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Abstract. Using Lie group theory and canonical transformations, we con-
struct explicit solutions of nonlinear Schrödinger equations with spatially in-
homogeneous nonlinearities. We present the general theory, use it to study
different examples and use the qualitative theory of dynamical systems to ob-
tain some properties of these solutions.

1. Introduction. The Nonlinear Schrödinger Equation (NLSE) in its many ver-
sions is one of the most important models of mathematical physics, with applica-
tions to different fields [33] as for example in semiconductor electronics [6, 21], non-
linear optics [18], photonics [17], plasma physics [10], fundamentation of quantum
mechanics [28], dynamics of accelerators [13], mean-field theory of Bose-Einstein
condensates [8, 35] or biomolecule dynamics [9] to cite only a few examples. In
some of these fields and many others, the NLSE appears as an asymptotic limit
for a slowly varying dispersive wave envelope propagating in a nonlinear medium
[30]. Moreover, the range of applicability of this equation is large because of the
well-known universality of this equation [2].

The study of these equations has served as a catalyzer of the development of new
ideas or even mathematical concepts such as solitons [36] or singularities in partial
differential equations [31, 15].

In the last years there has been an increased interest in a one-dimensional non-
linear Schrödinger equation with inhomogeneous nonlinearity (INLSE):

iψt = −ψxx + V (x)ψ + g(x) |ψ|2 ψ, (1)

with x ∈ R, V (x) is an external potential and g(x) describes the spatial modulation
of the nonlinearity. This equation arises in different physical contexts such as
nonlinear optics and dynamics of Bose-Einstein condensates. But it is in the later
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field where the possibility of using the Feschbach resonance management techniques
to modify spatially the collisional interactions between atoms [27, 34, 1, 32, 16, 26,
25, 11] the one which has motivated a lot of theoretical research in the last few
years focusing on questions of direct applicability to experiments. Different aspects
of the dynamics of solitons in these contexts have been studied such as the emission
of solitons [27, 34] and the propagation of solitons when the space modulation of
the nonlinearity is a random [1], periodic [29, 25], linear [32] or localized function
[26]. Although many exact solutions of the NLSE with spatially homogeneous
nonlinearities and without potentials (V = 0) have been known for a long time, the
problem of finding exact solutions even of the NLS with homogeneous nonlinearities
and general potentials is a very difficult one.

In this paper, using Lie symmetries we find general classes of potentials V (x)
and nonlinearity functions g(x) for which exact solutions can be constructed by
combining solutions of the integrable NLS and solvable potentials V (x). The basic
idea of the Lie symmetries method is to study the invariance properties of given
differential equations under continuous groups of transformations. This method has
been applied successfully to different equations, such as, for example, differential
equations that model anharmonic oscillators [19, 20] and Madelung fluid equations
[3]. In Ref. [4] we have presented some examples of this methodology of specific
physical interest. Here we complement that analysis by presenting the general
theory, provide more examples, study the case of asymmetric solutions and use
qualitative theory of dynamical systems to provide a much more complete analysis
of the method and its applications to equations of physical relevance.

The paper is organized as follows. In Section 2, we introduce the general theory
of the Lie symmetry analysis for ordinary differential equations and particularize it
for our model problem: the nonlinear Schrödinger equation with an inhomogeneous
nonlinearity. In Section 3, we study the canonical transformations of the INLSE. In
Section 4, we present the connection between the NLSE and the INLSE. In Section
5, we use the method to construct explicit solutions of the stationary nonlinear
Schrödinger equation with an inhomogeneous nonlinearity and study the qualitative
behaviour of the NLSE and its qualitative connection with the INLSE in different
examples. Finally, in Section 6, we present asymmetric solutions of the INLSE. To
our knowledge, this is the first time that such solutions are calculated.

2. General Theory of Lie symmetries. In this paper we will look for localized
stationary solutions of Eq. (1), which are of the form

ψ(x, t) = φ(x)e−iλt, (2)

which satisfy the following nonlinear eigenvalue problem

−φxx + V (x)φ + g(x)φ3 = λφ, (3a)

lim
|x|→∞

φ(x) = 0. (3b)

By definition [5, 23], a second-order differential equation A(x, φ, φ′, φ′′) = 0 pos-
sesses a Lie group of point transformations or Lie point symmetry of the form

M = ξ(x, φ)∂/∂x+ η(x, φ)∂/∂φ, (4)
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if the action of the second extension of M , i.e. M (2) on A is equal to zero, i.e.

M (2)A(x, φ, φ′, φ′′) =

[

ξ(x, φ)
∂

∂x
+ η(x, φ)

∂

∂φ
+

η(1)(x, φ)
∂

∂φ′
+ η(2)(x, φ)

∂

∂φ′′

]

A(x, φ, φ′, φ′′) = 0, (5)

with η(k) given by

η(k)(x, φ, φ′, φ′′, ..., φk) =
Dη(k−1)

Dx
− φ(k)Dξ(x, φ)

Dx
, k = 1, 2, ... (6)

where η(0) = η(x, φ) and D/Dx is the total derivative, i.e.

D

Dx
=

∂

∂x
+ φ′

∂

∂φ
+ φ′′

∂

∂φ′
+ ....+ φ(n+1) ∂

∂φ(n)
+ ... (7)

For example, η(1) is equal to

η(1) = ηx + [ηφ − ξx]φx − ξφ(φx)2. (8)

In our case, A(x, φ, φx, φxx) is given by

A(x, φ, φx, φxx) = −φxx + f(x, φ), (9)

where f(x, φ) = V (x)φ + g(x)φ3 − λφ, and the action of the operator M (2) on
A(x, φ, φx, φxx) leads to a polynomial equation in φx. By equating coefficients of
powers of φx, one obtains

ξφφ = 0, (10a)

ηφφ − 2ξφx = 0, (10b)

2ηxφ − ξxx − 3fξφ = 0, (10c)

ηxx − ξfx − ηfφ + ηφf − 2ξxf = 0. (10d)

Integrating Eqs. (10a) and (10b), we get

ξ(x, φ) = a(x)φ + b(x), η(x, φ) = a′(x)φ2(x) + c(x)φ + d(x). (11)

Substituting these expressions into Eq. (10c) we obtain

2c′(x) = b′′(x), a(x) = 0. (12)

Finally, substituting Eqs. (11) and (12) in Eq. (10d), we get

ξ(x, φ) = b(x), (13a)

η(x, φ) = c(x)φ, (13b)

c′′(x) − b(x)V ′(x) − 2b′(x) (V (x) − λ) = 0, (13c)

2c(x)g(x) + b(x)g′(x) + 2b′(x)g(x) = 0. (13d)

Also the substitution of Eq. (12) in Eq. (13d) gives

g(x) = g0b
−3(x)e−2C

R

x

0
1/b(s)ds. (14)

where g0 and C are arbitrary constants. Summarizing the previous calculations,
the Lie point symmetry is of the form

M = b(x)
∂

∂x
+ c(x)φ

∂

∂φ
, (15)
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where

g(x) = g0b
−3e−2C

R

x

0
1/b(s)ds, (16a)

c(x) = 1
2b

′(x) + C, (16b)

c′′(x) − b(x)V ′(x) − 2b′(x) (V (x) − λ) = 0. (16c)

Eqs. (16) allow us to construct pairs {V (x), g(x)} for which a Lie point symmetry
exists. Thus given either g(x) or V (x), in principle we can choose the other in order
to satisfy Eqs. (16). In what follows, we will study the implications of the existence
of this Lie symmetry.

3. Canonical transformations and invariants. It is known [19], that the in-
variance of the energy is associated to the translational invariance. The generator
of such a transformation is of the form M = ∂/∂X . To use this fact, we define the
transformation from variables (x, ψ) to new variables (X,U)

X = h(x), U = n(x)φ, (17)

where h(x) and n(x) will be determined by requiring that a conservation law of
energy type M = ∂/∂X exists in the canonical variables. In fact, using Eq. (17),
we get

∂

∂φ
= n(x)

∂

∂U
, (18)

∂

∂x
= n′(x)φ

∂

∂U
+ h′(x)

∂

∂X
. (19)

Inserting the expressions (18) and (19) in Eq. (15) and assuming the condition
M = ∂/∂X , one finds

h′(x)b(x) = 1, (20)

b(x)n′(x) + c(x)n(x) = 0. (21)

By inserting Eq. (16b) into (21), and integrating, we obtain

h(x) =

∫ x

0

1

b(s)
ds, (22a)

n(x) = b(x)−1/2e−C
R

x

0
1/b(s)ds. (22b)

We can now write Eq. (3a) in terms of the canonical coordinates U and X ,

− d2U

dX2
− 2C

dU

dX
+ g0U

3 − EU = 0, (23)

with

E = (λ− V (x)) b(x)2 − 1
4b

′(x)2 + 1
2b(x)b

′′(x) + C2. (24)

Equation (23) is the so-called Duffing equation which arises as a model of damped
nonlinear oscillations [14]. It follows from Eqs. (16b)-(16c) that the quantity E
given by Eq. (24) is a constant of motion.

When C = 0 the previous transformations preserve the Hamiltonian structure,
because the canonical transformation is symplectic. In that case, Eq. (23) becomes

− d2U

dX2
+ g0U

3 = EU. (25)

As E is constant, this means that in the new variables we obtain the nonlinear
Schrödinger equation (NLSE) without external potential and with an homogeneous
nonlinearity.
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Of course not all choices of V (x) and g(x) lead to the existence of a Lie symmetry
or an appropriate canonical transformation, since they are linked by Eqs. (16).
This fact imposes some obvious restrictions, for instance b(x) must be smooth and
positive.

Note that Eq. (25) is a stationary homogeneous NLSE without external poten-
tial, which can be reduced to quadratures and for which many solutions are known.
So, we obtain

X −X0 =

∫ U

U0

dG
√

2(N + 1
2EG

2 + 1
4g0G

4)
, (26)

with N a constant of integration. Moreover, the energy of the system is given by

H =
1

2

(

dU

dX

)2

+
1

2
EU2 − 1

4
g0U

4. (27)

Many solutions of Eq. (25) are known. In this paper we will use the following
ones

U1(X) = η
1

cosh(µX)
,

(

E = −µ2, g0 = −2µ2

η2

)

, (28a)

U2(X) = η tanh(µX),

(

E = 2µ2, g0 =
2µ2

η2

)

, (28b)

U3(X) = η
sn(µX, k)

dn(µX, k)
,

(

E = µ2(1 − 2k2), g0 = −2µ2k2(1 − k2)

η2

)

, (28c)

U4(X) = η dn(µX, k),

(

E = µ2(k2 − 2), g0 = −2µ2

η2

)

, (28d)

with 0 ≤ k ≤ 1. Table 1 summarizes the parameter values required for the existence
of the solutions listed in Eqs. (28).

U E g0 H
U1(X) negative negative 0
U2(X) positive positive positive
U3(X) both negative positive
U4(X) negative negative negative

Table 1. Conditions on the parameters E, g0 and energy H for
the existence of the solutions Ui, i = 1..4 of Eq. (25) listed in Eqs.
(28).

4. Connection between the NLSE and INLSE via the LSE. Setting C = 0
and eliminating c(x) in Eqs. (16) we get

g(x) = g0/b(x)
3, (29)

plus an equation relating b(x) and V (x)

b′′′(x) − 2b(x)V ′(x) + 4b′(x)λ − 4b′(x)V (x) = 0. (30)

We notice that the simplest form to generate solutions for our problem, which
involves constructing solutions pairs (b(x), V (x)) of Eq. (30) is to fix b(x) and
then, to calculate V (x), since then we must solve a linear first order equation.
Although we can eliminate b(x) and obtain a nonlinear equation for the pairs g(x)
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Figure 1. [Color online] Phase portrait of the real solutions of
Eq. (25) for (a) E < 0, g0 < 0, (b) E < 0, g0 > 0 (c) E > 0,
g0 > 0 and (d) E > 0, g0 < 0

and V (x) for which there is a Lie symmetry, it is more convenient to work with
(30), which is a linear equation. Alternatively, we can define ρ(x) = b1/2(x) and
get an Ermakov-Pinney equation [12, 24]

ρxx + (λ− V (x)) ρ = E/ρ3, (31)

whose solutions can be constructed as

ρ =
(

αϕ2
1 + 2βϕ1ϕ2 + γϕ2

2

)1/2
, (32)

with α, β, γ constant and ϕj(x) being two linearly independent solutions of the
Schrödinger equation

ϕxx + (λ− V (x))ϕ = 0. (33)

This choice leads to E = ∆W 2 with ∆ = αγ − β2 and W being the (constant)
Wronskian W = ϕ′

1ϕ2 − ϕ1ϕ
′
2. Thus, given any arbitrary solution of the linear

Schrödinger equation (33) we can construct solutions of the nonlinear spatially
inhomogeneous problem Eq. (3a) from the known solutions of Eq. (25). Thus,
using the huge amount of knowledge on the linear Schrödinger equation we can get
potentials V (x) for which ϕ1 and ϕ2 are known and construct b(x), the canonical
transformations f(x), n(x), the nonlinearity g(x) and the explicit solutions φ(x).

5. Qualitative Analysis and Exact Solutions. In this section, we will calculate
exact solutions of Eq. (3a) for different specific choices of the nonlinear coefficient
g(x) and the external potential V (x), using the method described in the previous
sections, for C = 0. Moreover, using qualitative analysis, we will describe properties
of the solutions of Eq. (3a), on the basis of the qualitative behaviour of Eq. (25).
We begin by calculating the equilibrium points of this equation. One easily finds
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Figure 2. [Color online] Solutions of (a) Eq. (25) and (b) Eq.
(3a), for E = 0.15, g0 = −1 (solid blue line) and E = −0.75, g0 =
−1 (dashed red line) in both cases. We apply the transformation
(39) to the solutions of Eq. (25) shown in Fig. 2(a) to obtain the
solutions of Eq. (3a) shown in Fig 2(b).

that the Eq. (25) has three possible equilibrium points, depending of the signs of
E and g0:

U± = ±
√

E/g0, (34a)

U = 0. (34b)

Then, we distinguish four cases:

1. For E < 0, g0 < 0, we get three equilibrium points. U = 0 is a saddle point
and U± are centers, Fig. 1(a).

2. When E < 0, g0 > 0, we obtain that U = 0 is the only equilibrium point,
which is a saddle point, Fig. 1(b).

3. When E > 0, g0 > 0, we get three equilibrium points. U± are saddle points
and U = 0 is a center, Fig. 1(c).

4. The last case corresponds to E > 0, g0 < 0. For this case, the only equilibrium
point is the trivial solution U = 0, which is a global center, Fig. 1(d).

Using Eq. (27), we can draw the phase portrait of Eq. (25), as we can see in Fig.
1.

In what follows we will present three examples as applications of our theory:

Example 1. Let us take b(x) = cosh(x). By using Eqs. (30) and (24), for C = 0,
we obtain

V (x) = λ+
1

4
+

(

1

4
− E

)

1

cosh2(x)
. (35)

Moreover, using Eq. (29), g(x) is given by

g(x) =
g0

cosh3(x)
, (36)

with X(x) being

cosX(x) = − tanhx, (37)

where 0 ≤ X ≤ π, subject to the Dirichlet boundary conditions U(0) = U(π) = 0.
Any solution U of Eq. (25) gives a solution

φ(x) = b1/2(x)U(X(x)), (38)
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Figure 3. [Color online] Example black solitons solutions of (a)
Eq. (25) and (b) Eq. (3a) with g0 = 1, λ = 1/4 and (i) α = 0.1
(dashed-dot green line), (ii) α = 0.4 (solid blue line) and (iii) α =
0.7 (dashed red line).The solutions shown in Fig. 3(b) are obtained
from those shown in Fig. 3(a) through the transformations (17).

of the original equation (3a). If E < 0 and g0 < 0, we are in the first case, Fig.
1(a). The periodic solution (28c) of Eq. (25) is a closed orbit of the phase portrait
(U, dU/dX), corresponding to one of the external closed orbits to the homoclinic
orbits, shown in Fig. 1(a). By an elementary application of L’Hopital rule, it is
easy to verify that the solution

φ(x) = b1/2(x)U3(X(x)), (39)

is a homoclinic orbit to zero (bright soliton) of the original equation (3a).
If E > 0 and g0 < 0, we are in the four case, where U = 0 is a center, Fig.

1(d). Again, φ(x) = b1/2(x)U3(X(x)) is a homoclinic orbit (bright soliton). The
solutions of Eq. (3a) for E = 0.15, g0 = −1 and E = −0.75, g0 = −1 are drawn in
Fig. 2 (b). The case E = 1/4, where V (x) is a constant, was studied in [4].

Example 2. Let us take V (x) = 0. Then Eq. (30) becomes b′′′(x) + 4λb′(x) = 0.
For λ > 0, the solution can be written as

b(x) = 1 + α cos(2
√
λx). (40)

Using Eq. (29), we obtain a periodic nonlinearity

g(x) = g0(1 + α cos(2
√
λx))−3. (41)

For small α, this nonlinearity is approximately harmonic

g(x) ≃ g0(1 − 3α cos(2
√
λx)), α≪ 1. (42)

We can construct our canonical transformation by using Eqs. (17) and obtain

X(x) =
1

√

λ(1 − α2)
arctan

(

√

1 − α

1 + α
tan(

√
λx)

)

. (43)

Using any solution of Eq. (25) with E = λ
(

1 − α2
)

this transformation provides
solutions of Eq. (3a) with g(x) given by (41). For example, when g0 > 0 we can use
U2 as defined by (28b), which in the phase portrait is the heteroclinic orbit shown
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in Fig. 1(c). So, the solution of Eq. (3a) is of the form

φ(x) =

√

λ(1 − α2)

g0

(

1 + α cos(2
√
λ)x
)

× tanh

[
√

λ(1 − α2)

2
X(x)

]

. (44)

As we can see in Fig. 3(b), φ(x) is also a heteroclinic orbit for Eq. (3a). It is
important to note that in the asymptotic regions the profile of φ(x) is close to
b1/2(x) multiplied by a constant. Therefore, the canonical transformation (17),
in this case, transforms a heteroclinic orbit in the phase portrait (U, dU/dX) into
other heteroclinic orbit, Eq. (44). On the other hand, any closed orbit U inside
the heteroclinic loop of the phase portrait (U, dU/dX) provides a new heteroclinic
solution of the original equation (3a).

Example 3. The last example is the so-called quasi-harmonic confinement V (x) ∼
x2.

If we choose b(x) = α/
√

1 + βx2, with α, β > 0, then, we obtain

g(x) =
g0
α3

(1 + βx2)3/2, (45)

and

V (x) = M(1 + βx2) +
1

4

3βx2 − 2β + 4λ+ 8λβx2 + 4λβ2x4

(1 + βx2)2
, (46)

with M a positive constant. Although the expression of V (x) is complicated this
potential V (x) is a quasi-harmonic potential and satisfies V (x) ∼ x2 for large x.
Moreover V (x) is a harmonic potential with a bounded perturbative term (see Fig.
4(a)). As to the nonlinear term, it satisfies, g(x) ∼ x2 for |x| ≪ 1, and g(x) ∼ x3

for |x| ≫ 1. Using Eq. (24) we get E = −α2M . Taking g0 < 0, we obtain the
nonlinear Schrödinger equation with nonlinear attractive term, Eq. (25). As E < 0
and g0 < 0, all the solutions of Eq. (25) are bounded, (see Fig. 1(a)). If U(X) is
one of these solutions, it is clear that

φ(x) = b(x)1/2U(X(x)), (47)

is a homoclinic orbit (bright soliton) of the original equation. In particular, the
solution given by Eq. (28a) is

U1(X) =

√

2E

g0

1

cosh(
√

|E|X)
. (48)

As X(x) = x
√

1 + βx2/(2α) + sinh−1(
√
βx)/(2α

√
β), we get

φ(x) = b(x)1/2U1(X(x)). (49)

In Fig. 4(b), we draw the solutions of Eq. (3a) for different values of the parameter
β.

In this example, we have used the solution U1(X) of Eq. (25). Another possibility
is to choose the closed periodic orbits inside the homoclinic loop (see Fig. 1(a))
given by U4(X) in Eq. (28d). We note that, for this case, Eq. (27) satisfies H ≤ 0,
as one can see in Table 1.

The analytical expression of the closed periodic orbits outside the homoclinic
loop is given by U3(X), with k > 1/

√
2. Such orbits satisfy H > 0 (see Table 1).

As X is a bijective map on the real line, b(x) is a positive function and U3(X)
is a periodic function with infinite nodes on the real line, the function φ(x) =
b(x)1/2U3(X) also has infinite nodes on the real line, as it is shown in Fig. 5. It is
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Figure 4. [Color online] (a) Quasi-harmonic potential for M = 1,
λ = 1 and (i) β = 0.5 (solid blue line) and (ii) β = 2.5 (dashed red
line). (b) Solutions of Eq. (3a) for α = 1, g0 = −1, M = 1 and (i)
β = 0.5 (solid blue line) and (ii) β = 2.5 (dashed red line)

3

-3
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Á

Figure 5. Solution of Eq. (3a) with infinite nodes for α = 1,
β = 2.5, g0 = −1 and k = 3/4

immediate to check that the solution φ → 0 when x → ±∞. Moreover, the zeroes
of φ accumulate for large values of x, since the distance between two consecutive
zeroes is given by xn+1−xn ∼

√
n+ 1−√

n. Other localized solutions with infinite
nodes have been studied in a different context in Ref. [7].

6. Asymmetric modes of the INLSE. In the previous section, we have explored
the case C = 0 in the canonical transformation (17). In this case, the original
equation (3a) is reduced to a Nonlinear Schrödinger Equation. In this section, we
will study the case C > 0. If we take g0 < 0 and E > 0, the resulting equation is

d2U

dX2
+ 2C

dU

dX
+ |g0|U3 + EU = 0. (50)

In general, this equation is not integrable and the energy is not a conserved quantity.
However, exact solutions of Eq. (50) can be constructed analytically in particular
cases. An exact integrability condition was given in [22]

E =
8

9
C2. (51)
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Figure 6. Asymmetric solutions of Eq. (3a) with C = 4 for (a)
n = 1, (b) n = 2 and (c) n = 3.

In that case a family of exact analytical solutions of Eq. (50) is given by the
expression

Un(X) =
µn

√

2|g0|
e−BX sn

(

µn

B (1 − e−BX),
√

2/2
)

dn
(

µn

B (1 − e−BX),
√

2/2
) , n = 1, 2, 3, ... (52)

where µn and B are related to the boundary conditions of the problem .
We are going to solve Eq. (3a), using the solutions of Eq. (50). Choosing

b(x) = cosh(x) and using Eqs. (30) and (24), we can calculate the potential V (x):

V (x) = λ+ 1/4 +

(

1

4
+
C2

9

)

1

cosh2(x)
. (53)

The nonlinear term is

g(x) = g0 cosh−3(x)e−2CX(x). (54)

So, we can calculate the solutions of Eq. (3a) for the case C 6= 0 and to compare
them with the solution obtained for the case C = 0, example 1. In this way, we can
construct our canonical transformation by using Eqs. (17) and obtain

cosX(x) = − tanhx. (55)

Then, 0 ≤ X ≤ π and using the boundary conditions for φ, φ(±∞) = 0, one has to
impose U(0) = U(π) = 0.

Using these boundary conditions, we obtain the value of the amplitude µn as a
function of the value of the integer n

µn =
4CK(

√
2/2)

3(1 − e−2Cπ/3)
n, (56)

and B = 2C/3. Thus, the solutions of Eq. (50) are

Un(X) =
µn

√

2|g0|
e−2CX/3 sn

(

2nK(
√

2/2)(1 − e−2CX/3)/(1 − e−2Cπ/3),
√

2/2
)

dn
(

2nK(
√

2/2)(1 − e−2CX/3)/(1 − e−2Cπ/3),
√

2/2
) , (57)

n = 1, 2, 3, ...

where K(k) is the elliptic integral of the first kind,

K(k) =

∫ π/2

0

dθ
√

1 − k2 sin2(θ)
. (58)

Then, the solutions of Eq. (3a) are

φn(x) = b1/2(x)eCX(x)Un(X(x)), n = 1, 2, ... (59)
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By using L’Hopital’s rule, φn(x) → 0 when |x| → ∞ in (59). So, the solutions (59)
are localized solutions of our problem as it can be seen in Fig. 6. These solutions
are asymmetric solutions of Eq. (3a). Moreover, each of those solutions has exactly
n − 1 zeroes. In Fig. 6, we plot some of them corresponding to n = 1, 2, 3. The
picture in Fig. 6(a) shows clearly the difference between the positive solution given
by (59), for C 6= 0, and the positive solution plotted in Fig. 2(b) and given by Eq.
(39), for C = 0.

7. Conclusions. In this paper, we have used the method of Lie symmetries to find
exact solutions of the INLSE. We have introduced the general framework of the Lie’s
theory and presented different examples as application to the theory. By using the
qualitative theory of the dynamical systems, we can show the properties of the
solutions of the INLSE and to classify such solutions. Finally, we have calculated
asymetric solitons of the inhomogeneous nonlinear Schrödinger equation.
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[35] V. Vekslerchik and V.M. Pérez-Garćıa, Exact solution of the two-mode model of multi-
component Bose-Einstein condensates, Discrete and Continuous Dynamical Systems - Series

B, 3, (2003) 179-192.
[36] V. E. Zaharov, V. S. L’vov, S. S. Starobinets, Spin-wave turbulence beyond the parametric

excitation threshold, Sov. Phys. Usp., 17, 6, 896-919, (1975).

E-mail address: juan.belmonte@uclm.es

E-mail address: victor.perezgarcia@uclm.es

E-mail address: vadym@ind-cr.uclm.es

E-mail address: ptorres@ugr.es


