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Preface

During the last years of the Nineteenth Century, the development of new tech-
niques and the refinement of measuring apparatuses provided an abundance
of new data, whose interpretation implied deep changes in the formulation of
physical laws and in the development of new phenomenology.

Several experimental results lead to the birth of the new physics. A brief list
of the most important experiments must contain those performed by H. Hertz
about the photoelectric effect, the measurement of the distribution in fre-
quency of the radiation emitted by an ideal oven (the so-called black body ra-
diation), the measurement of specific heats at low temperatures, which showed
violations of the Dulong–Petit law and contradicted the general applicability
of the equipartition of energy. Furthermore we have to mention the discov-
ery of the electron by J. J. Thomson in 1897, A. Michelson and E. Morley’s
experiments in 1887, showing that the speed of light is independent of the
reference frame, and the detection of line spectra in atomic radiation.

From a theoretical point of view, one of the main themes pushing for new
physics was the failure in identifying the ether, i.e. the medium propagating
electromagnetic waves, and the consequent Einstein–Lorentz interpretation
of the Galilean relativity principle, which states the equivalence among all
reference frames having a linear uniform motion with respect to fixed stars.

In the light of the electromagnetic interpretation of radiation, of the dis-
covery of the electron and of Rutherford’s studies about atomic structure, the
anomaly in black body radiation and the particular line structure of atomic
spectra lead to the formulation of quantum theory, to the birth of atomic

physics and, strictly related to that, to the quantum formulation of the sta-

tistical theory of matter.

Modern Physics, which is the subject of these notes, is well distinct from
Classical Physics, developed during the XIX century, and from Contemporary

Physics, which was started during the Thirties (of XX century) and deals with
the nature of Fundamental Interactions and with the physics of matter under
extreme conditions. The aim of this introduction to Modern Physics is that
of presenting a quantitative, even if necessarily also succinct and schematic,
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account of the main features of Special Relativity, of Quantum Physics and of
its application to the Statistical Theory of Matter. In usual textbooks these
three subjects are presented together only at an introductory and descriptive
level, while analytic presentations can be found in distinct volumes, also in
view of examining quite complex technical aspects. This state of things can
be problematic from the educational point of view.

Indeed, while the need for presenting the three topics together clearly
follows from their strict interrelations (think for instance of the role played by
special relativity in the hypothesis of de Broglie’s waves or of that of statistical
physics in the hypothesis of energy quantization), it is also clear that this
unitary presentation must necessarily be supplied with enough analytic tools
so as to allow a full understanding of the contents and of the consequences of
the new theories.

On the other hand, since the present text is aimed to be introductory, the
obvious constraints on its length and on its prerequisites must be properly
taken into account: it is not possible to write an introductory encyclopedia.
That imposes a selection of the topics which are most qualified from the point
of view of the physical content/mathematical formalism ratio.

In the context of special relativity, we have given up presenting the covari-
ant formulation of electrodynamics, limiting therefore ourselves to justifying
the conservation of energy and momentum and to developing relativistic kine-
matics with its quite relevant physical consequences. A mathematical discus-
sion about quadrivectors has been confined to a short appendix.

Regarding Schrödinger quantum mechanics, after presenting with some
care the origin of the wave equation and the nature of the wave function
together with its main implications, like Heisenberg’s Uncertainty Principle,
we have emphasized its qualitative consequences on energy levels. The main
analysis begins with one-dimensional problems, where we have examined the
origin of discrete energy levels and of band spectra as well as the tunnel ef-
fect. Extensions to more than one dimension concern very simple cases, in
which the Schrödinger equation is easily separable, and in particular the case
of central forces. Among the simplest separable cases we discuss the three-
dimensional harmonic oscillator and the cubic well with completely reflecting
walls, which are however among the most useful systems for their applica-
tions to statistical physics. In a further section we have discussed a general
solution to the three-dimensional motion in a central potential based on the
harmonic homogeneous polynomials in the cartesian particle coordinates. This
method, which simplifies the standard approach based on the analysis of the
Schrödinger equation in polar coordinates, is shown to be perfectly equivalent
to the standard one. It is applied in particular to the study of the hydrogen
atom spectrum, and those of the isotropic harmonic oscillator and the spher-
ical well. A short analysis of the tensor nature of the harmonic homogeneous
polynomials, and of the ensuing combination rules of angular momenta of a
composite system, is given in a brief appendix.
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Going to the last subject, which we have discussed, as usual, on the basis of
Gibbs’ construction of the statistical ensemble and of the related distribution,
we have chosen to consider those cases which are more meaningful from the
point of view of quantum effects, like degenerate gasses, focusing in particular
on distribution laws and on the equation of state, confining the presentation
of entropy to a brief appendix.

In order to accomplish the aim of writing a text which is introductory and
analytic at the same time, the inclusion of significant collections of problems
associated with each chapter has been essential. We have possibly tried to
avoid mixing problems with text complements, however moving some relevant
applications to the exercise section has the obvious advantage of streamlining
the general presentation. Therefore in a few cases we have chosen to insert
relatively long exercises, taking the risk of dissuading the average student from
trying to give an answer before looking at the suggested solution scheme. On
the other hand, we have tried to limit the number of those (however necessary)
exercises involving a mere analysis of the order of magnitudes of the physical
effects under consideration. The resulting picture, regarding problems, should
consist of a sufficiently wide series of applications of the theory, being simple
but technically non-trivial at the same time: we hope that the reader will feel
that this result has been achieved.

Going to the chapter organization, the one about Special Relativity is di-
vided into two sections, dealing respectively with Lorentz transformations
and with relativistic kinematics. The chapter on Wave Mechanics is made
up of nine sections, going from an analysis of the photoelectric effect to the
Schrödinger equation, and from the potential barrier to the analysis of band
spectra and to the Schrödinger equation in central potentials. Finally, the
chapter on the Statistical Theory of Matter includes a first part dedicated to
Gibbs distribution and to the equation of state, and a second part dedicated
to the Grand Canonical distribution and to perfect quantum gasses.

Genova, January 2010 Carlo Maria Becchi

Massimo D’Elia



VIII Preface

Suggestion for Introductory Reading

• K. Krane: Modern Physics, 2nd edn (John Wiley, New York 1996)

Physical Constants

• speed of light in vacuum: c = 2.998 108 m/s

• Planck’s constant: h = 6.626 10−34 J s = 4.136 10−15 eV s

• h̄ ≡ h/2π = 1.055 10−34 J s = 6.582 10−16 eV s

• Boltzmann’s constant : k = 1.381 10−23 J/◦K = 8.617 10−5 eV/◦K

• electron charge magnitude: e = 1.602 10−19 C

• electron mass: me = 9.109 10−31 Kg = 0.5110 MeV/c2

• proton mass: mp = 1.673 10−27 Kg = 0.9383 GeV/c2

• permittivity of free space: ε0 = 8.854 10−12 F / m
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1

Introduction to Special Relativity

Maxwell equations in vacuum space describe the propagation of electromag-
netic signals with speed c ≡ 1/

√
μ0ε0. Since, according to the Galilean rel-

ativity principle, velocities must be added like vectors when going from one
inertial reference frame to another, the vector corresponding to the velocity
of a luminous signal in one inertial reference frame O can be added to the
velocity of O with respect to a new inertial frame O′ to obtain the velocity of
the luminous signal as measured in O′. For a generic value of the relative ve-
locity, the speed of the signal in O′ will be different, implying that, if Maxwell
equations are valid in O, they are not valid in a generic inertial reference frame
O′.

In the Nineteenth Century, in analogy with the propagation of elastic
waves, the most natural solution to this paradox seemed that based on the
assumption that electromagnetic waves correspond to deformations of an ex-
tremely rigid and rare medium, which was named ether. However that led to
the problem of finding the reference frame at rest with ether.

Taking into account that Earth rotates along its orbit with a velocity
which is about 10−4 times the speed of light, an experiment able to reveal
the possible change of velocity of the Earth with respect to the ether in two
different periods of the year would require a precision of at least one part over
ten thousand. We will show how A. Michelson and E. Morley were able to
reach that precision by using interference of light.

Another aspect of the same problem comes out when considering the force
exchanged between two charged particles at rest with respect to each other.
From the point of view of an observer at rest with the particles, the force
is given by Coulomb law, which is repulsive it the charges have equal sign.
An observer in a moving reference frame must instead also consider the mag-
netic field produced by each particle, which acts on moving electric charges
according to Lorentz force law. If the velocity of the particles is orthogonal
to their relative distance, it can be easily checked that the Lorentz force is
opposite to the Coulomb one, thus reducing the electrostatic force by a fac-
tor (1 − v2/c2). Even if small, the difference leads to different accelerations
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in the two reference frames, in contrast with the Galilean relativity princi-
ple. According to this analysis, Coulomb law should be valid in no inertial
reference frame but that at rest with ether. However in this case violations
are not easily detectable: for instance, in the case of two electrons accelerated
through a potential gap equal to 104 V, one would need a precision of the
order of v2/c2 � 4 10−4 in order to reveal the effect, and such precisions are
not easily attained in the measurement of a force. For this reason it was much
more convenient to measure the motion of Earth with respect to the ether by
studying interference effects related to variations in the speed of light.

1.1 Michelson–Morley Experiment

and Lorentz Transformations

The experimental analysis was done by Michelson and Morley who used a
two-arm interferometer similar to what reported in Fig. 1.1. The light source
L generates a beam which is split into two parts by a half-silvered mirror S.
The two beams travel up to the end of the arms 1 and 2 of the interferometer,
where they are reflected back to S: there they recombine and interfere along
the tract connecting to the observer in O. The observer detects the phase shift,
which can be easily shown to be proportional to the difference ΔT between
the times needed by the two beams to go along their paths: if the two arms
have the same length l and light moves with the same velocity c along the two
directions, then ΔT = 0 and constructive interference is observed in O.

Fig. 1.1. A sketch of Michelson-Morley interferometer
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If however the interferometer is mov-
ing with respect to ether with a ve-
locity v, which we assume for sim-
plicity to be parallel to the sec-
ond arm, then the path of the first
beam will be seen from the reference
frame of the ether as reported in the
nearby figure and the time T needed
to make the path will be given by
Pythagoras’ theorem:

c2 T 2 = v2 T 2 + 4 l2 (1.1)

from which we infer

T =
2 l/c√

1− v2/c2
. (1.2)

If we instead consider the second beam, we have a time t1 needed to make
half-path and a time t2 to go back, which are given respectively by

t1 =
l

c− v
, t2 =

l

c + v
(1.3)

so that the total time needed by the second beam is

T ′ = t1 + t2 =
2 l/c

1− v2/c2
=

T√
1− v2/c2

(1.4)

and for small values of v/c one has

ΔT ≡ T ′ − T � T v2

2 c2
� l v2

c3
; (1.5)

this result shows that the experimental apparatus is in principle able to reveal
the motion of the laboratory with respect to ether.

If we assume to be able to reveal time differences δT as small as 1/20 of
the typical oscillation period of visible light (hence phase differences as small
as 2π/20), i.e. δT ∼ 5 10−17 s, and we take l = 2 m, so that l/c � 0.6 10−8 s,
we obtain a sensitivity δv/c =

√
δT c/l ∼ 10−4, showing that we are able to

reveal velocities with respect to ether as small as 3 104 m/s, which roughly
corresponds to the orbital speed of Earth. If we compare the outcome of two
such experiments separated by an interval of 6 months, corresponding to Earth
velocities differing by approximately 105 m/s, we should be able to reveal the
motion of Earth with respect to ether. The experiment, repeated in several
different times of the year, clearly showed, together with other complementary
observations, that ether does not exist.

Starting from that observation, Einstein deduced that Galilean transfor-
mation laws between inertial reference frames:
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t′ = t ,

x′ = x− vt , (1.6)

are inadequate and must be replaced with new linear transformation laws
maintaining the speed of light invariant from one reference frame to the other,
i.e. they must transform the equation x = c t, describing the motion of a
luminous signal emitted in the origin at time t = 0, into x′ = c t′, assuming the
origins of the reference frames of the two observers coincide at time t = t′ = 0.
Linearity must be maintained in order that motions which are uniform in one
reference frame stay uniform in all other inertial reference frames.

In order to deduce the new transformation laws, let us impose that the
origin of the new reference frame O′ moves with respect to O with velocity v

x′ = A(x − v t) (1.7)

where A is some constant to be determined. We can also write

x = A(x′ + v t′) (1.8)

since transformation laws must be symmetric under the substitution x ↔ x′,
t↔ t′ and v ↔ −v. Combining (1.7) and (1.8) we obtain

t′ =
x

Av
− x′

v
=

x

Av
− Ax

v
+ At = A

[
t− x

v

(
1− 1

A2

)]
(1.9)

from which we see that A must be positive in order that the arrow of time be
the same for the two observers.

Let us now apply our results to the motion of a luminous signal, i.e. let us
take x = c t and impose that x′ = c t′. Combining (1.7) and (1.9) we get

x′ = c A t
(
1− v

c

)
, t′ = At

[
1− c

v

(
1− 1

A2

)]
(1.10)

hence, imposing x′ = c t′, we obtain

1− c

v

(
1− 1

A2

)
= 1− v

c
(1.11)

from which it easily follows that

A =
1√

1− v2/c2
. (1.12)

We can finally write

x′ =
1√

1− v2/c2
(x − vt) , t′ =

1√
1− v2/c2

(
t− v

c2
x
)

, (1.13)

while orthogonal coordinates are left invariant
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y′ = y , z′ = z , (1.14)

since this is the only possibility compatible with linearity and symmetry under
reversal of v, i.e. under exchange of O and O′. These are Lorentz transfor-
mation laws, which can be easily inverted by simply changing the sign of the
relative velocity:

x =
1√

1− v2/c2
(x′ + vt′) , t =

1√
1− v2/c2

(
t′ +

v

c2
x′
)

. (1.15)

Replacing in (1.13) t by x0 = ct and setting sinhχ ≡ v/
√

c2 − v2, we obtain:

x′ = coshχ x− sinh χ x0 , x′0 = coshχ x0 − sinh χ x . (1.16)

It clearly appears that previous equations are analogous to two-dimensional
rotations, x′ = cos θ x− sin θ y , and y′ = cos θ y+sin θ x , with trigonometric
functions replaced by hyperbolic functions1. However, while rotations keep
x2 + y2 invariant, equations (1.16) keep invariant the quantity x2−x2

0 , indeed

x′2−x′20 = (coshχ x−sinh χ x0)
2−(coshχ x0−sinh χ x)2 = x2−x2

0 . (1.17)

That suggests to think of Lorentz transformations as generalized “rotations”
in space and time.

The three spatial coordinates (x, y, x) plus the time coordinate ct of any
event in space-time can then be considered as the components of a quadrivec-

tor. The invariant length of the quadrivector is x2 + y2 + z2 − c2t2, which is
analogous to usual length in space, but can also assume negative values. Given
two quadrivectors, (x1, y1, z1, ct1) and (x2, y2, z2, ct2), it is also possible to de-
fine their scalar product x1x2 + y1y2 + z1z2 − c2t1t2, which is invariant under
Lorentz transformations as well. A more thorough treatment of quadrivectors
can be found in Appendix A.

One of the main consequences of Lorentz transformations is a different
addition law for velocities, which is expected from the invariance of the speed
of light. Let us consider a particle which, as seen from reference frame O, is
in (x, y, z) at time t and in (x + Δx, y + Δy, z + Δz) at time t + Δt, thus
moving with an average velocity (Vx = Δx/Δt, Vy = Δy/Δt, Vz = Δz/Δt). In
reference frame O′ it will be instead Δy′ = Δy, Δz′ = Δz and

Δx′ =
1√

1− v2

c2

(Δx− vΔt) , Δt′ =
1√

1− v2

c2

(
Δt− v

c2
Δx

)
, (1.18)

from which we obtain
1 Notice that, in much the same way as for rotations around a fixed axis the angle

corresponding to the combination of two rotations is the sum of the respective
angles, two Lorentz transformations made along the same axis combine in a such
a way that the resulting sector χ, which is sometimes called rapidity, is the sum
of corresponding sectors.
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V ′x ≡
Δx′

Δt′
=

Δx− vΔt

Δt− v
c2 Δx

=
Vx − v

1− vVx

c2

, V ′y/z =

√
1− v2

c2

Vy/z

1− vVx

c2

(1.19)

instead of V ′x = Vx − v and V ′y/z = Vy/z, as predicted by Galilean laws. It

requires only some simple algebra to prove that, according to (1.19), if |V | = c
then also |V ′| = c, as it should be to ensure the invariance of the speed of
light: see in Problem 1.7 for more details.

Lorentz transformations lead to some new phenomena. Let us suppose that
the moving observer has a clock which is placed at rest in the origin, x′ = 0,
of its reference frame O′. The ends of any time interval ΔT ′ measured by that
clock will correspond to two different events (x′1 = 0, t′1) and (x′2 = 0, t′2): they
correspond to two different beats of the clock, with t′2− t′1 = ΔT ′. The above
events have different coordinates in the rest frame O, which by (1.15) and
setting γ = 1/

√
1− v2/c2 are (x1 = γ vt′1, t1 = γ t′1) and (x2 = γ vt′2, t2 =

γ t′2): they are therefore separated by a different time interval ΔT = γΔT ′,
which is in general dilated (γ > 1) with respect to the original one. This
result, which can be summarized by saying that a moving clock seems to slow
down, is usually known as time dilatation, and is experimentally confirmed
by observing subatomic particles which spontaneously disintegrate with very
well known mean life times: the mean life of moving particles increases with
respect to that of particles at rest with the same law predicted for moving
clocks (see also Problem 1.15). Notice that, going along the same lines, one
can also demonstrate that a clock at rest in the origin of the reference frame
O seems to slow down according to an observer in O′: there is of course no
paradox in having two different clocks, each slowing down with respect to the
other since, as long as both reference frames are inertial, the two clocks can
be put together and directly compared (synchronized) only once. The same
is not true in case at least one of the two frames is not inertial: a correct
treatment of this case, including the well known twin paradox, goes beyond
the aim of the present notes.

Notice that time dilatation is also in agreement with what observed re-
garding the travel time of beam 1 in Michelson’s interferometer, which is 2l/c
when observed at rest and 2l/(c

√
1− v2/c2) when in motion. Instead, in order

that the travel time of beam 2 be the same, we need the length l of the arm
parallel to the direction of motion to appear reduced by a factor

√
1− v2/c2 ,

i.e. that an arm moving parallel to its length appear contracted. To confirm
that, let us consider a segment of length L′, at rest in reference frame O′,
where it is identified by the trajectories x′1(t′1) = 0 and x′2(t′2) = L′ of its two
ends. For an observer in O the two trajectories appear as

x1 =
vt′1√
1− v2

c2

, t1 =
t′1√

1− v2

c2

; x2 =
L′ + vt′2√

1− v2

c2

, t2 =
t′2 + vL′

c2√
1− v2

c2

. (1.20)

The length of the moving segment is measured in O as the distance between its
two ends, located at the same time t2 = t1, i.e. L = x2−x1 for t′2 = t′1−vL′/c2,
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so that

L =
L′√

1− v2

c2

+
v(t′2 − t′1)√

1− v2

c2

= L′
√

1− v2

c2
, (1.21)

thus confirming that, in general, any body appears contracted along the di-
rection of its velocity (length contraction).

It is clear that previous formulae do not make sense when v2/c2 > 1,
therefore we can conclude that it is not possible to have systems or signals
moving faster than light. Last consideration leads us to a simple and use-
ful interpretation of the length of a quadrivector. Let us take two different
events in space-time, (x1, ct1) and (x2, ct2): their distance (Δx, cΔt) is also a
quadrivector. If |Δx|2 − c2Δt2 < 0 we say that the two events have a space-

like distance. Any signal connecting the two events would go faster than light,
therefore it is not possible to establish any causal connection between them. If
|Δx|2− c2Δt2 = 0 we say that the two events have a light-like distance2: they
are different points on the trajectory of a luminous signal. If |Δx|2−c2Δt2 < 0
we say that the two events have a time-like distance: also signals slower than
light can connect them, so that a causal connection is possible. Notice that
these definitions are not changed by Lorentz transformations, so that the two
events are equally classified by all inertial observers. For space-like distances,
it is always possible to find a reference frame in which Δt = 0, or two dif-
ferent frames for which the sign of Δt is opposite: no absolute time ordering
between the two events is possible, that being completely equivalent to saying
that they cannot be put in causal connection.

Another relevant consequence of Lorentz transformations is the new law
regulating Doppler effect for electromagnetic waves propagating in vacuum
space. Let us consider a monochromatic signal propagating in reference frame
O with frequency ν, wavelength λ = c/ν and amplitude A0, which is described
by a plane wave

A(x, t) = A0 sin(k · x− ωt) , (1.22)

where ω = 2πν and k is the wave vector (|k| = 2π/λ = ω/c). Linearity implies
that the signal is described by a plane wave also in the moving reference frame
O′, but with a new wave vector k′ and a new frequency ν′. The transformation
laws for these quantities are easily found by noticing that the difference of the
two phases at corresponding points in the two frames must be a space-time
independent constant if the fields transforms locally. That is true only if the
phase k · x − ωt is invariant under Lorentz transformations, i.e., defining
k0 = ω/c, if

k′ · x′ − k′0ct
′ = k · x− k0ct . (1.23)

It is easy to verify that if equation (1.23) must be true for every point (x, ct) in
space-time, then also the quantity (k, k0) must transform like a quadrivector,

2 The scalar product which is invariant under Lorentz transformations is not pos-
itive defined, so that a quadrivector can have zero length without being exactly
zero.
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i.e., if O′ is moving with respect to O with velocity v directed along the
positive x direction, we have

k′x =
1√

1− v2

c2

(
kx − v

c
k0

)
, k′0 =

1√
1− v2

c2

(
k0 − v

c
kx

)
, (1.24)

and k′y = ky, k′z = kz. The first transformation law can be checked explicitly
by rewriting (1.23) with (x′, ct′) = (1, 0, 0, 0) and making use of (1.15); in
the same way also the other laws follows. Therefore the quantity (k, ω/c) is
indeed a quadrivector, whose length is equal to zero.

We can now apply (1.24) to the Doppler effect, by considering the trans-
formation law for the frequency ν. Let us examine the particular case in which
k = (±k, 0, 0), i.e. the wave propagates along the direction of motion of O′

(longitudinal Doppler effect): after some simple algebra one finds

ν′ = ν

√
1∓ v/c

1± v/c
. (1.25)

The frequency is therefore reduced (increased) if the motion of O′ is parallel
(opposite) to that of the signal. The result is similar to the classical Doppler
effect obtained for waves propagating in a medium, but with important dif-
ferences. In particular it is impossible to distinguish the motion of the source
from the motion of the observer: that is evident from (1.25), since ν and ν′

can be exchanged by simply reversing v → −v: that is consistent with the fact
that Lorentz transformations have been derived on the basis of the experimen-
tal observation that no propagating medium (ether) exists for electromagnetic
waves in vacuum.

Another relevant difference is that the frequency changes even if, in frame
O, the motion of O′ is orthogonal to that of the propagating signal (orthogonal
Doppler effect): in that case equations (1.24) imply

ν′ = ν
1√

1− v2/c2
. (1.26)

We have illustrated the geometrical consequences of Lorentz transformation
laws. We now want to consider the main dynamical consequences, but be-
fore doing so it will be necessary to remind some basic concepts of classical
mechanics.

1.2 Relativistic Kinematics

Classical Mechanics is governed by the minimum action principle. A La-
grangian L(t, qi, q̇i) is usually associated with a mechanical system: it has
the dimension of an energy and is a function of time, of the coordinates qi
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and of their time derivatives q̇i . L is defined but for the addition of a function
like ΔL(t, qi, q̇i) =

∑
i q̇i ∂F (t, qi)/∂qi + ∂F (t, qi)/∂t, i.e. a total time deriva-

tive. Given a time evolution law for the coordinates qi(t) in the time interval
t1 ≤ t ≤ t2, we define the action:

A =

∫ t2

t1

dt L(t, qi(t), q̇i(t)) . (1.27)

The minimum action principle states
that the equations of motion are
equivalent to minimizing the ac-
tion in the given time interval with
the constraint of having the initial
and final coordinates of the system,
qi(t1) and qi(t2), fixed. For a non rel-
ativistic particle in one dimension, a
possible choice for the Lagrangian is
L = (1/2)mẋ2+const, and it is obvi-
ous that the linear motion is the one
which minimizes the action among
all possible time evolutions. 1

x

x

t t2

1

2

For a system of particles with positions ri, i = 1, . . . n , and velocities vi, a
deformation of the time evolution law: ri → ri +δri, with δri(t1) = δri(t2) =
0, corresponds to a variation of the action:

δA =

∫ t2

t1

dt

n∑
i=1

[
∂L
∂ri

· δri(t) +
∂L
∂vi

· δvi(t)

]
=

∫ t2

t1

dt

n∑
i=1

[
∂L
∂ri

− d

dt

∂L
∂vi

]
·δri(t)

so that the requirement that A be stationary for arbitrary variations δri(t),
is equivalent to the system of Lagrangean equations

∂L
∂ri

− d

dt

∂L
∂vi

= 0 . (1.28)

In general it is possible to choose the Lagrangian so that the action has the
same invariance properties as the equations of motion. In particular, for a free
relativistic particle, the action can depend on the trajectory qi(t) in such a
way that it does not change when changing the reference frame, i.e. it can be
a Lorentz invariant.

Indeed, for any particular time evolution of a point-like particle, it is always
possible to define an associated proper time as that measured by a (point-
like) clock which moves (without failing) together with the particle. Since an
infinitesimal proper time interval dτ corresponds to dt = dτ/

√
1− (v2/c2)

for an observer which sees the particle moving with velocity v, a proper time
interval τ2− τ1 is related to the time interval t2− t1 measured by the observer
as follows:



10 1 Introduction to Special Relativity

∫ t2

t1

dt

√
1− v2(t)

c2
=

∫ τ2

τ1

dτ = τ2 − τ1 . (1.29)

The integral on the left hand side does not depend on the reference frame of
the observer, since in any case it must correspond to the time interval τ2 − τ1

measured by the clock at rest with the particle: the proper time τ of the
moving system is therefore a Lorentz invariant by definition.

The action of a free relativistic particle is a time integral depending on
the evolution trajectory r = r(t) and, in order to be invariant under Lorentz
transformations, it must necessarily be proportional to the proper time

A = k

∫ t2

t1

dt

√
1− v2

c2
, (1.30)

so that Lfree = k
√

1− (v2/c2). For velocities much smaller than c, we can
use a Taylor expansion

Lfree = k

(
1− 1

2

v2

c2
− 1

8

v4

c4
+ . . .

)
(1.31)

which, compared with the Lagrangian of a non relativistic free particle, gives
k = −mc2.

Let us now consider a scattering process involving n particles. The La-
grangian of the system at the beginning and at the end of the process, i.e. far
away from when the interactions among the particles are not negligible, must
be equal to the sum of the Lagrangians of the single particles, i.e.

L(t)||t|→∞ →
n∑

i=1

Lfree,i = −
n∑

i=1

mic
2

√
1− v2

i

c2
, (1.32)

where L(t) is in general the complete Lagrangian describing also the interac-
tion process and Lfree,i is the Lagrangian for the i-th free particle.

If no external forces are acting on the particles, L is invariant under trans-
lations, i.e. it does not change if the positions of all particles are translated by
the same vector a: ri → ri + a. This invariance requirement can be written
as:

∂L
∂a

=

n∑
i=1

∂L
∂ri

= 0 . (1.33)

Combining this with the Lagrangean equations (1.28), we obtain the conser-

vation law:
d

dt

n∑
i=1

∂L
∂vi

= 0 . (1.34)

That means that the sum of the vector quantities ∂L/∂vi does not change
with time, hence in particular:
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n∑
i=1

∂Lfree,i

∂vi

|t→−∞ =
n∑

i=1

∂Lfree,i

∂vi

|t→∞ . (1.35)

In the case of relativistic particles, taking into account the following identity:

∂

∂v

√
1− v2

c2
= − v

c2
√

1− v2/c2
(1.36)

and setting vi|t→−∞ = vi,I and vi|t→∞ = vi,F , equation (1.34) reads

n∑
i=1

mivi,I√
1− v2

i,I/c2
=

n∑
i=1

mivi,F√
1− v2

i,F /c2
. (1.37)

Invariance under translations is always related to the conservation of the total
momentum of the system, hence we infer that mv/

√
1− v2/c2 is the gener-

alization of momentum for a relativistic particle, as it is also clear by taking
the limit v/c→ 0.

Till now we have considered the case in which the final particles coincide
with the initial ones. However, in the relativistic case, particles can in general
change their nature during the scattering process, melting together or split-
ting, losing or gaining mass, so that the final set of particles is different from
the initial one. It is possible, for instance, that the collision of two particles
leads to the production of new particles, or that a single particle spontaneously
decays into two or more different particles. We are not interested at all, in the
present context, in the specific dynamic laws regulating the interaction pro-
cess; however we can say that, in absence of external forces, the invariance of
the Lagrangian under spatial translation, expressed in (1.33), is valid anyway,
together with the conservation law for the total momentum of the system. If
we refer in particular to the initial and final states, in which the system can be
described as composed by non-interacting free particles, the conservation law
implies that the sum of the momenta of the initial particles be equal to the
sum of the momenta of the final particles, so that (1.37) can be generalized
to

nI∑
i=1

m
(I)
i vi,I√

1− v2
i,I/c2

=

nF∑
j=1

m
(F )
j vj,F√

1− v2
j,F /c2

, (1.38)

where m
(I)
i and m

(F )
j are the masses of the nI initial and of the nF final

particles respectively.
Similarly, if the Lagrangian does not depend explicitly on time, it is pos-

sible, using again (1.28), to derive

d

dt
L =

∑
i

(
v̇i · ∂L

∂vi

+ vi · ∂L
∂ri

)

=
∑

i

(
v̇i · ∂L

∂vi

+ vi · d

dt

∂L
∂vi

)
=

d

dt

∑
i

vi · ∂L
∂vi

(1.39)
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which is equivalent to the conservation law

d

dt

[∑
i

vi · ∂L
∂vi

− L
]

= 0 . (1.40)

In the case of free relativistic particles, the conserved quantity in (1.40) is

∑
i

(
vi · mivi√

1− v2
i /c2

+ mic
2

√
1− v2

i

c2

)
=
∑

i

mic
2√

1− v2
i /c2

. (1.41)

In the non relativistic limit mc2/
√

1− v2/c2 � mc2 + 1
2mv2 apart from terms

proportional to v4, so that (1.41) becomes the conservation law for the sum
of the non-relativistic kinetic energies of the particles (indeed, in the same
limit, Galilean invariance laws impose conservation of mass). We can therefore
consider mc2/

√
1− v2/c2 as the relativistic expression for the energy of a

free particle, as it should be clear from the fact that invariance under time
translations is always related to the conservation of the total energy. The
analogous of (1.38) is

nI∑
i=1

m
(I)
i c2√

1− v2
i,I/c2

=

nF∑
j=1

m
(F )
j c2√

1− v2
j,F /c2

. (1.42)

It is interesting to consider how the momentum components and the energy
of a particle of mass m transform when going from one reference frame O to
a new frame O′ moving with velocity v1, which is taken for simplicity to be
parallel to the x axis. Let v be the modulus of the velocity of the particle
and (vx, vy , vz) its components in O; in order to simplify the notation, let us

set β = v/c, β1 = v1/c, γ = 1/
√

1− β2 and γ1 = 1/
√

1− β2
1 , so that the

momentum components and the energy of the particle in O are

(px, py, pz) = (γmvx, γmvy, γmvz) , E = γmc2 . (1.43)

The modulus v′ of the velocity of the particle in O′ is easily found by using
(1.19) (see Problem 1.7):

β′2 =
v′2

c2
= 1− 1

γ2γ2
1

1

(1− v1vx/c2)2
, γ′ ≡ 1√

1− β′2
= γγ1

(
1− v1vx

c2

)

so that, using again (1.19):

p′x = γ′mv′x = γ1γm
(
1− v1vx

c2

) (vx − v1)

1− v1vx/c2
= γ1

(
px − v1

c

E

c

)
;

p′y/z = γ′mv′y/z = γ1γ
(
1− v1vx

c2

) mvy/z

γ1(1− v1vx/c2)
= py/z ; (1.44)
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E′ = γ′mc2 = γ1γmc2
(
1− v1vx

c2

)
= γ1

(
E − v1

c
pxc

)
.

Equations (1.44) show that the quantities (p, E/c) transform in the same
way as (x, ct), i.e. as the components of a quadrivector, so that the quan-
tity |p|2 − E2/c2 does not change from one inertial reference frame to the
other, the invariant quantity being directly linked to the mass of the par-
ticle, |p|2 − E2/c2 = −m2c2. Moreover, given two different particles, we
can construct various invariant quantities from their momenta and ener-
gies, among which p1 · p2 − E1E2/c2. The fact that momentum and en-
ergy transform as a quadrivector can also be easily deduced by noticing that
(p, E/c) = m(dx/dτ, c dt/dτ) and recalling that the proper time τ is a Lorentz
invariant quantity.

If we are dealing with a system of particles, we can also build up the total
momentum P tot of the system, which is the sum of the single momenta, and
the total energy Etot, which is the sum of the single particle energies: since
quadrivectors transforms linearly, the quantity (P tot, Etot/c), being the sum
of quadrivectors, transforms as a quadrivector as well; its invariant length is
linked to a quantity which is called the invariant mass (Minv) of the system

|P tot|2 − E2
tot/c2 ≡ −M2

inv c2 . (1.45)

It is often convenient to consider the center-of-mass frame for a system of
particles, which is defined as the reference frame where the total momentum
vanishes. It is easily verified, by using Lorentz transformations, that the center
of mass moves with a relative velocity

vcm =
P tot

Etot
c2 (1.46)

with respect to an inertial frame where P tot 
= 0. Notice that, according to
(1.45) and (1.46), the center of mass frame is well defined only if the invariant
mass of the system is different from zero.

On the basis of what we have deduced about the transformation properties
of energy and momentum, it is important to notice that we can identify them
as the components of a quadrivector only if the energy of a particle is defined
as mc2/

√
1− v2/c2, thus fixing the arbitrary constant usually appearing in

its definition. We can then assert that a particle at rest has energy equal to
mc2. Since mass in general is not conserved3, it may happen that part of the
rest energy of a decaying particle gets transformed into the kinetic energies of
the final particles, or that part of the kinetic energy of two or more particles

3 We mean by that the sum of the masses of the single particles. The invariant mass
of a system of particles defined in (1.45) is instead conserved, as a consequence
of the conservation of total momentum and energy.
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involved in a diffusion process is transformed in the rest energy of the final
particles. As an example, the energy which comes out of a nuclear fission
process derives from the excess in mass of the initial nucleus with respect to
the masses of the products of fission. Everybody knows the relevance that this
simple remark has acquired in the recent past.

A particular discussion is required for particles of vanishing mass, like the
photon. While, according to (1.37) and (1.41), such particles seem to have
vanishing momentum and energy, a more careful look shows that the limit
m → 0 can be taken at constant momentum p if at the same time the speed
of the particle tends to c according to v = c (1 + m2p2/c2)−1/2. In the same
limit E → pc, in agreement with p2 − E2/c2 = −m2c2.

Our considerations on conservation and transformation properties of en-
ergy and momentum permit to fix in a quite simple way the kinematic con-
straints related to a diffusion process: let us illustrate this point with an
example.

In relativistic diffusion processes it is possible to produce new particles
starting from particles which are commonly found in Nature. The collision of
two hydrogen nuclei (protons), which have a mass m � 1.67 10−27 Kg, can
generate the particle π, which has a mass μ � 2.4 10−28 Kg. Technically, some
protons are accelerated in the reference frame of the laboratory, till one obtains
a beam of momentum P , which is then directed against hydrogen at rest. That
leads to proton–proton collisions from which, apart from the already existing
protons, also the π particles emerge (it is possible to describe schematically
the reaction as p + p → p + p + π). A natural question regards the minimum
momentum or energy of the beam particles needed to produce the reaction: in
order to get an answer, it is convenient to consider this problem as seen from
the center of mass frame, in which the two particles have opposite momenta,
which we suppose to be parallel, or anti-parallel, to the x axis: P1 = −P2,
and equal energies E1 =

√
P 2

1 c2 + m2c4 = E2. In this reference frame the
total momentum vanishes and the total energy is E = 2E1. Conservation of
momentum and energy constrains the sum of the three final particle momenta
to vanish, and the sum of their energy to be equal to E. The required energy is
minimal if all final particles are produced at rest, the kinematical constraint
on the total momentum being automatically satisfied in that case (this is
the advantage of doing computations in the center of mass frame). We can
then conclude that the minimum value of E in the center of mass is Emin =
(2m + μ)c2. However that is not exactly the answer to our question: we have
to find the value of the energy of the beam protons corresponding to a total
energy in the center of mass equal to Emin. That can be done by noticing
that in the center of mass both colliding protons have energy Emin/2, so that
we can compute the relative velocity βc between the center of mass and the
laboratory as that corresponding to a Lorentz transformation leading from a
proton at rest to a proton with energy Emin/2, i.e. solving the equation
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1√
1− β2

=
Emin

2mc2
=

2m + μ

2m
.

While, as said above, the total momentum of the system vanishes in the center
of mass frame and the total energy equals Emin, in the laboratory the total
momentum is obtained by a Lorentz transformation as

PL =
β√

1− β2

Emin

c
=

√
1

1− β2
− 1

Emin

c
= (2m + μ)c

√
(2m + μ)2

4m2
− 1

=
2m + μ

2m
c
√

4mμ + μ2 .

This is also the answer to our question, since in the laboratory all momentum
is carried by the proton of the beam.

An alternative way to obtain the same result, without making explicit use
of Lorentz transformations, is to notice that, if EL is the total energy in the
laboratory, P 2

L − E2
L/c2 is an invariant quantity, which is therefore equal to

the same quantity computed in the center of mass, so that

P 2
L −

E2
L

c2
= −(2m + μ)2c2 .

Writing EL as the sum of the energy of the proton in the beam, which is√
P 2

Lc2 + m2c4, and of that of the proton at rest, which is mc2, we have the
following equation for PL:

P 2
L −

1

c2

[√
P 2

Lc2 + m2c4 + mc2

]2

= −(2m + μ)2c2 ,

which finally leads to the same result obtained above.
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Problems

1.1. A spaceship of length L0 = 150 m is moving with respect to a space
station with a speed v = 2 108 m/s. What is the length L of the spaceship as
measured by the space station?

Answer: L = L0

√
1− v2/c2 � 112 m .

1.2. How many years does it take for an atomic clock (with a precision of
one part over 1015), which is placed at rest on Earth, to lose one second with
respect to an identical clock placed on the Sun? (Hint: apply Lorentz trans-
formations as if both reference frames were inertial, with a relative velocity
v � 3 104 m/s � 10−4 c).

Answer: Setting Δt = 1 s we have T = Δt/
(
1−

√
1− v2/c2

)
� 2Δt c2/v2 �

6.34 years .

1.3. An observer casts a laser pulse of frequency ν = 1015 Hz against a mir-
ror, which is moving with a speed v = 5 107 m/s opposite to the direction of
the pulse, and whose surface is orthogonal to it. The observer then measures
the frequency ν′ of the pulse coming back after being reflected by the mirror.
What is the value of ν′?

Answer: Since reflection leaves the frequency unchanged only in the rest frame

of the mirror, two different longitudinal Doppler effects have to be taken into ac-

count, that of the original pulse with respect to the mirror and that the reflected

pulse with respect to the observer, therefore ν′ = ν (1+v/c)/(1−v/c) = 1.4 1015 Hz .

1.4. Fizeau’s Experiment

In the experiment described in the figure, a light beam of frequency ν =
1015 Hz, produced by the source S, is split into two distinct beams which
go along two different paths belonging to a rectangle of sides L1 = 10 m
and L2 = 5 m. They recombine, producing interference in the observation
point O, as illustrated in the figure. The rectangular path is contained in a
tube T filled with a liquid having refraction index n = 2, so that the speed
of light in that liquid is vc � 1.5 108 m/s. If the liquid is moving counter-
clockwise around the tube with a velocity 0.3 m/s, the speed of the light
beams along the two different paths changes, together with their wavelength,
which is constrained by the equation vc = λν (the frequency ν instead does
not change and is equal to that of the original beam). For that reason the
two beams recombine in O with a phase difference Δφ, which is different from
zero (the phase accumulated by each beam is given by 2π times the number of
wavelengths contained in the total path). What is the value of Δφ? Compare
the result with what would have been obtained using Galilean transformation
laws.
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Answer: Calling L = L1 +L2 = 15 m the total path length inside the tube for each
beam, and using Einstein laws for adding velocities, one finds

Δφ = 4πνLv
n2 − 1

c2 − n2v2
� 4πνLv(n2 − 1)/c2 � 1.89 rad .

Instead, Galilean laws would lead to

Δφ = 4πνLv
n2

c2 − n2v2
,

a result which does not make sense, since it is different from zero also when the tube

is empty: in that case, indeed, Galilean laws would imply that the tube is still filled

with a “rotating ether”.

1.5. A flux of particles, each carrying an electric charge q = 1.6 10−19 C, is
moving along the x axis with a constant velocity v = 0.9 c. If the total carried
current is I = 10−9 A, what is the linear density of particles, as measured in
the reference frame at rest with them?

Answer: If d0 is the distance among particles in their rest frame, the distance
measured in the laboratory appears contracted and equal to d =

√
1− v2/c2 d0.

The electric current is given by I = d−1vq, hence the particle density in the rest
frame is

d−1
0 =

√
1− v2/c2

I

vq
� 10.1 particles/m .

1.6. A particle is moving with a velocity c/2 along the positive direction of
the line y = x. What are the components of the velocity of the particle for an
observer moving with a speed V = 0.99 c along the x axis?

Answer: We have vx = vy = c/(2
√

2) in the original system. After applying rela-
tivistic laws for the addition of velocities we find

v′
x =

vx − V

1− vxV/c2
� −0.979c ; v′

y =
√

1− V 2/c2
vy

1− vxV/c2
� 0.0767c .

1.7. A particle is moving with a speed of modulus v and components (vx, vy, vz).
What is the modulus v′ of the velocity for an observer moving with a speed
w along the x axis? Comment the result as v and/or w approach c.

Answer: Applying the relativistic laws for the addition of velocities we find
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v′2 = v′2
x + v′2

y + v′2
z =

(vx − w)2 + (1− w2/c2)(v2
z + v2

y)

(1− vxw/c2)2

and after some simple algebra

v′2 = c2

(
1− (1− v2/c2)(1− w2/c2)

(1− vxw/c2)2

)
.

It is interesting to notice that as v and/or w approach c, also v′ approaches c (from

below): that verifies that a body moving with v = c moves with the same velocity

in every reference frame (invariance of the speed of light).

1.8. Two spaceships, moving along the same course with the same velocity
v = 0.98 c, pass space station Alpha, which is placed on their course, at
the same hour of two successive days. On each of the two spaceships a radar
permits to know the distance from the other spaceship: what value does it
measure?

Answer: In the reference frame of space station Alpha, the two spaceships stay
at the two ends of a segment of length L = vT where T = 1 day. That distance is
reduced by a factor

√
1− v2/c2 with respect to the distance L0 among the space-

ships as measured in their rest frame. We have therefore

L0 =
1√

1− v2/c2
vT � 1.28 1014 m.

1.9. We are on the course of a spaceship moving with a constant speed v while
emitting electromagnetic pulses which, in the rest frame of the spaceship, are
equally spaced in time. We receive a pulse every second while the spaceship is
approaching us, and a pulse every two seconds while the spaceship is leaving
us. What is the speed of the spaceship?

Answer: It can be easily checked that the frequency of pulses changes according to
the longitudinal Doppler effect, so that

1 + v/c

1− v/c
= 2 ,

hence v = 1/3 c.

1.10. During a Star Wars episode, space station Alpha detects an enemy
spaceship approaching it from a distance d = 108 Km at a speed v = 0.9 c,
and at the same time the station launches a missile of speed v′ = 0.95 c to
destroy it. As soon as the enemy spaceship detects the electromagnetic pulses
emitted by the missile, it launches against space station Alpha the same kind
of missile, therefore moving at a speed 0.95 c in the rest frame of the space-
ship. How much time do the inhabitants of space station Alpha have, after
having launched their missile, to leave the station before it is destroyed by
the second missile?
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Answer: Let us make computations in the reference frame of space station Al-

pha. Setting to zero the launching time of the first missile, the enemy spaceship

detects it and launches the second missile at time t1 = d/(v + c) and when it is at

a distance x1 = cd/(v + c) from the space station. The second missile approaches

Alpha with a velocity V = (v + v′)/(1 + vv′/c2) � 0.9973 c, therefore it hits the

space station at time t2 = t1 + x1/V � 352 s.

1.11. A particle moves in one dimension with an acceleration which is con-
stant and equal to a in the reference frame instantaneously at rest with it.
Determine, for t > 0, the trajectory x(t) of the particle in the reference frame
of the laboratory, where it is placed at rest in x = 0 at time t = 0.

Answer: Let us call τ the proper time of the particle, synchronized so that τ = 0
when t = 0. The relation between proper and laboratory time is given by

dτ =
√

1− v2(t)/c2 dt

where v(t) = dx/dt is the particle velocity in the laboratory. Let us also introduce
the quadrivelocity (dx/dτ, d(ct)/dτ ), which transforms as a quadrivector since dτ is
a Lorentz invariant. We are interested in particular in its spatial component in one
dimension, u ≡ dx/dτ , which is related to v by the following relations

u =
v√

1− v2/c2
, v =

u√
1 + u2/c2

,

√
1 +

u2

c2

√
1− v2

c2
= 1 .

To derive the equation of motion, let us notice that, in the frame instantaneously
at rest with the particle, the velocity goes from 0 to adτ in the interval dτ , so
that v changes into (v + adτ )/(1 + vadτ/c2) in the same interval, meaning that
dv/dτ = a(1− v2/c2). Using previous equations, it is easy to derive

du

dt
=

du

dv

dv

dτ

dτ

dt
= a

which can immediately be integrated, with the initial condition u(0) = v(0) = 0, as
u(t) = at. Using the relation between u and v we have

v(t) =
at√

1 + a2t2/c2
.

That gives the variation of velocity, as observed in the laboratory, for a uniformly
accelerated motion: for t � c/a one recovers the non-relativistic result, while for
t � c/a the velocity reaches asymptotically that of light. The dependence of v on t
can be finally integrated, using the initial condition x(0) = 0, giving

x(t) =
c2

a

(√
1 +

a2t2

c2
− 1

)
.

1.12. Spaceship A is moving with respect to space station S with a velocity
2.7 108 m/s. Both A and S are placed in the origin of their respective reference
frames, which are oriented so that the relative velocity of A is directed along
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the positive direction of both x axes; A and S meet at time tA = tS = 0.
Space station S detects an event, corresponding to the emission of luminous
pulse, in xS = 3 1013 m at time tS = 0. An analogous but distinct event is
detected by spaceship A, with coordinates xA = 1.3 1014 m , tA = 2.3 103 s. Is
it possible that the two events have been produced by the same moving body?

Answer: The two events may have been produced by the same moving body only

if they have a time-like distance, otherwise the unknown body would go faster

than light. After obtaining the coordinates of the two events in the same ref-

erence frame, one obtains, e.g. in the spaceship frame, Δx � 6.09 1013 m and

cΔt � 6.27 1013 m > Δx: the two events may indeed have been produced by the

same body moving at a speed Δx/Δt � 0.97 c.

1.13. We are moving towards a mirror with a velocity v orthogonal to its
surface. We send an electromagnetic pulse of frequency ν = 109 Hz towards
the mirror, along the same direction of our motion. After 2 seconds we receive
a reflected pulse of frequency ν′ = 1.32 109 Hz. How many seconds are left
before our impact with the mirror?

Answer: We can deduce our velocity with respect to the mirror by using the double

longitudinal Doppler effect: v = βc with (1 + β)/(1− β) = 1.32, hence v = 0.138 c.

One second after we emit our pulse, the mirror is placed at one light-second from

us, therefore the impact will take place after ΔT = 1/0.138 s � 7.25 s, that means

6.25 s after we receive the reflected pulse.

1.14. Relativistic aberration of light
In the reference frame of the Sun, the Earth moves with a velocity of modulus
v = 10−4 c and which forms, at a given time, an angle θ = 60◦ with respect
to the position of a given star. Compute the variation of such angle when it
is measured by a telescope placed on Earth.

Answer: By applying the relativistic transformation laws for velocities to the pho-
tons coming from the star, it easily obtained that

tan θ′ =
√

1− β2
sin θ

cos θ + β
or equivalently cos θ′ =

cos θ + β

1 + β cos θ

to be compared with the classical expression tan θ′ = sin θ/(cos θ + β). In the rela-
tivistic case all angles, apart from θ = π, get transformed into θ′ = 0 as β → 1.

In the present case β = v/c = 10−4 and it is sensible to expand in Taylor series
obtaining, up to second order:

θ′ = θ − β sin θ + β2 sin θ cos θ + O(β3)

to be compared with result obtained by Galilean transformation laws:

θ′ = θ − β sin θ + 2β2 sin θ cos θ + O(β3) .

It is interesting to notice that relativistic effects show up only at the second order in

β. In the given case δθ = −17.86216′′ to be compared with δθ = −17.86127′′ for the
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classical computation. Relativistic effects are tiny in this case and not appreciable

by a usual optical telescope; an astronomical interferometer, which is able to reach

resolutions of the order of few micro-arcseconds at radio wavelengths, should be used

instead.

1.15. A particle μ (muon), of mass m = 1.89 10−28 Kg and carrying the same
electric charge as the electron, has a mean life time τ = 2.2 10−6 s when it
is at rest. The particle is accelerated instantaneously through a potential gap
ΔV = 108 V. What is the expected life time t of the particle, in the labora-
tory, after the acceleration? What is the expected distance D traveled by the
particle before decaying?

Answer:

t = τ
(mc2 + eΔV )

mc2
� 4.28 10−6 s

D =

√
(eΔV )2 + 2emc2ΔV

mc2
cτ = 1.1 103 m .

Notice that the average traveled distance D is larger than what expected in absence

of time dilatation, which is limited to cτ due to the finiteness of the speed of light.

The increase in the traveled distance for relativistic unstable particles is one of the

best practical proofs of time dilatation, think e.g. of the muons created when cosmic

rays collide with the upper regions of the atmosphere: a large fraction of them reaches

Earth’s surface and that is possible only because their life times appear dilated in

Earth’s frame.

1.16. The energy of a particle is equal to 2.5 10−12 J, its momentum is
7.9 10−21 N s. What are its mass m and velocity v?

Answer: m =
√

E2 − c2p2/c2 � 8.9 10−30 Kg , v = pc2/E � 2.84 108m/s.

1.17. A spaceship with an initial mass M = 103 Kg is boosted by a photonic
engine: a light beam is emitted opposite to the direction of motion, with a
power W = 1015 W, as measured in the spaceship rest frame. What is the
derivative of the spaceship rest mass with respect to its proper time? What
is the spaceship acceleration a in the frame instantaneously at rest with it?

Answer: The engine power must be subtracted from the spaceship energy, which is
Mc2 in its rest frame, hence dM/dt = −W/c2 � 1.1 10−2 Kg/s. Since the particles
emitted by the engine are photons, they carry a momentum equal to 1/c times their
energy, hence

a(τ ) =
W

c(M −Wτ/c2)
.

1.18. A spaceship with an initial mass M = 3 104 Kg is boosted by a pho-
tonic engine of constant power, as measured in the spaceship rest frame, equal
to W = 1013 W. If the spaceship moves along the positive x direction and
leaves the space station at τ = 0, compute its velocity with respect to the
station reference frame (which is assumed to be inertial) as a function of the
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spaceship proper time.

Answer: According to the solution of previous Problem 1.17, the spaceship ac-
celeration a in the frame instantaneously at rest with it is

a(τ ) =
W

cM(τ )
=

W

c(M − τW/c2)
=

a0

1− ατ
, a0 � 1.1 m/s2 , α � 3.7 10−9 s−1 .

Recalling from the solution of Problem 1.11 that

v =
u√

1 + u2

c2

,
du

dτ
= a(τ )

√
1 +

u2

c2
,

where u is the x-component of the quadrivelocity, we can easily integrate last equa-
tion

du√
1 + u2

c2

=
a0dτ

1− ατ

obtaining
u

c
= sinh

(
− a0

αc
ln(1− ατ )

)
.

Expressing v/c as a function of u/c we finally get

v

c
= tanh

(
− a0

αc
ln(1− ατ )

)
=

1− (1− ατ )2a0/αc

1 + (1− ατ )2a0/αc
.

1.19. A spaceprobe of mass M = 10 Kg is boosted by a laser beam of fre-
quency ν = 1015 Hz and power W = 1012 W, which is directed from Earth
against an ideal reflecting mirror (i.e. reflecting all incoming photons) placed in
the back of the probe. Assuming that the probe is initially at rest with respect
to Earth, and that the laser beam is always parallel to the spaceprobe velocity
and orthogonal to the mirror, determine the evolution of the spaceprobe po-
sition in the Earth frame and compute the total time Δt for which the laser
must be kept switched on in order that the spaceprobe reaches a velocity
v = 0.5 c.

Answer: In the reference frame of the spaceship, every photon gets reflected from
the mirror with a negligible change in frequency (Δλ′/λ′ ∼ hν′/(Mc2) < 10−37, see
Problem 1.29), hence it transfers a momentum 2hν′/c to the spaceprobe, where ν′

is the photon frequency in the spaceprobe frame. The acceleration of the probe in
its proper frame is therefore

a′ =
2hν′

Mc

dN ′
γ

dt′
=

2W ′

Mc

where W ′ is the power of the beam measured in the proper frame, which is given
by the photon energy, hν′, times the rate at which photons arrive, i.e. the number
of photons hitting the mirror per unit time, dN ′

γ/dt′. The above result is twice as
large as that obtained if the light beam is emitted directly by the spaceprobe, as in
Problem 1.17, since in this case each reflected photon transfers twice its momentum.
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Both ν′ and the rate of arriving photons are frequencies, hence they get trans-
formed by Doppler effect and we can write

W ′ = hν′ dN ′
γ

dt′
=

√
1− β

1 + β
hν

√
1− β

1 + β

dNγ

dt
=

1− β

1 + β
W

which gives us the transformation law for the beam power. From the acceleration in
the proper frame, a′ = 2W (1−β)/[(1 + β)Mc], one obtains the derivative of β with
respect to the proper time τ (see Problem 1.11)

dβ

dτ
=

dv

cdτ
=

a′

c

(
1− v2

c2

)
= α(1− β)2

where we have set α = 2W/(Mc2). Last equation, after integration with the initial
condition β(0) = 0, leads to ατ = β/(1− β), i.e.

β(τ ) =
ατ

1 + ατ
.

Regarding the position of the probe, we have

dx = cβdt = cβ
dτ√
1− β2

=
ατ√

1 + 2ατ
dτ

which gives, after integration and using x(0) = 0

x =
c

3α

(
(ατ − 1)

√
2ατ + 1 + 1

)
.

Setting β = 0.5 we obtain τ = α−1 = Mc2/(2W ) = 9 105 s. The corresponding time
in the Earth frame can be obtained by integrating the relation

dt =
dτ√
1− β2

=
1 + ατ√
1 + 2ατ

dτ

yielding

t =
1

3α

(
(ατ + 2)

√
2ατ + 1− 2

)
.

In order to compute the total time Δt that the laser must be kept switched on, we
have to consider that a photon reaching the spaceprobe at time t has left Earth at
a time t− x(t)/c, where x is the probe position, hence the emission time is

tem = t− x/c =
1

α

(√
2ατ + 1− 1

)
.

Setting ατ = 1, we obtain Δt = (
√

3− 1)/α � 6.59 105 s .

1.20. An electron–proton collision can give rise to a fusion process in which
all available energy is transferred to a neutron. As a matter of fact, there is a
neutrino emitted whose energy and momentum in the present situation can be
neglected. The proton rest energy is 0.938 109 eV, while those of the neutron
and of the electron are respectively 0.940 109 eV and 5 105 eV. What is the
velocity of the electron which, knocking into a proton at rest, may give rise
to the process described above?
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Answer: Notice that we are not looking for a minimum electron energy: since,
neglecting the final neutrino, the final state is a single particle state, its invariant
mass is fixed and equal to the neutron mass. That must be equal to the invariant
mass of the initial system of two particles, leaving no degrees of freedom on the pos-
sible values of the electron energy: only for one particular value ve of the electron
velocity the reaction can take place.

A rough estimate of ve can be obtained by considering that the electron energy

must be equal to the rest energy difference (mn−mp) c2 = (0.940−0.938) 109 eV plus

the kinetic energy of the final neutron. Therefore the electron is surely relativistic and

(mn−mp)c is a reasonable estimate of its momentum: it coincides with the neutron

momentum which is instead non-relativistic ((mn − mp)c � mnc). The kinetic

energy of the neutron is thus roughly (mn −mp)
2c2/(2mn), hence negligible with

respect to (0.940−0.938) 109 eV. The total electron energy is therefore, within a good

approximation, Ee � 2 106 eV, and its velocity is ve = c
√

1−m2
e/E2

e � 2.9 108 m/s.

The exact result is obtained by writing Ee = (m2
n−m2

p−m2
e)c

2/(2mp), which differs

by less than 0.1 % from the approximate result.

1.21. A system made up of an electron and a positron, which is an exact copy
of the electron but with opposite charge (i.e. its antiparticle), annihilates,
while both particles are at rest, into two photons. The mass of the electron is
me � 0.9 10−30 Kg: what is the wavelength of each outgoing photon? Explain
why the same system cannot decay into a single photon.

Answer: The two photons carry momenta of modulus mc which are opposite to

each other in order to conserve total momentum: their common wavelength is there-

fore, as we shall see in next Chapter, λ = h/(mec) � 2.4 10−12 m. A single photon

should carry zero momentum since the initial system is at rest, but then energy

could not be conserved; more in general the initial invariant mass of the system,

which is 2me, cannot fit the invariant mass of a single photon, which is always zero.

1.22. A piece of copper of mass M = 1 g, is heated from 0◦C up to 100◦C.
What is the mass variation ΔM if the copper specific heat is CCu = 0.4 J/g◦C?

Answer: The piece of copper is actually a system of interacting particles whose

mass is defined as the invariant mass of the system. That is proportional to

the total energy if the system is globally at rest, see equation (1.45). Therefore

ΔM = CCu ΔT/c2 � 4.45 10−16 Kg .

1.23. Consider a system made up of two point-like particles of equal mass
m = 10−20 Kg, bound together by a rigid massless rod of length L = 2 10−4 m.
The center of mass of the system lies in the origin of the inertial frame O, in
the same frame the rod rotates in the x − y plane with an angular velocity
ω = 3 1010 s−1. A second inertial reference frame O′ moves with respect to O
with velocity v = 4c/5 parallel to the x axis. Compute the sum of the kinetic
energies of the particles at the same time in the frame O′, disregarding cor-
rection of order ω3.



Problems 25

Answer: There are two independent ways of computing the sum of the kinetic

energies of the particles. The first way, which is the simplest one, is based on

the assumption that the kinetic energy of the system coincides with the sum

of the kinetic energies of the particles, hence one can compute the total en-

ergy of the system in the reference O, which, in the chosen approximation, is:

Et = m (2c2 + ω2L2/4). In O′ the total energy is computed by a Lorentz trans-

formation E′
t = Et/

√
1− v2/c2 = (5/3)m (2c2 + ω2L2/4), hence the sum of

the kinetic energies is E′
t − 2mc2 = 4/3mc2 + 5mω2L2/12. Numerically one has

12 10−4(1 + 1.25 10−4) J. Alternatively, we can compute the velocities of both

particles in a situation corresponding to equal time in O′. The simplest such situ-

ation is when the rod is parallel to the y axis and the particles move with velocity

v± = ±ωL/2 parallel to the x axis. Using Einstein formula one finds in O′ the

velocities v′
± = c(4/5 ± ωL/(2c))/(1 ± 2ωL/(5c)) and hence the kinetic energies

E′
± = mc2(1/

√
1− (v′

±/c)2 − 1) = mc2
(
(5± 2ωL/c)/(3

√
1− (ωL/(2c))2)− 1

)
. It

is apparent that the sum E′
+ + E′

− gives the known result up to corrections of order

(ωL/c)4.

1.24. A photon of energy E knocks into an electron at rest producing a final
state composed of an electron–positron pair plus the initial electron: all three
final particles have the same momentum. What is the value of E and the
common momentum p of the final particles?

Answer: E = 4 mc2 � 3.3 10−13 J , p = E/3c = 4/3 mc � 3.6 10−22 N/m .

1.25. A particle of mass M = 10−27 Kg decays, while at rest, into a particle
of mass m = 4 10−28 Kg plus a photon. What is the energy E of the photon?

Answer: The two outgoing particles must have opposite momenta with an equal
modulus p to conserve total momentum. Energy conservation is then written as
Mc2 =

√
m2c4 + p2c2 + pc, so that

E = pc =
M2 −m2

2M
c2 = 0.42 Mc2 � 3.78 10−11 J � 2.36 108 eV .

1.26. A particle of mass M = 1 GeV/c2 and energy E = 10 GeV decays into
two particles of equal mass m = 490 MeV. What is the maximum angle that
each of the two outgoing particles may form, in the laboratory, with the tra-
jectory of the initial particle?

Answer: Let x̂ be the direction of motion of the initial particle, and x–y the decay
plane: this is defined as the plane containing both the initial particle momentum
and the two final momenta, which are indeed constrained to lie in the same plane
by total momentum conservation. Let us consider one of the two outgoing particles:
in the center of mass frame it has energy ε = Mc2/2 = 0.5 GeV and a momentum
px = p cos θ, py = p sin θ, with θ being the decay angle in the center of mass frame
and
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p = c

√
M2

4
−m2 � 0.1 GeV

c
.

The momentum components in the laboratory are obtained by Lorentz transfor-
mations with parameters γ = (

√
1− v2/c2)−1 = E/(Mc2) = 10 and β = v/c =√

1− 1/γ2 � 0.995,
p′

y = py = p sin θ

p′
x = γ(p cos θ + βε) .

It can be easily verified that, while in the center of mass frame the possible momen-
tum components lie on a circle of radius p centered in the origin, in the laboratory
p′

x and p′
y lie on an ellipse of axes γp and p, centered in (γβε, 0). If θ′ is the angle

formed in the laboratory with respect to the initial particle trajectory and defining
α ≡ βε/p � 5, we can write

tan θ′ =
p′

y

p′
x

=
1

γ

sin θ

cos θ + α
.

If α > 1 the denominator is always positive, tan θ′ is limited and |θ′| < π/2, i.e.
the particle is always forward emitted, in the laboratory, with a maximum possible
angle which can be computed by solving d tan θ′/dθ = 0; that can also be appreciated
pictorially by noticing that, if α > 1, the ellipse containing the possible momentum
components does not contain the origin. Finally one finds

θ′
max = tan−1

(
1

γ

1√
α2 − 1

)
� 0.02 rad .

1.27. A particle of mass M = 10−27 Kg, which is moving in the labo-
ratory with a speed v = 0.99 c, decays into two particles of equal mass
m = 3 10−28 Kg. What is the possible range of energies (in GeV) which
can be detected in the laboratory for each of the outgoing particles?

Answer: In the center of mass frame the outgoing particles have equal energy
and modulus of the momentum completely fixed by the kinematic constraints:
E = Mc2/2 and P = c

√
M2/4−m2. The only free variable is the decaying angle

θ, measured with respect to the initial particle trajectory, which however results in
a variable energy E′ in the laboratory frame. Indeed by Lorentz transformations
E′ = γ(E + vP cos θ), with γ = (1− v2/c2)−1/2, hence

E′
max/min = γ

(
Mc2

2
± v

c
Pc

)
⇒ E′

max � 3.56 GeV , E′
min � 0.41 GeV .

1.28. A particle of rest energy Mc2 = 109 eV, which is moving in the labo-
ratory with momentum p = 5 10−18 N s, decays into two particles of equal
mass m = 2 10−28 Kg. In the center of mass frame the decay direction is
orthogonal to the trajectory of the initial particle. What is the angle between
the trajectories of the outgoing particles in the laboratory?

Answer: Let x̂ be the direction of the initial particle and ŷ the decay direction

in the center of mass frame, ŷ ⊥ x̂. For the process described in the text, x̂ is a
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symmetry axis, hence the outgoing particles will form the same angle θ also in the

laboratory. For one of the two particles we can write px = p/2 by momentum conser-

vation in the laboratory, and py = c
√

M2/4−m2 by energy conservation. Finally,

the angle between the two particles is 2θ = 2 atan(py/px) � 0.207 rad .

1.29. Compton Effect
A photon of wavelength λ knocks into an electron at rest. After the elastic
collision, the photon moves in a direction forming an angle θ with respect to
its original trajectory. What is the change Δλ ≡ λ′ − λ of its wavelength as a
function of θ?

Answer: Let q and q′ be respectively the initial and final momentum of the photon,
and p the final momentum of the electron. As we shall discuss in next Chapter, the
photon momentum is related to its wavelength by the relation q ≡ |q| = h/λ, where
h is Planck’s constant. Total momentum conservation implies that q, q′ and p must
lie in the same plane, which we choose to be the x−y plane, with the x-axis parallel
to the photon initial trajectory. Momentum and energy conservation lead to:

px = q − q′ cos θ ,

py = q′ sin θ ,

qc + mec
2 − q′c =

√
mec4 + p2

xc2 + p2
yc2 .

Substituting the first two equations into the third and squaring both sides of the
last we easily arrive, after some trivial simplifications, to me(q− q′) = qq′(1− cos θ),
which can be given in terms of wavelengths as follows

Δλ ≡ λ′ − λ =
h

mec
(1− cos θ) ;

Δλ

λ
=

hν

mec2
(1− cos θ) .

The difference is always positive, since part of the photon energy, depending on the

diffusion angle θ, is always transferred to the electron. This phenomenon, known as

Compton effect, is not predicted by the classical theory of electromagnetic waves and

is an experimental proof of the corpuscular nature of radiation. Notice that, while

the angular distribution of outgoing photons can only be predicted on the basis of

the quantum relativistic theory, i.e. Quantum Electrodynamics, the dependence of

Δλ on θ that we have found is only based on relativistic kinematics and can be

used to get an experimental determination of h. The coefficient h/(mec) is known

as Compton wavelength, which for the electron is of the order of 10−12 m, so that

the effect is not detectable (Δλ/λ � 0) for visible light.

1.30. A spinning top, which can be described as a rigid disk of mass M =
10−1 Kg, radius R = 5 10−2 m and uniform density, starts rotating with an-
gular velocity Ω = 103 rad/s. What is the energy variation of the spinning
top due to rotation, as seen from a reference frame moving with a relative
speed v = 0.9 c with respect to it?

Answer: The speed of the particles composing the spinning top is surely non-
relativistic in their frame, since it is limited by ΩR = 50 m/s � 1.67 10−7 c. In
that frame the total energy is therefore, apart from corrections of order (ΩR/c)2,
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Etot = Mc2 + IΩ2/2, where I is the moment of inertia, I = MR2/2. Lorentz trans-
formations yield in the moving frame

E′
tot =

1√
1− v2/c2

Etot =
1√

1− v2/c2

(
Mc2 +

1

2
IΩ2

)
,

to be compared with energy observed in absence of rotation, Mc2/
√

1− v2/c2.

Therefore, the energy variation due to rotation in the moving frame is ΔE′ =

IΩ2/(2
√

1− v2/c2) � 143 J .

1.31. A photon with energy E1 = 104 eV is moving along the positive x di-
rection; a second photon with energy E2 = 2 E1 is moving along the positive
y direction. What is the velocity vcm of their center of mass frame?

Answer: Recalling equation (1.46), it is easily found that vx
cm = 1/3 c, vy

cm = 2/3 c

and |vcm| =
√

5/3 c.

1.32. A particle of mass M decays, while at rest, into three particles of equal
mass m. What is the maximum and minimum possible energy for each of the
outgoing particles?

Answer: Let E1, E2, E3 and p1, p2, p3 be respectively the energies and the mo-
menta of the three outgoing particles. We have to find, for instance, the maximum
and minimum value of E1 which are compatible with the constraints p1+p2+p3 = 0
and E1 + E2 + E3 = M c2. The minimum value is realized when the particle is pro-
duced at rest, E1min = m c2, implying that the other two particles move with equal
and opposite momenta. Finding the maximum value requires some more algebra.
From E2

1 = m2 c4 + p2
1 c2 and momentum conservation we obtain

E2
1 = m2 c4 + |p2 + p3|2 c2 = m2 c4 + (E2 + E3)

2 − μ2 c4

where μ is the invariant mass of particles 2 and 3, μ2 c4 = (E2 +E3)
2−|p2 +p3|2 c2.

Applying energy conservation, E2 + E3 = (M c2 − E1), last equation leads to

E1 =
1

2M c2

(
m2 c4 + M2 c4 − μ2 c4

)
.

We have written E1 as a function of μ2: E1max corresponds to the minimum possible

value for the invariant mass of the two remaining particles. On the other hand it

can be easily checked that, for a system made up of two or more massive particles,

the minimum possible value of the invariant mass is equal to the sum of the masses

and is attained when the particles are at rest in their center of mass frame, meaning

that the particles move with equal velocities in any other reference frame. Therefore

μmin = 2m and E1max = (M2 − 3m2) c2/(2M): this value is obtained in particular

for p2 = p3.

1.33. A particle at rest, whose mass is M = 750 MeV/c2, decays into a photon
and a second, lighter, particle of mass m = 135 MeV/c2. Subsequently the
lighter particle decays into two further photons. Considering all the possible
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decay angles of the second particle, compute the maximum and the minimum
values of the possible energies of the three final photons.

One can ask the same question in the case of a direct decay of the first
particle into three photons whose energies are constrained only by energy-
momentum conservation. Which are the maximum and minimum energies of
the final photons in the direct decay?

Answer: This problem is analogous to Problem 1.32. We first consider the di-
rect decay. If Ei with i = 1, 2 are the energies of two, arbitrarily chosen, fi-
nal photons, pi = Ei/c are their momenta. If θ is the angle between these mo-
menta, on account of momentum conservation, we can compute the momentum
of the third photon as the length of the third side of a triangle whose other
sides have lengths p1 and p2 and form an angle π − θ. Therefore energy con-
servation gives:

√
E2

1 + E2
2 + 2E1E2 cos θ + E1 + E2 = Mc2 from which we get:

M2c4 − 2Mc2(E1 + E2) = −2E1E2(1 − cos θ). Since 0 ≤ 1 − cos θ ≤ 2 one has the
inequalities:

Mc2/2 ≤ (E1 + E2) and (Mc2 − 2E1)(Mc2 − 2E2) ≥ 0 .

If we interpret E1 and E2 as cartesian coordinates of a point in a plane, we find that
the point must lie in a triangle with vertices in the points of coordinates (0, Mc2/2),
(Mc2/2, 0) and (Mc2/2, Mc2/2). This shows that each of the three photon energies
can range between 0 and Mc2/2. In Particle Physics the distribution of points asso-
ciated with a sample of decay events (in this case the distribution of points inside
the triangle described above) is called Dalitz plot.

Now consider the indirect decay and assume that photons 1 and 2 are the decay

products of the second particle with mass m. In this case there is a constraint

for the third photon with energy E3 = Mc2 − E1 − E2. Indeed its momentum

p3 = E3/c must be equal, and opposite, to that of the light particle whose energy

is E1 + E2. Thus we have (E1 + E2)
2 − (Mc2 − E1 − E2)

2 = m2c4 which implies

E1+E2 = (M2+m2)c2/(2M), which can be read as the equation of a line intersecting

the above mentioned triangle. It is apparent that the boundaries of the intersection

segment give the maximum and minimum possible values for E1 and E2, which

are respectively m2c2/(2M) = 12.15 MeV and Mc2/2 = 375 MeV. The energy of

the third photon is instead fixed and equal to E3 = (M2 − m2)c2/(2M): we have

E3 < Mc2/2 and, for the given values of M and m, also E3 > m2c2/(2M).

1.34. A proton beam is directed against a laser beam coming from the op-
posite direction and having wavelength 0.5 10−6 m. Determine what is the
minimum value needed for the kinetic energy of the protons in order to pro-
duce the reaction (proton + photon → proton + π), where the π particle has
mass m � 0.14 M , the proton mass being M � 0.938 GeV/c2.

Answer: Let p and k be the momenta of the proton and of the photon respec-
tively, k = h/λ � 2.48 eV/c. The reaction can take place only if the invariant mass
of the initial system is larger or equal to (M + m): that is most easily seen in the
center of mass frame, where the minimal energy condition corresponds to the two
final particles being at rest. In particular, if E is the energy of the proton, we can
write
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(E + kc)2 − (p− k)2c2 ≥ (M + m)2c4 , hence E + pc ≥ mc2

kc
(M + m/2)c2 .

Taking into account that mc2 � 0.13 GeV and kc � 2.48 eV we deduce that E+pc ∼
5 107 Mc2, so that the proton is ultra-relativistic and E � pc. The minimal kinetic

energy of the proton is therefore pminc � (mc/k)(M + m/2)c2/2 � 2.6 107 GeV.

1.35. A particle of mass M decays into two particles of masses m1 and m2.
A detector reveals the energies and momenta of the outgoing particles to
be E1 = 2.5 GeV, E2 = 8 GeV, p1x = 1 GeV/c, p1y = 2.25 GeV/c,
p2x = 7.42 GeV/c and p2y = 2.82 GeV/c. Determine the masses of all in-
volved particles, as well as the velocity v of the initial particle.

Answer: M � 3.69 GeV/c2, m1 � 0.43 GeV/c2, m2 � 1 GeV/c2, vx = 0.802 c,

vy = 0.483 c.

1.36. A particle of mass μ = 0.14 GeV/c2 and momentum directed along
the positive z axis, knocks into a particle at rest of mass M . The final state
after the collision is made up of two particles of mass m1 = 0.5 GeV/c2 and
m2 = 1.1 GeV/c2 respectively. The momenta of the two outgoing particles
form an equal angle θ = 0.01 rad with the z axis and have equal magnitude
p = 104 GeV/c. What is the value of M?

Answer: Momentum conservation gives the momentum of the initial particle,
k = 2p cos θ. The initial energy is therefore Ein =

√
μ2c4 + k2c2 + M c2 and must

be equal to the final energy Efin =
√

m2
1c

4 + p2c2 +
√

m2
2c

4 + p2c2, hence

Mc2 =
√

m2
1c

4 + p2c2 +
√

m2
2c

4 + p2c2 −
√

μ2c4 + 4p2 cos θ2c2 .

The very high value of p makes it sensible to apply the ultra-relativistic approxima-
tion,

Mc2 � pc

(
1 +

m2
1c

2

2p2

)
+ pc

(
1 +

m2
2c

2

2p2

)
− 2pc cos θ

(
1 +

μ2c2

8p2 cos θ2

)

� pc
(
θ2 + (2m2

1 + 2m2
2 − μ2)c2/(4p2)

)
� pc θ2 = 1 GeV .

1.37. Transformation laws for electro-magnetic fields
Our inertial reference frame moves with respect to a conducting rectilinear
wire with velocity v = 0.9 c parallel to the wire. In its reference frame the
wire appears neutral and one has an electric current I = 1 A through the wire
in the direction of our velocity. We adopt a simplified scheme in which the cur-
rent is carried by electrons with a linear density ρwire = 6 1016 m−1, moving
with an average uniform velocity V = 102 m/s in the opposite direction with
respect to our velocity. The wire is made neutral by protons at rest, having
the same linear density as the electrons. Coming back to our reference frame,
do we detect any electric field? If the answer to our question is positive, what
is the absolute value of the electric field at a distance r = 1 cm from the wire?
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Answer: If the electrons in the wire are uniformly distributed the distance be-
tween two neighboring electrons is d = ρ−1

wire = 1.66 10−17 m in the wire frame.

Due to the length contraction the same distance is d/
√

1− (V/c)2 in the elec-
tron frame, that is, in a frame moving with respect to the wire with the aver-
age electron velocity. Using Einstein formula we compute our velocity with respect
to the electron frame v′ = (v + V )/(1 + vV/c2) and the electron density in our

frame: ρmoving,e =
√

1− (V/c)2/(d
√

1− (v′/c)2) = (1 + vV/c2)/(d
√

1− (v/c)2)

while the proton density is ρmoving,p = 1/(d
√

1− (v/c)2) ≡ γ/d. Thus the re-

sulting charge density is ρmoving,tot = −evV/(c2d
√

1− (v/c)2) = −Iβγ/c where
we have set β = v/c. Since Maxwell equations are the same in every inertial
frame, we conclude that in our frame we have an electric field with absolute value
Emoving = βγI/(2πε0rc) = βγcBwire = 1.23 104 V/m and directed towards the
wire. Bwire is the absolute value of the magnetic induction at the same distance
from the wire in the wire frame; the electric field measured in our frame is or-
thogonal with respect to the original magnetic field (in particular it is directed like
v ∧Bwire). It also easy to verify that the electric current in our frame is γI , so that
we measure a magnetic field of absolute value Bmoving = γBwire and parallel to the
original magnetic field.

The same results could have been reached using the electro-magnetic field trans-

formation rules; alternatively, the complete set of field transformation rules can be

obtained through the analysis of analogous gedanken experiments. To that purpose

the reader may compute the electric and magnetic fields felt by an observer moving:

a) parallel to a wire having a uniform charge density and zero electric current; b)

parallel to an infinite plane carrying zero charge density and a uniform current den-

sity orthogonal to the observer velocity; c) orthogonal to an infinite plane carrying

uniform charge density and zero electric current.
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Introduction to Quantum Physics

The gestation of Quantum Physics has been very long and its phenomeno-
logical foundations were various. Historically the original idea came from the
analysis of the black body spectrum. This is not surprising since the black
body, in fact an oven in thermal equilibrium with the electromagnetic radi-
ation, is a simple and fundamental system once the law of electrodynamics
are established. As a matter of fact many properties of the spectrum can
be deduced starting from the general laws of electrodynamics and thermody-
namics; the crisis came from the violation of the equipartition of energy. That
suggested to Planck the idea of quantum, from which everything originated.
Of course a long sequence of different discoveries, first of all the photoelectric
effect, the line spectra for atomic emission/absorption, the Compton effect
and so on, gave a compelling evidence for the new theory.

Due to the particular limits of the present notes, an exhaustive analysis of
the whole phenomenology is impossible. Even a clear discussion of the black
body problem needs an exceeding amount of space. Therefore we have chosen
a particular line, putting major emphasis on the photoelectric effect and on
the inadequacy of a classical approach based on Thomson’s model of the atom,
followed by Bohr’s analysis of the quantized structure of Rutherford’s atom
and by the construction of Schrödinger’s theory. This does not mean that
we have completely overlooked the remaining phenomenology; we have just
presented it in the light of the established quantum theory. Thus, for example,
Chapter 3 ends with the analysis of the black body spectrum in the light of
quantum theory.

2.1 The Photoelectric Effect

The photoelectric effect was discovered by H. Hertz in 1887. As sketched in
Fig. 2.1, two electrodes are placed in a vacuum cell; one of them (C) is hit
by monochromatic light of variable frequency, while the second (A) is set to
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a negative potential with respect to the first, as determined by a generator G
and measured by a voltmeter V.

Fig. 2.1. A sketch of Hertz’s photoelectric effect apparatus

By measuring the electric current going through the amperometer I, one
observes that, if the light frequency is higher than a given threshold νV , de-
termined by the potential difference V between the two electrodes, the am-
perometer reveals a flux of current i going from A to C which is proportional
to the flux of luminous energy hitting C. The threshold νV is a linear function
of the potential difference V

νV = a + bV . (2.1)

The reaction time of the apparatus to light is substantially determined by the
(RC) time constant of the circuit and can be reduced down to values of the
order of 10−8 s. The theoretical interpretation of this phenomenon remained
an open issue for about 14 years because of the following reasons.

The direction of the current and the possibility to stop it by increasing the
potential difference clearly show that the electric flux is made up of electrons
pulled out from the atoms of electrode C by the luminous radiation.

A reasonable model for this process, which was inspired by Thomson’s
atomic model, assumed that electrons, which are particles of mass m =
9 10−31 Kg and electric charge −e � −1.6 10−19 C, were elastically bound
to atoms of size RA ∼ 3 10−10 m and subject to a viscous force of constant
η. The value of η is determined as a function of the atomic relaxation time,
τ = 2m/η, that is the time needed by the atom to release its energy through
radiation or collisions, which is of the order of 10−8 s. Let us confine ourselves
to considering the problem in one dimension and write the equation of motion
for an electron
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mẍ = −kx− ηẋ− eE , (2.2)

where E is an applied electric field and k is determined on the basis of atomic
frequencies. In particular we suppose the presence of many atoms with differ-
ent frequencies continuously distributed around√

k

m
= ω0 = 2πν0 ∼ 1015 s−1 . (2.3)

If we assume an oscillating electric field E = E0 cos(ωt) with ω ∼ 1015 s−1,
corresponding to visible light, then a general solution to (2.2) is given by

x = x0 cos(ωt + φ) + A1e
−α1t + A2e

−α2t , (2.4)

where the second and third term satisfy the homogeneous equation associated
with (2.2), so that α1/2 are the solutions of the following equation

mα2 − ηα + k = 0 ,

α =
η ±

√
η2 − 4km

2m
=

1

τ
±
√

1

τ2
− ω2

0 �
1

τ
± i ω0 , (2.5)

where last approximation is due to the assumption τ � ω−1
0 .

Regarding the particular solution x0 cos(ωt+φ), we obtain by substitution:

−mω2x0 cos(ωt+φ) = −kx0 cos(ωt+φ)+ηωx0 sin(ωt+φ)−eE0 cos(ωt) (2.6)

hence

(k −mω2)x0 (cos(ωt) cosφ− sin(ωt) sin φ)

= ηωx0 (sin(ωt) cosφ + cos(ωt) sinφ) − eE0 cos(ωt)

from which, by taking alternatively ωt = 0, π/2, we obtain the following sys-
tem (

m
(
ω2

0 − ω2
)
cosφ− ηω sinφ

)
x0 = −eE0 ,

m
(
ω2

0 − ω2
)
x0 sin φ + ηω x0 cosφ = 0 (2.7)

which can be solved for φ

tan φ =
2ω

τ (ω2 − ω2
0)

,

cosφ =
ω2 − ω2

0√
(ω2

0 − ω2)
2

+ 4ω2

τ2

, sin φ =
(2ω/τ)√

(ω2
0 − ω2)

2
+ 4ω2

τ2

(2.8)

and finally for x0, for which we obtain the well known resonant form
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x0 =
eE0/m√

(ω2
0 − ω2)

2
+ 4ω2

τ2

. (2.9)

To complete our computation we must determine A1 and A2. On the other
hand, taking into account (2.5) and the fact that x is real, we can rewrite the
general solution in the following equivalent form:

x = x0 cos(ωt + φ) + Ae−t/τ cos(ω0t + φ0) . (2.10)

If we assume that the electron be initially at rest, we can determine A and φ0

by taking x = ẋ = 0 for t = 0, i.e.

x0 cosφ + A cosφ0 = 0 , (2.11)

x0 ω sin φ = −A

(
cosφ0

τ
+ ω0 sin φ0

)
, (2.12)

hence in particular

tan φ0 =
ω

ω0
tanφ− 1

ω0τ
. (2.13)

These equations give us enough information to discuss the photoelectric effect
without explicitly substituting A in (2.10).

Indeed in our simplified model the effect, i.e. the liberation of the electron
from the atomic bond, happens as the amplitude of the electron displacement
x is greater than the atomic radius. In equation (2.10) x is the sum of two
parts, the first corresponding to stationary oscillations, the second to a tran-
sient decaying with time constant τ . In principle, the maximum amplitude
could take place during the transient or later: to decide which is the case we
must compare the value of A with that of x0. It is apparent from (2.11) that
the magnitude of A is of the same order as x0 unless cosφ0 is much less than
cosφ. On the other hand, equation (2.13) tells us that, if tanφ0 is large, then
tan φ is large as well, since (ω0τ)−1 ∼ 10−7 and ω/ω0 ∼ 1. Therefore, the
order of magnitude of the maximum displacement is given by x0, and can be
sensitive to the electric field frequency. That happens in the resonant regime,
where ω differs from ω0 by less than 2

√
ω/τ .

Let us consider separately the generic case from the resonant one. In the
first case the displacement is of the order of eE0/(ω2m), since the square root
of the denominator in (2.9) has the same order of magnitude as ω2. In order
to induce the photoelectric effect it is therefore necessary that

eE0

ω2m
∼ RA ,

from which we can compute the power density needed for the luminous beam
which hits electrode C:

P = cε0E
2
0 ∼ cε0

(
RAω2m

e

)2

,
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where c is the speed of light and ε0 is the vacuum dielectric constant. P comes
out to be of the order of 1015 W/m2, a power density which is difficult to
realize in practice and which would anyway be enough to vaporize any kind of
electrode. We must conclude that our model cannot explain the photoelectric
effect if ω is far from resonance. Let us consider therefore the resonant case
and set ω = ω0. On the basis of (2.11), (2.13) and (2.9), that implies:

φ = φ0 =
π

2
, A = −x0 ,

hence

x =
−eE0τ

2mω0

(
1− e−t/τ

)
sin(ω0t) . (2.14)

In order for the photoelectric effect to take place, the oscillation amplitude
must be greater than the atomic radius:

eE0τ

2mω0

(
1− e−t/τ

)
≥ RA .

That sets the threshold field to 2mω0RA/(eτ) and the power density of the
beam to

P = cε0

(
4ω0mRA

τe

)2

∼ 100 W/m2 ,

while the time required to reach the escape amplitude is of the order of τ .
In conclusion, our model predicts a threshold for the power of the beam,

but not for its frequency, which however must be tuned to the resonance
frequency: the photoelectric effect would cease both below and above the
typical resonance frequencies of the atoms in the electrode. Moreover the
expectation is that the electron does not gain any further appreciable energy
from the electric field once it escapes the atomic bond: hence the emission from
the electrode could be strong, but made up of electrons of energy equal to that
gained during the last atomic oscillation. Equation (2.14) shows that, during
the transient (t << τ), the oscillation amplitude grows roughly by eE0/(mω2

0)
in one period, so that the energy of the escaped electron would be of the order
of magnitude of kRAeE0/(mω2

0) = eE0RA, corresponding also to the energy
acquired by the electron from the electric field E0 when crossing the atom. It
is easily computed that for a power density of the order of 10 − 100 W/m2,
the electric field E0 is roughly 100 V/m, so that the final kinetic energy of
the electron would be 10−8 eV ∼ 10−27 J: this value is much smaller than the
typical thermal energy at room temperature (3kT/2 ∼ 10−1 eV).

The prediction of the model is therefore in clear contradiction with the
experimental results described above. In particular the very small energy of
the emitted electrons implies that the electric current I should vanish even
for small negative potential differences.

Einstein proposed a description of the effect based on the hypothesis that
the energy be transferred from the luminous radiation to the electron in a
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single elementary (i.e. no further separable) process, instead than through a
gradual excitation. Moreover he proposed that the transferred energy be equal
to hν = hω/(2π) ≡ h̄ω, a quantity called quantum by Einstein himself. The
constant h had been introduced by Planck several years before to describe the
radiation emitted by an oven and its value is 6.63 10−34 J s.

If the quantum of energy is enough for electron liberation, i.e. according to
our model it is larger than Et ≡ kR2

A/2 = ω2
0R

2
Am/2 ∼ 10−19 J ∼ 1 eV, and

the frequency exceeds 1.6 1014 Hz (corresponding to ω in our model), then
the electron is emitted keeping the energy exceeding the threshold in the form
of kinetic energy. The number of emitted electrons, hence the intensity of the
process, is proportional to the flux of luminous energy, i.e. to the number of
quanta hitting the electrode.

Since E = hν is the energy gained by the electron, which spends a part Et

to get free from the atom, the final electron kinetic energy is T = hν −Et, so
that the electric current can be interrupted by placing the second electrode
at a negative potential

V =
hν − Et

e
,

thus reproducing (2.1).
The most important point in Einstein’s proposal, which was already no-

ticed by Planck, is that a physical system of typical frequency ν can exchange
only quanta of energy equal to hν. The order of magnitude in the atomic case
is ω ∼ 1015 s−1, hence h̄ω ≡ (h/2π) ω ∼ 1 eV.

2.2 Bohr’s Quantum Theory

After the introduction of the concept of a quantum of energy, quantum theory

was developed by N. Bohr in 1913 and then perfected by A. Sommerfeld in
1916: they gave a precise proposal for multi-periodic systems, i.e. systems
which can be described in terms of periodic components.

The main purpose of their studies was that of explaining, in the framework
of Rutherford’s atomic model, the light spectra emitted by gasses (in partic-
ular mono-atomic ones) excited by electric discharges. The most simple and
renowned case is that of the mono-atomic hydrogen gas (which can be pre-
pared with some difficulties since hydrogen tends to form diatomic molecules).
It has a discrete spectrum, i.e. the emitted frequencies can assume only some
discrete values, in particular:

νn,m = R

(
1

n2
− 1

m2

)
(2.15)

for all possible positive integer pairs with m > n: this formula was first pro-
posed by J. Balmer in 1885 for the case n = 2, m ≥ 3, and then generalized by
J. Rydberg in 1888 for all possible pairs (n, m). The emission is particularly
strong for m = n + 1.
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Rutherford had shown that the positive charge in an atom is localized in a
practically point-like nucleus, which also contains most of the atomic mass. In
particular the hydrogen atom can be described as a two-body system: a heavy
and positively charged particle, which nowadays is called proton, bound by
Coulomb forces to a light and negatively charged particle, the electron.

We will confine our discussion to the case of circular orbits of radius r,
covered with uniform angular velocity ω, and will consider the proton as if it
were infinitely heavy (its mass is about 2 103 times that of the electron). In
this case we have

mω2r =
e2

4πε0r2
,

where m is the electron mass. Hence the orbital frequencies, which in clas-
sical physics correspond to those of the emitted radiation, are continuously
distributed as a function of the radius

ν =
ω

2π
=

e√
16π3ε0mr3

; (2.16)

this is in clear contradiction with (2.15). Based on Einstein’s theory of the
photoelectric effect, Bohr proposed to interpret (2.15) by assuming that only
certain orbits be allowed in the atom, which are called levels, and that the
frequency νn,m correspond to the transition from the m-th level to n-th one.
In that case

hνn,m = Em − En , (2.17)

where the atomic energies (which are negative since the atom is a bound
system) would be given by

En = −hR

n2
. (2.18)

Since, according to classical physics for the circular orbit case, the atomic
energy is given by

Ecirc = − e2

8πε0r
,

Bohr’s hypothesis is equivalent to the assumption that the admitted orbital
radii be

rn =
e2n2

8πε0hR
. (2.19)

It is clear that Bohr’s hypothesis seems simply aimed at reproducing the
observed experimental data; it does not permit any particular further devel-
opment, unless further conditions are introduced. The most natural, which is
called correspondence principle, is that the classical law, given in (2.16), be
reproduced by (2.15) for large values of r, hence of n, and at least for the
strongest emissions, i.e. those with m = n + 1, for which we can write

νn,n+1 = R
2n + 1

n2(n + 1)2
→ 2R

n3
, (2.20)
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these frequencies should be identified in the above mentioned limit with what
resulting from the combination of (2.16) and (2.19):

ν =
e√

16π3ε0mr3
n

=
ε0
√

32(hR)3

e2
√

mn3
. (2.21)

By comparing last two equations we get the value of the coefficient R in (2.15),
which is called Rydberg constant:

R =
me4

8ε20h
3

and is in excellent agreement with experimental determinations. We have then
the following quantized atomic energies

En = − me4

8ε20h
2n2

, n = 1, 2, ...

while the quantized orbital radii are

rn =
ε0h

2n2

πme2
. (2.22)

In order to give a numerical estimate of our results, it is convenient to intro-
duce the ratio e2/(2ε0hc) ≡ α � 1/137, which is dimensionless and is known
as the fine structure constant. The energy of the state with n = 1, which is
called the ground state, is

E1 = −hR = −mc2

2
α2 ;

noticing that mc2 ∼ 0.51 MeV, we have E1 � −13.6 eV. The corresponding
atomic radius (Bohr radius) is r1 � 0.53 10−10 m.

Notwithstanding the excellent agreement with experimental data, the
starting hypothesis, to be identified with (2.18), looks still quite conditioned
by the particular form of Balmer law given in (2.15). For that reason Bohr
tried to identify a physical observable to be quantized according to a simpler
and more fundamental law. He proceeded according to the idea that such ob-
servable should have the same dimensions of the Planck constant, i.e. those
of an action, or equivalently of an angular momentum. In the particular case
of quantized circular orbits this last quantity reads:

L = pr = mωr2 =
e√

4πε0

√
mrn =

h

2π
n ≡ nh̄ , n = 1, 2, ... . (2.23)

2.3 De Broglie’s Interpretation

In this picture of partial results, even if quite convincing from the point of
view of the phenomenological comparison, the real progress towards under-
standing quantum physics came as L. de Broglie suggested the existence of a
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universal wave-like behavior of material particles and of energy quanta asso-
ciated to force fields. As we have seen in the case of electromagnetic waves
when discussing the Doppler effect, a phase can always be associated with a
wave-like process, which is variable both in space and in time (e.g. given by
2π (x/λ− νt) in the case of waves moving parallel to the x axis). The assump-
tion that quanta can be interpreted as real particles and that Einstein’s law
E = hν be universally valid, would correspond to identifying the wave phase
with 2π (x/λ− Et/h). If we further assume the phase to be relativistically
invariant, then it must be expressed in the form (p x− E t) /h̄, where E and
p are identified with relativistic energy and momentum, i.e. in the case of
material particles:

E =
mc2√(
1− v2

c2

) , p =
mv√(
1− v2

c2

) .

In order to simplify the discussion as much as possible, we will consider here
and in most of the following a one-dimensional motion (parallel to the x axis).
In conclusion, by comparing last two expressions given for the phase, we obtain
de Broglie’s equation:

p =
h

λ
,

which is complementary to Einstein’s law, E = hν.
These formulae give an idea of the scale at which quantum effects are

visible. For an electron having kinetic energy Ek = 102 eV � 1.6 10−17 J,
quantum effects show up at distances of the order of λ = h/p = h/

√
2mEk ∼

10−10 m, corresponding to atomic or slightly subatomic distances; that con-
firms the importance of quantum effects for electrons in condensed matter and
in particular in solids, where typical energies are of the order of a few electron-
volts. For a gas of light atoms in equilibrium at temperature T , the kinetic
energy predicted by equipartition theorem is 3kT/2, where k is Boltzmann’s
constant. At a temperature T = 300◦K (room temperature) the kinetic energy
is roughly 2.5 10−2 eV, corresponding to wavelengths of about 10−10 m for
atom masses of the order of 10−26 Kg. However at those distances the picture
of a non-interacting (perfect) gas does not apply because of strong repulsive
forces coming into play: in order to gain a factor ten on distances, it is neces-
sary to reduce the temperature by a factor 100, going down to a few Kelvin
degrees, at which quantum effects are manifest. For a macroscopic body of
mass 1 Kg and kinetic energy 1 J quantum effects would show up at distances
roughly equal to 3 10−34 m, hence completely negligible with respect to the
thermal oscillation amplitudes of atoms, which are proportional to the square
root of the absolute temperature, and are in particular of the order of a few
nanometers at T = 103 ◦K, where the solid melts.

On the other hand, Einstein’s formula gives us information about the scale
of times involved in quantum processes, which is of the order of h/ΔE, where
ΔE corresponds to the amount of exchanged energy. For ΔE ∼ 1 eV, times
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are roughly 4 10−15 s, while for thermal interactions at room temperature
time intervals increase by a factor 40.

In conclusion, in the light of de Broglie’s formula, quantum effects are
not visible for macroscopic bodies and at macroscopic energies. For atoms in
matter they show up after condensation, or anyway at very low temperatures,
while electrons in solids or in atoms are fully in the quantum regime.

In Rutherford’s atomic model illustrated in previous Section, the circular
motion of the electron around the proton must be associated, according to de
Broglie, with a wave closed around the circular orbit. That resembles wave-like
phenomena analogous to the oscillations of a ring-shaped elastic string or to

air pressure waves in a toroidal reed pipe.
That implies well tuned wavelengths, as in
the case of musical instruments (which are
not ring-shaped for obvious practical rea-
sons). The need for tuned wavelength can be
easily understood in the case of the toroidal
reed pipe: a complete round of the ring must
bring the phase back to its initial value, so
that the total length of the pipe must be an
integer multiple of the wavelength.

Taking into account previous equations regarding circular atomic orbits,
we have the following electron wavelength:

λ =
h

p
=

h

e

√
4πε0r

m
,

so that the tuning condition reads

2πr = nλ =
nh

e

√
4πε0r

m

giving

r =
n2h2ε0
πe2m

,

which confirms (2.22) and gives support to the picture proposed by Bohr
and Sommerfeld. De Broglie’s hypothesis, which was formulated in 1924, was
confirmed in 1926 by Davisson and Gerner by measuring the intensity of an
electron beam reflected by a nickel crystal. The apparatus used in the experi-
ment is sketched in Fig. 2.2. The angular distribution of the electrons, reflected
in conditions of normal incidence, shows a strongly anisotropic behavior with
a marked dependence on the beam accelerating potential. In particular, an
accelerating potential equal to 48 V leads to a quite pronounced peak at a re-
flection angle φ = 55.3◦. An analogous X-ray diffraction experiment permits
to interpret the nickel crystal as an atomic lattice of spacing 0.215 10−9 m.
The comparison between the angular distributions obtained for X-rays and
for electrons shows relevant analogies, suggesting a diffractive interpretation
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also in the case of electrons. Bragg’s law, giving the n-th maximum in the
diffraction figure, is d sinφn = nλ.

Fig. 2.2. A schematic description of Davisson-Gerner apparatus and a polar coor-
dinate representation of the results obtained at 48 V electron energy, as they appear
in Davisson’s Noble Price Lecture, from Nobel Lectures, Physics 1922-1941 (Elsevier
Publishing Company, Amsterdam 1965)

For the peak corresponding to the principal maximum at 55.3◦ we have

d sin φ = λ � 0.175 10−9 m .

On the other hand the electrons in the beam have a kinetic energy

Ek � 7.68 10−18 J ,

hence a momentum p � 3.7 10−24 N s, in excellent agreement with de Broglie’s
formula p = h/λ. In the following years analogous experiments were repeated
using different kinds of material particles, in particular neutrons.

Once established the wave-like behavior of propagating material particles,
it must be clarified what is the physical quantity the phenomenon refers to, i.e.
what is the physical meaning of the oscillating quantity (or quantities) usually
called wave function, for which a linear propagating equation will be supposed,
in analogy with mechanical or electromagnetic waves. It is known that, in the
case of electromagnetic waves, the quantities measuring the amplitude are
electric and magnetic fields. Our question regards exactly the analogous of
those fields in the case of de Broglie’s waves. The experiment by Davisson
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and Gerner gives an answer to this question. Indeed, as illustrated in Fig. 2.2,
the detector reveals the presence of one or more electrons at a given angle; if
we imagine to repeat the experiment several times, with a single electron in
the beam at each time, and if we measure the frequency at which electrons are
detected at the various angles, we get the probability of having the electron in
a given site covered by the detector.

In the case of an optical measure, what is observed is the interference effect
in the energy deposited on a plate; that is proportional to the square of the
electric field on the plate. Notice that the linearity in the wave equation and
the quadratic relation between the measured quantity and the wave ampli-
tude are essential conditions for the existence of interference and diffractive
phenomena. We must conclude that also in the case of material particles some
positive quadratic form of the de Broglie wave function gives the probability
of having the electron in a given point.

We have quite generically mentioned a quadratic form, since at the mo-
ment it is still not clear if the wave function has one or more components, i.e.
if it corresponds to one or more real functions. By a positive quadratic form
we mean a homogeneous second order polynomial in the wave function com-
ponents, which is positive for real and non-vanishing values of its arguments.
In the case of a single component, we can say without loss of generality that
the probability density is the wave function squared, while in the case of two
or more components it is always possible, by suitable linear transformations,
to reduce the quadratic form to a sum of squares.

We are now going to show that the hypothesis of a single component must
be discarded. Let us indicate by ρ(r, t)d3r the probability of the particle being
in a region of size d3r around r at time t, and by ψ(r, t) the wave function,
which for the moment is considered as a real valued function, defined so that

ρ(r, t) = ψ2(r, t) . (2.24)

If Ω indicates the whole region accessible to the particle, the probability den-
sity must satisfy the natural constraint:∫

Ω

d3rρ (r, t) = 1 , (2.25)

which implies the condition:∫
Ω

d3r ρ̇(r, t) ≡
∫

Ω

d3r
∂ρ(r, t)

∂t
= 0 . (2.26)

This expresses the fact that, if the particle cannot escape Ω, the probability
of finding it in that region must always be one. This condition can be given
in mathematical terms analogous to those used to express electric charge
conservation: the charge contained in a given volume, i.e. the integral of the
charge density, may change only if the charge flows through the boundary
surface. The charge flux through the boundaries is expressed in terms of the
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current density flow and can be rewritten as the integral of the divergence of
the current density itself by using Gauss–Green theorem∫

Ω

ρ̇ = −Φ∂Ω(J) = −
∫

Ω

∇ · J .

Finally, by reducing the equation from an integral form to a differential one,
we can set the temporal derivative of the charge density equal to minus the
divergence of the current density. Based on this analogy, let us introduce the
probability current density J and write

ρ̇(r, t) = −∂Jx(r, t)

∂x
− ∂Jy(r, t)

∂y
− ∂Jz(r, t)

∂z
≡ −∇ · J(r, t) . (2.27)

The conservation equation must be automatically satisfied as a consequence
of the propagation equation of de Broglie’s waves, which we write in the form:

ψ̇ = L
(
ψ, ∇ψ,∇2ψ, . . .

)
, (2.28)

where L indicates a generic linear function of ψ and its derivatives like:

L
(
ψ, ∇ψ,∇2ψ, . . .

)
= αψ + β∇2ψ . (2.29)

Notice that if L were not linear the interference mechanism upon which quan-
tization is founded would soon or later fail. Furthermore we assume invariance
under the reflection of the coordinates, at least in the free case, so that terms
proportional to first derivatives are excluded.

From equation (2.24) we have ρ̇ = 2ψψ̇, which can be rewritten, using
(2.28), as:

ρ̇ = 2ψL
(
ψ, ∇ψ,∇2ψ, . . .

)
. (2.30)

The right-hand side of last equation must be identified with−∇·J(r, t). More-
over J must necessarily be a bilinear function of ψ and its derivatives, exactly
like ρ̇. Therefore, since J is a vector-like quantity, it must be expressible as

J = c ψ∇ψ + d ∇ψ∇2ψ + . . .

from which it appears that ∇ ·J(r, t) must necessarily contain bilinear terms
in which both functions are derived, like ∇ψ ·∇ψ: however such terms are
clearly missing in (2.30).

We come to the conclusion that the description of de Broglie’s waves re-
quires at least two wave functions ψ1 and ψ2, defined so that ρ = ψ2

1 + ψ2
2 . In

an analogous way we can introduce the complex valued function:

ψ = ψ1 + iψ2 , (2.31)

defined so that
ρ = |ψ|2 ; (2.32)
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this choice implies:
ρ̇ = ψ∗ψ̇ + ψψ̇∗ .

If we assume, for instance, the wave equation corresponding to (2.29):

ψ̇ = αψ + β∇2ψ , (2.33)

we obtain:
ρ̇ = ψ∗

(
αψ + β∇2ψ

)
+ ψ

(
α∗ψ∗ + β∗∇2ψ∗

)
.

If we also assume that the probability current density be

J = ik (ψ∗∇ψ − ψ∇ψ∗) , (2.34)

with k real so as to make J real as well, we easily derive

∇ · J = ik
(
ψ∗∇2ψ − ψ∇2ψ∗

)
.

It can be easily verified that the continuity equation (2.27) is satisfied if

α + α∗ = 0 , β = −ik . (2.35)

It is of great physical interest to consider the case in which the wave func-
tion has more than two real components. In particular, the wave function of
electrons has four components or, equivalently, two complex components. In
general, the multiplicity of the complex components is linked to the existence
of an intrinsic angular momentum, which is called spin. The various complex
components are associated with the different possible spin orientations. In the
case of particles with non-vanishing mass, the number of components is 2S+1,
where S is the spin of the particle. In the case of the electron, S = 1/2 .

For several particles, as for the electron, spin is associated with a magnetic
moment which is inherent to the particle: it behaves as a microscopic magnet
with various possible orientations, corresponding to those of the spin, which
can be selected by placing the particle in a non-uniform magnetic field and
measuring the force acting on the particle.

2.4 Schrödinger’s Equation

The simplest case to which our considerations can be applied is that of a non-
relativistic free particle of mass m. To simplify notations and computations,
we shall confine ourselves to a one-dimensional motion, parallel for instance to
the x axis; if the particle is not free, forces will be parallel to the same axis as
well. The obtained results will be extensible to three dimensions by exploiting
the vector formalism. In practice, we shall replace ∇ by its component ∇x =
∂/∂x ≡ ∂x and the Laplacian operator ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 by
∂2/∂x2 ≡ ∂2

x; the probability current density J will be replaced by Jx (J) as
well. The inverse replacement will suffice to go back to three dimensions.
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The energy of a non-relativistic free particle is

E = c
√

m2c2 + p2 � mc2 +
p2

2m
+ O

(
p4

m3c2

)
,

where we have made explicit our intention to neglect terms of the order of
p4/(m3c2). Assuming de Broglie’s interpretation, we write the wave function:

ψP (x, t) ∼ e2πi(x/λ−νt) = ei(px−Et)/h̄ (2.36)

(we are considering a motion in the positive x direction). Our choice implies
the following wave equation

ψ̇P = − iE

h̄
ψP = − i

h̄

(
mc2 +

1

2m
p2

)
ψP . (2.37)

We have also

∂xψP =
i

h̄
pψP , (2.38)

from which we deduce

ih̄ψ̇P = mc2ψP − h̄2

2m
∂2

xψP . (2.39)

Our construction can be simplified by multiplying the initial wave function
by the phase factor eimc2t/h̄, i.e. defining

ψ ≡ eimc2t/h̄ψP ∼ exp

(
i

h̄

(
px− p2

2m
t

))
. (2.40)

Since the dependence on x is unchanged, ψ still satisfies (2.38) and has the
same probabilistic interpretation as ψP . Indeed both ρ and J are unchanged.
The wave equation instead changes:

ih̄ψ̇ = − h̄2

2m
∂2

xψ ≡ Tψ . (2.41)

This is the Schrödinger equation for a free (non-relativistic) particle, in which
the right-hand side has a natural interpretation in terms of the particle energy,
which in the free case is only of kinetic type.

In the case of particles under the influence of a force field corresponding
to a potential energy V (x), the equation can be generalized by adding V (x)
to the kinetic energy :

ih̄ψ̇ = − h̄2

2m
∂2

xψ + V (x)ψ . (2.42)

This is the one-dimensional Schrödinger equation that we shall apply to var-
ious cases of physical interest.
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Equations (2.34) and (2.35) show that the probability current density does
not depend on V and is given by:

J = − ih̄

2m
(ψ∗∂xψ − ψ∂xψ∗) . (2.43)

Going back to the free case and considering the plane wave function given in
(2.36), it is interesting to notice that the corresponding probability density,
ρ = |ψ|2, is a constant function. This result is paradoxical since, by reducing
(2.25) to one dimension, we obtain∫ ∞

−∞
dx ρ(x, t) =

∫ ∞

−∞
dx |ψ(x, t)|2 = 1 , (2.44)

which cannot be satisfied in the examined case, since the integral of a constant
function is divergent. We must conclude that our interpretation excludes the
possibility that a particle have a well defined momentum.

We are left with the hope that this difficulty may be overcome by admit-
ting some (small) uncertainty on the knowledge of momentum. This possibility
can be easily analyzed thanks to the linearity of Schrödinger equation. Indeed
equation (2.41) admits other different solutions besides the simple plane wave,
in particular the wave packet solution, which is constructed as a linear super-
position of many plane waves according to the following integral:∫ ∞

−∞
dp ψ̃(p) exp

(
i

h̄

(
px− p2

2m
t

))
.

The squared modulus of the superposition coefficients, |ψ̃(p)|2, can be nat-
urally interpreted, apart from a normalization constant, as the probability
density in terms of momentum, exactly in the same way as ρ(x) is interpreted
as a probability density in terms of position.

Let us choose in particular a Gaussian distribution:

ψ̃(p) ∼ e−(p−p0)
2/(4Δ2) , (2.45)

corresponding to

ψΔ(x, t) = k

∫ ∞

−∞
dp e−(p−p0)2/(4Δ2) ei(px−p2t/2m)/h̄ , (2.46)

where k must be determined in such a way that
∫∞
−∞ dx|ψΔ(x, t)|2 = 1.

The integral in (2.46) can be computed by recalling that, if α is a complex
number with positive real part (Re(α) > 0), then∫ ∞

−∞
dp e−αp2

=

√
π

α

and that the Riemann integral measure dp is left invariant by translations in
the complex plane,
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−∞
dp e−αp2 ≡

∫ ∞

−∞
d(p + γ) e−α(p+γ)2

=

∫ ∞

−∞
dp e−α(p+γ)2 = e−αγ2

∫ ∞

−∞
dp e−αp2

e−2αγp ,

for every complex number γ. Therefore we have∫ ∞

−∞
dp e−αp2

eβp =

√
π

α
eβ2/4α . (2.47)

Developing (2.46) with the help of (2.47) we can write

ψΔ(x, t) = ke−
p2
0

4Δ2

∫ ∞

−∞
dp e−[ 1

4Δ2 + it
2mh̄ ]p2

e[
p0

2Δ2 + ix
h̄ ]p

= k

√
π

1
4Δ2 + it

2mh̄

exp

([
p0

2Δ2 + ix
h̄

]2
1

Δ2 + 2it
mh̄

− p2
0

4Δ2

)
. (2.48)

We are interested in particular in the x dependence of the probability density
ρ(x): that is solely related to the real part of the exponent of the rightmost
term in (2.48), which can be expanded as follows:

p2
0

4Δ4 + ip0x
Δ2h̄ − x2

h̄2

1
Δ2 + 2it

mh̄

− p2
0

4Δ2
= − p2

0

4Δ2

4t2Δ4

m2h̄2 + 2itΔ2

mh̄

1 + 4t2Δ4

m2h̄2

−
(

Δ2x2

h̄2 − ip0x

h̄

)
1− 2itΔ2

mh̄

1 + 4t2Δ4

m2h̄2

the real part being

− Δ2
(
x− p0t

m

)2
h̄2
(
1 + 4t2Δ4

m2h̄2

) ≡ − Δ2 (x− v0t)
2

h̄2
(
1 + 4t2Δ4

m2h̄2

) .

Since p0 is clearly the average momentum of the particle, we have introduced
the corresponding average velocity v0 = p0/m. Recalling the definition of ρ,
as well as its normalization constraint, we finally find

ρ(x, t) =
Δ

h̄

√
2

π
(
1 + 4t2Δ4

m2h̄2

) exp

(
−2Δ2

h̄2

(x− v0t)
2

1 + 4t2Δ4

m2h̄2

)
, (2.49)

while the probability distribution in terms of momentum reads

ρ̃(p) =
1√
2πΔ

e−(p−p0)2/(2Δ2) . (2.50)

Given a Gaussian distribution ρ(x) = 1/(
√

2πσ)e−(x−x0)
2/(2σ2), it is a well

known fact, which anyway can be easily derived from previous formulae, that
the mean value x̄ is x0 while the mean quadratic deviation (x− x̄)2 is equal
to σ2. Hence, in the examined case, we have an average position x̄ = v0t
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with a mean quadratic deviation equal to h̄2/(4Δ2) + t2Δ2/m2, while the
average momentum is p0 with a mean quadratic deviation Δ2. The mean
values represent the kinematic variables of a free particle, while the mean
quadratic deviations are roughly inversely proportional to each other: if we
improve the definition of one observable, the other becomes automatically less
defined.

The former results can be derived in a shorter way and generalized using
the stationary phase approximation that we briefly present here. Suppose we
want to compute an integral of the form:∫ ∞

−∞
dq exp(−F (q, ξ)) , (2.51)

where ξ stands for a set of parameters, e.g. x and t, and F (q, ξ) is a complex
valued function whose real part tends to ∞ when |q| → ∞. Let F̂ (z, ξ) be an
analytic extension of F (q, ξ), that is an analytic function in z in a suitable
domain D neighboring the real axis, that is, such that limε→0 F̂ (q ± iε, ξ) =
F (q, ξ) for a suitable choice of the sign.

Suppose furthermore that the equation ∂zF̂ (z, ξ) = 0 has a finite number
of solutions z1, . . . , zn in D and that |∂2

z F̂ (z1, ξ)| � |∂2
z F̂ (zi, ξ)| for any i > 1.

Then the integral (2.51) is approximated by

∫ ∞

−∞
dq exp(−F (q, ξ)) �

√
2π

∂2
z F̂ (z1, ξ)

exp(−F̂ (z1, ξ)), (2.52)

and the approximation improves so long as the inequality becomes stronger.
In the case of the Gaussian wave packet the reader should verify that the

equation ∂zF̂ (z, ξ) = 0 has a single solution and hence (2.52) becomes an
identity.

The distributions given in (2.49) and (2.50), even if derived in the context
of a particular example, permit to reach important general conclusions which,
for the sake of clarity, are listed in the following as distinct points.

2.4.1 The Uncertainty Principle

While the mean quadratic deviation relative to the momentum distribution

(p− p̄)2 = Δ2

has been fixed a-priori by choosing ψ̃(p) and is independent of time, thus
confirming that momentum is a constant of motion for a free particle, that
relative to the position

(x − x̄)2 =

(
1 +

4t2Δ4

m2h̄2

)
h̄2

4Δ2
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does not contain further free parameters and does depend on time. Indeed,
Δx grows significantly for 2tΔ2/(mh̄) > 1, hence for times greater than
ts = mh̄/(2Δ2). Notice that ts is nothing but the time needed for a par-
ticle of momentum Δ to cover a distance h̄/(2Δ), therefore this spreading has
a natural interpretation also from a classical point of view: a set of indepen-
dent particles having momenta distributed according to a width Δp, spreads
with velocity Δp/m = vs; if the particles are statistically distributed in a
region of size initially equal to Δx, the same size will grow significantly after
times of the order of Δx/vs.

What is new in our results is, first of all, that they refer to a single parti-
cle, meaning that uncertainties in position and momentum are not avoidable;
secondly, these uncertainties are strictly interrelated. Without considering the
spreading in time, it is evident that the uncertainty in one variable can be
diminished only as the other uncertainty grows. Indeed, Δ can be eliminated
from our equations by writing the inequality:

ΔxΔp ≡
√

(x− x̄)2 (p− p̄)2 ≥ h̄

2
, (2.53)

which is known as the Heinsenberg uncertainty principle and can be shown
to be valid for any kind of wave packet. The case of a real Gaussian packet
corresponds to the minimal possible value ΔxΔp = h̄/2.

From a phenomenological point of view this principle originates from the
universality of diffractive phenomena. Indeed diffractive effects are those which
prevent the possibility of a simultaneous measurement of position and mo-
mentum with arbitrarily good precision for both quantities. Let us consider
for instance the case in which the measurement is performed through optical
instruments; in order to improve the resolution it is necessary to make use
of radiation of shorter wavelength, thus increasing the momenta of photons,
which hitting the object under observation change its momentum in an un-
predictable way. If instead position is determined through mechanical instru-
ments, like slits, then the uncertainty in momentum is caused by diffractive
phenomena.

It is important to evaluate the order of magnitude of quantum uncertainty
in cases of practical interest. Let us consider for instance a beam of electrons
emitted by a cathode at a temperature T = 1000◦K and accelerated through
a potential difference equal to 104 V. The order of magnitude of the kinetic
energy uncertainty ΔE is kT , where k = 1.381 10−23 J/◦K is the Boltz-
mann constant (alternatively one can use k = 8.617 10−5 eV/◦K ). Therefore
ΔE = 1.38 10−20 J, while E = 1.6 10−15 J, corresponding to a quite precise
determination of the beam energy (ΔE/E ∼ 10−5). We can easily compute
the momentum uncertainty by using error propagation (Δp/p = 1

2ΔE/E) and
computing p =

√
2meE = 5.6 10−23 N s; we thus obtain Δp = 2.8 10−28 N s,

hence, making use of (2.53), Δx ≥ 2 10−7 m. It is clear that the uncertainty
principle does not place significant constraints in this case.
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A macroscopic body of mass M = 1 Kg placed at room temperature
(T � 300◦K) has an average thermal momentum, caused by collisions with
air molecules, which is equal to Δp ∼

√
2M 3kT/2 � 9 10−11 N s, so that

the minimal quantum uncertainty on its position is Δx ∼ 10−24 m, hence not
appreciable.

The uncertainty principle is instead quite relevant at the atomic level,
where it is the stabilizing mechanism which prevents the electron from collaps-
ing onto the nucleus. We can think of the electron orbital radius as a rough es-
timate of its position uncertainty (Δx ∼ r) and evaluate the kinetic energy de-
riving from the momentum uncertainty; we have Ek ∼ Δ2

p/(2m) ∼ h̄2/(2mr2).
Taking into account the binding Coulomb energy, the total energy is

E(r) ∼ h̄2

2mr2
− e2

4πε0r
.

We infer that the system is stable, since the total energy E(r) has an abso-
lute minimum. The stable radius rm corresponding to this minimum can be
computed through the equation

e2

4πε0r2
m

− h̄2

mr3
m

= 0 ,

hence

rm ∼ 4πε0h̄
2

me2
,

which nicely reproduce the value of the atomic radius for the fundamental
level in Bohr’s model, see equation (2.22).

2.4.2 The Speed of Waves

It is known that electromagnetic waves move without distortion at a speed
c = 1/

√
ε0μ0 and that, for a harmonic wave, c is given by the wavelength

multiplied by the frequency.
In the case of de Broglie’s waves, equation (2.40), we have ν = p2/(2mh)

and λ = h/p; therefore the velocity of harmonic waves is given by vF ≡
λν = p/(2m). If we consider instead the wave packet given in (2.48) and its
corresponding probability density given in (2.49), we clearly see that it moves
with a velocity vG ≡ p0/m, which is equal to the classical velocity of a par-
ticle with momentum p0. We have used different symbols to distinguish the
velocity of plane waves vF , which is called phase velocity, from vG, which is
the speed of the packet and is called group velocity. Previous equations lead
to the result that, contrary to what happens for electromagnetic waves prop-
agating in vacuum, the two velocities are different for de Broglie’s waves, and
in particular the group velocity does not coincide with the average value of the
phase velocities of the different plane waves making up the packet. Moreover,
the phase velocity depends on the wavelength (vF = h/(2mλ)). The relation
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between frequency and wavelength is given by ν = c/λ for electromagnetic
waves, while for de Broglie’s waves it is ν = h/(2mλ2).

There is a very large number of examples of wave-like propagation in
physics: electromagnetic waves, elastic waves, gravity waves in liquids and
several other ones. In each case the frequency presents a characteristic de-
pendence on the wavelength, ν(λ). Considering as above the propagation
of gaussian wave packets, it is always possible to define the phase velocity,
vF = λ ν(λ), and the group velocity, which in general is defined by the rela-
tion:

vG = −λ2 dν(λ)

dλ
. (2.54)

Last equation can be verified by considering that, for a generic dependence of
the wave phase on the wave number exp(ikx− iω(k)t) and for a generic wave
packet described by superposition coefficients strongly peaked around a given
value k = k0, the resulting wave function

ψ(x) ∝
∫ ∞

−∞
dk f(k − k0) ei(kx−ω(k)t)

will be peaked around an x0 such that the phase factor is stationary, hence
almost constant, for k ∼ k0, leading to x0 ∼ ω′(k0)t.

In the case of de Broglie’s waves (2.54) reproduces the result found previ-
ously. Media where the frequency is inversely proportional to the wavelength,
as for electromagnetic waves in vacuum, are called non-dispersive media, and
in that case the two velocities coincide.

It may be interesting to notice that, if we adopt the relativistic form for
the plane wave, we have ν(λ) =

√
m2c4/h2 + c2/λ2, hence

vF = λ

√
m2c4

h2
+

c2

λ2
=

E

p
> c ,

vG =
c2

λ

(
m2c4

h2
+

c2

λ2

)−1/2

=
pc2

E
< c .

In particular vG, which describes the motion of wave packets, satisfies the
constraint of being less than c and coincides with the relativistic expression for
the speed of a particle in terms of momentum and energy given in Chapter 1.

2.4.3 The Collective Interpretation of de Broglie’s Waves

The description of single particles as wave packets is at the basis of a rig-
orous formulation of Schrödinger’s theory. There is however an alternative
interpretation of the wave function, which is of much simpler use and can be
particularly useful to describe average properties, like a particle flow in the
free case.
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Let us consider the plane wave in (2.40): ψ = exp
(
i
(
p x− p2t/(2m)

)
/h̄
)

and compute the corresponding current density J :

J = − ih̄

2m
(ψ∗∂xψ − ψ∂xψ∗) = − ih̄

2m

(
ψ∗

ip

h̄
ψ − ψ

−ip

h̄
ψ∗
)

=
p

m
, (2.55)

while ρ = ψ∗ψ = 1. On the other hand we notice that, given a distribution of
classical particles with density ρ and moving with velocity v, the corresponding
current density is J = ρv.

That suggests to go beyond the problem of normalizing the probability
distribution in (2.44), relating instead the wave function in (2.40) not to a
single particle, as we have done till now, but to a stationary flux of independent
particles, which are uniformly distributed with unitary density and move with
the same velocity v.

It should be clear that in this way we are a priori giving up the idea of
particle localization, however we obtain in a much simpler way information
about the group velocity and the flux. We shall thus be able, in the following
Section, to easily and clearly interpret the effects of a potential barrier on a
particle flux.

2.5 The Potential Barrier

The most interesting physical situation is that in which particles are not
free, but subject to forces corresponding to a potential energy V (x). In these
conditions the Schrödinger equation in the form given in (2.42) has to be
used. Since the equation is linear, the study can be limited, without loss of
generality, to solutions which are periodic in time, like:

ψ(x, t) = e−iEt/h̄ψE(x) . (2.56)

Indeed the general time dependent solution can always be decomposed in
periodic components through a Fourier expansion, so that its knowledge is
equivalent to that of ψE(x) plus the expansion coefficients.

Furthermore, according to the collective interpretation of de Broglie waves
presented in last Section, the wave function in (2.56) describes either a sta-
tionary flow or a stationary state of particles. In particular we shall begin
studying a stationary flow hitting a potential barrier.

The function ψE(x) is a solution of the equation obtained by replacing
(2.56) into (2.42), i.e.

ih̄ ∂te
−iEt/h̄ψE(x) = Ee−iEt/h̄ψE(x) = e−iEt/h̄

[
− h̄2

2m
∂2

xψE + V (x)ψE

]
(2.57)

hence

EψE(x) = − h̄2

2m
∂2

xψE(x) + V (x)ψE(x) , (2.58)
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Fig. 2.3. A typical example of a potential barrier, referring in particular to that due
to Coulomb repulsion that will be used when discussing Gamow’s theory of nuclear
α-emission

which is known as the time-independent or stationary Schrödinger equation.
We shall consider at first the case of a potential barrier, in which V (x)

vanishes for x < 0 and x > L, and is positive in the segment [0, L], as shown
in Fig. 2.3. A flux of classical particles hitting the barrier from the left will
experience slowing forces as x > 0. If the starting kinetic energy, corresponding
in this case to the total energy E in (2.58), is greater than the barrier height V0,
the particles will reach the point where V has a maximum, being accelerated
from there forward till they pass point x = L, where the motion gets free
again. Therefore the flux is completely transmitted, the effect of the barrier
being simply a slowing down in the segment [0, L]. If instead the kinetic energy
is less than V0, the particles will stop before they reach the point where V has
a maximum, reversing their motion afterwards: the flux is completely reflected
in this case. Quantum Mechanics gives a completely different result.
In order to analyze the differences
from a qualitative point of view, it is
convenient to choose a barrier which
makes the solution of (2.58) easier:
that is the case of a potential which
is piecewise constant, like the square
barrier depicted on the side. The
choice is motivated by the fact that,
if V is constant, then (2.58) can be
rewritten as follows:

∂2
xψE(x) +

2m

h̄2 (E − V )ψE(x) = 0 , (2.59)

and has the general solution:
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ψE(x) = a+ exp

(
i

√
2m(E − V )

h̄
x

)
+ a− exp

(
−i

√
2m(E − V )

h̄
x

)
, (2.60)

if E > V , while

ψE(x) = a+ exp

(√
2m(V − E)

h̄
x

)
+ a− exp

(
−
√

2m(V − E)

h̄
x

)
, (2.61)

in the opposite case. The problem is then to establish how the solution found
in a definite region can be connected to those found in the nearby regions.
In order to solve this kind of problem we must be able to manage differential
equations in presence of discontinuities in their coefficients, and that requires
a brief mathematical interlude.

2.5.1 Mathematical Interlude: Differential Equations

with Discontinuous Coefficients

Differential equations with discontinuous coefficients can be treated by smooth-
ing the discontinuities, then solving the equations in terms of functions which
are derivable several times, and finally reproducing the correct solutions in
presence of discontinuities through a limit process. In order to do so, let us
introduce the function ϕε(x), which is defined as

ϕε(x) = 0 if |x| > ε ,

ϕε(x) =
ε2 + x2

2 (ε2 − x2)
2

1

cosh2 (x/(ε2 − x2))
if |x| < ε .

This function, as well as all of its derivatives, is continuous and it can be easily
shown that

∫ ∞

−∞
ϕε(x)dx = 1 .

Based on this property we conclude that if f(x) is locally integrable, i.e. if it
admits at most isolated singularities where the function may diverge with a
degree less than one, like for instance 1/|x|1−δ when δ > 0, then the integral∫ ∞

−∞
ϕε(x− y)f(y)dy ≡ fε(x)

defines a function which can be derived in x an infinite number of times; the
derivatives of fε tend to those of f in the limit ε → 0 and in all points where
the latter are defined. We have in particular, by part integration,
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dn

dxn
fε(x) =

∫ ∞

−∞
ϕε(x− y)

dn

dyn
f(y)dy ; (2.62)

fε is called regularized function. If for in-
stance we consider the case in which f is
the step function in the origin, i.e. f(x) = 0
for x < 0 and f(x) = 1 for x > 0,
we have for fε(x), ∂xfε(x) = f ′ε(x) and
∂2

xfε(x) = f ′′ε (x) the behaviours showed in
the respective order on the side. Notice in
particular that since

fε(x) =

∫ ∞

0

ϕε(x− y)dy =

∫ x

−∞
ϕε(z)dz

we have ∂xfε(x) = ϕε(x). By looking at
the three figures it is clear that fε(x) con-
tinuously interpolates between the two val-
ues, zero and one, which the function as-
sumes respectively to the left of −ε and to
the right of ε, staying less than 1 for every
value of x. It is important to notice that in-
stead the second figure, showing ∂xfε(x),
i.e. ϕε(x), has a maximum of height pro-
portional to 1/ε2, hence diverging as ε → 0.

The third figure, showing the second
derivative ∂2

xfε(x), has an oscillation of
amplitude proportional to 1/ε4 around the
discontinuity point. Since, for small ε, the
regularized function depends, close to the
discontinuity, on the nearby values of the
original function, it is clear that the qual-
itative behaviors showed in the figures are
valid, close to discontinuities of the first
kind (i.e. where the function itself has a
discontinuous gap), for every starting func-
tion f .

Let us now consider (2.59) close to a discontinuity point of the first kind
(step function) for V , and suppose we regularize both terms on the left hand
side. Assuming that the wave function do not present discontinuities worse
than first kind, the second term in the equation may present only steps so that,
once regularized, it is limited independently of ε. However the first term may
present oscillations of amplitude ∼ 1/ε4 if ψE has a first kind discontinuity, or
a peak of height ∼ ±1/ε2 if ψE is continuous but its first derivative has such
discontinuity: in each case the modulus of the first regularized term would
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diverge faster than the second in the limit ε → 0. That shows that in presence
of a first kind discontinuity in V , both the wave function ψE and its derivative
must be continuous.

In order to simply deal with barriers of length L much smaller than the
typical wavelengths of the problem, it is useful to introduce infinitely thin bar-
riers: that can be done by choosing a potential energy which, once regularized,
is equal to Vε(x) = V ϕε(x), i.e.

V (x) = V lim
ε→0

ϕε(x) ≡ Vδ(x) . (2.63)

Equation (2.63) defines the so-called Dirac’s delta function as a limit of ϕε.
When studying Schrödinger equation regularized as done above, it is pos-

sible to show, by integrating the differential equation between −ε and ε, that
in presence of a potential barrier proportional to the Dirac delta function the
wave function stays continuous, but its derivative has a first kind discontinuity
of amplitude

lim
ε→0

(ψ′E(ε)− ψ′E(−ε)) =
2m

h̄2 VψE(0) . (2.64)

Notice that a potential barrier proportional to the Dirac delta function can
be represented equally well by a square barrier of height V/L and width L, in
the limit as L → 0 with

∫∞
−∞ dxV (x) = V kept constant.

2.5.2 The Square Barrier

Let us consider the stationary Schrödinger equation (2.58) with a potential
corresponding to the square barrier described above, that is V (x) = V for
0 < x < L and vanishing elsewhere. As in the classical case we can distinguish
two different regimes:
a) the case E > V , in which classically the flux would be entirely transmitted;
b) the opposite case, E < V , in which classically the flux would be entirely
reflected.
Let us start with case (a) and distinguish three different regions:
1) the region x < 0, in which the general solution is

ψE(x) = a+ei
√

2mE x/h̄ + a−e−i
√

2mE x/h̄ ; (2.65)

this wave function corresponds to two opposite fluxes, the first moving right-
wards and equal to |a+|2

√
2E/m, the other opposite to the first and equal to

−|a−|2
√

2E/m. Since we want to study a quantum process analogous to that
described classically, we arbitrarily choose a+ = 1, thus fixing the incident
flux to

√
2E/m, hence

ψE(x) = ei
√

2mE x/h̄ + a e−i
√

2mE x/h̄ ; (2.66)

a takes into account the possible reflected flux, |a|2√2E/m. The physically
interesting quantity is the fraction of the incident flux which is reflected, which
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is called the reflection coefficient of the barrier and, with our normalization
for the incident flux, is R = |a|2;
2) the region 0 < x < L, where the general solution is

ψE(x) = b ei
√

2m(E−V ) x/h̄ + c e−i
√

2m(E−V ) x/h̄ ; (2.67)

3) the region x > L, where the general solution is given again by (2.65).
However, since we want to study reflection and transmission through the bar-
rier, we exclude the possibility of a backward flux, i.e. coming from x = ∞,
thus assuming that the only particles present in this region are those going
rightwards after crossing the barrier. Therefore in this region we write

ψE(x) = d ei
√

2mE x/h̄ . (2.68)

The potential has two discontinuities in x = 0 and x = L, therefore we
have the following conditions for the continuity of the wave function and its
derivative:

1 + a = b + c ,

1− a =

√
E − V

E
(b− c) ,

b ei
√

2m(E−V )L/h̄ + c e−i
√

2m(E−V )L/h̄ = d ei
√

2mEL/h̄ , (2.69)√
E − V

E

[
b ei
√

2m(E−V )L/h̄ − c e−i
√

2m(E−V )L/h̄
]

= d ei
√

2mEL/h̄ .

We have thus a linear system of 4 equations with 4 unknown variables which,
for a generic choice of parameters, should univocally identify the solution.
However our main interest is the determination of |a|2. Dividing side by side
the first two as well as the last two equations, we obtain after simple algebra:

1− a

1 + a
=

√
E − V

E

b
c − 1
b
c + 1

,

b
c − e−2i

√
2m(E−V )L/h̄

b
c + e−2i

√
2m(E−V )L/h̄

=

√
E

E − V
. (2.70)

Solving the second equation for b/c and the first for a we obtain:

b

c
= e−2i

√
2m(E−V )L/h̄

√
E−V

E + 1√
E−V

E − 1
,

a =
1 +

√
E−V

E + b
c

(
1−

√
E−V

E

)
1−

√
E−V

E + b
c

(
1 +

√
E−V

E

) (2.71)
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and finally, by substitution:

a =

(
1− E−V

E

) (
ei
√

2m(E−V )L/h̄ − e−i
√

2m(E−V )L/h̄
)

(
1−

√
E−V

E

)2

ei
√

2m(E−V )L/h̄ −
(
1 +

√
E−V

E

)2

e−i
√

2m(E−V )L/h̄

,

so that

a =
V

E

sin

(√
(2m(E−V )

h̄ L

)
2E−V

E sin

(√
(2m(E−V )

h̄ L

)
+ 2i

√
E−V

E cos

(√
(2m(E−V )

h̄ L

) , (2.72)

which clearly shows that 0 ≤ |a| < 1 and that, for V > 0, a vanishes only
when

√
(2m(E − V )L/h̄ = nπ.

This is a clear interference effect, showing that reflection by the barrier is
a wavelike phenomenon. For those knowing the physics of coaxial cables there
should be a clear analogy between our result and the reflection happening
at the junction of two cables having mismatching impedances: television set
technicians well known that as a possible origin of failure.

The quantum behavior in case (b), i.e. when E < V , is more interesting
and important for its application to microscopic physics. In this case the wave
functions in regions 1 and 3 do not change, while for 0 < x < L the general
solution is:

ψE(x) = b e
√

2m(V−E) x/h̄ + c e−
√

2m(V−E) x/h̄ , (2.73)

so that the continuity conditions become:

1 + a = b + c ,

1− a = −i

√
V − E

E
(b− c) ,

b e
√

2m(V−E)L/h̄ + c e−
√

2m(V−E)L/h̄ = d ei
√

2mEL/h̄ , (2.74)

−i

√
V − E

E

[
b e
√

2m(V−E)L/h̄ − c e−
√

2m(V−E)L/h̄
]

= d ei
√

2mEL/h̄ .

Dividing again side by side we have:

b
c − e−2

√
2m(V−E)L/h̄

b
c + e−2

√
2m(V−E)L/h̄

= i

√
E

V − E
,

1− a

1 + a
= i

√
V − E

E

1− b
c

1 + b
c

, (2.75)
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which can be solved as follows:

a = −
1− b

c + i
√

E
V−E

(
1 + b

c

)
1− b

c − i
√

E
V−E

(
1 + b

c

) ,

b

c
= e−2

√
2m(V−E)L/h̄

1 + i
√

E
V−E

1− i
√

E
V−E

. (2.76)

We can get the expression for a, hence the reflection coefficient R ≡ |a|2, by
replacing b/c in the first equation. The novelty is that R is not equal to one
since, as it is clear from (2.76), b/c is a complex number. Therefore a fraction
1 −R ≡ T of the incident flux is transmitted through the barrier, in spite of
the fact that, classically, the particles do not have enough energy to reach the
top of it. That is known as tunnel effect and plays a very important role in
several branches of modern physics, from radioactivity to electronics.

Instead of giving a complete solution for a, hence for the transmission

coefficient T , and in order to avoid too complex and unreadable formulae, we
will confine the discussion to two extreme cases, which however have a great
phenomenological interest. We consider in particular:

a) the case in which e−2
√

2m(V−E)L/h̄ � 1, with a generic value for E
V−E , i.e.

L � h̄/
√

2m(V − E), which is known as the thick barrier case;
b) the case in which the barrier is thin, corresponding in particular to the
limit L → 0 with V L ≡ V kept constant.

The thick barrier

In this case |b/c| is small, so that it could be neglected in a first approximation,
however it is clear from (2.76) that if b/c = 0 then |a| = 1, so that there
is actually no tunnel effect. For this reason we must compute the Taylor
expansion in the expression of a as a function of b/c up to the first order:

a = −
1 + i

√
E

V−E

1− i
√

E
V−E

1− b
c

1−i
√

E/(V−E)

1+i
√

E/(V−E)

1− b
c

1+i
√

E/(V−E)

1−i
√

E/(V−E)

∼ −
1 + i

√
E

V−E

1− i
√

E
V−E

⎡
⎣1− b

c

⎛
⎝1− i

√
E

V−E

1 + i
√

E
V−E

−
1 + i

√
E

V−E

1− i
√

E
V−E

⎞
⎠
⎤
⎦

= −
1 + i

√
E

V−E

1− i
√

E
V−E

[
1 + 4i

b

c

√
E(V − E)

V

]
(2.77)

= −
1 + i

√
E

V−E

1− i
√

E
V−E

⎡
⎣1 + 4i

√
E(V − E)

V
e−2
√

2m(V−E)L/h̄
1 + i

√
E

V−E

1− i
√

E
V−E

⎤
⎦ .
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In the last line we have replaced b/c by the corresponding expression in (2.76).

Neglecting terms of the order of e−4
√

2m(V−E)L/h̄ or smaller we obtain

|a|2 = R = 1− 16
E(V − E)

V 2
e−2
√

2m(V−E)L/h̄ . (2.78)

Therefore the transmission coefficient, which measures the probability for a
particle hitting the barrier to cross it, is given by:

T ≡ 1−R = 16
E(V − E)

V 2
e−2
√

2m(V−E)L/h̄ . (2.79)

Notice that the result seems to vanish for V = E, but this is not true since in
this case the terms neglected in our approximation come into play.

This formula was first applied in nuclear physics, and more precisely to
study α emission, a phenomenon in which a heavy nucleus breaks up into a
lighter nucleus plus a particle carrying twice the charge of the proton and
roughly four times its mass, which is known as α particle. The decay can be
simply described in terms of particles of mass∼ 0.66 10−26 Kg and energy E �
4− 8 MeV � 10−12 J, hitting barriers of width roughly equal to 3 10−14 m;
the difference V − E is of the order of 10 MeV � 1.6 10−12 J.

In these conditions we have 2
√

2m(V − E)L /h̄ � 83 and therefore T ∼
e−2
√

2m(V−E)L/h̄ ∼ 10−36. Given the order of magnitude of the energy E and
of the mass of the particle, we infer that it moves with a velocity of the order of
107 m/s: since the radius R0 of heavy nuclei is roughly 10−14 m, the frequency
of collisions against the barrier is νu ∼ 1021 Hz. That indicates that, on
average, the time needed for the α particle to escape the nucleus is of the order
of 1/(νuT ), i.e. about 1015 s, equal to 108 years. However, if the width of the
barrier is only 4 times smaller, the decay time goes down to about 100 years.
That shows a great sensitivity of the result to the parameters and justifies
the fact that we have neglected the pre-factor in front of the exponential in
(2.79). On the other hand that also shows that, for a serious comparison with
the actual mean lives of nuclei, an accurate analysis of parameters is needed,
but it is also necessary to take into account the fact that we are not dealing
with a true square barrier, since the repulsion between the nucleus and the
α particle is determined by Coulomb forces, i.e. V (x) = 2Ze2/(4πε0x) for x
greater than a given threshold, see Fig. 2.3.

As a consequence, the order of magnitude of the transmission coefficient
given in (2.79), i.e.

T � e−2
√

2m(V−E)L/h̄ (2.80)

must be replaced by1

T � exp

(
−2

∫ R1

R0

dx

√
2m(V (x)− E)

h̄

)
≡ e−G , (2.81)

1 One can think of a thick, but not square, barrier as a series of thick square barriers
of different heights.
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where R0 is the already mentioned nuclear radius and R1 = 2Ze2/(4πEε0) is
the solution of the equation V (R1) = E. We have then

G = 2

√
2m

h̄

∫ R1

R0

dx

√
2Ze2

4πε0x
− E = 2

√
2mE

h̄

∫ R1

R0

dx

√
R1

x
− 1

= 2

√
2mER1

h̄

∫ 1

R0
R1

dy

√
1

y
− 1 = 2

√
2m

E

Ze2

πε0h̄

∫ 1√
R0
R1

dz
√

1− z2

=

√
2m

E

Ze2

πε0h̄

⎡
⎣acos

√
R0

R1
−
√

R0

R1
−
(

R0

R1

)2
⎤
⎦ . (2.82)

In the approximation R0/R1 << 1 we have

G � 2πZe2

ε0hv
, (2.83)

where v is the velocity of the alpha particle. Hence, if we assume like above
that the collision frequency be νu ∼ 1021 Hz, the mean life is

τ = 10−21 exp

(
2πZe2

ε0hv

)
. (2.84)

If we instead make use of the last expression in (2.82), with R0 = 1.1 10−14 m,
we infer for ln τ the behavior shown in Fig. 2.4, where the crosses indicate ex-
perimental values for the mean lives of various isotopes: 232Th, 238U, 230Th,
241Am, 230U, 210Rn, 220Rn, 222Ac, 215Po, 218Th. Taking into account that
the figure covers 23 orders of magnitude, the agreement is surely remark-
able. Indeed Gamow’s first presentation of these results in 1928 made a great
impression.

The thin barrier

In the case of a thin barrier we can neglect E with respect to V , so that√
E/(V − E) � √

E/V and e−
√

2m(V−E)L/h̄ � 1 − √2mV L/h̄. We also re-

mind that
√

2mV L/h̄ is infinitesimal, since L → 0 with V L ≡ V fixed, so that

ei
√

2mEL/h̄ can be put equal to 1. Therefore equation (2.75) becomes

1 + a = b + c ,

1− a = −i

√
V

E
(b− c) ,

b + c +

√
2mV

h̄
L(b− c) = d ,

b− c +

√
2mV

h̄
L(b + c) = i

√
E

V
d , (2.85)
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Fig. 2.4. The mean lives of a sample of α-emitting isotopes plotted against the
corresponding α-energies. The solid line shows the values predicted by Gamow’s
theory

and substituting b± c we obtain:

d = 1 + a + i

√
E

V

√
2mV

h̄
L(1− a) � 1 + a ,

i

√
E

V
(1− a) +

√
2mV

h̄
L(1 + a) = i

√
E

V
d , (2.86)

in its simplest form. Taking further into account our approximation, the sys-
tem can be rewritten as

1 + a = d ,

1− a =

(
i

√
2m

E

V L

h̄
+ 1

)
d ≡

(
1 + i

√
2m

E

V
h̄

)
d . (2.87)

Finally we find, by eliminating a, that

d =
1

1 + i
√

m
2E

V
h̄

, (2.88)

hence

T =
1

1 + m
2E

V2

h̄2

(2.89)

and

R =
1

1 + 2E
m

h̄2

V2

. (2.90)
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Notice that the system (2.87) confirms what predicted about the continuity
conditions for the wave function in presence of a potential energy equal to
Vδ(x), i.e. that the wave function is continuous (1+a = d) while its derivative
has a discontinuity (i

√
2mE(1 − a − d)/h̄) equal to 2mV/h̄2 times the value

of the wave function (d in our case).

2.6 Quantum Wells and Energy Levels

Having explored the tunnel effect in some details, let us now discuss the solu-
tions of the Schrödinger equation in the case of binding potentials. For bound
states, i.e. for solutions with wave functions localized in the neighborhood of
a potential well, we expect computations to lead to energy quantization, i.e.
to the presence of discrete energy levels. Let us start our discussion from the
case of a square well

V (x) = −V for |x| < L

2
, V (x) = 0 for |x| > L

2
. (2.91)

Notice that the origin of the co-
ordinate has been chosen in or-
der to emphasize the symme-

try of the system, correspond-
ing in this case to the invari-
ance of Schrödinger equation
under axis reflection x → −x.
In general the symmetry of the
potential allows us to find new
solutions of the equation starting from known solutions, or to simplify the
search for solutions by a priori fixing some of their features. In this case it
can be noticed that if ψE(x) is a solution, ψE(−x) is a solution too, so that,
by linearity of the differential equation, any linear combination (with complex
coefficients) of the two wave functions is a good solution corresponding to the
same value of the energy E, in particular the combinations ψE(x)± ψE(−x),
which are even/odd under reflection of the x axis. Naturally one of the two
solutions may well vanish, but it is clear that all possible solutions can be
described in terms of (i.e. they can be written as linear combinations of)
functions which are either even or odd under x-reflection.

To better clarify the point, let us notice that, since the Schrödinger equa-
tion is linear, the set of all its possible solutions having the same energy
constitutes what is usually called a linear space, which is completely fixed
once we know one particular basis for it. What we have learned is that in
the present case even/odd functions are a good basis, so that the search for
solutions can be solely limited to them. This is probably the simplest example
of the application of a symmetry principle asserting that, if the Schrödinger
equation is invariant under a coordinate transformation, it is always possible
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to choose its solutions so that the transformation does not change them but
for a constant phase factor, which in the present case is ±1.

We will consider in the following only bound solutions which, assuming
that the potential energy vanishes as |x| → ∞, correspond to a negative total
energy E and are therefore the analogous of bound states in classical mechan-
ics. Solutions with positive energy instead present reflection and transmission
phenomena, as in the case of barriers. We notice that, in the case of bound
states, the collective interpretation of the wave function does not apply, since
these are states involving a single particle: that is in strict relation with the
fact that bound state solutions vanish rapidly enough as |x| → ∞, so that the
probability distribution in (2.44) can be properly normalized.

Let us start by considering even solutions: it is clear that we can limit
our study to the positive x axis, with the additional constraint of a vanishing
first derivative in the origin, as due for an even function (whose derivative is
odd). We can divide the positive x axis into two regions where the potential
is constant:
a) that corresponding to x < L/2, where the general solution is:

ψE(x) = a+ei
√

2m(E+V ) x/h̄ + a−e−i
√

2m(E+V ) x/h̄ ,

which is even for a+ = a−, so that

ψE(x) = a cos

(√
2m(E + V )

h̄
x

)
; (2.92)

b) that corresponding to x > L/2, where the general solution is:

ψE(x) = b+e
√

2m|E| x/h̄ + b−e−
√

2m|E| x/h̄ .

The condition that |ψ|2 be an integrable function constrains b+ = 0, otherwise
the probability density would unphysically diverge as |x| → ∞; therefore we
can write

ψE(x) = b e−
√

2m|E| x/h̄ . (2.93)

Notice that we have implicitly excluded the possibility E < −V , the reason
being that in this case (2.92) would be replaced by

ψE(x) = a cosh

(√
2m|E + V |

h̄
x

)

which for x > 0 has a positive logarithmic derivative (∂xψE(x)/ψE(x)) which
cannot continuously match the negative logarithmic derivative of the solution
in the second region given in (2.93). Therefore quantum theory is in agreement
with classical mechanics about the impossibility of having states with total
energy less than the minimum of the potential energy.
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The solutions of the Schrödinger equation on the whole axis can be found
by solving the system:

a cos

√
2m(E + V )L

2h̄
= b e−

√
2m|E|L/(2h̄) ,√

2m(E + V )

h̄
a sin

√
2m(E + V )L

2h̄
=

√
2m|E|
h̄

b e−
√

2m|E|L/(2h̄) (2.94)

dividing previous equations side by side we obtain the continuity condition
for the logarithmic derivative:

tan

√
2m(E + V )L

2h̄
=

√
|E|

E + V
. (2.95)

In order to discuss last equation let us introduce the variable

x ≡
√

2m(E + V )L

2h̄
(2.96)

and the parameter

y ≡
√

2mV L/2h̄ , (2.97)

and let us plot together the behav-
ior of the two functions tanx and√

(y2 − x2)/x2 =
√|E|/(E + V ). In

the figure we show the case y2 = 20.
From a qualitative point of view the
figure shows that energy levels, corre-
sponding to the intersection points of
the two functions, are quantized, thus
confirming also for the case of po-
tential wells the discrete energy spec-
trum predicted by Bohr’s theory. In
particular the plot shows two inter-
sections, the first for x = x1 < π/2,
the second for π < x = x2 < 3π/2.

Notice that quantization of energy derives from the physical requirement
of having a bound state solution which does not diverge but instead vanishes
outside the well: for this reason the external solution is parametrized in terms
of only one parameter. The reduced number of available parameters allows
for non-trivial solutions of the homogeneous linear system (2.94) only if the
energy quantization condition (2.95) is satisfied.

The number of possible solutions increases as y grows and since y > 0
it is anyway greater than zero. Therefore the square potential well in one
dimension has always at least one bound state corresponding to an even wave
function. It can be proved that the same is true for every symmetric well
in one dimension (i.e. such that V (−x) = V (x) ≤ 0). On the contrary, an



68 2 Introduction to Quantum Physics

extension of this analysis (see in particular the discussion about the spherical
well in Section 2.9) shows that in the three-dimensional case the existence of
at least one bound state is not guaranteed any more.

Let us now consider the case of odd solutions: we must choose a wave
function which vanishes in the origin, so that the cosine must be replaced by
a sine in (2.92). Going along the same lines leading to (2.95) we arrive to the
equation

cot

√
2m(E + V )L

2h̄
= −

√
|E|

E + V
. (2.98)

Using the same variables x and y
as above, we have the correspond-
ing figure on the side, which shows
that intersections are present only
if y > π/2, i.e. if V > π2h̄2/(2mL2)
(which by the way is also the condi-
tion for the existence of at least one
bound state in three dimensions).
Notice that the energy levels found

in the odd case are different from those found in the even case. In particular
any possible negative energy level can be put in correspondence with only one
wave function (identified by neglecting a possible irrelevant constant phase
factor): this implies that, in the present case, dealing with solutions having a
definite transformation property under the symmetry of the problem (i.e. even
or odd) is not a matter of choice, as it is in the general case, but a necessity,
since those are the only possible solutions. Indeed a different kind of solution
could only be constructed in presence of two solutions, one even and the other
odd, corresponding to the same energy level.

The number of independent solutions corresponding to a given energy level
is usually called the degeneracy of the level. We have therefore demonstrated
that, for the potential square well in one dimension, the discrete energy levels
have always degeneracy equal to one or, stated otherwise, that they are non-

degenerate. This is in fact a general property of bound states in one dimension,
which can be demonstrated for any kind of potential well.

It is interesting to apply our analysis to the case of an infinitely deep
well. Obviously, if we want to avoid dealing with divergent negative energies
as we deepen the well, it is convenient to shift the zero of the energy so
that the potential energy vanishes inside the well and is V outside. That is
equivalent to replacing in previous formulae E + V by E and |E| by V − E;
moreover, bound states will now correspond to energies E < V . Taking the
limit V → ∞ in the quantization conditions given in (2.95) and (2.98), we
obtain respectively tan

√
2mEL/(2h̄) = +∞ and − cot

√
2mEL/(2h̄) = +∞,

so that
√

2mE L/(2h̄) = (2n − 1)π/2 and
√

2mE L/(2h̄) = nπ with n =
1, 2, . . . Finally, combining odd and even states, we have
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√
2mE

h̄
L = nπ : n = 1, 2, . . .

and the following energy levels

En =
n2π2h̄2

2mL2
. (2.99)

The corresponding wave functions vanish outside the well while in the region
|x| < L/2 the even functions are

√
2/L cos (2n− 1)πx/L and the odd ones

are
√

2/L sin 2nπx/L, with the coefficients fixed in order to satisfy (2.44). It
is also possible to describe all wave functions by a unique formula:

ψEn
(x) =

√
2

L
sin

nπ(x + L
2 )

L
for |x| < L

2
,

ψEn
(x) = 0 for |x| > L

2
. (2.100)

While all wave functions are contin-
uos in |x| = L/2, their derivatives are
not, as in the case of the potential
barrier proportional to the Dirac delta
function. The generic solution ψEn

has
the behaviour showed in the figure,
where the analogy with the electric
component of an electromagnetic wave
reflected between two mirrors clearly
appears. Therefore the infinitely deep
well can be identified as the region be-
tween two reflecting walls.

If the wave amplitude vanishes over the mirrors, the distance between
them must necessarily be an integer multiple of half the wavelength; this is
the typical tuning condition for a musical instrument and implies wavelength
and energy quantization. The exact result agrees with that of Problem 2.4.

Going back to the analogy with electromagnetic waves, the present situa-
tion corresponds to a one-dimensional resonant cavity. In the cavity the field
can only oscillate according to the permitted wavelengths, which are λn =
2L/n for n = 1, 2, . . . corresponding to the frequencies νn = c/λn = nc/(2L),
which are all multiple of the fundamental frequency of the cavity.

Our results regarding the infinitely deep well can be easily generalized to
three dimensions. To that purpose, let us introduce a cubic box of side L with
reflecting walls. The condition that the wave function vanishes over the walls
is equivalent, inside the box and choosing solutions for which the dependence
on x,y and z is factorized, to:
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ψnx,ny,nz
=

√
8

L3
sin

nxπ(x + L
2 )

L
sin

nyπ(y + L
2 )

L
sin

nzπ(z + L
2 )

L
, (2.101)

where we have assumed the origin of the coordinates to be placed in the center
of the box. The corresponding energy coincides with the kinetic energy inside
the box and can be obtained by writing the Schrödinger equation in three
dimensions:

− h̄2

2m

(
∂2

x + ∂2
y + ∂2

z

)
ψnx,ny,nz

= Enx,ny,nz
ψnx,ny,nz

, (2.102)

leading to

Enx,ny,nz
=

π2h̄2

2mL2

[
n2

x + n2
y + n2

z

]
. (2.103)

This result will be useful for studying the properties of a gas of non-interacting
particles (perfect gas) contained in a box with reflecting walls. Following the
same analogy as above one can study in a similar way the oscillations of an
electromagnetic field in a three-dimensional cavity, with proper frequencies

given by νnx,ny,nz
= (c/2L)

√
n2

x + n2
y + n2

z.

2.7 The Harmonic Oscillator

The one-dimensional harmonic oscillator can be identified with the mechanical
system formed by a particle of mass m bound to a fixed point (taken as the
origin of the coordinate) by an ideal spring of elastic constant k and vanishing
length at rest. This is equivalent to a potential energy V (x) = kx2/2. In
classical mechanics the corresponding equation of motion is

mẍ + kx = 0 ,

whose general solution is

x(t) = X cos(ωt + φ) ,

where ω =
√

k/m = 2πν and ν is the proper frequency of the oscillator.
At the quantum level we must solve the following stationary Schrödinger

equation:

− h̄2

2m
∂2

xψE(x) +
mω2

2
x2ψE(x) = EψE(x) . (2.104)

In order to solve this equation we can use the identity(√
mω2

2
x− h̄√

2m
∂x

)(√
mω2

2
x +

h̄√
2m

∂x

)
f(x)

≡ mω2

2
x2f(x) +

h̄ω

2
x∂xf(x) − h̄ω

2
∂x(xf(x)) − h̄2

2m
∂2

xf(x)
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= − h̄2

2m
∂2

xf(x) +
mω2

2
x2f(x)− h̄ω

2
f(x)

≡
(
− h̄2

2m
∂2

x +
mω2

2
x2 − h̄ω

2

)
f(x) , (2.105)

which is true for any function f which is derivable at least two times.
It is important to notice the operator notation used in last equation, where

we have introduced some specific symbols, (
√

mω2/2 x ± (h̄/
√

2m) ∂x) or

(−(h̄2/2m) ∂2
x + (mω2/2) x2 − h̄ω/2), to indicate operations in which deriva-

tion and multiplication by some variable are combined together. These are
usually called operators, meaning that they give a correspondence law be-
tween functions belonging to some given class (for instance those which can
be derived n times) and other functions belonging, in general, to a different
class.

In this way, leaving aside the specific function f , equation (2.105) can be
rewritten as an operator relation(√

mω2

2
x− h̄√

2m
∂x

)(√
mω2

2
x +

h̄√
2m

∂x

)
=

(
− h̄2

2m
∂2

x +
mω2

2
x2 − h̄ω

2

)
(2.106)

and equations of similar nature can be introduced, like for instance:(√
mω2

2
x +

h̄√
2m

∂x

)(√
mω2

2
x− h̄√

2m
∂x

)

−
(√

mω2

2
x− h̄√

2m
∂x

)(√
mω2

2
x +

h̄√
2m

∂x

)
= h̄ω . (2.107)

In order to shorten formulae, it is useful to introduce the two symbols:

X± ≡
(√

mω2

2
x± h̄√

2m
∂x

)
=

√
h̄ω

2

(
αx± 1

α

∂

∂x

)
(2.108)

in which the constant α ≡ √
mω/h̄ has be defined, corresponding to the

inverse of the typical length scale of the system. That allows us to rewrite
(2.107) in the simpler form:

X+X− −X−X+ = h̄ω . (2.109)

If, extending the operator formalism, we define

H ≡ − h̄2

2m
∂2

x +
mω2

2
x2 , (2.110)

we can rewrite (2.106) as:
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X−X+ = H − h̄ω

2
, (2.111)

then obtaining from (2.109):

X+X− = H +
h̄ω

2
. (2.112)

The Schrödinger equation can be finally written as:

HψE(x) = EψE(x) . (2.113)

The operator formalism permits to get quite rapidly a series of results.
a) The wave function which is solution of the equation

X+ψ0(x) =

√
mω2

2
xψ0(x) +

h̄√
2m

∂xψ0(x) = 0 , (2.114)

is also a solution of (2.113) with E = h̄ω/2. In order to compute it we can
rewrite (2.114) as:

∂xψ0(x)

ψ0(x)
= −α2x ,

hence, integrating both members:

ln ψ0(x) = c− α2

2
x2 ,

from which it follows that

ψ0(x) = ec e−α2x2/2 ,

where the constant c can be fixed by the normalization condition given in
(2.44), leading finally to

ψ0(x) =
(mω

πh̄

) 1
4

e−mωx2/(2h̄) . (2.115)

We would like to remind the need for restricting the analysis to the so-called
square integrable functions, which can be normalized according to (2.44). This
is understood in the following.

b) What we have found is the lowest energy solution, usually called the
ground state of the system, as can be proved by observing that, for every
normalized solution ψE(x), the following relations hold:

∫ ∞

−∞
dxψE(x)∗

(√
mω2

2
x− h̄√

2m
∂x

)(√
mω2

2
x +

h̄√
2m

∂x

)
ψE(x)

=

∫ ∞

−∞
dx|X+ψE(x)|2 =

∫ ∞

−∞
dxψE(x)∗

(
E − h̄ω

2

)
ψE(x)

= E − h̄ω

2
≥ 0 , (2.116)
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where the derivative in X− has been integrated by parts, exploiting the van-
ishing of the wave function at x = ±∞. Last inequality follows from the fact
that the integral of the squared modulus of any function cannot be negative.
Moreover it must be noticed that if the integral vanishes, i.e. if E = h̄ω/2,
then necessarily X+ψE = 0, so that ψE is proportional to ψ0. That proves
that the ground state is unique.

c) If ψE satisfies (2.104) then X±ψE satisfies the same equation with E
replaced by E ∓ h̄ω, i.e. we have

HX±ψE = (E ∓ h̄ω)X±ψE . (2.117)

Notice that X+ψE vanishes if and only if ψE = ψ0 while X−ψE never vanishes:
one can prove this by verifying that if X−ψE = 0 then ψE behaves as ψ0 but
with the sign + in the exponent, hence it is not square integrable. In order to
prove equation (2.117), from (2.111) and (2.112) we infer, for instance:

X+X−X+ψE = X+

(
H − h̄ω

2

)
ψE(x) =

(
H +

h̄ω

2

)
X+ψE(x)

= X+

(
E − h̄ω

2

)
ψE(x) =

(
E − h̄ω

2

)
X+ψE(x) (2.118)

from which (2.117) follows in the + case.
Last computations show that operators combine in a fashion which resem-

bles usual multiplication, however their product is strictly dependent on the
order in which they appear. We say that the product is non-commutative;
that is also evident from (2.109), which expresses what is usually known as
the commutator of two operators.

Exchanging X− and X+ in previous equations we have:

X−X+X−ψE = X−

(
H +

h̄ω

2

)
ψE(x) =

(
H − h̄ω

2

)
X−ψE(x)

= X−

(
E +

h̄ω

2

)
ψE(x) =

(
E +

h̄ω

2

)
X−ψE(x) (2.119)

which completes the proof of (2.117).
d) Finally, combining points (a–c), we can show that the only possible

energy levels are:

En =

(
n +

1

2

)
h̄ω . (2.120)

In order to prove that, let us suppose instead that (2.104) admits the level
E = (m + 1/2) h̄ω + δ, where 0 < δ < h̄ω, and then repeatedly apply X+ to
ψE up to m+1 times. If Xk

+ψE = 0 with k ≤ m+1 and Xk−1
+ ψE 
= 0, then we

would have X+(Xk−1
+ ψE) = 0 which, as we have already seen, is equivalent

to Xk−1
+ ψE ∼ ψ0, hence to HXk−1

+ ψE = h̄ω/2ψE . However equation (2.117)

implies HXk−1
+ ψE = (E − (k− 1)h̄ω)ψE , hence E = (k− 1/2)h̄ω, which is in
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contrast with the starting hypothesis (δ 
= 0). On the other hand Xk
+ψE 
= 0

even for k = m + 1 would imply the presence of a solution with energy less
that h̄ω/2, in contrast with (2.116). We have instead no contradiction if δ = 0
and k = m + 1.

We have therefore shown that the spectrum of the harmonic oscillator
consists of the energy levels En = (n + 1/2) h̄ω. We also know from (2.117)
that ∼ Xn

−ψ0 is a possible solution with E = En: we will now show that this
is actually the only possible solution.

e) Any wave function corresponding to the n-th energy level is necessarily
proportional to Xn−ψ0:

ψEn
∼ Xn

−ψ0 . (2.121)

We already know that this is true for n = 0 (ground state). Now let us suppose
the same to be true for n = k and we shall prove it for n = k + 1, thus
concluding our argument by induction. Let ψEk+1

be a solution corresponding
to Ek+1, then, by (2.117) and by the uniqueness of ψEk

, we have

X+ψEk+1
= aψEk

(2.122)

for some constant a 
= 0, with ψEk
∝ Xk

−ψ0. By applying X− to both sides of
last equation we obtain

X−X+ψEk+1
=

(
H − h̄ω

2

)
ψEk+1

= (k + 1) h̄ω ψEk+1

= X−aψEk
∝ X−Xk

−ψ0 = Xk+1
− ψ0 , (2.123)

which proves that also ψEk+1
is proportional to Xk+1

− ψ0.
In order to find the correct normalization factor, let us first find it for

ψEk+1
, assuming that ψEk

is already correctly normalized. We notice that∫ ∞

−∞
dx |X−ψEk

|2 =

∫ ∞

−∞
dxψ∗Ek

X+X−ψEk
=

∫ ∞

−∞
dxψ∗Ek

(
H +

h̄ω

2

)
ψEk

= h̄ω(k + 1)

∫ ∞

−∞
dx |ψEk

|2 = h̄ω(k + 1) , (2.124)

where in the first equality one of the X− operators has been integrated by
parts and in the second equality equation (2.112) has been used. We conclude
that ψEk+1

= (h̄ω(k + 1))−1/2X−ψEk
, hence, setting for simplicity ψn ≡ ψEn

:

ψn =

√
1

n!

(
X−√
h̄ω

)n

ψ0 ≡
√

1

n!
(A†)nψ0 (2.125)

where one defines A† ≡ X−/
√

h̄ω.
That concludes our analysis of the one-dimensional harmonic oscillator,

which, based on an algebraic approach, has led us to finding both the pos-
sible energy levels, given in (2.120), and the corresponding wave functions,
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described by (2.115) and (2.121). In particular, confirming a general property
of bound states in one dimension, we have found that the energy levels are
non-degenerate. The operators X+ and X− permit to transform a given so-
lution into a different one, in particular by rising (X−) or lowering (X+) the
energy level by one quantum h̄ω.

Also in this case, as for the square well, solutions have definite transforma-
tion properties under axis reflection, x→ −x, which follow from the symmetry
of the potential, V (−x) = V (x). In particular they are divided in even and
odd functions according to the value of n, ψn(−x) = (−1)nψn(x), as can be
proved by noticing that ψ0 is an even function and that the operator X−
transforms an even (odd) function into an odd (even) one.

Moreover we notice that, according to (2.121), (2.115) and to the expres-
sion for X− given in (2.108), all wave functions are real. This is also a general
property of bound states in one dimension, which can be easily proved and
has a simple interpretation. Indeed, suppose ψE be the solution of the sta-
tionary Schrödinger equation (2.58) corresponding to a discrete energy level
E; since obviously both E and the potential energy V (x) are real, it follows,
by taking the complex conjugate of both sides of (2.58), that also ψ∗E is a
good solution corresponding to the same energy. However the non-degeneracy
of bound states in one dimension implies that ψE must be unique. The only
possibility is ψ∗E ∝ ψE , hence ψ∗E = eiφψE , so that, leaving aside an irrelevant
overall phase factor, ψE is a real function.

On the other hand, recalling the definition of the probability current den-
sity J given in (2.43), it can be easily proved that the wave function is real if
and only if the current density vanishes everywhere. Since we are considering
a stationary problem, the probability density is constant in time by defini-
tion and the conservation equation (2.27) implies, in one dimension, that the
current density J is a constant in space (the same is not true in more than
one dimension, where that translates in J being a vector field with vanishing
divergence, see Problem 2.48). On the other hand, for a bound state J must
surely vanish as |x| → ∞, hence it must vanish everywhere, implying a real
wave function: in a one-dimensional bound state there is no current flow at
all.

Our results admit various generalizations of great physical interest. First of
all, let us consider their extension to the isotropic three-dimensional harmonic
oscillator corresponding to the following Schrödinger equation:

− h̄2

2m

(
∂2

x + ∂2
y + ∂2

z

)
ψE +

mω2

2

(
x2 + y2 + z2

)
ψE = E ψE , (2.126)

where ψE = ψE(x, y, z) is the three-dimensional wave function. This is the
typical example of a separable Schrödinger equation: if we look for a partic-
ular class of solutions, written as the product of three functions depending
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separately on x, y and z, then equation (2.126) becomes equivalent2 to three
independent equations for three one-dimensional oscillators along x, y and z.

Therefore we conclude that the quantized energy levels are in this case:

Enx,ny,nz
= h̄ω

(
nx + ny + nz +

3

2

)
, (2.127)

and that the corresponding wave functions are

ψnx,ny,nz
(x, y, z) = ψnx

(x)ψny
(y)ψnz

(z) . (2.128)

Notice that, according to (2.127) and (2.128), in three dimensions several
degenerate solutions can be found having the same energy, corresponding to
all possible integers nx, ny, nz such that nx + ny + nz = n where n is a non-
negative integer. The number of such solutions is (n + 1)(n + 2)/2.

Since we have looked for particular solutions, having the dependence on
x, y and z factorized, it is natural to ask if in this way we have exhausted the
possible solutions of equation (2.126). In some sense this is not true: since the
Schrödinger equation is linear, we can make linear combinations (with complex
coefficients) of the (n + 1)(n + 2)/2 degenerate solutions described above,
obtaining new solutions having the same energy En = (n + 3/2)h̄ω but not
writable, in general, as the product of three functions of x, y and z. However
we have exhausted all the possible solutions in some other sense: indeed it is
possible to demonstrate that no further solution can be found beyond all the
possible linear combinations of the particular solutions in equation (2.128). In
other words, all the possibile solutions of equation (2.126), which are found
for E = (n+3/2) h̄ω, form a linear space of dimension (n+1)(n+2)/2, having
the particular solutions in equation (2.128) as an orthonormal basis. We have
thus found a possible complete set of solutions of equation (2.126): we shall
find a different complete set (i.e. a different basis) for the same problem in
Section 2.9 (see also Problem 2.48).

A further generalization is that regarding small oscillations around equilib-
rium for a system with N degrees of freedom, whose energy can be separated
into the sum of the contributions from N one-dimensional oscillators having,
in general, different proper frequencies (νi , i = 1, ..., N). In this case the
quantization formula reads

E(n1,...nN) =

N∑
i=1

h̄ωi

(
ni +

1

2

)
, (2.129)

and the corresponding wave function can be written as the product of the
wave functions associated with every single oscillator.

2 This is clear if we divide both sides of equation (2.126) by ψE : the resulting
equation requires that the sum of three functions depending separately on x, y
and z be a constant, implying that each function must be constant separately.
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Let us now take a short detour by recalling the analysis of the electromag-
netic field resonating in one dimension. It can be shown that, from a dynamical
point of view, the electromagnetic field can be described as an ensemble of
harmonic oscillators, i.e. mechanical systems with definite frequencies which
have been discussed in last Section. Applying the result of this Section we con-
firm Einstein’s assumption that the electromagnetic field can only exchange
quanta of energy equal to h̄ω = hν. That justifies the concept of a photon as
a particle carrying an energy equal to hν. At the quantum level the possible
states of an electromagnetic field oscillating in a cavity can thus be seen as
those of a system of photons, corresponding in number to the total quanta of
energy present in the cavity, which bounce elastically between the walls.

2.8 Periodic Potentials and Band Spectra

In previous Sections we have encountered and discussed situations in which the
energy spectrum is continuous, as for particles free to move far to infinity with
or without potential barriers, and other cases presenting a discrete spectrum,
like that of bound particles. We will now show that other different interesting
situations exist, in particular those characterized by a band spectrum. That
is the case for a particle in a periodic potential, like an electron in the atomic
lattice of a solid.

An example, which can be treated in a relatively simple way, is that in
which the potential energy can be written as the sum of an infinite number
of thin barriers (Kronig-Penney model), each proportional to the Dirac delta
function, placed at a constant distance a from each other:

V (x) =
∞∑

n=−∞
Vδ(x− na) . (2.130)

It is clear that:
V (x + a) = V (x) , (2.131)

so that we are dealing with a periodic potential. Our analysis will be limited
to the case of barriers, i.e. V > 0.

Equation (2.131) expresses a symmetry property of the Schrödinger equa-
tion, which is completely analogous to the symmetry under axis reflection
discussed for the square well and valid also in the case of the harmonic oscil-
lator. With an argument similar to that used in the square well case, it can
be shown that for periodic potentials, i.e. invariant under translations by a, if
ψE(x) is a solution of the stationary Schrödinger equation then ψE(x + a) is
a solution too, corresponding to the same energy, so that, by suitable linear
combinations, the analysis can be limited to a particular class of functions
which are not changed by the symmetry transformation but for an overall
multiplicative constant. In the case of reflections that constant must be ±1,
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since a double reflection must bring back to the original configuration. In-
stead, in the case of translations x → x + a, solutions can be chosen so as to
satisfy the following relation:

ψE(x + a) = α ψE(x) ,

where α is in general a complex number. Clearly such functions, like plane
waves, are not normalizable, so that we have to make reference to the collec-
tive physical interpretation, as in the case of the potential barrier. In this case
probability densities which do not vanish in the limit |x| → ∞ are accept-
able, but those diverging in the same limit must be discarded anyway. That
constrains α to be a pure phase factor, α = eiφ, so that

ψE(x + a) = eiφ ψE(x) . (2.132)

This is therefore another application of the symmetry principle enunciated in
Section 2.6.

The wave function ψE(x) must satisfy both (2.132) and the free Schrödinger
equation in each interval (n− 1)a < x < na:

− h̄2

2m
∂2

xψE(x) = E ψE(x) ,

which has the general solution

ψE(x) = anei
√

2mE x/h̄ + bne−i
√

2mE x/h̄ .

Finally, at the position of each delta function, the wave function must be
continuous while its first derivative must be discontinuous with a gap equal
to (2mV/h̄2)ψE(na). Since, according to (2.132), the wave function is pseudo-
periodic, these conditions will be satisfied in every point x = na if they are
satisfied in the origin.

The continuity (discontinuity) conditions in the origin can be written as

a0 + b0 = a1 + b1 ,

i

√
2mE

h̄
(a1 − b1 − a0 + b0) =

2mV
h̄2 (a0 + b0) , (2.133)

while (2.132), in the interval −a < x < 0, is equivalent to:

a1e
i
√

2mE(x+a)/h̄ + b1e
−i
√

2mE(x+a)/h̄ = eiφ
(
a0e

i
√

2mEx/h̄ + b0e
−i
√

2mEx/h̄
)

.

(2.134)
Last equation implies:

a1 = ei(φ−√2mEa/h̄)a0 , b1 = ei(φ+
√

2mEa/h̄)b0 ,

which replaced in (2.133) lead to a system of two homogeneous linear equation
in two unknown quantities:
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1− e

i
(
φ−

√
2mE
h̄

a
)
− i

√
2m

E

V
h̄

)
a0 −

(
1− e

i
(
φ+

√
2mE
h̄

a
)

+ i

√
2m

E

V
h̄

)
b0 = 0

(
1− e

i
(
φ−

√
2mE
h̄

a
))

a0 +

(
1− e

i
(
φ+

√
2mE
h̄

a
))

b0 = 0 . (2.135)

The system admits non-trivial solutions (a0 , b0 
= 0) if and only if the deter-
minant of the coefficient matrix does vanish; that is equivalent to a second
order equation for eiφ:(

1− e
i
(
φ−

√
2mE
h̄

a
)
− i

√
2m

E

V
h̄

)(
1− e

i
(
φ+

√
2mE
h̄

a
))

+

(
1− e

i
(
φ+

√
2mE
h̄

a
)

+ i

√
2m

E

V
h̄

)(
1− e

i
(
φ−

√
2mE
h̄

a
))

= 2e2iφ −
((

2− i

√
2m

E

V
h̄

)
ei

√
2mE
h̄

a +

(
2 + i

√
2m

E

V
h̄

)
e−i

√
2mE
h̄

a

)
eiφ

+2 = 0 , (2.136)

which can be rewritten in the form:

e2iφ −
(

2 cos

(√
2mE

h̄
a

)
+

√
2m

E

V
h̄

sin

(√
2mE

h̄
a

))
eiφ + 1

≡ e2iφ − 2Aeiφ + 1 = 0 . (2.137)

Equation (2.137) can be solved by a real φ if and only if A2 < 1, as can
be immediately verified by using the resolutive formula for second degree
equations.

We have therefore an inequality, involving the energy E together with
the amplitude V and the period a of the potential, which is a necessary and
sufficient condition for the existence of physically acceptable solutions of the
Schrödinger equation:(

cos

(√
2mE

h̄
a

)
+

√
m

2E

V
h̄

sin

(√
2mE

h̄
a

))2

< 1 , (2.138)

hence

cos2

(√
2mE

h̄
a

)
+

m

2E

V2

h̄2 sin2

(√
2mE

h̄
a

)

+2

√
m

2E

V
h̄

sin

(√
2mE

h̄
a

)
cos

(√
2mE

h̄
a

)
< 1 (2.139)

and therefore
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1− cos2

(√
2mE

h̄
a

)
− m

2E

V2

h̄2 sin2

(√
2mE

h̄
a

)

−2

√
m

2E

V
h̄

sin

(√
2mE

h̄
a

)
cos

(√
2mE

h̄
a

)

=

(
1− m

2E

V2

h̄2

)
sin2

(√
2mE

h̄
a

)

−2

√
m

2E

V
h̄

sin

(√
2mE

h̄
a

)
cos

(√
2mE

h̄
a

)
< 0 , (2.140)

leading finally to:

cot

(√
2mE

h̄
a

)
<

1

2

(√
2E

m

h̄

V −
√

m

2E

V
h̄

)
. (2.141)

Fig. 2.5. The plot of inequality (2.141) identifying the first three bands of al-
lowed values of

√
2mE a/h̄ for the choice of the Kronig–Penney parameter γ =

h̄2/(maV) = 1/2

Both sides of last inequality are plotted in Fig. 2.5 for a particular choice
of the parameter γ = h̄2/(maV) = 1/2. The variable used in the figure
is x =

√
2mEa/h̄, so that the two plotted functions are f1 = cot x and

f2 = (γx− 1/(γx))/2. The intervals where the inequality (2.141) is satisfied
are those enclosed between x1 and π, x2 and 2π, x3 and 3π and so on. Indeed
in these regions the uniformly increasing function f2 is greater than the os-
cillating function f1. The result shows therefore that the permitted energies
correspond to a series of intervals (xn, nπ), which are called bands, separated
by a series of forbidden gaps.

As we shall discuss in the next Chapter, electrons in a solid, which are
compelled by the Pauli exclusion principle to occupy each a different energy
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level, may fill completely a certain number of bands, so that they can only
absorb energies greater than a given minimum quantity, corresponding to the
gap with the next free band: in such situation electrons behave as bound
particles. Alternatively, if the electrons fill partially a given band, they can
absorb arbitrarily small energies, thus behaving as free particles. In the first
case the solid is an insulator, in the second it is a conductor.

Having determined the phase φ(E) from (2.137) and taking into account
(2.132), it can be seen that, by a simple transformation of the wave function:

ψE(x) ≡ ei φ(E) x/aψ̂E(x) ≡ e±i p(E) x/h̄ψ̂E(x) , (2.142)

equation (2.132) can be translated into a periodicity constraint:

ψ̂E(x + a) = ψ̂E(x) .

Therefore wave functions in a periodic potential can be written as in (2.142),
i.e. like plane waves, which are called Bloch waves, modulated by periodic
functions ψ̂E(x).

It must be noticed that the momentum associated with Bloch waves,
p(E) = (h̄/a)φ(E), cannot take all possible real values, as in the case of
free particles, but is limited to the interval (−h̄π/a, h̄π/a), which is known
as the first Brillouin zone. This limitation can be seen as the mathematical
reason underlying the presence of bands.

On the other hand, the relation which in a given band gives the electron
energy as a function of the Bloch momentum (dispersion relation) is very
intricate from the analytical point of view. It is indeed the inverse function of
p(E) = (h̄/a) arccos(A(E)) with A(E) defined by (2.137). For that reason we
limit ourselves to some qualitative remarks.

By noticing that in the lower ends of the bands, xn, n = 1, 2, ..., the
parameter A in (2.137) is equal to

cosxn +
sin xn

γ xn
=

sinxn

2

(
γ xn +

1

γ xn

)
= (−1)n+1 , (2.143)

we have: eiφ|xn
= (−1)n+1. Hence φ(xn) = 0 for odd n and φ(xn) = ±π for

even n. Instead in the upper ends, x = nπ, we have A = cosnπ = (−1)n hence
φ(nπ) = 0 for even n and φ(nπ) = ±π for odd n. Moreover, for a generic A
between −1 and 1, there are two solutions: A ± i

√
1−A2 corresponding to

opposite phases (φ(E) = ± arctan (
√

1−A2/A)) interpolating between 0 and
±π.

Therefore, based on Fig. 2.5, we come to the conclusion that in odd bands
the minimum energy corresponds to states with p = 0, while states at the
border of the Brillouin zone have the maximum possible energy. The opposite
happens instead for even bands. Finally we observe that the derivative dE/dp
vanishes at the border of the Brillouin zone, where A2 = 1 and A has a
non-vanishing derivative, indeed we have
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dE

dp
=

a

h̄

(
d(arccosA(E))

dE

)−1

= ±a

h̄

√
1−A2

dA(E)/dE
. (2.144)

2.9 The Schrödinger Equation in a Central Potential

In the case of a particle moving in three dimensions under the influence of a
central force field, the symmetry properties of the problem play a dominant
role. The problem is that of solving the stationary Schrödinger equation:

− h̄2

2m
∇2ψE(r) + V (r)ψE(r) = EψE(r) , (2.145)

where the position of the particle has been indicated, as usual, by the three-
vector r, The symmetries of the problem correspond to all possible rotations
around the origin. The action of rotations on positions can be expressed in
the same language of Appendix A, representing r by the column matrix with
elements x, y, z, and associating a rotation with a 3× 3 orthogonal matrix R
satisfying RT = R−1 and with unitary determinant, acting on the position
vectors by a row by column product as follows: r → Rr. The invariance of the
potential under rotations implies that the rotated wave function ψE(R−1r) is
also a solution of equation (2.145) corresponding to the same energy.

Our purpose is to exploit the consequences of the rotation invariance in
the analysis of solutions of equation (2.145). The standard method is based
on Group Theory, however we do not assume our readers to be Group Theory
experts, hence we have to use a different approach. The only Group Theory
result that we shall exploit, as we have already done few times in the preceding
part of this text, is what we have called Symmetry principle: if the Schrödinger
equation is left invariant by a coordinate transformation, one can always find
a suitable set of solutions which do not change but for a phase factor under
the given transformation. By suitable set we mean that all square integrable,
or locally square integrable solutions of physical interest can be written as
linear combinations of elements of the set.

We start by considering, among all possible rotations, those around one
particular axis, for instance the z axis. These transform x → x′ = x cos φ −
y sinφ and y → y′ = y cosφ + x sin φ, while z is left unchanged. An equiv-
alent and simpler way of representing this rotation, making use of complex
combinations of coordinates, is:

x′± ≡ x′ ± iy′ = e±iφx± and z′ = z . (2.146)

A further choice is that of spherical coordinates (r, θ, ϕ), defined by

x± = r sin θ exp(±iϕ) and z = r cos θ . (2.147)
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The given rotation is equivalent to the translation ϕ → ϕ′ = ϕ + φ. In the
present case, according to the symmetry principle, we consider solutions of
(2.145) that transform according to ψE −→ eiΦψE under the particular ro-
tation above. This phase must necessarily be a linear function of φ, as it is
clear by observing that, if we consider two subsequent rotations around the
same axis with angles φ and φ′, we have Φ(φ) + Φ(φ′) = Φ(φ + φ′). Combin-
ing this result with the condition that, if φ = 2π, the wave function must be
left unchanged, i.e. Φ(2π) = 2πm with m any relative integer, we obtain, in
spherical coordinates:

ψE,m(r) ≡ ψE,m(r, θ, ϕ) = ψ̂E,m(r, θ) eimϕ . (2.148)

It is an easy exercise to verify that:

−ih̄(x∂y − y∂x)ψE,m(r) = −ih̄
∂

∂ϕ
ψE,m(r) = mh̄ψE,m(r) , (2.149)

thus showing that the wave function satisfies Bohr’s quantization rule for the
z component of angular momentum.

Notice the evident benefit deriving from making use of vectors with com-
plex components (x±, z) to indicate the position. Indeed, using these coordi-
nates, equation (2.148) becomes:

ψE,m(r) ≡ ψm(x+, x−, z) = x
|m|
sign(m)ψ̂m(x+x−, z) , (2.150)

since x+x− and z give a choice of coordinates invariant under the above
rotations. With the same choice of coordinates equation (2.149) becomes:

h̄(x+∂x+ − x−∂x−)ψE,m(r) = mh̄ψE,m(r) , (2.151)

where one has ∂x± = (∂x ∓ i∂y)/2. Now an important remark is necessary,
the above equations, translated into the operator notation described in Sec-
tion 2.7, introduce the operator

Lz ≡ −ih̄(x∂y − y∂x) ≡ −ih̄∂ϕ ≡ h̄(x+∂x+ − x−∂x−) (2.152)

satisfying the operator equation

LzψE,m(r) = mh̄ψE,m(r) . (2.153)

The operator iLz, being proportional to the ϕ-derivative, appears as the gen-
erator of the rotations around the z-axis, in much the same way as the x
derivative generates translations of functions of the x-variable.3 This prop-
erty of generating rotations extends to the other components of the angular
momentum which, in complex coordinates, correspond to the operators:

3 We refer to the equation: exp(a d/(dx))f(x) ≡ ∑∞
n=0

(an/n!) dn/(dxn)f(x) =
f(x + a), which is true for any analytic function f(x).
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L± ≡ (Lx ± iLy) = ±h̄(2z∂x∓ − x±∂z) , (2.154)

which, acting on solutions of equation (2.145), generate new, possibly trivial,
solutions. This is a consequence of the rotation invariance of equation (2.145)
and can also be shown using the commutation relations between the angular
momentum components and the operator appearing on the left-hand side of
the Schrödinger equation.

This operator, H = −h̄2/2m∇2+V (r), has been introduced in Section 2.7
and is called the Hamiltonian operator. We have, for i = ±, z:

[Li, H ] ≡ Li

(
− h̄2

2m
∇2 + V (r)

)
−
(
− h̄2

2m
∇2 + V (r)

)
Li = 0 , (2.155)

where the symbol [ , ] stands for the commutator of two operators. Indeed,
taking into account that the Laplacian operator is written as

∇2 = 4∂x+∂x− + ∂2
z , (2.156)

we have:

∇2L± = ±h̄(4∂x+∂x− + ∂2
z )(2z∂x∓ − x±∂z) = L±∇2 ∓ h̄4∂z(∂x∓ − ∂x∓)

= L±∇2

∇2Lz = h̄(4∂x+∂x− + ∂2
z )(x+∂x+ − x−∂x−)

= Lz∇2 + 4h̄∂x+∂x− − 4∂x−∂x+ = Lz∇2 . (2.157)

That proves that
[
Li,∇2

]
= 0. On the other hand also [Li, V (r)] = 0

since, for a generic function of r2 we have: [Li, f(r2)] = f ′(r2)(Lir
2) =

f ′(r2)(Li(x+x− + z2)) = 0. We can thus write the final result HLiψE =
LiHψE = ELiψE , which proves that LiψE is also a solution of equa-
tion (2.145).

For future use, we can compute here the commutation relations of the
angular momentum components: 4:

[Lz, L±] = ±h̄2(x+∂x+ − x−∂x−)(2z∂x∓ − x±∂z)

∓h̄2(2z∂x∓ − x±∂z)(x+∂x+ − x−∂x−)

= h̄2(2z∂x∓ − x±∂z) = ±h̄L±

[L+, L−] = −h̄2(2z∂x− − x+∂z)(2z∂x+ − x−∂z)

+h̄2(2z∂x+ − x−∂z)(2z∂x− − x+∂z)

= 2h̄2(x+∂x+ + z∂z)− 2h̄2(x−∂x− + z∂z)

= 2h̄Lz . (2.158)

4 The commutation relations of the angular momentum components can also be
rewritten, in a more compact form, as [v ·L, w · L] = ih̄(v ∧w) ·L, where v and
w are two generic vectors.
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We also define the square angular momentum operator:

L2 = L2
x +L2

y + L2
z =

1

2
(L+L−+ L−L+) + L2

z = L−L+ +L2
z + h̄Lz , (2.159)

and we notice that L2 commutes with each of the angular momentum com-
ponents. For completeness we give the commutation rules of the angular mo-
mentum components and coordinates:

[Lz, z] = 0 , [Lz, x±] = ±h̄x± , [L±, z] = ∓h̄x±
[L±, x∓] = ±2h̄z , [L±, x±] = 0 . (2.160)

A further indication concerning the action of the operators L± on the solutions
ψE,m of the Schrödinger equation follows from equation (2.150). Indeed, for
non-negative m, we have:

L+xm
+ ψ̂m(x+x−, z) = h̄(2z∂x− − x+∂z)x

m
+ ψ̂m(x+x−, z) (2.161)

= h̄xm+1
+

(
2z∂x+x−ψ̂m(x+x−, z)− ∂zψ̂m(x+x−, z)

)
,

whose right-hand side can be written as xm+1
+ ψ̂m+1(x+x−, z), if it does

not vanish. As a matter of fact, the right-hand side vanishes if and only
if ∂zψ̂m(x+x−, z) = 2z ∂(x+x−)ψ̂m(x+x−, z), that is if ψ̂m is a function of
x+x− + z2 = r2. An analogous calculation gives:

L+xm
− ψ̂−m(x+x−, z) = h̄(2z∂x− − x+∂z)x

m
− ψ̂−m(x+x−, z)

= h̄xm−1
−

(
x+x−

(
2z∂(x+x−)ψ̂−m(x+x−, z) (2.162)

− ∂zψ̂−m(x+x−, z)
)

+ 2mzψ̂−m(x+x−, z)
)

.

Here again the right-hand side can be written as xm−1
− ψ̂−m+1(x+x−, z) if it

does not vanish, that is if ψ̂−m(x+x−, z) 
= (x+x−)−mF (r) for some F and

hence if xm
− ψ̂−m 
= x−m

+ F (r).
Analogous results are obtained replacing L+ with L− and x± with x∓.

Thus we can conclude that the action of L± on solutions of equation (2.145) of
the form (2.150), either generates a new solution with m increased/decreased
by one, or gives zero if the solution has the form xp

±F (r) .
Having analyzed the action of the angular momentum components on the

solutions of the Schrödinger equation, we search now for sets of solutions
whose transformation properties under rotations are particularly simple. Ac-
tually, the solutions we are looking for are degenerate multiplets being also
irreducible under rotations, meaning by that the minimal multiplets of so-
lutions having the same energy E and transforming into each other under
rotations in such a way that no sub-multiplet exists, whose components do
not mix with the remnant of the multiplet: the reason for doing so is that in
this way we shall automatically characterize the solutions of the Schrödinger
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equation according to their transformations properties under the symmetry of
the problem, finding also many features of them which are valid independently
of the particular central field under consideration.

Since rotations act homogeneously on the complex Cartesian coordinates,
leaving r2 invariant, we consider solutions which can be written as the product
of a generic homogeneous polynomial Pl(r) of degree l in the components of
r, by a function fE(r) which is rotation invariant, that is

ψE,l(r) = Pl(r)fE(r) . (2.163)

Taking into account equation (2.150) and the above analysis about the action
of the angular momentum components on the solutions of the Schrödinger
equation, we better specify equation (2.163) considering solutions:

ψE,l,m(r) = x
|m|
sign(m)p l,m(x+x−, z)fE,l(r) , (2.164)

where p l,m is a homogeneous polynomial of degree l− |m| in the components
of r and fE,l does not depend on m, since this is changed by the action of L±
while fE,l is not. Therefore, discussing the action of the components Li, we
can limit our study to the polynomials, forgetting fE,l.

The first problem we meet in this search is that the decomposition in
equation (2.163) is not unique, homogeneity does not guarantee irreducibility,
since r2 is a homogeneous polynomial of degree two and also a function of
r. In other words, we must get rid of possible r2 factors. This can be done
starting from m = −l, that is from the polynomial p l,l = xl

−, and applying n
times L+ on it, until for n = nM + 1 we find a vanishing result. Any rotation
leaves invariant the linear space spanned by this set of homogeneous degree
l polynomials since this is done by all the angular momentum components.
Indeed the action of L+ does it by construction, that of Lz is equivalent to
the multiplication by h̄m and the action of L−, which annihilates xl

−, can be
computed from that of the other components using the commutation relations
(2.158) .

It is clear that nM ≤ 2l. Indeed the action of L+ on our homogeneous
polynomials

x
|m|
sign(m)p l,m(x+x−, z)

reduces the power of x−, if this is positive, and then increases the power of
x+ up to l times reaching cxl

+ for some constant c. A further action of L+

would give zero since a homogeneous polynomial of degree l cannot contain a
factor xl+1

+ . Thus the set of homogeneous polynomials of degree l obtained in
this way does not contain more than 2l + 1 elements. We shall verify that, in
fact, this set contains 2l + 1 elements for values of m ranging from −l to l.

To this purpose, let us notice that xl− is a harmonic homogeneous polyno-
mial, since from equation (2.156) it follows that ∇2xl

− = 0. For the same
reason, and due to the commutation property (2.157), all the polynomi-
als obtained by applying n times L+ on xl− are harmonic and homoge-
neous. Being harmonic these polynomials do not vanish if n ≤ 2l. Indeed



2.9 The Schrödinger Equation in a Central Potential 87

we have seen, discussing equation (2.163), that L+xk
−p l,−k = 0 if and only

if p l,−k = (x+x−)−kF (r) which is impossible since xk−p l,−k must be a poly-
nomial. Therefore the repeated action of L+ does not vanish until we reach
a homogeneous polynomial xq

+p l,q. Now we see from equation (2.162) that a
further action of L+ does not give a vanishing result unless p l,q is a function
of r2 only, that is p l,q ∝ (r2)(l−q)/2 provided that (l − q)/2 be an integer. It
is a trivial exercise to verify that xq

+(r2)(l−q)/2 is not harmonic unless q = l
and hence the harmonic polynomial xl

+ is reached.
In this way we have identified 2l + 1 harmonic homogeneous polynomi-

als of degree l. We now show that we have found a basis for the whole set
of harmonic homogeneous polynomials. Indeed, starting from the just found
polynomials and multiplying them by suitable powers of r2, we can generate
sets of independent homogeneous polynomial of any degree j. For j = 2n the
number of these polynomials is 2j + 1 + 2(j − 2) + · · · + 1 = 2n2 + 3n + 1,
while, for j = 2n + 1 it is 2j + 1 + 2(j − 2) + 1 + · · ·+ 3 = 2n2 + 5n + 3, thus
for any j we have the number (j + 1)(j + 2)/2. This is exactly the number
of independent monomials of degree l in three variables (x±, z). Indeed these
monomials are identified by two integers, e.g. the exponents of x+ and x−,
whose sum runs between 0 and l. The number of possible choices is given by
the sum of integers between 1 and j +1 which is just (j +1)(j +2)/2. If there
were more linearly independent harmonic homogeneous polynomials of degree
l, we would have built more linearly independent homogeneous polynomials
of the considered degrees, which is impossible.

Now we have to construct explicitly a basis of independent homogeneous
harmonic polynomials of degree l. We choose the form:

Y l,m ≡ xm
+p l,m(x+x−/4, z) , (2.165)

for m ≥ 0, and
Y l,−m = (−1)mY∗l,m . (2.166)

Taking into account equation (2.156) and equation (2.165), the Laplace equa-
tion for these polynomials is easily translated into the differential equation for
p l,m(t, z), that is:[

(m + 1)
∂

∂t
+ t

∂2

∂t2
+

∂2

∂z2

]
p l,m(t, z) = 0 . (2.167)

Using the expansion

p l,m(t, z) =

[(l−m)/2]∑
k=0

c(l, m, k) (−t)
k
zl−m−2k , (2.168)

where [(l −m)/2] stands for the integer part of (l −m)/2, we translate equa-
tion (2.167) into a recursive equation for the coefficients

c(l, m, k + 1) =
(l −m− 2k)(l −m− 2k − 1)

(m + k + 1)(k + 1)
c(l, m, k) , (2.169)
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which shows that c(l, m, k + 1) vanishes if k exceeds [(l −m)/2], therefore
the found solutions to equation (2.167) are indeed polynomials. The recursive
relation is solved by

c(l, m, k) =
(l −m)!m!

(m + k)!(l −m− 2k)!k!
c(l, m, 0) . (2.170)

Textbooks consider two different choices of c(l, m, 0). The first one is c(l, m, 0) =
1, which for m = 0 and replacing x+x− = 1− z2 leads to the Legendre poly-
nomials:

Pl(z) ≡ p l,0((1 − z2)/4, z) =

[l/2]∑
k=0

l!

(l − 2k)!k!2

(
z2 − 1

4

)k

zl−m−2k , (2.171)

which have an important role in the theory of scattering from a central poten-

tial.

The second choice aims at orthonormality for the spherical harmonics,
which we are going to define in the following (see equation (2.179)). This
second choice is

c(l, m, 0) =

(
−1

2

)m
√

(2l + 1)(l + m)!

4π(l −m)!(m!)2
, (2.172)

from which we get, for m ≥ 0,

Y l,m(r) =
(
−x+

2

)m
√

(2l + 1)(l + m)!(l −m)!

4π
(2.173)

[(l−m)/2]∑
k=0

zl−m−2k

(m + k)!(l −m− 2k)!k!

(
−x+x−

4

)k

.

We can now evaluate the action of the operator L2 given in equation (2.159) on
the function F (r)Y l,m. This is equal to F (r)L2Y l,m since F (r) is annihilated
by any angular momentum component. Furthermore L2Y l,m does not depend
on the value of m since L2 commutes with L±. Thus it is sufficient to compute
L2Y l,l ∼ L2xl

+ = Lz(Lz+h̄)xl
+ = h̄2l(l+1)xl

+, where we have used L+xk
+ = 0.

In conclusion, we have

L2F (r)Y l,m = h̄2l(l + 1)F (r)Y l,m . (2.174)

At this point we insert: ψ l,m(r) = fE,l(r)Y l,m(r) into the Schrödinger equa-
tion. Considering first the term involving the Laplacian operator and noticing
that Y l,m(r) is harmonic, that ∇r = r/r and that r ·∇Y l,m(r) = lY l,m(r)
since Y l,m(r) is a homogeneous polynomial of degree l, we can easily evaluate

∇2fE,l(r)Y l,m(r) = Y l,m(r)∇2fE,l(r) + 2∇fE,l(r) ·∇Y l,m(r)

= Y l,m(r)∇ ·
(r

r
f ′E,l(r)

)
+ 2

f ′E,l(r)

r
r ·∇Y l,m(r)

= Y l,m(r)

[
f ′′E,l(r) + 2(l + 1)

f ′E,l(r)

r

]
. (2.175)
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Hence, leaving the factor Y l,m(r) out, the stationary Schrödinger equation
becomes:

− h̄2

2m

[
f ′′E,l(r) + 2(l + 1)

f ′E,l(r)

r

]
+ V (r)fE,l(r) = EfE,l(r) . (2.176)

If we make the substitution fE,l ≡ χE,l/rl+1 and leave a factor 1/rl+1 out,
we obtain:

− h̄2

2m
χ′′E,l(r) +

[
h̄2l(l + 1)

2mr2
+ V (r)

]
χE,l(r) = EχE,l(r) , (2.177)

which is completely analogous to the one-dimensional stationary Schrödinger
equation in presence of the potential energy obtained by adding the term
h̄2l(l + 1)/(2mr2) to V (r). Since the factor h̄2l(l + 1) corresponds to the ac-
tion of the operator L2 on the wave function, we see that this term corresponds
to the centrifugal potential energy L2/(2mr2) appearing in the classical me-
chanics analysis of the motion in a central field. We can conclude that the
wave function:

ψE,l,m(r) =
χE,l(r)

rl+1
Y l,m(r) ≡ χE,l(r)

r
Y l,m(θ , ϕ) (2.178)

corresponds to a state with squared angular momentum L2 = h̄2l(l + 1) and
Lz = h̄m. In equation (2.178) we have put into evidence that Y l,m(r)/rl ≡
Y l,m(r/r) is a homogeneous function of degree zero in r, hence it only depends
on polar angles. In the following we shall apply a usual simplified terminology,
calling what is shown in equation (2.178) a multiplet of solutions with angular
momentum (h̄)l.

In current textbooks the functions Y l,m(θ , ϕ) are called spherical harmon-

ics. They satisfy the orthonormalization condition:∫ 2π

0

dϕ

∫ 1

−1

d cos θ Y ∗l,m(θ, ϕ)Yl′,m′(θ, ϕ) = δl,l′δm,m′ . (2.179)

We notice that, given the normalization above for the spherical harmonics,
the solution in equation (2.178) describes a state in which the particle has a
probability distribution |χE,l(r)|2 in the radial coordinate r, i.e. |χE,l(r)|2 dr
gives the probability of finding the particle in the range [r, r + dr]. Legendre’s
polynomials satisfy instead the following relation

∫ 1

−1

dxPl(x)Pl′ (x) =
2δl,l′

2l + 1
, Pl(1) = 1 . (2.180)

It is interesting to consider the transformation properties of the particular
solutions given in equation (2.178) under a reflection of all coordinate axes,
i.e. (x, y, z)→ (−x,−y,−z), which is also known as Parity transformation. A
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central potential is invariant under parity (r → r) hence, following the same
argument given at the beginning of Section 2.6, it is always possible to choose
a particular complete set of solutions of the stationary Schrödinger equation
which are invariant under parity, apart from a constant factor which can only
be ±1 (even or odd solutions). For an even potential in one dimension, the
spectrum of bound states is always non-degenerate and that implies that only
even or odd solutions can be found. In the case of a central potential in three
dimensions, instead, it is apparent that equation (2.177) is independent of m,
so that the solutions written in equation (2.178) have at least degeneracy 2l+1,
corresponding to the different possible values of m; such degeneracy is related
to rotational invariance. Therefore it is not obvious a priori that the solutions
given in equation (2.178) have well defined transformation properties under
parity. However, since they are written as a function of r times a homogeneous
polynomial of degree l in the coordinates, in fact they have a well defined
parity under reflection of all coordinates, which is equal to (−1)l, i.e. solutions
with even (odd) angular momentum are parity even (odd).

For reader’s convenience, we give the explicit form of spherical harmonics
up to l = 2:

Y0,0 =

√
1

4π
; Y1,0 =

√
3

4π
cos θ , Y1,±1 = ∓

√
3

8π
sin θ e±iϕ ;

Y2,0 =

√
5

16π
(3 cos2 θ − 1) , Y2,±1 = ∓

√
15

8π
sin θ cos θ e±iϕ

Y2,±2 =

√
15

32π
sin2 θ e±i2ϕ . (2.181)

The construction of spherical harmonics starting from harmonic and homo-
geneous polynomials guarantees that spherical harmonics give a complete set
of functions of polar angles. This means that any function F (r, θ, ϕ) can be
expanded in the form:

F (r, θ, ϕ) =
∞∑

l=0

l∑
m=−l

Y l,m(θ, ϕ)f l,m(r) . (2.182)

In this expansion r appears as a parameter, in the sense that the expansion
holds true for any fixed value of r. We should clarify in which sense the above
expansion converges. It turns out that it converges in the topology of square
integrable functions of the polar angles, with the measure appearing in equa-
tion (2.179). This is by no means surprising, since for limited r, i.e. in a ball,
which is a compact sub-manifold of the three-dimensional space, any square
integrable function can be expanded in polynomials of the space coordinates5

and we have seen how these polynomials can be built from harmonic homo-
geneous polynomials which are directly related to spherical harmonics. This

5 This is a consequence of the Stone-Weierstrass theorem.
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fact, together with the linearity of the Schrödinger equation, implies that the
search for solutions should be limited to functions of the form (2.178), whose
radial part has to be determined. For this reason we now consider the solution
of the radial equations (2.176) and (2.177).

In the case of piecewise constant potentials V (r), similar to those discussed
in the one-dimensional case, the analysis strategy does not change and one has
only to pay special attention to the additional constraint that the wave func-
tion must vanish in r = 0, otherwise the related probability density would be
divergent. In particular, in the S wave case (that being the usual way of indi-
cating the case l = 0), equation (2.177) is exactly equal to the one-dimensional
Schrödinger equation, therefore the solution can be obtained as a linear com-
bination of functions like sin(

√
2m(E − V ) r/h̄) and cos(

√
2m(E − V ) r/h̄)

for E > V and exp(±√2m(V − E) r/h̄) in the opposite case. Therefore, in
the case of a spherical potential well:

V (r) = −V0Θ(R − r) , (2.183)

where V0 > 0 and Θ(x) is the step function (Θ(x) = 1 for x > 0 and
Θ(x) = 0 for x < 0), the radial equation coincides with the one-dimensional
Schrödinger equation for the parity odd wave functions in a square well of
width 2R. Thus one can find the equation for the binding energy in (2.98).

For l > 0 sine and cosine and exponentials must be replaced by new special
functions (which are called spherical Bessel functions), which can be explicitly
constructed using the recursive equation:

q χE,l+1(r) =
l + 1

r
χE,l(r) − χ′E,l(r) , (2.184)

whose validity can be directly checked writing equation (2.177), for V (r) = 0,
in the form:

χ′′E,l(r) +

[
±q2 − l(l + 1)

r2

]
χE,l(r) = 0 . (2.185)

If for instance we want to study the possible bound states in P wave (i.e.
l = 1) for the potential well above, setting the energy to −B and defining

κ =
√

2mB/h̄2, we must connect the internal solution sin(qr)/qr − cos(qr),

which vanishes in r = 0, with the external solution which vanishes as r →∞,
i.e. ae−κ(r−R)(1/κr + 1). This leads to the system:

sin(qR)− qR cos(qR)

q
= a

1 + κR

κ

sin(qR)(1− q2R2)− qR cos(qR)

q
= a

1 + κR + κ2R2

κ
.

Therefore, setting y =
√

2mV0 R/h̄, x = qR and hence κR =
√

y2 − x2, one
has the transcendental equation:
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tan x = x
y2 − x2

y2 + x2
√

y2 − x2
.

For 0 ≤ x ≤ y the equation requires 0 ≤ tan x/x ≤ 1, which is realized only
if x ≥ π. This implies the absence of l = 1 bound states for y < π, while we
see, comparing with the one-dimensional case, that the first l = 0 bound state
appears for y = π/2. Notice that if no bound state can be found for l = 0,
none will be found for l 
= 0 as well, since a non-zero angular momentum acts
as a repulsive centrifugal contribution to the effective potential entering the
radial equation (2.177). Hence no bound state is found for the spherical well
if y < π/2.

Another case of great interest is obviously the study of bound states in
a Coulomb potential, which permits an analysis of the energy levels of the
hydrogen atom. To that aim let us consider the motion of a particle of mass
m in a central potential V (r) = −e2/(4πε0r), where ε0 is the vacuum dielectric
costant and e is (minus) the charge of the (electron) proton in MKS units;
m is actually the reduced mass in the case of the proton-electron system,
m = memp/(me + mp), which is equal to the electron mass within a good
approximation. In this case it is convenient to start from (2.176), which we
rewrite as

f ′′B,l(r) + 2(l + 1)
f ′B,l(r)

r
+

2me2

4πε0h̄
2r

fB,l(r) =
2mB

h̄2 fB,l(r) , (2.186)

where B ≡ −E is the binding energy. Before proceeding further, let us per-
form a change of variables in order to work with dimensionless quantities:
we introduce the Bohr radius a0 = 4πε0h̄

2/(me2) � 0.52 10−10 m and the
Rydberg energy constant ER ≡ hR ≡ me4/(2h̄2(4πε0)

2) � 13.6 eV, which
are the typical length and energy scales which can be constructed in terms
of the physical constants involved in the problem. Equation (2.186) can be
rewritten in terms of the dimensionless radial variable ρ ≡ r/a0 and of the
dimensionless binding energy B/ER ≡ λ2, with λ ≥ 0, as follows:

f ′′λ,l(ρ) + 2(l + 1)
f ′λ,l(ρ)

ρ
+

2

ρ
fλ,l(ρ) = λ2fλ,l(ρ) . (2.187)

Let us first consider the asymptotic behavior of the solution as ρ →∞: in this
limit the second and the third term on the left hand side can be neglected,
so that the solution of (2.187) is asymptotically also solution of f ′′λ,l(ρ) =

λ2fλ,l(ρ), i.e. fλ,l(ρ) ∼ e±λρ for ρ � 1. The asymptotically divergent behavior
must obviously be rejected if we are looking for a solution corresponding
to a normalizable bound state. We shall therefore write our solution in the
form fλ,l(ρ) = hλ,l(ρ)e−λρ, where hλ,l(ρ) must be a sufficiently well behaved
function as ρ →∞. The differential equation satisfied by hλ,l(ρ) easily follows
from (2.187):

h′′λ,l +

(
2(l + 1)

ρ
− 2λ

)
h′λ,l +

2

ρ
(1− λ(l + 1))hλ,l = 0 . (2.188)
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We shall write hλ,l(ρ) as a power series in ρ, thus finding a recursion relation
for its coefficients, and impose that the series stops at some finite order so as
to keep the asymptotic behaviour of fλ,l(ρ) as ρ →∞ unchanged.

In order to understand what is the first term ρs of the series that we have
to take into account, let us consider the behavior of (2.188) as ρ → 0. In this
case hλ,l ∼ ρs and it can be easily checked that (2.188) is satisfied at the
leading order in ρ only if s(s − 1) = −2s(l + 1), whose solutions are s = 0
and s = −2l− 1. Last possibility must be rejected, otherwise the probability
density related to our solution would be divergent in the origin. Hence we
write:

hλ,l(ρ) = c0 + c1ρ + c2ρ
2 + . . . + chρh + . . . =

∞∑
h=0

chρh , (2.189)

with c0 
= 0. Inserting last expression in (2.188), we obtain the following
recurrence relation for the coefficients ch:

ch+1 = 2
λ(h + l + 1)− 1

(h + 1)(h + 2(l + 1))
ch (2.190)

which, apart from an overall normalization constant fixing the starting coef-
ficient c0, completely determines our solution in terms of l and λ. However if
the recurrence relation never stops, it becomes asymptotically (i.e. for large
h):

ch+1 � 2λ

h
ch

which can be easily checked to be the same relation relating the coefficients in
the Taylor expansion of exp(2λρ). Therefore, if the series does not stop, the
asymptotic behavior of fλ,l(ρ) changes, bringing back the unwanted divergent
behavior fλ,l(ρ) ∼ eλρ. The series stops if and only if the coefficient on the
right hand side of (2.190) vanishes for some given value h = k ≥ 0, hence

λ(k + l + 1)− 1 = 0 ⇒ λ =
1

k + l + 1
. (2.191)

In this case hλ,l(ρ) is simply a polynomial of degree k in ρ, which is completely
determined (neglecting an overall normalization) as a function of l and k:
these polynomials belong to a well known class of special functions and are
usually called associated Laguerre polynomials. We have therefore found that,
for a given value of l, the admissible solutions with negative energy, i.e. the
hydrogen bound states, can be enumerated according to a non-negative integer
k and the energy levels are quantized according to (2.191).

If we replace k by a new integer and strictly positive quantum number n
given by:

n = k + l + 1 = λ−1 , (2.192)
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which is usually called the principal quantum number, then the energy levels
of the hydrogen atom, according to (2.191) and to the definition of λ, are
given by

En = −ER

n2
= − me4

8ε20h
2n2

,

in perfect agreement with the Balmer–Rydberg series for line spectra and with
the qualitative result obtained in Section 2.2 using Bohr’s quantization rule.

It is important to notice that, in the general case of a motion in a central
field, energy levels related to different values of the angular momentum l
are expected to be different, and they are indeed related to the solutions
of different equations of the form given in (2.176). Stated otherwise, the only
expected degeneracy is that related to the rotational symmetry of the problem,
leading to degenerate wave function multiplets of dimension 2l+1, as discussed
above. However, in the case of the Coulomb potential, we have found a quite
different result: according to (2.192), for a fixed value of the integer n > 0,
there will be n different multiplets, corresponding to l = 0, 1, . . . , (n − 1),
having the same energy. The degeneracy is therefore

n−1∑
l=0

(2l + 1) = n2

instead of 2l +1. Unexpected additional degeneracies like this one are usually
called “accidental”, even if in this case degeneracy is not so accidental. Indeed
the problem of the motion in a Coulomb (or gravitational) field has a larger
symmetry than simply the rotational one. We will not go into details, but just
remind the reader of a particular integral of motion which is only present,
among all possible central potentials, in the case of the Coulomb (gravita-
tional) field: that is Lenz’s vector, which completely fixes the orientation of
classical orbits. Another central potential leading to a similar “accidental”
degeneracy is that corresponding to a three-dimensional isotropic harmonic
oscillator. Actually, the Coulomb potential and the harmonic oscillator are
joined in Classical Mechanics by Bertrand’s theorem, which states that they
are the only central potentials whose classical orbits are always closed.

Let us give the explicit form of the hydrogen wave functions in a few cases.
Writing them in a form similar to that given in (2.178), and in particular as

ψn,l,m(r, θ, φ) = Rn,l(r)Yl,m(θ, ϕ) ,

we have

R1,0(r) = 2(a0)
−3/2 exp(−r/a0) ,

R2,0(r) = 2(2a0)
−3/2

(
1− r

2a0

)
exp(−r/2a0) ,
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R2,1(r) = (2a0)
−3/2 1√

3

r

a0
exp(−r/2a0) .

We complete our introduction to the Schrödinger equation with central po-
tentials reconsidering the case of the isotropic harmonic oscillator, that we
shall discuss in a moment. We briefly recall the main results. The Schrödinger
equation: [

− h̄2

2m
∇2 +

k

2
r2

]
ψE = EψE , (2.193)

written in the form (2.126), appears separable in Cartesian coordinates and it
is possible to find solutions written as the product of one-dimensional solutions
ψnx,ny,nz

(x, y, z) = ψnx
(x)ψny

(y)ψnz
(z), and the corresponding energy is the

sum of one-dimensional energies,

Enx,ny,nz
= h̄ω(nx + ny + nz + 3/2) = h̄ω(n + 3/2) ,

where n = nx + ny + nz and ω =
√

k/m. In particular the ground state

wave function is ψ0(r) = (α2/π)3/4 exp(−α2r2/2), where α =
√

mω/h̄ is the
inverse of the typical length scale of the system introduced in equation (2.108).
Using the operator formalism we introduce three raising operators

A†x =
1√
h̄ω

X− =
1√
2

(
αx− 1

α
∂x

)

A†y =
1√
h̄ω

Y− =
1√
2

(
αy − 1

α
∂y

)

A†z =
1√
h̄ω

Z− =
1√
2

(
αz − 1

α
∂z

)
, (2.194)

and we write the generic solution shown above in the form:

ψnx,ny,nz
(x, y, z) =

(A†x)nx(A†y)ny(A†z)nz√
nx!ny!nz !

ψ0(r) , (2.195)

where the square root in the denominator is the normalization factor (see
equation (2.125)). As we have shown in Section 2.7, these solutions are degen-
erate, in the sense that there are (n + 1)(n + 2)/2 solutions corresponding to
the same energy En = h̄ω(n + 3/2) if n = nx + ny + nz, and form a complete
set. They also have the same transformation properties under reflection of
all coordinate axes (parity transformation): indeed, since the ground state is
parity even and each raising operator is parity odd, it is apparent that the so-
lution corresponding to nx, ny, nz has parity (−1)nx+ny+nz = (−1)n. However
they have no well defined angular momentum property, their form does not
correspond to that shown in equation (2.178). Our purpose is to identify the
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solutions with well defined angular momentum quantum numbers, that is l
and m: they will form an alternative complete set, i.e. a different orthonormal
basis for the linear space of solutions corresponding to each energy level.

With this purpose it is useful to study the commutation rules of the angular
momentum components with the raising operators and to take into account
that the ground state is rotation invariant, that is Liψ0(r) = 0 , for i = ±, z .
In order to simplify the commutation rules we adapt our raising operators to
the choice of complex coordinates x±, z introducing:

A†± =
1√
2

(
αx± − 2

α
∂x∓

)
= A†x ± iA†y . (2.196)

They satisfy the commutation rules :

[Lz, A
†
z] = 0 , [Lz, A

†
±] = ±h̄A†± , [L±, A†z] = ∓h̄A†±

[L±, A†∓] = ±2h̄A†z , [L±, A†±] = 0 , (2.197)

which coincide with those given in equation (2.160), after the substitution

A†z ↔ z and A†± ↔ x± .
Due to the same correspondence and to the rotation invariance of ψ0,

given a polynomial P (x+, x−, z) in the coordinates and the wave function
P (x+, x−, z)ψ0(r), together with another wave function written in the opera-

tor formalism as P (A†+, A†−, A†z)ψ0(r), we can state that if

LiP (x+, x−, z)ψ0(r) = Qi(x+, x−, z)ψ0(r) , (2.198)

then
LiP (A†+, A†−, A†z)ψ0(r) = Qi(A

†
+, A†−, A†z)ψ0(r) . (2.199)

Notice that the A† operators commute among themselves, thus P (A†+, A†−, A†z)
is a well defined differential operator and P (A†+, A†−, A†z)ψ0(r) is a well defined
wave function. The left-hand sides of the above equations are computed by
repeatedly commuting Li with the coordinates x+, x−, z, in the first equa-
tion, and with the raising operators A†+, A†−, A†z in the second one, until Li

reaches and annihilates ψ0. The strict correspondence of the commutation
rules guarantees the validity of the above equations.6

Hence in particular, considering the harmonic homogeneous polynomials
given in equation (2.173) and recalling that:

6 This one-to-one correspondence between the action of the generators of rota-
tions on the coordinates and on the raising operators can be generalized to other
linear, in fact unitary, transformations of the coordinates, transforming homo-
geneous polynomials into homogeneous polynomials of the same degree. These
transformations act within degenerate multiplets of solutions of the Schrödinger
equation and clarify the origin of the additional degeneracy which is found for
the central harmonic potential.
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L2Y l,m(x+, x−, z)ψ0(r) = h̄2l(l + 1)Y l,m(x+, x−, z)ψ0(r) (2.200)

and that

LzY l,m(x+, x−, z)ψ0(r) = h̄mY l,m(x+, x−, z)ψ0(r)] , (2.201)

we have:

L2Y l,m(A†+, A†−, A†z)ψ0(r) = h̄2l(l + 1)Y l,m(A†+, A†−, A†z)ψ0(r) , (2.202)

and

LzY l,m(A†+, A†−, A†z)ψ0(r) = h̄mY l,m(A†+, A†−, A†z)ψ0(r) . (2.203)

In this way we have identified a degenerate set of solutions of the Schrödinger
equation corresponding to the energy El = h̄ω(l+3/2)E and with the angular
momentum given above. However this does not exhaust the solutions with the
same energy. Indeed for any positive integer k ≤ [l/2], considering that

L2Y l−2k,m(x+, x−, z)(r2)kψ0(r)

= h̄2(l − 2k)(l − 2k + 1)Y l−2k,m(x+, x−, z)(r2)kψ0(r) (2.204)

and that

LzY l−2k,m(x+, x−, z)(r2)kψ0(r) = h̄mY l−2k,m(x+, x−, z)(r2)kψ0(r) (2.205)

we have

L2Y l−2k,m(A†+, A†−, A†z)(A
†
+A†− + (A†z)

2)kψ0(r) (2.206)

= h̄2(l − 2k)(l − 2k + 1)Y l−2k,m(A†+, A†−, A†z)(A
†
+A†− + (A†z)

2)kψ0(r)

and

LzY l−2k,m(A†+, A†−, A†z)(A
†
+A†− + (A†z)

2)kψ0(r)

= h̄mY l−2k,m(A†+, A†−, A†z)(A
†
+A†− + (A†z)

2)kψ0(r) . (2.207)

Therefore we have 2l− 4k + 1 further solutions with the same energy El and
angular momentum l−2k. Notice that we have not considered the problem of
normalizing the above wave functions. In this way, for any l, we have identified

(2l + 1) + (2l − 4 + 1) + . . . = (l + 1)(l + 2)/2

independent solutions with energy El. These solutions form a complete degen-
erate set, i.e. a new basis, alternative to that described by equation (2.128),
for the linear space of solutions of energy El. Their angular momenta corre-
spond to all possible non-negative integers ranging from l down to zero (or
one), but keeping the same parity of l. This last property can be easily un-
derstood, recalling that all solutions belonging to the same energy level of
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the isotropic harmonic oscillator have the same transformation properties un-
der parity (they are even or odd depending on the parity of l, i.e. they have
parity (−1)l), and that, on the other hand, the solutions with fixed angular
momentum l̄ have parity (−1)l̄.
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Problems

2.1. A diatomic molecule can be simply described as two point-like objects of
mass m = 10−26 Kg placed at a fixed distance d = 10−9 m. Describe what are
the possible values of the molecule energy according to Bohr’s quantization
rule. Compute the energy of the photons which are emitted when the system
decays from the (n + 1)-th to the n-th energy level.

Answer: En+1 − En = (h̄2/2I)(n + 1)2 − (h̄2/2I)n2 = (2n + 1)h̄2/(md2) �
1.1 10−24(2n + 1) J. Notice that in Sommerfeld’s perfected theory, mentioned in

Section 2.2, the energy of a rotator is given by En = h̄2n(n + 1)/2I , so that the

factor 2n + 1 in the solution must be replaced by 2n + 2.

2.2. An artificial satellite of mass m = 1 Kg rotates around the Earth along a
circular orbit of radius practically equal to that of the Earth itself, i.e. roughly
6370 Km. If the satellite orbits are quantized according to Bohr’s rule, what
is the radius variation when going from one quantized level to the next (i.e.
from n to n + 1)?

Answer: If g indicates the gravitational acceleration at the Earth surface, the

radius of the n-th orbit is given by rn = n2h̄2/(m2R2g). Therefore, if rn = R,

δrn ≡ rn+1 − rn � 2h̄/(m
√

Rg) � 2.6 10−38 m .
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2.3. An electron is accelerated through a potential difference ΔV = 108 V,
what is its wavelength according to de Broglie?

Answer: The energy gained by the electron is much greater than mc2, therefore it is

ultra-relativistic and its momentum is p � E/c . Hence λ � hc/eΔV � 12.4 10−15 m.

The exact formula is instead λ = hc/
√

(eΔV + mc2)2 −m2c4.

2.4. An electron is constrained to bounce between two reflecting walls placed
at a distance d = 10−9 m from each other. Assuming that, as in the case of
a stationary electromagnetic wave confined between two parallel mirrors, the
distance d be equal to n half wavelengths, determine the possible values of
the electron energy as a function of n.

Answer: En = h̄2π2n2/(2md2) � n2 6.03 10−20 J .

2.5. An electron of kinetic energy 1 eV is moving upwards under the action
of its weight. Can it reach an altitude of 1 Km? If yes, what is the variation
of its de Broglie wavelength?

Answer: The maximum altitude reachable by the electron in a constant gravi-

tational field would be h = T/mg � 1.6 1010 m. After one kilometer the kinetic

energy changes by δT/T � 5.6 10−8, hence δλ/λ � 2.8 10−8. Since the starting

wavelength is λ = h/
√

2mT � 1.2 10−9 m, the variation is δλ � 3.4 10−17 m.

2.6. Ozone (O3) is a triatomic molecule made up of three atoms of mass
m � 2.67 10−26 Kg placed at the vertices of an equilateral triangle with sides
of length l. The molecule can rotate around an axis P going through its center
of mass and orthogonal to the triangle plane, or around another axis L which
passes through the center of mass as well, but is orthogonal to the first axis.
Making use of Bohr’s quantization rule and setting l = 10−10 m, compare the
possible rotational energies in the two different cases of rotations around P
or L.

Answer: The moments of inertia are IP = ml2 = 2.67 10−46 Kg m2 and IL =

ml2/2 = 1.34 10−46 Kg m2. The rotational energies are then EL,n = 2EP,n =

h̄2n2/2IL � n2 4.2 10−23 J .

2.7. A table salt crystal is irradiated with an X-ray beam of wavelength
λ = 2.5 10−10 m, the first diffraction peak (d sin θ = λ) is observed at an
angle equal to 26.3◦. What is the interatomic distance of salt?

Answer: d = λ/ sin θ � 5.6 10−10 m .

2.8. In β decay a nucleus, with a radius of the order of R = 10−14 m, emits
an electron with a kinetic energy of the order of 1 MeV = 106 eV. Compare
this value with that which according to the uncertainty principle is typical
of an electron initially localized inside the nucleus (thus having a momentum
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p ∼ h̄/R).

Answer: The order of magnitude of the momentum of the particle is p ∼ h̄/R ∼
10−20 N s, thus pc � 3 10−12 J, which is much larger that the electron rest energy

mec
2 � 8 10−14 J. Therefore the kinetic energy of the electron in the nucleus is

about pc = 3.15 10−12 J � 20 MeV.

2.9. An electron is placed in a constant electric field E = 1000 V/m directed
along the x axis and going out of a plane surface orthogonal to the same axis.
The surface also acts on the electron as a reflecting plane where the electron
potential energy V (x) goes to infinity. The behaviour of V (x) is therefore as
illustrated in the following figure.

�
�
�
�
�V(x)

x

Evaluate the order of magnitude of the minimal electron energy according to
Heisenberg’s Uncertainty Principle.

Answer: The total energy is given by ε = p2/2m + V (x) = p2/2m + eEx, with
the constraint x > 0. From a classical point of view, the minimal energy would be
realized for a particle at rest (p = 0) in the minimum of the potential. The uncer-
tainty principle states instead that δp δx ∼ h̄, where δx is the size of a region around
the potential minimum where the electron is localized. Therefore the minimal total
energy compatible with the uncertainty principle can be written as a function of δx
as E(δx) ≡ h̄2/(2mδx2) + eEδx (δx > 0) and has a minimum

εmin ∼ 3

2

(
h̄2e2E2

m

)1/3

∼ 0.6 10−4 eV .

2.10. An atom of mass M = 10−26 Kg is attracted towards a fixed point by
an elastic force of constant k = 1 N/m; the atom is moving along a circular
orbit in a plane orthogonal to the x axis. Determine the energy levels of the
system by making use of Bohr’s quantization rule for the angular momentum
computed with respect to the fixed point.

Answer: Let ω be the angular velocity and r the orbital radius. The centripetal

force is equal to the elastic one, hence ω =
√

k/M . The total energy is given by

E = (1/2)Mω2r2 + (1/2)kr2 = Mω2r2 = Lω, where L = Mωr2 is the angu-

lar momentum. Since L = nh̄, we finally infer En = nh̄ω � n 1.05 10−21 J �
n 0.66 10−2 eV.

2.11. Compute the number of photons emitted in one second by a lamp of
power 10 W, if the photon wavelength is 0.5 10−6 m .
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Answer: The energy of a single photon is E = hν and ν = c/λ = 6 1014 Hz, hence

E � 4 10−19 J. Therefore the number photons emitted in one second is 2.5 1019.

2.12. A particle of mass m = 10−28 Kg is moving along the x axis un-
der the influence of a potential energy given by V (x) = v

√|x|, where

v = 10−15 J m−1/2. Determine what is the order of magnitude of the minimal
electron energy according to the uncertainty principle.

Answer: The total energy of the particle is given by

E =
p2

2m
+ v

√
|x| .

If the particle is localized in a region of size δx around the minimum of the potential
(x = 0), according to the uncertainty principle it has a momentum at least of the
order of δp = h̄/δx. It is therefore necessary to minimize the quantity

E =
h̄2

2mδx2
+ v
√

δx

with respect to δx, finally finding that

Emin �
(

h̄2v4

m

)1/5 (
21/5 + 2−9/5

)
� 0.092 eV.

It is important to notice that our result, apart from a numerical factor, could be

also predicted on the basis of simple dimensional remarks. Indeed, it can be easily

checked that (h̄2v4/m)1/5 is the only possible quantity having the dimensions of an

energy and constructed in terms of m, v and h̄, which are the only physical constants

involved in the problem. In the analogous classical problem h̄ is missing, and v and

m are not enough to build a quantity with the dimensions of energy, hence the

classical problem lacks the typical energy scale appearing at the quantum level.

2.13. An electron beam with kinetic energy equal to 10 eV is split into two
parallel beams placed at different altitudes in the terrestrial gravitational field.
If the altitude gap is d = 10 cm and if the beams recombine after a path of
length L, say for which values of L the phases of the recombining beams are
opposite (destructive interference). Assume that the upper beam maintains
its kinetic energy, that the total energy is conserved for both beams and that
the total phase difference accumulated during the splitting and the recombi-
nation of the beams is negligible.

Answer: De Broglie’s wave describing the initial electron beam is proportional to

exp(ipx/h̄− iEt/h̄), where p =
√

2mEk is the momentum corresponding to a kinetic

energy Ek and E = Ek +mgh is the total energy. The beam is split into two beams,

the first travels at the same altitude and is described by the same wave function, the

second travels 10 cm lower and is described by a wave function ∝ exp(ip′x/h̄−iEt/h̄)
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where p′ =
√

2mE′
k =

√
2m(Ek + mgd) (obviously the total energy E stays un-

changed). The values of L for which the two beams recombine with opposite phases

are solutions of (p′ − p)L/h̄ = (2n + 1)π where n is an integer. The smallest value

of L is L = πh̄/(p′ − p). Notice that mgd � 10−30 J � 10 eV � 1.6 10−18 J hence

p′ − p � √2mEk(mgd/2Ek) and L � 2πh̄Ek/(mgd
√

2mEk) � 696 m. This experi-

ment, which clearly demonstrates the wavelike behaviour of material particles, has

been really performed but using neutrons in place of electrons: the use of neutrons

has various advantages, among which that of leading to smaller values of L because

of the much heavier mass, as it is clear from the solution. That makes the setting of

the experimental apparatus simpler.

2.14. An electron is moving in the x− y plane under the influence of a mag-
netic induction field parallel to the z-axis. What are the possible energy levels
according to Bohr’s quantization rule?

Answer: The electron is subject to the force ev ∧ B where v is its velocity. Clas-

sically the particle, being constrained in the x − y plane, would move on circular

orbits with constant angular velocity ω = eB/m, energy E = 1/2 mω2r2 and any

radius r. Bohr’s quantization instead limits the possible values of r by mωr2 = nh̄.

Finally one finds E = 1/2 nh̄ω = nh̄eB/(2m). This is an approximation of the

exact solution for the quantum problem of an electron in a magnetic field (Landau’s

levels).

2.15. The positron is a particle identical to the electron but carrying an oppo-
site electric charge. It forms a bound state with the electron, which is similar
to the hydrogen atom but with the positron in place of the proton: that is
called positronium. What are its energy levels according to Bohr’s rule?

Answer: The computation goes exactly along the same lines as for the proton–
electron system, but the reduced mass μ = m2/(m + m) = m/2 has to be used in
place of the electron mass. energy levels are thus

En = − me4

16ε20h
2n2

.

2.16. A particle of mass M = 10−29 Kg is moving in two dimensions under
the influence of a central potential

V = σr ,

where σ = 105 N. Considering only circular orbits, what are the possible val-
ues of the energy according to Bohr’s quantization rule?

Answer: Combining the equation for the centripetal force necessary to sustain
the circular motion, mω2r = σ, with the quantization of angular momentum,
mωr2 = nh̄, we obtain for the total energy, E = 1/2 mω2r2 + σr, the following
quantized values

En =
3

2

(
h̄2σ2

m

)1/3

n2/3 � 2 n2/3 GeV .
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Notice that the only possible combination of the physical parameters available in

the problem with energy dimensions is (h̄2σ2/m)1/3. The potential proposed in this

problem is similar to that believed to act among quarks, which are the elemen-

tary constituents of hadrons (a wide family of particles including protons, neutrons,

mesons . . . ); σ is usually known as the string tension. Notice that the lowest en-

ergy coincides, identifying σ = eE , with that obtained in Problem 2.9 using the

uncertainty principle for the one-dimensional problem.

2.17. The momentum probability distribution for a particle with wave func-
tion ψ(x) is given by

|
∫ ∞

−∞
dx

1√
h

e−ipx/h̄ψ(x)|2 ≡ |ψ̃(p)|2 .

Compute the distribution for the following wave function ψ(x)= e−a|x|/2
√

a/2
(a is real and positive) and verify the validity of the uncertainty principle in
this case.

Answer: ψ̃(p) = (h̄a)3/2/(
√

4π(p2 + h̄2a2/4)) hence

Δ2
x =

a

2

∫ ∞

−∞
dx x2e−a|x| =

2

a2
,

Δ2
p =

(h̄a)3

4π

∫ ∞

−∞
dp

p2

(p2 + a2h̄2

4
)2

=
a2h̄2

4
,

so that Δ2
xΔ2

p = h̄2/2 > h̄2/4 .

2.18. Show that a wave packet described by a real wave function has always
zero average momentum. Compute the probability current for such packet.

Answer: From the relation

ψ̃(p) =

∫ ∞

−∞
dx

1√
h

e−ipx/h̄ψ(x)

and ψ∗(x) = ψ(x) we infer

ψ̃∗(p) =

∫ ∞

−∞
dx

1√
h

eipx/h̄ψ(x) = ψ̃(−p)

hence |ψ̃(p)|2 = |ψ̃(−p)|2. The probability distribution function is even in momen-

tum space, so that the average momentum is zero. The probability current is zero as

well, in agreement with the average zero momentum, i.e. with the fact that there is

not net matter transportation associated to this packet. Notice that the result does

not change if ψ(x) is multiplied by a constant complex factor eiφ.

2.19. The wave function of a free particle is

ψ(x) =
1√
2Ph

∫ P

−P

dq e
iqx
h̄
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at time t = 0. What is the corresponding probability density ρ(x) of locating
the particle at a given point x? What is the probability distribution function
in momentum space? Give an integral representation of the wave function at
a generic time t, assuming that the particle mass is m.

Answer: The probability density is ρ(x) = |ψ(x)|2 = h̄/(πPx2) sin2 (Px/h̄) while

ψ(x, t) = (1/
√

2Ph)
∫ P

−P
dqei(qx−q2t/2m)/h̄. The distribution in momentum in in-

stead given by |ψ̃(p)|2 = Θ(P 2 − p2)/2P , where Θ is the step function, Θ(y) = 0

for y < 0 and Θ(y) = 1 for y ≥ 0. Notice that for the given distribution we have

Δ2
x =∞. The divergent variance is strictly related to the sharp, step-like distribution

in momentum space; indeed Δ2
x becomes finite as soon as the step is smoothed.

2.20. An electron beam hits the potential step sketched in the figure, coming
from the right. In particular, the potential energy of the electrons is 0 for
x < 0 and −V = −300 eV for x > 0, while their kinetic energy in the original
beam (thus for x > 0) is Ek = 400 eV. What is the reflection coefficient?

. . . . . . . . . .
V(x)

x

Answer: The wave function can be written, leaving aside an overall normalization
coefficient which is not relevant for computing the reflection coefficient, as

ψ(x) = be−ik′x for x < 0 , ψ(x) = e−ikx + aeikx for x > 0

where k =
√

2mEk/h̄ =
√

2m(E + V)/h̄ and k′ =
√

2m(Ek − V)/h̄ =
√

2mE/h̄;
m is the electron mass and E = Ek − V is the total energy of the electrons. The
continuity conditions at the position of the step read

b = 1 + a , bk′ = (1− a)k ,

hence

b =
2

1 + k′/k
, a =

1− k′/k

1 + k′/k
,

and

R = |a|2 =

(
k − k′

k + k′

)2

=
2E + V − 2

√
E(E + V)

2E + V + 2
√

E(E + V)
=

1

9
.

2.21. An electron beam hits the same potential step considered in Prob-
lem 2.20, this time coming from the left with a kinetic energy E = 100 eV.
What is the reflection coefficient in this case?

Answer: In this case we write:

ψ(x) = eik′x + be−ik′x for x < 0 , ψ(x) = aeikx for x > 0 ,
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where again k =
√

2m(E + V)/h̄ and k′ =
√

2mE/h̄ with E = Ek being the total
energy. By solving the continuity conditions we find:

b =
k′/k − 1

1 + k′/k
; R = |b|2 =

(
k′ − k

k + k′

)2

=
2E + V − 2

√
E(E + V)

2E + V + 2
√

E(E + V)
=

1

9
.

We would like to stress that the reflection coefficient coincides with that obtained
in Problem 2.20: electron beams hitting the potential step from the right or from
the left are reflected in exactly the same way, if their total energy E is the same,
as it is in the present case. In fact this is a general result which is valid for every
kind of potential barrier and derives directly from the invariance of the Schrödinger
equation under time reversal: the complex conjugate of a solution is also a solution.
It may seem a striking result, but it should not be so striking for those familiar with
reflection of electromagnetic signals in presence of unmatching impedances.

Notice also that there is actually a difference between the two cases, consisting

in a different sign for the reflected wave. That is irrelevant for computing R but

significant for considering interference effects involving the incident and the reflected

waves. In the present case interference is destructive, hence the probability density

is suppressed close to the step, while in Problem 2.20 the opposite happens. To

better appreciate this fact consider the analogy with an oscillating rope made up

of two different ropes having different densities (which is a system in some sense

similar to ours), and try to imagine the different behaviors observed if you enforce

oscillations shaking the rope from the heavier (right-hand in our case) or from the

lighter (left-hand in our case) side. As extreme and easier cases you could think of a

single rope with a free end (one of the densities goes to zero) or with a fixed end (one

of the densities goes to infinity): the shape of the rope at the considered endpoint is

cosine-like in the first case and sine-like in the second case, exactly as for the cases

of respectively the previous and the present problem in the limit V → ∞.

2.22. An electron beam hits, coming from the right, a potential step similar
to that considered in Problem 2.20. However this time −V = −10 eV and the
kinetic energy of the incoming electrons is Ek = 9 eV. If the incident current
is equal to J = 10−3 A, compute how many electrons can be found, at a given
time, along the negative x axis, i.e. how many electrons penetrate the step
barrier reaching positions which would be classically forbidden.

Answer: The solution of the Schrödinger equation can be written as

ψ(x) = c ep′x/h̄ for x < 0 , ψ(x) = a eipx/h̄ + b e−ipx/h̄ for x > 0

where p =
√

2mE and p′ =
√

2m(V − E). Imposing continuity in x = 0 for both
ψ(x) and its derivative, we obtain c = 2a/(1 + ip′/p) and b = a(1− ip′/p)/(1 + ip′/p).
It is evident that |b|2 = |a|2, hence the reflection coefficient is one. Indeed the prob-
ability current J(x) = −ih̄/(2m)(ψ∗∂xψ − ψ∂xψ∗) vanishes on the left, where we
have an evanescent wave function, hence no transmission. Nevertheless the prob-
ability distribution is non-vanishing for x < 0 and, on the basis of the collective
interpretation, the total number of electrons on the left is given by

N =

∫ 0

−∞
|ψ(x)|2dx = |c|2h̄/(2p′) =

2|a|2h̄p2

p′(p2 + p′2)
.
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The coefficient a can be computed by asking that the incident current Jel = eJ =

e|a|2p/m ≡ 10−3 A. The final result is N � 1.2.

2.23. An electron is confined inside a cubic box with reflecting walls and an
edge of length L = 2 10−9 m. How many stationary states can be found with
energy less than 1 eV? Take into account the spin degree of freedom, which
in practice doubles the number of available levels.

Answer: Energy levels in a cubic box are Enx,ny,nz = π2h̄2(n2
x + n2

y + n2
z)/(2mL2),

where m = 0.911 10−30 Kg and nx, ny , nz are positive integers. The constraint

E < 1 eV implies n2
x +n2

y +n2
z < 10.7, which is satisfied by 7 different combinations

((1,1,1), (2,1,1), (2,2,1) plus all possible different permutations). Taking spin into

account, the number of available levels is 14.

2.24. When a particle beam hits a potential barrier and is partially transmit-
ted, a forward going wave is present on the other side of the barrier which,
besides having a reduced amplitude with respect to the incident wave, has
also acquired a phase factor which can be inferred by the ratio of the trans-
mitted wave coefficient to that of the incident one. Assuming a thin barrier
describable as

V (x) = v δ(x) ,

and that the particles be electrons of energy E = 10 eV, compute the value
of v for which the phase difference is −π/4.

Suppose now that we have two beams of equal amplitude and phase and
that one beam goes through the barrier while the other goes free. The two
beams recombine after paths of equal length. What is the ratio of the recom-
bined beam intensity to that one would have without the barrier?

Answer: On one side of the barrier the wave function is ei
√

2mEx/h̄ + a e−i
√

2mEx/h̄,

while it is b ei
√

2mEx/h̄ on the other side. Continuity and discontinuity constraints
read 1+ a = b and b− 1+ a =

√
2m/Evb/h̄ , from which b = (1 + i

√
m/2Ev/h̄)−1

can be easily derived. Requiring that the phase of b be −π/4 is equivalent to√
m/2Ev/h̄ = 1, hence v � 2.0 10−28 J m.

With this choice of v the recombined beam is [1+1/(1 + i)]ei
√

2mEx/h̄. The ratio

of the intensity of the recombined beam to that one would have without the barrier

is |[1 + 1/(1 + i)]/2|2 = 5/8.

2.25. If a potential well in one dimension is so thin as to be describable by a
Dirac delta function:

V (x) = −V Lδ(x)

where V is the depth and L the width of the well, then it is possible to
compute the bound state energies by recalling that for a potential energy of
that kind the wave function is continuous while its first derivative has the
following discontinuity:

lim
ε→0

(∂xψ(x + ε)− ∂xψ(x − ε)) = −2m

h̄2 V Lψ(0) .
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What are the possible energy levels?

Answer: The bound state wave function is

a e−
√

2mBx/h̄ for x > 0 and a e
√

2mBx/h̄ for x < 0

where the continuity condition for the wave function has been already imposed.

B = |E| is the absolute value of the energy (which is negative for a bound state).

The discontinuity condition on the first derivative leads to an equation for B which

has only one solution, B = mV 2L2/(2h̄2), thus indicating the existence of a single

bound state.

2.26. A particle of mass m moves in the following one-dimensional potential:

V (x) = v(αδ(x − L) + αδ(x + L)− 1

L
Θ(L2 − x2)) ,

where Θ is the step function, Θ(y) = 0 for y < 0 and Θ(y) = 1 for y > 0.
Constants are such that

2mvL

h̄2 =
(π

4

)2

.

For what values of α > 0 are there any bound states?

Answer: The potential is such that V (−x) = V (x): in this case the lowest en-
ergy level, if any, corresponds to an even wave function. We can thus limit the
discussion to the region x > 0, where we have ψ(x) = cos kx for x < L and

ψ(x) = ae−βx for x > L, with the constraint 0 < k <
√

2mv/(h̄2L) = π/(4L),

since β =
√

2mv/(h̄2L) − k2 must be real in order to have a bound state, hence
kL < π/4. Continuity and discontinuity constraints, respectively on ψ(x) and ψ′(x)
in x = L, give: tan kL = (β + 2mvα/h̄2)/k. Setting y ≡ kL, we have

tan y =

√
π2

16
− y2 + π2

16
α

y
.

The function on the left hand side grows from 0 to 1 in the interval 0 < y < π/4,

while the function on the right decreases from ∞ to απ/4 in the same interval.

Therefore an intersection (hence a bound state) exists only if α < 4/π.

2.27. An electron moves in a one-dimensional potential corresponding to a
square well of depth V = 0.1 eV and width L = 3 10−10 m. Show that in
these conditions there is only one bound state and compute its energy in the
thin well approximation, discussing also the validity of that limit.

Answer: There is one only bound state if the first odd state is absent. That
is true if y =

√
2mV L/(2h̄) < π/2, which is verified in our case since, using

m = 0.911 10−30 Kg, one obtains y � 0.243 < π/2.
Setting B ≡ −E, where E is the negative energy of the bound state, B is

obtained as a solution of
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tan

(
L
√

2m(V −B)

2h̄

)
=

√
B

V −B
.

The thin well limit corresponds to V → ∞ and L → 0 as the product V L is kept
constant. Neglecting B with respect to V we can write

tan

(√
2mV L2

2h̄

)
=

√
B

V
.

In the thin well limit V L2 → constant ·L → 0, hence we can replace the tangent by

its argument, obtaining finally B = mV 2L2/(2h̄2) � 0.59 10−2 eV, which coincides

with the result obtained in Problem 2.25. In this case the argument of the tangent

is y ∼ 0.24 and we have tan 0.24 � 0.245; therefore the exact result differs from that

obtained in the thin well approximation by roughly 4 %.

2.28. An electron moves in one dimension and is subject to forces correspond-
ing to a potential energy:

V (x) = V [−δ(x) + δ(x− L)] .

What are the conditions for the existence of a bound state and what is its
energy if L = 10−9 m and V = 2 10−29 J m ?

Answer: A solution of the Schrödinger equation corresponding to a binding en-
ergy B ≡ −E can be written as

ψ(x) = e
√

2mBx/h̄ for x < 0 ,

ψ(x) = ae
√

2mBx/h̄ + be−
√

2mBx/h̄ for 0 < x < L ,

ψ(x) = ce−
√

2mBx/h̄ for L < x .

Continuity and discontinuity constraints, respectively for the wave function and for
its derivative in x = 0 and x = L, give: a + b = 1 , a − b − 1 = −

√
2m/BV/h̄ ,

ae
√

8mBL/h̄ + b = c , ae
√

8mBL/h̄ − b + c = −c
√

2m/BV/h̄ .

The four equations are compatible if e
√

8mBL/h̄ = (1− 2Bh̄2

mV2 )−1, which has a

non-trivial solution B �= 0 for any L > 0 . Setting y =
√

2B/mh̄/V the compatibil-

ity condition reads e2mVLy/h̄2

= 1/(1− y2) . Using the values of L and V given in

the text one obtains e2mVL/h̄2 � 1, hence 2Bh̄2/(mV2) � 1 within a good approx-
imation, i.e. B � mV2/(2h̄2), which coincides with the result obtained in presence
of a single thin well. This approximation is indeed equivalent to the limit of a large

distance L (hence e2mVL/h̄2 � 1) between the two Dirac delta functions; it can be
easily verified that in the same limit one has b � 1 and a � 0, so that, in practice,
the state is localized around the attractive delta function in x = 0, which is the
binding part of the potential, and does not feel the presence of the other term in
the potential which is very far away.

As L is decreased, the binding energy lowers and the wave function amplitude,

hence the probability density, gets asymmetrically shifted on the left, until the bind-

ing energy vanishes in the limit L → 0. In practice, the positive delta function in
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x = L acts as a repulsive term which asymptotically extracts, as L → 0, the particle

from its thin well.

2.29. A particle of mass M = 10−26 Kg moves along the x axis under the
influence of an elastic force of constant k = 10−6 N/m. The particle is in its
ground state: compute its wave function and the mean value of x2, given by

〈x2〉 =

∫∞
−∞ dxx2|ψ(x)|2∫∞
−∞ dx|ψ(x)|2 .

Answer:

ψ(x) =
(

kM

π2h̄2

)1/8

e−
√

kMx2/2h̄ ; 〈x2〉 =
1

2

h̄√
kM

� 5 10−19m2 .

2.30. A particle of mass M = 10−25 Kg moves in a 3-dimensional isotropic
harmonic potential of elastic constant k = 10 N/m. How many states have
energy less than 2 10−2 eV?

Answer: Enx.ny,nz = h̄
√

k/M(3/2+nx+ny+nz). Therefore Enx.ny,nz < 2·10−2 eV

is equivalent to nx+ny+nz < 1.54, corresponding to 4 possible states, (nx, ny, nz) =

(0,0,0), (1,0,0), (0,1,0), (0,0,1).

2.31. A particle of mass M = 10−26 Kg moves in one dimension under the
influence of an elastic force of constant k = 10−6 N/m and of a constant force
F = 10−15 N acting in the positive x direction. Compute the wave function
of the ground state and the corresponding mean value of the coordinate x,
given by

〈x〉 =

∫∞
−∞ dxx|ψ(x)|2∫∞
−∞ dx|ψ(x)|2 .

Answer: As in the analogous classical case, the problem can be brought back to
a simple harmonic oscillator with the same mass and elastic constant by a simple
change of variable, y = x − F/K, which is equivalent to shifting the equilibrium
position of the oscillator. Hence the energy levels are the same as for the harmonic
oscillator and the wave function of the ground state is

ψ(x) =
(

kM

π2h̄2

)1/8

e−
√

kM
2h̄

(x−F/k)2 ,

while 〈x〉 = F/k = 10−9 m.

2.32. A particle of mass m = 10−30 Kg and kinetic energy equal to 50 eV hits
a square potential well of width L = 2 10−10 m and depth V = 1 eV. What
is the reflection coefficient computed up to the first non-vanishing order in V

2E ?
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Answer: Let us choose the square well endpoints in x = 0 and x = L and fix
the potential to zero outside the well. Let ψs, ψc and ψd be respectively the wave
functions for x < 0, 0 < x < L and x > L. If the particle comes from the left, then

ψs = ei
√

2mEx/h̄ + a e−i
√

2mEx/h̄, ψc = b ei
√

2m(E+V )x/h̄ + c e−i
√

2m(E+V )x/h̄ and

ψd = d ei
√

2mEx/h̄ where a and c are necessarily of order V/2E while b and d are
equal to 1 minus corrections of the same order. Indeed, as V → 0 the solution must
tend to a single plane wave. By applying the continuity constraints we obtain:

1 + a = b + c ,

1− a � b− c +
V

2E
,

be
i
√

2m(E+V )L

h̄ + c e−i
√

2m(E+V )L/h̄ � (b +
V

2E
)ei
√

2m(E+V )Lh̄ − c e−i
√

2m(E+V )L/h̄ ,

which are solved by a � V
4E

(e2i
√

2m(E+V )L/h̄ − 1) and

R =
V 2

4E2
sin2

(√
2m(E + V )L

h̄

)
� 0.96 10−4 .

2.33. A particle of mass m = 10−30 Kg is confined inside a line segment of
length L = 10−9 m with reflecting endpoints, which is centered around the
origin. In the middle of the line segment a thin repulsive potential barrier,
describable as V (x) = Wδ(x), acts on the particle, with W = 2 10−28 J m.
Compare the ground state of the particle with what found in absence of the
barrier.

Answer: Let us consider how the solutions of the Schrödinger equation in a line seg-
ment are influenced by the presence of the barrier. Odd solutions, contrary to even
ones, do not change since they vanish right in the middle of the segment, so that the
particle never feels the presence of the barrier. In order to discuss even solutions, let
us notice that they can be written, shifting the origin in the left end of the segment,
as ψs ∼ sin (

√
2mEx/h̄) for x < L/2 and ψd ∼ sin (

√
2mE(L− x)/h̄) for x > L/2.

Setting z ≡ √2mEL/(2h̄) the discontinuity in the wave function derivative in the
middle of the segment gives tan z = −z2h̄2/(mLW ) � −10−1 z. Hence we obtain,

for the ground state, E � 2h̄2

mL2 π2(1 − 2 10−1) � 2.75 10−19 J, slightly below the
first excited level.

Notice that, increasing the intensity of the repulsive barrier W from 0 to ∞, the

fundamental level grows from π2h̄2/(2mL2) to 2π2h̄2/(mL2), i.e. it is degenerate

with the first excited level in the W →∞ limit. There is no contradiction with the

expected non-degeneracy since, in that limit, the barrier acts as a perfectly reflecting

partition wall which separates the original line segment in two non-communicating

segments: the two degenerate lowest states (as well as all the other excited ones)

can thus be seen as two different superpositions (symmetric and antisymmetric) of

the ground states of each segment.

2.34. An electron beam corresponding to an electric current I = 10−12 A
hits, coming from the right, the potential step sketched in the figure. The
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potential energy diverges for x < 0 while it is −V = −10 eV for 0 < x < L
and 0 for x > L, with L = 10−11 m. The kinetic energy kinetic energy of the
electrons is Ek = 0.01 eV for x > L. Compute the electric charge density as
a function of x.

..........
V(x)

xL

Answer: There is complete reflection in x = 0, hence the current density is zero along
the whole axis and we can consider a real wave function. In particular we set ψ(x) =

a sin(
√

2mE(x−L)/h̄+φ) for x > L and ψ(x) = b sin(
√

2m(E + V )x/h̄) for 0 < x <

L. Continuity conditions read b sin(
√

2m(E + V )L/h̄) = a sin φ � b sin(
√

2mV L/h̄),

b cos(
√

2m(E + V )L/h̄) =
√

E/(E + V )a cos φ �
√

E/V a cos φ � b cos(
√

2mV L/h̄)

(notice that
√

2mV L/h̄ � 0.57 rad hence cos(
√

2mV L/h̄) � 0.85 ). That fixes√
E/V tan

(√
2mV L/h̄

)
� tan φ � φ and b = a

√
E/V / cos(

√
2mV L/h̄) , while the

incident current fixes the value of a, I = ea2
√

2E/m. Finally we can write, for the
charge density,

eρ = I
√

m

2E
sin2

(√
2mE

h̄
(x− L) + φ

)
for x > L and

eρ ∼ I

√
mE

2V 2
sin2

(√
2mE

h̄
x

)
for 0 < x < L.

2.35. Referring to the potential energy given in Problem 2.34, determine the
values of V for which there is one single bound state.

Answer: It can be easily realized that any possible bound state of the potential

well considered in the problem will coincide with one of the odd bound states of the

square well having the same depth and extending from −L to L. The condition for

the existence of a single bound state is therefore π/2 <
√

2mV L/h̄ < 3π/2 .

2.36. A ball of mass m = 0.05 Kg moves at a speed of 3 m/s and without
rolling towards a smooth barrier of thickness D = 10 cm and height H = 1 m.
Using the formula for the tunnel effect, give a rough estimate about the prob-
ability of the ball getting through the barrier.

Answer: The transmission coefficient is roughly

T ∼ exp

(
−2D

h̄

√
2m(mgH − mv2

2
)

)
= 10−1.3 1032

.

2.37. What is the quantum of energy for a simple pendulum of length l = 1 m
making small oscillations?
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Answer: In the limit of small oscillations the pendulum can be described as a

harmonic oscillator of frequency ν = 2πω = 2π
√

g/l, where g � 9.8 m/s is the

gravitational acceleration on the Earth surface. The energy quantum is therefore

hν = 3.1 10−34 J.

2.38. Compute the mean value of x2 in the first excited state of a harmonic
oscillator of elastic constant k and mass m.

Answer: The wave function of the first excited state is ψ1 ∝ x e−x2
√

km/(4h̄2),
hence

〈x2〉 =

∫∞
−∞ x4e−x2

√
km/h̄2

dx∫∞
−∞ x2e−x2

√
km/h̄2

dx
=

3

2

√
h̄2

km
.

2.39. A particle of mass M moves in a line segment with reflecting endpoints
placed at distance L. If the particle is in the first excited state (n = 2), what
is the mean quadratic deviation of the particle position from its average value,
i.e.

√〈x2〉 − 〈x〉2 ?

Answer: Setting the origin in the middle of the segment, the wave function is
ψ(x) =

√
2/L sin(2πx/L) inside the segment and vanishes outside. Obviously

〈x〉 = 0 by symmetry, while

〈x2〉 =
2

L

∫ L
2

− L
2

x2 sin2
(

2πx

L

)
dx = L2

(
1

12
− 1

8π2

)
whose square root gives the requested mean quadratic deviation.

2.40. An electron beam of energy E hits, coming from the left, the following
potential barrier: V (x) = Vδ(x) where V is tuned to h̄

√
2E/m. Compute the

probability density on both sides of the barrier.

Answer: The wave function can be set to eikx + a e−ikx for x < 0 and to b eikx for
x > 0, where k =

√
2mE/h̄. Continuity and discontinuity constraints for ψ and ψ′

in x = 0 lead to

a =
1

ikh̄2

mV − 1
=

1

i− 1
, b =

ikh̄2

mV
ikh̄2

mV − 1
=

1

i + 1
.

The probability density is therefore ρ = 1/2 for x > 0, while for x > 0 it is ρ =

3/2−√2 sin(2kx + π/4).

2.41. A particle moves in one dimension under the influence of the potential
given in Problem 2.34. Assuming that

√
2mV

L

h̄
=

π

2
+ δ , with δ � 1 ,

show that, at the first non-vanishing order in δ , one has B � V δ2, where
B = −E and E is the energy of the bound state. Compute the ratio of the
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probability of the particle being inside the well to that of being outside.

Answer: The depth of the potential is slightly above the minimum for having

at least one bound state (see the solution of Problem 2.36), therefore we expect

a small binding energy. In particular the equation for the bound state energy, which

can be derived by imposing the continuity constraints, is cot
(√

2m(V −B)L/h̄
)

=

−
√

B/(V −B). The particular choice of parameters implies B � V , so that

cot
(√

2m(V −B)L/h̄
)
� cot(π/2(1−B/(2V ))+ δ) � −δ +πB/(4V ) � −

√
B/V ,

hence B � V δ2. Therefore the wave function is well approximated by k sin (πx/2L)

inside the well and by ke−
√

2mB(x−L)/h̄ � ke−πδ(x−L)/2L outside, where k is a nor-

malization constant. The ratio of probabilities is πδ/2: the very small binding energy

is reflected in the large probability of finding the particle outside the well.

2.42. A particle of mass m = 10−30 Kg and kinetic energy E = 13.9 eV hits
a square potential barrier of width L = 10−10 m and height V = E. Compute
the reflection coefficient R.

Answer: Let us fix in x = 0 and in x = L the edges of the square poten-
tial barrier, and suppose the particle comes from the left. The wave function
is ψ(x) = eikx + a e−ikx for x < 0 and ψ(x) = d eikx for x > L, where
k =

√
2mE/h̄ � 2 1010 m−1. Instead for 0 ≤ x ≤ L the wave function satisfies

the differential equation ψ′′ = 0, which has the general integral ψ(x) = bx + c. The
continuity conditions for ψ and ψ′ in x = 0 and x = L read

1 + a = c ; ik (1− a) = b ; bL + c = d eikL ; b = ik d eikL .

Dividing last two equations and substituting the first two we get

a =
ikL

ikL− 2
; R = |a|2 =

k2L2

4 + k2L2
� 1

2
.

It is interesting to verify that the same result can be obtained by taking carefully

the limit E → V in equation (2.72).

2.43. A particle whose wave function is, for asymptotically large negative
times (that is −t� m/(h̄k0Δ)), a Gaussian wave packet

ψ(x, t) =
1√

(2π)3/2Δ

∫
dkei(kx−h̄k2t/(2m))e−(k−k0)2/(2Δ)2

with k0/Δ � 1, interacts in the origin through the potential V (x) = Vδ(x)
and its wave function splits into reflected and transmitted components. Con-
sidering values of the time for which the spreading of the packets can be
neglected, that is |t| � m/(h̄Δ2) (see Section 2.4), compute the transmitted
and reflected components of the wave packet.

Answer: The Gaussian wave packet has been studied in detail in Section 2.4, it
is therefore straightforward to check that, for large negative times, the solution that
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we are seeking is a wave packet centered in x = vt, with v = h̄k0/m, i.e. a packet
approaching the barrier from the left and hitting it at t � 0.

It has been shown in Section 2.5.2 (see also Problem 2.24) that the generic
solution of the time independent Schrödinger equation, obtained in the case of a
single plane wave eikx hitting the barrier from the left, is

ψk(x) = Θ(−x)[exp(ikx)− iκ/(k + iκ) exp(−ikx)] + Θ(x)k/(k + iκ) exp(ikx)

where Θ is the step function (Θ(x) = 0 for x < 0 and Θ(x) = 1 for x ≥ 0) and
κ = mV/h̄2.

The present problem consists in finding a solution of the time dependent
Schrödinger equation which, for asymptotically large negative times and x < 0,
must be a given superposition of progressive plane waves corresponding to the in-
coming wave packet. Given the linearity of the Schrödinger equation, the solution
must be a linear superposition of the generic solutions given above, with the same
coefficients of the incoming packet, i.e.

ψ(x, t) =
1√

(2π)3/2Δ

∫
dk ψk(x)e−ih̄k2t/(2m)e−(k−k0)2/(2Δ)2 .

This decomposes into two components for x < 0 and a single transmitted component
for x > 0.

The first, ingoing component on the negative semi-axis, which corresponds to
ψk(x) = exp(ikx), is a standard Gaussian packet which, as discussed above, crosses
the origin for t ∼ 0 and hence disappears for larger times. On the contrary, as
we shall show in while, the second, reflected component describes a packet moving
backward, which crosses the origin for t ∼ 0, hence appears as a part of the solution
for x < 0 for positive times (i.e. after reflection of the original packet), when it must
be taken into account. In much the same way we shall compute the transmitted
component, which is a packet moving forward and which appears on the positive
semi-axis for positive times. Now we work out the details, this can be done using
equation (2.52).

We represent the transmitted and reflected wave packets by

1√
(2π)3/2Δ

∫ ∞

−∞
dt exp(−FT/R(k, x, t))

FT (k, x, t) = (k − k0)
2/(2Δ)2 − i(kx− h̄k2t/(2m))− ln(k/(k + iκ))

FR(k, x, t) = (k − k0)
2/(2Δ)2 + i(kx + h̄k2t/(2m))− ln(−iκ/(k + iκ)) .

Then we have the equations:

∂kFT (k, x, t) = (k − k0)/Δ
2 − i(x− h̄tk/m + κ/(k(k + iκ))) = 0

∂kFR(k, x, t) = (k − k0)/Δ
2 + i(x + h̄tk/m− i/(k + iκ)) = 0 .

The equation for FT has three solutions: k1 ∼ k0, k2 ∼ 0 and k3 ∼ −iκ up to
corrections of order Δ2. The first solution has a second derivative of order 1/Δ2,
to be compared with the second derivatives of the other two solutions, which are
of order 1/Δ4, hence it is the dominant solution, in the same sense discussed in
Section 2.4 (see equation (2.52)), thus we concentrate on it. Setting again v = h̄k0/m
we have k1 = k0 + iΔ2(x− vt + κ/(k0(k0 + iκ))) + O(Δ4) and
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FT (k1, x, t) = FT (k0, x, t)− ∂2
kFT (k0, x, t)(k1 − k0)

2/2 =

−i(k0x− h̄k2
0t/(2m))− ln(k0/(k0 + iκ))+ [x− vt+κ/(k0(k0 + iκ))]2Δ2/2)+O(Δ4) .

Therefore we have a wave packet centered in x = vt − κ/(k2
0 + κ2). An analogous

analysis on the reflected packet gives:

FR(k1, x, t) = FR(k0, x, t)− ∂2
kFR(k0, x, t)(k1 − k0)

2/2 =

i(k0x + h̄k2
0t/(2m))− ln(−iκ/(k0 + iκ)) + (x + vt− i/(k0 + iκ))2Δ2/2) + O(Δ4) .

Now the packet is centered in x = −vt + κ/(k2
0 + κ2) .

The result is almost as anticipated, apart from the fact that the appearance of

the transmitted and reflected wave packets is delayed (advanced) with respect to the

time the incoming packet hits the potential barrier (well). For large, positive times

the particle is in a superposition of reflected and transmitted state, the probability of

finding it in one of the two states after a measurement of its position (i.e. the integral

of the probability density over the corresponding packets) is given approximately by

the reflection or transmission coefficients computed for k ∼ k0.

2.44. A particle of mass m moves in one dimension under the influence of the
potential

V (x) = V0Θ(x) − Vδ(x) .

If V = 3 10−29 J m and m = 10−30 Kg, identify the values of V0 for which
the particle has bound states. Assuming the existence of a bound state whose
binding energy is B � V0, compute the ratio of the probabilities for the par-
ticle to be found on the right and on the left-hand side of the origin.

Answer: The wave function of a bound state with energy −B would be

ψB(x) = N [Θ(−x) exp(
√

2mBx/h̄) + Θ(x) exp(−
√

2m(B + V0)x/h̄)]

where Θ is the step function, N is the normalization factor and the condition
√

B +√
B + V0 =

√
2mV/h̄ must be satisfied. Since

√
V0 ≤

√
B+

√
B + V0 < ∞ the above

condition has a solution provided
√

2mV/h̄ ≥ √
V0, hence for V0 ≤ 2mV2/h̄2 �

1.62 10−19 J � 1 eV. The probabilities for the particle to be found on the right and

on the left of the origin are respectively N2h̄/(2
√

2m(B + V0)) and N2h̄/(2
√

2mB),

their ratio for small B is
√

B/V0 �
√

2m/V0V/h̄− 1.

2.45. A particle of mass m is bound between two spherical perfectly reflect-
ing walls of radii R and R + Δ. The potential energy between the walls
is V0 = −h̄2π2/(2mΔ2). If the total energy of the particle cannot exceed
EM = 6h̄2/(2mR2) compute, in the Δ → 0 limit in which the particle is
bound on the sphere of radius R, the maximum possible value of its superfi-
cial probability density on the intersection point of the sphere with the positive
z axis.

Answer: In the Δ → 0 limit, the radial Schrödinger equation tends to the one-
dimensional Schrödinger equation of a particle between two reflecting walls with po-
tential energy between the walls equal to V̄ = −h̄2π2/(2mΔ2) + l(l + 1)h̄2/(2mR2)
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(see equation(2.177)). Therefore the possible energy values are En,l = (n2 −
1)h̄2π2/(2mΔ2) + l(l + 1)h̄2/(2mR2). Only the energies E1,l = l(l + 1)h̄2/(2mR2)
remain finite as Δ → 0. In spherical coordinates, the corresponding wave functions
are, in the Δ → 0 limit, Ψl,m =

√
2/(ΔR2) sin(π(r −R)/Δ)Yl,m(θ, φ).

The harmonic functions Yl,m with m �= 0 are proportional to powers of x±
(see equations (2.165) and (2.178)), hence they vanish on the z axis, therefore and

on account of the energy bound, among the possible solutions, we only consider

Ψl,0 for 0 ≤ l ≤ 2. Forgetting the radial dependence which, in the Δ → 0 limit

corresponds to a probability density equal to δ(r −R), these are Ψ0,0 = 1/(R
√

4π),

Ψ1,0 =
√

3/4π cos θ/R and Ψ2,0 =
√

5/16π (3 cos2 θ − 1)/R. The wave function of

the particle with the above constraints is written as the linear combination a0 Ψ0,0 +

a1 Ψ1,0 + a2 Ψ2,0, with the normalization condition |a0|2 + |a1|2 + |a2|2 = 1 . On

the positive z axis the wave function is 1/
√

4π[a0 +
√

3a1 +
√

5a2]/R2 . It is fairly

obvious that the maximum absolute value is reached when a0 = a1 = 0, hence the

maximum superficial probability density of the particle is 5/(4πR2). The result can

be generalized to the case in which different values of the angular momentum can be

reached, indeed it can be proved, considering equations (2.171), (2.172) and (2.173),

that |Ψl,0(θ = 0)|2 = (2l + 1)/(4πR2).

2.46. A particle of mass m moves in three dimensions under the influence of
the central potential V (r) = −h̄2α/(2mR) δ(r−R), with α positive. Compute
the values of α for which the particle has a bound state with non-zero angular
momentum.

Answer: For zero angular momentum (S-wave), the solution to the differential
equation for the radial wave function χ(r) defined in equation (2.178), satisfying the
regularity conditions in the origin and at infinity, is equivalent to the odd solution
for the one-dimensional double well potential given in Problem 2.47 (setting L = R),
hence χ< ∝ sinh(kr) for r < R and χ> ∝ exp(k(R− r)) for r > R, the bound state
energy being E = −h̄2k2/(2m) with k > 0 . We know, from Problem 2.47, that such
solution exists only if α > 1.

We consider now the P-wave case (l = 1). The solution satisfying the correct

regularity conditions can be obtained from that written in the S-wave case by ap-

plying the recursive equation (2.184). It is, up to an overall normalization factor,

χ< = sinh(kr)/(kr)− cosh(kr) for r < R and χ> = a exp(k(R− r))[1/(kr) + 1] for

r > R. The continuity conditions at r = R, written in terms of kR = x, are given by

sinh x/x−coshx = a(1+x)/x and cosh x/x−sinhx(1+x2)/x2+a(1+1/x+1/x2) =

α(sinh x/x2−cosh x/x) , from which we have tanh x = x(1+x−x2/α)/(1+x+x3/α) .

We know that the graphs of both sides of this equation cross at most once for x > 0

since we have seen in the one-dimensional case, e.g. in Section (2.6), that a thin po-

tential well has at most a single bound state. It remains to be verified if they cross.

The graphs are tangent to each other in the origin and, for x →∞, the left-hand side

tends to +1 and the right-hand side to −1, therefore if the left-hand side is steeper

in the origin the graphs do not cross, otherwise they cross once and there is a bound

state. Considering the Taylor expansions of both sides we have tanh x � x − x3/3

and x(1 + x − x2/α)/(1 + x + x3/α) � x − x3/α . The conclusion is that there is

a bound state if α > 3. It should be clear that if no bound state can be found for
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l = 1 (i.e. α < 3), none will be found for l > 1 as well, because of the increased

centrifugal potential.

2.47. A particle of mass m moves along the x axis under the influence of the
double well potential:

V (x) = −V [δ(x + L) + δ(x− L)] ,

with V > 0 . Study the solutions of the stationary Schrödinger equation. Since
the potential is even under x reflection, the solutions are either even or odd.
Show that in the even case there is a single solution for any value of L, dis-
cuss the range of values of the binding energy B and, in particular, how B
depends on L for small L, i.e. when α(L) ≡ 2mVL/h̄2 � 1. Compute the
“force” between the two wells in this limit. In the odd solution case, compute
the range of α(L) for which there are bound solutions and compare the even
with the odd binding energies.

Answer: Starting from the even case, we write the solution between the wells
as ψI(x) = cosh kx, with B = h̄2k2/(2m), and the external solution as ψE(x) =
a exp(−k(|x| − L)). The continuity conditions on the wells give: a = cosh(kL) and
k(sinh(kL)+a) = α(L) cosh(kL)/L. Setting kL = y we get the transcendental equa-
tion tanh y = α(L)/y−1. This equation has a single solution y(α(L)), corresponding
to a single bound state, for any positive value of α(L). In particular for small α(L)
also y(α(L)) is small and the equation is approximated by y − y3/3 = α(L)/y − 1
which, up to the second order in α(L), has the positive y solution y(α(L)) =
α(L) − α2(L). The corresponding binding energy is computed noticing that B =
h̄2y2/(2mL2), from which we have B = 2mV2/h̄2 − 8m2V3L/h̄4 + O(α4(L)). This
implies that there is an attractive force between the two wells which, in the small
α(L) limit, is equal to F = 8m2V3/h̄4, furthermore B ≤ Bmax = 2mV2/h̄2 ; notice
that Bmax is the binding energy for a single well −2Vδ(x), which is indeed the limit
of V (x) as L→ 0. For large α(L) also y(α(L)) is large and the transcendental equa-
tion is well approximated by 1 = α(L)/y−1, which gives y(α(L)) = α(L)/2, so that
the binding energy reaches its minimum value Bmin = mV2/(2h̄2), which coincides
with the binding energy of a single well.

In the odd case the solution between the wells becomes ψI(x) = sinh kx while
the external one does not change, therefore the transcendental equation becomes
tanh y = y/(α(L)− y). Here the right-hand side is concave downward and positive,
while the left-hand side is concave upward and positive for 0 < y < α(L), it has a
singularity in α(L) and it is negative beyond the singularity. Therefore the equation
has a solution for 0 < y < α if, and only if, the left-hand side is steeper in the origin
than the right-hand side, that is if α(L) > 1. For large values of α(L), y(α(L)) tends
to α(L)/2 from below; notice that in the even case the same limit is reached from
above.

In conclusion, for any value of the distance between the two wells, there is an

even solution, whose binding energy is larger than that of a single well; on the

contrary an odd solution exists only if L > h̄2/(2mV), with a binding energy lower

than that of a single well. In the limit of large separation between the two wells,

both the odd and the even level approach the energy of a single well, one from

above and the other from below, i.e. we get asymptotically two degenerate levels.
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The presence of two slightly splitted levels (the even ground state and the odd first

excited state) is a phenemenon common to other symmetric double well potentials;

an example is given by the Ammonia molecule (NH3), in which the Nitrogen atom

has two symmetric equilibrium positions on both sides of the plane formed by the

three Hydrogen atoms.

2.48. A particle of mass m is constrained to move on a plane surface where it
is subject to an isotropic harmonic potential of angular frequency ω. Which
are the stationary states which are found, for the first excited level, by separa-
tion of variables in Cartesian coordinates? Show that the probability current
density for such states vanishes. Are there any stationary states belonging
to the same level having a non-zero current density? Find those having the
maximum possible current density and give a physical interpretation for them.

Answer: For the first excited level, E1 = 2h̄ω, the two following stationary states
are found in Cartesian coordinates (see equations (2.128) and (2.125)):

ψ1,0 =

√
2α2x√

π
e−α2(x2+y2)/2 ; ψ0,1 =

√
2 α2y√

π
e−α2(x2+y2)/2

where α =
√

mω/h̄. In both cases the current density

J = − ih̄

2m
(ψ∗

∇ψ − ψ∇ψ∗) =
h̄

m
Im (ψ∗

∇ψ)

vanishes, since the wave functions are real. However it is possible to find different
stationary states, corresponding to linear combinations of the two states above,
having a non-zero current. Indeed for the most general state, which up to an overall
irrelevant phase factor can be written as

ψ = aψ1,0 +
√

1− a2eiφψ0,1

where a ∈ [0, 1] is a real parameter, the probability current density is

J =
2h̄α4

mπ
e−α2(x2+y2) a

√
1− a2 sin φ j

where (jx, jy) = (−y, x). The current field is independent, up to an overall factor,
of the particular state chosen and describes a circular flow around the origin, hence
in general a state with a non-zero average angular momentum; moreover ∇ · J = 0,
as expected for a stationary state. The current vanishes for a = 0, 1 or φ = 0, π and
is maximum for a = 1/

√
2 and φ = ±π/2, corresponding to the states:

ψ± =
1√
2

(ψ1,0 ± iψ0,1) =
α2

√
π

e−α2(x2+y2)/2(x± iy) =
α2

√
π

e−α2r2/2x±

where r2 = x2 + y2, which are easily recognized as the states having a well defined

angular momentum L = ±h̄ (compare for instance with equation (2.150)).
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Introduction to the Statistical Theory

of Matter

In Chapter 2 we have discussed the existence and the order of magnitude
of quantum effects, showing in particular their importance for microscopic
physics. We have seen that quantum effects are relevant for electrons at ener-
gies of the order of the electron-volt, while for the dynamics of atoms in crys-
tals, which have masses three or four order of magnitudes larger, significant
effects appear at considerably lower energies, corresponding to low tempera-
tures. Hence, in order to study these effects, a proper theoretical framework is
needed for describing systems made up of particles at thermal equilibrium and
for deducing their thermodynamical properties from the (quantum) nature of
their states.

Boltzmann identified the thermal contact among systems as a series of
shortly lasting and random interactions with limited energy exchange. These
interactions can be considered as collisions among components of two differ-
ent systems taking place at the surface of the systems themselves. Collisions
generate sudden transitions among the possible states of motion for the parts
involved. The sequence of collision processes is therefore analogous to a series
of dice casts by which subsequent states of motion are chosen by drawing lots.

It is clear that in these conditions it is not sensible to study the time evo-
lution of the system, since that is nothing but a random succession of states of
motion. Instead it makes sense to study the distribution of states among those
accessible to the system, i.e. the number of times a particular state occurs in
N different observations. In case of completely random transitions among all
the possible states, the above number is independent of the particular state
considered and equal to the number of observations N divided by the total
number of possible states. In place of the distribution of results of subsequent
observations we can think of the distribution of the probability that the system
be in a given state: under the same hypothesis of complete randomness, the
probability distribution is independent of the state and equal to the inverse
of the total number of accessible states.

However the problem is more complicated if we try to take energy conser-
vation into account. Although the energy exchanged in a typical microscopic
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collision is very small, the global amount of energy (heat) transferred in a great
number of interactions can be macroscopically relevant; on the other hand,
the total energy of all interacting macroscopic systems must be constant.

The american physicist J. Willard Gibbs proposed a method to evaluate
the probability distribution for the various possible states in the case of ther-
mal equilibrium1. His method is based on the following points.

1) Thermal equilibrium is independent of the nature of the heat reservoir,
which must be identified with a system having infinite thermal capacity (that
is a possible enunciation of the so-called zero-th principle of thermodynamics).
According to Gibbs, the heat reservoir is a set of N systems, identical to
the one under consideration, which are placed in thermal contact. N is so
great that each heat (energy) exchange between the system and the reservoir,
being distributed among all different constituent systems, does not alter their
average energy content, hence their thermodynamical state.

2) Gibbs assumed transitions to be induced by completely random colli-
sions. Instead of following the result of a long series of random transitions
among states, thus extracting the probability distribution by averaging over
time evolution histories, Gibbs proposed to consider a large number of si-
multaneous draws and to take the average over them. That is analogous to
drawing a large number of dice simultaneously instead of a single die for a
large number of times: time averages are substituted by ensemble averages.
Since in Gibbs scheme the system–reservoir pair (Macrosystem) can be iden-
tified with the N +1 identical systems in thermal contact and in equilibrium,
if at any time the distribution of the states occupied by the various systems is
measured, one has automatically an average over the ensemble and the occu-
pation probability for the possible states of a single system can be deduced.
On the other hand, computing the ensemble distribution does not require the
knowledge of the state of each single system, but instead that of the number
of systems in each possible state.

3) The macrosystem is isolated and internal collisions induce random
changes of its state. However, all possible macrosystem states with the same
total energy are assumed to be equally probable. That clearly implies that the
probability associated to a given distribution of the N + 1 systems is directly
proportional to the number of states of the macrosystem realizing the given
distribution: this number is usually called multiplicity. If i is the index distin-
guishing all possible system states, any distribution is fixed by a succession
of integers {Ni}, where Ni is the number of systems occupying state i. It is
easy to verify that the multiplicity M is given by

1 Notice that the states considered by Gibbs in the XIX century were small cells
in the space of states of motion (the phase space) of the system, while we shall
consider quantum states corresponding to independent solutions of the stationary
Schrödinger equation for the system. This roughly corresponds to choosing the
volume of Gibbs cells of the order of magnitude of hN , where N is the number
of degrees of freedom of the system.
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M({Ni}) =
N !∏
i Ni!

, (3.1)

with the obvious constraint ∑
i

Ni = N . (3.2)

4) The accessibility criterion for states is solely related to their energy
which, due to the limited energy exchange in collision processes, is reduced
to the sum of the energies of the constituent systems. Stated otherwise, if Ei

is the energy of a single constituent system when it is in state i, disregarding
the interaction energy between systems, the total energy of the macrosystem
is identified with:

Etot =
∑

i

EiNi ≡ NU . (3.3)

Thus U can be identified with the average energy of the constituent systems:
it characterizes the thermodynamical state of the reservoir and must therefore
be related to its temperature in some way to be determined by computations.

5) Gibbs identified the probability of the considered system being in state
i with:

pi =
N̄i

N , (3.4)

where the distribution {N̄i} is the one having maximum multiplicity among
all possible distributions:

M({N̄i}) ≥M({Ni}) ∀ {Ni} ,

i.e. that is realized by the largest number of states of the macrosystem. We
call pi the occupation probability of state i.

The identification made by Gibbs is justified by the fact that the multiplic-
ity function has only one sharp peak in correspondence of its maximum, whose
width (ΔM/M) vanishes in the limit of an ideal reservoir, i.e. as N → ∞.
Later on we shall discuss a very simple example, even if not very significant
from the physical point of view, corresponding to a system with only three
possible states, so that the multiplicity M, given the two constraints in (3.2)
and (3.3), will be a function of a single variable, thus allowing an easy com-
putation of the width of the peak.

6) The analysis of thermodynamical equilibrium described above can be
extended to the case in which also the number of particles in each system
is variable: not only energy transfer by collisions can take place at the sur-
faces of the systems, but also exchange of particles of various species (atoms,
molecules, electrons, ions and so on). In this case the various possible states of
the system are characterized not only by their energy but also by the number

of particles of each considered species. We will indicate by n
(s)
i the number of

particles belonging to species s and present in state i; therefore, besides the
energy Ei, there will be as many fixed quantities as the number of possible
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species characterizing each possible state of the system. The distribution of
states in the macrosystem, {Ni}, will then be subject to further constraints,
besides (3.2) and (3.3), related to the conservation of the total number of
particles for each species, namely∑

i

n
(s)
i Ni = n̄(s)N (3.5)

for each s. The kind of thermodynamical equilibrium described in this case is
very different from the previous one. While in the first case equilibrium cor-
responds to the system and reservoir having the same temperature (T1 = T2),
in the second case also Gibbs potential g(s) will be equal, for each con-
strained single particle species separately. In place of g(s) it is usual to consider
the quantity known as chemical potential, defined as μ(s) ≡ g(s)/NA, where
NA = 6.02 1023 is Avogadro’s number.

The distributions corresponding to the two different kinds of equilibrium
are named differently. For a purely thermal equilibrium we speak of Canoni-

cal Distribution, while when considering also particle number equilibrium we
speak of Grand Canonical Distribution. We will start by studying simple sys-
tems by means of the Canonical Distribution and will then make use of the
Grand Canonical Distribution for the case of perfect quantum gasses.

As the simplest possible systems we shall consider in particular an isotropic
three-dimensional harmonic oscillator (Einstein’s crystal) and a particle con-
fined in a box with reflecting walls. Let us briefly recall the nature of the
states for the two systems.

Einstein’s crystal

In this model atoms do not exchange forces among themselves but in rare
collisions, whose nature is not well specified and whose only role is that of
assuring thermal equilibrium. Atoms are instead attracted by elastic forces
towards fixed points corresponding to the vertices of a crystal lattice.

The attraction point for the generic atom is identified by the coordinates
(mxa, mya, mza), where mx, my, mz are relative integer numbers with |mi|a <
L/2: L is the linear size and a is the spacing of the crystal lattice, which is
assumed to be cubic. To summarize, each atom corresponds to a vector m of
components mx, my, mz.

Hence Einstein’s crystal is equivalent to a large number of isotropic har-
monic oscillators and can be identified with the macrosystem itself. According
to the analysis of the harmonic oscillator made in previous Chapter, the mi-

croscopic quantum state of the crystal is characterized by three non-negative
integer numbers (nx,m, ny,m, nz,m) for every vertex (m). The corresponding
energy level is given by

Enx,m,ny,m,nz,m
=
∑
m

h̄ ω

(
nx,m + ny,m + nz,m +

3

2

)
. (3.6)
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It is clear that several different states correspond to the same energy level:
following the same notation as in Chapter 2, they are called degenerate.

In our analysis of the harmonic oscillator we have seen that states described
as above correspond to solutions of the stationary Schrödinger equation, i.e. to
wave functions depending on time through the phase factor e−iEt/h̄. There-
fore the state of the macrosystem would not change in absence of further
interactions among the various oscillators, and the statistical analysis would
make no sense. If we instead admit the existence of rare random collisions
among the oscillators leading to small energy exchanges, then the state of the
macrosystem evolves while its total energy stays constant.

The particle in a box with reflecting walls

In this case the reservoir is made up of N different boxes, each containing
one particle. Energy is transferred from one box to another by an unspecified
collisional mechanism acting through the walls of the boxes. We have seen in
previous Chapter that the quantum states of a particle in a box are described
by three positive integer numbers (kx, ky, kz), which are related to the wave
number components of the particle and correspond to an energy

Ek =
h̄2π2

2mL2
[k2

x + k2
y + k2

z ] . (3.7)

3.1 Thermal Equilibrium by Gibbs’ Method

Following Gibbs’ description given above, let us consider a system whose states
are enumerated by an index i and have energy Ei. We are interested in the
distribution which maximizes the multiplicity M defined in (3.1) when the
constraints in (3.2) and (3.3) are taken into account. Since M is always posi-
tive, in place of it we can maximize its logarithm

lnM({Ni}) = lnN !−
∑

i

ln Ni! . (3.8)

If N is very large, thus approaching the so-called Thermodynamical Limit

corresponding to an ideal reservoir, and if distributions corresponding to neg-
ligible multiplicity are excluded, we can assume that all Ni’s get large as well.
In these conditions we are allowed to replace factorials by Stirling formula:

ln N ! � N (lnN − 1) . (3.9)

If we set Ni ≡ Nxi, then the logarithm of the multiplicity is approximately

lnM({Ni}) � −N
∑

i

xi(lnxi − 1) , (3.10)

and the constraints in (3.2) and (3.3) are rewritten as:
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i

xi = 1 ,

∑
i

Eixi = U . (3.11)

In order to look for the maximum of expression (3.10) in presence of the con-
straints (3.11), it is convenient to apply the method of Lagrange’s multipliers.

Let us remind that the stationary points of the function F (x1, ..., xn) in
presence of the constraints: Gj(x1, ..., xn) = 0, with j = 1, ..., k and k < n,
are solutions of the following system of equations:

∂

∂xi

⎡
⎣F (x1, ..., xn) +

k∑
j=1

λjGj(x1, ..., xn)

⎤
⎦ = 0 , i = 1, ..., n ,

and of course of the constraints themselves. Therefore we have n+k equations
in n+k variables xi, i = 1, ..., n, and λj , j = 1, ..., k. In the generic case, both
the unknown variables xi and the multipliers λj will be determined univocally.
In our case the system reads:

∂

∂xi

⎡
⎣lnM− βN (

∑
j

Ejxj − U) + αN (
∑

j

xj − 1)

⎤
⎦

= −N ∂

∂xi

∑
j

[xj(ln xj − 1) + βEjxj − αxj ]

= −N [lnxi + βEi − α] = 0 (3.12)

where −β and α are the Lagrange multipliers which can be computed by
making use of (3.11).

Taking into account (3.4) and the discussion given in the introduction to
this Chapter, we can identify the variables xi solving system (3.12) with the
occupation probabilities pi in the Canonical Distribution, thus obtaining

ln pi + 1 + βEi − α = 0 , (3.13)

hence
pi = e−1−βEi+α ≡ k e−βEi , (3.14)

where β must necessarily be positive in order that the sums in (3.11) be
convergent. The constraints give:

pi =
e−βEi∑
j e−βEj

= − 1

β

d

dEi
ln
∑

j

e−βEj ≡ − 1

β

d

dEi
ln Z ,

U =
∑

i

Eipi = − d

dβ
ln
∑

j

e−βEj ≡ − d

dβ
ln Z , (3.15)
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where we have introduced the function

Z ≡
∑

j

e−βEj , (3.16)

which is known as the partition function.
The second of equations (3.15) expresses the relation between the Lagrange

multiplier β and the average energy U , hence implicitly between β and the
equilibrium temperature. It can be easily realized that in fact β is a universal
function of the temperature, which is independent of the particular system
under consideration.

To show that, let us consider the case in which each component system
S can be actually described in terms of two independent systems s and s′,
whose possible states are indicated by the indices i and a corresponding to
energies ei and εa. The states of S are therefore described by the pair (a, i)
corresponding to the energy:

Ea,i = εa + ei .

If we give the distribution in terms of the variables xa,i ≡ Na,i/N and we
repeat previous analysis, we end up with searching for the maximum of

lnM({Na,i}) � −N
∑
b,j

xb,j(lnxb,j − 1) , (3.17)

constrained by: ∑
b,j

xb,j = 1 ,

∑
b,j

(εb + ej)xb,j = U . (3.18)

Following previous analysis we finally find:

pa,i = − 1

β

d

dEa,i
ln Z ,

U = − d

dβ
ln Z , (3.19)

but Z is now given by:

Z =
∑
b,j

e−β(εb+ej) =
∑

b

∑
j

e−βεbe−βej =
∑

b

e−βεb

∑
j

e−βej = ZsZs′ (3.20)

so that the occupation probability factorizes as follows:

pa,i =
e−β(εa+ei)

Z
=

e−βεa

Zs

e−βei

Zs′
= pa pi .
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We have therefore learned that the two systems have independent distribu-
tions, but corresponding to the same value of β: that is a direct consequence
of having written a single constraint on the total energy (leading to a single
Lagrange multiplier β linked to energy conservation), and on its turn this is an
implicit way of stating that the two systems are in contact with the same heat
reservoir, i.e. that they have the same temperature: hence we conclude that
β is a universal function of the temperature, β = β(T ). We shall explicitly
exploit the fact that β(T ) is independent of the system under consideration,
by finding its exact form through the application of Gibbs method to systems
as simple as possible.

3.1.1 Einstein’s Crystal

Let us consider a little cube with an edge of length L and, following Gibbs
method, let us put it in thermal contact with a great (infinite) number of
similar little cubes, thus building an infinite crystal corresponding to the
macrosystem, which is therefore imagined as divided into many little cubes.
Actually, since by hypothesis single atoms do not interact with each other but
in very rare thermalizing collisions, we can consider the little cube so small as
to contain a single atom, which is then identified with an isotropic harmonic
oscillator: we shall obtain the occupation probability of its microscopic states
at equilibrium and evidently the properties of a larger cube can be deduced
by combining those of the single atoms independently.

We recall that the microscopic states of the oscillator are associated with
a vector n having integer non-negative components, the corresponding energy
level being given in (2.127). We can then easily compute the partition function
of the single oscillator:

Zo =

∞∑
nx=0

∞∑
ny=0

∞∑
nz=0

e−βh̄ω(nx+ny+nz+3/2) = e−3βh̄ω/2

[ ∞∑
n=0

(
e−βh̄ω

)n

]3

=

[
e−βh̄ω/2

1− e−βh̄ω

]3

=

[
eβh̄ω/2

eβh̄ω − 1

]3

. (3.21)

The average energy is then:

U = − ∂

∂β
ln Zo = −3

∂

∂β
ln

eβh̄ω/2

eβh̄ω − 1
=

3h̄ω

2

(
eβh̄ω + 1

eβh̄ω − 1

)
. (3.22)

Approaching the classical limit, in which h̄ → 0, this result gives direct in-
formation on β. Indeed in the classical limit Dulong–Petit’s law must hold,
stating that U = 3kT where k is Boltzmann’s constant. Instead, since
eβh̄ω � 1 + βh̄ω as h̄ → 0, our formula tells us that in the classical limit
we have U � 3/β, which is also the result we would have obtained by directly
applying Gibbs method to a classical harmonic oscillator (see Problem 3.12).
Therefore we must set



3.1 Thermal Equilibrium by Gibbs’ Method 127

β =
1

kT
.

This result will be confirmed later by studying the statistical thermodynamics
of perfect gasses. The specific heat, defined as

C =
∂U

∂T
,

can then be computed through (3.22):

C =
∂β

∂T

∂U

∂β
= − 1

kT 2

3

2
h̄2ω2eβh̄ω

[
1

eβh̄ω − 1
− eβh̄ω + 1

(eβh̄ω − 1)
2

]

=
3h̄2ω2

kT 2

eh̄ω/kT(
eh̄ω/kT − 1

)2 . (3.23)

Setting x = kT/h̄ω, the behavior of the atomic specific heat is shown in
Fig. 3.1. It is clearly visible that when x ≥ 1 Dulong–Petit’s law is repro-
duced within a very good approximation. The importance of Einstein’s model
consists in having given the first qualitative explanation of the violations of
the same law at low temperatures, in agreement with experimental measure-
ments showing atomic specific heats systematically below 3k. Einstein was
the first showing that the specific heat vanishes at low temperatures, even
if failing in predicting the exact behavior: that is cubic in T in insulators
and linear in conductors (if the superconducting transition is not taken into
account), while Einstein’s model predicts C vanishing like e−h̄ω/kT . The dif-
ferent behaviour can be explained, in the insulator case, through the fact that
the hypothesis of single atoms being independent of each other, which is at
the basis of Einstein’s model, is far from being realistic. As a matter of fact,
atoms move under the influence of forces exerted by nearby atoms, so that
the crystal lattice itself is elastic and not rigid, as assumed in the model. In
the case of conductors, instead, the linear behavior is due to electrons in the
conducting band.

Notwithstanding the wrong quantitative prediction, Einstein’s model fur-
nishes the correct qualitative interpretation for the vanishing of the specific
heat as T → 0. Since typical thermal energy exchanges are of the order of kT
and since the system can only exchange quanta of energy equal to h̄ω, we infer
that if kT � h̄ω then quantum effects suppress the energy exchange between
the system and the reservoir: the system cannot absorb any energy as the
temperature is increased starting from zero, hence its specific heat vanishes.
Notice also that quantum effects disappear as kT � h̄ω, when the typical
energy exchange is much larger then the energy level spacing of the harmonic
oscillator: energy quantization is not visible any more and the system behaves
as if it were a classical oscillator.

Therefore we learn whether quantum effects are important or not from the
comparison between the quantum energy scale of the system and the thermal
energy scale, hence from the parameter h̄ω/kT .
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Fig. 3.1. A plot of the atomic specific heat in Einstein’s model in k units as a func-
tion of x = h̄ω/kT , showing the vanishing of the specific heat at low temperatures
and its asymptotic agreement with Dulong–Petit’s value 3k

3.1.2 The Particle in a Box with Reflecting Walls

In this case Gibbs reservoir is made up of N boxes of size L. The state of the
particle in the box is specified by a vector with positive integer components
kx, ky, kz corresponding to the energy given in (3.7). The partition function
of the system is therefore given by

Z =

∞∑
kx=1

∞∑
ky=1

∞∑
kz=1

e−β h̄2π2

2mL2 (k2
x+k2

y+k2
z) =

( ∞∑
k=1

e−β h̄2π2

2mL2 k2

)3

. (3.24)

For large values of β, hence for small temperatures, we have:

Z �
(

e−β h̄2π2

2mL2

)3

, (3.25)

because the first term in the series on the right hand side of (3.24) dominates
over the others. Instead for large temperatures, noticing that the quantity
which is summed up in (3.24) changes very slowly as a function of k, we can
replace the sum by an integral:

Z =

( ∞∑
k=1

e−β h̄2π2

2mL2 k2

)3

�
(∫ ∞

0

dk e−β h̄2π2

2mL2 k2

)3

=

(
2mL2

βπ2h̄2

) 3
2
(∫ ∞

0

dxe−x2

)3

=

(
m

2βπ

) 3
2 L3

h̄3 =

(
m

2βπh̄2

) 3
2

V . (3.26)
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We conclude that while at low temperatures (β h̄2π2

2mL2 � 1) the mean energy
tends to

U → − d

dβ

(
−3β

h̄2π2

2mL2

)
= 3

h̄2π2

2mL2
, (3.27)

i.e. to the energy of the ground state of the system, at high temperatures

(β h̄2π2

2mL2 � 1) we have

U → − d

dβ

[
ln V +

3

2

(
ln m− ln β − ln(2πh̄2)

)]
=

3

2β
=

3

2
kT . (3.28)

This confirms that β = 1
kT , since the system under consideration corresponds

to a perfect gas containing a single particle, whose mean energy in the classical
limit is precisely 3kT/2, if T is the absolute temperature.

3.2 The Pressure and the Equation of State

It is well known that the equation of state for a homogeneous and isotropic
system fixes a relation among the pressure, the volume and the temperature
of the same system when it is at thermal equilibrium. We shall discuss now
how the pressure of the system can be computed once the distribution over
its states is known.

The starting point for the computation of the pressure is a theorem which
is valid both in classical and quantum mechanics and is known as the adiabatic

theorem. In the quantum version the theorem makes reference to a system de-
fined by parameters which change very slowly in time (where it is understood
that a change in the parameters may also change the energy levels of the sys-
tem) and asserts that in these conditions the system maintains its quantum
numbers unchanged. What is still unspecified in the enunciation above is what
is the meaning of slow, i.e. with respect to which time scale. We shall clarify
that by an example.

Let us consider a particle of mass M moving in a one-dimensional seg-
ment of length L with reflecting endpoints. Suppose the particle is in the n-th
quantum state corresponding to the energy En = h̄2n2π2/(2ML2) (see equa-
tion (2.99)) and that we slowly reduce the distance L, where slowly means
that |δL|/L � 1 in a time interval of the order of h̄/ΔEn, where ΔEn is
the energy difference between two successive levels. In this case the adiabatic
theorem applies and states that the particle keeps staying in the n-th level as
L is changed. That of course means that the energy of the particle increases
as we bring the two endpoints closer to each other, δEn = (∂En/∂L)δL, and
we can interpret this energy variation as the work that must be done to move
them. On the other hand, assuming the endpoints to be practically massless,
in order to move them slowly we must exactly balance the force exerted on
them by the presence of the particle inside, which is the analogous of the
pressure in the one-dimensional case. Therefore we obtain the following force:
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F (n, L) = −dEn(L)

dL
=

h̄2n2π2

ML3
. (3.29)

If we now consider the three-dimensional case of the particle in a box of volume
V = L3, for which, according to (2.103), we have:

En(V ) =
h̄2|n|2π2

2ML2
=

h̄2|n|2π2

2MV
2
3

, (3.30)

we can generalize (3.29) replacing the force by the pressure:

P (k, V ) = −dEk(V )

dV
= − 1

3L2

dEk

dL
=

2

3

Ek(V )

V
. (3.31)

Our choice to consider the pressure P instead of the force is dictated by
our intention of treating the system without making explicit reference to the
specific orientation of the cubic box. The force is equally exerted on all the
walls of the box and is proportional to the area of each box, the pressure being
the coefficient of proportionality.

Having learned how to compute the pressure when the system is in one
particular quantum state, we notice that at thermal equilibrium, being the
i-th state occupied with the probability pi given in (3.15), the pressure can be
computed by averaging that obtained for the single state over the Canonical
Distribution, thus obtaining:

P = − 1

Z

∑
i

e−βEi(V ) ∂Ei

∂V
. (3.32)

In the case of a particle in a cubic box, using the result of (3.31), we can write:

P =
2

3V

∞∑
kx,ky,kz=0

e−βEk(V )

Z
Ek =

2U

3V
, (3.33)

which represents the equation of state of our system. In the high temperature
limit, taking into account (3.28), we easily obtain

P =
kT

V
, (3.34)

which coincides with the equation of state of a classical perfect gas made up
of a single atom in a volume V .

Starting from the definition of the partition function Z in (3.16), we can
translate (3.32) into a formula of general validity:

P =
1

β

∂ ln Z

∂V
. (3.35)
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3.3 A Three Level System

In order to further illustrate Gibbs method and in particular to verify what
already stated about the behavior of the multiplicity function in the limit of an
ideal reservoir,N →∞ (i.e. that it has only one sharp peak in correspondence
of its maximum whose width vanishes in that limit), let us consider a very
simple system characterized by three energy levels E1 = 0, E2 = ε and E3 =
2ε, each corresponding to a single microscopic state. Let U be the total energy
of the macrosystem containing N copies of the system; it is obvious that
U ≤ 2N ε. The statistical distribution is fixed by giving the number of copies in
each microscopic state, i.e. by three non-negative integer numbers N1, N2, N3

constrained by:
N1 + N2 + N3 = N , (3.36)

and by:
N2ε + 2N3ε = U . (3.37)

the multiplicity of the distribution is

M(Ni) ≡
N !

N1!N2!N3!
. (3.38)

The simplicity of the model lies in the fact that, due to the constraints, there is
actually only one free variable among N1, N2 and N3 on which the distribution
is dependent. In particular we choose N3 and parametrize it as

N3 = xN .

Solving the constraints given above we have:

N2 =
U
ε
− 2xN ≡ (u− 2x)N ,

where the quantity u ≡ U/(εN ) has been introduced, which is proportional
to the mean energy of the copies U = uε, and:

N1 = (1− u + x)N .

The fact that the occupation numbers Ni are non-negative integers implies
that x must be greater than the maximum between 0 and u−1, and less than
u/2. Notice also that if u > 1 then N3 > N1. We must exclude this possibility
since, as it is clear from the expression of the Canonical Distribution in (3.15),
at thermodynamical equilibrium occupation numbers must decrease as the
energy increases. There are however cases, like for instance those encountered
in laser physics, in which the distributions are really reversed (i.e. the most
populated levels are those having the highest energies), but they correspond
to situations which are not at thermal equilibrium.

In the thermodynamical limit, N → ∞, we can also say, neglecting distri-
butions with small multiplicities, that each occupation number Ni becomes
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very large, so that we can rewrite factorials by using Stirling formula (3.9),
and the expression giving the multiplicity as:

M(x) � c
NN

(xN )xN ((u− 2x)N )(u−2x)N ((1 − u + x)N )(1−u+x)N

= c
(
x−x(u− 2x)−(u−2x)(1 − u + x)−(1−u+x)

)N
, (3.39)

where c is a constant, which will not enter our considerations.
The important point in our analysis is that the expression in brackets in

(3.39) is positive in the allowed range 0 ≤ x ≤ u/2 and has a single maximum,
which is strictly inside that range. To find its position we can therefore study,
in place of M, its logarithm

lnM(x) � −N (x ln x + (u− 2x) ln(u − 2x) + (1 − u + x) ln(1− u + x)) ,

whose derivative is

(lnM(x))′ = −N (lnx− 2 ln(u− 2x) + ln(1− u + x)) ,

and vanishes if
x(1 − u + x) = (u− 2x)2 . (3.40)

Equation (3.40) shows that, in the most likely distribution, N2 is the geometric
mean of N1 and N3. Hence there is a number z < 1 such that N2 = zN1 and
N3 = z2N1. According to the Canonical Distribution, z = e−βε. Equation
(3.40) has real solutions:

x =
1 + 3u±√(1 + 3u)2 − 12u2

6
.

The one contained in the allowed range 0 ≤ x ≤ u/2 is

xM =
1 + 3u−√(1 + 3u)2 − 12u2

6
.

We can compute the second derivative of the multiplicity in xM by using the
relation:

M′(x) = −N (lnx− 2 ln(u − 2x) + ln(1− u + x))M(x) ,

and, obviously, M′(xM ) = 0. Taking into account (3.40) we have then:

M′′(xM ) = −N
(

1

xM
+

4

u− 2xM
+

1

1 + xM − u

)
M(xM )

= −N 1 + 3u− 6xM

(u− 2xM )2
M(xM ) . (3.41)

Replacing the value found for xM we arrive finally to:
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M′′(xM )

M(xM )
= −N 9

√
(1 + 3u)2 − 12u2(√

(1 + 3u)2 − 12u2 − 1
)2 ≤ −18N . (3.42)

This result, and in particular the fact that M′′(xM ) is of the order of
−NM(xM ) as N →∞, so that

M(xM )−M(x)

M(xM )
∼ N (x− xM )2 ,

demonstrates that the multiplicity has a maximum whose width goes to zero
as 1/

√N . That is also clearly illustrated in Fig. 3.2. Therefore, in the limit
N → ∞, the corresponding probability distribution tends to a Dirac delta
function

P (x) ≡ M(x)∫ u/2

0 dyM(y)
→ δ(x− xM ) .

This confirms that the probability is concentrated on a single distribution (a
single x in the present case), which coincides with the most probable one. Even
if there are exceptions to this law, for instance in some systems presenting a
critical point (like the liquid–vapor critical point), that does not regard the
systems considered in this text, so that the equilibrium distribution can be
surely identified with the most likely one.

Fig. 3.2. Two plots in arbitrary units of the multiplicity distributionM(x) of theN -
elements Gibbs ensemble of the three level model. The comparison of the distribution
for N = 1 (left) and N = 1000 (right) shows the predicted fast reduction of the
fluctuations for increasing N

In Fig. 3.2 the plots of the function given in (3.39) are shown for an arbitrary
choice of the vertical scale. We have set u = 1/2 and we show two different
cases, N = 1 (left) and N = 1000 (right).
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Making always reference to the three-level
system, we notice that the ratios of the oc-
cupation numbers are given by

z = e−βε =
xM

u− 2xM

=

√
1 + 6u− 3u2 + u− 1

4− 2u
. (3.43)

The plot of z as a function of u is given on
the side and shows that in the range (0, 1)
we have 0 ≤ z ≤ 1. Hence β →∞ as u → 0
and β → 0 as u → 1.

3.4 The Grand Canonical Ensemble

and the Perfect Quantum Gas

We shall describe schematically the perfect gas as a system made up of a great
number of atoms, molecules or in general particles of the same species, which
have negligible interactions among themselves but are subject to external
forces. We can consider for instance a gas of particles elastically attracted
towards a fixed point, or instead a gas of free particles contained in a box
with reflecting walls. We will show detailed computations for the last case,
since it has several interesting applications, but the reader is invited to think
about the generalization of the results that will be obtained to the case of
different external forces.

The states of every particle in the box can be described as we have done for
the single particle in a box, see Paragraph 3.1.2. However, classifying the states
of many identical particles raises a new problem of quantum nature, which
is linked to quantum indistinguishability and to the corresponding statistical
choice.

The uncertainty principle is in contrast with the idea of particle trajectory.
If a particle is located with a good precision at a given time, then its velocity
is highly uncertain and so will be its position at a later time. If two identical
particle are located very accurately at a given time t around points r1 and r2,
their positions at later times will be distributed in a quite random way; if we
locate again the particles at time t + Δt we could not be able to decide which
of the two particles corresponds to that initially located in r1 and which to
the other.

The fact that the particles cannot be distinguished implies that the prob-
ability density of locating the particles in two given points, ρ(r1, r2), must
necessarly be symmetric under exchange of its arguments:

ρ(r1, r2) = ρ(r2, r1) . (3.44)
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Stated otherwise, indices 1 and 2 refer to the points where the two particles
are simultaneously located but in no way identify which particle is located
where.

If we consider that also in the case of two (or more) particles the probability
density must be linked to the wave functions by the relation:

ρ(r1, r2) = |ψ(r1, r2)|2 ,

then, taking (3.44) into account, we have that:

ψ(r1, r2) = eiφ ψ(r2, r1) ,

where φ cannot depend on positions since that would change the energy of
the corresponding state. A double exchange implies that e2iφ = 1, so that
eiφ = ±1. Therefore we can state that, in general, the wave function of two
identical particles must satisfy the following symmetry relation

ψ(r1, r2) = ±ψ(r2, r1) . (3.45)

Since identity among particles is equivalent to the invariance of Schrödinger
equation under coordinate exchange, we conclude that equation (3.45) is yet
another application of the symmetry principle introduced in Section 2.6.

Generalizing the same argument to the case of more than two particles, it
can be easily noticed that the sign appearing in (3.45) must be the same for
all identical particles of the same species. The plus sign applies to photons,
to hydrogen and helium atoms, to diatomic molecules made up of identical
atoms and to many other particles. There is also a large number of particles
for which the minus sign must be used, in particular electrons, protons and
neutrons. In general, particles of the first kind are called bosons, while particles
of the second kind are named fermions.

As we have seen at the end of Section 2.3, particles may have an internal
angular momentum which is called spin, whose projection (h̄s) in a given
direction, e.g. in the momentum direction, can assume the values (S −m)h̄
where m is an integer such that 0 ≤ m ≤ 2S and S is either integer or half-
integer. In case of particles with non-vanishing mass one has an independent
state for each value of m. This is not true for massless particles. Indeed,
e.g. for a photon, the spin momentum projection assumes only two possible
values (±h̄), corresponding to the independent polarizations of light. A general
theorem (spin-statistics theorem) states that particles carrying half-integer
spin are fermions, while those for which S is an integer are bosons.

Going back to the energy levels of a system made up of two particles in a
box with reflecting walls, they are given by

E =
π2h̄2

2mL2

[
k2

x,1 + k2
y,1 + k2

z,1 + k2
x,2 + k2

y,2 + k2
z,2

]
. (3.46)

The corresponding states are identified by two vectors (wave vectors) k1 and
k2 with positive integer components and, if it applies, by two spin indices s1
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and s2. Indeed, as we have already said, the generic state of a particle carrying
spin is described by a wave function with complex components which can be
indicated by ψ(r , σ), where σ identifies the single component; in this case
|ψ(r, σ)|2 represents the probability density of finding the particle around r

and in the spin state σ.
Indicating by ψk(r) the wave function of a single particle in a box given

in (2.101), the total wave function for two particles, which we assume to have
well definite spin components s1 and s2, should correspond to the product
ψk1

(r1)ψk2
(r2)δs1,σ1δs2,σ2 , but (3.45) compels us to (anti-)symmetrize the

wave function, which can then be written as:

ψ(r1, r2, σ1, σ2) = N [ ψk1(r1)ψk2(r2)δσ1,s1δσ2,s2

± ψk2
(r1)ψk1

(r2)δσ1,s2δσ2,s1 ] . (3.47)

However that leads to a paradox in case the two wave vectors coincide, k1 =
k2, and the particles are fermions in the same spin state, s1 = s2. Indeed
in this case the minus sign has to be used in (3.47), leading to a vanishing
result. The only possible solution to this seeming paradox is Pauli’s Exclusion

Principle, which forbids the presence of two identical fermions having the
same quantum numbers (wave vector and spin in the present example).

The identification of the states of two particles which can be obtained
by exchanging both wave vectors and spin states suggests that a better way
to describe them, alternative to fixing the quantum numbers of the single
particles, is that of indicating which combinations (wave vector, spin state)
appear in the total wave function, and in case of bosons how many times do
they appear: that corresponds to indicating which single particle states (each
identified by k and σ) are occupied and by how many particles. In conclusion,
the microscopic state of systems made up of many identical particles (quantum
gas) can be described in terms of the occupation numbers of the quantum
states accessible to a single particle: they can be non-negative integers in the
case of bosons, while only two possibilities, 0 or 1, are left for fermions. For
instance the wave function in (3.47) can be described in terms of the following
occupation numbers:

nk,σ = δk,k1δσ,s1 + δk,k2δσ,s2 .

3.4.1 The Perfect Fermionic Gas

According to what stated above, we shall consider a system made up of n
identical and non-interacting particles of spin S = 1/2, constrained in a cubic
box with reflecting walls and an edge of length L. Following Gibbs, the box
is supposed to be in thermal contact with N identical boxes.

The generic microscopic state of the gas, which is indicated with an index
i in Gibbs construction, is assigned once the occupation numbers {nk,s} are
given (with {nk,s} = 0 or 1) for every value of the wave vector k and of the
spin projection s = ±1/2, with the obvious constraint:
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k,s

nk,s = n . (3.48)

The corresponding energy is given by:

E{nk,s} =
∑
k,s

h̄2π2

2mL2

(
k2

x + k2
y + k2

z

)
nk,s ≡

∑
k,s

h̄2π2

2mL2
k2nk,s . (3.49)

Notice that all occupation numbers nk,s refer to the particles present in the
specified single particle state: they must not be confused with the numbers
describing the distribution of the N copies of the system in Gibbs method.
The partition function of our gas is therefore:

Z =
∑

{nk,s}:
∑

k,s
nk,s=n

e
−βE{n

k,s} =
∑

{nk,s}:
∑

k,s
nk,s=n

e
−β
∑

k,s

h̄2π2

2mL2 k2nk,s

=
∑

{nk,s}:
∑

k,s
nk,s=n

∏
k,s

e−β h̄2π2

2mL2 k2nk,s . (3.50)

The constraint in (3.48) makes the computation of the partition function really
difficult. Indeed, without that constraint, last sum in (3.50) would factorize
in the product of the different sums over the occupation numbers of the single
particle states k, s.

This difficulty can be overcome by relaxing the constraint on the number of
particles in each system, keeping only that on the total number ntot of particles
in the macrosystem, similarly to what has been done for the energy. Hence
the number of particles in the gas, n, will be replaced by the average number
n̄ ≡ ntot/N . Also in this case the artifice works well, since the probability
of the various possible distributions of the macrosystem is extremely peaked
around the most likely distribution, so that the number of particles in each
system has negligible fluctuations with respect to the average number n̄.

This artifice is equivalent to replacing the Canonical Distribution by the
Grand Canonical one. In practice, the reflecting walls of our systems are given
a small permeability, so that they can exchange not only energy but also par-
ticles. In the general case the Grand Canonical Distribution refers to systems
made up of several different particle species, however we shall consider the
case of a single species in our computations.

Going along the same lines of the construction given in Section 3.1, we
notice that the generic state of the system under consideration, identified by
the index i, is now characterized by its particle number ni as well as by its
energy Ei. We are therefore looking for the distribution having maximum
multiplicity

M ({Ni}) =
N !∏
i Ni!

,

constrained by the total number of considered systems
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i

Ni = N , (3.51)

by the total energy of the macrosystem∑
i

NiEi = UN (3.52)

and, as an additional feature of the Grand Canonical Distribution, by the
total number of particles of each species. In our case, since we are dealing
with a single type of particles, there is only one additional constraint:∑

i

niNi = n̄ N . (3.53)

If we apply the method of Lagrange’s multipliers we obtain, analogously to
what has been done for the Canonical Distribution, see (3.12),

ln pi = −1 + γ − β (Ei − μni) , (3.54)

where we have introduced the new Lagrange multiplier βμ, associated with
the constraint in (3.53). We arrive finally, in analogy with the canonical case,
to the probability in the Grand Canonical Distribution:

pi =
e−β(Ei−μni)∑
j e−β(Ej−μnj)

≡ e−β(Ei−μni)

Ξ
, (3.55)

where the grand canonical partition function, Ξ, has been implicitly defined.
It can be easily shown that, in the same way as energy exchange (ther-

mal equilibrium) compels the Lagrange multiplier β to be the same for all
systems in thermal contact (that has been explicitly shown for the Canonical
Distribution), particle exchange forces all systems to have the same chemical

potential μ for each particle species separately. The chemical potential can be
computed through the expression for the average number of particles:

n̄ =
∑

i

nipi =
∑

i

ni
e−β(Ei−μni)

Ξ
. (3.56)

Let us now go back to the case of the perfect fermionic gas. The Grand
Canonical partition function can be written as:

Ξ =
∑
{nk,s}

e
−β
(
E{n

k,s}−μ
∑

k,s
nk,s

)
=

∑
{nk,s}

e
−β
∑

k,s

(
h̄2π2

2mL2 k2−μ
)

nk,s

=
∏
k,s

⎛
⎝ 1∑

nk,s=0

e
−β
(

h̄2π2

2mL2 k2−μ
)

nk,s

⎞
⎠ =

∏
k,s

(
1 + e

−β
(

h̄2π2

2mL2 k2−μ
))

. (3.57)
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Hence, based on (3.55), we can write the probability of the state defined by
the occupation numbers {nk,s} as

p ({nk,s}) =
e
−β
∑

k,s

(
h̄2π2k2

2mL2 −μ
)
nk,s

Ξ
=
∏
k,s

⎛
⎝ e

−βnk,s

(
h̄2π2k2

2mL2 −μ
)

1 + e
−β
(

h̄2π2k2

2mL2 −μ
)
⎞
⎠ , (3.58)

which, as can be easily seen, factorizes into the product of the probabilities
related to the single particle states: p ({nk,s}) =

∏
k,s p (nk,s), where

p (nk,s) =
e
−βnk,s

(
h̄2π2k2

2mL2 −μ
)

1 + e
−β
(

h̄2π2k2

2mL2 −μ
) . (3.59)

Using this result we can easily derive the average occupation number for the
single particle state, also known as Fermi–Dirac distribution:

n̄k,s =

1∑
nk,s=0

nk,sp (nk,s) =
e
−β
(

h̄2π2k2

2mL2 −μ
)

1 + e
−β
(

h̄2π2k2

2mL2 −μ
) =

1

1 + e
β
(

h̄2π2k2

2mL2 −μ
) . (3.60)

This result can be easily generalized to the case of fermions which are subject
to an external force field, leading to single particle energy levels Eα identified
by one or more indices α. The average occupation number of the single particle
state α is then given by:

n̄α =
1

1 + eβ(Eα−μ)
(3.61)

and the chemical potential can be computed making use of (3.56), which
according to (3.61) and (3.60) can be written in the following form:

n̄ =
∑
α

1

1 + eβ(Eα−μ)
=
∑
k,s

1

1 + e
β
(

h̄2π2k2

2mL2 −μ
) , (3.62)

where the second equation is valid for free particles.
We have therefore achieved a great simplification in the description of our

system by adopting the Grand Canonical construction. This simplification can
be easily understood in the following terms. Having relaxed the constraint on
the total number of particles in each system, each single particle state can
be effectively considered as an independent sub-system making up, together
with all other single particle states, the whole system. Each sub-system can
be found, for the case of fermions, in only two possible states with occupation
number 0 or 1: its Grand Canonical partition function is therefore trivially
given by 1+exp(−β(Eα−μ)), with β and μ being the same for all sub-systems
because of thermal and chemical equilibrium. The probability distribution,
equation (3.59), and the Fermi–Dirac distribution easily follows.
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In order to make use of previous formulae, it is
convenient to arrange the single particle states
k, s according to their energy, thus replacing
the sum over state indices by a sum over state
energies. With that aim, let us recall that the
possible values of k, hence the possible states,
correspond to the vertices of a cubic lattice
having spacing of length 1. In the nearby fig-
ure we show the lattice for the two-dimensional
case. It is clear that, apart from small correc-
tions due to the discontinuity in the distribu-
tion of vertices, the number of single particle
states having energy less than a given value E
is given by

nE =
2

8

4π
(√

2mEL
πh̄

)3

3
=

(√
2mL
h̄

)3

3π2
E3/2 , (3.63)

which is equal to the volume of the sphere of radius

k =

√
2mEL

πh̄

divided by the number of sectors (which is 8 in three dimensions), since k has
only positive components, and multiplied by the number of spin states, e.g. 2
for electrons.

The approximation used above, which improves at fixed particle density
n̄/L3 as the volume L3 increases, consists in considering the single particle
states as distributed as a function of their energy in a continuous, instead
of discrete, way. On this basis, we can compute the density of single particle
states as a function of energy:

dnE

dE
=

√
2m3L3

π2h̄3

√
E . (3.64)

Hence we can deduce from (3.60) the distribution of particles as a function of
their energy:

dn̄(E)

dE
=

√
2m3L3

π2h̄3

√
E

1 + eβ(E−μ)
(3.65)

and replace (3.62) by the following equation:

n̄ =

∫ ∞

0

dn̄(E)

dE
dE =

∫ ∞

0

dE

√
2m3L3

π2h̄3

√
E

1 + eβ(E−μ)
. (3.66)

Equation (3.65) has a simple interpretation in the limit T → 0, i.e. as β →∞.
Indeed, in that limit, the exponential in the denominator diverges for all single
particle states having energy greater than μ, hence the occupation number
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vanishes for those states. The exponential instead vanishes for states having
energy less that μ, for which the occupation number is one. Therefore the
chemical potential in the limit of low temperatures, which is also called Fermi

energy EF , can be computed through the equation:

nEF
=

(√
2mL
h̄

)3

3π2
E

3/2
F = n̄ . (3.67)

Solving for EF , we obtain:

EF = μ|T=0 =
h̄2

2m

(
3π2ρ

)2/3
, (3.68)

where ρ = n̄/L3 is the density of particles in the gas.
In order to discuss the opposite limit, in which T is very large (β → 0),

let us set z = e−βμ and rewrite (3.66) by changing the integration variable
(x = βE):

n̄ =

√
2m3L3

π2h̄3β
3
2

∫ ∞

0

dx

√
x

1 + zex
=

√
2(mkT )3L3

π2h̄3

∫ ∞

0

dx

√
x

1 + zex
. (3.69)

We see from this equation that μ must tend to −∞ as T → ∞, i.e. z must
diverge, otherwise the right-hand side in (3.69) would diverge like T 3/2, which
is a nonsense since n̄ is fixed a priori.

Since at high temperatures z diverges, the exponential in the denominator
of (3.60) is much greater than 1, hence (3.65) can be replaced, within a good
approximation, by

dn̄(E)

dE
=

(√
2mL
h̄

)3

2π2z

√
Ee−βE ≡ AL3

√
Ee−βE . (3.70)

The constant A, hence μ, can be computed through∫ ∞

0

AL3
√

Ee−βEdE = 2AL3

∫ ∞

0

x2e−βx2

dx = −2AL3 d

dβ

∫ ∞

0

e−βx2

dx

= −AL3 d

dβ

∫ ∞

−∞
e−βx2

dx = −AL3 d

dβ

√
π

β
=

AL3

2

√
π

β3
= n̄ . (3.71)

We have therefore A = 2ρ
√

β3/π = eβμ
√

2m3/(π2h̄3), confirming that
μ→ −∞ as β → 0 (μ ∼ ln β/β).

It is remarkable that in the limit under consideration, in which the distri-
bution of particles according to their energy is given by:

dn̄(E)

dE
= 2ρ

√
β3

π
L3
√

Ee−βE , (3.72)
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Planck’s constant has disappeared from formulae. If consequently we adopt
the classical formula for the energy of the particles, E = mv2/2, we can find
the velocity distribution corresponding to (3.70):

dn̄(v)

dv
≡ dn̄(E)

dE

dE

dv
= ρ

√
2m3β3

π
L3v2e−βmv2/2 . (3.73)

Replacing β by 1/kT , equation (3.73) reproduces the well known Maxwell
distribution for velocities, thus confirming the identification β = 1/kT made
before.

Fig. 3.3. A plot of the Fermi–Dirac energy distribution in arbitrary units for a
fermion gas with EF = 10 for kT = 0, 0.25 and 12.5. Notice the for the first two
values of kT the distribution saturates the Pauli exclusion principle limit, while for
kT = 12.5 it approaches the Maxwell–Boltzmann distribution

The figure above reproduces the behavior predicted by (3.65) for three dif-
ferent values of kT , and precisely for kT = 0, 0.25 and 12.5, measured in the
arbitrary energy scale given in the figure, according to which EF = 10. The
two curves corresponding to lower temperatures show saturation for states
with energy E < EF , in contrast with the third curve which instead repro-
duces part of the Maxwell distribution and corresponds to small occupation
numbers.

Making use of (3.65) we can compute the mean energy U of the gas:

U =

∫ ∞

0

E
dn̄(E)

dE
dE =

√
2m3L3

π2h̄3

∫ ∞

0

√
E3

1 + eβ(E−μ)
dE , (3.74)

obtaining, in the low temperature limit,

U =

√
8m3L3

5π2h̄3 E
5/2
F =

(3n̄)5/3π4/3h̄2

10mL2
=

(3n̄)5/3π4/3h̄2

10mV 2/3
, (3.75)
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where V = L3 is the volume occupied by the gas. At high temperatures we
have instead:

U = 2ρ

√
β3

π
L3

∫ ∞

0

E3/2e−βEdE = 4ρ

√
β3

π
L3

∫ ∞

0

x4e−βx2

dx

=
3

2
n̄

√
β3

π

√
π

β5
=

3

2β
n̄ ≡ 3

2
n̄kT . (3.76)

This result reproduces what predicted by the classical kinetic theory and
in particular the specific heat at constant volume for a gram atom of gas:
CV = 3/2kNA ≡ 3/2R .

In order to compute the specific heat in the low temperature case, we notice
first that, for large values of β, equation (3.66) leads, after some computations,
to μ = EF −O(β−2), hence μ = EF also at the first order in T . We can derive
(3.74) with respect to T , obtaining:

C = kβ2

√
2m3L3

π2h̄3

∫ ∞

0

√
E3(E − μ) eβ(E−μ)

(1 + eβ(E−μ))2
dE . (3.77)

For large values of β the exponential factor in the numerator makes the con-
tributions to the integral corresponding to E � μ negligible, while the expo-
nential in the denominator makes negligible contributions from E � μ. This
permits to make a Taylor expansion of the argument of the integral in (3.77).
In particular, if we want to evaluate contributions of order T , taking (3.67)
into account we obtain:

C � kβ2 3n̄

8E
3
2

F

∫ ∞

−∞

√
E3(E − EF )(

cosh β(E−EF )
2

)2 dE � kβ2 3n̄

8

∫ ∞

−∞

(E − EF )(
cosh β(E−EF )

2

)2 dE

+ kβ2 9n̄

16EF

∫ ∞

−∞

(E − EF )2(
cosh β(E−EF )

2

)2 dE = kn̄
9kT

2EF

∫ ∞

−∞

( x

coshx

)2

dx

= kn̄
3π2kT

4EF
, (3.78)

showing that the specific heat has a linear dependence in T at low tempera-
tures.

The linear growth of the specific heat with T for low temperatures can
be easily understood in terms of the distribution of particles at low T . In
particular we can make reference to (3.65) and to its graphical representation
shown in Fig. 3.3: at low temperatures the particles occupy the lowest possible
energy levels, thus saturating the limit imposed by Pauli’s principle. In these
conditions most of the particles cannot exchange energy with the external
environment, since energy exchanges of the order of kT , which are typical
at temperature T , would imply transitions of a particle to a different energy
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level which however is already completely occupied by other particles. If we
refer to the curve corresponding to kT = 0.25 in the figure, we see that only
particles having energies in a small interval of width kT around the Fermi
energy (EF = 10 in the figure), where the occupation number rapidly goes
from 1 to 0, can make transitions from one energy level to another, thus
exchanging energy with the reservoir and giving a contribution to the specific
heat, which is of the order of k for each particle. We expect therefore a specific
heat which is reduced by a factor kT/EF with respect to that for the high
temperature case: this roughly reproduces the exact result given in (3.78).

Evidently we expect the results we have obtained to apply in particular to
the electrons in the conduction band of a metal. It could seem that a gas of
electrons be far from being non-interacting, since electrons exchange repulsive
Coulomb interactions; however Coulomb forces are largely screened by the
other charges present in the metallic lattice, and can therefore be neglected,
at least qualitatively, at low energies. We recall that in metals there is one free
electron for each atom, therefore, taking iron as an example, which has a mass
density ρm � 5 103 Kg/m3 and atomic weight A � 50, the electronic density is:
n̄/V = ρm(NA/A)103 ∼ 6 1028 particles/m3. Making use of (3.68) we obtain:

EF � (10−68/1.8 10−30)
(
3π26 1028

)2/3
J � 10−18 J � 6 eV. If we recall that

at room temperature kT � 2.5 10−2 eV, we see that the order of magnitude of
the contribution of electrons to the specific heat is 3 10−2R per gram atom, to
be compared with 3R, which is the contribution of atoms according to Dulong
and Petit. Had we not taken quantum effects into account, thus applying the
equipartition principle, we would have predicted a contribution 3/2R coming
from electrons. That gives a further confirmation of the relevance of quantum
effects for electrons in matter.

Going back to the general case, we can obtain the equation of state
for a fermionic gas by using (3.35). From the expression for the energy
Ei corresponding to a particular state of the gas given in (3.49) we derive
∂Ei/∂V = −2Ei/3V , hence

PV =
2

3
U , (3.79)

which at high temperatures, where (3.76) is valid, reproduces the well known
perfect gas law. Notice that the equation of state in the form given in (3.79)
is identical to that obtained in (3.33) and indeed depends only on the dis-
persion relation (giving energy in terms of momentum) assumed for the free
particlestates, i.e. the simple form and the factor 2/3 are strictly related to
having considered the particles as non-relativistic (see Problem 3.26 for the
case of ultrarelativistic particles).

3.4.2 The Perfect Bosonic Gas

To complete our program, let us consider a gas of spinless atoms, hence of
bosons; in order to have a phenomenological reference, we shall think in par-
ticular of a mono-atomic noble gas like helium. The system can be studied
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along the same lines followed for the fermionic gas, describing its possible
states by assigning the occupation numbers of the single particle states, with
the only difference that in this case the wave function must be symmetric in
its arguments (the coordinates of the various identical particles), hence there
is no limitation on the number of particles occupying a given single particle
state. The Grand Canonical partition function for a bosonic gas in a box is
therefore

Ξ =
∑
{nk}

e−β(E{n
k
}−μ

∑
k

nk) =
∑
{nk}

e
−β
∑

k

(
h̄2π2

2mL2 k2−μ
)
nk

=
∏
k

( ∞∑
nk=0

e
−β
(

h̄2π2

2mL2 k2−μ
)

nk

)

=
∏
k

1

1− e
−β
(

h̄2π2

2mL2 k2−μ
) , (3.80)

from which the probability of the generic state of the gas follows:

p ({nk}) =
e
−β
∑

k

(
h̄2π2k2

2mL2 −μ
)
nk

Ξ

=
∏
k

(
e
−βnk

(
h̄2π2k2

2mL2 −μ
) (

1− e
−β
(

h̄2π2k2

2mL2 −μ
)))

, (3.81)

which again can be written as the product of the occupation probabilities
relative to each single particle state:

p (nk) = e
−βnk

(
h̄2π2k2

2mL2 −μ
) (

1− e
−β
(

h̄2π2k2

2mL2 −μ
))

. (3.82)

The average occupation number of the generic single particle state, k, is thus

n̄k =

∞∑
nk=0

nk p (nk) =

(
1− e

−β
(

h̄2π2k2

2mL2 −μ
)) ∞∑

n=0

n e
−βn

(
h̄2π2k2

2mL2 −μ
)

=
e
−β
(

h̄2π2k2

2mL2 −μ
)

1− e
−β
(

h̄2π2k2

2mL2 −μ
) =

1

e
β
(

h̄2π2k2

2mL2 −μ
)
− 1

, (3.83)

which is known as the Bose–Einstein distribution. We deduce from last equa-
tion that the chemical potential cannot be greater than the energy of the
ground state of a single particle, i.e.

μ ≤ 3
h̄2π2

2mL2
,

otherwise the average occupation number of that state would be negative. In
the limit of large volumes, the ground state of a particle in a box has vanishing
energy, hence μ must be negative.
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The exact value of the chemical potential is fixed by the relation

n̄ =
∑

k

n̄k =
∑

k

1

e
β
(

h̄2π2k2

2mL2 −μ
)
− 1

. (3.84)

For the explicit computation of μ we can make use, as in the fermionic case,
of the distribution in energy, considering it approximately as a continuous
function:

dn̄(E)

dE
=

√
m3

2

L3

π2h̄3

√
E

eβ(E−μ) − 1
. (3.85)

Notice that equation (3.85) differs from the analogous given in (3.65), which
is valid in the fermionic case, both for the sign in the denominator and for a
global factor 1/2 which is due to the absence of the spin degree of freedom.

The continuum approximation for the distribution of the single particle
states in energy is quite rough for small energies, where only few levels are
present. In the fermionic case, however, that is not a problem, since, due to
the Pauli exclusion principle, only a few particles can occupy those levels (2
per level at most in the case of electrons), so that the contribution coming
from the low energy region is negligible. The situation is quite different in
the bosonic case. If the chemical potential is small, the occupation number of
the lowest energy levels can be very large, giving a great contribution to the
sum in (3.84). We exclude for the time being this possibility and compute the
chemical potential making use of the relation:

n̄ =

√
m3

2

L3

π2h̄3

∫ ∞

0

dE

√
E

eβ(E−μ) − 1
=

√
(mkT )3

2

L3

π2h̄3

∫ ∞

0

dx

√
x

zex − 1
(3.86)

where again we have set z = e−βμ ≥ 1. Defining the gas density, ρ ≡ n̄/L3,
equation (3.86) can be rewritten as:

∫ ∞

0

dx

√
x

zex − 1
= π2h̄3ρ

√
2

(mkT )3
. (3.87)

On the other hand, recalling that z ≥ 1, we obtain the following inequality:∫ ∞

0

dx

√
x

zex − 1
≤ 1

z

∫ ∞

0

dx

√
x

ex − 1
≤
∫ ∞

0

dx

√
x

ex − 1
� 2.315 , (3.88)

which can be replaced in (3.87), giving an upper limit on the ratio ρ/T 3/2.
That limit can be interpreted as follows: for temperatures lower than a certain
threshold, the continuum approximation for the energy levels cannot account
for the distribution of all particles in the box, so that we must admit a macro-
scopic contribution coming from the lowest energy states, in particular from
the ground state. The limiting temperature can be considered as a critical
temperature, and the continuum approximation is valid only if
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T ≥ Tc � 4.38
h̄2ρ2/3

m k
. (3.89)

As T approaches the critical temperature the chemical potential vanishes and
the occupation number of the ground state becomes comparable with n̄, hence
of macroscopic nature. For temperatures lower than Tc the computation of the
total number of particles shown in (3.86) must be rewritten as:

n̄ = n̄f +

√
m3

2

L3

π2h̄3

∫ ∞

0

dE

√
E

eβE − 1
, (3.90)

where n̄f refers to the particles occupying the lowest energy states, while the
integral over the continuum distribution, in which μ has been neglected, takes
into account particles occupying higher energy levels. Changing variables in
the integral we obtain:

n̄ � n̄f + 2.315

√
(mkT )3

2

L3

π2h̄3 , (3.91)

showing that, for T < Tc, n̄f takes macroscopic values, of the order of mag-
nitude of Avogadro’s number NA.

This phenomenon is known as Bose–Einstein condensation. Actually,
for the usual densities found in ordinary gasses in normal conditions, i.e.
ρ � 1025 particles/m3, the critical temperature is of the order of 10−2 ◦K: for
this combination of temperature and density, interatomic forces are no more
negligible even in the case of helium, so that the perfect gas approximation
does not apply. The situation can be completely different at very low densities,
indeed Bose–Einstein condensation has been recently observed for tempera-
tures of the order of 10−9 ◦K and densities of the order of 1015 particles/m3.

In the opposite situation, for temperatures much greater than Tc, the ex-
ponential clearly dominates in the denominator of the continuum distribution
since, analogously to what happens for fermions at high temperatures, one
can show that z � 1. Hence the −1 term can be neglected, so that the distri-
bution becomes that obtained also in the fermionic case at high temperatures,
i.e. the Maxwell distribution.

3.4.3 The Photonic Gas and the Black Body Radiation

We shall consider in brief the case of an electromagnetic field in a box with
“almost” completely reflecting walls: we have to give up ideal reflection in
order to allow for thermal exchanges with the reservoir. From the classical
point of view, the field amplitude can be decomposed in normal oscillation
modes corresponding to well defined values of the frequency and to electric
and magnetic fields satisfying the well known reflection conditions on the box
surface. The modes under consideration, apart from the two possible polar-
izations of the electric field, are completely analogous to the wave functions
of a particle in a box shown in (2.101), that is:
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sin
(π

L
kxx

)
sin

(π

L
kyy

)
sin

(π

L
kzz

)
cos

(π

L

√
k2

x + k2
y + k2

z ct
)

(3.92)

where, as usual, the integers (kx, ky, kz) define the vector k. We have therefore
the following frequencies:

νk =
c

2L
|k| . (3.93)

Taking into account the two possible polarizations, the number of modes hav-
ing frequency less than a given value ν is:

nν =
π

3
|k|3 =

8πL3ν3

3c3
, (3.94)

from which the density of modes can be deduced:

dnν

dν
=

8πL3ν2

c3
. (3.95)

If the system is placed at thermal equilibrium at a temperature T and we
assume equipartition of energy, i.e. that an average energy kT corresponds to
each oscillation mode, we arrive to the result found by Rayleigh and Jeans for
the energy distribution of the black body2 radiation as a function of frequency
(a quantity which can also be easily measured in the case of an oven):

dU(ν)

dν
=

8πkT

c3
L3ν2 . (3.96)

This is clearly a parodoxical result, since, integrating over frequencies, we
would obtain an infinite internal energy, hence an infinite specific heat. From
a historical point view it was exactly this paradox which urged Planck to
formulate his hypothesis about quantization of energy, which was then better
specified by Einstein who assumed the existence of photons.

Starting from Einstein’s hypothesis, equation (3.95) can be interpreted as
the density of states for a gas of photons, i.e. bosons with energy E = hν.
The density of photons given in (3.64) becomes then:

dnE

dE
=

(
L

h̄c

)3
E2

π2
. (3.97)

For a gas of photons the collisions with the walls of the box, which thermalize
the system, correspond in practice to non-ideal reflection processes in which
photons can be absorbed or new photons can be emitted by the walls. There-
fore, making always reference to a macrosystem made up of a large number of

2 A black body, extending a notion valid for the visible electromagnetic radiation,
is defined as an ideal body which is able to emit and absorb electromagnetic
radiation of any frequency, so that all oscillation modes interacting with (emitted
by) a black body at thermal equilibrium at temperature T can be considered as
thermalized at the same temperature.
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similar boxes, there is actually no constraint on the total number of particles,
hence the chemical potential must vanish.

The distribution law of the photons in energy is then given by:

dn(E)

dE
=

(
L

h̄c

)3
E2

π2

1

e
E

kT − 1
. (3.98)

From this law we can deduce the distribution in frequency:

dn(ν)

dν
=

(
L

h̄c

)3
(hν)2

π2

h

e
hν
kT − 1

=
8π

c3
L3 ν2

e
hν
kT − 1

(3.99)

and we can finally write the energy distribution of the radiation as a function
of frequency by multiplying both sides of (3.99) by the energy carried by each
photon:

dU(ν)

dν
=

8πh

c3
L3 ν3

e
hν
kT − 1

. (3.100)

This distribution was deduced for the first time by Planck and was indeed
named after him.

It is evident that at small frequencies Planck distribution is practically
equal to that in (3.96). Instead at high frequencies energy quantization leads
to an exponential cut in the energy distribution which eliminates the paradox
of an infinite internal energy and of an infinite specific heat. We notice that
the phenomenon suppressing the high energy modes in the computation of the
specific heat is the same leading to a vanishing specific heat for the harmonic
oscillator when kT � hν (the system cannot absorb a quantity of energy less
than the minimal quantum hν) and indeed, as we have already stressed at
the end of Section 2.7, the radiation field in a box can be considered as an
infinite collection of independent harmonic oscillators of frequencies given by
the resonant frequencies of the box.
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Problems

3.1. We have to place four distinct objects into 3 boxes. How many possible
different distributions can we choose? What is the multiplicity M of each
distribution? And its probability p?

Answer: We can make 3 different choices for each object, therefore the total num-

ber of possible choices is 34 = 81. The total number of possible distributions is

instead given by all the possible choices of non-negative integers n1, n2, n3 with

n1 + n2 + n3 = 4, i.e. (4 + 1)(4 + 2)/2 = 15. There are in particular 3 distributions

like (4, 0, 0), each with p =M/81 = 1/81; 6 like (3, 1, 0), with p =M/81 = 4/81; 3

like (2, 2, 0), with p =M/81 = 6/81; 3 like (2, 1, 1), with p =M/81 = 12/81.

3.2. The integer number k can take values in the range between 0 and 8
according to the binomial distribution:

P (k) =
1

28

(
8

k

)
.

Compute the mean value of k and its mean quadratic deviation.

Answer: k̄ = 4 ; 〈(k − k̄)2〉 = 2 .

3.3. Let us consider a system which can be found in 4 possible states, enumer-
ated by the index k = 0, 1, 2, 3 and with energy Ek = εk, where ε = 10−2 eV.
The system is at thermal equilibrium at room temperature T � 300◦K. What
is the probability of the system being in the highest energy state?

Answer: Z =
∑3

k=0
e−βεk ; U = (1/Z)

∑3

k=0
εke−βεk � 1.035 10−2 eV ;

Pk=3 = (1/Z)e−3βε � 0.127.

3.4. A diatomic molecule is made up of two particles of equal mass M =
10−27 Kg which are kept at a fixed distance L = 4 10−10 m. A set of N = 109

such systems, which are not interacting among themselves, is in thermal equi-
librium at a temperature T = 1◦K. Estimate the number of systems which
have a non-vanishing angular momentum (computed with respect to their
center of mass), i.e. the number of rotating molecules, making use of the fact
that the number of states with angular momentum nh̄ is equal to 2n + 1.

Answer: If we quantize rotational energy according to Bohr, then the possible energy

levels are En = n2h̄2/(ML2) � 4.3 10−4n2 eV, each corresponding to 2n+1 different

states. These states are occupied according to the Canonical Distribution. The par-

tition function is Z =
∑∞

n=0
(2n+1)e−En/kT . If T = 1◦K, then kT � 0.862 10−4 eV,

hence e−En/kT � e−5.04n2 � (6.47 10−3)n2

. Therefore the two terms with n = 0, 1

give a very good approximation of the partition function, Z � 1 + 1.94 10−2. The

probability that a molecule has n = 0 is 1/Z, hence the number of rotating molecules
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is NR = N(1−1/Z) � 1.9 107. If we instead make use of Sommerfeld’s perfected the-

ory, implying n2 → n(n + 1) in the expression for En, we obtain Z � 1 + 1.25 10−4

and NR = N(1 − 1/Z) � 1.25 105. In the present situation, being quantum ef-

fects quite relevant, the use of Sommerfeld’s correct formula for angular momentum

quantization in place of simple Bohr’s rule makes a great difference.

3.5. Consider again Problem 3.4 in case the molecules are in equilibrium at
room temperature, T � 300◦K. Compute also the average energy of each
molecule.

Answer: In this case the partition function is, according to Sommerfeld’s theory:

Z =

∞∑
n=0

(2n + 1)e−αn(n+1) ,

with α � 0.0168. Since α � 1, (2n + 1)e−αn2

is the product of a linear term times
a slowly varying function of n, hence the sum can be replaced by an integral

Z �
∫ ∞

0

dn(2n + 1)e−αn(n+1) =
1

α
� 60

hence the number of non-rotating molecules is NNR = N/Z � 1.67 107. From Z �
1/α = kTML2/h̄2, we get U = −∂/∂β ln Z = kT , in agreement with equipartition

of energy.

3.6. A system in thermal equilibrium admits 4 possible states: the ground
state, having zero energy, plus three degenerate excited states of energy ε.
Discuss the dependence of its mean energy on the temperature T .

Answer:

U =
3ε e−ε/kT

1 + 3e−ε/kT
; lim

T→0
U(T ) = 0 ; lim

T→∞
U(T ) =

3

4
ε .

3.7. A simple pendulum of length l = 10 cm and mass m = 10 g is placed
on Earth’s surface in thermal equilibrium at room temperature, T = 300◦K.
What is the mean quadratic displacement of the pendulum from its equilib-
rium point?

Answer: The potential energy of the pendulum is, for small displacements s << l,

mgs2/2l. From the energy equipartition theorem we infer mgs2/2l � kT/2, hence√
〈s2〉 �

√
kT l/mg = 2 10−10 m .

3.8. What is the length of a pendulum for which quantum effects are impor-
tant at room temperature?

Answer: h̄ω ∼ kT , so that l = g/ω2 ∼ h̄2g/(kT )2 ∼ 6.5 10−28 m.
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3.9. A massless particle is constrained to move along a segment of length L;
therefore its wave function vanishes at the ends of the segment. The system
is in equilibrium at a temperature T . Compute its mean energy as well as the
specific heat at fixed L. What is the force exerted by the particle on the ends
of the segment?

Answer: Energy levels are given by En = ncπh̄/L , hence Z =
∑∞

n=1
e−βEn =

1/(eβcπh̄/L − 1) from which the mean energy follows

U = −∂ ln Z

∂β
=

cπh̄

L

1

(1− e−cπh̄/LkT )
,

and the specific heat

CL = k(cπh̄/LkT )2
e−cπh̄/LkT

(1− e−cπh̄/LkT )2
,

which vanishes at low temperatures and approaches k at high temperatures; notice

that the equipartition principle does not hold in its usual form in this example, since

the energy is not quadratic in the momentum, hence we have k instead of k/2. The

equation of state can be obtained making use of (3.29) and (3.35), giving for the

force F = (1/β)(∂ ln Z/∂L) = U/L. Hence at high temperatures we have FL = kT.

3.10. Consider a system made up of N distinguishable and non-interacting
particles which can be found each in two possible states of energy 0 and ε.
The system is in thermal equilibrium at a temperature T . Compute the mean
energy and the specific heat of the system.

Answer: The partition function for a single particle is Z1 = 1 + e−ε/kT . That
for N independent particles is ZN = ZN

1 . Therefore the average energy is

U =
Nε

1 + eε/kT

and the specific heat is

C = Nk
(

ε

kT

)2 eε/kT

(eε/kT + 1)2
.

3.11. A system consists of a particle of mass m moving in a one-dimensional
potential which is harmonic for x > 0 (V = kx2/2) and infinite for x < 0. If
the system is at thermal equilibrium at a temperature T , compute its average
energy and its specific heat.

Answer: The wave function must vanish in the origin, hence the possible energy
levels are those of the harmonic oscillator having an odd wave function. In particu-
lar, setting ω =

√
k/m, we have En = (2n + 3/2)h̄ω, with n = 0, 1, ... The partition

function is

Z =
e−3βh̄ω/2

1− e−2βh̄ω
,

so that the average energy is
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U =
3h̄ω

2
+

2h̄ω

e2βh̄ω − 1

and the specific heat is

C = k(2βh̄ω)2
e2βh̄ω

(e2βh̄ω − 1)2
.

3.12. Compute the average energy of a classical three-dimensional isotropic
harmonic oscillator of mass m and oscillation frequency ν = 2πω in equilib-
rium at temperature T .

Answer: The state of the classical system is assigned in terms of the momentum
p and the coordinate x of the oscillator, it is therefore represented by a point in
phase space corresponding to an energy E(p, x) = p2/2m+mω2x2/2. The canonical
partition function can therefore be written as an integral over phase space

Z =

∫
d3p d3x

Δ
e−βp2/2me−βmω2x2/2

where Δ is an arbitrary effective volume in phase space needed to fix how we count

states (that is actually not arbitrary according to the quantum theory, which requires

Δ ∼ h3). A simple computation of Gaussian integrals gives Z = Δ−1(2π/ωβ)3, hence

U = −(∂/∂β) ln Z = 3kT , in agreement with equipartition of energy.

3.13. A particle of mass m moves in the x− y plane under the influence of an
anisotropic harmonic potential V (x, y) = m(ω2

xx2/2+ω2
yy

2/2), with ωy � ωx.
Therefore the energy levels coincide with those of a system made up of two
distinct particles moving in two different one-dimensional harmonic potentials
corresponding respectively to ωx and ωy. The system is in thermal equilibrium
at a temperature T . Compute the specific heat and discuss its behaviour as a
function of T .

Answer: The partition function is the product of the partition functions of the
two distinct harmonic oscillators, hence the average energy and the specific heat
will be the sum of the respective quantities. In particular

C =
(h̄ωx)2

kT 2

eβh̄ωx

(eβh̄ωx−1)2
+

(h̄ωy)2

kT 2

eβh̄ωy

(eβh̄ωy−1)2
.

We have three different regimes: C ∼ 0 if kT � h̄ωy , C ∼ k if h̄ωy � kT � h̄ωx

and finally C ∼ 2k if kT � h̄ωx.

3.14. Compute the mean quadratic velocity for a rarefied and ideal gas of
particles of mass M = 10−20 Kg in equilibrium at room temperature.

Answer: According to Maxwell distribution, 〈v2〉 = 3kT/M � 1.2 m2/s2.

3.15. Taking into account that a generic molecule has two rotational degrees
of freedom, compute, using the theorem of equipartition of energy, the av-
erage square angular momentum J̄2 of a molecule whose moment of inertia



154 3 Introduction to the Statistical Theory of Matter

about the center of mass is I = 10−39 Kg m2, independently of the rotation
axis, if the temperature is T = 300 ◦K. Discuss the validity of the theorem of
equipartition of energy in the given conditions.

Answer: On account of the equipartition of energy, the average rotational kinetic

energy of the molecule is 2kT = 8.29 10−21 J = J̄2/2I , thus J̄2 = 1.66 10−59 J s.

The theorem of equipartition of energy is based on the assumption that the en-

ergy, and hence the square angular momentum, be a continuous variable, while, as

a matter of fact (see e.g. Problem 2.1), it is quantized according to the formula

J2 = n(n + 1)h̄2. Therefore the validity of the energy equipartition requires that

the difference between two neighboring values of J2 be much smaller than J̄2, i.e.

(2n + 1)/(n(n + 1)) � 2/n � 1. In the given conditions n � J/h̄ � √
1.49 109,

therefore previous inequality is satisfied.

3.16. Consider a diatomic gas, whose molecules can be described schemati-
cally as a pair of pointlike particles of mass M = 10−27 Kg, which are kept
at an equilibrium distance d = 2 10−10 m by an elastic force of constant
K = 11.25 N/m. A quantity equal to 1.66 gram atoms of such gas is con-
tained in volume V = 1 m3. Discuss the qualitative behaviour of the specific
heat of the system as a function of temperature. Consider the molecules as
non-interacting and as if each were contained in a cubic box with reflecting
walls of size L3 = V/N , where N is the total number of molecules.

Answer: Three different energy scales must be considered. The effective volume

available for each molecule sets an energy scale E1 = h̄2π2/(4ML2) � 1.7 10−6 eV,

which is equal to the ground state energy for a particle of mass 2M in a cubic

box, corresponding to a temperature T1 = E1/k � 0.02◦K. The minimum rota-

tional energy is instead, according to Sommerfeld, E2 = h̄2/(Md2) � 3.5 10−3 eV,

corresponding to a temperature T2 = E2/k � 40◦K. Finally, the fundamental os-

cillation energy is E3 = h̄
√

2K/M � 0.098 eV, corresponding to a temperature

T3 = E2/k � 1140◦K. For T1 � T � T2 the system can be described as a classical

perfect gas of pointlike particles, since rotational and vibrational modes are not yet

excited, hence the specific heat per molecule is C ∼ 3k/2. For T2 � T � T3 the

system can be described as a classical perfect gas of rigid rotators, hence C ∼ 5k/2.

Finally, for T � T3 also the (one-dimensional) vibrational mode is excited and

C ∼ 7k/2. This roughly reproduces, from a qualitative point of view and with an

appropriate rescaling of parameters, the observed behavior of real diatomic gasses.

3.17. We have a total mass M = 10−6 Kg of a dust of particles of mass
m = 10−17 Kg. The dust particles can move in the vertical x − z semi-plane
defined by x > 0, and above a line forming an angle α, with tanα = 10−3,
with the positive x axis. The dust is in thermal equilibrium in air at room
temperature (T = 300 ◦K) and hence the particles, which do not interact
among themselves, have planar Brownian motion above the mentioned line.
What is the distribution of particles along the positive x axis and which their
average distance x̄ from the vertical z axis?
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Answer: We start assuming that, in the mentioned conditions, quantum effects
are negligible and hence the particle distribution in the velocity and position plane
is given by the Maxwell-Boltzmann law: d4n/((d2v)dxdz) = N exp(−E/kT ) =
N exp(−(mv2/2 + mgz)/(kT )) where g is the gravitational acceleration and N is a
normalization factor. Then the x-distribution of particles is given by:

dn

dx
=

∫ ∞

−∞
dvx

∫ ∞

−∞
dvy

∫ ∞

x tan α

dz
d4n

d2vdxdz

=
2πkTN

m

∫ ∞

x tan α

dze−mgz/(kT ) =
2π(kT )2N

m2g
e−mgx tan α/(kT ) .

We can compute N using
∫∞
0

(dn/dx)dx = 2π(kT )3N/(tan α m3g2) = M/m = 1011

and x̄ = kT/(mg tan α) � 4.22 10−2 m. Now we discuss the validity of the classical

approximation. The average inter-particle distance is of the order of magnitude of

mx̄/M ∼ 4 10−13 m, which should be much larger than the average de Broglie wave

length of the particles, which is of the order of magnitude of h/
√

2mkT ∼ 2 10−15 m.

We conclude that the classical approximation is valid.

3.18. The possible stationary states of a system are distributed in energy as
follows:

d n

dE
= αE3eE/E0

where E0 is some given energy scale. Compute the average energy and the
specific heat of the system for temperatures T < E0/k, then discuss the pos-
sibility of reaching thermal equilibrium at T = E0/k.

Answer: Let us set β0 = 1/E0. The density of states diverges exponentially with
energy and the partition function of the system is finite only if the temperature is
low enough in order for the Boltzmann factor, which instead decreases exponentially
with energy, to be dominant at high energies. For T < E0/k (β > β0) we have:

Z =

∫ ∞

0

dEαE3e−(β−β0)E =
6α

(β − β0)4

from which the internal energy U and the specific heat C = dU/dT easily follow:

U =
4

β − β0
=

4kTE0

E0 − kT
; C =

4kE2
0

(E0 − kT )2
.

The specific heat diverges at T = E0/k: in general that may happen in presence

of a phase transition, but in this specific case also the internal energy diverges as

T → E0/k, meaning that an infinite amount of energy must be spent in order to

bring the system at equilibrium at that temperature, i.e. it is not possible to reach

thermal equilibrium at that temperature.

3.19. Consider a system made up of two identical fermionic particles which
can occupy 4 different states. Enumerate all the possible choices for the occu-
pation numbers of the single particle states. Assuming that the 4 states have
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the following energies: E1 = E2 = 0 and E3 = E4 = ε and that the system
is in thermal equilibrium at a temperature T , compute the mean occupation
number of one of the first two states as a function of temperature.

Answer: There are six different possible states for the whole system characterized
by the following occupation numbers (n1, n2, n3, n4) for the single particle states:
(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1). The corresponding
energies are 0, ε, ε, ε, ε, 2ε. The mean occupation number of the first single particle
state (i.e. 〈n1〉) is then given by averaging the value of n1 over the 6 possible states
weighted using the Canonical Distribution, i.e.

〈n1〉 =
(1 + 2e−βε)

(1 + 4e−βε + e−2βε)
.

3.20. A system, characterized by 3 different single particle states, is filled
with 4 identical bosons. Enumerate the possible states of the system specify-
ing the corresponding occupation numbers. Discuss also the case of 4 identical
fermions.

Answer: The possible states can be enumerated by indicating all possible choices

for the occupation numbers n1, n2, n3 satisfying n1 + n2 + n3 = 4. That leads to 15

different states. In the case of fermions, since ni = 0, 1, the constraint on the total

number of particles cannot be satisfied and there is actually no possible state of the

system.

3.21. A system, characterized by two single particle states of energy E1 = 0
and E2 = ε, is filled with 4 identical bosons. Enumerate all possible choices
for the occupation numbers. Assuming that the system is in thermal contact
with a reservoir at temperature T and that e−βε = 1

2 , compute the probability
of all particles being in the ground state. Compare the answer with that for
distinguishable particles.

Answer: Since the occupation numbers must satisfy N1 + N2 = 4, the possi-

ble states are identified by the value of, for instance, N2, in the case of bosons

(N2 = 0, 1, 2, 3, 4), and have energy εN2. In the case of distinguishable particles

there are instead 4!/(N2!(4−N2)!) different states for each value of N2. The prob-

ability of all the particles being in the ground state is 16/31 in the first case and

(2/3)4 in the second case: notice that this probability is highly enhanced in the case

of bosons.

3.22. Consider a gas of electrons at zero temperature. What is density at
which relativistic effects show up? Specify the answer by finding the density
for which electrons occupy states corresponding to velocities v =

√
3 c/2.

Answer: At T = 0 electrons occupy all levels below the Fermi energy EF , or
equivalently below the corresponding Fermi momentum pF . To answer the question
we must impose that

pF =
mev√

1− v2/c2
=
√

3 mec .
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On the other hand, the number of states below the Fermi momentum, assuming the
gas is contained in a cubic box of size L, is

N =
p3

F L3

3h̄3π2
,

hence ρ = p3
F /(3π2h̄3) � 3.04 1036 particles/m3.

3.23. The density of states as a function of energy in the case of free electrons
is given in (3.64). However in a conduction band the distribution may have a
different dependence on energy. Let us consider for instance the simple case
in which the density is constant, dnE/dE = γ V , where γ = 8 1047 m−3 J−1,
the energy varies from zero to E0 = 1 eV and the electronic density is
ρ ≡ n̄/V = 6 1028 m−3. For T not much greater than room temperature
it is possible to assume that the bands above the conduction one are com-
pletely free, while those below are completely occupied, hence the thermal
properties can be studied solely on the basis of its conduction band. Under
these assumptions, compute how the chemical potential μ depends on tem-
perature.

Answer: The average total number of particles comes out to be N̄ =
∫ E0

0
n(ε)g(ε)dε .

The density of levels is g(ε) = dnE/dE = γ V and the average occupation number
is n(ε) = 1/(eβ(ε−μ) + 1). After computing the integral and solving for μ we obtain

μ = kT ln

(
eρ/(γkT ) − 1

1− eρ/(γkT )e−E0/kT

)
.

It can be verified that, since by assumption ρ/γ < E0, in the limit T → 0 μ is

equal to the Fermi energy EF = ρ/γ. Instead, in the opposite large temperature

limit, μ → −kT ln(1 − γE0/ρ), hence the distribution of electrons in energy would

be constant over the band and simply given by n(ε)g(ε) = ρV/E0, but of course in

this limit we cannot neglect the presence of other bands. Notice also that in this

case, due to the different distribution of levels in energy, we have μ→ +∞, instead

of μ → −∞, as T →∞.

3.24. The modern theory of cosmogenesis suggests that cosmic space contain
about 108 neutrinos per cubic meter and for each species of these particles.
Neutrinos can be considered, in a first approximation, as massless fermions
having a single spin state instead of two, as for electrons; they belong to 6
different species. Assuming that each species be independent of the others,
compute the corresponding Fermi energy.

Answer: Considering a gas of neutrinos placed in a cubic box of size L, the number

of single particle states with energy below the Fermi energy EF is given, for massless

particles, by NEF = (π/6)E3
F L3/(πh̄c)3. Putting that equal to the average number

of particles in the box, N̄ = ρL3, we have EF = h̄c (6π2ρ)1/3 � 3.38 10−4 eV.

3.25. Suppose now that neutrinos must be described as particles of mass
mν 
= 0. Consider again Problem 3.24 and give the exact relativistic formula
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expressing the Fermi energy in terms of the gas density ρ.

Answer: The formula expressing the total number of particles N = L3ρ in terms of
the Fermi momentum pF is:

NEF = (π/6)p3
F L3/(πh̄)3 ,

hence
EF =

√
m2

νc4 + p2
F c2 =

√
m2

νc4 + (6π2ρ)2/3(h̄c)2 .

3.26. Compute the internal energy and the pressure at zero temperature for
the system described in Problem 3.24, i.e. for a gas of massless fermions with
a single spin state and a density ρ ≡ n̄V = 108 m−3.

Answer: The density of internal energy is

U/V = (81π2ρ4/32)
1
3 h̄c � 4.29 10−15 J/m3 ,

and the pressure
P = U/3V � 1.43 10−15 Pa .

Notice that last result is different from what obtained for electrons, equation (3.79):

the factor 1/3 in place of 2/3 is a direct consequence of the linear dependence

of energy on momentum taking place for massless or ultrarelativistic particles, in

contrast with the quadratic behavior which is valid for (massive) non-relativistic

particles.

3.27. 103 bosons move in a harmonic potential corresponding to a frequency
ν such that hν = 1 eV. Considering that the mean occupation number
of the m-th level of the oscillator is given by the Bose–Einstein distribu-
tion: nm = (eβ(hmν−μ) − 1)−1, compute the chemical potential assuming
T = 300◦K·

Answer: The total number of particles, N = 1000, can be written as

N =
∑
m

nm =
1

e−βμ − 1
+

1

Ke−βμ − 1
+

1

K2e−βμ − 1
+ . . .

where K = exp(hν/kT ) � e40. Since K is very large and exp(−βμ) > 1 (μ ≤ 0 for
bosons), it is clear that only the first term is appreciably different from zero. Hence

exp(−βμ) = 1 +
1

N

and finally μ � −2.5 10−5 eV.

3.28. Consider a system of n̄ � 1 spin-less non-interacting bosons. Each bo-
son has two stationary states, the first state with null energy, the second one
with energy ε. If μ is the chemical potential of the system, exp(βμ) = f is
its fugacity and one has f ≤ 1. Compute z = f−1 as a function of the tem-
perature T = 1/(βk) (in fact z is a function of βε). In particular identify the
range of values of z when T varies from 0 to ∞.
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Answer: It is convenient to study ζ ≡ z exp(βε/2) instead of z. ζ must diverge
in the T → 0 limit since z ≥ 1. The condition that the sum of state occupation
numbers be equal to n̄ gives the equation:

ζ2 − 2 cosh(βε/2)(1 + 1/n̄)ζ + 2/n̄ + 1 = 0 ,

whose solutions are

ζ± = cosh(βε/2)(1 + 1/n̄)±
√

cosh2(βε/2)(1 + 1/n̄)2 − 2/n̄− 1] .

One must choose ζ+ since ζ− vanishes in the T → 0 limit. Then one has in the

T → 0 limit ζ → 2 cosh(βε/2)(1+1/n̄)→ exp(βε/2)(1+1/n̄) and hence the average

occupation number of the zero energy state n̄0 = 1/(ζ exp(−βε/2)− 1) → n̄. In the

T → ∞ limit one has ζ → 1 + 2/n̄ and hence n̄0 → 2/n̄. Therefore z ranges from

1 + 1/n̄ to 1 + 2/n̄ and the chemical potential ranges approximately from −kT/n̄,

fot T small, to −2kT/n̄ for T large. There is no Bose condensation.

3.29. A system is made up of N identical bosonic particles of mass m mov-
ing in a one-dimensional harmonic potential V (x) = mω2x2/2. What is the
distribution of occupation numbers corresponding to the ground state of the
system? And that corresponding to the first excited state? Determine the
energy of both states.

If h̄ω = 0.1 eV and if the system is in thermal equilibrium at room tem-
perature, T = 300◦K, what is the ratio R of the probability of the system
being in the first excited state to that of being in the fundamental one? How
the last answer changes in case of distinguishable particles?

Answer: In the ground state all particles occupy the single particle state of low-

est energy h̄ω/2, hence E = Nh̄ω/2, while in the first excited state one of the N

particles has energy 3h̄ω/2, hence E = (N + 2)h̄ω/2. The ground state has degen-

eracy 1 both for identical and distinguishable particles. The first excited state has

denegeracy 1 in the case of bosons while the degeneracy is N in the other case,

since it makes sense to ask which of the N particles has energy 3h̄ω/2. Therefore

R = e−h̄ω/kT � 0.021 for bosons and R � N 0.021 in the second case. For large N

the probability of the system being excited is much suppressed in the case of bosons

with respect to the case of distinguishable particles.

3.30. Consider again Problem 3.29 in the case of fermions having a single spin
state and for h̄ω = 1 eV and T � 1000◦K.

Answer: In the ground state of the system the first N levels of the harmonic os-

cillator are occupied, hence its energy is E0 =
∑N−1

i=0
(n + 1/2)h̄ω = (N2/2)h̄ω.

The minimum possible excitation of this state corresponds to moving the fermion of

highest energy up to the next free level, hence the energy of the first excited state

is E1 = E0 + h̄ω. The ratio R is equal to e−h̄ω/kT = 9.12 10−6.
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3.31. A system is made up of N = 108 electrons which are free to move along
a conducting cable of length L = 1 cm, which can be roughly described as
a one-dimensional segment with reflecting endpoints. Compute the Fermi en-
ergy of the system, taking also into account the spin degree of freedom.

Answer: EF = h̄2N2π2/(8mL2) = 1.5 10−18 J.

3.32. Let us consider a system made up of two non-interacting particles at
thermal equilibrium at temperature T . Both particles can be found in a set
of single particle energy levels εn, where n is a non-negative integer. Com-
pute the partition function of the system, expressing it in terms of the parti-
tion function Z1(T ) of a single particle occupying the same energy levels, for
the following three cases: distinguishable particles, identical bosonic particles,
identical fermionic particles.

Answer: If the particles are distinguishable, all states are enumerated by speci-
fying the energy level occupied by each particle, hence we can sum over the energy
levels of the two particles independently:

Z(T ) =
∑

n

∑
m

e−β(εn+em) =

(∑
n

e−βεn

)2

= (Z1(T ))2 .

Instead, in case of two bosons, states corresponding to a particle exchange must be
counted only once, hence we must treat separately states where the particles are in
the same level or not

Z(T ) =
1

2

∑
n�=m

e−β(εn+em) +
∑

n

e−β(εn+en)

=
1

2

∑
n,m

e−β(εn+em) − 1

2

∑
n

e−2βεn +
∑

n

e−2βεn =
1

2

(
(Z1(T ))2 + Z1(T/2)

)
.

If the particles are fermions, we must count only states where the particles are in
different energy levels

Z(T ) =
1

2

∑
n�=m

e−β(εn+em)

=
1

2

∑
n,m

e−β(εn+em) − 1

2

∑
n

e−2βεn =
1

2

(
(Z1(T ))2 − Z1(T/2)

)
.

3.33. A particle of mass m = 9 10−31 is placed at thermal equilibrium, at
temperature T = 103 ◦K, in a potential which can be described as a distri-
bution of spherical wells. Each spherical well has a negligible radius, a single
bound state of energy E0 = −1 eV, and the density of spherical wells is
ρ = 1024 m−1. Assuming that the spectrum of unbound states is unchanged
with respect to the free particle case, determine the probability of finding the
particle in a “ionized” (i.e. unbound) state.

Answer: Let us discuss at first the case of a single spherical well at the center
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of a cubic box of volume V = L3. The bound state of the well is not influenced by
the walls of the box if L � h̄/

√
2m|E0| � 1.55 10−10 m. At the given temperature

the particle is non-relativistic. The density of free energy levels in the cubic box is
dnE/dE = V

√
E(2m)3/2/(4π2h̄3). Taking into account also the bound state, the

partition function is

Z = e−βE0 +V
(2m)3/2

4π2h̄3

∫ ∞

0

dE
√

Ee−βE = e−βE0 +V
(2mkT )3/2

4π2h̄3

√
π

2
= e−βE0 +

V

λ3
T

where λT ≡
√

2πh̄2/mkT is the de Broglie thermal wavelength of the particle,
i.e. its typical wavelength at thermal equilibrium. The probability for the particle
being in the bound state is Pb = e−βE0/(e−βE0 +V/λ3

T ) and it is apparent that, for
any given T , limV →∞ Pb = 0, i.e. the particle stays mostly in a “ionized” state if
the box is large enough. At very low temperatures that may seem strange, since it
may be extremely unlikely to provide enough energy to unbind the particle simply
by thermal fluctuations; however, once the particle is free, it escapes with an even
smaller probability of getting back to the well, if the box is large enough.

In the present case, however, there is a finite density of spherical wells: that

is equivalent to considering a single well in a box of volume V = 1/ρ. Therefore

Pb =
(
1 + e−β|E0|/(ρλ3

T )
)−1

, while the probability for being in an unbound state is

Pfree = (1 + eβ|E0|ρλ3
T )−1 � e−β|E0|(ρλT )−3 = 2.75 10−2.

3.34. A gas of monoatomic hydrogen is placed at thermal equilibrium at tem-
perature T = 2 103 ◦K. Assuming that the density is low enough to neglect
atom-atom interactions, estimate the rate of atoms which can be found in the
first excited energy level (principal quantum number n = 2).

Answer: According to Gibbs distribution and to the degeneracy of the energy levels
of the hydrogen atom, the ratio of the probabilities for a single atom to be in the
level with n = n2 or in that with n = n1 is

Pn2,n1 =
n2

2

n2
1

exp

(
−E0

kT

(
1

n2
2

− 1

n2
1

))

where E0 is the energy of the ground state, E0 = −me4/(32π2ε20h̄
2) � −13.6 eV.

Since kT � 0.1724 eV, we get P2,1 � 0.8 10−24. Since in those conditions most
atoms will be found in the ground state with n = 1, this number can be taken as a
good estimate for the rate of atoms in the level with n = 2.

The above answer is correct in practice, but needs some further considerations.
Indeed, if we try to compute the exact hydrogen atom partition function we find a
divergent behaviour even when summing only over bound states: energy levels En

become denser and denser towards zero energy, where they have an equal Boltzmann
weight and become infinite in number: one would conclude that the probability of
finding an atom in the ground state is zero at every temperature. However, as
n increases, also the atom radius rn increases: in this situation the atom, which is
called a Rydberg atom, interacts strongly with the surrounding black body radiation.
Therefore the infinite number of highly excited states should not be taken into
account since these strongly interacting states have very short lifetimes. One should
however take into account ionized states, in which the electron is free to move far
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away from the binding proton. Concerning the statistical weight of these states, we
can make reference to Problem (3.33): following a similar argument we realize that
ionized states become statistically relevant, with respect to the ground state, when

the density of atoms is of the order of e−β|E0|/λ3
T = e−β|E0| (mkT/(2πh̄2)

)3/2 ∼
e−β|E0|1028 m−3 ∼ 10−6 m−3 .

3.35. Consider a homogeneous gas of non-interacting, non-relativistic bosons,
which are constrained to move freely on a plane surface. Compute the rela-
tion linking the density ρ, the temperature T and the chemical potential μ of
the system. Does Bose-Einstein condensation occur? Does the answer to the
last question change if an isotropic harmonic potential acts in the directions
parallel to the surface?

Answer: An easy computation shows that the density of states for free particles
in two dimensions is independent of the energy and given by

dnE

dE
=

mA

2πh̄2

where m is the particle mass and A is the total area of the surface. According to
Bose-Einstein distribution, the total particle density is then given by:

ρ =
N

A
=

m

2πh̄2

∫ ∞

0

dE
1

e(E−μ)/(kT ) − 1
= −kTm

2πh̄2
ln
(
1− eμ/(kT )

)
.

The chemical potential turns out to be negative, as expected. It is interesting to
consider the limit of low densities, in which the typical inter-particle distance is
much greater than the typical thermal de Broglie wavelength (ρ−1/2 � h/

√
mkT )

and

μ � kT ln

(
2πh̄2ρ

mkT

)
,

while in the opposite case of high densities one obtains

μ = −kT exp

(
−2πh̄2ρ

mkT

)
.

At variance with the three-dimensional case, ρ diverges as μ → 0, meaning that
the system can account for an arbitrarily large number of particles, with no need
for a macroscopic number of particles in the ground state, therefore Bose-Einstein
condensation does not occur in two dimensions, due to the different density of states.

If the system is placed in a two-dimensional isotropic harmonic potential of
angular frequency ω, the energy levels are En = h̄ω(n+1), with degeneracy n+1, so
that the total number of energy levels found below a given energy E is ∼ E2/(2h̄2ω2)
and the density of states becomes dnE/dE � E/(h̄2ω2). The average number of
particles (the system is not homogeneous and we cannot define a density) is

N =
1

h̄2ω2

∫ ∞

0

dE
E

e(E−μ)/(kT ) − 1
=

k2T 2

h̄2ω2

∫ ∞

−μ/(kT )

dx
x + μ/(kT )

ex − 1
.

In this case the integral in the last member stays finite even in the limit μ → 0,

meaning that condensation in the ground state is necessary to allow for an arbitrary

average number of particles N . The condensation temperature is Tc ∼
√

Nh̄ω/k

and goes to zero, at fixed N , as ω → 0 (i.e. going back to the free case).
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3.36. A system of massless particles at thermal equilibrium is characterized
by the known equation of state U/V − 3P = 0, linking the pressure P to
the density of internal energy U/V . For a homogeneous system of spinless,
non-interacting and distinguishable particles of density ρ, placed at thermal
equilibrium at temperature T , compute the lowest order violation to the above
relation due to a non-zero particle mass m.

Answer: For one particle in a cubic box of volume V = L3, energy levels are

written as E =
√

p2c2 + m2c4 =
√

m2c4 + (π2h̄2c2/L2)(n2
x + n2

y + n2
z), with nx,

ny and nz positive integers. The number of energy levels below a given threshold

Ē =
√

p̄2c2 + m2c4 is given by p̄3V/(3π2h̄3), from which one obtains the density of
states dnE/dE = V pE/(c2h̄2h̄3). The derivative of one energy level with respect to
the volume is ∂E/∂V = p2c2/(3V E).

The internal energy and the pressure are given, for a single particle, by

U =

∫∞
mc2

dE(dnE/dE)e−βEE∫∞
mc2

dE(dnE/dE)e−βE
; P =

∫∞
mc2

dE(dnE/dE)e−βE(∂E/∂V )∫∞
mc2

dE(dnE/dE)e−βE

so that

U−3PV =

∫∞
mc2

dE(dnE/dE)e−βE(E − p2c2/E)∫∞
mc2

dE(dnE/dE)e−βE
=

m2c4
∫∞

mc2
dE(dnE/dE)e−βE/E∫∞

mc2
dE(dnE/dE)e−βE

.

To keep the lowest order in m it is sufficient to evaluate the integrals in the last
expression in the limit m = 0. Finally, multiplying for the total number of particles
in the box, N = ρV , we get

U

V
− 3P =

ρ m2c4

2kT
.

This is the first term of an expansion in terms of the parameter mc2/kT .

3.37. Consider a rarefied gas of particles of mass m in equilibrium at tem-
perature T . The probability distribution of particle velocities is given by the
Gaussian Maxwell-Boltzmann (MB) formula

p(v) d3v =
( m

2πkT

)3/2

e−mv2/(2kT )d3v .

Considering a pair of particles in the gas, labelled by 1 and 2, compute the
distribution of the relative velocities vR ≡ v1 − v2, and that of the velocity
of their center of mass vB ≡ (v1 + v2)/2.

Answer: The particles in the chosen pair behave as independent systems, hence
the probability density in the six-dimensional (v1, v2) space is just the product of
the two densities:

p(v1, v2)d
3v1d

3v2 =
(

m

2πkT

)3

e−m(v2
1+v2

2)/(2kT )d3v1d
3v2 .

If we change variables passing from (v1, v2) to (vR, vB), the new probability density
is given by
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p̃(vR, vB)d3vRd3vB = p(v1, v2)d
3v1d

3v2

hence p̃(vR, vB) = J(vR, vB)p(v1, v2) where J is the Jacobian matrix, that is, the
absolute value of the determinant of the six-dimensional matrix whose elements are
∂vi

a/∂vj
S where a is either 1 or 2 and S is either R or B and i, j label the Cartesian

components. Furthermore p(v1, v2) must be considered a function of (vR, vB). It is
soon verified that J = 1 and that v2

1 + v2
2 = (1/2)v2

R + 2v2
B . Therefore we have

p̃(vR, vB)d3vRd3vB =
(

μ

2πkT

)3/2

e−μv2
R

/(2kT )
(

M

2πkT

)3/2

e−Mv2
B

/(2kT )

where μ = m/2 is the reduced mass of the pair of particles and M = 2m is their
total mass.

Then we see that our result corresponds to the product of the MB distribution

of a single particle of mass μ and velocity vR and that of a single particle of mass M

and velocity vB . If we search for the vR distribution of the pair, we must integrate

over vB and we get the first MB distribution, corresponding to the mass μ. If

instead we search for the vB distribution of the pair, we must integrate over vR and

we get the second MB distribution, corresponding to the mass M . It can be easily

verified that the result extends unchanged to the case in which the two particles

have different masses m1 and m2, defining as usual M = m1 + m2, μ = m1m2/M ,

vB = (m1v1 + m2v2)/M , vR = v1 − v2.

3.38. We have a rarefied gas of electrons for which mc2 = 0.511 MeV, in
thermal equilibrium at kT = 5 103 eV. Since kT/mc2 � 1, the rarefied gas in
non-relativistic. Therefore the particle momentum p distribution is given by
the Maxwell-Boltzmann formula

dP
dp

=

(
1

2πmkT

)3/2

e−p2/(2mkT ) .

The electron gas is mixed with a rarefied positron gas in thermal equilibrium
at the same temperature. Positrons are anti-particles of electrons, therefore a
positron-electron collision can produce an annihilation into two photons and
hence the two gas mixture is a photon source. We would like to compute the
photon energy (frequency) distribution.

Answer: If a non-relativistic positron annihilates with a non-relativistic elec-
tron and their relative momentum is p while the center of mass one is P , for-
getting relativistic corrections, we find that the energy of a produced photon is
E = (mc2 + p2/(2m))(1 + Pz/Mc) where we have chosen the z-axis parallel to the
momentum of the photon and the second factor is the transformation factor from the
center of mass to the laboratory frame, that is, it accounts for the non-relativistic
Doppler effect. As shown in the preceding problem, considering a generic electron-
positron pair, one has the center of mass P and relative momentum p distribution
d6P/(dP dp) = 1/(2πmkT )3 exp(−p2/(mkT )) exp(−P 2/(4mkT )). Changing the Pz

variable into E and integrating over Px and Py we get (the only non-trivial element
of the Jacobian matrix is ∂Pz/∂E):

d4P
dpdE

=
2m2c

(2m2c2 + p2)(πmkT )2
e−p2/(mkT ) exp

(
−4m3c2(E −mc2 − p2/(2m))2

(2m2c2 + p2)2kT

)
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which should be integrated over p. The Gaussian factor in p correesponds to a mean
square value p̄2 = 3mkT/2 and the standard deviation Δ2

p2 = 3(mkT )2/2. Since in

the above distribution, the Gaussian factor put apart, p2 appears only in the linear
combination mc2+p2/(2m) and since mc2 = 0.511 MeV � 3kT/4 we can replace the
linear combination with mc2 + 3kT/4 getting the final photon energy distribution:

dP
dE

=
1√

πmc2kT (1 + 3kT/(4mc2))
exp

[
− (E −mc2 − 3kT/4)2

mc2kT (1 + 3kT/(4mc2))2

]
.

Notice that, however exponentially decaying, the distribution does not vanish for

negative E values, this is due that for these values the non relativistic Doppler

formula does not apply. Thus negative E values should not be considered. Notice

also that, while the most probable E value is shifted by a factor 3kT/(4mc2) ∼ 10−2,

the width of the distribution is proportional to
√

mc2kT , allowing for fluctuations

in E of the order of
√

kT/mc2 ∼ 10%, i.e. much larger than the shift. The physical

origin of the shift is mostly in the fact that the annihilating pair has an average

energy, in the center of mass, which is larger than 2mc2, due to thermal motion, by

an amount ∼ p2/m ∼ kT . The broad distribution of energy is instead mostly due to

Doppler effect, due to the transformation from the center of mass to the laboratory

frame (see also Problem 1.27), and the broadening is proportional to the typical

center of mass velocity, which is of the order of c
√

kT/mc2.
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Quadrivectors

A concise description of Lorentz transformations and of their action on phys-
ical observables can be given in terms of matrix algebra. The coordinates of
a space-time event in the reference frame O are identified with the elements
of a column matrix ξ:

ξ ≡

⎛
⎜⎝

ct
x
y
z

⎞
⎟⎠ , (A.1)

while Lorentz transformations from O to a new reference frame O′, which are
given in (1.13) and (1.14), are associated with a matrix

Λ̄ ≡

⎛
⎜⎜⎜⎝

1√
1− v2

c2

0 0 −v

c
√

1− v2

c2

0 1 0 0
0 0 1 0
−v

c
√

1− v2

c2

0 0 1√
1− v2

c2

⎞
⎟⎟⎟⎠ (A.2)

defined so that the column matrix corresponding to the coordinates of the
same space-time event in frame O′ is given by:

ξ′ ≡

⎛
⎜⎝

ct′

x′

y′

z′

⎞
⎟⎠ = Λ̄ξ ≡

⎛
⎜⎜⎜⎝

1√
1− v2

c2

0 0 −v

c
√

1− v2

c2

0 1 0 0
0 0 1 0
−v

c
√

1− v2

c2

0 0 1√
1− v2

c2

⎞
⎟⎟⎟⎠
⎛
⎜⎝

ct
x
y
z

⎞
⎟⎠ . (A.3)

The products above are intended to be row by column products. To be more
specific, indicating by ai,j , with i = 1, . . . , M and j = 1, . . . , N , the element
corresponding to the i-th row and the j-th column of the M × N matrix A
(i.e. A has M rows and N columns), and by bl,m the element of the i-th row
and the j-th column of the N × P matrix B, the product AB is a M × P
matrix whose generic element is given by:
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(AB)i,m =

N∑
j=1

ai,jbj,m . (A.4)

As we have discussed in Chapter 2, a generic Lorentz transformation cor-
responds to a homogeneous linear transformations of the event coordinates
which leaves invariant the following quadratic form:

ξ2 ≡ x2 + y2 + z2 − c2t2 ; (A.5)

moreover, the direction of time (time arrow) is the same in both frames and
if the spatial Cartesian coordinates in O are right(left)-handed, they will be
right(left)-handed also in O′. In matrix algebra, the quadratic form can be
easily built up by introducing the metric

g ≡

⎛
⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ , (A.6)

and defining:

ξ2 = ξT g ξ ≡ ( ct′ x′ y′ z′ )

⎛
⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

ct
x
y
z

⎞
⎟⎠ , (A.7)

where the products are still intended to be row by column.
The symbol T used in the left-hand side stands for transposition, i.e. the

operation corresponding to exchanging rows with columns. Notice that, main-
taining the row by column convention for matrix product, the transpose of
the product of two matrices is the inverted product of the transposes:

(AB)T = BT AT . (A.8)

The condition that Lorentz transformations leave the quadratic form in (A.7)
invariant can be now expressed as a simple matrix equation for the generic
transformation Λ:

ξ
′T g ξ′ = ξT ΛT gΛ ξ ≡ ξT g ξ ∀ ξ =⇒ ΛT gΛ = g . (A.9)

The additional requirements are that the determinant of Λ be one and that
its first diagonal element (i.e. first row, first column) be positive.

Equation (A.9) can be put in a different form by making use of the evident
relation g2 = I, where I is the identity matrix (its element (i, j) is equal to
1 if i = j, to 0 if i 
= j and of course AI = IA = A for every matrix A).
Multiplying both sides of last equation in (A.9) by g on the left, we obtain:

gΛT g Λ = I =⇒ gΛT g = Λ−1 , (A.10)
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where the inverse matrix A−1 of a generic matrix A is defined by the equation
A−1A = AA−1 = I.

Column vectors in relativity are called quadrivectors. Some specifications
about the action of Lorentz transformations over them are however still
needed. Let us consider a function f(ξ) depending on the space-time event ξ,
which we suppose to have continuous derivatives and to be Lorentz invariant,
i.e. such that f(Λξ) = f(ξ). The partial derivatives of f with respect to the
coordinates of the event form a column vector:

∂f(ξ) ≡

⎛
⎜⎜⎜⎝

∂f(ξ)
∂ct

∂f(ξ)
∂x

∂f(ξ)
∂y

∂f(ξ)
∂z

⎞
⎟⎟⎟⎠ . (A.11)

However this vector does not transform like ξ when changing reference frame.
Indeed in O′ we have:

∂′f(ξ′) ≡

⎛
⎜⎜⎜⎝

∂f(ξ′)
∂ct′

∂f(ξ′)
∂x′

∂f(ξ′)
∂y′

∂f(ξ′)
∂z′

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

∂f(ξ)
∂ct′

∂f(ξ)
∂x′

∂f(ξ)
∂y′

∂f(ξ)
∂z′

⎞
⎟⎟⎟⎠ . (A.12)

To proceed further it is necessary to make use of (A.10), which gives ξ =
gΛT gξ′, and to apply the chain rule for partial derivatives. This states that, if
the variables qi , i = 1, . . . , n depend on the variables q′i through the function
qi = Qi(q

′), and vice versa q′i = Q̃i(q), then for the partial derivatives of a
function F (q) we have:

∂F (q)

∂q′i
=

n∑
l=1

∂Ql(Q̃(q))

∂q′i

∂F (q)

∂ql
. (A.13)

Interpreting last expression as a matrix product, it is clear that i is a row
index while l is a column one. In the specific case of (A.12), Q(q′) is a linear
function corresponding to gΛT g ξ′, while ∂Ql(Q̃(q))/∂q′i corresponds to the
matrix (gΛT g)T = gΛg. Indeed, as noticed above and as follows from the
definition of matrix product, index i refers to the row of the first matrix and
to the column of the second.

We have therefore the matrix relation:

∂′f = gΛg∂f −→ g∂′f = Λg∂f , (A.14)

showing that it is the product of g by the vector of partial derivatives which
transforms like the coordinates of a space-time event, rather than the partial
derivatives themselves. Hence, if we want to call quadrivector a column vector
transforming like coordinates, g∂f is a quadrivector while ∂f is not.
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In mathematical language the vector of coordinates is usually called a
contravariant quadrivector, while that of partial derivatives is called a covari-

ant quadrivector; the difference is specified by a different position of indices,
which go up in the contravariant case. Notice however that this distinction is
important only in the case of non-linear coordinate transformations, like in
the case of curved manifolds. In our case the introduction of the two kind of
vectors is surely not worthwhile.

Indices may be convenient in the case of quantities transforming like the
tensorial product of more than one vector, i.e. like the products of different
components of quadrivectors: that is the case, for instance, of the electric and
magnetic fields, but not of the vector potential.

Having verified that several physical quantities transform like quadrivec-
tors, let us notice that an invariant, i.e. a quantity which is the same for all
inertial observers, can be associated with each pair of quadrivectors η and ζ:

ηT g ζ = ζT g η ⇒ η
′T g ζ′ = (Λη)T g Λζ = ηT ΛT g Λ ζ = ηT g ζ . (A.15)

In analogy with rotations, this invariant is usually called scalar product and
indicated by η ·ζ. A quite relevant example of scalar product is represented by
the de Broglie phase, which is given by −ε · ξ/h̄ = (p · r−Et)/h̄, i.e. it is the
scalar product of the coordinate quadrivector ξ and of the energy-momentum
quadrivector ε of a given particle.



B

Spherical Harmonics as Tensor Components

We have already noticed that the action of rotations on positions can be
expressed in the same language of Appendix A, representing r by the column
matrix with elements x, y, z, and associating a rotation with a 3×3 orthogonal
matrix R satisfying RT = R−1 and with unitary determinant, acting on the
position vectors by a row by column product as follows: r → Rr. Notice
that the condition RT = R−1 implies that the square of detR is unitary, the
restriction detR = 1 excludes improper rotations such has those combined
with space reflection.

In complex coordinates, position vectors r correspond to column matrices
whose first element (x+) is the complex conjugate of the second (x−), while
the third (z) is real. Indicating as usual by v these column matrices and again
by R the matrices corresponding to rotations, so that v′ = Rv, we can easily
find the constraints satisfied by R in the new complex notation. The squared
length of a vector is v2 ≡ vT gv, where the only non-vanishing components
of the metric matrix gi,j are g+,− = g−,+ = 1

2 and g3,3 = 1 (indeed we have
r2 = x+x− + z2), so that the condition of length invariance for vectors can
be written as RT gR = g, or equivalently g−1RT gR = I, if I is the identity
matrix and g−1g = gg−1 = I. The matrix g−1 satisfies

Rg−1RT = g−1 , (B.1)

and its non-vanishing components are g−1
+,− = g−1

−,+ = 2 and g−1
3,3 = 1.

An important concept is that of tensor of rank n, which is a quantity
with n indices, Ti1,...,in

, transforming under rotations according to T ′i1,...,in
=

Ri1j1 . . . Rinjn
Tj1,...,jn

the sum over repeated indices being understood here
and in the following equations. In particular, a tensor of rank 2 is a square
matrix T such that T ′ = R TRT . According to the considerations above,
the quantity g−1, which carries two indices, can be considered as a tensor;
furthermore, because of equation (B.1), it is an invariant tensor.

Given a tensor T , a new one tensor T π is obtained by changing the order of
(permuting) its indices according to a given permutation law. In this way we
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can select linear combinations of the permuted tensors belonging to particular
symmetry classes, so selecting e.g. symmetric or anti-symmetric parts.

If we choose as above R having unitary determinant, we find a further
set of invariant tensors. These are the completely anti-symmetric rank 3 ten-
sors, i.e. Aijk = −Ajik = −Akji. The anti-symmetry condition implies that
all the non-vanishing components of A are equal up to a change of sign.
More precisely, the components with two coinciding indices vanish, while
A+,−,z = A−,z,+ = Az,+,−, the remaining three components having op-
posite sign. Now, if A is a tensor, that is it transforms under rotations as
A′i1i2i3

= Ri1j1Ri2j2Ri3j3Aj1j2j3 , we have, for example, A′+,−,z = A+,−,z: in-
deed we have the equation A+,−,z = R+,j1R−,j2Rz,j3Aj1j2j3 , whose right-hand
side is equal to A+,−,z multiplied by the sum of all possible products of el-
ements of R belonging to different rows and columns, multiplied by +1 if
the triplet of indices j1, j2, j3 coincides with +,−, z or −, z, + or z, +,−, and
−1 otherwise. This means that A′+,−,z = detR A+,−,z, hence A is invariant.
Since, of course, multiplying A by a constant leaves it invariant, one makes
a particular choice introducing the Ricci anti-symmetric rank three tensor ε,
with ε+,−,z = −2i.

Given two generic tensors T of rank n and U of rank m and a partition of
n + m indices i1, . . . , in+m in two ordered ip1 , . . . , ipn

and iq1 , . . . , iqm
sets of

n and m indices, one defines their tensor product, which is the tensor T ⊗p U
of rank n + m whose components are the products Tip1 ,...,ipn

Uiq1 ,...,iqm
. It is

clear that the resulting tensor depends on the chosen partition.
Given a tensor T of rank n and a pair of indices, say the j-th and

the l-th (j < l < n), we define the rank n − 2 trace tensor, according to

T
{j,l}
i1,...,ij−1,ij+1,...,il−1,il+1,...,in

≡ gij ,il
Ti1,...,ij ,...,il,...,in

. A tensor T of rank n for

which all rank n− 2 trace tensors T {j,l} vanish is called a traceless tensor.

Combining traces and tensor products we can reduce generic tensors to
linear combinations of simpler ones following two different lines: selecting sym-
metric parts and traces. We show how this works considering a generic tensor
T and paying attention to its first two indices. The identity

Ti1,i2,...,in
=

1

2
[Ti1,i2,...,in

+Ti2,i1,...,in
]+

1

2
[Ti1,i2,...,in

− Ti2,i1,...,in
]

=
1

2
[Ti1,i2,...,in

+Ti2,i1,...,in
]+

1

2
gk,lεi1,i2,kεj1,j2,lgj1,l1gj2,l2Tl1,l2,i3,...,in

=
1

2
[Ti1,i2,...,in

+Ti2,i1,...,in
]+gk,lεi1,i2,kT̂l,i3,...,in

. (B.2)

Where we have exploited the identity

gk,lεi1,i2,kεj1,j2,l = g−1
i1,j1

g−1
i2,j2

− g−1
i1,j2

g−1
i2,j1

. (B.3)

Here in the first identity we have decomposed T into the sum of a symmetric
part and of an anti-symmetric part in the first two indices. In the second
identity we have written the anti-symmetric part as a trace tensor product
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of ε and a rank n − 1 tensor T̂ which apparently captures the information
contained in the anti-symmetric part.

T̂i1,...,in−1 ≡
1

2
εj1,j2,i1gj1,l1gj2,l2Tl1,l2,i2,...,in−1 . (B.4)

Iterating the just shown procedure we can write any rank n tensor as a linear
combination of tensors built as trace tensor products of tensor powers of ε
and completely symmetric tensors with rank ranging from n to zero.

In order to show the second step of our reduction process, let us consider a
symmetric tensor of rank n, it can be written as a linear combination of tensor
products of tensor powers of g−1 and traceless symmetric tensors of rank
n−2k, for k ranging from zero to [n/2], iterating the following decomposition:

Ti1,i2,...,in
= T

(12)
i1,i2,...,in

+
1

3
g−1

i1,i2
gklTk,l,i3,...,in

(B.5)

where

gi1,i2T
(12)
i1,i2,...,in

= gi1,i2

[
Ti1,i2,...,in

− 1

3
g−1

i1,i2
gklTk,l,...,in

]
= 0 . (B.6)

We conclude our analysis claiming that any tensor of rank n can be written
as a linear combination of tensor products of powers of g−1 and trace tensor
product of powers of ε and traceless completely symmetric tensors capturing
the non-trivial information carried by the tensor.

Now it is easy to verify the existence of a strict relation between the
components of any traceless completely symmetric tensor of rank l and the
harmonic homogeneous polynomials Y l,m(r) for what concerns their trans-
formation properties under rotations and hence, in the operator formalism,
the commutation relations with the angular momentum components. Indeed
each monomial homogeneous of degree n in the coordinates ri is clearly iden-
tified with a component of the symmetric tensor Ri1,...,in

≡ ri1ri2 ...rin
. We

have seen in Section (2.9) that the linear space spanned by these monomi-
als, that is the space of homogeneous polynomials of degree n, has dimension
(n + 1)(n + 2)/2, hence this is the number of independent components of R.
For what concerns the transformation properties under rotations, we have seen
that the space of homogeneous polynomials decomposes into invariant sub-
spaces, whose elements transform into one another. These are the subspaces
of polynomials which can be written in the form (r2)kpn−2k, where pn−2k is
a harmonic homogeneous polynomial of degree n − 2k. Each subspace has
dimension 2(n − 2k) + 1. Concerning the tensor R, the present analysis has
shown that a symmetric tensor appears as the sum of tensor products of
powers of g−1 and traceless symmetric tensors of lower rank. Therefore the
components of R appear as linear combinations of components of traceless
symmetric tensors with rank n− 2k, k ranging from zero to the integer part
of n/2. Under rotations the components of each traceless symmetric tensor
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transform into one another. Now the number of independent components of a
traceless symmetric tensors of rank m can be computed subtracting from the
number of independent components of a symmetric tensors of rank m that of
the independent components of its trace, which is a symmetric tensor of rank
m− 2, therefore we have (m + 2)(m + 1)/2−m(m− 1)/2 = 2m + 1, which is
the number of independent harmonic homogeneous polynomials of degree m.
These considerations show that there is a one-to-one correspondence between
any component of the rank n traceless part of R and a harmonic homogeneous
polynomial of degree n. We now discuss this correspondence in a few simple
cases.

In order to simplify the comparison we begin changing the normalization
of the harmonic homogeneous polynomial Y l,m(r) introduced above. That is
we introduce the normalization condition Ȳm

l (r) → xm
+ zl−m, as x+x− → 0,

for m ≥ 0. Starting from l = 0 we find:

Ȳ 0,0 = 1 , Ȳ 1,0 = z , Ȳ 1,±1 = x± ,

Ȳ 2,0 = z2 − x+x−
2

, Ȳ 2,±1 = x±z , Ȳ 2,±2 = (x±)2 . (B.7)

Therefore we see that the functions Ȳ 1,m coincide with the complex compo-
nents of the position vector r, i.e. r± = x± , r3 = z, while the functions Ȳ 2,m

are proportional to the components of the traceless symmetric tensor

Tij(r) ≡ rirj − 1

3
g−1

ij r2 . (B.8)

Indeed, it is evident that:

Ȳ 2,0 =
3

2
T33 , Ȳ 2,±1 = T3± , Ȳ 2,±2 = T±± . (B.9)

The relation between the wave functions of systems having central symmetry
and traceless symmetric tensors, which generalizes what we have explicitly
seen for l = 2, allows to easily understand how to combine the angular mo-
menta of different components of the same system, a typical example being an
atom emitting electromagnetic radiation, whose angular momentum is strictly
related to the emission multipolarity.

First of all notice that, since the transformation properties under rotations
of traceless symmetric tensors of rank l only depend on l, the components
of such tensor transform as harmonic homogeneous polynomials of degree
l. Secondly, remind that two traceless symmetric tensor U and V combine
through the tensor product U ⊗ V , which reduces to a linear combination of
trace tensor products of powers of g−1 and ε and traceless symmetric tensors
of lower rank. If the ranks are l(u) and l(v) respectively, the reduction of the
tensor product to traceless symmetric tensors generates tensors of all possible
ranks from l(u) + l(v) to | l(u)− l(v) |. Indeed the rank is reduced by traces
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which can involve indices from U and V , U and ε and V and ε. Any ε must
be traced with both U and V , since both U and V are symmetric. It follows
that, if for instance l(u) > l(v), l(u)− l(v) indices if U cannot be traced with
indices of V or ε. They could be involved in a trace together with an other
index of U , but this trace vanishes by definition of traceless tensor.

The strict relation between the rank of the wave function, considered as
a traceless symmetric tensor, and angular momentum, let us immediately
understand that angular momenta combine like the ranks of the corresponding
tensors, hence the resulting angular momentum can only take values between
l + l′ and |l − l′|, which by the way is also the possible range of lengths
for a vector sum of two vectors of length l and l′. In an electric quadrupole
transition, where the radiation enters through a traceless symmetric tensor of
rank 2, hence l′ = 2, the final angular momentum of the emitting atom may
take values in the range between l+2 and |l−2|, where l is the original atomic
angular momentum.



C

Thermodynamics and Entropy

We have shown by some explicit examples how the equilibrium distribution
of a given system can be found once its energy levels are known. That has
allowed us to compute the mean equilibrium energy by identifying the La-
grange multiplier β with 1/kT . However, it should be clear that the complete
reconstruction of the thermodynamical properties of systems in equilibrium
requires some further steps and more information.

Nevertheless, in the case of Einstein’s crystal in the limit of a rigid lattice,
the thermodynamical analysis is quite simple. Indeed the model describes a
system whose only energy exchanges with the external environment happen
through heat transfer. That means that the exchanged heat is a function of
the state of the system which does not differ but for an additive constant
from the mean energy, i.e. from the internal energy U(T ). However also in
this simple case we can introduce the concept of entropy S, starting from the
differential equation dS = dU/T , which making use of (3.23) gives:

dS =
C(T )

T
dT =

3h̄2ω2

kT 3

eh̄ω/kT(
eh̄ω/kT − 1

)2 dT = −3kh̄2ω2 eβh̄ω

(eβh̄ω − 1)
2 βdβ

= d

[
3k

(
βh̄ω

eβh̄ω − 1
− ln

(
1− e−βh̄ω

))]
. (C.1)

Hence, if we choose S(0) = 0 as the initial condition for S(T ), we can easily
write the entropy of Einstein’s crystal:

S(T ) =
3h̄ω

T

1

eh̄ω/kT − 1
− 3k ln

(
1− e−h̄ω/kT

)
, (C.2)

showing in particular that at high temperatures S(T ) grows like 3k ln T .
Apart from this result, equation (C.2) is particularly interesting since it

can be simply interpreted in terms of statistical equilibrium distributions.
Indeed, recalling that the probability of the generic state of the system, which
is identified with the vector n, is given by:
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pn = e−βh̄ω(nx+ny+nz)
(
1− e−βh̄ω

)3
,

we can compute the following expression:

− k

∞∑
nx,ny,nz=0

pn ln pn

= k
(
1− e−βh̄ω

)3 ∑
nx,ny,nz=0

e−βh̄ω(nx+ny+nz)

[
βh̄ω (nx + ny + nz)− 3 ln

(
1− e−βh̄ω

)]

= −3k ln
(
1− e−βh̄ω

)((
1− e−βh̄ω

) ∞∑
n=0

e−βh̄ωn

)3

+3k β h̄ ω
(
1− e−βh̄ω

)3( ∞∑
n=0

e−βh̄ωn

)2 ∞∑
m=0

m e−βh̄ωm . (C.3)

Finally, making use of the expression for the geometric series
∑∞

n=0 xn =
1/(1− x) if |x| < 1, hence

∞∑
n=1

nxn = x
d

dx

1

1− x
=

x

(1− x)2
,

we easily find again the expression in (C.2).
One of the most important consequences of this result is the probabilistic

interpretation of entropy following from the equation

S = −k
∑

α

pα ln pα , (C.4)

which has a general validity and is also particularly interesting for its simplic-
ity. Indeed, let us consider an isolated system and assume that its accessible
states be equally probable, so that pα is constant and equal to the inverse
of the number of states. Indicating that number by Ω, it easily follows that
S = k ln Ω, hence entropy measures the number of accessible states.

As an example, let us apply (C.4) to the three level system studied in
Section 3.3. In this case entropy can be simply expressed in terms of the
parameter z = e−βε:

S = k ln(1 + z + z2)− k

1 + z + z2
(z + 2z2) ln z ,

which has a maximum for z = 1, i.e. at the border of the range corresponding
to possible thermal equilibrium distributions.
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In order to discuss the generality of (C.4) we must consider the general
case in which the system can exchange work as well as heat with the exter-
nal environment. For instance, Einstein’s model could be made more realistic
by assuming that, in the relevant range of pressures, the frequencies of oscil-
lators depend on their density according to ω = α (N/V )

γ
, where typically

γ ∼ 2. In these conditions the crystal exchanges also work with the external
environment and the pressure can be easily computed by using (3.32):

P =

∞∑
nx,ny,nz=0

pn

γ

V
En =

γ U

V
, (C.5)

thus giving the equation of state for the crystal.
Going back to entropy, let us compute, in the most general case, the heat

exchanged when the parameters β and V undergo infinitesimal variations.
From (3.32) we get:

dU + PdV =
∂U

∂β
dβ +

∂U

∂V
dV +

1

β

∂ ln Z

∂V
dV , (C.6)

hence, making use of (3.15) we obtain the following infinitesimal heat transfer:

−∂2 ln Z

∂β2
dβ − ∂2 ln Z

∂β∂V
dV +

1

β

∂ ln Z

∂V
dV . (C.7)

Last expression can be put into the definition of entropy, thus giving:

dS = kβ

[
−∂2 ln Z

∂β2
dβ − ∂2 ln Z

∂β∂V
dV +

1

β

∂ ln Z

∂V
dV

]

= k

[
∂

∂β

(
ln Z − β

∂ ln Z

∂β

)
dβ +

∂

∂V

(
ln Z − β

∂ ln Z

∂β

)
dV

]

= k d

(
ln Z − β

∂ ln Z

∂β

)
. (C.8)

On the other hand it can be easily verified, using again (3.15), that:

−k
∑
α

pα ln pα = k
∑

α

pα (βEα + ln Z)

= k (βU + ln Z) = k

(
ln Z − β

∂ ln Z

∂β

)
≡ S . (C.9)

Last equation confirms that the probabilistic interpretation of entropy has
a general validity and also gives an expression of the partition function in
terms of thermodynamical potentials. Indeed, the relation S = k (βU + ln Z)
is equivalent to U = TS − ln Z/β, hence to ln Z = −β(U − TS). Therefore
we can conclude that the logarithm of the partition function equals minus β
times the free energy.
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