity) m(An) → 0. Choose N so that m(An) < ε for n ≥ N .
Then n ≥ N implies

fn = 0 on Ac, fn ≤ ε on A ∩ Ac
n, fn ≤ M,

so

0 ≤
∫

fn =
∫

An

fn +
∫

A∩Ac
n

fn ≤ M m(An) + ε m(A ∩ Ac
n) < ε

[
M + m(A)

]
. �

Theorem 11.6: Lebesgue’s Dominated Convergence Theorem (DCT). Sup-
pose that ( fn)∞n=1 is a sequence of measurable functions such that, for all real
x, lim fn(x) = f (x). Suppose also that the fn’s are dominated by an integrable
function g, in the sense that, for every real x, | fn(x)| ≤ g(x). Then

lim
n→∞

∫
fn =

∫
f.

Proof: We consider three cases, of increasing generality.
Case 1. Suppose that f = 0 and ( fn)∞n=1 is a nonincreasing sequence. Given

ε > 0, choose an ISF g1 with 0 ≤ g1 ≤ g and
∫

g ≤ ∫
g1 + ε. Now

fn = fn ∧ g1 + [ fn − fn ∧ g1] ≤ fn ∧ g1 + (g − g1).
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The functions fn ∧ g1 satisfy the conditions of the lemma, since they are dominated
by the ISF g1. Therefore, for large n,∫

fn ≤
∫

fn ∧ g1 +
∫

(g − g1) ≤ ε + ε.

Case 2. f = 0 and fn ≥ 0, all n. Let gn = sup{ fn, fn+1, fn+2, . . .}. Then the
gn’s decrease to 0 and Case 1 applies to the gn , so

0 ≤
∫

fn ≤
∫

gn → 0.

Case 3. The general case. The functions gn = | fn − f | are nonnegative, mea-
surable, converge to 0 at each point, and gn ≤ | fn| + | f | ≤ 2g, so Case 2 applies
to the gn and

0 ≤
∣∣∣∣∫ fn −

∫
f

∣∣∣∣ ≤
∫

| fn − f | =
∫

gn → 0.

This completes the proof. �

One easy and useful consequence of the DCT is the following.

Theorem 11.7: Monotone Convergence Theorem. Suppose that ( fn)∞n=1 is a
nondecreasing sequence of nonnegative measurable functions: 0 ≤ f1 ≤ f2 · · · .
Let f (x) = limn→∞ fn(x). Then limn→∞

∫
fn = ∫

f .

Proof: Clearly limn→∞
∫

fn ≤ ∫
f . If h is any ISF such that 0 ≤ h ≤ f , then

the Dominated Convergence Theorem implies that∫
h = lim

∫
h ∧ fn ≤ lim

∫
fn.

Taking the supremum over such h, we obtain
∫

f ≤ limn→∞
∫

fn. Thus
∫

f =
limn→∞

∫
fn . �

The next result is an easy consequence of the Monotone Convergence Theorem.
The proof is left as an exercise.

Theorem 11.8. Fatou’s Lemma. If ( fn)∞n=1 is a sequence of nonnegative measur-
able functions, then ∫

lim inf
n→∞ fn ≤ lim inf

n→∞

∫
fn.
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The three preceding results – Dominated, Monotone, and Fatou – are the funda-
mental convergence theorems of integration theory.

Exercises

1. Show that the following limits exist, and compute them (in (c), assume a > 0):

lim
n→∞

∫ 1

0

n2x2

enx
dx .(a)

lim
n→∞

∫ 1

0

1 + nx

(1 + x)n
dx .(b)

lim
n→∞

∫ ∞

0
(1 + x

n
)ne−ax dx .(c)

2. Suppose that f is integrable, and let E(n) be the set {| f | > n}. Improve on Exercise 7
of Section 11D by showing that

lim
n→∞ n m(En) = 0.

3. Suppose that f is integrable and define F(x) = ∫
(−∞,x) f .

(a) Prove that F is continuous.
(b) Is F necessarily uniformly continuous?

4. Suppose that 0 < p < q < r . Suppose that f is a nonnegative measurable function such
that

∫
f p and

∫
f r are finite. Prove that

∫
f q is finite.

5. Prove Fatou’s Lemma.
6. Show by an example that strict inequality is possible in the conclusion of Fatou’s Lemma.
7. Suppose that fn is a sequence of real-valued continuous functions on the interval [0, 1]

such that | fn(x)| ≤ 1, all x ∈ [0, 1], and limn→∞ fn(x) = 0, all x ∈ [0, 1]. By extending
the fn to vanish outside the interval, one can use the DCT to prove that

∫
fn → 0. Give

a direct proof of this fact using some ideas from the proof of the DCT but not the DCT
itself. (Although this is purely a theorem about the Riemann integral, it is difficult to find
a proof that does not borrow ideas from measure theory.)

8. Suppose that ( fn)∞n=1 is a sequence of measurable functions such that

0 ≤ f1 ≤ f2 ≤ f3 ≤ · · ·
and let f (x) = lim fn(x). Thus f may take the value +∞ at some or all points. Prove
that if lim

∫
fn is finite, then f is finite except on a set of measure 0.

9. Find a sequence ( fn)∞n=1 of nonnegative measurable functions such that

lim
n→∞

∫
fn = 0, lim sup

n→∞
fn(x) = +∞, all x .
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Integration and Function Spaces

In this chapter we establish the connection between integrability in the sense of
Riemann and integrability in the sense of Lebesgue, introduce two important spaces
of integrable functions, and establish a very general connection between integration
and differentiation. Each of these developments depends on the notion of “almost
everywhere.”

12A. Null Sets and the Notion of “Almost Everywhere”

From the point of view of integration, sets of measure 0 are negligible. From the
point of view of spaces of integrable functions, they are a (very) minor nuisance.

Definition. A null set is a measurable set with measure 0.

As an exercise from the definition of measurability, note that a set of outer
measure 0 is measurable; therefore, a subset of a null set is a null set.

Definition. Two functions f and g are said to be equal almost everywhere if
they coincide except on a null set. This is usually abbreviated as f = g a.e. An-
other way to express this is that f (x) = g(x) for almost every x , also abbreviated
as a.e. x .

Proposition 12.1. Suppose that f is a measurable function and that g is a function
such that g = f a.e. Then g is measurable.

If f is nonnegative and measurable, then
∫

f = 0 if and only if f = 0 a.e.
Also, if

∫
f is finite, then f is finite a.e. In particular, any integrable function is

finite a.e.

Proof: If f = g a.e., then it is easy to see that, for any real a, the sets { f > a}
and {g > a} differ by a null set, so the second set is measurable if the first is.

158
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Suppose that f ≥ 0. Let An = { f > 1
n }. Then

{ f > 0} =
∞⋃

n=1

An;
1

n
· m(An) ≤

∫
An

f ≤
∫

f.

Therefore
∫

f = 0 implies m(An) = 0, all n, so m({ f > 0}) = 0.
Finally, let Bn = { f > n}, so that { f = +∞} = ⋂∞

n=1 Bn . Then

n · m(Bn) ≤
∫

Bn

f ≤
∫

f.

If
∫

f is finite, then this implies m(Bn) → 0, so { f = +∞} has measure 0. �

Remark. Various hypotheses made earlier can be weakened. For example, in
the Dominated Convergence Theorem, one only needs lim fn(x) = f (x) a.e. and
| fn(x)| ≤ g(x) a.e.

12B∗. Riemann Integration and Lebesgue Integration

As before, by a step function on an interval [a,b] we mean a function that is constant
on subintervals. Setting such a function equal to 0 outside the interval, we obtain an
ISF whose (Lebesgue) integral is clearly the same as the (Riemann) integral of the
step function. Here we show that this equality extends to all Riemann integrable
functions.

It is not difficult to deduce one more criterion for Riemann integrability from
Proposition 8.16: A bounded function f : [a, b] → IR is Riemann integrable if and
only if there are sequences of step functions (gn)∞n=1 and (hn)∞n=1 such that

gn ≤ f ≤ hn, lim
n→∞

∫
(hn − gn) = 0.

Then the common value limn→∞
∫

gn = limn→∞
∫

hn is the Riemann integral
∫ b

a f.

Theorem 12.2. If the real-valued function f is Riemann integrable on I = [a, b],
then it is Lebesgue integrable on I and the Lebesgue integral

∫
I f equals the

Riemann integral
∫ b

a f.

Proof: The main trick is to prove that f is measurable. Choose sequences (gn)∞n=1,
(hn)∞n=1 as above. We may replace these functions by

g1 ∨ g2 ∨ · · · ∨ gn, h1 ∧ h2 ∧ · · · ∧ hn

and assume that the sequences are monotone:

g1 ≤ g2 ≤ · · · ≤ gn ≤ f ≤ hn ≤ · · · ≤ h2 ≤ h1.
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Then the limits g(x) = limn→∞ gn(x) and h(x) = limn→∞ hn(x) exist, for each
x ∈ [a, b], and g ≤ f ≤ h. By dominated convergence,∫

I
g = lim

n→∞

∫
I

gn = lim
n→∞

∫
I

hn =
∫

I
h,

so
∫

I (h − g) = 0. It follows from this and the inequality g ≤ h that g = h almost
everywhere (see Proposition 12.1). Therefore f is equal a.e. to the measurable
functions g and h and is itself measurable. The argument shows that the Riemann
and Lebesgue integrals of f are each equal to limn→∞

∫
I gn. �

An example. The relationship between the Riemann and Lebesgue integrals does
not hold for improper integrals. For example, the improper Riemann integral∫ ∞

0

sin x

x
dx = lim

n→∞

∫ n

0

sin x

x
dx

exists but

lim
n→∞

∫ n

0

| sin x |
x

dx = ∞,

so sin x/x is not Lebesgue integrable on (0, ∞).
We know now that a Riemann integrable function is (bounded and) measurable.

Theorem 12.3. A bounded, measurable real-valued function f on [a, b] is Riemann
integrable if and only if its points of discontinuity are a set of measure 0.

Proof: The idea is to relate the Riemann integrability to the amount of oscillation
of f over small distances. Set A = [a, b], and for each x in A set

ωn(x) = sup

{
| f (y′) − f (y)| : y, y′ ∈ A, |y − x | <

1

n
, |y′ − x | <

1

n

}
.

Then ω1 ≥ ω2 ≥ . . . and the ωn’s are measurable (why? – see Exercise 2). The
function f is continuous at x if and only if limn→∞ ωn = 0. What we need to show
is that Riemann integrability of f is equivalent to

lim
n→∞ m({ωn > ε}) = 0, for all ε > 0.

Suppose that the preceding limit is 0. Given ε > 0, choose n so large that the
measure of the set {ωn > ε} is less than ε. Divide A into finitely many disjoint
subintervals A j , each of length ≤ 1/n. Define the usual largest step function g and
smallest step function h such that g ≤ f ≤ h, while g and h are constant on the
intervals A j . If h − g > ε on A j , then ωn > ε on A j , so the total length of such
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intervals A j is less than ε. If | f | ≤ M , then∫
A
(h − g) =

∫
(h−g)<ε

(h − g) +
∫

(h−g)>ε

(h − g) ≤ ε · [
m(A) + M

]
.

Therefore f is Riemann integrable.
Conversely, suppose that f is Riemann integrable. Given ε > 0 and δ > 0, choose

step functions g, h such that

g ≤ f ≤ h,

∫
A
(h − g) ≤ εδ.

Assume that g and h are constant on each of the disjoint subintervals A1, . . . , Ak

with union A. Define the distance from a point x to a set B to be d(x, B) =
inf{|x − y| : y ∈ B}. Given a positive integer n set

A′
j =

{
x ∈ A j : d

(
x, Ac

j

)
<

1

n

}
,

A′′
j =

{
x ∈ A j : d

(
x, Ac

j

) ≥ 1

n
and ωn(x) > ε

}
.

It follows from these definitions that

{ωn > ε} ⊂
k⋃

j=1

(
A′

j ∪ A′′
j

)
.

If A′′
j is not empty, then h − g > ε on A j , so

m(A′′
j ) ≤ 1

ε

∫
A′′

j

(h − g).

Moreover, the definitions imply that m(A′
j ) ≤ 2/n. Therefore

m
({ωn > ε}) ≤

k∑
j=1

m(A′
j ) +

k∑
j=1

m(A′′
j ) ≤ 2k

n
+ 1

ε

∫
A
(h − g) ≤ 2k

n
+ δ.

Since n and δ are arbitrary, the proof is complete. �

Exercises

1. Prove that a bounded real-valued function f on [a, b] is Riemann integrable in the sense
of Section 8C if and only if there are sequences {gn}, {hn} as in the proof of Theorem12.2.

2. Let f and ωn be as in Theorem 12.3. Show that ω−1
n ((a, ∞)) is an open subset of the

interval A, that is, if ωn(x) > a, then there is δ > 0 such that x ′ ∈ A and |x ′ − x | < δ

implies ωn(x ′) > a.
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3. Prove directly from the definitions that the indicator function of the Cantor set is Riemann
integrable.

4. Suppose that A is a measurable subset of the interval [a, b]. Prove that the indicator
function 1A is Riemann integrable if and only if its boundary ∂ A (see Exercise 10 of
Section 6B) has measure 0.

12C. The Space L1

The function space L1 = L1(IR) is defined to be the set of all integrable functions
on IR. We define

|| f ||1 =
∫

| f |. (1)

Then || f ||1 ≥ 0 and we know that || f ||1 = 0 if and only if f = 0 a.e. Therefore,
|| ||1 is a norm on the vector space L1 only if we identify, that is, do not distinguish
between, functions that are equal a.e. The remaining properties of a norm are easily
established:

||a f ||1 = |a| · || f ||1, a ∈ IR; || f + g||1 ≤ || f ||1 + ||g||1.
Thus, up to identifying functions that differ only on a null set, L1 has a metric

d( f, g) = || f − g||1.
As a metric space, L1 has two properties of great importance: It is complete (every
Cauchy sequence converges) and the integrable continuous functions are a dense
subset.

Lemma 12.4. Suppose that h is a nonnegative measurable function. For any λ > 0,

m
({h > λ}) ≤ 1

λ

∫
h.

Proof: Let A = {h > λ}. Then h > λ1A, so
∫

h ≥ ∫
λ1A = λ m(A). (We have

used this idea several times already.) �

Theorem 12.5. L1 is complete: Given a Cauchy sequence ( fn)∞n=1 in L1, there is
a function f ∈ L1 such that

lim
n→∞ || fn − f ||1 = 0.

Proof: Given a positive integer k, choose N (k) so large that || fn − fm ||1 < 2−k

if n, m ≥ N (k). Also choose these integers so that N (k + 1) > N (k). It is enough
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to show that the subsequence gk = fN (k) has a limit. Note that

||gk − gk+1||1 ≤ 2−k .

Set h1(x) = |g1(x)| and

hn+1(x) = |g1(x)| +
n∑

k=1

|gk+1(x) − gk(x)|.

Then (hn)∞n=1 is nonnegative and nondecreasing and

∫
hn ≤ ||g1||1 +

n∑
k=1

||gk+1 − gk ||1 ≤ ||g1||1 +
n∑

k=1

2−k = ||g1||1 + 1.

By the Monotone Convergence Theorem, the limit

∣∣g1(x)
∣∣ +

∞∑
n=1

∣∣gn+1(x) − gn(x)
∣∣

is integrable; therefore it is finite a.e. Writing

gn(x) = g1(x) +
n∑

k=1

[
gk+1(x) − gk(x)

]
,

we see that f (x) = lim gn(x) exists (it is the sum of an absolutely convergent series)
for a.e. x . Moreover,

∣∣ f (x) − gn(x)
∣∣ ≤

∞∑
k=n

∣∣gk+1(x) − gk(x)
∣∣,

so

|| f − gn||1 ≤
∞∑

k=n

||gk+1 − gk ||1 ≤ 21−n

and f is the desired limit. �

An example. Let f0 be the indicator function of the interval [0, 1], and f1, f2,
f3, . . . , the indicator functions of the successive intervals

[
0, 1

2

]
,
[

1
2 , 1

]
,
[
0, 1

3

]
,
[

1
3 ,

2
3

]
,
[

2
3 , 1

]
,
[
0, 1

4

]
,
[

1
4 ,

1
2

]
,
[

1
2 ,

3
4

]
, . . . .

Then || fn||1 → 0. But for any x ∈ [0, 1] there are infinitely many indices n such
that fn(x) = 1. Thus the passage to a subsequence is necessary to obtain pointwise
convergence. (In this case one could take as a subsequence the functions fn(n−1)/2,
which are the indicator functions of the intervals [0, 1

n ]).
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Definition. A function f : IR → IR is said to be compactly supported if there is
some M ≥ 0 such that f (x) = 0 if |x | > M . Note that any compactly supported
continuous function is integrable.

Lemma 12.6. If C is an open subset of IR and B is a closed, bounded, nonempty
subset of C, then there is a compactly supported continuous function g such that

0 ≤ g ≤ 1, g(x) = 1 if x ∈ B, g(x) = 0 if x ∈ Cc.

Proof: The functions d(x, B) = inf{|x − y| : y ∈ B} and d(x, Cc) are continu-
ous functions of x that vanish precisely on B and on Cc, respectively. We take

g0(x) = min{1, d(x, Ac)/d(x, B)},

where A is the intersection of C with a bounded open set that contains B. Then g
has the desired properties. �

Theorem 12.7. The compactly supported continuous functions are dense in L1;
that is, for each f in L1 and each ε > 0, there is a continuous function g such that
g has compact support and || f − g||1 < ε.

Sketch of proof. By the definitions, there are ISFs f ±
1 such that || f ± − f ±

1 ||1 <

ε/4. Then, with f1 = f +
1 − f −

1 we have || f − f1||1 < ε/2. By definition, the ISF
f1 is a linear combination of indicator functions of sets having finite measure.
Therefore it is enough to prove that we can approximate each such an indicator
function 1A. We use the approximation property for measurable sets (Section 10D):
If m(A) < ∞, then, given ε > 0, there is a bounded closed set B and an open set C
such that B ⊂ A ⊂ C and m(C \ B) < ε. The corresponding function g of Lemma
12.6 has the property

||g − 1A||1 < ε. �

Remark. It follows from this theorem that if we started by using only very nice
functions – continuous, compactly supported – but then wanted to take all limits
with respect to the norm || ||1, we would end up with all the Lebesgue measur-
able integrable functions. This is analogous to starting with the rational numbers
and then wanting to include all limits of Cauchy sequences: The result is all real
numbers.

It is often convenient, and sometimes necessary, to consider complex-valued
functions. A function f : IR → IC can be written uniquely as the sum f = g + ih,
where g and h are real-valued; in analogy with complex constants, we refer to them
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as the real part and the imaginary part of f :

f = g + ih, g = Re ( f ), h = Im ( f ).

The function f is said to be measurable if its real and imaginary parts are measur-
able. If so, then f is integrable if its real and imaginary parts are integrable, and
the integral is ∫

f =
∫

g + i
∫

h.

Equivalently, a measurable function f is integrable if its complex modulus | f |,
defined by | f |(x) = | f (x)|, is integrable. Again∣∣∣∣

∫
f

∣∣∣∣ ≤
∫

| f |.

The theorems, and proofs, in this section remain valid if L1(IR) is taken to be the
space of integrable complex-valued functions on IR.

In addition to considering functions on the line, it is common to consider (real or
complex) integrable functions on an interval I , such as I = [0, 1] or I = (0, ∞).
The notation is L1(I ). Theorems 12.5 and 12.7 are valid in this context as well.

Exercises

1. Show that if A and B are measurable set with finite measure, then

m(A�B) =
∫

|1A − 1B |, A�B = (A ∩ Bc) ∪ (Ac ∩ B).

Use this and the approximation property for measurable sets to prove that, for any ISF
f and any ε > 0, there is a step function g (constant on intervals) such that∫

| f − g| < ε.

2. Suppose that the real-valued function f on IR is nonnegative and continuous, and suppose
that

∫
f < ∞. Is f necessarily bounded? Prove or give a counterexample.

3. Suppose that f is real-valued and integrable. Given a in IR, define the translate fa by
fa(x) = f (x − a). Prove that

lim
a→0

|| fa − f ||1 = 0.

4. Suppose that f and g are integrable on IR and set F(x) = ∫ x
a f and G(x) = ∫ x

a g. Prove
the general integration-by-parts formula

∫ b

a
Fg = F(b) G(b) −

∫ b

a
f G.
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5. Prove a version of Lusin’s Theorem: If f is integrable, then for each ε > 0 there is a set
A with measure < ε such that f is continuous on the complement of A.

6. Prove that the integrability assumption in Exercise 5 can be replaced by the assumption
that f is finite a.e.

12D. The Space L2

By definition, L2 = L2(IR) is the set consisting of all real-valued measurable func-
tions f such that the square f 2 is integrable. The elementary inequalities

2|ab| ≤ a2 + b2, (a + b)2 ≤ 2(a2 + b2), a, b ∈ IR

imply that if f and g belong to L2, then so does the sum f + g, while the product
f g is integrable. In particular, L2 is a vector space, and we may define an inner
product in L2:

( f, g) =
∫

f g, f, g ∈ L2. (2)

This has the defining properties of an inner product:

( f, f ) ≥ 0; ( f, f ) = 0 if and only if f = 0 a.e.;

( f, g) = (g, f );

(a f, g) = a( f, g), a ∈ IR;

( f + g, h) = ( f, h) + (g, h).

One can deduce, therefore, the usual Cauchy-Schwarz inequality:

( f, g)2 ≤ ( f, f ) (g, g).

(See Exercise 5.) The inner product induces a norm and a metric in L2:

|| f ||2 = ( f, f )1/2, d2( f, g) = || f − g||2.
In particular, the triangle inequality follows from the Cauchy-Schwarz inequality.
The Cauchy-Schwarz inequality may be written in terms of the norm:

|( f, g)| ≤ || f ||2 ||g||2. (3)

The following theorem says that L2(IR), with its inner product as given above, is
a (real) Hilbert space: a vector space, with an inner product, that is complete with
respect to the metric induced by the inner product.

Theorem 12.8. L2 is complete.
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Proof: As in the proof for L1, we may choose a subsequence (gn)∞n=1 of a given
Cauchy sequence ( fn)∞n=1 such that

||gn+1 − gn||2 ≤ 2−n.

If A is a bounded interval, then the Cauchy-Schwarz inequality gives∫
A
|gn+1 − gn| ≤ ||gn+1 − gn||2 · ||1A||2 = ||gn+1 − gn||2 · m(A)1/2.

As in the proof of completeness of L1, it follows that f (x) = lim gn(x) exists a.e. in
the interval A. But IR is the union of countably many bounded intervals, so the limit
f exists a.e. on IR.

To show that ||gn − f ||2 → 0, we let h be any function in L2. Then, as before,

[ f (x) − gn(x)]h(x) =
∞∑

k=n

[gk+1(x) − gk(x)] h(x);

|( f − gn, h)|≤
∞∑

k=n

∫
|gk+1 − gk | |h|≤

∞∑
k=n

||gk+1 − gk ||2 ||h||2 ≤ 21−n||h||2.

Letting h = f − gn , we get

|| f − gn||22 ≤ 21−n|| f − gn||2,
so || f − gn||2 ≤ 21−n . (Strictly speaking, we should let h run through an appropriate
sequence approximating f − gn , since we do not know ahead of time that f − gn

actually is square integrable.) �

Theorem 12.9. For each function f in L2 and each ε > 0 there is a compactly
supported continuous function g such that || f − g||2 ≤ ε.

(See the proof sketched for L1; it also applies here.)
Again, it is often convenient to consider complex-valued functions. The complex

version of L2(IR) consists of functions with a square-integrable modulus:
∫ | f |2 <

∞. Then the inner product must be modified:

( f, g) =
∫

f g.

The properties of this inner product are the same as above, except that

( f, g) = (g, f ).

The Cauchy-Schwarz inequality remains valid, and the proofs of the two theorems
carry over, so complex L2 is a complex Hilbert space.

Again, one frequently encounters spaces L2(I ) of functions square integrable on
a real interval I . Theorems 12.8 and 12.9 remain valid.
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Exercises

In these exercises, the norm, inner product, and convergence notions are those
of L2(IR).

1. Suppose that limn→∞ fn = f . Prove that limn→∞( fn, g) = ( f, g).
2. Suppose that limn→∞ fn = f and limn→∞ gn = g. Prove that limn→∞( fn, gn) = ( f, g).
3. Show that if f and h are orthogonal, that is, ( f, h) = 0, then

|| f + h||2 = || f ||2 + ||h||2.

4. Suppose that f �= 0. Show that for each g there is a unique constant a such that g − a f
is orthogonal to f .

5. Prove the Cauchy-Schwarz inequality |( f, g)| ≤ || f || · ||g|| by writing g = a f + h as
in the previous exercise, with h⊥ f and noting that ||g||2 = ||a f ||2 + ||h||2 ≥ ||a f ||2.
(Note that neither of the preceding two exercises depends on the Cauchy-Schwarz
inequality, so the reasoning is not circular.)

6. Suppose that f1, f2, . . . , fn are mutually orthogonal: ( f j , fk) = 0 if j �= k. Prove that

|| f1 + f2 + · · · + fn||2 = || f1||2 + || f2||2 + · · · || fn||2.

7. Suppose that the functions e1, e2, . . . , en are orthonormal, that is, (e j , e j ) = 1, and
(e j , ek) = 0 if j �= k. Show that for each f there is a unique linear combination g =∑

a j e j such that f − g is orthogonal to each of the ek’s.
8. In the preceding exercise, show that

∑ |an|2 ≤ || f ||2. When does equality hold?
9. Show that the element g in Exercise 7 is the closest element to f in the subspace

spanned by the elements e1, . . . , en .
10. Suppose that f is orthogonal to each element of a subset S. Show that f is orthogonal

to each element in the closure of the subspace spanned by S.
11. Suppose that f is real-valued and belongs to L2. Set

F(x) =
∫ x

0
f (t) dt, x ∈ IR.

Prove that there is a constant C such that |F(y) − F(x)| ≤ C |y − x |1/2, all x, y ∈ IR.
12. Tie up the loose end in the proof of completeness in L2: Suppose that f is a measurable

real-valued function on IR and suppose that for every h in L2 the function f h is integrable
with | ∫ f h| ≤ C ||h||. Prove that || f || ≤ C .

12E. Differentiating the Integral

Suppose that f is an integrable function on IR. Fixing a point a ∈ IR, we may define

F(x) =
∫

[a,x]
f, if x ≥ a; F(x) = −

∫
[x,a]

f, if x < a.
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By definition, we write this as a single formula:

F(x) =
∫ x

a
f.

Theorem 12.10: Differentiation. For a.e. x, the derivative F ′(x) exists and equals
f (x).

The proof is not trivial; we outline the steps.
First, F is continuous. In fact, this is an easy consequence of the Dominated

Convergence Theorem applied to a sequence of functions f 1An , where An = [a, xn]
or An = [xn, a], where lim xn = x .

Second, the result is true if f is continuous: This is just the ordinary differentiation
theorem.

Third, we may approximate f by continuous functions, since they are dense in
L1. However, in order to control what happens when we approximate, we need
some machinery.

Definition. The Hardy-Littlewood maximal function of a function h ∈ L1 is de-
fined by

h∗(x) = sup

{
1

|I |
∫

I
|h| : x ∈ I, I an open interval

}
.

Theorem 12.11: The Hardy-Littlewood inequality. For any positive λ, the set
Eλ = {h∗ > λ} has measure

m(Eλ) ≤ 5

λ

∫
|h|. (4)

Proof of Theorem 12.10, assuming Theorem 12.11. We want to show that the the
set where

lim sup
y→x

∣∣∣∣ F(y) − F(x)

y − x
− f (x)

∣∣∣∣ > 0

has measure 0. It is enough to show that for each δ > 0 and ε > 0 the set

E =
{

x : lim sup
y→x

∣∣∣∣ F(y) − F(x)

y − x
− f (x)

∣∣∣∣ > δ

}

has measure ≤ Mε for some fixed M , because then we may take a sequence δn with
limit 0. Choose a continuous g ∈ L1 such that || f − g||1 < εδ. Set G(x) = ∫ x

a g.
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Given y �= x , let I be the open interval with endpoints x, y. Then∣∣∣∣ F(y) − F(x)

y − x
− f (x)

∣∣∣∣ ≤
∣∣∣∣ F(y) − F(x)

y − x
− G(y) − G(x)

y − x

∣∣∣∣
+

∣∣∣∣G(y) − G(x)

y − x
− g(x)

∣∣∣∣ + |g(x) − f (x)|

= 1

|I |
∣∣∣∣
∫

I
( f − g)

∣∣∣∣ +
∣∣∣∣G(y) − G(x)

y − x
− g(x)

∣∣∣∣
+ |g(x) − f (x)|.

The middle term in the last expression goes to zero as y → x . The first and last
terms are at most h∗(x) and |h(x)|, respectively, where h = f − g. Therefore E is
contained in the union of the two sets

{h∗ > δ }, {h > δ }.
The measures of these sets are, respectively, at most

5 · 2

δ

∫
|h| ≤ 10ε,

2

δ

∫
|h| ≤ 2ε.

Thus m(E) ≤ 12ε and the proof is complete. �

We turn now to the Hardy-Littlewood maximal inequality (4) and assume again
that h is in L1 and that λ > 0 is given. Again

Eλ = {x : h∗(x) > λ}.
Now a point x belongs to Eλ if and only if there is an open interval I with x ∈ I
such that

1

|I |
∫

I
|h| > λ.

Thus |I | <
∫

I |h|/λ, so there is a bound to the lengths of intervals I. Notice also
that I ⊂ Eλ. Thus, if I1, I2, . . . is a pairwise disjoint family of such intervals with
union A ⊂ Eλ, then

m(A) =
∑

|In| ≤ 1

λ

∑ ∫
In

|h| = 1

λ

∫
A
|h| ≤ 1

λ

∫
|h|.

We can finish the job with a covering lemma.

Lemma 12.12. Suppose that E ⊂ IR is the union of a family I of open intervals of
length ≤ c < +∞. Then there is a finite or countable collection of pairwise disjoint
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intervals I1, I2, . . . belonging to the family I such that

m(E) ≤ 5(|I1| + |I2| + · · ·).

Proof: Let c1 be the supremum of the lengths of the intervals in I and choose
I1 ∈ I such that |I1| ≥ c1/2. Suppose now that we have chosen intervals I1, . . . , In

and define a subfamily In consisting of those intervals in I that are disjoint
from each of I1, . . . , In . If In is empty, stop. Otherwise, choose In+1 ∈ In+1 such
that

|In+1| ≥ 1
2 cn+1, cn+1 = sup{|I | : I ∈ In+1}.

Case 1. For some n, the collection In+1 is empty. Then every interval I ∈ I
intersects one of I1, . . . , In . Suppose that k is the first index such that I ∩ Ik �= ∅.
Because of the method of choice, this implies that |Ik | ≥ |I |/3, so that I ⊂ I ∗

k ,
which is the interval with the same midpoint as Ik but five times the length. This
shows that

E ⊂
n⋃

k=1

I ∗
k ,

and the result follows.
Case 2. We can choose In for all n. If

∑∞
n=1 |In| = ∞, then there is nothing to

prove. Otherwise, |In| → 0 as n → ∞. Given ∅ �= I ∈ I, we have |In| ≤ |I |/2 for
large n. Considering how the intervals In were chosen, this implies that I intersects
some In , and, as in Case 1, this implies that I ⊂ I ∗ for some k. Thus again

E ⊂
∞∑

n=1

I ∗
n . �

Exercises

1. Let f (x) = 0 outside the interval (0, 1
2 ) and f (x) = 1/x(log x)2 for x ∈ (0, 1

2 ). Show
that f is in L1(IR) but the maximal function f ∗ is not.

2. Suppose that f is in L1(IR). Prove that f ∗ ≥ | f (x)| a.e.
3. Suppose that A is measurable. A point x ∈ A is said to be a point of density for A if

lim
|I |→0

m(A ∩ I )

m(I )
= 1,

where the limit is taken over intervals I that contain x . Prove that almost every point of
A is a point of density for A.
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Additional Exercises for Chapter 12

These exercises deal with L p spaces for values of p more general than p = 1, p = 2.
For 0 < p < ∞, the space L p = L p(IR) consists of all measurable functions f such
that | f |p is integrable. Let

|| f ||p =
(∫

| f |p

)1/p

.

1. Suppose that p and q are positive and 1/p + 1/q = 1, so p > 1 and q > 1.
(a) Prove that for any nonnegative a and b,

a b ≤ a p

p
+ bq

q
.

(b) Prove that if f belongs to L p and g belongs to Lq , then the product f g belongs to
L1 and ∣∣∣∣

∫
f g

∣∣∣∣ ≤ 1

p

∫
| f |p + 1

q

∫
|g|q .

2. Prove Hölder’s inequality: If f is in L p and g is in Lq , and 1/p + 1/q = 1, then∣∣∣∣
∫

f g

∣∣∣∣ ≤ || f ||p ||g||q .

(Note that the Cauchy-Schwarz inequality (3) is a special case.)
3. For 1 < p < ∞, prove that the result in Exercise 2 is optimal: If 1/p + 1/q = 1, then

|| f ||p = sup

{∣∣∣∣
∫

f g

∣∣∣∣ : ||g||q = 1

}
.

4. Show that the expression || f ||p has the properties of a norm (if we identify functions
that coincide a.e.) when p ≥ 1. In particular, prove the triangle inequality

|| f + g||p ≤ || f ||p + ||g||p

for 1 < p < ∞.
5. Suppose that 0 < p < 1. Prove that the triangle inequality fails: There are f , g in L p

such that

|| f + g||p > || f ||p + ||g||p.

6. Show that for each p, 0 < p < ∞, there is a function f that belongs to L p but does not
belong to any Lq for q �= p.
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Fourier Series

The subject of Fourier series has its roots in the analysis of certain problems with
a physical origin, including vibrations of a string and conduction of heat, and it
has many mathematical applications and ramifications as well. In this chapter we
introduce the basic question – how to represent a general periodic function in terms
of simpler ones – and develop the fundamental mathematical ideas associated to
this process.

13A. Periodic Functions and Fourier Expansions

A real- or complex-valued function f defined on the line is said to be periodic,
with period L > 0, if f (x + L) = f (x) for every x . If so, then it is also periodic
with period nL for every positive integer n. The most familiar examples are the
trigonometric functions sin x and cos x , with period 2π . We can always rescale a
function g that has period L to a function f that has period 2π by setting f (x) =
g(x L/2π ). Throughout this chapter, we consider functions with period 2π and
refer to such functions simply as “periodic functions.” Depending on the context,
we may only require functions f to be defined almost everywhere and to satisfy
the basic equation

f (x + 2π ) = f (x)

only for almost every x .
The following is an elementary but important observation. Suppose that I is

a half-open interval of length 2π , say I = [a, a + 2π ), and suppose that f is
defined on I . Then there is a unique extension of f that is defined on the entire
line and is periodic. In fact, for any integer n, a point x belongs to the interval
[a + 2nπ, a + 2(n + 1)π ) if and only if x − 2nπ belongs to I , so we must set
f (x) = f (x − 2nπ ). Usually we take I = [−π, π ) and simply identify functions
on I and periodic functions on the line.

173
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The simplest continuous periodic functions are the trigonometric functions sin nx
and cos nx , indexed by the positive integers and the nonnegative integers, respec-
tively. It turns out to be more convenient to consider instead the complex exponential
functions

en(x) = einx =
∞∑

m=0

(inx)m

m!
= cos nx + i sin nx, n ∈ ZZ. (1)

A linear combination of periodic functions is a periodic function, and a function
that is, at each point, the limit of periodic functions is also a periodic function.
Therefore, any two-sided series

∞∑
−∞

aneinx = lim
N→∞

N∑
n=−N

aneinx (2)

that converges at every point defines a periodic function. (Here {an}∞−∞ is a two-
sided sequence of complex constants.)

It is easy to produce examples. In fact, each of the exponentials has modulus 1
at each point, so if the sum

∑∞
−∞ |an| is finite,

∞∑
n=−∞

|an| =
∞∑

n=1

|an| +
∞∑

n=0

|a−n| < ∞, (3)

then the series (2) converges absolutely at every point; in fact, it converges uni-
formly, so the limit is a continuous function (see Theorem 7.8).

The fundamental questions to be investigated in this chapter are

� Given a periodic function, can it be expressed as a series (2)?
� If so, is the expression unique?
� How can the coefficients an be calculated?
� How are properties of f related to properties of the coefficients an?

Here is an argument that suggests that, in some sense, the answers to the first
two questions should be “yes.” The argument also may help to explain the special
role of the exponentials (1) and shows how to calculate the an’s.

We start by considering a finite-dimensional complex vector space V with inner
product ( ). A basis e1, . . . , en for V is said to be orthonormal if the basis vectors
are unit vectors that are mutually orthogonal:

(e j , e j ) = 1, (e j , ek) = 0 if j �= k. (4)

Any element v ∈ V can be written uniquely as a linear combination of the basis
vectors v = ∑

akek . Moreover, if we take the inner product of each side of this



P1: KaD

0521840724c13 CY492/Beals 0 521 84072 4 June 16, 2000 16:31 Char Count= 0

13A. Periodic Functions and Fourier Expansions 175

equality with e j and use (4), we can identify (v, e j ) = a j . Therefore

v =
n∑

j=1

(v, e j ) e j . (5)

There are various ways to find an orthonormal basis for a given finite-dimensional
inner product space V . One way uses the spectral theorem: Suppose that T : V → V
is a linear transformation that satisfies the symmetry condition

(T v, w) = (v, T w), all v, w ∈ V . (6)

Then there is an orthonormal basis for V that consists of eigenvectors of T : T ej =
λ j e j for some constants λ j .

We know from Chapter 12 how to find an inner product space that includes a
large class of functions on the interval I = [−π, π ); as we noted above, such func-
tions can be identified with periodic functions. Thus, by the space of L2-periodic
functions, or square-integrable periodic functions, we mean the periodic functions
identified with the functions that are square integrable on the basic interval, that is,
functions in the space

L2(I ), I = [−π, π ). (7)

We take the inner product in this space to be given by

( f, g) = 1

2π

∫ π

−π

f (x) g(x) dx .

We define an operator T for periodic functions f that have continuous derivatives
by

T f (x) = −i f ′(x). (8)

It is the factor −i that makes this operator symmetric. In fact, suppose that f and
g are two such functions. Integration by parts shows that

(T f, g) = −i
1

2π

∫ π

−π

f ′(x) g(x) dx

= −i f (x) g(x)
∣∣∣π
−π

+ i
1

2π

∫ π

−π

f (x) g′(x) dx

= 1

2π

∫ π

−π

f (x)[−ig′(x)] dx = ( f, T g).

(The boundary terms cancel because of periodicity.)
This suggests, but is far from a proof, that the eigenvectors of T might be a

basis for our space (6). An eigenvector would be a function that is a solution
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of −i f ′(x) = λ f (x) and therefore a multiple of

f (x) = eiλx .

This function is periodic only if f (2π ) = ei2λπ = f (0) = 1, which is true if and
only if λ is an integer (Section 9A, Exercise 1). Thus the eigenvectors of T are, up
to multiplication by constants, the exponentials (1). Let us check the orthonormal
conditions. It will help to recall various facts about the exponential function with
an imaginary argument:

eix eiy = ei(x+y); eix = e−i x ; |eix | = 1.

Then

(en, en) = 1

2π

∫ π

−π

|en(x)|2 dx = 1

2π

∫ π

−π

1 dx = 1;

(en, em) = 1

2π

∫ π

−π

einx e−imx dx = 1

2π

∫ π

−π

ei(n−m)x dx

= 1

2π

∫ π

−π

d

dx

{
ei(n−m)x

i(n − m)

}
dx = ei(n−m)x

i(n − m)

∣∣∣∣∣
π

−π

= 0, n �= m. (9)

This discussion suggests that we try to write a periodic function f as a series by
the formal recipe

f (x) =
∞∑

n=−∞
f̂ (n) einx , (10)

where the coefficients are

f̂ (n) = ( f, en) = 1

2π

∫ π

−π

f (y) e−iny dy, n ∈ ZZ. (11)

(We use y as the variable of integration here to distinguish it from the variable x
in (10).)

Expressions equivalent to (10 and (11) were first proposed by Fourier in his study
of heat flow and are now called the Fourier series and Fourier coefficients of the
function f . In the rest of this chapter we study the validity of (10).

13B. Fourier Coefficients of Integrable and Square-Integrable
Periodic Functions

The necessary and sufficient condition for all the integrals (11) to exist is that
the function f be integrable on the period interval I = [−π.π ). We say that a
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measurable complex-valued function f on R is an integrable periodic function if
it satisfies f (x + 2π ) = f (x) a.e. and its restriction to I is integrable.

Definition. The Fourier coefficients of an integrable periodic function f are the
complex numbers f̂ (n) defined by the integrals (11).

The L1 norm of an integrable periodic function will be taken to be

|| f ||1 = 1

2π

∫ π

−π

∣∣ f (x)
∣∣ dx . (12)

Similarly, the L2 norm of a square-integrable periodic function will be determined
from

|| f ||2 = ( f, f ) = 1

2π

∫ π

−π

∣∣ f (x)
∣∣2

dx . (13)

(These conflict with the notation in Chapter 12, but we can live with the conflict.)
The relation between these function spaces and norms is as follows.

Lemma 13.1. An L2-periodic function is an integrable periodic function, and

|| f ||1 ≤ || f ||. (14)

Proof: The function | f | is also L2-periodic. We take its inner product with the
constant function e0 and use the Cauchy-Schwarz inequality to obtain

|| f ||1 = (| f |, e0) ≤ || f || · ||e0|| = || f ||. �

The propositions in this section list some of the most important properties of the
Fourier coefficients of a function.

Proposition 13.2. Suppose that f is an integrable periodic function. Then

| f̂ (n)| ≤ || f ||1, all n ∈ ZZ. (15)

Proof: Inequality (15) is immediate from the definition of f̂ (n) and the fact that
|en| ≡ 1. �

Proposition 13.3. Suppose that f is an integrable periodic function. Given a in
IR, let fa be the translate: fa(x) = f (x − a). Then

f̂ a(n) = e−ina f̂ (n), for all n ∈ ZZ. (16)
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Proof: The identity (16) is left as an exercise. The proof uses the fact that, for a
periodic function, the integral over any interval of length 2π is the same:∫ b+2π

b
g(x)dx = 1

2π

∫ π

−π

g(x)dx if g is periodic. (17)

This identity is also left as an exercise. �

Proposition 13.4. Suppose that f is a continuous periodic function with continuous
derivative f ′. Then

f̂ ′(n) = i n f̂ (n), all n ∈ ZZ. (18)

Proof: The identity (18) is left as an exercise. �

Proposition 13.5. The Riemann-Lebesgue Lemma. If f is an integrable peri-
odic function, then

lim
|n|→∞

f̂ (n) = 0. (19)

Proof: It is enough to prove the result for continuous functions, since for any ε >

0 we can choose a continuous periodic g with || f − g||1 < ε. By Proposition 13.2
(and the additivity of integration), the Fourier coefficients of f and g differ by less
than ε, so the f̂ (n)’s are eventually less than ε in modulus if the ĝ(n) approach 0.

If g is continuous, we may use Proposition 13.3 to estimate ĝ(n) for n �= 0. In
fact, choose a = π/n, so e−ina = −1. Then

|2ĝ(n)| = |̂g(n) − ĝa(n)| ≤ 1

2π

∫ π

−π

∣∣g(x) − g(x − a)
∣∣ dx, a = a(n) = π

n
.

As |n| tends to ∞, the corresponding a = a(n) tends to 0, so the last integrand
approaches 0 uniformly. �

To visualize the reason that the Fourier coefficients of a continuous function
approach zero, look at the real and imaginary parts of einx , cos nx and sin nx .
These functions oscillate more and more rapidly. We multiply by a fixed continuous
function and integrate; since the function is continuous, it is nearly constant over
adjacent pairs of intervals of length π/|n| while each of cos nx and sin nx have
opposite signs on such adjacent intervals. Therefore, the integrals over two adjacent
intervals nearly cancel. It is plausible – and true – that the sum of all the integrals
over subintervals is itself small when |n| is large.

For the proof of the final result in this section, we introduce the partial sums of
the Fourier series. If f is an integrable periodic function and N is a nonnegative
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integer, we define the function SN f as a partial sum of the Fourier series:

SN f (x) =
N∑

n=−N

f̂ (n) einx . (20)

Proposition 13.6. Bessel’s inequality. If f is an L2-periodic function, then

+∞∑
−∞

∣∣ f̂ (n)
∣∣2 ≤ || f ||2. (21)

(We shall see later that there is actually equality in (21).)

Proof: Let g = f − SN f , so that f = SN f + g. A direct computation of the
inner products shows that (g, en) = 0, for |n| ≤ N . It follows from this that
(g, SN f ) = 0 = (SN f, g). Therefore, using the properties of the inner product,
we have

|| f ||2 = ||SN f + g||2 = (SN f + g, SN f + g)

= ||SN f ||2 + (SN f, g) + (g, SN f ) + ||g||2
= ||SN f ||2 + ||g||2 ≥ ||SN f ||2. (22)

In the same way, the orthonormality of the en implies that

||SN f ||2 =
N∑

−N

| f̂ (n)|2. (23)

Taken together, (22) and (23) imply that the partial sums of the series in (21) are
bounded by || f ||2. �

Remark. It is worth noting explicitly one consequence of (21) or (22):

||SN f || ≤ || f ||. (24)

Exercises

1. Compute the Fourier coefficients of the function f when it has the following forms on
the interval (−π, π ):

f (x) = x ;(a)

f (x) = |x |;(b)

f (x) = x2;(c)

f (x) =
{

−1, x ∈ [−π, 0)

1, x ∈ [0, π ).
(d)
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2. Suppose that f is a finite sum
∑n

−N cneinx .
(a) Prove that f̂ (n) = cn .
(b) Show that f can be written in the form

f (x) = 1

2
a0 +

N∑
n=1

[an cos nx + bn sin nx].

(c) Relate an, bn to cn and also express them as integrals.
(d) Show that f is real if and only if all an, bn are real.
(e) Show that f is even, that is, f (−x) = f (x), if and only if all bn = 0.
(f) Show that f is odd, that is, f (−x) = − f (x), if and only if all an = 0.

3. Suppose that the sequence of functions fn = ∑n
k=−n aneinx converges in L1(−π, π ) to

the integrable periodic function f . Show that

|n| ≥ |m| ⇒ f̂ n(m) = f̂ (m).

4. Find a function f whose Fourier coefficients are

f̂ (n) = 0, n < 0; f̂ (n) = 2−n, n > 0.

Be as explicit as possible.
5. Suppose that a is complex and |a| < 1. Find the Fourier coefficients of the functions

1

1 − aeix
,(a)

1

1 − aei2x
,(b)

∞∑
n=1

an sin(2n x).(c)

6. (a) Prove the identity (17) for continuous periodic functions.
(b) Prove (17) for arbitrary integrable periodic f .

7. Prove (16).
8. Prove (18).
9. Suppose that f is periodic and satisfies the strong continuity condition (Hölder condi-

tion): For some positive constants C and α with α < 1,

| f (x + h) − f (x)| ≤ C |h|α, for all x, y.

Show that the Fourier coefficients satisfy, for some constant C ′,

| f̂ (n)| ≤ C ′|n|−α, n = ±1, ±2, . . . .

13C. Dirichlet’s Theorem

The most straightforward question about representing a function f as the sum of
its Fourier series is, when is the representation (10) valid at a given point x? This
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is a surprisingly difficult question. There are continuous periodic functions whose
Fourier series diverge at some point. In 1926, Kolmogorov gave an example of an
integrable periodic function whose Fourier series diverges a.e. On the other hand,
if f is periodic and has a continuous derivative, then (10) is valid at every point.
This is a consequence of Dirichlet’s Theorem, which is proved in this section.

As a first step, we combine equation (20) for SN f with the integral expression
for the Fourier coefficients, in order to write SN f as an integral. On the way we use
the additivity of the integral and the addition formula for the exponential function:

SN f (x) =
N∑

n=−N

f̂ (n) einx

=
N∑

n=−N

einx

2π

∫ π

−π

f (y) e−iny dy

= 1

2π

∫ π

−π

{
N∑

n=−N

ein(x−y)

}
f (y) dy. (25)

The next step is to evaluate the sum; for convenience, we replace x − y by x . Note
that einx = (eix )n , so that the sum is a geometric progression. As long as einx �= 1,
the sum is

N∑
n=−N

einx = e−i N x
2N∑
n=0

(einx )n

= e−i N x ei(2N+1)x − 1

eix − 1

= e−i x/2

e−i x/2
· ei(N+1)x − e−i N x

eix − 1

= ei(N+ 1
2 )x − e−i(N+ 1

2 )x

eix/2 − e−i x/2

= sin
([

N + 1
2

]
x
)

sin 1
2 x

. (26)

(The last step follows from the identity eiy − e−iy = 2i sin y.) See Figure 8.

Proposition 13.7. Suppose that f is periodic and integrable. Then the partial sum
SN f of its Fourier series is given by the integral

1

2π

∫ π

−π

DN (x − y) f (y) dy = 1

2π

∫ π

−π

DN (y) f (x − y) dy, (27)
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Figure 8. Dirichlet kernel for N = 4 and N = 12.

where DN is the Dirichlet kernel

DN (x) = sin
(
[N + 1

2 ]x
)

sin 1
2 x

=
N∑

n=−N

einx . (28)

(The terminology comes from integral equations. The transformation that takes
a function f to a new function T f defined by

T f (x) =
∫

K (x, y) f (y) dy

is said to be an integral transformation with kernel K.)

Proof: The preceding arguments show that SN f is given by the integral on the
left in (28). The fact that the two integrals are equal follows from a change of
variable in the integral (take y = x − y′) together with (17) to return to the original
interval I . �
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One basic property of the Dirichlet kernel is

1

2π

∫ π

−π

DN (y) dy = 1. (29)

In fact the integral here is the inner product (DN , 1); write DN as a sum of expo-
nentials to see that (29) follows from the orthonormality properties (9).

Theorem 13.8: Dirichlet’s Theorem. Suppose that f is an integrable periodic
function that is differentiable at a point x0. Then

lim
N→∞

SN f (x0) = f (x0). (30)

Proof: We use (29) to rewrite SN (x0) − f (x0) as an integral:

SN (x0) − f (x0) = 1

2π

∫ π

−π

DN (y) f (x0 − y) dy − f (x0)

2π

∫ π

−π

DN (y) dy

= 1

2π

∫ π

−π

DN (y)[ f (x0 − y) − f (x0)]

= 1

2π

∫ π

−π

sin
([

N + 1
2

]
x
)

g(y) dy, (31)

where

g(y) = f (x0 − y) − f (x0)

y
· y

sin 1
2 y

.

By the assumptions on f , the first factor is bounded near 0 and integrable on the
interval I . The second factor is bounded on I . Therefore g is integrable on I . It
follows that the difference (31) has limit 0 as N tends to infinity. In fact, we may
either adapt the proof of the Riemann-Lebesgue Lemma to the last integral in (31)
as it stands, or else extend g to vanish on the rest of the interval (−2π, 2π ), extend
the integral to this larger integral, and change variables to obtain

1

2π

∫ π

−π

sin[2N + 1]y
) g(y/2)

2
dy = 1

2i
[̂h(2N + 1) − ĥ(−2N − 1)], (32)

where h(x) = g(x/2)/2. Therefore (30) follows from the Riemann-Lebesgue
Lemma applied to h. �

Remark. It is clear from the proof that instead of differentiability at x0, we only
need to assume that the difference quotient

f (x) − f (x0)

x − x0

is integrable on I . This allows some cusps, such as for f (x) = √|x | on I , x0 = 0.
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Exercises

1. (a) Let f (x) = |x | on [−π, π ). Evaluate the Fourier series at x = 0 to find

∞∑
n=0

1

(2n + 1)2
.

(b) Deduce from this the value of
∑∞

n=1 1/n2.

2. Let f (x) = x2. Evaluate the Fourier series at x = π to find
∑∞

n=1 1/n2.

3. Compute the Fourier coefficients of f (x) = eax , assuming that a is positive, and prove
the identity

1 = sinh πa

πa

(
1 + 2

∞∑
n=1

(−1)n a2

n2 + a2

)
.

4. Compute the Fourier coefficients of f (x) = eiax , assuming that 0 < a < 1, and find a
representation of sec(πa) as a sum.

13D. Fejér’s Theorem

Although the partial sums SN f need not converge to f even when f is continuous,
the situation is much better if one takes averages instead. According to Exercise 3 of
Section 3D, the arithmetic means of a convergent sequence necessarily converge.
On the other hand, even a nonconvergent sequence like xn = (−1)n can have a
convergent sequence of arithmetic means. This leads us to look at the arithmetic
means of the Fourier series of an integrable periodic function f :

TN f = S0 f + S1 f + . . . + SN−1 f

N
. (33)

As we did for SN f , we can express this as an integral:

TN f (x) = 1

2π

∫ π

−π

FN (x − y) f (y) dy = 1

2π

∫ π

−π

FN (y) f (x − y) dy, (34)

where the Fejér kernel is

FN (x) = 1

N

N−1∑
n=0

Dn(x)

= 1

N sin 1
2 x

N−1∑
n=0

sin
(
n + 1

2

)
x

= 1

N sin 1
2 x

N−1∑
n=0

ei
(

n+ 1
2

)
x − e−i

(
n+ 1

2

)
x

2i
. (35)
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Once again we can write the sums as geometric progressions and evaluate, for
eix �= 1:

N−1∑
n=0

ei(n+ 1
2 )x − e−i(n+ 1

2 )x

2i
= eix/2

2i

N−1∑
n=0

einx − e−i x/2

2i

N−1∑
n=0

e−inx

= eix/2

2i

ei N x − 1

eix
− e−i x/2

2i

e−i N x − 1

e−i x

= ei N x − 1

2i(eix/2 − e−i x/2)
− e−i N x − 1

2i(e−i x/2 − eix/2)

= ei N x − 2 + e−i N x

(2i)2 sin 1
2 x

=
(
ei

N
2 x − e−i

N
2 x)2

(2i)2 sin 1
2 x

= (2i)2 sin2 N
2 x

(2i)2 sin 1
2 x

. (36)

Combining (35) and (36), we obtain

FN (x) = sin2 N
2 x

N sin2 1
2 x

. (37)

See Figure 9.

Proposition 13.9. The Fejér kernel FN has the properties

FN (x) ≥ 0;(i)
1

2π

∫ π

−π

FN (x) dx = 1;(ii)

lim
N→∞

∫
δ<|x |<π

FN (x) dx = 0 if 0 < δ < π.(iii)

Proof: Property (i) is obvious from (37). Property (ii) follows from the corre-
sponding property (29) of the Dirichlet kernel. Finally, since sin2 1

2 x increases as x
goes away from the origin in (−π, π ), it follows that

FN (x) ≤ 1

N sin2 δ
2

, δ ≤ |x | ≤ π,

and property (iii) follows. �
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Figure 9. Fejer kernel for N = 4 and N = 12.

Theorem 13.10: Fejér’s Theorem. If f is continuous and periodic, then the av-
erages TN f of the partial sums of the Fourier series of f converge uniformly to f.

Proof: According to Proposition 13.6 and the definition of FN ,

TN f (x) = 1

2π

∫ π

−π

FN (y) f (x − y) dy. (38)

As in the proof of Dirichlet’s Theorem, we may take advantage of property (i) in
Proposition 13.7 to write

TN f (x) − f (x) = 1

2π

∫ π

−π

FN (y)
[

f (x − y) − f (x)
]

dy

= 1

2π

∫
|x |<δ

FN (y)
[

f (x − y) − f (x)
]

dy

+ 1

2π

∫
δ<|x |<π

FN (y)
[

f (x − y) − f (x)
]

dy (39)
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for any choice 0 < δ < π . Properties (i) and (ii) of FN imply that the first of the
two integrals in the last line of (39) has modulus bounded by

1

2π
· sup

{| f (x − y) − f (x)| : |y| < δ
}
. (40)

A continuous periodic function is uniformly continuous (why?), so given ε > 0 we
may fix δ so small that the bound (40) is < ε/2, for all N . The modulus of the
second integral is bounded by

1

2π
· 2 sup

{| f (y)|} ·
∫

δ<|y|<π

FN (y) dy. (41)

Property (3) implies that for all large N , the bound (41) is < ε/2. �

Exercises

1. Suppose that f and g are continuous periodic functions.
(a) Show that f is even if and only if, for each n, f̂ (−n) = f̂ (n).
(b) Show that f is odd if and only if, for each n, f̂ (−n) = − f̂ (n).

(c) Show that g(x) = f (x) a.e. if and only if, for each n, ĝ(n) = f̂ (−n).
2. Suppose that f : IR → IR is continuous and periodic. Suppose that

1

2π

∫ π

−π

f (x) sin(nx) dx = 0 = 1

2π

∫ π

−π

f (x) cos(nx) dx, n = 0, 1, 2, . . . .

Prove that f is identically zero. (For a considerably more general result, see Exercise 1
of Section 13E.)

13E. The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem that was proved in Section 7D is one of
two results that commonly go by that name. The other refers specifically to the
approximation of a continuous periodic function by the simplest kind of periodic
functions, the trigonometric polynomials.

A trigonometric polynomial of degree N is a linear combination of the functions
{en : |n| ≤ N }. The name is justified by the identity einx = (cos x + i sin x)n , which
shows that a trigonometric polynomial of degree N is a polynomial of degree N in
the functions cos x and sin x .

Theorem 13.11: The Weierstrass Approximation Theorem. Any continuous
periodic function f can be approximated uniformly by trigonometric polynomials.
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Figure 10. T11 f for the function f (x) = |x | on [−1, 1).

Proof: This is an immediate consequence of Fejér’s Theorem, because the func-
tions TN are trigonometric polynomials. �

See Figure 10.

Remarks. 1. Theorem 13.11 predates Theorem 13.10. In fact, Weierstrass recog-
nized that the properties (i), (ii), and (iii) listed in the last section imply uniform
convergence, as in the proof of Theorem 13.10. He constructed a different se-
quence KN of trigonometric polynomials that have the same three properties. (See
Exercise 4, Section 13H.)

2. The Weierstrass Polynomial Approximation Theorem proved in Section 7D
can be derived easily from Theorem 13.11. In fact, suppose that g is continuous on an
interval [a, b]. By rescaling and translating, we may assume that −π < a < b < π .
Then there is a continuous periodic function f that agrees with g on [a, b]. It can
be approximated uniformly within a given ε/2 by a trigonometric polynomial.
The power series expansions of the exponentials en converge uniformly on [a, b],
so we may replace each exponential by a suitable Taylor polynomial and thus
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replace the trigonometric polynomial by an ordinary polynomial that approximates
it within ε/2 on the interval [a, b]. Thus we have approximated f within ε on this
interval.

Exercises

1. Suppose that f is an integrable periodic function and suppose that f̂ (n) = 0, all n. Prove
that f = 0 a.e.

2. Obtain the results in Exercise 1 of Section 13D for integrable periodic f and g.

13F. L2-Periodic Functions: The Riesz-Fischer Theorem

Fejér’s Theorem shows one kind of “mean convergence” of the partial sums SN f (x):
convergence of the arithmetic means. A second kind of mean convergence refers to
averaging with respect to x by integration. The discussion in Section 13A already
suggested that there is a close fit between Fourier series and the space L2(I ). The
next theorem spells that out in detail.

Theorem 13.12: The Riesz-Fischer Theorem. Suppose that f is an L2-periodic
function. Then the partial sums of its Fourier series converge to f in the sense of
L2(I ):

lim
N→∞

||SN f − f || = 0. (42)

Moreover, there is an equality (Parseval’s Identity):

∞∑
n=−∞

| f̂ (n)|2 = || f ||2. (43)

Conversely, suppose that (an)∞−∞ is a two-sided complex sequence that is square-
summable, that is,

∑ |an|2 < ∞. Then there is a unique function f in L2(I ) that
has the an’s as its Fourier coefficients.

Proof: If f is continuous, then Fejér’s Theorem shows that TN f converges to f
uniformly, so it converges in L2(I ). It follows that the SN f ’s must also converge to f
in L2(I ): See Exercise 9 of Section 12F. For general f in L2(I ), given ε > 0, choose
a continuous periodic g such that || f − g|| < ε. Then we use (24) to estimate

||SN f − f || ≤ ||SN ( f − g)|| + ||SN g − g|| + ||g − f ||
≤ || f − g|| + ||SN g − g|| + ||g − f || ≤ ||SN g − g|| + 2ε,
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which is < 3ε for large N . This proves (42). The identity (23), in combination with
(22), implies the identity

|| f ||2 = ||SN f ||2 + || f − SN f ||2 =
N∑

n=−N

| f̂ (n)|2 + || f − SN f ||2. (44)

The identity (43) is a consequence of (44) and (42),
Conversely, suppose that (an)∞−∞ is a square-summable sequence. Set

fN (x) =
N∑

n=−N

aneinx .

The orthonormality of the exponential functions en implies that, for M < N ,

|| fN − fM ||2 =
∑

M<|n|≤N

|an|2. (45)

By the assumption of square summability, the right side converges to zero as M, N
tend to ∞, so ( fN )∞0 is a Cauchy sequence in L2(I ). Let f be the limit. Orthonorma-
lity implies that ( fN , en) = an for all N ≥ |n|. This fact and the Cauchy-Schwarz
inequality imply

f̂ (n) = ( f, en) = lim
N→∞

( fN , en) = an. � (46)

As noted above, the Fourier partial sums SN f (x) do not necessarily converge
to f at a given point x , even if f is continuous. L. Carleson proved in l966 that
convergence occurs almost everywhere if f belongs to L2(I ) (and, therefore, if f
is continuous). The proof is quite difficult and technical.

The equality (43) is a special case of an equality for the inner product in the
Hilbert space L2(I ), also known as Parseval’s Identity.

Theorem 13.13. If f and g belong to L2(I ), then

( f, g) = lim
N→∞

N∑
n=−N

f̂ (n) ĝ(n), (47)

or, more succinctly, ( f, g) = ∑
f̂ (n)̂g(n).

Proof: Again, the Cauchy-Schwarz inequality and the orthonormality of the en’s
imply that

( f, g) = lim
N→∞

(SN f, SN g) = lim
N→∞

N∑
n=−N

f̂ (n)̂g(n). �
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Another way to look at the results in this section is in terms of standard models
of various spaces. The standard model of an n-dimensional complex inner product
space is the space ICn with standard inner product

(z, w) =
n∑

j=1

z j w̄ j .

Suppose that V is another n-dimensional complex inner product space and
{e1, . . . , en} is an orthonormal basis for V . Consider the linear transformation that
takes a vector v ∈ V to the vector whose entries are its coefficients a j = (v, ej) with
respect to the orthonormal basis. This linear transformation allows us to “identify”
V with ICn . (More formally, it is a unitary transformation: an isomorphism from V
to ICn that preserves the inner products.)

Here the role of a standard model of an infinite-dimensional (separable) complex
Hilbert space is taken by the space of two-sided complex sequences {an}∞−∞ that
are square-summable:

∞∑
n=−∞

|an|2 < ∞.

The inner product between two such sequences is defined to be
∞∑

n=−∞
anbn.

The Riesz-Fischer Theorem says that L2(I ) may be identified with this sequence
space by identifying a function f with its sequence of Fourier coefficients.

Exercises

1. Prove that for any f in L2(I ) and any N = 0, 1, 2, . . . , the partial sum SN f is the best
approximation to f in the subspace spanned by the functions {en : |n| ≤ N }.

2. Suppose that the sequence ( fn)∞n=1 converges to f in the space L1(I ). Prove that

lim
n→∞ f̂ n(k) = f̂ (k), all k ∈ ZZ.

3. Suppose that fn converges to f and gn converges to g in L2(I ). Prove that

lim
n→∞( fn, g) = ( f, g), lim

n→∞( fn, gn) = ( f, g).

4. Use Parseval’s Identity (43) and the functions f (x) = x and g(x) = x2 to compute
∞∑

n=1

1/n2,(a)

∞∑
n=1

1/n4.(b)
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13G. More Convergence

The Riesz-Fischer Theorem shows how to create a function in L2(I ) with appropri-
ate Fourier coefficients. The following theorem gives sufficient (but not necessary)
conditions on the Fourier coefficients of a continuous periodic function.

Theorem 13.14. Suppose that {an}∞−∞ is a complex sequence such that

∞∑
n=−∞

|an| < ∞.

Then the partial sums

fN (x) =
N∑

−N

ane2π inx

converge uniformly to a continuous periodic function f whose Fourier coefficients
are f̂ (n) = an.

Proof: Since the en’s have modulus 1, if M < N , then

| fN (x) − fM (x)| ≤
∑

M<|n|≤N

|an|,

and the right side tends to 0 as M, N → ∞ by the assumption. Therefore, the fN ’s
converge uniformly and it follows that the limit f is continuous; it is periodic since
the fN ’s are. The conclusion about the Fourier coefficients follows as in the last
part of Theorem 13.12, by taking limits. �

Lemma 13.15. Suppose that (an)+∞
−∞ is a complex sequence such that

∞∑
n=−∞

|nan|2 < ∞.

Then

∞∑
n=−∞

|an| < ∞.

Proof: We may assume that an = 0. By the discrete Cauchy-Schwarz inequality,( ∞∑
n=−∞

|an|
)2

≤
∞∑

n=−∞
|nan|2 · 2

∞∑
n=1

1

n2
. �
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Theorem 13.16. Suppose that f is continuous and periodic, and suppose that the
derivative f ′ exists and is continuous. Then SN f converges uniformly to f .

Proof: Use Exercise 4 of Section 13G and the preceding lemma. �

As a consequence of (the proof of) Fejér’s Theorem, we can obtain a useful result
on convergence of the Fourier series itself.

Theorem 13.17. Suppose that f is an integrable periodic function. Suppose that
f is continuous at the point x and suppose that the Fourier series of f converges
at the point x, that is, suppose that limN→∞ SN f (x) exists. Then this limit is equal
to f (x).

Sketch of proof: The argument, in the proof of Fejér’s Theorem for convergence
of TN f to f at the point x , goes through under these assumptions on f . The reason is
that the translates fa converge to f with respect to the L1 norm as a → 0 (Exercise 3
of Section 12C). If SN f (x) converges, then the averages TN f (x) converge to the
same limit (Exercise 3 of Section 3D), so limN→∞SN f (x) = f (x). �

We note here, without proof, a result concerning convergence when the function
is not assumed to be continuous.

Theorem 13.18: Lebesgue’s Theorem. If f is an integrable periodic function,
then limN→∞ TN f (x) = f (x) a.e.

Corollary 13.19. Suppose that f1 and f2 are integrable periodic functions. Then f1

and f2 have the same sequence of Fourier coefficients if and only if f1(x) = f2(x)
a.e.

Proof: Let f = f1 − f2. If f = 0 a.e., then f̂ (n) = 0, all n. Conversely, suppose
that f̂ (n) = 0, all n. One way to see that this implies that f = 0 a.e. is to note
that TN f ≡ 0 for every N and use Lebesgue’s Theorem. For another way, see
Exercise 1 of Section 13E. �

Exercises

1. Are any of the following sequences the Fourier coefficients of a continuous periodic
function? A continuously differentiable periodic function? An L2-periodic function?

(a) an = 1

1 + n2
. (b) bn = (−1)n

1 + |n| .

(c) cn = (−1)n

√
1 + |n| . (d) dn = 1

(1 + n2)2/3
.



P1: KaD

0521840724c13 CY492/Beals 0 521 84072 4 June 16, 2000 16:31 Char Count= 0

194 Fourier Series

2. Let f (x) = ∑∞
n=0 cos nx/(1 + n2).

(a) Show that f is continuous and periodic.
(b) Determine the Fourier coefficients of f .
(c) Prove or disprove: f has continuous first and second derivatives.

3. Show that for each r such that 0 ≤ r < 1, there is a function f whose Fourier coefficients
are f̂ (n) = 0 for n < 0 and f̂ (n) = rn for n ≥ 0. Calculate f .

4. Show that for each 0 ≤ r < 1, there is a function fr whose Fourier coefficients are
f̂ r (n) = r |n|. Show that

fr (x) = 1 − r2

1 + r2 − 2r cos 2πx
.

5. Suppose that f is continuous and periodic and that it has a continuous derivative.
(a) Show that there is a constant C such that

| f̂ (n)| ≤ C

|n| , n = ±1, ±2, . . . .

(b) Show that
∑+∞

−∞ n2| f̂ (n)|2 < ∞.

6. Suppose that f is an integrable periodic function whose Fourier coefficients satisfy∑+∞
−∞ n2| f̂ (n)|2 < ∞.

(a) Prove that there is a continuous function g such that f = g a.e.
(b) Prove that the derivatives (SN f )′ converge in L2(I ).

7. Suppose that f is continuous and periodic, and let F(x) = ∫ x
0 f (x)dx . Show that F

is periodic if and only if f̂ (0) = 0. If so, relate the Fourier coefficients of F to those
of f .

8. Suppose that f is periodic and has continuous derivatives of order ≤ k. Prove that there
is a constant C such that

| f̂ (n)| ≤ C

|n|k , n = ±1, ±2, . . . .

9. Suppose that f is an integrable periodic function, and suppose that for some constant
C and some nonnegative integer k the Fourier coefficients satisfy

| f̂ (n)| ≤ C

|n|k+2
, n = ±1, ±2, . . . .

Show that there is a function g such that g and its derivatives of order ≤ k are continuous,
and such that f = g a.e.

10. Suppose that f is periodic and both f and its derivative f ′ are bounded and are
continuous except at isolated points; suppose that at such a point x0 both the limit
from the left and the limit from the right exist:

f (x0−) = lim
x→x0,x>x0

f (x); f (x0+) = lim
x→x0,x>x0

f (x).

Show that the Fourier series at x0 converges to 1
2 [ f (x0−) + f (x0+)].
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13H∗. Convolution

The expressions for the partial Fourier sum SN f and its sequence of averages TN f
suggest an operation that assigns a periodic function to a pair of periodic functions f
and g: the convolution product, or simply convolution f ∗ g. Formally, it is defined
by

[ f ∗ g](x) = 1

2π

∫ π

−π

f (y) g(x − y)dy.

As in (7),

[ f ∗ g](x) = 1

2π

∫ π

−π

f (x − y) g(y)dy = [g ∗ f ](x).

This makes sense if one of the two periodic functions is continuous (or piecewise
continuous) and the other is integrable. In fact, it can be shown to be well defined
for a.e. x if we only assume that both f and g are integrable periodic functions. In
particular, we have, for any periodic f in L1(I ),

SN f = DN ∗ f = f ∗ DN , TN f = FN ∗ f = f ∗ FN ,

where DN is the Dirichlet kernel and FN is the Fejér kernel.
The Fejér kernel is one example of the important notion of an approximate

identity. A sequence (ϕn)∞n=1 of continuous periodic functions is said to be an
approximate identity if it satisfies the three conditions that we identified for (Fn)∞n=1:

ϕn ≥ 0;(i)
1

2π

∫ π

−π

ϕn(y)dy = 1, for all n ∈ IN;(ii)

lim
n→∞

[ ∫ −δ

−π

ϕn(y)dy +
∫ π

δ

ϕn(y)dy

]
= 0 for any fixed δ, 0 < δ < π.(iii)

As we noted in connection with the Weierstrass Approximation Theorem, the con-
clusion of Fejér’s Theorem, and its proof, remain valid for any approximate identity:
If f is a continuous periodic function, then f ∗ ϕn converges to f uniformly as
n → ∞.

Exercises

1. Suppose that f and g are continuous periodic functions.
(a) Show that the Fourier coefficients of the convolution f ∗ g = h satisfy

ĥ(k) = f̂ (k) ĝ(k), all k ∈ ZZ.

(b) Interpret this when g = DN , the Dirichlet kernel.
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(c) Show that this remains true if it is only assumed that f is integrable and g is square
integrable.

2. Suppose that (gn)∞n=1 is an approximate identity. Show that for each integer k,

|̂gn(k)| ≤ 1 and lim
n→∞ ĝn(k) = 1.

Check this with gN = FN , the Fejér kernel.
3. Use the preceding two exercises and Parseval’s Identity to show that if f is an L2-periodic

function and (gn)∞n=1 is an approximate identity, then

lim
n→∞ ||gn ∗ f − f || = 0.

4. Show that constants cn can be chosen so that the sequence of functions

g(x) = cn [1 + cos x]n, n = 0, 1, 2, . . . .

is an approximate identity. Compute the cn’s. (This leads to the original proof by
Weierstrass of his approximation theorem.)
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Applications of Fourier Series

In this chapter we analyze a famous phenomenon of Fourier expansions, touch on
a few of the many uses of Fourier series, and introduce the related topics of finite
Fourier expansions and the Fourier integral.

14A∗. The Gibbs Phenomenon

Although the Fourier series of a piecewise continuous function like the square-wave
function

f (x) =
{ −1, −π ≤ x < 0;

1, 0 ≤ x < π

converges at each point of continuity of f , by Dirichlet’s Theorem, it was noticed by
Wilbrahim and others, including J. W. Gibbs, that the partial sums SN f overshoot
for small positive x and undershoot for small negative x by an amount that tends
rapidly to a nonzero constant as N → ∞. See Figure 11.

We sketch here a precise analysis of this phenomenon and an evaluation of the
constant. Direct calculation shows that the Fourier coefficients of the square-wave
function f are

f̂ (2n) = 0; f̂ (2n + 1) = 2

i(2n + 1)π
.

Therefore,

S2n−1 f (x) = 4

π

[
sin x + sin 3x

3
+ · · · + sin(2n − 1)x

2n − 1

]

= 4

π

∫ x

0
[cos t + cos 3t + · · · + cos(2n − 1)t] dt

= 4

π

∫ x

0
Re

[
eit + ei3t + · · · + ei(2n−1)t

]
dt

197
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Figure 11. SN of the square wave function for N = 21.

= 4

π

∫ x

0
Re

[
ei2nt − 1

eit − e−i t

]
dt = 4

π

∫ x

0
Re

[
e−2nt − 1

2i sin t

]
dt

= 2

π

∫ x

0

sin 2nt

sin t
dt. (1)

We are interested in small positive x , so the last integral is approximately

2

π

∫ x

0

sin 2nt

t
dt = 2

π

∫ 2nx

0

sin s

s
ds.

The extrema of
∫ y

0 sin s ds/s for positive y occur at integer multiples of π , and since
the humps of the function being integrated decrease in size, and their signs alternate,
the maximum occurs at y = π . Therefore the maximum of (1) for 0 < x < 1/2 and
n large occurs near x = π/2n and has a value approximately equal to

2

π

∫ π

0

sin s

s
ds = 1.179 . . . .

In other words, the overshoot, in the limit, is nearly 18 percent.
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Exercises

1. Suppose that f is a piecewise continuous function as in Exercise 10 of Section 13G.
Discuss the behavior of SN f near a point of discontinuity of f for large N . Is there an
undershoot or overshoot to the right of the point? By how much, and why?

2. Do the arithmetic means TN f of the square-wave function (1) exhibit an overshoot?
Why, or why not?

14B∗. A Continuous, Nowhere Differentiable Function

Filling in the gaps of an idea of Riemann, Weierstrass distressed various nineteenth-
century mathematicians by producing a continuous, periodic, nowhere differen-
tiable function with a simple Fourier series representation. In fact, choose a in
(0, 1) and consider

f (x) =
∞∑
0

an cos(2nx) 0 < a < 1. (2)

This function is continuous, by Theorem 13.14.

Theorem 14.1. The function f of (2) is not differentiable at any point if a > 1/2.

(In fact, a modification of the argument below, using the square of the Fejér kernel,
shows that f is also nowhere differentiable if a = 1/2. The result was proved by
Weierstrass for a close to 1 and extended down to a = 1/2 by G. H. Hardy.)

Theorem 14.1 is a consequence of the following result.

Theorem 14.2. Suppose that g is periodic and continuous and suppose that the
Fourier coefficients ĝ(m) vanish unless m = ±2n for some integer n ≥ 0, and
ĝ(±2n) = a±

n . If g is differentiable at some point x0, then there is a constant C
such that

|a±
n | ≤ Cn2−n, n = 1, 2, 3, . . . . (3)

Proof: Translating g by x0 does not change the moduli of the Fourier coefficients
(Proposition 13.3), so we may assume that g is differentiable at 0. Subtracting a
constant from g changes only ĝ(0), so we may assume that g(0) = 0. These two
assumptions imply that, for some constant M0,

|g(x)| ≤ M0|x |, all x .

This in turn implies that, for some constant M ,

h(x) = |g(x)|
| sin2 1

2 x | ≤ M

|x | , all x ∈ (−π, π ), x �= 0. (4)
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Let us prove the inequality (3) for a+
n . The assumptions on the Fourier coefficients

imply that

(g, em) = 0, if 2n−1 < m < 2n+1 and m �= 2n; (g, e2n ) = a+
n .

This implies that, for the Fejér kernel FN ,

a+
n = (g, e2n FN ), N = 2n−1 1.

Using the form of the Fejér kernel (equation (37) of Chapter 13) and the inequalities
(4) and | sin t | ≤ |t |, we get

|a
nF′.∈7∈7 Tc
(|≤)T|
/F∞ ∞ T{
∈.′445 ′.7′∞ T=
′ Tc
(∞)T|
ET
∈6′.∈5 53∞.∈34 ∞3.∞5∞ -′.5′4 re
{
BT
∞′.9589 ′ ′ ∞′.9589 ∈6′.∈39∞ 5∈′.4∈′4 Tm
(∈)T|
/F7 ∞ T{
′.5 ′ T=
(≤)T|
/F4 ∞ T{
′.9757 ∈.′7∞ T=
(≥)T|
/F7 ∞ T{
7.67∞∈ ′ ′ 7.67∞∈ ∈87.∈∞69 54′.∞55Tm
(F)≤

−π sin

2N

2)

N |x | dx

≤
Nπ

∫ 1
N

4N 2|x | dx +
Nπ

∫
1
NF0.102 Tc
(dx)Tj
ET
400.53 497.994 12.438 -0.504 re
f
BT
/F3 1 Tf
10.9589 0 0 10.9589 400.5968 487.2408 Tm
0 Tc
(|)Tj
/F5 1 Tf
0.313 0 TD
(x)Tj
/F3 1 Tf
0.533 0 TD
(|)Tj
-14.7895 -2.2556 TD
(�)Tj
/F5 1 Tf
1.0927 0 TD
(M)Tj
/F1 1 Tf
7.6712 0 0 7.6712 268.9614 460.8777 Tm
(1)Tj
/F4 1 Tf
10.9589 0 0 10.9589 275.1213 477.9078m
(F)�

1

N
+ N

N

]
.

Since N = 2n−1, this gives the desired inequality. �

F[(Note)-344(that)-344(the)-344(proof)-343.9(did)-344(not)-344(use)-344(the)-344(full)-344(force)-344(of)-343.9(dif)25(ferentiability;)-344(it)-344(only)-344(used)]TJ
-0.9955 -1.2727 TD
[(boundedness,)-250(for)-250(some)]TJ
/F5 1 Tf
9.47 0 TD
(x)Tj
/F1 1 Tf
7.6712 0 0 7.6712 249.7843 394.1509m
(F)0F0.25 Tc
(,o)Tj
1 0 TD
(f)Tj
0.583 0 TD
0 Tc
[(the)-250(dif)25(ference)-250(quotient)]TJ
/F4 1 Tf
1.4137 -1.0515 TD
(
)Tj
0 -0.6 TD
(
)Tj
/F5 1 Tf
0.347 -0.25 TD
(g)Tj
/F1 1 Tf
0.538 0 TD
(()Tj
/F5 1 Tf
0.36 0 TD
(x)Tj
/F1 1 Tf
0.533 0 TD
())Tj
/F3 1 Tf
0.5552 0 TD
(ä)Tj
/F5 1 Tf
1.0243 0 TD
(g)Tj
/F1 1 Tf
0.538 0 TD
(()Tj
/F5 1 Tf
0.36 0 TD
(x)Tj
/F1 1 Tf
7.6712 0 0 7.6712 338.7776 373.313 
(F)0
∣∣

|x − x | .

Exercise

F[(1.)-460(Let)]TJ
/F5 1 Tf
3.109 0 TD
(f)Tj
/F1 1 Tf
0.8341 0 TD
[(be)-347.1(the)-347(W)80(eierstrass)-347.1(function)-347((2).)-347.1(Pro)15(v)15(e)-347(that)-347.1(if)]TJ
/F5 1 Tf
18.6874 0 TD
(a)Tj
/F3 1 Tf
0.8258 0 TD
(=)Tj
/F1 1 Tf
1.0578 0 TD
(2)Tj
/F3 1 Tf
6.9738 0 0 6.9738 390.0264 318.811Tm
(F)äα
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In other words, this confirms the intuitive feeling that, among curves of a given
length, the circle encloses the largest total area.

The first step of the proof is to assume that the curve is oriented so that A lies to
the left; then, by Green’s Theorem,∫

γ

xdy − ydx =
∫ ∫

A

[
∂

∂x
x − ∂

∂y
(−y)

]
dxdy = 2

∫ ∫
A

dxdy = 2 area (A).

(5)
Next, we may assume that the curve is parameterized by arc length, so that

γ (t) = (
x(t), y(t)

)
, 0 ≤ t ≤ π ; [x ′(t)]2 + [y′(t)]2 = 1. (6)

Then x and y may be considered as periodic functions with Fourier coefficients

x̂(n) = an, ŷ(n) = bn.

We interpret the line integrals in (5) as an inner products and use the expression
of an inner product in terms of Fourier coefficients (equation (47) of Chapter 13)
and the relation of the Fourier coefficients of a function to those of its derivative
(equation (18) of Chapter 13) to obtain∫

γ

xdy − ydx =
∫ 2π

0

[
x(t)y′(t) − x ′(t)y(t)

]
dt = 2π

[
(y′, x) − (x ′, y)

]
= 2π

∞∑
n=−∞

in[bnan − anbn]. (7)

Using (5), (7), and the elementary inequality |bā − ab̄| ≤ 2|ab| ≤ |a|2 + |b|2, we
obtain

2 area(A) ≤
∞∑

n=−∞
2π |n|(|an|2 + |bn|2

) ≤
∞∑

n=−∞
2πn2

(|an|2 + |bn|2
)
,

with strict inequality unless an = bn = 0 for all |n| > 1. Now we make use of the
identity for the derivatives in (6) to see that

1 = (x ′, x ′) + (y′, y′) =
∞∑

n=−∞
n2

(|an|2 + |bn|2
)
. (8)

Combining (7) and (8), we get

2 area (A) ≤ 2π,

with strict inequality unless an = bn = 0 for all |n| > 1. Since the functions x, y
are real, equality implies that x ′ and y′ are linear combinations of cos t and sin t . If
we choose as our starting point t = 0, the point where x is maximal, it follows that
x ′(0) = 0 and x ′′(0) < 0 and thus x ′(t) = − sin t . Then, since (x ′)2 + (y′)2 ≡ 1, it
follows that y′(t) = ± cos t , and the curve is a circle.
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14D∗. Weyl’s Equidistribution Theorem

Let [x] denote the integer part of the real number x , that is, the unique integer m such
that m ≤ x < m + 1. Let {x} denote the fractional part: {x} = x − [x] ∈ [0, 1). If
x is rational, then the fractional parts of its integer multiples, {nx}, take only finitely
many distinct values. Conversely, if x is not rational, then it is easy to see that the
{nx}’s take infinitely many values; in fact, no two are the same. Kronecker showed
that for irrational x these values are dense in the interval [0, 1), that is, each open
subinterval contains {nx} for some integer n (and therefore for infinitely many
choices of n). One can ask for more information: On average, over the long run,
what fraction of the values lie in a given subinterval (a, b)? If we denote the number
of elements in a finite set A by card(A), the question is, does the limit

lim
N→∞

1

2N + 1
card

{
n : |n| ≤ N and {nx} in (a, b)

}
, (9)

exist and, if so, what is it? A two-sided sequence in the interval [0, 1) is said to
be equidistributed if the corresponding limit exists and is equal to b − a for every
subinterval (a, b). In other words, for an equidistributed sequence, in the long run
the likelihood of its lying in a given subinterval is equal to its length. Weyl showed
that for any irrational x the sequence with xn = {nx} is equidistributed. Here is a
sketch of the proof.

First, we rewrite the quantity in (9), using the indicator function 1A of the interval
A = (a, b); then this quantity is

1

2N + 1

N∑
n=−N

1A(xn).

Note the resemblance to a Riemann sum. The equidistribution property can be
written

lim
N→∞

1

2N + 1

N∑
n=−N

1A(xn) =
∫ 1

0
1A(y)dy. (10)

If (10) is true for each subinterval A of [0, 1), then it extends to linear combinations,
that is, to step functions f :

lim
N→∞

1

2N + 1

N∑
n=−N

f (xn) =
∫ 1

0
f (y)dy. (11)

If (11) is true for all step functions f , then an approximation argument shows that
it is also true for all continuous functions, and in particular for all trigonometric
polynomials scaled to have period 1.
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Weyl’s idea was to reverse this line of reasoning: If (11) is true for all such
trigonometric polynomials, then the Weierstrass Approximation Theorem shows
that it is true for all continuous functions, and a further approximation argument
extends the validity to indicator functions of intervals. Thus one obtains the desired
identity (10).

By linearity, (11) holds for trigonometric polynomials if it holds for the scaled
exponentials en(2πx). For f = e0, both sides of (11) equal 1. For f (x) = en(2πx),
n �= 0, the right side of (11) is 0. Thus the task is simply to show that in this case
the left side is also 0. But

en(2πxn) = ei2πxn = exp(i2π{nx}) = exp(i2πnx) = αn, α = ei2πx .

Since x is assumed irrational, it follows that αn �= 1 for n �= 0. Therefore,

1

2N + 1

N∑
n=−N

en(2πxn) = 1

2N + 1

αN+1 − α−N

α − 1

and powers of α have modulus 1, so the limit is 0.
An analogous result with an analogous proof holds for several reals: If x1,

x2, . . . , xr are irrational real numbers that are linearly independent over the ra-
tionals, then the fractional parts of integral linear combinations

{n1x1 + n2x2 + · · · + nr xr }, n1, n2, . . . , nr ∈ ZZ (12)

are dense in [0, 1). One consequence is that irrational flows on a torus are “ergodic.”

Exercises

1. Prove that if (11) is true for each continuous f , then (10) is true for every subinterval A
of [0, 1).

2. Formulate and prove the analogous equidistribution result for the fractional parts (12).

14E∗. Strings

Historically, a direct antecedent to the idea of Fourier analysis was the analysis,
by D’Alembert and Euler in the mid-eighteenth century, of the vibrating string
problem. A string, say of length π , is stretched between two fixed points and is set
moving by plucking, striking, or bowing. The problem is to describe mathematically
the subsequent motion. If the motion is assumed to be in the vertical plane through
the fixed ends that are at the same height, then the state of the string at time t is
given by the function u(x, t) that is the vertical displacement of the string above the
rest position at distance x from the left endpoint. In particular, the fixed endpoints
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imply the boundary conditions

u(0, t) = u(π, t) = 0, all t. (13)

The equation of motion of the string is given by Newton’s general law: Mass
times acceleration equals force. For a taut string one may essentially ignore gravity
and take the force to result from the tension, which for small displacements is
proportional, at a point on the string, to the amount the string curves at that point –
in other words, to the second partial derivative with respect to x . The acceleration
is the second time derivative. Thus, for small displacements and ignoring friction,
the equation of motion has the form

∂2u

∂t2
= c2 ∂2u

∂x2
, (14)

where c is a constant that depends on density and tension. If the string is set in
motion at time t = 0, then (2) should hold for t > 0 and 0 < x < 1. To complete
the mathematical description of the problem, one should give the initial conditions,
which in this case are the initial configuration and the initial state of motion

u(x, 0) = f (x),
∂u

∂t
(x, 0) = g(x), (15)

where f and g are known functions; for example, g = 0 means the string was held
in position f and then released, while f = 0 means that a string at rest was given
an initial impetus g.

Our strategy is to assume that there is a solution and find a good way to analyze
it. Suppose that we were trying to solve an ordinary differential equation,

d2u

dt2
(t) = c2 Au(t), (16)

where u takes values in a vector space V and A is a linear transformation, A : V →
V . If the matrix of A with respect to some basis is diagonal, then with respect to that
basis equation (14) becomes a collection of simple scalar equations. The matrix of
A with respect to a basis is diagonal if and only if each of the basis elements is an
eigenvector of A: a nonzero vector v such that Av = λv for some scalar λ.

We can consider (14) to be in the form (16) if we take V to be a space of
functions on the interval (0, π ) and take A to be the operator d2/dx2, which is
indeed linear. Thus we would like to find a basis for our function space consisting
of the eigenfunctions of d2/dx2: nonzero solutions v of

d2v

dx2
(x) = λ2v(x), x ∈ (0, 1). (17)
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Because of (13) we want also to impose the conditions

v(0) = v(π ) = 0. (18)

The solutions of (17) for λ = 0 have the form ax + b, but (18) implies a = b = 0.
Otherwise, the solutions necessarily have the form

v(x) = aeλx + be−λx

(see the next chapter) and (18) implies that a + b = 0 and aeλ + be−λ = 0. Together
these conditions imply that λ = inπ and v is a multiple of sin nx . Thus we are led
to try to expand u in the form

u(x, t) =
∞∑

n=1

an(t) sin nx . (19)

We can deduce that such an expansion exists, under the assumption that u is square
integrable with respect to x for each fixed t , by the following argument. Any
function in L2((0, π )) can be extended so as to be an odd function on the interval
(−π, π ) and then can be extended to be be periodic with period 2π . Such functions
can be expanded in Fourier series using the exponentials en , or, equivalently, the
trigonometric functions cos nx , sin nx . Since we have taken our functions to be
odd, only the sine functions play a role.

We differentiate both sides of (19) twice with respect to t (we simply assume
that the right side can be differentiated term by term) and equate coefficients to see
that the differential equation (14) leads to the equations

a′′
n (t) = −n2c2an(t), (20)

whose solutions can be written as

an(t) = bn cos nct + cn sin nct . (21)

Putting (19) and (21) together, we find (formally) the most general form of the
solution to (13), (14). The conditions (15) determine the constants bn and cn . In
fact, extend f and g to be odd; then the bn’s are the coefficients of the sine expansion
of f and the cn’s are multiples of the coefficients of the sine expansion of g.

Special solutions of the vibrating string problem can be obtained by taking a
single term,

un(x, t) = cos nct sin nx . (22)

These solutions are called standing-wave solutions; un moves back and forth be-
tween extreme positions as t varies; it has period 2π/nc and frequency (number
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of complete oscillations per unit time) equal to nc/2π . Thus the characteristic fre-
quencies are the positive integer multiples of the lowest, or fundamental, frequency.

A little thought shows that the part of the solution associated to (21) can be
written in a way that shows a closer connection to (22). In fact, take (rn, ncθn) to
be polar coordinates for (bn, cn), so that (21) becomes

rn[ cos nct cos ncθn + sin nct sin ncθn] = rn cos(nct − ncθn).

Combining this with (22) and (16), we get

u(x, t) =
∞∑

n=1

rnun(x, t − θn),

a sum of standing waves with time shifts.
So far we have shown that the solution of the problem (13), (14), (15) can be

expressed as a sum of standing-wave solutions. Another look at the formulas shows
that it can also be expressed as a sum of two traveling-wave solutions. In fact, the
trigonometric identities

2 cos nct sin nx = sin n(x − ct) + sin n(x + ct),

2 sin nct sin nx = cos n(x − ct) − cos n(x + ct)

(which are easily obtained by using the complex exponential expressions) imply
that the sum (19), (21) can be reorganized into the form

u(x, t) = f1(x − ct) + f2(x + ct) (23)

for suitable functions f1 and f2, periodic with period 2π .
This last expression could have been arrived at much more directly and leads

to a different approach to the whole problem (13)–(15). In fact, we can factor the
differential operator that appears in (14):

∂2

∂t2
− c2 ∂2

∂x2
=

(
∂

∂t
− c

∂

∂x

) (
∂

∂t
+ c

∂

∂x

)
=

(
∂

∂t
+ c

∂

∂x

) (
∂

∂t
− c

∂

∂x

)
.

This factorization leads to the decomposition (23) of solutions of the differential
equations (14). The functions f1 and f2 should then be chosen so that the boundary
conditions (13) and initial conditions (15) are satisfied; see Exercise 2.

In light of the relative simplicity of this second method of attack on the problem
(13)–(15), the reader may wonder why we bothered with the first method. One
answer is that the first method, and variants of it, apply to a much wider class of
problems than does the second method. A second answer is that the standing-wave
solutions (22) and the characteristic frequencies nc/2π are important features of
the problem. In fact, the ear – or any physical detector – can detect frequencies only
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over a finite range, which means that only certain partial sums in (19) can actually
be detected.

Exercises

1. Given a string, we can vary either the tension, which changes the constant c, or the length.
Find the standing-wave solutions for a string of length L and discuss the effect of lowering
the tension or lengthening the string on the sequence of characteristic frequencies.

2. Relate the functions f1 and f2 in (23) to the functions f and g in (15), after extending
f and g to be odd with period 2π .

3. The heat equation or diffusion equation in one space dimension is

∂u

∂t
(x, t) = κ

∂2u

∂x2
(x, t), κ a positive constant.

(This describes the temperature of a wire in an insulating medium. The length unit
has been chosen so that the wire has length 2π and κ is the coefficient of thermal
conductivity.) If we assume that the ends of the wire are joined, that is, that it forms a
closed curve, then it is appropriate to think of u as being a periodic function of x .

Discuss the solution of this equation for u periodic in x and t > 0, given the value of
u(x, 0):
(a) Write the solution as a convolution.
(b) Find the limit of u as t → ∞.

4. Discuss the temperature of a wire of length 2π in an insulating medium if the initial
temperature distribution is known and the ends of the wire are kept at a fixed temperature;
here we have dropped the assumption that the wire forms a closed curve.

14F∗. Woodwinds

Guitars, zithers, and the like are not the only instruments that can be analyzed
using Fourier series. For woodwinds, the results have some similarities and some
differences. We begin with the flute. The sound is produced by the vibrations of
a cylindrical column of air. Small vibrations turn out to be governed by the same
equation as for the vibrating string, (14); here we take u(x, t) to be the difference
between the pressure at time t and at distance x along the column and the ambient
pressure in the room. (Pressure is essentially constant across the cross section of
the column). The column is set into motion by blowing across an open hole, and the
length of the vibrating column is essentially the distance to the next open hole, or
to the open end of the instrument if no other hole is open. At the open holes, or the
end, the pressure is the same as the ambient pressure, so boundary conditions (13)
are appropriate if the length is taken to be π . Then the standing-wave solutions and
the characteristic frequencies are the positive integer multiples of the fundamental
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frequency. One effect of this is that if the flute is blown to produce a fundamental
tone C , and then is blown rather harder with the same fingering, the note produced
is C ′, an octave higher (twice the frequency).

Now consider a clarinet. Playing the same game, one goes from a fundamental
tone of C to G ′, the fifth above the octave C ′ (triple the frequency). This suggests
that there is something wrong with equation (14) for the clarinet – or what? In fact,
equation (14) is still correct (approximately, as before), but the boundary conditions
(13) are not. The column of air in the clarinet is set in motion using the reed at
one end, and there is no reason for the pressure there to be the same as that of
the ambient air. What does happen at a closed end is that the pressure cannot drop
off or increase sharply as a function of x . If the closed end is at x = 0, then the
appropriate boundary conditions are

∂u

∂x
(0, t) = 0, u(1, t) = 0. (24)

We leave it as an exercise to show that the standing-wave solutions for the problem
(14), (24) have the form

cos
([

n + 1
2

]
ct

)
cos

([
n + 1

2

]
x
)
, (25)

and to deduce that the characteristic frequencies are precisely the odd positive
integer multiples of the fundamental. In particular, above a fundamental C we
would expect to hear the note with 3 = 3

2 · 2 the frequency, that is, the fifth above
the octave C ′.

Finally, consider an oboe, and play the same game. Like a clarinet, the oboe has
one closed and one open end and therefore would seem to correspond to the same
boundary conditions (24). Nevertheless, the tone heard above a fundamental C
is the octave C ′. This must mean that this time there is something wrong with
equation (14), and indeed there is, though not because of some occult properties
of the air in an oboe (or of the oboist). In fact, an oboe is not cylindrical; it is an
elongated cone, tapering nearly to a point. Since the cross section is not constant,
we would expect the coefficients of the equation to show some dependence on the
variable x . (In deriving (14) for a string we tacitly assumed that the string was
homogeneous; if it has different properties along its length, then (14) should not be
accurate.) The correct equation can be shown to have the form

∂2u

∂t2
(x, t) = c2

[
∂2u

∂x2
(x, t) + 2

x

∂u

∂x
(x, t)

]
.
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This equation can be rewritten as

∂2

∂t2
[xu(x, t)] = c2 ∂2

∂x2
[xu(x, t)]. (26)

Therefore the function w(x, t) = xu(x, t) satisfies the wave equation (14). More-
over, w satisfies the boundary conditions (13), so the standing-wave solutions and
the characteristic frequencies (for this simplified model) are the same (up to the
determination of the constant c) as for the string or the flute.

Percussion can be more complicated.

Exercises

1. Find the eigenfunctions of the operator d2/dx2 subject to the boundary conditions (24)
and follow the method of Section 14E to show that the general solution of (14) with
boundary conditions (1) is a sum of standing-wave solutions (25), translated in time. In
particular, one needs to show that any function in L2((0, π )) has an expansion in the
appropriate cosine functions of x .

2. Verify that the equation that precedes (26) is equivalent to (26).

14G∗. Signals and the Fast Fourier Transform

In practical applications a function, such as a signal, is given by a finite amount
of discrete data: N numbers, where N may be quite large but is definitely finite.
Thus let us consider functions on a finite set, taken, for convenience, to be complex-
valued:

f : S → IC, S = SN = {0, 1, 2, . . . , N − 1}. (27)

Equivalently, f is an N -tuple of complex numbers, an element of ICN . However, it
is more convenient to think of the representation (27) and to write the variable x
for an element of S. We denote the set of such functions by F = FN . Then F is
taken to be a finite-dimensional Hilbert space with the inner product and norm

( f, g) = 1

N

∑
x∈S

f (x)g(x); || f ||2 = 1

N

∑
x∈S

| f (x)|2. (28)

We may also extend our functions to be defined on the integers and periodic of
period N:

f : ZZ → IC; f (x + N ) = f (x), x ∈ ZZ. (29)

We leave it as an exercise to show that the exponential functions

en(x) = e2nπ i x/N, n = 0, 1, 2, . . . , N − 1, x ∈ ZZ (30)
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satisfy (29) and are an orthonormal basis for F . Consequently, any function f in
F has the finite Fourier expansion

f (x) =
∑
x∈S

f̂ (n)en(x), f̂ (n) = ( f, en). (31)

This decomposition can be useful for applications, but one needs to be concerned
with the number of computations necessary to compute it when N is large (e.g.,
210 or 220). Now

f̂ (n) = 1

N

∑
x∈S

f (x)en(−x), (32)

so it appears that N multiplications and N additions are necessary to compute
each of the N coefficients – a total of 2N 2 operations. However, the process can
be reorganized so as to involve on the order of N log N operations, that is, on the
order of 10 · 210 rather than 220 if N = 210, a factor of 1028; the saving grows very
rapidly with N . This is known as the fast Fourier transform (FFT). It was essentially
known to Gauss in the early nineteenth century and was rediscovered in the twentieth
century. Suppose that N = 2M is even. Given f in FN , define the functions

f+(x) = f (x) + f (x + M)

2
; f−(x) = f (x) − f (x + M)

2
· e−1(x). (33)

Both these functions have period M = N/2. In the case of f−, this follows from
the fact that e−1(x + M) = −e−1(x). Now the functions e2n are the orthonormal
exponentials for FM . It follows that the Fourier coefficients of f+ and f− as
elements of FM are related to the Fourier coefficients of f by

f̂ +(k) = f̂ (2k), f̂ −(k) = f̂ (2k + 1). (34)

Thus the problem has been reduced to that of computing the Fourier coefficients
of each of two functions in FM . If N = 2m , the process can be iterated down to
the point where we have N functions in F1, that is, N constant functions, whose
values are exactly the Fourier coefficients of f .

In (34) we only need the values of f± at 0, 1, . . . , M − 1, so there are 2M = N
additions and (counting multiplication by 1

2 ) M + 2 multiplications, one of which
is trivial. Therefore, in at most 2N operations one reduces to two functions in
FM , M = n/2. Inductively this means at most 2m · 2m operations when N = 2m .

Exercises

1. Verify that the functions (30) are indeed an orthonormal basis for F .
2. Verify that f+ and f− of (33) have period M .
3. Verify (34).
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14H∗. The Fourier Integral

Fourier series can be adapted to functions periodic of any period or, equivalently,
to functions belonging to the Hilbert space L2(I ) for any interval I . To see how to
deal with functions on the whole line, the space L2(IR), we pass to the limit from
longer and longer intervals. Specifically, given L > 0, let IL = [− 1

2 ,
1
2 L/] be the

interval of length L centered at the origin. We take the inner product in L2(IL ) to
be the (unnormalized) integral

( f, g)L =
∫ L/2

L/2
f (x) g(x) dx .

The rescaled complex exponentials

enL (x) = ei2πnx/L

√
L

, n ∈ ZZ (35)

are an orthonormal basis for L2(IL ).
Suppose that f belongs to the intersection L2(IR) ∩ L1(IR). Let fL denote its

restriction to the interval IL ; thus

fL ∈ L2(IL ) ∩ L1(IL ). (36)

Correspondingly, we have the Fourier expansion

fL =
∞∑

n=−∞
f̂L (n)enL ; (37)

f̂L (n) = 1√
L

∫ + 1
2 L

− 1
2 L

f (x)e−i2πnx/Ldx . (38)

Let us associate to the sequence of Fourier coefficients of fL a step function gL ,
constant on intervals of length 2π/L:

gL (ξ ) =
√

L f̂L (n) =
∫ + 1

2 L

− 1
2 L

f (x)e−i2πnx/Ldx, for ξ ∈
[

2πn

L
,

2π (n + 1)

L

)
.

(39)
Then gL is square integrable and

1

2π

∫
IR

|gL (ξ )|2dξ =
∞∑

−∞
| f̂L (n)|2 =

∫ + 1
2 L

− 1
2 L

| f (x)|2dx . (40)

Because of our assumption that f is integrable on R, we may apply the Dominated
Convergence Theorem to deduce from (39) that

lim
L→∞

gL (ξ ) = f̂ (ξ ), where f̂ (ξ ) =
∫

IR
f (x)e−i xξ dx . (41)
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The function f̂ is called the Fourier transform of f .
For the moment let us assume more about the function f , say that it is continu-

ously differentiable. Then at every interior point of the interval IL the Fourier series
of fL converges and we can rewrite the resulting sum as an integral involving gL :

f (x) =
∞∑

n=−∞

1√
L

f̂L (n)enL (x)

=
∞∑

−∞

1

L
gL

(
2πn

L

)
enL (x)

= 1

2π

∫
IR

gL (ξ )eLx (ξ )dξ, |x | <
1

2
L , (42)

where eLx is the step function

eLx (ξ ) = ei2πnx/L , ξ ∈
[

2πn

L
,

2π (n + 1)

L

)
.

Taking the limit as L → ∞ in (42) we have

f (x) = 1

2π

∫
IR

f̂ (ξ )eixξ dξ. (43)

The pair of formulas (41) and (43) show a certain duality between the function f
and its Fourier transform f̂ . Taking limits in (42) gives the relation∫

IR

∣∣ f (x)
∣∣2

dx = 1

2π

∫
IR

∣∣ f̂ (ξ )
∣∣2

dξ. (44)

In fact, one can deduce a more general result about inner products in L2(IR):

( f, g) = 1

2π
( f̂ , ĝ). (45)

So far we have obtained these formulas somewhat formally, and under the assump-
tion that f is integrable and continuously differentiable, as well as square integrable.
The precise version for square-integrable f is the following.

Theorem 14.4: Plancherel’s Theorem. Suppose that f belongs to L2 on the line.
Then, as L tends to +∞, the functions

f̂L (ξ ) =
∫ + 1

2 L

− 1
2 L

f (x)e−i xξ dx
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converge in L2(IR) to a function f̂ . Conversely, the functions

fL (x) = 1

2π

∫ + 1
2 L

− 1
2 L

f̂ (ξ )eixξ dξ

converge to f in L2(IR). The identity (45) for inner products is valid for any functions
f and g in L2(IR).

We omit the details of the proof.
Suitably interpreted, or for suitable functions, we may write the preceding result

in the form

f̂ (ξ ) =
∫

IR
e−i xξ f (x) dx ; f (x) = 1

2π

∫
IR

eixξ f̂ (ξ ) dξ. (46)

Theorem 14.5. Suppose that f is a complex-valued function on the line that has
continuous first and second derivatives, and suppose that f , f ′, and f ′′ are inte-
grable. Then f̂ is integrable and equation (46) is valid at every point x ∈ IR.

Proof: Clearly

| f̂ (ξ )| ≤
∫

IR

∣∣e−i xξ f (x)
∣∣ dx =

∫
IR

∣∣ f (x)
∣∣ dx . (47)

It follows from Exercise 2, and the same calculation, that

|ξ 2 f̂ (ξ )| ≤
∫

IR

∣∣ f ′′(x)
∣∣ dx . (48)

Therefore, | f̂ (ξ )| ≤ C/(1 + ξ 2) and it follows that f̂ is integrable. Now we intro-
duce a “convergence factor” into the right side of (46), so that when the result is
written as an iterated integral, the order of integration may be legitimately inter-
changed:

1

2π

∫
IR

eixξ f̂ (ξ ) dξ = lim
ε→0+

1

2π

∫
IR

e−(εξ )2/2eixξ f̂ (ξ ) dξ

= lim
ε→0+

1

2π

∫
IR

e−(εξ )2/2eixξ

[∫
IR

e−iyξ f (y) dy

]
dξ.

For fixed ε > 0 we can interchange the order of integration in the last expression
and obtain, after some rewriting,

1

2π

∫
IR

eixξ f̂ (ξ ) dξ = lim
ε→0+

∫
IR

Gε(x − y) f (y) dy,
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where

Gε(x) = 1

2π

∫
IR

eixξ e−(εξ )2/2 dξ = 1

2πε

∫
IR

ei(x/ε)ξ e−ξ 2/2 dξ = 1

2π
ĝ(−x/ε).

Here g is the Gaussian function g(y) = e−y2/2. According to Exercise 6 below,
G(x) = 1

2π
e−x2/2. Thus

1

2π

∫
IR

eixξ f̂ (ξ ) dξ = lim
ε→0+

∫
IR

Gε(x − y) f (y) dy

= lim
ε→0

∫
IR

ε−1G(ε−1(x − y)) f (y) dy.

From this point, the proof is exactly like the proof of Fejér’s Theorem, since

Gε ≥ 0;
∫

IR
Gε(x) dx = 1; lim

ε→0+

∫
|x |>δ

Gε(x) dx = 0. �

Exercises

These exercises introduce some properties of the Fourier transform and some appli-
cations. One may assume that the functions in question satisfy enough hypotheses
so that the formal manipulations are justified.

1. Continuity of the Fourier transform: If f is integrable, then f̂ is continuous.
2. The Fourier transform of the derivative: If g = d f/dx , then ĝ(ξ ) = iξ f̂ (ξ ).
3. The Fourier transform under multiplication by x : If h(x) = x f (x), then d f̂ (ξ )/dξ =

−i ĥ(ξ ).
4. The Fourier transform under translation: Find ĝ(ξ ) if g(x) = f (x − a), a fixed.
5. The Fourier transform under scaling: Find ĥ(ξ ) if h(x) = f (ρx) for some positive ρ.
6. The Fourier transform of a Gaussian function: Let f (x) = 1

2π
e−x2/2. Show that f̂ (ξ ) =

e−ξ 2/2.
7. The heat equation on the line: To solve the problem

∂u

∂t
(x, t) = ∂2u

∂x2
(x, t), x ∈ IR, t > 0,

u(x, 0) = f (x),

take the Fourier transform of u with respect to x and derive an equation for the transform
û(ξ, t), which implies that

û(ξ, t) = e−tξ 2
f̂ (ξ ).
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Show that the solution is given by

u(x, t) =
∫

IR
G(x − y, t) f (y)dy, G(x, t) = 1√

4π t
· e−x2/4t .

8. The Poisson summation formula: Suppose that f is integrable on IR. Prove that

∞∑
m=−∞

f (x − 2mπ ) = 1

2π

∞∑
n=−∞

f̂ (n) einx ,

under the assumption that f and its first derivative are continuous and converge rapidly
enough to 0 as |x | → ∞.

9. Band-limited signals: If we interpret x as the time variable, we may think of a function
f (x) as the amplitude of a signal. If f (x) = sin xξ , then this is a pure sine wave with
frequency ξ . For a more general (but, say, integrable and square integrable) function f ,
the second half of equation (46) may be viewed as showing how f can be decomposed
as a “continuous linear combination” of waves with frequencies ξ , the coefficients being
f̂ (ξ ). If the signal comes over a channel with limited bandwidth (meaning that there
is a limit to the frequencies that can be transmitted – or detected), then the signal is
completely determined by its values at a discrete set of points whose spacing depends on
the bandwidth. Prove a precise form of this result: Suppose that f̂ (ξ ) = 0 for |ξ | > M/2.
Show that f is continuous (assume 15.12 and use Dominated Convergence). Show that
f is determined by its values at the points 2nπ/M , n ∈ ZZ.

14I∗. Position, Momentum, and the Uncertainty Principle

Suppose that f is a function in L2(IR) with norm 1. Then | f (x)|2, which has integral
1, can be thought of as a probability density, so that the probability that a point x
lies in an interval I of IR is

Prob {x ∈ I } =
∫

I
| f (x)|2dx . (49)

Then the expected value of the position of the point is the mean

E =
∫

IR
x | f (x)|2dx . (50)

The variance (square of the standard deviation) is a measure of how spread out the
probability distribution is; it is

V =
∫

IR
(x − E)2| f (x)|2dx . (51)

It is small only if most of the mass of | f |2 is concentrated near the mean E . The
behavior of the Fourier transform under scaling (Exercise 5 of Section 14H) suggests
that if f has small variance, then f̂ may be expected to have large variance. Note
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that we need a factor of 1/2π to make the Fourier transform have norm 1, so the
mean and variance for f̂ are

Ê = 1

2π

∫
IR

ξ | f̂ (ξ )|2dξ ; (52)

V̂ = 1

2π

∫
IR

(ξ − Ê)2| f̂ (ξ )|2dξ. (53)

The remark above about the relation between the variances V and V̂ can be given
quantitative form.

Proposition 14.6. If f belongs to L2(IR) such that || f || = 1, then the product of
the variances of f and of f̂ , V · V̂ , is at least 1

4 .

Sketch of proof: We use the results of some of the exercises for Section 13H. Let
Q and P be the linear transformations on the functions

Q f (x) = x f (x); P f (x) = 1

i

d f

dx
(x).

Then the Fourier transform of P f is ξ f̂ (ξ ), so

V = ||(Q − E) f ||2; V̂ = ||(P − Ê) f̂ ||2. (54)

Denoting the identity operator by I , note that

PQ − QP = −iI, (Q f, g) = ( f, Qg), (Pf, g) = ( f, Pg). (55)

It follows from (29) and the Cauchy-Schwartz inequality that

1 = || f ||2 = ( f, f ) = i(PQ f − QP f, f ) = i[(Qf, Pf ) − (Pf, Qf )]

= 2 Im (Pf, Qf ) ≤ 2||Qf || · ||Pf ||. (56)

Now it is also true that

(P − ÊI )(Q − EI ) − (Q − EI )(P − ÊI ) = −iI,

so we may repeat the calculation (56) with Q − EI in place of Q and P − ÊI in
place of P to obtain the desired inequality. �

The simplest case in quantum mechanics consists of a single particle in one di-
mension. Its wave function is an element ψ ∈ L2(IR) having norm 1. Any physical
measurement is characterized by a linear transformation T defined on some sub-
space of L2(IR) that has the property (T f, f ) = ( f, T f ) for all f in its domain. The
theory is probabilistic: If the wave function of the particle at a given moment is ψ ,
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then the mean and variance of the measurement of the quantity associated to T are

ET = (T ψ, ψ); VT = ||(T − ET I )2ψ ||2. (57)

In the usual representation of the wave function, the position operator is the operator
Q above and the momentum operator is h P , where P is the operator above and
the positive number h is Planck’s constant. Thus the inequality proved above gives
the quantitative form of the relationship between the uncertainty in measurement
of the position and the uncertainty in measurement of the velocity, known as the
Heisenberg Uncertainty Principle:√

VQ ·
√

VhP ≥ h

2
. (58)

Exercises

1. Prove that the product on the left side of (58) is unchanged if ψ is replaced by
√

ρψ(ρx),
for any fixed positive ρ. (Note that the new function also has norm 1.)

2. Prove that equality is obtained in (58) if ψ is the Gaussian function ψ(x) = e−x2/2/
√

2π .
It follows from the preceding exercise that equality is also obtained by scaling this
function.

3. Prove that equality is obtained in (58) only when ψ is one of the functions in the preceding
exercise (possibly multiplied by a constant having modulus 1).

4. The Schrödinger equation for a free quantum mechanical particle in one dimension is

∂u

∂t
(x, t) = ih

∂2u

∂x2
(x, t), h a positive constant.

Discuss the solution of this equation for u periodic in x , given the value of u(x, 0). Show
that

1

2π

∫ π

−π

|u(x, t)|2 dx is constant, i.e., independent of t.

5. Discuss the Schrödinger equation for functions that are not periodic.
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Ordinary Differential Equations

At various points we have come across simple first-order and second-order ordinary
differential equations. In this chapter we study equations and systems of arbitrary
order and establish the basic existence, uniqueness, and representation theorems.

15A. Introduction

An ordinary differential equation (ODE) expresses, at each point of an interval
that is the domain of some function u, a relationship between u(x) and various
derivatives u(k)(x). The equation is said to be linear if the relationship is linear.
The order of the equation is the order of the maximum derivative that appears.
Examples are

(a)
[
u′(x)

]2 + [
u(x)

]2 = 1 (b) u′′(x) = sin u(x) (1)

(a) u′(x) + cos x · u(x) = ex (b) u′′(x) + u′(x) − 2 u(x) = ex . (2)

Examples (1) are nonlinear (= not linear) and examples (2) are linear. Examples
(a) are of order 1 and examples (b) are of order 2. For reasons that should be clear,
of the two linear equations, (2b) is said to have constant coefficients.

A system of ODEs consists of more than one equation for more than one function,
for example,

u′(x) = v(x), v′(x) = sin u(x). (3)

This system is said to be of order 1 (or of first order). The reader may note that the
single equation (1b) is equivalent to the system (3) and that, similarly, one can find
a first-order system of two equations for two functions that is equivalent to (2b). In
fact, any ODE or system of ODEs is equivalent to some first-order system.

In this chapter we treat some basic but general topics in the existence and unique-
ness of ODEs and systems of ODEs.

218
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Exercises

1. Show that (3) is equivalent to (1b).
2. Find a first-order linear system of two equations that is equivalent to (2b).
3. (Gronwall’s inequality) Suppose that f is a positive, continuously differentiable function

on [0, ∞), and suppose that there is a constant C such that | f ′(x)| ≤ C f (x) for all x ≥ 0.
Prove that f (x) ≤ eCx f (0) for all x ≥ 0.

15B. Homogeneous Linear Equations

It is convenient once again to consider complex-valued functions u. As before,
differentiability means differentiability of the real and imaginary parts, and u′ =
(Re u)′ + i(Im u)′. Higher order derivatives u′′, u′′′, . . . are defined accordingly. We
consider here the set of all infinitely differentiable functions

C∞(IR) = {u : IR → IC : each derivative of u exists and is continuous on IR}.
This is a vector space with the usual operations for functions. The derivative D =
d/dx and its iterates

Du = u′, D2u = u′′, D3u = u′′′, . . . ,

are linear transformations from C∞(IR) to itself. It is convenient to define the zeroth
power of D as the identity operator I :

D0 = I, D0u = I u = u.

Given any polynomial with complex coefficients, such as

p(λ) = λn + an−1λ
n−1 + · · · + a1λ + a0, a j ∈ IC, (4)

there is a corresponding linear differential operator with complex coefficients

p(D) = Dn + an−1 Dn−1 + · · · + a1 D + a0 I. (5)

Note that these operators satisfy the same algebraic laws as polynomials: If p and
q are polynomials, then

[p + q](D) = p(D) + q(D), [pq](D) = p(D)q(D). (6)

(In algebraic terminology, the mapping from polynomials to differential operators
is a homomorphism from the ring of polynomials to the ring of linear operators
from C∞(IR) to itself.)

The main result in this section is a description of all the solutions of the equa-
tion p(D)u = 0, that is, the null space of the linear transformation p(D). This is
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necessarily a subspace of C∞(IR). We show that it is a finite-dimensional subspace
and find a basis.

Theorem 15.1. Suppose that the polynomial (4) has the factorization

p(λ) =
m∏

j=1

(λ − λ j )
d j , λ j distinct.

Then the solutions of the equation p(D)u = 0 are precisely the linear combinations
of the n functions

xkeλ j x , 0 ≤ k < d j , 1 ≤ j ≤ m. (7)

The proof takes a number of steps.

Lemma 15.2. Dku = 0 if and only if u is a polynomial (in x) of degree less than k.

Proof: This is true for k = 1, by the Mean Value Theorem (applied to the real
and imaginary parts), or by the Fundamental Theorem of Calculus. Induce on k: If
Dk+1u = Dk(Du) = 0, then Du is a polynomial of degree less than k. There is a
polynomial p of degree at most k such that Dp = Du; then u − p is constant. �

Lemma 15.3. If µ is a complex number, then (D − µI )ku = 0 if and only if u has
the form

u(x) = p(x) eµx ,

where p is a polynomial in x of degree less than k.

Proof: Write p(x) = e−µx u(x), so that u(x) = eµx p(x). By Leibniz’s rule

(D − µI )(eµx p(x)) = µeµx p(x) + eµx Dp(x) − µeµx p(x) = eµx Dp(x).

Repeating this calculation k times, we get

(D − µI )k(eµx p(x)) = · · · = eµx Dk p(x).

Lemma 15.2 implies that these expressions vanish if and only if p is a polynomial
of degree less than k. �

Lemma 15.4. Suppose that q1, q2, . . . , qm are nonzero polynomials that have no
root in common. Then there are polynomials p1, p2, . . . , pm such that

p1(λ)q1(λ) + p2(λ)q2(λ) + · · · + pm(λ)qm(λ) ≡ 1. (8)
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Proof: Let I be the set whose elements are all polynomials that have the form of
the left side of (8) for some choice of the polynomials p j . For example, q1 belongs
to I. If q1 itself has degree 0, then it is constant and a multiple of it is 1. Otherwise,
there are at least two polynomials in our original set {q j }, and q1 cannot divide every
one of them. (If it did, then any root of q1 would be common root of all.) Suppose
that q1 does not divide q2. We may divide q2 by q1 to obtain q2 = s1q1 + r1, where
s1 and r1 are polynomials; the degree of the remainder term r1 is less than the of
q1, denoted deg (q1); and r1 �= 0. Now r1 = q1 − sq2, so r1 belongs to I. If r1 has
degree 0, then 1 is a multiple and we are finished. Otherwise, r1 does not divide
some q j and we may repeat the process: q j = s2r1 + r2 with deg (r2) < deg (r1),
and r2 �= 0. Again

r2 = q j − s2r1 = q j − s2 (q1 − s1q2) = q j − s2q1 + (s2s1) q2

belongs to I. This process of dividing and obtaining as remainder an element of I
having lower degree can be continued until we reach an element r �= 0 that divides
all the q j ’s and therefore has degree 0. (Again, any root of r would be a common
root of the q j ’s). �

Proof of Theorem 15.1: Define polynomials

q j (λ) =
∏
k �= j

(λ − λk)dk = p(λ)

(λ − λ j )d j
. (9)

These polynomials have no common roots, so we may find polynomials p j to satisfy
(8). There is a corresponding identity for the differential operators defined by these
polynomials:

I = p1(D)q1(D) + p2(D)q2(D) + · · · + pm(D)qm(D). (10)

Now suppose that p(D)u = 0. Use (10) to write

u =
m∑

j=1

p j (D)q j (D)u =
m∑

j=1

q j (D)p j (D)u =
m∑

j=1

u j . (11)

Then

(D − λ j )
d j u j = (D − λ j )

d j q j (D)p j (D)u = p(D)p j (D)u = p j (D)p(D)u = 0.

By Lemma 2, u j is a linear combination of the functions (7), so the proof is
complete. �
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Remark. Theorem 15.1 shows that the dimension of the null space of p(D) is at
most equal to deg (p). It can be shown that the functions (7) are linearly independent,
so the dimension is exactly deg (p); see Exercise 12.

Exercises

1. Suppose that p is a polynomial of degree 2. Show that for any constants c0 and c1, there
is a unique solution to the problem

p(D)u = 0, u(0) = c0, u′(0) = c1.

2. Suppose that p has degree 2. Prove or disprove: For every choice of constants c0, c1, and
µ, the problem

p(D)u = µu, u(0) = c0, u(1) = c1

has a unique solution.
3. Suppose that p is any polynomial and µ is any complex constant. Prove that p(D)(eµx ) =

p(µ)eµx .
4. Find all the solutions of the problem

u′′(x) + 2u′(x) + u(x) = ex .

5. For what values of λ ∈ IC (if any) does the problem

u′′(x) − 2u′(x) + λu(x) = 0, u(0) = 1, u(1) = 0

have a solution?
6. Let u(t) denote the vertical displacement from equilibrium of a weight suspended from a

spring. The motion, if the spring is frictionless and there is no air resistance, is described
by the equation of motion (a) below, while the presence of friction gives equation (b),
where K and F are positive constants. In each case discuss the behavior of u(t) as
t → +∞.

(a) u′′(t) = −K u(t). (b) u′′(t) = −K u(t) − Fu′(t).

7. Suppose that L is the differential operator D2 + bD + cI . Find the necessary and suffi-
cient conditions on the coefficients b and c so that every solution of the equation Lu = 0
has the property

(a) lim
x→+∞ |u(x)| = 0 or (b) lim sup

x→+∞
|u(x)| < ∞.

8. Show that the following subspace of F ,

Fr,k = span {x j er x ; 0 ≤ j ≤ k},
is invariant under D and therefore under each p(D). Show that if p can be factored, then
all solutions of p(D)u = f can be found explicitly whenever f belongs to Fr,k .
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9. Suppose that g is a continuous function that vanishes for |x | ≥ M and suppose that u
satisfies one of the following equations. What can you say about the behavior of u as
x → +∞?

(a) D2u − Du + 2u = g. (b) D2u + 2Du + 2u = g.

10. Let L = D2 − I . A fundamental solution for L is a continuous real- or complex-valued
function G defined on IR that has the properties

G ′(x) and G ′′(x) exist for x �= 0, and G ′′(x) = G(x);(i)

lim
ε→0,ε>0

[G ′(ε) − G ′(−ε)] = 1.(ii)

(a) Find a bounded fundamental solution G for L .
(b) Show that if g is a continuous function that vanishes for |x | ≥ M , then the function

u(x) =
∫ +∞

−∞
G(x − y) g(y) dy

satisfies the equation u′′ − u = g.
11. Suppose that the polynomial p in Theorem 15.1 has real coefficients. (Recall that this

implies that the roots come in complex conjugate pairs.) Show that any real solution of
p(D) f = 0 is a real linear combination of functions of the form

xker j x cos s j x, xker j x sin s j x,

where the numbers {r j + is j } are the roots of p.
12. Prove that the functions (7) are linearly independent.
13. The operator T defined by T u(x) = xu′(x) is a linear transformation from the space

C∞(IR+) of infinitely differentiable functions on the half-line IR+ = (0, +∞) to itself.
(a) Find all solutions of T u = ru, for constant r ∈ IC.
(b) Find all solutions of T 2u + 2bT u + cu = 0, at least in the case when the poly

nomial λ2 + 2bλ + c has distinct roots.

15C. Constant Coefficient First-Order Systems

A first-order linear system of ODEs is a system of equations of the form

u′
1(x) = a11(x)u1(x) + a12(x)u2(x) + · · · + a1n(x)un(x) + f1(x),

u′
2(x) = a21(x)u1(x) + a22(x)u2(x) + · · · + a2n(x)un(x) + f2(x),
. . .

u′
n(x) = an1(x)u1(x) + an2(x)u2(x) + · · · + ann(x)un(x) + fn(x).

Using vector and matrix notation, we can write this much more concisely as

u′(x) = A(x)u(x) + f(x),
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where u and f are functions from IR to ICn and A(x) is an n × n matrix. The sys-
tem is said to have constant coefficients if A(x) = A is constant and is said to be
homogeneous if f = 0.

We consider here the constant coefficient n × n case and begin with the homo-
geneous system

u′(x) = Au(x). (11)

Here A is fixed matrix. One way to look for a solution is to assume that the solution
is given by a power series in the variable x . This would mean

u(x) =
∞∑

k=0

xk uk, (12)

where each uk is a vector. Since convergent power series can be differentiated term
by term, (11) and (12) imply

∞∑
k=0

kxk−1uk =
∞∑

k=0

xk Auk . (13)

Coefficients of xk must be equal, so uk = k−1 Auk−1. Iterating, we can conclude
that uk = (k!)−1 Aku0. Now u0 = u(0), so we have derived the solution

u(x) =
[ ∞∑

k=0

1

k!
(x A)k

]
u(0) = ex A u(0), (14)

where we use the power series to define the matrix ex A. Our derivation was rather
formal, but the power series can be shown to converge; moreover, it can be dif-
ferentiated term by term and so, in fact, it does provide a solution to (11). But,
conversely, every solution has this form. To see this, suppose that u is a solution to
(11) and note that Leibniz’s rule implies

d

dx

[
e−x A u(x)

] = −Ae−x A u(x) + e−x A Au(x) = 0, (15)

since A commutes with e−x A. Therefore, e−x Au(x) is constant; its value at x = 0
is u(0). Similarly, a differentiation shows that e−x Aex A is constant, and its value at
x = 0 is I , so u has the form (14). (Various loose ends in this argument are dealt
with in the exercises.)

We have sketched a proof of the following.

Theorem 15.5. Every solution of u′ = Au has the form u(x) = ex A u0, where u0

belongs to ICn. Conversely, every function having the form ex Au0 is a solution of
u′ = Au.
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Another proof can be given based on the result in Section 15E; see Section 15F.

Corollary 15.6. The set of solutions of u′ = Au, where A is n × n, has dimen-
sion n.

Consider now the inhomogeneous problem: Given the function f, assumed to be
continuous, determine u such that

u′(x) = Au(x) + f(x), u(0) = v. (16)

If u were a solution of (16), then a calculation like (15) would imply that

d

dx

[
e−x A u(x)

] = e−x A f(x). (17)

Therefore, integration from x = 0, followed by application of ex A, gives

u(x) = ex A v + ex A
∫ x

0
e−y A f(y)dy = ex A v +

∫ x

0
e(x−y)A f(y)dy. (18)

(At the last step we used the identity ex Ae−y A = e(x−y)A.)
The results in the preceding section and in this section, to this point, almost

exhaust the cases for which a differential equation or system of a reasonably general
type has a solution that can be expressed simply by a formula. We digress from
the main topic of this section to mention the principal remaining cases. First are
equations of the form g(u(x))u′(x) = f (x), where g and u are known. Choose G so
that G ′ = g and let v(x) = G(u(x)). Then the differential equation for u becomes
the equation v′(x) = f (x). Second, consider the general first-order linear equation
for a single function

u′(x) = a(x)u(x) + f (x). (19)

Choose b so that b′ = a. Then (19) is equivalent to the equation

d

dx

[
e−b(x)u(x)

] = e−b(x) f (x), (20)

whose general solution looks like

u(x) = eb(x)−b(0)u(0) +
∫ x

0
eb(x)−b(y) f (y)dy. (21)

Some other cases in which the solution is (nearly) given by formulas are dealt with
in Exercises 10 and 12.
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Exercises

1. Write each of the following problems as a first-order system and use the matrix method
to compute the solution:

u′′ + u = 0, u(0) = 0, u′(0) = 1(a)

u′′ − u = 0, u(0) = 0, u′(0) = 1(b)

u′′ − 2u′ + u = 0, u(0) = 0, u′(0) = 1.(c)

2. Fill in the details in the derivation of equations (17) and (18).
3. Find all solutions of the equation u′(x) = xu(x) + ex .
4. Prove Corollary 15.6.
5. Suppose that B is an invertible matrix whose columns are eigenvectors of A. Show that

the matrix B−1AB is diagonal. Find the system of equations for v(x) = B−1u(x) that
corresponds to the system u′(x) = Au(x). Apply these ideas to give a second derivation
of a solution to Exercise 1(a).

6. Suppose that A is a real n × n matrix. Find the necessary and sufficient conditions on
A such that every solution u : IR → IRn of the system u′(x) = Au(x) has the property
that the Euclidean norm ||u(x)|| = [

∑
u j (x)2]1/2 is constant.

7. Define a norm on the space of n × n matrices by setting

||A|| = sup
||u||≤1

||Au||,

where, for a vector u, ||u|| denotes the Euclidean norm in IRn , as in the previous exercise.
(a) Show that, always ||Au|| ≤ ||A|| · ||u||.
(b) Show that, for n × n matrices A and B, ||AB|| ≤ ||A|| · ||B||. In particular, ||Ak || ≤

||A||k .
(c) Use (b) to show that the series defining eA always converges.

8. Show that eAeB = eA+B if AB = BA.
9. Consider the system version of (19), in which u takes values in ICn and a(x) is an

n × n matrix. Show that (17) and (18) go through if the matrices a(x), a(y) commute
for all x , y. Consider the question of what goes wrong if they do not commute.

10. A first-order equation du/dx = f (x, u) is said to be separable if f (x, u) = M(x)/N (u)
for some functions m and N . Show that solutions are given implicitly by

∫
M(x) dx =

∫
N (y) dy.

11. Find the solution to du/dx = cos x/2u, u(0) = 2.
12. In the first-order equation du/dx = f (x, u), assume that f satisfies the homogeneity

condition: For all t > 0, f (t x, tau) = ta−1 f (x, u). Show that the equation becomes
separable (Exercise 10) in x and v if v = x−au.
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15D. Nonuniqueness and Existence

The simplest nonlinear differential equation is the first-order equation for a real-
valued function u:

u′(x) = f (x, u(x)),

where f is a given real function defined on an open subset � of IR2. We assume that
f is continuous. Geometrically, f should be thought of as specifying at each point
of � a preferred direction or slope. A solution u of (1) is a function u such that, at
each point of the graph u, the tangent line has the preferred direction. Intuitively it
seems that there should be exactly one such maximal graph through each point of
�, where maximal means that the graph is prolonged to the boundary of �. This
intuition is half correct: Such a solution exists, but it may not be not unique. An
example is

u′(x) = 3[u(x)]2/3, u(0) = 0. (22)

This has the following solutions: For any c and d such that −∞ ≤ c ≤ 0 ≤
d ≤ +∞,

ucd(x) =



(x − c)3, x < c
0, c ≤ x ≤ d;
(x − d)3, x > d.

We shall see in the next section how to guarantee uniqueness. The proof of
existence, in this generality, depends on an important result about compactness in
a space of continuous functions. As in Chapter 7, if I is a bounded closed interval,
I = [a, b], then C(I ) denotes the space of continuous real-valued functions defined
on I , with norm

||u||sup = sup
x∈I

|u(x)|.

Convergence in norm is the same as uniform convergence.

Definition. A collection F of functions in C(I ) is is said to be equicontinuous if
for each ε > 0 there is δ > 0 such that, for every u ∈ F ,

|u(x) − u(y)| < ε if x, y ∈ I, |x − y| < δ.

(The important point here is that δ does not depend on u.)

Theorem 15.7: Theorem of Ascoli-Arzelà. If F is a bounded, equicontinuous
family of functions in C(I ), then every sequence in F contains a subsequence that
converges in norm to an element of C(I ).
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Proof: Suppose that (uk)∞k=1 is a sequence in F . For each positive integer n,
partition the interval I into 2n equal subintervals and partition the interval [−M, M]
into 2n equal subintervals, where M is a bound for F . This gives a partition of the
rectangle I × [−M, M] into 4n subrectangles. If u belongs to F , then its graph is
a subset of the large rectangle. Say that the n-pattern of u is the union of those of
the 4n subrectangles that are intersected by the graph of u. We choose a sequence
of patterns as follows. At stage 1 there are nine possible patterns and at least one
of them is the pattern of uk for infinitely many values of k. Choose such a pattern
P1. Among the various possible 2-patterns that are subsets of P1, choose one, P2,
that is the 2-pattern of uk for infinitely many values of k, and continue. In this way
we can choose a sequence of patterns and a subsequence of functions with

P1 ⊃ P2 ⊃ P3 ⊃ · · · , Pn is the n-pattern of ukn .

Now we invoke the equicontinuity assumption. For any given ε > 0 there is an
N so large that any u ∈ F varies by at most ε on intervals of length 2−N |I |; if
we also choose N so that 2−N M ≤ ε, it follows that any vertical slice of Pn has
length ≤ 5ε for n ≥ N . Thus

||ukn − ukm ||sup ≤ 5ε if n, m ≥ N .

Therefore (since C(I ) is complete) the subsequence converges in norm to a function
in C(I ). �

Remark. The theorem and the proof go through with little or no change if the
interval I is replaced by a compact set in IRd and the functions take values in ICr .
In fact, the proof can be adapted to allow the domain and range to be any pair of
compact metric spaces, using total boundedness (see Exercise 8 of Section 6D).

We are now in a position to prove the general existence theorem.

Theorem 15.8. Theorem of Peano. Suppose that � is an open subset of IR2 and
suppose that f is a continuous real-valued function on �. For each point (x0, y0)
in �, there is a continuously differentiable function u, defined in an open interval
containing x0, such that

u′(x) = f
(
x, u(x)

)
and u(x0) = y0. (23)

Proof: Since � is open and f is continuous, we can choose positive constants
K and δ such that

if |x − x0| ≤ δ and |y − y0| ≤ K δ, then (x, y) ∈ � and | f (x, y)| ≤ K . (24)

Let I = [x0 − δ, x0 + δ] and letF be the subset of C(I ) that consists of the functions
uk obtained as follows: Partition I into 2k equal subintervals and take the unique
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continuous function whose graph goes through (x0, y0), has constant slope on each
subinterval, and the slope on a subinterval is the value of f at the right endpoint of
this portion of the graph if the subinterval is left of x0, and at the left endpoint if the
subinterval is to the right. Because of (24), these graphs stay in �. This family of
functions is bounded and the limitation on slopes implies that it is equicontinuous,
so some subsequence converges uniformly to a function u ∈ C(I ). Now each uk

is piecewise continuously differentiable and its derivative at a given point comes
closer, uniformly, to the value of f at that point of the graph as k increases, because
of continuity of f and the choice of the uk . Therefore, for x in I ,

u(x) = lim
n→∞ ukn (x) = lim

n→∞

[
y0 +

∫ x

x0

u′
kn

(t)) dt

]
= y0 +

∫ x

x0

f
(
t, u(t)

)
dt.

This is equivalent to (23). �

Remark. This theorem is valid in much greater generality. For example, consider
an n-th order equation

Dnu(x) = f
(
x, u(x), Du(x), . . . , Dn−1u(x)

)
, (25)

where f is a continuous real-valued function defined on an open set � ⊂ IRn+1. This
can be converted to a first-order system if we think of uk = Dk−1u for 1 ≤ k < n.
The system is

u′
k(x) = uk+1(x), 1 ≤ k < n;

u′
n(x) = f (x, u1(x), u2(x), . . . , un(x)).

This is a special case of the system

u′(x) = f(x, u(x)) (26)

for a vector-valued function u : I → IRn , where f is a continuous function from �

to IRn . Again, this system has a solution, not necessarily unique, through each point
of �:

u(x0) = y0, (x0, y0) ∈ �. (27)

The proof is the same as before.
Going back to (25), condition (27) means specifying u and its derivatives of order

less than n at a given point.

Remark. The fact that one may need to pass to a subsequence of the sequence of
functions constructed in the proof of Peano’s Theorem in order to get convergence
means that, in this generality, the construction is of no practical value. However,
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if f satisfies the stronger hypothesis of the next section, then the uk’s themselves
converge.

Exercises

1. With the example of nonuniqueness (22), explain how, starting at a point (x0, y0) with
y0 �= 0, one might have to pass to a subsequence of the sequence in the proof of Peano’s
Theorem in order to get convergence.

2. Can a system of two second-order equations

u′′(x) = f (x, u(x), v(x), u′(x), v′(x))

v′′(x) = g(x, u(x), v(x), u′(x), v′(x))

be reduced to a first-order system?
3. Prove the assertion made in the proof of Peano’s Theorem that the family of functions

constructed there is an equicontinuous family.

15E. Existence and Uniqueness

In this section we show that a seemingly slight strengthening of the continuity
hypothesis on the function f in (23) or f in (26) leads both to uniqueness and
to an efficient method of approximating solutions. We consider the vector-valued
version of the problem (23), (24) and note that these together are equivalent to the
vector-valued integral equation

u(x) = y0 +
∫ x

x0

f
(
t, u(t)

)
dt. (28)

Picard’s iteration method or method of successive approximations for solving (1)
is to make an initial guess at a solution and then refine the guess by using (28).
One obtains the sequence of vector-valued functions known as the Picard iterates
for (28):

u0(x) ≡ y0; uk+1(x) = y0 +
∫ x

x0

f
(
t, uk(t)

)
dt, k = 0, 1, 2, . . . . (29)

If these iterates converge uniformly on some interval I containing x0, then the limit
u satisfies (28) and is therefore a solution of (26), (27).

Another point of view suggested by (28) is to view our problem as a fixed point
problem. Suppose for the sake of simplicity that the domain of definition � of F
is all of IRn+1. Given any bounded closed interval I , let C(I ) now denote the space
of vector-valued continuous functions

C(I ) = {u : I → IRn; u is continuous}; ||u||sup = sup
x∈I

||u(x)||. (30)
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Then define a mapping S from C(I ) to itself by

[S(u)](x) = y0 +
∫ x

x0

f
(
t, u(t)

)
dt. (31)

Then (28) says that we want a fixed point of S: an element u ∈ C(I ) such that
u = S(u). Now C(I ) is a complete metric space, so we can hope to make use of the
following.

Banach Fixed Point Theorem. Suppose that X is a nonempty complete metric
space with metric d and suppose that the function S from X to itself is a strict
contraction, that is, for some positive constant ρ < 1, and any x and y in S,

d
(
S(x), S(y)

) ≤ ρ d(x, y). (32)

Then S has a unique fixed point in X.

Proof: Choose any point x1 ∈ X and define a sequence by iteration: xk+1 =
S(xk). Condition (32) implies that

d(xk+2, xk+1) ≤ ρ d(xk+1, xk) ≤ ρ2d(xk, xk−1) ≤ · · · ≤ ρkd(x2, x1).

Therefore

d(xk+m, xk+1) ≤ d(xk+m, xk+m−1) + d(xk+m−1, xk+m−2) + · · · + d(xk+2, xk+1)

≤ [ρk+m−2 + ρk+m−3 + · · · + ρk] d(x2, x1) ≤ ρk

1 − ρ
d(x2, x1).

It follows that (xk)∞k=1 is a Cauchy sequence in X , so it converges to a point x ∈ X .
Now S is continuous, so

d(x, S(x)) = lim
k→∞

d(xk, S(xk)) = lim
k→∞

d(xk, xk+1) = 0.

If x ′ is also a fixed point, then

d(x, x ′) = d
(
S(x), S(x ′)

) ≤ ρ d(x, x ′),

so d(x, x ′) = 0 and x ′ = x . �

Definition. A function f(x, y) defined for certain values of x ∈ IR and y ∈ IRn and
having values in IRn is said to satisfy a Lipschitz condition with respect to y if there
is a constant K such that

||f(x, y′) − f(x, y)|| ≤ K ||y − y′|| (33)

whenever the left side is defined. (This will be true if the components of F have
partial derivatives in the y-variables that are bounded on the domain of definition,
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provided the domain is, for example, a ball or rectangle.) The constant K is called
a Lipschitz constant.

Theorem 15.9: Existence and Uniqueness Theorem. Suppose that � is an open
subset of IRn+1, and suppose that f is a continuous function from � to IRn that
satisfies a Lipschitz condition with respect to y. Then, for each point (x0, y0) in �,
the problem (28) has a solution on some open interval containing x0, and any two
such solutions coincide on their common domain of definition.

Proof: Given (x0, y0) ∈ �, choose ε > 0 and r > 0 small enough that{
(x, y) : |x − x0| ≤ ε, ||y − y0|| ≤ r

} ⊂ �.

Let

N = sup
|x−x0|≤ε

||f(x, y0)||.

Let K be a Lipschitz constant for f and let J = [x0 − δ, x0 + δ], where

δ = min{ε, r/2N , r/2K }.
Let u0 ≡ y0 be the first Picard iterate, and let S be the mapping defined by (4). Let
X ⊂ C(I ) be the closed ball

X = {
u ∈ C(I ) : ||u − u0||sup ≤ r

}
.

By our choice of δ,

||S(u0) − u0||sup = sup
|x−x0|≤δ

∣∣∣∣
∣∣∣∣
∫ x

x0

f(t, y0)dt

∣∣∣∣
∣∣∣∣ ≤ δN ≤ r

2
. (34)

If u and v belong to X , then S(u) and S(v) are defined, and an elementary argument
using (33) shows that

||S(u) − S(v)||sup ≤ δK ||u − v||sup ≤ 1
2 ||u − v||sup. (35)

In particular, we can take v = u0 in (35) and use (35) to conclude that S maps X
to itself. The Banach Fixed Point Theorem gives us a unique solution to (28) in the
ball X . �

The Picard iterates are precisely the sequence obtained by starting with u0 = y0

and uk+1 = S(uk). Therefore the proofs of the two preceding theorems together
give the following.
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Corollary 15.10. Under the assumptions of the Existence and Uniqueness The-
orem, the Picard iterates on an interval containing x0 converge uniformly to a
solution of (28).

Remark. The interval of existence that is obtained in the proof of Theorem 15.9
is usually not as large as it could be. Suppose, for example, that the function f
is defined and continuous for all x ∈ IR and all y ∈ IRn and satisfies (6) every-
where. The proof of Theorem 15.5 given above only proves convergence on a
certain bounded interval, but in fact the Picard iterates converge on all of IR; see
Exercise 8.

Exercises

1. Compute the first three Picard iterates for the problem

u′(x) = x + u(x)2, u(0) = 1.

2. Compute the first three Picard approximations to the solution of the first-order system
associated to the problem

u′′(x) = u(x), u(0) = 1, u′(0) = 0.

3. Suppose that A is an n × n matrix. Investigate the Picard iterates of the problem for
u : IR → ICn:

u′(x) = Au(x), u(0) = v.

4. Write the formula for the Picard iterates of the system associated to the problem

u′′(x) + u(x) + cos[x − u′(x)] = 0; u(0) = u′(0) = 0.

5. Discuss the question of existence and uniqueness of solutions to the following problems:

u′(x) = (sin2[u(x) + x])1/3, u(0) = 0(a)

u′(x) = (1 + sin2[u(x) + x])1/3, u(0) = 0(b)

u′′(x) = cos u(x), u(0) = u′(0) = 0(c)

u′′(x) = u(x)2, u(0) = 1, u′(0) = 0(d)

u′′(x) = u(x)1/3, u(0) = 0, u′(0) = 0.(e)

6. Prove the inequalities (34) and (35).
7. Prove Corollary 15.10 by showing first that there is a solution on some largest subinterval

of J ; if this subinterval were not all of J, then it would have an endpoint that belongs to
J. What would happen near this endpoint?
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8. Suppose that f (x, u) is defined for all real x and all y in IRn and satisfies

||f (x, y′) − f (x, y)|| ≤ K ||y′ − y||, all x, y, y′.

(a) Suppose that J is any bounded interval that contains x0. Prove that the Picard iterates
(30) satisfy

||un − un−1|| ≤ C
K n

n !
|x − x0|, x ∈ J, n = 1, 2, . . . ,

where

C = sup
{||f (x, u0)|| : x ∈ J

}
.

(b) Deduce from this sequence of inequalities that the iterates converge uniformly on
the interval J .

(c) Suppose that u and v are two solutions of (28) on the interval J . Deduce a se-
quence of similar inequalities for ||v − u|| on the interval and use them to show that
v = u on J .

15F. Linear Equations and Systems, Revisited

An important application of the result of the previous section is to linear equations
and systems with variable coefficients. For first-order systems this means a problem
like

u′(x) = A(x)u(x) + f(x); u(x0) = y0. (36)

Again u takes values in ICn and A(x) is an n × n matrix. Set

f(x, y) = A(x)y + f(x). (37)

Then

||f(x, y) − f(x, y′)|| = ||A(x)[y − y′]|| ≤ ||A(x)|| · ||y − y′||, (38)

where the matrix norm is defined by

||A|| = sup
||y||≤1

||Ay||.

(See Exercise 7 of Section 15C.)

Proposition 15.11. Suppose that the vector-valued function f and the matrix-
valued function A are defined and continuous on an interval J ⊂ IR. Then the
function F defined by (37) is continuous. Moreover, F satisfies a Lipschitz condi-
tion on every closed, bounded subinterval I .
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In fact, ||A(x)|| depends continuously on x and is therefore bounded on I , so
(38) implies the Lipschitz condition.

Corollary 15.12. Under the same hypotheses, the problem (36) has a unique so-
lution on the interval J for every x0 ∈ J and every y0.

The existence of a unique solution on some subinterval around x0 follows imme-
diately from previous results. The fact that there is solution on the whole interval
J is left as an exercise.

A linear equation of higher order

Dnu(x) + an−1(x)Dn−1u(x) + · · · + a0(x)u(x) = g(x), (39)

u(x0) = y0, Du(x0) = y1, · · · Dn−1 = yn−1 (40)

can be reduced to a linear first-order system of the form (1). Continuity of the
coefficients a j and of the function g implies the continuity of A and of f.

Corollary 15.13. If the coefficients a j and the function g are continuous on an
interval J , then for each x0 in J the problem (39), (40) has a unique solution on
the interval J .

Exercises

1. Suppose that the n × n matrix-valued function A is continuous on an interval J . Show
that the set of solutions to u′ = Au is an n-dimensional subspace of the vector space of
continuous functions from J to ICn .

2. Deduce from Exercise 1 that the dimension of the space of solutions to a homogeneous
linear equation of order n with continuous coefficients (i.e., (36) with g = 0) is n.
Consequently, the solutions found in Section 15B in the constant coefficient case are
linearly independent.

3. Show in detail how Corollary 15.13 follows from Corollary 15.12.
4. Suppose that b and c are constants. Prove that every solution of the differential equation

x2 D2u + bx Du + cu = 0 is a linear combination of powers xr and (possibly) of terms
of the form xs log x for suitable choices of r and (if necessary) s. When is it necessary
to use a term like xs log x?
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Appendix

The Banach-Tarski Paradox

Here we give a brief sketch of the theorem stated in Section 10A. We start with a lemma
whose proof is sketched in the exercises. It deals with the rotations in IR3, that is, the
group SO(3) of 3 × 3 orthogonal matrices having determinant 1. Any subset of SO(3)
generates a subgroup; if the subset has two elements σ and τ , then the subgroup G
consists of the identity matrix, which we denote by 1, and all matrices of the form

σ j1τ k1σ j2τ k2 · · · σ jn τ kn , (A.1)

where each jm and each km is an integer (possibly negative); we also require that each of
these integers, except possibly j1 and kn be nonzero, and when n = 1 we require that at
least one of j1 and k1 be nonzero. The group G is said to be free if there is only one such
expression for each matrix in G; this is equivalent to saying that 1 cannot be expressed in
the form (A.1) with the limitations we have placed on the exponents.

Lemma A.1. There are elements σ , τ in SO(3) with the property that the subgroup G that
they generate is free.

A proof of Lemma A.1 is sketched in the exercises at the end of this section.
From now on we take σ and τ to be elements that generate a free subgroup G. If H is a
subset of G, we write σ H for the subset {σµ : µ ∈ H}, and so on. The following result
shows that a subset of G can be cut into four pieces that can be reassembled, using only
the rotations σ and τ , to give two copies of G itself.

Lemma A.2. There are pairwise disjoint subsets H1, H2, H3, H4 of G, whose union does
not contain 1, with the property that

G = σ H1 ∪ τ H2, σ H1 ∩ τ H2 = ∅;

G = σ−1 H3 ∪ τ−1 H4, σ−1 H3 ∩ τ−1 H4 = ∅.

Proof: Let W (σ−1) denote the set of elements of G that begin with σ−1 in the expression
(16.1), that is, those with j1 < 0. Similarly, let W (τ−1σ ) consist of those elements for
which j1 = 0, k1 = −1, j2 > 0, and so on. Then G is the disjoint union of the sets {1},
W (σ ), W (σ−1), W (τ ), W (τ−1). Let

H1 = W (σ−1), H2 = W (τ−1σ ), H3 = W (σ ), H4 = W (τσ−1).
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These sets are pairwise disjoint and do not contain 1 or τ 2, for example. It is easy to check
that

σ H1 = {1} ∪ W (σ−1) ∪ W (τ ) ∪ W (τ−1), τ H2 = W (σ ),

and similarly for σ−1 H3 and τ−1 H4. �

Now let A = {x ∈ IR3 : |x | ≤ 1} be the closed unit ball in IR3. Each element of G takes
A to itself. The orbit of a point x ∈ A is the set Gx = {µx : µ ∈ G}. The origin 0 has only
the trivial orbit {0}. Every other point of A can be shown to have a countable orbit
(Exercise 6 below). A subset X ⊂ A is said to be a cross-section for the action of G if
every X contains exactly one point from each nontrivial orbit. According to the Axiom of
Choice, there is a cross-section.

Lemma A.3. There are pairwise disjoint subsets A1, A2, A3, A4 of the ball A, whose
union is a proper subset of A, with the property that

A = σ A1 ∪ τ A2, σ A1 ∩ τ A2 = ∅;

A = {0} ∪ σ−1 A3 ∪ τ−1 A4, σ−1 A3 ∩ τ−1 A4 = ∅.

Proof: Let X be a cross-section, let the Hj be as in Lemma 2, let
Hj X = {µx : µ ∈ Hj , x ∈ X}, and set

A1 = H1 X ∪ {0}, Ã2 = H2 X, Ã3 = H3 X, A4 = H4 X ;

A2 = Ã2 \ {τ−1σ A1 ∩ Ã2}; A3 = Ã3 \ {τσ−1 Ã3 ∩ A4}.
Note that any point of X is not in the union of the Aj’s. Since A = G X ∪ {0}, the desired
properties follow from Lemma A.2. �

Now let B and C be the closed unit balls with centers b = (0, 0, 3) and c = (0, 0, −3),
respectively.

Lemma A.4. There are pairwise disjoint sets B1, B2, C1, C2, C3 and a function
f : B ∪ C → A with the properties:

B = B1 ∪ B2, C = C1 ∪ C2 ∪ C3;

the sets f (B1), f (B2), f (C1), f (C2), f (C3) are pairwise disjoint; and the restriction of f
to any of Bj or Cj is a distance-preserving mapping (congruence).

Proof: The map x → σ x + b takes the set A1 of Lemma A.3 onto a subset B1 of B, while
the map x → τ x + b takes A2 onto a subset B2 of B. By Lemma A.3, B1 and B2 are
disjoint and have union B. We take f : B → A1 ∪ A2 to be the inverse of the map just
defined. Similarly, the map x → σ−1x + c takes A3 to C1 and the map x → τ−1x + c
takes A4 to C2. To exhaust C we must take one extra point a ∈ A that does not belong to
any Aj and translate it to the center c ∈ C ; then C3 = {c}, and again
f : C → A3 ∪ A4 ∪ {a} is the inverse of the mapping just defined. �

We can now prove the Banach-Tarski Theorem, which we restate here, in slightly
different notation.
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Theorem. There are pairwise disjoint sets A′
1, . . . , A′

7, B ′
1, B ′

2, B ′
3, and C ′

1, . . . C ′
4 such

that

A = A′
1 ∪ · · · ∪ A′

7, B = B ′
1 ∪ B ′

2 ∪ B ′
3, C = C ′

1 ∪ · · · ∪ C ′
4;

A′
1

∼= B ′
1, A′

2
∼= B ′

2, A′
3

∼= B ′
3, A′

4
∼= C ′

1, A′
5

∼= C ′
2, A′

6
∼= C ′

3, A′
7

∼= C ′
4.

Proof: Define g : A → B ∪ C to be translation by b, so g(A) = B. Let D = B ∪ C , so
that (using Lemma A.4) we have the 1–1 mappings (piecewise congruences)

f : D → A, g : A → D.

Given a point x ∈ A, we say that x has an ancestor in D if x = f (y) for some y ∈ D;
similarly we say that y ∈ D has an ancestor in A if y = g(x) for some x ∈ A—which is
true if and only if y ∈ B. Given any point in A or in D that has an ancestor, we can search
for successive ancestors, that is, ancestors of the ancestors. Either this process terminates
(for example, it terminates immediately in D for y ∈ C) or it continues without
terminating. This allows us to partition each of A and D into three subsets:

A f = {x ∈ A : the ancestor search terminates in D}
Ag = {x ∈ A : the ancestor search terminates in A}

A∞ = {x ∈ A : the ancestor search does not terminate},
and similarly D f , Dg , and D∞. It is clear that f : D f → A f is 1–1 and onto (bijective);
similarly g : Ag → Dg is 1–1 and onto, while also f : D∞ → A∞ and g : A∞ → D∞
are inverses of each other. It follows from this and Lemma A.4 that we can complete the
proof by setting

B ′
j = B j ∩ (D f ∪ D∞), j = 1, 2; B ′

3 = B ∩ Dg;

C ′
j = C j ∩ (D f ∪ D∞), j = 1, 2, 3; C ′

4 = C ∩ Dg;

A′
j = f (B ′

j ), j = 1, 2; A′
3 = g−1(B ′

3);

A′
j+3 = f (C ′

j ), j = 1, 2, 3; A′
7 = g−1(C ′

4). �

Exercises

1. Rotation by an angle θ in IR2 is represented by a 2 × 2 orthogonal matrix

µ =
[

cos θ − sin θ

sin θ cos θ

]
.

Check by matrix multiplication that rotation by θ1 followed by rotation by θ2 is rotation
by θ1 + θ2. In particular, this means that the entries of µn are cos nθ and ± sin nθ .

2. Suppose in Exercise 1 that cos θ = α and sin θ = β. Then eiθ = α + iβ and it follows
that cos nθ and sin nθ are the real and imaginary parts of einθ = (α + iβ)n . Deduce
that

cos nθ =
∑

k

(
n

2k

)
(−1)kαn−2kβ2k ; sin nθ =

∑
k

(
n

2k + 1

)
(−1)kαn−2k−1β2k+1.
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3. In Exercise 2, suppose that α = 1/3 and β = 2
√

2/3. Show that

cos nθ =
[∑

k

(
n

2k

)
(−8)k

]
1

3n
; sin nθ =

[∑
k

(
n

2k + 1

)
(−8)k

]
2
√

2

3n
.

Note that the identities (1 + 1)n = 2n and (1 − 1)n = 0 imply that∑
k

(
n

2k

)
=

∑
k

(
n

2k + 1

)
= 2n−1.

Use these identities and the fact that −8 = 1 (mod 3) to deduce that

cos nθ = αn/3n, sin nθ = βn2
√

2/3n, where αn, βn are integers not divisible

by 3.

4. With α and β as in Exercise 3, let σ and τ be the 3 × 3 orthogonal matrices

σ =

α −β 0

β α 0

0 0 1


 ; τ =


 1 0 0

0 α −β

0 β α


 .

Suppose that µ is the element of the group G generated by σ and τ that has the form
(A.1). Prove (by induction on N) that if kn �= 0, then the vector

µ


 0

0

1


 = 3−N


 a

b
√

2
c


 ,

where a, b, and c are integers and N = ∑ | jm | + ∑ |km |. Moreover, show that c is
divisible by 3 if j1 �= 0 while a is divisible by 3 if j1 = 0 and k1 �= 0.

5. Use the results of Exercises 3 and 4 to prove that the group G generated by σ and τ is
free. In fact, show that an element µ of form (A.1) with kn �= 0 cannot be the identity
matrix by showing (by induction) that the vector in Exercise 4 has a middle entry
b
√

2/3N , where b is an integer not divisible by 3 and so b �= 0. On the other hand, if µ
has the form (A.1) with kn = 0 but jn �= 0, then necessarily kn−1 �= 0 and µ = 1 if and
only if µ′ = σ jn µσ− jn − 1.

6. Show that an orbit of G on A distinct from {0} is infinite. [Hint: If x is in a finite orbit,
show that there are positive integers m, n such that σ m x = x = τ n x and deduce from
this that σ m and τ n must commute.]
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Hints for Some Exercises

Section 1A

3. Multiply by 1 − r .
4, 5. Write the terms in the n-th expression in terms of n and put over a common denom-

inator.

Section 1B

5. Add −z to both sides of z + 0 = z + 0′.
6. Add −m to both sides; show that the resulting expression for x is the desired

solution.
11. Multiply the identity 0 + 0 = 0 by r and use the result of Exercise 5 or 6.
12. Multiply by r−1.

13, 14. Adapt the divisibility argument used for r2 = 2.

Section 1C

5. S + 0∗ = S
6. For s to belong to −S, one must have r + s ∈ 0∗ for every r ∈ S.
8. Hint: What positive rationals should the product contain? What other rationals?

Section 2A

1. Convert this statement so that O5 applies.
2. Start with a rational r0 < x and an irrational t0 < x , and add multiples of a suffi-

ciently small rational.
3. Can the set consisting of positive integer multiples of ε be bounded?
5. The set {a1, a2, . . .} has a least upper bound a; show that a is the desired (unique)

point.

241
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6. Suppose that A is nonempty and bounded above. Show that there is some integer
M such that M + 1 is an upper bound and n is not; let a1 = M , b1 = M + 1. Then,
among the three numbers M , M + 1

2 , M + 1, we can choose a2 and b2 so that a2 is
not an upper bound, b2 is an upper bound, and b2 − a2 = 1

2 . Continue.
7. (a) Show that if h > 0 is small enough, then (x + h)2 < 2, and then use Exercise 2.

(b) Adapt the method in (a).
9–11. Induction.

12. Write a = 1 + h, so (1 + h)n = n, and use Exercise 11.
13. See Exercise 12.
14. True. We can suppose that m is very large and let n = m + k; then

√
n − √

m ≈ π

implies k = n − m ≈ π (
√

n + √
m) < 2π

√
m, which implies that k is much

smaller than m, so it is reasonable to try taking k close to 2π
√

m.
15, 16. Divisibility.

17. Uniqueness: What if x < y?
18. This amounts to finding a (presumed) inequality and checking whether it is neces-

sarily true.

Section 2B

1. Choose the q j ’s as large as possible at each step.
2. The numbers with a 7 in the first decimal place make up an interval of length 1/10

in [0, 1], so the total length of the remaining intervals is 9/10. What is the total
length of the intervals corresponding to no 7 in the first two decimal places?

Section 2C

1. Look at the dimensions of the appropriate vector spaces.

Section 2D

1. What happens to successive sums of 1?
2. Should one have i < 0 or i > 0?
5. Suppose that z has the given form. What do you learn from looking at the pro-

duct z z̄?
7. Interpret this as saying two distances are equal.
8. The relations do not change if we rotate the plane, so we can assume that a = 1.

Then necessarily c = b̄ = b−1.
15, 16. Use Exercise 14.

Section 3A

1. It is enough to prove that, for every ε > 0, it follows that a − ε < x < b + ε.
7. Suppose first that |z − z0| ≤ 1, so that z = z0 + h with |h| ≤ 1. Then |zn − zn

0 | ≤
(something fixed)·|h|, . . . . So, given ε > 0, take δ to be ≤ 1 and ≤ some expression
depending on ε.
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8. Since |zn| = |z|n , it is enough to show that 0 < r < 1 implies rn → 0. But 1/r =
1 + h with h > 0, so 1/rn → +∞.

9. (a) Multiply and divide by
√

n2 + 2n + n. (b) How does n compare to 2n or to 1
2 3n

if n is large? (c) In the product n!, about half the factors are ≥ n/2.
11. See Section 3G.
12. (a) Divide the numerator and denominator of the fraction by n2 and use (34).

(b) Take the logarithms and view them as Riemann sums approximating a certain
integral.

13. Is the sequence monotone and bounded? The limit is one solution of a quadratic
equation.

14. The even and odd terms are monotone. The limit is a solution of a quadratic.
15. Look at xk+1 − xk and note that xn − x0 is a sum of such differences.

16, 17. If there is a limit, what equation must it satisfy? How do successive terms of the
sequences relate to each other and/or the possible limits?

Section 3C

1. Show that {bn} is a Cauchy sequence.

Section 3D

3, 4. Write wn − z as a sum of n terms and note that, for large m, most of the terms are
small by comparison with 1/n. (Given ε > 0, choose N . . . .)

5. Adapt the method of Exercises 3 and 4.

Section 3E

2. There is a way, in principle, to construct such a subsequence.
4. Consider three possibilities: (i) there are infinitely many n such that xn > b; (ii)

there are infinitely many n such that xn = b; (iii) neither of the first two.

Section 3F

4. All except the extreme cases can be deduced from Exercise 3 of Section 3D by
taking logarithms.

5. Adapt the method of Exercises 3–5 of Section 3D.
9. What can you say about xn/n for n = mp, where p is fixed and m = 1, 2, . . .?

Consider lim inf(xn/n).

Section 3G

1. Let an = N 1/n − 1 and consider (34).
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Section 4A

1. Relate s2n−1 to s2n .
2. Compute a few partial sums and use induction.
3. If nan ≥ ε > 0, then sn ≥ ε. Show by using similar inequalities that if {an} is

positive and nondecreasing and lim sup(nan) > 0, then
∑

an = ∞.

Section 4B

1, 2, 3. The Ratio Test.
4. Find a simple estimate for the size of the terms for large n. Show an ≥ 1/2n for

large n.
5. Rationalize the numerator.

6, 7. The Ratio Test; (34) of Chapter 3.
8, 9. Cancel factors that are larger than 1 and compare to

∑
(1/n).

10, 11. The 2m Test.
12. Put the two summands over a common denominator and use (32) of Chapter 3

to compare the series to
∑

(1/n log n).
13. Use (6) of Chapter 3.

14, 15. See Exercise 1 of Section 3G.
16, 17, 18. Use Exercise 2 at the end of Chapter 4 or estimate the size of an by taking the

logarithm and using (32) of Chapter 3. (To use the second method for 17 and
18, divide each factor by n.)

19. The 2m test.
20–23. Group terms and estimate sizes.

26. Estimate how many such integers there are between 10n and 10n+1 and get a
(crude) upper bound for their contribution to the sum.

Section 4C

1. See Section 3G.

Additional Exercises for Chapter 4

1. Use (34) from Chapter 3 to deduce that (n + 1)b/nb ∼ eb/n ∼ 1 + b/n, so that
the limit is b. Or use L’Hôpital’s rule.

2. Convergence: The condition implies that n(−1 + an/an+1) ≥ c > 1 for large
enough n. Use Exercise 1 (with 1 < b < c) and a comparison. Or show that,
for large enough n, and for some ε > 0,

nan − (n + 1)an+1 ≥ ε an;

sum these inequalities to bound the partial sums of the series.
Divergence: The condition implies that, for large enough n, an+1/an ≥ [1/(n +
1)]/[1/n], so compare to

∑
(1/n).
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3. Use Exercise 3 of Section 4D.
4. Convergence: Look at (n − 1) log(n − 1)an−1 − n log nan . Divergence: Compare

an+1/an to bn+1/bn with bn = 1/(n − 1) log(n − 1).

Section 5A

1, 2, 3. Start with the Root Test.
4–8. The Ratio Test.

10. Choose r < s < R. What does the convergence of
∑∞

0 ansn tell us about the size of
|an|? and thus about convergence of

∑∞
0 |an|rn? Compare the modulus of a partial

sum of
∑∞

0 anzn to this series.

Section 5B

1. Let w = 1 + z.
2. Differentiate 1/(1 − z).
3. Integrate twice.
4. Differentiate 1/(1 − z) repeatedly.
5. Compute the coefficients bn by using the Binomial Theorem and estimate them

using Exercise 4.
6. (a) Go to the definition of the derivative.
7. Find equations that link any three successive coefficients. What are the first two

coefficients?

Section 5C

4. Show that the partial sums satisfy C0 + C1 + · · · + Cn = A0 Bn + A1 Bn−1 + · · · +
An B0; divide both sides by n + 1 and use Exercises 3 and 5 of Section 3D.

Section 5E

2. Set xn = 1 − 1/n and consider

n∑
k=0

ak − f (xn) =
n∑

k=0

ak(1 − xk
n ) −

∞∑
k=n+1

ak xk
n ;

use the 2m Test.

Section 6A

2. The trick is to prove the triangle inequality. For the second part, note that d̂ distances
are always < 1.
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Section 6B

1–6, 10. Use the definitions.
7. The least upper bound is a limit point, if it is not in A.
9. Consider unions of sets like those in (1), e.g., the translate of these sets; you may

also need something like the single point {0}. It is possible to construct A so that
the seven sets are distinct.

11. What happens with the discrete metric? With IQ?
12. A may be chosen to be an interval.
13. For the first part, use the Least Upper Bound Property. Reduce the second part to

(something like) the first part.

Section 6C

1, 2. Use the definition.

Section 6D

2. Given an open cover, some set of the cover contains p. How many points pn are
not in this set?

3, 5. Use the definitions.
6. Use a sequence εn converging to 0.

10. Prove the two parts separately, from the definitions.
11. Use the (extended) triangle inequality.
12. Choose p1 ∈ S and define a sequence with pn+1 = f (pn). Use the preceding

exercise to show that this is a Cauchy sequence. For full details, see Section 15E.
13. Use Exercise 12.

Section 7A

1. Use the definitions.
2. f −1(Bc) = [ f −1(B)]c.

3, 4. Use the definitions.
5, 6. Use Exercise 4.
7, 8. Use Exercise 4 and take a reciprocal.

9. The image can be a half-open interval, like (0, 1].
10. B can be the intersection of a real interval with IQ.
11. Use the definitions.
12. Use Exercise 11.
13. Use the definitions.
14. (a) Use the definitions. (b) How should g be defined at points of the closure that

are not in A?
15. The proof of differentiability (Theorem 5.4) can be modified and simplified. Or

show that the partial sums converge uniformly (see Exercise 3(b) of Section 5A).
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Section 7B

1. Prove this for integers, then for rational x , and then use continuity.
2. Let a = f (1). By induction, f (n) = an2 for n ∈ IN. Also, f (2x) = 4 f (x), so f (x) =

ax2 for a dense set in IR.
3. Use the geometric meaning of the condition: The graph lies below any secant.
5. Prove the convexity condition for t of the form p/2n and use continuity.
6. Use differentiability; show that the partial sums converge uniformly on each subset

{z : |z| ≤ r} for r < R.

Section 7C

1. Estimate the value of fn at the point where it attains its maximum, or, for (d), where the
denominator is minimal.

4. Evaluate at enough points to get control of the coefficients.
5. Use uniform continuity and connect the dots.
6. (b) Use the preceding exercise.
7. (a) Functions on [0, 1] can be extended to be even functions ( f (−x) = f (x)) on [−1, 1].

If polynomials converge uniformly to a function on [−1, 1], what about their even part
(terms of even degree)?

8. The Pn’s are even, so consider the interval [0, 1] and prove that x − Pn(x) ≥ 0; then Pn

increases with n.

Section 8A

1. (a)–(e) Remember that there are two versions of l’Hôpital’s rule. (f) Consider h as the
variable; use l’Hôpital twice.

3. (a) For a given ε > 0, this essentially reduces to the case of a bounded interval. (b) Take
advantage of (a).

4. (b) Use part (a), and modify the construction of a function that is known to be discon-
tinuous at every point (Example 2 in 8C).

5. Can f take the same value twice? Can it decrease, then increase (or vice versa)?
6. Reduce to the case c = 0 and use the preceding exercise.
7. The derivative at x = 0 is 0: The positive and negative contributions to the integral very

nearly cancel – like looking at the tail of an alternating series.

Section 8B

1. After differentiating, understand the behavior of the numerator by looking at its deriva-
tives.

2. IVT and monotonicity; to show that the right side gets large as b does, notice that x ≥ 1
implies 1 + x3 ≤ 2x3.

3. (a) Use the IVT over a sufficiently large interval.
4. Integrate the polynomial and use the Mean Value Theorem.
5. Use the IVT and the noncountability of the (nonrational) reals in an interval.
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Section 8C

1. The Intermediate Value Theorem; the Mean Value Theorem.
2. Although this function is not continuous on [0, 1], it is uniformly continuous on

[ε/4, 1]. Let x1 = ε/4 and then deal with the rest of the partition.
3. If f (c) > 0, then f (x) ≥ 1

2 f (c) on some interval, so there is P such that L( f, P) > 0.
4. We need P with U ( f, P) < ε. Take x1 = 1

2ε; then there are only finitely many bad
points left to worry about.

5, 7. In any given bounded interval, for any given ε > 0 there are only finitely many points
x where f (x) ≥ ε.

6. The only candidates for points of differentiability are points of continuity. Look at
difference quotients where one point is rational.

Section 8E

1. L’Hôpital; series expansion of ex .
2. What general form do derivatives have for x > 0? Now use the preceding exercise.
3. Use (36) with n = 2 to conclude the following, and choose the best a:

| f ′(x)| ≤ 2a · sup | f | + 1

2a
sup | f ′′|.

Additional Exercises for Chapter 8

1. What does the Mean Value Theorem say about f ′?
2. Reduce this to the preceding exercise.
3. Approximate the integral with sums.
4. Use uniform continuity.
5. In the difference quotient [L(x + h) − L(x)]/h write x + h = x(1 + h/x) and use

(i), then (ii).
6. Write L(x + y) − L(x) as an interval and change variables so that the interval [x, xy]

becomes [1.y].
8. Take fn ≡ 0 outside [1/2n, 1/n].
9. Do this first under the assumption that h is uniformly continuous. Then note that if

we fix f and look at nearby functions g, we only need to know h on a bounded
interval.

11. Use Exercise 7 and the Weierstrass Theorem to see that
∫ b

a f (x)2 dx = 0; then use
Exercise 3 of Section 8C.

Section 9A

1. Look at ez1/ez2 .
2. Start with (b) and use Exercise 5 of Section 2D.
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3. See the preceding exercise.
4, 5. Use the definitions and the properties of the exponential function.

6. Fix x �= 0. What does the n-th term look like if n is very large?
7. Let u = ez and note that we get a quadratic equation for u.
8. Use the identities in (11): The sum on the left becomes a pair of sums of geometric

progressions.
12. Differentiate and use Exercise 11(a).
13. (b) Square the integral (using x and y to denote the two variables of integration),

interpret the result as an integral in the plane, and change to polar coordinates.
15. Let t = s/(1 + s).

Section 9C

2. Use the fact that | tan x | ≥ |x | on (−π
2 + π

2 ) to show that x2/[2m tan(kπ/2m)]2 ≤
x2/k2π2.

Section 10B

1. Let m+ be defined using closed intervals. It is easy to see that m+(A) ≤ m∗(A).
To prove the converse, replace any closed interval by a slightly larger open
interval.

6. The union of all open intervals I ⊂ A containing a point x ∈ A is an open interval,
so A is a union of disjoint open intervals. Any nonempty open interval contains a
rational.

7. If there are only finitely many nonempty intervals, use (4) and induction. The finite
case gives an inequality from which the general case follows.

10. Alter the construction of C somewhat and take advantage of Exercise 2.
11. The unbounded case can be reduced to countably many bounded cases.

Section 10C

1, 2. Use the definition.
3. Do this first for intervals with endpoints of the form p/2n , p an integer.

Section 10D

2. Use (5).
5. It is enough to prove that some subsequence has this property. Passing to a suit-

able subsequence and renumbering, one may assume that d(An, An+1) < 2−n−1. Then
let Bn = ⋂∞

m=n Am and A = ⋃∞
n=1 Bn = lim inf An . Show that d(An, Bn) < 2−n and

d(Bn, A) → 0.
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Section 11A

4. (a) Prove this when A is a rectangle with sides parallel to the coordinate axes; show
that any open set is a countable union of such rectangles.

6. Let

Ekn =
{

x ∈ A : sup
m≥n

| fm(x) − f (x)| > 1/k
}
, k = 1, 2, . . . , n = 1, 2, . . . .

Show that for each k there is n = n(k) such that m(Ekn < ε/2k+1, and show that
convergence is uniform on the complement in A of the union of the Ek,n(k).

Section 11D

7. a 1Ea ≤ f .
10. Use Exercise 7.

Section 11E

1. (c) For t ≥ 0, we have log(1 + t) ≤ t.
2. Apply the DCT to f IEn .
3. (a) Use the DCT. (b) F has limits at ±∞.
4. Look at the sets where f (x) > 1 and where f (x) ≤ 1.
8. The set { f > a} is the union of the sets { fn > a}; use the continuity property to

estimate its measure.
9. Adapt the construction in the example after Theorem 12.5.

Section 12C

3, 4. It is enough to prove these for a dense subset. (Why?)
5. Use Theorem 12.7, and the method used in the proof of Theorem 12.5, to find a

sequence of continuous functions that converge pointwise a.e., show that the limit
is f a.e., and use Egorov’s Theorem (Exercise 6 of Section 11A).

6. Show that for large enough a, the set A = {| f | > a} has measure less than ε/2.
Then, for any n = 1, 2, 3, . . . , f is integrable on [−n, n] ∩ A, and use can be made
of Exercise 5.

Section 12D

9. Use Exercise 6, with n = 2.
10, 11. Cauchy-Schwarz.

12. Show that it is possible to choose a sequence of functions hn ∈ L2 such that f hn

increases to f 2 and use the Monotone Convergence Theorem.
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Section 12E

2, 3. Use Theorem 12.10. For Exercise 3, note that m(A ∩ B) = ∫
B 1A.

Additional Exercises for Chapter 12

1. (a) It can be assumed that b = 1; the problem can be rephrased as a problem about a
minimum value.

2. Replace f by f/a and g by ag in Exercise 1(b) and make a good choice of the constant
a.

3. What choice of g would guarantee equality?
4. Use Exercises 2 and 3.
5. There are examples in which f and g are indicator functions.
6. Try functions that look like xa(log x)b for small positive x and like xc(log x)d for large

positive x .

Section 13B

3. Use Exercise 2(a) and take a limit.
5. (a), (b) Use the expansion of 1/(1 − z).
6. (b) Either approximate by continuous functions or break the interval [b, 1) into at most

two subintervals, each of which is obtained by translating by an integer a corresponding
subinterval of [−π, π ).

7. Use (9), orthonormality.
8. Integrate by parts.
9. Use (43).

Section 13C

1–4. Dirichlet’s Theorem is applicable. For 1(b), break the sum into even and odd terms.

Section 13D

1. Use Exercise 2 of Section 13B and Fejér’s Theorem.
2. Use Fejér’s Theorem.

Section 13E

1. Note that 1
2π

∫ π

−π
f g = 0 for every trigonometric polynomial g. By the Weierstrass

Approximation Theorem (or Fejér’s Theorem), this implies that 1
2π

∫ π

−π
f g = 0 for

every continuous periodic g. Using continuous g’s to approximate the indicator func-
tion of an interval A ⊂ (−π, π ), show that

∫
A f = 0 for every such interval. Deduce

from this and dominated convergence that
∫

A f = 0 for every open set A ⊂ (−π, π ).
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This and the approximation property of measurable sets imply that
∫

A f = 0 for ev-
ery measurable set. In particular, this is true for the sets A = {x : Re f (x) > 0} and
B = {x : Re f (x) < 0}. Therefore

1

2π

∫ π

−π

|Re f | =
∫

A
Re f −

∫
B

Re f = 0,

which implies that Re f = 0 a.e. The same argument applies to Im f .
2. Use the preceding exercise.

Section 13F

1. If g belongs to this space, then f − SN f is orthogonal to SN f − g, which implies
that || f − g|| is at least equal to || f − SN f || (see Exercise 9 of Section 12D).

2, 3. Cauchy-Schwarz.

Section 13G

1, 2. Use Theorems 13.13 and 13.14 and Proposition 13.4.
6. (a) Use Lemma 13.15 and Theorem 13.14 to conclude that SN f converges uniformly

to a continuous function g and note that g has the same Fourier coefficients as f .
8. Proposition 13.4, iterated.
9. Use Theorem 13.14 and Proposition 13.4.

10. Translate f , so you may assume that x0 = 0. Then write f as a sum of a function
to which Dirichlet’s Theorem applies and a multiple of the function which is −1 on
(−π, 0) and +1 on (0, π ).

Section 14A

1. See the hint for Exercise 10 of Section 13G.
2. Show that the values of TN f (x) lie in the interval (−1, 1).

Section 14B

1. Write f (x) − f (y) as a series; estimate the sum of the terms up to 2−n ∼ |x − y| by
using the size of the coefficients and an estimate on the difference of the cosine terms;
estimate the remaining sum using only the size of the coefficients and the boundedness
of the cosine function.

Section 14D

2. Note that
∫ x

0 g = G(x) is even and periodic. Solve for f1 and f2 in terms of f and G.
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Sections 14E and 14F

Expand the would-be solution in appropriate eigenfunctions and proceed in analogy
with the vibrating string problem.

Section 14H

1. Use the Dominated Convergence Theorem.
2. Integrate by parts.
6. Note that f satisfies the differential equation d f/dx = −x f (x). Show that f̂ satisfies

the same equation (with respect to the ξ variable), by using the results of the preceding
exercises.
Deduce that f̂ is a multiple of e−ξ 2/2. Because f has integral = 1, it follows that
f̂ (0) = 1.

7. Use the inversion formula (43) and the results of previous exercises.
8. Show that the Fourier coefficients ĝ of the periodic function g on the right side are

related to the Fourier transform of f by

ĝ(n) = 1

2π
· f̂ (m)

and use Theorem 13.16.
9. It is enough to show that f̂ is determined by these values. But consider f̂ as a func-

tion on the interval [−M/2, M/2] and look at its Fourier expansion in terms of the
complex exponentials that are periodic with period M , just as was done above for fL

in (37).

Section 14I

3. When does equality hold in the Schwarz inequality?

Section 15A

3. Write this as f (x)e−Cx − f (0) ≤ 0.

Section 15B

4. Use Exercise 2 to find one solution and Theorem 15.1 to find the rest.
8. The argument will be different depending on whether r is a root of p.

10. (a) The differential equation and the boundedness condition determine G on the intervals
(−∞, 0) and (0, ∞) up to constant multiples. The remaining conditions determine the
constants.

12. Given a linear combination that vanishes, look at its behavior for large x .
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Section 15C

6. Differentiate the inner product (u(x), u(x)). (This can be done either directly from
difference quotients and properties of the inner product or by writing out the inner
product.)

8. Differentiate ex A+Be−x Ae−B and compare the values at x = 0 and x = 1; remember
that eAe−A = I .

10. Use implicit differentiation.
11. Use Exercise 10.
12. Note that f (x, xav) = xa−1 f (1, v).

Section 15E

5. Consider the presence or absence of a Lipschitz condition.
8. Induction.

Section 15F

4. What is the dimension of the space of solutions?
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Ac, 77
A � B, 14
IC, 26
C(A; IC), C(A;IR), 91
C∞(IR), 219
DN , 182
f ∨ g, f ∧ g, 146
f −1(A), 87
f̂ (n), 176;
f̂ (ξ ), 211
FN , 184
inf, 16
lim inf, lim sup, 34
L1, 162
L2, 166

L p 172
L2(I ), 175
L( f, P), 107
Nε(p), 75
IN, 1
1A 149
P(D), 219
IQ, 2
IR 12,15
SN , 179
sup, 16
TN , 184
U ( f, P), 107
ZZ, 2

255



P1: JZP

0521840724 CY492/Beals 0 521 84072 4 June 30, 2004 22:13 Char Count= 0

256



P1: JZP

0521840724 CY492/Beals 0 521 84072 4 June 30, 2004 22:13 Char Count= 0

General Index

Abel’s Theorem, 71
absolute convergence, 46
additive function, 91
a.e. (almost everywhere), 158
algebraic number, 24
almost everywhere (a.e.), 158
alternating series, 55
approximate identity, 195
Archimedean property, 8
Ascoli-Arzelà Theorem, 227
axioms

for IN, 5
for IQ, 5, 7, 8
for IR, 15–16
for ZZ, 5, 7

Banach Fixed Point Theorem, 84, 231
Banach-Tarski Theorem, 132, 239
band-limited signal, 215
Bernstein polynomials, 95
Bessel’s inequality, 179
Beta function, 129
binary expansion, 22
Bolzano-Weierstrass Theorem, 39
boundary conditions, 204, 208
boundary of set, 79
bounded sequence, 30

set, 80
function, 88

Cantor set, 84, 134
Cauchy product, 67

Cauchy sequence, 35
Cauchy-Schwarz inequality, 166, 168
chain rule, 100
closed set, 76
closure of set, 78
commutative group, 7
commutative ring, 7
compact set, 79
compactly supported function, 164
comparison test, 48
complete metric space, 81
complex conjugate, 27
complex numbers, 26
composition of functions, 87
conditional convergence, 54
connected set, 79
continuity, 86

uniform, 88
Contraction Mapping Theorem, 84,

231
convergence

of sequences, 30, 81
of series, 45

convergence tests
alternating series, 55
comparison, 48
Gauss, 60
integral, 52
Raabe, 59
ratio, 48
root, 49
2m , 50

257
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convergent sequence, 30, 81
series, 45

convex function, 91
convolution, 195
cosh, 123
cosine, 122
countable additivity, 139
countable set, 23
cover, 79

open, 79
cut, 10

DCT (Dominated Convergence Theorem),
155

decimal expansion, 22
dense subset, 93
derivative, 64,
differentiable, 99
differentiation, 99

of power series, 64
diffusion equation, 207, 214
Dirichlet kernel DN , 182
Dirichlet’s Theorem, 183
discrete metric, 73
disk of convergence, 63
divergent series, 45
Dominated Convergence Theorem (DCT),

155

Egorov’s Theorem, 147
eigenfunctions, 204
equicontinuity, 227
equidistributed sequence, 202
equivalent metrics, 75
Euler’s constant, 57
Euler’s formula for sin x , 125
exponential function, 69, 106,

119–122
extended reals, 40

fast Fourier transform (FFT), 210
Fatou’s Lemma, 156
Fejér kernel FN , 184, 185
Fejér’s Theorem, 186
FFT (fast Fourier transform), 210
Fibonacci sequence, 44
field, 18

Fourier
coefficients, 176, 177
series, 176
transform, 212

function, 86
additive, 91
Beta, 129
bounded, 88
compactly supported, 164
continuous, 86
continuous at a point, 86
convex, 91
differentiable, 99
Gamma, 129
hypergeometric, 130
indicator, 149
integrable, 152, 165
integrable periodic, 175
integrable simple, 149
inverse, 105
L2-periodic, 175
measurable, 152
monotone, 102
nondecreasing, 102
nonincreasing, 102
periodic, 173
square-integrable periodic, 175
strictly decreasing, 102
strictly increasing, 102
strictly monotone, 102
uniformly continuous, 88

fundamental solution, 223
Fundamental Theorem

of Algebra, 124
of Calculus, 111

Gamma function, 129
Gauss’s test, 60
Generalized Mean Value Theorem

(GMVT), 102
geometric series, 46
Gibbs phenomenon, 197
GMVT (Generalized Mean Value

Theorem), 102
greatest lower bound, 16
Greatest Lower Bound Property, 16
Gronwall’s inequality, 219
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Hardy-Littlewood
inequality, 169
maximal function, 169

heat equation, 207, 214
Heine-Borel Theorem, 81
Heisenberg Uncertaintly Principle,

217
Hilbert space, 166
Hölder’s inequality, 172
hyperbolic functions, 123
hypergeometric function, 130

imaginary part, 27, 165
indicator function, 149
inequality

Bessel’s, 179
Cauchy-Schwarz, 166, 168
Gronwall’s, 219
Hardy–Littlewood, 169
Hölder’s, 172
isoperimetric, 200
triangle, 73

infimum, 16
infinite product, 126
initial conditions, 204
integers 2

construction 6
integrable function

Lebesgue, 152, 165
Riemann, 109, 110

integrable simple function (ISF), 149
integral (Lebesgue)

of integrable function, 152
of ISF, 149
of nonnegative function, 151

integral (Riemann), 109
integral test, 52
integration by parts, 115
interior point, 75
interior of set, 76
Intermediate Value Theorem, 105
inverse function, 105
inverse image of set, 87
ISF (integrable simple function), 149
isoperimetric inequality, 200

Jensen’s inequality, 117

least upper bound, 16
Least Upper Bound Property, 16
Lebesgue’s theorem on

dominated convergence, 155
Fourier coefficients, 193

L’Hôpital’s Rule, 103
limit

lower, 33
of sequence, 30
point, 76
upper, 33

Lipshitz condition, 231
logarithm (natural), 42, 102
lower

bound, 16
integral, 108
limit, 33
sum, 107

Lusin’s Theorem, 166

Mandelbrot set, 44
maximal function, 169
Mean Value Theorem (MVT), 101
measurable

function, 145
set, 136

Mertens’ Theorem, 67
method of successive approximations, 230
metric, 73

discrete, 73
standard, 74

metric space, 73
compact, 79
complete, 81
separable, 94

metrics, equivalent, 75
modulus, 27
momentum operator, 217
Monotone Convergence Theorem, 156
monotone function, 102

sequence, 32
MVT (Mean Value Theorem), 101

natural numbers, 1
neighborhood, 75
Nested Interval Property, 20
no-gap property, 4, 32
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nondecreasing
function, 102
sequence, 31

nonincreasing
function, 102
sequence, 32

nonmeasurable set, 142
norm, 74
null set, 158

open cover, 79
open set, 75
ordered field, 18
orthogonal, 168
orthonormal, 168, 174
outer measure, 133

Parseval’s Identity, 190
partial sums, 45
partition, 107

refinement, 108
Peano’s Theorem, 228
periodic

function, 173
integrable function, 177
square-integrable function, 175

π , 121
Picard iterates, 232
Picard’s method, 230
Plancherel’s Theorem, 212
point

interior, 75
limit, 76

point of density, 171
Poisson summation formula, 215
polar decomposition, 28
position operator, 217
positive number, 17
power series, 61

differentiation, 63
radius of convergence, 61

product
of power series, 68
of series, 67

proof, discussion, 12–13
proper subset, 79

Raabe’s test, 59
radius of convergence, 61
ratio test, 48
rational numbers, 2

construction, 7–8
real numbers

axioms, 15–16
construction, 10–12
extended, 40

real part, 27, 165
rearrangement (of series), 55
refinement of partition, 108
Riemann integrable, 109
Riemann sum, 113
Riemann’s theorem on rearrangement, 56
Riemann-Lebesgue Lemma, 178
Riesz-Fischer Theorem, 189
Rolle’s Theorem, 101
root test, 49

Schrödinger equation, 217
separable differential equation, 226
separable metric space, 94
sequence, 30

bounded, 30, 82
Cauchy, 35, 82
convergent, 30, 81
Fibonacci, 44
monotone, 32
nondecreasing, 31
nonincreasing, 32

sequences
difference, 37
product, 37
quotient, 37
sum, 37

sequential compactness, 83
series, 45

absolutely convergent, 46
alternating, 55
conditionally convergent, 54
convergent, 45
divergent, 45
geometric, 46

set
bounded, 80
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bounded above, 16
bounded below, 16
Cantor, 84
closed, 76
closure of, 78
compact, 79
connected, 79
interior of, 75
measurable, 136
null, 158
open, 75
sequentially compact, 83

sine, 122
sinh, 123
spectral theorem, 175
square-integrable periodic function,

175
standard metric, 74
standing-wave solutions, 205
strict contraction, 84, 231
strictly

decreasing, 102
increasing, 102
monotone, 102

subcover, 79
subsequence, 39
subset

compact, 79
dense, 93
proper, 79

sum of series, 45
supremum, 16
symmetric difference, 142

Tauberian theorem, 72
Taylor polynomial, 114
Taylor’s formula

with remainder, 115
with integral remainder, 116

ternary expansion, 22
Theorem

Abel, 71
Ascoli-Arzelà, 227

Banach, 84, 231
Banach-Tarski, 132, 239
Bolzano-Weierstrass, 39
Dirichlet, 183
Egorov, 147
Fejér, 186
Heine-Borel, 81
Liouville, 25
Lebesgue, 155, 193
Lusin, 166
Mertens, 67
Peano, 228
Plancherel, 212
Riesz-Fischer, 189
Weierstrass, 93, 187, 199
Riemann, 56
Rolle, 101
Weyl, 202

transcendental number, 24
translate, of set, 134
translation invariance, 139
traveling-wave solutions, 206
triangle inequality, 73
trigonometric functions, 122
trigonometric polynomial, 187
2m test

uncountable set, 23
uniform continuity, 88
uniform convergence, 93
upper

bound, 16
integral, 108
limit, 33
sum, 107

wave function, 216
Weierstrass’s theorem on

trigonometric approximation, 187
nondifferentiable function, 199
polynomial approximation, 93

Weyl’s theorem on equidistribution,
202
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