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Preface

The subject of special functions is one that has no precise delineation. This
book includes most of the standard topics and a few that are less standard.
The subject does have a long and distinguished history, which we have tried
to highlight through remarks and numerous references. The unifying ideas are
easily lost in a forest of formulas. We have tried to emphasize these ideas,
especially in the early chapters.

To make the book useful for self-study we have included introductory
remarks for each chapter, as well as proofs, or outlines of proofs, for almost
all the results. To make it a convenient reference, we have concluded each
chapter with a concise summary, followed by brief remarks on the history, and
references for additional reading.

We have tried to keep the prerequisites to a minimum: a reasonable
familiarity with power series and integrals, convergence, and the like. Some
proofs rely on the basics of complex function theory, which are reviewed
in Appendix A. The necessary background from differential equations is
covered in Chapter 3. Some familiarity with Hilbert space ideas, in the L2

framework, is useful but not indispensable. Chapter 11 on elliptic functions
relies more heavily than the rest of the book on concepts from complex
analysis. Appendix B contains a quick development of basic results from
Fourier analysis.

The first-named author acknowledges the efforts of some of his research
collaborators, especially Peter Greiner, Bernard Gaveau, Yakar Kannai, and
Jacek Szmigielski, who managed over a period of years to convince him that
special functions are not only useful but beautiful. The authors are grateful to
Jacek Szmigielski, Mourad Ismail, Richard Askey, and an anonymous reviewer
for helpful comments on the manuscript.
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1

Orientation

The concept of “special function” is one that has no precise definition. From
a practical point of view, a special function is a function of one variable that
is (a) not one of the “elementary functions” – algebraic functions, trigono-
metric functions, the exponential, the logarithm, and functions constructed
algebraically from these functions – and is (b) a function about which one can
find information in many of the books about special functions. A large amount
of such information has been accumulated over a period of three centuries.
Like such elementary functions as the exponential and trigonometric functions,
special functions arise in numerous contexts. These contexts include both pure
mathematics and applications, ranging from number theory and combinatorics
to probability and physical science.

The majority of the special functions that are treated in many of the general
books on the subject are solutions of certain second-order linear differen-
tial equations. Indeed, these functions were discovered through the study of
physical problems: vibrations, heat flow, equilibrium, and so on. The asso-
ciated equations are partial differential equations of second order. In some
coordinate systems, these equations can be solved by separation of variables,
leading to the second-order ordinary differential equations in question. (Solu-
tions of the analogous first-order linear differential equations are elementary
functions.)

Despite the long list of adjectives and proper names attached to this
class of special functions (hypergeometric, confluent hypergeometric, cylinder,
parabolic cylinder, spherical, Airy, Bessel, Hankel, Hermite, Kelvin, Kummer,
Laguerre, Legendre, Macdonald, Neumann, Weber, Whittaker, . . .), each of
them is closely related to one of two families of equations: the confluent
hypergeometric equation(s)

x u′′(x)+ (c − x) u′(x)− a u(x) = 0 (1.0.1)

1



2 Orientation

and the hypergeometric equation(s)

x(1 − x) u′′(x)+ [c − (a + b + 1)x] u′(x)− ab u(x) = 0. (1.0.2)

The parameters a, b, c are real or complex constants.
Some solutions of these equations are polynomials: up to a linear change

of variables, they are the “classical orthogonal polynomials.” Again, there are
many names attached: Chebyshev, Gegenbauer, Hermite, Jacobi, Laguerre,
Legendre, ultraspherical. In this chapter we discuss one context in which these
equations, and (up to normalization) no others, arise. We also shall see how
two equations can, in principle, give rise to such a menagerie of functions.

Some special functions are not closely connected to linear second-order
differential equations. These exceptions include the gamma function, the beta
function, and the elliptic functions. The gamma and beta functions evaluate
certain integrals. They are indispensable in many calculations, especially in
connection with the class of functions mentioned earlier, as we illustrate below.

Elliptic functions arise as solutions of a simple nonlinear second-order
differential equation, and also in connection with integrating certain algebraic
functions. They have a wide range of applications, from number theory to
integrable systems.

1.1 Power series solutions

The general homogeneous linear second-order equation is

p(x) u′′(x)+ q(x) u′(x)+ r(x) u(x) = 0, (1.1.1)

with p not identically zero. We assume here that the coefficient functions p, q,
and r are holomorphic (analytic) in a neighborhood of the origin.

If a function u is holomorphic in a neighborhood of the origin, then the
function on the left-hand side of (1.1.1) is also holomorphic in a neighborhood
of the origin. The coefficients of the power series expansion of this function can
be computed from the coefficients of the expansions of the functions p, q, r ,
and u. Under these assumptions, equation (1.1.1) is equivalent to the sequence
of equations obtained by setting the coefficients of the expansion of the left-
hand side equal to zero. Specifically, suppose that the coefficient functions
p, q, r have series expansions

p(x) =
∞∑

k=0

pk xk, q(x) =
∞∑

k=0

qk xk, r(x) =
∞∑

k=0

rk xk,
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and u has the expansion

u(x) =
∞∑

k=0

uk xk .

Then the constant term and the coefficients of x and x2 on the left-hand side
of (1.1.1) are

2p0u2 + q0u1 + r0u0, (1.1.2)

6p0u3 + 2p1u2 + 2q0u2 + q1u1 + r1u0 + r0u1,

12p0u4 + 6p1u3 + 2p2u2 + 3q0u3 + 2q1u2 + q2u1 + r0u2 + r1u1 + r2u0,

respectively. The sequence of equations equivalent to (1.1.1) is the sequence∑
j+k=n, k≥0

(k + 2)(k + 1)p j uk+2 +
∑

j+k=n, k≥0

(k + 1)q j uk+1

+
∑

j+k=n, k≥0

r j uk = 0, n = 0, 1, 2, . . . (1.1.3)

We say that equation (1.1.1) is recursive if it has a nonzero solution u
holomorphic in a neighborhood of the origin, and equations (1.1.3) determine
the coefficients {un} by a simple recursion: the nth equation determines un

in terms of un−1 alone. Suppose that (1.1.1) is recursive. Then the first of
equations (1.1.2) should involve u1 but not u2, so p0 = 0, q0 �= 0. The second
equation should not involve u3 or u0, so r1 = 0. Similarly, the third equation
shows that q2 = r2 = 0. Continuing, we obtain

p0 = 0, p j = 0, j ≥ 3; q j = 0, j ≥ 2; r j = 0, j ≥ 1.

After collecting terms, the nth equation is then[
(n + 1)np1 + (n + 1)q0

]
un+1 + [n(n − 1) p2 + nq1 + r0

]
un = 0.

For special values of the parameters p1, p2, q0, q1, r0 one of these coefficients
may vanish for some value of n. In such a case either the recursion breaks down
or the solution u is a polynomial, so we assume that this does not happen. Thus

un+1 = − n(n − 1)p2 + nq1 + r0

(n + 1)np1 + (n + 1)q0
un . (1.1.4)

Assume u0 �= 0. If p1 = 0 but p2 �= 0, the series
∑∞

n=0 un xn diverges for
all x �= 0 (ratio test). Therefore, up to normalization – a linear change of
coordinates and a multiplicative constant – we may assume that p(x) has one
of the two forms p(x) = x(1 − x) or p(x) = x .
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If p(x) = x(1 − x) then equation (1.1.1) has the form

x(1 − x) u′′(x)+ (q0 + q1x) u′(x)+ r0 u(x) = 0.

Constants a and b can be chosen so that this is (1.0.2).
If p(x) = x and q1 �= 0 we may replace x by a multiple of x and take

q1 = −1. Then (1.1.1) has the form (1.0.1).
Finally, suppose p(x) = x and q1 = 0. If also r0 = 0, then (1.1.1) is a first-

order equation for u′. Otherwise we may replace x by a multiple of x and take
r0 = 1. Then (1.1.1) has the form

x u′′(x)+ c u′(x)+ u(x) = 0. (1.1.5)

This equation is not obviously related to either of (1.0.1) or (1.0.2). However, it
can be shown that it becomes a special case of (1.0.1) after a change of variable
and a “gauge transformation” (see exercises).

Summarizing: up to certain normalizations, an equation (1.1.1) is recursive
if and only if it has one of the three forms (1.0.1), (1.0.2), or (1.1.5). Moreover,
(1.1.5) can be transformed to a case of (1.0.1).

Let us note briefly the answer to the analogous question for a homogeneous
linear first-order equation

q(x) u′(x)+ r(x) u(x) = 0 (1.1.6)

with q not identically zero. This amounts to taking p = 0 in the argument
above. The conclusion is again that q is a polynomial of degree at most one,
with q0 �= 0, while r = r0 is constant. Up to normalization, q(x) has one of
the two forms q(x) = 1 or q(x) = x − 1. Thus the equation has one of the two
forms

u′(x)− a u(x) = 0; (x − 1)u′(x)− a u(x) = 0,

with solutions

u(x) = c eax ; u(x) = c (x − 1)a,

respectively.
Let us return to the confluent hypergeometric equation (1.0.1). The power

series solution with u0 = 1 is sometimes denoted M(a, c; x). It can be calcu-
lated easily from the recursion (1.1.4). The result is

M(a, c; x) =
∞∑

n=0

(a)n
(c)n n ! xn, c �= 0,−1,−2, . . . (1.1.7)
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Here the “shifted factorial” or “Pochhammer symbol” (a)n is defined by

(a)0 = 1, (a)n = a(a + 1)(a + 2) · · · (a + n − 1), (1.1.8)

so that (1)n = n !. The series (1.1.7) converges for all complex x (ratio test),
so M is an entire function of x .

The special nature of equation (1.0.1) is reflected in the special nature of the
coefficients of M . It leads to a number of relationships among these functions
when the parameters (a, b) are varied. For example, a comparison of coeffi-
cients shows that the three “contiguous” functions M(a, c; x), M(a + 1, c; x),
and M(a, c − 1; x) are related by

(a − c + 1)M(a, c; x)− a M(a + 1, c, x)+ (c − 1)M(a, c − 1; x) = 0.
(1.1.9)

Similar relations hold whenever the respective parameters differ by integers.
(In general, the coefficients are rational functions of (a, c, x) rather than simply
linear functions of (a, b).)

1.2 The gamma and beta functions

The gamma function

�(a) =
∫ ∞

0
e−t ta−1 dt, Re a > 0,

satisfies the functional equation a �(a) = �(a + 1). More generally, the
shifted factorial (1.1.8) can be written

(a)n = �(a + n)

�(a)
.

It is sometimes convenient to use this form in series like (1.1.7).
A related function is the beta function, or beta integral,

B(a, b) =
∫ 1

0
sa−1(1 − s)b−1 ds, Re a > 0, Re b > 0,

which can be evaluated in terms of the gamma function

B(a, b) = �(a) �(b)

�(a + b)
;
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see the next chapter. These identities can be used to obtain a representation of
the function M in (1.1.7) as an integral, when Re c > Re a > 0. In fact

(a)n
(c)n

= �(a + n)

�(a)
· �(c)

�(c + n)

= �(c)

�(a) �(c − a)
B(a + n, c − a)

= �(c)

�(a) �(c − a)

∫ 1

0
sn+a−1(1 − s)c−a−1 ds.

Therefore

M(a, c; x) = �(c)

�(a) �(c − a)

∫ 1

0

{
sa−1(1 − s)c−a−1

∞∑
n=0

(sx)n

n!

}
ds

= �(c)

�(a) �(c − a)

∫ 1

0
sa−1(1 − s)c−a−1esx ds. (1.2.1)

This integral representation is useful in obtaining information that is not evi-
dent from the power series expansion (1.1.7).

1.3 Three questions

First question: How can it be that so many of the functions mentioned in the
introduction to this chapter can be associated with just two equations (1.0.1)
and (1.0.2)?

Part of the answer is that different solutions of the same equation may have
different names. An elementary example is the equation

u′′(x)− u(x) = 0. (1.3.1)

One might wish to normalize a solution by imposing a condition at the origin
like

u(0) = 0 or u′(0) = 0,

leading to u(x) = sinh x or u(x) = cosh x respectively, or a condition at
infinity like

lim
x→−∞ u(x) = 0 or lim

x→+∞ u(x) = 0,
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leading to u(x) = ex or u(x) = e−x respectively. Similarly, Bessel, Neumann,
and both kinds of Hankel functions are four solutions of a single equation,
distinguished by conditions at the origin or at infinity.

The rest of the answer to the question is that one can transform solutions of
one second-order linear differential equation into solutions of another, in two
simple ways. One such transformation is a change of variables. For example,
starting with the equation

u′′(x)− 2x u′(x)+ λ u(x) = 0, (1.3.2)

suppose u(x) = v(x2). It is not difficult to show that (1.3.2) is equivalent to
the equation

y v′′(y)+
(

1

2
− y

)
v′(y)+ 1

4
λ v(y) = 0,

which is the case a = − 1
4λ, c = 1

2 of (1.0.1). Therefore, even solutions of
(1.3.2) can be identified with certain solutions of (1.0.1). The same is true
of odd solutions: see the exercises. An even simpler example is the change
u(x) = v(i x) in (1.3.1), leading to v′′ + v = 0, and the trigonometric and
complex exponential solutions sin x , cos x , eix , e−i x .

The second type of transformation is a “gauge transformation”. For exam-
ple, if the function u in (1.3.2) is written in the form

u(x) = ex2/2 v(x),

then (1.3.2) is equivalent to an equation with no first-order term:

v′′(x)+ (1 + λ− x2) v(x) = 0. (1.3.3)

Each of the functions mentioned in the third paragraph of the introduction to
this chapter is a solution of an equation that can be obtained from (1.0.1) or
(1.0.2) by one or both of a change of variable and a gauge transformation.

Second question: What does one want to know about these functions?

As we noted above, solutions of an equation of the form (1.1.1) can be
chosen uniquely through various normalizations, such as behavior as x → 0
or as x → ∞. The solution (1.1.7) of (1.0.1) is normalized by the condition
u(0) = 1. Having explicit formulas, like (1.1.7) for the function M , can be
very useful. On the other hand, understanding the behavior as x → +∞ is
not always straightforward. The integral representation (1.2.1) allows one to
compute this behavior for M (see exercises). This example illustrates why it
can be useful to have an integral representation (with an integrand that is well
understood).
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Any three solutions of a second-order linear equation (1.1.1) satisfy a linear
relationship, and one wants to compute the coefficients of such a relationship.
An important tool in this and in other aspects of the theory is the computation
of the Wronskian of two solutions u1, u2:

W (u1, u2)(x) ≡ u1(x) u′
2(x)− u2(x) u′

1(x).

In particular, these two solutions are linearly independent if and only if the
Wronskian does not vanish.

Because of the special nature of equations (1.0.1) and (1.0.2) and the
equations derived from them, solutions satisfy various linear relationships like
(1.1.9). One wants to determine a set of relationships that generate all such
relationships.

Finally, the coefficient of the zero-order term in equations like (1.0.1),
(1.0.2), or (1.3.3) is an important parameter, and one often wants to know how
a given normalized solution like M(a, c; x) varies as the parameter approaches
±∞. In (1.3.3), denote by vλ the even solution normalized by vλ(0) = 1. As
1 + λ = μ2 → +∞, over any bounded interval the equation looks like a small
perturbation of the equation v′′ + μ2v = 0. Therefore it is plausible that

vλ(x) ∼ Aλ(x) cos(μx + Bλ) as λ→ +∞,
with Aλ(x) > 0. We want to compute the “amplitude function” Aλ(x) and the
“phase constant” Bλ. Some words about notation like that in the preceding
equation: the meaning of the statement

f (x) ∼ A g(x) as x → ∞
is

lim
x→∞

f (x)

g(x)
= A.

This is in slight conflict with the notation for an asymptotic series expansion:

f (x) ∼ g(x)
∞∑

n=0

an x−n as x → ∞

means that for every positive integer N , truncating the series at n = N gives
an approximation to order x−N−1:

f (x)

g(x)
−

N∑
n=0

an x−n = O
(

x−N−1
)

as x → ∞.
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As usual, the “big O” notation

h(x) = O
(
k(x)

)
as x → ∞

means that there are constants A, B such that∣∣∣∣h(x)k(x)

∣∣∣∣ ≤ A if x ≥ B.

The similar “small o” notation

h(x) = o
(
k(x)

)
means

lim
x→∞

h(x)

k(x)
= 0.

Third question: Is this list of functions or related equations exhaustive, in any
sense?

A partial answer has been given: the requirement that the equation be “recur-
sive” leads to just three cases, (1.0.1), (1.0.2), and (1.1.5), and the third of these
three equations reduces to a case of the first equation. Two other answers are
given in Chapter 3.

The first of the two answers in Chapter 3 starts with a question of mathe-
matics: given that a differential operator of the form that occurs in (1.1.1),

p(x)
d2

dx2
+ q(x)

d

dx
+ r(x),

is self-adjoint with respect to a weight function on a (bounded or infinite)
interval, under what circumstances will the eigenfunctions be polynomials?
An example is the operator in (1.3.2), which is self-adjoint with respect to the
weight function w(x) = e−x2

on the line:∫ ∞

−∞
[
u′′(x)− 2x u′(x)

]
v(x) e−x2

dx =
∫ ∞

−∞
u(x)

[
v′′(x)− 2x v′(x)

]
e−x2

dx .

The eigenvalues are λ = 2, 4, 6, . . . in (1.3.2) and the Hermite polynomials
are eigenfunctions. Up to normalization, the equation associated with such an
operator is one of the three equations (1.0.1), (1.0.2) (after a simple change of
variables), or (1.3.2). Moreover, as suggested above, (1.3.2) can be converted
to two cases of (1.0.1).

The second of the two answers in Chapter 3 starts with a question of
mathematical physics: given the Laplace equation

�u(x) = 0



10 Orientation

or the Helmholtz equation

�u(x)+ λ u(x) = 0

say in three variables, x = (x1, x2, x3), what equations arise by separating
variables in various coordinate systems (cartesian, cylindrical, spherical,
parabolic–cylindrical)? Each of the equations so obtained can be related to one
of (1.0.1) and (1.0.2) by a gauge transformation and/or a change of variables.

1.4 Elliptic functions

The remaining special functions to be discussed in this book are also associated
with a second-order differential equation, but not a linear equation. One of the
simplest nonlinear second-order differential equations of mathematical physics
is the equation that describes the motion of an ideal pendulum, which can be
normalized to

2 θ ′′(t) = −sin θ(t). (1.4.1)

Multiplying equation (1.4.1) by θ ′(t) and integrating gives[
θ ′(t)

]2 = a + cos θ(t) (1.4.2)

for some constant a. Let u = sin 1
2θ . Then (1.4.2) takes the form[

u′(t)
]2 = A

[
1 − u(t)2

] [
1 − k2u(t)2

]
. (1.4.3)

By rescaling time t , we may take the constant A to be 1. Solving for t as a
function of u leads to the integral form

t =
∫ u

u0

dx√
(1 − x2)(1 − k2x2)

. (1.4.4)

This is an instance of an elliptic integral: an integral of the form∫ u

u0

R
(

x,
√

P(x)
)

dx, (1.4.5)

where P is a polynomial of degree 3 or 4 with no repeated roots and R is a
rational function (quotient of polynomials) in two variables. If P had degree 2,
then (1.4.5) could be integrated by a trigonometric substitution. For example∫ u

0

dx√
1 − x2

= sin−1 u;
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equivalently,

t =
∫ sin t

0

dx√
1 − x2

.

Elliptic functions are the analogues, for the case when P has degree 3 or 4,
of the trigonometric functions in the case of degree 2.

1.5 Exercises

1.1 Suppose that u is a solution of (1.0.1) with parameters (a, c). Show that
the derivative u′ is a solution of (1.0.1) with parameters (a + 1, c + 1).

1.2 Suppose that u is a solution of (1.0.2) with parameters (a, b, c). Show
that the derivative u′ is a solution of (1.0.1) with parameters
(a + 1, b + 1, c + 1).

1.3 Show that the power series solution to (1.1.5) with u0 = 1 is

u(x) =
∞∑

n=0

1

(c)n n ! (−x)n, c �= 0,−1,−2, . . .

1.4 In Exercise 1.3, suppose c = 1
2 . Show that

u(x) = cosh

[
2(−x)

1
2

]
.

1.5 Compare the series solution in Exercise 1.3 with the series expansion
(7.1.1). This suggests that if u is a solution of (1.1.5), then

u(x) = x− 1
2 νv
(
2
√

x
)
, ν = c − 1,

where v is a solution of Bessel’s equation (3.6.12). Verify this fact
directly. Together with results in Section 3.7, this confirms that (1.1.5)
can be transformed to (1.0.1).

1.6 Show that the power series solution to (1.0.1) with u0 = 1 is given by
(1.1.7).

1.7 Show that the power series solution to (1.0.2) with u0 = 1 is the
hypergeometric function

u(x) = F(a, b, c; x) =
∞∑

n=0

(a)n(b)n
(c)n n ! xn .

1.8 In the preceding exercise, suppose that a = c. Find a closed-form
expression for the sum of series. Relate this to the differential
equation (1.0.2) when a = c.
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1.9 Consider the first-order equation (1.1.6) under the assumption that q and
r are polynomials and neither is identically zero. Show that all solutions
have the form

u(x) = P(x) exp R(x),

where P is a polynomial and R is a rational function (quotient of
polynomials).

1.10 Suppose that an equation of the form (1.1.1) with holomorphic
coefficients has the property that the nth equation (1.1.3) determines
un+2 from un alone. Show that up to normalization, the equation can be
put into one of the following two forms:

u′′(x)− 2x u′(x)+ 2λ u(x) = 0;
(1 − x2) u′′(x)+ ax u′(x)+ b u(x) = 0.

1.11 Determine the power series expansion of the even solution
(u(−x) = u(x)) of the first equation in Exercise 1.10, with u(0) = 1.
Write u(x) = v(x2) and show that v(y) = M(a, c; y) for suitable
choices of the parameters a and c.

1.12 Determine the power series expansion of the odd solution
(u(−x) = −u(x)) of the first equation in Exercise 1.10, with u′(0) = 1.
Write u(x) = x v(x2) and show that v(y) = M(a, c; y) for suitable
choices of the parameters a and c.

1.13 Let x = 1 − 2y in the second equation of Exercise 1.10 and show that
in terms of y, the equation takes the form (1.0.2) for some choice of the
parameters a, b, c.

1.14 When does (1.0.1) have a (nonzero) polynomial solution? What about
(1.0.2)?

1.15 Show that �(n) = (n − 1) !, n = 1, 2, 3, . . .
1.16 Show that one can use the functional equation for the gamma function

to extend it as a meromorphic function on the half-plane {Re a > −1}
with a simple pole at a = 0.

1.17 Show that the gamma function can be extended to a meromorphic
function on the whole complex plane with simple poles at the
non-positive integers.

1.18 Use the change of variables t = (1 − s)x in the integral representation
(1.2.1) to prove the asymptotic result

M(a, c; x) ∼ �(c)

�(a)
xa−c ex as x → +∞.
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1.19 Derive an integral representation for the series solution to (1.0.2) with
u(0) = 1 (Exercise 1.7), assuming Re c > Re a > 0.

1.20 Show that the change of variables u(x) = v
(
2
√

x
)

converts (1.0.1) to an
equation with leading coefficient 1 and zero-order coefficient of the
form r(y)− a.

1.21 Suppose the coefficient p in (1.1.1) is positive. Suppose that y = y(x)

satisfies the equation y′(x) = p(x)
1
2 . Show that the change of

variables u(x) = v(y(x)) converts (1.1.1) to an equation with leading
coefficient 1 and zero-order coefficient of the form r1(y)+ r0(x(y)).

1.22 Suppose the coefficient p in (1.1.1) is positive. Show that there is a
gauge transformation u(x) = ϕ(x)v(x) so that the equation takes
the form

p(x) v′′(x)+ r1(x) v(x) = 0,

with no first-order term. (Assume that a first-order equation
p(x) f ′(x) = g(x) f (x) has a nonvanishing solution f for any given
function g.)

1.23 Eliminate the first-order term in (1.0.1) and in (1.0.2).
1.24 Show that the Wronskian of two solutions of (1.1.1) satisfies

a homogeneous first-order linear differential equation. What
are the possible solutions of this equation for (1.0.1)?
For (1.0.2)?

1.25 Find the asymptotic series
∑∞

n=0 an x−n for the function e−x , x → ∞.
What does the result say about whether a function is determined by its
asymptotic series expansion?

1.26 Use the method of Exercise 1.18 to determine the full asymptotic
series expansion of the function M(a, c; x) as x → ∞, assuming that
Re c > Re a > 0.

1.27 Verify that (1.4.2) follows from (1.4.1).
1.28 Verify that (1.4.3) follows from (1.4.2).
1.29 Show that the change of variables in the integral (1.4.4) given by the

linear fractional transformation w(z) = (kz + 1)/(z + k) converts
(1.4.4) to the form (1.4.5) with a polynomial P(w) of degree 3. What
are the images w(z) of the four roots z = ±1 and z = ±k of the original
polynomial?

1.30 Suppose that P in (1.4.5) has degree 3, with no repeated roots. Show
that there is a linear fractional transformation that converts (1.4.5) to the
same form but with a polynomial of degree 4 instead.
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1.6 Summary

Many special functions are solutions of one of two families of equations:
confluent hypergeometric

x u′′(x)+ (c − x) u′(x)− a u(x) = 0

or hypergeometric

x(1 − x) u′′(x)+ [c − (a + b + 1)x] u′(x)− ab u(x) = 0.

In particular, up to a linear change of variables, this is true of the “classical
orthogonal polynomials.” Other special functions include the gamma function,
the beta function, and elliptic functions.

1.6.1 Power series solutions

We say that the homogeneous linear second-order equation

p(x) u′′(x)+ q(x) u′(x)+ r(x) u(x) = 0

with holomorphic p, q , r is recursive if it has a solution with a power series
expansion

u(x) =
∞∑

n=0

un xn, u0 = 1

whose coefficients can be computed by a simple recursion

un+1 = fn(un)

using the coefficients in the expansions of p, q, and r . Up to normalization, a
recursive equation is either the confluent hypergeometric equation, the hyper-
geometric equation, or an equation that can be transformed to the former.

In the confluent hypergeometric case, the solution is the Kummer function

M(a, c; x) =
∞∑

n=0

(a)n
(c)n n ! xn, c �= 0,−1,−2, . . . ,

where (a)n denotes the shifted factorial

(a)0 = 1, (a)n = a(a + 1)(a + 2) · · · (a + n − 1).

These functions satisfy numerous relationships, e.g.

(a − c + 1)M(a, c; x)− a M(a + 1, c, x)+ (c − 1)M(a, c − 1; x) = 0.
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1.6.2 The gamma and beta functions

The gamma function

�(a) =
∫ ∞

0
e−t ta−1 dt, Re a > 0,

satisfies

(a)n = �(a + n)

�(a)
.

The beta function

B(a, b) =
∫ 1

0
sa−1(1 − s)b−1 ds, Re a > 0, Re b > 0,

satisfies

B(a, b) = �(a) �(b)

�(a + b)
.

It follows that the solution M(a, c; x) of the confluent hypergeometric equa-
tion has an integral representation

M(a, c; x)= �(c)

�(a) �(c − a)

∫ 1

0
sa−1(1 − s)c−a−1esx ds, Re c > Re a > 0.

1.6.3 Three questions

Q. How can it be that so many of the functions mentioned in the introduction
to this chapter can be associated with just two equations (1.0.1) and (1.0.2)?

A. One equation can be transformed to another by a change in the indepen-
dent variable or by a gauge transformation u(x) = ϕ(x) v(x) that changes the
dependent variable. Examples: the conversion of

u′′(x)− 2x u′(x)+ λ u(x) = 0

to either of

y v′′(y)+
(

1

2
− y

)
v′(y)+ 1

4
λ v(y) = 0 or

v′′(x)+ (1 + λ− x2) v(x) = 0.
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Q. What does one want to know about these functions?

A. Explicit formulas such as series expansions and integral representations;
behavior at finite or infinite endpoints of an interval; relations among solutions;
asymptotic behavior with respect to a parameter.

Q. Is this list of functions or related equations exhaustive, in any sense?

A. The “recursive” requirement leads to just three cases and the third reduces
to the first, leaving (1.0.1) and (1.0.2). Asking what second-order equations
that are symmetric with respect to a weight function have polynomials as
eigenvalues also leads to three cases, and again, ultimately, to (1.0.1) and
(1.0.2). A number of equations that arise from writing basic equations of
mathematical physics in special coordinates and separating variables reduce
to these same two equations, after gauge transformations and/or changes of
variable.

1.6.4 Elliptic functions

The pendulum equation

θ ′′(t) = −2 sin θ(t)

leads to the elliptic integral

t =
∫ u

u0

dx√
(1 − x2)(1 − k2x2)

,

a particular case of ∫ u

u0

R
(

x,
√

P(x)
)

dx,

where P is a polynomial of degree 3 or 4 with no repeated roots and R is
a rational function. Elliptic functions are the analogues of the trigonometric
functions: the case of degree 2.

1.7 Remarks

A comprehensive classical reference for the theory and history of special func-
tions is Whittaker and Watson [315]. The theory is also treated in Andrews,
Askey, and Roy [7], Hochstadt [133], Lebedev [179], Luke [190], Nikiforov
and Uvarov [219], Rainville [236], Sneddon [263], and Temme [284]. Many
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historical references are found in [315] and in [7]. The connection with dif-
ferential equations of the type (1.0.1) and (1.0.2) is emphasized in [219].
There are a very large number of identities of the type (1.1.9) and (1.2.1).
Extensive lists of such identities and other basic formulas are found in the
Bateman Manuscript Project [82, 83], Jahnke and Emde [144], Magnus and
Oberhettinger [195], Abramowitz and Stegun [3], Gradshteyn and Ryzhik
[118], Magnus, Oberhettinger, and Soni [196], and Brychkov [36]. A revised
and updated version of [3] is now available: Olver et al. [223, 224]. For
representations as continued fractions, see Cuyt et al. [60]. For emphasis on
applications, see Andrews [8] and Carlson [41]. For calculations, see van der
Laan and Temme [294] and Zhang and Jin [321]. For a short history and critical
review of the handbooks, see Askey [15].

Some other organizing principles for approaching special functions are:
integral equations, Courant and Hilbert [59]; differential–difference equations,
Truesdell [289]; Lie theory, Miller [204]; group representations, Dieudonné
[70], Müller [209], Talman [281], Varchenko [298], Vilenkin [299], Vilenkin
and Klimyk [300], Wawrzyńczyk [307]; generating functions, McBride [200];
Painlevé functions, Iwasaki et al. [138]; singularities, Slavyanov and Lay
[262]; zeta-functions, Kanemitsu and Tsukada [151].

One of the principal uses of special functions is to develop in series the
solutions of equations of mathematical physics. See Burkhardt [38] for an
exhaustive historical account to the beginning of the 20th century, and Higgins
[127] and Johnson and Johnson [149] for related questions.

Most of the theory of special functions was developed in the 18th and
19th centuries. For a general introduction to the history of mathematics in that
period, see Dieudonné [69].

A comment on terminology: the fact that a mathematician’s name is
attached to a particular equation or function is often an indication that the
equation or function in question was first considered by someone else, e.g. by
one of the Bernoullis or by Euler. (There are exceptions to this.) Nevertheless,
we generally adhere to standard terminology.
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Gamma, beta, zeta

The first two of the functions discussed in this chapter are due to Euler. The
third is usually associated with Riemann, though it was also studied by Euler.
Collectively they are of great importance historically, theoretically, and for
purposes of calculation.

Historically and theoretically, study of these functions and their properties
provided a considerable impetus to the study and understanding of funda-
mental aspects of mathematical analysis, including limits, infinite products,
and analytic continuation. They also motivated advances in complex function
theory, such as the theorems of Weierstrass and of Mittag–Leffler on rep-
resentations of entire and meromorphic functions. The zeta function and its
generalizations are intimately connected with questions of number theory.

From the point of view of calculation, many of the explicit constants of
mathematical analysis, especially those that come from definite integrals, can
be evaluated by means of the gamma and beta functions.

There is much to be said for proceeding historically in discussing these
and other special functions, but we shall not make it a point to do so. In
mathematics it is often, even usually, the case that later developments cast
a new light on earlier ones. One result is that later expositions can often be
made both more efficient and, one hopes, more transparent than the original
derivations.

After introducing the gamma and beta functions and their basic properties,
we turn to a number of important identities and representations of the gamma
function and its reciprocal. Two characterizations of the gamma function are
established, one based on complex analytic properties, the other one based
on a geometric property. Asymptotic properties of the gamma function are
considered in detail. The psi function and the incomplete gamma function are
introduced.

18
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The identity that evaluates the beta integral in terms of gamma funtions has
important modern generalizations due to Selberg and to Aomoto. Aomoto’s
proof is sketched.

The zeta function, its functional equation, and Euler’s evaluation of ζ(n) for
n = 2, 4, 6, . . . are the subject of the last section.

2.1 The gamma and beta functions

The gamma function was obtained by Euler in 1729 [84] in answer to the
question of finding a function that takes the value n ! at each non-negative
integer n. At that time, “function” was understood as a formula expressed
in terms of the standard operations of algebra and calculus, so the problem
was not trivial. Euler’s first solution was in the form of the limit of certain
quotients of products, which we discuss below. For many purposes the most
useful version is a function that takes the value (n − 1) ! at the positive integer
n and is represented as an integral (also due to Euler [84]):

�(z) =
∫ ∞

0
e−t t z dt

t
, Re z > 0. (2.1.1)

The integral is holomorphic as a function of z in the right half-plane. An
integration by parts gives the functional equation

z �(z) = �(z + 1), Re z > 0. (2.1.2)

This extends inductively to

(z)n �(z) = �(z + n), (2.1.3)

where, as in (1.1.8), the shifted factorial or Pochhammer symbol (z)n is

(z)n = z(z + 1) · · · (z + n − 1). (2.1.4)

Since �(1) = 1, it follows that

�(n + 1) = (1)n = n !, n = 0, 1, 2, 3, . . . (2.1.5)

Theorem 2.1.1 The gamma function extends to a meromorphic function on C.
Its poles are simple poles at the non-positive integers. The residue at −n is
(−1)n/n !. The extension continues to satisfy the functional equations (2.1.2)
and (2.1.3) for z �= 0,−1,−2,−3, . . .

Proof The extension, and the calculation of the residues, can be accom-
plished by using the extended functional equation (2.1.3), which can be used
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to define �(z) for Re z > −n. Another way is to write the integral in (2.1.1) as
the sum of two terms:

�(z) =
∫ 1

0
e−t t z dt

t
+
∫ ∞

1
e−t t z dt

t
.

In the first term, the power series representation of e−t converges uniformly,
so the series can be integrated term by term. Thus

�(z) =
∫ 1

0

∞∑
n=0

(−1)n

n ! t z+n dt

t
+
∫ ∞

1
e−t t z dt

t

=
∞∑

n=0

(−1)n

n ! (z + n)
+
∫ ∞

1
e−t t z dt

t
.

The series in the last line converges for z �= 0,−1,−2, . . . and defines a
meromorphic function which has simple poles and residues (−1)n/n !. The
integral in the last line extends as an entire function of z. The functional
equation represents a relationship between �(z) and �(z + 1) that necessarily
persists under analytic continuation. �

Euler’s first definition of the gamma function started from the observation
that for any positive integers k and n,

(n + k − 1) ! = (n − 1) ! (n)k = (k − 1) ! (k)n .
As n → ∞ with k fixed, (n)k ∼ nk , so

(k − 1) ! = lim
n→∞

(n − 1) !(n)k
(k)n

= lim
n→∞

(n − 1) ! nk

(k)n
.

Thus, for k a positive integer,

�(k) = lim
n→∞

�(n) nk

(k)n
. (2.1.6)

As we shall see, the limit of this last expression exists for any complex k for
which (k)n is never zero, i.e. k �= 0,−1,−2, . . . Therefore there is another way
to solve the original problem of extending the factorial function in a natural
way: define the function for arbitrary k by (2.1.6). In the next section we show
that this gives the same function �.

The beta function, or beta integral, occurs in many contexts. It is the
function of two complex variables defined first for Re a > 0 and Re b > 0 by

B(a, b) =
∫ 1

0
sa−1(1 − s)b−1 ds. (2.1.7)
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Taking t = 1 − s as the variable of integration shows that B is symmetric:

B(a, b) = B(b, a).

Taking u = s/(1 − s) as the variable of integration gives the identity

B(a, b) =
∫ ∞

0
ua
(

1

1 + u

)a+b du

u
.

Both the beta integral and Euler’s evaluation of it in terms of gamma
functions [85] come about naturally when one seeks to evaluate the product
�(a) �(b):

�(a) �(b) =
∫ ∞

0

∫ ∞

0
e−(s+t) sa tb ds

s

dt

t

=
∫ ∞

0

∫ ∞

0
e−t (1+u) ua ta+b dt

t

du

u

=
∫ ∞

0

∫ ∞

0
e−x ua

(
x

1 + u

)a+b dx

x

du

u

= �(a + b)
∫ ∞

0
ua
(

1

1 + u

)a+b du

u

= �(a + b)B(a, b).

Summarizing, we have shown that any of three different expressions may
be used to define or evaluate the beta function.

Theorem 2.1.2 The beta function satisfies the following identities for Re a> 0,
Re b > 0:

B(a, b) =
∫ 1

0
sa−1(1 − s)b−1 ds

=
∫ ∞

0
ua
(

1

1 + u

)a+b du

u

= �(a) �(b)

�(a + b)
. (2.1.8)

The beta function has an analytic continuation to all complex values of a and
b such that a, b �= 0,−1,−2, . . .

Proof The identities were established above. The analytic continuation fol-
lows immediately from the continuation properties of the gamma function. �
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As noted above, for a fixed positive integer k,

(n + k − 1) !
(n − 1) ! = nk

[
1 + O

(
n−1
)]

as n → ∞. The beta integral allows us to extend this asymptotic result to non-
integer values.

Proposition 2.1.3 For any complex a,

�(x + a)

�(x)
= xa

[
1 + O

(
x−1
)]

(2.1.9)

as x → +∞.

Proof The extended functional equation (2.1.3) can be used to replace a by
a + n, so we may assume that Re a > 0. Then

�(x)

�(x + a)
= B(x, a)

�(a)
= 1

�(a)

∫ 1

0
sa−1(1 − s)x−1 ds

= x−a

�(a)

∫ x

0
ta−1

(
1 − t

x

)x (
1 − t

x

)
dt ∼ x−a

�(a)

∫ ∞

0
ta−1e−t dt

= x−a .

This gives the principal part of (2.1.9). The error estimate is left as an exercise.
�

The extended functional equation (2.1.3) allows us to extend this result to
the shifted factorials.

Corollary 2.1.4 If a, b �= 0,−1,−2, . . . then

lim
n→∞

(a)n
(b)n

nb−a = �(b)

�(a)
. (2.1.10)

2.2 Euler’s product and reflection formulas

The first result here is Euler’s product formula [84].

Theorem 2.2.1 The gamma function satisfies

�(z) = lim
n→∞

(n − 1) ! nz

(z)n
(2.2.1)
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for Re z > 0 and

�(z) = 1

z

∞∏
n=1

(
1 + 1

n

)z (
1 + z

n

)−1

(2.2.2)

for all complex z �= 0,−1,−2, . . . In particular, the gamma function has no
zeros.

Proof The identity (2.2.1) is essentially the case a = 1, b = z of (2.1.10),
since

(1)n nz−1 = (n − 1) ! nz .

To prove (2.2.2) we note that

(n − 1) ! nz

(z)n
= nz

z

n−1∏
j=1

(
1 + z

j

)−1

. (2.2.3)

Writing

n = n

n − 1

n − 1

n − 2
· · · 2

1
=
(

1 + 1

n − 1

) (
1 + 1

n − 2

)
· · · (1 + 1),

we can rewrite (2.2.3) as

1

z

n−1∏
j=1

(
1 + 1

j

)z (
1 + z

j

)−1

.

The logarithm of the j th factor is O( j−2). It follows that the product converges
uniformly in any compact set that excludes z = 0,−1,−2, . . . Therefore (first
for Re z > 0 and then by analytic continuation), taking the limit gives (2.2.2)
for all z �= 0,−1,−2, . . . �

The reciprocal of the gamma function is an entire function. Its product
representation can be deduced from (2.2.1), since

(z)n
(n − 1) ! nz

= z exp

(
z

[
n−1∑
k=1

1

k
− log n

])
n−1∏
k=1

(
1 + z

k

)
e−z/k . (2.2.4)

The logarithm of the kth factor in the product (2.2.4) is O(k−2), so the product
converges uniformly in bounded sets. The coefficient of z in the exponential is

n−1∑
k=1

1

k
− log n =

n−1∑
k=1

∫ k+1

k

[
1

k
− 1

t

]
dt =

n−1∑
k=1

∫ k+1

k

t − k

tk
dt.
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The kth summand in the last sum is O(k−2), so the sum converges as n → ∞.
The limit is known as Euler’s constant

γ = lim
n→∞

{
n−1∑
k=1

1

k
− log n

}
= lim

n→∞

n−1∑
k=1

∫ k+1

k

[
1

k
− 1

t

]
dt. (2.2.5)

We have shown that (2.2.1) has the following consequence.

Corollary 2.2.2 The reciprocal of the gamma function has the product repre-
sentation

1

�(z)
= z eγ z

∞∏
n=1

(
1 + z

n

)
e−z/n, (2.2.6)

where γ is Euler’s constant (2.2.5).

This (or its reciprocal) is known as the “Weierstrass form” of the gamma
function, although it was first proved by Schlömilch [251] and Newman [215]
in 1848.

The next result is Euler’s reflection formula [89].

Theorem 2.2.3 For z not an integer,

�(z) �(1 − z) = π

sinπ z
. (2.2.7)

Proof For 0 < Re z < 1,

�(z) �(1 − z) = B(z, 1 − z) =
∫ ∞

0

t z−1 dt

1 + t
.

The integrand is a holomorphic function of t for t in the complement of the
positive real axis [0,+∞), choosing the argument of t in the interval (0, 2π).
Let C be the curve that comes from +∞ to 0 along the “lower” side of the
interval [0,∞) (arg t = 2π ) and returns to +∞ along the “upper” side of the
interval (arg t = 0). Evaluating ∫

C

t z−1 dt

1 + t

by the residue calculus gives

(1 − e2π i z)

∫ ∞

0

t z−1 dt

1 + t
= 2π i res(t z−1,−1) = −2π ieiπ z;

see Appendix A. This proves (2.2.7) in the range 0 < Re z < 1. Once again,
analytic continuation gives the result for all non-integer complex z. �
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Corollary 2.2.4 (Hankel’s integral formula) Let C be an oriented contour in
the complex plane that begins at −∞, continues on the real axis (arg t = −π )
to a point −δ, follows the circle {|t | = δ} in the positive (counterclockwise)
direction, and returns to −∞ along the real axis (arg t = π ). Then

1

�(z)
= 1

2π i

∫
C

et t−z dt. (2.2.8)

Here t−z takes its principal value where C crosses the positive real axis.

Proof The function defined by the integral in (2.2.8) is entire, so it suffices
to prove the result for 0 < z < 1. In this case we may take δ → 0. Setting
s = −t , the right-hand side is

1

2π i

∫ ∞

0
e−s

{(
se−iπ )−z − (seiπ )−z

}
ds = sinπ z

π

∫ ∞

0
e−s s−z ds

= 1

�(z) �(1 − z)
· �(1 − z),

where we have used (2.2.7). �

The contour C described in Corollary 2.2.4 is often referred to as a Hankel
loop.

Corollary 2.2.5 (Euler’s product for sine)

sinπ z

π z
=

∞∏
n=1

(
1 − z2

n2

)
. (2.2.9)

Proof This follows from (2.2.7) together with (2.2.2). �

Corollary 2.2.6 �
( 1

2

) = √
π .

Proof Take z = 1
2 in (2.2.7). �

This evaluation can be obtained in a number of other ways, for example

�

(
1

2

)2

= B

(
1

2
,

1

2

)
=
∫ ∞

0

t
1
2

1 + t

dt

t

= 2
∫ ∞

0

du

1 + u2
= tan−1 u

∣∣∣∞−∞ = π;

�

(
1

2

)
=
∫ ∞

0
e−t dt√

t
= 2

∫ ∞

0
e−u2

du

=
[∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dx dy

] 1
2 =
[∫ 2π

0

∫ ∞

0
e−r2

r dr dθ

] 1
2

=√
π.
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2.3 Formulas of Legendre and Gauss

Observe that

�(2n)=(2n − 1) ! = 22n−1 1

2
· 1 ·

(
1

2
+ 1

)
· 2 · · · (n − 1)

(
1

2
+ n − 1

)

=22n−1(n − 1)!
(

1

2

)
n
=22n−1�(n)

�
(
n + 1

2

)
�
( 1

2

) = 22n−1

√
π
�(n)�

(
n + 1

2

)
.

This is the positive integer case of Legendre’s duplication formula [182]:

�(2z) = 22z−1

√
π
�(z) �

(
z + 1

2

)
, z �= 0,−1,−2, . . . (2.3.1)

We give two proofs of (2.3.1). The second proof generalizes to give Gauss’s
formula for �(mz). The first proof begins with Re z > 0 and uses the change
of variables t = 4s(1 − s) on the interval 0 ≤ s ≤ 1

2 , as follows:

�(z)2

�(2z)
= B(z, z) =

∫ 1

0
[s(1 − s)]z ds

s (1 − s)

= 2
∫ 1

2

0
[s(1 − s)]z ds

s (1 − s)
= 2

∫ 1

0

(
t

4

)z dt

t
√

1 − t

= 21−2z B

(
z,

1

2

)
= 21−2z �(z) �

( 1
2

)
�
(
z + 1

2

) .
This gives (2.3.1) for Re z > 0; analytic continuation gives the result for
z �= 0,−1,−2, . . .

The second proof uses (2.2.1), which implies

�(2z) = lim
n→∞

(2n) ! (2n)2z−1

(2z)2n
. (2.3.2)

Now

(2n) ! = 22n
(

1

2

)
n
(1)n = 22n �

( 1
2 + n

)
�(n + 1)

�
( 1

2

) (2.3.3)

and

(2z)2n = 22n(z)n

(
z + 1

2

)
n

= 22n �(z + n) �
(
z + 1

2 + n
)

�(z) �
(
z + 1

2

)
= 22n �(n)

B(z, n)
· �(z) �

( 1
2 + n

)
�
(
z + 1

2

)
B
(
z, 1

2 + n
) . (2.3.4)
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According to the calculation at the beginning of Section 2.2,

B(z, n) ∼ n−z�(z)

as n → ∞, so in taking the limit in (2.3.2) we may replace the expression in
(2.3.4) with

22nn2z �(n) �
( 1

2 + n
)

�(z) �
(
z + 1

2

) . (2.3.5)

Multiplying the quotient of (2.3.3) and (2.3.5) by (2n)2z−1 gives (2.3.1).
The previous proof can be adapted to prove the first version of the following

result of Gauss [103]:

�(mz) = mmz−1�(z) �
(
z + 1

m

)
�
(
z + 2

m

) · · ·�(z + m−1
m

)
�
( 1

m

)
�
( 2

m

) · · ·�(m−1
m

)
= mmz− 1

2
�(z) �

(
z + 1

m

)
�
(
z + 2

m

) · · ·�(z + m−1
m

)
(2π)

1
2 (m−1)

. (2.3.6)

To prove the second version we evaluate the denominator in the first version,
using the reflection formula (2.2.7):[

�

(
1

m

)
�

(
2

m

)
· · ·�

(
m − 1

m

)]2

=
m−1∏
k=1

π

sin
(
πk
m

) = πm−1
m−1∏
k=1

2i

eπ ik/m(1 − e−2π ik/m)
.

Since 1 + 2 + · · · + m − 1 = 1
2 m(m − 1),

m−1∏
k=1

2i

eπ ik/m
= 2m−1,

and since ω = e2π i/m is a primitive mth root of 1 it follows that

m−1∏
k=1

(
1 − ωk) = lim

t→1

m−1∏
k=1

(
t − ωk) = lim

t→1

tm − 1

t − 1
= m.

Therefore

�

(
1

m

)
�

(
2

m

)
· · ·�

(
m − 1

m

)
= (2π)

1
2 (m−1)

m
1
2

(2.3.7)

and we get the second version of (2.3.6).
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2.4 Two characterizations of the gamma function

The gamma function is not uniquely determined by the functional equation
�(z + 1) = z �(z); in fact, if f is a function such as sin 2πx that is periodic
with period 1, then the product f � also satisfies the functional equation. Here
we give two characterizations, one as a function holomorphic on the half-plane
{Re z > 0} and one as a function on the positive reals.

Theorem 2.4.1 (Wielandt) Suppose that G is holomorphic in the half-plane
{Re z > 0}, bounded on the closed strip {1 ≤ Re z ≤ 2}, and satisfies the
equations G(1) = 1 and z G(z) = G(z + 1) for Re z > 0. Then G(z) = �(z).

Proof Let F(z) = G(z)− �(z). Then F satisfies the functional equation and
vanishes at z = 1, so it vanishes at the positive integers. This implies that
F extends to an entire function. In fact, the functional equation allows us to
extend by defining

F(z) = F(z + n)

(z)n
, −n < Re z ≤ 2 − n, n = 1, 2, 3, . . .

This is clearly holomorphic where (z)n �= 0, i.e. except for z = 0,−1, . . . ,
1 − n. These values of z are zeros of F(z + n) and are simple zeros of (z)n , so
they are removable singularities for F . Therefore, the extension of F is entire.

The functional equation and the fact that F is regular at 0 and bounded
on the strip {1 ≤ Re z ≤ 2} imply that F is bounded on the wider strip S =
{0 ≤ Re z ≤ 2}. Therefore, the function f (z) = F(z) F(1 − z) is entire and
bounded on S. Moreover,

f (z + 1) = z F(z) F(−z) = −F(z)(−z)F(−z) = − f (z).

Thus f (z + 2) = f (z). Since f is bounded on a vertical strip of width 2, this
implies that f is a bounded entire function, hence constant. But f (1) = 0, so
f ≡ 0. It follows that F ≡ 0. �

The next characterization starts from the observation that log� is a convex
function on the interval {x > 0}. In fact, (2.2.6) implies that

log�(x) = −γ x − log x +
∞∑

k=1

[ x

k
− log

(
1 + x

k

)]
, (2.4.1)

from which it follows that

(log�)′′(x) =
∞∑

k=0

1

(x + k)2
, (2.4.2)
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which is positive for x > 0. This implies convexity. The following theorem is
the converse.

Theorem 2.4.2 (Bohr–Mollerup) Suppose that G(x) is defined and positive
for x > 0, satisfies the functional equation x G(x) = G(x + 1), and suppose
that log G is convex and G(1) = 1. Then G(x) = �(x) for all x > 0.

Proof Let f = log G. In view of the functional equation, it is enough to prove
G(x) = �(x) for 0 < x < 1. The assumptions imply that G(1) = G(2) = 1
and G(3) = 2, so f (1) = f (2) < f (3). Convexity of f implies that f is
increasing on the interval [2,∞), and that for each integer n ≥ 2,

f (n)− f (n − 1) ≤ f (n + x)− f (n)

x
≤ f (n + 1)− f (n).

By the functional equation and the definition of f , this is equivalent to

(n − 1)x ≤ G(x + n)

G(n)
≤ nx .

The functional equation applied to the quotient leads to

(n − 1) ! (n − 1)x

(x)n
≤ G(x)

G(1)
≤ (n − 1) ! nx

(x)n
.

By (2.2.1), the expressions on the left and the right have limit �(x). �

Wielandt’s theorem first appeared in Knopp [157]; see Remmert [237]. The
theorem of Bohr and Mollerup is in [34].

2.5 Asymptotics of the gamma function

Suppose x is real and x → +∞. The integrand e−t t x for �(x + 1) has its
maximum (x/e)x at t = x , which suggests a change of variables t = xu:

�(x) = 1

x
�(x + 1) = xx

∫ ∞

0

(
u e−u)x du

=
( x

e

)x
∫ ∞

0

(
u e1−u)x du.

Now ue1−u attains its maximum 1 at u = 1, so the part of the last integral
over a region |u − 1| > δ > 0 decays exponentially in x as x → ∞. Note that
ue1−u agrees to second-order at u = 1 with e−(u−1)2 ; it follows that we can
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change variables u → s near u = 1 in such a way that

u e1−u = e− 1
2 s2
, u′(s) =

∞∑
n=0

ansn,

with a0 = 1. Combining these remarks, we obtain an asymptotic expansion∫ ∞

0

(
u e1−u)x du ∼

∞∑
n=0

an

∫ ∞

−∞
e− 1

2 xs2
sn ds

=
∞∑

m=0

a2m x−m− 1
2

∫ ∞

−∞
e− 1

2 s2
s2m ds.

(The odd terms vanish because their integrands are odd functions.) Since
a0 = 1, the first term in this expansion is

√
2π/x . The same considerations

apply for complex z with Re z → +∞. Thus we have Stirling’s formula [270]:

�(z) = zz

ez

⎧⎨⎩
(

2π

z

)1
2 + O

(
z− 3

2

)⎫⎬⎭ as Re z → +∞. (2.5.1)

The previous can be made more explicit. Binet [31] proved the following.

Theorem 2.5.1 For Re z > 0,

�(z) = zz

ez

(
2π

z

)1
2

eθ(z), (2.5.2)

where

θ(z) =
∫ ∞

0

(
1

et − 1
− 1

t
+ 1

2

)
e−zt dt

t
. (2.5.3)

Proof We follow Sasvari [248]. By definition, (2.5.2) holds with θ(z)
replaced by

ϕ(z) = log�(z)+ z(1 − log z)+ 1

2
log z − 1

2
log(2π).

The functional equation implies that

ϕ(z)− ϕ(z + 1) =
(

z + 1

2

)
log

(
z + 1

z

)
− 1,
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and (2.5.1) implies that ϕ(z)→ 0 as Re z → +∞. Then

ϕ′(z)− ϕ′(z + 1) = −1

2

(
1

z
+ 1

z + 1

)
+ log

(
1 + 1

z

)
;

ϕ′′(z)− ϕ′′(z + 1) = −1

2

(
1

z
+ 1

z + 1

)′
+ 1

z + 1
− 1

z
.

With θ given by (2.5.3), we have

θ(z)− θ(z + 1) =
∫ ∞

0

[
e−t +

(
1

2
− 1

t

)
(1 − e−t )

]
e−zt dt

t
;

θ ′(z)− θ ′(z + 1) = −
∫ ∞

0

[
e−t +

(
1

2
− 1

t

)
(1 − e−t )

]
e−zt dt

= −1

2

(
1

z
+ 1

z + 1

)
+
∫ ∞

0

1

t
(1 − e−t ) e−zt dt;

θ ′′(z)− θ ′′(z + 1) = −1

2

(
1

z
+ 1

z + 1

)′
+ 1

z + 1
− 1

z
.

Since the various functions and derivatives have limit zero as Re z → ∞,
it follows that θ = ϕ. �

The integrand in (2.5.3) includes the function

1

et − 1
− 1

t
+ 1

2
= 1

2

et/2 + e−t/2

et/2 − e−t/2
− 1

t
.

This function is odd and is holomorphic for |t | < 2π , so it has an expansion

1

et − 1
− 1

t
+ 1

2
=

∞∑
m=1

B2m

(2m) ! t2m−1, |t | < 2π. (2.5.4)

The coefficients B2m are known as the Bernoulli numbers [27]. They can be
computed recursively; see the exercises. Putting partial sums of this expansion
into (2.5.3) gives the asymptotic estimates

θ(z) =
N∑

m=1

B2m

2m(2m − 1)
z1−2m + O

(
z−2N−1

)
, Re z → +∞. (2.5.5)

Stirling’s formula (2.5.1) for positive integer z can be used in conjuction
with the product formula (2.2.6) to extend (2.5.1) to the complement of the
negative real axis. The method here is due to Stieltjes.
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Theorem 2.5.2 For | arg z| < π ,

�(z) = zz

ez

⎧⎨⎩
(

2π

z

) 1
2 + O

(
z− 3

2

)⎫⎬⎭ (2.5.6)

as |z| → ∞, uniformly for | arg z| ≤ π − δ < π .

Proof Let [s] denote the greatest integer function. Then∫ k+1

k

1
2 − s + [s]

s + z
ds =

∫ k+1

k

(
1
2 + k + z

s + z
− 1

)
ds

=
(

k + 1

2
+ z

) [
log(k + 1 + z)− log(k + z)

]− 1

=
[(

k + 1

2
+ z

)
log(k + 1 + z)

−
(

k − 1

2
+ z

)
log(k + z)

]
− log(k + z)− 1.

Summing,∫ n

0

1
2 − s + [s]

s + z
ds

=
(

n − 1

2
+ z

)
log(n + z)−

(
−1

2
+ z

)
log z −

n−1∑
k=0

log(k + z)− n.

Now

−
n−1∑
k=1

log(k + z) = −
n−1∑
k=1

log
(

1 + z

k

)
− log�(n)

=
n−1∑
k=1

[ z

k
− log

(
1 + z

k

)]
− z

n−1∑
k=1

1

k
− log�(n),

and

log(n + z) = log n + z

n
+ O

(
n−2).

It follows from (2.2.5), (2.5.1), and (2.2.6), respectively, that

n−1∑
k=1

1

k
= log n + γ + O

(
n−1
)

;
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log�(n) =
(

n − 1

2

)
log n − n + 1

2
log 2π + O

(
n−1);

log�(z) = −zγ − log z +
∞∑

k=1

[ z

k
− log

(
1 + z

k

)]
.

Combining the previous formulas gives∫ ∞

0

1
2 − s + [s]

s + z
ds = log�(z)−

(
z − 1

2

)
log z − 1

2
log 2π + z. (2.5.7)

We estimate the integral by integrating by parts: let

f (s) =
∫ s

0

(
1

2
− t + [t]

)
dt.

This function has period 1 and is therefore bounded. Then∫ ∞

0

1
2 − s + [s]

s + z
ds =

∫ ∞

0

f (s)

(s + z)2
ds = O

(|z|−1)
uniformly for 1 + cos(arg z) ≥ δ > 0, since z = reiθ implies

|s + z|2 = s2 + r2 + 2sr cos θ ≥ (s2 + r2)min{1, 1 + cos θ}.
Therefore, exponentiating (2.5.7) gives (2.5.6). �

Corollary 2.5.3 For real x and y,∣∣�(x + iy)
∣∣ = √

2π |y|x− 1
2 e− 1

2π |y| [1 + O
(|y|−1)], (2.5.8)

as |y| → ∞.

2.6 The psi function and the incomplete gamma function

The logarithmic derivative of the gamma function is denoted by ψ(z):

ψ(z) = d

dz
log�(z) = �′(z)

�(z)
.

Most of the properties of this function can be obtained directly from the corre-
sponding properties of the gamma function. For instance, the only singularities
of ψ(z) are simple poles with residue −1 at the points z = 0,−1,−2, . . .
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Figure 2.1 The ψ function.

The product formula (2.2.6) for 1/�(z) implies that

ψ(z) = −γ +
∞∑

n=0

(
1

n + 1
− 1

n + z

)
, z �= 0,−1,−2, . . . , (2.6.1)

and therefore, as noted in Section 2.4,

ψ ′(z) =
∞∑

n=0

1

(z + n)2
. (2.6.2)

Thus ψ is a meromorphic function which has simple poles with residue −1 at
the non-positive integers.

The graph of ψ(x) for real x is shown in Figure 2.1.
Using (2.6.1), the recurrence relation

ψ(z + 1) = ψ(z)+ 1

z

is readily verified and we have

ψ(1) = −γ, ψ(k + 1) = −γ + 1 + 1

2
+ 1

3
+ · · · + 1

k
, k = 1, 2, 3, . . .

Taking the logarithmic derivative of (2.5.3) gives Binet’s integral formula
for ψ :

ψ(z) = log z − 1

2z
−
∫ ∞

0

(
1

et − 1
− 1

t
+ 1

2

)
e−zt dt, Re z > 0.
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The incomplete gamma function γ (α, z) is defined by

γ (α, z) =
∫ z

0
tα−1e−t dt, Reα > 0. (2.6.3)

It is an analytic function of z in the right half-plane. We use the power series
expansion of e−t and integrate term by term to obtain

γ (α, z) = zα
∞∑

n=0

(−z)n

n ! (n + α), Reα > 0.

The series converges for all z, so we may use this formula to extend the
function in z and α for α �= 0,−1,−2, . . . If α is fixed, then the branch of
γ (α, z) obtained after z encircles the origin m times is given by

γ
(
α, ze2mπ i ) = e2mαπ iγ (α, z), α �= 0,−1,−2, . . . (2.6.4)

The complementary incomplete gamma function is defined by

�(α, z) =
∫ ∞

z
tα−1e−t dt. (2.6.5)

In (2.6.5) there is no restriction on α if z �= 0, and the principal branch is
defined in the same manner as for γ (α, z). Combining with (2.6.3) gives

γ (α, z)+ �(α, z) = �(α). (2.6.6)

It follows from (2.6.4) and (2.6.6) that

�
(
α, ze2mπ i ) = e2mαπ i �(α, z)+ (1 − e2mαπ i )�(α), m = 0,±1,±2, . . .

(2.6.7)
The error function and complementary error function are defined respec-

tively by

erf z = 2√
π

∫ z

0
e−t2

dt, erfc z = 2√
π

∫ ∞

z
e−t2

dt.

Both are entire functions. Clearly

erf z + erfc z = 1

and

erf z = 2√
π

∞∑
n=0

(−1)nz2n+1

n ! (2n + 1)
.
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By a simple change of variable, one can show that

erf z = 1√
π
γ

(
1

2
, z2
)
, erfc z = 1√

π
�

(
1

2
, z2
)
.

2.7 The Selberg integral

The Selberg integral [257] is

Sn(a, b, c)=
∫ 1

0
· · ·
∫ 1

0

n∏
i=1

xa−1
i (1 − xi )

b−1
∏

1≤ j<k≤n

|x j − xk |2c dx1 · · · dxn,

(2.7.1)
where convergence of the integral is assured by the conditions

Re a > 0, Re b > 0, Re c > max

{
−1

n
,− Re a

n − 1
,− Re b

n − 1

}
. (2.7.2)

In particular, Sn(a, b, 0) = B(a, b)n . Thus Selberg’s evaluation of Sn , stated
in the following theorem, generalizes Euler’s evaluation of the beta function in
Theorem 2.1.2. Note that

Sn(a, b, c) = Sn(b, a, c).

Theorem 2.7.1 Under the conditions (2.7.2),

Sn(a, b, c) =
n−1∏
j=0

�(a + jc) �(b + jc) �(1 + [ j + 1]c)
�(a + b + [n − 1 + j]c) �(1 + c)

. (2.7.3)

For convenience we let x = (x1, x2, . . . , xn), dx = dx1 · · · dxn , and denote
the integrand in (2.7.1) by

w(x) =
n∏

i=1

xa−1
i (1 − xi )

b−1
∏

1≤ j<k≤n

|x j − xk |2c.

Note that w(x) is symmetric in x1, . . . , xn . Let Cn denote the n-dimensional
cube [0, 1] × · · · × [0, 1]. Then (2.7.1) is

Sn(a, b, c) =
∫

Cn

w(x) dx.

The proof of Theorem 2.7.1 outlined here is due to Aomoto [9]. It makes use
of the related integrals
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Ik =
∫

Cn

w(x)
k∏

i=1

xi dx, k = 0, 1, . . . , n. (2.7.4)

Note that I0 = Sn(a, b, c) and In = Sn(a + 1, b, c) = Sn(b, a + 1, c). We
may find a relation between Ik and Ik−1 by integrating the identity

∂

∂x1

⎡⎣(1 − x1) w(x)
k∏

j=1

x j

⎤⎦ = a (1 − x1) w(x)
k∏

j=2

x j − b w(x)
k∏

j=1

x j

+ (1 − x1) 2cw(x)

⎡⎣ n∑
j=2

1

x1 − x j

⎤⎦ k∏
j=1

x j .

(2.7.5)

The left-hand side integrates to zero. The first two terms on the right integrate
to aIk−1 − (a + b)Ik . The remaining terms can be integrated with the use of
the following lemma, which is left as an exercise.

Lemma 2.7.2 Let Ik be the integral (2.7.4). Then∫
Cn

w(x)
x1 − x j

k∏
i=1

xi dx =
⎧⎨⎩

0, 2 ≤ j ≤ k;
1

2
Ik−1, k < j ≤ n,

(2.7.6)

and ∫
Cn

x1w(x)
x1 − x j

k∏
i=1

xi dx =
⎧⎨⎩

1

2
Ik, 2 ≤ j ≤ k;

Ik . k < j ≤ n.
(2.7.7)

Applying these identities to the integral of (2.7.5) gives the identity

Ik = a + (n − k)c

a + b + (2n − k − 1)c
Ik−1. (2.7.8)

It follows that

Sn(a + 1, b, c) =
n−1∏
j=0

a + jc

a + b + (n − 1 + j)c
Sn(a, b, c).

Iterating this k times with a and b interchanged gives

Sn(a, b, c)=
n−1∏
j=0

(a + b + [n − 1 + j]c)k
(b + jc)k

Sn(a, b + k, c).
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We let k → ∞ and use (2.1.10) to conclude that

Sn(a, b, c) =
n−1∏
j=0

�(b + jc)

�(a + b + [n − 1 + j]c) · lim
k→∞

[
kna+n(n−1)c Sn(a, b + k, c)

]
.

The expression in the limit can be rewritten as

kna+n(n−1)c
∫ k

0
· · ·
∫ k

0

n∏
i=1

( xi

k

)a−1 (
1 − xi

k

)k+b−1∏
i< j

∣∣∣ xi

k
− x j

k

∣∣∣2c dx
kn

=
∫ k

0
· · ·
∫ k

0

n∏
i=1

xi
a−1

(
1 − xi

k

)k+b−1∏
i< j

|xi − x j |2c dx.

Taking the limit as k → ∞, we obtain

Sn(a, b, c) =
n−1∏
j=0

�(b + jc)

�(a + b + [n − 1 + j]c)

×
∫ ∞

0
· · ·
∫ ∞

0

n∏
i=1

xa−1
i e−xi

∏
i< j

|xi − x j |2c dx. (2.7.9)

Denoting the last integral by Gn(a, c) and using once again the symmetry in
(a, b), we find that

Gn(a, c)∏n−1
j=0 �(a + jc)

= Gn(b, c)∏n−1
j=0 �(b + jc)

.

We denote the common value by Dn(c) and note that D1(c) ≡ 1. Returning to
(2.7.9), we obtain

Sn(a, b, c) =
n−1∏
j=0

�(a + jc) �(b + jc)

�(a + b + [n − 1 + j]c) Dn(c). (2.7.10)

To complete the proof of Theorem 2.7.1, we need to evaluate Dn(c). This
will be done by using the following two lemmas, which are left as exercises.

Lemma 2.7.3 For any function f continuous on the interval [0, 1],

lim
a→0+

∫ 1

0
a ta−1 f (t) dt = f (0).
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Lemma 2.7.4 For any symmetric function f (x),∫
Cn

f (x) dx = n !
∫ 1

0

∫ 1

xn

· · ·
∫ 1

x2

f (x) dx1 dx2 · · · dxn .

It follows that

lim
a→0+

a

n ! Sn(a, b, c) = lim
a→0+ a

∫ 1

0
xa−1

n (1 − xn)
b−1

×
∫ 1

xn

· · ·
∫ 1

x2

n−1∏
i=1

xa−1
i (1 − xi )

b−1
∏

i< j≤n

|xi − x j |2c dx

=
∫ 1

0

∫ 1

xn−1

· · ·
∫ 1

x2

n−1∏
i=1

x2c−1
i (1 − xi )

b−1
∏

i< j<n

|xi − x j |2c dx1 · · · dxn−1

= 1

(n − 1) ! Sn−1(2c, b, c). (2.7.11)

Since lima→0 a�(a) = 1, it follows from (2.7.11) and (2.7.10) that

Dn(c) = n �(nc)

�(c)
Dn−1(c) = �(nc + 1)

�(c + 1)
Dn−1(c).

But D1 = 1, so

Dn(c) =
n∏

j=1

�( jc + 1)

�(c + 1)
.

Combining this with (2.7.10) gives (2.7.3).
The relationship (2.7.8) together with (2.7.3) and the fact that I0 =

Sn(a, b, c) gives Aomoto’s generalization of (2.7.3):∫ 1

0
· · ·
∫ 1

0

k∏
i=1

xi

n∏
i=1

xa−1
i (1 − xi )

b−1
∏

1≤i< j≤n

|xi − x j |2c dx1 · · · dxn

=
k∏

i=1

a + (n − i)c

a + b + (2n − i − 1)c
Sn(a, b, c)

=
k∏

i=1

a + (n − i)c

a + b + (2n − i − 1)c

n−1∏
j=0

�(a + jc) �(b + jc) �(1 + [ j + 1]c)
�(a + b + [n − 1 + j]c) �(1 + c)

,

if

Re a > 0, Re b > 0, Re c > max

{
−1

n
,− Re a

n − 1
,− Re b

n − 1

}
.
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2.8 The zeta function

The zeta function is of particular importance in number theory. We mention
it briefly here because its functional equation is closely connected with the
gamma function.

For Re z > 1, the Riemann zeta function is defined by

ζ(z) =
∞∑

n=1

1

nz
. (2.8.1)

The uniqueness of prime factorization implies that each n−z occurs exactly
once in the product over all primes p of the series

1 + 1

pz
+ 1

p2z
+ · · · + 1

pmz
+ · · · =

(
1 − 1

pz

)−1

,

so we obtain Euler’s product formula

ζ(z) =
∏

p prime

(
1 − 1

pz

)−1

, Re z > 1. (2.8.2)

Euler evaluated the zeta function at even positive integer z [91]:

ζ(2m) = (−1)m−1

2

(2π)2m

(2m) ! B2m, (2.8.3)

where the Bernoulli numbers are given by (2.5.4). In particular,

1 + 1

4
+ 1

9
+ · · · + 1

n2
+ · · · = π2

6
; (2.8.4)

1 + 1

16
+ 1

81
+ · · · + 1

n4
+ · · · = π4

90
;

1 + 1

64
+ 1

729
+ · · · + 1

n6
+ · · · = π6

945
.

The evaluation (2.8.3) follows from the product formula (2.2.9) for sine: taking
the logarithm gives

log
(

sinπx
) = log(πx)+

∞∑
n=1

log

(
1 − x2

n2

)
.
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Differentiating both sides gives

π cosπx

sinπx
= 1

x
+

∞∑
n=1

2x

x2 − n2
= 1

x
+

∞∑
n=1

[
1

x + n
+ 1

x − n

]
. (2.8.5)

The function

f (x) = π cosπx

sinπx
− 1

x

is holomorphic near the origin. It follows from (2.8.5) that the derivative

f (k)(x)

∣∣∣∣
x=0

=
∞∑

n=1

(−1)kk !
[

1

(x + n)k+1
+ 1

(x − n)k+1

] ∣∣∣∣
x=0

=

⎧⎪⎪⎨⎪⎪⎩
0, k = 2m;

−2
∞∑

m=1

(2m − 1) !
n2m

, k = 2m − 1.

Therefore, the McLaurin expansion is

π cosπx

sinπx
− 1

x
= −2

∞∑
m=1

ζ(2m) x2m−1. (2.8.6)

On the other hand, expressing cosπx and sinπx in terms of exponentials and
making use of (2.5.4) gives

π cosπx

sinπx
− 1

x
= iπ

eiπx + e−iπx

eiπx − e−iπx
− 1

x

= 2iπ

[
1

e2π i x − 1
+ 1

2
− 1

2π i x

]

= 2iπ
∞∑

m=1

B2m

(2m) ! (2π i x)2m−1. (2.8.7)

Comparing coefficients of x2m−1 in the expansions (2.8.6) and (2.8.7) gives
(2.8.3).

A change of variables in the integral defining �(z) shows that

1

nz
= 1

�(z)

∫ ∞

0
e−nt t z dt

t
.

Therefore

ζ(z) = 1

�(z)

∫ ∞

0

e−t

1 − e−t
t z dt

t
= 1

�(z)

∫ ∞

0

t z−1 dt

et − 1
.
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The zeta function can be extended so as to be meromorphic in the plane. Set

f (z) =
∫

C

(−t)z−1 dt

et − 1
,

where C comes from +∞ along the “lower” real axis (arg t = −2π ), circles
zero in the negative (clockwise) direction at distance δ > 0, and returns to +∞
along the “upper” real axis (arg t = 0); we choose the branch of log(−t) that
is real for t < 0. The function f is entire. If Re z > 0 we may let δ → 0 and
evaluate the integral by the residue theorem to conclude that

f (z) = [e−iπ z − eiπ z]�(z) ζ(z) = −2i sinπ z �(z) ζ(z)

(see Appendix A). Thus

ζ(z) = − f (z)

2i �(z) sinπ z
. (2.8.8)

This provides the analytic continuation to Re z ≤ 1, and shows that the only
pole of ζ in that half-plane, hence in C, is a simple pole at z = 1.

The functional equation for the zeta function can be obtained from (2.8.8).
We evaluate the function f by expanding the circle in the path of integration.
The integrand has simple poles at t = ±2nπ i , n ∈ N, and the residue of
1/(et − 1) at each pole is 1. The residues of the integrand of f at 2nπ i and
−2nπ i sum to

(2nπ)z−1i

(
e− 1

2π zi − e
1
2π zi

)
= 2z(nπ)z−1 sin

(
1

2
π z

)
.

Suppose now that Re z < 0, so Re (z − 1) < −1. Letting the circle expand
(between successive poles), we get

f (z) = (−2π i) · 2zπ z−1 sin

(
1

2
π z

) ∞∑
n=1

1

n1−z

= −i(2π)z 2 sin

(
1

2
π z

)
ζ(1 − z). (2.8.9)

This holds for other values by analytic continuation. Combining (2.8.8) and
(2.8.9) we obtain the functional equation

ζ(1 − z) = 2

(2π)z
cos

(
1

2
π z

)
�(z) ζ(z). (2.8.10)
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2.9 Exercises

2.1 For Re a > 0 and Re b > 0, show that∫ 1

0
ta−1(1 − t2)b−1

dt = 1

2
B

(
1

2
a, b

)
.

2.2 For Re a > 0 and Re b > 0, show that∫ π/2

0
sina−1 θ cosb−1 θ dθ = 1

2
B

(
1

2
a,

1

2
b

)
.

2.3 Prove the functional relation

B(a, b) = a + b

b
B(a, b + 1).

2.4 Complete the proof of Proposition 2.1.3 by showing that the error in the
appproximation is O(xa−1).

2.5 Carry out the integration in the proof of Theorem 2.2.3.
2.6 Verify the contour integral representation of the beta function, for

Re a > 0 and any complex b:

B(a, b)
sinπb

π
= �(a)

�(a + b) �(1 − b)
= 1

2π i

∫
C

sa−1(s − 1)b−1 ds.

Here the contour C is a counterclockwise loop that passes through the
origin and encloses the point s = 1. We take the arguments of s and
s − 1 to be zero for s > 1. Hint: assume first that Re b > 0 and move
the contour to run along the interval [0, 1] and back.

2.7 Use (2.2.7) to verify that for Re a < 1 and Re (a + b) > 0,

�(a + b)

�(a) �(b)
= (a + b − 1)

e−iπa

2π i

∫
C

t−a(1 + t)−b dt,

where the curve C runs from +∞ to 0 along the upper edge of the cut
on [0,∞) and returns to +∞ along the lower edge, and the principal
branch of t−a is taken along the upper edge.

2.8 Use (2.2.2) and the evaluation of �
(

1
2

)
to prove Wallis’s formula [302]:

π

4
= 2

3
· 4

3
· 4

5
· 6

5
· · · 2n

2n + 1
· 2n + 2

2n + 1
· · ·

2.9 One of the verifications of the evaluation of �
(

1
2

)
obtained the identity∫ ∞

−∞
e−x2

dx = √
π,
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by evaluating ∫ ∞

−∞

∫ ∞

−∞
e−(x2+y 2) dx dy

in polar coordinates. Turned around, this can be viewed as a way of
evaluating the length of the unit circle. Use a “polar coordinate”
computation of the n-dimensional version of this integral to show that

the (n − 1)-volume (area) of the unit (n − 1)-sphere is 2πn/2/�
(

1
2 n
)

.

2.10 Use the Wielandt Theorem or the Bohr–Mollerup Theorem to prove
Gauss’s multiplication theorem, the first line of (2.3.6). Hint: replace z
by z/m on the right-hand side and define G(z) as the result.

2.11 For real y �= 0, show that

|�(iy)|2 = π

y sinhπy
,

∣∣∣∣� (1

2
+ iy

)∣∣∣∣2 = π

coshπy
.

2.12 If x and y are real, prove that∣∣∣∣ �(x)

�(x + iy)

∣∣∣∣2 =
∞∏

k=0

{
1 + y2

(x + k)2

}
, x �= 0,−1,−2, . . . ,

and hence |�(x + iy)| ≤ |�(x)|.
2.13 If a and b are not negative integers, show that

∞∏
k=1

k(a + b + k)

(a + k)(b + k)
= �(a + 1)�(b + 1)

�(a + b + 1)
.

2.14 Prove (2.5.5).
2.15 Find the value ∫ ∞

0
t x−1e−λt cos θ cos(λt sin θ) dt,

where λ > 0, x > 0, and − 1
2π < θ <

1
2π.

2.16 Let z be positive, and integrate πw−zcosecπ z/�(1 − z) around the
rectangle with vertices c ± i R,−R ± i R, where c > 0. Show that

1

2π i

∫ c+i∞

c−i∞
w−z�(z) dz = e−w.

Prove that this formula holds for | argw| ≤ 1
2π − δ, where δ > 0.

2.17 (Saalshütz) Prove that for Re z < 0,

�(z) =
∫ ∞

0
t z−1

{
e−t − 1 + t − t2

2! + · · · + (−1)k+1 tk

k!
}

dt,

where k is an integer between Re (−z) and Re (−z − 1).
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2.18 Show that for s > 1,

log ζ(s) =
∑

p prime

∞∑
m=1

1

m pms
.

2.19 (a) The Hurwitz zeta function is defined by

ζ(x, s) =
∞∑

n=0

1

(n + x)s
for x > 0.

Show that ζ(x + 1, s) = ζ(x, s)− x−s , and hence(
∂ζ(x + 1, s)

∂s

)
s=0

−
(
∂ζ(x, s)

∂s

)
s=0

= log x .

(b) Establish that for Re s > 1,

∂2ζ(x, s)

∂x2
= s(s + 1)

∞∑
n=0

1

(n + x)s+2

and

d2

dx2

(
∂ζ(x, s)

∂s

)
s=0

=
∞∑

n=0

1

(x + n)2
.

(c) Show that the results (a) and (b), together with (2.4.2), imply that(
∂ζ(x, s)

∂s

)
s=0

= C + log�(x).

(d) Prove that

ζ ′(0) = −1

2
log 2π.

Use this and the result in (c) to prove Lerch’s theorem:(
∂ζ(x, s)

∂s

)
s=0

= log
�(x)√

2π
.

2.20 First prove that

ζ(x, s) = 1

�(s)

∫ ∞

0

t s−1e−xt

1 − e−t
dt.

Then use the idea of Hankel’s loop integral for the gamma function to
derive the contour integral representation

ζ(x, s) = e−iπs�(1 − s)

2π i

∫
C

ts−1e−xt

1 − e−t
dt,
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where C starts at infinity on the positive real axis, encircles the origin
once in the positive direction, excluding the points ±2nπ i, n ≥ 1, and
returns to positive infinity.

2.21 Deduce from (2.6.2) that for x > 0, �(x) has a single minimum, which
lies between 1 and 2.

2.22 Show that for z �= 0,−1,−2, . . . ,

ψ(1 − z)− ψ(z) = π cotπ z

and

ψ(z)+ ψ
(

z + 1

2

)
+ 2 log 2 = 2ψ(2z).

2.23 Prove that

ψ

(
1

2

)
= −γ − 2 log 2, ψ ′

(
1

2

)
= 1

2
π2.

2.24 Show that for Re z > 0,

ψ(z) =
∫ ∞

0

(
e−t

t
− e−zt

1 − e−t

)
dt.

This is known as Gauss’s formula. Deduce that

ψ(z + 1) = 1

2z
+ log z −

∫ ∞

0

[
1

2
coth

(
1

2
t

)
− 1

t

]
e−zt dt.

2.25 Show that γ (α, z)/zα�(α) is entire in both α and z. Furthermore, prove
that

γ (α, z)

zα�(α)
= e−z

∞∑
n=0

zn

�(α + n + 1)
.

2.26 Prove that

2

π

∫ ∞

0

e−zt2

1 + t2
dt = ez [1 − erf

(√
z
)]
.

2.27 The generalized exponential integral is defined by

En(z) =
∫ ∞

1

e−zt

tn
dt, n = 1, 2, . . .
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Show that

(a) En(z) = zn−1�(1 − n, z);

(b) En(z)=
∫ ∞

z
En−1(t) dt = · · · =

∫ ∞

z

∫ ∞

t1
· · ·
∫ ∞

tn−1

e−tn

tn
dtn · · · dt2 dt1;

(c) En(z) = e−z

(n − 1)!
∫ ∞

0

e−t tn−1

z + t
dt .

2.28 Let 0 < λ < 1 and k = 1, 2, . . . Put

f (k) = �(k + λ)
�(k + 1)

(k + α)1−λ

and

g(k) = f (k + 1)

f (k)
.

(a) Show that

lim
k→∞ g(k) = lim

k→∞ f (k) = 1

and

g(k) = k + λ
k + 1

(
k + α + 1

k + α
)1−λ

.

Considering k as a continuous variable, show also that

g′(k) = Ak(λ;α)
(k + α)2−λ(k + 1)2(k + α + 1)λ

,

where

Ak(λ;α) = (1 − λ)
(
−λk + 2αk − λ+ α2 + α

)
.

(b) When α = 0, prove (i) g′(k) is negative for 0 < λ < 1 and
k = 1, 2, . . . ; (ii) g(k) > 1 and f (k) < 1 for k = 1, 2, . . . ; and (iii)

�(k + λ)
�(k + 1)

<
1

k1−λ .

(c) When α = 1, prove (i) g′(k) is positive for 0 < λ < 1 and
k = 1, 2, . . . ; (ii) g(k) < 1 and f (k) > 1 for k = 1, 2, . . . ; and (iii)

�(k + λ)
�(k + 1)

>
1

(k + 1)1−λ .
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These inequalities were first given by Gautschi [107], but the argument
outlined here is taken from Laforgia [169].

2.29 Use the symmetry of the function w(x) to prove Lemma 2.7.2.
2.30 Prove Lemma 2.7.3.
2.31 Prove Lemma 2.7.4. Hint: partition the domain Cn and use symmetry.
2.32 Use the product formula (2.2.9) to prove the first of the

equations (2.8.4).
2.33 Use the product formula (2.2.9) to prove the second of the

equations (2.8.4).
2.34 Multiply both sides of (2.5.4) by t (et − 1) and show that B2m satisfies

B2m = −
[(

2m

2

)
B2m−2

3
+
(

2m

4

)
B2m−4

5
+ · · · + B0

2m + 1

]
+ 1

2
,

m = 1, 2, . . . ,

with B0 = 1.
2.35 Compute the Bernoulli numbers B2, B4, and B6 and use (2.8.3) to verify

each of the equations (2.8.4).
2.36 The Bernoulli polynomials {Bn(x)} are defined by the identity

t ext

et − 1
=

∞∑
n=0

Bn(x)

n ! tn, |t | < 2π.

Thus B2m(0) = B2m . Set B−1(x) = 0. Prove the identities

(a) B ′
n(x) = n Bn−1(x);

(b)
∫ 1

0
B0(x) dx = 1;

(c)
∫ 1

0
Bn(x) dx = 0;

(d) Bn(x + 1) = Bn(x)+ n xn−1;

(e) 1 + 2n + 3n + · · · + mn = Bn+1(m + 1)− Bn+1(0)

n + 1
.

2.37 Verify that the first six Bernoulli polynomials are

B0(x) = 1;
B1(x) = 2x − 1

2
;

B2(x) = 6x2 − 6x + 1

6
;
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B3(x) = 2x3 − 3x2 + x

2
;

B4(x) = 30x4 − 60x3 + 30x2 − 1

30
;

B5(x) = 6x5 − 15x4 + 10x3 − x

6
.

2.38 The Euler polynomials {En(x)} are defined by the identity

2 ext

et + 1
=

∞∑
n=0

En(x)

n ! tn, |t | < π.

Prove that

(a) E ′
n(x) = n En−1(x);

(b) En(x + 1)+ En(x) = 2 xn ;

(c) 1 − 2n + 3n − · · · + (−1)m−1mn = En(1)+ (−1)m−1 En(m + 1)

2
.

2.39 Verify that the first six Euler polynomials are

E0(x) = 1;
E1(x) = 2x − 1

2
;

E2(x) = x2 − x;

E3(x) = 4x3 − 6x2 + 1

4
;

E4(x) = x4 − 2x3 + x;

E5(x) = 2x5 − 5x4 + 5x2 − 1

2
.

2.40 The Euler numbers {En} are defined by

En = 2n En

(
1

2

)
.

Prove that

∞∑
n=0

En

n ! tn = 2

et + e−t
, |t | < π

2
.

2.41 Prove that ζ(−2m) = 0, m = 1, 2, 3 . . .
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2.10 Summary

2.10.1 The gamma function

The gamma function can be defined by the integral

�(z) =
∫ ∞

0
e−t t z dt

t
, Re z > 0.

It is holomorphic on the right half-plane, takes the values

�(n) = (n − 1) !
on the positive integers, and extends to a meromorphic function on the complex
plane, with simple poles at the non-positive integers and residue (−1)n/n !
at −n. It satisfies the functional equations

z�(z) = �(z + 1), (z)n �(z) = �(z + n), z �= 0,−1,−2, . . . ,

where (z)n is the shifted factorial

(z)0 = 1, (z)n = z(z + 1) · · · (z + n − 2)(z + n − 1), n = 1, 2, . . . ,

and has the representation

�(z) =
∞∑

n=0

(−1)n

n ! (z + n)
+
∫ ∞

1
e−t t z dt

t
.

The beta function or beta integral is

B(a, b) = B(b, a) =
∫ 1

0
sa−1(1 − s)b−1 ds

=
∫ ∞

0
ua
(

1

1 + u

)a+b du

u
, Re a > 0, Re b > 0.

The identity

B(a, b) = �(a) �(b)

�(a + b)

allows analytic continuation to all a, b �= 0,−1,−2, . . . The beta function can
be used to show that for any fixed a,

�(z + a)

�(z)
= za + O

(
za−1) as Re z → +∞.
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2.10.2 Euler’s product and reflection formulas

Two more characterizations of the gamma function are

�(z) = lim
n→∞

(n − 1) ! nz

(z)n
, Re z > 0;

= 1

z

∞∏
n=1

(
1 + 1

n

)z (
1 + z

n

)−1
, z �= 0,−1,−2, . . .

The reciprocal of the gamma function is an entire function with product
representation

1

�(z)
= z eγ z

∞∏
n=1

(
1 + z

n

)
e−z/n,

where γ is Euler’s constant

γ = lim
n→∞

{
n−1∑
k=1

1

k
− log n

}
.

Euler’s reflection formula is

�(z) �(1 − z) = π

sinπ z
, z �= 0,±1,±2, . . .

Hankel’s integral formula is

1

�(z)
= 1

2π i

∫
C

et t−z dt,

where C is an oriented contour in the complex plane that begins at −∞,
continues on the real axis, circles the origin in the counterclockwise direction,
and returns to −∞.

The reflection and product formulas give Euler’s product for the sine
function

sinπ z

π z
=

∞∏
n=1

(
1 − z2

n2

)
.

Taking z = 1
2 in the reflection formula is one of several ways to obtain the

evaluation

�

(
1

2

)
= √

π.
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2.10.3 Formulas of Legendre and Gauss

Legendre’s duplication formula is

�(2z) = 22z−1

√
π
�(z) �

(
z + 1

2

)
, z �= 0,−1,−2, . . .

A more general result is due to Gauss:

�(mz) = mmz− 1
2
�(z) �

(
z + 1

m

)
�
(
z + 2

m

) · · ·�(z + m−1
m

)
(2π)

1
2 (m−1)

.

2.10.4 Two characterizations of the gamma function

Wielandt’s characterization: Suppose that G is holomorphic in the half-
plane {Re z > 0}, bounded on the closed strip {1 ≤ Re z ≤ 2}, G(1) = 1, and
z G(z) = G(z + 1) for Re z > 0. Then G(z) = �(z).

The gamma function is logarithmically convex on {x > 0}: (2.2.6) implies
that

(log�)′′(x) =
∞∑

k=0

1

(x + k)2
> 0 for x > 0.

Conversely, Bohr and Mollerup proved that if a function G is such that G(x) is
defined and positive for x > 0, G(1) = 1, G satisfies the functional equation
x G(x) = G(x + 1), and log G is convex, then G(x) ≡ �(x).

2.10.5 Asymptotics of the gamma function

Stirling’s formula is

�(z) = zz

ez

⎧⎨⎩
(

2π

z

) 1
2 + O

(
z− 3

2

)⎫⎬⎭ as Re z → +∞.

A more precise version is due to Binet:

�(z) = zz

ez

(
2π

z

) 1
2

eθ(z), Re z > 0,

where

θ(z) =
∫ ∞

0

(
1

et − 1
− 1

t
+ 1

2

)
e−zt dt

t
.
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The integrand in (2.5.3) includes the function

1

et − 1
− 1

t
+ 1

2
=

∞∑
m=1

B2m

(2m) ! t2m−1, |t | < 2π,

where the coefficients B2m are the Bernoulli numbers. Putting partial sums of
this expansion into Binet’s formula gives estimates

θ(z) =
N∑

m=1

B2m

2m(2m − 1)
z1−2m + O

(
z−2N−1), as Re z → +∞.

An asymptotic result valid on the complement of the negative real axis is the
uniform estimate

�(z) = zz

ez

⎧⎨⎩
(

2π

z

) 1
2 + O

(
z− 3

2

)⎫⎬⎭ , | arg z| ≤ π − δ < π, δ > 0.

In particular, for real x and y,

|�(x + iy)| = √
2π |y|x− 1

2 e− 1
2π |y|[1 + O

(|y|−1)], as |y| → ∞.

2.10.6 The psi function and the incomplete gamma function

The psi function is the logarithmic derivative of the gamma function:

ψ(z) = d

dz
log�(z) = −γ +

∞∑
n=0

(
1

n + 1
− 1

n + z

)
, z �= 0,−1,−2, . . .

It satisfies the recurrence relation

ψ(z + 1) = ψ(z)+ 1

z
,

so

ψ(1) = −γ, ψ(k + 1) = −γ + 1 + 1

2
+ 1

3
+ · · · + 1

k
, k = 1, 2, 3, . . .

Binet’s integral formula is

ψ(z) = log z − 1

2z
−
∫ ∞

0

(
1

et − 1
− 1

t
+ 1

2

)
e−zt dt, Re z > 0.

The incomplete gamma function is

γ (α, z) =
∫ z

0
tα−1e−t dt, Reα > 0.
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It is analytic in the complement of the negative real axis and has the series
expansion

γ (α, z) = zα
∞∑

n=0

(−z)n

n ! (α + n)
, α �= 0,−1,−2, . . .

for all z.
The complementary incomplete gamma function is

�(α, z) =
∫ ∞

z
tα−1e−t dt

= �(α)− γ (α, z).

The error function and the complementary error function are

erf z = 2√
π

∫ z

0
e−t2

dt, erfc z = 2√
π

∫ ∞

z
e−t2

dt.

They satisfy

erf z = 1 − erfc z = 2√
π

∞∑
n=0

(−1)nz2n+1

n!(2n + 1)
= 1√

π
γ

(
1

2
, z2
)

;

erfc z = 1√
π
�

(
1

2
, z2
)
.

2.10.7 The Selberg integral

The Selberg integral is

Sn(a, b, c) =
∫ 1

0
· · ·
∫ 1

0

n∏
i=1

xa−1
i (1 − xi )

b−1
∏

1≤ j<k≤n

|x j − xk |2c dx1 · · · dxn,

Re a> 0, Re b> 0, Re c > max

{
−1

n
,− Re a

n − 1
,− Re b

n − 1

}
.

The value is given by

Sn(a, b, c) =
n−1∏
j=0

�(a + jc) �(b + jc) �(1 + [ j + 1]c)
�(a + b + [n − 1 + j]c) �(1 + c)

.

Aomoto’s generalization, under the same conditions on the indices
(a, b, c), is
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∫ 1

0
· · ·
∫ 1

0

k∏
i=1

xi

n∏
i=1

xa−1
i (1 − xi )

b−1
∏

1≤i< j≤n

|xi − x j |2c dx1 · · · dxn

=
k∏

i=1

a + (n − i)c

a + b + (2n − i − 1)c
Sn(a, b, c)

=
k∏

i=1

a + (n − i)c

a + b + (2n − i − 1)c

n−1∏
j=0

�(a + jc) �(b + jc) �(1 + [ j + 1]c)
�(a + b + [n − 1 + j]c) �(1 + c)

.

2.10.8 The zeta function

The Riemann zeta function is

ζ(z) =
∞∑

n=1

1

nz
, Re z > 1,

and is also given by Euler’s product formula

ζ(z) =
∏

p prime

(
1 − 1

pz

)−1

, Re z > 1.

Euler’s evaluation of the zeta function at even positive integers is

ζ(2m) = (−1)m−1

2

(2π)2m

(2m) ! B2m,

where the B2m are the Bernoulli numbers (2.5.4). In particular,

1 + 1

4
+ 1

9
+ · · · + 1

n2
+ · · · = π2

6
;

1 + 1

16
+ 1

81
+ · · · + 1

n4
+ · · · = π4

90
;

1 + 1

64
+ 1

729
+ · · · + 1

n6
+ · · · = π6

945
.

An integral representation is

ζ(z) = 1

�(z)

∫ ∞

0

t z−1 dt

et − 1
, Re z > 0.

The formula

ζ(z) = − 1

2i �(z) sinπ z

∫
C

(−t)z−1 dt

et − 1
,
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where C comes from +∞ along the real axis, circles zero in the negative
(clockwise) direction, and returns to +∞ along the real axis provides the
analytic continuation to Re z ≤ 1 and shows that the only pole of ζ in the plane
is a simple pole at z = 1.

The functional equation for the zeta function is

ζ(1 − z) = 2

(2π)z
cos

(
1

2
π z

)
�(z) ζ(z).

2.11 Remarks

The history and properties of the gamma function are discussed in detail in
the book by Nielsen [217]; see also articles by Davis [64], Dutka [76], and
Gautschi [109], and the books by Artin [13], Campbell [39], and Godefroy
[115]. Copson’s text [56] has an extensive list of exercises with identities
involving the gamma function and Euler’s constant.

It has been remarked that the beta function might better be termed the
“beta integral.” Selberg’s generalization and its further elaborations have been
utilized in a number of areas, including random matrix theory, statistical
mechanics, combinatorics, and integrable systems. See the chapter on the
Selberg integral in [7] and the extensive survey by Forrester and Warnaar [98].
For a probabilistic proof of Selberg’s formula, see the book by Mehta [202].

The literature on the zeta function and its generalizations is copious. See in
particular the books of Titchmarsh [285], Edwards [79], Ivić [137], Patterson
[226], and Motohashi [207]. The celebrated Riemann hypothesis is that all the

nontrivial zeros of ζ(s) lie on the line
{

Re s = 1
2

}
. (The “trivial zeros” are at

s = −2,−4,−6, . . .) A number of consequences concerning analytic number
theory would follow from the truth of the Riemann hypothesis.
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Second-order differential equations

As noted in Chapter 1, most of the functions commonly known as “special
functions” are solutions of second-order linear differential equations. These
equations occur naturally in certain physical and mathematical contexts. In
a certain sense there are exactly two (families of) equations in question: the
confluent hypergeometric equation (Kummer’s equation)

xu′′(x)+ (c − x) u′(x)− a u(x) = 0, (3.0.1)

with indices (a, c), and the hypergeometric equation

x(1 − x)u′′(x)+ [c − (a + b + 1)x
]

u′(x)− ab u(x) = 0, (3.0.2)

with indices (a, b, c), where a, b, c are constants. The various other equa-
tions (Bessel, Whittaker, Hermite, Legendre, . . .) are obtained from these by
specialization, by standard transformations, or by analytic continuation in the
independent variable.

In this chapter we give a brief general treatment of some questions concern-
ing second-order linear differential equations, starting with gauge transforma-
tions, L2 symmetry with respect to a weight, and the Liouville transformation.

The basic existence and uniqueness theorems are proved, followed by a
discussion of the Wronskian, independence of solutions, comparison theorems,
and zeros of solutions.

A natural classification question is treated: classify symmetric problems
whose eigenfunctions are polynomials. This question leads, up to certain
normalizations, to the equations (3.0.1) and (3.0.2). General results on local
maxima and minima of solutions of homogeneous equations are obtained and
applied to some of these polynomials.

Another source of equations related to (3.0.1) and (3.0.2) is physics: prob-
lems involving the Laplace operator, when one seeks to find solutions by

57
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separating variables in special coordinate systems. We discuss the various
equations that arise in this way and how they are related to (3.0.1) and (3.0.2).

3.1 Transformations, symmetry

Throughout this chapter, p, q , r , f , u, v, . . . will denote real functions defined
on the finite or infinite open real interval I = (a, b) = {x : a < x < b}, and
we assume that p(x) > 0, all x ∈ I . All functions will be assumed to be
continuous and to have continuous first and second derivatives as needed.

The general linear second-order differential equation on the interval I is

p(x) u′′(x)+ q(x) u′(x)+ r(x) u(x) = f (x). (3.1.1)

The corresponding homogeneous equation is the equation with right-hand side
f ≡ 0:

p(x) u′′(x)+ q(x) u′(x)+ r(x) u(x) = 0. (3.1.2)

The associated differential operator is

L = p(x)
d2

dx2
+ q(x)

d

dx
+ r(x). (3.1.3)

In (3.1.3) the functions p, q , and r are identified with the operations of
multiplication by p, by q , and by r .

A gauge transformation of (3.1.1) is a transformation of the form

u(x) = ϕ(x) v(x), ϕ(x) �= 0. (3.1.4)

The function u satisfies (3.1.1) if and only if v satisfies

p(x) v′′(x)+
[

2p(x)
ϕ′(x)
ϕ(x)

+ q(x)

]
v′(x)

+
[

p(x)
ϕ′′(x)
ϕ(x)

+ q(x)
ϕ′(x)
ϕ(x)

+ r(x)

]
v(x) = f (x)

ϕ(x)
. (3.1.5)

Note that the left-hand side of this equation is not changed if ϕ is replaced by
Cϕ, C constant, C �= 0. The corresponding transformed operator is

Lϕ = p(x)
d2

dx2
+
[

2p(x)
ϕ′(x)
ϕ(x)

+ q(x)

]
d

dx

+
[

p(x)
ϕ′′(x)
ϕ(x)

+ q(x)
ϕ′(x)
ϕ(x)

+ r(x)

]
. (3.1.6)
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The usefulness of gauge transformations comes from the fact that the homo-
geneous linear first-order differential equation

ϕ′(x) = h(x) ϕ(x) (3.1.7)

always has a solution

ϕ(x) = exp

{∫ x

x0

h(y) dy

}
, (3.1.8)

where x0 is any point of the interval I . This solution has no zeros in the
interval. Note that if ψ is a second solution of (3.1.7), then the quotient ψ/ϕ
has derivative 0 and therefore is constant.

In particular, a gauge transformation can be used to eliminate the first-order
term qu′ of (3.1.1) by taking ϕ such that ϕ′/ϕ = −q/2p. A second use is
to symmetrize the operator (3.1.3). Suppose that w > 0 on I . The associated
weighted L2 space L2

w consists of all measurable real-valued functions f
such that ∫ b

a
f (x)2w(x) dx < ∞.

The inner product ( f, g) between two such functions is

( f, g) = ( f, g)w =
∫ b

a
f (x) g(x) w(x) dx .

The operator L of (3.1.3) is said to be symmetric with respect to the weight
function w if

(Lu, v) = (u, Lv)

for every pair of twice continuously differentiable functions u, v that vanish
outside some closed subinterval of I . The proofs of the following propositions
are sketched in the exercises.

Proposition 3.1.1 The operator L is symmetric with respect to the weight w
if and only if it has the form

L = p
d2

dx2
+ (pw)′

w

d

dx
+ r = 1

w

d

dx

(
pw

d

dx

)
+ r. (3.1.9)

Proposition 3.1.2 If L has the form (3.1.3) then there is a weight function w,
unique up to a multiplicative constant, such that L is symmetric with respect
to w.
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Proposition 3.1.3 Given an operator (3.1.3) and a weight function w on the
interval I , there is a gauge transformation (3.1.4) such that the corresponding
operator Lϕ is symmetric with respect to w.

An invertible transformation T from an L2 space with weight w1 to an L2

space with weight w2 is said to be unitary if

(T f, T g)w2 = ( f, g)w1

for every pair f , g in L2
w1

. Operators L1 and L2 in the respective spaces are
said to be unitarily equivalent by T if

L2 = T L1 T −1.

Proposition 3.1.4 An operator symmetric with respect to a weight w on an
interval I is unitarily equivalent, by a gauge transformation, to an operator
that is symmetric with respect to the weight 1 on the interval I .

A second useful method for transforming a differential equation like (3.1.1)
is to make a change of the independent variable. If y = y(x) and u(x) =
v
(
y(x)

)
, then

u′(x) = y′(x) v′(y(x)), u′′(x) = [y′(x)
]2
v′′(y(x))+ y′′(x) v′(y(x)).

In particular, we may eliminate the coefficient p by taking

y(x) =
∫ x

x0

dt√
p(t)

. (3.1.10)

Then equation (3.1.1) becomes

v′′ +
[

q√
p

− p′

2
√

p

]
v′ + r v = f.

This involves an abuse of notation: the primes on v refer to derivatives with
respect to y, while the prime on p refers to the derivative with respect to x .
To rectify this we consider p, q , r , and f as functions of y = y(x) by taking
p(x) = p1(y(x)), etc. The previous equation becomes

v′′(y)+
[

q1(y)√
p1(y)

− p′
1(y)

2p1(y)

]
v′(y)+ r1(y) v(y) = f1(y). (3.1.11)

If we then eliminate the first-order term by a gauge transformation, the result-
ing composite transformation is known as the Liouville transformation.
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3.2 Existence and uniqueness

The following standard fact about equations of the form (3.1.2) is crucial.

Theorem 3.2.1 The set of solutions of the homogeneous equation

p(x) u′′(x)+ q(x) u′(x)+ r(x) u(x) = 0 (3.2.1)

is a vector space of dimension two.

Proof The set of solutions of (3.2.1) is a vector space, since a linear combi-
nation of solutions is again a solution (the “superposition principle”).

To simplify notation, let us assume that the interval I contains the point
x = 0. A gauge transformation is an invertible linear map, so it does not change
the dimension. Therefore, we may assume that q ≡ 0 and write the equation in
the form

u′′(x) = s(x) u(x), s(x) = − r(x)

p(x)
. (3.2.2)

We show first that there are two solutions u and v characterized by the condi-
tions

u(0) = 1, u′(0) = 0; v(0) = 0, v′(0) = 1. (3.2.3)

Solutions of (3.2.2) that satisfy these conditions would be solutions of the
integral equations

u(x) = 1 +
∫ x

0

∫ y

0
s(z) u(z) dz dy, (3.2.4)

v(x) =
∫ x

0

{
1 +

∫ y

0
s(z) v(z) dz

}
dy, (3.2.5)

respectively. Conversely, solutions of these integral equations would be solu-
tions of (3.2.2).

The equations (3.2.4) and (3.2.5) can be solved by the method of successive
approximations. Let u0 = 1, v0 = 0, and define inductively

un+1(x) = 1 +
∫ x

0

∫ y

0
s(z) un(z) dz dy;

vn+1(x) =
∫ x

0

{
1 +

∫ y

0
s(z) vn(z) dz

}
dy, n ≥ 0.

It is enough to show that each of the sequences {un} and {vn} converges uni-
formly on each bounded closed subinterval J ⊂ I . We may assume 0 ∈ J . Let
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C = sup
x∈J

∣∣s(x)∣∣.
It is easily proved by induction that for x ∈ J ,

∣∣un+1(x)− un(x)
∣∣ ≤ Cn x2n

(2n) ! ; (3.2.6)

∣∣vn+1(x)− vn(x)
∣∣ ≤ Cn|x |2n+1

(2n + 1) ! .

It follows that the sequences {un} and {vn} are Cauchy sequences. They con-
verge uniformly on J to the desired solutions u and v. The conditions (3.2.3)
imply that u and v are linearly independent, so the dimension of the space of
solutions of (3.2.2) is at least two.

Suppose now that w is a solution of (3.2.2). Replacing w by

w(x)− w(0) u(x)− w′(0) v(x),

we may assume that w(0) = w′(0) = 0. The proof can be completed by show-
ing that w ≡ 0 on each subinterval J as before. Let

M = sup
x∈J

|w(x)|.

Now

w(x) =
∫ x

0

∫ y

0
s(z) w(z) dz dy.

It follows that for x ∈ J , ∣∣w(x)∣∣ ≤ C Mx2

2
.

Inductively,

∣∣w(x)∣∣ ≤ Cn Mx2n

(2n) ! (3.2.7)

for all n. The right-hand side has limit 0 as n → ∞, so w(x) = 0. �

These arguments lead to a sharpened form of Theorem 3.2.2.

Theorem 3.2.2 Given a point x0 in the interval I and two constants c0, c1,
there is a unique solution of the homogeneous equation

p(x) u′′(x)+ q(x) u′(x)+ r(x) u(x) = 0 (3.2.8)
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that satisfies the conditions

u(x0) = c0; u′(x0) = c1.

In particular, if u(x0) = 0, then either it is a simple zero, i.e. u′(x0) �= 0, or
else u ≡ 0 on I . Moreover, if u is not identically zero, then wherever r(x) �= 0,
zeros of u′ are simple: if u′(x) and u′′(x) both vanish, then (3.2.8) implies that
u(x) = 0. This proves the following.

Corollary 3.2.3 If u is a solution of (3.2.8) that does not vanish identically,
then any zero of u in I is a simple zero. Moreover, u′ has only simple zeros
wherever r �= 0.

3.3 Wronskians, Green’s functions, comparison

Suppose that u1 and u2 are two differentiable functions on the interval I .
The Wronskian W (u1, u2) is the function

W (u1, u2)(x) =
∣∣∣∣u1(x) u2(x)
u′

1(x) u′
2(x)

∣∣∣∣ = u1(x) u′
2(x)− u′

1(x) u2(x).

Proposition 3.3.1 Suppose that u1 and u2 are solutions of the homogeneous
equation (3.1.2). The Wronskian W (u1, u2) is identically zero if u1 and u2

are linearly dependent and nowhere zero if u1 and u2 are independent.

Proof The assumption on u1 and u2 implies

p W ′ = p (u1u′′
2 − u′′

1u2) = −qW,

so W is the solution of the first-order homogeneous equation W ′ = −qp−1W .
It follows that W is either identically zero or never zero. Clearly, W ≡ 0 is
implied by linear dependence. Conversely, if W ≡ 0, then in any subinterval
where u1 �= 0 we have [

u2

u1

]′
= W (u1, u2)

u2
1

= 0.

Therefore, u2/u1 is constant. �

Let us look for a solution of equation (3.1.1) that has the form

u(x) =
∫ x

x0

G(x, y) f (y) dy. (3.3.1)
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Then

u′(x) = G(x, x) f (x)+
∫ x

x0

Gx (x, y) f (y) dy.

To get rid of f ′(x) in taking the second derivative, we need G(x, x) = 0. Then

u′′(x) = Gx (x, x) f (x)+
∫ x

x0

Gxx (x, y) f (y) dy.

Therefore, Lu = f provided

LG(x, ·) = 0, G(x, x) = 0; p(x)Gx (x, x) = 1. (3.3.2)

Suppose that u1 and u2 are linearly independent homogeneous solutions of
Lu = 0 on the interval. The first equation in (3.3.2) implies that for each y ∈ I ,

G(x, y) = v1(y) u1(x)+ v2(y) u2(x).

The remaining two conditions in (3.3.2) give linear equations whose solution is

G(x, y) = u1(y)u2(x)− u2(y)u1(x)

p(y)W (y)
, (3.3.3)

where W = W (u1, u2) is the Wronskian.
We may now generalize Theorem 3.2.2 to the inhomogeneous case.

Theorem 3.3.2 Suppose that x0 is a point of I . For any two real constants
c0, c1, there is a unique solution u of (3.1.1) that satisfies the conditions

u(x0) = c0, u′(x0) = c1. (3.3.4)

Proof The solution (3.3.1), (3.3.3) satisfies the conditions u(x0) = 0,
u′(x0) = 0. We may add to it any linear combination of u1 and u2. The
Wronskian is not zero, so there is a unique linear combination that yields the
conditions (3.3.4). �

In order to satisfy more general boundary conditions, we look for a solution
of the form

u(x) =
∫

y<x
G+(x, y) f (y) dy +

∫
y>x

G−(x, y) f (y) dy, (3.3.5)

where G−(·, y) satisfies a condition to the left and G+(·, y) satisfies a con-
dition to the right. If u± are linearly independent solutions that satisfy such
conditions, then G±(x, y) = v±(y)u∓(x), and the previous argument shows
that
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G+(x, y) = u+(y) u−(x)
p(y)W (y)

, (3.3.6)

G−(x, y) = u−(y) u+(x)
p(y)W (y)

.

The Wronskian also plays a role in the proof of the following important
result of Sturm [277].

Theorem 3.3.3 (Sturm comparison theorem) Suppose that u1 and u2 are
solutions of the equations

p(x) u′′
j (x)+ q(x) u′

j (x)+ r j (x) u j (x) = 0, j = 1, 2, (3.3.7)

on the interval I , neither u1 nor u2 is identically zero, and

r1(x) < r2(x), all x ∈ I.

Suppose that u1 = 0 at points c, d in I , c < d. Then u2(x) = 0 at some point
x of the interval (c, d).

Proof The assumptions and the conclusion are unchanged under gauge trans-
formations and under division of the equations by p, so we may assume for
simplicity that p ≡ 1 and q ≡ 0. We may assume that u1 has no zeros in (c, d);
otherwise, replace d by the first zero. If u2 has no zeros in (c, d), then up to a
change of sign we may assume that u1 and u2 are positive in the interval. The
Wronskian W = W (u1, u2) satisfies

W ′ = (r1 − r2) u1 u2,

so it is non-increasing on the interval. Our assumptions to this point imply that
u′

1(c) > 0 and u′
1(d) < 0, so

W (c) = −u′
1(c)u2(c) ≤ 0, W (d) = −u′

1(d)u2(d) ≥ 0.

It follows that W ≡ 0 on (c, d), so u2/u1 is constant. But this implies that u2

satisfies both of the equations (3.3.7), j = 1, 2, which is incompatible with the
assumptions that r1 < r2 and u2 �= 0 on the interval. �

This proof also serves to prove the following generalization:

Theorem 3.3.4 Suppose that u1 and u2 are solutions of the equations

p(x) u′′
j (x)+ q(x) u′

j (x)+ r j (x) u j (x) = 0, j = 1, 2,
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on an open interval I , neither is identically zero, and

r1(x) < r2(x), all x ∈ I.

Suppose that u1(c) = 0 at a point c in I and that the Wronskian u1(x)u′
2(x)−

u2(x)u′
1(x) has limit zero as x approaches one of the endpoints of I . Then

u2(x) = 0 at some point between c and that endpoint.

Corollary 3.3.5 Suppose that u(x, t), 0 ≤ t < T , is a solution of the equation

p(x) u′′(x, t)+ q(x) u′(x, t)+ r(x, t) u(x, t) = 0,

on an open interval I , where the primes denote derivatives with respect to x.
Suppose that at a point a ∈ I ,

u(a, t) ≡ 0 or u′(a, t) ≡ 0.

Let a < x1(t) < x2(t) < . . . denote the zeros of u(x, t) to the right of a.
If r(x, t) is continuous and increases with t , then xk(t) decreases as t
increases.

Another useful result about zeros is the following.

Theorem 3.3.6 Suppose that w is positive and r is negative on (c, d), and the
real function u satisfies

[w u′]′(x)+ r(x) u(x) = 0, c < x < d,

and is not identically zero. Then u has at most one zero in (c, d).
If uu′ is positive in a subinterval (c, c + ε) or if limx→d u(x) = 0, then u

has no zeros in (c, d).

Proof Suppose that u(a) = 0 for some a in the interval. Replacing u by its
negative if necessary, we may assume that u′(a) > 0. Then u(x) and u′(x)
are positive on some interval a < x < b ≤ d. The equation shows that wu′
is increasing on the interval, so u′ > 0 on (a, b). Taking b to be maximal
with respect to these properties, it is clear that b = d. It follows that u has at
most one zero in (c, d). This argument also shows that either of the additional
conditions implies that there are no zeros. �

3.4 Polynomials as eigenfunctions

It is of interest to extend the symmetry condition of Section 3.1 to a largest
possible “allowable” class of functions. In general this requires the imposition
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of boundary conditions. Suppose that I is a bounded interval (a, b) and sup-
pose that w, w′, p, p′, q , and r extend as continuous functions on the closed
interval [a, b]. Suppose that u and v are twice continuously differentiable on
(a, b), belong to L2

w, and suppose that u, u′, v, v′ are continuous on the closed
interval. Suppose also that L is symmetric. A previous calculation shows that

(Lu, v)− (u, Lv) = (pw u′ v − pw u v′)∣∣∣b
a
.

If pw vanishes at both endpoints then we do not need additional constraints
at the boundary; otherwise additional conditions must be imposed on the
functions u, v. Similarly, if I is a semi-infinite interval (a,∞), conditions must
be imposed at x = a unless pw = 0 at x = a.

Suppose that we have symmetry for such a maximal allowable class of func-
tions. An allowable function u that is not identically zero is an eigenfunction
for L with eigenvalue −λ if Lu + λu = 0.

If u1 and u2 are eigenfunctions with different eigenvalues −λ1 and −λ2,
then

−λ1(u1, u2) = (Lu1, u2) = (u1, Lu2) = −λ2(u1, u2),

so (u1, u2) = 0: u1 and u2 are orthogonal.
In a variation on a question of Routh [242] and Bochner [33], we ask under

what conditions it is the case that the set of eigenfunctions of L includes
polynomials of all degrees, or at least of degrees 0, 1, and 2. The symmetry
condition implies that L has the form (3.1.9):

p
d2

dx2
+ (pw)′

w

d

dx
+ r.

Suppose that there are polynomials of degrees 0, 1, and 2 that are eigenfunc-
tions of L . This is equivalent to assuming that the space of polynomials of
degree ≤ k is in the domain of L and is taken into itself by L , k = 0, 1, 2.
In particular, constant functions belong to L2

w, so w has finite integral:∫ b

a
w(x) dx < ∞. (3.4.1)

Applying L to the constant function u0(x) ≡ 1 gives Lu0 = r , so r must be
constant, and (up to translating the eigenvalues by −r ) we may take r = 0.
Applying L to u1(x) = x gives

Lu1 = (pw)′

w
= p′ + p

w′

w
, (3.4.2)
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so the last expression must be a polynomial of degree at most 1. Taking
u2(x) = 1

2 x2,

Lu2 = p + x

(
p′ + p

w′

w

)
.

Since Lu2 must be a polynomial of degree at most 2, it follows that p is a
polynomial of degree at most 2.

The symmetry condition requires that

0 = (Lu, v)− (u, Lv) =
∫ b

a

[
pw(u′v − uv′)

]′
for every u, v in the domain. As noted above, a necessary condition is that
pw → 0 at each endpoint of the interval.

By normalizations (affine maps of the line, multiplication of the weight,
the operator, and/or the polynomials by constants), we reduce to five cases, of
which two turn out to be vacuous.

Case I: p constant. We take p(x) ≡ 1. It follows from (3.4.2) that w′/w has
degree at most 1, so we take w = eh where h is a real polynomial of degree
at most 2. After another normalization, w(x) = e−x or w(x) = e±x2

. In the
former case, the condition (3.4.1) requires that I be a proper subinterval, but
then the condition that pw = w vanish at finite boundary points cannot be
met. In the latter case the endpoint condition forces I = R = (−∞,∞) and
the condition (3.4.1) forces the sign choice w(x) = e−x2

. Thus, in this case
(3.1.9) is the operator

L = d2

dx2
− 2x

d

dx
in L2

w(R); w(x) = e−x2
. (3.4.3)

This operator takes the space of polynomials of degree ≤ n to itself for each
n, and it follows that for each n there is a polynomial ψn of degree n that is an
eigenfunction. Consideration of the degree-n terms of ψn and of Lψn shows
that the eigenvalue is −2n:

L ψn + 2nψn = 0.

Since the eigenvalues are distinct, the ψn are orthogonal in L2(R, e−x2
dx).

Up to normalization, the associated orthogonal polynomials ψn are the
Hermite polynomials.

The functions

ψn(x) e− 1
2 x2

are an orthogonal basis for L2(R). They are eigenfunctions for the operator
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d2

dx2
+ (1 − x2). (3.4.4)

Case II: p linear. We may normalize to p(x) = x . Then (3.4.2) implies
that w′/w = b + α/x , so up to scaling, w = xαebx . The endpoint condition
implies that the interval is either R− = (−∞, 0) or R+ = (0,∞) and we may
assume I = R+. Condition (3.4.1) implies b < 0 and α > −1. We may rescale
to have b = −1. Thus in this case (3.1.9) is the operator

L = x
d2

dx2
+ [(α+ 1)− x] d

dx
in L2

w(R+); w(x)= xα e−x , α >− 1.

(3.4.5)
Once again, the space of polynomials of degree ≤ n is mapped to itself, so
there is a polynomial ψn of degree n that is an eigenfunction. Consideration of
the degree-n term shows that

L ψn + nψn = 0.

Therefore the ψn are orthogonal. Up to normalization, the ψn are the Laguerre
polynomials. The functions

ψn(x) x
1
2αe− 1

2 x

are an orthogonal basis for L2(R+). They are eigenfunctions of the operator

x
d2

dx2
+ d

dx
− x

4
− α2

4x
+ α + 1

2
. (3.4.6)

Case III: p quadratic, distinct real roots. We normalize to p(x) = 1 − x2.
Then (3.4.2) implies w′/w = β(1 + x)−1 − α(1 − x)−1, for some constants
α and β, so the weight function w(x) = (1 − x)α(1 + x)β . The endpoint
condition forces I = (−1, 1) and condition (3.4.1) forces α, β > −1. Thus in
this case (3.1.9) is the operator

L = (1 − x2)
d2

dx2
+ [β − α − (α + β + 2)x] d

dx
(3.4.7)

in L2
w

(
(−1, 1)

); w(x) = (1 − x)α (1 + x)β, α, β > −1.

Again the space of polynomials of degree ≤ n is mapped to itself, so there is
a polynomial ψn of degree n that is an eigenfunction. As before, consideration
of the degree-n term shows that

L ψn + n(n + α + β + 1) ψn = 0.

Therefore the ψn are orthogonal.
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Up to normalization, the associated orthogonal polynomials are the Jacobi
polynomials.

We may rescale the interval by taking 1
2 (1 − x) as the new x variable so

that the interval is (0, 1). In the new coordinates, up to a constant factor, the
weight is xα(1 − x)β and the operator is

L = x(1 − x)
d2

dx2
+ [α + 1 − (α + β + 2)x] d

dx

in L2
w

(
(0, 1)

)
, w(x) = xα(1 − x)β α, β > −1.

This is the hypergeometric operator corresponding to equation (3.0.2) with
indices (a, b, c) = (α + β + 1, 0, α + 1).

Case IV: p quadratic, distinct complex roots. We normalize to x2 + 1. Then
(3.4.2) and the assumption that w > 0 implies that w would have the form
w(x) = (1 + x2)a . The endpoint condition rules out bounded intervals I , and
condition (3.4.1) rules out unbounded intervals.

Case V: p quadratic, double root. We may take p(x) = x2. Then (3.4.2)
implies that w would have the form w(x) = xa exp(b/x), and once again the
endpoint condition and the condition (3.4.1) cannot both be satisfied.

We have proved the following (somewhat informally stated) result.

Theorem 3.4.1 Up to normalization, the classical orthogonal polynomials
(Hermite, Laguerre, Jacobi) are the only ones that occur as the eigenfunctions
for second-order differential operators symmetric with respect to a positive
weight.

(To account for other names: up to certain normalizations, Gegenbauer or
ultraspherical polynomials are Jacobi polynomials with α = β; Legendre poly-
nomials are Jacobi polynomials with α = β = 0; and Chebyshev polynomials
are Jacobi polynomials in the two cases α = β = − 1

2 , α = β = 1
2 .)

There is a sense in which Case I reduces to two instances of Case II.
The operator (3.4.3) and the weight w(x) = e−x2

are left unchanged by the
reflection x → −x . Therefore, the even and odd parts of a function in L2

w

also belong to L2
w, and (3.4.3) maps even functions to even functions and odd

functions to odd functions. An even function f can be written as f (x) = g(x2)

and f belongs to L2
w if and only if g2 is integrable on (0,∞) with respect to

the weight x− 1
2 e−x . An odd function f can be written as f (x) = xg(x2), and

f belongs to L2 if and only if g2 is integrable on (0,∞) with respect to the

weight x
1
2 e−x . It follows from these considerations that, up to multiplicative
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constants, Hermite polynomials of even degree must be Laguerre polynomials
in x2, with index α = − 1

2 , and Hermite polynomials of odd degree, when
divided by x , must be Laguerre polynomials in x2 with index α = 1

2 .
These polynomials are related also by certain limiting relations. In Case III,

we may normalize the weight function by taking

wα,β(x) = 2−(α+β+1)

B(α + 1, β + 1)
(1 − x)α(1 + x)β

= 2−(α+β+1) �(α + β + 2)

�(α + 1) �(β + 1)
(1 − x)α(1 + x)β . (3.4.8)

The change of variables x = 1 − 2y shows that∫ 1

−1
wα,β(x) dx = 1.

Now take β = α > 0 and let x = y/
√
α, so that

wα,α(x) dx = 2−(2α+1) �(2α + 2)

�(α + 1)2

(
1 − y2

α

)α
dy√
α
,

and the interval −1 < x < 1 corresponds to the interval −√
α < y <

√
α.

Taking into account the duplication formula (2.3.1) and (2.1.9), we see that
as α → +∞, the rescaled weight on the right converges to the normalized
version of Case I:

wH (x) = 1√
π

e−x2
. (3.4.9)

It follows from a compactness argument, which we omit, that the orthonormal
polynomials for the weight (3.4.8) with α = β (normalized to have positive
leading coefficient) converge, under the change of variables x = y/

√
α, to the

orthonormal polynomials for the weight (3.4.9). Thus Hermite polynomials are
limits of rescaled equal-index Jacobi polynomials.

To obtain Laguerre polynomials as limits of Jacobi polynomials, we take
the version of Case III transferred to the interval (0, 1):

w̃α,β = 1

B(α + 1, β + 1)
xα (1 − x)β . (3.4.10)

Assume β > 0 and make the change of variables x = y/β, so

w̃α,β(x) dx = �(α + β + 2)

�(α + 1) �(β + 1) βα+1
yα
(

1 − y

β

)β
dy.
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Taking into account (2.1.9), as β → +∞, the rescaled weight on the right
converges to the normalized version of Case II:

wα(x) = 1

�(α + 1)
xα e−x . (3.4.11)

Again, the orthonormal polynomials for weight (3.4.10) converge to the
orthonormal polynomials for weight (3.4.11) under the change of variables
x = y/β.

3.5 Maxima, minima, estimates

In order to study solutions of the eigenvalue equations

p(x)u′′(x)+ q(x)u′(x)+ λu(x) = 0, λ > 0, (3.5.1)

it is convenient to introduce the auxiliary function

V (x) = u(x)2 + p(x)

λ
u′(x)2. (3.5.2)

Proposition 3.5.1 The relative maxima of |u(x)| are increasing as x increases
on any interval where p′ − 2q > 0 and decreasing on any interval where
p′ − 2q < 0.

Proof It follows from earlier results that zeros of u′ are simple (u′ satisfies
an equation of the same form), so they determine relative extrema of u. At a
relative extremum of u(x), V (x) = u(x)2. Equation (3.5.1) implies that

V ′(x) = p′(x)− 2q(x)

λ
u′(x)2.

Thus V is increasing where the function p′ − 2q is positive and decreasing
where it is negative. �

A similar idea applies to equations in a somewhat different form.

Proposition 3.5.2 Suppose that w(x) > 0, r(x) > 0, and

[w u′]′(x)+ r(x) u(x) = 0.

Then as x increases, the relative maxima of |u(x)| are increasing in any
interval where (w r)′ < 0 and decreasing in any interval where (w r)′ > 0.
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Proof Here let

W (x) = u(x)2 +
[
w(x) u′(x)

]2
w(x) r(x)

.

Then

W ′(x) = −[wr ]′(x) u′(x)2

r(x)2
.

At the relative extrema, u(x)2 = W (x). �

This argument proves the following.

Proposition 3.5.3 Suppose that w(x) > 0, r(x) > 0, and

[w u′]′(x)+ r(x) u(x) = 0

in an interval a < x ≤ b. If (wr)′ ≤ 0 in this interval, then

u(x)2 ≤ u(b)2 + w(b)

r(b)
u′(b)2, a < x ≤ b.

Let us apply these observations to the three cases in Section 3.4. In the
Hermite case, p′ − 2q = 4x , so the relative maxima of |Hn(x)| increase as |x |
increases. In the Laguerre case, p′ − 2q = 1 − 2(α + 1 − x) = 2x − (2α +
1), so the relative maxima of |L(α)(x)| decrease as x increases so long as x ≤
α + 1

2 , and increase with x for x ≥ α + 1
2 . In the Jacobi case,

p′(x)− 2q(x) = −2x − 2[β − α − (α + β + 2)x]
= 2[α − β + (α + β + 1)x].

It follows that the relative maxima of |P(α,β)n | are either monotone, if one of α,
β is ≥ − 1

2 and the other is ≤ − 1
2 , or decrease from x = −1 until (α + β + 1)x

= β − α and then increase to x = 1 if both α and β exceed − 1
2 . Thus

sup
|x |≤1

∣∣P(α,β)n (x)
∣∣= max

{∣∣P(α,β)n (−1)
∣∣ , ∣∣P(α,β)n (1)

∣∣} if max{α, β} ≥ −1

2
.

The results on relative maxima for Hermite and Laguerre polynomials
can be sharpened by using Proposition 3.5.2 with w(x) ≡ 1. As noted in
Section 3.4, the gauge transformations

Hn(x) = ex2/2 un(x);
L(α)n (x) = ex/2x−(α+1)/2 vn(x)
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lead to the equations

u′′
n(x)+ (2n + 1 − x2) un(x) = 0;

v′′
n (x)+

[
1 − α2

4x2
+ 2n + α + 1

2x
− 1

4

]
vn(x) = 0.

It follows from Proposition 3.5.2 that the relative maxima of |un(x)| are
increasing away from the origin, and that the relative maxima of |vn(x)| are
increasing on the interval

x ≥ max

{
0,

α2 − 1

2n + α + 1

}
.

Moreover, Theorem 3.3.6 gives information about the zeros of un and vn ,
which are the same as those of Hn and L(α)n . Since Hn and L(α)n are poly-
nomials, un and vn have limit zero as x → ∞. The coefficient r(x) for un(x)
is negative for x >

√
2n + 1, so Hn(x) = (−1)n Hn(−x) has no zeros x with

x2 > 2n + 1. Similarly, the coefficient r(x) for vn(x) is negative for

x > 2n + α + 1 +
√
(2n + α + 1)2 + 1 − α2,

so L(α)n has no zeros in this interval.

3.6 Some equations of mathematical physics

A number of second-order ordinary differential equations arise from partial
differential equations of mathematical physics, by separation of variables in
special coordinate systems. We illustrate this here for problems involving the
Laplacian in R3. In Cartesian coordinates x = (x1, x2, x3) the Laplacian has
the form

� = ∂2

∂x1
2

+ ∂2

∂x2
2

+ ∂2

∂x3
2
.

Because it is invariant under translations and rotations, it arises in many
physical problems for isotropic media. Four examples are the heat equation,
or diffusion equation

vt (x, t) = �v(x, t),

the wave equation

vt t (x, t) = �v(x, t),



3.6 Some equations of mathematical physics 75

and the Schrödinger equations for the quantized harmonic oscillator

ivt = �v − |x|2v (3.6.1)

and for the Coulomb potential

ivt = �v − a

|x| v. (3.6.2)

Separating variables, i.e. looking for a solution in the form v(x, t) =
ϕ(t)u(x) leads, after dividing by v, to the four equations

ϕ′(t)
ϕ(t)

= �u(x)
u(x)

;

ϕ′′(t)
ϕ(t)

= �u(x)
u(x)

;

i
ϕ′(t)
ϕ(t)

= �u(x)
u(x)

− |x|2;

i
ϕ′(t)
ϕ(t)

= �u(x)
u(x)

− a

|x| .

In each of these equations the left-hand side is a function of t alone and the
right-hand side is a function of x alone, so each side is constant, say −λ. Thus
we are led to three equations involving the Laplacian, the first of which is
known as the Helmholtz equation:

�u(x)+ λ u(x) = 0; (3.6.3)

�u(x)− |x|2u(x)+ λ u(x) = 0; (3.6.4)

�u(x)− a
u(x)
|x| + λ u(x) = 0. (3.6.5)

The case λ = 0 of the Helmholtz equation is the Laplace equation:

�u(x) = 0. (3.6.6)

One approach to these equations is to choose a coordinate system and
separate variables once more to find special solutions. One may then try to
reconstruct general solutions from the special solutions. For this purpose, in
addition to Cartesian coordinates we consider the following.

Spherical coordinates (r, ϕ, θ):

(x1, x2, x3) = (r cosϕ sin θ, r sinϕ sin θ, r cos θ), (3.6.7)
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in which the operator � takes the form

� = ∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2 sin2 θ

∂2

∂ϕ2
+ 1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
.

(This is the notation for spherical coordinates commonly used in physics and
often used in applied mathematics. It is common in the mathematical literature
to reverse the roles of θ and ϕ here.)

Cylindrical coordinates (r, θ, z):

(x1, x2, x3) = (r cos θ, r sin θ, z), (3.6.8)

in which the operator � takes the form

� = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
+ ∂2

∂z2
.

Parabolic cylindrical coordinates (ξ, ζ, z):

(x1, x2, x3) =
(

1

2
[ξ2 − ζ 2], ξζ, z

)
, (3.6.9)

in which the operator � takes the form

� = 1

ξ2 + ζ 2

(
∂2

∂ξ2
+ ∂2

∂ζ 2

)
+ ∂2

∂z2
.

Separating variables in the Helmholtz equation (3.6.3) in Cartesian coordi-
nates, by setting u(x) = u1(x1)u2(x2)u3(x3), leads to

u′′
1

u1
+ u′′

2

u2
+ u′′

3

u3
+ λ = 0.

If we rule out solutions with exponential growth, it follows that

u′′
j

u j
= −k2

j , k2
1 + k2

2 + k2
3 = λ.

Therefore the solution is a linear combination of the complex exponentials

u(x) = eik·x, |k|2 = λ.

Separating variables in the Laplace equation (3.6.6) in spherical coordinates
by setting u(x) = R(r)U (ϕ)V (θ) leads to

r2 R′′ + 2r R′

R
+
{

U ′′

sin2 θU
+ [sin θ V ′]′

sin θ V

}
= 0. (3.6.10)
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Each of the summands must be constant. It follows that R is a linear combina-
tion of powers rν and r−1−ν and

U ′′

U
+
{

sin θ
[sin θV ′]′

V
+ ν(ν + 1) sin2 θ

}
= 0.

Once again each summand is constant, and U ′′ = −μ2U leads to

1

sin θ

d

dθ

{
sin θ

dV

dθ

}
+
[
ν(ν + 1)− μ2

sin2 θ

]
V = 0.

The change of variables x = cos θ converts the preceding equation to the
spherical harmonic equation:

[
(1 − x2) u′]′ + [ν(ν + 1)− μ2

1 − x2

]
u = 0, 0 < x < 1. (3.6.11)

The case μ = 0 (solution-invariant under rotation around the vertical axis) is
Legendre’s equation; the solutions are known as Legendre functions.

Separating variables in the Helmholtz equation (3.6.3) in cylindrical coor-
dinates, u(x) = R(r)T (θ)Z(z), leads to

r2 R′′ + r R′

R
+ T ′′

T
+ r2 Z ′′

Z
+ λ r2 = 0.

It follows that Z ′′/Z + λ = μ and T ′′/T are constant. Since T is periodic,
T ′′/T = −n2 for some integer n and

r2 R′′(r)+ r R′(r)+ μr2 R(r)− n2 R(r) = 0.

Assuming that μ = k2 is positive, we may set R(r) = u(k−1r) and obtain
Bessel’s equation

x2 u′′(x)+ x u′(x)+ [x2 − n2] u(x) = 0. (3.6.12)

Solutions of (3.6.12) are known as cylinder functions.
Separating variables in the Helmholtz equation (3.6.3) in parabolic cylindri-

cal coordinates, u(x) = X (ξ)Y (ζ )Z(z), leads to the conclusion that Z ′′/Z +
λ = μ is constant and

X ′′

X
+ Y ′′

Y
+ μ(ξ2 + ζ 2) = 0.

It follows that there is a constant ν such that

X ′′ + (μξ2 − ν) X = 0 = Y ′′ + (μζ 2 + ν)Y.
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Assuming that μ = −k2 is negative, the changes of variables ξ = k−1x and
ζ = k−1x convert these to the standard forms

u′′(x)− x2u(x)± ν u(x) = 0. (3.6.13)

Solutions are known as parabolic cylinder functions or Weber functions.
Separating variables in (3.6.4) in Cartesian coordinates leads again to

(3.6.13). Separating variables in spherical or cylindrical coordinates leads to
equations in the radial variable r which are not of classical type; in parabolic
cylinder coordinates equation (3.6.4) does not separate.

Equation (3.6.5) separates in spherical coordinates, leading to an equation
in the radial variable:

v′′(r)+ 2

r
v′(r)+

(
λ− a

r
+ μ

r2

)
v(r) = 0.

Taking v(r) = r−1w(r), followed by a change of scale, converts this to the
Coulomb wave equation

u′′(ρ)+
[

1 − 2η

ρ
− l(l + 1)

ρ2

]
u(ρ) = 0. (3.6.14)

Solutions are known as Coulomb wave functions.

3.7 Equations and transformations

Let us begin with a list of the second-order equations encountered in this
chapter. We claimed at the outset that all are related to the pair consisting of
the confluent hypergeometric equation

xu′′(x)+ (c − x) u′(x)− a u(x) = 0 (3.7.1)

and the hypergeometric equation

x(1 − x)u′′(x)+ [c − (a + b + 1)x
]

u′(x)− ab u(x) = 0, (3.7.2)

in the sense that they can be reduced to one of these equations by a gauge
transformation and changes of variables.

Each of the equations has, up to multiplication by a function, the form

u′′ + q0

p
u′ + r0

p2
u = 0, (3.7.3)

where p and r0 are polynomials of degree at most 2 and q0 is a polynomial of
degree at most 1. This general form is preserved under a gauge transformation
u(x) = ϕ(x) v(x),
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ϕ′

ϕ
= q1

p
, (3.7.4)

where q1 is any polynomial of degree at most 1. The polynomial q1 can be
chosen (not necessarily in a unique way) so that the equation for v has the
canonical form

p v′′ + q v′ + λ v = 0, (3.7.5)

where q has degree at most 1 and λ is constant. To accomplish this one is led
to three equations for the two coefficients of q1 and the constant λ.

Classifying symmetric problems with polynomials as eigenfunctions led to
equations of the form

u′′ − 2xu′ + 2λu = 0; (3.7.6)

xu′′ + (α + 1 − x)u′ + λu = 0; (3.7.7)

(1 − x2)u′′ + [β − α − (α + β + 2)x
]

u′ + λ u = 0. (3.7.8)

A unitary equivalence (to a symmetric problem with weight 1) mapped the first
two of these three equations to

v′′ + (2λ+ 1 − x2)v = 0; (3.7.9)

x v′′ + v′ − x2 + α2

4x
v +

(
λ+ α + 1

2

)
v = 0. (3.7.10)

As noted in Section 3.4, letting x = 1 − 2y takes (3.7.8) to the form (3.7.2).
Separating variables in problems involving the Laplacian in special coordi-

nate systems led to the equations

(1 − x2)u′′ − 2x u′ + λ u − μ2(1 − x2)−1u = 0; (3.7.11)

x2u′′ + xu′ + (x2 − ν2) u = 0; (3.7.12)

u′′ − x2u ± ν u = 0; (3.7.13)

x2u′′ + [x2 − 2ηx − l(l + 1)
]

u = 0. (3.7.14)

The spherical harmonic equation (3.7.11) is in the general form (3.7.3).
As noted above, it can be reduced to the canonical form by a gauge transfor-
mation, in this case

u(x) =
(

1 − x2
) 1

2μ
v(x),
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leading to the equation(
1 − x2

)
v′′(x)− 2(μ+ 1)xv′(x)+ [λ− μ2 − μ] v(x) = 0,

which is the special case α = β = μ of (3.7.8) and thus a particular case of
(3.7.2).

Equation (3.7.7) is a particular case of the confluent hypergeometric equa-
tion (3.7.1), so the gauge-equivalent equation (3.7.10) is also.

Bessel’s equation (3.7.12) is in the general form (3.7.3) with p(x) = x .
Corresponding gauge transformations are

u(x) = e±i x xνv(x),

leading to the canonical form

x v′′ + (2ν + 1 ± 2i x) v′ ± i(2ν + 1) v = 0.

Letting y = ∓2i x converts this, in turn, to

yw′′ + (2ν + 1 − y) w′ −
(
ν + 1

2

)
w = 0.

This is (3.7.1) with c = 2ν + 1, a = ν + 1
2 .

Up to the sign of the parameter, (3.7.9) and (3.7.13) are identical. Moreover,
(3.7.9) is related to (3.7.6) by a gauge transformation. We can relate them to the
confluent hypergeometric equation (3.7.1) by noting first that the even and odd
parts of a solution u(x) of (3.7.6) are also solutions. Writing an even solution
as u(x) = v(x2) converts (3.7.6) to the form

x v′′ +
(

1

2
− x

)
v′ + 1

2
λ v = 0, (3.7.15)

the particular case of (3.7.1) with c = 1
2 , a = − 1

2λ. Writing an odd solution as
u(x) = xv(x2) converts (3.7.6) to the form

x v′′ +
(

3

2
− x

)
v′ + 1

2
(λ− 1) v = 0, (3.7.16)

the particular case of (3.7.1) with c = 3
2 , a = 1

2 (1 − λ).
Finally, the gauge transformation u(x)= eix xl+1v(x) converts (3.7.14) to

x v′′(x)+ (2l + 2 + 2i x) v′(x)+ [(2l + 2)i − 2η
]
v(x) = 0,

and the change of variables v(x) = w(−2i x) converts this equation to

yw′′(y)+ (2l + 2 − y)w′(y)− (l + 1 + iη)w(y) = 0,

which is (3.7.1) with c = 2l + 2, a = l + 1 + iη.
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3.8 Exercises

3.1 Verify that equations (3.1.1) and (3.1.5) are equivalent under the gauge
transformation (3.1.4).

3.2 Show that if ϕ and ψ are two solutions of (3.1.7) and ϕ(x) �= 0, x ∈ I ,
then ψ(x) ≡ C ϕ(x), C constant.

3.3 Prove Proposition 3.1.1 by showing first that the symmetry condition is
equivalent to

0 = (Lu, v)− (u, Lv) =
∫ b

a

[
p
(
u′v − uv′)′ + q

(
u′v − uv′)]w dx

=
∫ b

a

(
u′v − uv′)[qw − (pw)′] dx . (3.8.1)

In particular, if u ≡ 1 wherever v �= 0, then

0 = −
∫ b

a
v′ [qw − (pw)′] dx =

∫ b

a
v
[
qw − (pw)′]′ dx;

conclude that qw − (pw)′ = c, constant. If u(x) = x wherever v �= 0,
then

0 = c
∫ b

a

(
v − xv′) dx = 2c

∫ b

a
v dx

for all such v, so c = 0. Therefore symmetry implies qw = (pw)′.
Conversely, show that the condition qw = (pw)′ implies symmetry.

3.4 Prove Proposition 3.1.2 by finding a first-order equation that
characterizes w up to a constant.

3.5 Prove Proposition 3.1.3 by finding a first-order equation that
characterizes ϕ up to a constant.

3.6 Prove Proposition 3.1.4 by finding a unitary map that has the form
T f (x) = h(x) f (x).

3.7 Prove (3.1.11).
3.8 Complete the Liouville transformation, the reduction of (3.1.1) to an

equation of the form

w′′(y)+ r1(y) w(y)+ s(y) w(y) = f2(y),

by applying a gauge transformation to (3.1.11).
3.9 Deduce Theorem 3.2.2 from the proof of Theorem 3.2.1.

3.10 Prove the estimates (3.2.6) and (3.2.7).
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3.11 Find an integral formula for the solution of the equation

u′′(x)+ λ2u(x) = f (x), −∞ < x < ∞
that satisfies the conditions u(0) = u′(0) = 0, where λ is a positive
constant.

3.12 Find an integral formula for the solution of the equation

u′′(x)+ u(x) = f (x), −π < x < π

that satisfies the conditions u(−π) = 0 = u(π).
3.13 Suppose that I = (a, b) is a bounded interval of length

L = b − a, suppose that r(x) is continuous on I and |r(x)| ≤ C , all
x ∈ I . Suppose that λ > 0 and u is a nonzero real solution of

u′′(x)+ [r(x)+ λ] u(x) = 0

on I . Let N (λ) denote the number of zeros of u in the interval. Use
Theorem 3.3.3 to prove that for sufficiently large λ,∣∣∣N (λ)− √

λ L

π

∣∣∣ < 2.

3.14 Prove Theorem 3.3.4.
3.15 Prove Corollary 3.3.5.
3.16 Verify that the gauge transformation

Hn(x) = e
1
2 x2

hn(x)

converts the equation for the Hermite function Hn to the equation

h′′
n(x)+ (2n + 1)hn(x) = x2 hn(x).

Deduce from this that hn is the solution of the integral equation

hn(x) = An cos
(√

2n + 1 x + bn

)
+ y2

∫ x

0

sin
[√

2n + 1 (x − y)
]

√
2n + 1

hn(y) dy

for some choice of the constants An and bn ; determine these constants.
As shown in Chapter 10, this implies the asymptotic result

hn(x) = An

[
cos
(√

2n + 1 x + bn

)
+ O

(
n− 1

2

)]
as n → ∞.
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3.17 Determine the Liouville transformation that reduces the equation (3.7.7)
for Laguerre polynomials to an equation of the form

v′′(y)+ λ v(y) = r(y) v(y).

Find the form of an integral equation for the corresponding modified
Laguerre functions l(α)n (y) analogous to that for the modified Hermite
functions hn(x). Can this be used to obtain an asymptotic result?
(Specifically, can the constants An , bn be determined?)

3.18 Determine the Liouville transformation that reduces the equation (3.7.8)
for Jacobi polynomials to an equation of the form

v′′(y)+ λ v(y) = r(y) v(y).

3.19 Verify that an equation in the general form described in connection with
(3.7.3) can be reduced to the canonical form (3.7.5) by a gauge
transformation as described in connection with (3.7.4).

3.20 Show that Riccati’s equation [238]

u′(x)+ u(x)2 + xm = 0

can be converted to a second-order linear equation by setting
u(x) = u′

1(x)/u1(x). Show that the change of variables u1(x) = u2(y)
with

y = 2 x (m+2)/2

m + 2

leads to the equation

u′′
2(y)+

m

(m + 2) y
u′

2(y)+ u2(y) = 0.

3.21 Show that eliminating the first-order term in the last equation in
Exercise 3.20 leads to the equation

u′′
3(y)+

[
1 + r − r2

y2

]
u3(y) = 0, r = m

2m + 4
.

Show that the gauge transformation u3(y) = y
1
2 v(y) converts this to

Bessel’s equation (3.6.12) with n = 1/(m + 2). Combined with results
from Section 7.1, this proves a result of Daniel Bernoulli [24]: solutions
of Riccati’s equation can be expressed in terms of elementary functions
when 2/(m + 2) is an odd integer.
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3.9 Summary

Various real functions defined on a finite or infinite real interval I = (a, b) are
denoted by p, q , r , f , g, w, . . . The functions p and w are assumed to be
positive on I .

3.9.1 Transformations, symmetry

The general linear second-order differential equation on the interval I is

p(x) u′′(x)+ q(x) u′(x)+ r(x) u(x) = f (x).

The corresponding homogeneous equation is the equation with right-hand side
f ≡ 0:

p(x) u′′(x)+ q(x) u′(x)+ r(x) u(x) = 0.

A gauge transformation is a transformation of the form

u(x) = ϕ(x) v(x), ϕ(x) �= 0.

Then u satisfies the equation above if and only if v satisfies

p(x) v′′(x)+
[

2p(x)
ϕ′(x)
ϕ(x)

+ q(x)

]
v′(x)

+
[

p(x)
ϕ′′(x)
ϕ(x)

+ q(x)
ϕ′(x)
ϕ(x)

+ r(x)

]
v(x) = f (x)

ϕ(x)
.

The homogeneous linear first-order differential equation ϕ′(x) = h(x) ϕ(x)
has a solution, unique up to a multiplicative constant,

ϕ(x) = exp

{∫ x

x0

h(y) dy

}
, x0 ∈ I.

This solution has no zeros in the interval. Therefore a gauge transformation can
be used to eliminate the first-order term qu′ or to symmetrize the operator L .

The weighted L2 space L2
w has inner product

( f, g) = ( f, g)w =
∫ b

a
f (x) g(x) w(x) dx .

The operator L is symmetric with respect to the weight w if (Lu, v) = (u, Lv)
for every pair of twice continuously differentiable functions u, v that vanish
outside some closed subinterval of I . An equivalent condition is that



3.9 Summary 85

L = p
d2

dx2
+ (pw)′

w

d

dx
+ r = 1

w

d

dx

(
pw

d

dx

)
+ r.

Given L , there is always a weight function, unique up to a multiplicative
constant, such that L is symmetric with respect to w.

The coefficient p can be eliminated by a change of variables

y(x) =
∫ x

x0

dt√
p(t)

.

Then the original equation becomes

v′′ +
[

q√
p

− p′

2
√

p

]
v′ + r v = f.

The first-order term can be eliminated by a gauge transformation; the resulting
composite transformation is the Liouville transformation.

3.9.2 Existence and uniqueness

The set of solutions of the homogeneous equation

p(x) u′′(x)+ q(x) u′(x)+ r(x) u(x) = 0

is a vector space of dimension two.
Given a point x0 in the interval I and two constants c0, c1, there is a unique

solution of the homogeneous equation that satisfies the conditions

u(x0) = c0; u′(x0) = c1.

It follows that if u is a solution that does not vanish identically, then any zero
of u in I is a simple zero.

3.9.3 Wronskians, Green’s functions, comparison

The Wronskian of two functions is

W (u1, u2)(x) =
∣∣∣∣u1(x) u2(x)
u′

1(x) u′
2(x)

∣∣∣∣ = u1(x) u′
2(x)− u′

1(x) u2(x).

If u1 and u2 are two solutions of the homogeneous equation, the Wronskian is
either identically zero, if the solutions are linearly dependent, or never zero, if
they are independent.
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The equation pu′′ + qu′ + ru = f has a solution

u(x) =
∫ x

x0

G(x, y) f (y) dy,

with the Green’s function G given by

G(x, y) = u1(y)u2(x)− u2(y)u1(x)

p(y)W (y)
,

where u1 and u2 are independent solutions of the homogeneous equation and
W = W (u1, u2) is the Wronskian. A consequence is the general existence and
uniqueness theorem for the inhomogeneous equation pu′′ + qu′ + ru = f
with conditions

u(x0) = c0, u′(x0) = c1.

To satisfy more general boundary conditions, we use the form

u(x) =
∫

y<x
G+(x, y) f (y) dy +

∫
y>x

G−(x, y) f (y) dy,

where

G+(x, y) = u+(y) u−(x)
p(y)W (y)

, G−(x, y) = u−(y) u+(x)
p(y)W (y)

.

Zeros of solutions of the homogeneous equation with different zero-order
coefficients can be compared using Sturm’s theorem: if u1 and u2 are solutions
of the equations

p(x) u′′
j (x)+ q(x) u′

j (x)+ r j (x) u j (x) = 0, j = 1, 2

on the interval I , neither is identically zero, and

r1(x) < r2(x), all x ∈ I,

then between any two zeros of u1 in I there is a zero of u2.
Zeros of solutions of equations in the form

[w u′]′(x)+ r(x) u(x) = 0

can be located by noting that if r < 0 on an interval (c, d) and u(x) → 0 at d
and u is not identically zero, or if u(x)u′(x) > 0 for x close to c, then u has no
zeros in (c, d). Otherwise there is at most one zero in (c, d).
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3.9.4 Polynomials as eigenfunctions

To extend the symmetry condition for a second-order differential operator L to
a larger class of functions in the weighted L2 space L2

w requires imposing con-
ditions such as pw → 0 at the boundary points. An allowable function u �≡ 0
is an eigenfunction for L with eigenvalue −λ if Lu + λu = 0. Eigenfunctions
corresponding to different eigenvalues are orthogonal.

Up to certain normalizations (linear transformations, translations, multipli-
cations by constants) there are only three cases of weights and symmetric
operators for which there are polynomials of degrees 0, 1, and 2 that are
eigenfunctions. In each case the set of eigenfunctions consists of polynomials
of all degrees:

Case I: I = (−∞,+∞), w(x) = exp
(−x2

)
,

L = d2

dx2
− 2x

d

dx
, in L2(R, e−x2

dx
)
.

The eigenfunctions {ψn} have eigenvalues {−2n}. Up to normalization, they
are the Hermite polynomials. The functions

ψn(x) e− 1
2 x2

are an orthogonal basis for L2(R, dx). They are eigenfunctions for the operator

d2

dx2
+ (1 − x2). (3.9.1)

Case II: I = (0,+∞), w(x) = xα exp(−x), α > −1,

L = x
d2

dx2
+ [(α + 1)− x] d

dx
in L2(R+, xα e−x dx

)
.

The eigenfunctions {ψn} have eigenvalues {−n}. Up to normalization, they are
the Laguerre polynomials. The functions

ψn(x) x
1
2αe− 1

2 x

are an orthogonal basis for L2(R+, dx). They are eigenfunctions of the
operator

x
d2

dx2
+ d

dx
− x

4
− α2

4x
+ α + 1

2
.
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Case III: I = (−1, 1), w(x) = (1 − x)α(1 + x)β , α, β > −1,

L = (1 − x2)
d2

dx2
+ [β − α − (α + β + 2)x] d

dx
.

The eigenfunctions {ψn} have eigenvalues {−n(n + α + β + 1)}. Up to nor-
malization, they are the Jacobi polynomials. We may rescale the interval by
taking 1

2 (1 − x) as the new x-variable so that the interval is (0, 1). In the
new coordinates, up to a constant factor, the weight is xα(1 − x)β and the
operator is

L = x(1 − x)
d2

dx2
+ [α + 1 − (α + β + 2)x] d

dx
.

This is the hypergeometric operator corresponding to equation (3.0.2) with
indices (a, b, c) = (α + β + 1, 0, α + 1).

Up to certain normalizations, Gegenbauer or ultraspherical polynomials are
Jacobi polynomials with α = β, Legendre polynomials are Jacobi polynomials
with α = β = 0, and Chebyshev polynomials are Jacobi polynomials in the
two cases α = β = − 1

2 , α = β = 1
2 .

A Hermite polynomial of even degree is a multiple of a Laguerre polyno-
mial of index α = − 1

2 in x2; a Hermite polynomial of odd degree is the product
of x and a Laguerre polynomial of index α = 1

2 in x2.
If the weight function in Case III is normalized to have mass 1, then the

limit α = β → +∞, x = y/
√
α is the normalized weight for Case I. A conse-

quence is that the Hermite polynomial Hn is a limit of rescaled Jacobi polyno-
mials P(α,α)n . If Case III is transferred to the interval (0, 1) and normalized, the
limit β → +∞, x = y/β is the normalized weight for Case II. A consequence
is that the Laguerre polynomial L(α)n is a limit of rescaled Jacobi polynomials
P(α,β)n . For specifics, see Section 4.2.

3.9.5 Maxima, minima, estimates

The relative maxima of |u(x)|, where

p(x)u′′(x)+ q(x)u′(x)+ λu(x) = 0, λ > 0,

are increasing on any interval where p′ − 2q is positive and decreasing on any
interval where p′ − 2q is negative.

If w(x) is positive and[
w u′]′(x)+ r(x) u(x) = 0,

then the relative maxima of |u(x)| increase with x where (wr)′ < 0 and
decrease as x increases where (wr)′ > 0.
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Consequences of these results and Theorem 3.3.6 for the three cases in
Section 3.4:

sup
|x |≤1

∣∣P(α,β)n (x)
∣∣= max

{∣∣P(α,β)n (−1)
∣∣, ∣∣P(α,β)n (1)

∣∣} if α≥ − 1

2
or β ≥ −1

2
.

The relative maxima of |e−x2/2 Hn(x)| increase as |x | increases. The relative
maxima of |e−x/2x (α+1)/2L(α)n (x)| increase with x on the interval

x ≥ max

{
0,

α2 − 1

2n + α + 1

}
.

The zeros of Hn(x) lie in the interval x2 ≤ 2n + 1, and the zeros of L(α)n (x) lie
in the interval

x ≤ 2n + α + 1 +
√
(2n + α + 1)2 + 1 − α2.

3.9.6 Some equations of mathematical physics

The Laplacian in Cartesian coordinates is

� = ∂2

∂x1
2

+ ∂2

∂x2
2

+ ∂2

∂x3
2
.

It occurs in Laplace’s equation and the Helmholtz equation:

�u(x) = 0,

�u(x)+ λ u(x) = 0;
the heat (diffusion) equation and the wave equation:

vt (x, t) = �v(x, t),

vt t (x, t) = �v(x, t);
and the Schrödinger equations for the quantized harmonic oscillator and for
the Coulomb potential:

ivt = �v − |x|2 v,
ivt = �v − a

|x| v.

Various linear second-order ordinary differential equations are obtained by
writing such equations in special coordinate systems and separating variables
(looking for solutions that are products of functions of a single coordinate).
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In spherical coordinates (r, ϕ, θ), cylindrical coordinates (r, θ, z), and
parabolic cylindrical coordinates (ξ, ζ, z), respectively,

� = ∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2 sin2 θ

∂2

∂ϕ2
+ 1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
;

= ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
+ ∂2

∂z2
;

= 1

ξ2 + ζ 2

(
∂2

∂ξ2
+ ∂2

∂ζ 2

)
+ ∂2

∂z2
.

Separating variables in the Helmholtz equation in Cartesian coordinates leads
to the plane-wave solutions

u(x) = eik·x, |k|2 = λ.

Separating variables in the Laplace equation in spherical coordinates leads to
the spherical harmonic equation

[
(1 − x2) u′]′ + [ν(ν + 1)− μ2

1 − x2

]
u = 0, 0 < x < 1.

The case μ = 0 is Legendre’s equation; the solutions are known as Legendre
functions.

Separating variables in the Helmholtz equation in cylindrical coordinates
leads to Bessel’s equation

x2 u′′(x)+ x u′(x)+ [x2 − n2] u(x) = 0.

Solutions are known as cylinder functions.
Separating variables in the Helmholtz equation (3.6.3) in parabolic cylin-

drical coordinates leads to

u′′(x)− x2u(x)± ν u(x) = 0.

Solutions are known as parabolic cylinder functions or Weber functions.
Separating variables in the Coulomb equation (3.6.5) leads to

u′′(ρ)+
[

1 − 2η

ρ
− l(l + 1)

ρ2

]
u(ρ) = 0.

Solutions are known as Coulomb wave functions.
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3.9.7 Equations and transformations

Classifying symmetric problems with polynomials as eigenfunctions led to
equations of the form

u′′ − 2xu′ + 2λu = 0;
xu′′ + (α + 1 − x)u′ + λu = 0;

(1 − x2)u′′ + [β − α − (α + β + 2)x
]

u′ + λ u = 0.

The second of these equations is the confluent hypergeometric equation. Gauge
transformations take the first of these three equations to

v′′ + (2λ+ 1 − x2)v = 0

and the second, which is the confluent hypergeometric equation, to

x v′′ + v′ − x2 + α2

4x
v +

(
λ+ α + 1

2

)
v = 0.

As noted in Section 3.4, letting x = 1 − 2y takes the third equation to the
hypergeometric equation.

Separating variables in problems involving the Laplacian in special coordi-
nate systems led to(

1 − x2)u′′ − 2x u′ + λ u − μ2(1 − x2)−1
u = 0;

x2u′′ + xu′ + (x2 − ν2) u = 0;
u′′ − x2u ± ν u = 0;

x2 u′′ + [x2 − 2ηx − l(l + 1)
]

u = 0.

A gauge transformation takes the first of these to(
1 − x2)v′′(x)− 2(μ+ 1)xv′(x)+ [λ− μ2 − μ] v(x) = 0,

and taking x = 1 − 2y gives a hypergeometric equation. The second is
Bessel’s equation. A gauge transformation and an imaginary coordinate change
convert it to a special case of the confluent hypergeometric equation. The
third equation is the parabolic cylinder equation, which is gauge equivalent
to the first equation in the first set of three equations above. These two can
also be related to special cases of the confluent hypergeometric equation by



92 Second-order differential equations

considering even and odd solutions. A gauge transformation and an imaginary
coordinate transformation convert the fourth equation, the Coulomb wave
equation, to the confluent hypergeometric equation.

3.10 Remarks

The general theory of second-order equations is covered in most textbooks
of ordinary differential equations. Three classic texts are Forsyth [99], Ince
[135], and Coddington and Levinson [55]. The book by Ince has an extensive
discussion of the classification of second-order linear equations with rational
coefficients. The book by Hille [129] is concerned specifically with equations
in the complex domain. For some indication of the modern ramifications
of the study of equations in the complex domain, see the survey article by
Varadarajan [296]. Explicit solutions for many second-order equations are
collected in the handbooks by Kamke [150], Sachdev [244], and Zwillinger
[322].

The idea of solving partial differential equations by separation of variables
developed throughout the 18th century, e.g. in the work of D. Bernoulli,
D’Alembert, and Euler. Fourier [100] was the first to put all the ingredients
of the method in place. For a discussion of this, Sturm–Liouville theory, and
other developments, see Painlevé’s survey [225] and Lützen [191].

Separation of variables for the Laplace, Helmholtz, and other equations
is treated in detail by Miller [205]; see also Müller [209]. There are other
coordinate systems in which one can separate variables for the Helmholtz or
Laplace equations, but the functions that arise are not among those treated
here: Mathieu fuctions, modified Mathieu functions, prolate spheroidal func-
tions, etc.

The Wronskian appears in [134]. The concept of linear dependence of
solutions and the connection with the Wronskian goes back to Christoffel
[52]. The idea of the Green’s function goes back to Green in 1828 [119]. The
use of the method of successive approximation to prove existence of solutions
originated with Liouville [186] and was developed in full generality by Picard
[230]. The Liouville transform was introduced in [187]. Sturm’s comparison
theorem appeared in [276]. The systematic study of orthogonal functions is due
to Murphy [211]. Techniques for estimating relative extrema were developed
by Stieltjes [272] for Legendre polynomials, Sonine for Bessel functions [265],
and others.

For extensive coverage of the 19th-century history, see [225] and Part 2
of [198].
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Orthogonal polynomials

It was shown in Chapter 3 that there are three cases in which the eigenfunctions
of a second-order ordinary differential operator that is symmetric with respect
to a weight are polynomials. The polynomials in the three cases are the classi-
cal orthogonal polynomials: Hermite polynomials, Laguerre polynomials, and
Jacobi polynomials.

Each of these sets of polynomials is an example of a family of polynomials
that are orthogonal with respect to an inner product that is induced by a
positive weight function on an interval of the real line. The basic theory of
general orthogonal polynomials is covered in the first section: expressions as
determinants, three-term recurrence relations, properties of the zeros, and so
on. It is shown that under a certain condition on the weight, which is satisfied in
each of the three classical cases, each element of the L2 space can be expanded
in a series using the orthogonal polynomials, analogous to the Fourier series
expansion.

We then examine some features common to the three classical cases, includ-
ing Rodrigues formulas and representations as integrals. In succeeding sections
each of the three classical cases is considered in more detail, as well as some
special cases of Jacobi polynomials (Legendre and Chebyshev polynomials).
The question of pointwise convergence of the expansion in orthogonal polyno-
mials is addressed.

Finally we return to integral representations and the construction of a
second solution of each of the differential equations.

4.1 General orthogonal polynomials

We begin with some properties common to any sequence of orthogonal poly-
nomials. Let w(x) be a positive weight function on an open interval I = (a, b)
and assume that the moments

93
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An =
∫ b

a
xn w(x) dx, n = 0, 1, 2, . . .

are finite.
Let �−1 = 1 and let �n , n ≥ 0, be the determinant

�n =

∣∣∣∣∣∣∣∣∣
A0 A1 . . . An

A1 A2 . . . An+1
. . .

An An+1 . . . A2n

∣∣∣∣∣∣∣∣∣ . (4.1.1)

The associated quadratic form

n∑
j,k=0

A j+k a j ak =
∫ b

a

⎡⎣ n∑
j=0

a j x j

⎤⎦2

w(x) dx

is positive definite, so the determinant �n is positive.
Consider the Hilbert space L2

w, with inner product

( f, g) = ( f, g)w =
∫ b

a
f (x) g(x) w(x) dx .

The polynomial

Qn(x) =

∣∣∣∣∣∣∣∣∣
A0 A1 . . . An−1 1
A1 A2 . . . An x

. . .

An An+1 . . . A2n−1 xn

∣∣∣∣∣∣∣∣∣ (4.1.2)

is orthogonal to xm , m < n, while (Qn, xn) = �n . To see this, expand the
determinant (4.1.2) along the last column. Computing the inner product of Qn

with xm results in a determinant in which the last column of the determinant
(4.1.1) has been replaced by column m + 1 of the same determinant. Thus
if m < n there is a repeated column, while m = n gives �n . Now Qn(x) =
�n−1xn modulo terms of lower degree, so

(Qn, Qn) = (Qn,�n−1xn) = �n−1
(
Qn, xn) = �n−1�n .

Therefore the polynomials

Pn(x) = 1√
�n−1�n

Qn(x)
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are orthonormal. They are uniquely determined by the requirement that
the leading coefficient be positive. The leading coefficient of Pn is hn =√
�n−1/�n .
Note that x Pn(x) has degree n + 1 and is orthogonal to xm , m < n − 1. It

follows that for some constants an , bn , cn ,

x Pn(x) = an Pn+1(x)+ bn Pn(x)+ cn Pn−1(x). (4.1.3)

Comparing coefficients of xn+1, we see that an = hn/hn+1. On the other hand,
taking the inner product with Pn−1, we have

cn = (x Pn, Pn−1) = (Pn, x Pn−1) = hn−1

hn
= an−1.

For later use, we note that the existence of a three-term recurrence formula of
the form (4.1.3) depends only on the orthogonality properties of the Pn , not on
the fact that they have norm one (so long as we do not require that cn = an−1,
as we do in the following calculation).

It follows from the previous two equations that

(x − y) Pn(x) Pn(y) = an
[
Pn+1(x)Pn(y)− Pn(x)Pn+1(y)

]
− an−1

[
Pn(x)Pn−1(y)− Pn−1(x)Pn(y)

]
.

Iterating, summing, and dividing by x − y, we get the Christoffel–Darboux
formula

an

[
Pn+1(x)Pn(y)− Pn(x)Pn+1(y)

x − y

]
=

n∑
j=0

Pj (x)Pj (y). (4.1.4)

Recall that the coefficient on the left is the ratio of the leading coefficient of
Pn to the leading coefficient of Pn+1.

This has an interesting consequence. Suppose that q is any polynomial of
degree ≤ n. Then q is a linear combination of the Pk , k ≤ n, and orthonormal-
ity implies that

q =
n∑

j=0

(q, Pj ) Pj .

Thus (4.1.4) implies the following.

Proposition 4.1.1 If q is a polynomial of degree ≤ n, then

q(x) =
∫ b

a
Kn(x, y) q(y) w(y) dy, (4.1.5)
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where

Kn(x, y) = an

[
Pn+1(x)Pn(y)− Pn(x)Pn+1(y)

x − y

]
and an is the ratio of the leading coefficient of Pn to the leading coefficient
of Pn+1.

The kernel function Kn plays the same role with respect to expansions in
orthogonal polynomials as the classical Dirichlet kernel plays with respect to
the classical Fourier expansion, so we refer to it as the Dirichlet kernel for the
polynomials {Pn}.

The kernel function Kn can be realized as a determinant:

Kn(x, y) = − 1

�n

∣∣∣∣∣∣∣∣∣∣∣

0 1 x x2 . . . xn

1 A0 A1 A2 . . . An

y A1 A2 A3 . . . An+1
. . .

yn An An+1 An+2 . . . A2n

∣∣∣∣∣∣∣∣∣∣∣
. (4.1.6)

See the exercises.
Taking the limit as y → x in (4.1.4) gives

an
[
P ′

n+1(x)Pn(x)− Pn+1(x)P
′
n(x)

] =
n∑

j=0

Pj (x)
2. (4.1.7)

A first consequence of (4.1.7) is that the real roots of the Pn are simple: if
x0 were a double root, the left side of (4.1.7) would vanish at x = x0, but P0 is
a nonzero constant, so the right side of (4.1.7) is positive.

The next result locates the zeros.

Proposition 4.1.2 Pn has n real zeros, all lying in the interval I .

Proof This is trivial for n = 0. Suppose n ≥ 1 and let x1, . . . , xm be the real
roots of Pn lying in I . Set q(x) =∏(x − x j ). The sign changes of Pn and
q in the interval I occur precisely at the x j . Therefore the product q Pn has
fixed sign in I , so (Pn, q) �= 0. This implies that q has degree at least n, so
m = n. �

A second consequence of (4.1.7) is that the roots of successive polynomials
Pn−1 and Pn interlace.

Proposition 4.1.3 Between each pair of zeros of Pn is a zero of Pn−1.
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Proof For n < 2 there is nothing to prove. For n ≥ 2, (4.1.7) implies that

P ′
n(x) Pn−1(x)− Pn(x) P ′

n−1(x) > 0.

Suppose that x1< x2 are two successive zeros of Pn . Then the previous
inequality implies that

P ′
n(x j ) Pn−1(x j ) > 0, j = 1, 2.

Since P ′
n(x1) and P ′

n(x2) must have different signs, it follows from the pre-
ceding inequality that the Pn−1(x j ) have different signs. Therefore, Pn−1 has
a zero in the interval (x1, x2). �

We turn to the question of completeness: can every element of the Hilbert
space L2

w be written as a linear combination of the Pn? Suppose that f belongs
to L2

w. Consider the question of finding an element in the span of {Pj } j≤n that
is closest to f , with respect to the L2 distance

d( f, g) = || f − g|| = ( f − g, f − g)
1
2 .

Proposition 4.1.4 Let

fn =
n∑

j=0

( f, Pj )Pj =
∫ b

a
Kn(x, y) f (y) w(y) dy. (4.1.8)

Then fn is the closest function to f in the span of {P0, P1, . . . , Pn}.
Proof Write

f − g = ( f − fn)+ ( fn − g).

Computing inner products shows that f − fn is orthogonal to every element
of the span of {Pj } j≤n , so if g is also in the span, then f − fn and fn − g are
orthogonal, so

|| f − g||2 = || f − fn||2 + || fn − g||2. (4.1.9)

The left-hand side is minimal exactly when g = fn . �

Taking g = 0 in (4.1.9) and using orthonormality of the Pn , we obtain
Bessel’s inequality

|| f ||2 =
n∑

j=0

( f, Pn)
2 + || f − fn||2 ≥

n∑
j=0

( f, Pn)
2. (4.1.10)
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The following completeness theorem applies to all the cases we shall
consider.

Theorem 4.1.5 Suppose that w is a positive weight on the interval (a, b) and
suppose that for some c > 0,∫ b

a
e2c|x |w(x) dx < ∞. (4.1.11)

Let {Pn} be the orthonormal polynomials for w. For any f ∈ L2
w,

f =
∞∑

n=0

(
f, Pn

)
Pn

in the sense that the partial sums of the series on the right converge to f in
norm in L2

w. Moreover, one has Parseval’s equality

|| f ||2 =
∞∑

n=0

(
f, Pn

)2
. (4.1.12)

If the interval (a, b) is bounded, then the condition (4.1.11) is redundant
and one may use the Weierstrass polynomial approximation theorem to show
that polynomials are dense in L2

w. A proof that remains valid in the general
case is given in Appendix B.

4.2 Classical polynomials: general properties, I

We return to the three cases corresponding to the classical polynomials, with
interval I , weight w, and eigenvalue equation of the form

p(x) ψ ′′
n (x)+ q(x) ψ ′

n(x)+ λnψn(x) = 0, q = (pw)′

w
. (4.2.1)

Or, equivalently, (
pwψ ′

n

)′ + λnwψn = 0.

The cases are

I = R = (−∞,∞), w(x) = e−x2
, p(x) = 1, q(x) = −2x;

I = R+ = (0,∞), w(x) = xαe−x , α > −1, p(x) = x,

q(x) = α + 1 − x;
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I = (−1, 1), w(x) = (1 − x)α(1 + x)β, α > −1, β > −1,

p(x) = 1 − x2, q(x) = β − α − (α + β + 2)x .

The derivative of a solution ψn of (4.2.1) satisfies a similar equation:
differentiating (4.2.1) gives

p
[
ψ ′

n

]′′ + (q + p′) [ψ ′
n

]′ + (q ′ + λn
)
ψ ′

n = 0.

Now

q + p′ = (pw)′

w
+ p′ = p2w′ + 2pp′w

pw
= [p(pw)]′

pw
.

Thus the function pw is also a weight. Since q ′ is a constant in each of the three
cases, ψ ′

n is an orthogonal polynomial of degree n − 1 for the weight pw.
Continuing, ψ ′′

n is an orthogonal polynomial of degree n − 2 for the weight
p2w, with eigenvalue

−λn − q ′ − (p′ + q)′ = −λn − 2q ′ − p′′.

By induction, the mth derivative ψ(m)n corresponds to weight pmw, with
eigenvalue

−λn − mq ′ − 1

2
m(m − 1) p′′.

Since ψ(n)n is constant, the corresponding eigenvalue is zero and we have the
general formula

λn = −nq ′ − 1

2
n(n − 1) p′′,

which corresponds to the results obtained in the three cases above:

λn = 2n, λn = n, λn = n(n + α + β + 1), (4.2.2)

respectively.
Equation (4.2.1) can be rewritten as

wψn = −λ−1
n

(
pwψ ′

n

)′
. (4.2.3)

Since pw is the weight corresponding to ψ ′
n , this leads to

wψn = [λn
(
λn + q ′)]−1(

p2wψ ′′
n

)′′
,

and finally to

wψn = (−1)n
n−1∏
m=0

[
λn + mq ′ + 1

2
m(m − 1)p′′

]−1 (
pnwψ(n)n

)(n)
. (4.2.4)
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Since ψ(n)n is constant, we may normalize by taking

ψn(x) = w(x)−1 dn

dxn

{
p(x)nw(x)

}
. (4.2.5)

This is known as the Rodrigues formula. In view of (4.2.4), with this choice of
ψn , we have

ψn(x) = an xn + lower order, (4.2.6)

n ! an = (−1)n
n−1∏
m=0

[
λn + mq ′ + 1

2
m(m − 1)p′′

]
.

In our three cases the product on the right is, respectively,

(−2)nn !, (−1)nn !, (−1)nn !(α + β + n + 1)n,

so the leading coefficient an is, respectively,

(−2)n, (−1)n, (−1)n(α + β + n + 1)n . (4.2.7)

As a first application of the Rodrigues formula, we consider the calculation
of weighted inner products of the form

( f, ψn) = ( f, ψn)w =
∫ b

a
f (x) ψn(x) w(x) dx .

By (4.2.5), ψnw = (pnw)(n). The function pnw vanishes fairly rapidly at the
endpoints of the interval I . Therefore, under rather mild conditions on the
function f , we may integrate by parts n times without acquiring boundary
terms, to obtain∫ b

a
ψn(x) f (x) w(x) dx = (−1)n

∫ b

a
p(x)n f (n)(x) w(x) dx . (4.2.8)

This idea can be used in conjunction with (4.2.6) to calculate the weighted L2

norms:∫ b

a
ψ2

n (x)w(x) dx = (−1)n
∫ b

a
ψ(n)n p(x)nw(x) dx

=
n−1∏
m=0

[
λn + mq ′ + 1

2
m(m − 1)p′′

] ∫ b

a
p(x)nw(x) dx .

(4.2.9)
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The preceding integral, in the three cases considered, is respectively∫ ∞

−∞
e−x2

dx = √
π;∫ ∞

0
xn+αe−x dx = �(n + α + 1);∫ 1

−1
(1 − x)n+α(1 + x)n+β dx = 22n+α+β+1

∫ 1

0
sn+α(1 − s)n+β ds

= 22n+α+β+1B(n + α + 1, n + β + 1).

Thus the square of the weighted L2 norm of ψn in the three cases is,
respectively,

||ψn||2 = 2n n !√π,
||ψn||2 = n !�(n + α + 1),

||ψn||2 = 22n+α+β+1 n ! �(n + α + 1) �(n + β + 1)

(2n + α + β + 1) �(n + α + β + 1)
.

The standard normalizations of the classical polynomials differ from the
choice given by the Rodrigues formula (4.2.5). The Rodrigues formula for the
Hermite, Laguerre, and Jacobi polynomials, respectively, is taken to be

Hn(x) = (−1)nex2 dn

dxn

(
e−x2); (4.2.10)

L(α)n (x) = 1

n ! x−αex dn

dxn

(
e−x xn+α); (4.2.11)

P(α,β)n (x) = (−1)n

n ! 2n
(1 − x)−α(1 + x)−β

× dn

dxn

{
(1 − x)n+α(1 + x)n+β}. (4.2.12)

In view of these normalizations, the previous calculation of weighted L2

norms gives

||Hn||2 = 2n n !√π, (4.2.13)

||L(α)n ||2 = �(n + α + 1)

n ! , (4.2.14)

||P(α,β)n ||2 = 2α+β+1 �(n + α + 1) �(n + β + 1)

n ! (2n + α + β + 1) �(n + α + β + 1)
. (4.2.15)
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The normalizations, together with (4.2.7), imply that the leading coeffi-
cients of Hn , L(α)n , and P(α,β)n are

2n,
(−1)n

n ! ,
(α + β + n + 1)n

2n n ! , (4.2.16)

respectively. The discussion at the end of Section 3.4 shows that Laguerre and
Hermite polynomials can be obtained as certain limits of Jacobi polynomials.
In view of that discussion and this calculation of leading coefficients, it follows
that

Hn(x) = lim
α→+∞

2n n !
αn/2

P(α,α)n

(
x√
α

)
; (4.2.17)

L(α)n (x) = lim
β→+∞ P(α,β)n

(
1 − 2x

β

)
. (4.2.18)

4.3 Classical polynomials: general properties, II

We may take advantage of the Cauchy integral formula for derivatives of wpn

to derive an integral formula from (4.2.5); see Appendix A. Let � be a curve
that encloses x ∈ I but excludes the endpoints of I . Then (4.2.5) shows that

ψn(x)

n! = 1

2π i

∫
�

w(z)

w(x)

p(z)n

(z − x)n
dz

z − x
. (4.3.1)

The generating function for the orthogonal polynomials {ψn/n !} is defined as

G(x, s) =
∞∑

n=0

ψn(x)

n! sn .

The integral formula (4.3.1) allows the evaluation of G:

G(x, s) = 1

2π i

∫
�

∞∑
n=0

sn p(z)n

(z − x)n
· w(z)
w(x)

· dz

z − x

= 1

2π i

∫
�

w(z)

w(x)
· dz

z − x − s p(z)
.

We may assume that � encloses a single solution z = ζ(x, s) of z − x = sp(z).
Since the residue of the integrand at this point is w(ζ )w(x)−1[1 − sp′(ζ )]−1,
we obtain

G(x, s) = w(ζ )

w(x)
· 1

1 − sp′(ζ )
, ζ − sp(ζ ) = x . (4.3.2)
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In the following sections we give the explicit evaluation in the case of the
Jacobi, Hermite, and Laguerre functions. In each of the latter two cases we
give a second derivation of the formula for the generating function.

The integral formula (4.3.1) can also be used to obtain recurrence relations
of the type (4.1.3) for the polynomials ψn . It will be slightly more convenient
to work with

ϕn(x) = ψn(x)

n ! w(x) = 1

2π i

∫
C

p(z)nw(z) dz

(z − x)n+1

and look for a three-term recurrence relation

anϕn+1(x) = bn(x) ϕn(x)+ cnϕn−1(x), bn(x) = bn0 + bn1x . (4.3.3)

If a is constant then an integration by parts gives

∫
C

[
ap(z)n+1w(z)

(z − x)n+2
− b(z)p(z)nw(z)

(z − x)n+1
− cpn−1(z)w(z)

(z − x)n

]
dz

=
∫

C

[
ã[pn+1w]′(z)− b(z)p(z)nw(z)− (z − x)cp(z)n−1w(z)

(z − x)n+1

]
dz,

ã = a

n + 1
.

Constants a, b0, b1, and c can be chosen so that for fixed x the last integrand
is a derivative:

d

dz

{
Q(z) p(z)n w(z)

(z − x)n

}
, Q(z) = Q0 + Q1(z − x),

where Q0 and Q1 are constants. Since (pw)′ = qw it follows that

[
pmw

]′ = [pm−1(pw)
]′ = [(m − 1)p′ + q

]
pm−1w.

Applying this to both previous expressions we find that the condition on ã, b, c
and Q is:

ã(np′ + q)p − bp − c(z − x)=−nQp+{Q′ p + Q[(n − 1)p′ + q]}(z − x).
(4.3.4)

Expanding p, q, and Q in powers of z − x leads to a system of four linear
equations for the four unknowns b/̃a, c/̃a, Q0, and Q1. The results for the
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three cases we have been considering are the following, respectively:

anϕn+1(x) = bn(x)ϕn(x)+ cnϕn−1(x); (4.3.5){
p(x) = 1, w(x) = e−x2 :

an = n + 1, bn(x) = −2x, cn = −2;{
p(x) = x, w(x) = xαe−x :

an = n + 1, bn(x) = (2n + α + 1)− x, cn = −(n + α);⎧⎪⎪⎪⎨⎪⎪⎪⎩
p(x) = 1 − x2, w(x) = (1 − x)α(1 + x)β :

an = (n + 1)(n + α + β + 1)(2n + α + β);
bn(x) = (2n + α + β + 1)

[
β2 − α2 − (2n + α + β)(2n + α + β + 2) x

];
cn = −4(2n + α + β + 2)(n + α)(n + β).

Taking into account the normalizations above, the three-term recurrence rela-
tions in the three classical cases are

Hn+1(x) = 2x Hn(x)− 2n Hn−1(x); (4.3.6)

(n + 1) L(α)n+1(x) = (2n + α + 1 − x) L(α)n (x)− (n + α) L(α)n−1(x); (4.3.7)

(2n + 2)(n + α + β + 1)

2n + α + β + 1
P(α,β)n+1 (x)

=
[
α2 − β2

2n + α + β + (2n + α + β + 2) x

]
P(α,β)n (x)

− 2(2n + α + β + 2)(n + α)(n + β)
(2n + α + β)(2n + α + β + 1)

P(α,β)n−1 (x). (4.3.8)

The starting point in the derivation of the Rodrigues formula (4.2.5) was
that if ψn is the degree-n polynomial for weight w, then the derivative ψ ′

n is a
multiple of the degree-(n − 1) polynomial for weight pw. In the Hermite case,
pw = w; in the other two cases going to pw raises the index or indices by 1.
Taking into account the leading coefficients of the ψn given in (4.2.7) and the
normalizations, we obtain

H ′
n(x) = 2n Hn−1(x); (4.3.9)[

L(α)n

]′
(x) = −L(α+1)

n−1 (x); (4.3.10)[
P(α,β)n

]′
(x) = 1

2
(n + α + β + 1) P(α+1,β+1)

n−1 (x). (4.3.11)
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The method used to derive (4.3.3) can be used to obtain derivative formulas
of a different form:

p(x) ϕ′
n(x) = an(x) ϕn(x)+ bn ϕn−1(x).

In fact,

p(x) ϕ′
n(x) = n + 1

2π i

∫
C

p(x) p(z)n w(z) dz

(z − x)n+2
.

For fixed x we may expand p(x) in powers of (z − x) and integrate one
summand by parts to put the integrand into the form

p̃0
(

pnw
)′
(z)+ p1 p(z)nw(z)+ p2(z − x)p(z)nw(z)

(z − x)n+1
, p̃0 = p0

n + 1
,

where p0 = p(x), p1 = −p′(x), p2 = 1
2 p′′. Using the integral forms of ϕn

and ϕn−1 as well, we may treat the equation

p(x)ϕ′
n(x)− a(x)ϕn(x)− bϕn−1(x) = 0 (4.3.12)

in the same way as we treated the equation (4.3.3). The resulting formulas are

H ′
n(x) = 2n Hn−1(x); (4.3.13)

x
[
L(α)n

]′
(x) = n L(α)n (x)− (n + α) L(α)n−1(x); (4.3.14)

(
1 − x2)[P(α,β)n

]′
(x) =

[
n(α − β)

2n + α + β − nx

]
P(α,β)n (x)

+ 2(n + α)(n + β)
2n + α + β P(α,β)n−1 (x). (4.3.15)

The recurrence formulas and the calculation of the norms allow us to
compute the associated Dirichlet kernels. To see this, suppose that we have
the identities

xϕn(x) = anϕn+1(x)+ bnϕn(x)+ cnϕn−1(x) (4.3.16)

for a sequence of orthogonal polynomials {ϕn}. The associated orthonormal
polynomials are

ϕ̃n = ||ϕn||−1ϕn .



106 Orthogonal polynomials

The Christoffel–Darboux formula (4.1.4) implies that the Dirichlet kernel

Kn(x, y) =
n∑

j=0

ϕ̃ j (x)ϕ̃ j (y)

= ||ϕn||−2ϕn(x)ϕn(y)+ Kn−1(x, y)

is given by

αn

[
ϕ̃n+1(x)ϕ̃n(y)− ϕ̃n(x)ϕ̃n+1(y)

x − y

]
=βn

[
ϕn+1(x)ϕn(y)− ϕn(x)ϕn+1(y)

x − y

]
for some constants αn , βn . It follows from these equations together with (4.3.5)
that the constant βn is an/||ϕn||2. These observations lead to the following
evaluations of the Dirichlet kernels associated with the Hermite, Laguerre, and
Jacobi polynomials respectively:

K H
n (x, y) = 1

2n+1n !√π

×
[

Hn+1(x)Hn(y)− Hn(x)Hn+1(y)

x − y

]
; (4.3.17)

K (α)
n (x, y) = − (n + 1) !

�(n + α + 1)

×
[

L(α)n+1(x)L
(α)
n (y)− L(α)n (x)L(α)n+1(y)

x − y

]
; (4.3.18)

K (α,β)
n (x, y) = 2−α−β (n + 1) !�(n + α + β + 2)

(2n + α + β + 2)�(n + α + 1) �(n + β + 1)

×
[

P(α,β)n+1 (x)P
(α,β)
n (y)− P(α,β)n (x)P(α,β)n+1 (y)

x − y

]
. (4.3.19)

The discriminant of a polynomial P(z) = a
∏n

j=1(z − z j ) is the
polynomial

D(z) = a2n−2
∏

1≤ j<k≤n

(z j − zk)
2.

The discriminants of the Hermite, Laguerre, and Jacobi polynomials are,
respectively:
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DH
n = 23n(n−1)/2

n∏
j=1

j j ; (4.3.20)

D(α)n =
n∏

j=1

j j−2n+2( j + α) j−1;

D(α,β)n = 1

2n(n−1)

n∏
j=1

j j−2n+2( j + α) j−1( j + β) j−1

(n + j + α + β) j−n
.

For a proof, see for example Section 6.71 of [279].
The next three sections contain additional results and some alternate deriva-

tions for these three classical cases.

4.4 Hermite polynomials

The Hermite polynomials
{

Hn
}

are orthogonal polynomials associated with

the weight e−x2
on the line R = (−∞,∞). They are eigenfunctions

H ′′
n (x)− 2x H ′

n(x)+ 2n Hn(x) = 0, (4.4.1)

satisfy the derivative relation

H ′
n(x) = 2n Hn−1(x),

and can be defined by the Rodrigues formula

Hn(x) = (−1)nex2 dn

dxn

{
e−x2} =

(
2x − d

dx

)n

{1}.

It follows that the leading coefficient is 2n and that

H ′
n(x)− 2x Hn(x) = −Hn+1(x). (4.4.2)

They are limits

Hn(x) = lim
α→+∞

2nn!
αn/2

P(α,α)n

(
x√
α

)
.

The three-term recurrence relation (4.3.6) may also be derived as follows.
It is easily shown by induction that Hn is even if n is even and odd if n is odd:

Hn(−x) = (−1)n Hn(x).
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Therefore the relation must have the form

x Hn(x) = an Hn+1(x)+ bn Hn−1(x). (4.4.3)

Identities (4.4.2) and (4.4.3) imply that H ′
n = 2bn Hn−1. Comparing leading

coefficients, we see that an = 1
2 and bn = n:

x Hn(x) = 1

2
Hn+1(x)+ n Hn−1(x). (4.4.4)

If we write Hn(x) =∑n
k=0 ak xk , then equation (4.4.1) implies the relation

(k + 2)(k + 1) ak+2 = 2(k − n) ak .

Since an = 2n and an−1 = 0, this recursion gives

Hn(x) =
∑
2 j≤n

(−1) j n !
j ! (n − 2 j) ! (2x)n−2 j . (4.4.5)

The first six of the Hn are

H0(x) = 1;
H1(x) = 2x;
H2(x) = 4x2 − 2;
H3(x) = 8x3 − 12x;
H4(x) = 16x4 − 48x2 + 12;
H5(x) = 32x5 − 160x3 + 120x .

Taking into account the factor (−1)n , the generating function

G(x, s) =
∞∑

n=0

Hn(x)

n! sn

is calculated from (4.3.2) with p(x) = 1, and s replaced by −s, so ζ(x, s) =
x − s and

∞∑
n=0

Hn(x)

n! sn = e−(x−s)2

e−x2 = e2xs−s2
. (4.4.6)

This can also be calculated from the three-term recurrence relation (4.4.4),
which is equivalent to

2x G(x, s) = ∂G

∂s
(x, s)+ 2s G(x, s).
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Therefore

G(x, s) = c(x) e−(s−x)2 .

Since G(x, 0) = 1, we obtain (4.4.6).
The generating function (4.4.6) can be used to obtain two addition formulas

for the Hermite polynomials:

Hn(x + y) =
∑

j+k+2l=n

n !
j ! k ! l ! Hj (x) Hk(y) (4.4.7)

and

Hn(x + y) = 2− 1
2 n

n∑
m=0

(
n

m

)
Hm
(√

2 x
)

Hn−m
(√

2 y
); (4.4.8)

see the exercises.
The generating function may also be used to give an alternative calculation

of the weighted L2 norms (4.2.13):

∞∑
m,n=0

sm tn

m! n!
∫ ∞

−∞
Hm(x) Hn(x) e−x2

dx =
∫ ∞

−∞
G(x, s)G(x, t) e−x2

dx

=
∫ ∞

−∞
e2st e−(x−s−t)2 dx

= e2st √
π = √

π

∞∑
n=0

(2st)n

n! .

This confirms that the Hn are mutually orthogonal and that∫ ∞

−∞
Hn(x)

2 e−x2
dx = n! 2n √

π. (4.4.9)

Therefore the normalized polynomials are

H̃n(x) = 1

π
1
4
√

n ! 2n
Hn(x). (4.4.10)

According to Theorem (4.1.5), a given function f ∈ L2
(

R, e−x2
dx
)

can

be approximated in L2 by the sequence

fn(x) =
n∑

m=0

(
f, H̃m

)
H̃m =

∫
Kn(x, y) f (y) e−y2

dy. (4.4.11)



110 Orthogonal polynomials

To compute the coefficients
(

f, H̃n
)

or, equivalently, ( f, Hn), we may use
the Rodrigues formula, as in (4.2.8). If the function f and its derivatives to
order n are of at most exponential growth as |x | → ∞, then

( f, Hn) =
∫ ∞

−∞
f (x) Hn(x) e−x2

dx =
∫ ∞

−∞
e−x2

f (n)(x) dx .

For example, (xm, Hn) = 0 unless m and n are both even or both odd, and
unless m ≥ n. If m = n + 2k, the previous calculation and a change of variable
give

(xm, Hn) = m !
(m − n) !

∫ ∞

−∞
e−x2

xm−n dx

= m !
(m − n) !

∫ ∞

0
e−t t

1
2 (m−n−1) dt = m !

(m − n) ! �
(

1

2
[m − n + 1]

)
.

(4.4.12)

Similarly,

(eax , Hn) = an
∫ ∞

−∞
eax−x2

dx

= an
∫ ∞

−∞
e
−
(

x− 1
2 a
)2

e
1
4 a2

dx = ane
1
4 a2
∫ ∞

−∞
e−x2

dx

= ane
1
4 a2 √

π. (4.4.13)

It follows from Cauchy’s theorem or by analytic continuation that the identity
(4.4.13) remains valid for all complex a. In particular, we may take a = ±ib
to calculate

(cos bx, Hn) =
{√
π(ib)ne− 1

4 b2
, n even,

0, n odd; (4.4.14)

(sin bx, Hn) =
{

−i
√
π(ib)ne− 1

4 b2
, n odd,

0, n even.
(4.4.15)

A particular case of the calculation in (4.4.13) is the identity

e−x2 = 1√
π

∫ ∞

−∞
e−2i xt−t2

dt.

This identity and the Rodrigues formula imply the integral formula

Hn(x) = (−1)n
ex2

√
π

∫ ∞

−∞
(−2i t)ne−2i xt−t2

dt. (4.4.16)
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This formula can be used to find a generating function for the products

Hn(x)Hn(y) = ex2+y2

π

∫ ∞

−∞

∫ ∞

−∞
(−4tu)ne−2i xt−2iyu−t2−u2

dt du.

Indeed, for |s| < 1,

∞∑
n=0

Hn(x)Hn(y)

2nn ! sn = ex2+y2

π

∫ ∞

−∞

∫ ∞

−∞
e−2i xt−2iyu−2tus−t2−u2

dt du

= ex2+y2

π

∫ ∞

−∞

{∫ ∞

−∞
e2i(−x+ius)t−t2

dt

}
e−2iyu−u2

du

= ex2+y2

π

∫ ∞

−∞
e−(x−ius)2−2iyu−u2

du

= ey2

√
π

∫ ∞

−∞
e−2i(y−xs)u−(1−s2)u2

du.

Taking v = u
√

1 − s2 as a new variable of integration gives

∞∑
n=0

Hn(x)Hn(y)sn

2nn ! = 1√
1 − s2

exp

(
2xys − s2x2 − s2 y2

1 − s2

)
. (4.4.17)

The general results about zeros of orthogonal polynomials, together with
the results proved in Section 3.5, give the following.

Theorem 4.4.1 The Hermite polynomial Hn(x) has n simple roots, lying in
the interval

−√
2n + 1 < x <

√
2n + 1.

The relative maxima of ∣∣e−x2/2 Hn(x)
∣∣

increase as |x | increases.

Results in Section 3.5 can be used to give more detailed information about
the zeros of Hn(x): see the exercises.

Theorem 4.4.2 The positive zeros x1n < x2n < . . . of Hn(x) satisfy the fol-
lowing estimates. If n = 2m is even, then

(2k − 1)π

2
√

2n + 1
< xkn <

4k + 1√
2n + 1

, k = 1, 2, . . . ,m. (4.4.18)
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If n = 2m + 1 is odd, then

kπ√
2n + 1

< xkn <
4k + 3√
2n + 1

, k = 1, 2, . . . ,m. (4.4.19)

The following asymptotic result will be proved in Chapter 10:

Hn(x) = 2
1
2 n 2

1
4 (n !) 1

2

(nπ)
1
4

e
1
2 x2
[

cos

(√
2n + 1 x − 1

2
nπ

)
+ O

(
n− 1

2

)]
,

(4.4.20)
as n → ∞, uniformly on any bounded interval. In view of (4.4.22) and (4.4.23)
below, (4.4.20) also follows from Fejér’s result for Laguerre polynomials [94].

A different normalization w(x) = e− 1
2 x2

is sometimes used for the weight
function. The corresponding orthogonal polynomials, denoted by {He n}, are
eigenfunctions

He′′
n(x)− x He′

n(x)+ n He n(x) = 0

and are given by the Rodrigues formula

He n(x) = (−1)ne
1
2 x2 dn

dxn

{
e− 1

2 x2
}

=
[

x − d

dx

]n

{1}.

Setting y = x/
√

2, it is clear that Hn(y) must be a multiple of Hen(x), and
consideration of the leading coefficients shows that

He n(x) = 2−n/2 Hn

(
x√
2

)
. (4.4.21)

As noted in Section 3.4, there is a close relationship between Hermite
polynomials and certain Laguerre polynomials. Since the Hermite polynomials
H2n of even order are even functions, they are orthogonal with respect to the
weight w(x) = e−x2

on the half line x > 0. Let y = x2; then the measure
w(x) dx becomes

1

2
y− 1

2 e−y dy.

The polynomials {H2n(
√

y)} are, therefore, multiples of the Laguerre polyno-

mials L

(
− 1

2

)
n . Consideration of the leading coefficients (see the next section)

shows that the relationship is

H2n(x) = (−1)n22nn ! L

(
− 1

2

)
n (x2), n = 0, 1, 2, . . . (4.4.22)

Similarly, the polynomials x−1 H2n+1 are even functions that are orthogonal
with respect to the weight x2e−x2

on the half line, so that they must be
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multiples of the Laguerre polynomials L

( 1
2

)
n
(
x2
)
:

H2n+1(x) = (−1)n22n+1n ! x L

( 1
2

)
n
(
x2), n = 0, 1, 2, . . . (4.4.23)

4.5 Laguerre polynomials

The Laguerre polynomials
{

L(α)n
}

are orthogonal polynomials associated with
the weight w(x) = xαe−x on the half line R+ = (0,∞). For a given α > −1
they are eigenfunctions

x
[
L(α)n

]′′
(x)+ (α + 1 − x)

[
L(α)n

]′
(x)+ n L(α)n (x) = 0; (4.5.1)

see Case II of 3.4. They satisfy the derivative relation[
L(α)n

]′
(x) = −L(α+1)

n−1 (x)

and are given by the Rodrigues formula (4.2.11)

L(α)n (x) = 1

n ! x−αex dn

dxn

{
xα e−x xn}

= 1

n !
[

d

dx
+ α

x
− 1

]n

{xn}, (4.5.2)

where the second version is obtained by using the gauge transformation
u =ϕv with ϕ = xαe−x . It follows that the leading coefficient is (−1)n/n !.
The Laguerre polynomials for α = 0 are also denoted by Ln :

Ln(x) = L(0)n (x).

The Laguerre polynomials are limits

L(α)n (x) = lim
β→+∞ P(α,β)n

(
1 − 2x

β

)
.

Writing L(α)n (x) =∑n
k=0 bk xk , equation (4.5.1) gives the recurrence

relation

(k + 1)(k + α + 1) bk+1 = −(n − k) bk,

so

L(α)n (x) =
n∑

k=0

(−1)k
(α + 1)n

k ! (n − k) !(α + 1)k
xk (4.5.3)

= (α + 1)n
n !

n∑
k=0

(−n)k
(α + 1)k k ! xk . (4.5.4)
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The first four of the L(α)n are

L(α)0 (x) = 1;
L(α)1 (x) = α + 1 − x;

L(α)2 (x) = (α + 1)(α + 2)

2
− (α + 2) x + 1

2
x2;

L(α)3 (x) = (α + 1)(α + 2)(α + 3)

6
− (α + 2)(α + 3)

2
x + (α + 3)

2
x2 − 1

6
x3.

In particular,

Ln(x) =
n∑

k=0

(−1)k
n !

k ! (n − k) ! k ! xk .

Comparing coefficients, the general three-term recurrence relation (4.1.3) is

x L(α)n (x) = −(n + 1) L(α)n+1(x)+ (2n + α + 1) L(α)n (x)− (n + α) L(α)n−1(x).
(4.5.5)

By induction

dn

dxn

{
x f (x)

} = x
dn

dxn

{
f (x)} + n

dn−1

dxn−1

{
f (x)

}
,

so the Rodrigues formula gives the recurrence relation (4.3.7):

(n + 1)L(α)n+1(x) =
[

x
d

dx
+ α + n + 1 − x

] {
L(α)n (x)

}
. (4.5.6)

Taking into account the normalization (4.5.2), the generating function

G(x, s) =
∞∑

n=0

L(α)n (x) sn

can be calculated from (4.3.2). Here, p(x) = x , so ζ = x/(1 − s) and
therefore

G(x, s) = e−xs/(1−s)

(1 − s)α+1
. (4.5.7)

This can also be calculated from the three-term recurrence relation (4.5.5),
which is equivalent to

∂G

∂s
(x, s) = α + 1

1 − s
G(x, s)− x

(1 − s)2
G(x, s).

Since G(x, 0) ≡ 1, this implies (4.5.7).
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As for Hermite polynomials, the generating function can be used to obtain
an addition formula:

L(α)n (x + y) =
∑

j+k+l=n

(−1) j (α + 2 − j) j

j ! L(α)k (x) L(α)l (y); (4.5.8)

see the exercises.
The generating function can also be used to calculate L2 norms:

∞∑
m,n=0

sm tn
∫ ∞

0
L(α)m (x) L(α)n (x) xα e−x dx

=
∫ ∞

0
G(x, s)G(x, t) xα e−x dx

= 1

(1 − s)α+1 (1 − t)α+1

∫ ∞

0
e−x(1−st)/(1−s)(1−t)xα+1 dx

x
.

Letting y = x(1 − st)/(1 − s)(1 − t), the last integral is

�(α + 1)

(1 − st)α+1
=

∞∑
n=0

�(α + 1 + n)

n! (st)n .

This confirms that the L(α)n are mutually orthogonal, and∫ ∞

0

[
L(α)n (x)

]2
xα e−x dx = �(α + n + 1)

n! .

Therefore the normalized polynomials are

L̃(α)n (x) =
√

n !√
�(α + n + 1)

L(α)n (x).

To compute the coefficients of the expansion

f =
∞∑

n=0

(
f, L̃(α)n

)
L̃(α)n ,

we may use (4.2.8). If f and its derivatives to order n are bounded as x → 0
and of at most polynomial growth as x → +∞,

( f, L(α)n ) =
∫ ∞

0
f (x) L(α)n (x) xα e−x dx = (−1)n

n !
∫ ∞

0
e−x f (n)(x) xn+α dx .

In particular, if m ≥ n, then∫ ∞

0
xm L(α)n (x) xα e−x dx = (−1)n

(
m

n

)
�(α + m + 1) (4.5.9)
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and for Re a > −1, (
e−ax , L(α)n

) = an �(n + α + 1)

n ! (a + 1)n+α+1
. (4.5.10)

For general values of λ and for c > 1, the equation

xu′′(x)+ (c − x)u′(x)− λu(x) = 0

has a unique solution that is regular at x = 0 with u(0) = 1. It is known
as the confluent hypergeometric function or Kummer function 1 F1(λ, c; x) =
M(λ, c; x); see Chapter 6. In view of this and (4.5.3),

L(α)n (x) = (α + 1)n
n ! 1 F1(−n, α + 1; x) = (α + 1)n

n ! M(−n, α + 1; x).

(4.5.11)
The general results about zeros of orthogonal polynomials, together with

the results proved in Section 3.5, give the following.

Theorem 4.5.1 The Laguerre polynomial L(α)n (x) has n simple roots in the
interval

0 < x < 2n + α + 1 +
√
(2n + α + 1)2 + (1 − α2).

The relative maxima of ∣∣e−x/2x (α+1)/2L(α)n (x)
∣∣

increase as x increases.

The following asymptotic result of Fejér [94, 95] will be proved in
Chapter 10:

L(α)n (x) = e
1
2 x n

1
2α− 1

4

√
π x

1
2α+ 1

4

[
cos

(
2
√

nx − 1

2

[
α + 1

2

]
π

)
+ O

(
n− 1

2

)]
,

(4.5.12)
as n → ∞, uniformly on any subinterval 0 < δ ≤ x ≤ δ−1.

4.6 Jacobi polynomials

The Jacobi polynomials
{

P(α,β)n
}

with indices α, β > −1 are orthogonal with
respect to the weight w(x) = (1 − x)α(1 + x)β on the interval (−1, 1). The
norms are

||P(α,β)n ||2 = 2α+β+1 �(n + α + 1) �(n + β + 1)

n ! (2n + α + β + 1) �(n + α + β + 1)
.
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Changing the sign of x ,

P(α,β)n (−x) = (−1)n P(β,α)n (x). (4.6.1)

The P(α,β)n are eigenfunctions:

(1 − x2)
[
P(α,β)n

]′′ + [β − α − (α + β + 2)x
] [

P(α,β)n

]′
+ n(n + α + β + 1) P(α,β)n = 0. (4.6.2)

They satisfy the derivative relation[
P(α,β)n

]′
(x) = 1

2
(n + α + β + 1) P(α+1,β+1)

n−1 (x)

and can be defined by the Rodrigues formula (4.2.12)

P(α,β)n (x) = (−1)n

n ! 2n
(1 − x)−α(1 + x)−β dn

dxn

{
(1 − x)α+n(1 + x)β+n}.

It follows from the extended form of Leibniz’s rule that

P(α,β)n (x) = (−1)n

2n

n∑
k=0

(−1)k
1

k ! (n − k) !

× (α + 1)n (β + 1)n
(α + 1)n−k (β + 1)k

(1 − x)n−k(1 + x)k, (4.6.3)

which gives the endpoint values

P(α,β)n (1) = (α + 1)n
n ! , P(α,β)n (−1) = (−1)n

(β + 1)n
n ! . (4.6.4)

In view of the discussion in Section 3.5, we have the estimate

sup
|x |≤1

∣∣P(α,β)n (x)
∣∣ = max

{
(α + 1)n

n ! ,
(β + 1)n

n !
}

if α or β ≥ −1

2
. (4.6.5)

Jacobi polynomials with either α = ± 1
2 or β = ± 1

2 can be reduced to those
with equal indices by using the following two identities and (4.6.1):

P(α,α)2n (x) = (n + α + 1)n
(n + 1)n

P

(
α,− 1

2

)
n (2x2 − 1); (4.6.6)

P(α,α)2n+1 (x) = (n + α + 1)n+1

(n + 1)n+1
x P

(
α,

1
2

)
n (2x2 − 1).

These identities follow from the relationship with hypergeometric functions,
(4.6.12), together with two of the quadratic transformations (8.6.2) and
(8.6.22). For a direct proof, see the exercises.
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The generating function can be calculated from (4.3.2). Taking into account

the factor
(
− 1

2

)n
in the normalization (4.2.12), we replace s by − 1

2 s. Since

p(x) = 1 − x2, y(x, s) is the solution of

y = x − s

2

(
1 − y2)

so

y = s−1
[
1 −

√
1 − 2xs + s2

]
;

1 − y

1 + x
= 2

1 − s + √
1 − 2xs + s2

;

1 + y

1 + x
= 2

1 + s + √
1 − 2xs + s2

.

Thus
∞∑

n=0

P(α,β)n (x) sn = 2α+β

R (1 − s + R)α(1 + s + R)β
, R =

√
1 − 2xs + s2.

(4.6.7)
The Liouville transformation for the Jacobi case starts with the change of

variable

θ(x) =
∫ x

1

dy√
p(y)

=
∫ x

1

dy√
1 − y2

= cos−1 x .

In the variable θ the operator in (4.6.2) takes the form

d2

dθ2
+ α − β + (α + β + 1) cos θ

sin θ

d

dθ
.

The coefficient of the first-order term can be rewritten as

(2α + 1)
cos 1

2θ

2 sin 1
2θ

− (2β + 1)
sin 1

2θ

2 cos 1
2θ
.

Therefore this coefficient can be eliminated by the gauge transformation
u = ϕv with

ϕ(θ) =
(

sin
1

2
θ

)−α− 1
2
(

cos
1

2
θ

)−β− 1
2
.

After this gauge transformation, the operator acting on the function v is

d2

dθ2
+ (α + β + 1)2

4
+ (1 + 2α)(1 − 2α)

16 sin2 1
2θ

+ (1 + 2β)(1 − 2β)

16 cos2 1
2θ

(4.6.8)
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and the eigenvalue equation with λn = n(n + α + β + 1) is

v′′(θ)+
[
(2n + α + β + 1)2

4
+ (1 + 2α)(1 − 2α)

16 sin2 1
2θ

+ (1 + 2β)(1 − 2β)

16 cos2 1
2θ

]
v(θ) = 0. (4.6.9)

In particular, if 2α = ±1 and 2β = ±1, then (4.6.9) can be solved explicitly.
Equation (4.6.9) leads to estimates for the zeros of P(α,β)n for certain α, β:

see the exercises.

Theorem 4.6.1 Suppose α2 ≤ 1
4 and β2 ≤ 1

4 , and let cos θ1n, . . . , cos θnn be

the zeros of P(α,β)n , θ1n < · · · < θnn. Then

(k − 1 + γ )π
n + γ ≤ θkn ≤ kπ

n + γ , γ = 1

2
(α + β + 1). (4.6.10)

The inequalities are strict unless α2 = β2 = 1
4 .

The following asymptotic result of Darboux [62] will be proved in
Chapter 10:

P(α,β)n (cos θ) = cos
(
nθ + 1

2 [α + β + 1]θ − 1
2απ − 1

4π
)+ O

(
n− 1

2
)

√
nπ
(

sin 1
2θ
)α+ 1

2
(

cos 1
2θ
)β+ 1

2

(4.6.11)
as n → ∞, uniformly on any subinterval δ ≤ θ ≤ π − δ, δ > 0.

It is convenient for some purposes, such as making the connection to hyper-
geometric functions, to rescale the x-interval to (0, 1). Let y = 1

2 (1 − x). Up
to a constant factor the corresponding weight function is w(y) = yα(1 − y)β ,
while the rescaled polynomials are eigenfunctions for the operator

y(1 − y)
d2

dy2
+ [α + 1 − (α + β + 2)y

] d

dy

with eigenvalues −n(n + α + β + 1); see Case III in Section 3.4. If we set

P(α,β)n (1 − 2y) =
n∑

k=0

ck yk

then the eigenvalue equation implies the identities

ck+1 = (n + α + β + 1 + k)(−n + k)

k(α + 1 + k)
ck .
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By (4.6.4), c0 = (α + 1)n/n !, so

P(α,β)n (x) = (α + 1)n
n !

n∑
k=0

(α + β + 1 + n)k(−n)k
(α + 1)k k ! yk

= (α + 1)n
n ! F

(
α + β + 1 + n,−n, α + 1; 1

2
(1 − x)

)
, (4.6.12)

where F is the hypergeometric function associated with the equation (1.0.2),
(3.7.2) with indices α + β + 1 + n,−n, α + 1: the solution that has value 1 at
y = 0.

4.7 Legendre and Chebyshev polynomials

Up to normalization, these are Jacobi polynomials P(α,α)n with a repeated index
α = β. Note that in any such case the weight function (1 − x2)α is an even
function. It follows by induction that orthogonal polynomials of even degree
are even functions, those of odd degree are odd functions.

The Legendre polynomials {Pn} are the case α = β = 0:

Pn(x) = P(0,0)n (x).

The associated weight function is w(x) ≡ 1 and the eigenvalue equation is(
1 − x2) P ′′

n (x)− 2x P ′
n(x)+ n(n + 1) Pn(x) = 0. (4.7.1)

The generating function is

∞∑
n=0

Pn(x) sn = (1 − 2xs + s2)− 1
2 . (4.7.2)

The recurrence and derivative formulas (4.3.8) and (4.3.15) specialize to

(n + 1)Pn+1(x) = (2n + 1)x Pn(x)− n Pn−1(x); (4.7.3)(
1 − x2)P ′

n(x) = −nx Pn(x)+ n Pn−1(x). (4.7.4)

The recurrence relation (4.7.3) and the derivative identity

P ′
n(x)− 2x P ′

n−1(x)+ P ′
n−2(x) = Pn−1(x) (4.7.5)

can be derived from the generating function; see the exercises.
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In Sections 9.2 and 8.7 we establish two integral representations:

Pn(cos θ) = 1

2π

∫ 2π

0
(cos θ + i sin θ sinα)n dα (4.7.6)

= 1

π

∫ 1

0

cos
(
s
(
n + 1

2

)
θ
)

cos 1
2 sθ

ds√
s(1 − s)

. (4.7.7)

The general formula (4.3.19) for the Dirichlet kernel specializes to

K (0,0)
n (x, y) = n + 1

2

[
Pn+1(x)Pn(y)− Pn(x)Pn+1(y)

x − y

]
. (4.7.8)

The Liouville transformation takes the eigenvalue equation to the following

equation for un(θ) = (sin θ)
1
2 Pn(cos θ), the case α = β = 0 of (4.6.9):

u′′
n(θ)+

[(
n + 1

2

)2

+ 1

4 sin2 θ

]
un(θ) = 0. (4.7.9)

The first part of the following result is the specialization to α = β = 0 of
(4.6.5). The second part is the specialization of a result in Section 3.5. The
remaining two statements follow from (4.7.9), together with Propositions 3.5.2
and 3.5.3.

Theorem 4.7.1 The Legendre polynomials satisfy

sup
|x |≤1

∣∣Pn(x)
∣∣ = 1.

The relative maxima of |Pn(cos θ)| decrease as θ increases for 0 ≤ θ ≤ 1
2π

and increase as θ increases for 1
2π ≤ θ ≤ π .

The relative maxima of |(sin θ)
1
2 Pn(cos θ)| increase with θ for 0 ≤ θ ≤ 1

2π

and decrease as θ increases for 1
2π ≤ θ ≤ π . Moreover, for 0 ≤ θ ≤ π ,[

(sin θ)
1
2 Pn(cos θ)

]2

≤ Pn(0)
2 + P ′

n(0)
2(

n + 1
2

)2 + 1
4

. (4.7.10)

A more explicit form of this last estimate can be derived:∣∣∣∣(sin θ)
1
2 Pn(cos θ)

∣∣∣∣ < ( 2

nπ

) 1
2 ; (4.7.11)

see the exercises. This is a sharp version due to Bernstein [29] of an earlier
result of Stieltjes [272].
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Theorem 4.6.1 specializes to the following: let cos θ1n, . . . , cos θnn be the
zeros of Pn(x), θ1n < · · · < θnn . Then(

k − 1 + 1
2

)
π

n + 1
2

< θkn <
kπ

n + 1
2

. (4.7.12)

The following inequality is due to Turán [278, 290]:

Pn(x)
2 − Pn−1(x) Pn+1(x) ≥ 0. (4.7.13)

The Chebyshev (or Tchebycheff) polynomials {Tn} and {Un} are the cases
α = β = − 1

2 and α = β = 1
2 , respectively:

Tn(x) = 2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n − 1)
P

(
− 1

2 ,− 1
2

)
n (x) = n !( 1

2

)
n

P

(
− 1

2 ,− 1
2

)
n (x);

Un(x) = 4 · 6 · · · (2n + 2)

3 · 5 · · · · (2n + 1)
P

(
1
2 ,

1
2

)
n (x) = (n + 1) !( 3

2

)
n

P

(
1
2 ,

1
2

)
n (x).

Thus Tn(1) = 1, Un(1) = n + 1.
The Gegenbauer polynomials or ultraspherical polynomials

{
Cλn
}

are the
general case α = β, normalized as follows:

Cλn (x) = (2λ)n(
λ+ 1

2

)
n

P

(
λ− 1

2 ,λ− 1
2

)
n (x).

In particular,

C0
n(x) = Tn(x), C

1
2
n (x) = Pn(x), C1

n(x) = Un(x).

The Chebyshev polynomials simplify considerably under the Liouville
transformation and gauge transformation considered above. With α = β = − 1

2
the operator (4.6.8) has zero-order term and the eigenvalue −λn is −n2.
Therefore the solutions of (4.6.2) that are even (resp. odd) functions of cos θ
when n is even (resp. odd) are multiples of cos(nθ). The normalization gives
the Chebyshev polynomials of the first kind

Tn(cos θ) = cos nθ. (4.7.14)

Since
dx√

1 − x2
= dθ,

the square of the L2 norm is π if n = 0, and∫ π

0
cos2 nθ dθ = π

2
, n > 0.
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The recurrence and derivative formulas are easily derived from the trigonomet-
ric identities

cos(nθ ± θ) = cos nθ cos θ ∓ sin nθ sin θ.

These imply that

Tn+1(x)+ Tn−1(x) = 2x Tn(x), n ≥ 1. (4.7.15)

Also (
1 − x2) T ′

n(x)
∣∣∣
x=cos θ

= −sin θ
d

dθ
cos nθ = n sin nθ sin θ,

so (
1 − x2)T ′

n(x) = −nxTn(x)+ nTn−1(x). (4.7.16)

It follows from (4.7.15) and the norm calculation that the associated
Dirichlet kernel is

K T
n (x, y) = 2

π

n∑
k=0

Tk(x)Tk(y)

= 1

π

[
Tn+1(x)Tn(y)− Tn(x)Tn+1(y)

x − y

]
(4.7.17)

for n > 0.
Note that T0 = 1 and T1(x) = x . Together with (4.7.15), this allows us to

calculate an alternative generating function

GT (x, s) =
∞∑

n=0

Tn(x) sn .

In fact,

s−1 [GT (x, s)− xs − 1
]+ s GT (x, s) = 2x

[
GT (x, s)− 1

]
so

∞∑
n=0

Tn(x) sn = 1 − xs

1 − 2xs + s2
. (4.7.18)

With α = β = 1
2 the gauge transformation u(θ) = (sin θ)−1v(θ) reduces

the eigenvalue equation to

v′′(x)+ [1 + n(n + 2)]v(x) = v′′(x)+ (n + 1)2v(x) = 0,
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so the solutions u that are regular at θ = 0 are multiples of sin(n + 1)θ/ sin θ .
The normalization gives the Chebyshev polynomials of the second kind

Un(cos θ) = sin(n + 1)θ

sin θ
. (4.7.19)

The weight function here is sin θ , so the square of the L2 norm is∫ π

0
sin2 (n + 1)θ dθ = π

2
.

The recurrence and derivation formulas are easily derived from the trigono-
metric identities

sin(nθ ± θ) = sin nθ cos θ ± cos nθ sin θ.

These imply that

Un+1(x)+ Un−1(x) = 2x Un(x). (4.7.20)

Also(
1 − x2)U ′

n(x)
∣∣∣
x=cos θ

= −sin θ
d

dθ

{
sin (n + 1)θ

sin θ

}

= −(n + 1) cos (n + 1)θ sin θ + sin (n + 1)θ cos θ

sin θ
,

so (
1 − x2)U ′

n(x) = −nx Un(x)+ (n + 1)Un−1(x). (4.7.21)

It follows from the formulas following (4.3.16) and the norm calculation
that the associated Dirichlet kernel is

K U
n (x, y) = 2

π

n∑
k=0

Uk(x)Uk(y)

= 1

π

[
Un+1(x)Un(y)− Un(x)Un+1(y)

x − y

]
. (4.7.22)

Note that U0 = 1 and U1(x) = 2x . These facts and the recurrence relation
allow us to compute an alternative generating function in analogy with GT

above:
∞∑

n=0

Un(x) sn = 1

1 − 2xs + s2
. (4.7.23)

The remaining cases when the eigenvalue equation (4.6.9) can be solved
immediately are α = − 1

2 , β = 1
2 and α = 1

2 , β = − 1
2 . In each case the
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eigenvalue parameter for degree n is λn = n(n + 1), so after the gauge trans-
formation the constant term is λn + 1

4 = (n + 1
2

)2. In the first case the gauge

function is
(

cos 1
2θ
)−1 and the value at θ = 0 should be

( 1
2

)
n/n !, so

P

(
− 1

2 ,
1
2

)
n (cos θ) =

( 1
2

)
n

n !
cos
(
n + 1

2

)
θ

cos 1
2θ

. (4.7.24)

In the second case the gauge function is
(

sin 1
2θ
)−1 and the value at θ = 0

should be
( 3

2

)
n/n !, so

P

( 1
2 ,−

1
2

)
n (cos θ) =

( 1
2

)
n

n !
sin
(
n + 1

2

)
θ

sin 1
2θ

. (4.7.25)

Combining the results of this section with (4.6.12) gives explicit evalua-
tions of hypergeometric functions associated with the Jacobi indices α = ± 1

2 ,
β = ± 1

2 :

F

(
n,−n,

1

2
; 1

2
[1 − cos θ ]

)
= cos(nθ); (4.7.26)

F

(
n + 2,−n,

3

2
; 1

2
[1 − cos θ ]

)
= sin(n + 1)θ

(n + 1) sin θ
; (4.7.27)

F

(
n + 1,−n,

1

2
; 1

2
[1 − cos θ ]

)
= cos

(
n + 1

2

)
θ

cos 1
2θ

; (4.7.28)

F

(
n + 1,−n,

3

2
; 1

2
[1 − cos θ ]

)
= sin

(
n + 1

2

)
θ

(2n + 1) sin 1
2θ
. (4.7.29)

The previous arguments show that these identities are valid for all values of
the parameter n. It will be shown in Section 8.7 that the integral representation
(4.7.7) is a consequence of (4.7.28).

4.8 Expansion theorems

Suppose that w is one of the weights associated with the classical orthogonal
polynomials:

wH (x) = e−x2
, −∞ < x <∞;

wα(x) = xα e−x , 0 < x < ∞;
wαβ(x) = (1 − x)α(1 + x)β, −1 < x < 1,
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and suppose that {ϕn}∞n=0 is the corresponding set of orthonormal polynomi-
als: the normalized version of the Hermite, Laguerre, or Jacobi polynomials
associated with w. It follows from Theorem 4.1.5 that if f is a function in L2

w,
then the series

∞∑
n=0

( f, ϕn) ϕn(x) (4.8.1)

converges to f in the L2 sense:

lim
n→∞ || fn − f || → 0, fn(x) =

n∑
k=0

( f, ϕk) ϕk(x).

The partial sums are given by integration against the associated Dirichlet
kernel:

fn(x) =
∫

I
Kn(x, y) f (y) w(y) dy, Kn(x, y) =

n∑
k=0

ϕk(x) ϕk(y).

The kernel Kn can be written in more compact form by using the Christoffel–
Darboux formula (4.1.4). Taking f ≡ 1 and using orthogonality shows that

1 =
∫

I
Kn(x, y) w(y) dy. (4.8.2)

In this section we consider pointwise convergence. In each case, if f
belongs to L2

w, then the series (4.8.1) converges to f (x) at each point where f
is differentiable. In fact, we may replace differentiability at x with the weaker
condition that for some δ > 0,∣∣∣ f (y)− f (x)

y − x

∣∣∣ ≤ C for 0 < |y − x | < δ. (4.8.3)

If f is piecewise continuously differentiable, then this condition is satisfied at
every point of continuity.

We begin with the Hermite case. According to (4.2.13), the normalized
polynomials can be taken to be

ϕn(x) = an Hn(x), an = 1
√

2n n !π 1
4

.

Thus in this case the expansion (4.8.1) is

∞∑
n=0

cn Hn(x), cn = 1

2n n ! √π
∫ ∞

−∞
f (x) Hn(x) e−x2

dx . (4.8.4)
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Theorem 4.8.1 Suppose that f (x) is a real-valued function that satisfies∫ ∞

−∞
f (x)2 e−x2

dx <∞, (4.8.5)

and suppose that f satisfies the condition (4.8.3) at the point x. Then the series
(4.8.4) converges to f (x).

It follows from (4.8.2) that

f (x)− fn(x) =
∫ ∞

−∞
K H

n (x, y)
[

f (y)− f (x)
]

e−y2
dy.

The Dirichlet kernel here is given by (4.3.17):

K H
n (x, y) = 1

2n+1n ! √π
[

Hn+1(x)Hn(y)− Hn(x)Hn+1(y)

x − y

]
.

Therefore

f (x)− fn(x) = Hn+1(x)

2n+1 n ! √π
∫ ∞

−∞
Hn(y) g(x, y) e−y2

dy

− Hn(x)

2n+1 n ! √π
∫ ∞

−∞
Hn+1(y) g(x, y) e−y2

dy, (4.8.6)

where

g(x, y) = f (y)− f (x)

y − x
.

For |y| ≥ 2|x |,
y2 g(x, y)2 ≤ 8

[
f (x)2 + g(y)2

]
.

Together with assumptions (4.8.3) and (4.8.5), this implies that∫ ∞

−∞
(1 + y2) g(x, y)2 e−y2

dy < ∞. (4.8.7)

From (4.4.20) and Stirling’s formula (2.5.1), we have the estimates

|Hn(x)| ≤ A(x) n− 1
4 (2n n !) 1

2 .

Thus it is enough to prove that both the integrals

n
1
4

(2n n !) 1
2

∫ ∞

−∞
Hn(y)g(x, y)e−y2

dy,
n− 1

4

(2n n !) 1
2

∫ ∞

−∞
Hn+1(y)g(x, y)e−y2

dy
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have limit zero as n → ∞. Changing n to n − 1 in the second expression
shows that the two expressions are essentially the same. Thus it is enough
to prove the following lemma.

Lemma 4.8.2 If ∫ ∞

−∞
(
1 + x2) g(x)2 e−x2

dx < ∞,

then

lim
n→∞

n
1
4

(2n n !) 1
2

∫ ∞

−∞
Hn(x) g(x) e−x2

dx = 0. (4.8.8)

We begin with an estimate for an integral involving Hn .

Lemma 4.8.3 There is a constant B such that∫ ∞

−∞
Hn(x)2

1 + x2
e−x2

dx ≤ B 2n n ! n− 1
2 (4.8.9)

for all n.

Proof First,

Jn ≡ 1

2n n !
∫ ∞

−∞
Hn(x)2

1 + x2
e−x2

dx =
∫ ∞

−∞

(
1 − x2

1 + x2

)n
e−x2

1 + x2
dx

= 2
∫ ∞

0

(
1 − x2

1 + x2

)n
e−x2

1 + x2
dx; (4.8.10)

see Exercise 4.16. Making the change of variable x → 1/x in the integral over
the interval [1,∞) converts the integral to

Jn = 2
∫ 1

0

(
1 − x2

1 + x2

)n
e−x2 + (−1)n e−1/x2

1 + x2
dx

≤ 4
∫ 1

0

(
1 − x2

1 + x2

)n
dx

1 + x2
.

Let t = 1 − (1 − x2
)2
/(1 + x2)2 = 4x2/

(
1 + x2

)2, so that

√
1 − t = 2

1 + x2
− 1,

4dx

1 + x2
= dt√

t (1 − t)
.

Then

4
∫ 1

0

(
1 − x2

1 + x2

)n
dx

1 + x2
=
∫ 1

0
(1 − t)

1
2 n dt√

t (1 − t)
= B

(
1

2
,

1

2
n + 1

2

)
.

By (2.1.9), the last expression is O
(
n− 1

2
)
, which gives (4.8.9). �
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It follows from this result and the Cauchy–Schwarz inequality that(∫ ∞

−∞
Hn(x) g(x) e−x2

dx

)2

≤ B 2n n ! n− 1
2

∫ ∞

−∞
g(x)2

(
1 + x2) e−x2

dx
(4.8.11)

for all n, if the integral on the right is finite; here B is the constant in (4.8.9).
We can now prove the first lemma, and thus complete the proof of

Theorem 4.8.1. Given ε > 0 we can choose N = N (ε) so large that∫
|x |>N

g(x)2
(
1 + x2)e−x2

dx <
ε2

B
.

In view of (4.8.11), up to ε we only need to consider the integral (4.8.8) over
the bounded interval [−N , N ]. The asymptotic estimate (4.4.20) is uniform
over such an interval. The product of the constant in (4.4.20) and the constant
in (4.8.8) is independent of n. Thus it is enough to consider the integrals∫ N

−N
cos

(√
2n + 1 x − 1

2
nπ

)
g(x) e−x2/2 dx,

∫ N

−N
n− 1

2 g(x) e−x2/2 dx .

Since N is fixed, the second integral is O
(
n− 1

2
)
. The first integral tends to

zero as n → ∞ by the Riemann–Lebesgue lemma: see Appendix B. (Consider
separately the cases n even, n odd.)

This result, and the ones to follow, can be extended to points of discontinu-
ity: if f ∈ L2

w has one-sided limits f (x±) at x , and one-sided estimates

| f (y)− f (x±)|
|y − x | ≤ C for 0 < ±(y − x) < δ, (4.8.12)

then

lim
n→∞

n∑
k=0

( f, ϕk) ϕk(x) = 1

2

[
f (x+)+ f (x−)]; (4.8.13)

see the exercises.
The Laguerre case is quite similar. According to (4.2.14), the normalized

polynomials for the weight wα on the interval (0,∞) can be taken to be

ϕn(x) = an L(α)n (x), an =
[

n !
�(n + α + 1)

]1/2

.

Therefore the corresponding expansion of a function f ∈ L2
wα

is

∞∑
n=0

cn L(α)n (x), cn = n !
�(n + α + 1)

∫ ∞

0
f (x) L(α)n (x) xα e−x dx .

(4.8.14)



130 Orthogonal polynomials

Theorem 4.8.4 Suppose that f (x) is a real-valued function that satisfies∫ ∞

−∞
f (x)2 xα e−x dx < ∞, (4.8.15)

and suppose that f satisfies the condition (4.8.3) at the point x, 0 < x < ∞.
Then the series (4.8.14) converges to f (x).

The argument here is similar to, but somewhat more complicated than, the
proof of Theorem 4.8.1. We refer to Uspensky’s paper [291] for the details.

The proof of the corresponding result for Jacobi polynomials is simpler,
because we have already established the necessary estimates. According to
(4.2.15), the orthonormal polynomials for the weight wαβ on the interval
(−1, 1) can be taken to be

ϕn(x) = an P(α,β)n (x), an =
[

n ! (2n + α + β + 1) �(n + α + β + 1)

2α+β+1�(n + α + 1) �(n + β + 1)

]1/2

.

Therefore the corresponding expansion of a function f in L2
wαβ

is

∞∑
n=0

cn P(α,β)n (x), cn = n ! (2n + α + β + 1) �(n + α + β + 1)

2α+β+1�(n + α + 1) �(n + β + 1)

×
∫ 1

−1
f (x) P(α,β)n (x) (1 − x)α(1 + x)β dx .

(4.8.16)

Theorem 4.8.5 Suppose that f (x) is a real–valued function that satisfies∫ 1

−1
f (x)2 (1 − x)α(1 + x)β dx < ∞, (4.8.17)

and suppose that f satisfies the condition (4.8.3) at the point x, −1 < x < 1.
Then the series (4.8.16) converges to f (x).

Proof It follows from (4.8.2) that the partial sums fn of the series (4.8.16)
satisfy

fn(x)− f (x) =
∫ 1

−1
K (α,β)

n (x, y)
[

f (y)− f (x)
]
(1 − y)α(1 + y)β dy,

where the Dirichlet kernel here is given by (4.3.19)

K (α,β)
n (x, y) = 2−α−β (n + 1) !�(n + α + β + 2)

(2n + α + β + 2)�(n + α + 1) �(n + β + 1)

×
[

P(α,β)n+1 (x)P
(α,β)
n (y)− P(α,β)n (x)P(α,β)n+1 (y)

x − y

]
.
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It follows from (2.1.9) that the coefficient here is O(n) as n → ∞. The

asymptotic result (4.6.11) implies that P(α,β)n (x) is O
(
n− 1

2
)

as n → ∞. Thus
to prove the result we only need to show that the inner product

(P(α,β)n , h) ≡
∫ 1

−1
P(α,β)n (y) h(y) (1 − y)α(1 + y)β dy = o

(
n− 1

2

)
as n → ∞, where h(y) = [ f (y)− f (x)]/(y − x).

Let {Qn} be the normalized polynomials

Qn(x) = ||P(α,β)n ||−1 P(α,β)n (x).

By (4.2.15) and (2.1.9), ||P(α,β)n || is O(n−1/2). Therefore it is enough to show
that

(Qn, h) = o(1). (4.8.18)

The assumptions (4.8.3) and (4.8.15) imply that h is square-integrable, so
(4.8.18) follows from (4.1.12). �

4.9 Functions of second kind

A principal result of Section 4.3 was that, in the three cases considered, the
function

u(x) = 1

w(x)

∫
C

pν(z) w(z) dz

(z − x)ν+1
(4.9.1)

is a solution of the equation(
pwu′)′ + λνwu = 0, λν = −νq ′ − 1

2
ν(ν − 1)p′′ (4.9.2)

for non-negative integer values of ν. In each case p was a polynomial of degree
at most 2, q a polynomial of degree at most 1, qw = (pw)′, and the contour
C enclosed x but excluded the zeros of p. This was derived as a consequence
of the Rodrigues equation (4.2.5). We give now, under the assumptions just
stated, a direct proof that (4.9.1) implies (4.9.2). We then note how similar
integral representations of solutions can be obtained for arbitrary ν.

First,

p(x)w(x)u′(x) = (ν + 1)p(x)
∫

C

p(z)ν w(z) dz

(z − x)ν+2

− p(x)w′(x)
w(x)

∫
C

p(z)ν w(z) dz

(z − x)ν+1
.
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By assumption

−pw′ = −(pw)′ + p′w = (p′ − q
)
w,

and since p and q have degree at most 2 and 1, respectively,

p(x) = p(z)− p′(z)(z − x)+ 1

2
p′′(z)(z − x)2,

p′(x)− q(x) = p′(z)− q(z)+ [q ′(z)− p′′(z)
]
(z − x)

= − p(z)w′(z)
w(z)

+ [q ′(z)− p′′(z)
]
(z − x).

Combining the three preceding equations gives(
pwu′)(x) = (ν + 1)

∫
C

p(z)ν+1w(z) dz

(z − x)ν+2

−
∫

C

(ν + 1)p(z)ν p′(z)w(z)+ p(z)ν+1w′(z) dz

(z − x)ν+1

+
[

q ′ + 1

2
(ν − 1)p′′

] ∫
C

p(z)νw(z) dz

(z − x)ν

= (ν + 1)
∫

C

p(z)ν+1w(z) dz

(z − x)ν+2
−
∫

C

[
pν+1w

]′
(z) dz

(z − x)ν+1

+
[

q ′ + 1

2
(ν − 1)p′′

] ∫
C

p(z)νw(z) dz

(z − x)ν
.

Differentiating,(
pwu′)′(x)=(ν + 1)(ν + 2)

∫
C

p(z)ν+1w(z) dz

(z − x)ν+3

− (ν + 1)
∫

C

[
pν+1w

]′
(z) dz

(z − x)ν+2
+
[
νq ′+ 1

2
ν(ν − 1)p′′

]
u(x)w(x).

(4.9.3)

Since

ν + 2

(z − x)ν+3
= − d

dz

{
1

(z − x)ν+2

}
,

an integration by parts gives

(ν + 2)
∫

C

p(z)ν+1w(z) dz

(z − x)ν+3
=
∫

C

(
pν+1w

)′
(z) dz

(z − x)ν+2
. (4.9.4)

Therefore (4.9.3) reduces to (4.9.2)
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For the contour just discussed, the assumption that ν is an integer was nec-
essary in order for the contour to lie in one branch of (s − x)−ν−1: otherwise
the integration by parts results in contributions from the points of C where one
crosses from one branch to another. On the other hand, the argument would
apply to a contour that lies (except possibly for its endpoints) in one branch
of the power, provided that the endpoint contributions vanish. This provides a
way to obtain a solution of (4.9.2) for more general values of ν.

For each of three cases considered above, let I = (a, b) be the associated
real interval, and define a function of second kind

uν(x) = cν
w(x)

∫ b

a

p(s)ν w(s) ds

(s − x)ν+1
, Re ν ≥ 0, x /∈ I. (4.9.5)

In each case pν+1w vanishes at a finite endpoint and vanishes exponentially
at an infinite endpoint of the interval so long as Re ν ≥ 0, so that once again
(4.9.3) leads to (4.9.4). In addition, the argument that led to the recurrence
relations and derivative formulas also carries over to the functions of second
kind. Summarizing, we have the following result.

Theorem 4.9.1 For Re ν ≥ 0 and x not real, the functions

uν1(x) = (−1)n n ! ex2
∫ ∞

−∞
e−s2

ds

(s − x)ν+1
; (4.9.6)

uν2(x) = x−αex
∫ ∞

0

sν+αe−s ds

(s − x)ν+1
; (4.9.7)

uν3(x) = 1

2ν
(1 − x)−α(1 + x)−β

∫ 1

−1

(1 − s)ν+α(1 + s)ν+β ds

(s − x)ν+1
(4.9.8)

satisfy the equations

u′′
ν1(x)− 2x u′

ν1(x)+ 2νuν1(x) = 0;
x u′′

ν2(x)+ (α + 1 − x) u′
ν2(x)+ νuν2(x) = 0;(

1 − x2) u′′
ν3(x)+

[
β − α − (α + β + 2)x

]
u′
ν3(x)

+ ν(ν + α + β + 1)uν3(x) = 0

respectively. Moreover, for Re ν ≥ 1 they satisfy the corresponding recurrence
and derivative equations (4.3.6), (4.3.9) for uν1, (4.3.7), (4.3.10), (4.3.14) for
uν2, and (4.3.8), (4.3.11), (4.3.14) for uν3, with n replaced by ν.

As the preceding proof shows, the basic result here holds in greater gener-
ality than the three specific cases considered above.
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Theorem 4.9.2 Suppose that p is a polynomial of degree at most 2, q a
polynomial of degree at most 1, pw′/w = q − p′, and ν, x0 are complex
numbers. Suppose that C is an oriented contour in a region where pν and
(z − x0)

ν are holomorphic, and that the functions

p(z)ν w(z)

(z − x0)ν
,

p(z)ν+1w(z)

(z − x0)ν+1

are integrable on C, while the limit along the curve of

p(z)ν+1w(z)

(z − x0)ν+2

as z approaches the (finite or infinite) endpoints a and b is zero. Then the
function

uν(x) = 1

w(x)

∫
C

p(z)ν w(z) dz

(z − x)ν+1

is a solution of the equation

(pwu′)′ + λνw u = 0, λν = −νq ′ − 1

2
ν(ν − 1)p′′

in any region containing x0 in which the assumptions continue to hold.

4.10 Exercises

4.1 Show that the kernel Kn in Proposition 4.1.1 is uniquely determined by
the conditions (i) it is a polynomial of degree n in x and in y and (ii) the
identity (4.1.5) holds for every polynomial of degree ≤ n.

4.2 Prove (4.1.6). Hint: show that the function on the right-hand side
satisfies the conditions in Exercise 4.1.

4.3 Verify that the normalizations (4.2.10), (4.2.11), (4.2.12) lead to
(4.2.13), (4.2.14), and (4.2.15), respectively.

4.4 Verify the limit (4.2.17), at least for the leading coefficients.
4.5 Verify the limit (4.2.18), at least for the leading coefficients.
4.6 Verify one or more of the identities (4.3.5).
4.7 Use (4.3.5) and the normalizations (4.2.10), (4.2.11), (4.2.12) to verify

the identities (4.3.6), (4.3.7), (4.3.8).
4.8 Use (4.2.7) and the normalizations (4.2.10), (4.2.11), (4.2.12) to verify

the identities (4.3.9), (4.3.10), (4.3.11).
4.9 Use the method for (4.3.3) applied to (4.3.12) to derive one or more of

the identities (4.3.13), (4.3.14), (4.3.15).
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4.10 Prove a converse to the result in Section 4.4: the recurrence relation
(4.4.4) can be derived from the generating function formula (4.4.6).

4.11 Prove the addition formula (4.4.7).
4.12 Prove the addition formula (4.4.8).
4.13 Prove

lim
n→∞

( x

n

)n
Hn

( n

2x

)
= e−x2

.

4.14 Prove that if a2 + b2 = 1, then

Hn(ax + by) =
n∑

k=0

(
n

k

)
Hn−k(x) Hk(y) an−kbk .

4.15 Let un(x) = e−x2/2 Hn(x). Prove that the Fourier transform of un ,

1√
2π

∫ ∞

−∞
e−i xξun(x) dx,

is (−i)n un(ξ). Hint: use the identity exp(−i xξ + 1
2 x2) =

eξ
2/2 exp

( 1
2 [x − iξ ]2

)
.

4.16 Prove that

1

2n n !
∫ ∞

−∞
Hn(x)2

1 + x2
e−x2

dx =
∫ ∞

−∞

(
1 − x2

1 + x2

)n
e−x2

1 + x2
dx .

Hint: (i) set y = x in (4.4.17) and multiply both sides by e−x2
/(1 + x2).

(ii) Integrate the resulting equation on both sides with respect to x and
evaluate the integral on the right by making the change of variables
x = √

(1 + s)/(1 − s) y.
4.17 Prove the lower bounds in Theorem 4.4.2 by using the gauge

transformation Hn(x) = ex2/2hn(x) and noting that the zeros of Hn and
hn coincide.

4.18 Prove the upper bounds in Theorem 4.4.2 by using the gauge
transformation Hn(x) = ex2/2hn(x) and then writing hn(x) = un(y),
y = x

√
2n + 1. Use Corollary 3.3.5 to relate the kth positive zero of un

to that of u2k (n even) or u2k+1 (n odd), and thus relate xkn to
xk,2k <

√
4k + 1 or to xk,2k+1 <

√
4k + 3.

4.19 Prove

lim
α→∞α

−n L(α)n (αx) = (1 − x)n

n ! .

4.20 Verify (4.5.5) by comparing coefficients, as in the derivation of (4.4.4).
4.21 Show that (4.5.5) can be derived from the generating function formula

(4.5.7).
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4.22 Prove the addition formula (4.5.8).
4.23 Prove the addition formula

L(α+β+1)
n (x + y) =

n∑
k=0

L(α)n−k(x) L(β)k (y).

4.24 Expand the integrand in series to prove Koshlyakov’s formula [163]:

L(α+β)
n (x) = �(n + α + β + 1)

�(β) �(n + α + 1)

∫ 1

−1
tα(1 − t)β−1 L(α)n (xt) dt.

4.25 The Laplace transform of a function f (x) defined for x ≥ 0 is the
function L f defined by[

L f
]
(s) =

∫ ∞

0
e−sx f (x) dx

for all values of s for which the integral converges. Show that the
Laplace transform of xαL(α)n is

�(n + α + 1)

n !
(s − 1)n

sn+α+1
, Re s > 1.

4.26 Prove

lim
α→∞α

−n P(α,β)n (x) = 1

n !
(

1 + x

2

)n

.

4.27 Prove (4.6.6) by showing that the functions on the right-hand side are
orthogonal to polynomials in x of lower degree, with respect to the
weight function

(
1 − x2

)α and comparing coefficients at x = −1.
4.28 Prove Theorem 4.6.1: use (4.6.9) and Theorem 3.3.3 to prove the lower

bounds, then use (4.6.1) and the lower bounds to obtain the upper
bounds. (Note that x → −x corresponds to θ → π − θ .)

4.29 Suppose that f and its derivatives of order ≤ n are bounded on the
interval (−1, 1). Show that∫ 1

0
f (x) P(α,β)n (x) (1 − x)α(1 + x)β dx

= 1

2n n !
∫ 1

0
f (n)(x)(1 − x)n+α(1 + x)n+β dx .

4.30 Show that for integers m ≥ n,∫ 1

0
(1 + x)m P(α,β)n (x) (1 − x)α(1 + x)β dx

=
(

m

n

)
�(n + α + 1) �(m + β + 1)

�(n + m + α + β + 2)
2n+m+α+β+1.
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4.31 Derive the recurrence relation (4.7.3) from the generating function
(4.7.2) by differentiating both sides of (4.7.2) with respect to s,
multiplying by

(
1 − 2xs + x2

)
, and equating coefficients of s.

4.32 Derive the identity (4.7.5) from (4.7.2).
4.33 Derive the generating function (4.7.2) from the recurrence relation

(4.7.3).
4.34 Prove∫ 1

−1
xn+2k Pn(x) dx = (n + 2k) !

2n (2k) !
�
(
k + 1

2

)
�
(
n + k + 3

2

) , k = 0, 1, 2, . . .

4.35 Derive the recurrence relation (4.7.15) and the identity (4.7.16) from the
generating function (4.7.18).

4.36 Derive (4.7.23) from (4.7.20) and the special cases U0, U1.
4.37 Derive (4.7.20) and (4.7.21) from (4.7.23).
4.38 Use the generating function to show that the Legendre polynomials

satisfy the following: for even n = 2m, P ′
n(0) = 0 and

Pn(0) = (−1)m
( 1

2

)
m

m ! = (−1)m
�
(
m + 1

2

)
√
π �(m + 1)

,

while for odd n = 2m + 1, Pn(0) = 0 and

P ′
n(0) = (−1)m

( 3
2

)
m

m ! = (−1)m
2�
(
m + 3

2

)
√
π �(m + 1)

.

4.39 Use the functional equation for the gamma function to show that the
sequence

√
m �

(
m + 1

2

)
�(m + 1)

is increasing, and use (2.1.9) to find the limit. Deduce from this and
Exercise 4.38 that (4.7.11) is true for n even.

4.40 Prove (4.7.11) for n odd.
4.41 Use Exercise 4.30 to show that for any integer m ≥ 0,

(1 + x)m =
m∑

n=0

cn P(α,β)n (x),

where

cn = �(n + α + β + 1)

�(2n + α + β + 1)

m ! (n + β + 1)m−n

(2n + α + β + 1)m−n
2m .
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4.42 Prove that if the assumption (4.8.3) in any of the theorems of 4.8 is
replaced by the conditions (4.8.12), then the corresponding series
converges to [ f (x+)+ f (x−)]/2. Hint: by subtracting a function that
satisfies (4.8.3) at x one can essentially reduce this to the fact that the
integral, over an interval centered at x , of a function that is odd around
x , is zero.

4.11 Summary

4.11.1 General orthogonal polynomials

Suppose that w(x) > 0 on an interval (a, b), with finite moments

An =
∫ b

a
xn w(x) dx .

Let �−1 = 1 and let �n , n ≥ 0, be the (n + 1)× (n + 1) determinant

�n =

∣∣∣∣∣∣∣∣∣
A0 A1 . . . An

A1 A2 . . . An+1
. . .

An An+1 . . . A2n

∣∣∣∣∣∣∣∣∣ > 0.

The polynomials

Qn(x) =

∣∣∣∣∣∣∣∣∣
A0 A1 . . . An−1 1
A1 A2 . . . An x

. . .

An An+1 . . . A2n−1 xn

∣∣∣∣∣∣∣∣∣
are orthogonal with respect to the inner product

( f, g) =
∫ b

a
f (x) g(x) w(x) dx

and

(Qn, Qn) = �n−1�n,

so the polynomials

Pn(x) = 1√
�n−1�n

Qn(x)
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are orthonormal. They satisfy the recurrence relation

x Pn(x) = an Pn+1(x)+ bn Pn(x)+ an−1 Pn−1(x),

which implies the Christoffel–Darboux formula

an

[
Pn+1(x)Pn(y)− Pn(x)Pn+1(y)

x − y

]
=

n∑
j=0

Pj (x)Pj (y)

and the limiting form

an
[
P ′

n+1(x)Pn(x)− Pn+1(x)P
′
n(x)

] =
n∑

j=0

Pj (x)
2.

The polynomial Pn has n distinct real roots in the interval (a, b); each root of
Pn−1 lies between consecutive roots of Pn .

If for some c > 0 ∫ b

a
e2c|x |w(x) dx <∞,

then for any f ∈ L2
w

f =
∞∑

n=0

( f, Pn) Pn .

The partial sums of this series are

n∑
j=0

( f, Pj )Pj (x) =
∫ b

a
Kn(x, y) f (y) w(y) dy,

where the Dirichlet kernel Kn for {Pm} is

Kn(x, y) = an

[
Pn+1(x)Pn(y)− Pn(x)Pn+1(y)

x − y

]
.

4.11.2 Classical polynomials: general properties, I

Rodrigues formula:

ψn(x) = w(x)−1 dn

dxn

{
p(x)nw(x)

}
.
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Limiting relations:

Hn(x) = lim
α→+∞

2n n !
αn/2

P(α,α)n

(
x√
α

)
;

L(α)n (x) = lim
β→+∞ P(α,β)n

(
1 − 2x

β

)
.

4.11.3 Classical polynomials: general properties, II

Integral version of the Rodrigues formula:

ψn(x)

n! = 1

2π i

∫
�

w(z)

w(x)

p(z)n

(z − x)n
dz

z − x
.

This can be used to calculate the exponential generating function

G(x, s) =
∞∑

n=0

ψn(x)

n! sn

= w(ζ )

w(x)
· 1

1 − s p′(ζ )
, ζ − s p(ζ ) = x,

coefficients of the three-term recurrence relation

anϕn+1(x) = [bn0 + bn1x]ϕn(x)+ cnϕn−1(x), ϕn(x) = ψn(x) w(x)

n ! ,

and derivative formula

p(x) ϕ′
n(x) = cn(x) ϕn(x)+ dn ϕn−1(x).

The three-term recurrence formula allows computation of the Dirichlet kernel
Kn(x, y).

Results of these calculations are given in the summaries for Hermite,
Laguerre, and Jacobi polynomials.

4.11.4 Hermite polynomials

The Hermite polynomials
{

Hn
}

are orthogonal polynomials associated with

the weight w(x) = e−x2
on the line. They are eigenfunctions

H ′′
n (x)− 2x H ′

n(x)+ 2n Hn(x) = 0,

and can be defined by the Rodrigues formula

Hn(x) = (−1)nex2 dn

dxn

{
e−x2} =

(
2x − d

dx

)n

{1}.
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They satisfy identities

Hn(−x) = (−1)n Hn(x);
Hn+1(x) = 2x Hn(x)− 2n Hn−1(x);

H ′
n(x) = 2n Hn−1(x);

Hn(x) =
∑
2 j≤n

(−1) j n !
j ! (n − 2 j) ! (2x)n−2 j .

First six of the Hn :

H0(x) = 1;
H1(x) = 2x;
H2(x) = 4x2 − 2;
H3(x) = 8x3 − 12x;
H4(x) = 16x4 − 48x2 + 12;
H5(x) = 32x5 − 160x3 + 120x .

Generating function:

G(x, s) =
∞∑

n=0

Hn(x)

n! sn = e2xs−s2
.

Addition formulas:

Hn(x + y) =
∑

j+k+2l=n

n !
j ! k ! l ! Hj (x) Hk(y)

= 2− 1
2 n

n∑
m=0

(
n

m

)
Hm
(√

2 x
)

Hn−m
(√

2 y
)
.

Norms:

||Hn||2 ≡
∫ ∞

−∞
Hn(x)

2 e−x2
dx = 2nn ! √π.

Inner products:

( f, Hn) ≡
∫ ∞

−∞
f (x) Hn(x) e−x2

dx =
∫ ∞

−∞
e−x2

f (n)(x) dx;
(
xn+2k, Hn

) = (n + 2k) !
(2k) ! �

(
k + 1

2

)
;
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(
eax , Hn

) = ane
1
4 a2 √

π;

(cos bx, Hn) =
{√
π(ib)ne− 1

4 b2
, n even,

0, n odd;

(sin bx, Hn) =
{

−i
√
π(ib)ne− 1

4 b2
, n odd,

0, n even.

Integral representation:

Hn(x) = (−1)n
ex2

√
π

∫ ∞

−∞
(−2i t)ne−2i xt−t2

dt.

Generating function for products:

∞∑
n=0

Hn(x)Hn(y)

2nn ! sn = 1√
1 − s2

exp

(
2xys − s2x2 − s2 y2

1 − s2

)
.

The relative maxima of |e−x2/2 Hn(x)| increase as |x | increases.
Hn(x) has n simple roots in the interval −√

2n + 1 < x <
√

2n + 1; the
positive roots 0 < x1n < x2n < . . . satisfy the inequalities

(2k − 1)π

2
√

2n + 1
< xkn <

4k + 1√
2n + 1

, k = 1, 2, . . . ,m, n = 2m;

kπ√
2k + 1

< xkn <
4k + 3√
2n + 1

, k = 1, 2, . . . ,m, n = 2m + 1.

Dirichlet kernel:

K H
n (x, y) = 1

2n+1n !√π
[

Hn+1(x)Hn(y)− Hn(x)Hn+1(y)

x − y

]
.

Discriminant:

DH
n = 23n(n−1)/2

n∏
j=1

j j .

Asymptotic behavior as n → ∞:

Hn(x) = 2
1
2 n 2

1
4 (n !) 1

2

(nπ)
1
4

e
1
2 x2
[

cos

(√
2n + 1 x − 1

2
nπ

)
+ O

(
n− 1

2

)]
.



4.11 Summary 143

If the weight is taken instead as w(x) = e− 1
2 x2

, the orthogonal polynomials,
denoted by {Hen}, satisfy

He′′
n(x)− x He′

n(x)+ n Hen(x) = 0;

Hen(x) =
[

x − d

dx

]n

{1} = 2−n/2 Hn

(
x√
2

)
.

Relation to Laguerre polynomials:

H2n(x) = (−1)n22nn ! L

(
− 1

2

)
n

(
x2), n = 0, 1, 2, . . . ,

H2n+1(x) = (−1)n22n+1n ! x L

( 1
2

)
n
(
x2), n = 0, 1, 2, . . .

4.11.5 Laguerre polynomials

The Laguerre polynomials
{

L(α)n
}

are orthogonal polynomials associated with
the weight xαe−x dx on the half line x > 0. For a given α > −1 they are
eigenfunctions

x
[
L(α)n

]′′
(x)+ (α + 1 − x)

[
L(α)n

]′
(x)+ n L(α)n (x) = 0;

and can be defined by the Rodrigues formula

L(α)n (x) = 1

n ! x−αex dn

dxn

{
xα e−x xn} = 1

n !
[

d

dx
+ α

x
− 1

]n

{xn}.

They satisfy the identities

x L(α)n (x) = −(n + 1)L(α)n+1(x)+ (2n + α + 1)L(α)n (x)− (n + α) L(α)n−1(x);[
L(α)n

]′
(x) = −L(α+1)

n−1 (x);
x
[
L(α)n

]′
(x) = n L(α)n (x)− (n + α) L(α)n−1(x);

L(α)n (x) =
n∑

k=0

(−1)k
(α + 1)n

k ! (n − k) !(α + 1)k
xk .

First four Laguerre polynomials:

L(α)0 (x) = 1;
L(α)1 (x) = α + 1 − x;
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L(α)2 (x) = (α + 1)(α + 2)

2
− (α + 2) x + 1

2
x2;

L(α)3 (x) = (α + 1)(α + 2)(α + 3)

6
− (α + 2)(α + 3)

2
x+ (α + 3)

2
x2 − 1

6
x3.

Alternate notation in the case α = 0:

L(0)n (x) = Ln(x).

Generating function:

G(x, s) ≡
∞∑

n=0

L(α)n (x) sn = e−xs/(1−s)

(1 − s)α+1
.

Addition formula:

L(α)n (x + y) =
∑

j+k+l=n

(−1) j (α + 2 − j) j

j ! L(α)k (x) L(α)l (y).

Norms: ∣∣∣∣L(α)n

∣∣∣∣2 ≡
∫ ∞

−∞
[
L(α)n (x)

]2
xα e−x dx = �(α + n + 1)

n! .

Inner products:(
f, L(α)n

)≡∫ ∞

0
L(α)n (x) f (x) xαe−x dx = (−1)n

n !
∫ ∞

0
e−x f (n)(x)xn+α dx;

(
xm, L(α)n

) = (−1)n
(

m

n

)
�(α + m + 1);

(
e−ax , L(α)n

) = an �(n + α + 1)

n ! (a + 1)n+α+1
, Re a > −1.

Relation to confluent hypergeometric functions (Kummer functions):

L(α)n (x) = (α + 1)n
n ! 1 F1(−n, α + 1; x) = (α + 1)n

n ! M(−n, α + 1; x).

L(α)n (x) has n simple roots in the interval

0 < x < 2n + α + 1 +
√
(2n + α + 1)2 + (1 − α2).

The relative maxima of |e−x/2x (α+1)/2L(α)n (x)| increase as x increases.
Dirichlet kernel:

K (α)
n (x, y) = − (n + 1) !

�(n + α + 1)

[
L(α)n+1(x)L

(α)
n (y)− L(α)n (x)L(α)n+1(y)

x − y

]
.
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Discriminant:

D(α)n =
n∏

j=1

j j−2n+2( j + α) j−1.

Asymptotic behavior as n → ∞:

L(α)n (x) = e
1
2 x n

1
2α− 1

4

√
π x

1
2α+ 1

4

[
cos

(
2
√

nx − 1

2

[
α + 1

2

]
π

)
+ O

(
n− 1

2

)]
,

uniformly on any subinterval 0 < δ ≤ x ≤ δ−1.

4.11.6 Jacobi polynomials

Jacobi polynomials
{

P(α,β)n
}

with indices α, β > −1 are orthogonal with
respect to the weight (1 − x)α(1 + x)β on the interval (−1, 1); the norms are

||P(α,β)n ||2 = 2α+β+1 �(n + α + 1) �(n + β + 1)

n ! (2n + α + β + 1) �(n + α + β + 1)
.

They are eigenfunctions(
1 − x2) [P(α,β)n

]′′
(x)+ [β − α − (α + β + 2)x

] [
P(α,β)n

]′
(x)

+ n(n + α + β + 1) P(α,β)n (x) = 0

and can be defined by the Rodrigues formula

P(α,β)n (x) = (−1)n

n ! 2n
(1 − x)−α(1 + x)−β dn

dxn

{
(1 − x)α+n(1 + x)β+n}.

They satisfy the identities

P(α,β)n (−x) = (−1)n P(β,α)n (x);
(2n + 2)(n + α + β + 1)

2n + α + β + 1
P(α,β)n+1 (x)

=
[
α2 − β2

2n + α + β + (2n + α + β + 2) x

]
P(α,β)n (x)

− 2(2n + α + β + 2)(n + α)(n + β)
(2n + α + β)(2n + α + β + 1)

P(α,β)n−1 (x);
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[
P(α,β)n

]′
(x) = 1

2
(n + α + β + 1) P(α+1,β+1)

n−1 (x);
(
1 − x2)[P(α,β)n

]′
(x) =

[
n(α − β)

2n + α + β − nx

]
P(α,β)n (x)

+ 2(n + α)(n + β)
2n + α + β P(α,β)n−1 (x);

P(α,α)2n (x) = (n + α + 1)n
(n + 1)n

P

(
α,− 1

2

)
n

(
2x2 − 1

);
P(α,α)2n+1 (x) = (n + α + 1)n+1

(n + 1)n+1
x P

(
α,

1
2

)
n

(
2x2 − 1

)
.

The endpoint values are

P(α,β)n (1) = (α + 1)n
n ! , P(α,β)n (−1) = (−1)n

(β + 1)n
n ! .

The Jacobi polynomials satisfy

sup
|x |≤1

|P(α,β)n (x)| = max

{
(α + 1)n

n ! ,
(β + 1)n

n !
}
, if α or β ≥ − 1

2 .

Generating function:

G(x, s) ≡
∞∑

n=0

P(α,β)n (x) sn = 2α+β

R (1 − s + R)α(1 + s + R)β
,

R =
√

1 − 2xs + s2.

Dirichlet kernel:

K (α,β)
n (x, y) = 2−α−β (n + 1) !�(n + α + β + 2)

(2n + α + β + 2)�(n + α + 1) �(n + β + 1)

×
[

P(α,β)n+1 (x)P
(α,β)
n (y)− P(α,β)n (x)P(α,β)n+1 (y)

x − y

]
.

Discriminant:

D(α,β)n = 1

2n(n−1)

n∏
j=1

j j−2n+2( j + α) j−1( j + β) j−1

(n + j + α + β) j−n
.
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The Liouville transformation converts the equation for Jacobi polynomials to

u′′(θ)

+
[
(2n +α+β + 1)2

4
+ (1 + 2α)(1 − 2α)

16 sin2 1
2θ

+ (1 + 2β)(1 − 2β)

16 cos2 1
2θ

]
u(x)= 0.

It follows that, for α2 ≤ 1
4 and β2 ≤ 1

4 , if cos θ1n < . . . < cos θnn are the zeros

of P(α,β)n ,

(k − 1 + γ )π
n + γ ≤ θkn ≤ kπ

n + γ , γ = 1

2
(α + β + 1).

Asymptotics as n → ∞:

P(α,β)n (cos θ) = cos
(
nθ + 1

2 (α + β + 1)θ − 1
2απ − 1

4π
)+ O

(
n− 1

2
)

√
nπ
(

sin 1
2θ
)α+ 1

2
(

cos 1
2θ
)β+ 1

2

,

uniformly on any subinterval 0 < δ ≤ θ ≤ π − δ.
Relation between Jacobi polynomials and hypergeometric functions:

P(α,β)n (x) = (α + 1)n
n ! F

(
α + β + 1 + n,−n, α + 1; 1

2
(1 − x)

)
.

4.11.7 Legendre and Chebyshev polynomials

Legendre polynomials: w(x) = 1,

Pn(x) = P(0,0)n (x).

Eigenvalue equation:(
1 − x2) P ′′

n (x)− 2x P ′
n(x)+ n(n + 1) Pn(x) = 0.

Generating function:

∞∑
n=0

Pn(x) sn = (1 − 2xs + s2)− 1
2 .

The general recurrence and derivative formulas specialize to

(n + 1)Pn+1(x) = (2n + 1)x Pn(x)− n Pn−1(x);(
1 − x2)P ′

n(x) = −nx Pn(x)+ n Pn−1(x);
P ′

n(x) = 2x P ′
n−1(x)− P ′

n−2(x)+ Pn−1(x).
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Two integral representations:

Pn(cos θ) = 1

2π

∫ 2π

0
(cos θ + i sin θ sinα)n dα

= 1

π

∫ 1

0

cos
(
s
(
n + 1

2

)
θ
)

cos 1
2 sθ

ds√
s(1 − s)

.

Dirichlet kernel:

K (0,0)
n (x, y) = n + 1

2

[
Pn+1(x)Pn(y)− Pn(x)Pn+1(y)

x − y

]
.

Legendre polynomials satisfy

sup
|x |≤1

∣∣Pn(x)
∣∣ = 1.

Relative maxima of |Pn(cos θ)| decrease as θ increases for 0 ≤ θ ≤ 1
2π and

increase as θ increases for 1
2π ≤ θ ≤ π .

Relative maxima of | sin θ Pn(cos θ)| increase with θ for 0 ≤ θ ≤ 1
2π and

decrease as θ increases for 1
2π ≤ θ ≤ π . Moreover,∣∣∣∣(sin θ)

1
2 Pn(cos θ)

∣∣∣∣ < ( 2

nπ

) 1
2
.

Let cos θ1n, . . . , cos θnn be the zeros of Pn(x), θ1n < · · · < θnn . Then(
k − 1 + 1

2

)
π

n + 1
2

< θkn <
kπ

n + 1
2

.

Turán’s inequality:

Pn(x)
2 − Pn−1(x) Pn+1(x) ≥ 0.

Chebyshev (or Tchebycheff ) polynomials {Tn} and {Un}: the cases α = β =
− 1

2 and α = β = 1
2 , respectively. Gegenbauer polynomials or ultraspherical

polynomials {Cλn }: the general case α = β:

Cλn (x) = (2λ)n(
λ+ 1

2

)
n

P

(
λ− 1

2 ,λ− 1
2

)
n (x);

C0
n(x) = Tn(x), C

1
2
n (x) = Pn(x), C1

n(x) = Un(x).

Chebyshev polynomials of the first kind:

Tn(cos θ) = cos nθ.
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The square of the L2 norm is π if n = 0, and∫ π

0
cos2 nθ dθ = π

2
, n > 0.

Recurrence and derivative formulas:

Tn+1(x)+ Tn−1(x) = 2x Tn(x), n ≥ 1;

(
1 − x2)T ′

n(x)
∣∣∣
x=cos θ

= −sin θ
d

dθ
cos nθ = −nxTn(x)+ nTn−1(x).

Dirichlet kernel:

K T
n (x, y) = 1

π

[
Tn+1(x)Tn(y)− Tn(x)Tn+1(y)

x − y

]
.

Generating function:

GT (x, s) =
∞∑

n=0

Tn(x) sn = 1 − xs

1 − 2xs + s2
.

Chebyshev polynomials of the second kind:

Un(cos θ) = sin(n + 1)θ

sin θ
.

The square of the L2 norm is∫ π

0
sin2 (n + 1)θ dθ = π

2
.

Recurrence and derivative formulas:

Un+1(x)+ Un−1(x) = 2xUn(x);
(1 − x2)U ′

n(x) = −nx Un(x)+ (n + 1)Un−1(x).

Dirichlet kernel:

K U
n (x, y) = 1

π

[
Un+1(x)Un(y)− Un(x)Un+1(y)

x − y

]
.

Generating function:

GU (x, s) =
∞∑

n=0

Un(x) sn = 1

1 − 2xs + s2
.
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Other cases:

P

(
− 1

2 ,
1
2

)
n (cos θ) =

( 1
2

)
n

n !
cos
(
n + 1

2θ
)

cos 1
2θ

;

P

( 1
2 ,−

1
2

)
n (cos θ) =

( 1
2

)
n

n !
sin
(
n + 1

2θ
)

sin 1
2θ

.

Special cases of hypergeometric functions:

F

(
n,−n,

1

2
; 1

2
[1 − cos θ ]

)
= cos(nθ);

F

(
n + 2,−n,

3

2
; 1

2
[1 − cos θ ]

)
= sin(n + 1)θ

(n + 1) sin θ
;

F

(
n + 1,−n,

1

2
; 1

2
[1 − cos θ ]

)
= cos

(
n + 1

2

)
θ

cos 1
2θ

;

F

(
n + 1,−n,

3

2
; 1

2
[1 − cos θ ]

)
= sin

(
n + 1

2

)
θ

(2n + 1) sin 1
2θ
.

4.11.8 Expansion theorems

Suppose that f is a piecewise continuously differentiable function that is
square integrable with respect to one of the weights associated with the
classical orthogonal polynomials. The corresponding series expansion of f
takes one of the forms

∞∑
n=0

cn Hn(x), cn = 1

2n
√
π n !

∫ ∞

−∞
f (x) Hn(x) e−x2

dx

in the Hermite case,

∞∑
n=0

cn L(α)n (x), cn = n !
�(n + α + 1)

∫ ∞

0
f (x) L(α)n (x) xα e−x dx

in the Laguerre case, or

∞∑
n=0

cn P(α,β)n (x), cn = n ! (2n + α + β + 1) �(n + α + β + 1)

2α+β+1�(n + α + 1) �(n + β + 1)

×
∫ 1

−1
f (x) P(α,β)n (x) (1 − x)α(1 + x)β dx
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in the Jacobi case. The series converges to f (x) at every point x of continuity,
and converges to

[
f (x+)+ f (x−)]/2 at every point x of discontinuity, in the

open interval. (For weaker, pointwise conditions on f , see Section 4.8.)

4.11.9 Functions of second kind

The complex integral representation for the classical orthogonal polynomials
can be adapted to give an integral representation for other values of the
parameter ν. In each of the three cases let I = (a, b) denote the associated
real interval. The associated function of second kind

uν(x) = cν
w(x)

∫ b

a

p(s)ν w(s) ds

(s − x)ν+1
, Re ν ≥ 0, x /∈ I,

is a solution of the corresponding equation

p(x) u′′(x)+ q(x) u′(x)+ λν u(x) = 0, λν = −ν q ′ − ν(ν − 1)

2
p′′,

for Re ν ≥ 0, x not real. This result also holds in somewhat greater generality:
Theorem 4.9.2.

4.12 Remarks

General orthogonal polynomials are an integral part of the theory of moments,
continued fractions, and spectral theory; see, for example, Akhiezer [5] and the
various books cited below.

Legendre and Hermite polynomials were the first to be studied, and most
of the general theory was first worked out in these cases. Legendre found
recurrence relations and the generating function for Legendre polynomials in
1784–5 [180, 181]; Legendre and Laplace [175] found the orthogonality rela-
tion. Rodrigues proved the Rodrigues formula for the Legendre polynomials
in 1816 [241]. Schläfli [250] gave the integral formula (4.3.1) for the Legendre
polynomials in 1881. The series expansion (4.6.12) for Legendre polynomials
was given by Murphy in 1835 [211].

Hermite polynomials occur in the work of Laplace on celestial mechanics
[175] and on probability [176, 177], and in Chebyshev’s 1859 paper [47], as
well as in Hermite’s 1864 paper [126]. Laguerre polynomials for α = 0 were
considered by Lagrange [170], Abel [2], Chebyshev [47], Laguerre [172] and,
for general α, by Sonine [265].

Jacobi polynomials in full generality were introduced by Jacobi in 1859
[143]. The special case of Chebyshev polynomials was studied by Chebyshev
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in 1854 [44]. Gegenbauer polynomials were studied by Gegenbauer in 1874
[111, 112]. The Christoffel–Darboux formula was found by Chebyshev [45]
in 1855, then rediscovered in the case of Legendre polynomials by Christoffel
[51] in 1858 and in the general case by Christoffel [53] and Darboux [62] in
1877–8. Further remarks on the history are contained in several of the books
cited below, and in Szegő’s article and Askey’s addendum [280].

A common approach to the classical orthogonal polynomials is to use
the generating function formulas (4.4.6), (4.5.7), and (4.6.7) as definitions.
The three-term recurrence relations and some other identities are easy
consequences, as is orthogonality (once one has selected the correct weight)
in the Hermite and Laguerre cases. The fact that the polynomials are the
eigenfunctions of a symmetric second-order operator is easily established,
but in the generating function approach this fact appears as something of
a (fortunate) accident. It does not seem clear, from the generating function
approach, why it is these polynomials and no others that have arisen as the
“classical” orthogonal polynomials. In our view the characterization theorem,
Theorem 3.4.1, the connection with the basic equations of mathematical
physics in special coordinates (Section 3.6), and the characterization of
“recursive” second-order equations (Section 1.1) provide natural explanations
for the significance of precisely this set of polynomials.

The approach used in this chapter, deriving basic properties directly from
the differential equation via the Rodrigues formula and the resulting complex
integral representation, is the one used by Nikiforov and Uvarov [219].

The classical orthogonal polynomials are treated in every treatise or hand-
book of special functions. Some more comprehensive sources for the classical
and general orthogonal polynomials are Szegő’s classic treatise [279], as well
as Askey [14], Chihara [50], Freud [101], Gautschi [108], Geronimus [114],
Ismail [136], Krall [164], Khrushchev [167], Macdonald [193], Nevai [213],
Stahl and Totik [266], Simon [259] and Tricomi [286].

The addition formulas for Hermite and Laguerre polynomials are easily
derived from the generating function representation. There is a classical
addition formula for Legendre polynomials that follows from the connection
of these polynomials with spherical harmonics; see Section 9.1. Gegenbauer
[113] obtained a generalization to all ultraspherical (Gegenbauer) polynomials
(α = β). More recently, Šapiro [247] found a formula valid for β = 0
and Koornwinder [160, 161] found a generalization valid for all Jacobi
polynomials.

Discriminants of Jacobi polynomials were calculated by Hilbert [128] and
Stieltjes [270, 271]. Zeros of Hermite and Laguerre polynomials are treated
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in the report by Hahn [121]. Hille, Shohat, and Walsh compiled an exhaustive
bibliography to 1940 [130].

The three-term recurrence relation for orthogonal polynomials connects
them closely to certain types of continued fractions. The book by Khrushchev
[167] approaches the classical orthogonal polynomials from this point of view
(which was Euler’s).

Expansion in orthogonal polynomials is treated in Sansone [246]. The book
by Van Assche [292] is devoted to asymptotics of various classes of orthogonal
polynomials.

The subject of orthogonal polynomials continues to be a very active area of
research, as evidenced, for example, by the books of Ismail [136] and Stahl and
Totik [266]. Zeros of orthogonal polynomials are related to stationary points
for electrostatic potentials, a fact that was used by Stieltjes in his calculation
of the discriminants of Jacobi polynomials. These ideas have been extended
considerably; see the books of Levin and Lubinsky [185] and Saff and Totik
[245]. For asymptotic results, see the survey article by Wong [319].

We have not touched here on the topic of “q-orthogonal polynomials,”
which are related to the q-difference operator

Dq f (x) = f (x)− f (qx)

(1 − q)x

in ways similar to the ways in which the classical orthogonal polynomials are
related to the derivative. For extensive treatments, see the books by Andrews,
Askey, and Roy [7], Bailey [18], Gasper and Rahman [102], Ismail [136], and
Slater [261].



5

Discrete orthogonal polynomials

In Chapter 4 we discussed the question of polynomials orthogonal with respect
to a weight function, which was assumed to be a positive continuous function
on a real interval. This is an instance of a measure. Another example is a
discrete measure, for example, one supported on the integers with masses
wm , m = 0,±1,±2, . . . Most of the results of Section 4.1 carry over to this
case, although if wm is positive at only a finite number N + 1 of points,
the associated function space has dimension N + 1 and will be spanned by
orthogonal polynomials of degrees zero through N .

In this context the role of differential operators is played by difference
operators. An analogue of the characterization in Theorem 3.4.1 is valid:
up to normalization, the orthogonal polynomials that are eigenfunctions of a
symmetric second-order difference operator are the “classical discrete polyno-
mials,” associated with the names Charlier, Krawtchouk, Meixner, and Hahn.

The theory of the classical discrete polynomials can be developed in a way
that parallels the treatment of the classical polynomials in Chapter 4, using a
discrete analogue of the formula of Rodrigues.

5.1 Discrete weights and difference operators

Suppose that w = {wn}∞n=−∞ is a two-sided sequence of non-negative num-
bers. The corresponding inner product

( f, g) = ( f, g)w =
∞∑

m=−∞
f (m) g(m) wm

is well-defined for all real functions f and g for which the norms || f ||w and
||g||w are finite, where

154
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|| f ||2w = ( f, f )w =
∞∑

m=−∞
f (m)2wm .

The norm and inner product depend only on the values taken by functions
on the integers, although it is convenient to continue to regard polynomials,
for example, as being defined on the line. Polynomials have finite norm if and
only if the even moments

∞∑
m=−∞

m2n wm

are finite. If so, then orthogonal polynomials ψn can be constructed exactly as
in the case of a continuous weight function. Usually we normalize so that w is
a probability distribution:

∞∑
m=−∞

wm = 1.

Again, there is a three-term recurrence relation. Suppose that

ψn(x) = an xn + bn xn−1 + . . .
The polynomial

x ψn(x)− an

an+1
ψn+1 +

(
bn+1

an+1
− bn

an

)
ψn(x)

has degree n − 1 and is orthogonal to polynomials of degree < n − 1, and is
therefore a multiple γnψn−1. Then

γn(ψn−1, ψn−1)w = (xψn, ψn−1)w = (ψn, xψn−1)w = an−1

an
(ψn, ψn)w.

Thus

xψn(x) = αnψn+1(x)+ βnψn(x)+ γnψn−1(x), (5.1.1)

αn = an

an+1
, βn = bn

an
− bn+1

an+1
, γn = an−1

an

(ψn, ψn)w

(ψn−1, ψn−1)w
.

As before, the three-term recurrence implies a Christoffel-Darboux formula.
If the weight wm is positive at only finitely many integers, say at m = 0,

1, . . . , N , then the L2 space has dimension N + 1. The orthogonal polynomi-
als have degrees 0, 1, . . . , N and are a basis. In general there is a completeness
result analogous to Theorem 4.1.5, applicable to all the cases to be considered
in this chapter.
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Theorem 5.1.1 Suppose that w is a positive weight on the integers and sup-
pose that for some c > 0,

∞∑
m=−∞

e2c|m|wm < ∞. (5.1.2)

Let {Pn} be the orthonormal polynomials forw. Then {Pn} is complete: for any
f ∈ L2

w,

lim
n→∞

∥∥∥∥ f −
n∑

k=0

( f, Pk) Pk

∥∥∥∥
w

= 0. (5.1.3)

In the discrete case, it is easy to see that convergence in norm implies
pointwise convergence at the points m where wm > 0.

Corollary 5.1.2 Under the assumptions of Theorem 5.1.1, for any f ∈ L2
w

and any m such that wm > 0,

f (m) =
∞∑

n=0

( f, Pn) Pn(m). (5.1.4)

Like an integrable function, a finite measure is determined by its Fourier
transform. Therefore the proof of Theorem 4.1.5 in Appendix B also proves
Theorem 5.1.1.

For functions defined on the integers, differentiation can be replaced by
either the forward or backward difference operators

�+ f (m) = f (m + 1)− f (m), �− f (m) = f (m)− f (m − 1).

Each operator maps polynomials of degree d to polynomials of degree d − 1,
so the product[

�+�−
]

f (m) = [�−�+
]

f (m) = f (m + 1)+ f (m − 1)− 2 f (m)

decreases the degree of a polynomial by two and plays the role of a second-
order derivative. It is convenient to express these operators in terms of the shift
operators

S± f (m) = f (m ± 1).

Thus

�+ = S+ − I, �− = I − S−,

and

�+�− = �−�+ = S+ + S− − 2I = �+ −�−. (5.1.5)
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Therefore the general real second-order difference operator can be written as

L = p+S+ + p−S− + r,

where p+, p−, and r are real-valued functions. The condition for L to be
symmetric with respect to w is that

0 = (L f, g)− ( f, Lg)

= (p+S+ f, g)− ( f, p−S−g)+ (p−S− f, g)− ( f, p+S+g)

=
∞∑

m=−∞

[
p+w − S+(p−w)

]
(m) f (m + 1) g(m)

+
∞∑

m=−∞

[
p−w − S−(p+w)

]
(m) f (m − 1) g(m)

for every f and g that vanish for all but finitely many integers. By choosing g
to vanish except at one value m and f to vanish except at m + 1 or at m − 1,
we conclude that symmetry is equivalent to

S−(p+w) = p−w, S+(p−w) = p+w. (5.1.6)

Note that S+ and S− are inverses, so these two conditions are mutually equiv-
alent.

As for differential equations, symmetry implies that eigenfunctions that
correspond to distinct eigenvalues are orthogonal: if Lu j = λ j u j , j = 1, 2,
then

λ1(u1, u2)w = (Lu1, u2)w = (u1, Lu2)w = λ2(u1, u2)w.

We now ask: for which discrete weights w (with finite moments) and
which symmetric operators L with coefficients p±(m) positive where wm > 0
(with exceptions at endpoints) are the eigenfunctions of L polynomials? More
precisely, when do the eigenfunctions of L include polynomials of degrees 0,
1, and 2? We assume that wm > 0 for integers m in a certain interval that is
either infinite or has N + 1 points, and is zero otherwise, so we normalize to
the cases

(a) wm > 0 if and only if 0 ≤ m ≤ N ;
(b) wm > 0 if and only if m ≥ 0;
(c) wm > 0 all m.

We shall see that case (c) does not occur.
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The symmetry condition (5.1.6) implies that p−(0) = 0 in cases (a) and (b)
and that p+(N ) = 0 in case (a). We shall assume that otherwise p± is positive
where w is positive.

With a change of notation for the zero-order term, we may write L as

L = p+�+ − p−�− + r. (5.1.7)

Then L(1)= r must be constant, and we may assume r = 0. Since �±(x)= 1,
we have

L(x) = p+ − p−,

so p+ − p− is a polynomial of degree 1. Next, �±(x2) = 2x ± 1, so

L(x2) = 2x (p+ − p−)+ (p+ + p−),

and it follows that p+ + p− is a polynomial of degree at most 2. Therefore p+
and p− are both polynomials of degree at most 2, and at least one has positive
degree. Moreover, if either has degree 2 then both do and they have the same
leading coefficient.

The symmetry condition (5.1.6) and our positivity assumptions imply that

wm+1 = p+(m)
p−(m + 1)

wm = ϕ(m) wm, (5.1.8)

wherever wm > 0. This allows us to compute all values wm from w0.
Suppose first that one of p± has degree 0, so the other has degree 1. Then

(5.1.8) implies that ϕ(m) is O(|m|) in one direction or the other, so the moment
condition rules out case (c). It follows that p−(0) = 0, and p+ is constant,
which rules out case (a). We normalize by taking p+(x) = 1. Then p−(x) =
x/a, a > 0, so

p+(m)
p−(m + 1)

= a

m + 1
.

To normalize w we introduce the factor e−a :

wm = e−a am

m ! , m = 0, 1, 2, 3, . . . (5.1.9)

This is the probability distribution known as the Poisson distribution. The
associated polynomials, suitably normalized, are the Charlier polynomials,
also called the Poisson–Charlier polynomials.

Suppose next that both of p± have degree 1. If the leading coefficients are
not the same, then ϕ(m) grows in one direction, which rules out case (c). If
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the leading coefficients are the same, then asymptotically ϕ(m)− 1 ∼ b/m
for some constant b, which implies that the products

m∏
j=0

ϕ( j),
m∏

j=0

ϕ( j)−1 (5.1.10)

are either identically 1 (p+ = p−), or one grows like m and the other decays
like 1/m as m → ∞. This rules out case (c). Thus if both have degree 1, then
we have case (a) or (b) and p−(0) = 0.

Continuing to assume that both of p± have degree 1, in the case of a finite
interval we normalize by taking p+(x) = p(N − x) and p−(x) = qx , where
p, q > 0, p + q = 1. Then the normalized weight is

wm =
(

N

m

)
pmq N−m, m = 0, 1, 2, 3, . . . , N , (5.1.11)

the binomial probability distribution. Up to normalization, the associated poly-
nomials are the Krawtchouk polynomials.

Suppose now that both p± have degree 1 and the interval is infinite. We may
normalize by taking p−(x) = x and p+(x) = c (x + b). Positivity implies
b, c > 0 and finiteness implies c < 1. Then

p+(m)
p−(m + 1)

= c (m + b)

(m + 1)
,

and the normalized weight is

wm = (1 − c)b
(b)m
m ! cm, m = 0, 1, 2, 3, . . . (5.1.12)

The associated polynomials are the Meixner polynomials.
Suppose finally that one of p± has degree 2. Then both do, and the leading

coefficients are the same, so

p+(m)
p−(m + 1)

= 1 + am−1 + bm−2

1 + cm−1 + dm−2
= 1 + a − c

m
+ O

(
1

m2

)
.

Arguing as before, we see that the moment condition rules out the possibility
of an infinite interval. With the weight supported on 0 ≤ m ≤ N we have
p−(0) = 0 = p+(N ) and there are two cases, which can be normalized to

p−(x) = x(N + 1 + β − x), p+(x) = (N − x)(x + α + 1), α, β > −1

or

p−(x)= x(x − β − N − 1), p+(x)= (N − x)(−α − 1 − x), α, β <− N .
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It is convenient to give up the positivity assumption for p± and use the first
formula for p± in either case. The weight function is

wm = C
(N − m + 1)m(α + 1)m
m ! (N + β + 1 − m)m

= C

(
N

m

)
(α + 1)m (β + 1)N−m

(β + 1)N
.

(5.1.13)
The associated normalized polynomials are commonly known as the Hahn

polynomials. We refer to them here as the Chebyshev–Hahn polynomials; see
the remarks at the end of the chapter. In the case α = β = 0, the polynomials
are commonly known as the discrete Chebyshev polynomials.

We have proved the discrete analogue of Theorem 3.4.1, somewhat loosely
stated.

Theorem 5.1.3 Up to normalization, the Charlier, Krawtchouk, Meixner, and
Chebyshev–Hahn polynomials are the only ones that occur as eigenfunctions
of a second-order difference operator that is symmetric with respect to a
positive weight.

5.2 The discrete Rodrigues formula

Suppose that w is a weight on the integers and L is symmetric with respect
to w and has polynomials as eigenfunctions. The eigenvalue equation for a
polynomial ψn of degree n is

p+�+ψn − p−�−ψn + λnψn = 0. (5.2.1)

Applying �+ to this equation gives an equation for the “derivative” ψ(1)n =
�+ψn . Using the discrete Leibniz identity

�+( f g) = (S+ f )�+g + g�+ f,

we obtain

p(1)+ �+ψ(1)n − p(1)− �−ψ(1)n + λ(1)n ψ
(1)
n = 0,

with

p(1)+ = S+ p+, p(1)− = p−, λ(1)n = λn +�+(p+ − p−).

The new operator here is symmetric with respect to the weight w(1) = p+w:

S+
(
w(1) p(1)−

) = (S+ p+) S+(wp−) = p(1)+ wp+ = w(1) p(1)+ .

Continuing, we see that the successive differences ψ(k)n = (�+)kψn satisfy

p(k)+ �+ψ(k)n − p−�−ψ(k)n + λ(k)n ψ
(k)
n = 0,
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with

p(k)+ = Sk+ p+, (5.2.2)

λ(k)n = λn + (I + S+ + · · · + Sk−1+
)
�+ p+ − k�+ p−,

and the corresponding operator is symmetric with respect to the weight

w(k) = w

k−1∏
j=0

S j
+ p+. (5.2.3)

Now ψ(k)n has degree n − k. In particular, ψ(n)n is constant, so λ(n)n = 0, and we
have proved that

λn = −(I + S+ + · · · + Sn−1+
)
�+ p+ + n�+ p−

= n�+(p− − p+)+
n−1∑
j=1

(
I − S j

+
)
�+ p+. (5.2.4)

The eigenvalue equation can be rewritten to obtain ψ(k−1)
n from ψ(k)n , which

leads to a discrete Rodrigues formula for ψn . At the first stage we rewrite the
operator L , using the identities (5.1.6) and S−�+ = �−,

wL = wp+�+ − S−(w p+)�− = wp+�+ − S−(wp+�+)

= �−(wp+�+) = �−(w(1) �+).

Therefore the eigenvalue equation can be solved to obtain

ψn = − 1

λn w
�−
(
w(1)ψ(1)n

)
on the points where w is positive. We continue this process, and take the
constant ψ(n)n to be

ψ(n)n =
n−1∏
k=0

[
λn + (Sk+ − I

)
p+ − k�+ p−

] ≡ An . (5.2.5)

The result is the discrete Rodrigues formula: where w > 0,

ψn = (−1)n
1

w
�n−
(
w(n)

)
, w(n) = w

n−1∏
k=0

Sk+ p+. (5.2.6)



162 Discrete orthogonal polynomials

Since �− = I − S−, we may expand �n− = (I − S−)n and rewrite
(5.2.6) as

ψn = 1

w

n∑
k=1

(−1)n−k
(

n

k

)
Sk−
(
w(n)

)
. (5.2.7)

As an application, we obtain a formula for the norm of ψn . Note that whenever
the sums are absolutely convergent,∑

k

�− f (k) g(k) = −
∑

k

f (k)�+g(k).

Therefore

λn||ψn||2w = −(Lψn, ψn)w = −
∑

k

(wLψn)(k) ψn(k)

= −
∑

k

[
�−
(
wp+ψ(1)n

)]
(k) ψn(k) =

∑
k

[
wp+ψ(1)n

]
(k) ψ(1)n (k)

= ||ψ(1)n ||2
w(1)
.

Continuing, we obtain

An||ψn||2w = ||ψ(n)n ||2
w(n)

= A2
n||1||2

w(n)
.

Therefore

||ψn||2w = An

∑
k

w(n)(k). (5.2.8)

It is useful to rewrite the operator in (5.2.6) as

1

w
�n−w(n) =

(
1

w
�−w(1)

)(
1

w(1)
�−w(2)

)
· · ·
(

1

w(n−1)
�−w(n)

)
.

It follows from the symmetry condition (5.1.6) that

1

w
�−
(
w(1) f

) = p+ f − S−(p+w)
w

S− f = p+ f − p−S− f.

Then

1

w
�−w(1) · 1

w(1)
�−w(2) = (p+ − p−S−)

(
p(1)+ − p−S−

)
= p+ p(1)+ − 2p+ p−S− + p−(S− p−)S2−



5.2 The discrete Rodrigues formula 163

and by induction

(−1)n
1

w
�n−w(n) =

n∑
k=0

(−1)n−k
(

n

k

) n−k−1∏
j=0

p( j)
+

k−1∏
j=0

p( j)
− Sk−,

where p( j)
− = S j

− p−. Applying this operator to the constant function 1 gives

ψn =
n∑

k=0

(−1)n−k
(

n

k

) n−k−1∏
j=0

(
S j
+ p+

) k−1∏
j=0

(
S j
− p−

)
. (5.2.9)

A second approach to computing ψn is to use a discrete analogue of the
series expansion, with the monomials xk replaced by the polynomials

ek(x) = (x − k + 1)k = x(x − 1)(x − 2) · · · (x − k + 1) = (−1)k(−x)k .

Then

�+ek(x) = k ek−1(x), x �−ek(x) = k ek(x), x ek = ek+1 + k ek .

In each of our cases, p−(x) is divisible by x , so applying the operator L =
p+�+ − p−�− to the expansion

ψn(x) =
n∑

k=0

ank ek(x) (5.2.10)

leads to recurrence relations for the coefficients ank that identify ank as a
certain multiple of an,k−1.

Finally, we remark that both the coefficient βn of the three-term recurrence
relation (5.1.1) and the eigenvalue λn can be recovered directly from equa-
tion (5.2.1) by computing the coefficients of xn and xn−1:

0 = Lψn(x)+ λnψn(x)

= p+�+
(
an xn + bn xn−1)− p−�−

(
an xn + bn xn−1)

+ λnan xn + λnbn xn−1 + · · ·

= (p+ − p−)
[
nan xn−1 + (n − 1)bn xn−2

]
+ (p+ + p−)

[(
n

2

)
an xn−2 +

(
n − 1

2

)
bn xn−3

]
+ λnan xn + λnbn xn−1 + · · · (5.2.11)
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The coefficient of xn on the right must vanish, and this determines λn . Using
this value of λn in the coefficient of xn−1 determines the ratio bn/an and
therefore the term βn = bn/an − bn+1/an+1 in the three-term recurrence.

5.3 Charlier polynomials

The interval is infinite, and

p+(x) = 1, p−(x) = x

a
, wm = e−a am

m ! .

Then p(k)+ = p+, w(k) = w, and

λn = n

a
.

Therefore the constant An in (5.2.5) is n !/an . From (5.2.8) we obtain the norm:

||ψn||2w = n !
an
. (5.3.1)

A standard normalization is Cn(x; a) = (−1)nψn(x). Equation (5.2.9) gives

Cn(x; a) =
n∑

k=0

(−1)k
(

n

k

)
a−k(x − k + 1)k

=
n∑

k=0

(−n)k (−x)k
k !

(
−1

a

)k

= 2 F0

(
−n,−x;−1

a

)
, (5.3.2)

where 2 F0 is a generalized hypergeometric series; see Chapter 8. The leading
coefficient is (−a)−n . In this case �+Cn is an orthogonal polynomial with
respect to the same weight, and comparison of leading coefficients gives

�+Cn(x; a) = −n

a
Cn−1(x; a). (5.3.3)

The associated difference equation is

�+Cn(x; a)− x

a
�−Cn(x; a)+ n

a
Cn(x; a) = 0. (5.3.4)
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The first four polynomials are

C0(x; a) = 1;
C1(x; a) = − x

a
+ 1;

C2(x; a) = x(x − 1)

a2
− 2x

a
+ 1 = x2

a2
− (1 + 2a)

x

a2
+ 1;

C3(x; a) = − x(x − 1)(x − 2)

a3
+ 3x(x − 1)

a2
− 3x

a
+ 1

= − x3

a3
+ 3(a + 1)

x2

a3
− (3a2 + 3a + 2)

x

a3
+ 1.

It is a simple matter to compute the generating function

G(x, t; a) ≡
∞∑

n=0

Cn(x; a)

n ! tn .

Note that the constant term of Cn(x; a) is 1, so

G(x, 0; a) = 1, G(0, t; a) = et . (5.3.5)

In general,

G(x, t; a) =
∞∑

n=0

n∑
k=0

tn (−x)k
(n − k) ! k !

(
1

a

)k

=
∞∑

m=0

∞∑
k=0

tm

m !
(−x)k

k !
(

t

a

)k

= et
(

1 − t

a

)x

. (5.3.6)

The generating function allows another computation of the norms and inner
products:

∞∑
n=0

∞∑
m=0

(Cn,Cm)w

n ! m ! tnsm =
∞∑

k=0

G(k, t; a)G(k, s; a) wk = est/a . (5.3.7)

The identity

∞∑
n=0

Cn+1(x; a)

n! tn = ∂G

∂t
(x, t; a)
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leads to the recurrence relation

Cn+1(x; a) = Cn(x; a)− x

a
Cn(x − 1; a). (5.3.8)

The identity

G(x + 1, t; a) =
(

1 − t

a

)
G(x, t; a)

leads to (5.3.3).
The general three-term recurrence (5.1.1) is easily computed. It follows

from (5.3.2) that

(−1)n Cn(x; a) = 1

an
xn −

(n
2

)+ na

an
xn−1 + · · ·

Therefore

x Cn(x; a) = −a Cn+1(x; a)+ (n + a)Cn(x; a)− n Cn−1(x; a). (5.3.9)

The generating function can be used to obtain an addition formula

Cn(x + y; a) =
∑

j+k+l=n

(−1)l
n !

j ! k ! l ! C j (x; a)Ck(x; a); (5.3.10)

see the exercises. The proof of the following addition formula is also left as an
exercise:

Cn(x + y; a) =
n∑

k=0

(
n

k

)
Cn−k(x; a)

(−y)k
ak

. (5.3.11)

Charlier polynomials are connected with the Laguerre polynomials:

Cn(x; a) = (−1)n
n !
an

L(x−n)
n (a);

see [74]. Therefore u(a) = anCn(x; a) satisfies the confluent hypergeometric
equation

a u′′(a)+ (1 + x − n − a) u′(a)+ n u(a) = 0.

Dunster [74] derived uniform asymptotic expansions in n for x in each of three
intervals whose union is the real line −∞ < x < ∞. His results imply that for
fixed real x ,

Cn(x; a) ∼ −n ! ea

an

sinπx

π

�(1 + x)

nx+1
= n ! ea

an �(−x) nx+1
(5.3.12)

as n → ∞. Therefore the zeros are asymptotically close to the positive inte-
gers. See Exercise 10.22 in Chapter 10.
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5.4 Krawtchouk polynomials

The interval is finite and

p+(x) = p (N − x), p−(x) = q x, wm =
(

N

m

)
pmq N−m, (5.4.1)

where p, q > 0, p + q = 1. Then λn = n and the constant An in (5.2.5) is n !.
Two standard normalizations here are

k(p)n (x, N ) = 1

n ! ψn(x);

Kn(x; p, N ) = (−1)n
(N − n) !

N ! pn
ψn(x) = (−1)n

(
N

n

)−1 1

pn
k(p)n (x; N ).

From (5.2.8) we obtain the norms:

||k(p)n ||2w =
(

N

n

)
(pq)n; (5.4.2)

||Kn||2w =
(

N

n

)−1 ( q

p

)n

.

Most of the identities to follow have a simpler form in the version k(p)n .
Equation (5.2.9) gives

k(p)n (x; N ) =
n∑

k=0

pn−kqk (x − N )n−k(x − k + 1)k
(n − k) ! k ! . (5.4.3)

The leading coefficient is

1

n !
n∑

k=0

(
n

k

)
pn−kqk = (p + q)

n !
n

= 1

n ! .

The polynomial �+k(p)n is an eigenfunction for the weight w(1), which, after
normalization, is the weight associated with p and N − 1. Taking into account
the leading coefficients, it follows that

�+k(p)n (x; N ) = k(p)n−1(x; N − 1). (5.4.4)

The associated difference equation is

p (N − x)�+k(p)n (x; N )− q x �−k(p)n (x; N )+ n k(p)n (x; N ) = 0. (5.4.5)
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Using this equation and the expansion (5.2.10), we may derive a second
form for the Krawtchouk polynomials:

k(p)n (x; N ) = (−p)n
(

N

n

) n∑
k=0

(−n)k(−x)k
(−N )k k ! p−k

= (−p)n
(

N

n

)
F

(
−n,−x,−N ; 1

p

)
, (5.4.6)

where F is the hypergeometric function (Chapter 8). The normalization of the
alternate form Kn is chosen so that

Kn(x; p, N ) = F

(
−n,−x,−N ; 1

p

)
.

The first four polynomials are:

k(p)0 (x; N ) = 1;
k(p)1 (x; N ) = x − N p;

k(p)2 (x; N ) = 1

2

[
x2 + (2p − 1 − 2N p) x + N (N − 1) p2];

k(p)3 (x; N ) = 1

6

{
x3 + (6p − 3 − 3N p) x2

+ [3N p(N p + 1 − 3p)+ 2(3p2 − 3p + 1)
]
x

− N (N − 1)(N − 2)p3
}
.

We may consider k(p)n (x; N ) as being defined by (5.4.3) for all n =
0, 1, 2, . . . Note that for n > N these polynomials vanish at the points
m = 0, 1, 2, . . . , N . The generating function is

G(x, t; N , p) ≡
∞∑

n=0

k(p)n (x; N ) tn = (1 + qt)x (1 − pt)N−x ; (5.4.7)

see the exercises. The identity

∞∑
n=0

(n + 1)k(p)n+1(x; N ) tn = ∂G

∂t
(x, t; N , p)

leads to the recurrence relation

(n + 1) k(p)n+1(x; N ) = x q k(p)n (x − 1; N − 1)− (N − x) p k(p)n (x; N − 1).
(5.4.8)
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The identity

(1 − pt)G(x + 1, t; N , p) = (1 + qt)G(x, t; N , p) (5.4.9)

leads to

k(p)n (x + 1; N )− k(p)n (x; N ) = k(p)n−1(x; N ). (5.4.10)

The three-term recurrence

x k(p)n (x; N ) = (n + 1) k(p)n+1(x; N )

+ (pN + n − 2pn) k(p)n (x; N )+ p q (N − n + 1) k(p)n−1(x; N )

(5.4.11)

can be computed using (5.2.11); see the exercises.
The generating function can be used to prove the addition formula

k(p)n (x + y; N ) =
∑

j+l+m=n

(N ) j p j

j ! k(p)l (x; N ) k(p)m (y; N ). (5.4.12)

To describe the asymptotic behavior of k(p)n (x; N ) for fixed x > 0 and p> 0,
we first let N = nμ for fixed μ ≥ 1, and set q − 1 = p. Following Qiu and
Wong [235] we note first that there is a unique η = η(μ) such that

η − (μ− 1) log η = (μ− 1)(1 − log q)− μ logμ− log p.

Let

t0 = μ− 1

μ
, s0 = μ− 1

η
, λ = n η,

γ = −μ logμ+ (μ− 1)(1 + log η), ζ = ±√2(1 − s0 + s0 log s0),

where the positive sign is taken if and only if s0 ≥ 1. Then let

g0(s0) =

⎧⎪⎨⎪⎩
− 1√

1 − t0

(
t0 − q

s0 − 1

)x

, s0 �= 1,

−qx p(x−1)/2, s0 = 1.

Using an extension of the steepest descent method (see Chapter 10), Qiu and
Wong showed that as n → ∞,

(i) for μ ≥ 1
p + ε,

k(p)n (x; nμ) ∼ (−1)n+1 eλ(s0−s0 log s0)
(s0 − 1)x g(s0)√

2πλs0

pn−x

enγ
;
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(ii) for 1
p − ε < μ < 1

p + ε,

k(p)n (x; nμ) ∼ (−1)n+1a0 W
(
x,

√
λ ζ
) eλ pn−x

enγ λ(x+1)/2
,

where

W (x, ζ ) = Dx (ζ )√
2π eζ 2/4

, a0 =

⎧⎪⎨⎪⎩g0(1)

(
ζ

s0 − 1

)x+1

, s0 �= 1;

g0(1), s0 = 1,

and Dx is the parabolic cylinder function of Section 6.6;
(iii) for 1 ≤ μ ≤ 1

p − ε,

k(p)n (x; nμ) ∼ (−1)n+1 g0(1) eλ pn−x

�(−x) (λ− λ s0)x+1enγ
.

5.5 Meixner polynomials

The interval is infinite and

p+(x) = c(x + b), p−(x) = x, wm = (1 − c)b
(b)m
m ! cm, (5.5.1)

where b > 0 and 0 < c < 1. Therefore

λn = (1 − c) n, An = (1 − c)n n !.

Equation (5.2.9) gives

ψn(x) =
n∑

k=0

(−1)n−k
(

n

k

)
(x + b)n−k (x − k + 1)kcn−k

with leading coefficient (1 − c)n . Two standard normalizations are:

mn(x; b, c) = (−c)−nψn(x) =
n∑

k=0

(
n

k

)
(x + b)n−k (x − k + 1)k (−c)−k;

(5.5.2)

Mn(x; b, c) = (−1)n

cn (b)n
ψn(x) = 1

(b)n
mn(x; b, c).
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It follows that

||mn||2w = n ! (b)n
cn

; (5.5.3)

||Mn||2w = n !
(b)n cn

.

Most of the identities to follow have a simpler form in the version mn .
The polynomial �+mn is an eigenfunction for the weight w(1), which,

after normalization, is the weight associated with b + 1 and c. The leading
coefficient of mn is (1 − 1/c)n , so

�+mn(x; b, c) = n

(
1 − 1

c

)
mn−1(x; b + 1, c). (5.5.4)

The associated difference equation is

c(x + b)�+mn(x; b, c)− x �−mn(x; b, c)+ (1 − c) n mn(x; b, c) = 0.
(5.5.5)

Using this equation and the expansion (5.2.10) leads to a second form (nor-
malized by taking into account the leading coefficient):

mn(x; b, c) = (b)n

n∑
k=0

(−n)k(−x)k
(b)k k !

(
1 − 1

c

)k

= (b)n F

(
−n,−x, b; 1 − 1

c

)
, (5.5.6)

where again F is the hypergeometric function. The normalization of Mn is
chosen so that

Mn(x; b, c) = F

(
−n,−x, b; 1 − 1

c

)
.

The first four polynomials are:

m0(x; b, c) = 1;

m1(x; b, c) =
(

1 − 1

c

)
x + b;

m2(x; b, c) =
(

1 − 1

c

)2

x2 +
(

2b + 1 − 2b

c
− 1

c2

)
x + b(b + 1);
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m3(x; b, c) =
(

1 − 1

c

)3

x3 +
(

3b + 3 − 6b + 3

c
+ 3b − 3

c2
+ 3

c3

)
x2

+
(

3b2 + 6b + 2 − 3b2 + 3b

c
− 3b

c2
− 2

c3

)
x + b(b + 1)(b + 2).

The generating function is

G(x; b, c) ≡
∞∑

n=0

mn(x; b, c)

n ! tn = (1 − t)−x−b
(

1 − t

c

)x

; (5.5.7)

see the exercises.
The identity

∞∑
n=0

mn+1(x; b, c)

n ! tn = ∂G

∂t
(x; b, c)

implies the recurrence relation

mn+1(x; b, c) = (x + b)mn(x; b + 1, c)− x

c
mn(x − 1; b + 1, c). (5.5.8)

The identity

(1 − t)G(x + 1; b, c) =
(

1 − t

c

)
G(x; b, c)

implies

mn(x + 1; b, c)− mn(x; b, c) = n mn−1(x + 1; b, c)− n

c
mn−1(x; b, c).

(5.5.9)
The three-term recurrence

(c − 1) x mn(x; b, c) = c mn+1(x; b, c)− (bc + nc + n)mn(x; b, c)

+ n(b + n − 1)mn−1(x; b, c) (5.5.10)

can be computed using (5.2.11); see the exercises.
The generating function can be used to prove the addition formula

mn(x + y; b, c) =
∑

j+k+l=n

n ! (−b) j

j ! k ! l ! ml(x; b, c)mk(y; b, c); (5.5.11)

see the exercises.
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It follows from the expansion (5.5.6) and the identity (4.5.11) that Laguerre
polynomials are limits of Meixner polynomials: for x �= 0,

mn

(
cx

1 − c
;α + 1, c

)
∼ (α + 1)n M(−n, α + 1; x) = n ! L(α)n (x) (5.5.12)

as c → 1−; see the exercises.
Jin and Wong [147] used a modification of the steepest descent method due

to Chester, Friedman, and Ursell [49, 318] to derive an asymptotic expansion
for mn(nα; b, c) for α > 0. When nα is bounded, they gave the simplified
result

mn(nα; b, c) ∼ − n !�(αn + 1)

cn (1 − c)nα+b nnα+1

sinπnα

π
(5.5.13)

as n → ∞: see (3.13), (3.14), and (4.1) of [148] and Exercise 10.21 of
Chapter 10.

Fix x and take α = x/n. It follows from (5.5.13) that

mn(x; b, c) ∼ −�(b + n) �(x + 1)

cn(1 − c)x+b nb+x

sinπx

π
. (5.5.14)

Thus the zeros of the Meixner polynomials are asymptotically close to the
positive integers as n → ∞.

5.6 Chebyshev–Hahn polynomials

The interval is finite and we take

p+(x) = (N − x)(x + α + 1), p−(x) = x(N + β + 1 − x),

α, β > −1 or α, β < −N . (5.6.1)

In the case α, β < −N we have violated our condition that p± be positive at
the interior points {1, 2, . . . , N − 1}. In the following formulas this will only
show up in the appearance of absolute values in the formulas for norms.

The weight is

wm = C0

(
N

m

)
(α + 1)m (β + 1)N−m, (5.6.2)

where

C0 = �(N + α + β + 2)

�(α + β + 2)
.



174 Discrete orthogonal polynomials

With this choice of C0 the total mass is

N∑
m=0

wm = 1; (5.6.3)

see the exercises.
According to (5.2.9),

ψn(x) =
n∑

k=0

(−1)n−k
(

n

k

) n−k−1∏
j=0

p+(x + j)
k−1∏
j=0

p−(x − j). (5.6.4)

This appears to have degree 2n rather than n, but there is considerable cancel-
lation. A more useful form can be obtained using (5.2.10), which leads to

ψn(x) = C
n∑

k=0

(−n)k(−x)k(n + α + β + 1)k
(−N )k(α + 1)k k !

= C 3 F2(−n,−x, n + α + β + 1;−N , α + 1; 1),

where 3 F2 denotes the generalized hypergeometric series; see Chapter 8. To
determine the constant C we note that the constant term in (5.6.4) comes from
the summand with k = 0 and is therefore

(−1)n
n−1∏
j=0

p+( j) = (−1)n(N + 1 − n)n(α + 1)n .

It follows that

ψn(x) = (−1)n(N + 1 − n)n(α + 1)n

× 3 F2(−n,−x, n + α + β + 1;−N , α + 1; 1).

One normalization is

Qn(x;α, β, N ) = 3 F2(−n,−x, n + α + β + 1;−N , α + 1; 1)

=
n∑

k=0

(−n)k(−x)k(n + α + β + 1)k
(−N )k(α + 1)k k ! . (5.6.5)

A second is

h(α,β)n (x, N ) = (−1)n
(N − n)n (β + 1)n

n ! Qn(x;β, α, N − 1). (5.6.6)

Neither normalization results in particularly simple forms for the identities that
follow; we use Qn .
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It follows from (5.2.4) that λn = n(n + α + β + 1), so

||ψn||2w = (n !)2
(

N

n

) ∣∣∣∣ (α + 1)n(β + 1)n(α + β + n + 1)N+1

(α + β + 2)N (α + β + 2n + 1)

∣∣∣∣ .
Therefore

||Qn(x;α, β, N )||2

=
∣∣∣∣ n ! (N − n) ! (β + 1)n (α + β + n + 1)N+1

N ! (α + 1)n (α + β + 2)N (α + β + 2n + 1)

∣∣∣∣ . (5.6.7)

The weight w(1) = p+w is a constant multiple of the weight associated
with the indices (α + 1, β + 1, N − 1). It follows from (5.6.5) that the leading
coefficient of Qn(x;α, β, N ) is

(n + α + β + 1)n
(−N )n (α + 1)n

,

so

�+Qn(x;α, β, N )

= −n (α + β + n + 1)

N (α + 1)
Qn−1(x;α + 1, β + 1, N − 1). (5.6.8)

The difference equation is

(N − x)(x + α + 1)�+Qn(x;α, β, N )

− x(N + β + 1 − x)�−Qn(x;α, β, N )

+ n(n + α + β + 1)Qn(x;α, β, N ) = 0. (5.6.9)

The first three polynomials are:

Q0(x;α, β, N ) = 1;

Q1(x;α, β, N ) = −α + β + 2

N (α + 1)
x + 1;

Q2(x;α, β, N ) = (α + β + 3)(α + β + 4)

N (N − 1)(α + 1)(α + 2)
x2

− (α + β + 3)
[
α + β + 4 + 2(N − 1)(α + 2)

]
N (N − 1)(α + 1)(α + 2)

x + 1.



176 Discrete orthogonal polynomials

A straightforward (but tedious) application of (5.2.11) yields

Qn(x;α, β, N ) = an xn + bn xn−1 + · · · ,
bn

an
= −n

[
2N (α + 1)+ (2N + β − α)(n − 1)

]
2(α + β + 2n)

.

The ratio of leading coefficients is

an

an+1
= − (n + α + β + 1) (α + n + 1) (N − n)

(2n + α + β + 1) (2n + α + β + 2)
.

Therefore, by (5.1.1), the three-term recurrence is

x Qn(x;α, β, N ) = αn Qn+1(x;α, β, N )+ βn Qn(x;α, β, N )

+ γn Qn−1(x;α, β, N ); (5.6.10)

αn = − (α + β + n + 1) (α + n + 1) (N − n)

(α + β + 2n + 1)(α + β + 2n + 2)
,

γn = −n (n + β) (α + β + n + N + 1)

(α + β + 2n) (α + β + 2n + 1)
,

βn = −(αn + γn).

It follows from the expansion (5.6.5) and the identity (4.6.12) that Jacobi
polynomials are limits of Chebyshev–Hahn polynomials: for x �= 0,

Qn(N x;α, β, N ) ∼ F(α + β + 1 + n,−n, α + 1; x)

= n !
(α + 1)n

P(α,β)n (1 − 2x) (5.6.11)

as N → ∞; see the exercises. For refinements of this result, see Sharapudinov
[258].

The polynomials that are commonly called “discrete Chebyshev polynomi-
als” are the case α = β = 0.

tn(x, N ) = (−1)n (N − n)n Qn(x; 0, 0, N − 1)

= (−1)n
n∑

k=0

(
n + k

k

)
(N − n)n−k(−x)k(n − k + 1)k

k ! . (5.6.12)
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5.7 Exercises

5.1 Use the expansion (5.2.10) and the difference equation for the Charlier
polynomials to give another derivation of (5.3.2), assuming that the
leading coefficient is (−a)−n .

5.2 Verify (5.3.7) and show that it implies that the Cn are orthogonal and
have norm given by (5.3.1).

5.3 Verify the recurrence relation (5.3.8).
5.4 Show that (5.3.3) and the identity G(0, t; a) = et determine the Charlier

generating function G(x, t; a) uniquely (for integer x).
5.5 Show that the recurrence relation (5.3.8) and the identity G(x, 0; a) = 1

determine G(x, t; a) uniquely (for integer x).
5.6 Prove the addition formula (5.3.10).
5.7 Let pm(x) = (x − m + 1)m = (x − m + 1)(x − m + 2) · · · (x − 1)x .

Show that �+ pm = mpm−1 and conclude that (�+)k pm(0) = m ! if
k = m and 0 otherwise. Use this to conclude that if f is any polynomial,
it has a discrete Taylor expansion

f (x + y) =
∑
k≥0

(�+)k f (x)

k ! (y − k + 1)k .

5.8 Use Exercise 5.7 to prove (5.3.11).
5.9 Show that

lim
a→∞ Cn(ax; a) = (1 − x)n .

5.10 Derive (5.4.6).
5.11 Use the binomial expansion to verify (5.4.7).
5.12 Compute the constant term of k(p)n (x; N ), and deduce from this and the

computation of the leading coefficient that the generating function must
satisfy

G(x, 0) = 1, G(0, t) = (1 − pt)N .

5.13 Use the result of Exercise 5.12 to show that the recurrence relation
(5.4.8) determines the generating function (5.4.7) for integer x .

5.14 Verify (5.4.8) and (5.4.10).
5.15 Verify (5.4.11) by using (5.2.11).
5.16 Show that the coefficient bn of xn−1 in k(p)n (x; N ) in (5.4.3) is
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bn = 1

n !
[
−nN p +

(
n

2

)
(p − q)

]
= −N p + (n − 1)

(
p − 1

2

)
(n − 1) ! .

Hint: compute the coefficient of the kth summand in (5.4.3) and reduce
the problem to computing sums like

n∑
k=0

(
n

k

)
pkqn−kk,

n∑
k=0

(
n

k

)
pkqn−kk(k − 1).

Compare these sums to the partial derivatives Fp and Fpp of the
function of two variables F(p, q) = (p + q)n , evaluated at q = 1 − p.

5.17 Use Exercise 5.16 to give another proof of (5.4.11).
5.18 Prove the addition formula (5.4.12).
5.19 Show that as N → ∞,

k(p)n (N x; N ) ∼ N n

n ! (x − p)n .

5.20 Use (5.5.5) and the expansion in (5.2.10) to prove (5.5.6).
5.21 Verify (5.5.7) using (5.5.2).
5.22 Verify (5.5.7) using (5.5.6).
5.23 Verify (5.5.8) and (5.5.9).
5.24 Verify (5.5.10) by using (5.2.11).
5.25 Prove the addition formula (5.5.11).
5.26 Verify (5.5.12).
5.27 Verify (5.6.3): show that

(α + 1)m (β + 1)N−m

= �(N + α + β + 2)

�(α + 1) �(β + 1)
B(α + 1 + m, β + 1 + N − m)

and use the integral representation (2.1.7) of the beta function to show
that

N∑
m=0

(
N

m

)
B(α + 1 + m, β + 1 + n − m) = B(α + 1, β + 1). (5.7.1)

5.28 Verify (5.6.10).
5.29 Verify (5.6.11).
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5.8 Summary

5.8.1 Discrete weights and difference operators

Suppose that w = {wn}∞n=−∞ is a two-sided sequence of non-negative num-
bers. Corresponding inner product:

( f, g) = ( f, g)w =
∞∑

m=−∞
f (m) g(m) wm .

Assume
∞∑

m=−∞
wm = 1;

∞∑
m=−∞

m2n wm < ∞, n = 0, 1, 2, . . .

Orthogonal polynomials ψn can be constructed as in Chapter 4.
Suppose

ψn(x) = an xn + bn xn−1 + · · ·
Then

xψn(x) = αnψn+1(x)+ βnψn(x)+ γnψn−1(x),

αn = an

an+1
, βn = bn

an
− bn+1

an+1
, γn = an−1

an

(ψn, ψn)w

(ψn−1, ψn−1)w
.

Forward and backward difference operators:

�+ f (m) = f (m + 1)− f (m), �− f (m) = f (m)− f (m − 1).

In terms of shift operators

S± f (m) = f (m ± 1),

we have

�+ = S+ − I, �− = I − S−,

�+�− = �−�+ = S+ + S− − 2I = �+ −�−.

General second-order difference operator:

L = p+S+ + p−S− + r.

Operator L is symmetric with respect to w if either of the two equivalent
conditions

S−(p+w) = p−w, S+(p−w) = p+w.

hold. Eigenfunctions that correspond to distinct eigenvalues are orthogonal.
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Symmetric operators L with coefficients p±(m) positive where wm > 0
(with exceptions at endpoints), whose eigenfunctions are polynomials, nor-
malize to

(a) wm > 0 if and only if 0 ≤ m ≤ N ;
(b) wm > 0 if and only if m ≥ 0.

Coefficients are polynomials of degree at most 2. After further normalization
the possibilities are, first,

p+(x) = 1, p−(x) = x

a
, a > 0;

wm = e−a am

m ! , m = 0, 1, 2, 3, . . . ,

leading to the Charlier polynomials.
Second,

p+(x) = p(N − x), p−(x) = qx, p, q > 0, p + q = 1;

wm =
(

N

m

)
pmq N−m, m = 0, 1, 2, 3, . . . , N ,

leading to the Krawtchouk polynomials.
Third,

p+(x) = c(x + b), p−(x) = x, b > 0, 0 < c < 1;
wm = (1 − c)b

(b)m
m ! cm, m = 0, 1, 2, 3, . . . ,

leading to the Meixner polynomials.
Fourth, with α, β > −1 or α, β < −N ,

p−(x) = x(N + β + 1 − x), p+(x) = (N − x)(x + α + 1);

wm = C0

(
N

m

)
(α + 1)m (β + 1)N−m,

C0 = �(N + α + β + 2)

�(α + β + 2)
,

leading to the Chebyshev–Hahn polynomials.
Thus the Charlier, Krawtchouk, Meixner, and Chebyshev–Hahn polyno-

mials are the only ones that occur as the eigenfunctions of a second-order
difference operator that is symmetric with respect to a positive weight.



5.8 Summary 181

5.8.2 The discrete Rodrigues formula

Suppose w is a weight on the integers, L is symmetric with respect to w and
has polynomials ψn as eigenfunctions.

Corresponding discrete Rodrigues formula: where w > 0,

ψn = (−1)n
1

w
�n−
(
w(n)

) = 1

w

n∑
k=1

(−1)n−k
(

n

k

)
Sk−
(
w(n)

)

=
n∑

k=0

(−1)n−k
(

n

k

) n−k−1∏
j=0

(
S j
+ p+

) k−1∏
j=0

(
S j
− p−

)
,

where

w(n) = w

n−1∏
k=0

Sk+ p+.

It follows that

||ψn||2w = An

∑
k

w(n)(k).

The eigenfunction ψn can also be computed using the expansion

ψn(x) =
n∑

k=0

ank ek(x),

where

ek(x) = (x − k + 1)k = x(x − 1)(x − 2) · · · (x − k + 1) = (−1)k(−x)k .

The eigenvalue equation leads to recurrence relations for the coefficients ank

that identify ank as a certain multiple of an,k−1.
The coefficient βn of the three-term recurrence relation (5.1.1) and the

eigenvalue λn can be obtained directly from equation (5.2.1) by computing
the coefficients of xn and xn−1.

5.8.3 Charlier polynomials

The interval is infinite,

p+(x) = 1, p−(x) = x

a
, wm = e−a am

m ! ;

λn = n

a
, ||ψn||2w = n !

an
.
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A standard normalization is

Cn(x; a) = (−1)nψn(x) =
n∑

k=0

(−n)k (−x)k
k!

(
−1

a

)k

= 2 F0

(
−n,−x;−1

a

)
.

Difference relation and eigenvalue equation:

�+Cn(x; a) = −n

a
Cn−1(x; a);

�+Cn(x; a)− x

a
�−Cn(x; a)+ n

a
Cn(x; a) = 0.

First four polynomials:

C0(x; a) = 1;
C1(x; a) = − x

a
+ 1;

C2(x; a) = x(x − 1)

a2
− 2x

a
+ 1 = x2

a2
− (1 + 2a)

x

a2
+ 1;

C3(x; a) = − x(x − 1)(x − 2)

a3
+ 3x(x − 1)

a2
− 3x

a
+ 1

= − x3

a3
+ 3(a + 1)

x2

a3
− (3a2 + 3a + 2)

x

a3
+ 1.

Generating function:

G(x, t; a) ≡
∞∑

n=0

Cn(x; a)

n ! tn = et
(

1 − t

a

)x

.

Recurrence relations:

Cn+1(x; a) = Cn(x; a)− x

a
Cn(x − 1; a);

x Cn(x; a) = −a Cn+1(x; a)+ (n + a)Cn(x; a)− n Cn−1(x; a).

Addition formulas:

Cn(x + y; a) =
∑

j+k+l=n

(−1)l
n !

j ! k ! l ! C j (x; a)Ck(x; a);

=
n∑

k=0

(
n

k

)
Cn−k(x; a)

(−y)k
ak

.
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Connection with Laguerre polynomials:

Cn(x; a) = (−1)n
n !
an

L(x−n)
n (a).

Asymptotics, x fixed, n → ∞:

Cn(x; a) ∼ −n ! ea

an

sinπx

π

�(1 + x)

nx+1
= n ! ea

an �(−x) nx+1
.

5.8.4 Krawtchouk polynomials

The interval is finite,

p+(x) = p (N − x), p−(x) = q x, p, q > 0, p + q = 1;

wm =
(

N

m

)
pmq N−m, λn = n.

Standard normalizations:

k(p)n (x, N ) = 1

n ! ψn(x);

Kn(x; p, N ) = (−1)n
(N − n) !

N ! pn
ψn(x) = (−1)n

(
N

n

)−1 1

pn
k(p)n (x, N ).

Norms:

||k(p)n ||2w =
(

N

n

)
(pq)n;

||Kn||2 =
(

N

n

)−1 ( q

p

)n

.

Expansions:

k(p)n (x; N ) =
n∑

k=0

pn−kqk (x − N )n−k(x − k + 1)k
(n − k) ! k !

= (−p)n
(

N

n

) n∑
k=0

(−n)k(−x)k
(−N )k k ! p−k;

Kn(x; p, N ) = F

(
−n,−x,−N ; 1

p

)
.
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Difference relation and eigenvalue equation:

�+k(p)n (x; N ) = k(p)n−1(x; N − 1);
p (N − x)�+k(p)n (x; N )− q x �−k(p)n (x, N )+ n k(p)n (x; N ) = 0.

First four polynomials:

k(p)0 (x; N ) = 1;
k(p)1 (x; N ) = x − N p;

k(p)2 (x; N ) = 1

2

[
x2 + (2p − 1 − 2N p) x + N (N − 1) p2];

k(p)3 (x; N ) = 1

6

{
x3 + (6p − 3 − 3N p) x2

+ [3N p(N p + 1 − 3p)+ 2(3p2 − 3p + 1)
]
x

− N (N − 1)(N − 2)p3
}
.

Generating function:

G(x, t; N , p) ≡
∞∑

n=0

k(p)n (x; N ) tn = (1 + qt)x (1 − pt)N−x .

Recurrence relations:

(n + 1) k(p)n+1(x; N ) = x q k(p)n (x − 1; N − 1)− (N − x) p k(p)n (x; N − 1);
k(p)n (x + 1; N ) = k(p)n (x; N )+ k(p)n−1(x; N );

x k(p)n (x; N ) = (n + 1) k(p)n+1(x; N )

+ (pN + n − 2pn) k(p)n (x, N )

+ p q (N − n + 1) k(p)n−1(x; N ).

Addition formula:

k(p)n (x + y; N ) =
∑

j+l+m=n

(N ) j p j

j ! k(p)l (x; N ) k(p)m (y; N ).

For the asymptotic behavior, see above.
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5.8.5 Meixner polynomials

The interval is infinite,

p+(x) = c(x + b), p−(x) = x, b > 0, 0 < c < 1;
wm = (1 − c)b

(b)m
m ! cm, λn = (1 − c) n, An = (1 − c)n n !.

Standard normalizations:

mn(x; b, c) = (−c)−nψn(x) =
n∑

k=0

(
n

k

)
(x + b)n−k (x − k + 1)k (−c)−k

= (b)n

n∑
k=0

(−n)k(−x)k
(b)k k !

(
1 − 1

c

)k

;

Mn(x; b, c) = 1

(b)n
mn(x; b, c) = F

(
−n,−x, b; 1 − 1

c

)
.

Norms:

||mn||2w = n ! (b)n
cn

;

||Mn||2w = n !
(b)n cn

.

Difference relation and eigenvalue equation:

�+mn(x; b, c) = n

(
1 − 1

c

)
mn−1(x; b + 1, c);

c(x + b)�+mn(x; b, c)− x �−mn(x; b, c)+ (1 − c) n mn(x; b, c) = 0.

First four polynomials:

m0(x; b, c) = 1;

m1(x; b, c) =
(

1 − 1

c

)
x + b;

m2(x; b, c) =
(

1 − 1

c

)2

x2 +
(

2b + 1 − 2b

c
− 1

c2

)
x + b(b + 1);

m3(x; b, c) =
(

1 − 1

c

)3

x3 +
(

3b + 3 − 6b + 3

c
+ 3b − 3

c2
+ 3

c3

)
x2

+
(

3b2 + 6b + 2 − 3b2 + 3b

c
− 3b

c2
− 2

c3

)
x + b(b + 1)(b + 2).
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Generating function:

G(x; b, c) ≡
∞∑

n=0

mn(x; b, c)

n ! tn = (1 − t)−x−b
(

1 − t

c

)x

.

Recurrence relations:

mn+1(x; b, c) = (x + b)mn(x; b + 1, c)− x

c
mn(x − 1; b + 1, c);

mn(x + 1; b, c) = mn(x; b, c)+ n mn−1(x + 1; b, c)− n

c
mn−1(x; b, c);

(c − 1) x mn(x; b, c) = c mn+1(x; b, c)

− (bc + nc + n)mn(x; b, c)

+ n(b + n − 1)mn−1(x; b, c).

Addition formula:

mn(x + y; b, c) =
∑

j+k+l=n

n ! (−b) j

j ! k ! l ! ml(x; b, c)mk(y; b, c).

Asymptotics as c → 1−, x �= 0:

mn

(
cx

1 − c
;α + 1, c

)
∼ n ! L(α)n (x).

Asymptotics as n → ∞, x fixed:

mn(x; b, c) ∼ −�(b + n) �(x + 1)

cn(1 − c)x+b nb+x

sinπx

π
.

5.8.6 Chebyshev–Hahn polynomials

The interval is finite; with α, β > −1 or α, β < −N , set

p+(x) = (N − x)(x + α + 1), p−(x) = x(N + β + 1 − x);

wm = C0

(
N

m

)
(α + 1)m (β + 1)N−m,

C0 = �(N + α + β + 2)

�(α + β + 2)
;

ψn(x) = (−1)n(N + 1 − n)n(α + 1)n

n∑
k=0

(−n)k(−x)k(n + α + β + 1)k
(−N )k(α + 1)k k !

= (−1)n(N + 1 − n)n(α + 1)n

× 3 F2(−n,−x, n + α + β + 1;−N , α + 1; 1).
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Standard normalizations:

Qn(x;α, β, N ) = 3 F2(−n,−x, n + α + β + 1;−N , α + 1; 1);
h(α,β)n (x, N ) = (−1)n

(N − n)n (β + 1)n
n ! Qn(x;β, α, N − 1).

Norm:

||Qn(x;α, β, N )||2 =
∣∣∣∣ n ! (N − n) ! (β + 1)n (α + β + n + 1)N+1

N ! (α + 1)n (α + β + 2)N (α + β + 2n + 1)

∣∣∣∣ .
Difference relation and eigenvalue equation:

�+Qn(x;α, β, N )

= −n (α + β + n + 1)

N (α + 1)
Qn−1(x;α + 1, β + 1, N − 1);

(N − x)(x + α + 1)�+Qn(x;α, β, N )

− x(N + β + 1 − x)�−Qn(x;α, β, N )

+ n(n + α + β + 1)Qn(x;α, β, N ) = 0.

First three polynomials:

Q0(x;α, β, N ) = 1;

Q1(x;α, β, N ) = −α + β + 2

N (α + 1)
x + 1;

Q2(x;α, β, N ) = (α + β + 3)(α + β + 4)

N (N − 1)(α + 1)(α + 2)
x2

− (α + β + 3)
[
α + β + 4 + 2(N − 1)(α + 2)

]
N (N − 1)(α + 1)(α + 2)

x + 1.

Three-term recurrence:

x Qn(x;α, β, N ) = αn Qn+1(x;α, β, N )+ βn Qn(x;α, β, N )

+ γn Qn−1(x;α, β), N );
αn = − (α + β + n + 1) (α + n + 1) (N − n)

(α + β + 2n + 1)(α + β + 2n + 2)
;

γn = −n (n + β) (α + β + n + N + 1)

(α + β + 2n) (α + β + 2n + 1)
,

βn = −(αn + γn).
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Asymptotics as N → ∞, x �= 0:

Qn(N x; a, b, n) ∼ n !
(α + 1)n

P(α,β)n (1 − 2x).

“Discrete Chebyshev polynomials” are the case α = β = 0:

tn(x, N ) = (−1)n (N − n)n Qn(x; 0, 0, N − 1)

= (−1)n
n∑

k=0

(
n + k

k

)
(N − n)n−k(−x)k(n − k + 1)k

k ! .

5.9 Remarks

Discrete orthogonal polynomials are treated in the books by Chihara [50] and
Ismail [136], who discuss the history and some of the classification results.
Nikiforov, Suslov, and Uvarov [218] present the subject from the point of
view of difference equations. Asymptotics are studied in the book by Baik
et al. [17], using the Riemann–Hilbert method. Notation has not been com-
pletely standardized. The notation selected for [223; 224] is such that each of
these polynomials is a generalized hypergeometric series. This choice does not
necessarily yield the simplest formulas.

The terminology here is more faithful to history than is often the case, in
part because much of the history is relatively recent. Nevertheless, Chebyshev
introduced the version of the “Hahn polynomials” treated above in 1858 [46];
see also [48]. Charlier introduced the Charlier polynomials in 1905 [43],
Krawtchouk introduced the Krawtchouk polynomials in 1929 [166], Meixner
introduced the Meixner polynomials in 1934 [203]. Explicit formulas for the
polynomials h(α,β)n were obtained by Weber and Erdélyi [310]. Dunkl [73]
obtained addition formulas for Krawtchouk polynomials, analogous to those
for Legendre and Jacobi polynomials, by group theoretic methods.

In 1949 Hahn [122] introduced a large class of “q-polynomials” that con-
tain as a limiting case the discrete polynomials that had been introduced by
Chebyshev. For q-polynomials in general, see the remarks and references at
the end of Chapter 4.

Stanton [267] generalized Dunkl’s addition formula to q-Krawtchouk poly-
nomials. For other recent extensions of classical results to discrete and
q-polynomials, see the book by Ismail [136] and the detailed report by
Koekoek and Swarttouw [158]. For results on asymptotics, see the survey
article by Wong [319].
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Confluent hypergeometric functions

The confluent hypergeometric equation

x u′′(x)+ (c − x) u′(x)− a u(x) = 0

has one solution, the Kummer function M(a, c; x), with value 1 at the origin,
and a second solution, x1−c M(a + 1 − c, 2 − c; x), which is ∼ x1−c at the
origin, provided that c is not an integer. A particular linear combination of the
two gives a solution U (a, c; x) ∼ x−a as x → +∞. The Laguerre polynomi-
als are particular cases, corresponding to particular values of the parameters.
Like the Laguerre polynomials, the general solutions satisfy a number of linear
relations involving derivatives and different values of the parameters a and c.
Special consideration is required when c is an integer.

In addition to the Laguerre polynomials, functions that can be expressed in
terms of Kummer functions include the exponential function, error function,
incomplete gamma function, complementary incomplete gamma function,
Fresnel integrals, the exponential integral, and the sine integral and cosine
integral functions.

The closely related parabolic cylinder functions are solutions of

u′′(x)+
[
∓ x2

4
+ ν + 1

2

]
u(x) = 0.

Three solutions are obtained by utilizing the three solutions of the confluent
hypergeometric equation mentioned above.

A gauge transformation removes the first-order term of the confluent hyper-
geometric equation and converts it to Whittaker’s equation

u′′(x)+
[
−1

4
+ κ

x
+ 1 − 4μ2

4x2

]
u(x) = 0.

189
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Again there are three solutions, related to the three solutions of the confluent
hypergeometric equation, which satisfy a number of relations. The Coulomb
wave functions are special cases.

6.1 Kummer functions

The confluent hypergeometric equation is the equation

x u′′(x)+ (c − x) u′(x)− a u(x) = 0. (6.1.1)

As noted in Chapter 1, it has a solution represented by the power series

M(a, c; x) =
∞∑

n=0

(a)n
(c)n n ! xn . (6.1.2)

This is only defined for c �= 0,−1,−2, . . . , since otherwise the denominators
vanish for n > −c. The function (6.1.2) is known as the Kummer function.
The notation �(a, c; x) is common in the Russian literature. Another notation
is 1 F1(a, c; x), a special case of the class of functions p Fq introduced in
Chapter 8. Thus

M(a, c; x) = �(a, c; x) = 1 F1(a, c; x), c �= 0,−1,−2, . . .

If a = −m is an integer ≤ 0, then (a)n = 0 for n > m: M(−m, c; x) is a
polynomial of degree m. If c > 0, it is a multiple of the Laguerre polynomial
L(c−1)

m (x); see the next section. In general, the ratio test shows that M(a, c; x)
is an entire function of x . The adjective “confluent” here will be explained in
Chapter 8.

Assuming that Re c > Re a > 0, we obtain an integral representation, using
the identity

(a)n
(c)n

= �(a + n)

�(a)

�(c)

�(c + n)
= �(c)

�(a) �(c − a)
B(a + n, c − a)

= �(c)

�(a) �(c − a)

∫ 1

0
sn+a−1(1 − s)c−a−1 ds.

As in Section 1.2, this leads to the computation

M(a, c; x) = �(c)

�(a) �(c − a)

∫ 1

0

{
sa−1(1 − s)c−a−1

∞∑
n=0

(sx)n

n!

}
ds

= �(c)

�(a) �(c − a)

∫ 1

0
sa−1(1 − s)c−a−1esx ds, Re c>Re a> 0.

(6.1.3)
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Let D denote the operator

D = x
d

dx
.

After multiplication by x , the confluent hypergeometric equation (6.1.1) has
the form

D(D + c − 1)u − x (D + a)u = 0. (6.1.4)

Under the gauge transformation u(x) = xbv(x), the operator D acting on the
function u becomes the operator D + b acting on v:

x−b D
{

xb v(x)
} = (D + b)v(x). (6.1.5)

Letting b = 1 − c, equation (6.1.4) becomes

D(D + 1 − c)v − x(D + a + 1 − c)v= 0.

Therefore, if c �= 2, 3, 4, . . . ,

x1−c M(a + 1 − c, 2 − c; x) (6.1.6)

is a second solution of (6.1.1). (This is easily checked directly.) If c is an integer
�= 1, then one of the two functions (6.1.2), (6.1.6) is not defined. If c = 1, the
functions coincide. We consider these cases in Section 6.3.

Denote the solution (6.1.2) by M1(x) and the solution (6.1.6) by M2(x).
Equation (6.1.1) implies that the Wronskian

W (x) = W (M1,M2)(x) ≡ M1(x)M
′
2(x)− M2(x)M

′
1(x)

satisfies the first-order equation

x W ′(x) = (x − c)W (x),

so W (x) = Ax−cex for some constant A. We may evaluate A by looking at the
behavior of M1 and M2 as x → 0:

M1(x) = 1 + O(x), M2(x) = x1−c [1 + O(x)
]
.

The result is

W (M1,M2)(x) = (1 − c) x−cex . (6.1.7)

Write (6.1.1) for x �= 0 as

u′′(x)− u′(x)+ c

x
u′(x)− a

x
u(x) = 0.



192 Confluent hypergeometric functions

As x → ∞ we may expect any solution of (6.1.1) to resemble a solution of
v′′ − v′ = 0: a linear combination of ex and 1. In fact, the change of variables
(1 − s)x = t converts the integral in (6.1.3) to

xa−c ex
∫ x

0
e−t
(

1 − t

x

)a−1

tc−a−1 dt.

This last integral has limit∫ ∞

0
e−t t c−a−1 dt = �(c − a)

as Re x → +∞, giving the asymptotics

M(a, c; x) ∼ �(c)

�(a)
xa−cex as Re x → +∞, Re c > Re a > 0.

(6.1.8)
Expanding (1 − t/x)a−1 gives the full asymptotic expansion

M(a, c; x) ∼ �(c)

�(a) �(c − a)
xa−cex

∞∑
n=0

∫ ∞

0
e−t (1 − a)n

n !
(

t

x

)n

tc−a−1 dt

= �(c)

�(a)
xa−cex

∞∑
n=0

(1 − a)n(c − a)n
n !

1

xn
, Re c > Re a > 0.

(6.1.9)

The results in Section 6.5 can be used to show that this asymptotic result is
valid for all indices (a, c) with c �= 0,−1,−2, . . .

It is easily seen that if v(x) is a solution of (6.1.1) with the index a replaced
by c − a,

x v′′(x)+ (c − x) v′(x)− (c − a) v(x) = 0,

then u(x) = ex v(−x) is a solution of (6.1.1). Comparing values at x = 0
establishes Kummer’s identity

ex M(c − a, c;−x) = M(a, c; x). (6.1.10)

A second identity due to Kummer is

M(a, 2a; 4x) = e2x
0 F1

(
a + 1

2
; x2
)

≡ e2x
∞∑

n=0

x2n(
a + 1

2

)
n n ! ; (6.1.11)

see Exercise 8.19 in Chapter 8.
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It will be shown in Chapter 10 that M(a, c; x) has the following asymptotic
behavior as a → −∞:

M(a, c; x) = �(c)√
π

(
1

2
cx − ax

) 1
4 − 1

2 c

e
1
2 x

×
[

cos

(√
2cx − 4ax − 1

2
cπ + 1

4
π

)
+ O

(
|a|− 1

2

)]
.

This was proved by Erdélyi [80] and Schmidt [253], generalizing Fejér’s result
for Laguerre polynomials (4.5.12).

6.2 Kummer functions of the second kind

To find a solution u of the confluent hypergeometric equation (6.1.1) that does
not have exponential growth as Re x → +∞, we note that such a solution
should be expressible as a Laplace transform (see Exercise 4.25 in Chapter 4).
Thus we look for an integral representation

u(x) = [Lϕ](x) =
∫ ∞

0
e−xt ϕ(t) dt

for some integrable function ϕ(t). If a function u(x) has this form, then

xu′′(x)+ (c − x) u′(x)− a u(x) =
∫ ∞

0
e−xt [xt2 + (x − c)t − a

]
ϕ(t) dt

=
∫ ∞

0

[
xe−xt ] (t2 + t)ϕ(t) dt −

∫ ∞

0
e−xt (a + ct) ϕ(t) dt.

Suppose that t ϕ(t) has limit zero as t → 0 and that ϕ′ is integrable. Then
integration by parts of the first integral in the last line leads to

xu′′(x)+ (c − x) u′(x)− a u(x)

=
∫ ∞

0
e−xt{[(t2 + t)ϕ(t)

]′ − (a + ct) ϕ(t)
}

dt.

It follows that u is a solution of (6.1.1) if the expression in braces vanishes.
This condition is equivalent to

ϕ′(t)
ϕ(t)

= (c − 2)t + a − 1

t2 + t
= c − a − 1

1 + t
+ a − 1

t
,

or ϕ(t) = A ta−1(1 + t)c−a−1. Then t ϕ(t) has limit zero as t → 0 if Re a > 0.
This argument shows that we may obtain a solution U (a, c; ·) of (3.0.1) by
taking
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U (a, c; x) = 1

�(a)

∫ ∞

0
e−xt ta−1(1 + t)c−a−1 dt

= x−a

�(a)

∫ ∞

0
e−ssa−1

(
1 + s

x

)c−a−1
ds, Re a > 0. (6.2.1)

The second form leads to a full asymptotic series expansion for U as Re x →
+∞. The first term gives

U (a, c; x) ∼ x−a as Re x → +∞, Re a > 0. (6.2.2)

The full expansion is

U (a, c; x) ∼ x−a
∞∑

n=0

(a)n(a + 1 − c)n
n!

(−1)n

xn
, Re a > 0. (6.2.3)

As noted below, U can be extended to all index pairs (a, c) with c not an
integer. The results in Section 6.5, together with (6.2.6) below, make it possible
to show that the asymptotic results (6.2.2) and (6.2.3) extend to all such index
pairs.

The function U is called the confluent hypergeometric function of the sec-
ond kind. In the Russian literature it is denoted by �:

�(a, c; x) = U (a, c; x). (6.2.4)

The solution (6.2.1) must be a linear combination of the solutions (6.1.2)
and (6.1.6),

U (a, c; x) = A(a, c)M(a, c; x)+ B(a, c) x1−c M(a + 1 − c, 2 − c; x)
(6.2.5)

with coefficients A(a, c) and B(a, c) that are meromorphic functions of a
and c. The coefficients can be determined by considering the integral repre-
sentation in two special cases.

If 1 − c > 0 then the second summand on the right in (6.2.5) vanishes at
x = 0, while the value of (6.2.1) at x = 0 is

1

�(a)

∫ ∞

0
ta(1 + t)c−a−1 dt

t
= B(a, 1 − c)

�(a)
= �(1 − c)

�(a + 1 − c)
.

Therefore A(a, c) = �(1 − c)/�(a + 1 − c) for Re a > 0, 1 − c > 0, and,
by analytic continuation, for all non-integer values of c.
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If c − 1 > 0 then xc−1 M(a, c; x) vanishes at x = 0, while

xc−1 U (a, c; x) = xc−1 x−a

�(a)

∫ ∞

0
e−t ta−1

(
1 + t

x

)c−a−1

dt

= 1

�(a)

∫ ∞

0
e−t ta−1(x + t)c−a−1 dt

→ �(c − 1)

�(a)
as x → 0 +.

Therefore B(a, c) = �(c − 1)/�(a) for Re a > 0 and all non-integer values
of c.

We have proved

U (a, c; x)= �(1 − c)

�(a + 1 − c)
M(a, c; x)+ �(c − 1)

�(a)
x1−c M(a + 1 − c, 2 − c; x)

(6.2.6)

for all values of Re a > 0 and c not an integer. Conversely, we may use (6.2.6)
to remove the limitation Re a > 0 and define U for all a and all non-integer
values of c. It follows from (6.2.6) and (6.1.10) that

U (a, c; x) = x1−c U (a + 1 − c, 2 − c; x); (6.2.7)

see the exercises.
The Wronskian of the solutions M and U may be computed from (6.1.8)

and (6.2.2), or from (6.2.6) and (6.1.7). The result is

W
(
M(a, c; ·),U (a, c; ·))(x) = −�(c)

�(a)
x−cex ; (6.2.8)

see the exercises.
It follows from (6.1.10) that a solution of (6.1.1) that decays exponentially

as x → −∞ is

Ũ (a, c; x) = ex U (c − a, c;−x)

= 1

�(c − a)

∫ ∞

0
ex(1+t)tc−a−1(1 + t)a−1 dt

= (−x)a−cex

�(c − a)

∫ ∞

0
e−ssc−a−1

(
1 − s

x

)a−1
ds, Re c>Re a> 0.

(6.2.9)

Then Ũ (a, c; x) = ex (−x)a−c(1 + O(−1/x)) as x → −∞. Again, the results
in Section 6.5 show that this asymptotic result extends to all index pairs (a, c),
c not an integer.
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In terms of the solutions (6.1.2) and (6.1.6), we use (6.2.6) and (6.1.10) to
obtain

Ũ (a, c; x) = �(1 − c)

�(1 − a)
ex M(c − a, c; −x)

+ �(c − 1)

�(c − a)
ex (−x)1−c M(1 − a, 2 − c;−x)

= �(1 − c)

�(1 − a)
M(a, c;x)+ �(c − 1)

�(c − a)
(−x)1−c M(1 + a − c, 2 − c;x).

(6.2.10)

It will be shown in Chapter 10 that a consequence of (6.1.12) and (6.2.6) is
that U has the following asymptotic behavior as a → −∞:

U (a, c; x) = �
( 1

2 c − a + 1
4

)
√
π

x
1
4 − 1

2 c e
1
2 x

×
[

cos

(√
2cx − 4ax − 1

2
cπ + aπ + 1

4
π

)
+ O

(
|a|− 1

2

)]
.

(6.2.11)

6.3 Solutions when c is an integer

As noted above, for c �= 1 an integer, only one of the two functions (6.1.2) and
(6.1.6) is defined, while if c = 1 they coincide. When c is an integer, a second
solution can be obtained from the solution of the second kind U . In view of
(6.2.7), it is enough to consider the case c = m a positive integer.

Assume first that a is not an integer. We begin by modifying the solution M
so that it is defined for all c. Assuming first that c �= 0,−1,−2, . . . , let

N (a, c; x) ≡ �(a)

�(c)
M(a, c; x) =

∞∑
n=0

�(a + n)

�(c + n) n ! xn .

The series expansion is well-defined for all values of the parameters except for
a a non-positive integer. Note that if c = −k is an integer ≤ 0, the first k + 1
terms of the series vanish. In particular, if c = m is a positive integer,

N (a + 1 − m, 2 − m; x) =
∞∑

n=m−1

�(a + 1 − m + n)

�(2 − m + n) n ! xn

= xm−1
∞∑

k=0

�(a + k)

�(m + k) k ! xk

= xm−1 N (a,m; x). (6.3.1)
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For non-integer c and a we use the reflection formula (2.2.7) to rewrite
(6.2.6) as

U (a, c; x) = π

sinπc�(a) �(a + 1 − c)

× [N (a, c; x)− x1−c N (a + 1 − c; 2 − c, x)
]
. (6.3.2)

In view of (6.3.1), the difference in brackets has limit zero as c → m, m
a positive integer. It follows that U (a, c; x) has a limit as c → m, and the
limit is given by l’Hôpital’s rule. For a not an integer,

U (a,m; x) = (−1)m

�(a) �(a + 1 − m)

× ∂

∂c

∣∣∣
c=m

[
N (a, c; x)− x1−c N (a + 1 − c, 2 − c; x)

]
.

Therefore, for non-integer values of a and positive integer values of m, calcu-
lating the derivative shows that

U (a,m; x) = (−1)m

�(a + 1 − m) (m − 1) !
{

log x M(a,m; x)

+
∞∑

n=0

(a)n
(m)n n !

[
ψ(a + n)− ψ(n + 1)− ψ(m + n)

]
xn
}

+ (m − 2) !
�(a)

x1−m
m−2∑
n=0

(a + 1 − m)n
(2 − m)n n ! xn, (6.3.3)

where ψ(b) = �′(b)/�(b) and the last sum is taken to be zero if m = 1.
The function in (6.3.3) is well-defined for all values of a. By a continuity

argument, it is a solution of (6.1.1) for all values of a and c and all values of x
not in the interval (−∞, 0]. If a is not an integer less than m, U (a,m; x) has
a logarithmic singularity at x = 0 and is therefore independent of the solution
M(a, c; x). If a is a positive integer less than m, then the coefficient of the term
in braces vanishes and U (a, c; x) is the finite sum, which is a rational function
that is again independent of M(a, c; x).

If a is a non-positive integer, then U (a,m; x) ≡ 0. To obtain a solution in
this case we start with non-integer a and multiply (6.3.3) by �(a). Since

�(a)

�(a + 1 − m)
= (a + 1 − m)m−1 �= 0

for a = 0,−1,−2, . . . , the limiting value of �(a)U (a, c; x) is a solution of
(6.1.1) that has a logarithmic singularity at x = 0.
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6.4 Special cases

The exponential function

ex =
∞∑

n=0

(c)n
(c)n n ! xn = M(c, c; x), c �= 0,−1,−2, . . . , (6.4.1)

is one example of a confluent hypergeometric function.

The Laguerre polynomial L(α)n (x) satisfies equation (6.1.1) with c = α + 1
and a = −n. Since the constant term is (α + 1)n/n !, it follows that

L(α)n (x) = (α + 1)n
n ! M(−n, α + 1; x). (6.4.2)

Combining this with the identities (4.4.22) and (4.4.23) that relate Hermite
and Laguerre polynomials gives

H2m(x) = (−1)m 22m
(

1

2

)
m

M

(
−m,

1

2
; x2
)

; (6.4.3)

H2m+1(x) = (−1)m 22m+1
(

3

2

)
m

x M

(
−m,

3

2
; x2
)
.

These identities, together with the identity (4.4.21) relating the Hermite poly-
nomials {Hn} and the modified version {He n}, give

He 2m(x) = (−1)m 2m
(

1

2

)
m

M

(
−m,

1

2
; 1

2
x2
)

; (6.4.4)

He 2m+1(x) = (−1)m 2m+ 1
2

(
3

2

)
m

x√
2

M

(
−m,

3

2
; 1

2
x2
)
.

Other special cases of Kummer functions include the error function, the
incomplete gamma function, and the complementary incomplete gamma func-
tion of Section 2.6:

erf x ≡ 2√
π

∫ x

0
e−t2

dt = 2x√
π

M

(
1

2
,

3

2
;−x2

)
; (6.4.5)

γ (a, x) ≡
∫ x

0
e−t ta−1 dt = xa

a
M(a, a + 1;−x); (6.4.6)

�(a, x) ≡
∫ ∞

x
e−t ta−1 dt = xae−x U (1, a + 1; x). (6.4.7)
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Among other such functions are the Fresnel integrals

C(x) ≡
∫ x

0
cos

(
1

2
t2π

)
dt;

S(x) ≡
∫ x

0
sin

(
1

2
t2π

)
dt;

and the exponential integral, cosine integral, and sine integral functions

Ei(z) ≡
∫ z

−∞
et dt

t
, z /∈ [0,∞);

Ci(z) ≡
∫ z

∞
cos t

dt

t
, z /∈ (−∞, 0];

Si(z) ≡
∫ z

0
sin t

dt

t
, z /∈ (−∞, 0].

These functions are related to the Kummer functions for special values of the
indices:

C(x) = x

2

[
M

(
1

2
,

3

2
; 1

2
i x2π

)
+ M

(
1

2
,

3

2
;−1

2
i x2π

)]
; (6.4.8)

S(x) = x

2i

[
M

(
1

2
,

3

2
; 1

2
i x2π

)
− M

(
1

2
,

3

2
;−1

2
i x2π

)]
; (6.4.9)

and

Ei(−z) = −e−z U (1, 1; z); (6.4.10)

Ci(x) = −1

2

[
e−i x U (1, 1; i x)+ eix U (1, 1;−i x)

]; (6.4.11)

Si(x) = 1

2i

[
e−i x U (1, 1; i x)− eix U (1, 1;−i x)

]+ π

2
. (6.4.12)

See the exercises for the identities (6.4.5)–(6.4.12).

6.5 Contiguous functions

Two Kummer functions are said to be contiguous if the first of the two indices
is the same for each function and the second indices differ by ±1, or the second
indices are the same and the first indices differ by ±1. Any triple of contiguous
Kummer functions satisfies a linear relationship. For convenience, fix a, c, x ,
and let
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M = M(a, c; x); M(a±) = M(a ± 1, c; x); M(c±) = M(a, c ± 1; x).

There are six basic linear relations: the relations between M and any of the six
pairs chosen from the four contiguous functions M(a±), M(c±).

Denote the coefficient of xn in the expansion of M by

εn = (a)n
(c)n n ! .

As above, let D = x(d/dx). The coefficients of xn in the expansions of DM ,
M(a+) and M(c−), respectively, are

n εn,
a + n

a
εn,

c − 1 + n

c − 1
εn .

Therefore

DM = a
[
M(a+)− M

] = (c − 1)
[
M(c−)− M

]
, (6.5.1)

and

(a − c + 1)M = a M(a+)− (c − 1)M(c−). (6.5.2)

The coefficient of xn in the expansion of x M is

(c + n − 1) n

a + n − 1
εn =

[
n + (c − a)− (c − a)

a − 1

a + n − 1

]
εn,

so

x M = DM + (c − a)M − (c − a)M(a−).
Combining this with (6.5.1) gives

(2a − c + x)M = a M(a+)− (c − a)M(a−); (6.5.3)

(a − 1 + x)M = (c − 1)M(c−)− (c − a)M(a−). (6.5.4)

The coefficient of xn in the expansion of M ′ is

a + n

c + n
εn =

[
1 + a − c

c

c

c + n

]
εn,

so

c M ′ = c M − (c − a)M(c+).
Multiplying by x gives

c DM = cx M − (c − a)x M(c+),
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and combining this with (6.5.1) gives

c(a + x)M = ac M(a+)+ (c − a)x M(c+); (6.5.5)

c(c − 1 + x)M = c(c − 1)M(c−)+ (c − a)x M(c+). (6.5.6)

Eliminating M(c−) from (6.5.4) and (6.5.6) gives

c M = c M(a−)+ x M(c+). (6.5.7)

The relations (6.5.2)–(6.5.7) are the six basic relations mentioned above.
Contiguous relations for the solution U (a, c; x) can be derived from those

for M(a, c; x), using (6.2.6). However, it is simpler to start with Re a > 0
and use the integral representation (6.2.1). The identities extend to general
values of the parameter by analytic continuation. We use the same notational
conventions as before:

U = U (a, c; x); U (a±) = U (a ± 1, c; x); U (c±) = U (a, c ± 1; x).

Differentiating the first integral in (6.2.1) with respect to x gives the two
identities

U ′(a, c; x) = −a U (a + 1, c + 1; x); (6.5.8)

U ′(a, c; x) = U (a, c; x)− U (a, c + 1; x). (6.5.9)

Replacing c by c − 1 and combining these two identities gives

U = a U (a+)+ U (c−). (6.5.10)

Integrating the identity

d

dt

[
e−xt ta−1(1 + t)c−a] = e−xt [−xta−1(1 + t)c−a + (a − 1)ta−2(1 + t)c−a

+ (c − a)ta−1(1 + t)c−a−1]
for 0 < t < ∞ gives

(c − a)U = x U (c+)− U (a−). (6.5.11)

The two identities (6.5.8), (6.5.9) give

a U (a + 1, c + 1; x) = U (c+)− U.

Combining this with (6.5.11) with a + 1 in place of a gives

(x + a)U = x U (c+)+ a(a + 1 − c)U (a+). (6.5.12)
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Eliminating U (a+) from (6.5.10) and (6.5.12) gives

(x + c − 1)U = x U (c+)+ (c − a − 1)U (c−). (6.5.13)

Eliminating U (c+) from (6.5.11) and (6.5.12) gives

(x + 2a − c)U = U (a−)+ a(1 + a − c)U (a+). (6.5.14)

Finally, eliminating U (a+) from (6.5.10) and (6.5.14) gives

(a + x − 1)U = U (a−)+ (c − a − 1)U (c−). (6.5.15)

6.6 Parabolic cylinder functions

A parabolic cylinder function, or Weber function, is a solution of one of the
equations

u′′(x)− x2

4
u(x)+

(
ν + 1

2

)
u(x) = 0; (6.6.1)

u′′(x)+ x2

4
u(x)+

(
ν + 1

2

)
u(x) = 0. (6.6.2)

If u is a solution of (6.6.1), then v(x) = u(e
1
4 iπ x) is a solution of (6.6.2) with

ν + 1
2 replaced by i(ν + 1

2 ), and conversely. We shall consider only (6.6.1).
Suppose that u is a solution of (6.6.1) that is holomorphic near x = 0. The

coefficients of the expansion u(x) =∑ bn xn can be computed from the first
two terms b0, b1 by setting b−2 = b−1 = 0 and using the recursion

(n + 2)(n + 1)bn+2 = −
(
ν + 1

2

)
bn + 1

4
bn−2. (6.6.3)

In particular, taking b0 �= 0, b1 = 0 determines an even solution, while b0 = 0,
b1 �= 0 determines an odd solution.

The gauge transformation u(x) = e− 1
4 x2
v(x) converts (6.6.1) to

v′′(x)− x v′(x)+ ν v(x) = 0. (6.6.4)

For ν = n a non-negative integer, one solution of this equation is the modified
Hermite polynomial Hen .

Each of the equations (6.6.1), (6.6.2), and (6.6.4) is unchanged under the
coordinate change x → −x . Therefore each has an even solution and an odd
solution. In the case of (6.6.4), we know that the polynomial solutions are even
or odd according as ν is an even or odd non-negative integer. Let us look for
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an even solution of the modified equation (6.6.4) in the form v(x) = w(x2/2).
Then (6.6.4) is equivalent to

yw′′(y)+
(

1

2
− y

)
w′(y)+ 1

2
ν w(y) = 0. (6.6.5)

This is the confluent hypergeometric equation (6.1.1) with c = 1
2 , a = − 1

2ν.
Thus the even solutions of (6.6.1) are multiples of

Yν1(x) = e− 1
4 x2

M

(
−1

2
ν,

1

2
; 1

2
x2
)
.

According to (6.1.6) a second solution of (6.6.5) is

√
y M

(
−1

2
ν + 1

2
,

3

2
; y

)
.

Therefore the odd solutions of (6.6.1) are multiples of

Yν2(x) = e− 1
4 x2 x√

2
M

(
−1

2
ν + 1

2
,

3

2
; 1

2
x2
)
.

It follows from (6.1.8) that the solutions Yν1 and Yν2 of (6.6.5) grow like

e
1
4 x2

as |x | → ∞. To obtain a solution with decay at ∞ we use the Kummer
function of the second kind U (− 1

2ν,
1
2 ; ·) instead. The standard normalized

solution is

Dν(x) = 2
1
2 νe− 1

4 x2
U

(
−1

2
ν,

1

2
; 1

2
x2
)

= 2
1
2 ν

{
�
( 1

2

)
�
( 1

2 − 1
2ν
) Yν1(x)+ �

(− 1
2

)
�
(− 1

2ν
) Yν2(x)

}
. (6.6.6)

For Re ν < 0, (6.2.1) implies the integral representation

Dν(x) = 2
1
2 ν e− 1

4 x2

�
(− 1

2ν
) ∫ ∞

0
e− 1

2 t x2
t−

1
2 ν−1

(1 + t)
1
2 ν−

1
2 dt. (6.6.7)

Another integral representation valid for Re ν < 0 is

Dν(x) = 2
1
2 ν�

( 1
2

)
e− 1

4 x2

�
( 1

2 − 1
2ν
)
�
(− 1

2ν
) ∫ ∞

0
e−t−√

2t x t−
1
2 ν−1 dt; (6.6.8)

see Exercise 6.8.
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If ν = 2m is an even non-negative integer, then the second summand on the
right in (6.6.6) vanishes and the coefficient of the first summand is

2m �
( 1

2

)
�
( 1

2 − m
) = (−1)m 2m

(
1

2

)
m
.

If ν = 2m + 1 is an odd positive integer, then the first summand on the right
in (6.6.6) vanishes and the coefficient of the second summand is

2m+ 1
2

�
(− 1

2

)
�
(− 1

2 − m
) = (−1)m 2m+ 1

2

(
3

2

)
m
.

In view of (6.4.4), therefore,

Dn(x) = e− 1
4 x2

He n(x), n = 0, 1, 2, . . . (6.6.9)

The behavior as x → 0 is given by

Dν(x) = 2
1
2 ν

√
π

⎧⎨⎩ 1

�
( 1

2 − 1
2ν
) − 2

1
2 x

�
(− 1

2ν
)
⎫⎬⎭+ O(x2); (6.6.10)

the remaining coefficients can be computed from the recursion (6.6.3). The
definition (6.6.6) and the identity (6.2.7) imply the identity

Dν(x) = 2
1
2 ν−

1
2 e− 1

4 x2
x U

(
−1

2
ν + 1

2
,

3

2
; 1

2
x2
)
. (6.6.11)

As noted above, equation (6.6.1) is unchanged under the coordinate change
x → −x . It is also unchanged if we replace the pair (x, ν + 1

2 ) with the pair
(±i x,−ν − 1

2 ). Therefore four solutions of (6.6.1) are

Dν(x), Dν(−x), D−ν−1(i x), D−ν−1(−i x). (6.6.12)

The behavior of each of these solutions as x → 0 follows from (6.6.10). This
allows one to express any one of the solutions (6.6.12) as a linear combination
of any two of these solutions. In particular, it follows from (6.6.10), using
(2.2.7) and (2.3.1), that

Dν(x) = �(ν + 1)√
2π

{
e

1
2 νπ i D−ν−1(i x)+ e− 1

2 νπ i D−ν−1(−i x)
}
;

(6.6.13)

D−ν−1(i x) = �(−ν)√
2π

{
i e

1
2 νπ i Dν(x)− i e− 1

2 νπ i Dν(−x)
}
.
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The Wronskian of two solutions of (6.6.1) is constant. It follows from
(6.6.10) and the duplication formula (2.3.1) that

W
(
Dν(x), Dν(−x)

) = 2ν+
3
2π

�
( 1

2 − 1
2ν
)
�
(− 1

2ν
) =

√
2π

�(−ν) . (6.6.14)

The reflection formula (2.2.7) and (6.6.10) imply that

W
(
Dν(x), D−ν−1(i x)

) = −i e− 1
2πνi = e− 1

2π(ν+1)i ; (6.6.15)

W
(
Dν(x), D−ν−1(−i x)

) = i e
1
2 νπ i = e

1
2π(ν+1)i

.

The remaining Wronskians of the four solutions (6.6.12) can be deduced from
these. In particular, Dν(x) and Dν(−x) are independent if and only if ν is not
a non-negative integer, while Dν(x) and D−ν−1(i x) are always independent.

The identities (6.6.6), (6.5.8), and (6.6.11) imply

D′
ν(x)+

x

2
Dν(x)− ν Dν−1(x) = 0. (6.6.16)

Similarly, the identities (6.6.6), (6.5.9), and (6.6.11) imply

D′
ν(x)−

x

2
Dν(x)+ Dν+1(x) = 0. (6.6.17)

Eliminating D′
ν from these identities gives the recurrence identity

Dν+1(x)− x Dν(x)+ ν Dν−1(x) = 0. (6.6.18)

The asymptotic result

Dν(x) ∼ 2
1
2 ν√
π
�

(
1

2
ν + 1

2

)
cos

(√
ν + 1

2
x − 1

2
πν

)
(6.6.19)

as ν → +∞ is a consequence of (6.6.6) and the asymptotic result (6.2.11).
A direct proof will be given in Chapter 10.

6.7 Whittaker functions

The first-order term in the confluent hypergeometric equation (6.1.1) can
be eliminated by a gauge transformation u(x) = ϕ(x)v(x) with ϕ′/ϕ =
1
2 (1 − c/x), i.e. ϕ(x) = e

1
2 x x− 1

2 c. The resulting equation for v is Whittaker’s
equation
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v′′(x)+
[
−1

4
+ κ

x
+ 1 − 4μ2

4x2

]
v(x) = 0, κ = c

2
− a, μ = c − 1

2
.

(6.7.1)

Conversely, solutions of (6.7.1) have the form x
1
2 ce− 1

2 x V (x), where V is a
solution of the confluent hypergeometric equation (6.1.1) with indices a, c
given by

a = μ− κ + 1

2
, c = 1 + 2μ.

Since also

a + 1 − c = −μ− κ + 1

2
, 2 − c = 1 − 2μ, x

1
2 cx1−c = x1− 1

2 c = x−μ+ 1
2 ,

so long as 2μ is not an integer, there are independent solutions, the Whittaker
functions

Mκ,μ(x) = e− 1
2 x xμ+ 1

2 M

(
μ− κ + 1

2
, 1 + 2μ; x

)
; (6.7.2)

Mκ,−μ(x) = e− 1
2 x x−μ+ 1

2 M

(
−μ− κ + 1

2
, 1 − 2μ; x

)
,

that correspond to (6.1.2) and (6.1.6), respectively.
The Kummer functions are entire when defined. Both the functions in

(6.7.2) are defined so long as 2μ is not a nonzero integer. The Whittaker
functions are multiple-valued unless 2μ is an odd integer, in which case
whichever of the functions (6.7.2) is defined is a single-valued function.

The asymptotics of the solutions (6.7.2) follow from (6.1.8):

Mκ,μ ∼ �(1 + 2μ)

�
(
μ− κ + 1

2

) x−κe
1
2 x as Re x → +∞. (6.7.3)

The Wronskian of two solutions of (6.7.1) is constant. It follows from this
and the behavior at zero,

Mκ,μ(x) ∼ xμ+ 1
2 ,

that the Wronskian of the solutions (6.7.2) is

W
(
Mκ,μ,Mκ,−μ

)
(x) ≡ −2μ. (6.7.4)
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In view of (6.2.2) there is a solution, exponentially decreasing as x → +∞:

Wκ,μ(x) = e− 1
2 x xμ+ 1

2 U

(
μ− κ + 1

2
, 1 + 2μ; x

)

= �(−2μ)

�
(−μ− κ + 1

2

) Mκ,μ(x)+ �(2μ)

�
(
μ− κ + 1

2

) Mκ,−μ(x)

= Wκ,−μ(x), (6.7.5)

provided 2μ is not an integer. It follows from (6.2.2) that

Wκ,μ(x) ∼ xκ e− 1
2 x as Re x → +∞. (6.7.6)

The Wronskian of Mκ,μ and Wκ,μ can be computed from (6.7.5) and (6.7.4)
or from the asymptotics (6.7.3) and (6.7.6):

W (Mκ,μ,Wκ,μ)(x) ≡ − �(1 + 2μ)

�
(
μ− κ + 1

2

) . (6.7.7)

Since (6.7.1) is unchanged under (x, κ) → (−x,−κ), it follows that a
solution exponentially decreasing at −∞ is

W−κ,μ(x) = �(−2μ)

�
(− μ+ κ + 1

2

) M−κ,μ(−x)

+ �(2μ)

�
(
μ+ κ + 1

2

) M−κ,−μ(−x). (6.7.8)

It follows from (6.7.5) and (6.2.11) that

Wκ,μ(x) ∼ �
(
κ + 1

4

)
x

1
4√

π
cos

(
2
√
κx − κπ + 1

4
π

)
(6.7.9)

as κ → +∞.
The Coulomb wave equation (3.6.14) is

u′′(ρ)+
[

1 − 2η

ρ
− l(l + 1)

ρ2

]
u(ρ) = 0.

Let u(ρ) = v(2iρ). Then the equation becomes

v′′(x)+
[
−1

4
+ iη

x
− l(l + 1)

x2

]
v(x) = 0.

This is Whittaker’s equation with κ = iη and μ = l + 1
2 . When the equation

is obtained by separating variables in spherical coordinates, the parameter l is
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a non-negative integer. In this case, in addition to a solution that is regular at
x = 0, there is a solution with a logarithmic singularity. The normalization of
the regular solution in [224] is

Fl(η, ρ) = Cl(η)

(±2i)l+1
M±iη,l+ 1

2
(±2iρ)

= Cl(η) ρ
l+1e∓iρ M(l + 1 ∓ iη, 2l + 2;±2iρ), (6.7.10)

where the normalizing constant is

Cl(η) = 2l e−πη/2 |�(l + 1 + iη)|
�(2l + 2)

.

(By (6.1.10), the choice of sign does not matter.) The reason for this choice of
Cl is so that

Fl(η, ρ) ∼ sin θl(η, ρ) (6.7.11)

as ρ → +∞, where θl is given by (6.7.14) below; see the exercises.
Irregular solutions are defined by

H±
l (η, ρ) = (±i)l e±iσl (η) e

1
2πη W∓iη,l+ 1

2
(∓2iρ)

= e±iθl (η,ρ) (∓2iρ)l+1±iη U (l + 1 ± iη, 2l + 1;∓2iρ). (6.7.12)

Here the normalizing phases are the Coulomb wave shift

σl(η) = arg�(l + 1 + iη) (6.7.13)

and

θl(η, ρ) = ρ − η log(2ρ)− 1

2
lπ + σl(η). (6.7.14)

The real and imaginary parts are

H±
l (η, ρ) = Gλ(η, ρ)± i Fl(η, ρ), (6.7.15)

where Fl is the regular solution (6.7.10) and Gl is defined by (6.7.15):

Gl(η, ρ) = 1

2

[
H+

l (η, ρ)+ H−
l (η, ρ)

]
. (6.7.16)

When l is a non-negative integer, Gl has a logarithmic singularity at ρ = 0;
see (6.3.3).
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6.8 Exercises

6.1 Show that the expansion of eλx as a sum of Jacobi polynomials is

eλx =
∞∑

n=0

Cn M(n + β + 1, 2n + α + β + 2; 2λ) P(α,β)n (x),

where

Cn = �(n + α + β + 1)

�(2n + α + β + 1)
(2λ)n e−λ.

Hint: write eλx = e−λ eλ(1+x) and use Exercise 4.41 in Chapter 4.
6.2 Show that integration and summation can be interchanged to calculate

the Laplace transform (see Exercise 4.25 in Chapter 4) of
f (x) = xb−1 M(a, c; x):

[
L f
]
(s) = �(b)

sb
F

(
a, b, c; 1

s

)
,

where F is the hypergeometric function (see Exercise 1.7 in Chapter 1,
or Chapter 8).

6.3 Verify the integral representation

M(a, c; x) = �(c)

2π i

∫
C

(
1 − x

t

)−a
t−c et dt,

where C is the Hankel loop of Corollary (2.2.4).
6.4 The asymptotic result (6.1.8) implies that for most values of nonzero

constants A and B the linear combination

u(x) = A M(a, c; x)+ B x1−c M(a + 1 − c, 2 − c; x)

will have exponential growth as x → +∞. Determine a necessary
condition on the ratio A/B to prevent this from happening. Compare
this to (6.2.6).

6.5 Prove the identity (6.2.7).
6.6 Verify the evaluation (6.2.8).
6.7 Prove that

U

(
a,

1

2
; x2
)

= �
( 1

2

)
�
(
a + 1

2

)
�(a)

∞∑
n=0

�
(
a + 1

2 n
)

n ! (−2 x)n .
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6.8 Use Exercise 6.7 to prove

U

(
a,

1

2
; x2
)

=

�
( 1

2

)
�
(
a + 1

2

)
�(a)

∫ ∞

0
exp

(
−t − 2

√
t x
)

ta−1 dt, Re a > 0.

6.9 Verify the identity for the Laguerre polynomials

L(α)n (x) = (−1)n

n ! U (−n, α + 1; x).

6.10 Prove the identity (6.4.5) for the error function. Hint:
1/(2n + 1) = ( 1

2

)
n

/( 3
2

)
n .

6.11 Prove the identity (6.4.6) for the incomplete gamma function. Hint:
a/(a + n) = (a)n/(a + 1)n .

6.12 Use (6.2.1) to prove the identity (6.4.7) for the complementary
incomplete gamma function.

6.13 Let ω = eiπ/4 = (1 + i)/
√

2. Show that

1

1 + i
erf

(
ωx

√
π

2

)
=
∫ x

0
e−i t2π/2 dt = C(x)− i S(x),

where C(x) and S(x) are the Fresnel integrals of Section 6.4.
6.14 Use Exercise 6.13 and (6.4.5) to prove (6.4.8) and (6.4.9).
6.15 Use (6.2.1) to prove (6.4.10).
6.16 Use Cauchy’s theorem to prove that∫ ∞

0

sin t

t
dt = 1

2

∫ ∞

−∞
sin t

t
dt

= 1

2
Im

[
lim
ε→0+

∫
|t |>ε

eit

t
dt

]
= π

2
.

Hint: integrate eit/t over the boundary of the region
{|z| > ε, 0 < Im z < R, |Re z| < S} and let first S, then R go to ∞.

Thus for x > 0, ∫ ∞

x

sin t

t
dt = π

2
−
∫ x

0

sin t

t
dt.

6.17 Use (6.4.10) and Exercise 6.16 to prove (6.4.11) and (6.4.12).
6.18 Use the results of Section 6.5 to show that the asymptotic results (6.1.8)

and (6.1.9) are valid for all indices (a, c), c �= 0, 1, 2, . . .
6.19 Use the results of Section 6.5 to show that the asymptotic results (6.2.2)

and (6.2.3) are valid for all indices (a, c), c not an integer.



6.9 Summary 211

6.20 Suppose c > 0. The operator

L = x
d2

dx2
+ (c − x)

d

dx

is symmetric in L2
w, w(x) = xc−1e−x , x > 0, with eigenvalues

0, 1, 2, . . . ; the Laguerre polynomials with index c − 1 are
eigenfunctions.
Given λ > 0 and f ∈ L2

w, the equation Lu + λu = f has a unique
solution u ∈ L2

w, expressible in the form

u(x) =
∫ ∞

0
Gλ(x, y) f (y) dy.

Compute the Green’s function Gλ. Hint: see Section 3.3. The
appropriate boundary conditions here are: regular at x = 0, having at
most polynomial growth as x → +∞.

6.21 Prove (6.6.13).
6.22 Express D−ν−1(i x) as a linear combination of Dν(x) and Dν(−x).
6.23 Prove the Wronskian formulas (6.6.14), (6.6.15).
6.24 Compute the Wronskians

W
(
Dν(x), D−ν−1(i x)

);
W
(
Dν(x), D−ν−1(−i x)

);
W
(
D−ν−1(i x), D−ν−1(−i x)

)
.

6.25 Verify the identities (6.6.16), (6.6.17), (6.6.18).
6.26 Show that the asymptotic result (6.2.2) is also valid for imaginary values

of the argument x . Deduce that the Coulomb wave functions satisfy

H±
l (η, ρ) ∼ e±iθl (η,ρ)

as ρ → +∞, and thus verify (6.7.11).

6.9 Summary

6.9.1 Kummer functions

The confluent hypergeometric equation is

x u′′(x)+ (c − x) u′(x)− a u(x) = 0.
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An entire solution is Kummer’s function

M(a, c; x) =
∞∑

n=0

(a)n
(c)n n ! xn

= �(a, c; x) = 1 F1(a, c; x), c �= 0,−1,−2, . . .

For Re c > Re a > 0,

M(a, c; x) = �(c)

�(a) �(c − a)

∫ 1

0
sa−1(1 − s)c−a−1esx ds.

Asymptotically,

M(a, c; x) ∼ �(c)

�(a)
xa−c ex

∞∑
n=0

(1 − a)n(c − a)n
n ! x−n, x → +∞.

Second solution:

x1−c M(a + 1 − c, 2 − c; x), c �= 0,±1,±2, . . .

Let

M1(x) = M(a, c; x), M2(x) = x1−c M(a + 1 − c, 2 − c; x),

c �= 0,±1,±2, . . .

Wronskian:

W (M1,M2)(x) = (1 − c) x−cex .

Two identities due to Kummer:

M(a, c; x) = ex M(c − a, c;−x);

M(a, 2a; 4x) = e2x
0 F1

(
a + 1

2
; x2
)

= e2x
∞∑

n=0

x2n(
a + 1

2

)
n n! .

Asymptotic behavior as a → −∞:

M(a, c; x) = �(c)√
π

(
1

2
cx − ax

) 1
4 − 1

2 c

e
1
2 x

×
[

cos

(√
2cx − 4ax − 1

2
cπ + 1

4
π

)
+ O

(
|a|− 1

2

)]
.
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6.9.2 Kummer functions of the second kind

Solution with at most polynomial growth as x → +∞:

U (a, c; x) = �(1 − c)

�(a + 1 − c)
M(a, c; x)

+ �(c − 1)

�(a)
x1−c M(a + 1 − c, 2 − c; x), c �= 0,±1,±2, . . .

Integral representation:

U (a, c; x) = 1

�(a)

∫ ∞

0
e−xt ta−1(1 + t)c−a−1 dt, Re a > 0.

Asymptotics:

U (a, c; x) ∼ x−a as Re x → +∞,

U (a, c; x) ∼ x−a
∞∑

n=0

(a)n(a + 1 − c)n
n!

(−1)n

xn
.

Kummer’s identity:

U (a, c; x) = x1−c U (a + 1 − c, 2 − c; x).

Wronskian:

W
(
M(a, c; ·),U (a, c; ·))(x) = −�(c)

�(a)
x−cex .

Solution exponentially decreasing as x → −∞:

Ũ (a, c; x) = �(1 − c)

�(1 − a)
ex M(c − a, c;−x)

+ �(c − 1)

�(c − a)
ex (−x)1−c M(1 − a, 2 − c;−x)

= �(1 − c)

�(1 − a)
M(a, c; x)+ �(c − 1)

�(c − a)
(−x)1−c M(1 + a − c, 2 − c; x),

c �= 0,±1,±2, . . .

Integral representation:

Ũ (a, c; x) = ex U (c − a, c;−x)

= 1

�(c − a)

∫ ∞

0
ex(1+t)tc−a−1(1 + t)a−1 dt, Re c > Re a.
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Asymptotic behavior as a → −∞:

U (a, c; x) = �
( 1

2 c − a + 1
4

)
√
π

x
1
4 − 1

2 c e
1
2 x

×
[

cos

(√
2cx − 4ax − 1

2
cπ + aπ + 1

4
π

)
+ O

(
|a|− 1

2

)]
.

6.9.3 Solutions when c is an integer

Second solution of (6.1.1) when c is an integer: (6.2.7) allows reduction to the
case c = m a positive integer. Limit of U (a, c; x), as c → m, a not an integer:

U (a,m; x) = (−1)m

�(a + 1 − m) (m − 1) !
{

log x M(a,m; x)

+
∞∑

n=0

(a)n
(m)n n !

[
ψ(a + n)− ψ(n + 1)− ψ(m + n)

]
xn
}

+ (m − 2) !
�(a)

x1−m
m−2∑
n=0

(a + 1 − m)n
(2 − m)n n ! xn, ψ(b) = �′(b)

�(b)
;

last sum taken to be zero if m = 1. This solution is independent of M(a, c; x)
except for a = 0,−1,−2, . . . For these values, an independent solution is
obtained by multiplying this expression by �(a).

6.9.4 Special cases

The exponential function:

ex = M(c, c; x).

Laguerre, Hermite, and modified Hermite polynomials:

L(α)n (x) = (α + 1)n
n ! M(−n, α + 1; x);

H2m(x) = (−1)m22m
(

1

2

)
m

M

(
−m,

1

2
; x2
)

;

H2m+1(x) = (−1)m22m+1
(

3

2

)
m

x M

(
−m,

3

2
; x2
)

;
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He 2m(x) = (−1)m2m
(

1

2

)
m

M

(
−m,

1

2
; 1

2
x2
)

;

He 2m+1(x) = (−1)m2m+ 1
2

(
3

2

)
m

x√
2

M

(
−m,

3

2
; 1

2
x2
)
.

Error function, incomplete gamma function, complementary incomplete
gamma function:

erf x ≡ 2√
π

∫ x

0
e−t2

dt = 2x√
π

M

(
1

2
,

3

2
;−x2

)
;

γ (a, x) ≡
∫ x

0
e−t ta−1 dt = xa

a
M(a, a + 1;−x);

�(a, x) ≡
∫ ∞

x
e−t ta−1 dt = xae−x U (1, a + 1; x).

Fresnel integrals:

C(x) ≡
∫ x

0
cos

(
1

2
t2π

)
dt = x

2

[
M

(
1

2
,

3

2
; 1

2
i x2π

)
+ M

(
1

2
,

3

2
;−1

2
i x2π

)]
;

S(x) ≡
∫ x

0
sin

(
1

2
t2π

)
dt = x

2i

[
M

(
1

2
,

3

2
; 1

2
i x2π

)
− M

(
1

2
,

3

2
;−1

2
i x2π

)]
.

Exponential integral, cosine integral, and sine integral functions:

Ei(−z) ≡
∫ z

∞
e−t dt

t
= −e−z U (1, 1; z), z /∈ (−∞, 0];

Ci(x) ≡
∫ x

∞
cos t

dt

t
= −1

2

[
e−i x U (1, 1; i x)+ eix U (1, 1;−i x)

];
Si(x) ≡

∫ x

0
sin t

dt

t
= 1

2i

[
e−i x U (1, 1; i x)− eix U (1, 1;−i x)

]+ π

2
.

6.9.5 Contiguous functions

Let

M = M(a, c; x); M(a±) = M(a ± 1, c; x); M(c±) = M(a, c ± 1; x).

The relations

x M ′ = a
[
M(a+)− M

] = (c − 1)
[
M(c−)− M

];
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x M = x M ′ + (c − a)M − (c − a)M(a−);
cx M ′ = cx M − (c − a)x M(c+)

imply the six basic relations between contiguous functions:

(a − c + 1)M = a M(a+)− (c − 1)M(c−);
(2a − c + x)M = a M(a+)− (c − a)M(a−);
(a − 1 + x)M = (c − 1)M(c−)− (c − a)M(a−);

c(a + x)M = ac M(a+)+ (c − a)x M(c+);
c(c − 1 + x)M = c(c − 1)M(c−)+ (c − a)x M(c+);

c M = c M(a−)+ x M(c+).
Set

U = U (a, c; x), U (a±) = U (a ± 1, c; x), U (c±) = U (a, c ± 1; x).

The identities

U ′(a, c; x) = −a U (a + 1, c + 1; x);
U ′(a, c; x) = U (a, c; x)− U (a, c + 1; x)

imply

U = a U (a+)+ U (c−);
(c − a)U = x U (c+)− U (a−);
(x + a)U = x U (c+)+ a(a + 1 − c)U (a+);

(x + c − 1)U = x U (c+)+ (c − a − 1)U (c−);
(x + 2a − c)U = U (a−)+ a(1 + a − c)U (a+);
(a + x − 1)U = U (a−)+ (c − a − 1)U (c−).

6.9.6 Parabolic cylinder functions

A parabolic cylinder function is a solution of

u′′(x)− x2

4
u(x)+

(
ν + 1

2

)
u(x) = 0.
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Even and odd solutions, respectively, are multiples of

Yν1(x) = e− 1
4 x2

M

(
−1

2
ν,

1

2
; 1

2
x2
)
,

Yν2(x) = e− 1
4 x2 x√

2
M

(
−1

2
ν + 1

2
,

3

2
; 1

2
x2
)
.

Solution with decay as |x | → ∞:

Dν(x) = 2
1
2 νe− 1

4 x2
U

(
−1

2
ν,

1

2
; 1

2
x2
)

= 2
1
2 ν

{
�
( 1

2

)
�
( 1

2 − 1
2ν
) Yν1(x)+ �

(− 1
2

)
�
(− 1

2ν
) Yν2(x)

}
.

Integral representations:

Dν(x) = 2
1
2 ν e− 1

4 x2

�
(− 1

2ν
) ∫ ∞

0
e− 1

2 t x2
t−

1
2 ν−1

(1 + t)
1
2 ν−

1
2 dt

= 2
1
2 ν e− 1

4 x2
�
( 1

2

)
�
( 1

2 − 1
2ν
)
�
(− 1

2ν
) ∫ ∞

0
e−t−√

2t x t−
1
2 ν−1 dt, Re ν < 0.

In particular,

Dn(x) = e− 1
4 x2

He n(x), n = 0, 1, 2, . . .

Behavior as x → 0:

Dν(x) = 2
1
2 ν

√
π

⎧⎨⎩ 1

�
( 1

2 − 1
2ν
) − 2

1
2 x

�
(− 1

2ν
)
⎫⎬⎭+ O(x2).

This allows determination of the relations among the four cylinder functions

Dν(x), Dν(−x), D−ν−1(i x), D−ν−1(−i x).

In particular,

Dν(x) = �(ν + 1)√
2π

{
e

1
2 νπ i D−ν−1(i x)+ e− 1

2 νπ i D−ν−1(−i x)

}
;

D−ν−1(i x) = �(−ν)√
2π

{
i e

1
2 νπ i Dν(x)− i e− 1

2 νπ i Dν(−x)

}
.
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Wronskians: in particular

W (Dν(x), Dν(−x)) =
√

2π

�(−ν) ;

W (Dν(x), D−ν−1(i x)) = −i e− 1
2πνi = e− 1

2π(ν+1)i ;
W (Dν(x), D−ν−1(−i x)) = i e

1
2 νπ i = e

1
2π(ν+1)i

.

Identities for U imply

D′
ν(x)+

x

2
Dν(x)− ν Dν−1(x) = 0;

D′
ν(x)−

x

2
Dν(x)+ Dν+1(x) = 0;

Dν+1(x)− x Dν(x)+ ν Dν−1(x) = 0.

Asymptotics as ν → +∞:

Dν(x) ∼ 2
1
2 ν

π
1
2

�

(
1

2
ν + 1

2

)
cos

(√
ν + 1

2
x − 1

2
πν

)
.

6.9.7 Whittaker functions

Eliminating the first-order term from the confluent hypergeometric equation
by a gauge transformation leads to the Whittaker equation [314]

u′′(x)+
[
−1

4
+ κ

x
+ 1 − 4μ2

4x2

]
u(x) = 0, κ = c

2
− a, μ = c − 1

2
.

Two solutions:

Mκ,μ(x) = e− 1
2 x xμ+ 1

2 M

(
μ− κ + 1

2
, 1 + 2μ; x

)
;

Mκ,−μ(x) = e− 1
2 x x−μ+ 1

2 M

(
−μ− κ + 1

2
, 1 − 2μ; x

)
,

where

a = μ− κ + 1

2
, c = 1 + 2μ.

Wronskian:

W (Mκ,μ,Mκ,−μ) = −2μ.
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Solution exponentially decreasing as x → +∞:

Wκ,μ(x) = e− 1
2 x xμ+ 1

2 U

(
μ− κ + 1

2
, 1 + 2μ; x

)
= �(−2μ)

�
(−μ− κ + 1

2

) Mκ,μ(x)+ �(2μ)

�
(
μ− κ + 1

2

) Mκ,−μ(x)

= Wκ,−μ(x),

provided 2μ is not an integer. Wronskian:

W (Mκ,μ,Wκ,μ) = − �(1 + 2μ)

�
(
μ− κ + 1

2

) .
Solution exponentially decreasing at −∞:

W−κ,μ(x) = �(−2μ)

�
(−μ+ κ + 1

2

) M−κ,μ(−x)+ �(2μ)

�
(
μ+ κ + 1

2

) M−κ,−μ(−x).

Asymptotics as κ → +∞:

Wκ,μ(x) ∼ �
(
κ + 1

4

)
x

1
4√

π
cos

(
2
√
κx − κπ + 1

4
π

)
.

The Coulomb wave equation: normalized solution regular at the origin is

Fl(η, ρ) = Cl(η)

(±2i)l+1
M±iη,l+ 1

2
(±2iρ)

= Cl(η) ρ
l+1e∓iρ M(l + 1 ∓ iη, 2l + 2;±2iρ),

where

Cl(η) = 2l e−πη/2 |�(l + 1 + iη)|
�(2l + 2)

.

This is the imaginary part of solutions

H±
l (η, ρ) = (±i)l e±iσl (η) e

1
2πη W∓iη,l+ 1

2
(∓2iρ)

= e±iθl (η,ρ) (∓2iρ)l+1±iη U (l + 1 ± iη, 2l + 2;∓2iρ),

where

σl(η) = arg�(l + 1 + iη);
θl(η, ρ) = ρ − η log(2ρ)− 1

2
lπ + σl(η).
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The real part is the singular solution

Gl(η, ρ) = 1

2

[
H+

l (η, ρ)+ H−
l (η, ρ)

]
. (6.9.1)

6.10 Remarks

The Kummer functions were introduced by Kummer [168] in 1836, although
the series (6.1.2) in the case c = 2m had been investigated by Lagrange [170]
in 1762–5. Weber introduced the parabolic cylinder functions in 1869 [308].
Whittaker [314] introduced the Whittaker functions in 1903 and showed that
many known functions, including the parabolic cylinder functions and the
functions in Section 6.4, can be expressed in terms of the Wκ,μ. Coulomb
wave functions were studied in 1928 by Gordon [116] and by Mott [208]. The
current normalization and notation are due to Yost, Wheeler, and Breit [320];
see also Seaton [256]. For an application of Kummer and Whittaker functions
to the study of singular and degenerate hyperbolic equations, see Beals and
Kannai [23].

Three monographs devoted to confluent hypergeometric functions are
Buchholz [37], Slater [260], and Tricomi [287]. Buchholz puts particular
emphasis on the Whittaker functions and on applications, with many references
to the applied literature, while Tricomi emphasizes the Kummer functions.

As noted above, there are several standard notations for the Kummer func-
tions. We have chosen to use the notation M and U found in the handbooks
of Abramowitz and Stegun [3], Jahnke and Emde [144], and Olver et al.
[223, 224]. Tricomi [287] uses � and �.
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Cylinder functions

A cylinder function of order ν is a solution of Bessel’s equation

x2u′′(x)+ xu′(x)+ (x2 − ν2)u(x) = 0. (7.0.1)

As before we write D = x(d/dx), so that Bessel’s equation takes the form(
D2 − ν2)u(x)+ x2u(x) = 0.

For x ∼ 0 this can be viewed as a perturbation of the equation (D2 − ν2)u = 0,
which has solutions u(x) = x±ν , so we expect to find solutions that have the
form

x±ν fν(x) (7.0.2)

with f holomorphic near x = 0. Suitably normalized, solutions that have this
form are the Bessel functions of the first kind, or simply “Bessel functions.”
For ν not an integer, one obtains two independent solutions of this form. For ν
an integer, there is one solution of this form, and a second solution normalized
at x = 0 known as a Bessel function of the second kind.

For x large, equation (7.0.1) can be viewed as a perturbation of

u′′(x)+ 1

x
u′(x)+ u(x) = 0.

The gauge transformation u(x) = x− 1
2 v(x) converts this to

v′′(x)+
(

1 + 1

4x2

)
v(x) = 0,

which can be viewed as a perturbation of v′′ + v = 0. Therefore we expect to
find solutions of (7.0.1) that have the asymptotic form

u(x) ∼ x− 1
2 e±i x gν(x), x → +∞,

221
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where gν has algebraic growth or decay. Bessel functions of the third kind, or
Hankel functions, are a basis for such solutions.

We may remove the first-order term from (7.0.1) by the gauge transforma-

tion u(x) = x− 1
2 v(x). The equation for v is then

x2 v′′(x)+
(

x2 − ν2 + 1

4

)
v(x) = 0.

Therefore when ν = ± 1
2 , the solutions of (7.0.1) are linear combinations of

cos x√
x
,

sin x√
x
.

Because of this and the recurrence relations for Bessel functions, Bessel func-
tions are elementary functions whenever ν is a half-integer.

Replacing x by i x in (7.0.1) gives the equation

x2u′′(x)+ xu′(x)− (x2 + ν2)u(x) = 0. (7.0.3)

Solutions are known as modified Bessel functions. The normalized solutions
are real and have specified asymptotics as x → +∞.

The Airy equation

u′′(x)− x u(x) = 0

is related to the equation (7.0.3) with ν2 = 1
9 by a simple transformation, so its

solutions can be obtained from the modified Bessel functions.
In this chapter we establish various representations of these functions in

order to determine the recurrence and derivative formulas, and to determine
the relations among the various normalized solutions.

7.1 Bessel functions

The simplest way to obtain solutions of Bessel’s equation (7.0.1) that have
the form (7.0.2) is to use the gauge transformation u(x) = xνv(x), so that the
equation becomes

D2v(x)+ 2νDv(x)+ x2v(x) = 0

and determine the power series expansion v(x) =∑∞
n=0 an xn . The coefficients

must satisfy

n(n + 2ν)an + an−2 = 0.
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It follows that a1 = 0 and thus all odd terms vanish. We normalize by setting
a0 = 1 and obtain for the even terms

a2m = (−1)m
1

2m(2m − 2) · · · 2(2m + 2ν)(2m + 2ν − 2) · · · (2 + 2ν)

= (−1)m
1

4mm ! (ν + 1)m
, ν + 1 �= 0,−1,−2, . . . , 1 − m.

The corresponding solution of Bessel’s equation is defined for ν not a negative
integer:

xν
∞∑

m=0

(−1)m

(ν + 1)m m !
( x

2

)2m
. (7.1.1)

As a function of ν for given x > 0, the function (7.1.1) has a simple pole at
each negative integer. Division by �(ν + 1) removes the pole. A further slight
renormalization gives the Bessel function of the first kind

Jν(x) =
∞∑

m=0

(−1)m

�(ν + 1 + m)m !
( x

2

)ν+2m
. (7.1.2)

The series is convergent for all complex x . Taking the principal branch of xν

gives a function that is holomorphic on the complement of the real interval
(−∞, 0].

It follows from the expansion (7.1.2) that

[xν Jν]′ = xν Jν−1, [x−ν Jν]′ = −x−ν Jν+1, (7.1.3)

which implies that(
1

x

d

dx

)n [
xν Jν(x)

] = xν−n Jν−n(x); (7.1.4)(
1

x

d

dx

)n [
x−ν Jν(x)

] = (−1)n x−ν−n Jν+n(x).

Now

x1−ν[xν Jν]′(x) = x J ′
ν(x)+ ν Jν(x),

x1+ν[x−ν Jν]′(x) = x J ′
ν(x)− ν Jν(x).
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Eliminating J ′
ν(x) and Jν(x), respectively, from the resulting pairs of equations

gives the recurrence and derivative relations

Jν−1(x)+ Jν+1(x) = 2ν

x
Jν(x); (7.1.5)

Jν−1(x)− Jν+1(x) = 2 J ′
ν(x). (7.1.6)

As remarked in the introduction to this chapter, the Bessel functions

J± 1
2

must be linear combinations of x− 1
2 cos x and x− 1

2 sin x . In general, as

x → 0+,

J±ν(x) ∼ 1

�(±ν + 1)

( x

2

)±ν
, J ′±ν(x) ∼ ±ν

2

1

�(±ν + 1)

( x

2

)±ν−1
.

(7.1.7)
It follows that

J1
2
(x) =

√
2 sin x√
πx

; J− 1
2
(x) =

√
2 cos x√
πx

. (7.1.8)

These can also be derived from the series expansion (7.1.2) by using the
duplication formula (2.3.1). It follows from (7.1.8) and (7.1.5) that Jν(x) is
expressible in terms of trigonometric functions and powers of x whenever
ν + 1

2 is an integer.
For ν not an integer, the two solutions Jν and J−ν behave differently as

x → 0, so they are clearly independent. To compute the Wronskian, we note
first that for any two solutions u1(x), u2(x) of (7.0.1) the Wronskian W (x) =
W (u1, u2)(x)must satisfy x2W ′(x) = −xW (x). Therefore W = c/x for some
constant c. The constant is easily determined, using the identities (7.1.7) and
(2.2.7), which give

�(ν + 1) �(−ν + 1) = ν �(ν) �(1 − ν) = νπ

sin νπ
.

It follows that

W (Jν, J−ν)(x) = sin νπ

νπ

∣∣∣∣ xν x−ν
νxν−1 −νx−ν−1

∣∣∣∣ = −2 sin νπ

πx
, (7.1.9)

confirming that these solutions are independent for ν not an integer. If ν = −n
is a negative integer, examination of the expansion (7.1.2) shows that the first
non-vanishing term is the term with m = n. Setting m = n + k,
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J−n(x) = (−1)n
∞∑

k=0

(−1)k

k !(n + k) !
( x

2

)n+2k = (−1)n Jn(x)

= cos nπ Jn(x). (7.1.10)

These considerations lead to the choice of the Bessel function of the second
kind

Yν(x) = cos νπ Jν(x)− J−ν(x)
sin νπ

. (7.1.11)

In particular,

Y 1
2
(x) = −

√
2 cos x√
πx

; Y− 1
2
(x) =

√
2 sin x√
πx

. (7.1.12)

This solution of Bessel’s equation (7.0.1) is first defined for ν not an integer.
In view of (7.1.10), both the numerator and the denominator have simple zeros
at integer ν, so the singularity is removable and Yν can be considered as a
solution for all ν. The Wronskian is

W (Jν, Yν)(x) = −W (Jν, J−ν)(x)
sin νπ

= 2

πx
,

so Jν(x) and Yν(x) are independent solutions for all ν. It follows from (7.1.10)
and (7.1.11) that

Y−n(x) = (−1)nYn(x), n = 0, 1, 2, . . . (7.1.13)

The identities (7.1.5) and (7.1.6) yield the corresponding identities for Yν(x):

Yν−1(x)+ Yν+1(x) = 2ν

x
Yν(x); (7.1.14)

Yν−1(x)− Yν+1(x) = 2 Y ′
ν(x). (7.1.15)

Figures 7.1 and 7.2 show the graphs of these functions for some non-
negative values of the argument x and the parameter ν.

The series expansion (7.1.2) can be used to find the asymptotic behavior
of Jν(x) for large values of ν so long as y2 = x2/ν is bounded. A formal
calculation gives (√

ν y
)ν

2ν�(ν + 1)

∞∑
m=0

(−1)m

m !
( y

2

)2m
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J0(x)

J1(x)
J2(x)

J3(x)

Figure 7.1 Bessel function Jν(x), ν = 0, 1, 2, 3.

10

Y0(x)

5

Y1(x) Y2(x)
Y3(x)

Figure 7.2 Bessel function Yν(x), ν = 0, 1, 2, 3.

as the limiting value of the series. It is not difficult to show that

Jν
(√
ν y
) ∼

(√
ν y
)ν

2ν�(ν + 1)
e− 1

4 y2
(7.1.16)

as ν → +∞, uniformly on bounded intervals. For asymptotic results when x
is allowed to be comparable to ν, see Watson [306], chapter 8.

7.2 Zeros of real cylinder functions

Any real nonzero cylinder function with index ν has the form

u(x) = A Jν(x)+ B Yν(x), (7.2.1)
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where A and B are real constants. As noted in the introduction to this chapter,

the gauge transformation u(x) = x− 1
2 v(x) converts Bessel’s equation to a

perturbation of the equation w′′ + w = 0. Therefore we might expect that any
such function u is oscillatory: that is, it has an infinite number of zeros in the
half-line (0,∞), tending to infinity. This was proved for Jν by Lommel [189].
Moreover, we might expect that the spacing between zeros is asymptotic to π .

Theorem 7.2.1 A real nonzero cylinder function u(x) has a countable number
of positive zeros

0 < x1 < x2 < . . . < xn < . . .

The spacing xn+1 − xn is ≥ π if |ν| ≥ 1
2 , and ≤ π if |ν| ≤ 1

2 . As n → ∞,

xn+1 − xn = π + O(n−2).

Proof As noted earlier, the gauge transformation u(x) = x− 1
2 v(x) converts

Bessel’s equation to

v′′(x)+
(

1 − ν2 − 1
4

x2

)
v(x) = 0. (7.2.2)

The cylinder function u itself is a linear combination of solutions with behavior
xν and x−ν as x → 0, so v has no zeros in some interval (0, ε]. We make
use of Sturm’s comparison theorem, Theorem 3.3.3, by choosing comparison
functions of the form

w(x) = cos(ax + b), a > 0. (7.2.3)

Note that w′′(x)+ a2w(x) = 0 and the gap between zeros of w(x) is π/a. If
a is chosen so that a2 is a lower bound for the zero-order coefficient

1 − ν2 − 1
4

x2
, ε ≤ x < ∞, (7.2.4)

then the comparison theorem implies that for x ≥ ε there is a zero of v between
each pair of zeros of w. This proves that v, hence u, has countably many zeros.
Moreover, by choosing b in (7.2.3) so that w vanishes at a given zero of v, we
may conclude that the distance to the next zero of v is at most π/a.

Similarly, by choosing a so that a2 is an upper bound for (7.2.4) and
choosing b so that w vanishes at a zero of v, we conclude that the distance
to the next zero of v is at least π/a. In particular, a2 = 1 is a lower bound
when ν2 ≤ 1

4 and an upper bound when ν2 ≥ 1
4 , so π is an upper bound for the

gaps in the first case and a lower bound in the second case.
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This argument shows that the nth zero xn has magnitude comparable to n.
On the interval [xn,∞), the best lower and upper bounds of (7.2.4) differ from
1 by an amount that is O(n−2), so the gaps differ from π by a corresponding
amount. �

Between any two positive zeros of a real cylinder function u there is a zero
of u′. It follows from equation (7.0.1) that such a zero x is simple if x �= ν, so
u(x) is a local extremum for u.

Theorem 7.2.2 Suppose that u is a nonzero real cylinder function and suppose
that the zeros of u′ in the interval (ν,∞) are

y1 < y2 < . . . < yn < . . .

Then

|u(y1)| > |u(y2)| > . . . > |u(yn)| > . . . , (7.2.5)

and(
y2

1 − ν2) 1
4 |u(y1)| <

(
y2

2 − ν2) 1
4 |u(y2)| < . . . <

(
y2

n − ν2) 1
4 |u(yn)| < . . .

(7.2.6)

Proof Bessel’s equation may be written in the form

[x u′]′(x)+
[

x − ν2

x

]
u(x) = 0.

Therefore the inequalities (7.2.5) are a consequence of Proposition 3.5.2. The
inequalities (7.2.6) are left as an exercise. �

The inequalities (7.2.5) are a special case of results of Sturm [276]. The
inequalities (7.2.6) are due to Watson [305].

The asymptotic results (7.4.8) and (7.4.9), together with the representation
(7.2.1), can be used to show that the sequence in (7.2.6) has a limit and to
evaluate the limit; see the exercises.

Suppose ν > 0. Since Jν(x) ∼ (x/2)ν/�(ν + 1) as x → 0+, it follows
that Jν J ′

ν > 0 for small x . By Theorem 3.3.6, Jν is positive throughout the
interval (0, ν]. Therefore the previous theorem can be sharpened for Jν itself.

Corollary 7.2.3 Suppose ν > 0. The local extrema of Jν(x) decrease in
absolute value as x increases, x > 0.

A standard notation for the positive zeros of Jν is

0 < jν,1 < jν,2 < . . . < jν,n < . . . (7.2.7)



7.2 Zeros of real cylinder functions 229

Theorem 7.2.4 The zeros of Jν and Jν+1 interlace:

0 < jν,1 < jν+1,1 < jν,2 < jν+1,2 < jν,3 < . . .

Proof It follows from (7.1.3) that

x−ν Jν+1(x) = − d

dx

[
x−ν Jν(x)

]
, xν+1 Jν(x) = d

dx

[
xν+1 Jν+1(x)

]
.

(7.2.8)

The consecutive zeros jν,k and jν,k+1 of Jν(x) are also zeros of x−ν Jν(x).
Therefore there is at least one zero of the derivative of x−ν Jν , and hence of
Jν+1(x), between jν,k and jv,k+1. Conversely, suppose that μ1 < μ2 are zeros
of Jν+1(x). Then they are also zeros of xν+1 Jν+1(x), and by (7.2.8) there
is at least one zero of Jν(x) between μ1 and μ2. This shows that the zeros
interlace. It follows from Theorem 3.3.4 that the first zero of Jν is less than the
first zero of Jν+1, and it follows from the remark preceding Corollary 7.2.3 that
jν,1 > ν. �

We conclude this section with a result that was proved by Fourier [100] for
J0 and by Lommel [189] for general real ν.

Theorem 7.2.5 All zeros of Jν(z) are real when ν > −1. All zeros of J ′
ν(z)

are real when ν ≥ 0. When −1 < ν < 0, J ′
ν(z) has two imaginary zeros and

all other zeros are real.

Proof From the power series representations of Jν(z) and J ′
ν(z), it is readily

seen that these functions do not have purely imaginary zeros. Bessel’s equation
implies that

(α2 − β2)

∫ z

0
t Jν(αt)Jν(βt) dt = z

[
β Jν(αz)J ′

ν(βz)− α Jν(βz)J ′
ν(αz)

]
(7.2.9)

for ν > −1. Indeed, Jν(αz) satisfies the differential equation

1

z

[
zw′(z)

]′
(z)+

(
α2 − ν2

z2

)
w(z) = 0.

Multiply this equation by Jν(βz), and multiply the corresponding equation for
Jν(βz) by Jν(αz). Subtracting the two gives

Jν(βz)
[
α z J ′

ν(αz)
]′ − Jν(αz)

[
β z J ′

ν(βz)
]′ = (β2 − α2)z Jν(αz)Jν(βz)

or, equivalently,[
α z Jν(βz)J ′

ν(αz)− β z Jν(αz)J ′
ν(βz)

]′ = (β2 − α2)z Jν(αz)Jν(βz).



230 Cylinder functions

Formula (7.2.9) follows from an integration of the last equation. Now, let α be
a non-real zero and α /∈ iR. Then z = α is also a zero. Put z = 1 and β = α in
(7.2.9), so that the equation becomes

(α2 − α 2)

∫ 1

0
tJν(αt)Jν(αt)dt = [α Jν(α)J

′
ν(α)− α Jν(α)J

′
ν(α)

]
. (7.2.10)

Since Jν(α) = Jν(α) = 0, the right-hand side of (7.2.10) vanishes. Also, since
Reα �= 0 and Imα �= 0, we deduce from (7.2.10) that∫ 1

0
tJν(αt)Jν(αt)dt = 0,

which is impossible since the integrand is positive.
If J ′

ν(α) = J ′
ν(α) = 0, then the right-hand side of (7.2.10) again vanishes.

Therefore the same argument can be used for J ′
ν(z), except that now there is a

pair of imaginary zeros when −1 < ν < 0. This can be seen from the power
series (

i t

2

)1−ν
J ′
ν(i t) =

1
2ν

�(ν + 1)
+

∞∑
s=1

(
s + 1

2ν
)

s!�(s + ν + 1)

(
t

2

)2s

,

where t is real. The function defined by the right-hand side of this equation is
an even function, negative at t = 0, and monotonically increases to infinity as
t → +∞. Therefore this function vanishes for two real values of t , completing
the proof. �

7.3 Integral representations

An integral representation of Jν can be obtained by using the gauge transfor-
mation u(x) = xνeixv(x) introduced in Section 3.7 to reduce (7.0.1) to the
canonical form (3.7.3):

x v′′ + (2ν + 1 + 2i x) v′ + (2ν + 1)i v = 0. (7.3.1)

The change of variables y = −2i x gives

yw′′ + (2ν + 1 − y) w′ −
(
ν + 1

2

)
w = 0.

For ν not an integer, any solution of this last equation that is regular at the
origin is a multiple of the Kummer function with indices ν + 1

2 , 2ν + 1. It
follows that Jν is a multiple of the solution

xνeix M

(
ν + 1

2
, 2ν + 1;−2i x

)
.
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Comparing behavior as x → 0 gives the identity

Jν(x) = 1

�(ν + 1)

( x

2

)ν
eix M

(
ν + 1

2
, 2ν + 1;−2i x

)
. (7.3.2)

In view of the integral representation (6.1.3) of the Kummer function when
Re
(
ν + 1

2

)
> 0, we may deduce an integral representation for Jν . Making use

of the duplication identity (2.3.1) in the form

�(2ν + 1)

�
(
ν + 1

2

) = 22ν

√
π
�(ν + 1),

we obtain the identity

Jν(x) = (2x)ν√
π �
(
ν + 1

2

) eix
∫ 1

0
e−2i xssν−

1
2 (1 − s)ν−

1
2 ds (7.3.3)

when Re
(
ν + 1

2

)
> 0.

The change of variables t = 1 − 2s in (7.3.3) leads to the Poisson represen-
tation [231]

Jν(x) = 1√
π �
(
ν + 1

2

) ( x

2

)ν ∫ 1

−1
cos xt (1 − t2)

ν− 1
2 dt. (7.3.4)

The expansion (7.1.2) can be recovered from (7.3.4) by using the series expan-
sion of cos xt :∫ 1

0
cos xt (1 − t2)

ν− 1
2 dt =

∞∑
m=0

(−1)m
�
(
m + 1

2

)
�
(
ν + 1

2

)
x2m

�(m + ν + 1) (2m) ! ,

where we used the identity∫ 1

−1
t2m(1 − t2)

ν− 1
2 dt =

∫ 1

0
sm− 1

2 (1 − s)ν−
1
2 ds = B

(
m + 1

2
, ν + 1

2

)
.

Since (2m) ! = 22mm ! ( 1
2

)
m , we obtain (7.1.2).

A second approach to the Bessel functions Jν is closely associated with
a second integral representation. We noted in Section 3.6 that functions of
the form exp(ik · x) are solutions of the Helmholtz equation �u + |k|2u = 0.
In particular, exp i x2 is a solution of �u + u = 0. In cylindrical coordinates
x2 = r sin θ and the Helmholtz equation is{

∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
+ 1

} [
eir sin θ ] = 0. (7.3.5)
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Consider the Fourier expansion

eir sin θ =
∞∑

n=−∞
jn(r) einθ , (7.3.6)

where the coefficients are given by

jn(r) = 1

2π

∫ 2π

0
eir sin θe−inθ dθ. (7.3.7)

Since

e−inθ = i

n

d

dθ

[
e−inθ ],

repeated integrations by parts show that for every integer k ≥ 0

| jn(r)| ≤ Ck
(1 + r)k

|n|k , n �= 0,

and similar estimates hold for derivatives of jn . It follows that the expansion
(7.3.6) may be differentiated term by term. By the uniqueness of Fourier
coefficients, it follows that (7.3.5) implies Bessel’s equation

r2 j ′′n (r)+ r j ′n(r)+ (r2 − n2) jn(r) = 0, n = 0,±1,±2, . . .

We shall show that the functions jn are precisely the Bessel functions Jn , by
computing the series expansion. The first step is to take t = eiθ in the integral
representation (7.3.7), which becomes

jn(r) = 1

2π i

∫
C

exp

(
1

2
r [t − 1/t]

)
t−n−1 dt, (7.3.8)

where C is the unit circle {|t | = 1}. Since the integrand is holomorphic in
the plane minus the origin, we may replace the circle with a more convenient
contour, one that begins and ends at −∞ and encircles the origin in the positive
(counterclockwise) direction. With this choice of contour we may define jν
for all ν:

jν(r) = 1

2π i

∫
C

exp

(
1

2
r [t − 1/t]

)
t−ν−1 dt, (7.3.9)

where we take the curve to lie in the complement of the ray (−∞, 0] and
take the argument of t in the interval (−π, π). Taking s = r t/2 as the new
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variable of integration, the curve can be taken to be the same as before and
(7.3.9) is

jν(r) = 1

2π i

(r

2

)ν ∫
C

exp(s − r2/4s) s−ν−1 ds

= 1

2π i

(r

2

)ν ∞∑
m=0

(−1)m

m !
r2m

22m

∫
C

es s−m−ν−1 ds. (7.3.10)

According to Hankel’s integral formula (2.2.8), the contour integral in the sum
in (7.3.10) is 2π i/�(ν + m + 1). Comparison with (7.1.2) shows that jν = Jν .
The integral representation (7.3.9) is due to Schlömilch [252].

Summarizing, we have an integral formula due to Bessel [30]

Jn(x) = 1

2π

∫ 2π

0
eix sin θ−inθ dθ (7.3.11)

for integer n, and

Jν(x) = 1

2π i

∫
C

exp

(
1

2
x[t − 1/t]

)
t−ν−1 dt

for arbitrary real ν. This last integral can also be put in the form known as the
Sommerfeld representation [264]:

Jν(x) = 1

2π

∫
C

eix sin θ−iνθ dθ (7.3.12)

by taking t = eiθ and taking the path of integration in (7.3.12) to be the
boundary of the strip defined by the inequalities

−π <Re z < π, Im z > 0.

7.4 Hankel functions

Our starting point here is equation (7.3.1), which is in the canonical form
discussed in Section 4.9:

pv′′ + qv′ + λμv = w−1(pwv′)′ + λμv = 0,

where

λμ = −q ′μ− 1

2
μ(μ− 1)p′′.
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As noted in that section, under certain conditions on the curve C , the integral∫
C

w(t)

w(x)

pμ(t) dt

(x − t)μ+1

is a solution of the equation. In (7.3.1), p(x) = x , q(x) = 2ν + 1 + 2i x ,
and λμ = (2ν + 1)i , so μ = −ν − 1

2 . Since (pw)′ = qw, we take w(x) =
x2νe2i x . Thus the proposed solutions u(x) = xνeixv(x) of the original equa-
tion (7.0.1) have the form

x−ν e−i x
∫

C
e2i t tν−

1
2 (x − t)ν−

1
2 dt. (7.4.1)

If we take C to be the interval [0, x], then the conditions of Theorem 4.9.2 are
satisfied at a finite endpoint 0 or x so long as Re ν > 3

2 . Moreover, the integral
converges so long as Re

(
ν + 1

2

)
> 0, and by analytic continuation it continues

to define a solution of (7.0.1).
Up to the multiplicative constant

cν = 2ν√
π �
(
ν + 1

2

) , (7.4.2)

(7.4.1) is (7.3.3) after the change of variables t = x − sx in the integral. There
are two natural alternative choices for a path of integration: the positive imag-
inary axis {is; s > 0}, and the ray {x + is; s ≥ 0}. This leads to the Bessel
functions of the third kind, or Hankel functions, defined for Re

(
ν + 1

2

)
> 0

by the Poisson representations

H (1)
ν (x) = −2icνx−νe−i x

∫ ∞

0
e2i(x+is)[(x + is)(−is)]ν− 1

2 ds

= 2cνx−νei
(

x− 1
4π− 1

2 νπ
) ∫ ∞

0
e−2s[s(x + is)]ν− 1

2 ds; (7.4.3)

H (2)
ν (x) = 2icνx−νe−i x

∫ ∞

0
e−2s[is(x − is)]ν− 1

2 ds

= 2cνx−νe−i
(

x− 1
4π− 1

2 νπ
) ∫ ∞

0
e−2s[s(x − is)]ν− 1

2 ds. (7.4.4)

The reason for the choice of constants is that it leads to the identity

Jν(x) = 1

2

[
H (1)
ν (x)+ H (2)

ν (x)
]
, Re

(
ν + 1

2

)
> 0. (7.4.5)

Indeed, 2Jν(x)− H (1)
ν (x)− H (2)

ν (x) is an integral around a contour from i∞
to x + i∞ of a function that is holomorphic in the half-strip {0 < Re z < x,
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Im z > 0} and vanishes exponentially as Im s → +∞, so by Cauchy’s theorem
the result is zero.

It is easy to determine the asymptotics of the Hankel functions as x → +∞,
and this can be used to determine the asymptotics of Jν . As x → +∞,∫ ∞

0
e−2s[s(x ± is)]ν− 1

2 ds ∼
∫ ∞

0
e−2s(sx)ν−

1
2 ds

= xν−
1
2

2ν+
1
2

∫ ∞

0
e−t tν−

1
2 dt = xν−

1
2 �
(
ν + 1

2

)
2ν+

1
2

.

Therefore as |x | → ∞,

H (1)
ν (x) ∼

√
2√
πx

e
i
(

x− 1
4π− 1

2 νπ
)
; (7.4.6)

H (2)
ν (x) ∼

√
2√
πx

e
−i
(

x− 1
4π− 1

2 νπ
)
.

Writing

(x − t)ν−
1
2 = xν−

1
2 (1 − t/x)ν−

1
2

∼ xν−
1
2

[
1 −

(
ν − 1

2

)
t

x
+ · · ·

]
,

we may extend the asymptotics to full asymptotic series:

H (1)
ν (x) ∼

√
2√
πx

e
i
(

x− 1
4π− 1

2 νπ
)

×
∞∑

m=0

(−i)m
(−ν + 1

2

)
m

(
ν + 1

2

)
m

2mm ! x−m; (7.4.7)

H (2)
ν (x) ∼

√
2√
πx

e
−i
(

x− 1
4π− 1

2 νπ
)

×
∞∑

m=0

im
(−ν + 1

2

)
m

(
ν + 1

2

)
m

2mm ! x−m .

The verification is left as an exercise.
It follows from (7.4.6) that the Hankel functions are independent and that

Jν(x) ∼
√

2√
πx

cos

(
x − 1

4
π − 1

2
νπ

)
, Re (2ν + 1) > 0. (7.4.8)
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This result is due to Poisson [231] (ν = 0), Hansen [124] (ν = 1), Jacobi [141]
(ν an integer), and Hankel [123]. The recurrence identity (7.1.5) implies that
−Jν−2 has the same principal asymptotic behavior as Jν , so (7.4.8) extends to
all complex ν. This allows us to compute the asymptotics of Yν , using (7.1.11):

Yν(x) ∼
√

2√
πx sin νπ

×
[

cos νπ cos

(
x − 1

4
π − 1

2
νπ

)
− cos

(
x − 1

4
π + 1

2
νπ

)]
.

The trigonometric identity

cos 2b cos(a − b)− cos(a + b) = sin 2b sin(a − b)

with a = x − 1
4π and b = 1

2νπ gives

Yν(x) ∼
√

2√
πx

sin

(
x − 1

4
π − 1

2
νπ

)
. (7.4.9)

For Re
(
ν + 1

2

)
> 0, Yν is a linear combination of the Hankel functions. It

follows from (7.4.6) and (7.4.9) that

Yν(x) = 1

2i

[
H (1)
ν (x)− H (2)

ν (x)
]
. (7.4.10)

Conversely, (7.4.5) and (7.4.10) imply

H (1)
ν (x) = Jν(x)+ iYν(x); (7.4.11)

H (2)
ν (x) = Jν(x)− iYν(x),

for Re
(
ν + 1

2

)
> 0. We may use (7.4.11) to define the Hankel functions for all

values of ν. Then the identities (7.4.5) and (7.4.10) are valid for all complex
ν, as are the asymptotics (7.4.6) and (by analytic continuation) the asymptotic
series (7.4.7). In particular,

H (1)
1
2

(x) = −i

√
2√
πx

eix ; H (1)

− 1
2

(x) =
√

2√
πx

eix ; (7.4.12)

H (2)
1
2

(x) = i

√
2√
πx

e−i x ; H (2)

− 1
2

(x) =
√

2√
πx

e−i x .

It follows from (7.4.11) that the Wronskian is

W (H (1)
ν , H (2)

ν )(x) = −2iW (Jν, Yν)(x) = 4

π i x
. (7.4.13)
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It also follows from (7.4.11) that the Hankel functions satisfy the analogues
of (7.1.5), (7.1.6), (7.1.14), and (7.1.15):

H (1)
ν−1(x)+ H (1)

ν+1(x) = 2ν

x
H (1)
ν (x); (7.4.14)

H (2)
ν−1(x)− H (2)

ν+1(x) = 2
[
H (2)
ν

]′
(x). (7.4.15)

For a given index ν, the functions Jν , J−ν , Yν , Y−ν , H (1)
ν , H (2)

ν , H (1)
−ν , and

H (2)
−ν are all solutions of (7.0.1), so any choice of three of these functions

satisfies a linear relation. The relations not already given above can easily be
obtained from the asymptotics (7.4.6), (7.4.8), and (7.4.9). In particular,

H (1)
−ν (x) = eiπν H (1)

ν (x); (7.4.16)

H (2)
−ν (x) = e−iπνH (2)

ν (x).

7.5 Modified Bessel functions

Replacing x by i x in Bessel’s equation (7.0.1) yields

x2u′′(x)+ x u′(x)− (x2 + ν2) u(x) = 0. (7.5.1)

Solutions of this equation are known as modified Bessel functions. The most
obvious way to obtain solutions is to evaluate the Bessel and Hankel functions
on the positive imaginary axis. It is natural to choose one solution by modifying
Jν(i x) so that it takes real values. The result is

Iν(x) =
∞∑

m=0

1

�(ν + 1 + m)m !
( x

2

)ν+2m = e− 1
2 iνπ Jν(i x). (7.5.2)

It follows from (7.4.6) that H (1)
ν (i x) decays exponentially as x → +∞,

while H (2)
ν (i x) grows exponentially. Therefore it is natural to obtain a second

solution by modifying H (1)
ν (i x):

Kν(x) = π

2
e

1
2 i(ν+1)πH (1)

ν (i x) = π

2

I−ν(x)− Iν(x)

sinπν
. (7.5.3)
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The Poisson integral representations (7.3.4) and (7.4.3) lead to

Iν(x) = 1√
π �
(
ν + 1

2

) ( x

2

)ν ∫ 1

−1
cosh(xt)(1 − t2)

ν− 1
2 dt; (7.5.4)

Kν(x) =
√
π√

2x �
(
ν + 1

2

)e−x
∫ ∞

0
e−t
(

t + t2

2x

)ν− 1
2

dt. (7.5.5)

A consequence is that Iν and Kν are positive, 0 < x < ∞.
The derivative formula

d

dx

[
xν Iν(x)

] = xν Iν−1(x)

follows from (7.1.3) or directly from the expansion (7.5.2) and leads to the
relations

Iν−1(x)− Iν+1(x) = 2ν

x
Iν(x);

Iν−1(x)+ Iν+1(x) = 2 I ′
ν(x).

These imply the corresponding relations for Kν :

Kν−1(x)− Kν+1(x) = −2ν

x
Kν(x);

Kν−1(x)+ Kν+1(x) = −2 K ′
ν(x).

The asymptotic relation (7.4.8) implies

Iν(x) ∼ ex

√
2πx

; (7.5.6)

Kν(x) ∼
√
πe−x

√
2x

.

Full asymptotic expansions may be obtained from (7.4.7). The principal terms
in the derivatives come from differentiating (7.5.6), so the Wronskian is

W (Kν, Iν)(x) = 1

x
.

.
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7.6 Addition theorems

In Section 7.3 we established the identity

eix sin θ =
∞∑

n=−∞
Jn(x) einθ . (7.6.1)

Taking t = eiθ , we may write this in the form of a generating function for the
Bessel functions of integral order:

G(x, t) =
∞∑

n=−∞
Jn(x) tn = e

1
2 x(t−1/t)

, |t | = 1. (7.6.2)

Moreover,

∞∑
n=−∞

Jn(x + y) einθ = ei(x+y) sin θ =
∞∑

n=−∞
Jn(x) einθ

∞∑
n=−∞

Jn(y) einθ .

Equating coefficients of einθ gives the addition formula

Jn(x + y) =
∞∑

m=−∞
Jm(x) Jn−m(y).

This is a special case of a more general addition formula. Consider a plane
triangle whose vertices, in polar coordinates, are the origin and the points
(r1, θ1) and (r2, θ2). Let r be the length of the third side. To fix ideas, suppose
that 0 < θ1 < θ2 <

1
2π . Then the triangle lies in the first quadrant and the

angle θ opposite the side of length r is θ2 − θ1. Projecting onto the vertical
axis gives the identity

r sin(θ2 + ϕ) = r2 sin θ2 − r1 sin θ1 = r2 sin θ2 − r1 sin(θ2 − θ),

where θ = θ2 − θ1 is the angle opposite the side with length r and ϕ is the
angle opposite the side with length r1. By analytic continuation, this identity
carries over to general values of θ2, with

r2 = r2
1 + r2

2 − 2r1r2 cos θ, θ = θ2 − θ1.
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According to (7.3.12),

Jν(r) eiνϕ = 1

2π

∫
C

eir sin(θ2+ϕ)−iνθ2 dθ2

= 1

2π

∫
C

eir2 sin θ2−ir1 sin(θ2−θ)−iνθ2 dθ2

= 1

2π

∫
C

eir1 sin(θ−θ2) eir2 sin θ2−iνθ2 dθ2.

By (7.6.1),

eir1 sin(θ−θ2) =
∞∑

n=−∞
Jn(r1) ein(θ−θ2).

Inserting this into the preceding integral and interchanging integration and
summation gives

Jν(r) eiνϕ =
∞∑

n=−∞
Jn(r1)e

inθ · 1

2π

∫
C

eir2 sin θ2−i(ν+n)θ2 dθ2.

Using (7.3.12) again, we have Graf’s addition formula

Jν(r) eiνϕ =
∞∑

n=−∞
Jn(r1) Jν+n(r2) einθ . (7.6.3)

A deeper result is Gegenbauer’s addition formula [110]:

Jν(r)

rν
= 2ν �(ν)

∞∑
n=0

(ν + n)
Jν+n(r1)Jν+n(r2)

rν1 rν2
Cνn (cos θ), (7.6.4)

where Cνn are the Gegenbauer polynomials, expressed in terms of Jacobi
polynomials as

Cνn (x) = (2ν)n(
ν + 1

2

)
n

P

(
ν− 1

2 ,ν− 1
2

)
n (x).

For a simple derivation of (7.6.4) from Graf’s formula when ν is an integer,
see [7]. For a proof in the general case, see [219].
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7.7 Fourier transform and Hankel transform

If f (x) = f (x1, x2) is absolutely integrable, i.e.∫ ∞

−∞

∫ ∞

−∞
| f (x1, x2)| dx1 dx2 <∞,

then the Fourier transform of f is the function

f̂ (ξ1, ξ2) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
e−i(x1ξ1+x2ξ2) f (x1, x2) dx1 dx2.

If f is continuous and f̂ is also absolutely integrable, then

f (x1, x2) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
ei(x1ξ1+x2ξ2) f̂ (ξ1, ξ2) dξ1 dξ2;

see Appendix B.
If f is an absolutely integrable function on the half-line (0,∞), its nth

Hankel transform is

g(y) =
∫ ∞

0
Jn(xy) f (x) x dx . (7.7.1)

This Fourier inversion formula above can be used to show that the Hankel
transform is its own inverse: if f is an absolutely integrable function on the
half-line [0,∞) and its nth Hankel transform g is also integrable, then f is the
nth Hankel transform of g:

f (x) =
∫ ∞

0
Jn(xy) g(y) y dy. (7.7.2)

To prove (7.7.2) given (7.7.1), we first write the two-variable Fourier trans-
form in polar coordinates (x, θ) and (y, ϕ):

F̂(y, ϕ) = 1

2π

∫ ∞

0

∫ 2π

0
e−i xy cos(θ−ϕ)F(x, θ) dθ x dx; (7.7.3)

F(x, θ) = 1

2π

∫ ∞

0

∫ 2π

0
eixy cos(θ−ϕ) F̂(y, ϕ) dϕ y dy. (7.7.4)

Take F(x, θ) = f (x) e−inθ . Then the integration with respect to θ in (7.7.3)
gives ∫ 2π

0
e−i xy cos(θ−ϕ)−inθ dθ = e−inϕ

∫ 2π

0
e−i xy cos θ−inθ dθ, (7.7.5)

where we used periodicity to keep the limits of integration unchanged when
changing the variable of integration. Since −cos θ = sin

(
θ − 1

2π
)
, we may

change variables once again and conclude that (7.7.5) is
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(−i)ne−inϕ
∫ 2π

0
eixy sin θ−inθ dθ = (−i)ne−inϕ2π Jn(xy), (7.7.6)

by (7.3.11). Therefore the Fourier transform of f (x)e−inθ is

(−i)ne−inϕg(y), g(y) =
∫ ∞

0
Jn(xy) f (x) x dx .

In (7.7.4), therefore, the integral with respect to ϕ is∫ 2π

0
eixy cos(θ−ϕ)−inϕ dϕ = e−inθ

∫ 2π

0
eixy cosϕ−inϕ dϕ. (7.7.7)

Proceeding as above and using the identity cosϕ = sin
(
ϕ + 1

2π
)
, we find that

(7.7.7) is

ine−inθ2π Jn(xy).

Therefore the right-hand side of (7.7.4) is

e−inθ
∫ ∞

0
Jn(xy) g(y) y dy.

This proves (7.7.2), given (7.7.1).

7.8 Integrals of Bessel functions

We have shown that Jν(x) ∼ cνxν as x → 0+ and Jν(x) = O
(
x− 1

2
)

as
x → ∞. It follows that if f is any continuous function such that∫ 1

0
| f (x)| xν dx +

∫ ∞

1
| f (x)| dx√

x
< ∞, (7.8.1)

then the product f Jν is absolutely integrable on (0,∞). For ν > −1 it is not
difficult to show that the integral can be obtained as a series by using the power
series expansion (7.1.2) and integrating term by term:∫ ∞

0
f (x) Jν(x) dx =

∞∑
m=0

(−1)m

�(ν + m + 1)m!
∫ ∞

0
f (x)

( x

2

)ν+2m
dx,

(7.8.2)
so long as the last series is absolutely convergent. As an example, let

f (x) = xa−1e−sx2
, Re (a + ν) > 0, Re s > 0.
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Then ∫ ∞

0
f (x)

( x

2

)ν+2m
dx = 2−ν−2m−1

∫ ∞

0
e−sy y

1
2 (ν+a)+m dy

y

= �
( 1

2ν + 1
2 a + m

)
2ν+2m+1s

1
2 (ν+a)+m

,

so∫ ∞

0
xa−1e−sx2

Jν(x)dx = 1

2ν+1s
1
2 (ν+a)

∞∑
m=0

�
( 1

2ν + 1
2 a + m

)
�(ν + m + 1)m !

(
− 1

4s

)m

= �
( 1

2ν + 1
2 a
)

�(ν + 1) 2ν+1s
1
2 (ν+a)

∞∑
m=0

( 1
2ν + 1

2 a
)

m

(ν + 1)m m !
(
− 1

4s

)m

.

The last sum is the Kummer function M with indices 1
2 (ν + a), ν + 1 evalu-

ated at −1/4s, so for Re (ν + a) > 0 and Re s > 0,∫ ∞

0
xa−1e−sx2

Jν(x) dx

= �
( 1

2ν + 1
2 a
)

�(ν + 1) 2ν+1s
1
2 (ν+a)

M

(
1

2
ν + 1

2
a, ν + 1;− 1

4s

)
. (7.8.3)

In particular, if a = ν + 2 so that 1
2 (ν + a) = ν + 1, this simplifies to∫ ∞

0
xν+1e−sx2

Jν(x) dx = e−1/4s

(2s)ν+1
.

As a second example, let

f (x) = xa−1e−sx , a + ν > 0, s > 0,

to compute the Laplace transform of xa−1 Jν(x). Then∫ ∞

0
f (x)

( x

2

)ν+2m
dx = 1

2ν+2m

∫ ∞

0
e−sx xν+a+2m−1 dx

= �(ν + a + 2m)

2ν+2m sν+a+2m
.

Now

�(ν + a + 2m) = �(ν + a) (ν + a)2m

= �(ν + a) 22m
(

1

2
ν + 1

2
a

)
m

(
1

2
ν + 1

2
a + 1

2

)
m
.
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Therefore∫ ∞

0
xa−1e−sx Jν(x) dx

= �(ν + a)

�(ν + 1) 2νsν+a

∞∑
m=0

( 1
2ν + 1

2 a
)

m

( 1
2ν + 1

2 a + 1
2

)
m

(ν + 1)m m !
(
− 1

s2

)m

.

The last sum converges for s > 1 to the hypergeometric function with indices
1
2 (ν + a), 1

2 (ν + a + 1), ν + 1, evaluated at −1/s2. By analytic continuation,
the following identity holds for all s, ν, and a with Re s > 0, Re (ν + a) > 0:∫ ∞

0
xa−1e−sx Jν(x) dx

= �(ν + a)

�(ν + 1) 2νsν+a
F

(
1

2
ν + 1

2
a,

1

2
ν + 1

2
a + 1

2
, ν + 1;− 1

s2

)
.

Corresponding to various cases (8.7.2), (8.7.5), and (8.7.6) in Section 8.7,
we obtain∫ ∞

0
e−xs xν Jν(x) dx = �(2ν + 1)

�(ν + 1) 2ν
· 1

(1 + s2)
ν+ 1

2

; (7.8.4)

∫ ∞

0
e−xs xν+1 Jν(x) dx = �(2ν + 2)

�(ν + 1) 2ν
· s

(1 + s2)
ν+ 3

2

; (7.8.5)

∫ ∞

0
e−xs x−1 Jν(x) dx = 1

ν
(
s + √

1 + s2
)ν ; (7.8.6)

∫ ∞

0
e−xs Jν(x) dx = 1√

1 + s2
(
s + √

1 + s2
)ν . (7.8.7)

7.9 Airy functions

If v is a solution of Bessel’s equation (7.0.1) and u is defined by

u(x) = xa v(bxc)

where a, b and c are constants, then u is a solution of Lommel’s equation

x2u′′(x)+ (1 − 2a)x u′(x)+ [b2c2x2c + a2 − c2ν2] u(x) = 0. (7.9.1)
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If v is, instead, a solution of the modified Bessel equation (7.5.1), then u is a
solution of the corresponding modified Lommel equation

x2u′′(x)+ (1 − 2a)x u′(x)− [b2c2x2c − a2 + c2ν2] u(x) = 0. (7.9.2)

The particular case of (7.9.2) with ν2 = 1
9 , a = 1

2 , b = 2
3 , c = 3

2 gives the
Airy equation

u′′(x)− x u(x) = 0. (7.9.3)

The calculation is reversible: any solution of (7.9.3) for x > 0 has the form

u(x) = x
1
2 v

(
2

3
x

3
2

)
,

where v is a solution of the modified Bessel equation. The standard choices are
the Airy functions

Ai (x) =
√

x

π
√

3
K 1

3

(
2

3
x

3
2

)
=

√
x

3

[
I− 1

3

(
2

3
x

3
2

)
− I 1

3

(
2

3
x

3
2

)]
, (7.9.4)

and

Bi (x) =
√

x√
3

[
I− 1

3

(
2

3
x

3
2

)
+ I 1

3

(
2

3
x

3
2

)]
. (7.9.5)

It follows from (7.5.2) that the series expansions of the Airy functions are

Ai (x) =
∞∑

n=0

[
x3n

32n+ 2
3�
(
n + 2

3

)
n !

− x3n+1

32n+ 4
3�
(
n + 4

3

)
n !

]
; (7.9.6)

Bi (x) = √
3

∞∑
n=0

[
x3n

32n+ 2
3�
(
n + 2

3

)
n !

+ x3n+1

32n+ 4
3�
(
n + 4

3

)
n !

]
,

which show that these are entire functions of x . It follows from these expan-
sions that the initial conditions are

Ai (0) = 1

3
2
3�
( 2

3

) , Ai ′(0) = − 1

3
4
3�
( 4

3

) ;
Bi (0) = 1

3
1
6�
( 2

3

) , Bi ′(0) = 1

3
5
6�
( 4

3

) .
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The Wronskian is constant, so the constant is

W (Ai ,Bi )(x) = 2

3
3
2�
( 2

3

)
�
( 4

3

) .
The asymptotics of the Airy functions as x → +∞ follow from the asymp-

totics of the modified Bessel functions. The leading terms are

Ai (x) ∼ e− 2
3 x

3
2

2
√
π x

1
4

; Bi (x) ∼ e
2
3 x

3
2

√
π x

1
4

. (7.9.7)

The principal terms in the asymptotics of the derivatives are obtained by
differentiating (7.9.7). This gives a second determination of the Wronskian:

W (Ai ,Bi )(x) = 1

π
.

The asymptotics of the Airy functions for x → −∞ can be obtained from
the asymptotics of the Bessel functions Jν . Replacing x by −x in the series
expansions shows that

Ai (−x) =
√

x

3

[
J− 1

3

(
2

3
x

3
2

)
+ J1

3

(
2

3
x

3
2

)]
;

Bi (−x) =
√

x√
3

[
J− 1

3

(
2

3
x

3
2

)
− J1

3

(
2

3
x

3
2

)]
.

It follows from (7.4.8) that as x → +∞,

Ai (−x) ∼
cos

(
2

3
x

3
2 − 1

4
π

)
√
π x

1
4

; Bi (−x) ∼ −
sin

(
2

3
x

3
2 − 1

4
π

)
√
π x

1
4

.

The original function that arose in Airy’s research on optics was defined by
the integral

1

π

∫ ∞

0
cos

(
1

3
t3 + xt

)
dt. (7.9.8)

To see that this integral is equal to the function (7.9.6), we first make a change
of variable t = τ/ i so that the integral becomes

1

π i

∫ i∞

0
cosh

(
1

3
τ 3 − xτ

)
dτ = 1

2π i

∫ i∞

−i∞
exp

(
1

3
τ 3 − xτ

)
dτ. (7.9.9)

By Cauchy’s theorem, the vertical line of integration can be deformed into a
contour C which begins at infinity in the sector −π/2 < arg τ < −π/6 and
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ends at infinity in the sector π/6 < arg τ < π/2. So far we have restricted x to
be real, but the function

Ai(z) = 1

2π i

∫
C

exp

(
1

3
τ 3 − zτ

)
dτ (7.9.10)

is an entire function in z, since the integrand vanishes rapidly at the endpoints
of C . Furthermore, by differentiation under the integral sign, one can readily
see that this integral satisfies the Airy equation (7.9.3). From (7.9.10), it can
be verified that the integral in (7.9.8) has the Maclaurin expansion given in
(7.9.6).

Let ω = exp(2π i/3). In addition to Ai (z), the functions Ai(ωz) and
Ai (ω2z) are also solutions of equation (7.9.3). With the aid of Cauchy’s
theorem, one can use (7.9.10) to show that these three solutions are connected
by the relation

Ai(z)+ ωAi(wz)+ ω2Ai(ω2z) = 0. (7.9.11)

Returning to (7.9.9), we restrict x to be positive:

Ai(x) = 1

2π i

∫ i∞

−i∞
exp

(
1

3
τ 3 − xτ

)
dτ.

By deforming the imaginary axis into the parallel vertical line Re τ = √
x , one

can show that

Ai(x) = 1

2π
e− 2

3 x3/2
∫ ∞

−∞
e−√

xρ2− 1
3 iρ3

dρ

= 1

π
e− 2

3 x3/2
∫ ∞

0
e−√

xρ2
cos

(
1

3
ρ3
)

dρ. (7.9.12)

By analytic continuation, this holds for | arg x | < π . Let us now replace x by
z, and make the change of variable ρ2 = u so that (7.9.12) becomes

Ai(z) = 1

2π
e− 2

3 z3/2
∫ ∞

0
e−√

zu cos

(
1

3
u

3
2

)
du√

u
, (7.9.13)

valid for | arg z| < π . By expanding the cosine function into a Maclaurin
series and integrating term by term, we obtain a sharper version of (7.9.7):
the asymptotic expansion

Ai(z) ∼ 1

2π z
1
4

e− 2
3 z

3
2

∞∑
n=0

�
(
3n + 1

2

)
32n(2n)!

(−1)n

z
3
2 n

as z → ∞ in | arg z| < π .
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7.10 Exercises

7.1 Show that

lim
a→+∞ M

(
a, ν + 1;− x

a

)
= �(ν + 1) x− 1

2 ν Jν
(
2
√

x
)
.

7.2 Show that the Fourier transform of the restriction to the interval
−1 < x < 1 of the Legendre polynomial Pn ,

1√
2π

∫ 1

−1
e−i xξ Pn(x) dx,

is

(−i)n√
ξ

J
n+ 1

2
(ξ).

Hint: use the Rodrigues formula.
7.3 Use Exercise 7.2 and the Fourier inversion formula to show that

1√
2π

∫ ∞

−∞
eixξ J

n+ 1
2
(ξ)

dξ√
ξ

=
{

in Pn(x), |x | < 1
0, |x | > 1.

7.4 Use Exercise 7.2 to show that the expansion of the plane wave eiκx as a
sum of Legendre polynomials is

eiκx =
∞∑

n=0

in
(

n + 1

2

) √
2π√
κ

J
n+ 1

2
(κ) Pn(x).

7.5 Use Exercise 7.4 and the orthogonality properties of the Legendre
polynomials to prove the integral formula

J
n+ 1

2
(κ) = (−i)n

√
κ√

2π

∫ 1

−1
eiκx Pn(x) dx .

7.6 Show that the expansion of the plane wave eiκx in terms of Gegenbauer
polynomials is

eiκx = �(λ)

∞∑
n=0

in (n + λ)
(κ

2

)−λ
Jλ+n(κ)Cλn (x).

7.7 Use the orthogonality property of the Gegenbauer polynomials to derive
an integral formula for Jλ+n(κ) involving Cλn (x).

7.8 Prove (7.1.16).
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7.9 Verify the following relations:

Jν+1(x)J−ν(x)+ Jν(x)J−(ν+1)(x) = −2 sin νπ

πx
;

Jν+1(x)Yν(x)− Jν(x)Yν+1(x) = 2

πx
;

Iν(x)Kν+1(x)+ Iν+1(x)Kν(x) = 1

x
.

7.10 Prove that the positive zeros of any two linearly independent real
cylinder functions of the same order are interlaced.

7.11 Let yν,n denote the nth positive zero of Yν(x). Prove that when ν >− 1
2 ,

yν,1 < jν,1 < yν,2 < jν,2 < . . .

7.12 Assume that for fixed n, we know that jν,n is a differentiable function of
ν in (−1,∞).
(a) Differentiate the equation Jν( jν,n) = 0 to get

J ′
ν( jν,n)

d jν,n
dν

+
[
∂ Jν(x)

∂ν

]
x= jν,n

= 0.

(b) Verify by differentiation∫ x

0

Jμ(y)Jν(y)

y
dy = x{J ′

μ(x)Jν(x)− Jμ(x)J ′
ν(x)}

μ2 − ν2
, μ2 �= ν2.

(c) Letting μ → ν, show that for ν > 0,∫ jνn

0

J 2
ν (x)

x
dx = − jν,n

2ν
J ′
ν( jν,n)

[
∂ Jν(x)

∂ν

]
x= jν,n

.

(d) Establish the representation

d jν,n
dν

= 2ν

jν,n{J ′
ν( jν,n)}2

∫ jν,n

0

J 2
ν (x)

x
dx, ν > 0,

which shows that when ν > 0, jν,n is an increasing function of ν.
7.13 Prove the first statement of Theorem 7.2.2 by adapting the method of

Proposition 3.5.1.
7.14 Prove the second statement of Theorem 7.2.2.
7.15 Show that the sequence (7.2.6) has a limit and determine it, assuming

that u has the form (7.2.1).
7.16 Given an index ν ≥ − 1

2 and a constant λ > 0, define fλ(x) = Jν(λx),
x > 0.
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(a) Show that x2 f ′′
λ + x f ′

λ + (λ2x2 − ν2) fλ = 0.
(b) Let W ( fλ, fμ) be the Wronskian. Show that[

x W (x)
]′ = (λ2 − μ2)x fλ(x) fμ(x),

and deduce that if Jν(λ) = 0 = Jν(μ) and λ �= μ, then∫ 1

0
x Jν(λx) Jν(μx) dx = 0.

(c) Suppose that Jν(λ) = 0. Show that∫ 1

0
x Jν(λx)2 dx = lim

μ→λ

∫ 1

0
x Jν(λx) Jν(μx) dx = 1

2
J ′
ν(λ)

2.

(d) Use (7.1.3) to show that Jν(λ) = 0 implies J ′
ν(λ) = −Jν+1(λ).

(e) Suppose that

f (x) =
∞∑

k=0

ak Jν(λk x), 0 < x < 1, (7.10.1)

where the {λk} are the positive zeros of Jν numbered in increasing order.
Assume that the series converges uniformly. Show that

ak = 2

Jν+1(λk)2

∫ 1

0
x f (x) Jν(λk x) dx . (7.10.2)

The expansion (7.10.1), (7.10.2) is called the Fourier–Bessel expansion
of the function f . In particular, the Fourier–Bessel expansion of a
function f converges to f (x), 0 < x < 1, if f is differentiable for
0 < x < 1 and ∫ 1

0
x

1
2 | f (x)| dx <∞;

see Watson [306], chapter 18.
7.17 Show that

|Jn(x)| ≤ 1, x ≥ 0, n = 0, 1, 2, . . .

7.18 Show that

W
(
H (1)
ν , H (2)

ν

)
(x) = − 4i

πx
; W

(
Iν, I−ν

)
(x) = −2 sin νπ

πx
.
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7.19 Deduce from the generating function for the Bessel functions of integer
order that

sin x = 2
∞∑

n=0

(−1)n J2n+1(x);

cos x = J0(z)+ 2
∞∑

n=1

(−1)n J2n(x);

x cos x = 2
∞∑

n=1

(−1)n+1(2n − 1)2 J2n−1(x).

7.20 Deduce from (7.5.5) that

Kν(x) =
√
π
( 1

2 x
)ν

�
(
ν + 1

2

) ∫ ∞

1
e−xt (t2 − 1)ν−

1
2 dt, Re ν > −1

2
.

Use this formula and the beta function integral to show that∫ ∞

0
tμ−1 Kν(t)dt = 2μ−2�

(
μ+ ν

2

)
�

(
μ− ν

2

)
, Re μ > |Re ν|.

7.21 Show that

ex cos t =
∞∑

n=−∞
(cos nt)In(x) = I0(x)+ 2

∞∑
n=1

(cos nt)In(x).

7.22 Show that ∫ x

0
cos(x − t)J0(t)dt = x J0(x).

7.23 Deduce from (7.1.6) that

2m dm

dxm
Jn(x) =

m∑
k=0

(−1)m−k
(

m

k

)
Jn+m−2k(x).

7.24 Show that∫ ∞

0
e−ax J0(bx) dx = 1√

a2 + b2
, a > 0, b > 0.

7.25 Show that ∫ ∞

0
e−a2x2

Jν(bx)xν+1dx = bν

(2a2)ν+1
e−b2/4a2

,

a > 0, b > 0, Re ν > −1.
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7.26 Using Exercise 7.22, show that for x > 0 and |Re ν| < 1
2 ,

Jν(x) = 2
( 1

2 x
)−ν

√
π�
( 1

2 − ν)
∫ ∞

1

sin xt

(t2 − 1)ν+ 1
2

dt;

Yν(x) = − 2
( 1

2 x
)−ν

√
π�
( 1

2 − ν)
∫ ∞

1

cos xt

(t2 − 1)ν+ 1
2

dt.

7.27 Derive from (7.1.3) the recurrence relation∫ x

0
tμ Jν(t)dt = xμ Jν+1(x)− (μ− ν − 1)

∫ x

0
tμ−1 Jν+1(t)dt,

Re (μ+ ν) > −1.

7.28 Show that ∫ x

0
Jν(t)dt = 2

∞∑
n=0

Jν+2n+1(x), Re ν > −1.

7.29 Verify Sonine’s first finite integral formula [265]: for Reμ > −1 and
Re ν > −1,∫ π

2

0
Jμ(x sin θ) sinμ+1 θ cos2ν+1 θdθ = 2ν�(ν + 1)

xν+1
Jμ+ν+1(x).

7.30 Verify the identities (7.8.4).
7.31 Show that w(x) = [Ai (x)]2 satisfies the third-order equation

w(3) − 4xw′ − 2w = 0.

7.32 Show that the solutions of the differential equation

x4w(4) + 2x3w(3) − (1 + 2ν2)(x2w′′ − xw′)+ (ν4 − 4ν2 + x4)w = 0

are the Kelvin functions berν(x), beiν(x), ber−ν(x) and bei−ν(x),
defined by

berν(x)± ibeiν(x) = Jν
(
xe±3π i/4) = e±νπ i/2 Iν

(
xe±π i/4).

(These functions were introduced by Kelvin [153] for ν = 0 and by
Russell [243] and Whitehead [313] for general ν and other types. [Not
the Russell and Whitehead, however.])

7.33 Show that ∫ ∞

0
Ai(t) tα−1 dt = �(α)

3(α+2)/3�
( 1

3α + 2
3

) .
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7.34 Prove that for 0 < t < ∞,

0 ≤ Ai(t) ≤ 1

2
√
π

t−1/4 exp

(
−2

3
t3/2
)
.

7.35 Use Gauss’s formula (2.3.6) to show that the two determinations of the
Wronskian of the Airy functions Ai, Bi are the same.

7.11 Summary

7.11.1 Bessel functions

A cylinder function is a solution of Bessel’s equation

x2u′′(x)+ xu′(x)+ (x2 − ν2)u(x) = 0.

One solution is the Bessel function

Jν(x) =
∞∑

m=0

(−1)m

�(ν + 1 + m)m !
( x

2

)ν+2m
,

holomorphic on the complement of (−∞, 0]. The series expansion implies

[xν Jν]′ = xν Jν−1, [x−ν Jν]′ = −x−ν Jν+1,

so (
1

x

d

dx

)n [
xν Jν(x)

] = xν−n Jν−n(x);(
1

x

d

dx

)n [
x−ν Jν(x)

] = (−1)n x−ν−n Jν+n(x),

and

Jν−1(x)+ Jν+1(x) = 2ν

x
Jν(x);

Jν−1(x)− Jν+1(x) = 2 J ′
ν(x).

For ν = ± 1
2 ,

J1
2
(x) =

√
2 sin x√
πx

; J− 1
2
(x) =

√
2 cos x√
πx

.

The derivative relation implies that Jν(x) is expressible in terms of trigono-
metric functions and powers of x whenever ν + 1

2 is an integer.
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Wronskian:

W (Jν, J−ν)(x) = −2 sin νπ

πx
.

For integer values of the parameter

J−n(x) = (−1)n Jn(x).

Bessel function of the second kind:

Yν(x) = cos νπ Jν(x)− J−ν(x)
sin νπ

.

In particular,

Y 1
2
(x) = −

√
2 cos x√
πx

; Y− 1
2
(x) =

√
2 sin x√
πx

.

Wronskian:

W (Jν, Yν)(x) = −W (Jν, J−ν)
sin νπ

= 2

πx
.

For integer values

Y−n(x) = (−1)nYn(x), n = 0, 1, 2, . . .

The derivative and recurrence identities for the Jν imply

Yν−1(x)+ Yν+1(x) = 2ν

x
Yν(x);

Yν−1(x)− Yν+1(x) = 2 Y ′
ν(x).

The series expansion leads to

Jν
(√
ν y
) ∼

(√
ν y
)ν

2ν�(ν + 1)
e− 1

4 y2

as ν → +∞, uniformly on bounded intervals.

7.11.2 Zeros of real cylinder functions

A real nonzero cylinder function u(x) has a countable number of positive zeros

0 < x1 < x2 < . . . < xn < . . .

The distance xn+1 − xn is ≥ π if |ν| ≥ 1
2 , and ≤ π if |ν| ≤ 1

2 . As n → ∞,

xn+1 − xn = π + O(n−2).
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If u is a nonzero real cylinder function and the zeros of the derivative u′ in
(ν,∞) are

y1 < y2 < . . . < yn < . . . ,

then

|u(y1)| > |u(y2)| > . . . > |u(yn)| > . . . ,
and(

y2
1 − ν2) 1

4 |u(y1)| <
(
y2

2 − ν2) 1
4 |u(y2)| < . . . <

(
y2

n − ν2) 1
4 |u(yn)| < . . .

If ν > 0, there is no zero of J ′
ν in the interval (0, ν], so the previous inequalities

apply to all local extrema of Jν .
Denote the positive zeros of Jν by

0 < jν,1 < jν,2 < . . . < jν,n < . . .

The zeros of Jν and Jν+1 interlace:

0 < jν,1 < jν+1,1 < jν,2 < jν+1,2 < jν,3 < . . .

All zeros of Jν(z) are real when ν > −1, and all zeros of J ′
ν(z) are real when

ν ≥ 0.

7.11.3 Integral representations

The gauge transformation u(x) = xνeixv(x) and the change of variables
y = −2i x convert Bessel’s equation to

yw′′ + (2ν + 1 − y) w′ −
(
ν + 1

2

)
w = 0.

This leads to the identity

Jν(x) = 1

�(ν + 1)

( x

2

)ν
eix M

(
ν + 1

2
, 2ν + 1;−2i x

)
and to the integral representations

Jν(x) = (2x)ν√
π �
(
ν + 1

2

) eix
∫ 1

0
e−2i xssν−

1
2 (1 − s)ν−

1
2 ds

= 1√
π �
(
ν + 1

2

) ( x

2

)ν ∫ 1

−1
cos xt (1 − t2)ν−

1
2 dt, Re

(
ν + 1

2

)
> 0.
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Analysis of the Helmholtz equation in two variables leads to Bessel’s repre-
sentation

Jn(x) = 1

2π

∫ 2π

0
eix sin θ−inθ dθ, n = 0,±1,±2, . . . ,

the identity

eix sin θ =
∞∑

n=−∞
Jn(x) einθ ,

and the representations

Jν(x) = 1

2π i

∫
C1

exp
(

1
2 x[t − 1/t]

)
t−ν−1 dt

= 1

2π

∫
C2

eix sin θ−iνθ dθ,

for arbitrary real ν, where C1 is a curve beginning and ending at −∞ and
enclosing the origin and C2 encloses the strip {−π < Re z < π, Im z > 0}.

7.11.4 Hankel functions

The considerations in Section 4.9 motivate the Hankel functions, which are the
solutions of the Bessel equation given by the Poisson integral representations

H (1)
ν (x) = 2cνx−νei

(
x− 1

4π− 1
2 νπ
) ∫ ∞

0
e−2s[s(x + is)]ν− 1

2 ds;

H (2)
ν (x) = 2cνx−νe−i

(
x− 1

4π− 1
2 νπ
) ∫ ∞

0
e−2s[s(x − is)]ν− 1

2 ds,

for Re (2ν + 1) > 0, where

cν = 2ν√
π �
(
ν + 1

2

) .
These are related to the Bessel functions of the first and second kind by

Jν(x) = 1

2

[
H (1)
ν (x)+ H (2)

ν (x)
];

Yν(x) = 1

2i

[
H (1)
ν (x)− H (2)

ν (x)
];

H (1)
ν (x) = Jν(x)+ iYν(x);

H (2)
ν (x) = Jν(x)− iYν(x).
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It follows that the Wronskian is

W
(
H (1)
ν , H (2)

ν

)
(x) = 4

π i x
.

The Poisson integral representation leads to asymptotic expansions

H (1)
ν (x) ∼

√
2√
πx

e
i
(

x− 1
4π− 1

2 νπ
)

×
∞∑

m=0

(−i)m
(− ν + 1

2

)
m

(
ν + 1

2

)
m

2mm ! x−m;

H (2)
ν (x) ∼

√
2√
πx

e
−i
(

x− 1
4π− 1

2 νπ
)

×
∞∑

m=0

im
(− ν + 1

2

)
m

(
ν + 1

2

)
m

2mm ! x−m .

There are corresponding expansions for Jν and Yν , with leading terms

Jν(x) ∼
√

2√
πx

cos

(
x − 1

4
π − 1

2
νπ

)
;

Yν(x) ∼
√

2√
πx

sin

(
x − 1

4
π − 1

2
νπ

)
.

Particular values:

H (1)
1
2

(x) = −i

√
2√
πx

eix ; H (1)

− 1
2

(x) =
√

2√
πx

eix ;

H (2)
1
2

(x) = i

√
2√
πx

e−i x ; H (2)

− 1
2

(x) =
√

2√
πx

e−i x .

The derivative and recurrence relations for Jν and Yν imply that

H (1)
ν−1(x)+ H (1)

ν+1(x) = 2ν

x
H (1)
ν (x);

H (2)
ν−1(x)− H (2)

ν+1(x) = 2
[
H (2)
ν

]′
(x).

Moreover,

H (1)
−ν (x) = eiπν H (1)

ν (x);

H (2)
−ν (x) = e−iπνH (2)

ν (x).
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7.11.5 Modified Bessel functions

Solutions of the modified Bessel equation

x2u′′(x)+ x u′(x)− (x2 + ν2) u(x) = 0

can be obtained by evaluating solutions of Bessel’s equation on the positive
imaginary axis:

Iν(x) =
∞∑

m=0

1

�(ν + 1 + m)m !
( x

2

)ν+2m = e− 1
2 iνπ Jν(i x)

= 1√
π �
(
ν + 1

2

) ( x

2

)ν ∫ 1

−1
cosh xt(1 − t2)ν−

1
2 dt;

Kν(x) = π

2
e

1
2 i(ν+1)πH (1)

ν (i x) = π

2

I−ν(x)− Iν(x)

sinπν

=
√
π√

2x �
(
ν + 1

2

)e−x
∫ ∞

0
e−t
(

t + t2

2x

)ν− 1
2

dt.

The derivative formula

d

dx

[
xν Iν(x)

] = xν Iν−1(x)

leads to the relations

Iν−1(x)− Iν+1(x) = 2ν

x
Iν(x);

Iν−1(x)+ Iν+1(x) = 2 I ′
ν(x);

Kν−1(x)− Kν+1(x) = −2ν

x
Kν(x);

Kν−1(x)+ Kν+1(x) = −2 K ′
ν(x).

Asymptotics:

Iν(x) ∼ ex

√
2πx

; Kν(x) ∼
√
πe−x

√
2x

, x → +∞.

Full asymptotic expansions may be obtained from the expansion of the Hankel
functions.

Wronskian:

W (Kν, Iν)(x) = 1

x
.
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7.11.6 Addition theorems

The identity

eix sin θ =
∞∑

n=−∞
Jn(x) einθ

can be written as a generating function:

G(x, t) =
∞∑

n=−∞
Jn(x) tn = e

1
2 x(t−1/t)

, |t | = 1.

Addition formula:

Jn(x + y) =
∞∑

m=−∞
Jm(x) Jn−m(y).

Graf’s formula:

Jν(r) eiνϕ =
∞∑

n=−∞
Jn(r1) Jν+n(r2) einθ ,

where r , r1 and r2 are three sides of a triangle, ϕ is the angle opposite r1, and
θ is the angle opposite r . With the same notation, Gegenbauer’s formula is

Jν(r)

rν
= 2ν �(ν)

∞∑
n = 0

(ν + n)
Jν+n(r1)Jν+n(r2)

rν1 rν2
Cνn (cos θ),

where Cνn are the Gegenbauer polynomials

Cνn (x) = (2ν)n(
ν + 1

2

)
n

P

(
ν− 1

2 ,ν− 1
2

)
n (x).

7.11.7 Fourier transform and Hankel transform

Suppose ∫ ∞

0
| f (x)| x

1
2 dx < ∞.

The nth Hankel transform of f is

g(y) =
∫ ∞

0
Jn(xy) f (x) x dx .
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If f is continuous and g satisfies the same integrability condition as f , then f
is itself the Hankel transform of g:

f (x) =
∫ ∞

0
Jn(xy) g(y) y dy.

7.11.8 Integrals of Bessel functions

Under certain conditions∫ ∞

0
f (x) Jν(x) dx =

∞∑
m=0

(−1)m

�(ν + m + 1)m!
∫ ∞

0
f (x)

( x

2

)ν+2m
dx .

Examples: for Re s > 0, Re (ν + a) > 0,∫ ∞

0
xa−1e−sx2

Jν(x) dx = �
( 1

2ν + 1
2 a
)

�(ν + 1) 2ν+1s
1
2 (ν+a)

× M

(
1

2
ν + 1

2
a, ν + 1;− 1

4s

)
;

∫ ∞

0
xν+1e−sx2

Jν(x) dx = e− 1
4 s

(2s)ν+1
;

∫ ∞

0
xa−1e−sx Jν(x) dx = �(ν + a)

�(ν + 1) 2νsν+a

× F

(
1

2
ν + 1

2
a,

1

2
ν + 1

2
a + 1

2
, ν + 1;− 1

s2

)
;

∫ ∞

0
e−xs xν Jν(x) dx = �(2ν + 1)

�(ν + 1) 2ν
· 1

(1 + s2)
ν+ 1

2

;

∫ ∞

0
e−xs xν+1 Jν(x) dx = �(2ν + 2)

�(ν + 1) 2ν
· s

(1 + s2)
ν+ 3

2

;

∫ ∞

0
e−xs x−1 Jν(x) dx = 1

ν
(
s + √

1 + s2
)ν ;

∫ ∞

0
e−xs Jν(x) dx = 1√

1 + s2
(
s + √

1 + s2
)ν .
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7.11.9 Airy functions

If

u(x) = x
1
2 v

(
2

3
x

3
2

)
and v is a solution of the modified Bessel equation with index ν = 1

3 , then u is
a solution of the Airy equation

u′′(x)− x u(x) = 0.

Airy functions:

Ai (x) =
√

x

π
√

3
K 1

3

(
2

3
x

3
2

)
=

√
x

3

[
I− 1

3

(
2

3
x

3
2

)
− I 1

3

(
2

3
x

3
2

)]
;

Bi (x) =
√

x√
3

[
I− 1

3

(
2

3
x

3
2

)
+ I 1

3

(
2

3
x

3
2

)]
.

Series expansions:

Ai (x) =
∞∑

n=0

[
x3n

32n+ 2
3�
(
n + 2

3

)
n !

− x3n+1

32n+ 4
3�
(
n + 4

3

)
n !

]
;

Bi (x) = √
3

∞∑
n=0

[
x3n

32n+ 2
3�
(
n + 2

3

)
n !

+ x3n+1

32n+ 4
3�
(
n + 4

3

)
n !

]
.

Wronskian:

W
(
Ai (x),Bi (x)

) = 1

π
.

Asymptotics:

Ai (x) ∼ e− 2
3 x

3
2

2
√
π x

1
4

; Bi (x) ∼ e
2
3 x

3
2

√
π x

1
4

, x → +∞;

Ai (−x) ∼ cos
( 2

3 x
3
2 − 1

4π
)

√
π x

1
4

;

Bi (−x) ∼ − sin
( 2

3 x
3
2 − 1

4π
)

√
π x

1
4

, x→ + ∞.
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Airy’s integral form:

Ai(z) = 1

2π i

∫ +i∞

−i∞
exp

(
1

3
τ 3 − zτ

)
dτ.

Let ω = exp(2π i/3). Functions Ai(ω j z), j = 0, 1, 2, are solutions of
(7.9.3) and

Ai(z)+ ωAi(wz)+ ω2Ai(ω2z) = 0.

The integral form is equivalent to

Ai(z) = 1

2π
e− 2

3 z3/2
∫ ∞

0
e−√

zu cos

(
1

3
u

3
2

)
du√

u
,

for | arg z| < π , which gives the full asymptotic expansion

Ai(z) ∼ 1

2π z
1
4

e− 2
3 z

3
2

∞∑
n=0

�
(
3n + 1

2

)
32n(2n)!

(−1)n

z
3
2 n

, z → ∞, | arg z| < π.

7.12 Remarks

Bessel’s equation is closely related to Riccati’s equation [238], a case of which
was investigated by Johann and Daniel Bernoulli starting in 1694 [28]; see
Exercises 3.20 and 3.21 in Chapter 3. It also arose in investigations of the
oscillations of a heavy chain (D. Bernoulli, 1734 [25]), vibrations of a circular
membrane (Euler, 1759 [86]), and heat conduction in a cylinder (Fourier, 1822
[100]) or sphere (Poisson, 1823 [231]). Daniel Bernoulli gave a power series
solution which is J0. The functions Jn for integer n occur in Euler [86];
he found the series expansions and looked for a second solution, finding Y0

but not Yn . The Jn also appear as coefficients in studies of planetary motion
(Lagrange [171], Laplace [175]). The early history is discussed in some detail
in Dutka [77].

Bessel’s 1824 investigation of the Jn [30] and Schlömilch’s memoir [252]
left Bessel’s name attached both to the functions of integer order and to the
functions Jν for arbitrary ν which were introduced by Lommel [189] in 1868.

Up to factors, the Bessel function of the second kind Yn was introduced by
Hankel [123], Weber [309], and Schläfli [249]. Neumann [212] introduced a
different version. The functions H (i)

ν were introduced by Nielsen [216] and
named in honor of Hankel. Up to factors, the functions Iν and Kν were
introduced by Bassett [21]. The function Kν also appears in [192] and is
sometimes called Macdonald’s function.
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Airy’s integral was introduced and studied by Airy in 1838 [4]. The current
notation Ai (x), Bi (x) is due to Jeffreys [146].

The theory, the history, and the extensive literature on cylinder functions
through the early 20th century, are surveyed in Watson’s classic treatise [306].
Other references, with an emphasis on applications, are Korenev [162] and
Petiau [227].



8

Hypergeometric functions

Hypergeometric functions were introduced briefly in Chapters 1 and 3. The
series representations of these functions, like the series representations of
Kummer functions, are examples of a more general concept of hypergeometric
series.

After a brief discussion of general hypergeometric series, we discuss solu-
tions of the hypergeometric equation

x(1 − x) u′′(x)+ [c − (a + b + 1)x
]

u′(x)− ab u(x) = 0 (8.0.1)

and the two classic transformations (Pfaff, Euler) from one solution to another.
There are three natural pairs of solutions of (8.0.1), normalized at the

singular points x = 0, x = 1, and x = ∞ respectively. Any three solutions
must satisfy a linear relation. In particular, for most values of the parameters
(a, b, c), each solution of one normalized pair is a linear combination of the
two solutions in each of the other two pairs. We find a fundamental set of such
relations.

When the parameter c is an integer, the standard solutions coincide (c = 1),
or one of them is not defined. A second solution is found by a limiting process.

Three hypergeometric functions whose respective parameters (a, b, c)
differ by integers satisfy a linear relation. A basis for such relations, due to
Gauss, is derived.

When the three parameters (a, b, c) satisfy certain relations, a quadratic
transformation of the independent variable converts a hypergeometric function
to the product of a hypergeometric function and a power of a rational function.
The basic such quadratic transformations are found.

Hypergeometric functions can be transformed into other hypergeometric
functions by certain combinations of multiplication, differentiation, and inte-
gration. As consequences we obtain some useful evaluations in closed form
and some useful integral representations. Jacobi polynomials, rescaled to the

264
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interval [0, 1], are multiples of hypergeometric functions. This leads to some
additional explicit evaluations, recalled from Chapter 4.

8.1 Hypergeometric series

A hypergeometric series is a power series of the form

∞∑
n=0

(a1)n(a2)n · · · (ap)n

(c1)n(c2)n · · · (cq)n n ! xn, (8.1.1)

where again the extended factorials are defined by

(a)n = a(a + 1)(a + 2) · · · (a + n − 1) = �(a + n)

�(a)

and so on. It is assumed in (8.1.1) that no c j is a non-positive integer. If some
a j is a non-positive integer then (8.1.1) is a polynomial; we exclude this case
in the following general remarks.

The ratio test shows that the radius of convergence of the series (8.1.1)
is zero if p > q + 1, while the radius of convergence is 1 if p = q + 1 and
infinite if p ≤ q. Therefore it is assumed that p ≤ q + 1. The function defined
by (8.1.1) for |x | < 1 is denoted by

p Fq(a1, a2, . . . , ap; c1, c2, . . . , cq ; x). (8.1.2)

This function can be characterized as the solution of the generalized hyper-
geometric equation

L(a),(c)F(x) = 0, F(0) = 1, (8.1.3)

where L(a),(c) denotes the differential operator

L(a),(c) = x−1 D
q∏

j=1

(D + c j − 1)−
p∏

k=1

(D + ak), D = Dx = x
d

dx
.

(8.1.4)

Indeed D[xn] = nxn , so if F(x) =∑∞
n=0 bn xn is a solution of (8.1.3), the

coefficients satisfy

n
q∏

j=1

(c j + n − 1) · bn =
p∏

k=1

(ak + n − 1) · bn−1.

Therefore b0 = F(0) = 1 implies that the solution F is given by the series
(8.1.1).
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8.1.1 Examples of generalized hypergeometric functions

An empty product (no factors) is always taken to be 1, so

0 F0(x) =
∞∑

n=0

xn

n ! = ex ;

the corresponding operator is d/dx − 1. The binomial expansion gives

1 F0(a; x) =
∞∑

n=0

(a)n
n ! xn = 1

(1 − x)a
;

the corresponding operator is (1 − x) d/dx − a.
Since

1

(2n) ! = 1

4n
( 1

2

)
n n ! ,

1

(2n + 1) ! = 1

4n
( 3

2

)
n n ! ,

it follows that

cos x = 0 F1

(
1

2
;−1

4
x2
)

; (8.1.5)

cosh x = 0 F1

(
1

2
; 1

4
x2
)

;

sin x

x
= 0 F1

(
3

2
;−1

4
x2
)

;

sinh x

x
= 0 F1

(
3

2
; 1

4
x2
)
.

It is clear from the series representation (7.1.2) that the Bessel function Jν is

Jν(x) = (x/2)ν

�(ν + 1)
· 0 F1

(
ν + 1;−1

4
x2
)
.

Integrating the series representations of (1 + t)−1, (1 + t2)−1, (1 − t2)
− 1

2 ,

(1 − t2)−1, and (1 + t2)
− 1

2 from t = 0 to t = ±x or t = ±x2 gives the
identities

log(1 + x)

x
= 2 F1(1, 1; 2;−x); (8.1.6)

tan−1 x

x
= 2 F1

(
1

2
, 1; 3

2
;−x2

)
;
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sin−1 x

x
= 2 F1

(
1

2
,

1

2
; 3

2
; x2
)

;

tanh−1 x

x
= 2 F1

(
1

2
, 1; 3

2
; x2
)

;

sinh−1 x

x
= 2 F1

(
1

2
,

1

2
,

3

2
;−x2

)
.

Manipulation of the coefficients in the series expansions leads to the identities

1

2

[
(1 + x)−a + (1 − x)−a] = 2 F1

(
1

2
a,

1

2
a + 1

2
,

1

2
; x2
)

; (8.1.7)

1

2a

[
(1 + x)−a − (1 − x)−a] = −x 2 F1

(
1

2
a + 1

2
,

1

2
a + 1,

3

2
; x2
)
.

The order of the differential operator (8.1.4) is q + 1. It is not surprising
that for most applications, the cases of interest are those when the operator
has order two, i.e. q = 1. The term hypergeometric function or Gauss hyper-
geometric function is usually reserved for the case q = 1, p = 2, and the
subscripts are usually dropped:

2 F1(a, b; c; x) = F(a, b, c; x) =
∞∑

n=0

(a)n(b)n
(c)nn ! xn, c �= 0,−1,−2, . . .

(8.1.8)

The case q = 1, p = 1 is the “confluent hypergeometric” case of Chapter 6.
The terminology comes from the idea of replacing x by x/b in (8.1.8), so that
the singularities of the equation are at 0, b, and ∞, and then letting b → +∞
so that the latter two singularities flow together. The formal limit of the series
in (8.1.8) is the series for 1 F1(a, c; x) = M(a, c; x).

8.2 Solutions of the hypergeometric equation

The operator associated with the series (8.1.8) is the hypergeometric operator

Labc = x(1 − x)
d2

dx2
+ [c − (a + b + 1)x

] d

dx
− ab. (8.2.1)

Any solution of Labc F = 0 in a region in the complex plane extends analyti-
cally to any simply connected plane region that does not contain the singular
points x = 0, x = 1. The series (8.1.8),
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F(a, b, c; x) =
∞∑

n=0

(a)n (b)n
(c)n n ! xn (8.2.2)

is the solution that is regular at the origin and satisfies F(0) = 1. It has a single-
valued analytic continuation to the complement of the real ray {x ≥ 1}. In the
various formulas that follow, we choose principal branches on the complement
of this ray. Note the identity

d

dx

[
F(a, b, c; x)

] = ab

c
F(a + 1, b + 1, c + 1; x). (8.2.3)

In the notation of (8.1.4), with D = Dx = x(d/dx), the hypergeometric
operator (8.2.1) is

Labc = x−1 D(D + c − 1)− (D + a)(D + b). (8.2.4)

Recall (6.1.5): for any constant b,

x−b D{xbu(x)} = (D + b)u(x). (8.2.5)

It follows that conjugating by x1−c converts the operator (8.2.1) to the operator

xc−1Labcx1−c

= x−1 D(D + 1 − c)− (D + a + 1 − c)(D + b + 1 − c)

= La+1−c, b+1−c, 2−c.

Therefore a second solution of the equation Labc F = 0 is provided through
the gauge transformation u(x) = x1−c v(x):

x1−c F(a + 1 − c, b + 1 − c, 2 − c; x), (8.2.6)

provided that c is not a positive integer. (This is one of many provisos that
exclude certain integer values of combinations of the indices a, b, c. The
exceptional cases will be discussed separately.)

The hypergeometric operators Labc can be characterized as the linear
second-order differential operators that have exactly three singular points on
the Riemann sphere, 0, 1,∞, each of them regular. (For the concepts of regular
and irregular singular points, see Coddington and Levinson [55], Hille [129],
or Ince [135]; for a look at irregular singular points, see the exercises for
Chapter 10.) We mention this because it explains an important invariance
property of the set of hypergeometric operators {Labc}: this set is invariant
under changes of coordinates on the Riemann sphere C∪ {∞} by linear frac-
tional transformations (Möbius transformations) that map the set of singular
points {0, 1,∞} to itself. This provides a way of producing solutions that have
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specified behavior at x = 1 or at x = ∞. These transformations are generated
by the transformation y = 1 − x that interchanges 0 and 1 and fixes ∞ and the
transformation y = 1/x that interchanges 0 and ∞ and fixes 1.

Consider the first of these transformations. Let u(x) = v(1 − x). Then
equation (8.0.1) is equivalent to

y(1 − y) v′′(y)+ [c′ − (a + b + 1)y
]
v′(x)− ab v(y) = 0,

c′ = a + b + 1 − c.

Therefore there is a solution regular at y = 0 (x = 1) and another that behaves
like y1−c′ = (1 − x)1−c′

at y = 0. These solutions are multiples of the two
solutions

F(a, b, a + b + 1 − c; 1 − x), (8.2.7)

(1 − x)c−a−b F(c − a, c − b, 1 + c − a − b; 1 − x),

respectively, provided that c − a − b is not an integer.
The inversion y = 1/x takes Dx to −Dy , so

Labc = y Dy(Dy + 1 − c)− (Dy − a)(Dy − b);
(−x)a Labc(−x)−a = −[Dy(Dy − b + a)− y(Dy + a)(Dy + 1 − c + a)

]
,

where we have made use of (8.2.5). It follows from this and from interchanging
the roles of a and b that there are solutions that behave like (−x)−a and (−x)−b

at ∞. They are multiples of the two solutions

(−x)−a F

(
a, 1 − c + a, a − b + 1; 1

x

)
, (8.2.8)

(−x)−b F

(
1 − c + b, b, b − a + 1; 1

x

)
,

respectively, provided that a − b is not an integer.
These results can be used to generate identities for hypergeometric func-

tions. For example, composing x → 1 − x with inversion and composing the
result with x → 1 − x gives the map y = x(x − 1)−1 that fixes the origin and
interchanges 1 and ∞. This leads to a different expression for the solution that
is regular at the origin, given as a function of x(1 − x)−1; this is Pfaff’s identity
[229]:

F(a, b, c; x) = (1 − x)−b F

(
c − a, b, c; x

x − 1

)
. (8.2.9)
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(The special case of this with b = 1 was known to Stirling [274].) There is, of
course, a companion identity with a and b interchanged:

F(a, b, c; x) = (1 − x)−a F

(
a, c − b, c; x

x − 1

)
. (8.2.10)

If we iterate (8.2.9), fixing the index c − a on the right, we obtain an identity
due to Euler [90]:

F(a, b, c; x) = (1 − x)c−a−b F(c − a, c − b, c; x). (8.2.11)

Another derivation of Pfaff’s identity is given in the next section.
Kummer [168] listed 24 solutions of the hypergeometric equation. Four of

them occur in (8.2.9), (8.2.10), and (8.2.11). The remaining 20 are generated
in the same way, starting with the five solutions (8.2.6), (8.2.7), and (8.2.8).

If we replace a by a + ν and b by −ν, the operator (8.2.1) has the form

x(1 − x)
d2

dx2
+ [c − (a + 1)x

] d

dx
+ ν(a + ν),

so that λ(ν) = ν(a + ν) appears as a natural parameter associated with the
fixed operator

x(1 − x)
d2

dx2
+ [c − (a + 1)x

] d

dx
.

The following asymptotic result due to Darboux [62] will be proved in
Chapter 10:

F

(
a + ν,−ν, c; sin2

(
1

2
θ

))

= �(c) cos
(
νθ + 1

2 aθ − 1
2 cπ + 1

4π
)+ O(ν−1)

√
π
(
ν sin 1

2θ
)c− 1

2
(

cos 1
2θ
) 1

2 +(a−c)
(8.2.12)

as ν → +∞, for 0 < θ < π .

8.3 Linear relations of solutions

In the previous section we identified six solutions of the hypergeometric equa-
tion Labc F = 0 that have specified behavior at the singular points {0, 1,∞}:

F(a, b, c; x) ∼ 1, x → 0; (8.3.1)

x1−c F(a + 1 − c, b + 1 − c, 2 − c; x) ∼ x1−c, x → 0;
F(a, b, a + b + 1 − c; 1 − x) ∼ 1, x → 1;
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(1 − x)c−a−b F(c − a, c − b, 1 + c − a − b; 1 − x)∼ (1 − x)c−a−b, x→1;
(−x)−a F(a, 1 + a − c, 1 + a − b; 1/x) ∼ (−x)−a, x → −∞;
(−x)−b F(b, 1 + b − c, 1 + b − a; 1/x) ∼ (−x)−b, x → −∞.

The hypergeometric operator has degree 2, so any three solutions must
be linearly related. Our principal tool for computing coefficients in these
relations is an integral representation due to Euler [88], which is obtained in
the same way as the integral representation (6.1.3) for Kummer’s confluent
hypergeometric function.

Proposition 8.3.1 (Euler’s integral representation) Suppose Re c>Re a> 0.
Then

F(a, b, c; x) = 1

B(a, c − a)

∫ 1

0
sa−1 (1 − s)c−a−1 (1 − sx)−b ds. (8.3.2)

Proof Since

(a)n
(c)n

= �(a + n) �(c)

�(a) �(c + n)
= B(a + n, c − a)

B(a, c − a)
,

the integral representation (2.1.7) for the beta function implies

F(a, b, c; x) = 1

B(a, c − a)

∫ 1

0
sa−1 (1 − s)c−a−1

[ ∞∑
n=0

(b)n
n! (sx)n

]
ds.

Summing the series in brackets gives (8.3.2). �

The identity (8.3.2) provides an explicit analytic continuation for x in the
complement of [1,∞) when Re c > Re a > 0.

The change of variables t = 1 − s in (8.3.2) converts the integral to

(1 − x)−b
∫ 1

0
tc−a−1(1 − t)a−1

(
1 − t x

x − 1

)−b

dt.

In view of (8.3.2) and the values at x = 0, we obtain Pfaff’s identity (8.2.9)
in the case Re c > Re a > 0. Analytic continuation in the parameters gives
(8.2.9) for all values.

Let us return to the six solutions (8.3.1). In principle, the first is a linear
combination of the third and fourth:

F(a, b, c; x) = C1(a, b, c) F(a, b, a + b + 1 − c; 1 − x)

+ C2(a, b, c) (1 − x)c−a−b

× F(c − a, c − b, 1 + c − a − b; 1 − x). (8.3.3)
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The coefficients C1 and C2 are analytic functions of the parameters, so it is
enough to compute these coefficients under special assumptions. Assuming
that c − a − b > 0, the fourth solution vanishes at x = 1, so the coefficient of
the third solution is F(a, b, c; 1). This value can be obtained immediately from
(8.3.2) if we assume also that c > a > 0 or c > b > 0:

C1(a, b, c) = F(a, b, c; 1) = �(c) �(c − a − b)

�(c − a) �(c − b)
.

This extends by analytic continuation to the full case, giving Gauss’s summa-
tion formula [103]:

∞∑
n=0

(a)n (b)n
(c)n n ! = �(c) �(c − a − b)

�(c − a) �(c − b)
, Re (c − a − b) > 0. (8.3.4)

If b is a negative integer, the sum is finite, and (8.3.4) reduces to a combina-
torial identity usually attributed to Vandermonde in 1772 [295], but known to
Chu in 1303 [54]; see Lecture 7 of [14]:

F(a,−n, c; 1) =
n∑

k=0

(−1)k
(

n

k

)
(a)k
(c)k

= (c − a)n
(c)n

, (8.3.5)

valid for c �= 0,−1,−2, . . .
We may use Euler’s identity (8.2.11) to rewrite (8.3.3) as

F(c − a, c − b, c; x)

= C1(a, b, c) (1 − x)a+b−c F(a, b, a + b + 1 − c; 1 − x)

+ C2(a, b, c) F(c − a, c − b, 1 + c − a − b; 1 − x).

Assuming that a + b > c, we evaluate C2 by computing F(c − a, c − b, c; 1).
By (8.3.4) (with a change of indices) the result is

C2(a, b, c) = F(c − a, c − b, c; 1) = �(c) �(a + b − c)

�(a) �(b)
.

Therefore

F(a, b, c; x) = �(c) �(c − a − b)

�(c − a) �(c − b)
F(a, b, a + b + 1 − c; 1 − x)

+ �(c) �(a + b − c)

�(a) �(b)
(1 − x)c−a−b

× F(c − a, c − b, 1 + c − a − b; 1 − x). (8.3.6)
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This identity can be inverted by replacing x by 1 − x and c by a + b + 1 − c
in order to express the first of the solutions normalized at x = 1 as a linear
combination of the solutions normalized at x = 0:

F(a, b, a + b + 1 − c; 1 − x) = �(a + b + 1 − c) �(1 − c)

�(a + 1 − c) �(b + 1 − c)
F(a, b, c; x)

+ �(a + b + 1 − c) �(c − 1)

�(a) �(b)
x1−c F(a + 1 − c, b + 1 − c, 2 − c; x).

(8.3.7)

This identity and a change of indices allows one to obtain the second of
the solutions normalized at x = 1 as a linear combination of the solutions
normalized at x = 0.

Similarly, the first solution in (8.3.1) is a linear combination of the last two,
and it is enough to obtain one coefficient, under the assumption that c > a > b.
Under this assumption, take x → −∞ in (8.3.2) to obtain

F(a, b, c; x) ∼ (−x)−b

B(a, c − a)

∫ 1

0
sa−b(1 − s)c−a ds

s(1 − s)

= (−x)−b

B(a, c − a)
B(a − b, c − a) = (−x)−b �(c) �(a − b)

�(c − b) �(a)
.

By symmetry and analytic continuation, we obtain

F(a, b, c; x) = �(c) �(b − a)

�(c − a) �(b)
(−x)−a F

(
a, 1 + a − c, 1 + a − b; 1

x

)
+ �(c) �(a − b)

�(c − b) �(a)
(−x)−b F

(
b, 1 + b − c, 1 + b − a; 1

x

)
.

(8.3.8)

This can be inverted to give

(−x)−a F

(
a, 1 + a − c, 1 + a − b; 1

x

)
= �(1 + a − b) �(1 − c)

�(a + 1 − c) �(1 − b)
F(a, b, c; x)

+ �(1 + a − b) �(c − 1)

�(c − b) �(a)
x1−c F(a + 1 − c, b + 1 − c, 2 − c; x).

(8.3.9)

The identities (8.3.6), (8.3.7), (8.3.8), and (8.3.9) are valid when all co-
efficients are well-defined, no third index is a non-positive integer, and all
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arguments x and ϕ(x) are in the complement of the ray [1,∞). Additional
identities can be obtained by applying the Pfaff transformation or the Euler
transformation to some or all of the terms.

8.4 Solutions when c is an integer

As is the case for the confluent hypergeometric functions, when c is an integer
�= 1, one of the two solutions (8.1.8) and (8.2.6) of the hypergeometric equa-
tion (8.0.1) is not defined, while if c = 1 these two solutions coincide. We can
find a second solution by adapting the procedure used in Section 6.3.

Assume first that neither a nor b is an integer. Assuming that c �= 0,
−1,−2, . . . , let

N (a, b, c; x) ≡ �(a) �(b)

�(c)
F(a, b, c; x) =

∞∑
n=0

�(a + n) �(b + n)

�(c + n) n ! xn .

The series expansion is well-defined for all values of c. Note that if c = −k
is a non-positive integer, then the first k + 1 terms of the series vanish. In
particular, if c = m is a positive integer,

N (a + 1 − m, b + 1 − m, 2 − m; x)

=
∞∑

n=m−1

�(a + 1 − m + n) �(b + 1 − m + n)

�(2 − m + n) n ! xn

= xm−1
∞∑

k=0

�(a + k) �(b + k)

�(m + k) k ! xk = xm−1 N (a, b,m; x). (8.4.1)

We define a solution of (8.0.1) by analogy with the Kummer function of the
second kind:

U (a, b, c; x) = �(1 − c)

�(a + 1 − c) �(b + 1 − c)
F(a, b, c; x)

+ �(c − 1)

�(a) �(b)
x1−c F(a + 1 − c, b + 1 − c, 2 − c; x)

(8.4.2)

= π

sinπc�(a) �(a + 1 − c) �(b) �(b + 1 − c)

× [N (a, b, c; x)− x1−c N (a + 1 − c, b + 1 − c, 2 − c; x)
]
.

(8.4.3)
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In view of (8.4.1), the difference in brackets has limit zero as c → m, m a
positive integer. Therefore, by l’Hôpital’s rule,

U (a, b,m; x) = (−1)m

�(a) �(a + 1 − m) �(b) �(b + 1 − m)

× ∂

∂c

[
N (a, b, c; x)− x1−c

× N (a + 1 − c, b + 1 − c, 2 − c; x)
]∣∣

c=m .

For non-integer values of a and b and positive integer values of m, calculating
the derivative shows that

U (a, b,m; x) = (−1)m

�(a + 1 − m) �(b + 1 − m) (m − 1) !

×
{

log x F(a, b,m; x)+
∞∑

n=0

(a)n(b)n
(m)n n !

[
ψ(a + n)+ψ(b + n)

− ψ(n + 1)− ψ(m + n)
]

xn
}

+ (m − 2) !
�(a) �(b)

x1−m
m−2∑
n=0

(a + 1 − m)n(b + 1 − m)n
(2 − m)n n ! xn,

(8.4.4)

where ψ(b) = �′(b)/�(b) and the last sum is taken to be zero if m = 1.
The function in (8.4.4) is well-defined for all values of a and b. By a

continuity argument, it is a solution of (8.0.1) for all values of a, b, c and
all values of x /∈ (−∞, 0]. If neither a nor b is an integer less than m, then
U (a, b,m; x) has a logarithmic singularity at x = 0 and is therefore indepen-
dent of the solution F(a, b, c; x). If neither a nor b is a non-positive integer and
one or both is an integer less than m, then the coefficient of the term in brackets
vanishes and U (a, b, c; x) is the finite sum, which is a rational function that is
again independent of F(a, b, c; x).

If a and/or b is a non-positive integer, then U (a, b,m; x) ≡ 0. To obtain a
solution in this case we start with non-integer a and b and multiply (8.4.4) by
�(a) and/or �(b). The limiting value of the resulting function as a and/or b
approaches a non-positive integer is a well-defined solution of (8.0.1) that has
a logarithmic singularity at x = 0.

We have found a second solution of (8.0.1) when c is a positive integer.
When c is a negative integer, we may take advantage of the identity

U (a, b, c; x) = x1−c U (a + 1 − c, b + 1 − c, 2 − c; x). (8.4.5)
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The various identities of Section 8.3 can be extended to exceptional cases
by using the solution U . As an example, to obtain the analogue of (8.3.6) when
1 + a + b − c is a non-positive integer, we may start with the general case and
express the right-hand side of (8.3.6) using the solutions

(1 − x)c−a−b F(c − a, c − b, 1 + c − a − b; 1 − x),

U (a, b, 1 + a + b − c; 1 − x).

The result in this case is

F(a, b, c; x) = �(c)U (a, b, 1 + a + b − c; 1 − x).

8.5 Contiguous functions

As in the case of confluent hypergeometric functions, two hypergeometric
functions are said to be contiguous if two of the indices of one function are the
same as those of the other, and the third indices differ by 1. Gauss [103] showed
that there is a linear relationship between a hypergeometric function and any
two of its contiguous functions, with coefficients that are linear functions of the
indices a, b, c and the variable x . By iteration, it follows that if the respective
indices of three hypergeometric functions differ by integers, then they satisfy
a linear relationship, with coefficients that are rational functions of the indices
a, b, c and the variable x .

It is convenient to use again a shorthand notation: fixing indices a, b, c, let
F be the function F(a, b, c; x) and denote the six contiguous functions by
F(a±), F(b±), F(c±), where

F(a±) = F(a ± 1, b, c; x)

and so on. Since there are 15 pairs of these six functions, there are 15 contigu-
ous relations. Because of the symmetry between a and b, however, there are
nine distinct relations: we do not need the five that involve b but not a, and the
relation that involves F(a−) and F(b+) follows from the one that involves
F(a+) and F(b−).

These relations can be derived in a way similar to that used for Kummer
functions in Section 6.5. The coefficient of xn in the expansion of F is

εn = (a)n(b)n
(c)n n ! .

The coefficients of xn in the expansions of F(a+) and F(c−) are

(a + 1)n
(a)n

εn = a + n

a
εn,

(c)n
(c − 1)n

εn = c − 1 + n

c − 1
εn
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respectively. Since D[xn] = nxn , the corresponding coefficient for DF is nεn .
It follows that

DF = a
[
F(a+)− F

] = b
[
F(b+)− F

] = (c − 1)
[
F(c−)− F

]
.

These identities give

(a − b) F = a F(a+)− b F(b+); (8.5.1)

(a − c + 1) F = a F(a+)− (c − 1) F(c−). (8.5.2)

The coefficient of xn in the expansion of F ′ is

(n + 1)(a)n+1(b)n+1

(c)n+1(n + 1) ! = (a + n)(b + n)

(c + n)
εn . (8.5.3)

Now

(a + n)(b + n)

c + n
= n + (a + b − c)+ (c − a)(c − b)

c + n
,

while the coefficient of xn in the expansion of F(c+) is

(c)n
(c + 1)n

εn = c

c + n
εn .

Therefore (8.5.3) implies that

F ′ = DF + (a + b − c) F + (c − a)(c − b)

c
F(c+).

Multiplying by x gives

(1 − x) DF = x

[
(a + b − c)F + (c − a)(c − b)

c
F(c+)

]
.

Since

(1 − x) DF = (1 − x) a
[
F(a+)− F

]
,

it follows that

[a + (b − c)x] F = a(1 − x) F(a+)− (c − a)(c − b)x

c
F(c+). (8.5.4)

The procedure that led to (8.5.4) can be applied to F(a−) to yield another such
relation. In fact, the coefficient of xn in F ′(a−) is

(a − 1)(b + n)

c + n
εn =

[
(a − 1)− (a − 1)(c − b)

c + n

]
εn .
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Multiplying by x gives

DF(a−) = (a − 1)x F − (a − 1)(c − b) x

c
F(c+).

Replacing a by a − 1 in a previous identity gives

DF(a−) = (a − 1)
[
F − F(a−)].

Therefore

(1 − x) F = F(a−)− (c − b) x

c
F(c+). (8.5.5)

Identities (8.5.1)–(8.5.5) can be used to generate the remaining five identi-
ties. Eliminating F(c+) from (8.5.4) and (8.5.5) gives

[2a − c + (b − a)x] F = a(1 − x) F(a+)− (c − a) F(a−). (8.5.6)

Eliminating F(a+) from (8.5.2) and (8.5.4) gives

[(c − 1)+ (a + b + 1 − 2c)x] F

= (c − 1)(1 − x) F(c−)− (c − a)(c − b)x

c
F(c+). (8.5.7)

Eliminating F(c+) from (8.5.5) and (8.5.7) gives

[1 − a + (c − b − 1)x] F = (c − a) F(a−)− (c − 1)(1 − x) F(c−).
(8.5.8)

Eliminating F(c+) from (8.5.4) and (8.5.5), with a replaced by b in (8.5.5),
gives

(a + b − c) F = a(1 − x) F(a+)− (c − b) F(b−). (8.5.9)

Eliminating F(a+) from (8.5.6) and (8.5.9) gives

(b − a)(1 − x) F = (c − a) F(a−)− (c − b) F(b−). (8.5.10)

8.6 Quadratic transformations

Suppose that ϕ is a quadratic transformation of the Riemann sphere, i.e. a two-
to-one rational map. Under what circumstances is the function F(a, b, c;ϕ(x))
a hypergeometric function:

F
(
a, b, c;ϕ(x)) = F(a′, b′, c′; x)? (8.6.1)

Assume first that ϕ is a polynomial of degree 2. An equation of the form (8.6.1)
implies that ϕ takes the singular points {0, 1} of the equation satisfied by the
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right-hand side of (8.6.1) to the singular points {0, 1} of the equation satisfied
by the left-hand side. Furthermore, by comparison of these two equations, it is
readily seen that the unique double point of ϕ, the zero of ϕ′, must go to 0 or 1.
The right side is holomorphic at x = 0, so necessarily ϕ(0) = 0. Finally, the
origin must be a simple zero of ϕ. The unique such polynomial ϕ is 4x(1 − x).
Considering asymptotics at infinity for the two sides of (8.6.1), we must have
{a′, b′} = {2a, 2b}. Considering behavior at 0 and at 1, we must have 1 − c =
1 − c′ and 1 − c = c′ − a′ − b′ so, up to interchanging a′ and b′,

a′ = 2a, b′ = 2b, c = c′ = a + b + 1

2
.

A comparison of the two differential equations and of the behavior at x = 0
shows that these necessary conditions are also sufficient:

F

(
a, b, a + b + 1

2
; 4x(1 − x)

)
= F

(
2a, 2b, a + b + 1

2
; x

)
. (8.6.2)

This can also be written in the inverse form

F

(
a, b, a + b + 1

2
; x

)
= F

(
2a, 2b, a + b + 1

2
; 1

2
− 1

2

√
1 − x

)
. (8.6.3)

The general quadratic two-to-one rational map of the sphere has the form
ϕ(x) = p(x)/q(x), where p and q are polynomials of degree ≤ 2 with no
common factor, and at least one has degree 2. The requirement for an identity
of the form (8.6.1) is that ϕ map the set {0, 1,∞}, together with any double
points, into the set {0, 1,∞} and that the origin be a simple zero. This last
requirement can be dropped if we look for a more general form

F
(
a, b, c;ϕ(x)) = (1 − αx)βF(a′, b′, c′; x).

Indeed, if αβ = a′b′/c′ then the right-hand side will have a double zero at
the origin, i.e. the derivative vanishes at x = 0. A candidate for ϕ here is
x2/(2 − x)2, which takes both 1 and ∞ to 1. In this case we would expect
to take α = 1

2 to compensate for the singularity of the left-hand side at x = 2.
Since

1 − x2

(2 − x)2
= 4(1 − x)

(2 − x)2
∼ 4(1 − x), x → 1;

∼ − 4

x
, x → ∞,

comparison of the behavior of the two sides as x → 1 gives the condi-
tion c − a − b = c′ − a′ − b′, while comparison of the two sides as x → ∞
gives {0, c − a − b} = {β − a′, β − b′}. Up to interchanging a′ and b′, these
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conditions together with 1
2β = a′b′/c′ imply that β = b′, c′ = 2a′. Compari-

son of behavior as x → 2 shows that, up to interchanging a and b, we should
have 2a = β, 2b = β + 1. Then c = a′ + 1

2 . Our proposed identity is therefore

F

(
a, a + 1

2
, c; x2

(2 − x)2

)
=
(

1 − x

2

)2a
F

(
c − 1

2
, 2a, 2c − 1; x

)
.

(8.6.4)
It can be shown that both sides satisfy the same modification of the hypergeo-
metric equation. The inverse form is

F

(
a, a + 1

2
, c; x

)
= (1 + √

x
)−2a

F

(
c − 1

2
, 2a, 2c − 1; 2

√
x

1 + √
x

)
.

(8.6.5)
Starting with (8.6.2), inverting it, applying Pfaff’s identity (8.2.9) to the

right-hand side, and repeating this process yields the following sequence of
identities. (At each step we reset the indices a, b, c.)

F

(
a, b,

1

2
(a + b + 1); x

)
= F

(
1

2
a,

1

2
b,

1

2
(a + b + 1); 4x(1 − x)

)
; (8.6.6)

F

(
a, b, a + b + 1

2
; x

)
= F

(
2a, 2b, a + b + 1

2
; 1

2
− 1

2

√
1 − x

)
(8.6.7)

=
(

1

2
+ 1

2

√
1 − x

)−2a

F

(
2a, a − b + 1

2
, a + b + 1

2
;
√

1 − x − 1√
1 − x + 1

)
;

(8.6.8)

F(a, b, a − b + 1; x)

= (1 − x)−a F

(
1

2
a,

1

2
a − b + 1

2
, a − b + 1;− 4x

(1 − x)2

)
(8.6.9)

= (1 + x)−a F

(
1

2
a,

1

2
a + 1

2
, a − b + 1; 4x

(1 + x)2

)
; (8.6.10)

F

(
a, a + 1

2
, c; x

)

=
(

1

2
+ 1

2

√
1 − x

)−2a

F

(
2a, 2a − c + 1, c; 1 − √

1 − x

1 + √
1 − x

)
(8.6.11)
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= (1 − x)−a F

(
2a, 2c − 2a − 1, c;

√
1 − x − 1

2
√

1 − x

)
; (8.6.12)

F

(
a, b,

1

2
(a + b + 1), x

)
= (1 − 2x)−2a F

(
1

2
a,

1

2
a + 1

2
,

1

2
(a + b + 1);−4x(1 − x)

(1 − 2x)2

)
. (8.6.13)

Applying (8.2.9) to the right-hand side of (8.6.13) returns us to (8.6.6).
Similarly, starting with (8.6.4), inverting it, applying (8.2.9) to the right-

hand side, and repeating this process yields the following sequence of identi-
ties. (Again we reset the indices a, b, c.)

F(a, b, 2b; x)

=
(

1 − 1

2
x

)−a

F

(
1

2
a,

1

2
a + 1

2
, b + 1

2
; x2

(2 − x)2

)
; (8.6.14)

F

(
a, a + 1

2
, c; x

)

= (1 + √
x
)−2a

F

(
2a, c − 1

2
, 2c − 1; 2

√
x

1 + √
x

)
(8.6.15)

= (1 − √
x
)−2a

F

(
2a, c − 1

2
, 2c − 1;− 2

√
x

1 − √
x

)
; (8.6.16)

F(a, b, 2b; x)

= (1 − x)−
1
2 a F

(
1

2
a, b − 1

2
a, b + 1

2
; x2

4x − 4

)
. (8.6.17)

Applying (8.2.9) to the right-hand side of (8.6.17) returns us to (8.6.14).
One more collection of identities can be generated by starting with (8.6.17)

and following it with (8.6.8), then proceeding to invert and to apply (8.2.9) on
the right:

F(a, b, 2b; x) =
(

1

2
+ 1

2

√
1 − x

)−2a

× F

⎛⎝a, a − b + 1

2
, b + 1

2
;
[

1 − √
1 − x

1 + √
1 − x

]2
⎞⎠ ; (8.6.18)
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F(a, b, a − b + 1; x) = (1 + √
x
)−2a

× F

(
a, a − b + 1

2
, 2a − 2b + 1; 4

√
x(

1 + √
x
)2
)

(8.6.19)

= (1 − √
x
)−2a

× F

(
a, a − b + 1

2
, 2a − 2b + 1;− 4

√
x(

1 − √
x
)2
)

; (8.6.20)

F(a, b, 2b, x) = (1 − x)−
1
2 a

× F

(
a, 2b − a, b + 1

2
;−
(
1 − √

1 − x
)2

4
√

1 − x

)
. (8.6.21)

Applying (8.2.9) to the right-hand side of (8.6.21) returns us to (8.6.18).
Additional identities can be generated from (8.6.6)–(8.6.21) by applying

(8.2.9) (in the first or second index) and (8.2.11) to one or both sides, or by a
change of variables. We mention in particular the identity obtained by applying
(8.2.11) to the left-hand side of (8.6.2):

(1 − 2x) F

(
a + 1

2
, b + 1

2
, a + b + 1

2
; 4x(1 − x)

)
= F

(
2a, 2b, a + b + 1

2
; x

)
(8.6.22)

and an identity obtained by a change of variable in (8.6.18):

F

(
a, b, 2b; 4x

(1 + x)2

)
= (1 + x)2a F

(
a, a − b + 1

2
, b + 1

2
; x2
)
.

(8.6.23)

Each of the identities (15.3.15)–(15.3.32) in [3] can be obtained in this
way. The basic identities are due to Kummer [168]; a complete list is found
in Goursat [117].

8.7 Transformations and special values

A given hypergeometric function may be transformed into another by oper-
ations that involve multiplication and differentiation or integration. Two
examples are
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F(a, b, c; x) = x1+k−a dk

dxk

[
xa−1

(a − k)k
F(a − k, b, c; x)

]
= x1−c dk

dxk

[
xc+k−1

(c)k
F(a, b, c + k; x)

]
, k = 0, 1, 2, . . .

(8.7.1)

The proofs are left as exercises.
Formulas like this are primarily of interest when the hypergeometric func-

tion on the right-hand side can be expressed in closed form, such as

F(a, b, a; x) = (1 − x)−b. (8.7.2)

This example, together with (8.7.1), shows that F(a, b, c; x) can be written in
closed form whenever c − a or c − b is a non-negative integer.

The identities (8.7.1) allow us to decrease the indices a, b by integers or
to increase c by an integer. The following integral transform allows us, under
certain conditions, to increase an upper index or to decrease the lower index
by integer or fractional amounts.

Given complex constants α and β with positive real parts, we define an
integral transform Eα,β that acts on functions that are defined on an interval
containing the origin:

Eα,β f (x) = �(α + β)
�(α) �(β)

∫ 1

0
sα−1(1 − s)β−1 f (sx) ds. (8.7.3)

Then

Eα,β [xn] = �(α + β)
�(α) �(β)

B(α + n, β) xn = (α)n

(α + β)n xn .

Taking α = c, or α + β = a, respectively, we obtain

Ec,βF(a, b, c; ·) = F(a, b, c + β; ·)

and

Eα,a−αF(a, b, c; ·) = F(α, b, c; ·).
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Reversing the point of view, we may write a given hypergeometric function
as an integral. For Re a > 0 and Re ε > 0 or for Re c > Re ε > 0, respectively,

F(a, b, c; x) = Ea,ε[F(a + ε, b, c; ·)](x)

= �(a + ε)
�(a) �(ε)

∫ 1

0
sa−1(1 − s)ε−1 F(a + ε, b, c; sx) ds, (8.7.4)

F(a, b, c; x) = Ec−ε,ε[F(a, b, c − ε; ·)](x)

= �(c)

�(c − ε) �(ε)
∫ 1

0
sc−ε−1(1 − s)ε−1 F(a, b, c − ε; sx) ds.

Therefore if Re c > Re a > 0 we may take ε = c − a and use (8.7.2) and
(8.7.4) to recover the integral form (8.3.2)

F(a, b, c; x) = Ea,c−a
[
(1 − x)−b].

The collection of well-understood hypergeometric functions can be
enlarged by combining (8.7.2) with the various quadratic transformations in
the previous section, choosing values of the indices so that one of the first two
is equal to the third and (8.7.2) is applicable. In many cases the result is a
simple algebraic identity; for example, taking c = a + 1

2 in (8.6.5) yields

(1 − x)−a = (1 + √
x
)−2a

(
1 − √

x

1 + √
x

)−a

.

In addition, however, one can obtain some less obvious identities.
Taking b = a + 1

2 in (8.6.3) gives

F

(
a, a + 1

2
, 2a + 1; x

)
=
(

1 + √
1 − x

2

)−2a

. (8.7.5)

Taking c = 2a in (8.6.11) gives

F

(
a, a + 1

2
, 2a; x

)
= 1√

1 − x

(
1 + √

1 − x

2

)1−2a

. (8.7.6)

Another category of special values occurs when one of the first two indices
(a, b) is a non-positive integer, say a = −n, so that F(a, b, c; x) is a poly-
nomial of degree n. As we noted in Chapter 4, this polynomial is a rescaling
of a Jacobi polynomial, provided c > 0 and b − c − n + 1 > 0. The identity
(4.6.12) is equivalent to

F(a + n,−n, c; x) = n !
(c)n

P(c−1,a−c)
n (1 − 2x). (8.7.7)
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The arguments that led to the formulas (4.7.14) and (4.7.19) for the
Chebyshev polynomials, as well as to (4.7.24) and (4.7.25), are valid for
general values of n. It follows from this fact and from (8.7.7) (carried over
to general values of n) that

F

(
ν,−ν, 1

2
; 1

2
(1 − cos θ)

)
= cos νθ;

F

(
ν + 2,−ν, 3

2
; 1

2
(1 − cos θ)

)
= sin(ν + 1)θ

(ν + 1) sin θ
;

F

(
ν + 1,−ν, 1

2
; 1

2
(1 − cos θ)

)
= cos

(
ν + 1

2

)
θ

cos 1
2θ

;

F

(
ν + 1,−ν, 3

2
; 1

2
(1 − cos θ)

)
= sin

(
ν + 1

2

)
θ

(2ν + 1) sin 1
2θ
.

These can be rewritten, setting x = 1
2 (1 − cos θ), to obtain

F

(
ν,−ν, 1

2
; x

)
= Re

{[
1 − 2x + i

√
4x(1 − x)

]ν}; (8.7.8)

F

(
ν + 2,−ν, 3

2
; x

)
=

Im
{[

1 − 2x + i
√

4x(1 − x)
]ν+1

}
(ν + 1)

√
4x(1 − x)

; (8.7.9)

F

(
ν + 1,−ν, 1

2
; x

)
=

Re
{[

1 − 2x + i
√

4x(1 − x)
]ν+ 1

2
}

√
1 − x

; (8.7.10)

F

(
ν + 1,−ν, 3

2
; x

)
=

Im
{[

1 − 2x + i
√

4x(1 − x)
]ν+ 1

2
}

(2ν + 1)
√

x
. (8.7.11)

In addition to these identities, we note that the identities (8.1.6) and (8.1.7)
involve F = 2 F1.

An integral transform that is more specialized in its application is

E (2)α,β f (x) = �(2α + 2β)

�(2α)�(2β)

∫ 1

0
s2α−1(1 − s)2β−1 f (s2x) ds. (8.7.12)

Then

E (2)α,β
[
xn] = (2α)2n

(2α + 2β)2n
xn = (α)n

(
α + 1

2

)
n

(α + β)n
(
α + β + 1

2

)
n

xn .
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It follows that

F

(
a, a + 1

2
, c; x

)
= E (2)

a, 14

[
F

(
a + 1

4
, a + 3

4
, c; x

)]
. (8.7.13)

For use in Chapter 9 we give two examples of these considerations. The first
uses (8.7.3) and (8.7.10):

F(ν + 1,−ν, 1; x) = E 1
2 ,

1
2

[
F

(
ν + 1,−ν; 1

2
; x

)]

= 1

π

∫ 1

0

Re
{[

1 − 2sx + i
√

4sx(1 − sx)
]ν+ 1

2
}

√
1 − sx

ds√
s(1 − s)

. (8.7.14)

The second uses (8.7.13) and (8.7.6): for Re ν > −1,

F

(
1

2
ν + 1

2
,

1

2
ν + 1; ν + 3

2
; x

)

= E (2)1
2 (ν+1), 14

[
F

(
1

2
ν + 3

4
,

1

2
ν + 5

4
; ν + 3

2
; x

)]

= �
(
ν + 3

2

)
√
π �(ν + 1)

∫ 1

0

(
1 + √

1 − s2x

2

)−ν− 1
2 sν ds√

1 − s2x
√

1 − s
.

(8.7.15)

8.8 Exercises

8.1 Show that

lim
b→+∞ F

(
a, b, c; x

b

)
= 1 F1(a, c; x), |x | < 1.

8.2 Verify the identity (8.2.3).
8.3 Verify the identities (8.1.6).
8.4 Verify the identities (8.1.7).
8.5 Show that

log
1 + x

1 − x
= 2x F

(
1

2
, 1,

3

2
; x2
)
.
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8.6 Show that for |t | < 1 and |(1 − x)t | < 1,

∞∑
n=0

(c)n
n ! F(a,−n, c; x) tn = (1 − t)a−c[1 − (1 − x)t]−a .

8.7 Show that for Re a > 0 and x �∈ [1,∞),∫ x

0
ta−1(1 − t)b−1 dt = xa

a
F(a, 1 − b, a + 1; x).

The integral is called the incomplete beta function, denoted Bx (a, b).
The identity is due to Gauss [103].

8.8 Use the reflection formula (2.2.7) and the integral formula (8.3.2) to
verify the integral formula for Re c > Re a > 0:

F(a, b, c; x) = e−iπa �(1 − a) �(c)

�(c − a)

1

2π i

∫
C

ta−1(1 + t)b−c

(1 + t − xt)b
dt,

where the curve C runs from +∞ to 0 along the upper edge of the cut
on [0,∞) and returns to +∞ along the lower edge.

8.9 Verify the integral formula, for Re a > 0 and arbitrary complex b, c:

F(a, b, c; x)

= �(c) �(1 + a − c)

�(a)

1

2π i

∫
C

sa−1(s − 1)c−a−1(1 − xs)−b ds,

where C is a counterclockwise loop that passes through the origin and
encloses the point s = 1. Hint: assume first that Re c > Re a > 0 and
change the contour to run along the interval [0, 1] and back.

8.10 Derive Kummer’s identity (6.1.10) from Pfaff’s transformation (8.2.9).
8.11 Show that∫ π/2

0

dϕ√
1 − k2 sin2 ϕ

= π

2
F

(
1

2
,

1

2
, 1; k2

)
, |k| < 1;

∫ π/2

0

√
1 − k2 sin2 ϕ dϕ = π

2
F

(
1

2
,−1

2
, 1; k2

)
, |k| < 1.

The functions K = K (k) and E = E(k) that are defined by these
integrals are called the complete elliptic integral of the first kind and
second kind, respectively; see Chapter 11. Hint: evaluate∫ π/2

0
sin2n ϕ dϕ.
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8.12 Let u1 and u2 be two solutions of the hypergeometric equation (8.0.1).
Show that the Wronskian has the form

W (u1, u2)(x) = A x−c(1 − x)c−a−b−1

for some constant A.
8.13 Denote the following six solutions of the hypergeometric equation by

F1(x) = F(a, b, c; x);
F2(x) = x1−c F(a + 1 − c, b + 1 − c, 2 − c; x);
F3(x) = F(a, b, a + b + 1 − c; 1 − x);
F4(x) = (1 − x)c−a−b F(c − a, c − b, 1 + c − a − b; 1 − x);
F5(x) = (−x)−a F(a, 1 − c + a, a − b + 1; 1/x);
F6(x) = (−x)−b F(1 − c + b, b, b − a + 1; 1/x).

(a) Compute the Wronskians

W (F1, F2)(x), W (F3, F4)(x), W (F5, F6)(x).

(b) Compute the Wronskians

W (F1, F3)(x), W (F1, F4)(x), W (F1, F5)(x), W (F1, F6)(x).

Hint: use (a) and the relations in Section 8.3.
8.14 Exercise 8.13 lists six of Kummer’s 24 solutions of the hypergeometric

equation. Use (8.2.9)–(8.2.11) to find the remaining 18 solutions.
8.15 Verify the contiguous relations (8.5.6)–(8.5.10).
8.16 Suppose that Q(x) is a quadratic polynomial and

u(x) = F(a′, b′, c′; Q(x)) satisfies the hypergeometric equation (8.0.1)
with indices a, b, c.
(a) Let y = Q(x). Show that x(1 − x)[Q′(x)]2 = Ay(1 − y) for some

constant A.
(b) Show that A = 4 and Q(x) = 4x(1 − x).
(c) Show that c = 1

2 (a + b + 1) and a′ = 1
2 a, b′ = 1

2 b, c′ = c.
8.17 Show that

F(a, 1 − a, c; x)

= (1 − x)c−1 F

(
1

2
[c − a], 1

2
[c + a − 1], c; 4x[1 − x]

)
.
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8.18 Show that

F

(
a, 1 − a, c,

1

2

)
= 21−c �(c) �

( 1
2

)
�
( 1

2 [c + a])�( 1
2 [c − a + 1]) .

8.19 Use (8.6.23) (with a and b interchanged) to derive Kummer’s quadratic
transformation (6.1.11).

8.20 Show that

F

(
a, b,

1

2
[a + b + 1]; 1

2

)
= �

( 1
2 [a + b + 1])�( 1

2

)
�
( 1

2 [a + 1])�( 1
2 [b + 1]) .

8.21 Verify the identity (8.4.5).
8.22 Suppose c > 0, c′ > 0. Let w(x) = xc−1(1 − x)c

′−1, 0 < x < 1.
(a) Show that the hypergeometric operator

L = x(1 − x)
d2

dx2
+ [c − (c + c′) x

] d

dx

is symmetric in the Hilbert space L2
([0, 1], w(x) dx

)
.

(b) Given λ > 0 and f ∈ L2
w, the equation Lu + λu = f has a unique

solution u ∈ L2
w, expressible in the form

u(x) =
∫ 1

0
Gλ(x, y) f (y) dy.

(Note that if we set a = c + c′ − 1 and ν > max{a, 0} is chosen so that
λ = ν(ν − a), then L + λ is the hypergeometric operator with indices
(a − ν, ν, c).) Compute the Green’s function Gλ. Hint: see Section 3.3.
The appropriate boundary conditions here are regularity at x = 0 and at
x = 1.

8.23 Let c, c′, w(x), L , and a be as in Exercise 8.22. Let
Fν(x) = F(a + ν,−ν, c; x), so that F0, F1, F2, . . . are orthogonal
polynomials for the weight w. What is wrong with the following
argument? Suppose that (a + ν)ν �= (a + n)n, n = 0, 1, 2, . . . Then

−λν(Fν, Fn)w = (L Fν, Fn)w = (Fν, L Fn)w = −λn(Fν, Fn)w.

Therefore (Fν, Fn)w = 0 for all n = 0, 1, 2, . . . By Theorem 4.1.5, the
orthogonalized polynomials

Pn(x) = ||Fn||−1
w Fn(x)

are complete in L2
w. Therefore Fν = 0.

8.24 Verify the identities (8.7.1). Show that similar identities hold for the
Kummer functions.
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8.25 Change a to 2a and b to a + 1 in (8.6.10) and show that the resulting
identity is a special case of (8.7.1).

8.26 Change a to 2a + 1 and b to a in (8.6.14) and show that the resulting
identity is a special case of (8.7.1).

8.27 Show that for c > 2 and x > 0,

F(1, 1, c;−x) = �(c)

�(c − 2)

∫ 1

0
(1 − s)c−3 log(1 + sx)

x
ds.

8.28 Show that

cos ax = F

(
1

2
a,−1

2
a,

1

2
; sin2 x

)
;

sin ax = a sin x F

(
1

2
+ 1

2
a,

1

2
− 1

2
a,

3

2
; sin2 x

)
.

8.9 Summary

8.9.1 Hypergeometric series

Hypergeometric series have the form

∞∑
n=0

(a1)n(a2)n · · · (ap)n

(c1)n(c2)n · · · (cq)n n ! xn,

c �= 0,−1,−2, . . . and p ≤ q + 1. The corresponding function

p Fq(a1, a2, . . . , ap; c1, c2, . . . , cq ; x), |x | < 1

is the solution of

L(a),(c)F = 0, F(0) = 1,

L(a),(c) = x−1 D
q∏

j=1

(D + c j − 1)−
p∏

k=1

(D + ak), D = Dx = x
d

dx
.

Examples:

0 F0(x) =
∞∑

n=0

xn

n ! = ex ;

1 F0(a; x) =
∞∑

n=0

(a)n
n ! xn = 1

(1 − x)a
;
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0 F1

(
1

2
;−1

4
x2
)

= cos x;

0 F1

(
3

2
;−1

4
x2
)

= sin x

x
;

0 F1

(
ν + 1;−1

4
x2
)

= �(ν + 1)

(
2

x

)ν
Jν(x).

More examples, involving F = 2 F1, are listed below, where F is the Gauss
hypergeometric function

2 F1(a, b; c; x) = F(a, b, c; x) =
∞∑

n=0

(a)n(b)n
(c)nn ! xn, c �= 0,−1,−2, . . .

The case q = 1, p = 1 is the “confluent hypergeometric” case of Chapter 6:

1 F1 = M .

8.9.2 Solutions of the hypergeometric equation

Two solutions of (8.0.1) are

F(a, b, c; x), x1−c F(a + 1 − c, b + 1 − c, 2 − c; x), c �= 0,±1,±2, . . .

Other solutions can be produced by using linear fractional transformations that
permute the singular points {0, 1,∞}:

F(a, b, a + b + 1 − c; 1 − x);
(1 − x)c−a−b F(c − a, c − b, 1 + c − a − b; 1 − x);
(−x)−a F(a, 1 − c + a, a − b + 1; 1/x);
(−x)−b F(1 − c + b, b, b − a + 1; 1/x),

with certain restrictions on the indices.
Pfaff’s identity:

F(a, b, c; x) = (1 − x)−b F

(
c − a, b, c; x

x − 1

)
.

Euler’s identity:

F(a, b, c; x) = (1 − x)c−a−b F(c − a, c − b, c; x).
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As ν → +∞, for 0 < θ < π ,

F

(
a + ν,−ν, c; sin2

(
1

2
θ

))
= �(c) cos

(
νθ + 1

2 aθ − 1
2 cπ + 1

4π
)+ O(ν−1)

√
π
(
ν sin 1

2θ
)c− 1

2
(

cos 1
2θ
) 1

2 +(a−c)
.

(8.9.1)

8.9.3 Linear relations of solutions

The solutions listed above satisfy linear relations. When all coefficients are
well-defined, no third index is a non-positive integer, and all arguments x and
ϕ(x) are in the complement of the ray [1,∞):

F(a, b, c; x) = �(c) �(c − a − b)

�(c − a) �(c − b)
F(a, b, a + b + 1 − c; 1 − x)

+�(c) �(a + b − c)

�(a) �(b)
(1 − x)c−a−b F(c − a, c − b, 1 + c − a − b;1 − x);

F(a, b, a + b + 1 − c, 1 − x) = �(a + b + 1 − c) �(1 − c)

�(a + 1 − c) �(b + 1 − c)
F(a, b, c; x)

+ �(a + b + 1 − c) �(c − 1)

�(a) �(b)
x1−c F(a + 1 − c, b + 1 − c, 2 − c; x);

F(a, b, c; x) = �(c) �(b − a)

�(c − a) �(b)
(−x)−a F

(
a, 1 + a − c, 1 + a − b; 1

x

)
+ �(c) �(a − b)

�(c − b) �(a)
(−x)−b F

(
b, 1 + b − c, 1 + b − a; 1

x

)
;

(−x)−a F

(
a, 1 + a − c, 1 + a − b; 1

x

)
= �(1 + a − b) �(1 − c)

�(a + 1 − c) �(1 − b)
F(a, b, c;x)

+ �(1 + a − b) �(c − 1)

�(c − b) �(a)
x1−c F(a + 1 − c, b + 1 − c, 2 − c; x).

Additional identities can be obtained by using the Pfaff and Euler transforms.
Particular cases give Gauss’s summation formula

∞∑
n=0

(a)n (bn)

(c)n n ! = �(c) �(c − a − b)

�(c − a) �(c − b)
, Re (c − a − b) > 0

and the Chu–Vandermonde identity

n∑
k=0

(−1)k
(

n

k

)
(a)k
(c)k

= (c − a)n
(c)n

, c �= 0,−1,−2, . . .
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8.9.4 Solutions when c is an integer

A second solution of (8.0.1) when c is a positive integer m is obtained as the
value of

U (a, b, c; x) = �(1 − c)

�(a + 1 − c) �(b + 1 − c)
F(a, b, c; x)

+ �(c − 1)

�(a) �(b)
x1−c F(a + 1 − c, b + 1 − c, 2 − c; x)

at c = m, which is

U (a, b,m; x) = (−1)m

�(a + 1 − m) �(b + 1 − m) (m − 1) !

×
{

log x F(a, b,m; x)+
∞∑

n=0

(a)n(b)n
(m)n n !

[
ψ(a + n)+ψ(b + n)

− ψ(n + 1)− ψ(m + n)
]

xn
}

+ (m − 2) !
�(a) �(b)

x1−m
m−2∑
n=0

(a + 1 − m)n(b + 1 − m)n
(2 − m)n n ! xn,

where ψ(b) = �′(b)/�(b) and the last sum is taken to be zero if m = 1.
For c a non-positive integer we may take advantage of the identity

U (a, b, c; x) = x1−c U (a + 1 − c, b + 1 − c, 2 − c; x).

This solution, or a transformed version, may be substituted in the various linear
relations among solutions in the exceptional cases.

8.9.5 Contiguous functions

Two hypergeometric functions are said to be contiguous if two indices are the
same and the third indices differ by 1. Let

F(a±) = F(a ± 1, b, c; x), etc.

The basic identities follow from

x F ′ = a
[
F(a+)− F

] = (c − 1)
[
F(c−)− F

]
.
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They are

(a − b) F = a F(a+)− b F(b+);

(a − c + 1) F = a F(a+)− (c − 1) F(c−);

[a + (b − c)x] F = a(1 − x) F(a+)− (c − a)(c − b)x

c
F(c+);

(1 − x) F = F(a−)− (c − b) x

c
F(c+);

[2a − c + (b − a)x] F = a(1 − x) F(a+)− (c − a) F(a−);

[(c − 1)+ (a + b + 1 − 2c)x] F = (c − 1)(1 − x) F(c−)
− (c − a)(c − b)x

c
F(c+);

[1 − a + (c − b − 1)x] F = (c − a) F(a−)− (c − 1)(1 − x) F(c−);

(a + b − c) F = a(1 − x) F(a+)− (c − b) F(b−);

(b − a)(1 − x) F = (c − a) F(a−)− (c − b) F(b−).

8.9.6 Quadratic transformations

Quadratic transformations of the plane lead to the identities

F

(
a, b,

1

2
(a + b + 1); x

)
= F

(
1

2
a,

1

2
b,

1

2
(a + b + 1); 4x(1 − x)

)
;

F

(
a, b, a + b + 1

2
; x

)
= F

(
2a, 2b, a + b + 1

2
; 1

2
− 1

2

√
1 − x

)

=
(

1

2
+ 1

2

√
1 − x

)−2a

F

(
2a, a − b + 1

2
, a + b + 1

2
;
√

1 − x − 1√
1 − x + 1

)
;

F(a, b, a − b + 1; x)

= (1 − x)−a F

(
1

2
a,

1

2
a − b + 1

2
, a − b + 1;− 4x

(1 − x)2

)

= (1 + x)−a F

(
1

2
a,

1

2
a + 1

2
, a − b + 1; 4x

(1 + x)2

)
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= (1 + √
x
)−2a

F

(
a, a − b + 1

2
, 2a − 2b + 1; 4

√
x

(1 + √
x )2

)

= (1 − √
x
)−2a

F

(
a, a − b + 1

2
, 2a − 2b + 1;− 4

√
x

(1 − √
x )2

)
;

F

(
a, a + 1

2
, c; x

)

=
(

1

2
+ 1

2

√
1 − x

)−2a

F

(
2a, 2a − c + 1, c; 1 − √

1 − x

1 + √
1 − x

)

= (1 − x)−a F

(
2a, 2c − 2a − 1, c;

√
1 − x − 1

2
√

1 − x

)
;

F

(
a, b,

1

2
(a + b + 1), x

)

= (1 − 2x)−2a F

(
1

2
a,

1

2
a + 1

2
,

1

2
(a + b + 1);−4x(1 − x)

(1 − 2x)2

)
;

F(a, b, 2b; x) =
(

1 − 1

2
x

)−a

F

(
1

2
a,

1

2
a + 1

2
, b + 1

2
; x2

(2 − x)2

)

= (1 − x)−
1
2 a F

(
1

2
a, b − 1

2
a, b + 1

2
; x2

4x − 4

)

=
(

1

2
+ 1

2

√
1 − x

)−2a

F

⎛⎝a, a − b + 1

2
, b + 1

2
;
[

1 − √
1 − x

1 + √
1 − x

]2
⎞⎠

= (1 − x)−
1
2 a F

(
a, 2b − a, b + 1

2
;− (1 − √

1 − x)2

4
√

1 − x

)
;

F

(
a, a + 1

2
, c; x

)

= (1 + √
x
)−2a

F

(
2a, c − 1

2
, 2c − 1; 2

√
x

1 + √
x

)

= (1 − √
x
)−2a

F

(
2a, c − 1

2
, 2c − 1;− 2

√
x

1 − √
x

)
.
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8.9.7 Transformations and special values

Apart from some exceptional values of the parameters,

F(a, b, c; x) = x1+k−a dk

dxk

[
xa−1

(a − k)k
F(a − k, b, c; x)

]

= x1−c dk

dxk

[
xc+k−1

(c)k
F(a, b, c + k; x)

]
, k = 0, 1, 2, . . .

For Re a > 0, Re b > 0, define the integral transform

Eα,β f (x) = �(α + β)
�(α) �(β)

∫ 1

0
sα−1(1 − s)β−1 f (sx) ds.

Then for Re a > 0 and Re ε > 0 or for Re c > Re ε > 0 respectively,

F(a, b, c; x) = Ea,ε[F(a + ε, b, c; ·)](x)

= �(a + ε)
�(a) �(ε)

∫ 1

0
sa−1(1 − s)ε−1 F(a + ε, b, c; sx) ds,

F(a, b, c; x) = Ec−ε,ε[F(a, b, c − ε; ·)](x)

= �(c)

�(c − ε) �(ε)
∫ 1

0
sc−ε−1(1 − s)ε−1 F(a, b, c + ε; sx) ds.

A special case is Euler’s integral form

F(a, b, c; x) = Ea,c−a[(1 − x)−b], Re c > Re a > 0,

which uses the identity

F(a, b, a; x) = (1 − x)−b.

Other useful special cases are

F

(
a, a + 1

2
, 2a + 1; x

)
=
(

1 + √
1 − x

2

)−2a

;

F

(
a, a + 1

2
, 2a; x

)
= 1√

1 − x

(
1 + √

1 − x

2

)1−2a

;

F

(
1

2
a,

1

2
a + 1

2
,

1

2
; x2
)

= 1

2

[
(1 + x)−a + (1 − x)−a];
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F

(
1

2
a + 1

2
,

1

2
a + 1,

3

2
; x2
)

= − 1

2ax

[
(1 + x)−a − (1 − x)−a];

F(a + n,−n, c; x) = n !
(c)n

P(c−1,a−c)
n (1 − 2x);

F

(
ν,−ν, 1

2
; 1

2
(1 − cos θ)

)
= cos νθ;

F

(
ν + 2,−ν, 3

2
; 1

2
(1 − cos θ)

)
= sin(ν + 1)θ

(ν + 1) sin θ
;

F

(
ν + 1,−ν, 1

2
; 1

2
(1 − cos θ)

)
= cos

(
ν + 1

2

)
θ

cos 1
2θ

;

F

(
ν + 1,−ν, 3

2
; 1

2
(1 − cos θ)

)
= sin

(
ν + 1

2

)
θ

(2ν + 1) sin 1
2θ

;

F(1, 1, 2;−x) = log(1 + x)

x
;

F

(
1

2
, 1,

3

2
;−x2

)
= tan−1 x

x
;

F

(
1

2
,

1

2
; 3

2
; x2
)

= sin−1 x

x
;

F

(
1

2
, 1,

3

2
; x2
)

= tanh−1 x

x
;

F

(
1

2
,

1

2
,

3

2
;−x2

)
= sinh−1 x

x
.

A second transform is

E (2)α,β f (x) = �(2α + 2β)

�(2α)�(2β)

∫ 1

0
s2α−1(1 − s)2β−1 f (s2x) ds.

Then

F

(
a, a + 1

2
, c; x

)
= E (2)

a, 1
4

[
F

(
a + 1

4
, a + 3

4
, c; x

)]
.
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Two examples used in Chapter 9 are

F(ν + 1,−ν, 1; x) = E 1
2 ,

1
2

[
F

(
ν + 1,−ν; 1

2
; x

)]

= 1

π

∫ 1

0

Re
{[

1 − 2sx + i
√

4sx(1 − sx)
]ν+ 1

2
}

√
1 − sx

ds√
s(1 − s)

;

F

(
1

2
ν + 1

2
,

1

2
ν + 1; ν + 3

2
; x

)

= E (2)1
2 (ν+1), 14

[
F

(
1

2
ν + 3

4
,

1

2
ν + 5

4
; ν + 3

2
; x

)]

= �
(
ν + 3

2

)
�(ν + 1)

√
π

∫ 1

0

(
1 + √

1 − s2x

2

)−ν− 1
2 sν ds√

1 − s2x
√

1 − s
.

8.10 Remarks

The hypergeometric equation was studied by Euler and Gauss, among others.
According to Askey in the addendum to [280], both the hypergeometric
equation and its series solution were probably first written down by Euler
in a manuscript dated 1778 and published in 1794 [90]. The six solutions
in Section 8.2 and the relations among them were obtained by Kummer in
1836 [168]; see the discussion by Prosser [234]. Another method for obtaining
such relations was introduced by Barnes [20]. The contiguous relations were
obtained by Gauss in his 1812 paper on hypergeometric series [103]. They
include as special cases many of the recurrence relations given elsewhere.

Riemann [239] studied hypergeometric functions from a function-theoretic
point of view. Riemann’s study of the conformal mappings defined by the
quotient of two solutions of the same equation was carried out systematically
by Schwarz [254]. The theory and history, pre-Riemann and post-Riemann, are
treated in Klein’s classic work [156], which has an extensive bibliography. The
history, and its roots in work of Wallis, Newton, and Stirling, is also discussed
in Dutka [75].

Hypergeometric functions are discussed in almost every text on special
functions; see the relatively recent books by Andrews, Askey, and Roy [7]
and by Seaborn [255]. In particular, [7] contains a different treatment of
quadratic transformations and more information about general hypergeometric
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series. Various algorithms have been developed to establish identities involving
hypergeometric series; see Koepf [159], Petkovšek, Wilf, and Zeilberger [228],
Wilf and Zeilberger [317]. Algebraic solutions of the hypergeometric equation
are treated in Matsuda [199].

Separation of variables in various singular or degenerate partial differential
equations leads to solutions that are expressible in terms of hypergeometric
functions. These include the Euler–Poisson–Darboux equation, see Darboux
[63], Copson [57]; the Tricomi equation, see Delache and Leray [68]; certain
subelliptic operators, see Beals, Gaveau, and Greiner [22]; and certain singular
or degenerate hyperbolic operators, see Beals and Kannai [23].

A modified version of hypergeometric series is called “basic hypergeo-
metric series.” The basic series that corresponds to the series for the Gauss
hypergeometric function F = 2 F1 is

2�1(a, b, c; q; x) =
∞∑

n=0

(a; q)n (b; q)n
(c; q)n (q; q)n

xn,

in which the extended factorials (a)n and so on are replaced by the products

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1)

and so on. Identities involving these expressions also go back to Euler and
Gauss. This “q-analysis” has applications in number theory and in combinato-
rial analysis; see Andrew, Askey, and Roy [7], Bailey [18], Fine [97], Gasper
and Rahman [102], and Slater [261].

There are a number of multidimensional generalizations of hypergeometric
series and integrals; see Appell and Kampé de Fériet [10], Dwork [78], Mathai
and Saxena [197], and Varchenko [297].
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Spherical functions

Spherical functions are solutions of the equation

(1 − x2) u′′(x)− 2x u′(x)+
[
ν(ν + 1)− m2

1 − x2

]
u(x) = 0, (9.0.1)

that arises from separating variables in Laplace’s equation �u = 0 in spher-
ical coordinates. Surface harmonics are the restrictions to the unit sphere of
harmonic functions (solutions of Laplace’s equation) in three variables. For
surface harmonics, m and ν are non-negative integers. The case m = 0 is
Legendre’s equation

(1 − x2) u′′(x)− 2x u′(x)+ ν(ν + 1) u(x) = 0, (9.0.2)

with ν a non-negative integer. The solutions to equation (9.0.1) that satisfy
the associated boundary conditions are Legendre polynomials and certain
multiples of their derivatives. These functions are the building blocks for all
surface harmonics. They satisfy a number of important identities.

For general values of the parameter ν, Legendre’s equation (9.0.2) has
linearly independent solutions Pν(z), holomorphic for z in the complement
of (−∞,−1], and Qν(z), holomorphic in the complement of (−∞, 1]. These
Legendre functions satisfy a number of identities and have several representa-
tions as integrals.

For most values of the parameter ν, the four functions

Pν(z), Pν(−z), Qν(z), Q−ν−1(z)

are distinct solutions of (9.0.2), so there are linear relations connecting any
three. Integer and half-integer values of ν are exceptional cases.

The solutions of the spherical harmonic equation (9.0.1) with m = 1, 2, . . .
are known as associated Legendre functions. They are closely related to
derivatives P(m)ν and Q(m)ν of the Legendre functions. The associated Legendre

300
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functions also satisfy a number of important identities and have representations
as integrals.

9.1 Harmonic polynomials; surface harmonics

A polynomial P(x, y, z) in three variables is said to be homogeneous of degree
n if it is a linear combination of monomials of degree n:

P(x, y, z) =
∑

j+k+l=n

a jkl x j yk zl .

By definition, the zero polynomial is homogeneous of all degrees. A homoge-
neous polynomial P of degree n is said to be harmonic if it satisfies Laplace’s
equation

�P = Pxx + Pyy + Pzz = 0.

The homogeneous polynomials of degree n and the harmonic polynomials of
degree n are vector spaces over the real or complex numbers. (Note that our
convention here is that a harmonic polynomial is, by definition, homogeneous
of some degree.)

Proposition 9.1.1 The space of homogeneous polynomials of degree n has
dimension (n + 2)(n + 1)/2. The space of harmonic polynomials of degree n
has dimension 2n + 1.

Proof The monomials of degree n are a basis for the homogeneous polyno-
mials of degree n. Such a monomial has the form

xn− j−k y j zk,

and is uniquely determined by the pair ( j, j + k + 1), which corresponds to
a choice of two distinct elements from the set {0, 1, . . . , n + 1}. This proves
the first statement. To prove the second, we note that � maps homogeneous
polynomials of degree n to homogeneous polynomials of degree n − 2. It is
enough to show that this map is surjective (onto), since then its kernel – the
space of harmonic polynomials of degree n – has dimension

(n + 2)(n + 1)

2
− n(n − 1)

2
= 2n + 1.

To prove surjectivity we note that �xn = n(n − 1)xn−2, and in general

�
(
xn− j−k y j zk) = (n − j − k)(n − j − k − 1)xn−2− j−k y j zk + Rnjk
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where Rnjk has total degree j + k − 2 in y and z. It follows by recursion on
j that monomials xn−2− j y j are in the range of �, and then by recursion on k
that monomials xn−2− j−k y j zk are in the range of �. �

In spherical coordinates (3.6.7), monomials take the form

x j yk zl = r j+k+l cos j ϕ sink ϕ sin j+k θ cosl θ.

In particular, a harmonic polynomial of degree n has the form

P(r, θ, ϕ) = rnY (θ, ϕ),

where Y is a trigonometric polynomial in θ and ϕ, of degree at most n in each,
and

1

sin2 θ
Yϕϕ + 1

sin θ
[sin θ Yθ ]θ + n(n + 1) Y = 0; (9.1.1)

see (3.6.10). The function Y can be regarded as the restriction of the harmonic
polynomial P to the unit sphere {x2 + y2 + z2 = 1}; it is called a surface
harmonic of degree n.

As in Section 3.6 we may seek to solve (9.1.1) by separating variables: if
Y (θ, ϕ) = �(θ)�(ϕ), then wherever the product �� �= 0 we must have

�′′

�
+
{

sin θ
[sin θ �′]′

�
+ n(n + 1) sin2 θ

}
= 0.

The first summand is a function of ϕ alone and the second is a function of θ
alone, so each summand is constant. Since Y is a trigonometric polynomial
in ϕ of degree at most n, it follows that �′′ = −m2� for some integer m =
−n,−n + 1, . . . , n − 1, n. This gives us 2n + 1 linearly independent choices
for �:

cos mϕ, m = 0, 1, . . . , n; sin mϕ, m = 1, 2, . . . , n,

or the complex version

eimϕ, m = 0,±1, . . . ,±n.

Let us take �(x) = eimx . Then � is a solution of the equation

1

sin θ

d

dθ

[
sin θ

d�

dθ

]
+
[

n(n + 1)− m2

sin2 θ

]
� = 0.
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As noted in Section 3.6, the change of variables x = cos θ converts the preced-
ing equation to the spherical harmonic equation

(1 − x2)u′′(x)− 2x u′(x)+
[

n(n + 1)− m2

1 − x2

]
u(x) = 0, 0 < x < 1.

(9.1.2)

Suppose for the moment that m ≥ 0. As noted in Section 3.7, the gauge

transformation u(x) = (1 − x2)
1
2 m
v(x) reduces (9.1.2) to the equation

(1 − x2) v′′ − 2(m + 1)x v′ + (n − m)(n + m + 1) v = 0. (9.1.3)

This has as a solution the Jacobi polynomial P(m,m)n−m , so (9.1.2) has a solution

(1 − x2)
1
2 m P(m,m)n−m (x).

In view of (4.3.11), P(m,m)n−m is a multiple of the mth derivative P(m)n of the
Legendre polynomial of degree n:

P(m,m)n−m = 2mn !
(n + m) ! P(m)n . (9.1.4)

Therefore �nm is a multiple of the associated Legendre function

Pm
n (x) = (1 − x2)

1
2 m P(m)n (x). (9.1.5)

Formula (9.1.5) may be used to obtain an integral formula for Pm
n . The

Rodrigues formula (4.2.12) for Pn and the Cauchy integral representation for
the derivative give

Pm
n (x) = (−1)n

1

2nn ! (1 − x2)
1
2 m (n + m) !

2π i

∫
C

(1 − s2)n ds

(s − x)n+m+1
,

where C is a contour enclosing x . Let us take C to be the circle centered at x
with radius ρ = √

1 − x2:

s(α) = x + ρeiα = x +
√

1 − x2 eiα.

Then

1 − s(α)2 = −2ρeiα(x + iρ sinα)

so for m ≥ 0,

Pm
n (cos θ) = (m + n) !

n !
1

2π

∫ 2π

0
e−imα(cos θ + i sin θ sinα)n dα. (9.1.6)

In defining �nm and Ynm , we normalize so that the solution has L2 norm 1
on the interval [−1, 1] or, equivalently, the corresponding multiple of P(m,m)n−m
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has L2 norm 1 with respect to the weight (1 − x2)m . Using (4.2.15) and the
Rodrigues formula we obtain the solution

�nm(x)

= 1

2mn !
[(

n + 1

2

)
(n − m) !(n + m) !

] 1
2
(1 − x2)

1
2 m P(m,m)n−m (x)

= (−1)n−m 1

2nn !
[

2n + 1

2

(n + m) !
(n − m) !

] 1
2
(1 − x2)

− 1
2 m dn−m

dxn−m

[
(1 − x2)n

]
.

(9.1.7)

Combining (9.1.7), (9.1.4), and the Rodrigues formula for Pn , we obtain

�nm(x)

=
[

2n + 1

2

(n − m) !
(n + m) !

] 1
2
(1 − x2)

1
2 m P(m)n (x)

= (−1)n
1

2nn !
[

2n + 1

2

(n − m) !
(n + m) !

] 1
2
(1 − x2)

1
2 m dn+m

dxn+m

[
(1 − x2)n

]
.

(9.1.8)

The expressions (9.1.7) and (9.1.8) were obtained under the assumption that
m ≥ 0. Comparing the last part of each, it is natural to define �nm for
m = −1,−2, . . . by

�n,−m(x) = (−1)m�nm(x), m = 1, 2, . . . , n. (9.1.9)

Then the last parts of (9.1.7) and (9.1.8) are valid for all integers m = −n,
−n + 1, . . . , n.

The previous considerations lead to surface harmonics

Ynm(θ, ϕ) = 1√
2π

eimϕ �nm(cos θ), −n ≤ m ≤ n. (9.1.10)

The factor 1/
√

2π is introduced so that the {Ynm} are orthonormal with respect
to the normalized measure sin θ dθ dϕ on the sphere.

Combining (9.1.6) with (9.1.10) and (9.1.8) gives Laplace’s integral [175]:

Ynm(θ, ϕ) = Anm

2π

∫ 2π

0
eim(ϕ−α)(cos θ + i sin θ sinα)n dα, (9.1.11)

Anm = 1

n !
[

2n + 1

4π
(n − m)!(n + m)!

] 1
2
. (9.1.12)
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In view of (9.1.8), this is valid for all m = −n, . . . , n. This leads to an integral
formula for the corresponding harmonic polynomial:

rn Ynm(θ, ϕ) = Anm

2π

∫ 2π

0
e−imα[r cos θ + ir sin θ sin(α + ϕ)]n dα.

We have proved the following.

Theorem 9.1.2 The functions Ynm of (9.1.10) are a basis for the surface har-
monics of degree n. They are orthonormal with respect to normalized surface
measure sin θ dθ dϕ. The corresponding harmonic polynomials of degree n
have the form

rnYnm(θ, ϕ) = Anm

2π

∫ 2π

0
e−imα(z + i x sinα + iy cosα)n dα (9.1.13)

where Anm is given by (9.1.12).

Remarks. 1. If we allow both indices n,m to vary, the functions Ynm are still
orthonormal. This is clear when the second indices differ, since the factors
involving ϕ are orthogonal. When the second indices are the same, but the first
indices differ, the second factors involve polynomials P(m,m)k with different
indices k, and again are orthogonal.

2. A second solution of the equation r2 R′′ + 2r R′ − n(n + 1)R = 0 is
R(r) = r−n−1. Thus to each surface harmonic Ynm there corresponds a
function

r−n−1Ynm(θ, ϕ)

which is harmonic away from the origin, and, in particular, in the exterior of
the sphere.

Suppose that O is a rotation about the origin in R3 (an orthogonal transfor-
mation with determinant 1). The Laplacian � is invariant with respect to O:

�[ f (Op)] = [� f ](Op), p ∈ R3.

If P(p) is a homogeneous polynomial of degree n, then so is Q(p) = P(Op).
Therefore the space of harmonic polynomials of degree n is invariant under
rotations. The surface measure sin θ dθ dϕ is also invariant under rotations. It
follows that any rotation takes the orthonormal basis {Ynm} to an orthonormal
basis; thus it induces a unitary transformation in the (complex) space of
spherical harmonics of degree n. This implies that the sum

Fn(θ, ϕ; θ ′, ϕ′) =
n∑

m=−n

Ynm(θ, ϕ) Y nm(θ
′, ϕ′),
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where Y nm is the complex conjugate, is left unchanged if both points (θ, ϕ)
and (θ ′, ϕ′) are subjected to the same rotation O . It follows that this sum is
a function of the inner product between the points with spherical coordinates
(1, θ, ϕ) and (1, θ ′, ϕ′):

(cosϕ sin θ, sinϕ sin θ, cos θ) · (cosϕ′ sin θ ′, sinϕ′ sin θ ′, cos θ ′)

= cos(ϕ − ϕ′) sin θ sin θ ′ + cos θ cos θ ′.

If we take (θ ′, ϕ′) = (0, 0), which corresponds to the point with Cartesian
coordinates (0, 0, 1), then the inner product is cos θ . With this choice, the
function is independent of rotations around the z-axis, which implies that it is
a multiple of Yn0:

cnYn0(θ, ϕ) =
n∑

m=−n

Ynm(θ, ϕ) Y nm(0, 0). (9.1.14)

The constant cn may be determined by multiplying both sides by Y n0(θ, ϕ)

and integrating over the sphere. This computation, together with (9.1.10),
(9.1.7), and (4.6.4), yields

cn = Y n0(0, 0) = 1√
2π
�n0(1)

=
√

2n + 1√
4π

.

The identities (9.1.8) and (9.1.9), together with (9.1.10), imply that

√
2n + 1√

4π
Yn0(θ, ϕ) = 2n + 1

4π
Pn(cos θ);

Yn0(θ, ϕ) Y n0(θ
′, ϕ′) = 2n + 1

4π
Pn(cos θ) Pn(cos θ ′);

Yn,±m(θ, ϕ) Y n,±m(θ
′, ϕ′)

= 2n + 1

4π

(n − m) !
(n + m) !e±im(ϕ−ϕ′)Pm

n (cos θ) Pm
n (cos θ ′), m = 1, 2, . . . , n.

This shows that the left-hand side, and each summand on the right-hand side,
of (9.1.14) is a function of the difference ϕ − ϕ′. We take ϕ′ = 0 and obtain
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Legendre’s addition formula [181]:

Pn(cosϕ sin θ sin θ ′ + cos θ cos θ ′)

= Pn(cos θ) Pn(cos θ ′)+ 2
n∑

m=1

(n − m) !
(n + m) ! cos(mϕ) Pm

n (cos θ) Pm
n (cos θ ′).

(9.1.15)

We have chosen the surface harmonics Ynm to be orthonormal in L2(�), the
space of functions on the sphere whose squares are integrable with respect to
the measure sin θ dθ dϕ.

Theorem 9.1.3 The surface harmonics {Ynm} are a complete orthonormal set
in L2(�).

Proof The restrictions to the sphere � of polynomials are dense in the space
L2(�). Therefore it is sufficient to show that any such restriction can be written
as a sum of harmonic polynomials. It is enough to consider homogeneous
polynomials. For this, see Exercise 9.2. �

9.2 Legendre functions

A Legendre function is a solution of the Legendre differential equation

(1 − z2) u′′(z)− 2z u′(z)+ ν(ν + 1) u(z) = 0, (9.2.1)

where the parameter ν is not necessarily a non-negative integer. When ν is a
non-negative integer, one solution is the Legendre polynomial Pν . We know
from Section 4.3 that this solution has the integral representation

Pν(z) = 1

2ν+1π i

∫
C

(t2 − 1)ν

(t − z)ν+1
dt, (9.2.2)

where C is a contour that encloses z. As noted in Section 4.9, the function
Pν defined by (9.2.2) for general values of ν is still a solution of (4.7.2) if C
is a closed curve lying in a region where [(t2 − 1)/(t − z)]ν is holomorphic.
We use (9.2.2) to define a solution that is holomorphic in the complement of
the interval (−∞,−1] by choosing C in this complement in such a way as to
enclose both t = z and t = 1. The resulting solution satisfies Pν(1) = 1, and
is called the Legendre function of the first kind.

As noted in Sections 3.4, 4.6, and 9.1, the change of variables y = 1
2 (1 − z)

converts (9.2.1) to the hypergeometric equation
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y(1 − y) v′′(y)+ (1 − 2y) v′(y)+ ν(ν + 1) v(y) = 0.

It follows that

Pν(z) = F

(
ν + 1,−ν, 1; 1

2
(1 − z)

)
. (9.2.3)

Since the hypergeometric function is unchanged if the first two indices are
interchanged, it follows that

P−ν−1(z) = Pν(z). (9.2.4)

Suppose that z > 1. Then we may take the curve C in (9.2.2) to be the circle
of radius R = √

z2 − 1 centered at z. Let

t = t (ϕ) = z +
√

z2 − 1 eiϕ, −π ≤ ϕ ≤ π.

Then (9.2.2) becomes the general form of Laplace’s integral:

Pν(z) = 1

π

∫ π

0

[
z +

√
z2 − 1 cosϕ

]ν
dϕ. (9.2.5)

Combining this with (9.2.4) gives

Pν(z) = 1

π

∫ π

0

dϕ[
z + √

z2 − 1 cosϕ
]ν+1

. (9.2.6)

Each of these formulas extends analytically to z in the complement of (−∞, 1].
The change of variables

eα = z +
√

z2 − 1 cosϕ

leads to the Dirichlet–Mehler integral representation [71, 201]:

Pν(cosh θ) = 1

π

∫ θ

−θ
e−
(
ν+ 1

2

)
α dα√

2 cosh θ − 2 coshα
. (9.2.7)

This representation shows that

Pν(x)> 0, for 1 < x < ∞, ν real. (9.2.8)

Note that if u is a solution of (9.2.1), then so is v(x) = u(−x). The third
index in the hypergeometric function in (9.2.3) is the sum of the first two,
so this is one of the exceptional cases discussed in Section 8.4; for non-integer
ν the hypergeometric function in (9.2.3) has a logarithmic singularity at z = 0.
For non-integer ν, Pν(x) and Pν(−x) are independent solutions of (9.2.1).
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However for integer ν, Pν = P−ν−1 is a Legendre polynomial and Pν(−x) =
(−1)ν Pν(x).

To find a second solution of (9.2.1) we proceed as suggested in Section 4.9
by adapting the formula (9.2.2) to a different contour. The Legendre function
of the second kind is defined to be

Qν(z) = 1

2ν+1

∫ 1

−1

(1 − s2)ν ds

(z − s)ν+1
, ν �= −1,−2, . . . (9.2.9)

Here we take the principal branch of the power w−ν on the complement of the
negative real axis, so that Qν is holomorphic in the complement of the interval
(−∞, 1].

The function Qν is a multiple of a hypergeometric function, but with
argument z−2. To verify this, suppose that |z| > 1 and Re (ν + 1) > 0. Then

Qν(z) = 1

(2z)ν+1

∫ 1

−1

(1 − s2)ν ds

(1 − s/z)ν+1

= 1

(2z)ν+1

∞∑
k=0

[
(ν + 1)k

k !
∫ 1

−1
(1 − s2)νsk ds

]
z−k .

The integral vanishes for odd k. For k = 2n,∫ 1

−1
(1 − s2)νs2n ds =

∫ 1

0
(1 − t)ν tn− 1

2 dt

= B

(
ν + 1, n + 1

2

)
= �(ν + 1) �

(
n + 1

2

)
�
(
ν + n + 3

2

)
= �(ν + 1) �

( 1
2

) ( 1
2

)
n

�
(
ν + 3

2

) (
ν + 3

2

)
n

.

Also

(ν + 1)2n

(2n) ! = 22n
( 1

2ν + 1
2

)
n

( 1
2ν + 1

)
n

22n
( 1

2

)
n n ! .

Therefore, for |z| > 1 and Re (ν + 1) > 0,

Qν(z) = �(ν + 1) �
( 1

2

)
�
(
ν + 3

2

)
(2z)ν+1

∞∑
n=0

( 1
2ν + 1

2

)
n

( 1
2ν + 1

)
n(

ν + 3
2

)
n n ! z−2n

= �(ν + 1)
√
π

�
(
ν + 3

2

)
(2z)ν+1

F

(
1

2
ν + 1

2
,

1

2
ν + 1, ν + 3

2
; 1

z2

)
. (9.2.10)



310 Spherical functions

This formula allows us to define Qν for all values of ν except ν = −1,−2, . . .
The apparent difficulty for ν + 3

2 a non-positive integer is overcome by
noting that the coefficient of z−ν−1−2n has �

(
ν + 3

2 + n
)

rather than
(
ν + 3

2

)
n

in the denominator. A consequence is that when ν = −m − 1
2 for m a positive

integer, these coefficients vanish for n < m.
We take the principal branch of the power zν . It follows that

Qν(−z) = −eνπ i Qν(z), Im z > 0. (9.2.11)

Suppose z > 1. The change of variables

s = z −
√

z2 − 1 eθ

in the integral (9.2.9) gives the integral representation

Qν(z) =
∫ α

0

[
z −

√
z2 − 1 cosh θ

]ν
dθ, (9.2.12)

where cothα = z. This extends by analytic continuation to all z in the comple-
ment of (−∞, 1].

A further change of variables[
z −

√
z2 − 1 cosh θ

]−1 = z +
√

z2 − 1 coshϕ

leads to a form similar to (9.2.6), due to Heine [125]:

Qν(z) =
∫ ∞

0

dϕ[
z + √

z2 − 1 coshϕ
]ν+1

, Re ν > 0. (9.2.13)

Let z = cosh θ . The change of variables

eα = cosh θ + sinh θ coshϕ

leads to a form similar to (9.2.7):

Qν(cosh θ) =
∫ ∞

θ

e−
(
ν+ 1

2

)
α dα√

2 coshα − 2 cosh θ
. (9.2.14)

This representation shows that

Qν(x)> 0, for 1 < x < ∞, ν real, ν �= −1,−2, . . . (9.2.15)
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9.3 Relations among the Legendre functions

Although Pν = P−ν−1, the same is not generally true for Qν . To sort out the
remaining relationships among the solutions

Pν(z), Pν(−z), Qν(z), Q−ν−1(z)

of the Legendre equation (9.2.1), we start by computing the Wronskian of Qν
and Q−ν−1. If u1 and u2 are any two solutions, the Wronskian W = u1u′

2 −
u2u′

1 satisfies

(1 − z2)W ′(z) = 2z W (z).

Therefore wherever W (z) �= 0, it satisfies W ′(z)/W (z) = −(1 − z2)′/
(1 − z2):

W (u1, u2)(z) = C

1 − z2
, C = constant.

To compute the constant it is enough to compute asymptotics of u j and u′
j ,

say as z = x → +∞. It follows from (9.2.10) or directly from (9.2.9) that as
x → +∞,

Qν(x) ∼ cνx−ν−1, Q′
ν(x)∼ −cν(ν + 1) x−ν−2;

cν = �(ν + 1)
√
π

�
(
ν + 3

2

)
2ν+1

,

so long as ν is not a negative integer. Therefore the Wronskian is asymptoti-
cally

cν c−ν−1

∣∣∣∣ x−ν−1 xν

−(ν + 1)x−ν−2 νxν−1

∣∣∣∣ = (2ν + 1) cν c−ν−1

x2
.

The reflection formula (2.2.7) gives

cν c−ν−1 = �(ν + 1) �(−ν) π(
ν + 1

2

)
�
(
ν + 1

2

)
�
(− ν + 1

2

)
2

= π sin
(
νπ + 1

2π
)

(2ν + 1) sin(−νπ) = − π cos νπ

(2ν + 1) sin νπ
.

It follows that

W (Qν, Q−ν−1)(z) = π cot νπ

1 − z2
. (9.3.1)
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Recall that Qν is not defined when ν is a negative integer, so Q−ν−1 is not
defined when ν is a non-negative integer. Therefore the right-hand side of
(9.3.1) is well-defined for all admissible values, and these two solutions of
the Legendre equation are independent if and only if ν + 1

2 is not an integer.
Assuming that ν is neither an integer nor a half-integer, every solution of

the Legendre equation (9.2.1) is a linear combination of Qν and Q−ν−1. The
coefficients for

Pν = AνQν + BνQ−ν−1

are analytic functions of ν, so it is enough to consider the case − 1
2 < ν < 0.

Then the integral form (8.3.2) gives

Pν(x) = 1

�(ν + 1) �(−ν)
∫ 1

0
sν(1 − s)−ν−1

(
1 − s

1 − x

2

)ν
ds. (9.3.2)

It follows that as x → +∞,

Pν(x) ∼ B(2ν + 1,−ν)
2ν �(ν + 1) �(−ν) xν

= �(2ν + 1)

2ν �(ν + 1)2
xν = �

(
ν + 1

2

)
�(ν + 1)

√
π
(2x)ν,

where we have used Legendre’s duplication formula (2.3.1). In the range
− 1

2 < ν < 0, Q−ν−1 ∼ c−ν−1xν and Qν decays more rapidly, so the coeffi-
cient Bν is the ratio

�
(
ν + 1

2

)
2ν

�(ν + 1)
√
π

[
�(−ν)√π

�
(− ν + 1

2

)
2−ν

]−1

= �
(
ν + 1

2

)
�
(− ν + 1

2

)
�(ν + 1) �(−ν) π = − sin νπ

sin
(
νπ + 1

2π
)
π

= − tan νπ

π
.

Since P−ν−1 = Pν , the coefficient Bν = A−ν−1 = −Aν . Thus

Pν = tan νπ

π

[
Qν − Q−ν−1

]
. (9.3.3)

Equations (9.3.3) and (9.3.1) allow the computation of the Wronskian

W (Qν, Pν)(z) = − tan νπ

π
W (Qν, Q−ν−1)(z) = − 1

1 − z2
. (9.3.4)

The identity (9.3.3) can also be derived by a complex variable argument.
Given 0 < θ < 2π , the function f (α) = cos θ − cosα has no zeros in the strip
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0 < Imα < 2π and is periodic with period 2π , continuous up to the boundary
except at α = ±θ and α = ±θ + 2π . Assuming that −1 < ν < 0,

ei
(
ν+ 1

2

)
α

√
2 cosα − 2 cos θ

is integrable over the boundary and has integral zero over the oriented bound-
ary. Keeping track of the argument on the various portions of the boundary, the
result is again (9.3.3).

Multiplying (9.3.3) by cos νπ and taking the limit as ν approaches a half-
integer n − 1

2 , we obtain

Q
n− 1

2
= Q−n− 1

2
, n = 0,±1,±2, . . . (9.3.5)

Recall that Pν is holomorphic for z /∈ (−∞,−1], and therefore continuous
at the interval (−1, 1). We show next that Qν has finite limits Qν(x ± i0) from
the upper and lower half-planes for x ∈ (−1, 1) and that these limits are linear
combinations of Pν(x) and Pν(−x). It follows from (9.3.4) that each limit is
independent of Pν . We define Qν on the interval to be the average:

Qν(x) = 1

2

[
Qν(x + i0)+ Qν(x − i0)

]
, −1 < x < 1. (9.3.6)

To compute the average and the jump, note that (9.3.3) and (9.2.11) imply that

Pν(−z) = − tan νπ

π

[
eνπ i Qν(z)+ e−νπ i Q−ν−1(z)

]
, Im z > 0.

Eliminating Q−ν−1 between this equation and (9.3.3) gives

Qν(z) = π

2 sin νπ

[
e−νπ i Pν(z)− Pν(−z)

]
, Im z > 0. (9.3.7)

Similarly

Qν(z) = π

2 sin νπ

[
eνπ i Pν(z)− Pν(−z)

]
, Im z < 0. (9.3.8)

It follows from the previous two equations that the average Qν is

Qν(x) = π

2
cot νπ Pν(x)− π

2 sin νπ
Pν(−x), −1 < x < 1, (9.3.9)

while the jump is

Qν(x + i0)− Qν(x − i0) = −iπ Pν(x), −1 < x < 1. (9.3.10)
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In terms of hypergeometric functions, then

Qν(x) = π

2
cot νπ F

(
ν + 1,−ν, 1; 1

2
(1 − x)

)
− π

2 sin νπ
F

(
ν + 1,−ν, 1; 1

2
(1 + x)

)
, −1 < x < 1.

(9.3.11)

The recurrence and derivative identities satisfied by the Legendre polynomi-
als, (4.7.3), (4.7.4), (4.7.5) carry over to the Legendre functions of the first and
second kinds. They can be derived from the integral formulas as in Section 4.9
or checked directly from the series expansions (see the next section). As an
alternative, the identities

(ν + 1)Pν+1(x)− (2ν + 1)x Pν(x)+ νPν−1(x) = 0, (9.3.12)

(ν + 1)Qν+1(x)− (2ν + 1)x Qν(x)+ νQν−1(x) = 0,

and

P ′
ν+1(x)− P ′

ν−1(x)− (2ν + 1)Pν(x) = 0, (9.3.13)

Q′
ν+1(x)− Q′

ν−1(x)− (2ν + 1)Qν(x) = 0,

follow easily from the integral representations (9.2.7) and (9.2.14). To derive
(9.3.12) for Pν from (9.2.7), we write

− d

dα

{
e−
(
ν+ 1

2

)
α
√

2 cosh θ − 2 coshα
}

= e−
(
ν+ 1

2

)
α

(
ν + 1

2

)[
2 cosh θ − eα − e−α]+ 1

2 (e
α − e−α)√

2 cosh θ − 2 coshα

as a linear combination of the integrands of

Pν+1(cosh θ), cosh θ Pν(cosh θ), Pν−1(cosh θ)

and integrate. The proof for Qν is essentially the same, using (9.2.14).
To derive (9.3.13) from the integral representation, note that the integrand of

Pν+1(cosh θ)− Pν−1(cosh θ)

is e−
(
ν+ 1

2

)
α multiplied by the derivative with respect to α of

2
√

2 cosh θ − 2 coshα.
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Integrating by parts,

Pν+1(cosh θ)− Pν−1(cosh θ) =
2ν + 1

π

∫ θ

−θ
e−
(
ν+ 1

2

)
α
√

2 cosh θ − 2 coshα dα.

Differentiation with respect to θ gives (9.3.13) for Pν . The proof for Qν is
essentially the same, using (9.2.14).

Differentiating (9.3.12) and combining the result with (9.3.13) gives

P ′
ν+1(x)− x P ′

ν(x) = (ν + 1) Pν(x); (9.3.14)

Q′
ν+1(x)− x Q′

ν(x) = (ν + 1) Qν(x).

Subtracting (9.3.14) from (9.3.13) gives

x P ′
ν(x)− P ′

ν−1(x) = ν Pν(x); (9.3.15)

x Q′
ν(x)− Q′

ν−1(x) = ν Qν(x).

Multiplying (9.3.15) by x and subtracting it from the version of (9.3.14) with
ν replaced by ν − 1 gives

(1 − x2) P ′
ν(x) = −νx Pν(x)+ ν Pν−1(x); (9.3.16)

(1 − x2) Q′
ν(x) = −νx Qν(x)+ ν Qν−1(x).

9.4 Series expansions and asymptotics

Expansions of the Legendre functions Pν(z) and Qν(z) as z → ∞ in the
complement of (−∞, 1] follow from the representation (9.2.10) of Qν as a
hypergeometric function, together with the representation (9.3.3) of Pν as a
multiple of Qν − Q−ν−1, for ν not a half-integer.

To find expansions for Pν and Qν on the interval (−1, 1) at x = 0, we
begin by noting that taking y = z2 converts the Legendre equation (9.2.1) to
the hypergeometric equation

y(1 − y) v′′(y)+
(

1

2
− 3

2
y

)
v′(y)+ 1

4
(ν + 1)ν v(y) = 0.

It follows that Pν is a linear combination of two solutions

Pν(x) = Aν F

(
1

2
[ν + 1],−1

2
ν,

1

2
; x2
)

+ Bν x F

(
1

2
ν + 1,−1

2
[ν − 1], 3

2
; x2
)
.
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Then

Pν(0) = Aν, P ′
ν(0) = Bν .

To determine Pν(0) and P ′
ν(0) we assume −1 < ν < 0 and use (9.3.2) to find

that

Pν(0) = 1

�(ν + 1) �(−ν)
∫ 1

0
sν(1 − s)−ν−1

(
1 − 1

2
s

)ν
ds;

P ′
ν(0) = ν

2�(ν + 1) �(−ν)
∫ 1

0
sν+1(1 − s)−ν−1

(
1 − 1

2
s

)ν−1

ds.

To evaluate the integrals we first let s = 1 − t so that the first integral becomes

2−ν
∫ 1

0
(1 − t2)ν t−ν−1 dt.

This suggests letting u = t2, so that the integral is

2−1−ν
∫ 1

0
(1 − u)νu− 1

2 ν−1 du = 2−1−ν B

(
ν + 1,−1

2
ν

)
.

Use of the reflection formula (2.2.7) and the duplication formula (2.3.1) leads
to the evaluation

Pν(0) = �
( 1

2ν + 1
2

)
�
( 1

2ν + 1
)√
π

cos

(
1

2
νπ

)
.

The same procedure applied to the integral in the expression for P ′
ν(0) leads to

2−ν
∫ 1

0
(1 − u)ν−1(1 − 2

√
u + u

)
u− 1

2 ν−1 du

= 2−ν
[

B

(
ν,−1

2
ν

)
− 2B

(
ν,−1

2
ν + 1

2

)
+ B

(
ν,−1

2
ν + 1

)]
.

The first and third summands cancel. Since ν �(ν) = �(ν + 1), use of the
reflection formula and the duplication formula leads to the evaluation

P ′
ν(0) = 2�

( 1
2ν + 1

)
�
( 1

2ν + 1
2

)√
π

sin

(
1

2
νπ

)
.
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The result expresses Pν as the sum of an even function and an odd function
of x :

Pν(x) = �
( 1

2ν + 1
2

)
�
( 1

2ν + 1
)√
π

cos

(
1

2
νπ

)
F

(
1

2
ν + 1

2
,−1

2
ν,

1

2
; x2
)

+ 2�
( 1

2ν + 1
)

�
( 1

2ν + 1
2

)√
π

sin

(
1

2
νπ

)
x F

(
1

2
ν + 1,

1

2
− 1

2
ν,

3

2
; x2
)
.

(9.4.1)

Thus Pν is an even function precisely when ν is an even integer, and an odd
function when ν is an odd integer: the case of Legendre polynomials.

The identities (9.3.7) and (9.3.8), together with (9.4.1), give the correspond-
ing expression for Qν in general:

Qν(x) = e∓ 1
2 νπ i

[
�
(
ν
2 + 1

)√
π

�
( 1

2ν + 1
2

) x F

(
1

2
ν + 1,

1

2
− 1

2
ν,

3

2
; x2
)

∓i
�
( 1

2ν + 1
2

)√
π

2�
( 1

2ν + 1
) F

(
1

2
ν + 1

2
,−1

2
ν,

1

2
; x2
)]
, ±Im x > 0.

(9.4.2)

This is mainly of interest on the interval (−1, 1), where (9.3.6) gives a formula
dual to (9.4.1) as a sum of odd and even parts:

Qν(x) = �
( 1

2ν + 1
)√
π

�
( 1

2ν + 1
2

) cos

(
1

2
νπ

)
x F

(
1

2
ν + 1,

1

2
− 1

2
ν,

3

2
; x2
)

− �
( 1

2ν + 1
2

)√
π

2�
( 1

2ν + 1
) sin

(
1

2
νπ

)
F

(
1

2
ν + 1

2
,−1

2
ν,

1

2
; x2
)
.

(9.4.3)

The following asymptotic results of Laplace [175], Darboux [62], and Heine
[125] will be proved in Chapter 10:

Pν(cosh θ) = e
(
ν+ 1

2

)
θ

√
2νπ sinh θ

[
1 + O

(|ν|−1)]; (9.4.4)

Qν(cosh θ) =
√
π e−

(
ν+ 1

2

)
θ

√
2ν sinh θ

[
1 + O

(|ν|−1)], | arg ν| ≤ 1

2
π − δ,

as |ν| → ∞, uniformly for 0 < δ ≤ θ ≤ δ−1.
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Asymptotics on the interval −1 < x < 1 can be computed from (9.2.3) and
(9.3.9) using (8.2.12):

Pν(cos θ) =
√

2 cos
(
νθ + 1

2θ − 1
4π
)+ O

(|ν|−1
)

√
νπ sin θ

; (9.4.5)

Qν(cos θ) = −
√
π sin

(
νθ + 1

2θ − 1
4π
)+ O

(|ν|−1
)

√
2ν sin θ

, (9.4.6)

as |ν| → ∞, uniformly for 0 < δ ≤ θ ≤ π − δ.

9.5 Associated Legendre functions

The associated Legendre functions are the solutions of the spherical harmonic
equation (9.1.2)

(1 − z2) u′′(z)− 2z u′(z)+
[
ν(ν + 1)− m2

1 − z2

]
u(z) = 0, m = 1, 2, . . .

(9.5.1)

As in Section 9.1, the gauge transformation u(z) = (1 − z2)
1
2 m
v(z) reduces

this to

(1 − z2) v′′(z)− 2(m + 1)z v′(z)+ (ν − m)(ν + m + 1) v(z) = 0. (9.5.2)

Repeated differentiation shows that the mth derivative of a solution of the
Legendre equation (9.2.1) is a solution of (9.5.2). Therefore the functions

Pm
ν (z) = (z2 − 1)

1
2 m dm

dzm

[
Pν(z)

]
, (9.5.3)

Qm
ν (z) = (z2 − 1)

1
2 m dm

dzm

[
Qν(z)

]
,

are solutions of (9.5.1). These are conveniently normalized for |z| > 1. Various
normalizations are used for associated Legendre functions on the interval
(−1, 1), including

Pm
ν (x) = (−1)m(1 − x2)

1
2 m dm

dxm

[
Pν(x)

]
, (9.5.4)

Qm
ν (x) = (−1)m(1 − x2)

1
2 m dm

dxm

[
Qν(x)

]
.

In this section, z will always denote a complex number in the complement of
(−∞, 1] and x will denote a real number in the interval (−1, 1). It follows
from (9.2.3), (8.2.3), and the definitions (9.5.3), (9.5.4) that
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Pm
ν (z) = (−1)m

(ν + 1)m(−ν)m
2mm ! (z2 − 1)

1
2 m

× F

(
ν + 1 + m,m − ν,m + 1; 1

2
(1 − z)

)
= �(ν + m + 1)

2m �(ν − m + 1)m ! (z
2 − 1)

1
2 m

× F

(
ν + 1 + m,m − ν,m + 1; 1

2
(1 − z)

)
; (9.5.5)

Pm
ν (x) = (−1)m

�(ν + m + 1)

2m �(ν − m + 1)m ! (1 − x2)
1
2 m

× F

(
ν + 1 + m,m − ν,m + 1; 1

2
(1 − x)

)
.

To obtain a representation of Qm
ν as a multiple of a hypergeometric function,

we differentiate the series representation (9.2.10) m times. Since

dm

dzm

[
z−ν−1−2n]
= (−1)m(ν + 1 + 2n)m z−ν−1−2n−m

= (−1)m
(ν + 1)m(ν + 1 + m)2n

(ν + 1)2n
z−ν−1−2n−m

= (−1)m
(ν + 1)m

( 1
2ν + 1

2 m + 1
2

)
n

( 1
2ν + 1

2 m + 1
)

n( 1
2ν + 1

2

)
n

( 1
2ν + 1

)
n

z−ν−1−2n−m,

it follows from the series expansion in (9.2.10) that

dm

dzm

[
Qν(z)

] = (−1)m
�(ν + 1 + m)

√
π

�
(
ν + 3

2

)
2ν+1zν+1+m

× F

(
1

2
ν + 1

2
m + 1

2
,

1

2
ν + 1

2
m + 1, ν + 3

2
; 1

z2

)
.

Therefore

Qm
ν (z) = (−1)m(z2 − 1)

1
2 m �(ν + 1 + m)

√
π

�
(
ν + 3

2

)
2ν+1zν+1+m

× F

(
1

2
ν + 1

2
m + 1

2
,

1

2
ν + 1

2
m + 1, ν + 3

2
; 1

z2

)
. (9.5.6)
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To obtain integral representations of Pm
ν and Qm

ν , we begin with the repre-
sentations (9.2.6) and (9.2.13). Set

A(z, ϕ) = z +
√

z2 − 1 cosϕ,

so that (9.2.6) is

Pν(z) = 1

π

∫ π

0

dϕ

A(z, ϕ)ν+1
.

The identity

∂

∂z

[
sin2k ϕ

A(z, ϕ)r

]
= r(r − 2k − 1)

2k + 1

sin2k+2 ϕ

A(z, ϕ)r+1

− r

2k + 1

∂

∂ϕ

[
sin2k+1 ϕ

A(z, ϕ)r
√

z2 − 1

]
(9.5.7)

implies that

d

dz

∫ π

0

sin2k ϕ dϕ

A(z, ϕ)r
= r(r − 2k − 1)

2k + 1

∫ π

0

sin2k+2 ϕ dϕ

A(z, ϕ)r+1
.

Applying this identity m times starting with k = 0, r = ν + 1 shows that
(9.2.6) and (9.5.3) imply

Pm
ν (z) = (z2 − 1)

1
2 m (−m + ν + 1)2m

π2m
( 1

2

)
m

×
∫ π

0

sin2m ϕ dϕ[
z + √

z2 − 1 cosϕ
]ν+1+m

. (9.5.8)

Similarly, let

B(z, ϕ) = z +
√

z2 − 1 coshϕ.

Then

∂

∂z

[
sinh2k ϕ

B(z, ϕ)r

]
= −r(r − 2k − 1)

2k + 1

sinh2k+2 ϕ

B(z, ϕ)r+1

− r

2k + 1

∂

∂ϕ

[
sinh2k+1 ϕ

B(z, ϕ)r
√

z2 − 1

]
. (9.5.9)
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Together with (9.2.13) and (9.5.3), this implies that

Qm
ν (z) = (−1)m(z2 − 1)

1
2 m (−m + ν + 1)2m

2m
( 1

2

)
m

×
∫ ∞

0

sinh2m ϕ dϕ[
z + √

z2 − 1 coshϕ
]ν+1+m

. (9.5.10)

These integral representations will be used in Chapter 10 to obtain the
asymptotics on the interval −1 < x < ∞:

Pm
ν (cosh θ) = e

(
ν+ 1

2

)
θ

√
2π sinh θ

(m + 1 + ν)m− 1
2
[
1 + O

(
{m + 1 + ν}− 1

2
)]

;
(9.5.11)

Qm
ν (cosh θ) = (−1)m

e−
(
ν+ 1

2

)
θ√
π√

2 sinh θ
(m + 1 + ν)m− 1

2
[
1 + O

(
{m + 1 + ν}− 1

2
)]

as ν → ∞, uniformly on intervals 0 < δ ≤ θ ≤ δ−1.

9.6 Relations among associated functions

As noted above, the mth derivatives P(m)ν and Q(m)ν are solutions of (9.5.2).
Putting these derivatives into the equation and using (9.5.3), we obtain the
recurrence relations

Pm+2
ν (z)+ 2(m + 1)z√

z2 − 1
Pm+1
ν (z)− (ν − m)(ν + m + 1) Pm

ν (z) = 0;
(9.6.1)

Qm+2
ν (z)+ 2(m + 1)z√

z2 − 1
Qm+1
ν (z)− (ν − m)(ν + m + 1) Qm

ν (z) = 0,

for z /∈ (−∞, 1]. Similarly, on the interval (−1, 1):

Pm+2
ν (x)+ 2(m + 1)x√

1 − x2
Pm+1
ν (x)+ (ν − m)(ν + m + 1) Pm

ν (x) = 0;
(9.6.2)

Qm+2
ν (x)+ 2(m + 1)x√

1 − x2
Qm+1
ν (x)+ (ν − m)(ν + m + 1) Qm

ν (x) = 0,
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for −1 < x < 1. Now P0
ν = Pν , and it follows from (9.3.16) and (9.5.3) that

P1
ν (z) = ν z√

z2 − 1
Pν(z)− ν√

z2 − 1
Pν−1(z),

so Pm
ν and Qm

ν can be computed recursively from the case m = 0.
Other relations can be obtained from general results for Jacobi polynomials.

As an alternative we may use the results above for the case m = 0. Differ-

entiating (9.3.12) and (9.3.13) m times and multipling by (z2 − 1)
1
2 m gives

analogous identities involving the Pm
ν , Qm

ν . Proceeding from these identities as
in the derivation of (9.3.14)–(9.3.16) gives identities that generalize (9.3.14)–
(9.3.16).

In addition, a pure recurrence relation can be obtained. Differentiate
(9.3.13) (m − 1) times, differentiate (9.3.12) m times, use the latter to elim-

inate the term P(m−1)
ν from the former, and multiply the result by (z2 − 1)

1
2 m

to obtain the recurrence relations

(ν + 1 − m) Pm
ν+1(z)− (2ν + 1) z Pm

ν (z)+ (ν + m)Pm
ν−1(z) = 0; (9.6.3)

(ν + 1 − m) Qm
ν+1(z)− (2ν + 1) z Qm

ν (z)+ (ν + m)Qm
ν−1(z) = 0.

Differentiating the relations (9.2.4), (9.2.11), (9.3.3), (9.3.5), (9.3.7), and

(9.3.8), and multiplying by (z2 − 1)
1
2 m , gives the corresponding relations for

the various solutions of (9.1.2):

Pm
ν (z) = Pm

−ν−1(z);
Qm

n− 1
2
(z) = Qm

−n− 1
2
(z);

Qm
ν (−z) = −e±νπ i Qm

ν (z), ±Im z > 0;
Pm
ν (z) = tan νπ

π

[
Qm
ν (z)− Qm

−ν−1(z)
];

Qm
ν (z) = π

2 sin νπ

[
e∓νπ i Pm

ν (z)− Pm
ν (−z)

]
, ±Im z > 0.

In view of these relations, to compute Wronskians we only need to compute
W (Pm

ν , Qm
ν ). Differentiating (9.5.3) gives

[
Pm
ν

]′
(z) = (z2 − 1)−

1
2 Pm+1
ν (z)+ mz(z2 − 1)−1 Pm

ν (z);[
Qm
ν

]′
(z) = (z2 − 1)−

1
2 Qm+1

ν (z)+ mz(z2 − 1)−1 Qm
ν (z).
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It follows that

W (Pm
ν , Qm

ν )(z) = (z2 − 1)−
1
2
[
Pm
ν (z)Q

m+1
ν (z)− Pm+1

ν (z)Qm
ν (z)

]
.

The recurrence relation (9.6.1) implies that

Pm
ν Qm+1

ν − Pm+1
ν Qm

ν = (ν + m)(m − ν − 1)
[
Pm−1
ν Qm

ν − Pm
ν Qm−1

ν

]
,

so that the computation leads to

Pν(z)Q
1
ν(z)− P1

ν (z)Qν(z) = (z2 − 1)
1
2
[
Pν(z)Q

′
ν(z)− P ′

ν(z)Qν(z)
]

= (z2 − 1)
1
2 W (Pν, Qν)(z) = (z2 − 1)

1
2

1 − z2
.

Combining these results,

W (Pm
ν , Qm

ν )(z) = �(ν + 1 + m) �(−ν + m)

�(ν + 1) �(−ν)
1

1 − z2
= (ν + 1)m (−ν)m

1 − z2
.

9.7 Exercises

9.1 Suppose that f (x) and g(x) are smooth functions in Rn . Show that

�( f g) = (� f ) g + 2
n∑

j=1

∂ f

∂x j

∂g

∂x j
+ f �g.

Show that if f (λx) = λm f (x) for all λ > 0, then

n∑
j=1

x j
∂ f

∂x j
= m f.

9.2 Suppose that p(x, y, z) is a homogeneous polynomial of degree n. Use
Exercise 9.1 to show that there are harmonic polynomials pn−2 j of
degree n − 2 j , 0 ≤ j ≤ n/2, such that

p = pn + r2 pn−2 + r4 pn−4 + . . .
9.3 Suppose that p is a harmonic polynomial of degree m in three variables

and r2 = x2 + y2 + z2. Show that

�(rk p) = k(k + 2m + 1) rk−2 p.
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Use this fact to show that the harmonic polynomials in Exercise 9.2 can
be identified in sequence, starting with p0 if n is even, or p1 if n is odd.
This procedure is due to Gauss [106].

9.4 Use the Taylor expansion of f (s) = 1/r(x, y, z − s) to show that

Pn

( z

r

)
= (−1)n rn+1

n !
∂n

∂zn

[
1

r

]
.

9.5 Verify that the change of variables after (9.2.4) converts (9.2.2) to
(9.2.5).

9.6 Show that the change of variables after (9.2.6) gives the identity

(z2 − 1) sin2 ϕ = eα(2z − 2 coshα)

and show that (9.2.6) becomes (9.2.7).
9.7 Use (9.2.2) to prove that for |z| < 1,

Pν(z) = 1

2π

∫ 2π

0

(
z + i

√
1 − z2 sinϕ

)ν
dϕ.

9.8 Show that for |z| < 1,

Pν(z) = 1

2π

∫ 2π

0

1(
z + i

√
1 − z2 sinϕ

)ν+1
dϕ.

9.9 Use the identity

1

αν+1
= 1

�(ν + 1)

∫ ∞

0
e−αs sν ds, Reα > 0,

to show that

Pν(cos θ) = 1

�(ν + 1)

∫ ∞

0
e− cos θs J0(sin θs) sν ds,

where J0 is the Bessel function of order 0.
9.10 Show that

Pν(cosh θ) = 1

�(ν + 1)

∫ ∞

0
e− cosh θs I0(sinh θs) sν ds,

where I0 is one of the modified Bessel functions.
9.11 Prove the Rodrigues-type identity

Qn(z) = (−1)n

2n+1 n !
dn

dzn

∫ 1

−1

(1 − s2)n

z − s
ds, z �= (−∞, 1].

9.12 Prove the generating function identity

∞∑
n=0

Qn(z)t
n = 1

2R
log

z − t + R

z − t − R
, R =

√
1 + t2 − 2t z.
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9.13 Show that

Qn

( z

r

)
= (−1)nrn+1

n !
∂n

∂zn

[
1

2r
log

r + z

r − z

]
,

where r2 = x2 + y2 + z2.
9.14 Show that the change of variables after (9.2.11) converts (9.2.9) to

(9.2.12).
9.15 Show that the change of variables after (9.2.12) leads to the identities

R2 sinh2 ϕ = s2 − 2sz + 1 = s2 R2 sinh2 θ,

where

R =
√

z2 − 1, s = z + R coshϕ = [z − R cosh θ ]−1.

9.16 Use Exercise 9.15 to show that (9.2.12) implies (9.2.13).
9.17 Show that the change of variables after (9.2.13) leads to the identity

eα(2 coshα − 2 cosh θ) = sinh2 θ sinh2 ϕ

and show that (9.2.13) implies (9.2.14).
9.18 Show that for x < −1,

Pν(x + i0)− Pν(x − i0) = 2i sin νπ Pν(−x);
Qν(x + i0)− Qν(x − i0) = 2i sin νπ Qν(−x).

9.19 Use the method of proof of (9.4.1) to prove

Pν(z) = F

(
1

2
ν + 1

2
,−1

2
ν, 1; 1 − z2

)
, |1 − z2| < 1.

9.20 Prove (9.4.6). Hint: 2 cos A cos B = cos(A + B)+ cos(A − B), and
cos(A + B)− cos(A − B) = −2 sin A sin B.

9.21 Use (8.3.8) and (9.4.6) to give a different proof of (9.3.3).
9.22 Prove by induction the Jacobi lemma

dm−1

dμm−1

[
sin2m−1 ϕ

] = (−1)m−1 (2m) !
m2mm ! sin(mϕ)

where μ = cosϕ and deduce that

cos(mϕ) = (−1)m−1 2m m !
(2m) !

dm

dμm

[
sin2m−1 ϕ

] dμ

dϕ
.

9.23 Use Exercise 9.22 to give another derivation of the integral
representation (9.5.8).
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9.24 Use (9.2.2) and (9.5.3) to derive the identities

Pm
ν (z) = (z2 − 1)

1
2 m (ν + 1)m

2ν+1π i

∫
C

(t2 − 1)ν

(t − z)ν+1+m
dt

and

Pm
ν (z) = (ν + 1)m

π

∫ π

0

[
z +

√
z2 − 1 cosϕ

]ν cos(mϕ) dϕ

= (−ν)m
π

∫ π

0

cos(mϕ) dϕ[
z + √

z2 − 1 cosϕ
]ν+1

.

9.25 Use (9.2.9) and (9.5.3) to derive the identity

Qm
ν (z) = (−1)m(z2 − 1)

1
2 m (ν + 1)m

2ν+1

∫ 1

−1

(1 − t2)ν

(z − t)ν+1+m
dt

= (−1)m(ν + 1)m

×
∫ α

0

[
z −

√
z2 − 1 coshϕ

]ν cosh(mϕ) dϕ, cothα = z.

9.26 Verify (9.5.7) and (9.5.9).

9.8 Summary

9.8.1 Harmonic polynomials; surface harmonics

Harmonic polynomials of degree n are homogeneous polynomials of degree n
that are solutions of Laplace’s equation

�P = Pxx + Pyy + Pzz = 0.

They are a vector space of dimension 2n + 1. In spherical coordinates they
have the form

P(r, θ, ϕ) = rnY (θ, ϕ),

where Y is a trigonometric polynomial in θ and ϕ and

1

sin2 θ
Yϕϕ + 1

sin θ

[
sin θYθ

]
θ

+ n(n + 1) Y = 0.
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The function Y is called a surface harmonic of degree n. Basis of solutions:

Ynm(θ, ϕ) = 1√
2π

eimϕ �nm(cos θ), −n ≤ m ≤ n,

�nm(x) = (−1)n
1

2nn !
[

2n + 1

2

(n − m) !
(n + m) !

] 1
2

× (1 − x2)
1
2 m dn+m

dxn+m

[
(1 − x2)n

]
.

Another characterization is in terms of derivatives of the Legendre polyno-
mial Pn :

�nm(x) =
[

2n + 1

2

(n − m) !
(n + m) !

] 1
2
(1 − x2)

1
2 m P(m)n (x)

for m ≥ 0, with

�n,−m = (−1)m �nm, m = 1, 2, . . . , n.

Since

Pm
n (cos θ) = (m + n) !

n !
1

2π

∫ 2π

0
e−imα(cos θ + i sin θ sinα)n dα,

the corresponding surface harmonic and harmonic polynomial have the form

Ynm(θ, ϕ) = Anm

2π

∫ 2π

0
eim(ϕ−α)(cos θ + i sin θ sinα)n dα;

rnYnm(θ, ϕ) = Anm

2π

∫ 2π

0
e−imα(z + i x sinα + iy cosα)n dα,

Anm = 1

n !
[

2n + 1

4π
(n − m)!(n + m)!

] 1
2
.

The set {Ynm}, n = 0, 1, 2, . . . , m = −n, . . . , n is an orthonormal basis for
functions on the sphere, with respect to normalized surface measure.

The functions

r−n−1Ynm(θ, ϕ)

are harmonic in the complement of the origin in R3.
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These functions satisfy the addition formula

Pn(cosϕ sin θ sin θ ′ + cos θ cos θ ′) = Pn(cos θ) Pn(cos θ ′)

+ 2
n∑

m=1

(n − m) !
(n + m) ! cos(mϕ) Pm

n (cos θ) Pm
n (cos θ ′).

9.8.2 Legendre functions

Legendre functions are solutions of the Legendre equation

(1 − z2) u′′(z)− 2z u′(z)+ ν(ν + 1) u(z) = 0.

Legendre function of the first kind:

Pν(z) = 1

2ν+1π i

∫
C

(t2 − 1)ν dt

(t − z)ν+1
= F

(
ν + 1,−ν, 1; 1

2
(1 − z)

)
= P−ν−1(z),

holomorphic in the complement of (−∞,−1]. For ν = n = 0, 1, 2, . . . , Pn is
the Legendre polynomial of degree n. Moreover,

Pν(x) > 0, 1 < x < ∞, ν real.

Legendre function of the second kind:

Qν(z) = 1

2ν+1

∫ 1

−1

(1 − s2)ν ds

(z − s)ν+1

= �(ν + 1)
√
π

�
(
ν + 3

2

)
(2z)ν+1

F

(
1

2
ν + 1

2
,

1

2
ν + 1, ν + 3

2
; 1

z2

)
,

ν �= −1,−2, . . . .

Qν is holomorphic for z /∈ (−∞, 1], and

Qν(−z) = −eνπ i Qν(z), Im z > 0;
Qν(x) > 0, 1 < x < ∞, ν real, ν �= −1,−2, . . .
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Integral representations:

Pν(cosh θ) = 1

π

∫ π

0

[
cosh θ + sinh θ cosϕ

]ν
dϕ

= 1

π

∫ π

0

dϕ[
cosh θ + sinh θ cosϕ]ν+1

= 1

π

∫ θ

−θ
e−
(
ν+ 1

2

)
α dα√

2 cosh θ − 2 coshα
;

Qν(cosh θ) =
∫ α

0

[
cosh θ − sinh θ coshϕ

]ν
dϕ, cothα = cosh θ

=
∫ ∞

0

dϕ[
cosh θ + sinh θ coshϕ

]ν+1

=
∫ ∞

θ

e−
(
ν+ 1

2

)
α dα√

2 coshα − 2 cosh θ
.

9.8.3 Relations among Legendre functions

The functions

Pν(z), Pν(−z), Qν(z), Q−ν−1(z)

are solutions of the Legendre equation. For ν = n − 1
2 a half-integer,

Q
n− 1

2
= Q−n− 1

2
, n = 0,±1,±2, . . . .

Otherwise Qν and Q−ν−1 are independent with Wronskian

W (Qν, Q−ν−1)(z) = π cot νπ

1 − z2
.

Relations among solutions:

Pν = tan νπ

π

[
Qν − Q−ν−1

];
Qν(z) = π

2 sin νπ

[
e−νπ i Pν(z)− Pν(−z)

]
, Im z > 0;

Qν(z) = π

2 sin νπ

[
eνπ i Pν(z)− Pν(−z)

]
, Im z < 0.
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For −1 < x < 1, by definition:

Qν(x) = 1

2

[
Qν(x + i0)+ Qν(x − i0)

]
= π

2
cot νπ Pν(x)− π

2 sin νπ
Pν(−x)

= π

2
cot νπ F

(
ν + 1,−ν, 1; 1

2
(1 − x)

)
− π

2 sin νπ
F

(
ν + 1,−ν, 1; 1

2
(1 + x)

)
, −1 < x < 1.

Jump across the interval:

Qν(x + i0)− Qν(x − i0) = −iπ Pν(x), −1 < x < 1.

Recurrence and derivative relations:

(ν + 1)Pν+1(x)− (2ν + 1)x Pν(x)+ νPν−1(x) = 0;
P ′
ν+1(x)− P ′

ν−1(x)− (2ν + 1)Pν(x) = 0;
(1 − x2)P ′

ν(x)+ νx Pν(x)− νPν−1(x) = 0;
P ′
ν(x)− 2x P ′

ν−1(x)+ P ′
ν−2(x)− Pν−1(x) = 0;

(ν + 1)Qν+1(x)− (2ν + 1)x Qν(x)+ νQν−1(x) = 0;
Q′
ν+1(x)− Q′

ν−1(x)− (2ν + 1)Qν(x) = 0;
(1 − x2)Q′

ν(x)+ νx Qν(x)− νQν−1(x) = 0;
Q′
ν(x)− 2x Q′

ν−1(x)+ Q′
ν−2(x)− Qν−1(x) = 0.

9.8.4 Series expansions and asymptotics

Expansions of Pν(z) and Qν(z) as z → ∞ follow from the representation of
Qν as a hypergeometric function, together with the representation (9.3.3) of
Pν as a multiple of Qν − Q−ν−1, for ν not a half-integer.

Expansions around x = 0 are obtained from

Pν(x) = �
( 1

2ν + 1
2

)
�
( 1

2ν + 1
)√
π

cos

(
1

2
νπ

)
F

(
1

2
ν + 1

2
,−1

2
ν,

1

2
; x2
)

+ 2�
( 1

2ν + 1
)

�
( 1

2ν + 1
2

)√
π

sin

(
1

2
νπ

)
x F

(
1

2
ν + 1,

1

2
− 1

2
ν,

3

2
; x2
)

;
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Qν(x) = �
( 1

2ν + 1
)√
π

�
( 1

2ν + 1
2

) cos

(
1

2
νπ

)
x F

(
1

2
ν + 1,

1

2
− 1

2
ν,

3

2
; x2
)

− �
( 1

2ν + 1
2

)√
π

2�
( 1

2ν + 1
) sin

(
1

2
νπ

)
F

(
1

2
ν + 1

2
,−1

2
ν,

1

2
; x2
)
,

− 1 < x < 1.

Asymptotics as |ν| → ∞:

Pν(cosh θ) = e
(
ν+ 1

2

)
θ

√
2νπ sinh θ

[
1 + O(|ν|−1)

];
Qν(cosh θ) =

√
π e−

(
ν+ 1

2

)
θ

√
2ν sinh θ

[
1 + O(|ν|−1)

] | arg ν| ≤ 1

2
π − δ

as |ν| → ∞, uniformly for δ ≤ θ ≤ δ−1. Also

Pν(cos θ) =
√

2 cos
(
νθ + 1

2θ − 1
4π
)+ O(|ν|−1)√

νπ sin θ
;

Qν(cos θ) = −
√
π sin

(
νθ + 1

2θ − 1
4π
)+ O(|ν|−1)√

2ν sin θ

as |ν| → ∞, uniformly for δ ≤ θ ≤ π − δ.

9.8.5 Associated Legendre functions

These are the solutions of[
(1 − z2)u′]′(z)+ [ν(ν + 1)− m2

1 − z2

]
u(z) = 0, m = 1, 2, . . .

Solutions include the functions

Pm
ν (z) = (z2 − 1)m/2

dm

dzm

[
Pν(z)

];
Qm
ν (z) = (z2 − 1)m/2

dm

dzm

[
Qν(z)

]
for z /∈ (−∞, 1], and

Pm
ν (x) = (−1)m(1 − x2)m/2

dm

dxm

[
Pν(x)

];
Qm
ν (x) = (−1)m(1 − x2)m/2

dm

dxm

[
Qν(x)

]
, −1 < x < 1.
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These functions are multiples of hypergeometric functions:

Pm
ν (z) = �(ν + m + 1)

2m �(ν − m + 1)m ! (z
2 − 1)m/2

× F

(
ν + 1 + m,m − ν,m + 1; 1

2
(1 − z)

)
;

Pm
ν (x) = (−1)m

�(ν + m + 1)

2m �(ν − m + 1)m ! (1 − x2)m/2

× F

(
ν + 1 + m,m − ν,m + 1; 1

2
(1 − x)

)
, −1 < x < 1;

Qm
ν (z) = (−1)m�(ν + m + 1)

√
π

�
(
ν + 3

2

)
2ν+1zν+1+m

(z2 − 1)m/2

× F

(
1

2
ν + 1

2
m + 1

2
,

1

2
ν + 1

2
m + 1, ν + 3

2
; 1

z2

)
.

For z = cosh θ /∈ (−∞, 1] they have integral representations

Pm
ν (z) = (z2 − 1)m/2

(ν + 1)m
2ν+1π i

∫
C

(t2 − 1)ν

(t − z)ν+1+m
dt

= (ν + 1)m
π

∫ π

0

[
z +

√
z2 − 1 cosϕ

]ν cos(mϕ) dϕ

= (−ν)m
π

∫ π

0

cos(mϕ) dϕ[
z + √

z2 − 1 cosϕ
]ν+1

= (z2 − 1)m/2
(−m + ν + 1)2m

π2m
( 1

2

)
m

∫ π

0

sin2m ϕ dϕ[
z + √

z2 − 1 cosϕ
]ν+1+m

,

and

Qm
ν (z) = (−1)m(z2 − 1)m/2

(ν + 1)m
2ν+1

∫ 1

−1

(1 − t2)ν

(z − t)ν+1+m
dt

= (−1)m(ν + 1)m

∫ α

0

[
z −

√
z2 − 1 coshϕ

]ν cosh(mϕ) dϕ,

cothα = z

= (−1)m(z2 − 1)m/2
(1 + ν − m)2m

2m
( 1

2

)
m

∫ ∞

0

sinh2m ϕ dϕ[
z + √

z2 − 1 coshϕ
]ν+1+m

.
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Asymptotics:

Pm
ν (cosh θ)= e

(
ν+ 1

2

)
θ

√
2π sinh θ

(m + 1 + ν)m− 1
2
[
1 + O

(
{m + 1 + ν}− 1

2
)]

;

Qm
ν (cosh θ)= (−1)m

e−
(
ν+ 1

2

)
θ √
π√

2 sinh θ
(m + 1 + ν)m− 1

2
[
1 + O

(
{m + 1 + ν}− 1

2
)]

as ν → ∞, uniformly on intervals 0 < δ ≤ θ ≤ δ−1.

9.8.6 Relations among associated functions

The functions Pm
ν and Qm

ν can be computed recursively from the case m = 0
using

P0
ν = Pν,

P1
ν = ν z√

z2 − 1
Pν − ν√

z2 − 1
Pν−1,

Pm+2
ν + 2(m + 1)z√

z2 − 1
Pm+1
ν − (ν − m)(ν + m + 1) Pm

ν = 0,

Qm+2
ν + 2(m + 1)z√

z2 − 1
Qm+1
ν − (ν − m)(ν + m + 1) Qm

ν = 0,

for z /∈ (−∞, 1].
For −1 < x < 1:

Pm+2
ν + 2(m + 1)x√

1 − x2
Pm+1
ν + (ν − m)(ν + m + 1) Pm

ν = 0;

Qm+2
ν + 2(m + 1)x√

1 − x2
Qm+1
ν + (ν − m)(ν + m + 1) Qm

ν = 0.

The associated Legendre functions also satisfy

(ν + 1 − m) Pm
ν+1 − (2ν + 1) z Pm

ν + (ν + m)Pm
ν−1 = 0;

(ν + 1 − m) Qm
ν+1 − (2ν + 1) z Qm

ν + (ν + m)Qm
ν−1 = 0;
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Pm
ν (z) = Pm

−ν−1(z);
Qm

n− 1
2
(z) = Qm

−n− 1
2
(z);

Qm
ν (−z) = −e±νπ i Qm

ν (z), ±Im z > 0;
Pm
ν (z) = tan νπ

π

[
Qm
ν (z)− Qm

−ν−1(z)
];

Qm
ν (z) = π

2 sin νπ

[
e∓νπ i Pm

ν (z)− Pm
ν (−z)

]
, ±Im z > 0.

Wronskians can be computed from the preceding relations using

W (Pm
ν , Qm

ν )(z) = �(ν + 1 + m) �(−ν + m)

�(ν + 1) �(−ν)
1

1 − z2
.

9.9 Remarks

The surface harmonics Yn0 occur in Laplace’s work on celestial mechanics
[175]. In his study of potential theory for celestial bodies he introduced
Laplace’s equation and found solutions by separating variables in spherical
coordinates. As noted earlier, Legendre polynomials were studied by Legendre
in 1784 [180, 181]. See the end of Chapter 4 for remarks on the early history of
Legendre polynomials. The functions Pν were defined for general ν by Schläfli
[250]. Associated Legendre functions for non-negative integer values of ν were
introduced by Ferrers [96], and for general values of ν by Hobson [131].

Laplace [175] gave the principal term in the asymptotics (9.4.4) of Pn for
positive integer n, and Heine [125] investigated asymptotics for both Pn and
Qn for integer n. Darboux [62] proved (9.4.4) and (9.4.5) for integer n. Hobson
[131] proved the general form of (9.4.4), (9.4.5), and (9.5.11).

The term “spherical harmonics” is often used to include all the topics
covered in this chapter. Two classical treatises are Ferrers [96] and Heine [125].
More recent references include Hobson [132], MacRobert [194], Robin [240],
and Sternberg and Smith [269]. Müller [209] treats the subject in Rn and in Cn .



10

Asymptotics

In this chapter we prove various asymptotic results for special functions and
classical orthogonal polynomials that have been stated without proof in previ-
ous chapters.

The method of proof used in the first three sections is to reduce the second-
order differential equation to the point where it takes one of the following two
forms:

u′′(x)+ λ2u(x) = f (x) u(x),

a perturbation of the wave equation; or:

v′′(λx)+ 1

λx
v′(λx)+

(
1 − ν2

(λx)2

)
v(λx) = g(λx) v(λx),

a perturbation of Bessel’s equation. In each case λ is a large parameter and one
is interested in the asymptotic behavior of solutions as λ → +∞.

Taking into account initial conditions, these equations can be converted to
integral equations of the form

u(x) = u0(x)+ 1

λ

∫ x

0
sin(λx − λy) f (y) u(y) dy

or

v(λx) = v0(λx)+ 1

λ

∫ λx

0
Gν(λx, λy) g(λy) v(λy) d(λy),

where u0 and v0 are solutions of the unperturbed equations

u′′
0 + λ2u0 = 0; x2v′′

0 + xv′
0 + (x2 − ν2)v0 = 0,

and Gν is a Green’s function for Bessel’s equation. The asymptotic results
follow easily.

335
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Asymptotics of the Legendre and associated Legendre functions Pm
ν , Qm

ν

on the interval 1< x <∞ are obtained from integral representations of these
functions, by concentrating on the portion of the contour of integration that
contributes most strongly to the value.

Other asymptotic results can be obtained from integral formulas by means
of elaborations of this method. One of these is the “method of steepest
descents,” another is the “method of stationary phase.” These two methods are
illustrated in the final section with alernative derivations of the asymptotics of
the Laguerre polynomials and the asymptotics of Bessel functions of the first
kind, Jν .

10.1 Hermite and parabolic cylinder functions

The equations (6.6.1) and (6.6.2),

u′′(x)∓ x2

4
u(x)+

(
ν + 1

2

)
u(x) = 0, (10.1.1)

can be viewed as perturbations of the equation

u′′(x)+
(
ν + 1

2

)
u(x) = 0. (10.1.2)

The solutions of the corresponding inhomogeneous equation

v′′(x)+
(
ν + 1

2

)
v(x) = f (x)

have the form

v(x) = u0(x)+
∫ x

0

sin λ(x − y)

λ
f (y) dy, λ =

√
ν + 1

2
,

where u0 is a solution of (10.1.2). Note that v(0) = u0(0), v′(0) = u′
0(0). Thus

solving (10.1.1) is equivalent to solving the integral equation

u(x) = u0(x)±
∫ x

0

sin λ(x − y)

4λ
y2u(y) dy, (10.1.3)

where u0 is a solution of (10.1.2). For any given choice of u0, the solution of
(10.1.3) can be obtained by the method of successive approximations, i.e. as
the limit

u(x) = lim
m→∞ um(x),
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where u−1(x) ≡ 0 and

um(x) = u0(x)±
∫ x

0

sin λ(x − y)

4λ
y2um−1(y) dy, m = 0, 1, 2, . . .

Since |u0(x)| ≤ A for some constant A, it follows by induction that∣∣um(x)− um−1(x)
∣∣ ≤ A

m !
x3m

(12λ)m
. (10.1.4)

Therefore the sequence {um} converges uniformly on bounded intervals, and

u(x) = u0(x)+ O(λ−1)

uniformly on bounded intervals.
To apply this to the parabolic cylinder functions Dν given by (6.6.6),

we take

u0(x) = Dν(0) cos λx + D′
ν(0)

sin λx

λ
.

It follows from (6.6.10) and (2.2.7) that

Dν(0) = 2
1
2 ν

√
π

�
( 1

2 − 1
2ν
) = 2

1
2 ν√
π
�

(
1

2
ν + 1

2

)
cos

1

2
νπ;

D′
ν(0) = −2

1
2 ν+

1
2

√
π

�
(− 1

2ν
) = 2

1
2 ν+

1
2√
π

�

(
1

2
ν + 1

)
sin

1

2
νπ.

Formula (2.1.9) implies that

�

(
1

2
ν + 1

)
∼
(

1

2
ν

) 1
2
�

(
1

2
ν + 1

2

)
as ν → +∞, so we obtain

u0 ∼ 2
1
2 ν√
π
�

(
1

2
ν + 1

2

) [
cos

1

2
νπ cos λx + sin

1

2
νπ sin λx

]

= 2
1
2 ν√
π
�

(
1

2
ν + 1

2

)
cos

(√
ν + 1

2
x − 1

2
νπ

)
,

which gives (6.6.19).
The asymptotics of the Hermite polynomials can be obtained in a similar

way. Recall that Hn is the solution of

H ′′
n (x)− 2x H ′

n(x)+ 2nHn(x) = 0,
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with

H2m(0) = (−1)m
(2m) !

m ! , H ′
2m(0) = 0

and

H2m+1(0) = 0, H ′
2m+1(0) = (−1)m

2(2m + 1) !
m ! .

The gauge transformation Hn(x) = e
1
2 x2

hn(x) gives the equation

h′′
n(x)− x2 hn(x)+ (2n + 1) hn(x) = 0,

with conditions

hn(0) = Hn(0), h′
n(0) = H ′

n(0).

Stirling’s approximation (2.5.1) implies that

(2m) !
m ! ∼ 2m+ 1

2

(
2m

e

)m

∼ 2m [(2m) !] 1
2

(mπ)
1
4

;

2(2m + 1) !√
4m + 3 m ! ∼ 2m+1

(
2m + 1

e

)m+ 1
2 ∼ 2m+ 1

2
[(2m + 1) !] 1

2[(
m + 1

2

)
π
] 1

4

as n → ∞. It follows that for even n = 2m,

Hn(x) = (−1)m2m [(2m) !] 1
2

(mπ)
1
4

e
1
2 x2
[

cos
(√

2n + 1 x
)+ O

(
n− 1

2

)]

as n → ∞, while for odd n = 2m + 1,

Hn(x) = (−1)m2m+ 1
2

[(2m + 1) !] 1
2[(

m + 1
2

)
π
] 1

4

e
1
2 x2
[

sin
(√

2n + 1 x
)+ O

(
n− 1

2

)]

as n → ∞. These two results can be combined as

Hn(x) = 2
1
2 n 2

1
4 (n !) 1

2

(nπ)
1
4

e
1
2 x2
[

cos

(√
2n + 1 x − 1

2
nπ

)
+ O

(
n− 1

2

)]
,

which is (4.4.20).
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10.2 Confluent hypergeometric functions

Starting with the confluent hypergeometric equation

x u′′(x)+ (c − x) u′(x)− a u(x) = 0, (10.2.1)

we use the Liouville transformation. This begins with the change of variables
y = 2

√
x that leads to

v′′(y)+
[

2c − 1

y
− y

2

]
v′(y)− a v(y) = 0,

followed by the gauge transformation

v(y) = y
1
2 −ce

1
8 y2
w(y)

to remove the first-order term. This leads to the equation

w′′(y)−
[
(c − 1)2 − 1

4

y2
+ y2

16
− c

2
+ a

]
w(y) = 0. (10.2.2)

We are considering this equation on the half-line y > 0. If we could identify
u(y0) and u′(y0) at some point we could use the method of the previous
section: solve (10.2.2) as a perturbation of w′′ − aw = 0. The singularity at
y = 0 prevents the use of y0 = 0 and it is difficult to determine values at other
points, such as y0 = 1. Instead, we shall introduce a first-order term in such a
way that (10.2.2) can be converted to a perturbation of Bessel’s equation. The
gauge transformation

w(y) = y
1
2 W (y)

converts (10.2.2) to

W ′′(y)+ 1

y
W ′(y)−

[
(c − 1)2

y2
− c

2
+ a + y2

16

]
W (y) = 0.

Let us assume that c − 2a is positive. The final step in getting to a perturba-

tion of Bessel’s equation is to take y = ( 1
2 c − a

)− 1
2 z, so that the last equation

becomes

V ′′(z)+ 1

z
V ′(z)+

[
1 − (c − 1)2

z2

]
V (z) = z2

(2c − 4a)2
V (z). (10.2.3)

This is indeed a perturbation of Bessel’s equation with index ν = c − 1.
Tracing this argument back, a solution of the confluent hypergeometric
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equation (10.2.1) has the form

y1−ce
1
8 y2

V (βy), β =
√

1

2
c − a,

where V is a solution of (10.2.3). Since y = 2
√

x , this has the form

x
1
2 (1−c)e

1
2 x V

(√
(2c − 4a)x

)
. (10.2.4)

The Kummer function u(x) = M(a, c; x) is the solution of (10.2.1) with
u(0) = 1. The corresponding function V (z) must look like a multiple of
zc−1 = zν as z → 0. Let us assume for the moment that c ≥ 1. To obtain a
solution of (10.2.3) with this behavior we begin with the Bessel function Jν
and convert (10.2.3) to the integral equation

V (z) = Jν(z)+ γ
∫ z

0
Gν(z, ζ )ζ

2 V (ζ ) dζ, γ = 1

(2c − 4a)2
, (10.2.5)

where Gν(z, ζ ) is the Green’s function

Gν(z, ζ ) = Yν(z)Jν(ζ )− Jν(z)Yν(ζ )

W (Jν(ζ ),Yν(ζ ))
.

The solution of (10.2.5) can be obtained by the method of successive approxi-
mations:

V (z) = lim
m→∞ Vm(z),

where V−1(z) ≡ 0 and

Vm(z) = Jν(z)+ γ
∫ z

0
Gν(z, ζ )ζ

2 Vm−1(ζ ) dζ, m = 0, 1, 2, . . .

It follows from results in Sections 7.1 and 7.4 that there are constants A = Aν
and B = Bν such that

|Jν(z)| ≤ A zν, |Gν(z, ζ )| ≤ B

(
z

ζ

)ν
.

It follows from these inequalities and induction that

|Vm(z)− Vm−1(z)| ≤ A zν
(
γ B z3

)m
3m m ! . (10.2.6)

Therefore the sequence {Vm} converges uniformly on bounded intervals, and

V (z) = Jν(z)+ O
([c − 2a]−2)

uniformly on bounded intervals. Up to a constant factor, the Kummer function
M(a, c; x) is given by (10.2.4). As x → 0, the function defined by (10.2.4) has
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limiting value [√
2c − 4a

2

]c−1
1

�(ν + 1)
.

Therefore, for c ≥ 1 and c − 2a > 0,

M(a, c; x) = �(ν + 1)

[
1

2
cx − ax

] 1
2 (1−c)

e
1
2 x V

(√
2cx − 4ax

)
= �(c)

[
1

2
cx − ax

] 1
2 − 1

2 c

e
1
2 x

×
[

Jc−1

(√
2cx − 4ax

)
+ O

(
[c − 2a]−2

)]
. (10.2.7)

According to (7.4.8),

Jc−1(z) =
√

2√
π z

[
cos

(
z − 1

2
cπ + 1

4
π

)
+ O(z−1)

]
as z → +∞. Combining this with (10.2.7) gives

M(a, c; x) = �(c)√
π

(
1

2
cx − ax

) 1
4 − 1

2 c

e
1
2 x

×
[

cos

(√
2cx − 4ax − 1

2
cπ + 1

4
π

)
+ O

(
|a|− 1

2

)]
, (10.2.8)

as a → −∞, which is the Erdélyi–Schmidt–Fejér result (6.1.12). The conver-
gence is uniform for x in any interval 0<δ ≤ x ≤ δ−1.

We have proved (10.2.8) under the assumption c ≥ 1. Suppose that
0< c< 1. The contiguous relation (6.5.6) with c replaced by c + 1 is

M(a, c; x) = c + x

c
M(a, c + 1; x)+ a − c − 1

c(c + 1)
x M(a, c + 2; x).

The asymptotics of the two terms on the right are given by (10.2.8). They
imply that

M(a, c; x) ∼ ax

c(c + 1)
M(a, c + 2; x)

∼ �(c)√
π

−ax( 1
2 cx − ax + x

) 3
4 + 1

2 c
e

1
2 x

× cos

(√
(2c − 4a + 4)x − 1

2
cπ + 1

4
π

)
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as a → −∞. Since −ax , 1
2 cx − ax + x , and 1

2 cx − ax agree up to
O
([−a]−1

)
for x > 0, it follows that (10.2.8) is true for c > 0. This argument

can be iterated to show that (10.2.8) is valid for all real indices c �= 0,−1, . . . .
The asymptotics of the function U (a, c; x) can be obtained from (10.2.8)

and the identity (6.2.6). We use the reflection formula (2.2.7) to rewrite (6.2.6):

U (a, c; x) = �(1 − c) �(c − a) sin (c − a)π

π
M(a, c; x)

+ �(c − 1) �(1 − a) sin aπ

π
x1−c M(a + 1 − c, 2 − c; x).

Therefore the asymptotics are

U (a, c; x)

∼ �(1 − c) �(c) �(c − a)

π
3
2

(−ax)
1
4 − 1

2 c e
1
2 x

× sin (cπ − aπ) cos

(
y − 1

2
cπ + 1

4
π

)
+ �(c − 1) �(2 − c) �(1 − a)

π
3
2

e
1
2 x x1−c(−ax)

1
2 c− 3

4

× sin aπ cos

(
y + 1

2
cπ − 3

4
π

)

= e
1
2 x x

1
4 − 1

2 c

√
π sin cπ

[
(−a)

1
4 − 1

2 c
�(c − a) sin(cπ − aπ) cos

(
y − 1

2
cπ + 1

4
π

)
−(−a)

1
2 c− 3

4 �(1 − a) sin aπ cos

(
y + 1

2
cπ − 3

4
π

)]
,

where y = √
(2c − 4α)x ; we used (2.2.7) again. It follows from (2.1.9) that

(−a)
1
4 − 1

2 c
�(c − a) ∼ �

(
1

2
c − a + 1

4

)
∼ (−a)

1
2 c− 3

4 �(1 − a).

Let z = y − 1
2 cπ + 1

4π . Then

sin(cπ − aπ) cos

(
y − 1

2
cπ + 1

4
π

)
− sin aπ cos

(
y + 1

2
cπ − 3

4
π

)
= sin(cπ − aπ) cos z + sin aπ cos(z + cπ)

= sin cπ cos(z + aπ) = sin cπ cos

(
y − 1

2
cπ + aπ + 1

4
π

)
.
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Therefore

U (a, c; x) ∼ �
( 1

2 c − a + 1
4

)
√
π

x
1
4 − 1

2 c e
1
2 x

× cos

(√
2cx − 4ax − 1

2
cπ + aπ + 1

4
π

)
,

which gives (6.2.11).
As noted in (4.5.11), the Laguerre polynomial

L(α)n (x) = (α + 1)n
n ! M(−n, α + 1; x).

It follows from this, (2.1.10), and (10.2.8) that as n → ∞,

L(α)n (x) = e
1
2 x n

1
2α− 1

4

√
π x

1
2α+ 1

4

[
cos

(
2
√

nx − 1

2
απ − 1

4
π

)
+ O

(
n− 1

2
)]
,

which is Fejér’s result (4.5.12).

10.3 Hypergeometric functions, Jacobi polynomials

Consider the eigenvalue problem

x(1 − x) u′′(x)+ [c − (a + 1)x] u′(x)+ λ u(x) = 0. (10.3.1)

As we have noted several times, the change of variables y = 1 − 2x converts
the hypergeometric equation (10.3.1) to the equation

(1 − y2) v′′(y)+ [a + 1 − 2c − (a + 1)y] v′(y)+ λ v(y) = 0.

Setting α = c − 1, β = a − c, this equation is

(1 − y2) v′′(y)+ [β − α − (α + β + 2)y] v′(y)+ λ v(y) = 0. (10.3.2)

We noted in Section 4.6 that the change of variables θ = cos−1 y followed by
the gauge transformation

v(y) =
(

sin
1

2
θ

)−α− 1
2
(

cos
1

2
θ

)−β− 1
2
w(θ)

converts (10.3.2) to

w′′(θ)+ 1 − 4α2

16 sin2 1
2θ
w(θ)+

[
1 − 4β2

16 cos2 1
2θ

+ λ1

]
w(θ) = 0, (10.3.3)
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where λ1 = λ+ 1
4 (α + β + 1)2. Now

1

sin2 1
2θ

= 4

θ2
+ 1

3
+ O(θ2); 1

cos2 1
2θ

= 1 + O(θ2),

so (10.3.3) can be written as

w′′(θ)+ 1 − 4α2

4θ2
w(θ)+

[
1 − 4α2

48
+ 1 − 4β2

16
+ λ1

]
w(θ) = r(θ)w(θ),

where |r(θ)| ≤ Aθ2. As in the previous section, we can convert this to a

perturbation of Bessel’s equation. First, taking w(θ) = θ
1
2 W (θ) leads to

W ′′(θ)+ 1

θ
W ′(θ)+

[
μ2 − α2

θ2

]
W (θ) = r(θ)W (θ), (10.3.4)

where

μ2 = 1 − 4α2

48
+ 1 − 4β2

16
+ λ+ (α + β + 1)2

4
.

We are interested in the limit λ → +∞, so suppose that μ is positive. The
change of variables z = μθ leads to the equation

V ′′(z)+ 1

z
V ′(z)+

[
1 − (c − 1)2

z2

]
V (z) = R(z) V (z)

μ4
, (10.3.5)

with |R(z)| ≤ Az2. This equation is very close to (10.2.3) and can be analyzed
in exactly the same way.

So far we have shown that a solution of (10.3.1) has the form

u(x) = v(1 − 2x) =
(

sin
1

2
θ

)−α− 1
2
(

cos
1

2
θ

)−β− 1
2
w(θ)

= θ
1
2

(
sin

1

2
θ

)−α− 1
2
(

cos
1

2
θ

)−β− 1
2

W (θ)

= θ
1
2

(
sin

1

2
θ

)−α− 1
2
(

cos
1

2
θ

)−β− 1
2

V (μθ),

where V is a solution of the perturbed Bessel equation (10.3.5). Note that

x = 1 − y

2
= 1 − cos θ

2
= sin2 1

2
θ (10.3.6)

so that as x → 0+, θ ∼ 2
√

x and

u(x) ∼ √
2 x− 1

2α V (μθ) = √
2 x

1
2 (1−c) V (μθ).
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We suppose first that c − 1 > 0, and we want to choose V so that u(x) is
a hypergeometric function: the solution of (10.3.1) that is characterized by
u(0) = 1. Since

Jc−1(μθ) ∼
(
μθ

2

)c−1 1

�(c)
∼ μc−1

�(c)
x

1
2 (c−1)

as x → 0, we obtain V = limm→∞ Vm as in the previous section, with

V0(z) = �(c)√
2
μ1−c Jc−1(z),

which has asymptotics

V0(z) ∼ �(c)√
π z
μ1−c cos

(
z − 1

2
cπ + 1

4
π

)
as z → +∞.

Taking λ = ν(a + ν), the hypergeometric solution to (10.3.1) is the func-
tion with indices a + ν,−ν, c. As ν → +∞ we may replace μ = √

λ in the
asymptotics by ν, or by the more precise ν + 1

2 a. Putting all this together, we
have, for 0<θ <π ,

F

(
a + ν,−ν, c; sin2

(
1

2
θ

))

=
�(c) cos

(
νθ + 1

2 aθ − 1
2 cπ + 1

4π
)

+ O(ν−1)

√
π
(
ν sin 1

2θ
)c− 1

2
(

cos 1
2θ
) 1

2 +(a−c)

as ν → +∞. This is Darboux’s result (8.2.12).
We have proved this asymptotic result under the assumption c > 1. The

contiguous relation (8.5.7) shows that the asymptotics with index c − 1 can
be computed from those with indices c and c + 1 in the range c > 1, and that
the result extends to c > 0. By induction, it extends to all real values of c,
c �= 0,−1,−2, . . .

As a corollary, we obtain Darboux’s asymptotic result (4.6.11) for Jacobi
polynomials. In fact

P(α,β)n (cos θ) = (α + 1)n
n ! F

(
a + n,−n, c; sin2

(
1

2
θ

))
,

with c = α + 1, a = α + β + 1. Since

(c)n
n ! = �(c + n)

�(c) �(n + 1)
∼ nc−1

�(c)
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as n → ∞, by (2.1.9), it follows that

P(α,β)n (cos θ) =
cos
(

nθ + 1
2 [α + β + 1]θ − 1

2απ − 1
4π
)

+ O
(
n−1
)

√
nπ
(

sin 1
2θ
)α+ 1

2
(

cos 1
2θ
)β+ 1

2

.

10.4 Legendre functions

As noted in Section 9.4, the asymptotics in ν for the Legendre functions Pν
and Qν on the interval −1< x < 1 follow from the asymptotics of the hyper-
geometric function. To determine the asymptotics on the interval 1< x <∞
for the Legendre functions and associated Legendre functions, we make use of
the integral representations in Section 9.5, written in the form

Pm
ν (cosh θ) = (sinh θ)m

(−m + ν + 1)2m

2m
(

1
2

)
m
π

×
∫ π

0

(sinα)2m dα

(cosh θ − sinh θ cosα)m+1+ν ; (10.4.1)

Qm
ν (cosh θ) = (−1)m(sinh θ)m

(−m + ν + 1)2m

2m
(

1
2

)
m

×
∫ ∞

0

(sinhα)2m dα

(cosh θ + sinh θ coshα)m+1+ν . (10.4.2)

These representations, and the asymptotic formulas below, apply in particular
to the Legendre functions Pν = P0

ν and Qν = Q0
ν .

As ν → ∞ the principal contribution to each integral comes where the
denominator is smallest, which is near α = 0. We use Laplace’s method: make
a change of variables so that the denominator takes a form for which the
asymptotics are easily computed.

For the integral in (10.4.1) we take

s(α) = log(A − B cosα), A = eθ cosh θ, B = eθ sinh θ,

so

cosh θ − sinh θ cosα = e−θes(α).
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Then s is strictly increasing for 0 ≤ α ≤ π , with s(0) = 0, s(π) = 2θ .
For α ≈ 0,

A − B cosα = 1 + 1

2
Bα2 + O(α4), s(α) = 1

2
Bα2 + O(α4),

so

dα

ds
= 1√

2Bs
[1 + O(s)], sinα =

√
2s√
B

[1 + O(s)].

Therefore the integral in (10.4.1) is

2m− 1
2 e(m+1+ν)θ

Bm+ 1
2

∫ 2θ

0
e−(m+1+ν)s sm− 1

2 [1 + O(s)] ds

= 2m− 1
2 e(m+1+ν)θ

Bm+ 1
2 (m + 1 + ν)m+ 1

2

×
∫ (m+1+ν)2θ

0
e−t tm− 1

2
[
1 + O

(
t[m + 1 + ν]−1

)]
ds.

Up to an error that is exponentially small in ν, we may replace the preceding
integral by an integral over the line and write it as the sum of two parts. The
first part is �

(
m + 1

2

)
, and the second part is dominated by

�
(
m + 1 + 1

2

)
m + 1 + ν = m + 1

2

m + 1 + ν �
(

m + 1

2

)
.

Therefore the integral in (10.4.1) is

2m− 1
2 e(m+1+ν)θ �

(
m + 1

2

)
Bm+ 1

2 (m + 1 + ν)m+ 1
2

[
1 + O

([m + 1 + ν]−1)] (10.4.3)

as ν → ∞.
To complete the calculation we note that as ν → ∞, (2.1.9) implies that

(−m + ν + 1)2m = �(m + ν + 1)

�(−m + ν + 1)

= (m + ν + 1)2m
[
1 + O

([m + 1 + ν]−1)] ,
while

�
(
m + 1

2

)( 1
2

)
m

= �

(
1

2

)
= √

π.
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Combining these with (10.4.1) and (10.4.3) gives the Hobson–Darboux–
Laplace result

Pm
ν (cosh θ) = e

(
ν+ 1

2

)
θ

√
2π sinh θ

(m + 1 + ν)m− 1
2
[
1 + O

([m + 1 + ν]−1)].
(10.4.4)

The same idea is used to compute the asymptotics of Qm
ν : the integral in

(10.4.2) is rewritten using the variable

s(α) = log(A + B coshα), A = eθ cosh θ, B = eθ sinh θ.

The calculation is essentially the same and gives Hobson’s result

Qm
ν (cosh θ) = (−1)m

e−
(
ν+ 1

2

)
θ √
π√

2 sinh θ
(m + 1 + ν)m− 1

2

×
[
1 + O

(
[m + 1 + ν]−1

)]
. (10.4.5)

10.5 Steepest descents and stationary phase

In this section we discuss briefly two methods of deriving asymptotics from
integral representations. Both methods address integrals that are in, or can be
put into, the form

I (λ) =
∫

C
eλϕ(t) f (t) dt, (10.5.1)

and one is interested in the behavior as the parameter λ → +∞.
Suppose that the functions ϕ and f in (10.5.1) are holomorphic in some

domain that contains the contour C , except perhaps the endpoints. If ϕ is
real on the contour, then clearly the main contribution to I (λ) for large λ
will occur near points where ϕ has a maximum value; any such point t0 that
is not an endpoint of C will be a critical value: ϕ′(t0) = 0. The idea is to
deform the contour C , if possible, so that ϕ is real along C and attains a global
maximum. If this is not possible, we look for a contour such that Re ϕ attains a
global maximum and ϕ is real near any points where the maximum is attained.
Thus in a neighborhood of such a point the curve will follow the paths of
steepest descent: the paths along which the real part decreases most rapidly.
This accounts for the terminology: method of steepest descents. One can then
use a method like that used in Section 10.4 to get the asymptotic result.
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As an illustration, we consider the Laguerre polynomials. The generating
function is given by (4.5.7):

∞∑
n=0

L(α)n (x) zn = (1 − z)−α−1 exp

(
− xz

1 − z

)
, |z|< 1.

By Cauchy’s theorem,

L(α)n (x) = 1

2π i

∫
C0

(1 − z)−α−1 exp

(
− xz

1 − z

)
dz

zn+1
, (10.5.2)

where the path of integration encloses z = 0 but not z = 1. The change of
variable z = exp(t/

√
n) converts (10.5.2) to

L(α)n (x) = 1

2π
√

ni

∫
C

exp
{√

n
( x

t
− t
)}

f

(
t√
n

)
dt, (10.5.3)

where the amplitude function

f (s) = (1 − es)−α−1 exp

{
−x

(
es

1 − es
+ 1

s

)}
is holomorphic in the strip {|Im s|< 2π} cut along [0,∞). The contour C starts
at +∞, follows the lower edge of the cut, encircles the origin in the clockwise
direction, and returns to +∞ along the upper edge of the cut.

The real part of the phase function ϕ(t) = −t + x/t has the same sign as
Re t (x − |t |2), and its critical points for x > 0 are t = ±i

√
x . The second

derivative at the point ±i
√

x is ±2i/
√

x . It follows that there is a change of
variables u = u(t) near ±i

√
x such that

t = √
x
(± i ± e±iπ/4 u

)+ O(u2),
x

t
− t = √

x(∓2i − u2).

Therefore each of these points is a saddle point for the real part of ϕ: at
t = i

√
x the real part decreases in the southwest and northeast directions and

increases in the southeast and northwest directions, while the opposite is true
at t = −i

√
x . The path C can be chosen so that it lies in the region where

Reϕ(t)< 0, except at the points ±i
√

x , while near these points it coincides
with the paths of steepest descent.

These considerations imply that, apart from quantities that are exponentially
small in

√
n as n → ∞, the integral in (10.5.3) can be replaced by the sum of

two integrals I±, along short segments through the points t = ±i
√

x coincid-
ing with the paths of steepest descent. Moreover, up to terms of lower order in
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√
n we may replace f (t/

√
n) by its value at t = ±i

√
x . Taking u(t) as above,

and taking into account the orientation of C , the integral I+ is then∫ δ

−δ
f

(
i
√

x√
n

)
exp
{
−√

nx(2i + u2)
} √

x eiπ/4 du

= f

(
i
√

x√
n

)
ei
(
−2

√
nx+ 1

4π
)√

x
∫ δ

−δ
exp
(
−√

nx u2
)

du,

while I− is the negative of the complex conjugate of I+.
Up to an error that is exponentially small in

√
n, we may replace the last

integral over [−δ, δ] with the integral over the line and use∫ ∞

−∞
e−√

nxu2
du = 1

(nx)
1
4

∫ ∞

−∞
e−s2

ds =
√
π

(nx)
1
4

.

As n → ∞,

f

(
i
√

x√
n

)
≈ e

1
2 (α+1)π i x− 1

2 (α+1) n
1
2 (α+1) e

1
2 x
.

Collecting these results, we find again Fejér’s result

L(α)n (x) = 1√
π

x− 1
2α− 1

4 n
1
2α− 1

4 e
1
2 x cos

(
2
√

nx − 1

2
απ − 1

4
π

)
+ O

(
n

1
2α− 3

4

)
.

Suppose now that the function in the exponent of (10.5.1) is purely imagi-
nary. We change notation and write exp iλϕ. We assume that the functions f
and ϕ have some degree of smoothness but are not necessarily analytic. The
idea here is that wherever ϕ′ �= 0 the exponential factor oscillates rapidly as
λ → ∞ and therefore there is cancellation in the integral. If ϕ′ does not vanish
at any point of C , we may integrate by parts using the identity

eiλϕ(t) = 1

iλϕ′(t)
d

dt

[
eiλϕ(t)

]
to introduce a factor 1/λ. On the other hand, if, say, ϕ′(t0) = 0 and
f (t0)ϕ′′(t0) �= 0, then it turns out that the part of the integral near t0 contributes

an amount that is O(λ− 1
2 ). Thus once again the main contributions to the

asymptotics come from points where ϕ′ = 0, i.e. points of stationary phase,
hence the terminology: method of stationary phase.

As an example, we consider the asymptotics of the Bessel function Jν(x)
as x → +∞. In Chapter 7 the asymptotics were obtained by expressing Jν in
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terms of Hankel functions. Here we give a direct argument by the method of
stationary phase applied to the Sommerfeld–Bessel integral (7.3.12):

Jν(x) = 1

2π

∫
C

eix sin θ−iνθ dθ,

where the path of integration consists of the boundary of the strip
{|Re θ |<π, Im θ > 0}. The critical points of the phase function sin θ on this
path are at θ = ±π/2. As noted above, on any straight part of the path of
integration that does not contain a critical point, we may integrate by parts to
get an estimate that is O(x−1). Thus we are led to consider integration over two
small intervals, each containing one of the two points ±π/2. We may change
variables u = u(θ) in these intervals in such a way that

θ = ±π
2

+ u + O(u2), sin θ = ±
(

1 − u2

2

)
.

Up to terms of lower order, we may replace exp(−iνθ) by exp(∓iνπ/2). Thus
the integral over the interval that contains θ = π/2 becomes

eix− 1
2 iνπ

2π

∫ δ

−δ
e− 1

2 i xu2
du,

while the integral over the interval that contains θ = −π/2 becomes the com-
plex conjugate. Up to quantities of order 1/

√
x , we may replace the last integral

by the integral over the line, interpreted as∫ ∞

−∞
e− 1

2 i xu2
du = lim

ε→0+

∫ ∞

−∞
e− 1

2 x(i+ε)u2
du. (10.5.4)

Recall that for a > 0,∫ ∞

−∞
e−au2

du = a−1/2
∫ ∞

−∞
e−t2

dt =
√
π√
a
.

This formula remains valid, by analytic continuation, for complex a with
Re a > 0, so (10.5.4) gives∫ ∞

−∞
e− 1

2 i xu2
du = lim

ε↓0

√
2π√

x(i + ε) =
√

2π√
x

e− 1
4π i
.

Combining these results, we obtain the Jacobi–Hankel result

Jν(x) =
√

2√
πx

cos

(
x − 1

2
νπ − 1

4
π

)
+ O

(
x−1)

as x → +∞, which is (7.4.8).
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10.6 Exercises

10.1 Verify (10.1.4).
10.2 Verify (10.2.6).
10.3 Consider the second-order differential equation

w′′(z)+ f (z) w′(z)+ g(z) w(z) = 0,

where f (z) and g(z) have convergent power series expansions

f (z) =
∞∑

n=0

fn

zn
, g(z) =

∞∑
n=0

gn

zn
.

Assume that not all coefficients f0, g0 and g1 are zero, i.e. z = ∞ is an
irregular singular point. Show that this equation has a formal series
solution of the form

w(z) = eλz zμ
∞∑

n=0

an

zn
,

where

λ2 + f0λ+ g0 = 0, ( f0 + 2λ)μ = −( f1λ+ g1),

and the coefficients an are constants. Derive the equation that
determines the coefficients an recursively.

10.4 The quadratic equation of λ in Exercise 10.3 is called the
characteristic equation, and it has two characteristic roots λ1, λ2.
Solutions with the kind of expansions given in Exercise 10.3 are called
normal solutions. Suppose that f 2

0 = 4g0, so λ1 = λ2. Show that the
Fabry transformation [92]

w(z) = e− f0z/2 W, t = z1/2

takes the differential equation in Exercise 10.3 into the new equation

W ′′(t)+ F(t)W ′(t)+ G(t)W (t) = 0,

where

F(t) = 2 f1 − 1

t
+ 2 f2

t3
+ · · · ,

G(t) = (4g1 − 2 f0 f1)+ 4g2 − 2 f0 f2

t2
+ · · ·

If 4g1 = 2 f0 f1, then infinity is a regular singular point of the new
equation, so it has a convergent power series solution. If 4g1 �= 2 f0 f1,
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then the new equation has distinct characteristic roots. By
Exercise 10.3, we can write down formal series solutions in the form
given there, with z replaced by t or, equivalently, z1/2. Series solutions
of this kind are called subnormal solutions.

10.5 Let λ1 and λ2 be the two characteristic values in Exercise 10.3, and
suppose that Re λ1 ≥ Re λ2. Consider first j = 1 and, for convenience,
drop the subscript and write

w(z) = Ln(z)+ εn(z), Ln(z) = eλz zμ
n−1∑
m=0

am

zm
.

Use the recursive formulas in Exercise 10.3 to show that

L ′′
n(z)+ f (z)L ′

n(z)+ g(z)Ln(z) = eλz zμRn(z),

where Rn(z) = O(z−n−1) as z → ∞. Show that the error term εn(z)
satisfies the integral equation

εn(z) =
∫ e−iω∞

z
K (z, t){eλt tμRn(t)+ [ f (t)− f0]ε′n(t)

+ [g(t)− g0]εn(t)}dt,

where

K (z, t) = eλ1(z−t) − eλ2(z−t)

λ1 − λ2
, ω = arg(λ2 − λ1).

Recall that we have used λ for λ1. Use the method of successive
approximation to prove that for sufficiently large n,

εn(z) = O(eλ1z zμ1−n)

as z → ∞ in the sector | arg(λ2z − λ1z)| ≤ π .
10.6 In Exercise 10.5, we established that for all sufficiently large n, the

differential equation in Exercise 10.3 has a solution wn,1(z) given by

wn,1(z) = eλ1z zμ1

[
n−1∑
m=0

am,1

zm
+ O

(
1

zn

)]

as z → ∞,
∣∣ arg(λ2z − λ1z)

∣∣ ≤ π . By relabeling, we get another
solution

wn,2(z) = eλ2z zμ2

[
n−1∑
m=0

am,2

zm
+ O

(
1

zn

)]
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as z → ∞, |arg(λ2z − λ1z)| ≤ π . Show that wn,1(z) and wn,2(z) are
independent of n.

10.7 Show that the equation

d2w

dz2
=
(

1 + 4

z

) 1
2

w

has two linearly independent solutions given by

w1(z) ∼ 1

z
e−z

(
1 − 2

z
+ 5

z2
− 44

3z3
+ · · ·

)
as z → ∞, | arg z| ≤ π , and

w2(z) ∼ zez
(

1 + 1

z
− 1

2z2
+ 2

3z3
+ · · ·

)
as z → ∞, | arg(−z)| ≤ π .

10.8 Find a change of variable z → ξ that transforms Airy’s equation
w′′ − zw = 0 into the equation

w′′(ξ)+ 1

3ξ
w′(ξ)− w(ξ) = 0.

Show that the new equation has two linearly independent asymptotic
solutions

w1(ξ) ∼ e−ξ ξ−1/6
(

1 − 5

23 · 32

1

ξ
+ 5 · 7 · 11

27 · 34

1

ξ2
+ · · ·

)
,

w2(ξ) ∼ eξ ξ−1/6
(

1 + 5

23 · 32

1

ξ
+ 5 · 7 · 11

27 · 34

1

ξ2
+ · · ·

)
;

the first valid in the sector | arg ξ | ≤ π , and the second in the sector
| arg(−ξ)| ≤ π .

10.9 Show that the modified Bessel equation (7.5.1) has an irregular
singular point at ∞, and that for x real, two linearly independent
asymptotic solutions are

w1(x) ∼ x−1/2 ex
[

1 − (4ν2 − 12)

1!8x
+ (4ν2 − 12)(4ν2 − 32)

2!(8x)2
− · · ·

]
,

w2(x) ∼ x−1/2 e−x
[

1 + (4ν2 − 12)

1!8x
+ (4ν2 − 12)(4ν2 − 32)

2!(8x)2
+ · · ·

]
as x → ∞. The modified Bessel function Iν(x) grows exponentially as
x → ∞, and its asymptotic expansion is given by w1(x) multiplied by
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the constant (2π)−1/2. The function Kν(x) decays exponentially as
x → ∞, and its asymptotic expansion is given by w2(x) multiplied by
(π/2)1/2; see (7.5.6).

10.10 Show that the equation

x y′′(x)− (x + 1) y(x) = 0, x > 0,

has solutions of the forms

y1(x) ∼ x
1
2 ex

∞∑
n=0

an

xn
, y2(x) ∼ x− 1

2 e−x
∞∑

n=0

bn

xn
.

Furthermore, the two series involved are both divergent for all values
of x .

10.11 Show that the equation

y′′(x)− x4 y(x) = 0

has two linearly independent formal solutions given by

y1(x) ∼ e
1
3 x3

∞∑
n=0

(3n)!
18n(n!)2 x−3n−1,

y2(x) ∼ e− 1
3 x3

∞∑
n=0

(−1)n(3n)!
18n(n!)2 x−3n−1

as x → ∞; see de Bruijn [65].
10.12 Consider the equation

y′′(x)+
[
λ2a(x)+ b(x)

]
y(x) = 0.

Assume that a(x) is positive and twice continuously differentiable in a
finite or infinite interval (a1, a2) and that b(x) is continuous. Show that
the Liouville transformation

ξ =
∫

a1/2(x)dx, w = a1/4(x)y(x)

takes this equation into

d2w

dξ2
+
[
λ2 + ψ(ξ)

]
w = 0,

where

ψ(ξ) = 5

16

a′ 2(x)

a3(x)
− 1

4

a′′(x)
a2(x)

+ b(x)

a(x)
.
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Discarding ψ in the transformed equation gives two linearly
independent solutions e±iλξ . In terms of the original variables, one
obtains formally the WKB approximation

y(x) ∼ Aa−1/4(x) exp

{
iλ
∫

a1/2(x)dx

}
+ Ba−1/4 exp

{
−iλ

∫
a1/2(x)dx

}
as λ → ∞, where A and B are arbitrary constants. (See the remarks at
the end of this chapter concerning the history and terminology of the
WKB approximation.) This formula sometimes also holds as x → ∞
with λ fixed. For a discussion of this double asymptotic feature of the
WKB approximation, see chapter 6, p. 203 of Olver [222].
Use this idea to show that the equation in Exercise 10.3 has solutions

w(z) ∼ C exp(λz + μ log z),

where C is a constant and

λ = − f0 ± ( f 2
0 − 4g0)

1/2

2
, μ = − f1λ+ g1

f0 + 2λ
.

This is the leading term of the formal series solution given in
Exercise 10.3.

10.13 In the transformed equation in Exercise 10.12, substitute
w(ξ) = eiλξ [1 + h(ξ)]. Show that

h′′(ξ)+ i2λh′(ξ) = −ψ(ξ)[1 + h(ξ)].
Convert this to the integral equation

h(ξ) = − 1

i2λ

∫ ξ

α

{
1 − ei2λ(v−ξ)}ψ(v)[1 + h(v)]dv,

where α is the value of x = c, c = a1 or c = a2. Assume that α is
finite. Verify that any solution of this integral equation is also a
solution of the second-order differential equation satisfied by h(ξ). Use
the method of successive approximation to show that

|h(ξ)| ≤ exp

{
1

λ
�(ξ)

}
− 1,

where

�(ξ) =
∫ ξ

α

|ψ(v)|dv.
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10.14 Introduce the control function

F(x) =
∫ {

1

a1/4

d2

dx2

[
1

a1/4

]
+ b

a1/2

}
dx

and the notation

Vc,x (F) =
∫ x

c
|F ′(t)|dt

for the total variation of F over the interval (c, x). Verify that
�(ξ) = Vc,x (F), where � is defined in Exercise 10.13. By
summarizing the results in Exercises 10.12 and 10.13, show that
the equation

y′′(x)+ {λ2a(x)+ b(x)
}

y(x) = 0

has two linearly independent solutions

y1(x) = a−1/4(x) exp

{
iλ
∫

a1/2(x)dx

}
[1 + ε1(λ, x)] ,

y2(x) = a−1/4(x) exp

{
−iλ

∫
a1/2(x)dxt

}
[1 + ε2(λ, x)] ,

where

|ε j (λ, x)| ≤ exp

{
1

λ
Vc,x (F)

}
− 1, j = 1, 2.

For fixed x and large λ, the right-hand side of the last equation is
O(λ−1). Hence a general solution has the asymptotic behavior given
by the WKB approximation.

10.15 By following the argument outlined in Exercises 10.12–10.14, prove
that the equation

y′′(x)−
{
λ2a(x)+ b(x)

}
y(x) = 0

has two linearly independent solutions

y1(x) = a−1/4(x) exp

{
λ

∫
a1/2(x)dx

}
[1 + ε1(λ, x)] ,

y2(x) = a−1/4(x) exp

{
−λ
∫

a1/2(x)dx

}
[1 + ε2(λ, x)] ,

where

|ε j (λ, x)| ≤ exp

{
1

2λ
Vc,x (F)

}
− 1, j = 1, 2.
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If Va1,a2(F)<∞, then these inequalities imply that

y j (x) = a−1/4(x) exp

{
(−1) j−1λ

∫
a1/2(x)dx

} [
1 + O(λ−1)

]
with j = 1, 2, uniformly for x ∈ (a1, a2).

10.16 Let N = 2n + 1 and x = N 1/2ζ . From the generating function of
the Hermite polynomial Hn(x) given in (4.4.6), derive the integral
representation

Hn(x) = (−1)n n!
N n/2

1

2π i

∫
C

g(t)e−N f (t,ζ )dt,

where

g(t) = t−1/2, f (t, ζ ) = 2ζ t + t2 + 1

2
log t

and C is the steepest descent path passing through the two saddle
points

t± = −ζ ±√ζ 2 − 1

2
.

Note that for fixed x ∈ (0,∞), ζ → 0+ as n → ∞ and, hence, t± are
two well-separated complex numbers both approaching the imaginary
axis. Show that

(−1)nn!
2π i N n/2

g(t+) e−N f (t+,ζ )
( −2π

N f ′′(t+, ζ )

)1/2

∼ ex2/2−i
√

N x 2(n−1)/2
(n

e

)n/2
enπ i/2 as n → ∞.

Use this to prove that

Hn(x) ∼ 2(n+1)/2
(n

e

)n/2
ex2/2 cos

(√
2n + 1x − 1

2
nπ

)
,

as n → ∞; thus establishing (4.4.20).
10.17 Returning to (10.5.3), we deform the contour C into an infinite loop

which consists of (i) a circle centered at the origin with radius
√

x and
(ii) two straight lines along the upper and lower edges of the positive
real axis from

√
x to +∞. (a) Show that the contribution from the two

straight lines is of magnitude εn(x) = O
(
n

1
2 |α|+1e−√

nx
)
. On the circle

we introduce the parametrization t = √
xeiθ , θ ∈ (0, 2π). Show that

L(α)n (x) =
∫ 2π

0
ψ(θ) eiλφ(θ) dθ + εn(x),
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where λ = 2
√

nx , φ(θ) = −sin θ ,

ψ(θ) = −
√

x

2π
√

n
eiθ f

(√
x

n
eiθ
)
,

f (s) = (1 − es)−α−1 exp

{
−x

(
es

1 − es
+ 1

s

)}
.

The oscillatory integral is now exactly in the form to which the method
of stationary phase applies. The stationary points, where φ′(θ) = 0,
occur at θ = θ1 = π

2 and θ = θ2 = 3π
2 . The contribution from θ1 is

ψ(θ1)

√
2π

λφ′′(θ1)
ei
[
λφ(θ1)+ 1

4π
]

= e
1
2 x n

1
2α− 1

4

2
√
πx

1
2α+ 1

4

e
(

1
2απ+ 1

4 −2
√

nx
)

i
.

The contribution from θ2 is simply the complex conjugate of the last
expression, thus proving (4.5.12).

10.18 (a) Use (4.6.3) to derive the representation

P(α,β)n (x)

=
(

n + α
n

)(
x + 1

2

)n n∑
k=0

(n − k + 1)k
(α + 1)k

(
n + β

k

)(
x − 1

x + 1

)k

=
(

n + α
n

)(
x + 1

2

)n

F

(
−n,−n − β, α + 1; x − 1

x + 1

)
.

(b) Show that the formula in (a) can be written as

P(α,β)n (z)

= 1

2π i

∫
C

(
1 + x + 1

2
z

)n+α (
1 + x − 1

2
z

)n+β
z−n−1 dz,

where we assume x �= ±1, and where C is a closed curve that
encircles the origin in the positive sense and excludes the points
−2(x ± 1)−1.

(c) Prove that the formula in (a) can also be written in the form

P(α,β)n (x) = 1

2π i

∫
C ′

(
1

2

t2 − 1

t − x

)n (
1 − t

1 − x

)α ( 1 + t

1 + x

)β dt

t − x
,

where x �= ±1 and C ′ is a contour encircling the point t = x
in the positive sense but not the points t = ±1. The functions
(1 − t/1 − x)α and (1 + t/1 + x)β are assumed to be reduced to 1
for t = x .
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(d) Let t − x = w, and establish the representation

2− 1
2 (α+β+1)(1 + x)β(1 − x)αP(α,β)n (x)

= 1

2π i

∫
C ′

g(w)eN f (w,x)dw,

where

N = n + 1

2
(α + β + 1),

f (w, x) = log
(w + x + 1)(w + x − 1)

2w
,

g(w) = (1 − w − x)α

(w + x − 1)(α+β+1)/2

(w + x + 1)(−α+β−1)/2

w(1−α−β)/2 .

The integration path is the steepest descent curve passing through the
relevant saddle points. For x ∈ (0, 1), we write x = cos θ with
θ ∈ (0, 1

2π
)
. The two saddle points of f (w, x) are located at

w± = ±√
1 − x2 = ±i sin θ . Show that

g(w+) = 2(α+β−3)/2e−απ i/2−π i/2
(

sin
1

2
θ

)α−1(
cos

1

2
θ

)β−1

e−iθ/2,

eN f (w+,x) = eNθ i , f ′′(w+, x) = −ie−θ i

2 sin 1
2θ cos 1

2θ
.

From these, deduce the asymptotic formula (4.6.11).
10.19 Use Exercise 8.8 of Chapter 8 to show that

F(a + ν,−ν, c; x) = eνπ i �(c)�(1 + ν)
�(c + ν)

1

2π i

∫
C

g(t) eνh(t) dt,

where

h(t) = log
1 + t

t (1 + t − xt)
, g(t) = (1 + t)a−c

t (1 + t − xt)a

and C comes from +∞ to 0 along the upper edge of the cut [0,∞) and
returns along the lower edge. Use the steepest descent method to derive
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the asymptotic formula

F(a + ν,−ν, c; x)

= �(c)�(1 + ν)
�(c + ν)√νπ Re

[
eνπ i i

1
2 +a−cx

1
4 − 1

2 c(1 − x)
1
2 c− 1

2 a− 1
4

× (√x + i
√

1 − x
)−a(√

x − i
√

1 − x
)2ν] [1 + O(ν−1)

]
.

Deduce (8.2.12) from the last equation.
10.20 Use the change of variables

t =
√

−ax + 1

2
cx s

to show that the integral in Exercise 6.3 of Chapter 6 is equal to(
−ax + 1

2
cx

)− 1
2 c+ 1

2
∫

C ′
exp

⎧⎨⎩−a log

⎛⎝1 −
√

x(− a + 1
2 c
) 1

2 s

⎞⎠

+
(

−ax + t
1

2
cx

) 1
2

s

⎫⎬⎭ s−c ds,

where C ′ is the image of C . Show that the quantity inside the braces is(
−ax + 1

2
cx

) 1
2
(

s − 1

s

)
− x

2s2
+ O

⎛⎝[−a + 1

2
c

]− 1
2

⎞⎠
and

M(a, c; x) = �(c)

(
−ax + 1

2
cx

) 1
2 − 1

2 c

× 1

2π i

∫
C ′

eN f (s)g(s) ds

⎡⎣1 + O

⎛⎝[−a + 1

2
c

]− 1
2

⎞⎠⎤⎦ ,
where N = (−ax + 1

2 cx
) 1

2 , f (s) = s − 1/s and g(s) = e−x/2s2
s−c.

The saddle points are at ±i . Show that the contribution from the saddle
point at s = i is

�(c)

2
√
π

e
1
2 x
(

−ax + 1

2
cx

) 1
4 − 1

2 c

exp

{
i

[
(2cx − 4ax)

1
2 − 1

2
cπ + 1

4
π

]}
.

Deduce from this the asymptotic formula (6.1.10).
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10.21 (a) Use Exercise 8.9 of Chapter 8 and (5.5.6) to prove that for
Re (b + x) > 0, the Meixner polynomial

mn(x; b, c) = (b)n
cn

�(x + 1)�(b)

�(b + x)

1

2π i

×
∫

C

tb+x−1

(t − 1)x+1
[1 − (1 − c)t]n dt,

where C is a counterclockwise loop through t = 0 that encloses
t = 1. Therefore

mn(nα; b, c) = (b)n
cn

�(x + 1)�(b)

�(b + x)

1

2π i

∫
C

tb−1

t − 1
e−n f (t)dt,

where

x = nα, f (t) = −α log t + α log(t − 1)− log
[
1 − (1 − c)t

]
.

(b) Show that for 0< c< 1, fixed x (i.e. α = O(n−1)) and large n, the
phase function f (t) has two saddle points

t+ ∼ 1 − cα

1 − c
, t− ∼ α

1 − c

in the interval (0, 1). Note that for large n (i.e. small α), the two
saddle points are well separated. Deform the contour in (a) to run
from t = 0 to t = t+ through t− and with arg(t − 1) = −π , and
from t+ in the lower half-plane Im t < 0 to tc = 1/1 − c, where the
integrand vanishes; from tc the contour runs in the half-plane
Im t > 0 to t+, and returns to the origin with arg(t − 1) = π ; see
the figure below.

0 1 tc

t+

t–
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Denote the sum of the integrals along [0, t+] by I1 and the
remaining portion of the contour by I2. Show that

mn(nα; b, c) = (b)n
cn

�(x + 1)�(b)

�(b + x)

(
I1 + I2

)
,

where

I1 = − sinπx

π

∫ t+

0

tb+x−1

(1 − t)x+1

[
1 − (1 − c)t

]n
dt,

I2 = 1

2π i

∫ (1+)

t+

tb+x−1

(t − 1)x+1

[
1 − (1 − c)t

]n
dt.

(c) With x = nα, show that

I1 = − sinπx

π

∫ t+

0

tb−1

1 − t
e−n f (t) dt,

where

f (t) = −α log t + α log(1 − t)− log(1 − (1 − c)t).

This function has the same saddle points as the phase function
given in (a). Note that on the interval (0, t+), this function has only
one saddle point which occurs at t = t−. Furthermore, as α → 0,
this point coalesces with the endpoint t = 0. In fact, this point
disappears when α = 0, since the function log(1 − (1 − c)t) has
no saddle point in the interval (0, t+). Thus, the steepest descent
method does not work. Show that the integral∫ ∞

0
snαe−nsds =

∫ ∞

0
e−n(s−α log s)ds

has the same asymptotic phenomenon as I1, namely, the phase
function φ(s) = s − α log s also has a saddle point (i.e. s = α)
which coincides with the endpoint s = 0 as α → 0. This suggests
the change of variable t → s defined implicitly by

f (t) = −α log s + s + A,

where A is a constant independent of t or s. Show that to make the
mapping t → s one-to-one and analytic in the interval 0 ≤ t < t+,
one should choose A so that t = t− corresponds to s = α, i.e.,
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A = f (t−)+ α logα − α.
This gives

I1 = − sinπx

π
e−n A

∫ s+

0
h(s)sb+x−1e−nsds,

where

h(s) =
(

t

s

)b−1 1

1 − t

dt

ds

and s+ is implicitly defined via the equation
g(t) = −α log s + s + A by substituting t = t+ and s = s+.

(d) Show that the function t = t (s) defined in (c) satisfies

dt

ds

∣∣∣
s=α = 1√

α f ′′(t−)
.

Furthermore, the integral I1 in (c) has the leading-order
approximation

I1 ∼ − sinπx

π
e−n A h(α)

�(b + n)

nb+x

as n → ∞, uniformly with respect to α ∈ [0, α0], α0 > 0. Deduce
from this the asymptotic formula (5.5.14):

mn(x, b, c) ∼ −�(b + n) �(x + 1)

cn(1 − c)x+b nb+x

sinπx

π
.

The derivation of this formula, as presented in this exercise, is due
to N. M. Temme (private communication).

10.22 By following the same argument as in Exercise 10.21, prove the
asymptotic formula for the Charlier polynomial Cn(x; a) given in
(5.3.12).

10.7 Summary

10.7.1 Hermite and parabolic cylinder functions

The equations

u′′(x)∓ x2

4
u(x)+

(
ν + 1

2

)
u(x) = 0
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are equivalent to

u(x) = u0(x)±
∫ x

0

sin λ(x − y)

4λ
y2u(y) dy,

with solutions

u(x) = lim
m→∞ um(x),

where u−1(x) ≡ 0 and

um(x) = u0(x)±
∫ x

0

sin λ(x − y)

4λ
y2um−1(y) dy, m = 0, 1, 2, . . .

For the parabolic cylinder functions Dν ,

u0 ∼ 2
1
2 ν√
π
�

(
1

2
ν + 1

2

) [
cos

1

2
νπ cos λx + sin

1

2
νπ sin λx

]

= 2
1
2 ν√
π
�

(
1

2
ν + 1

2

)
cos

(√
ν + 1

2
x − 1

2
νπ

)
.

The gauge transformation Hn(x) = e
1
2 x2

hn(x) gives the equation

h′′
n(x)− x2 hn(x)+ (2n + 1) hn(x) = 0,

and leads to the asymptotics of the Hermite polynomials

Hn(x) = 2
1
2 n 2

1
4 (n !) 1

2

(nπ)
1
4

e
1
2 x2
[

cos

(√
2n + 1 x − 1

2
nπ

)
+ O

(
n− 1

2

)]
.

10.7.2 Confluent hypergeometric functions

The Liouville transformation, followed by a gauge transformation and a
change of variables, converts the confluent hypergeometric equation

x u′′(x)+ (c − x) u′(x)− a u(x) = 0

to

V ′′(z)+ 1

z
V ′(z)+

(
1 − (c − 1)2

z2

)
V (z) = z2

(2c − 4a)2
V (z),

a perturbation of Bessel’s equation, and leads to the integral equation

V (z) = Jν(z)+ γ
∫ z

0
Gν(z, ζ )ζ

2 V (ζ ) dζ, γ = 1

(2c − 4a)2
,
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where Gν(z, ζ ) is the Green’s function

Gν(z, ζ ) = Yν(z)Jν(ζ )− Jν(z)Yν(ζ )

W (Jν(ζ ),Yν(ζ ))
.

The solution is

V (z) = lim
m→∞ Vm(z),

where V−1(z) ≡ 0 and

Vm(z) = Jν(z)+ γ
∫ z

0
Gν(z, ζ )ζ

2 Vm−1(ζ ) dζ, m = 0, 1, 2, . . .

This leads to the asymptotic results

M(a, c; x) = �(c)√
π

(
1

2
cx − ax

) 1
4 − 1

2 c

e
1
2 x

×
[

cos

(√
2cx − 4ax − 1

2
cπ + 1

4
π

)
+ O

(
|a|− 1

2

)]
;

U (a, c; x) ∼
�
(

1
2 c − a + 1

4

)
√
π

x
1
4 − 1

2 c e
1
2 x

× cos

(√
2cx − 4ax − 1

2
cπ + aπ + 1

4
π

)
.

As a corollary, the Laguerre polynomials

L(α)n (x) = (α + 1)n
n ! M(−n, α + 1; x)

have asymptotics

L(α)n (x) = e
1
2 x n

1
2α− 1

4

√
π x

1
2α+ 1

4

[
cos

(
2
√

nx − 1

2
απ − 1

4
π

)
+ O

(
n− 1

2

)]
.

10.7.3 Hypergeometric functions, Jacobi polynomials

After changes of variables and a gauge transformation, the hypergeometric
equation has the form

w′′(θ)+ 1 − 4α2

4θ2
w(θ)

+
[

1 − 4α2

48
+ 1 − 4β2

16
+ λ+ (α + β + 1)2

4

]
w(θ) = r(θ)w(θ).
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This can be converted to a perturbation of Bessel’s equation by a change of
scale and a gauge transformation, leading to

V ′′(z)+ 1

z
V ′(z)+

[
1 − (c − 1)2

z2

]
V (z) = R(z) V (z)

μ4
.

This can be solved as above with

V0(z) = �(c)√
2
μ1−c Jc−1(z),

giving the asymptotics

F

(
a + ν,−ν, c; sin2

(
1

2
θ

))

=
�(c) cos

(
νθ + 1

2 aθ − 1
2 cπ + 1

4π
)

+ O
(
ν−1
)

√
π
(
ν sin 1

2θ
)c− 1

2
(

cos 1
2θ
) 1

2 +(a−c)

as ν → +∞. The asymptotics of the Jacobi polynomials are a corollary: as
n → ∞,

P(α,β)n (cos θ) =
cos
(

nθ + 1
2 [α + β + 1]θ − 1

2απ − 1
4π
)

+ O
(
n−1
)

√
nπ
(

sin 1
2θ
)α+ 1

2
(

cos 1
2θ
)β+ 1

2

.

10.7.4 Legendre functions

Asymptotics in ν for the Legendre functions Pν and Qν on the interval
−1< x < 1 follow from the asymptotics of the hypergeometric function. For
the interval 1< x <∞, we use

Pm
ν (cosh θ) = (sinh θ)m

(−m + ν + 1)2m

2m
( 1

2

)
m π

×
∫ π

0

(sinα)2m dα

(cosh θ − sinh θ cosα)m+1+ν ;

Qm
ν (cosh θ) = (−1)m(sinh θ)m

(−m + ν + 1)2m

2m
( 1

2

)
m

×
∫ ∞

0

(sinhα)2m dα

(cosh θ + sinh θ coshα)m+1+ν .
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The principal contributions come where the denominator is smallest. Ignoring
terms of lower order, we change variables near α = 0 and are led to

2m− 1
2 e(m+1+ν)θ

Bm+ 1
2 (m + 1 + ν)m+ 1

2

∫ ∞

0
e−t tm− 1

2 dt, B = eθ sinh θ,

which leads in turn to

Pm
ν (cosh θ) = e

(
ν+ 1

2

)
θ

√
2π sinh θ

(m + 1 + ν)m− 1
2
[
1 + O

(
{m + 1 + ν}−1

)]
.

A similar computation leads to

Qm
ν (cosh θ)

= (−1)m
e−
(
ν+ 1

2

)
θ √
π√

2 sinh θ
(m + 1 + ν)m− 1

2
[
1 + O

(
{m + 1 + ν}−1

)]
.

10.7.5 Steepest descents and stationary phase

These are methods for obtaining asymptotics of integrals of the form

I (λ) =
∫

C
eλϕ(t) f (t) dt.

If the functions are holomorphic, one seeks to deform the contour so that Re ϕ
has one or more strict local maxima; the main contributions to the integral
come at these points.

Starting from the generating function for the Laguerre polynomials and
applying Cauchy’s theorem and a change of variables, we obtain an integral
of the form

L(α)n (x) = 1

2π
√

ni

∫
C

exp
{√

n
( x

t
− t
)}

f

(
t√
n

)
dt.

For x > 0 the main contributions come near the points s = ±i
√

x . Changing
variables near these points leads to integrals of the form∫ ∞

−∞
e−√

nxu2
du = (nx)−

1
4

∫ ∞

−∞
e−s2

ds =
√
π

(nx)
1
4
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and to asymptotics

L(α)n (x) = 1√
π

x− 1
2α− 1

4 n
1
2α− 1

4 e
1
2 x cos

(
2
√

nx − 1

2
απ − 1

4
π

)
+ O

(
n

1
2α− 3

4

)
.

If the phase function ϕ is purely imaginary, one expects the principal
contribution to the integral to come from points where ϕ′ = 0; elsewhere there
is cancellation due to rapid oscillation. In the integral

Jν(x) = 1

2π

∫
C

eix sin θ−iνθ dθ,

changes of variables near the critical points θ = ±π/2 lead to integrals of the
form ∫ ∞

−∞
e± 1

2 i xu2
du

and to asymptotics

Jν(x) =
√

2√
πx

cos

(
x − 1

2
νπ − 1

4
π

)
+ O

(
x−1
)

as x → +∞.

10.8 Remarks

Some asymptotic results for special functions are treated in detail by Olver
[222]. The book by Erdélyi [81] is a concise introduction to the general
methods. For more detail, see Bleistein and Handelsman [32], Copson [58],
van der Corput [293], and Wong [318]. Asymptotic expansions for solutions
of general ordinary differential equations are treated by Wasow [304]. We
have not touched on another powerful method for asymptotics, an adaptation
of the steepest descent method known as the Riemann–Hilbert method; see
Deift [67].

The method used in Sections 10.1–10.3 and in Exercise 10.12 goes back
at least to Carlini in 1817 [40]. In the mathematical literature it is some-
times called the Liouville or Liouville–Green approximation [120, 187]. In
the physics literature it is called the WKB or WKBJ approximation, refer-
ring to papers by Jeffreys [145], and by Wentzel [312], Kramers [165] and
Brillouin [35], who also developed connection formulas. The method was
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adapted by Steklov [268] and Uspensky [291] to obtain asymptotics of classi-
cal orthogonal polynomials.

The method of steepest descents is an adaptation of the method of Laplace
that we used to obtain the asymptotics of the Legendre functions. It was
developed by Cauchy and Riemann, and adapted by Debye [66] to study the
asymptotics of Bessel functions.

The method of stationary phase was developed by Stokes [275] and Kelvin
[152] for the asymptotic evaluation of integrals that occur in the study of fluid
mechanics.



11

Elliptic functions

Integrating certain functions of x that involve expressions
√

P(x), P a
quadratic polynomial, leads to trigonometric functions and their inverses. For
example, the sine function can be defined implicitly by inverting a definite
integral:

θ =
∫ sin θ

0

ds√
1 − s2

.

Integrating functions involving expressions
√

P(x), where P is a polynomial
of degree 3 or more, leads to new types of transcendental functions. When the
degree is 3 or 4 the functions are called elliptic functions. For example, the
Jacobi elliptic function sn (u) = sn (u, k) is defined implicitly by

u =
∫ sn u

0

ds√
(1 − s2)(1 − k2s2)

. (11.0.1)

As functions of a complex variable, the trigonometric functions are periodic
with a real period. Elliptic functions are doubly periodic, having two periods
whose ratio is not real.

This chapter begins with the question of integrating a function
R
(
z,

√
P(z)

)
, where R is a rational function of two variables and P is a

polynomial of degree 3 or 4 with no repeated roots. The general case can be
reduced to

P(z) = (1 − z2)(1 − k2z2).

We sketch Legendre’s reduction of the integration of R
(
z,

√
P(z)

)
to three

cases, called elliptic integrals of the first, second, and third kinds. The elliptic
integral of the first kind is (11.0.1), leading to the Jacobi elliptic function sn u
and then to the associated Jacobi elliptic functions cn u, dn u.

371
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Jacobi eventually developed a second approach to elliptic functions as
quotients of certain entire functions that just miss being doubly periodic, the
theta functions. After covering the basics of theta functions and their relation
to the Jacobi elliptic functions, we turn to the Weierstrass approach, which is
based on a single function ℘(u), doubly periodic with double poles.

11.1 Integration

Unlike differentiation, integration of relatively simple functions is not a more
or less mechanical process.

Any rational function (quotient of polynomials) can be integrated, in prin-
ciple, by factoring the denominator and using the partial fractions decompo-
sition. The result is a sum of a rational function and a logarithmic term. Any
function of the form

f (z) = p
(
z,

√
P(z)

)
q
(
z,

√
P(z)

) , (11.1.1)

where p and q are polynomials in two variables and P is a quadratic polyno-
mial, can be integrated by reducing it to a rational function. In fact, after a lin-
ear change of variable (possibly complex), we may assume that P(z) = 1 − z2.
Setting z = 2u/(1 + u2) converts the integrand to a rational function of u.

This process breaks down at the next degree of algebraic complexity: inte-
grating a function of the form (11.1.1) when P is a polynomial of degree 3 or
4 with no multiple roots. The functions obtained by integrating such rational
functions of z and

√
P(z) are known as elliptic functions. The terminology

stems from the fact that calculating the arc length of an ellipse, say as a function
of the angle in polar coordinates, leads to such an integral. The same is true for
another classical problem, calculating the arc length of a lemniscate (the locus
of points the product of whose distances from two fixed points at distance 2d
is equal to d2; Jacob Bernoulli [26]).

In this section we prove Legendre’s result [183], that any such integration
can be reduced to one of three basic forms:∫

dz√
P(z)

,

∫
z2 dz√

P(z)
,

∫
dz

(1 + az2)
√

P(z)
. (11.1.2)

The omitted steps in the proof are included as exercises.
The case of a polynomial of degree 3 can be reduced to that of a polynomial

of degree 4 by a linear fractional transformation, and conversely; see the
exercises for this and for subsequent statements for which no argument is
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supplied. Suppose that P has degree 4, with no multiple roots. Up to a linear
fractional transformation, we may assume for convenience that the roots are
±1 and ±1/k. Thus we may assume that

P(z) = (1 − z2)(1 − k2z2).
Suppose that r(z, w) is a rational function in two variables. It can be written
as the sum of two rational functions, one that is an even function of w and one
that is an odd function of w:

r(z, w) = 1

2
[r(z, w)+ r(z,−w)] + 1

2
[r(z, w)− r(z,−w)]

= r1
(
z, w2)+ r2

(
z, w2)w.

Therefore, in integrating r(z, w) with w2 = P(z), we may reduce to the case
when the integrand has the form r(z)

√
P(z), where r is a rational function

of z.
At the next step we decompose r into even and odd parts, so that we are

considering ∫
r1(z

2)
√

P(z) dz +
∫

r2(z
2)
√

P(z) z dz.

Since P is a function of z2, the substitution s = z2 converts the integral on the
right to the integral of a rational function of s and

√
Q(s) with Q quadratic. As

for the integral on the left, multiplying numerator and denominator by
√

P(z)
converts it to the form ∫

R(z2) dz√
P(z)

,

where R is a rational function. We use the partial fractions decomposition of
R to express the integral as a linear combination of integrals with integrands

Jn(z) = z2n

√
P(z)

, n = 0,±1,±2, . . . ;

Km(z) = Km(a, z) = 1

(1 + az2)m
√

P(z)
, a �= 0, m = 1, 2, 3, . . .

(This is a temporary notation, not to be confused with the notation for cylinder
functions.)

At the next step we show that integration of Jn+2, n ≥ 0, can be reduced
to that of Jn+1 and Jn . This leads recursively to the first two cases of (11.1.2).
The idea is to relate these terms via a derivative:
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[
z2n+1

√
P(z)

]′ = (2n + 1) z2n
√

P(z)+ 1

2
z2n+1 P ′(z)√

P(z)

= (2n + 1) z2n P(z)+ 1
2 z2n+1 P ′(z)√

P(z)

= (2n + 3)k2 z2n+4 − (2n + 2)(1 + k2)z2n+2 + (2n + 1)z2n

√
P(z)

= (2n + 3)k2 Jn+2 − (2n + 2)(1 + k2) Jn+1 + (2n + 1) Jn .

Therefore, up to a multiple of z2n+1√P(z), the integral of Jn+2 is a linear
combination of the integrals of Jn+1 and Jn . The same calculation can be used
to move indices upward if n< 0, leading again to J0 and J1.

A similar idea is used to reduce integration of Km+1 to integration of Kk ,
k ≤ m, together with J0 if m = 2 and also J1 if m = 1:

[
z
√

P(z)

(1 + az2)m

]′
=

√
P(z)

(1 + az2)m
+ z P ′(z)

2(1 + az2)m
√

P(z)
− 2maz2√P(z)

(1 + az2)m+1

= P(z)(1 + az2)+ 1
2 z P ′(z)(1 + az2)− 2amz2 P(z)

(1 + az2)m+1
√

P(z)
.

(11.1.3)

The numerator in the last expression is a polynomial in z2 of degree 3. Writing
it as a sum of powers of 1 + az2, we may rewrite the last expression as a
combination of Km+1, Km , Km−1, and Km−2 if m ≥ 3. For m = 2 we have
K3, K2, K1, and J0, and for m = 1 we have K2, K1, J0, and J1. This completes
the proof of Legendre’s result.

This result leads to the following classification: the elliptic integral of the
first kind

F(z) = F(k, z) =
∫ z

0

dζ√
(1 − ζ 2)(1 − k2ζ 2)

; (11.1.4)

the elliptic integral of the second kind

E(z) = E(k, z) =
∫ z

0

√
1 − k2ζ 2

1 − ζ 2
dζ ; (11.1.5)
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the elliptic integral of the third kind

�(a, z) = �(a, k, z) =
∫ z

0

dζ

(1 + aζ 2)
√
(1 − ζ 2)(1 − k2ζ 2)

. (11.1.6)

Note that the integrand in (11.1.5) is just J0(ζ )− k2 J1(ζ ).

11.2 Elliptic integrals

We begin with the properties of the elliptic integral of the first kind

F(z) = F(k, z) =
∫ z

0

dζ√
(1 − ζ 2)(1 − k2ζ 2)

. (11.2.1)

The parameter k is called the modulus. For convenience we assume that
0< k< 1; the various formulas to follow extend by analytic continuation to
all values k �= ±1.

Since the integrand is multiple-valued, we shall consider the integral to be
taken over paths in the Riemann surface of the function

√
(1 − z2)(1 − k2z2).

This surface can be visualized as two copies of the complex plane with slits
on the intervals [−1/k,−1] and [1, 1/k], the two copies being joined across
the slits. In fact we adjoin the point at infinity to each copy of the plane. The
result is two copies of the Riemann sphere joined across the slits. The resulting
surface is a torus.

The function
√
(1 − z2)(1 − k2z2) is single-valued and holomorphic on

each slit sphere; we take the value at z = 0 to be 1 on the “upper” sphere
and −1 on the “lower” sphere. The function F is multiple-valued, the value
depending on the path taken in the Riemann surface. The integral converges
as the upper limit goes to infinity, so we also allow curves that pass through
infinity in one or both spheres.

Up to homotopy (continuous deformation on the Riemann surface), two
paths between the same two points can differ by a certain number of circuits
from −1 to 1 through the upper (resp. lower) sphere and back to −1 through
the lower (resp. upper) sphere, or by a certain number of circuits around one
or both of the slits. The value of the integral does not change under homotopy.
Taking symmetries into account, this means that determinations of F can differ
by integer multiples of 4K , where

K =
∫ 1

0

dz√
(1 − z2)(1 − k2z2)

, (11.2.2)
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or by integer multiples of 2i K ′, where

K ′ =
∫ 1/k

1

dz√
(z2 − 1)(1 − k2z2)

. (11.2.3)

Here the integrals are taken along line segments in the upper sphere, so that K
and K ′ are positive. In fact, 4K corresponds to integrating from −1 to 1 in the
upper sphere and returning to −1 in the lower sphere, while 2i K ′ corresponds
to integrating from 1 to 1/k along the upper edge of the slit in the upper sphere
and back along the lower edge of the slit.

The change of variables

z = 1

k

√
1 − k′2ζ 2

in (11.2.3) shows that the constants K ′ and K are related by

K ′ =
∫ 1

0

dζ√
(1 − ζ 2)(1 − k′2ζ 2)

= K (k′),

where k′ = √
1 − k2 is called the complementary modulus. Because of these

considerations, we consider values of F to be determined only up to the
addition of elements of the period lattice

� = {4mK + 2inK ′, m, n = 0,±1,±2, . . .
}
.

It follows from the definitions that

F(k, 1) = K , F(k, 1/k) = K + i K ′.

Integrating along line segments from 0 in the upper sphere shows that

F(k,−z) = −F(k, z).

Integrating from 0 in the upper sphere to 0 in the lower sphere and then to z in
the lower sphere shows that

F(k, z−) = 2K − F(k, z+), (11.2.4)

where z+ and z− refer to representatives of z in the upper and lower spheres,
respectively.

Integrating from 0 to 1/k in the upper sphere and then to 0 in the lower
sphere and from there to z in the lower sphere shows that

F(k, z−) = 2K + 2i K ′ − F(k, z+). (11.2.5)



11.2 Elliptic integrals 377

Integrating along the positive imaginary axis in the upper sphere gives

F(k,∞) = i
∫ ∞

0

ds√
(1 + s2)(1 + k2s2)

. (11.2.6)

The change of variables

s = ζ√
1 − ζ 2

in the integral in (11.2.6) shows that

F(k,∞) = i K (k′) = i K ′. (11.2.7)

Three classical transformations of F can be accomplished by changes of
variables. Let k1 = (1 − k′)/(1 + k′). The change of variables

ζ = ϕ(t)≡ (1 + k′)t

√
1 − t2

1 − k2t2

in the integrand for F(k1, ·) leads to the identity

F
(
k1, ϕ(z)

) =
∫ ϕ(z)

0

dζ√
(1 − ζ 2)(1 − k2

1ζ
2)

= (1 + k′)
∫ z

0

dt√
(1 − t2)(1 − k2t2)

.

This is Landen’s transformation [173]:

F(k1, z1) = (1 + k′) F(k, z); (11.2.8)

k1 = 1 − k′

1 + k′ , z1 = (1 + k′)z

√
1 − z2

1 − k2z2
.

Now take k1 = 2
√

k/(1 + k). Then the change of variables

ζ = ϕ(t)= (1 + k)t

1 + kt2

in the integrand for F(k1, ·) leads to the identity

F(k1, z1) = (1 + k) F(k, z); k1 = 2
√

k

1 + k
, z1 = (1 + k)z

1 + kz2
. (11.2.9)

This is known as Gauss’s transformation [104] or the descending Landen
transformation.



378 Elliptic functions

These two transformations lend themselves to computation. To use (11.2.9),
let k2 = 2

√
k1/(1 + k1); then

k′
2 = (1 − k1)/(1 + k1) =

(
k′

1

)2(
1 + k1

)2 .
Continuing, let kn+1 = 2

√
kn/(1 + kn). So long as 0< k1< 1 it follows that

the sequence {k′
n} decreases rapidly to zero, so kn → 1. If, for example,

|z1|< 1, the corresponding sequence zn will converge rapidly to a limit Z ,
giving

F(k1, z1) =
∞∏

n=1

(1 + kn)
−1 F(1, Z),

where

F(1, z)≡ lim
k→1

F(k, z) = tanh−1 z. (11.2.10)

Similar considerations apply to (11.2.8) and lead to an evaluation involving

F(0, z)≡ lim
k→0

F(k, z) = sin−1 z. (11.2.11)

The change of variables

ζ = is√
1 − s2

in the integrand for F(k, ·) leads to the identity

F(k, i x) = i
∫ x/

√
1+x2

0

ds√
(1 − s2)(1 − k′2s2)

.

This is Jacobi’s imaginary transformation:

F(k, i x) = i F

(
k′, x√

1 + x2

)
,

or equivalently

i F(k, y) = F

(
k′, iy√

1 − y2

)
. (11.2.12)

Our final result concerning the function F is Euler’s addition formula [87]:

F(k, x)+ F(k, y) = F

(
k,

x
√

P(y)+ y
√

P(x)

1 − k2x2 y2

)
, (11.2.13)
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where as before P(x) = (1 − x2)(1 − k2x2). To prove (11.2.13) it is enough
to assume that 0< x, y< 1 and that we have chosen a parametrized curve
{(x(t), y(t))} with y(0) = 0 and x(T ) = x , y(T ) = y, such that

F
(
k, x(t)

)+ F
(
k, y(t)

) = F(k,C1), constant. (11.2.14)

Differentiating with respect to t gives

x ′
√

P(x)
+ y′

√
P(y)

= 0.

(We are abusing notation and writing x and y for x(t) and y(t).) We follow an
argument of Darboux. After reparametrizing, we may assume

x ′(t) =
√

P
(
x(t)

)
, y′(t) = −

√
P
(
y(t)

)
. (11.2.15)

As often, it is helpful to consider the Wronskian W = xy′ − yx ′. Differentia-
ting (11.2.15) gives x ′′ and y′′ as functions of x and y and leads to

W ′ = xy′′ − yx ′′ = 2k2xy
(
y2 − x2).

Using (11.2.15) again,

W (xy)′ = (xy′)2 − (yx ′)2 = (x2 − y2)(1 − k2x2 y2).
Thus

W ′

W
= −2k2(xy)(xy)′

1 − k2x2 y2
=
[
log(1 − k2x2 y2)

]′
,

so

x(t)
√

P(y(t))+ y(t)
√

P(x(t))

1 − k2x(t)2 y(t)2
= C2, constant. (11.2.16)

Taking t = 0 in (11.2.14) and (11.2.16) shows that

C1 = x(0) = C2.

This proves (11.2.13). The case x = y is known as Fagnano’s duplication for-
mula [93]. Fagnano’s formula inspired Euler to find the full addition formula;
see Ayoub [16], D’Antonio [61].

The definite integrals over the unit interval

K (k) =
∫ 1

0

dt√
(1 − t2)(1 − k2t2)

, E(k) =
∫ 1

0

√
1 − k2t2 dt√

1 − t2
,
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are known as the complete elliptic integrals of the first and second kind,
respectively. They can be expressed as hypergeometric functions:

K (k) = π

2
F

(
1

2
,

1

2
, 1; k2

)
, E(k) = π

2
F

(
−1

2
,

1

2
, 1; k2

)
; (11.2.17)

see Exercise 8.11 of Chapter 8.

11.3 Jacobi elliptic functions

The integral defining F is analogous to the simpler integral∫ x

0

dt√
1 − t2

.

This is also multiple-valued: values differ by integer multiples of 2π . One
obtains a single-valued entire function by taking the inverse:

u =
∫ sin u

0

dt√
1 − t2

.

Jacobi defined the function sn u = sn (u, k) by

u =
∫ sn u

0

dζ√
(1 − ζ 2)(1 − k2ζ 2)

. (11.3.1)

It follows from the discussion in Section 11.2 that sn is doubly periodic, with
a real period 4K and a period 2i K ′:

sn (u + 4K ) = sn (u + 2i K ′) = sn u.

Moreover, sn is odd: sn (−u) = −sn u. It follows that sn is odd around
z = 2K and around z = i K ′. The identity (11.2.4) implies that sn is even
around z = K . It follows from this, in turn, that sn is even around z =
K + i K ′. Note that a function f is even (resp. odd) around a point z = a if
and only if f (z + 2a) = f (−z) (resp. f (z + 2a) = − f (−z)).

In summary:

sn u = sn (u + 4K ) = sn (u + 2i K ′)

= sn (2K − u) = sn (2K + 2i K ′ − u)

= −sn (−u) = −sn (4K − u) = −sn (2i K ′ − u). (11.3.2)
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Because of the periodicity, it is enough to compute values of sn u for u in
the period rectangle

� = {u | 0 ≤ Re u< 4K , 0 ≤ Im u< 2K ′}. (11.3.3)

The various calculations of values of F give

sn (0) = sn (2K ) = 0; (11.3.4)

sn (K ) = −sn (3K ) = 1;
sn (i K ′) = −sn (2K + i K ′) = ∞;

sn (K + i K ′) = −sn (3K + i K ′) = k−1.

It follows from (11.2.6) and (11.2.7) that as t → +∞,

i K ′ − F(i t) ∼ i
∫ ∞

t

ds

ks2
= i

kt
,

or, setting ε = −1/kt ,

sn (i K ′ + iε) ∼ 1

ikε
.

Therefore sn has a simple pole at u = i K ′ with residue 1/k. Consequently, it
also has a simple pole at u = 2K + i K ′ with residue −1/k.

Differentiating (11.3.1) gives

sn ′u =
√

1 − sn 2u
√

1 − k2sn 2u. (11.3.5)

This leads naturally to the introduction of two related functions

cn u =
√

1 − sn 2u, (11.3.6)

dn u =
√

1 − k2sn 2u.

The three functions sn, cn, and dn are the Jacobi elliptic functions.
The only zeros of 1 − sn 2 (resp. 1 − k2sn 2) in the period rectangle (11.3.3)

are at K and 3K (resp. K + i K ′ and 3K + i K ′). These are double zeros, so
we may choose branches of the square roots that are holomorphic near these
points. We choose the branches with value 1 at u = 0. The resulting functions
are, like sn itself, meromorphic in the complex plane.

Since sn is even or odd around each of the points 0, K , 2K , i K ′, and
K + i K ′, it follows that the functions cn and dn are each even or odd around
each of these points. Since neither function vanishes at u = 0 or u = 2K , they
are even around 0 and 2K . Similarly, cn is even around K + i K ′ and dn is
even around K . Since cn has a simple zero at u = K and a simple pole at
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u = i K ′, it is odd around these points. Similarly, dn is odd around i K ′ and
K + i K ′. It follows that cn has periods 4K and 2K + 2i K ′, while dn has
periods 2K and 4i K ′. Therefore cn is even around u = 2K and dn is even
around u = 2i K ′. (See the exercises.)

Combining these observations with the computations (11.3.4), we obtain
the following:

cn u = cn (u + 4K ) = cn (u + 2K + 2i K ′)

= cn (−u) = −cn (2K − u) = −cn (2i K ′ − u); (11.3.7)

dn u = dn (u + 2K ) = dn (u + 4i K ′) = dn (2K − u)

= dn (−u) = −dn (2i K ′ − u) = −dn (2K + 2i K ′ − u).

We have established most of the values in the table

0 K 2K 3K i K ′ K + i K ′ 2K + i K ′ 3K + i K ′

sn 0 1 0 −1 ∞ k−1 ∞ −k−1

cn 1 0 −1 0 ∞ −ik′k−1 ∞ ik′k−1

dn 1 k′ 1 k′ ∞ 0 ∞ 0

It follows from (11.3.5) and (11.3.6) that

sn ′(u) = cn u dn u; (11.3.8)

cn ′(u) = −sn u dn u;
dn ′(u) = −k2sn u cn u.

Since

sn u =
√

1 − cn 2u = 1

k

√
1 − dn 2u

and

dn u =
√

1 − k2 + k2cn 2u; cn u = 1

k

√
k2 − 1 + dn 2u,

it follows that cn and dn can be defined implicitly by the integrals

u =
∫ 1

cn u

dζ√
(1 − ζ 2)(1 − k2 + k2ζ 2)

; (11.3.9)

u =
∫ 1

dn u

dζ√
(1 − ζ 2)(ζ 2 − k′2)

.
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From the point of view of the Jacobi elliptic functions, the Landen transfor-
mation, the Gauss transformation, Jacobi’s imaginary transformation, and the
addition formula take the following forms.

The identity (11.2.8) is equivalent to

sn
([1 + k′]u, k1

) = (1 + k′) sn (u, k) cn (u, k)

dn (u, k)
; k1 = 1 − k′

1 + k′ . (11.3.10)

It follows that

cn
([1 + k′]u, k1

) = (1 + k′) dn 2(u, k)− k′

k2 dn (u, k)
; (11.3.11)

dn
([1 + k′]u, k1

) = (1 − k′) dn 2(u, k)+ k′

k2 dn (u, k)
.

The identity (11.2.9) is equivalent to

sn
([1 + k]u, k1

) = (1 + k) sn (u, k)

1 + k sn 2(u, k)
; k1 = 2

√
k

1 + k
. (11.3.12)

It follows that

cn
([1 + k]u, k1

) = cn (u, k) dn (u, k)

1 + k sn 2(u, k)
; (11.3.13)

dn
([1 + k]u, k1

) = 1 − k sn 2(u, k)

1 + k sn 2(u, k)
.

The identity (11.2.12) is equivalent to

sn (iu, k) = i
sn (u, k′)
cn (u, k′)

. (11.3.14)

It follows that

cn (iu, k) = 1

cn (u, k′)
; (11.3.15)

dn (iu, k) = dn (u, k′)
cn (u.k′)

.

The addition formula (11.2.13) is equivalent to

sn (u + v) = sn u cn v dn v + sn v cn u dn u

1 − k2sn 2u sn 2v
. (11.3.16)
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It follows that

cn (u + v) = cn u cn v − sn u sn v dn u dn v

1 − k2sn 2u sn 2v
; (11.3.17)

dn (u + v) = dn u dn v − k2sn u sn v cn u cn v

1 − k2sn 2u sn 2v
.

These formulas imply the product formulas

sn (u + v) sn (u − v) = sn 2u − sn 2v

1 − k2sn 2u sn 2v
; (11.3.18)

cn (u + v) cn (u − v) = 1 − sn 2u − sn 2v + k2sn 2u sn 2v

1 − k2sn 2u sn 2v
.

A commonly used notation for reciprocals and quotients of the Jacobi
elliptic functions is due to Glaisher:

ns = 1

sn
, nc = 1

cn
, nd = 1

dn
;

sc = sn

cn
, sd = sn

dn
, cd = cn

dn
;

cs = cn

sn
, ds = dn

sn
, dc = dn

cn
.

To complete this section we note that the change of variables ζ = sn s
converts the elliptic integrals of the first, second, and third kinds, (11.1.4),
(11.1.5), (11.1.6) to

F(z) =
∫ sn −1z

0
ds = sn −1z; (11.3.19)

E(z) =
∫ sn −1z

0

(
1 − k2sn 2s

)
ds =

∫ sn −1z

0
dn 2(s) ds;

�(a, z) =
∫ sn −1z

0

ds

1 + a sn 2s
.

11.4 Theta functions

The Jacobi elliptic functions are examples of the general notion of an elliptic
function: a function f that is meromorphic in the complex plane and doubly
periodic:
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f (z) = f (z + 2ω1) = f (z + 2ω2),

with periods 2ω j �= 0, such that ω2/ω1 is not real. Such a function is deter-
mined by its values in any period parallelogram

�a = {z | z = a + 2sω1 + 2tω2, 0 ≤ s, t < 1
}
.

If f is entire, then it is bounded on a period parallelogram, therefore bounded
on the plane, and therefore constant, by Liouville’s theorem. Otherwise it has
at least two poles, counting multiplicity, in each�a . To see this, note first that
by changing a slightly we may assume that there is no pole on the boundary.
Periodicity implies that the integral over the boundary Ca of �a vanishes:∫

Ca

f (z) dz = 0.

Therefore the sum of the residues is zero, so there are at least two simple poles
or one multiple pole.

A non-constant elliptic function takes each complex value the same number
of times in each �a . To see this, suppose that f does not take the value c on
the boundary and has no poles on the boundary. Again, periodicity implies that

1

2π i

∫
Ca

f ′(z)
f (z)− c

dz = 0.

But the integral is equal to the number of times (counting multiplicity) that f
takes the value c in �a , minus the number of poles (counting multiplicity) of
f in �a . By continuity this number is independent of c, and by varying a we
may ensure that any given value c is not taken on the boundary. The Jacobi
elliptic functions illustrate this. For example, in the period rectangle (11.3.3)
sn takes the value zero twice, takes the values 1 and −1 once each but with
multiplicity two, and has two simple poles (c = ∞).

One consequence of the Weierstrass factorization theorem is that any func-
tion meromorphic in the plane is a quotient of entire functions. Since a doubly
periodic entire function is constant, a non-constant elliptic function cannot be
the quotient of doubly periodic entire functions. However, it can be expressed
as a quotient of entire functions that are “nearly” periodic. The basic such
function is a theta function.

Up to a linear transformation of the independent variable, we may consider
the periods of a doubly periodic function to be 1 and τ , with Im τ > 0. Thus
the basic period parallelogram is

� = {z | z = s + tτ, 0 ≤ s, t < 1
}
, (11.4.1)
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with oriented boundary �. Following Jacobi, we look for an entire function �
that has period 1 and comes close to having period τ :

�(z + 1) = �(z); �(z + τ) = a(z)�(z),

where a is entire, nonzero, and has period 1. This amounts to requiring that
a be a constant times an integer power of e2iπ z . If � has no zeros on �, the
number of zeros in� is

1

2π i

∫
�

�′(ζ )
�(ζ )

dζ = 1

2π i

{∫ 1

0
+
∫ 1+τ

1
+
∫ τ

1+τ
+
∫ 0

τ

}
�′(ζ )
�(ζ )

dζ

= 1

2π i

{∫ 1

0
−
∫ 1+τ

τ

+
∫ 1+τ

1
−
∫ τ

0

}
�′(ζ )
�(ζ )

dζ

= − 1

2π i

∫ 1

0

a′(s)
a(s)

ds.

Thus the simplest choice is a(z) = c e−2π i z , which implies a single zero in
each period parallelogram. With this choice we would have

�(z + 1) = �(z); �(z + τ) = c e−2iπ z �(z). (11.4.2)

To construct such a function, we note that for � to have period 1, it must have
the form

�(z) =
∞∑

n=−∞
an p(z)2n, p(z) = eiπ z .

Now p(z + τ) = q p(z) where q = q(τ ) = eiπτ , so the second equation in
(11.4.2) implies

an q2n = c an+1. (11.4.3)

Taking c = −1 and a0 = 1, we find that �(z) should be given by

�(z) =
∞∑

n=−∞
(−1)n p2n qn(n−1), p = eiπ z, q = eiπτ . (11.4.4)

The assumption Im τ > 0 implies that this series converges very rapidly,
uniformly on bounded sets. Therefore � is an entire function and

�(z + 1) = �(z); �(z + τ) = −e−2π i z�(z). (11.4.5)
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It follows from (11.4.4) that

�(0) =
∞∑

n=−∞
(−1)n qn(n−1) (11.4.6)

and replacing n by −m for n ≤ 0 shows that �(0) = 0. By construction, �
has no other zeros in �. The properties (11.4.5) and �(0) = 0 characterize �
up to a constant: if � were another such entire function, then �/� would be a
doubly periodic entire function, thus constant.

Suppose that an elliptic function f with periods 1 and τ has zeros
{a1, a2, . . . , ak} and poles {b1, b2, . . . , bk} in �, repeated according to mul-
tiplicity. If any lie on the boundary of�, we may translate slightly so that they
lie in the interior. The residue theorem gives

1

2π i

∫
�

z f ′(z)
f (z)

dz = (a1 + a2 + · · · + ak)− (b1 + b2 + · · · + bk).

Because of periodicity,

1

i

∫
�

z f ′(z)
f (z)

dz =
[

1

i

∫ 1+τ

1

f ′(z) dz

f (z)

]
+ τ

[
1

i

∫ τ

1+τ
f ′(z) dz

f (z)

]
.

Each integral in brackets is the change in the argument of f along a segment.
Periodicity implies that the change is an integer multiple of 2π . Therefore

(a1 + a2 + · · · + ak)− (b1 + b2 + · · · + bk)∈�, (11.4.7)

where � is the period lattice

� = {m + nτ, m, n = 0,±1,±2, . . .
}
.

Conversely, suppose that the disjoint sets of points {a j } and {b j } in � satisfy
condition (11.4.7). Then there is an elliptic function with precisely these zeros
and poles in� [1] and it can be represented as an exponential times a quotient
of translates of � [140]. In fact, let

(a1 + a2 + · · · + ak)− (b1 + b2 + · · · + bk) = m + nτ.

(Since the a j and b j belong to�, this condition implies that k> 1.) Then

f (z) = e−2nπ i z �(z − a1)�(z − a2) · · ·�(z − ak)

�(z − b1)�(z − b2) · · ·�(z − bk)
(11.4.8)

is the desired function. It is unique up to a constant factor.
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In addition to quotients like (11.4.8), it is convenient to represent elliptic
functions by using the functions

Z(z) = �′(z)
�(z)

, Z ′(z) = �′′(z)
�(z)

− Z(z)2.

It follows from (11.4.5) that

Z(z + τ) = Z(z)− 2π i,

so Z ′ and linear combinations of translates

c1 Z(z − b1)+ c2 Z(z − b2)+ · · · + cn Z(z − bn), c1 + c2 + · · · + cn = 0

have period τ and thus are elliptic functions. Since these are derivatives, they
can be integrated immediately (in terms of functions of � and its translates
and derivatives). Note that Z has a simple pole at each lattice point, while for
m ≥ 1 the derivative Z (m) is an elliptic function with a pole of order m + 1 at
each lattice point.

This leads to an integration procedure for any elliptic function f . We may
suppose that f has periods 1 and τ . If f has a pole of order k ≥ 2 at z = b, then
there is a constant c such that f (z)− c Z (k−1)(z − b) has a pole of order < k
at z = b. Thus the integration problem can be reduced to the case of functions
f that have only simple poles. Suppose that the poles in� are b1, . . . , bn , with
residues β1, . . . , βn . We know that

∑
β j = 0, so there is a linear combination

of translates of Z that has the same poles and residues in� as f . It follows that
the difference of f and this linear combination of translates of Z is constant.

The function� has exactly one zero in the period parallelogram�, at z = 0.
This fact and the properties (11.4.5) imply that the zeros of� are precisely the
points of the lattice �. It follows that

�

(
z + 1

2
τ

)
= 0

if and only if z = m + (n − 1
2

)
τ , for some integers m and n, or equivalently

p2q2n−1 = 1 for some integer n. The product

∞∏
n=1

(
1 − p2q2n−1

) (
1 − p−2q2n−1

)
, p = p(z),

converges for all z and has the same zeros as �
(
z + 1

2τ
)
, so

�

(
z + 1

2
τ

)
= c(z, τ )

∞∏
n=1

(
1 − p2q2n−1

) (
1 − p−2q2n−1

)
, (11.4.9)
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where c(z, τ ) is an entire function of z. It can be shown that c(z, τ ) = G(τ )
is independent of z and can be evaluated as a product involving powers of
q = eiπτ (see the exercises). The result is one version of Jacobi’s triple product
formula

�

(
z + 1

2
τ

)
=

∞∏
n=1

(
1 − q2n

) (
1 − p2q2n−1

) (
1 − p−2q2n−1

)
.

(11.4.10)
This implies another version

�(z) =
∞∏

n=1

(
1 − q2n

) (
1 − p2q2n−2

) (
1 − p−2q2n

)
. (11.4.11)

11.5 Jacobi theta functions and integration

According to the results of the preceding section, the Jacobi elliptic functions
can be expressed as quotients of translates of �, after a linear change of
variables. As we shall see, it is convenient for this purpose to introduce the
Jacobi theta functions. These are normalized versions of � and of translations
of � by half-periods:

θ1(z) = i
q

1
4

p
�(z) = i

∞∑
n=−∞

(−1)n p2n−1q
(

n− 1
2

)2

; (11.5.1)

θ2(z) = q
1
4

p
�

(
z + 1

2

)
=

∞∑
n=−∞

p2n−1q
(

n− 1
2

)2

;

θ3(z) = �

(
z + 1

2
+ 1

2
τ

)
=

∞∑
n=−∞

p2nqn2;

θ4(z) = �

(
z + 1

2
τ

)
=

∞∑
n=−∞

(−1)n p2nqn2
.

(There are various other notations and normalizations; see Whittaker and
Watson [315].) Note that because of the factor p−1, θ1 and θ2 are periodic
with period 2, not 1. Also, θ1 is an odd function of z, while θ2, θ3, and θ4 are
even functions of z.
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The triple product formula (11.4.10) implies corresponding formulas
for the θ j :

θ1(z) = 2q
1
4 sin(π z)

∞∏
n=1

(
1 − q2n

) (
1 − p2q2n

) (
1 − p−2q2n

)
;

θ2(z) = 2q
1
4 cos(π z)

∞∏
n=1

(
1 − q2n

) (
1 + p2q2n

) (
1 + p−2q2n

)
;

θ3(z) =
∞∏

n=1

(
1 − q2n

) (
1 + p2q2n−1

) (
1 + p−2q2n−1

)
;

θ4(z) =
∞∏

n=1

(
1 − q2n

) (
1 − p2q2n−1

) (
1 − p−2q2n−1

)
.

The identities (11.4.4) and (11.5.1) lead to the following table of values:

0 1
2

1
2τ

1
2 + 1

2τ

θ1 0
∑

q(n− 1
2 )

2
iq− 1

4
∑
(−1)nqn2

q− 1
4
∑

qn2

θ2
∑

q(n− 1
2 )

2
0 q−1/4∑ qn2 −iq− 1

4
∑
(−1)nqn2

θ3
∑

qn2 ∑
(−1)nqn2

q− 1
4
∑

q(n+ 1
2 )

2
0

θ4
∑
(−1)nqn2 ∑

qn2
0 q− 1

4
∑

q(n− 1
2 )

2

Consider now the Jacobi elliptic functions with modulus k, and let τ =
i K ′/K . The function

θ1(u/2K )

θ4(u/2K )

is meromorphic as a function of u with simple zeros at u = 0 and u = 2K and
simple poles at u = i K ′ and u = 2K + i K ′, and has periods 4K and 2i K ′. It
follows that it is a multiple of sn u, and conversely:

sn u = C
θ1(u/2K )

θ4(u/2K )
.
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Each side of this equation may be evaluated at u = K , and this determines the
constant C . Similar arguments apply to cn and dn. The results are:

sn u = 1√
k

θ1(u/2K )

θ4(u/2K )
; (11.5.2)

cn u =
√

k′

k

θ2(u/2K )

θ4(u/2K )
;

dn u = √
k′ θ3(u/2K )

θ4(u/2K )
.

Jacobi obtained a large number of formulas relating products of translations
of theta functions, having a form like

�(z + w)�(z − w) = c1�(z + a1)�(z + a2)�(w + a3)�(w + a4)

+ c2�(w + a1)�(w + a2)�(z + a3)�(z + a4),

where the a j belong to the set
{
0, 1

2 ,
1
2τ,

1
2 + 1

2τ
}
. The constants are chosen so

that the quotient of the right side by the left side is a doubly periodic function
of z, for any given w, and the zeros of the denominator are cancelled by the
zeros of the numerator. Extensive lists are given in Whittaker and Watson [315]
and Rainville [236].

A deeper result is Jacobi’s remarkable identity

θ ′
1 = π θ2θ3θ4. (11.5.3)

(The factor π is due to the normalization we have chosen here.) See [12, 315].
The normalizations of the Jacobi theta functions have the consequence that

each one has the form

θ(z, τ ) =
∞∑

n=−∞
an e2(n+c)iπ z e(n+c)2iπτ ,

for some value of c, and therefore is a solution of the partial differential
equation

θzz(z, τ ) = 4π iθτ (z, τ ).

If we take as variables x = z and t = −iτ/4π , this is the heat equation

ψt = ψxx . (11.5.4)

The theta functions are periodic in x . Periodic solutions of the heat equation
can be obtained in two different ways, a fact that provides an approach to
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obtaining Jacobi’s imaginary transformation (11.2.12) or (11.3.14), (11.3.15)
in terms of theta functions.

The fundamental solution for the heat equation on the line, i.e. the solution
ψ of (11.5.4) that has the property

lim
t→0+

∫ ∞

−∞
ψ(x − y, t) f (y) dy = f (x) (11.5.5)

for every bounded, continuous function f is

ψ(x, t) = e−x2/4t

√
4π t

; (11.5.6)

see the exercises. One way to obtain the fundamental solution for the periodic
problem is to periodize ψ , which gives

∞∑
n=−∞

e−(x+n)2/4t

√
4π t

= e−x2/4t

√
4π t

∞∑
n=−∞

e−nx/2t e−n2/4t . (11.5.7)

A second way to find the periodic fundamental solution is to expand in Fourier
series (or to separate variables), which leads to

∞∑
n=−∞

e2niπx e−4n2π2t ; (11.5.8)

see the exercises.
Let

z = x, τ = 4iπ t, z1 = i x

4π t
= − z

τ
,

τ1 = i

4π t
= − 1

τ
, q = eiπτ , q1 = eiπτ1 .

Then the equality of the two expressions (11.5.7) and (11.5.8) for the periodic
fundamental solution takes the form

∞∑
n=−∞

p(z)2nqn2 = e−iπ z2/τ

√−iτ

∞∑
n=−∞

p(z1)
2nqn2

1 ,

or

θ3(z|τ) = e−iπ z2/τ

√−iτ
θ3

(
− z

τ

∣∣∣− 1

τ

)
, (11.5.9)

where the notation makes explicit the dependence on the parameter τ .
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Finally, let us return to the integration problem of Section 11.1. We have
seen that the integrals to be evaluated are

F(z) = sn −1z;

E(z) =
∫ sn −1z

0
dn 2(ζ ) dζ;

�(a, z) =
∫ sn −1z

0

dζ

1 + a sn 2ζ
= sn −1z − a

∫ sn −1z

0

sn 2ζ dζ

1 + a sn 2ζ
.

It follows from previous results that the residue of dn at u = i K ′ is −i . Also,
dn is odd around i K ′, so dn 2 is even around i K ′ and it follows that

dn 2(i K ′ + u) = − 1

u2
+ O(1).

The adapted theta function θ(u) is defined by

θ(u) = θ4(u/2K ) = �
(
(u + i K ′)/2K

)
.

Jacobi’s Z function is

Z(u) = θ ′(u)
θ(u)

.

The residue at i K ′ is 1, so

Z ′(i K ′ + u) = − 1

u2
+ O(1).

Since Z ′ is elliptic and its only poles are at the lattice points, it follows that
dn 2 − Z ′ is a constant, which is customarily written E/K . Thus

E(z) = θ ′(sn −1z
)

θ
(
sn −1z

) + E

K
sn −1z.

Since sn −11 = K and θ ′(K ) = 0, it follows that the constant E is

E = E(1) =
∫ 1

0

√
1 − k2ζ 2

1 − ζ 2
dζ,

the complete elliptic integral of the second kind.
For the elliptic integral of the third kind we use the addition formula

Z(u)+ Z(v)− Z(u + v) = k2sn u sn v sn (u + v). (11.5.10)

This is proved in the usual way, by establishing that the two sides are elliptic
functions of u with the same poles and residues, and that they agree at u = 0.
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A consequence of this and (11.3.16) is that

Z(u − v)− Z(u + v)+ 2Z(v)

= k2sn u sn v [sn (u + v)+ sn (u − v)]

= 2k2 sn v cn v dn v sn 2u

1 − k2sn 2v sn 2u
. (11.5.11)

Finding �(a, z) reduces to finding∫
sn 2u

1 + a sn 2u
du.

If a = 0, −1, ∞, or −k2 the integral can be reduced to integrals of the first
and second kinds. Otherwise we choose b such that a = −k2sn 2b. Up to
multiplication by a constant, we are left with∫ sn −1z

0
2k2 sn b cn b dn b sn 2u

1 − k2sn 2b sn 2u
du

=
∫ sn −1z

0
[Z(u − b)− Z(u + b)+ 2Z(b)] du

= log

[
θ(w − b)

θ(w + b)

]
+ 2Z(b) w, w = sn −1z.

11.6 Weierstrass elliptic functions

We return to the general notion of an elliptic function: a meromorphic function
f with periods 2ω1, 2ω2, where we assume that Im (ω2/ω1) > 0. As noted
earlier, unless f is constant it has at least two poles, counting multiplicity, in
the parallelogram

� = �(ω1, ω2) = {u| u = 2s ω1 + 2t ω2, 0 ≤ s, t < 1
}
.

Thus in some sense the simplest such function would have a double pole at
each point of the period lattice

� = �(ω1, ω2)=
{
2n1ω1 + 2n2ω2| n1, n2 = 0,±1,±2, . . .

}
,

and no other poles. A consequence is that for any complex c, f (u) = c would
have exactly two solutions u, counting multiplicity, in�.
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We show below that there is such a function, the Weierstrass ℘ function
℘(u) = ℘(u,�), which is even and has the property

℘(u) = ℘(u, ω1, ω2) = 1

u2
+ O

(
u2) as u → 0. (11.6.1)

This condition determines ℘ uniquely, since the difference of two such func-
tions would be a bounded entire function that vanishes at the origin. The
function ℘ satisfies a differential equation analogous to the equation (11.3.5)
satisfied by Jacobi’s function sn . The property (11.6.1) implies that (℘′)2 −
4℘3 is an even elliptic function with at most a double pole at u = 0, so there
are constants g2 and g3 such that

(℘′)2 = 4℘3 − g2℘ − g3. (11.6.2)

Let ω3 = −ω1 − ω2. Since ℘ is even with period 2ω j , j = 1, 2, 3, it is even
around ω j , and therefore ℘′(ω j ) = 0, and it follows from this and (11.6.2) that
e j = ℘(ω j ) is a root of the cubic

Q(t) = 4t3 − g2t − g3. (11.6.3)

The function ℘(u)− e j has a double root at ω j , j = 1, 2 and at u = −ω3 =
ω1 + ω2, j = 3. Since each of these points is in �, it follows that the e j are
distinct. Therefore, they are simple roots of Q. It follows that

e1 + e2 + e3 = 0;
4(e2e3 + e3e1 + e1e2) = −g2;

4e1e2e3 = g3.

Any elliptic function f with periods 2ω1, 2ω2 can be expressed as a rational
function of ℘ and the derivative ℘′. To see this, suppose first that f is even. If
the origin is a pole of f , we may subtract a linear combination of powers of
℘ so that the resulting function g is regular at the origin. The zeros and poles
of g in � can be taken to be ±a1, . . . ,±an and ±b1, . . . ,±bn respectively,
repeated according to multiplicity. The product

n∏
j=1

℘(u)− ℘(a j )

℘ (u)− ℘(b j )

has the same zeros and poles as g, so g is a constant multiple. Thus f is a
rational function of ℘. If f is odd, then f = g℘′ where g = f/℘′ is even.
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A second representation of elliptic functions can be obtained by using the
Weierstrass zeta function ζ , which is characterized by

ζ ′(u) = −℘(u), ζ(−u) = −ζ(u). (11.6.4)

Since ℘ is periodic with period 2ω j , the integral

−
∫ u+2ω j

u
℘(s) ds = 2η j

is a constant. It follows that

ζ(u + 2ω j ) = ζ(u)+ 2η j = ζ(u)+ 2ζ(ω j ). (11.6.5)

Setting u = −ω j shows that η j = ζ(ω j ).
Suppose now that f is an elliptic function with periods 2ω j and distinct

poles ak in �. Let ck be the residue at ak ; then
∑

ck = 0. The function

g(u) = f (u)−
∑

ck ζ(u − ak)

has no simple poles, and

g(u + 2ω j ) = g(u)− 2η j

∑
ck = g(u).

Therefore g has only multiple poles and is, up to an additive constant, a linear
combination of derivatives of translates of ζ . Thus

f (u) = C +
∑

ck ζ(u − ak)+
∑
ν>0

cνk ζ
(ν)(u − ak).

This reduces the problem of integrating f to the problem of integrating ζ . It
is convenient at this point to introduce the Weierstrass sigma function σ(u),
which is characterized by the conditions

σ ′

σ
= ζ ; lim

u→0

σ(u)

u
= 1.

Then an integral of ζ is log σ .
Since ζ(s)− 1/s is regular at the origin we may define

σ(u) = u exp
∫ u

0

{
ζ(s)− 1

s

}
ds.

The integrand is odd, so the integral is even and σ is odd. It is not difficult to
show that σ is entire, with a simple zero at each point of �. Equation (11.6.5)
implies that the derivative of

log
σ(u + 2ω j )

σ (u)
=
∫ u+2ω j

u
ζ(s) ds
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is 2η j , so

log
σ(u + 2ω j )

σ (u)
= 2η j u + c j , c j constant.

Since σ is odd, taking u = −ω j shows that c j = log(−1)+ 2η jω j , so

σ(u + 2ω j ) = −e2η j (u+ω j ) σ (u). (11.6.6)

Thus σ is analogous to the theta function �.
The function σ allows a third representation of an elliptic function f , this

time as a quotient of entire functions. Suppose that the zeros and poles of f
in� are a1, . . . , an and b1, . . . , bn . As noted at the beginning of Section 11.4,
w =∑(a j − b j ) belongs to �. Therefore we may replace a1 by a1 − w and
assume that

∑
(a j − b j ) = 0. The function

g(u) =
n∏

j=1

σ(u − a j )

σ (u − b j )

has the same zeros and poles as f and is doubly periodic by (11.6.6). Therefore
f is a constant multiple of g.

The function ℘ has an addition formula. Given u and v in � such that
℘(u) �= ℘(v), determine constants such that

℘′(u)− B = A℘(u), ℘′(v)− B = A℘(v).

Then

A = ℘′(u)− ℘′(v)
℘ (u)− ℘(v) .

The function ℘′ − B − A℘ has a unique pole, of order 3, in �, so it has
three zeros in �. The sum of the zeros is an element of � (see the argument
leading to (11.4.7)). By construction, u and v are zeros, so −(u + v) is also a
zero. Therefore℘(u),℘(v), and℘(u + v) = ℘(−u − v) are three roots of the
cubic Q(t)− (At + B)2. For most values of u and v these roots are distinct,
so their sum is A2/4:

℘(u + v) = 1

4

[
℘′(u)− ℘′(v)
℘ (u)− ℘(v)

]2

− ℘(u)− ℘(v). (11.6.7)

Up to this point we have been assuming that there is a function ℘ with the
property (11.6.1). To construct ℘ we begin with the (formal) derivative

℘′(u) =
∑
p∈�

2

(p − u)3
=

∞∑
m,n=−∞

2

(2mω1 + 2nω2 − u)3
. (11.6.8)

The series converges uniformly near any point not in � and defines a function
that is odd, meromorphic, has a triple pole at each point of �, and has periods
2ω1 and 2ω2. Near u = 0,
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℘′(u) = − 2

u3
+ O(1).

Therefore we may define a function ℘ by

℘(u) = 1

u2
+
∫ u

0

[
℘′(s)+ 2

s3

]
ds

= 1

u2
+

∑
p∈�, p �=0

[
1

(u − p)2
− 1

p2

]
. (11.6.9)

This is an even meromorphic function that satisfies (11.6.1) and has a double
pole at each point of �. The function ℘(u + 2ω j ) has the same derivative, so

℘(u + 2ω j )− ℘(u) = c j , constant.

Since ℘ is even, setting u = −ω j shows that the constant is zero. Thus ℘ has
periods 2ω j and is the desired elliptic function.

Similarly we may define

ζ(u) = 1

u
+
∫ u

0

[
1

s2
− ℘(s)

]
ds = 1

u
+

∑
p∈�, p �=0

[
1

u − p
+ 1

p
+ u

p2

]
and

log σ(u) = log u +
∫ u

0

[
ζ(s)− 1

s

]
ds

= log u +
∑

p∈�, p �=0

[
log

(
1 − u

p

)
+ u

p
+ u2

2p2

]
,

so

σ(u) = u
∏

p∈�, p �=0

(
1 − u

p

)
exp

(
u

p
+ u2

2p2

)
.

11.7 Exercises

11.1 Show that letting z = sin θ converts the integral of (11.1.1) to the
integral of a rational function of sin θ and cos θ . Show that setting

u = tan
(

1
2θ
)

converts this integral to the integral of a rational

function of u.
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11.2 Consider an integral
∫

r(z,
√

Q(z)) dz where Q is a polynomial of
degree 3 (resp. 4) with distinct roots.
(a) Show that there is a linear fractional transformation (Möbius

transformation), i.e. a transformation z =ϕ(w)= (aw + b)/
(cw + d) that converts the integral to one of the same type,∫

r1
(
w,

√
Q1(w)

)
dw, with Q1 of degree 4 (resp. 3). Hint: one

can take Q1(w) = (cw + d)4 Q(ϕ(w)), and ϕ(∞) may or may not
be a root of Q.

(b) Show that if Q has degree 4, there is a linear fractional
transformation that converts the integral to one of the same type
but with the polynomial (1 − ζ 2)(1 − k2ζ 2). Hint: map two roots
to ±1; this leaves one free parameter.

11.3 Compute the constants in the representation (11.1.3) of K2 in terms of
integrals of K1, J0, J1.

11.4 Verify that the indicated change of variables leads to (11.2.8).
11.5 Verify that the indicated change of variables leads to (11.2.9).
11.6 Verify (11.2.10) and (11.2.11).
11.7 Verify (11.2.17): let t = sin θ and integrate the series expansion

of the resulting integrands term by term, using Exercise 2.2 of
Chapter 1.

11.8 Show that as ε → 0+, F(k, 1 + ε) ∼ K − i
√

2ε/k′. Deduce that
1 − sn 2 has double zeros at K and 3K .

11.9 Show that as ε → 0, F(k, 1/k + ε) ∼ K + i K ′ − √
2kε/k′. Deduce

that 1 − k2sn 2 has double zeros at K + i K ′ and 3K + i K ′.
11.10 Suppose that a function f (z) is even (resp. odd) around z = a and

even (resp. odd) around z = b. Show that it has period 2(b − a).
11.11 Suppose that a function f (z) is odd around z = a and even around

z = b. Show that it has period 4(b − a).
11.12 Use (11.3.10) to obtain (11.3.11).
11.13 Prove that sn (u, k1) in (11.3.10) has periods 2K (1 + k′),

2i K ′(1 + k′).
11.14 Use (11.3.12) to obtain (11.3.13).
11.15 What are the periods of sn (u, k1) in (11.3.12)?
11.16 What are the limiting values as k → 0 and as k → 1 of the functions

sn, cn, and dn? (See (11.2.11) and (11.2.10).) What do the formulas
(11.3.10), (11.3.11) reduce to in these limits? What about (11.3.12),
(11.3.13)?

11.17 Use (11.3.14) to obtain (11.3.15).
11.18 Use (11.3.16) to obtain (11.3.17).
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11.19 Show that the Gauss transformation (11.3.12), (11.3.13) is the
composition of the Jacobi transformation, the Landen transformation,
and the Jacobi transformation.

11.20 Show that the Landen transformation (11.3.10), (11.3.11) is the
composition of the Jacobi transformation, the Gauss transformation,
and the Jacobi transformation.

11.21 Prove (11.3.18).
11.22 Use (11.3.16) and (11.3.17) to verify

sn (u + K ) = cn u

dn u
;

cn (u + K ) = −k ′ sn u

dn u
;

dn (u + K ) = k ′

dn u

and find corresponding formulas for translation by i K ′ and by
K + i K ′.

11.23 In each of the following integrals, a substitution like t = sn 2u converts
the integrand to a rational function of t and

√
Q(t), Q quadratic, so

that the integral can be found in terms of elementary functions of t .
Verify the results:

∫
sn u du = −1

k
cosh−1

(
dn u

k′

)
+ C

= 1

k
log(dn u − k cn u)+ C;

∫
cn u du = 1

k
cos−1(dn u)+ C;

∫
dn u du = 1

k
sin−1(sn u)+ C;

∫
du

sn u
= log

(
dn u − cn u

sn u

)
+ C;

∫
du

cn u
= 1

k′ log

(
k′ sn u + dn u

cn u

)
+ C;
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∫
du

dn u
= 1

k′ cos−1
( cn u

dn u

)
+ C;

∫
cn u

sn u
du = log

(
1 − dn u

sn u

)
+ C;

∫
dn u

sn u
du = log

(
1 − cn u

sn u

)
+ C;

∫
sn u

cn u
du = 1

k′ log

(
dn u + k′

cn u

)
+ C;

∫
dn u

cn u
du = log

(
1 + sn u

cn u

)
+ C;

∫
sn u

dn u
du = − 1

kk′ sin−1
(

k cn u

dn u

)
+ C;

∫
cn u

dn u
du = 1

k
log

(
1 + ksn u

dn u

)
+ C.

11.24 In each of the following integrals, a substitution like v = (sn −1t)2

converts the integrand to a rational function of v and
√

Q(v), Q
quadratic. Verify∫

sn −1t dt = t sn −1t + 1

k
cosh−1

(√
1 − k2t2

k′

)
+ C

= t sn −1t + 1

k
log
(√

1 − k2t2 + k
√

1 − t2
)

+ C;
∫

cn −1t dt = t cn −1t − 1

k
cos−1

(√
k′2 + k2t2

)
+ C;

∫
dn −1t dt = t dn −1t − sin−1

(√
1 − t2

k

)
+ C.

11.25 Deduce (11.4.3) from (11.4.2).
11.26 Deduce (11.4.4) from (11.4.3).
11.27 Prove that (11.4.8) has period τ .
11.28 Show that the product in (11.4.9) has period 1 as a function of z. Show

that the effect of changing z to z + τ in the product is to multiply the
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product by −p−2q−1. Deduce that the function c(z, τ ) = G(τ )
depends only on τ .

11.29 Show that the function G in Exercise 11.28 has limit 1 as
Im τ → +∞.

11.30 Show that

�

(
1

4
+ 1

2
τ

)
= G(τ )

∞∏
n=1

(
1 + q4n−2

)

=
∞∑

n=−∞
(−1)ninqn2 =

∞∑
m=−∞

(−1)mq(2m)2 .

11.31 Use Exercise 11.30 to show that

G(τ )

G(4τ)
=

∞∏
n=1

(
1 − q8n−4

)2
1 + q4n−2

=
∞∏

n=1

(
1 − q8n−4

) (
1 − q4n−2

)
.

11.32 Show that for |w|< 1,

∞∏
n=1

(
1 − w2n−1

)
=
∏∞

n=1

(
1 − wn

)∏∞
n=1

(
1 − w2n

) .
11.33 Use Exercises 11.31 and 11.32 to show that

G(τ )

G(4τ)
=
∏∞

n=1

(
1 − q2n

)∏∞
n=1

(
1 − q8n

) .
Iterate this identity to get

G(τ )

G(4mτ)
=

∏∞
n=1

(
1 − q2n

)∏∞
n=1

(
1 − q4m 2n

) .
11.34 Deduce from Exercises 11.28 and 11.33 that G(τ ) =∏∞

n=1(1 − q2n).
11.35 Find the Fourier sine expansion of θ1 (expressing it as a combination

of the functions sin(mπ z)) and the Fourier cosine expansions of
θ2, θ3, θ4.

11.36 Use (11.4.10) and (11.5.1) to verify the product expansions of the θ j .
11.37 Verify the table of values of the Jacobi theta functions.
11.38 Use the tables of values of the Jacobi elliptic functions and Jacobi theta

functions to obtain (11.5.2).
11.39 Prove that the quotient

�(2z|2τ)
�(z|τ)�(z + 1

2 |τ)
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is constant. Evaluate at z = 1
2τ to show that the constant is∏

(1 + q2n)/(1 − q2n).
11.40 Show that the periods τ and τ1 associated with the Landen

transformation are related by τ1 = 2τ . It follows that the Landen
transformation relates theta functions with parameter τ to theta
functions with parameter 2τ .

11.41 Suppose that ψ(x, t) satisfies the heat equation (11.5.4) and also has
the property (11.5.5), say for every continuous function f that vanishes
outside a bounded interval. Assume that these properties determine ψ
uniquely.
(a) Show that

u(x, t) =
∫ ∞

−∞
ψ(x − y, t) f (y) dy, t > 0,

is a solution of the heat equation with u(x, t) → f (x) as t → 0.
Assume that these properties determine u uniquely.

(b) Show that for λ > 0, u(λx, λ2t) is a solution of the heat equation
with limit f (λx) as t → 0 and deduce that∫ ∞

−∞
ψ(x − y, t) f (λy) dy = u(λx, λ2t)

=
∫ ∞

−∞
ψ(λx − λy, λ2t) f (λy) d(λy),

so ψ(λx, λ2t) = λ−1ψ(x, t).
(c) Deduce from (b) that ψ(x, t) has the form t− 1

2 F(x2/t) and use the
heat equation to show that F(s) satisfies the equation{

s
d

ds
+ 1

2

}
(4F ′ + F) = 0

with solution F(s) = Ae−s/4.
(d) Deduce from the preceding steps that ψ should be given by

(11.5.6). (The constant A can be determined by taking f ≡ 1 in
(11.5.5).)

11.42 Suppose that ψp(x, t) is the fundamental solution for the periodic heat
equation, i.e. that ψp satisfies the heat equation and that for any
continuous periodic function f , the function

u(x, t) =
∫ 1

0
ψp(x − y, t) f (y) dy
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is a solution of the heat equation with the property that u(x, t) → f (x)
as t → 0. It is not difficult to show that u(·, t) is continuous and
periodic for each t > 0, hence has a Fourier expansion

u(x, t) =
∞∑

n=−∞
an(t) e2nπ i x , an(t) =

∫ 1

0
u(x, t) e−2nπ i x dx;

see Appendix B.
(a) Assuming that the Fourier expansion can be differentiated term by

term, find the coefficients an . (Use the condition at t = 0.)
(b) Use the result from part (a) to write u(x, t) as an integral and thus

show that ψp(x, t) is given by (11.5.8).
11.43 Verify (11.5.10) and (11.5.11).
11.44 Integrate the Weierstrass zeta function ζ over the boundary of � to

show that 2η1ω2 − 2η2ω1 = π i .
11.45 Express sn in terms of the Weierstrass ℘ function; the Weierstrass zeta

function; the Weierstrass sigma function.
11.46 Show that

1

sn (u, k)2
= ℘(u, K , i K ′)+ 1 + k2

3
.

11.47 Use Exercise 11.46 to show that any elliptic function with periods 2K
and 2i K ′ is a rational function of sn, cn, and dn.

11.48 Determine the coefficients of u2 and u4 in the McLaurin expansion
(Taylor expansion at u = 0) of ℘(u)− 1/u2. Use this to show that the
coefficients g2, g3 in (11.6.2) are

g2 = 60
∑

p∈�,p �=0

1

p4
; g3 = 140

∑
p∈�,p �=0

1

p6
.

11.8 Summary

11.8.1 Integration

If P(z) is a polynomial of degree 3 or 4 with simple roots, the problem of
integrating a rational function of z and P(z) can be reduced to the case

P(z) = (1 − z2)(1 − k2z2), k2 �= 1,
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and then to the case of elliptic integrals of the first, second, and third kinds:

F(z) = F(k, z) =
∫ z

0

dζ√
(1 − ζ 2)(1 − k2ζ 2)

;

E(z) = E(k, z) =
∫ z

0

√
1 − k2ζ 2

1 − ζ 2
dζ ;

�(a, z) = �(a, k, z) =
∫ z

0

dζ

(1 + aζ 2)
√
(1 − ζ 2)(1 − k2ζ 2)

.

11.8.2 Elliptic integrals

Assume for convenience that 0< k< 1. The complementary modulus k′ is√
1 − k2. The elliptic function F(z) = F(k, z) is multi-valued, the value

depending on the path of integration in the Riemann surface of P(z). Starting
from a value F(z), the set of all values is{

F(z)+ 4mK + 2ni K ′| m, n = 0,±1 ± 2, . . .
}
,

where K = K (k) is given by the integral

K =
∫ 1

0

dz√
(1 − z2)(1 − k2z2)

and K ′ = K (k′). Thus values of F are determined only up to addition of
elements

� = {4mK + 2inK ′ | m, n = 0,±1,±2, . . .
}
.

With this convention, F is an odd function: F(−z) = −F(z). Particular
values:

F(k, 1) = K , F(k, 1/k) = K + i K ′, F(k,∞) = i K ′.

Landen’s transformation:

F(k1, z1) = (1 + k′) F(k, z);

k1 = 1 − k′

1 + k′ , z1 = (1 + k′)z

√
1 − z2

1 − k2z2
.
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Gauss’s transformation:

F(k1, z1) = (1 + k) F(k, z);

k1 = 2
√

k

1 + k
, z1 = (1 + k)z

1 + kz2
.

Jacobi’s imaginary transformation:

i F(k, y) = F

(
k′, iy√

1 − y2

)
.

Euler’s addition formula:

F(k, x)+ F(k, y) = F

(
k,

x
√

P(y)+ y
√

P(x)

1 − k2x2 y2

)
,

where as before P(x) = (1 − x2)(1 − k2x2).
The complete elliptic integrals can be expressed as

K (k) = π

2
F

(
1

2
,

1

2
, 1; k2

)
; E(k) = π

2
F

(
−1

2
,

1

2
, 1; k2

)
.

11.8.3 Jacobi elliptic functions

The inverse of the multi-valued function F is the single-valued function sn
defined by

u =
∫ sn u

0

dζ√
(1 − ζ 2)(1 − k2ζ 2)

.

Related functions cn and dn are defined by

cn u =
√

1 − sn 2u, dn u =
√

1 − k2sn 2u,

or implicitly by the integral formulas

u =
∫ 1

cn u

dζ√
(1 − ζ 2)(1 − k2 + k2ζ 2)

;

u =
∫ 1

dn u

dζ√
(1 − ζ 2)(ζ 2 − k′2)

.
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The derivatives satisfy

sn ′(u) = cn u dn u;
cn ′(u) = −sn u dn u;
dn ′(u) = −k2sn u cn u.

Periodicity and related properties:

sn u = sn (u + 4K ) = sn (u + 2i K ′);
= sn (2K − u) = sn (2K + 2i K ′ − u);
= −sn (−u) = −sn (4K − u) = −sn (2i K ′ − u);

cn u = cn (u + 4K ) = cn (u + 2K + 2i K ′);
= cn (−u) = −cn (2K − u) = −cn (2i K ′ − u);

dn u = dn (u + 2K ) = dn (u + 4i K ′) = dn (2K − u);
= dn (−u) = −dn (2i K ′ − u) = −dn (2K + 2i K ′ − u).

Particular values:

0 K 2K 3K i K ′ K + i K ′ 2K + i K ′ 3K + i K ′

sn 0 1 0 −1 ∞ k−1 ∞ −k−1

cn 1 0 −1 0 ∞ −ik′k−1 ∞ ik′k−1

dn 1 k′ 1 k′ ∞ 0 ∞ 0

Landen’s transformation relates moduli k and k1 = (1 − k′)/(1 + k′):

sn
(
(1 + k′)u, k1

) = (1 + k′) sn (u, k) cn (u, k)

dn (u, k)
;

cn
(
(1 + k′)u, k1

) = (1 + k′) dn 2(u, k)− k′

k2 dn (u, k)
;

dn
(
(1 + k′)u, k1

) = (1 − k′) dn 2(u, k)+ k′

k2 dn (u, k)
.
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Gauss’s transformation relates moduli k and k1 = 2
√

k/(1 + k):

sn
(
(1 + k)u, k1

) = (1 + k) sn (u, k)

1 + k sn 2(u, k)
;

cn
(
(1 + k)u, k1

) = cn (u, k) dn (u, k)

1 + k sn 2(u, k)
;

dn
(
(1 + k)u, k1

) = 1 − k sn 2(u, k)

1 + k sn 2(u, k)
.

Jacobi’s imaginary transformation:

sn (iu, k) = i
sn (u, k′)
cn (u, k′)

;

cn (iu, k) = 1

cn (u, k′)
;

dn (iu, k) = dn (u, k′)
cn (u.k′)

.

Addition formulas:

sn (u + v) = sn u cn v dn v + sn v cn udn u

1 − k2sn 2u sn 2v
;

cn (u + v) = cn u cn v − sn u sn v dn u dn v

1 − k2sn 2u sn 2v
;

dn (u + v) = dn u dn v − k2sn u sn v cn u cn v

1 − k2sn 2u sn 2v
.

These imply the product formulas

sn (u + v) sn (u − v) = sn 2u − sn 2v

1 − k2sn 2u sn 2v
;

cn (u + v) cn (u − v) = 1 − sn 2u − sn 2v + k2sn 2u sn 2v

1 − k2sn 2u sn 2v
,

and also

sn (u + K ) = cn u

dn u
;

cn (u + K ) = −k ′ sn u

dn u
;

dn (u + K ) = k ′

dn u
.
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Glaisher’s notation:

ns = 1

sn
, nc = 1

cn
, nd = 1

dn
;

sc = sn

cn
, sd = sn

dn
, cd = cn

dn
;

cs = cn

sn
, ds = dn

sn
, dc = dn

cn
.

The change of variables ζ = sn s converts the elliptic integrals of the first,
second, and third kinds to

F(z) =
∫ sn −1z

0
ds = sn −1z;

E(z) =
∫ sn −1z

0
(1 − k2sn 2s) ds =

∫ sn −1z

0
dn 2(s) ds;

�(a, z) =
∫ sn −1z

0

ds

1 + a sn 2s
.

Integrals (see the exercises):

∫
sn u du = −1

k
cosh−1

(
dn u

k′ + C

)

= 1

k
log(dn u − k cn u)+ C;

∫
cn u du = 1

k
cos−1(dn u)+ C;

∫
dn u du = 1

k
sin−1(sn u)+ C;

∫
du

sn u
= log

(
dn u − cn u

sn u

)
+ C;

∫
du

cn u
= 1

k′ log

(
k′ sn u + dn u

cn u

)
+ C;
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∫
du

dn u
= 1

k′ cos−1
( cn u

dn u

)
+ C;

∫
cn u

sn u
du = log

(
1 − dn u

sn u

)
+ C;

∫
dn u

sn u
du = log

(
1 − cn u

sn u

)
+ C;

∫
sn u

cn u
du = 1

k′ log

(
dn u + k′

cn u

)
+ C;

∫
dn u

cn u
du = log

(
1 + sn u

cn u

)
+ C;

∫
sn u

dn u
du = − 1

kk′ sin−1
(

k cn u

dn u

)
+ C;

∫
cn u

dn u
du = 1

k
log

(
1 + k sn u

dn u

)
+ C;

∫
sn −1t dt = t sn −1t + 1

k
cosh−1

(√
1 − k2t2

k′

)
+ C

= t sn −1t + 1

k
log
(√

1 − k2t2 + k
√

1 − t2
)

+ C;
∫

cn −1t dt = t cn −1t − 1

k
cos−1

(√
k′2 + k2t2

)
+ C;

∫
dn −1t dt = t dn −1t − sin−1

(√
1 − t2

k

)
+ C.

11.8.4 Theta functions

An elliptic function is a meromorphic function that is doubly periodic:

f (z) = f (z + 2ω1) = f (z + 2ω2), Im

(
ω2

ω1

)
> 0.
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If not constant it has at least two poles, counting multiplicity, in each period
parallelogram

�a = {z | z = a + 2sω1 + 2tω2, 0 ≤ s, t < 1
}
,

and takes each complex value the same number of times there. Any such
function is the quotient of entire functions that are “nearly” periodic. A basic
such function with periods 1 and τ , Im τ > 0, is the theta function

�(z) = �(z|τ) =
∞∑

n=−∞
(−1)n p(z)2n qn(n−1),

p(z) = eiπ z, q = eiπτ ,

which satisfies

�(z + 1) = �(z); �(z + τ) = −e−2π i z�(z).

Jacobi’s triple product formula:

�(z) =
∞∏

n=1

(
1 − q2n

) (
1 − p2q2n−2

) (
1 − p−2q2n

)
.

If an elliptic function f has zeros {a1, a2, . . . , ak} and poles {b1, b2, . . . , bk}
in �, repeated according to multiplicity, then

(a1 + a2 + · · · + ak)− (b1 + b2 + · · · + bk)∈�,

where � is the period lattice

� = {m + nτ | m, n = 0,±1,±2, . . .
}
.

Conversely, given such points with

(a1 + a2 + · · · + ak)− (b1 + b2 + · · · + bk) = m + nτ,

there is, up to a multiplicative constant, a unique elliptic function with these
zeros and poles:

f (z) = e−2nπ i z �(z − a1)�(z − a2) · · ·�(z − ak)

�(z − b1)�(z − b2) · · ·�(z − bk)
.
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Elliptic functions can also be represented using

Z = �′

�
.

Any elliptic function with periods 1 and τ is a linear combination of translates
of Z and its derivatives.

11.8.5 Jacobi theta functions and integration

The Jacobi theta functions are

θ1(z) = i
q

1
4

p
�(z) = i

∞∑
n=−∞

(−1)n p2n−1q
(

n− 1
2

)2

;

θ2(z) = q
1
4

p
�

(
z + 1

2

)
=

∞∑
n=−∞

p2n−1q
(

n− 1
2

)2

;

θ3(z) = �

(
z + 1

2
+ 1

2
τ

)
=

∞∑
n=−∞

p2nqn2;

θ4(z) = �

(
z + 1

2
τ

)
=

∞∑
n=−∞

(−1)n p2nqn2
.

See [315] for various notations and normalizations.
Product formulas:

θ1(z) = 2q
1
4 sin(π z)

∞∏
n=1

(
1 − q2n

) (
1 − p2q2n

) (
1 − p−2q2n

)
;

θ2(z) = 2q
1
4 cos(π z)

∞∏
n=1

(
1 − q2n

) (
1 + p2q2n

) (
1 + p−2q2n

)
;

θ3(z) =
∞∏

n=1

(
1 − q2n

) (
1 + p2q2n−1

) (
1 + p−2q2n−1

)
;

θ4(z) =
∞∏

n=1

(
1 − q2n

) (
1 − p2q2n−1

) (
1 − p−2q2n−1

)
.
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Some values

0 1
2

1
2τ

1
2 + 1

2τ

θ1 0
∑

q(n− 1
2 )

2
iq− 1

4
∑
(−1)nqn2

q− 1
4
∑

qn2

θ2
∑

q(n− 1
2 )

2
0 q−1/4∑ qn2 −iq− 1

4
∑
(−1)nqn2

θ3
∑

qn2 ∑
(−1)nqn2

q− 1
4
∑

q(n+ 1
2 )

2
0

θ4
∑
(−1)nqn2 ∑

qn2
0 q− 1

4
∑

q(n− 1
2 )

2

The Jacobi elliptic functions in terms of θ j :

sn u = 1√
k

θ1(u/2K )

θ4(u/2K )
;

cn u =
√

k′

k

θ2(u/2K )

θ4(u/2K )
;

dn u = √
k′ θ3(u/2K )

θ4(u/2K )
.

For identities of the form

�(z + w)�(z − w) = c1�(z + a1)�(z + a2)�(w + a3)�(w + a4)

+ c2�(w + a1)�(w + a2)�(z + a3)�(z + a4),

where the a j belong to the set
{
0, 1

2 ,
1
2τ,

1
2 + 1

2τ
}
, see [236, 315]. For Jacobi’s

identity

θ ′
1 = π θ2θ3θ4,

see Whittaker and Watson [315], Armitage and Eberlein [12]. (The factor π is
due to the normalization we have chosen here.)

Each of the Jacobi theta functions is a solution of the partial differential
equation

θzz(z, τ ) = 4π iθτ (z, τ ),
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leading to Jacobi’s imaginary transformation:

θ3(z|τ) = e−iπ z2/τ

√−iτ
θ3

(
− z

τ

∣∣∣− 1

τ

)
.

Jacobi’s Z -function:

Z(u) = θ ′(u)
θ(u)

, θ(u) = θ4(u/2K ) = �
(
(u + i K ′)/2K

)
.

Elliptic integrals of the first and second kind:

F(z) = sn −1z;

E(z) = θ ′(sn −1z
)

θ
(
sn −1z)

+ E

K
sn −1z,

where

E = E(1) =
∫ 1

0

√
1 − k2ζ 2

1 − ζ 2
dζ.

Finding the elliptic integral of the third kind, �(a, z), reduces to finding∫ w

0

sn 2u du

1 + a sn 2u
= C

{
log

[
θ(w − b)

θ(w + b)

]
+ 2Z(b) w

}
,

where

w = sn −1z, a = −k2sn 2b, C = 1

2k2sn b cn b dn b
.

11.8.6 Weierstrass elliptic functions

Let

� = {2n1ω1 + 2n2ω2 | n1, n2 = 0,±1,±2, . . .
}

be the period lattice associated with the periods 2ω1, 2ω2, with Im (ω2/ω1)

> 0. The Weierstrass ℘ function

℘(u) = 1

u2
+

∑
p∈�, p �=0

[
1

(u − p)2
− 1

p2

]
is an even meromorphic function with periods 2ω1 and 2ω2. It has a double
pole at each point of � and

℘(u) = 1

u2
+ O(u2) as u → 0.
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Differential equation:

(℘′)2 = 4℘3 − g2℘ − g3,

where

g2 = 60
∑

p∈�, p �=0

1

p4
; g3 = 140

∑
p∈�, p �=0

1

p6
.

Let ω3 = −(ω1 + ω2). The values e j = ℘(ω j ), j = 1, 2, 3, are distinct and
are the roots of Q(t) = 4t3 − g2t − g3, so

e1 + e2 + e3 = 0;
4(e2e3 + e3e1 + e1e2) = −g2;

4e1e2e3 = g3.

Related functions are the Weierstrass zeta function

ζ(u) = 1

u
+

∑
p∈�, p �=0

[
1

u − p
+ 1

p
+ u

p

2
]

and the Weierstrass sigma function

σ(u) = u
∏

p∈�, p �=0

(
1 − u

p

)
exp

(
u

p
+ u2

2p2

)
,

characterized by

ζ ′(u) = −℘(u), ζ(−u) = −ζ(u);
σ ′(u)
σ (u)

= ζ(u), lim
u→0

σ(u)

u
= 1.

Any elliptic function f with periods 2ω j can be written as

f (u) = r1
(
℘(u)

)+ r2
(
℘(u)

)
℘′(u),

where the r j are rational functions. It can also be written in the form

f (u) = C +
∑

ck ζ(u − ak)+
∑
ν>0

cνk ζ
(ν)(u − ak),

and thus the integral can be expressed using translates of σ , ζ , and derivatives
of ζ . The function f can also be written as the quotient of entire functions

f (u) = A
n∏

j=1

σ(u − a j )

σ (u − b j )
.



416 Elliptic functions

Addition formula:

℘(u + v) = 1

4

[
℘′(u)− ℘′(v)
℘ (u)− ℘(v)

]2

− ℘(u)− ℘(v).

11.9 Remarks

The history and theory of elliptic functions is treated in the survey by Mittag-
Leffler, translated by Hille [206], and in the books by Akhiezer [6], Appell
and Lacour [11], Armitage and Eberlein [12], Chandrasekharan [42], Lang
[174], Lawden [178], Neville [214], Prasolov and Solovyev [233], Tannery and
Molk [282], Temme [284], Tricomi [288], and Walker [301]. (The extensive
survey of results in Abramowitz and Stegun [3] is marred by an idiosyncratic
notation.)

There are very extensive lists of formulas in Tannery and Molk [282].
Akhiezer [6] discusses the transformation theory of Abel and Jacobi. Appell
and Lacour [11] give a number of applications to physics and to geometry.
Chandrasekharan [42] has several applications to number theory, Lawden
[178] has applications to geometry, while Armitage and Eberlein [12] have
applications to geometry, mechanics, and statistics. The book by Lang [174]
covers a number of modern developments of importance in algebraic number
theory. By now the applications to number theory include the proof of Fermat’s
last theorem by Wiles and Taylor; see [283, 316]. Applications to physics and
engineering are treated by Oberhettinger and Magnus [221].

The theory of elliptic functions was developed in the 18th and early 19th
centuries through the work of Euler, Legendre [184], Gauss [105], Abel [1],
Jacobi [139, 140], and Liouville [188], among others. Abel and Jacobi revolu-
tionized the subject in 1827 by studying the inverse functions and developing
the theory in the complex plane. (Gauss’s discoveries in this direction were
made earlier but were only published later, posthumously.) For an assessment
of the early history, see Mittag-Leffler [206] and also Dieudonné [69], Klein
[155], Stilwell [273]. Liouville introduced the systematic use of complex
variable methods, including his theorem on bounded entire functions.

The version developed by Weierstrass [311] later in the 19th century is
simpler than the Jacobi approach via theta functions [142]. Mittag-Leffler
[206], Neville [214], and Tricomi [288] use the Weierstrass functions rather
than theta functions to develop the theory of Abel and Jacobi. On the other
hand, the work of Abel and Jacobi generalizes to curves of arbitrary genus, i.e.
to polynomial equations of arbitrary degree. A classic treatise on the subject is
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Baker [19]; see also Kempf [154] and Polischuk [232]. Theta functions have
become important in the study of certain completely integrable dynamical
systems, e.g. in parametrizing special solutions of the periodic Korteweg-de
Vries equation and other periodic problems; see Krichever’s introduction to
[19] and the survey article by Dubrovin [72].





Appendix A: Complex analysis

This section contains a brief review of terminology and results from complex
analysis that are used in the text.

If z = x + iy is a complex number, x and y real, then

z = x + iy = r cos θ + ir sin θ = r eiθ , z̄ = x − iy,

where r = √x2 + y2 is the modulus |z| of z and θ is the argument arg z of z.
The logarithm

log z = log r + iθ

is multiple-valued: defined only up to integer multiples of 2π i . The power

za = exp(a log z)

is also multiple-valued, unless a is an integer.
Typically, one makes these functions single-valued by restricting the

domain, usually by choosing a range for the argument. The resulting domain
is the complex plane minus a ray from the origin. Examples:

C \ (−∞, 0] = {
z : −π < arg z < π

};
C \ [0,+∞) = {

z : 0 < arg z < 2π
}
.

This is referred to as choosing a branch of the logarithm or of the power. The
principal branch is the one with arg x = 0 for x > 0.

A region is an open, non-empty subset of the plane which is connected:
any two points in the set can be joined by a continuous curve that lies in the
set. A region  is said to be simply connected if any closed curve lying in
 can be continuously deformed, within  , to a point. The plane C and the
disc {z : |z| < 1} are simply connected. The annulus {z : 1 < |z| < 2} and the
punctured plane C \ {0} are not simply connected.

419
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A function f (z) is said to be analytic or holomorphic in a region  if the
derivative

f ′(z) = lim
h→0

f (z + h)− f (z)

h

exists for each point z in  . An equivalent condition is that for each point z0

in  , the function can be represented at nearby points by its Taylor series: if
|z − z0| < ε, then

f (z) =
∞∑

n=0

an(z − z0)
n, an = f (n)(z0)

n ! .

Conversely, a function that is defined in a disc by a convergent power series can
often be extended to a larger region as a holomorphic function. For example,

f (z) =
∞∑

n=0

zn = 1

1 − z
, |z| < 1,

extends to the complement of the point z = 1. This is an example of analytic
continuation.

It can be deduced from the local power series representation, using con-
nectedness, that if two functions f and g are holomorphic in a region  and
coincide in some open subset of  (or on a sequence of points that converges
to a point of  ), then they coincide throughout  . This is one version of
the principle of uniqueness of analytic continuation. This principle is used
several times above, often in the following form. Suppose functions u j (a, x),
j = 1, 2, 3, are holomorphic with respect to a parameter a in a region  and
satisfy a linear relation

u3(a, x) = A1(a) u1(a, x)+ A2(a) u2(a, x)

with holomorphic or meromorphic coefficients. Then to determine the coeffi-
cients A j throughout  , it is enough to determine A1 on a subregion  1 and
A2 on a subregion 2. (In the cases encountered here, the form of a coefficient
throughout  is clear once one knows the form on any subregion.)

A function f that is holomorphic in a punctured disc {0 < |z − z0| < ε} is
said to have a pole of order n at z0, n a positive integer, if

f (z) = g(z)

(z − z0)n
, 0 < |z − z0| < ε,

where g(z) is holomorphic in the disc |z − z0| < ε and g(z0) �= 0. An equiva-
lent condition is that (z − z0)

n f (z) has a nonzero limit at z = z0. The function
f is said to have a removable singularity at z = z0 if it has a limit at z = z0.
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In that case, taking f (z0) to be the limit, the resulting extended function is
holomorphic in the disc.

A function f that is holomorphic in a region  except at isolated points,
each of which is a pole or removable singularity, is said to be meromorphic
in  . In particular, if f and g are holomorphic in  and g is not identically
zero, then the quotient f/g is meromorphic in  .

A basic result of complex analysis is the Cauchy integral theorem: suppose
that C is a closed curve that bounds a region , and suppose that f is holomor-
phic on  and continuous up to the boundary C . Then the integral vanishes:∫

C
f (z) dz = 0.

A typical use of the Cauchy integral theorem occurs in Appendix B: the
integral ∫ ∞

−∞
e−(x+iy)2/2 dx (A.0.1)

is independent of y. To see this, take values a < b for y, and consider the
integral of this integrand over the rectangle CR two of whose sides are
{x + ia : |x | ≤ R} and {x + ib : |x | ≤ R}, oriented counterclockwise. By
Cauchy’s theorem the integral is zero. As R → ∞ the integral over the vertical
sides approaches zero, while the integral over the other sides approaches∫ ∞

−∞
e−(x+ia)2/2 dx −

∫ ∞

−∞
e−(x+ib)2/2 dx .

Therefore the integral (A.0.1) is independent of y.
One can use the Cauchy integral theorem to derive the Cauchy integral

formula: suppose that C is oriented so that  lies to the left; for example,
if C is a circle oriented counterclockwise and  is the enclosed disc. Then for
any z ∈  ,

f (z) = 1

2π i

∫
C

f (ζ )

ζ − z
dζ.

A consequence is Liouville’s theorem: a bounded entire function f is con-
stant. (An entire function is one that is holomorphic in the entire plane C.)
To see this, observe that the Cauchy integral formula for f can be differentiated
under the integral sign. The derivative is

f ′(z) = 1

2π i

∫
C

f (ζ )

(ζ − z)2
dζ.
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We may take C to be a circle of radius R > |z|, centered at the origin. Taking
R → ∞, the integrand is O(1/R2) and the length of the curve is 2πR, so
| f ′(z)| is at most O(1/R). Therefore f ′(z) = 0 for every z ∈ C, so f is
constant.

The Cauchy integral formula is one instance of the residue theorem. Sup-
pose that f has a pole at z0. Then near z0 it has a Laurent expansion

f (z) = a−n

(z − z0)n
+ a1−n

(z − z0)n−1
+ · · · + a−1

z − z0
+ a0 + a1(z − z0)+ . . .

The residue of f at z0, denoted res( f, z0), is the coefficient a−1 of the
1/(z − z0) term in the Laurent expansion:

res( f, z0) = a−1 = 1

2π i

∫
C

f (ζ ) dζ,

where C is a sufficiently small circle centered at z0.
Suppose as before that C is an oriented curve that bounds a region  lying

to its left. Suppose that f is meromorphic in  and continuous up to the
boundary C , and suppose that the poles of f in  are z1, . . . , zm . Then the
residue theorem says that the integral of f over C is 2π i times the sum of
the residues: ∫

C
f (z) dz = 2π i

[
res( f, z1)+ · · · + res( f, zm)

]
.

Suppose that f has no zeros on the boundary curve C . Then the quotient
g = f ′/ f is continuous on the boundary and meromorphic inside. It is easy
to see that if z0 is a zero of f with multiplicity m, then the residue of f ′/ f
at z0 is m. If z0 is a pole of order n, then the residue of f ′/ f at z0 is −n.
Therefore the number of zeros (counting multiplicity) minus the number of
poles (counting multiplicity) enclosed by C is

1

2π i

∫
C

f ′(z)
f (z)

dz.

In particular, if f is holomorphic in the enclosed region, then this integral
counts the number of zeros.

The first use of the residue theorem in the main text is in the proof of
Theorem 2.2.3, where we evaluated∫

C

t z−1 dt

1 + t
, 0 < Re z < 1. (A.0.2)

Here C was the curve from +∞ to 0 with arg t = 2π and returning to +∞
with arg t = 0.
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This is taken as a limiting case of the curve CR , where the part of C
with t ≥ R > 1 is replaced by the circle {|t | = R}, oriented counterclockwise,
and the part with 0 ≤ t ≤ 1/R is replaced by the circle {|t | = 1/R}, oriented
clockwise. (This is a typical example of how the Cauchy integral theorem, the
Cauchy integral formula, and the residue theorem can be extended beyond our
original formulation, which assumed a bounded curve and continuity of the
integrand at each point of the boundary.) The residue calculus applies to each
curve CR , and the contribution of the integration over the circles goes to zero
as R → ∞, so the value of (A.0.2) is 2π i times the (unique) residue at t = −1.
With our choice of branch, the residue is exp[i(z − 1)π] = −exp(i zπ). On the
other hand, over the first part of C the value of t z differs from the value on the
second part by a factor exp(2π i z). This gives the result

(1 − e2π i z)

∫ ∞

0

t z−1 dt

1 + t
= −2π i eiπ z .

A linear fractional transformation or Möbius transformation is a function
of the form

f (z) = az + b

cz + d
, ad − bc �= 0.

It may be assumed that ad − bc = 1. The inverse and the composition of
Möbius transformations are Möbius transformations, so the set of Möbius
transformations is a group. Given any two ordered triples of distinct points
in the Riemann sphere S = C ∪ {∞}, there is a unique Möbius transformation
that takes one triple to the other. For example, the transformation

f (z) = az − az0

z − z2
, a = z1 − z2

z1 − z0

takes the triple (z0, z1, z2) to (0, 1,∞), and its inverse is

g(w) = z2(z1 − z0)w + (z2 − z1)z0

(z1 − z0)w + z2 − z1
.

The group of Möbius transformations that permute the points {0, 1,∞} is
generated by the two transformations

z → 1 − z = −z + 1

0z + 1
, z → 1

z
= 0z + 1

z + 0

and consists of these two transformations and

z → z, z → z

z − 1
, z → 1

1 − z
, z → 1 − 1

z
.
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The Weierstrass factorization theorem, mentioned in Chapter 11, implies
that for every sequence of points {zn} in the complex plane with limit ∞, there
is an entire function that has zeros (repeated according to multiplicity) at these
points and no others. In particular, if f is meromorphic in C and h is chosen
so that its zeros match the poles of f , then g = f h is entire. (More precisely,
g has only removable singularities, so when they are removed it is an entire
function.) Thus f = g/h is the quotient of two entire functions.



Appendix B: Fourier analysis

This section contains a brief account of the facts from classical Fourier analysis
and their consequences that are used at various points above.

Suppose that f (x) is a (real or) complex-valued function that is absolutely
integrable: ∫ ∞

−∞
| f (x)| dx < ∞. (B.0.1)

The Fourier transform f̂ is defined by

f̂ (ξ) = 1√
2π

∫ ∞

−∞
e−i xξ f (x) dx, ξ ∈ R.

The condition (B.0.1) implies that f̂ is bounded and continuous. It can also be
shown that f̂ (x) → 0 as |x | → ∞, so f̂ is uniformly continuous.

A particularly useful example is f (x) = exp
(− 1

2 x2
)
, which is its own

Fourier transform:

1√
2π

∫ ∞

−∞
e−i xξ e− 1

2 x2
dx = e− 1

2 ξ
2

√
2π

∫ ∞

−∞
e− 1

2 (x+iξ)2 dx .

To see this, take z = x + iξ in the integral on the right, so that it is an
integral over the line {Im z = ξ}. By the Cauchy integral theorem, the path
of integration can be changed to the real line, so

1√
2π

∫ ∞

−∞
e−i xξ e− 1

2 x2
dx = e− 1

2 ξ
2

√
2π

∫ ∞

−∞
e− 1

2 x2
dx = e− 1

2 ξ
2
.

(See Appendix A.) Extensive tables of Fourier transforms are given in [220].
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If g(ξ) is absolutely integrable, then the inverse Fourier transform is
defined by

ǧ(x) = 1√
2π

∫ ∞

−∞
eixξ g(ξ) dξ, x ∈ R.

The argument just given shows that exp
(− 1

2ξ
2
)

has inverse Fourier transform
exp
(− 1

2 x2
)
.

The terminology “inverse Fourier transform” is justified as follows.
Suppose that f is a bounded, uniformly continuous, and absolutely integrable
function, and suppose that its Fourier transform f̂ itself is absolutely inte-
grable. We show now that ( f̂ )∨ = f :

f (x) = 1

2π

∫ ∞

−∞
eixξ

[∫ ∞

−∞
e−iyξ f (y) dy

]
dξ. (B.0.2)

We introduce a convergence factor exp
(− 1

2 (εξ)
2
)
, ε > 0:

∫ ∞

−∞
eixξ

[∫ ∞

−∞
e−iyξ f (y) dy

]
dξ

= lim
ε→0

∫ ∞

−∞

∫ ∞

−∞
ei(x−y)ξ− 1

2 (εξ)
2

f (y) dy dξ.

The convergence factor allows us to change the order of integration. By what
we have just shown about the function exp

(− 1
2ξ

2
)
,

1

2π

∫ ∞

−∞
ei(x−y)ξ− 1

2 (εξ)
2

dξ = 1

2π

∫ ∞

−∞
ei[(x−y)/ε]ζ e− 1

2 ζ
2 dζ

ε

= 1

ε
√

2π
exp

[
− (x − y)2

2ε2

]
≡ Gε(x − y).

The functions {Gε} are easily seen to have the properties

Gε(x) > 0; (B.0.3)∫ ∞

−∞
Gε(x) dx = 1;

lim
ε→0

∫
|x |>δ

Gε(x) dx = 0, δ > 0.
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According to the calculations above,

1

2π

∫ ∞

−∞
eixξ

[∫ ∞

−∞
e−iyξ f (y) dy

]
dξ − f (x)

= lim
ε→0

∫ ∞

−∞
Gε(x − y)

[
f (y)− f (x)

]
dy. (B.0.4)

The assumptions on f and the conditions (B.0.3) imply that the limit of (B.0.4)
is zero.

The Fourier inversion result used in Section 7.7 is the two-dimensional
version of this result. The preceding proof can be adapted easily, or the result
can be proved in two steps by taking the transform in one variable at a time.

Proof of Theorem 4.1.5 Suppose that w is a positive weight function on the
interval (a, b) and ∫ b

a
e2c|x |w(x) dx < ∞, (B.0.5)

for some c > 0. Note that this implies that all moments are finite, so orthonor-
mal polynomials {Pn} necessarily exist. Given f ∈ L2

w, let

fn(x) =
n∑

k=0

( f, Pk) Pk(x).

Then for m < n,

‖ fn − fm‖2 =
n∑

k=m+1

|( f, Pk)|2.

By (4.1.10)

∞∑
k=0

|( f, Pk)|2 ≤ ‖ f ‖2 < ∞,

so the sequence { fn} is a Cauchy sequence in L2
w. Therefore it has a limit g, and

we need to show that g = f . For any m, ( fn, Pm) = ( f, Pm) for n ≥ m, and
it follows from that (g, Pm) = ( f, Pm), all m. Thus h = f − g is orthogonal
to every Pm and, therefore, orthogonal to every polynomial. We want to show
that h ≡ 0 or, equivalently, that hw ≡ 0.

Extend h and w to the entire real line if necessary, by taking them to
vanish outside (a, b). Note that |hw| is absolutely integrable, by the Cauchy–
Schwarz inequality, since it is the product of square integrable functions |h|√w
and

√
w. By (B.0.5) the Fourier transform
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H(ξ) = ĥw(ξ) = 1√
2π

∫ ∞

−∞
e−i xξh(x) w(x) dx

has an extension to the strip {|Im ξ | < c}. Moreover, H is holomorphic in the
strip, with derivatives

dn H

dzn
(0) = (−i)n

∫ ∞

−∞
xnh(x) w(x) dx .

Since h is orthogonal to polynomials, all derivatives of H vanish at z = 0.
Since H is holomorphic in the strip, this implies that H ≡ 0 and therefore the
inverse Fourier transform hw is 0. �

In Section 4.8 we used the Riemann–Lebesque lemma, in the following
form: if f is a bounded function on a finite interval (a, b), then

lim
λ→+∞

∫ b

a
cos(λx) f (x) dx = 0.

Suppose first that f is differentiable and that f and f ′ are continuous on the
closed interval [a, b]. Integration by parts gives∫ b

a
cos(λx) f (x) dx = sin(λx)

λ
f (x)

∣∣∣b
a

− 1

λ

∫ b

a
sin(λx) f ′(x) dx

= O(λ−1).

For general f , given ε > 0 choose a continuously differentiable function g
such that ∫ b

a
| f (x)− g(x)| dx < ε

and apply the previous argument to g to conclude that∣∣∣∣∫ b

a
cos(λx) f (x) dx

∣∣∣∣ < 2ε

for large λ.
In Section 11.4 we tacitly used the finite interval analogue of the Fourier

inversion result, namely that the functions

en(x) = e2nπ i x = e1(x)
n, n = 0,±1,±2, . . . ,

which are orthonormal in the space L2(I ), I = (0, 1) with weight 1, are
complete in this space. Define

Gn(x) = cn 4n cos2n(πx) = cn 2n [ cos 2πx + 1
]n = cn(e1 + e−1 + 2)n,
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where cn is chosen so that
∫ 1

0 Gn(x) dx = 1. The Gn have period 1, are non-
negative, and satisfy the analogue of (B.0.3):

lim
n→∞

∫ 1−δ

δ

Gn(x) dx = 0, 0 < δ <
1

2
. (B.0.6)

It follows that for any continuous function g with period 1, the sequence

gn(x) =
∫ 1

0
Gn(x − y) g(y) dy

converges uniformly to g. Now Gn is in the span of {ek}|k|≤n , so gn is a linear
combination of these functions. It follows that any function h in L2(I ) that is
orthogonal to each ek is also orthogonal to each gn . Taking limits, h is orthog-
onal to each continuous periodic g. The function h itself can be approximated
in L2 norm by continuous periodic functions, so ‖h‖2 = (h, h) = 0. As in the
proof of Theorem 4.1.5, this implies that the {en} are dense in L2(I ). Note that
in this case, since the functions {en} are complex-valued, we use the complex
inner product

( f, g) =
∫ 1

0
f (x) g(x) dx .

The Fourier expansion of f ∈ L2(I ) takes the form

f =
∞∑

n=−∞
an en, an = ( f, en) =

∫ 1

0
f (x) e−2nπ i x dx .

The partial sums

fn(x) =
n∑

m=−n

am e2mπ i x

converge to f in L2(I ) norm. They can also be shown to converge to f at any
point at which f is differentiable, by an argument similar to the arguments
used in Section 4.8.
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B(a, b), beta function, 5, 20
�(a), gamma function, 5, 19
�(α, z), complementary incomplete

gamma function, 35
γ (α, z), incomplete gamma

function, 35
ζ(z), Riemann zeta function, 40
ζ(u), Weierstrass zeta function, 398
�(z), theta function, 386
θ j (u), Jacobi theta functions, 389
σ(u), Weierstrass σ -function,

396, 398
�(a, c; x), Kummer function, 190
ψ(x), psi function, 33
�(a, c; x), Kummer function,

second kind, 194
℘(u), Weierstrass ℘ function,

395, 398

(a)n , shifted factorial, 5, 19
Ai (x), Airy function, 245
B2m , Bernoulli numbers, 31
Bi (x), Airy function, 245
C(x), Fresnel integral, 199
Cλν (x), Gegenbauer (ultraspherical)

polynomial, 122
Cn(x; a), Charlier polynomial, 164
Ci(z), cosine integral, 199
cn (u), Jacobi elliptic function, 381
Dν(x), parabolic cylinder

function, 217
dn (u), Jacobi elliptic function, 381
Ei(z), exponential integral, 199
erf (z), error function, 35
erfc (z), complementary error

function, 35

F(a, b, c; x), hypergeometric
function, 267

1 F1(a, c; x), Kummer function, 190

p Fq (a1, a2, . . . , ap; c1, c2, . . . , cq ; x),
generalized hypergeometric
function, 265

Hn(x), Hermite polynomial, 107

h(α,β)n (x, N ), Chebyshev–Hahn
polynomial, 174

H (i)ν (x), Hankel functions, 234
Hen(x), Hermite polynomial, 112
Iν(x), modified Bessel function, 237
Jν(x), Bessel function, 223
Kν(x), modified Bessel function, 237
Kn(x; p, N ), Krawtchouk

polynomial, 167

k(p)n (x, N ), Krawtchouk
polynomial, 167

L2
w , weighted L2 space, 59, 84

L(α)n (x), Laguerre polynomial, 113
M(a, c; x), Kummer function, 190
Mκ,μ, Whittaker function, 206
Mn(x; b, c), Meixner polynomial, 170
mn(x; b, c), Meixner polynomial, 170
Pn(x), Legendre polynomial, 120
Pν(x), Legendre function, 307
Pm
ν (z), associated Legendre

function, 318
P(α,β)n (x), Jacobi polynomial, 117
Qν(z), Legendre function,

second kind, 309
Qm
ν (z), associated Legendre

function, 318
Qn(x;α, β, N ), Chebyshev–Hahn

polynomial, 174
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S(x), Fresnel integral, 199
Si(z), sine integral, 199
sn (u), Jacobi elliptic function,

380
Tn(x), Chebyshev polynomial, 122
U (a, c; x), Kummer function,

second kind, 193

Un(x), Chebyshev polynomial, second kind,
122, 124

W (u, v), Wronskian, 63
Wκ,μ(x), Whittaker function, 207
Yν(x), Bessel function, second kind, 225
Ynm (θ, ϕ), surface harmonic, 304
Z(u), Jacobi Z function, 393
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(1878), 5–57.
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227. Petiau, G., La Théorie des Fonctions de Bessel Exposée en vue de ses
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252. Schlömilch, O., Ueber die Bessel’schen Funktion, Z. Math. Phys. 2 (1857),

137–65.
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par les équations différentielles linéaires de seconde ordre, et leurs applications au
problème du développement d’une fonction arbitraire en séries procédant suivant
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Painlevé, P., 92
Patterson, S. J., 56
Petiau, G., 263
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Laplace
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Laplacian, 74
Legendre

addition formula, 307
duplication formula, 26
equation, 300
functions, 77, 307–18, 328–31, 346–8
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Lerch’s theorem, 45
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theorem, 421
transformation, 60
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Macdonald functions, 262
Meixner polynomials, 159, 170–3, 185–6
meromorphic function, 421
method

of stationary phase, 350
of steepest descents, 348
of successive approximations, 61

modulus, elliptic, 375
complementary, 376

multiplication formula
gamma function, 27
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normal solutions, 352

operator, differential, 58

parabolic cylinder
coordinates, 76
functions, 78, 189, 202–5,

216–18, 337
Parseval equality, 98
period

lattice, 376
parallelogram, 385
rectangle, 381

periodic, doubly, 380
Pfaff identity, 269
Pochhammer symbol, 5, 19
Poisson representation, 231
Poisson–Charlier polynomials, see Charlier

polynomials
pole, 420
psi function, 33–4, 53

q-orthogonal polynomials, 153
quantized harmonic oscillator equation, 75

recursive equation, 3
reflection formula, 24
residue, 422

theorem, 422
Riemann

hypothesis, 56
zeta function, 40–3, 55–6

Riemann–Lebesgue lemma, 428
Rodrigues formula, 100

discrete, 161
Hermite polynomials, 101, 107
Jacobi polynomials, 101, 117
Laguerre polynomials, 101, 113

saddle point, 349
Schrödinger equation, 75
Selberg integral, 36, 54
shifted factorial, 5, 19
sigma function, Weierstrass, 396
sine integral function, 199
Sommerfeld representation, 233

Sonine integral formula, 252
spherical

coordinates, 75
functions, 300–34

spherical harmonic equation, 77,
303, 318

stationary phase, method of, 350
steepest descents, method of, 348
Stirling’s formula, 30
Sturm comparison theorem, 65
successive approximations, method of, 61
surface harmonics, 300–7, 326–7
symmetric operator, 59

Tchebycheff, see Chebyshev
theta functions, 384–9, 410–2

Jacobi, 389–94, 412–14
transformation

Liouville, 60
gauge, 58

triple product formula, 389

ultraspherical polynomials, 70, 122
unitary equivalence, 60

Wallis’s formula, 43
wave equation, 74
Weber functions, see parabolic cylinder

functions
Weierstrass

elliptic functions, 394–8, 414–16
factorization theorem, 424
sigma function, 396
zeta function, 396

weight function, 59
weighted L2 space, 84
Whittaker

equation, 189, 205
functions, 205–8, 218–20

WKB or WKBJ approximation, 369
Wronskian, 63

zeta function
Weierstrass, 396
Hurwitz, 45
Riemann, 40–3, 55–6
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