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Preface

The theory of foliations of manifolds was created in the forties of the last
century by Ch. Ehresmann and G. Reeb [ER44]. Since then, the subject has
enjoyed a rapid development and thousands of papers investigating foliations
have appeared. A list of papers and preprints on foliations up to 1995 can be
found in Tondeur [Ton97].

Due to the great interest of topologists and geometers in this rapidly evol-
ving theory, many books on foliations have also been published one after the
other. We mention, for example, the books written by: I. Tamura [Tam76],
G. Hector and U. Hirsch [HH83], B. Reinhart [Rei83], C. Camacho and A.L.
Neto [CN85], H. Kitahara [Kit86], P. Molino [Mol88], Ph. Tondeur [Ton88],
[Ton97], V. Rovenskii [Rov98], A. Candel and L. Conlon [CC03]. Also, the
survey written by H.B. Lawson, Jr. [Law74] had a great impact on the deve-
lopment of the theory of foliations.

So it is natural to ask: why write yet another book on foliations? The
answer is very simple. Our areas of interest and investigation are different. The
main theme of this book is to investigate the interrelations between foliations
of a manifold on one hand, and the many geometric structures that the mani-
fold may admit on the other hand. Among these structures we mention: affine,
Riemannian, semi–Riemannian, Finsler, symplectic, and contact structures.
We also mention that, for the first time in the literature, we present in a book
form results on degenerate (null, light–like) foliations of semi–Riemannian ma-
nifolds. Using these structures one obtains very interesting classes of foliations
whose geometry is worth investigating. There are still many aspects of this
geometry that can be promising areas for more research. We hope that the
body of geometry and techniques developed in this book will show the richness
of the subjects waiting to be studied further, and will present the means
and tools needed for such investigations. Another point that makes our book
different from the others, is that we use only two (adapted) linear connections
which have been considered first by G. Vrănceanu [VG31], [VG57], and J.A.
Schouten and E.R. Van Kampen [SVK30] for studying the geometry of non–
holonomic spaces. Thus our study appears as a continuation of the study of
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non–holonomic spaces (non–integrable distributions) to foliations (integrable
distributions). Furthermore, the book shows how the scientific material deve-
loped for foliations can be used in some applications to physics.

We hope that the audience of this book will include graduate students who
want to be introduced to the geometry of foliations, researchers interested in
foliations and geometric structures, and physicists interested in gauge theory
and its generalizations.

The first chapter is devoted to the geometry of distributions. We present
here a modern approach to the geometry of non–holonomic manifolds, stres-
sing the importance of the role of the Schouten–Van Kampen connection and
the Vrănceanu connection for understanding this geometry.

The theory of foliations is introduced in Chapter 2. We give the different
approaches to this theory with examples showing that foliations on manifolds
appear in many natural ways. A tensor calculus is then built on foliated mani-
folds to enable us to study the geometry of both the foliations and the ambient
manifolds.

Foliations on semi–Riemannian manifolds are studied in Chapter 3. Impor-
tant classes of such foliations are investigated. These include foliations with
bundle–like metrics, totally geodesic, totally umbilical, minimal, symmetric
and transversally symmetric foliations.

Chapter 4 deals with parallelism of foliations on semi–Riemannian mani-
folds. Here we study both the degenerate and non–degenerate foliations on
semi–Riemannian manifolds. The situation of parallel partially–null foliations
is still very far from being fully understood. We hope that our exposition
stimulates further investigations trying to tackle the remaining unsolved pro-
blems.

More geometric structures on foliated manifolds are displayed in the fifth
chapter. These include Lagrange foliations on symplectic manifolds, Legendre
foliations on contact manifolds, foliations on the tangent bundles of Finsler
manifolds, and foliations on CR–submanifolds. It is interesting to note that
in Section 5.3 we develop a new method for studying the geometry of a Fin-
sler manifold. This is mainly based on the Vrănceanu connection whose local
coefficients determine all classical Finsler connections.

The last chapter is dedicated to applications. Since any vector bundle
admits a natural foliation by fibers, we use the theory of foliations to develop
a gauge theory on the total space of a vector bundle. We investigate the
invariance of Lagrangians and obtain the equations of motion and conservation
laws for the full Lagrangian. Finally, we derive the Bianchi identities for the
strength fields of the gauge fields.

The preparation of the manuscript took longer than originally planned. We
would like to thank both Kluwer and Springer publishers for their patience,
cooperation and understanding.

We are also grateful to all the authors of books and articles whose work on
foliations has been used by us in preparing the book. Many thanks go to the
staff of the library ”Seminarul Matematic Al. Myller” from Iaşi (Romania),
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for providing us with some references on non–holonomic spaces published in
the first half of the last century.

It is a great pleasure for us to thank Mrs. Elena Mocanu for the excellent
job of typing the manuscript. Her dedication and professionalism are very
much appreciated. Finally, our thanks are due, as well, to Bassam Farran for
his continuous help with the technical aspects of producing the typescript.

Kuwait A. Bejancu
January 2005, H.R. Farran
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1

GEOMETRY OF DISTRIBUTIONS
ON A MANIFOLD

In the third decade of the last century, Vrănceanu [VG26a] and Horak [Hor27]
introduced independently the notion of non–holonomic manifold as a need for
a geometric interpretation of non–holonomic mechanical systems. We present
here a modern approach to the geometry of non–holonomic manifolds as ma-
nifolds endowed with non–integrable distributions, and extend this study to
almost product manifolds. Our approach is mainly based on adapted linear
connections, stressing the important role of Schouten–Van Kampen and Vrăn-
ceanu connections for understanding the geometry of distributions, in general,
and the geometry of non–holonomic manifolds, in particular. When a semi–
Riemannian metric is considered on the manifold, we compare the intrinsic
and induced connections on a semi–Riemannian manifold, and get the local
structure of the manifold when these connections coincide. By using both
the Schouten–Van Kampen and Vrănceanu connections we obtain the funda-
mental equations and some interesting evaluations for sectional curvatures of
non–holonomic manifolds. In particular, we find a large class of Riemannian
non–holonomic manifolds of Vrănceanu positive constant curvature. Finally,
we present a method to study the geometry of degenerate distributions of
codimension one on a proper semi–Riemannian manifold.

Our approach to the geometry of distributions on a manifold via Schouten–
Van Kampen and Vrănceanu connections is given, not only because of its
importance for its own right, but also because of the crucial role it will play
throughout the book in studying foliations on manifolds.

1.1 Distributions on a Manifold

Let M be an (n + p)– dimensional paracompact smooth manifold and TM
be the tangent bundle of M . Denote by π the canonical projection of TM
on M and by TxM the fiber at x ∈ M , i.e., TxM = π−1(x). A coordinate
system (local chart) in M is denoted by {(U , ϕ) : (x1, ..., xn+p)} or briefly
{(U , ϕ) : (xa)}, where U is an open subset of M , ϕ : U −→ IRn+p is a

1



2 1 GEOMETRY OF DISTRIBUTIONS ON A MANIFOLD

diffeomorphism of U onto ϕ(U), and (x1, ..., xn+p) = ϕ(x) for any x ∈ U .
For any point x ∈ U , we say that the coordinate system {(U , ϕ) : (xa)}
is about x. The coordinate system {(U , ϕ) : (xa)} in M defines a coordi-
nate system {(U∗, Φ) : (x1, ..., xn+p, v1, ..., vn+p)} in TM , where U∗ = π−1(U)
and Φ : U∗ −→ IR2(n+p) is a diffeomorphism of U∗ onto ϕ(U)×IRn+p and
(x1, ..., xn+p, v1, ..., vn+p) = Φ(vx) for any x ∈ U and vx ∈ TxM .

Next, we consider a vector subbundle D of TM of rank n. Thus for each
x ∈ M there exists a local chart (U , ϕ) on M at x such that the corresponding
local chart (U∗, Φ) on TM satisfies the condition Φ(U∗∩D) = ϕ(U)×IRn. Then
each fiber Dx over x ∈ M is an n– dimensional subspace of TxM , and the
total space of the vector bundle π : D −→ M becomes a (2n+p)– dimensional
submanifold of TM . We say that D is an n–distribution (n–plane field or
n–differential system) on M .

A slightly different approach to distributions may be achieved by starting
with the Grassmann bundle Gn(M) over M . For any x ∈ M the Grassmann
manifold Gn(x) consists of all n– dimensional vector subspaces of the tangent
space TxM . Then

Gn(M) =
⋃

x∈M

Gn(x),

is an (n + p + np)– dimensional manifold, since each fiber Gn(x) is an np–
dimensional manifold. Clearly, any smooth section of Gn(M) is an n– distri-
bution and conversely, any n– distribution defines a section of Gn(M).

We do not explore here the difficult problem of the existence of distribu-
tions on a manifold. We only mention that if M is a compact manifold and
its Euler number χ(M) is zero, then there exists on M a 1– distribution. Thus
any odd– dimensional sphere Sm with m ≥ 3 admits a 1– distribution. Also,
we note that the only compact surfaces with 1– distributions are the torus
and the Klein bottle. Since fibers of a 1– distribution are lines, we refer to a
1– distribution as a line field.

As we have seen, a distribution on M is globally given either as a vector
subbundle of TM or as a global section of Gn(M). However, most of the
problems encountering distributions have a local character. Here we present
two ways to define a distribution on M by some geometric objects that are
locally defined on M .

First, suppose that on each coordinate neighbourhood U in M there exist
n linearly independent smooth vector fields {E1, ..., En}. Then the mapping

x −→ Dx = span{E1x, ..., Enx}, x ∈ U ,

defines an n– distribution on U . Now, we assume that for any two coordinate
neighbourhoods U and Ũ with U ∩ Ũ �= ∅, the vector fields {Ẽ1, ..., Ẽn} and
{E1, ..., En} are related by

Ẽi = aj
iEj , (1.1)
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where aj
i are smooth functions on U ∩ Ũ such that [aj

i (x)] is a non–singular
n×n matrix for any x ∈ U ∩ Ũ . In this way the two distributions on U and Ũ
agree on U ∩ Ũ and therefore we have a distribution on M . Conversely, it is
easy to see that any n– distribution on M is locally represented by n linearly
independent smooth vector fields satisfying (1.1) on the intersection of two
coordinate neighbourhoods. Though we do not write the adjective “smooth”
to the noun “distribution” we always understand that all local representative
vector fields of a distribution are smooth vector fields.

A distribution on a manifold can also be locally defined using a differential
system. This is done as follows. We assume that on each coordinate neigh-
bourhood U ⊂ M there exist p linearly independent smooth 1–forms {ωα},
α ∈ {n+1, ..., n+p}. Then for any x ∈ U we consider Dx as the n– dimensional
subspace of TxM consisting of solutions Xx of the system

ωn+1(X) = 0, ..., ωn+p(X) = 0. (1.2)

Next we add the condition that the 1–forms {ωn+1, ..., ωn+p} and
{ω̃n+1, ..., ω̃n+p} on U and Ũ satisfy

ω̃α = Λα
βωβ , on U ∩ Ũ , (1.3)

where Λα
β are smooth functions on U ∩ Ũ such that [Λα

β (x)] is a non–singular
p×p matrix for any x ∈ U∩Ũ . Then the mapping D : x → Dx ∈ Gn(x) defines
an n– distribution on M . The converse is also true, that is, any n– distribution
on M is given locally by a differential system (1.2) whose representative 1–
forms are related by (1.3).

If not stated otherwise, we shall use throughout this chapter the following
ranges for indices: i, j, k, ... ∈ {1, ..., n}; α, β, γ, ... ∈ {n + 1, ..., n + p};
a, b, c, ...∈{1, ..., n + p}.

The integrability problem for distributions is very important. A complete
study of this problem is going to be presented in the next chapter (see Section
2.1). Here we only give some definitions and discuss their equivalence.

Let D be an n– distribution on M . Then a k– dimensional submanifold N
of M , 0 < k ≤ n, is said to be an integral manifold of D, if TxN ⊂ Dx for
any x ∈ N. Thus the maximum dimension of N is n. Now, we say that D is
an integrable distribution if for any point x ∈ M there exists a local chart
{(U , ϕ) : (x1, ..., xn, xn+1, ..., xn+p)} on M such that all the submanifolds of
U given by the equations

xn+1 = constant, ..., xn+p = constant, (1.4)

are integral manifolds of D.
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A connected submanifold given by (1.4) is called a local leaf (plaque) of D
(details can be seen in Section 2.1). In this case any connected integral mani-
fold of D lying in U is a submanifold of one of the local leaves of D. Based on
the above definition we can state the following.

Theorem 1.1. Let D be an n– distribution on M . Then the following asser-
tions are equivalent:

(i) D is an integrable distribution.
(ii) For any x ∈ M there exists a local chart {(U , ϕ) : (xa)} such that D is

given on U by the differential system

dxn+1 = 0, ..., dxn+p = 0. (1.5)

(iii) For any x ∈ M there exists a local chart {(U , ϕ) : (xa)} such that

D = span
{

∂

∂x1
, · · · , ∂

∂xn

}
, on U . (1.6)

Next, let X and Y be two vector fields on M . Then their Lie bracket
[X,Y ] is a vector field defined by

[X, Y ](f) = X(Y (f)) − Y (X(f)), ∀ f ∈ F (M). (1.7)

Locally, the Lie bracket is written as follows

[X, Y ] =
(

Xa ∂Y b

∂xa
− Y a ∂Xb

∂xa

)
∂

∂xb
, (1.8)

where X = Xa ∂

∂xa
and Y = Y a ∂

∂xa
. Now, we say that a vector field X on

M lies in D if X(x) ∈ Dx, for all x ∈ M. If Γ (D) denotes the F (M)– module
of smooth sections of D, then we use the notation X ∈ Γ (D) to indicate that
X lies in D. We say that D is an involutive distribution if [X, Y ] ∈ Γ (D)
for any X, Y ∈ Γ (D). At this point we only mention that D is integrable if
and only if it is involutive. This is the famous theorem of Frobenius which
will be proved in Section 2.1.

In the present chapter we will be concerned with the geometry of distri-
butions in general, that is, they do not need to be integrable. A pair (M,D),
where M is a manifold and D is a non–integrable distribution on M , is called
a non–holonomic manifold. The concept of “non–holonomic space” in a
Riemannian manifold has been introduced in 1926 by Vrănceanu [VG26a],
[VG26b] and independently by Horak [Hor27] in 1927 as a need for a geome-
tric interpretation of non–holonomic mechanical systems. In 1928 Schouten
[Sch28] considered non–holonomic spaces in a manifold with a linear connec-
tion. A great deal of research has been devoted to the study of the geometry of
non–holonomic spaces in Riemannian manifolds, and in manifolds with linear
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connections, in general. Several references published in the first half of the
20th century can be found in Schouten [Sch54].

The purpose of this chapter is to revisit this rather forgotten area of dif-
ferential geometry. In addition to the classical coordinate–base approach, we
will exploit modern coordinate–free techniques. The information we present
here will be used later in the book in our search for results that shed more light
on the geometry of foliated manifolds. In this respect, it is worth mentioning
that the linear connections introduced by Vrănceanu [VG31] and Schouten
and Van Kampen [SVK30] on non–holonomic manifolds will be considered
on almost product manifolds, and thus they will have an important role in
studying foliations on Riemannian (semi–Riemannian) manifolds.

If a distribution D on M is given, then a complementary distribution
D′ to D in TM can be obtained. Indeed, since M is paracompact and of
differentiability class C∞, there exists on M a Riemannian metric of class
C∞. Then we can take D′ as the complementary orthogonal distribution to
D with respect to that metric. Thus we are entitled to consider, in the first
stage of our study, a pair of complementary distributions (D,D′) on M , that
is, TM has the decomposition

TM = D ⊕D′. (1.9)

Later on (see Sections 1.5, 1.6 and 1.7) we will see the contribution of a Rie-
mannian (semi–Riemannian) metric on M to the study of the geometry of the
pair (D,D′).

Based on the above discussion we consider on M two complementary dis-
tributions D and D′. Denote by Q and Q′ the projection morphisms of TM
on D and D′ respectively. Then we have

(a) Q2 = Q, (b) Q
′2 = Q′,

(c) QQ′ = Q′Q = 0, (d) Q + Q′ = I,
(1.10)

where I is the identity morphism on TM . Now we define the tensor field F
of type (1, 1) by

F = Q − Q′. (1.11)

It follows that F is an almost product structure on M , that is, F satisfies

F 2 = I. (1.12)

For this reason we call (M,D,D′) an almost product manifold. Next, from
(1.10d) and (1.11) we deduce that

(a) Q =
1
2
(I + F ) and (b) Q′ =

1
2
(I − F ). (1.13)

Now, we note that at any point x ∈ M , Dx and D′
x coincide with the

eigenspaces in TxM corresponding to the eigenvalues +1 and −1 of Fx, res-
pectively. Indeed, if Xx ∈ TxM and Fx(Xx) = Xx, then from (1.13a) we
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deduce that Qx(Xx) = Xx, that is, Xx ∈ Dx. Conversely, if Xx ∈ Dx then
there exists Yx ∈ TxM such that Qx(Yx) = Xx. Then, by using (1.11), (1.10a)
and (1.10c) we obtain Fx(Xx) = Xx. The corresponding property for D′

x is
obtained similarly. As a conclusion we write

(a) Γ (D) = {X ∈ Γ (TM) : FX = X},
(b) Γ (D′) = {X ∈ Γ (TM) : FX = −X}.

(1.14)

Next, we suppose that D and D′ are locally represented on a coordinate
neighbourhood U ⊂ M by vector fields {Ei} and {Eα} respectively. Then we
call {EA} = {Ei, Eα}, A ∈ {1, ..., n + p}, a non–holonomic frame field on
U . Thus from now on, in this chapter, the indices A,B,C, ... have the same
range {1, ..., n + p} as the indices a, b, c, ..., but the latters are used as indices
for local components of geometric objects defined by means of the holonomic

frame and coframe fields
{

∂

∂xa

}
and {dxa} on U . According to the definition

of a distribution on a manifold, the transformation of non–holonomic frame
fields on U ∩ Ũ �= ∅ is given by

(a) Ẽi = aj
iEj , (b) Ẽα = aβ

αEβ , (1.15)

where [aj
i ] and [aβ

α] are n×n and p×p non–singular matrices respectively. Now,

we consider the natural field of frames
{

∂

∂xa

}
on M and put

(a) EA = Ea
A

∂

∂xa
and (b)

∂

∂xa
= ĒA

a EA. (1.16)

Then taking into account that the (n + p)×(n + p) matrices [Ea
A] and [ĒA

a ]
are inverses for each other we deduce that

(a) Ēi
aEb

i + Ēα
a Eb

α = δb
a,

(b) Ea
αĒβ

a = δβ
α,

(c) Ea
i Ēj

a = δj
i ,

(d) Ea
i Ēα

a = 0,

(e) Ea
αĒi

a = 0.

(1.17)

The dual frame field {ωA} = {ωi, ωα} to the non–holonomic frame field
EA = {Ei, Eα} is called the dual non–holonomic coframe field to {EA}.
Then the distributions D and D′ are locally defined by the differential systems

ωα = 0, α ∈ {n + 1, ..., n + p}, (1.18)

and
ωi = 0, i ∈ {1, ..., n}, (1.19)

respectively.
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1.2 Adapted Linear Connections on Almost Product
Manifolds

Let D be an n– distribution on an (n + p)– dimensional manifold M . A linear
connection ∇∗ on M is said to be adapted to D if

∇∗
XU ∈ Γ (D), ∀X ∈ Γ (TM), U ∈ Γ (D).

Now, if D′ is a p– distribution on M complementary to D, then (M,D,D′)
is an almost product manifold as we have seen in Section 1.1. We call D the
structural distribution and D′ a transversal distribution. These names
were introduced by Vaisman [Vai71] when D is a distribution on a Riemannian
manifold and D′ is its orthogonal complement.

A linear connection ∇∗ on an almost product manifold (M,D,D′) is said
to be an adapted linear connection if it is adapted to both distributions
D and D′. Thus ∇∗ is adapted if and only if the following conditions are
satisfied:

∇∗
XQY ∈ Γ (D), ∀X,Y ∈ Γ (TM), (2.1)

and
∇∗

XQ′Y ∈ Γ (D′), ∀X, Y ∈ Γ (TM), (2.2)

where Q and Q′ stand, as in the first section, for projection morphisms of TM
on D and D′ respectively. It is easy to see that an adapted linear connection
∇∗ defines two linear connections ∇ and ∇′ on D and D′ respectively, by

(a) ∇XQY = ∇∗
XQY, and

(b) ∇′
XQ′Y = ∇∗

XQ′Y, ∀X, Y ∈ Γ (TM).
(2.3)

Conversely, if ∇ and ∇′ are two linear connections on D and D′ respectively,
then we construct an adapted linear connection ∇∗ on (M,D,D′), by the
formula

∇∗
XY = ∇XQY + ∇′

XQ′Y, ∀X, Y ∈ Γ (TM). (2.4)

Moreover, the restrictions of ∇∗
X to Γ (D) and Γ (D′) are exactly ∇X and ∇′

X

respectively. Thus, by the above discussion we state the following.

Theorem 2.1. There exists on (M,D,D′) an adapted linear connection ∇∗ if
and only if there exists a pair (∇,∇′), where ∇ and ∇′ are linear connections
on D and D′ respectively.

An adapted linear connection on (M,D,D′) can also be characterized by
means of the almost product structure F given by (1.11) and as well by the
projection morphisms Q and Q′. To state this we give the following definition.
We say that F is parallel with respect to a linear connection ∇̃ on M if its
covariant derivative with respect to ∇̃ vanishes, i.e., we have
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(∇̃XF )Y = ∇̃XFY − F (∇̃XY ) = 0, ∀X, Y ∈ Γ (TM). (2.5)

The same definition applies for Q and Q′. Then the following theorem can be
easily proved.

Theorem 2.2. Let ∇∗ be a linear connection on the almost product manifold
(M,D,D′). Then the following assertions are equivalent:

(i) ∇∗ is an adapted linear connection.
(ii) The almost product structure F is parallel with respect to ∇∗.
(iii) The projection morphisms Q and Q′ are parallel with respect to ∇∗.

Next, we would like to present some local characterizations of the li-
near connections on D and D′, and therefore of the adapted linear connec-
tions on (M,D,D′). To this end, we consider the non–holonomic frame field
{EA} = {Ei, Eα} on U ⊂ M. Then for any smooth function f on M we define

(a) f|α = Eα(f) = Ea
α

∂f

∂xa
, and

(b) f‖i = Ei(f) = Ea
i

∂f

∂xa
·

(2.6)

We call f|α and f‖i the transversal non–holonomic derivative and struc-
tural non–holonomic derivative of f with respect to the non–holonomic
frame field {EA}. Now, let ∇ and ∇′ be linear connections on D and D′

respectively. Then, locally on U ⊂ M we put

(a) ∇Ej
Ei = Γi

k
jEk, (b) ∇Eα

Ei = Γi
k

αEk, (2.7)

and
(a) ∇′

Ej
Eα = Γ ′

α
β

jEβ , (b) ∇′
Eγ

Eα = Γ ′
α

β
γEβ . (2.8)

We perform a transformation of non–holonomic frame fields, and by using
(1.15), (2.7) and (2.8) we obtain

(a) Γ̃s
h

ta
k
h = (Γi

k
ja

i
s + (ak

s)‖j)a
j
t ,

(b) Γ̃s
h

γak
h = (Γi

k
αai

s + (ak
s)|α)aα

γ ,
(2.9)

and
(a) Γ̃ ′

ν
ε
ja

β
ε = (Γ ′

α
β

ia
α
ν + (aβ

ν )‖i)ai
j ,

(b) Γ̃ ′
ν

ε
µaβ

ε = (Γ ′
α

β
γaα

ν + (aβ
ν )|γ)aγ

µ.
(2.10)

Conversely, if on each U ⊂ M there exist functions (Γi
k

j , Γi
k

α) and
(Γ ′

α
β

i, Γ
′
α

β
γ) satisfying (2.9) and (2.10) with respect to the transformation

(1.15) of non–holonomic frame fields, then the differential operators ∇ and
∇′ given by (2.7) and (2.8) define linear connections on D and D′ respectively.
Thus we may state the following.
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Theorem 2.3.

(i) There exists a linear connection on D if and only if on each coordinate
neighbourhood U ⊂ M there exist n2(n + p) functions (Γi

k
j , Γi

k
α) satis-

fying (2.9) with respect to (1.15).

(ii)There exists a linear connection on D′ if and only if on each coordinate
neighbourhood U ⊂ M there exist p2(n + p) functions (Γ ′

α
β

i, Γ
′
α

β
γ) sa-

tisfying (2.10) with respect to (1.15).

The next corollary follows from Theorems 2.1 and 2.3.

Corollary 2.4. The exists an adapted linear connection on M if and only if
on each U ⊂ M there exist (n2+p2)(n+p) functions (Γi

k
j , Γi

k
α, Γ ′

α
β

i, Γ
′
α

β
γ)

satisfying (2.9) and (2.10) with respect to (1.15).

Thus an adapted linear connection ∇∗ on M is locally given by

(a) ∇∗
Ej

Ei = Γi
k

jEk, (b) ∇∗
Eα

Ei = Γi
k

αEk,

(c) ∇∗
Ej

Eα = Γ ′
α

β
jEβ , (d) ∇∗

Eγ
Eα = Γ ′

α
β

γEβ ,
(2.11)

where the non–holonomic coefficients satisfy the conditions from Corollary
2.4.

Next, we consider an adapted linear connection ∇∗ = (Γi
k

A, Γ ′
α

β
A) on

(M,D,D′) and look for the non–holonomic local components of its torsion
and curvature tensor fields with respect to a non–holonomic frame field. To
achieve this we put:

(a) Q[Ej , Ei] = Vi
k

jEk, (b) Q[Eβ , Eα] = Vα
k

βEk,

(c) Q[Eα, Ei] = −Q[Ei, Eα] = Vi
k

αEk = −Vα
k

iEk,
(2.12)

and

(a) Q′[Ej , Ei] = V ′
i
β

jEβ , (b) Q′[Eγ , Eα] = V ′
α

β
γEβ ,

(c) Q′[Ei, Eα] = −Q′[Eα, Ei] = V ′
α

β
iEβ = −V ′

i
β

αEβ .
(2.13)

Then we recall that the torsion tensor field T ∗ of the linear connection ∇∗ is
given by (cf. Kobayashi–Nomizu [KN63], p. 133)

T ∗(X,Y ) = ∇∗
XY −∇∗

Y X − [X, Y ], ∀X, Y ∈ Γ (TM). (2.14)

By using the decomposition (1.9) and the non–holonomic frame field {EA}
we set:

(a) T ∗(Ej , Ei) = Ti
k

jEk + T ′
i
α

jEα,

(b) T ∗(Eα, Ei) = −T ∗(Ei, Eα) = Ti
k

αEk + T ′
i
β

αEβ

= −Tα
k

iEk − T ′
α

β
iEβ ,

(c) T ∗(Eγ , Eα) = Tα
k

γEk + T ′
α

β
γEβ .

(2.15)
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Then by direct calculations using (2.11)–(2.15) we obtain all non–holonomic
components of T ∗ as in the next theorem.

Theorem 2.5. Let ∇∗ = (Γi
k

A, Γ ′
α

β
A) be an adapted linear connection on

the almost product manifold (M,D,D′). Then the local components of its tor-
sion tensor field with respect to a non–holonomic frame field {EA} are given
by

(a) Ti
k

j = Γi
k

j − Γj
k

i − Vi
k

j ,

(b) T ′
i
α

j = −V ′
i
α

j ,

(c) Ti
k

α = −Tα
k

i = Γi
k

α − Vi
k

α,

(d) T ′
α

β
i = −T ′

i
β

α = Γ ′
α

β
i − V ′

α
β

i,

(e) Tα
k

β = −Vα
k

β ,

(f) T ′
α

β
γ = Γ ′

α
β

γ − Γ ′
γ

β
α − V ′

α
β

γ .

(2.16)

We now look for the non–holonomic local components of the curvature
tensor field R∗ of ∇∗, given by (cf. Kobayashi–Nomizu [KN63], p. 133)

R∗(X, Y )Z = ∇∗
X∇∗

Y Z −∇∗
Y ∇∗

XZ −∇∗
[X,Y ]Z, (2.17)

for any X,Y, Z ∈ Γ (TM). To this end we first note that the F (M)–linear
opertor R∗(X, Y ) on Γ (TM) induces F (M)–linear operators on both Γ (D)
and Γ (D′). This enables us to set:

(a) R∗(Ek, Ej)Ei = Ri
h

jkEh,

(b) R∗(Ek, Eα)Ei = −R∗(Eα, Ek)Ei = Ri
h

αkEh = −Ri
h

kαEh,

(c) R∗(Eβ , Eα)Ei = Ri
h

αβEh,

(2.18)

and

(a) R∗(Ek, Ej)Eα = R′
α

β
jkEβ ,

(b) R∗(Ek, Eγ)Eα = −R∗(Eγ , Ek)Eα = R′
α

β
γkEβ = −R′

α
β

kγEβ ,

(c) R∗(Eµ, Eγ)Eα = R′
α

β
γµEβ .

(2.19)

The proof of the next theorem follows by direct calculations using (2.11)–
(2.13) and (2.17)–(2.19).
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Theorem 2.6. Let ∇∗ = (Γi
k

A, Γ ′
α

β
A) be an adapted linear connection

on the almost product manifold (M,D,D′). Then the local components of its
curvature tensor field with respect to a non–holonomic frame field {EA} are
given by

(a) Ri
h

jk = Γi
h

j‖k − Γi
h

k‖j +Γi
s
jΓs

h
k − Γi

s
kΓs

h
j

−Γi
h

sVj
s
k − Γi

h
αV ′

j
α

k,

(b) Ri
h

αk = Γi
h

α‖k − Γi
h

k|α +Γi
s
αΓs

h
k − Γi

s
kΓs

h
α

−Γi
h

sVα
s
k − Γi

h
εV

′
α

ε
k,

(c) Ri
h

αβ = Γi
h

α|β − Γi
h

β|α +Γi
s
αΓs

h
β − Γi

s
βΓs

h
α

−Γi
h

sVα
s
β − Γi

h
εV

′
α

ε
β ,

(2.20)

and

(a) R′
α

β
jk = Γ ′

α
β

j‖k − Γ ′
α

β
k‖j +Γ ′

α
ε
jΓ

′
ε
β

k − Γ ′
α

ε
kΓ ′

ε
β

j

−Γ ′
α

β
sVj

s
k − Γ ′

α
β

εV
′
j
ε
k,

(b) R′
α

β
γk = Γ ′

α
β

γ‖k − Γ ′
α

β
k|γ +Γ ′

α
ε
γΓ ′

ε
β

k − Γ ′
α

ε
kΓ ′

ε
β

γ

−Γ ′
α

β
sVγ

s
k − Γ ′

α
β

εV
′
γ

ε
k,

(c) R′
α

β
γµ = Γ ′

α
β

γ|µ − Γ ′
α

β
µ|γ +Γ ′

α
ε
γΓ ′

ε
β

µ − Γ ′
α

ε
µΓ ′

ε
β

γ

−Γ ′
α

β
sVγ

s
µ − Γ ′

α
β

εV
′
γ

ε
µ.

(2.21)

Taking into account that ∇∗ induces a linear connection ∇ = (Γi
k

A) on D
and a linear connection ∇′ = (Γ ′

α
β

A) on D′, by Theorem 2.6 we may state
the following.

Corollary 2.7. The local components of the curvature tensor fields of ∇ and
∇′ with respect to a non–holonomic frame field {EA} are given by (2.20) and
(2.21) respectively.

As it is well known, a torsion tensor field is not defined, in general, for a
linear connection on a vector bundle. However, by using the notion of general
connection introduced by Otsuki [Ots61] we will define here a torsion tensor
field for a linear connection on a distribution. To achieve this we consider a
vector bundle E over M and a vector bundle morphism P : E −→ E. Then
according to Abe [Abe85] an Otsuki connection (general connection) on
E with respect to the vector bundle morphism P is a mapping ∇̃ that assigns
to any X ∈ Γ (TM) the differential operator

∇̃X : Γ (E) −→ Γ (E); S −→ ∇̃XS, ∀S ∈ Γ (E),
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satisfying the following conditions:

∇̃fX+Y (S) = f∇̃XS + ∇̃Y S,

and
∇̃X(fS + S′) = X(f)P (S) + f∇̃XS + ∇̃XS′,

for any f ∈ F (M), X, Y ∈ Γ (TM) and S, S′ ∈ Γ (E). It is easy to see that ∇̃
becomes a linear connection on E when P is the identity morphism on E.

The above operator ∇̃X can be extended to F (M)–linear mappings
N : (Γ (E))r −→ Γ (E) for any positive integer r. In particular, for the i-
dentity morphism IE on E we have

(∇̃XIE)(S) = ∇̃XP (S) − P (∇̃XS), ∀X ∈ Γ (TM), S ∈ Γ (E).

The curvature form Ω̃ of ∇̃ is defined as follows (cf. Abe [Abe85])

Ω̃(X, Y )S = ∇̃X∇̃Y P (S) − ∇̃Y ∇̃XP (S) − P (∇̃[X,Y ]P (S))

−(∇̃XIE)(∇̃Y S) + (∇̃Y IE)(∇̃XS),

for any X, Y ∈ Γ (TM) and S ∈ Γ (E). For the particular case E = TM ,
an Otsuki connection ∇̃ has a torsion tensor field T̃ given by (cf. Nemoto
[Nem85])

T̃ (X,Y ) = ∇̃XY − ∇̃Y X − P ([X, Y ]), ∀X, Y ∈ Γ (TM). (2.22)

Now, we show that starting with a linear connection ∇ on a vector bundle
E we can obtain an Otsuki connection ∇̃ on a vector bundle G that is larger
than E and ∇̃ = ∇ on E. Indeed, suppose G = E ⊕ F , where F is another
vector bundle over M , and denote by P the projection morphism of G on E.
Then for any X ∈ Γ (TM) we define the differential operator

∇̃X : Γ (G) −→ Γ (G); ∇̃XS = ∇XP (S), ∀S ∈ Γ (G). (2.23)

It is easy to check that ∇̃ is an Otsuki connection on G with respect to the
vector bundle morphism P and ∇̃ = ∇ on E. Moreover, the following has
been proved.

Theorem 2.8. (Bejancu–Otsuki [BO87]). The restriction of the curvature
form Ω̃ of ∇̃ to the sections of E coincides with the curvature form Ω of ∇.

Next, we apply the theory of Otsuki connections to the study of an almost
product manifold (M,D,D′). First, suppose that ∇ is a linear connection on
D and consider the Otsuki connection ∇̃ on TM with respect to the decom-
position (1.9) such that ∇̃ = ∇ on D. Then according to (2.23) we have

∇̃XY = ∇XQY, ∀X, Y ∈ Γ (TM). (2.24)
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Taking into account the relationship between the curvature forms of ∇̃ and ∇
stated in Theorem 2.8, we define a torsion tensor field T of ∇ as the restriction
of the torsion tensor field T̃ of ∇̃ to Γ (TM)×Γ (D). It is noteworthy that T
is Γ (D)–valued. More precisely, by using (2.22) and (2.24) we obtain

T (X,QY ) = T̃ (X, QY ) = ∇XQY −∇QY QX − Q[X, QY ], (2.25)

for any X, Y ∈ Γ (TM). As T depends on D′ we call it the D′–torsion tensor
field of ∇. Similarly, a linear connection ∇′ on D′ has a D–torsion tensor
field T ′ given by

T ′(X, Q′Y ) = ∇′
XQ′Y −∇′

Q′Y Q′X −Q′[X, Q′Y ], ∀X, Y ∈ Γ (TM). (2.26)

Finally, with respect to a non–holonomic frame field {EA} on U ⊂ M we put:

(a) T (Ej , Ei) = Ti
k

jEk, (b) T (Eα, Ei) = Ti
k

αEk, (2.27)

and

(a) T ′(Eγ , Eα) = T ′
α

β
γEβ , (b) T ′(Ei, Eα) = T ′

α
β

iEβ . (2.28)

Then by using (2.7), (2.8), (2.12), (2.13) and (2.25)–(2.28) we deduce the local
components of T and T ′ with respect to {EA} as they are expressed in the
next theorem.

Theorem 2.9. Let ∇ and ∇′ be linear connections on the complementary
distributions D and D′ on M . Then the local components of T and T ′ with
respect to the non–holonomic frame field {EA} are given by

(a) Ti
k

j = Γi
k

j − Γj
k

i − Vi
k

j ,

(b) Ti
k

α = Γi
k

α − Vi
k

α,
(2.29)

and
(a) T ′

α
β

γ = Γ ′
α

β
γ − Γ ′

γ
β

α − V ′
α

β
γ ,

(b) T ′
α

β
i = Γ ′

α
β

i − V ′
α

β
i,

(2.30)

respectively.

As the pair (∇,∇′) defines an adapted linear connection ∇∗ on M we
should see what relationship exists (if any) between their torsion tensor fields.
First, by (2.14), (2.25) and (2.26) we deduce that T and T ′ are not equal
to the restrictions of T ∗ on Γ (TM)×Γ (D) and Γ (TM)×Γ (D′) respectively.
However, comparing Theorems 2.5 and 2.9 we see that the local components
of T and T ′ form a part of the local components of T ∗ with respect to a
non–holonomic frame field {EA} on M .
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1.3 The Schouten–Van Kampen and Vrănceanu
Connections

In the first part of this section we study the existence of adapted linear connec-
tions on an almost product manifold (M,D,D′). More precisely, we construct
two adapted linear connections which were first introduced by Schouten and
Van Kampen [SVK30] and Vrănceanu [VG31] for studying non–holonomic
manifolds. Then we determine the general form of all adapted linear connec-
tions on (M,D,D′) and present these two special connections in an invariant
form.

As M is supposed to be paracompact, by a result stated in Brickell–Clark
[BC70], p. 154, there exists a linear connection ∇̃ on M . Then, locally we set

∇̃EB
EA = FA

C
BEC , (3.1)

where {EA} = {Ei, Eα} is a non–holonomic frame field on U ⊂ M. By di-
rect calculations using (3.1) with respect to two non–holonomic frame fields
{EA} and {ẼA} on U and Ũ we obtain the following transformations of non–
holonomic coefficients of ∇̃ on U ∩ Ũ �= ∅ :

(a) F̃ s
h

ta
k
h = (Fi

k
ja

i
s + (ak

s)‖j)a
j
t , (b) F̃ s

β
ta

α
β = Fi

α
ja

i
sa

j
t ,

(c) F̃ s
h

γak
h = (Fi

k
αai

s + (ak
s)|α)aα

γ , (d) F̃ s
β

γaα
β = Fi

α
εa

i
sa

ε
γ ,

(e) F̃ ν
ε
ja

β
ε = (Fα

β
ia

α
ν + (aβ

ν )‖i)ai
j , (f) F̃ ν

h
ja

k
h = Fα

k
ia

α
ν ai

j ,

(g) F̃ ν
ε
µaβ

ε = (Fα
β

γaα
ν + (aβ

ν )|γ)aγ
µ, (h) F̃ ν

h
µak

h = Fα
k

βaα
ν aβ

µ,

(3.2)

with respect to (1.15). From (3.2a), (3.2c), (3.2e) and (3.2g) we deduce that
(Γi

k
A, Γα

β
A) given by

(a) Γi
k

A = Fi
k

A, (b) Γα
β

A = Fα
β

A, (3.3)

satisfy the conditions of Corollary 2.4. Hence they define an adapted linear
connection ∇◦ on M . With respect to this connection we have to note that
the formulas (60) from the book of Vrănceanu [VG57], p.235, are the same as
our (3.3). As these formulas were first obtained by Schouten and Van Kampen
[SVK30], we call the adapted linear connection ∇◦ = (Γi

k
A, Γα

β
A) given by

(3.3) the Schouten–Van Kampen connection.
In order to define another adapted linear connection on M we consider

(2.12c) on Ũ ⊂ M and U ∩ Ũ �= ∅. Then by using elementary properties of the
Lie bracket and taking into account (1.15), (2.6a) and (2.12c) we obtain

Q[Ẽγ , Ẽs] = Q[aα
γ Eα, ai

sEi] = aα
γ ai

sQ[Eα, Ei] + aα
γ (ai

s)|αEi

= (Vi
k

αai
s + (ak

s)|α)aα
γ Ek.

On the other hand, by (2.12c) on Ũ and (1.15a) we have
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Q[Ẽγ , Ẽs] = Ṽs
h

γẼh = Ṽs
h

γak
hEk.

Comparing these equalities we deduce that Vi
k

α satisfy (2.9b) with respect to
(1.15). In a similar way it follows that V ′

α
β

i satisfy (2.10a). Hence, according
to (3.2a) and (3.2g) the functions (Γ ∗

i
k

A, Γ ∗
α

β
A) given on each U ⊂ M by

(a) Γ ∗
i
k

j = Fi
k

j , (b) Γ ∗
i
k

α = Vi
k

α,

(c) Γ ∗
α

β
i = V ′

α
β

i, (d) Γ ∗
α

β
γ = Fα

β
γ ,

(3.4)

also satisfy the conditions of Corollary 2.4. The above adapted linear connec-
tion was first introduced by Vrănceanu [VG31]. Indeed, it is easy to see that
formulas (21) of Vrănceanu [VG31], p. 199, are the same as our (3.4). The
same formulas can be found in the book of Vrănceanu [VG57] (see formulas
(61) at p. 235). Thus we are entitled to call the adapted linear connection
∇∗ = (Γ ∗

i
k

A, Γ ∗
α

β
A) the Vrănceanu connection.

Next, consider the torsion tensor field T̃ of ∇̃ and by using (3.1) and (2.12)–
(2.14) we obtain its local components with respect to the non–holonomic frame
field {EA} :

(a) T̃A
k

B = FA
k

B − FB
k

A − VA
k

B ,

(b) T̃A
α

B = FA
α

B − FB
α

A − V ′
A

α
B .

(3.5)

Also, by using (3.3), (3.4) and Theorem 2.5 we obtain the following.

Theorem 3.1. The local components of the torsion tensor fields T ◦ and T ∗ of
Schouten–Van Kampen and Vrănceanu connections with respect to the non–
holonomic frame field {EA} are given by

(a) Ti
k

j = Fi
k

j − Fj
k

i − Vi
k

j , (b) Ti
α

j = −V ′
i
α

j ,

(c) Ti
k

α = −Tα
k

i=Fi
k

α−Vi
k

α, (d) Tα
β

i = −Ti
β

α=Fα
β

i − V ′
α

β
i,

(e) Tα
k

β = −Vα
k

β , (f) Tα
γ

β = Fα
γ

β − Fβ
γ

α − V ′
α

γ
β ,

(3.6)

and

(a) T ∗
i
k

j = Fi
k

j − Fj
k

i − Vi
k

j , (b) T ∗
i
α

j = −V ′
i
α

j ,

(c) T ∗
i
k

α = −T ∗
α

k
i = 0, (d) T ∗

α
β

i = −T ∗
i
β

α = 0,

(e) T ∗
α

k
β = −Vα

k
β , (f) T ∗

α
γ

β = Fα
γ

β−Fβ
γ

α−V ′
α

γ
β ,

(3.7)

respectively.

Corollary 3.2. The Schouten–Van Kampen and Vrănceanu connections
coincide if and only if they have the same torsion tensor fields.

From (3.5)–(3.7) we see that even when ∇̃ is torsion–free, the Schouten–
Van Kampen and Vrănceanu connections are not necessarily torsion–free. Re-
lated to this, by using (3.5) and (3.7) we obtain the following.
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Theorem 3.3. (Vrănceanu [VG57], p. 235). Let ∇̃ be a torsion–free linear
connection on (M,D,D′). Then the Vrănceanu connection determined by ∇̃
is torsion–free if and only if both distributions D and D′ are involutive.

This made Vrănceanu ([VG57], p. 236) remark that the connection ∇∗ is
more intimately related to the properties of the manifold than ∇◦. This remark
will become more evident as we go further into the study of non–holonomic
semi–Riemannian manifolds and semi–Riemannian foliations.

According to Theorem 2.6 we may write down all the local components of
curvature tensor fields of ∇◦ and ∇∗ with respect to a non–holonomic frame
field. However, since for ∇◦ we just replace Γ and Γ ′ from (2.20) and (2.21)
by F , we omit them here. We only apply Theorem 2.6 for ∇∗ and obtain the
following.

Theorem 3.4. The local components of the curvature tensor field of the Vrăn-
ceanu connection ∇∗ with respect to a non–holonomic frame field {EA} are
given by

(a) R∗
i
h

jk = Fi
h

j‖k − Fi
h

k‖j +Fi
s
jFs

h
k − Fi

s
kFs

h
j

−Fi
h

sVj
s
k − Vi

h
αV ′

j
α

k,

(b) R∗
i
h

αk = Vi
h

α‖k − Fi
h

k|α +Vi
s
αFs

h
k − Fi

s
kVs

h
α

−Fi
h

sVα
s
k − Vi

h
εV

′
α

ε
k,

(c) R∗
i
h

αβ = Vi
h

α|β − Vi
h

β|α +Vi
s
αVs

h
β − Vi

s
βVs

h
α

−Fi
h

sVα
s
β − Vi

h
εV

′
α

ε
β ,

(3.8)

and

(a) R∗
α

β
jk = V ′

α
β

j‖k − V ′
α

β
k‖j +V ′

α
ε
jV

′
ε
β

k − V ′
α

ε
kV ′

ε
β

j

−V ′
α

β
sVj

s
k − Fα

β
εV

′
j
ε
k,

(b) R∗
α

β
γk = Fα

β
γ‖k − V ′

α
β

k|γ +Fα
ε
γV ′

ε
β

k − V ′
α

ε
kFε

β
γ

−V ′
α

β
sVγ

s
k − Fα

β
εV

′
γ

ε
k,

(c) R∗
α

β
γµ = Fα

β
γ|µ − Fα

β
µ|γ +Fα

ε
γFε

β
µ − Fα

ε
µFε

β
γ

−V ′
α

β
sVγ

s
µ − Fα

β
εV

′
γ

ε
µ.

(3.9)

Now, we want to express the general form of all adapted linear connections
on (M,D,D′) and then to describe the Schouten–Van Kampen and Vrănceanu
connections in an invariant form. First we prove the following general result.

Theorem 3.5. Let (M,D,D′) be an almost product manifold and ∇̃ be a
linear connection on M . Then all the adapted linear connections on M are
given by

∇XY = Q∇̃XQY + Q′∇̃XQ′Y + QS(X, QY ) + Q′S(X, Q′Y ), (3.10)
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for any X, Y ∈ Γ (TM), where S is an arbitrary tensor field of type (1, 2)
on M .

Proof. It is easy to check that ∇ given by (3.10) is an adapted linear con-
nection on M . Conversely, suppose that ∇ is an adapted linear connection on
M . Then we put

∇XY − ∇̃XY = S(X, Y ), ∀X, Y ∈ Γ (TM), (3.11)

where S is a tensor field of type (1, 2) on M . Next, by using (2.1) and (2.2),
we have

Q′(∇XQY ) = 0 and Q(∇XQ′Y ) = 0, ∀X, Y ∈ Γ (TM).

Thus by (3.11) we deduce that

Q′(∇̃XQY + S(X,QY )) = 0 and Q(∇̃XQ′Y + S(X, Q′Y )) = 0, (3.12)

for any X, Y ∈Γ (TM). Finally, by using (3.12) in (3.11) we obtain (3.10).

Next, we define:

S◦(X,Y ) = Q′∇̃XQY + Q∇̃XQ′Y,

and

S∗(X, Y ) = Q([Q′X,QY ] − ∇̃Q′XQY ) + Q′([QX,Q′Y ] − ∇̃QXQ′Y ),

for any X,Y ∈ Γ (TM). It is easy to check that both S◦ and S∗ are tensor
fields of type (1, 2) on M . Then, by direct calculations we deduce that

(a) QS◦(X, QY ) = 0, (b) Q′S◦(X, Q′Y ) = 0, (3.13)

and
(a) QS∗(X, QY ) = Q([Q′X,QY ] − ∇̃Q′XQY ),

(b) Q′S∗(X, Q′Y ) = Q′([QX, Q′Y ] − ∇̃QXQ′Y ),
(3.14)

for any X, Y ∈ Γ (TM). Finally, by using in turn (3.13) and (3.14) in the
general form (3.10) we obtain two adapted linear connections ∇◦ and ∇∗

given by
∇◦

XY = Q∇̃XQY + Q′∇̃XQ′Y, (3.15)

and

∇∗
XY = Q∇̃QXQY + Q′∇̃Q′XQ′Y + Q[Q′X, QY ] + Q′[QX,Q′Y ], (3.16)

for any X, Y ∈ Γ (TM). Moreover, we prove the following theorem.
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Theorem 3.6. The adapted linear connections given by (3.15) and (3.16) are
the Schouten–Van Kampen and Vrănceanu connections respectively.

Proof. Replace the pair (X,Y ) from (3.15) and (3.16) in turn by (Ej , Ei),
(Eα, Ei), (Ei, Eα) and (Eγ , Eα) and using (3.1), (2.12) and (2.13) we obtain
the local coefficients of Schouten–Van Kampen and Vrănceanu connections
given by (3.3) and (3.4) respectively.

The coordinate–free forms (3.15) and (3.16) of Schouten–Van Kampen
and Vrănceanu connections were first obtained by Ianuş [Ian71] and then
used by Bădiţoiu, Buchner and Ianuş [BBI98] for studying semi–Riemannian
submersions.

1.4 From Semi–Euclidean Algebra to Semi–Riemannian
Geometry

For the sake of completeness of the book, and to present our terminology, we
start with some basic notions and results about semi–Euclidean spaces.

Let V be a real m– dimensional vector space and g : V ×V −→ IR be
a symmetric bilinear mapping. We say that g is a scalar product on V if
it is non–degenerate, that is, whenever g(u, v) = 0 for all v ∈ V , then
u = 0. The vector space V endowed with a scalar product g is denoted by
(V, g) and it is called a semi–Euclidean (pseudo–Euclidean) space. Let
q be the dimension of the largest subspace W of (V, g) on which g is negative
definite, i.e., g(w, w) < 0 for any non-zero vector w ∈ W. Then we say that g
is of index q. When q = 0 (resp. q = 1), (V, g) is called a Euclidean space
(resp. Lorentz (Minkowski) space). If 0 < q < m, then we say that (V, g)
is a proper semi–Euclidean space. In such a vector space we have three
categories of vectors as follows. A vector v ∈ V is called:

space–like , if g(v, v) > 0 or v = 0,

light–like (null) , if g(v, v) = 0 and v �= 0,

time–like , if g(v, v) < 0.

The length (norm) of v ∈ V is the non–negative number ‖v‖ = |g(v, v)|1/2
.

When ‖v‖ = 1 we say that v is a unit vector. Two vectors v and w are
orthogonal if g(v, w) = 0. Contrary to the case of Euclidean geometry, a
light–like vector of a proper semi–Euclidean space is a non-zero vector that
is orthogonal to itself. A basis of (V, g) formed by m mutually orthogonal
unit vectors is called an orthonormal basis. The existence of such bases is
ensured by the following.

Lemma 4.1. (O’Neil [O83], p. 50).l
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(i) Any semi–Euclidean space (V, g) with V �= {0} has an orthonormal basis
B = {e1, ..., em}.

(ii)Any vector v ∈ V has a unique expression

v =
m∑

i=1

εig(v, ei)ei,

where εi = g(ei, ei).

Next, we consider a subspace W of a semi–Euclidean space (V, g). Then
the restriction of g to W is a symmetric bilinear form on W which we also
denote by g. If g is non–degenerate on W , then (W, g) is also a semi–Euclidean
space. Any subspace W �= {0} of a Euclidean space (V, g) is a Euclidean
space too. However, when (V, g) is a proper semi–Euclidean space g might be
degenerate on W , that is, there exists a non-zero vector u ∈ W such that

g(u, w) = 0, for all w ∈ W. (4.1)

When g is degenerate (resp. non–degenerate) on a subspace W of (V, g) we
say that W is a degenerate (resp. non–degenerate) subspace of (V, g).

Lemma 4.2. Any m– dimensional proper semi–Euclidean space with m ≥ 2
has both degenerate and non–degenerate subspaces.

Proof. According to (i) of Lemma 4.1 we consider an orthonormal basis B of
(V, g). If u ∈ B, then W = span{u} is a non–degenerate subspace of (V, g).
Since g is of index 0 < q < m, there exist in B at least one time–like vector u
and one space–like vector v. Then W ′ = span{u+v} is a degenerate subspace
of (V, g).

To discuss the degree of degeneracy of a subspace W we define the or-
thogonal subspace W⊥ to W in (V, g) by

W⊥ = {u ∈ V : g(u, w) = 0, ∀w ∈ W}. (4.2)

In general, W⊥ is not complementary to W in V , but the following equalities
are true:

dimW + dimW⊥ = m, (4.3)

and
(W⊥)⊥ = W. (4.4)

Moreover, we have the following.

Lemma 4.3. W is a non– degenerate subspace of a semi–Euclidean space if
and only if W⊥ is non–degenerate too.

Lemma 4.1. (O’Neil [O83], p. 50).l
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Proof. Suppose W is non–degenerate and W⊥ is degenerate. Then there
exists u ∈ W⊥, u �= 0, such that

g(u, w⊥) = 0, for all w⊥ ∈ W⊥. (4.5)

On the other hand, by the definition of W⊥ we have

g(u, w) = 0, for all w ∈ W. (4.6)

From (4.5) and (4.4) it follows that u ∈ W. Then by (4.6) we deduce that W
is degenerate, which is a contradiction. Thus W⊥ must be non–degenerate.
Conversely, if W⊥ is non–degenerate, then by the above reason we infer that
(W⊥)⊥ is non–degenerate. Hence by (4.4), W is non–degenerate.

Corollary 4.4. W is a degenerate subspace of a semi–Euclidean space (V, g)
if and only if W⊥ is degenerate too.

Now, we consider the null subspace of W ⊂ (V, g) with respect to g,
denoted by N (W, g) and defined by

N (W, g) = {u ∈ W : g(u,w) = 0, ∀w ∈ W}. (4.7)

By using (4.4) and (4.7) we deduce that

N (W, g) = N (W⊥, g) = W ∩ W⊥. (4.8)

The dimension of the null subspace of W is called the nullity degree of W
with respect to g, and it is denoted by null (W, g). Then the following can be
easily proved.

Lemma 4.5. Let (V, g) be a semi–Euclidean space and W be a subspace of
V . Then we have the assertions:

(i) W is a degenerate subspace of (V, g) if and only if null (W, g) > 0.
(ii) W is a non–degenerate subspace of (V, g) if and only if null (W, g) = 0.

Let null(W, g) = r. If r > 0 we say that (W, g) is an r–degenerate sub-
space of (V, g). According to Walker [Wal50a] the n– dimensional subspace
(W, g) is called:

partially–null , if 0 < r < n,

totally–null , if r = n,

non–null , if r = 0.

Lemma 4.6. Let (W, g) be a partially–null subspace of a semi–Euclidean space
(V, g). Then any complementary subspace to N (W, g) in W is non–degenerate.

Proof. Let S(W, g) be a complementary subspace to N (W, g) in W . Suppose
that S(W, g) is degenerate. Then there exists a non–zero vector v ∈ S(W, g)
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such that g(v, w) = 0 for any w ∈ S(W, g). As v ∈ W and N (W, g) is the
null subspace of W , we have g(v, u) = 0, for any u ∈ N (W, g). Thus v is
orthogonal to all vectors of W and hence it is a vector in N (W, g). This is
a contradiction because v �= 0 and N (W, g) and S(W, g) are complementary
subspaces of W . Therefore, S(W, g) must be non–degenerate.

A complementary subspace to N (W, g) in a partially–null subspace W
of (V, g) is called a screen subspace. Later on, in Sections 1.8 and 3.5 we
shall see that screen subspaces are fibers of some distributions which play an
important role in studying degenerate distributions (resp. foliations).

Finally, we define the light–like (null) cone of a proper semi–Euclidean
space (V, g) as the set Λ of all light–like vectors in V , that is, we have

Λ = {v ∈ V \ {0} : g(v, v) = 0}.
Clearly Λ is not a subspace of V , but it contains N (W, g) \ {0} for any dege-
nerate subspace W of (V, g).

Example 4.1. Let IRm be the space of m–tuples (x1, ..., xm) = x of real
numbers. For any 0 < q < m define g : IRm×IRm −→ IR by

g(x, y) = −
q∑

t=1

xtyt +
m∑

s=q+1

xsys. (4.9)

Then IRm
q = (IRm, g) is a proper semi–Euclidean space of index q. In particu-

lar, IRm
1 is a Lorentz (Minkowski) vector space with g given by

g(x, y) = −x1y1 +
m∑

s=2

xsys. (4.10)

Finally, IRm becomes a Euclidean space with respect to the usual inner pro-
duct

g(x, y) =
m∑

s=1

xsys. (4.11)

Example 4.2. Consider in IR4
1 the subspaces:

W = {x ∈ IR4 : x1 + x2 + x3 + x4 = 0},
W ′ = {x ∈ IR4 : x1 = x2},
W ′′ = {x ∈ IR4 : x1 = x2, x3 = x4 = 0}.

Then it is easy to see that W, W ′ and W ′′ are non–null, partially–null and
totally–null subspaces of IR4

1, respectively. Moreover, we have
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N (W ′, g) = W ′′,

and
Λ ∩ W ′ = W ′′ \ {0},

where Λ is the light–like cone of IR4
1, i.e., we have

Λ = {x ∈ IR4 \ {0} : −(x1)2 + (x2)2 + (x3)2 + (x4)2 = 0}.

Now, we extend the above concepts to distributions and manifolds. Let
M be an (n + p)– dimensional manifold endowed with an n–distribution D.
Denote by L2

s(Dx, IR) the real vector space of all symmetric bilinear mappings
gx : Dx×Dx −→ IR. Then we consider the vector bundle

L2
s(D, IR) =

⋃
x∈M

L2
s(Dx, IR),

over M , and give the following definition. A semi–Riemannian metric of
index q on D is a smooth section g : x −→ gx of L2

s(D, IR) such that each gx

is non–degenerate of index q on Dx for all x ∈ M. When q = 0, that is gx is
positive definite for any x ∈ M, we say that g is a Riemannian metric on
D. According to this terminology for the metric, we say that (D, g) is a semi–
Riemannian distribution of index q, and when q = 0 it is a Riemannian
distribution. Finally, if q = 1 we say that (D, g) is a Lorentz distribution.
We note that if not stated otherwise, the theory is developed regardless of the
integrability of D.

If in particular D = TM , then g becomes a semi–Riemannian metric
on M and (M, g) is called a semi–Riemannian (pseudo–Riemannian)
manifold (cf. O’Neill, [O83], p. 54) of index q. In case q = 0 (resp. q = 1),
(M, g) is said to be a Riemannian manifold (resp. Lorentz manifold).
When 0 < q < n+p we call (M, g) a proper semi–Riemannian manifold.
In this case each pair (TxM, gx) is a proper semi–Euclidean space of constant
index q.

We discuss next the non–linear counter–part of the algebraic study con-
sidered in the first part of this section. This takes us to the theory of non–
holonomic manifolds as substructures of semi–Riemannian manifolds. More
precisely, we consider an n–distribution D on an (n + p)–dimensional semi–
Riemannian manifold (M, g). Then g induces a global section of L2

s(D, IR)
which we denote by the same symbol g. Two important cases will be con-
sidered in our study. One is when (D, g) is a semi–Riemannian distribution
on M and the other one is when each Dx is an r–degenerate subspace of the
semi–Euclidean space (TxM, gx) for all x ∈ M . In the latter case we say that
(D, g) is an r–degenerate distribution on M . This case occurs only when
(M, g) is a proper semi–Riemannian manifold. When (M, g) is a Riemannian
manifold then any (D, g) is a Riemannian distribution.
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Now, let (M, g) be a semi–Riemannian manifold and (D, g) be a semi–Rie-
mannian distribution on M . Then we consider the vector bundle

D⊥ =
⋃

x∈M

D⊥
x ,

where D⊥
x is the complementary orthogonal subspace to Dx in (TxM, gx).

By Lemma 4.3 we deduce that g induces a semi–Riemannian metric g′ on
D⊥, and therefore (D⊥, g′) is a semi–Riemannian distribution too. Thus in
this case we may consider D⊥ as transversal distribution to D and study this
geometric structure by using some natural linear connections (cf. Sections 1.5,
1.6, 1.7). When (D, g) is an r– degenerate n– distribution, the construction of
a transversal distribution seems to be more difficult to achieve. When r < n
(resp. r = n), Dx is a partially–null (resp. totally–null) subspace of TxM for
any x ∈ M, so we call D a partially–null (resp. totally–null) distribution
on (M, g).

1.5 Intrinsic and Induced Linear Connections
on Semi–Riemannian Distributions

Let M be an (n+p)– dimensional manifold and D be an n–distribution on M .
Suppose g is a semi–Riemannian metric on D, that is, (D, g) is a semi–Rie-
mannian distribution on M . First we want to construct a linear connection
on D whose properties are very similar to those of the Levi–Civita connection
on a semi–Riemannian manifold. To this end we consider a complementary
distribution D′ to D in TM . Then a linear connection ∇ on D is said to be
D′–torsion–free if its D′–torsion tensor field T vanishes on M , i.e., by (2.25)
we have

∇XQY −∇QY QX − Q[X, QY ] = 0, ∀X, Y ∈ Γ (TM). (5.1)

Also, we say that g is D–parallel (parallel along D) with respect to ∇ if
we have

(∇QX g)(QY, QZ)= QX(g(QY, QZ)) − g(∇QXQY,QZ)

− g(QY,∇QXQZ) = 0, ∀X, Y, Z ∈ Γ (TM).
(5.2)

Now, we can state the following theorem.

Theorem 5.1. (Bejancu–Farran [BF05]). Let (D, g) be a semi–Riemannian
distribution on M and D′ be a complementary distribution to D in TM . Then
there exists a unique linear connection D on D satisfying the following condi-
tions:

(i) D is D′–torsion–free.
(ii) g is D–parallel with respect to D.
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Proof. Define the differential operator D : Γ (TM)×Γ (D) −→ Γ (D) by

2g(DQXQY, QZ)= QX(g(QY,QZ)) + QY (g(QZ, QX))

−QZ(g(QX, QY )) + g(Q[QX, QY ], QZ)

− g(Q[QY, QZ], QX) + g(Q[QZ, QX], QY ),

(5.3)

and
DQ′XQY = Q[Q′X, QY ], (5.4)

for any X, Y, Z ∈ Γ (TM). It is easy to verify that D given by (5.3) and (5.4)
is a linear connection on D that satisfies the conditions (i) and (ii). Next,
suppose that ∇ is another linear connection on D satisfying (i) and (ii). Since
∇ is D′–torsion–free, from (5.1) we deduce that

∇Q′XQY = Q[Q′X, QY ], (5.5)

and
∇QXQY −∇QY QX − Q[QX, QY ] = 0, (5.6)

for any X, Y ∈ Γ (TM). Now, by using (5.2) and (5.6) we obtain

0 = (∇QX g)(QY, QZ) + (∇QY g)(QZ, QX) − (∇QZg)(QX,QY )

= QX(g(QY, QZ)) + QY (g(QZ, QX)) − QZ(g(QX,QY ))

+ g(Q[QX, QY ], QZ) − g(Q[QY, QZ], QX) + g(Q[QZ,QX], QY )

− 2g(∇QXQY, QZ).

(5.7)

Finally, comparing (5.5) and (5.7) with (5.4) and (5.3) respectively, we con-
clude that ∇ = D, which proves the uniqueness of D.

In general, a linear connection ∇̃ on a manifold M is called torsion–free
if its torsion tensor field vanishes, that is, we have (see (2.14))

∇̃XY − ∇̃Y X − [X, Y ] = 0, ∀X, Y ∈ Γ (TM). (5.8)

If (M, g) is a semi–Riemannian manifold then we say that g is parallel with
respect to ∇̃ if we have

(∇̃Xg)(Y, Z) = X(g(Y, Z)) − g(∇̃XY, Z)

− g(Y, ∇̃XZ) = 0, ∀X, Y, Z ∈ Γ (TM).
(5.9)

Corollary 5.2. Let (M, g) be a semi–Riemannian manifold. Then there exists
a unique linear connection ∇̃ on M satisfying the following conditions:

(i) ∇̃ is torsion–free.
(ii) g is parallel with respect to ∇̃.
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Proof. Apply Theorem 5.1 for the case D = TM . Then we have only the
trivial complementary distribution D′ = {0} and thus Q = I and Q′ = 0.
Hence (5.1) and (5.2) become (5.8) and (5.9) respectively. Finally, (5.3) gives
the linear connection we are looking for, that is,

2g(∇̃XY,Z) = X(g(Y, Z)) + Y (g(Z, X)) − Z(g(X, Y ))

+ g([X, Y ], Z) − g([Y,Z], X) + g([Z,X], Y ),
(5.10)

for any X, Y, Z ∈ Γ (TM).

The linear connection ∇̃ given by (5.10) is the well known Levi–Civita
connection which was considered as a miracle of semi–Riemannian geometry
(cf. O’Neil [O83], p. 60).

The local coefficients of ∇̃ with respect to the natural frame field
{

∂

∂xa

}
on M can be easily obtained from (5.10). To achieve this we put:

(a) ∇̃ ∂

∂xb

∂

∂xa
=
{ c

a b

} ∂

∂xc
, (b) gab = g

(
∂

∂xa
, ∂

∂xb

)
· (5.11)

Then replace X, Y and Z from (5.10) by
∂

∂xb
, ∂

∂xa
and

∂

∂xd
respectively,

and by using (5.11) and taking into account that
[

∂

∂xa
, ∂

∂xb

]
= 0 for any

a, b ∈ {1, ..., n + p}, we obtain

2
{ c

a b

}
gcd =

∂gad

∂xb
+

∂gbd

∂xa
− ∂gab

∂xd
·

Finally, we deduce that the well known Christoffel coefficients
{

c
a b

}
for

the Levi–Civita connection on M are given by{ c

a b

}
=

1
2

gcd

(
∂gad

∂xb
+

∂gbd

∂xa
− ∂gab

∂xd

)
, (5.12)

where gcd are the entries of the inverse matrix of [gcd]. When D is integrable
we will get in Section 3.1 the local coefficients for the linear connection D.

Next we consider an (n+p)–dimensional semi–Riemannian manifold (M, g)
and suppose that (D, g) is a semi–Riemannian n–distribution on M . Then
(D⊥, g) is a semi–Riemannian p–distribution on M . Here we denoted by the
same symbol g the semi–Riemannian metrics induced by g on D and D⊥.
Thus we have

TM = D ⊕D⊥. (5.13)

According to Theorem 5.1 there exists a unique connection D (resp. D⊥) on
D (resp. D⊥) satisfying the conditions from the theorem with respect to the

l
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decomposition (5.13). We call D and D⊥ the intrinsic connections on D
and D⊥ respectively. In what follows we keep the same notations Q and Q′

for the projection morphisms of TM on D and D⊥ respectively.

Theorem 5.3. The adapted linear connection determined by the pair of in-
trinsic connections (D,D⊥) is just the Vrănceanu connection ∇∗ defined by
the Levi–Civita connection ∇̃ on (M, g).

Proof. First, by using (5.3), (5.4) and (5.10) we deduce that

DXQY = Q∇̃QXQY + Q[Q′X, QY ], ∀X, Y ∈ Γ (TM), (5.14)

where ∇̃ is the Levi–Civita connection on (M, g). Similarly, it follows that

D⊥
XQ′Y = Q′∇̃Q′XQ′Y + Q′[QX, Q′Y ], ∀X, Y ∈ Γ (TM). (5.15)

Then we use (5.14), (5.15) and (2.4) and obtain (3.16), which proves that the
Vrănceanu connection ∇∗ defined by ∇̃ is the adapted connection determined
by (D,D⊥).

Next by using (2.14) and (2.4) for ∇∗, D and D⊥ we deduce that

Q(T ∗(X, QY )) = DXQY − DQY QX − Q[X, QY ],

and
Q′(T ∗(X, Q′Y )) = D⊥

XQ′Y − D⊥
Q′Y Q′X − Q′[X, Q′Y ],

for any X, Y ∈ Γ (TM). These formulas together with (5.1), (5.2) and Theo-
rems 5.1 and 5.3 enable us to state the following corollary.

Corollary 5.4. The Vrănceanu connection ∇∗ defined by the Levi–Civita con-
nection ∇̃ on (M, g) is the only adapted linear connection on M satisfying the
following conditions

(a) (∇∗
QXg)(QY, QZ) = 0, (b) (∇∗

Q′Xg)(Q′Y, Q′Z) = 0,

(c) Q(T ∗(X, QY )) = 0, (d) Q′(T ∗(X, Q′Y )) = 0,
(5.16)

for any X, Y, Z ∈ Γ (TM).

On the other hand, the Levi–Civita connection ∇̃ on (M, g) induces some
linear connections on D and D⊥. Thus it is interesting to see if these connec-
tions coincide with the intrinsic connections on D and D⊥. We show that this
happens if and only if M is a locally semi–Riemannian product manifold.

First, according to (5.13) we write

∇̃XQY = ∇XQY + h(X, QY ), (5.17)
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and
∇̃XQ′Y = h′(X, Q′Y ) + ∇⊥

XQ′Y, (5.18)

where we set:

(a) ∇XQY = Q∇̃XQY, (b) ∇⊥
XQ′Y = Q′∇̃XQ′Y, (5.19)

and

(a) h(X,QY ) = Q′∇̃XQY, (b) h′(X, Q′Y ) = Q∇̃XQ′Y, (5.20)

for any X, Y ∈ Γ (TM). We call (5.17) and (5.18) the Gauss formulas for
the semi–Riemannian distributions (D, g) and (D⊥, g) respectively. It is easy
to check that ∇ and ∇⊥ are linear connections on D and D⊥ respectively,
while h and h′ are F (M)–bilinear mappings:

h : Γ (TM)×Γ (D) −→ Γ (D⊥), h′ : Γ (TM)×Γ (D⊥) −→ Γ (D).

We call ∇ (resp. ∇⊥) the induced connection by ∇̃ on D (resp. D⊥). Also,
we call

h : Γ (D)×Γ (D) −→ Γ (D⊥) and h′ : Γ (D⊥)×Γ (D⊥) −→ Γ (D),

given by

(a) h(QX, QY )=Q′∇̃QXQY and

(b) h′(Q′X, Q′Y )=Q∇̃Q′XQ′Y,
(5.21)

the second fundamental forms of D and D⊥ respectively. Next, for any
Q′X ∈ Γ (D⊥) and QX ∈ Γ (D) we define the F (M)–linear operators

AQ′X : Γ (D) −→ Γ (D) and A′
QX : Γ (D⊥) −→ Γ (D⊥),

by
(a) AQ′XQY = −h′(QY, Q′X) and

(b) A′
QXQ′Y = −h(Q′Y,QX).

(5.22)

According to the theory of submanifolds, we call AQ′X and A′
QX the shape

operators of D and D⊥ with respect to the normal sections Q′X and QX
respectively. By using (5.9), (5.17) and (5.18) we obtain

g(h(X, QY ), Q′Z) + g(h′(X, Q′Z), QY ) = 0, ∀X, Y, Z ∈ Γ (TM). (5.23)

As a consequence of (5.21)–(5.23) we deduce that the second fundamental
forms and the shape operators of the distributions D and D′ are related by

g(h(QX, QY ), Q′Z) = g(AQ′ZQX,QY ), (5.24)
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and
g(h′(Q′X, Q′Y ), QZ) = g(A′

QZQ′X, Q′Y ). (5.25)

Finally, from (5.17) and (5.18) we infer that

(a) ∇̃QXQY = ∇QXQY + h(QX, QY ),

(b) ∇̃Q′XQY = ∇Q′XQY − A′
QY Q′X,

(5.26)

and
(a) ∇̃QXQ′Y = −AQ′Y QX + ∇⊥

QXQ′Y,

(b) ∇̃Q′XQ′Y = h′(Q′X,Q′Y ) + ∇⊥
Q′XQ′Y.

(5.27)

As from now on we refer only to the decomposition (5.13) dictated by the
semi–Riemannian metric g, we call the D⊥ (resp. D)–torsion tensor field of ∇
(resp. ∇⊥) simply torsion tensor field. Now, we say that g is parallel with
respect to a linear connection ∇′ on D, if we have

(∇′
Xg)(QY, QY ) = X(g(QY, QZ)) − g(∇′

XQY, QZ)

− g(QY,∇′
XQZ) = 0, ∀X, Y, Z ∈ Γ (TM).

(5.28)

Then we prove the following.

Lemma 5.5.

(i) The semi–Riemannian metric g on D is parallel with respect to the induced
connection ∇.

(ii) The torsion tensor field of ∇ is given by

T (X, QY ) = ∇Q′XQY − Q[Q′X, QY ], ∀X, Y ∈ Γ (TM). (5.29)

(iii) D is an involutive distribution if and only if one of the following two
conditions is satisfied:
(a) The second fundamental form h of D is symmetric.
(b)The shape operator AQ′Z of D is symmetric with respect to g for any

Q′Z ∈ Γ (D⊥).

Proof. The assertion (i) follows from (5.9) by using (5.19a) and (5.28) for
∇. Next by using (5.19a) in (2.25) and taking into account (5.8) we obtain
(5.29). Finally, (5.21a) and (5.8) imply

h(QX, QY ) − h(QY, QX) = Q′[QX, QY ], ∀X, Y ∈ Γ (TM),

which proves that D is involutive if and only if the second fundamental form
of D is symmetric. The equivalence of (iiia) and (iiib) is a consequence of
(5.24).
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We note that when D is an integrable distribution then h defined by (5.21a)
determines the second fundamental form for any local leaf M∗ of D. Recall
from the theory of submanifolds that M∗ is totally geodesic at a point
x ∈ M∗, if for every v ∈ TxM∗ the geodesic xa = xa(t) of M determined by
(x, v) lies in M∗ for small values of the parameter t. If M∗ is totally geodesic
at every point, then it is called a totally geodesic submanifold of M . It is
proved that M∗ is totally geodesic if and only if its second fundamental form
vanishes identically on M∗ (cf. O’Neill [O83], p. 104).

Now, from (5.29) we deduce that the induced connection ∇ on D, in gen-
eral, is not torsion–free, so it does not coincide with the intrinsic connection
D on D. The following theorem sheds more light on this issue.

Theorem 5.6. Let (D, g) be a semi–Riemannian distribution on the semi–
Riemannian manifold (M, g). Then the following assertions are equivalent:

(i) The induced connection∇ coincides with the intrinsic connection D on D.
(ii)The second fundamental form h of D vanishes identically on M .
(iii)D is integrable and its local leaves are totally geodesic immersed in (M, g).

Proof. By Theorem 5.1 we know that D is the only linear connection on D
which is torsion–free and with respect to which g is D–parallel. Taking into
account that g is also D–parallel with respect to ∇ (cf. (i) of Lemma 5.5), and
by using (5.29) and (5.19a) we deduce that ∇ = D if and only if

Q∇̃Q′XQY = Q[Q′X, QY ], ∀X, Y ∈ Γ (TM). (5.30)

Next, by using (5.10) we compute 2g(Q∇̃Q′XQY, QZ) and infer that (5.30) is
equivalent to

Q′X(g(QY,QZ)) − g([Q′X, QY ], QZ) − g([QY, QZ], Q′X)

+ g([QZ, Q′X], QY ) = 0, ∀X, Y, Z ∈ Γ (TM).
(5.31)

By using (5.8) and (5.9) we deduce that (5.31) is equivalent to

g(∇̃QY QZ, Q′X) = 0, ∀X, Y, Z ∈ Γ (TM). (5.32)

From (5.32), by using (5.20a), we obtain that ∇ = D if and only if

h(QY, QZ) = 0, ∀Y, Z ∈ Γ (TM), (5.33)

which proves the equivalence of (i) and (ii). Finally, by using the assertion (iiia)
of Lemma 5.5 we deduce that (5.33) is satisfied if and only if D is integrable
and its local leaves are totally geodesic immersed in (M, g). This proves the
equivalence of (ii) and (iii) and completes the proof of our theorem.

Theorem 5.7. The adapted linear connection determined by the pair of in-
duced connections (∇,∇⊥) is just the Schouten–Van Kampen connection ∇◦

defined by the Levi–Civita connection ∇̃ on (M, g).
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Proof. The assertion follows by using the coordinate–free form (3.15) of the
Schouten–Van Kampen connection and (5.19).

Now we define two classes of manifolds that are going to be studied in
detail in Chapter 4. When both distributions D and D⊥ are integrable, we
say that M is a locally product manifold. If moreover, the local leaves of
D and D⊥ are totally geodesic immersed in (M, g) then we say that M is a
locally semi–Riemannian product.

Next, we note that Theorem 5.6 is also true for (D⊥, g). Then taking
into account Theorems 5.6, 5.3 and 5.7 we obtain the following interesting
characterization of locally semi–Riemannian products.

Theorem 5.8. Let (D, g) and (D⊥, g) be two complementary orthogonal semi–
Riemannian distributions on the semi–Riemannian manifold (M, g). Then M
is a locally semi–Riemannian product with respect to the decomposition (5.13)
if and only if the Schouten–Van Kampen and Vrănceanu connections defined
by the Levi–Civita connection on (M, g) coincide.

As, in general, the second fundamental form h of D is not symmetric (cf.
assertion (iii) of Lemma 5.5) we define the symmetric second fundamental
form hs of D by

hs(QX, QY ) =
1
2
(h(QX, QY ) + h(QY, QX)), ∀X, Y ∈ Γ (TM). (5.34)

Also, we say that a vector field X on M is a D–Killing vector field if

(LX g)(QY, QZ) = g(∇̃QY X, QZ) + g(∇̃QZX, QY ) = 0, (5.35)

for any Y,Z ∈ Γ (TM), where L is the Lie derivative on M .
Now, we remark that, in general, g is not parallel with respect to any of

the intrinsic connections D and D⊥ on D and D⊥ respectively. More precisely,
we have

Theorem 5.9. Let (D, g) be a semi–Riemannian distribution on the semi–
Riemannian manifold (M, g). Then the following assertions are equivalent:

(i) g is parallel with respect to the intrinsic connection D on D.
(ii) Q′X is a D–Killing vector field, for any X ∈ Γ (TM).
(iii) The symmetric second fundamental form of D vanishes identically on M .

Proof. Since g is D–parallel with respect to D (see (ii) of Theorem 5.1), we
deduce that g is parallel with respect to D if and only if it is D⊥–parallel with
respect to D, that is,

(DQ′X g)(QY,QZ) = 0, ∀X,Y, Z ∈ Γ (TM). (5.36)

Then by using (5.4), (5.8) and (5.9) we infer that (5.36) is equivalent to
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0 = Q′X(g(QY,QZ)) − g([Q′X, QY ], QZ) − g(QY, [Q′X, QZ])

= g(∇̃Q′XQY, QZ) + g(QY, ∇̃Q′XQZ) − g(∇̃Q′XQY, QZ)

+ g(∇̃QY Q′X, QZ) − g(QY, ∇̃Q′XQZ) + g(QY, ∇̃QZQ′X)

= g(∇̃QY Q′X, QZ) + g(QY, ∇̃QZQ′X).

(5.37)

Thus by (5.37) and (5.35) we obtain the equivalence of (i) and (ii). Finally,
by using (5.9), (5.21a) and (5.34) we deduce that (5.37) is equivalent to

0 = g(Q′X, ∇̃QY QZ + ∇̃QZQY ) = 2g(Q′X, hs(QY, QZ)),

which completes the proof of the theorem.

So far we have obtained characterizations of two important classes of dis-
tributions on (M, g). More precisely, one class concerns semi–Riemannian dis-
tributions (D, g) for which ∇ = D. The second deals with semi–Riemannian
distributions for which g is parallel with respect to the intrinsic connection.
These two classes can be related as follows.

Theorem 5.10. Let (D, g) be a semi–Riemannian distribution on the semi–
Riemannian manifold (M, g). Then the following assertions are equivalent:

(i) The induced connection∇ coincides with the intrinsic connection D on D.
(ii)The induced connection ∇ on D is torsion–free.
(iii) D is integrable and g is parallel with respect to D.

Proof. (i) =⇒ (ii). As D is torsion–free, it follows that ∇ must be torsion–free
too. (ii) =⇒ (i). Since ∇ is torsion–free and g is parallel with respect to ∇
(cf. (i) of Lemma 5.5), by uniqueness of D stated by Theorem 5.1 we obtain
∇ = D. (i) ⇐⇒ (iii). By assertion (iiia) of Lemma 5.5 and Theorem 5.9 we
deduce that the assertion (iii) of the theorem holds if and only if the second
fundamental form h of D vanishes identically on M . Then apply Theorem 5.6
and obtain the equivalence of (i) and (iii).

Next, by direct calculations using (2.14) and (5.29) for both D and D⊥ we
deduce that

T ◦(Q′X, QY ) = T (X, QY ) − T⊥(Y, Q′X), ∀X, Y ∈ Γ (TM), (5.38)

where T ◦, T and T⊥ are the torsion tensor fields of ∇◦,∇ and ∇⊥ respectively.
Moreover, by using (2.14), (3.15) and (5.8) we obtain

T ◦(QX, QY ) = T ◦(Q′X, Q′Y ) = 0, ∀X, Y ∈ Γ (TM). (5.39)

Theorem 5.11. Let ∇◦ be the Schouten–Van Kampen connection defined
by the Levi–Civita connection ∇̃ on (M, g) with respect to the decomposition
(5.13). Then the following assertions are equivalent:
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(i) ∇◦ coincides with ∇̃.
(ii) ∇◦ is torsion–free.
(iii) Both induced connections are torsion–free.

Proof. (i)=⇒(ii). As ∇̃ is torsion–free, it follows that ∇◦ is torsion–free too.
(ii)=⇒(i). Since g is parallel with respect to both ∇ and ∇⊥ (cf. (i) of Lemma
5.5) we have

(∇◦
Xg)(QY, QZ) = (∇◦

Xg)(Q′Y, Q′Z) = 0, ∀X, Y, Z ∈ Γ (TM).

Also, taking into account that ∇◦ is an adapted connection to the decompo-
sition (5.13) we obtain

(∇◦
Xg)(Q′Y, QZ) = 0, ∀X,Y, Z ∈ Γ (TM).

Hence ∇◦ satisfies both (5.8) and (5.9) and by uniqueness of ∇̃ from Corollary
5.2 we must have ∇◦ = ∇̃. Finally, the equivalence of (ii) and (iii) follows from
(5.38) and (5.39).

Taking into account Theorems 5.8, 5.10 and 5.11 we state the following.

Theorem 5.12. Let (D, g) and (D⊥, g) be two complementary orthogonal
semi–Riemannian distributions on the semi–Riemannian manifold (M, g). If
∇̃,∇◦ and ∇∗ represent the Levi–Civita, Schouten–Van Kampen and Vrăn-
ceanu connections respectively, then the following assertions are equivalent:

(i) M is a locally semi–Riemannian product with respect to the decomposition
(5.13).

(ii) ∇◦ = ∇∗.
(iii) ∇◦ = ∇̃.

(iv) ∇∗ = ∇̃.

From Theorem 5.10 we see that the condition ∇ = D on D is stronger
than the condition for g being parallel with respect to D. The latter condi-
tion was first introduced by Reinhart [Rei59a] for foliated manifolds, that is,
D⊥ is supposed to be an integrable distribution. A Riemannian (semi–Rie-
mannian) metric satisfying this condition was called a bundle–like metric
and it was intensively studied by several authors (see Tondeur [Ton97] for
references, and Section 3.3 for more details). It is interesting to see whether
bundle–like metrics can be found on a non–holonomic semi–Riemannian ma-
nifold (M, g,D,D⊥), that is, when none of the distributions D and D⊥ is
integrable. The next example shows that the answer is in the affirmative.

Example 5.1. Let (IR4, g) be the 4–dimensional Euclidean space with g given
by (4.11) for m = 4. We define the open submanifold M of IR4 by

M = {(x1, x2, x3, x4) ∈ IR4 : 2x3 − (x1)2 > 0},
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where (x1, x2, x3, x4) is a rectangular coordinate system on IR4. Then on the
Riemannian manifold (M, g) we consider the distributions D and D⊥ spanned
by {

X1 =
∂

∂x1
+ L

∂

∂x2
+ x1 ∂

∂x3
, X2 =

∂

∂x4
+ x1 ∂

∂x2
− L

∂

∂x3

}
,

and {
Y1 =

∂

∂x2
− L

∂

∂x1
− x1 ∂

∂x4
, Y2 =

∂

∂x3
− x1 ∂

∂x1
+ L

∂

∂x4

}
,

respectively, where L =
√

2x3 − (x1)2. It is easy to see that D and D⊥ are
complementary orthogonal Riemannian distributions on (M, g). Moreover,
none of them is involutive, so by Frobenius Theorem (see Theorem 2.1.7)
they are not integrable. However, we show that g is parallel with respect to
the intrinsic connection D on D. To this end we first note that we should
verify only (5.36). Taking into account that {X1, X2} is an orthogonal basis
in Γ (D), from the first equality in (5.37) we deduce that g is parallel with
respect to D if and only if

g([Yi, X1], X2) + g([Yi, X2], X1) = 0, i ∈ {1, 2}.
By direct calculations it follows that these equalities are satisfied and hence
g is a bundle–like metric on M . Thus this is an example of a bundle–like
metric on a Riemannian manifold (M, g) endowed with two complementary
orthogonal non–integrable distributions.

1.6 Fundamental Equations for Semi–Riemannian
Distributions

Let (M, g) be a semi–Riemannian manifold endowed with two complementary
othogonal distributions D and D⊥. In the previous section we constructed the
intrinsic connections D and D⊥ on D and D⊥ respectively and proved that
the pair (D, D⊥) determines the Vrănceanu connection ∇∗ (cf. Theorem 5.3).
Also, the Levi–Civita connection ∇̃ on (M, g) induces two linear connections ∇
and ∇⊥ on D and D⊥. Moreover, the pair (∇,∇⊥) determines the Schouten–
Van Kampen connection ∇◦ (cf. Theorem 5.7).

In the present section we first relate the curvature tensor of ∇̃ to the
curvature tensors of ∇,∇⊥ and ∇◦. Then we obtain equations connecting
curvature tensors of the Schouten–Van Kampen and Vrănceanu connections.
As a consequence we deduce the equations which relate the curvature tensors
of ∇̃ and ∇∗.

The theory we develop here is done in the general situation when none of
the distributions D and D⊥ is supposed to be integrable. First, by using the
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linear connections ∇,∇⊥ and ∇◦ we define the covariant derivatives of h and
h′ given by (5.20) as follows:

(∇⊥
Xh)(Y,QZ) = ∇⊥

X(h(Y, QZ)) − h(∇◦
XY, QZ) − h(Y,∇XQZ), (6.1)

(∇Xh′)(Y, Q′Z) = ∇X(h′(Y,Q′Z)) − h′(∇◦
XY,Q′Z) − h(Y,∇′

XQ′Z), (6.2)

for any X, Y, Z ∈ Γ (TM). Denote by R̃, R and R⊥ the curvature tensors
of the linear connections ∇̃,∇ and ∇⊥ respectively, and by T ◦ the torsion
tensor field of the Schouten–Van Kampen connection ∇◦. Then we state the
following.

Theorem 6.1. Let (D, g) and (D⊥, g) be two complementary orthogonal semi–
Riemannian distributions on the semi–Riemannian manifold (M, g). Then we
have the following equations:

(i) D–Gauss Equation:

g(R̃(X, Y )QZ, QU) = g(R(X,Y )QZ, QU) + g(h(X, QZ), h(Y, QU))

− g(h(Y,QZ), h(X, QU)),
(6.3)

(ii) D–Codazzi–Equation:

g(R̃(X,Y )QZ, Q′U) = g((∇⊥
Xh)(Y,QZ) − (∇⊥

Y h)(X, QZ), Q′U)

+ g(h(T ◦(X, Y ), QZ), Q′U),
(6.4)

(iii) D⊥–Gauss Equation:

g(R̃(X,Y )Q′Z,Q′U)=g(R⊥(X,Y )Q′Z,Q′U)+g(h′(X,Q′Z), h′(Y,Q′U))

− g(h′(Y, Q′Z), h′(X, Q′U)),
(6.5)

(iv) D⊥–Codazzi Equation:

g(R̃(X,Y )Q′Z, QU) = g((∇Xh′)(Y, Q′Z) − (∇Y h′)(X, Q′Z), QU)

+ g(h′(T ◦(X, Y ), Q′Z), QU),
(6.6)

for any X, Y, Z, U ∈ Γ (TM).

Proof. By using the Gauss formulas (5.17) and (5.18) we deduce that

∇̃X∇̃Y QZ = ∇X∇Y QZ + h(X,∇Y QZ) + h′(X, h(Y, QZ))

+∇⊥
X(h(Y, QZ)).

(6.7)

On the other hand, (5.17) and (2.14) for ∇◦ imply

∇̃[X,Y ]QZ = ∇[X,Y ]QZ + h(∇◦
XY, QZ) − h(∇◦

Y X, QZ)

−h(T ◦(X, Y ), QZ).
(6.8)
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Then using (6.7), (6.8) and (6.1) we obtain

R̃(X, Y )QZ = [∇̃X , ∇̃Y ]QZ − ∇̃[X,Y ]QZ

= {R(X,Y )QZ + h′(X, h(Y, QZ))

−h′(Y, h(X,QZ))} + {(∇⊥
Xh)(Y,QZ)

− (∇⊥
Y h)(X, QZ) + h(T ◦(X, Y ), QZ)}.

(6.9)

Taking the D⊥ – and D– components in (6.9) we obtain (6.4) and

g(R̃(X,Y )QZ,QU) = g(R(X,Y )QZ,QU) + g(h′(X, h(Y,QZ)),QU)

− g(h′(Y, h(X, QZ)), QU).
(6.10)

Finally, we use (5.23) in (6.10) and obtain (6.3). In a similar way we deduce
that

R̃(X, Y )Q′Z = {(∇Xh′)(Y,Q′Z) − (∇Y h′)(X, Q′Z)

+ h′(T ◦(X, Y ), Q′Z)} + {R⊥(X, Y )Q′Z

+ h(X, h′(Y, Q′Z)) − h(Y, h′(X, Q′Z))}.
(6.11)

Then (6.5) and (6.6) follow from (6.11) by taking the D⊥– and D–components
respectively.

We call (6.3)–(6.6) the fundamental equations of the pair of distribu-
tions (D,D⊥) on (M, g). We note that (6.4) and (6.6) are equivalent to each
other. To see this we first prove the following lemma.

Lemma 6.2.

(i) The covariant derivatives of h and h′ are related by

g((∇⊥
Xh)(Y,QZ), Q′U) + g((∇Xh′)(Y, Q′U), QZ) = 0. (6.12)

(ii)The torsion tensor field T ◦ of Schouten–Van Kampen connection is given
by

T ◦(X, Y ) = {h′(Y, Q′X) − h′(X, Q′Y )}
+ {h(Y,QX) − h(X, QY )}. (6.13)

(iii) The torsion tensor field T ∗ of Vrănceanu connection is given by

T ∗(X,Y ) = {h′(Q′Y, Q′X) − h′(Q′X, Q′Y )}
+ {h(QY, QX) − h(QX, QY )}. (6.14)
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Proof. The assertion (i) follows by direct calculations using (5.23) and taking
into account that g is parallel with respect to both ∇ and ∇⊥ (cf. (i) of Lemma
5.5). Next, by using (5.17)–(5.20) and (3.15) we deduce that

∇̃XY = ∇◦
XY + h(X, QY ) + h′(X,Q′Y ), ∀X, Y ∈ Γ (TM). (6.15)

Then (5.8) and (6.15) imply

T ◦(X, Y ) = (∇◦
XY − ∇̃XY ) − (∇◦

Y X − ∇̃Y X)

= h(Y,QX) + h′(Y,Q′X) − h(X, QY ) − h′(X, Q′Y ),

which proves (6.13). Finally, by using (3.15), (3.16), (5.20) and (5.8) we obtain

∇◦
XY = ∇∗

XY + h(Q′Y, QX) + h′(QY, Q′X), ∀X, Y ∈ Γ (TM). (6.16)

Then by using (6.13) and (6.16) we obtain (6.14).

Now, as a consequence of (5.23) we obtain

g(h(T ◦(X, Y ), QZ), Q′U) + g(h′(T ◦(X, Y ), Q′U), QZ) = 0. (6.17)

Then, using (6.12) and (6.17) in the right part of (6.4) and taking into account
that R̃ satisfies

g(R̃(X, Y )QZ, Q′U) + g(R̃(X, Y )Q′U,QZ) = 0,

we deduce the equivalence of (6.4) and (6.6).

Theorem 6.3. The curvature tensor fields R̃ and R◦ of the Levi–Civita con-
nection ∇̃ and of the Schouten–Van Kampen connection ∇◦ are related by

R̃(X, Y )Z = R◦(X, Y )Z + h′(X,h(Y, QZ)) − h′(Y, h(X, QZ))

+ h′(T ◦(X,Y ), Q′Z) + h(X, h′(Y, Q′Z))

−h(Y, h′(X, Q′Z)) + h(T ◦(X,Y ), QZ)

+ (∇Xh′)(Y, Q′Z) − (∇Y h′)(X, Q′Z)

+ (∇⊥
Xh)(Y, QZ) − (∇⊥

Y h)(X, QZ),

(6.18)

for any X, Y, Z ∈ Γ (TM).

Proof. As ∇◦ is the adapted connection determined by the pair (∇,∇⊥) (cf.
Theorem 5.7), by using (2.4) we deduce that

∇◦
XY = ∇XQY + ∇⊥

XQ′Y, ∀X, Y ∈ Γ (TM). (6.19)

This implies
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R◦(X,Y )Z = R(X, Y )QZ + R⊥(X, Y )Q′Z, ∀X, Y, Z ∈ Γ (TM). (6.20)

Then adding (6.9) and (6.11), and taking into account (6.20) we obtain
(6.18).

Next, by using the Vrănceanu connection we define the following covariant
derivatives for h and h′:

(∇∗
Xh)(Z, QY ) = ∇∗

X(h(Z,QY )) − h(∇∗
XZ,QY ) − h(Z,∇∗

XQY ), (6.21)

(∇∗
Xh′)(Z,Q′Y ) = ∇∗

X(h′(Z, Q′Y ))−h′(∇∗
XZ, Q′Y )−h(Z,∇∗

XQ′Y ), (6.22)

for any X, Y, Z ∈ Γ (TM). Then we denote by R∗ the curvature tensor field
of the Vrănceanu connection ∇∗ defined by the Levi–Civita connection ∇̃ on
(M, g) and prove the following.

Theorem 6.4. The curvature tensor fields R and R⊥ of the induced connec-
tions ∇ and ∇⊥ are related to R∗ by the following equations:

R(X,Y )QZ = R∗(X, Y )QZ + (∇∗
Xh′)(QZ,Q′Y )

− (∇∗
Y h′)(QZ, Q′X) + h′(h′(QZ, Q′Y ), Q′X)

−h′(h′(QZ, Q′X), Q′Y ) + h′(QZ, Q′T ∗(X, Y )),

(6.23)

and

R⊥(X, Y )Q′Z = R∗(X, Y )Q′Z + (∇∗
Xh)(Q′Z, QY )

− (∇∗
Y h)(Q′Z, QX) + h(h(Q′Z, QY ), QX)

−h(h(Q′Z, QX), QY ) + h(Q′Z, QT ∗(X, Y )),

(6.24)

for any X, Y, Z ∈ Γ (TM).

Proof. By using (5.19a), (5.20b), (5.8) and (3.16) we deduce that

∇Y QZ = ∇∗
Y QZ + h′(QZ, Q′Y ), ∀Y, Z ∈ Γ (TM). (6.25)

Then by direct calculations using (6.25) we obtain

R(X, Y )QZ = R∗(X, Y )QZ + h′(∇∗
Y QZ,Q′X)

−h′(∇∗
XQZ, Q′Y ) + ∇∗

X(h′(QZ, Q′Y ))

−∇∗
Y (h′(QZ, Q′X)) + h′(h′(QZ, Q′Y ), Q′X)

−h′(h′(QZ, Q′X), Q′Y ) − h′(QZ, Q′[X, Y ]).

(6.26)

Using (2.14) and taking into account that ∇∗ is an adapted linear connection
on M with respect to the decomposition (5.13) (see (iii) of Theorem 2.2), we
infer that
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Q′[X, Y ] = Q′(∇∗
XY ) − Q′(∇∗

Y X) − Q′(T ∗(X, Y ))

= ∇∗
XQ′Y −∇∗

Y Q′X − Q′(T ∗(X, Y )).
(6.27)

Now, we use (6.27) in the last term of (6.26) and via (6.22) we obtain (6.23).
In a similar way (6.24) follows.

By adding (6.23) and (6.24) and then using (6.20) we obtain the following
corollary.

Corollary 6.5. The curvature tensors R◦ and R∗ of the Schouten–Van Kam-
pen and Vrănceanu connections are related by

R◦(X, Y )Z = R∗(X, Y )Z + (∇∗
Xh′)(QZ,Q′Y )

− (∇∗
Y h′)(QZ, Q′X) + (∇∗

Xh)(Q′Z,QY )

− (∇∗
Y h)(Q′Z,QX) + h′(h′(QZ,Q′Y ), Q′X)

−h′(h′(QZ, Q′X), Q′Y ) + h(h(Q′Z, QY ), QX)

−h(h(Q′Z,QX), QY ) + h′(QZ, Q′T ∗(X, Y ))

+ h(Q′Z,QT ∗(X, Y )),

(6.28)

for any X, Y, Z ∈ Γ (TM).

Finally, combining Theorem 6.3 with Corollary 6.5 we state the following.

Corollary 6.6. The curvature tensors R̃ and R∗ of Levi–Civita and Vrăncea-
nu connections are related by

R̃(X, Y )Z = R∗(X,Y )Z + (∇∗
Xh′)(QZ, Q′Y )

−(∇∗
Y h′)(QZ, Q′X) + (∇Xh′)(Y, Q′Z)

−(∇Y h′)(X,Q′Z) + (∇∗
Xh)(Q′Z, QY )

−(∇∗
Y h)(Q′Z, QX) + (∇⊥

Xh)(Y,QZ)

−(∇⊥
Y h)(X, QZ) + h′(h′(QZ, Q′Y ), Q′X)

−h′(h′(QZ, Q′X), Q′Y ) + h′(X, h(Y, QZ))

−h′(Y, h(X, QZ)) + h′(QZ,Q′T ∗(X, Y ))

+h′(T ◦(X, Y ), Q′Z) + h(h(Q′Z, QY ), QX)

−h(h(Q′Z, QX), QY ) + h(X, h′(Y, Q′Z))

−h(Y, h′(X, Q′Z)) + h(Q′Z,QT ∗(X, Y ))

+h(T ◦(X, Y ), QZ),

(6.29)

for any X, Y, Z ∈ Γ (TM).
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We note that a different approach for studying semi–Riemannian distri-
butions and submersions (see the definition in Section 2.1) was developed by
Gray [Gra67] and O’Neill [O66]. Their study is based on two tensor fields T
and A of type (1, 2) on M given by

TXY = Q′∇̃QXQY + Q∇̃QXQ′Y, (6.30)

and
AXY = Q∇̃Q′XQ′Y + Q′∇̃Q′XQY, (6.31)

for any X, Y ∈ Γ (TM). By using (5.20) we deduce that

TXY = h(QX, QY ) + h′(QX,Q′Y ), (6.32)

and
AXY = h′(Q′X, Q′Y ) + h(Q′X, QY ). (6.33)

Now, we add (6.32) and (6.33) and obtain

TXY + AXY = h(X, QY ) + h′(X, Q′Y ). (6.34)

Thus by using (6.15) and (6.34) we obtain

∇̃XY = ∇◦
XY + TXY + AXY, ∀X, Y ∈ Γ (TM), (6.35)

which relates the Levi–Civita and Schouten–Van Kampen connections on
(M, g) via the tensor fields T and A. Moreover, (6.16) becomes

∇◦
XY = ∇∗

XY + AQ′Y QX + TQY Q′X. (6.36)

Therefore all the relations between curvature tensor fields of the linear con-
nections we defined on M , D and D⊥ can be expressed in terms of T and A.
As an example we will transform (6.18) into such a formula. First from (6.35)
we deduce that

∇̃X∇̃Y Z = ∇◦
X∇◦

Y Z + ∇◦
X(TY Z) + ∇◦

X(AY Z) + TX(∇◦
Y Z)

+AX(∇◦
Y Z) + TX(TY Z) + AX(TY Z) + TX(AY Z) + AX(AY Z).

(6.37)

Also, by using (6.35) and taking into account that ∇◦ has torsion tensor field
T ◦, we obtain

∇̃[X,Y ]Z = ∇◦
[X,Y ]Z + T[X,Y ]Z + A[X,Y ]Z

= ∇◦
[X,Y ]Z + T∇◦

X
Y Z − T∇◦

Y
XZ − TT◦(X,Y )Z

+ A∇◦
X

Y Z − A∇◦
Y

XZ − AT◦(X,Y )Z.

(6.38)

Next, by using ∇◦ we define covariant derivatives of T and A as follows:

(∇◦
XT )Y Z = ∇◦

X(TY Z) − T∇◦
X

Y Z − TY (∇◦
XZ), (6.39)
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and
(∇◦

XA)Y Z = ∇◦
X(AY Z) − A∇◦

X
Y Z − AY (∇◦

XZ). (6.40)

Then by direct calculations using (6.37)–(6.40) we obtain

R̃(X, Y )Z = R◦(X, Y )Z + (∇◦
XT )Y Z − (∇◦

Y T )XZ + (∇◦
XA)Y Z

− (∇◦
Y A)XZ + TX(TY Z) − TY (TXZ) + AX(TY Z) − AY (TXZ)

+ TX(AY Z) − TY (AXZ) + AX(AY Z) − AY (AXZ)

+ TT◦(X,Y )Z + AT◦(X,Y )Z, ∀X, Y, Z ∈ Γ (TM),

(6.41)

which is not simpler than (6.18). However if we introduce a new tensor field
B of type (1, 2) on M by

B(X, Y ) = h(X, QY ) + h′(X, Q′Y ) = TXY + AXY, (6.42)

for any X, Y ∈ Γ (TM), then we can find a simpler relation than both (6.18)
and (6.41). More precisely, by similar calculations we obtain the following
formula

R̃(X, Y )Z = R◦(X, Y )Z + (∇◦
XB)(Y, Z) − (∇◦

Y B)(X, Z)

+ B(X, B(Y, Z)) − B(Y, B(X, Z)) + B(T ◦(X, Y ), Z),
(6.43)

for any X, Y, Z ∈ Γ (TM), where the covariant derivative of B is given by

(∇◦
XB)(Y,Z) = ∇◦

X(B(Y,Z)) − B(∇◦
XY, Z) − B(Y,∇◦

XZ). (6.44)

From (6.42) and (6.44) we deduce that

(∇◦
XB)(Y, Z) = (∇⊥

Xh)(Y, QZ) + (∇Xh′)(Y,Q′Z)

= (∇◦
XT )Y Z + (∇◦

XA)Y Z.
(6.45)

Finally, we remark that (6.43) is useful when we work with the Schouten–Van
Kampen and Levi–Civita connections. However, (6.18) is more efficient when
the work concerns one of the distributions D and D⊥.

1.7 Sectional Curvatures of a Semi–Riemannian
Non–Holonomic Manifold

Let (M, g,D) be a semi–Riemannian non–holonomic manifold, that is, g is
a semi–Riemannian metric on M and D is a non–integrable semi–Rieman-
nian distribution on M . We show here that the restriction of the curvature
tensor field R∗ of the Vrănceanu connection ∇∗ = (D,D⊥) to Γ (D) has
the same properties as the curvature tensor R̃ of Levi–Civita connection ∇̃
on (M, g), provided that g is parallel with respect to D. As a consequence
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we define the Vrănceanu sectional curvature of (M, g,D) and prove that it
determines R∗. Then R∗ turns out to be as in (7.15) when (M, g,D) is of
constant Vrănceanu sectional curvature c. We also define the Schouten–Van
Kampen sectional curvature of (M, g,D) and study the relationship between
these sectional curvatures and the sectional curvature of the ambient mani-
fold. Finally, we find a large class of Riemannian non–holonomic manifolds of
positive constant Vrănceanu sectional curvature.

Throughout this section we suppose that the semi–Riemannian metric g of
(M, g,D) is parallel with respect to the intrinsic connection D on D. By the
assertion (iii) of Theorem 5.9, this occurs if and only if the second fundamental
form h of D satisfies

h(QX, QY ) + h(QY, QX) = 0, ∀X, Y ∈ Γ (TM). (7.1)

Since D is just the restriction of the Vrănceanu connection ∇∗ to D we say, in
this case, that g is Vrănceanu–parallel on D. By Example 5.1 we see that
D is not necessarily integrable.

Now, we consider the Vrănceanu connection ∇∗ induced on M by the
Levi–Civita connection ∇̃ on (M, g). Then we recall the Bianchi 1st identity
for ∇∗ (cf. Kobayashi–Nomizu, [KN63], p. 135)∑

(X,Y,Z)

{(∇∗
XT ∗)(Y, Z) + T ∗(T ∗(X, Y ), Z) − R∗(X, Y )Z} = 0, (7.2)

for any X,Y, Z ∈ Γ (TM), where T ∗ is the torsion of ∇∗. Also, by means of
the curvature tensor field R∗ of ∇∗ we define the multilinear F (M)–mapping

R∗ : Γ (D)×Γ (D)×Γ (D)×Γ (D) −→ F (M),

R∗(QU,QZ,QX, QY ) = g(R∗(QX, QY )QZ,QU),
(7.3)

for any X, Y, Z, U ∈ Γ (TM), and call it the Vrănceanu curvature tensor
field of (D, g). Some of the most important properties of R∗ are stated in the
next lemma.

Lemma 7.1. Let (M, g,D) be a non–holonomic manifold such that g is Vrăn-
ceanu–parallel on D. Then the Vrănceanu curvature tensor field of D satisfies:

R∗(QU,QZ,QX, QY ) + R∗(QU,QZ, QY, QX) = 0, (7.4)

R∗(QU,QZ, QX, QY ) + R∗(QZ, QU,QX, QY ) = 0, (7.5)∑
(QZ,QX,QY )

{R∗(QU,QZ, QX, QY )} = 0, (7.6)

for any X, Y, Z, U ∈ Γ (TM).

Proof. First, (7.4) is a well known property of the curvature tensor field of
any linear connection on M . Next, by using (6.28) and (6.14) we deduce that
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R◦(QX, QY )QZ = R∗(QX, QY )QZ + h′(QZ, Q′T ∗(QX, QY ))

= R∗(QX, QY )QZ + h′(QZ, h(QY,QX) − h(QX, QY )).

Then by (7.3) and (5.23) we obtain

g(R◦(QX, QY )QZ, QU) = R∗(QU,QZ, QX,QY )

+g(h(QZ,QU), h(QX, QY ) − h(QY, QX)).
(7.7)

Since g is parallel with respect to ∇◦ = (∇,∇⊥) (cf. (i) of Lemma 5.5) we
have

g(R◦(QX, QY )QZ, QU) + g(R◦(QX, QY )QU,QZ) = 0. (7.8)

Thus (7.7) and (7.8) imply

R∗(QU,QZ, QX,QY ) + R∗(QZ, QU,QX, QY )

+g(h(QZ, QU) + h(QU,QZ), h(QX,QY ) − h(QY, QX)) = 0.
(7.9)

Then (7.5) follows from (7.9) via (7.1). Next, from (7.2) we infer that∑
(QX,QY,QZ)

{(∇∗
QXT ∗)(QY, QZ) + T ∗(T ∗(QX, QY ), QZ)

−R∗(QX, QY )QZ} = 0.

(7.10)

Taking into account (6.14) we obtain T ∗(T ∗(QX, QY ), QZ) = 0, since
T ∗(QX,QY ) ∈ Γ (D⊥) and T ∗(Q′U,QV ) = 0 for any U, V ∈ Γ (TM). More-
over, by using again (6.14) and taking into account that ∇∗ is an adapted
linear connection on (M,D,D⊥), we deduce that

(∇∗
QXT ∗)(QY, QZ) ∈ Γ (D⊥).

On the other hand, we have

R∗(QX, QY )QZ ∈ Γ (D),

since ∇∗ is adapted to D. Hence taking the D – and D⊥ – components in
(7.10) we obtain

(a)
∑

(QX,QY,QZ)

{R∗(QX, QY )QZ} = 0,

(b)
∑

(QX,QY,QZ)

{(∇∗
QXT ∗)(QY, QZ)} = 0.

(7.11)

Then (7.6) follows from (7.11a) via (7.3).
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Corollary 7.2. Let (M, g,D) be as in Lemma 7.1. Then R∗ satisfies

R∗(QX, QY, QZ, QU) = R∗(QZ, QU,QX, QY ), (7.12)

for any X, Y, Z, U ∈ Γ (TM).

Proof. Denote the left hand side in (7.6) by S∗(QU,QZ,QX, QY ). Then by
direct calculations using (7.4) and (7.5) we obtain

0 = S∗(QZ,QU,QX,QY ) − S∗(QU,QX, QY, QZ)

−S∗(QX, QY, QZ,QU) + S∗(QY, QZ,QU,QX)

= 2R∗(QZ, QU,QX,QY ) − 2R∗(QX, QY, QZ,QU),

which completes the proof of the corollary.

Next, we consider a 2–dimensional subspace W of Dx which we call a
D–plane at x ∈ M. For any basis {u, v} of W we define

∆(u, v) = g(u, u)g(v, v) − g(u, v)2. (7.13)

As the matrix of the restriction of g to W with respect to the basis {u, v} is[
g(u, u) g(u, v)

g(u, v) g(v, v)

]
,

we deduce that W is a non–degenerate subspace if and only if ∆(u, v) �= 0.
For the basis {u, v} of W we define the number

K∗(u ∧ v) =
R∗(u, v, u, v)

∆(u, v)
,

provided W is non–degenerate.
If {u∗, v∗} is another basis of W then K∗(u∧ v) = K∗(u∗ ∧ v∗). Indeed, if

we have
u∗ = αu + βv, v∗ = γu + δv, αδ − βγ �= 0,

then, by using (7.4), (7.5) and (7.13) we deduce that

R∗(u∗, v∗, u∗, v∗) = (αδ − βγ)2R∗(u, v, u, v),

and
∆(u∗, v∗) = (αδ − βγ)2∆(u, v).

Thus K∗(u ∧ v) is the same for any basis {u, v} of W . This enables us to
assign to any non–degenerate plane W of Dx the number

K∗(W ) =
R∗(u, v, u, v)

∆(u, v)
, (7.14)
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where {u, v} is an arbitrary basis of W . Then the Vrănceanu sectional
curvature of the semi–Riemannian non–holonomic manifold (M, g,D) is a
real–valued function K∗ on the set of all non–degenerate D–planes given by
(7.14). It is noteworthy that as in the case of semi–Riemannian manifolds,
the Vrănceanu sectional curvature K∗ of (M, g,D) determines the curvatu-
re tensor field R∗ of D. To see this we first consider a 4–linear mapping
F : Dx×Dx×Dx×Dx −→ IR that satisfies the four identities (7.4), (7.5), (7.6)
and (7.12) which we proved for R∗. We call F a D–curvature–like mapping.
Then we state the following.

Lemma 7.3. If F (u, v, u, v) = 0 for any u, v ∈ Dx spanning a non–degenerate
D–plane, then F = 0.

The proof of this lemma is based on the four algebraic identities satisfied
by F , and follows the same lines as the proof of Proposition 4.1 in O’Neill
[O83], p. 78. For this reason we will omit it here. The following corollary is a
straightforward consequence of Lemma 7.3.

Corollary 7.4. Let F be a D–curvature–like mapping such that

K∗(u ∧ v) =
F (u, v, u, v)

∆(u, v)
,

whenever {u, v} spans a non–degenerate D–plane. Then at any x ∈ M we
have

R∗(u, v, w, z) = F (u, v, w, z),

for any u, v, w, z ∈ Dx.

If the Vrănceanu sectional curvature function K∗ is a constant on M , then
we say that the non–holonomic manifold (M, g,D) is of constant Vrăncea-
nu curvature. In this case the Vrănceanu curvature tensor field has a special
form as it is stated in the next theorem.

Theorem 7.5. Let (M, g,D) be a semi–Riemannian non–holonomic manifold
of constant Vrănceanu curvature c. Then the Vrănceanu curvature tensor field
R∗ of D has the form

R∗(QX,QY, QZ,QU) = c{g(QX, QZ)g(QY, QU)

− g(QX, QU)g(QY, QZ)}, (7.15)

for any X, Y, Z, U ∈ Γ (TM).

Proof. Denote the right hand side in (7.15) by F (QX,QY, QZ,QU). Then it
is easy to check that F is a D–curvature–like mapping. Moreover, we have
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c =
F (QX, QY, QX,QY )

∆(QX, QY )
,

for any {QX,QY } that spans non–degenerate D–planes. Thus (7.15) follows
from Corollary 7.4.

In a similar way as the above theory was developed for the Vrănceanu
connection ∇∗ we may proceed with a theory for the Schouten–Van Kampen
connection ∇◦. We remark that in this case (7.6) and therefore (7.12) are
not satisfied by R◦. Thus we define the Schouten–Van Kampen sectional
curvature K◦ of (M, g,D) by a formula as in (7.14), that is,

K◦(W ) =
R◦(u, v, u, v)

∆(u, v)
, (7.16)

but we can not claim that K◦ determines R◦ on D. This is another reason
for saying that the Vrănceanu connection is more intimately related to the
geometry of non–holonomic manifolds.

Now, we denote by K̃ the sectional curvature of the semi–Riemannian
manifold (M, g) defined by similar formulas as (7.14) or (7.16) but using the
curvature tensor field R̃ of the Levi–Civita connection on (M, g) (see O’Neill
[O83], p. 77). Then we can relate K̃,K∗ and K◦ as in the next theorem.

Theorem 7.6. Let (M, g,D) be a semi–Riemannian non–holonomic manifold
such that g is Vrănceanu–parallel on D. Then we have the following equalities:

K̃(W ) = K◦(W ) − g(h(QX, QY ), h(QX, QY ))
∆(QX, QY )

, (7.17)

K◦(W ) = K∗(W ) − 2
g(h(QX, QY ), h(QX, QY ))

∆(QX, QY )
, (7.18)

K̃(W ) = K∗(W ) − 3
g(h(QX, QY ), h(QX, QY ))

∆(QX, QY )
, (7.19)

where {QX,QY } is an arbitrary basis of the non–degenerate D–plane W .

Proof. Replace (X,Y, QZ,QU) from (6.3) by {QX, QY, QY, QX} and obtain

K̃(W ) = K◦(W ) +
g(h(QX, QY ), h(QY, QX)) − g(h(QY,QY ), h(QX,QX))

∆(QX,QY )
·

Then taking into account (7.1) we obtain (7.17). Similarly, from (6.23) we
deduce that

K◦(W ) = K∗(W ) +
g(h′(QY, Q′T ∗(QX, QY )), QX)

∆(QX, QY )
· (7.20)
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Now, by using (5.23), (6.14) and (7.1) we infer that

g(h′(QY, Q′T ∗(QX, QY )), QX)

= −g(h(QY, QX), Q′T ∗(QX, QY ))

= −g(−h(QX, QY ),−2h(QX, QY ))

= −2g(h(QX,QY ), h(QX, QY )).

(7.21)

Thus by using (7.21) in (7.20) we obtain (7.18). Finally, (7.19) follows by using
(7.18) into (7.17).

Remark 7.1. As far as we know, O’Neill [O66] obtained first the equality
(7.19) for the particular case of Riemannian submersions. The same equality
was mentioned for foliations with bundle–like metrics (see (5.38c) in Tondeur
[Ton97].

Now, suppose that (M, g,D) is a Riemannian non–holonomic manifold.
This means that (D, g) is a Riemannian distribution, but (M, g) might be
proper semi–Riemannian manifold.

Corollary 7.7. Let (M, g,D) be a Riemannian non–holonomic manifold such
that g is Vrănceanu–parallel on D and h(QX, QY ) is a space–like or light–like
vector field for any two linearly independent vector fields {QX, QY }. Then we
have

K̃(W ) ≤ K◦(W ) ≤ K∗(W ), (7.22)

for any non–degenerate D–plane W .

Proof. In this case any W is a Euclidean subspace of Dx and therefore
∆(QX, QY ) > 0 for any {QX, QY } spanning W . Also, by the hypothesis
we have

g(h(QX, QY ), h(QX, QY )) ≥ 0.

Thus (7.22) follows from (7.17) and (7.18).

Corollary 7.8. Let M be an open submanifold of the Euclidean space (IRm, g)
and (M, g,D) be a Riemannian non–holonomic manifold such that g is Vrăn-
ceanu–parallel on D. Then we have the assertions:

(i) At any point of M , both the Schouten–Van Kampen and Vrănceanu sec-
tional curvatures must be non–negative.

(ii) If (M, g,D) is a Riemannian non–holonomic manifold of constant Vrăn-
ceanu curvature c, then c > 0.
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Proof. As (M, g) is a Riemannian manifold, h(QX, QY ) is space–like, and
thus the assertion (i) follows from (7.22) since K̃(W ) = 0. From (i) we deduce
that (M, g,D) can not be of negative constant Vrănceanu curvature. Finally,
if (M, g,D) is of zero Vrănceanu sectional curvature, then from (7.19) we
deduce that h vanishes identically on M . By assertion (iii) of Theorem 5.6
we deduce that D is integrable, which is a contradiction because we supposed
that (M, g,D) is non–holonomic.

According to this corollary it is interesting to see if there exist Riemannian
non–holonomic manifolds of positive constant Vrănceanu curvature. Surpri-
singly, there are plenty of such manifolds in dimension 3. To show this we
consider the Euclidean space (IR3, g) and for any α ∈ IR and any non–zero
k ∈ IR, define the family of 3–dimensional manifolds

M(α,k) =
{

(x1, x2, x3) ∈ IR3 : 0 < k(x2 + x3) + α <
π

2

}
·

Now, we fix the pair (α, k) and define on M(α,k) the function

f(x1, x2, x3) =
√

2 tan(k(x2 + x3) + α), (7.23)

and then, the linearly independent vector fields:

X = f
∂

∂x2
− ∂

∂x1
and Y = f

∂

∂x3
+

∂

∂x1
· (7.24)

Consider on M(α,k) the restriction of the Euclidean metric g of IR3 and denote
by D the distribution spanned by {X,Y }. Then we prove the following.

Lemma 7.9. For any fixed pair (α, k)we have the assertions:

(i) (M(α,k), g,D) is a Riemannian non–holonomic manifold.
(ii) g is Vrănceanu–parallel on D.

Proof. By direct calculations using (7.24) we deduce that

[X,Y ] = kf(t)f ′(t)
(

∂

∂x3
− ∂

∂x2

)
, (7.25)

where f(t) =
√

2 tan t and t = k(x2 +x3)+α. The complementary orthogonal
distribution D⊥ to D is spanned by

Z = f
∂

∂x1
+

∂

∂x2
− ∂

∂x3
· (7.26)

Then we obtain
g([X,Y ], Z) = −2kf(t)f ′(t) �= 0,

since k �= 0, and on M(α,k) we have f(t) > 0 and f ′(t) > 0. Hence [X,Y ]/∈Γ (D),
which proves the assertion (i). Next, since we have
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g(X, Y ) = −1, (7.27)

the condition for g to be Vrănceanu–parallel on D (see the first equality in
(5.37)) becomes

g([Z, X], Y ) + g([Z, Y ], X) = 0.

This is a consequence of

[Z, X] = [Z, Y ] = −kf(t)f ′(t)
∂

∂x1
,

and

g

(
∂

∂x1
, Y
)

+ g

(
∂

∂x1
, X

)
= 0.

Thus the proof is complete.

Next, by using (5.3), (7.24), (7.25) and (7.27) we obtain

∇∗
XY = ∇∗

Y Y =
kf ′

2 + f2
(X + (1 + f2)Y ), (7.28)

and

∇∗
Y X = ∇∗

XX =
kf ′

2 + f2

(
(1 + f2)X + Y

)
. (7.29)

Then by using (7.28), (7.29) and (7.24) we deduce that

∇∗
X∇∗

Y Y −∇∗
Y ∇∗

XY = 0. (7.30)

Now, we decompose [X,Y ] given by (7.25) with respect to the non–holonomic
frame field {X, Y, Z} and obtain

[X,Y ] =
kff ′

2 + f2
(−fX + fY − 2Z). (7.31)

Then, taking into account (7.31) and (7.28) we infer that

∇∗
[X,Y ]Y = − 2kff ′

2 + f2
∇∗

ZY. (7.32)

On the other hand, by using (3.16), (7.26) and (7.28) we get

∇∗
ZY = Q[Z, Y ] = −kff ′Q

(
∂

∂x1

)
= − kff ′

2 + f2
(Y − X).

Hence (7.32) becomes

∇∗
[X,Y ]Y =

2k2f2(f ′)2

(2 + f2)2
(Y − X). (7.33)
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Then (7.3), (7.30) and (7.33) imply

R∗(X, Y, X, Y ) =
2k2f2(f ′)2

2 + f2
· (7.34)

By direct calculations using (7.13) and (7.24) we deduce that

∆(X, Y ) = f2(2 + f2). (7.35)

Then by using (7.34) and (7.35) in (7.14) we obtain

K∗(D) = k2. (7.36)

Hence by (7.36) and Lemma 7.9 we may state the following important result.

Theorem 7.10. (M(α,k), g,D) is a Riemannian non–holonomic manifold of
positive constant Vrănceanu curvature.

We remark that the result stated in Theorem 7.10 is specific to the geo-
metry of non–holonomic manifolds. Indeed, if D would be involutive, then by
(7.1) and the assertion (iii) of Lemma 5.5 we deduce that h vanishes identi-
cally on M . Thus any local leaf of D must be totally geodesic immersed in
IR3, and therefore D is of constant Vrănceanu curvature c = 0.

1.8 Degenerate Distributions of Codimension One

Let (M, g) be an (n + 1)–dimensional proper semi–Riemannian manifold of
index 0 < q < n + 1, and D be a distribution on M . Then the vector bundle
L2

s(D, IR) (see Section 1.4) has a global section g∗ induced by g in a natural
way:

g∗(X, Y ) = g(X, Y ), ∀X, Y ∈ Γ (D). (8.1)

When g∗ is non–degenerate, the pair (D, g∗) is a semi–Riemannian distribu-
tion whose preliminary study was done in Sections 1.5, 1.6 and 1.7. We present
in this section a method for studying (D, g∗) when g∗ is degenerate. To avoid
some cumbersome calculations and to abide by the size of our book, we re-
strict ourselves to n–distributions, but the technique we develop here can be
extended for any degenerate distribution.

Thus from now on, in this section, D is an n–distribution (distribution of
codimension one) on the (n + 1)–dimensional proper semi–Riemannian mani-
fold (M, g). Then we denote by the same symbol g the induced global section of
L2

s(D, IR) given by (8.1). As dimDx = n, by (4.3) we deduce that dimD⊥
x = 1.

Then the null subspace of Dx is (cf. (4.8))

Nx(Dx, gx) = Dx ∩ D⊥
x , (8.2)
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and hence null (Dx, gx) ≤ 1. According to (i) of Lemma 4.5, Dx is dege-
nerate if and only if null(Dx, gx) > 0, which in our case is equivalent to
null(Dx, gx) = 1. When Dx is a degenerate subspace of TxM for all x ∈ M ,
we say that (D, g) is a degenerate distribution on (M, g). Now, consider
the null distribution N (D, g) and the orthogonal distribution D⊥, that is,

N (D, g) =
⋃

x∈M

Nx(Dx, gx), D⊥ =
⋃

x∈M

D⊥
x .

Then based on the above discussion we can characterize degenerate distribu-
tions in terms of null and orthogonal distributions as follows.

Theorem 8.1. Let (M, g) be an (n+1)–dimensional proper semi–Riemannian
manifold and D be an n–distribution on M . Then the following assertions are
equivalent:

(i) (D, g) is a degenerate distribution.
(ii) The null distribution of D coincides with the orthogonal distribution

to D.
(iii) The orthogonal distribution to D is a vector subbundle of D.

Thus by (ii) we have

Γ (D⊥) = {ξ ∈ Γ (D) : g(ξ, X) = 0, ∀X ∈ Γ (D)}, (8.3)

which entitles us to call D⊥ the null distribution of (D, g).
Next, we consider n = 1 and note that Dx is a totally null subspace of TxM

for all x ∈ M. Then D⊥ = D and therefore D is a totally–null distribution on
(M, g). As M is now a 2–dimensional proper semi–Riemannian manifold we
conclude that (M, g) must be a Lorentz manifold. Since D⊥ is not anymore
complementary to D in TM , to proceed with the study of (D, g) we need a
transversal vector bundle to D in TM which, of course, can not be orthogonal
to D. To achieve this, we consider a complementary distribution H to D in
TM . Then on a coordinate neighbourhood U ⊂ M take the local sections
ξ ∈ Γ (D|U ) and Z ∈ Γ (H|U ). Note that g(ξ, Z) �= 0 on U , otherwise g is not
a Lorentz metric on M . Now, we define on U the vector field

V =
1

g(ξ, Z)

{
Z − g(Z,Z)

2g(ξ, Z)
ξ

}
. (8.4)

It is easy to check that V satisfies

(a) g(V, V ) = 0 and (b) g(V, ξ) = 1. (8.5)

If U∗ is another coordinate neighbourhood on M such that U ∩ U∗ �= ∅, then
by direct calculations using (8.4) for both neighbourhoods, we deduce that
V ∗ = fV , where f is a smooth function on U ∩ U∗. Thus there exists a
distribution D′ on M which is locally spanned by the vector field given by
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(8.4). For any other complementary distribution to D in TM , (8.4) defines
the same distribution D′ on M . Also, from (8.5) we deduce that D′ is a totally
null distribution that is complementary to D in TM . On the other hand, it
is easy to check that any vector field V on U satisfying (8.5) must be given
by (8.4). Thus D′ is the only totally null complementary distribution to D in
TM . This discussion enables us to state the following

Theorem 8.2. Let (M, g) be a 2–dimensional Lorentz manifold and D be a
totally–null distribution on M . Then there exists a unique totally–null distri-
bution D′ that is complementary to D in TM .

We call D′ the totally–null transversal distribution to D. Also, we
call the pair {ξ, V } the null frame with respect to the decomposition

TM = D ⊕D′. (8.6)

Now, we consider the Levi–Civita connection ∇̃ on (M, g). Then, with respect
to the null frame {ξ, V } we put

(a) ∇̃ξξ = αξ + βV and (b) ∇̃ξV = γξ + δV, (8.7)

where α, β, γ, δ are smooth functions on a coordinate neighbourhood
U ⊂ M. By using (8.7a) and (8.5b) we obtain

β = g(∇̃ξξ, ξ) − αg(ξ, ξ) = 0,

since ξ is a light–like vector field and g is parallel with respect to ∇̃. Similarly
we deduce that γ = 0. Moreover, by (8.5) and (5.9) we have

α = g(∇̃ξξ, V ) = −g(ξ, ∇̃ξV ) = −δ.

Thus (8.7) becomes

(a) ∇̃ξξ = aξ and (b) ∇̃ξV = −aV, (8.8)

where a is a smooth function on U . Next, we consider an integral curve
C : xa = xa(t) of ξ and from (8.8a) we deduce the differential equations

d2xa

dt2
+
{ a

b c

}
(x(t))

dxb

dt

dxc

dt
= a(x(t))

dxa

dt
, (8.9)

where
{

a
b c

}
are the Christoffel coefficients for ∇̃, and a, b, c ∈ {1, 2}. Then

we take a new parameter s on C satisfying the differential equation

d2s

dt2
− a(x(t))

ds

dt
= 0.

The existence of s is guaranteed by the general theorem of existence and
uniqueness for differential equations (cf. Theorem 2.1.2). Thus (8.9) becomes
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d2xa

ds2
+
{ a

b c

} dxb

ds

dxc

ds
= 0,

that is, with respect to this parametrization, C is a null geodesic of (M, g).
According to O’Neill [O83], p. 69, a curve in (M, g) that becomes a geodesic
after a reparametrization, is called a pregeodesic. Hence any integral curve
of D is a null pregeodesic.

It is easily seen that the above discussion about D is also valid for D′. In
particular, it follows that

(a) ∇̃V V = bV and (b) ∇̃V ξ = −bξ. (8.10)

Then by (8.8) and (8.10) we deduce that ∇̃ is an adapted connection on the
almost product manifold (M,D,D′). Thus in case n = 1, the whole geometry
of (D, g) can be summarized in the following theorem.

Theorem 8.3. Let (M, g) be a 2–dimensional Lorentz manifold and D be a
totally–null line field on M . Then we have the following assertions:

(i) The Levi–Civita connection ∇̃ on (M, g) is an adapted connection on the
almost product manifold (M,D,D′).

(ii) The integral curves of both D and D′ are null pregeodesics of (M, g).

Next, we consider the case n > 1. By (iii) of Theorem 8.1, D⊥ is a vector
subbundle of D and therefore any complementary distribution to D in TM is
not orthogonal to D. Moreover D is a partially–null distribution on M because
it is a 1-degenerate n–distribution with n > 1. As in the case n = 1 we look
for a totally–null transversal distribution to D. To this end, we consider a
complementary distribution S to D⊥ in D, that is, we have

D = S ⊕ D⊥. (8.11)

As any Sx is a screen subspace of Dx, we call S a screen distribution for D.
By Lemma 4.6 we deduce that S is a non–degenerate distribution on M . Then
by Lemma 4.3 we deduce that the complementary orthogonal distribution S⊥

to S in TM is non–degenerate too. Therefore, S⊥ is a 2–distribution satisfying

TM = S ⊕ S⊥, (8.12)

and D⊥ is a vector subbundle of S⊥. Then we consider a complementary dis-
tribution H to D⊥ in S⊥. Take the nowhere zero local sections ξ ∈ Γ (D⊥

|U ) and
Z ∈ Γ (H|U ) and observe that g(ξ, Z) �= 0 on U since S⊥ is non–degenerate.
Then define the vector field V by (8.4) and following the same steps as in the
study we developed for n = 1, we obtain a totally null 1–distribution D′(S)
that is complementary to D in TM . Hence by (8.11) and (8.12) we have

TM = D ⊕D′(S) = S ⊕ D⊥ ⊕D′(S). (8.13)
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It follows that D′(S) is the only distribution on M whose local section V
satisfies (8.5) and

g(V, X) = 0, ∀X ∈ Γ (S). (8.14)

The above study can be summarized as follows.

Theorem 8.4. Let D be a partially–null n–distribution on an (n + 1)–
dimensional proper semi–Riemannian manifold (M, g) with n > 1. Then for
a screen distribution S on M there exists a unique totally–null 1–distribution
D′(S) that is complementary to D in TM .

We call D′(S) the totally–null transversal distribution to D with
respect to the screen distribution S.

Example 8.1. Consider the Lorentz space (IR2
1, g) whose metric is given by

(4.10) for m = 2. Then with respect to the rectangular coordinates (x1, x2)
on IR2, any degenerate distribution D on IR2 is spanned by

ξ =
∂

∂x1
+ ε

∂

∂x2
, ε = ±1.

By (8.4) we deduce that the totally–null transversal distribution D′ is spanned
by

V =
1
2

(
∂

∂x1
− ε

∂

∂x2

)
.

Clearly, the integral curves of both ξ and V are null geodesics of (IR2
1, g).

Example 8.2. On the Lorentz space (IR4
1, g) consider the 3–distribution D

spanned by{
X1 = −

√
2(1 + e2x1)

∂

∂x1
+
√

1 + e2x1 ∂

∂x2
+

∂

∂x3
− ex1 ∂

∂x4
,

X2 =
∂

∂x1
−
√

2
∂

∂x2
, X3 = ex1 ∂

∂x3
+

∂

∂x4

}
.

It is easy to check that D is non–integrable and 1–degenerate with respect
to the Lorentz metric (4.10) for m = 4. As ξ = X1, we may take the screen
distribution

S = span{X2, X3}.
Then by using (8.4) where Z is replaced either by X2 or by X3, we deduce
that the totally–null transversal distribution D′(S) is spanned by

V =
1

2(1 + e2x1)

(√
2(1 + e2x1)

∂

∂x1
−
√

1 + e2x1 ∂

∂x2
+

∂

∂x3
− ex1 ∂

∂x4

)
.
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Remark 8.3. It is interesting to note that in Example 8.2 we may choose an
integrable screen distribution

S∗= span
{
X∗

2 = −
√

1 + e2x1 ∂

∂x2
+

∂

∂x3
− ex1 ∂

∂x4
, X∗

3 = ex1 ∂

∂x3
+

∂

∂x4

}
.

However, at this moment, we do not have an answer to the question: can we
find an integrable screen distribution for any partially–null distribution on a
semi–Euclidean space IRm

q ?

Now, we come back to the general theory on the geometry of a degenerate
n–distribution D on the (n + 1)–dimensional proper semi–Riemannian mani-
fold (M, g), with n > 1. Throughout the study, we consider the local non–
holonomic null frame field {ξ, V } on the distribution D⊥ ⊕D′(S), where V is
given by (8.4) with Z from Γ (S⊥). Then we define the differential 1–forms ω
and τ by

(a) ω(X) = g(X, ξ) and

(b) τ(X) = g(X, V ), ∀X ∈ Γ (TM),
(8.15)

and denote by Q and Q̄ the projection morphisms of TM on D and S with
respect to the decompositions in (8.13). Thus by using (8.13) and (8.15) we
write

(a) X = QX + ω(X)V and

(b) X = Q̄X + τ(X)ξ + ω(X)V,
(8.16)

for any X ∈ Γ (TM).
Next, we consider the Levi–Civita connection ∇̃ on (M, g) and according

to the first decomposition in (8.13) we put

∇̃XQY = ∇XQY + B(X, QY )V, (8.17)

and
∇̃XV = −AV X + η(X)V, ∀X, Y ∈ Γ (TM), (8.18)

where ∇XQY and AV X lie in Γ (D). Then we have the following induced
geometric objects:

∇X : Γ (D) −→ Γ (D) , a linear connection on D,

B : Γ (TM)×Γ (D) −→ F (M) , an F (M)–bilinear mapping,

AV : Γ (TM) −→ Γ (D) , an F (M)–linear operator,

η : Γ (TM) −→ F (M) , a 1–form on M .

As in the case of semi–Riemannian distributions, we call ∇ the induced
connection on D and
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B : Γ (D)×Γ (D) −→ F (M); B(X,Y ) = ω(∇̃XY ), ∀X, Y ∈ Γ (D), (8.19)

the second fundamental form of D. Also, AV is called the Weingarten
operator with respect to V ∈ Γ (D′(S)). By (8.15) we see that ω does not
depend on the screen distribution. This implies the following important pro-
perty of B.

Proposition 8.5. The second fundamental form of the partially–null distri-
bution D does not depend on the screen distribution.

Taking into account the decomposition (8.11) we set

∇XQ̄Y = ∇XQ̄Y + B̄(X, Q̄Y )ξ, ∀X, Y ∈ Γ (TM), (8.20)

where ∇ is a linear connection on the screen distribution given by

∇XQ̄Y = Q̄(∇XQ̄Y ) = Q̄(Q(∇̃XQ̄Y )), (8.21)

and B̄ is an F (M)–bilinear mapping on Γ (TM)×Γ (S). We call ∇ the in-
duced connection on the screen distribution S and

B̄ : Γ (S)×Γ (S) −→ F (M); B̄(Q̄X, Q̄Y ) = τ(∇Q̄XQ̄Y ), (8.22)

the second fundamental form of S in D. Also, we put

∇Xξ = −ĀξX + η(X)ξ, ∀X ∈ Γ (TM), (8.23)

where η is a 1–form on M and

Āξ : Γ (TM) −→ Γ (S); ĀξX = Q̄(∇Xξ), (8.24)

is an F (M)–linear operator. We call Āξ the Weingarten operator of the
screen distribution S with respect to ξ. In the next theorem we bring together
the main properties of the geometric objects involved in the study of D.

Theorem 8.6. Let D be a partially–null n–distribution on an (n + 1)–
dimensional proper semi–Riemannian manifold (M, g) with n > 1, and S be
a screen distribution of D. If B,B, η, η̄, A,A,∇,∇ are as given by equations
(8.17)–(8.24), then we have:

B(X, ξ) = 0, (8.25)

(a) ∇̃Xξ = ∇Xξ,

(b) η(X) = −η(X),
(8.26)
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(a) B(X, QY ) = g(ĀξX, QY ),

(b) B̄(X, Q̄Y ) = g(AV X, Q̄Y ),
(8.27)

(∇Xg)(QY, QZ) = B(X, QY )τ(QZ) + B(X, QZ)τ(QY ), (8.28)

(∇Xg)(Q̄Y, Q̄Z) = 0, (8.29)

for any X, Y, Z ∈ Γ (TM).

Proof. From (8.19) and (8.15a) we deduce that

B(X, ξ) = g(∇̃Xξ, ξ) = 0,

which proves (8.25). Then (8.26a) follows from (8.17) via (8.25). By using
(8.23), (8.26a), (5.9) and (8.18) we obtain

η(X) = g(∇Xξ, V ) = g(∇̃Xξ, V ) = −g(ξ, ∇̃XV ) = −η(X),

which proves (8.26b). Next, we use (8.17), (8.5b), (8.26a) and (8.23) to obtain

B(X, QY ) = g(∇̃XQY, ξ) = −g(QY,∇Xξ) = g(ĀξX, QY ),

which proves (8.27a). Similarly, by using (8.20), (8.5b), (8.17) and (8.18) we
infer that

B̄(X, Q̄Y ) = g(∇XQ̄Y, V ) = −g(Q̄Y, ∇̃XV ) = g(AV X, Q̄Y ),

which is (8.27b). Finally, both (8.28) and (8.29) are consequences of (5.9) via
(8.17), (8.15b) and (8.20).

Remark 8.4. From (8.29) and (8.28) we see that g is parallel with respect
to the induced connection on the screen distribution, but in general, it is
not parallel with respect to the induced connection on D. This makes the
study of degenerate distributions very different and more difficult than that
of non–degenerate distributions (see (i) of Lemma 5.5).

According to this remark it seems more appropriate to use ∇ instead of ∇
in studying the geometry of D. Thus from (8.17) and (8.20) we deduce that

∇̃XQ̄Y = ∇XQ̄Y + B̄(X, Q̄Y )ξ + B(X, Q̄Y )V. (8.30)

Also, by using (8.26) and (8.23) we obtain

∇̃Xξ = −ĀξX − η(X)ξ, (8.31)
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where η is given by

η(X) = g(∇̃XV, ξ) = −g(V, ∇̃Xξ). (8.32)

Now, we can state the following.

Theorem 8.7. Let D be as in Theorem 8.6. Then the following assertions are
equivalent:

(i) The Levi–Civita connection ∇̃ on (M, g) is an adapted connection to D.
(ii) For any X,Y ∈ Γ (TM) we have

B(X, Q̄Y ) = 0. (8.33)

(iii) Āξ vanishes identically on M .
(iv) ∇̃ is an adapted connection to the null distribution D⊥.

Proof. The equivalence of (i) and (ii) follows from (8.30) and (8.31). Then
(ii) ⇐⇒ (iii) is a consequence of (8.27a). Finally, since ξ is spanning the null
distribution of D, from (8.31) we deduce the equivalence of (iii) and (iv).

We now show an interesting relationship between the two geometries of
degenerate and non–degenerate distributions.

Theorem 8.8. Let D be as in Theorem 8.6. Then the following assertions are
equivalent:

(i) The Levi–Civita connection ∇̃ on (M, g) is adapted to the screen
distribution S.

(ii) ∇̃ is an adapted linear connection on the almost product manifold
(M,D,D′(S)).

Proof. From (8.30) we see that ∇̃ is adapted to S if and only if (8.33) is
satisfied and

B̄(X, Q̄Y ) = 0, ∀X, Y ∈ Γ (TM). (8.34)

From Theorem 8.7 we know that (8.33) holds if and only if ∇̃ is adapted to
D. Thus to complete the proof it is sufficient to prove that (8.34) holds if and
only if ∇̃ is adapted to D′(S). First, suppose (8.34) is satisfied. Then from
(8.27b) we see that AV X has no component in Γ (S) for any X ∈ Γ (TM). On
the other hand, from (8.18) we deduce that

g(AV X,V ) = 0,

so AV X has no component in Γ (D⊥). As AV X ∈ Γ (D) we conclude that
AV X = 0 for any X ∈ Γ (TM). Then from (8.18) it follows that ∇̃ is adapted
to D′(S). Conversely, if ∇̃ is adapted to D′(S), then from (8.18) we obtain
(8.34) via (8.27b). This completes the proof of the theorem.
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If ∇̃ is adapted to D then (8.17) implies B = 0 on M . Thus we have

[QX, QY ] = ∇̃QXQY − ∇̃QY QX = ∇QXQY −∇QY QX ∈ Γ (D),

that is, D is integrable. As D is a degenerate distribution, all of its leaves are
degenerate hypersurfaces of (M, g). Moreover, from (8.17) we deduce that any
leaf of D is a totally geodesic degenerate hypersurface of (M, g). Also from
(8.18) we see that every integral curve of D′(S) is a pregeodesic, provided ∇̃
is adapted to D′(S). Based on this discussion and by using Theorems 5.12
and 8.8 we state the following.

Corollary 8.9. Suppose D has a screen distribution S and ∇̃ is adapted to
S. Then the semi–Riemannian manifold (M, g) is locally represented in the
following two equivalent ways:

(i) It is a locally semi–Riemannian product of leaves of S and S⊥.
(ii) It is a locally product of a totally geodesic degenerate hypersurface with a

pregeodesic of D′(S).



2

STRUCTURAL AND TRANSVERSAL
GEOMETRY OF FOLIATIONS

In this chapter we introduce the theory of foliations. The basic material on
this theory is given in Section 2.1. Here all different classical approaches to
foliations are given, that is to say we talk about foliations using foliated atlases,
involutive distributions and differential forms. Then a list of examples is given
showing that foliations appear in a natural way in the theory of submersions,
non–singular systems of differential equations, fiber bundles, Lie group actions
and CR–submanifolds of Kähler manifolds. Foliations will appear later in the
book in many other areas like Finsler geometry, symplectic geometry, contact
geometry, etc.

The second section sets the stage for studying the geometry of foliations
by introducing adapted tensor fields on foliated manifolds, discussing their
existence problem and determining their properties. Then we introduce in
Section 2.3 the structural and transversal covariant derivatives induced by an
adapted connection on a foliated manifold. The local components of both the
torsion and curvature tensor fields with respect to a semi–holonomic frame
field determine adapted tensor fields which are going to play an important role
in studying the geometry of foliations. Finally, in the last section, by using
both the structural and transversal covariant derivatives, we derive all Ricci
and Bianchi identities for an adapted linear connection.

2.1 Definitions and Examples

Let IRm be the m–dimensional Euclidean space with the usual scalar product
given by (1.4.11).Denote by τ the standard topology induced on IRm by the
Euclidean norm

‖x‖ =
√

(x1)2 + · · · + (xm)2.

Thus open balls by this norm are neighbourhoods with respect to τ . Then
(IRm, τ) becomes an m–dimensional smooth manifold with a global chart
(IRm, 1IRm).

59
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Next, we consider two positive integers n and p such that m = n+p. Then
the space IRm can be identified with the Cartesian product IRn×IRp of the
two spaces IRn and IRp. If c = (cn+1, ..., cn+p) is a point of IRp we denote
by IRn

c the affine n–dimensional subspace of IRm passing through the point
(0, ..., 0, cn+1, ..., cn+p) ∈ IRm, and parallel to IRn, that is,

IRn
c =

{
(x1, ..., xm) ∈ IRm : xn+1 = cn+1, ..., xn+p = cn+p

}
.

Then an (n, c)–plaque Pn
c in IRm is the intersection of IRn

c with an open ball
in IRm with respect to the topology τ . For any n we define on IRm a new
topology τn whose open basis consists of all (n, c)–plaques of IRm. It is easy
to see that (IRm, τn) is a Hausdorff space and each IRn

c is both closed and
open (clopen) in IRm with respect to τn. Finally, we remark that τn is just the
product of the standard topology on IRn and the discrete topology on IRp.

Now, we consider the following disjoint partition of IRm:

IRm =
⋃

c∈IRp

IRn
c . (1.1)

This suggests the following definition. We say that the family {IRn
c }, c ∈ IRp

is a foliation of dimension n (or codimension p) of IRm, and each IRn
c is

a leaf of the foliation. It is worth mentioning that the leaves of the foliation
are the connected components of (IRm, τn), and that each such leaf is an n–
dimensional submanifold of (IRm, τ).

We also note that (IRm, τn) becomes an n–dimensional smooth manifold.
Indeed, we define on IRm a smooth atlas with local charts (Pn

c ,Πn
c ), where

Πn
c : Pn

c −→ IRn; Πn
c (x1, ..., xn, cn+1, ..., cn+p) = (x1, ..., xn).

The partition (1.1) of IRm can be generalized to smooth manifolds as fol-
lows. Let M be an m–dimensional manifold and F = {Lt}t∈I be a family of
connected subsets of M . Suppose that F is a partition of M , that is, we have

M =
⋃
t∈I

Lt and Lt ∩ Ls = ∅, for t �= s. (1.2)

Next, we consider a positive integer n < m and a local chart (U , ϕ) on M .
Then we say that (U , ϕ) is an n–foliated chart, if whenever Lt ∩ U �= ∅
for some t ∈ I, then each connected component of Lt ∩ U is mapped by ϕ
onto an (n, c)–plaque of IRm. An n–foliated atlas associated to F on M is a
collection of n–foliated charts whose domains cover M . Then we say that the
partition F of M is a foliation of dimension n (or codimension p = m−n)
if there exists on M a maximal n–foliated atlas associated with F . We also
say that (M,F) is an n–foliated manifold, and F is an n–foliation of M .
When we are dealing with one fixed n–foliation, we will omit ”n” from names
as: n–foliated chart, n–foliated atlas, etc. Each subset Lt, t ∈ I is called a
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leaf of the foliation F . That is why a foliated chart and a foliated atlas are
also named leaf chart and leaf atlas respectively.

As in the case of IRm we remark that the foliation F induces a new topology
τ(F) on M as follows. Let (U , ϕ) be a foliated chart on M and Lt be a leaf
of F such that Lt ∩ U �= ∅. Suppose that a component of Lt ∩ U is mapped
by ϕ onto a plaque Pn

c of IRm. Then we denote M t
c = ϕ−1(Pn

c ) and call it
a plaque (local leaf) in M with respect to the foliation F . Consider the
topology τ(F) on M whose open basis consists of all plaques of M and call
it the leaf topology of M . Clearly, any leaf Lt of F is clopen in M with
respect to τ(F). Moreover, (M, τ(F)) becomes a manifold of dimension n
with local charts (M t

c , ϕ|Mt
c
). Note that the leaf topology τ(F) is finer than

the original topology τ of M , and that each leaf of F is a connected component
of (M, τ(F)). Also, any leaf of F is an n–dimensional immersed submanifold
of (M, τ). However, the inclusion map of a leaf in M might be improper, that
is, the inverse image of a compact subset of (M, τ) is not necessarily compact
(see Example 1.5). Finally, we define an equivalence relation ∼ on (M,F) as
follows. We put y ∼ z iff y and z belong to the same leaf of F . Thus the
equivalence classes of ∼ are just the leaves of F . We call the quotient space
MF = M/∼ the leaf space (or space of leaves) of F . In some cases, MF
may have the structure of an (m − n)–dimensional manifold.

Now, suppose that (U , ϕ) is a foliated chart on the n–foliated manifold
(M,F). This means that on U we have the local coordinates
(x1, ..., xn, xn+1, ..., xn+p), such that each plaque M t

c of F in U is described
by equations of the form

xn+1 = cn+1, ..., xn+p = cn+p.

Thus
{

∂

∂x1
, · · · , ∂

∂xn

}
are vector fields on U which are tangent to each n–

dimensional submanifold M t
c of U . Consider another foliated chart (Ũ , ϕ̃) with

local coordinates (x̃1, ..., x̃n, x̃n+1, ..., x̃n+p), and U ∩ Ũ �= ∅. Suppose M t
c and

M t
c̃ are two plaques in U and Ũ respectively such that M t

c ∩ M t
c̃ �= ∅. As M t

c

and M t
c̃ are domains of some local charts on the n–dimensional submanifold

Lt, we have
∂

∂xi
=

∂x̃j

∂xi

∂

∂x̃j
, on M t

c ∩ M t
c̃ . (1.3)

As U ∩ Ũ is covered by intersections of plaques of F , we conclude that (1.3) is
true on the whole of U ∩ Ũ . On the other hand, in general, on U ∩ Ũ we have

∂

∂xi
=

∂x̃j

∂xi

∂

∂x̃j
+

∂x̃α

∂xi

∂

∂x̃α
·

Taking into account (1.3) we deduce that

∂x̃α

∂xi
= 0, for any α ∈ {n + 1, ..., n + p} and i ∈ {1, ..., n}. (1.4)
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Thus the coordinate transformations on the n–foliated manifold (M,F) have
the following special form

(a) x̃i = x̃i(xj , xβ), (b) x̃α = x̃α(xβ). (1.5)

Here, and in the sequel, we set (xj , xβ) = (x1, ..., xn, xn+1, ..., xn+p) and
(xβ) = (xn+1, ..., xn+p). Also, if not stated otherwise, throughout this chapter
we shall use the following ranges for indices: i, j, k, ... ∈ {1, ..., n}; α, β, γ, ... ∈
{n + 1, ..., n + p}; a, b, c, ... ∈ {1, ..., n + p}.

As
{

∂

∂xi

}
, i∈{1, ..., n}, are tangent to leaves of F , we call

{
∂

∂xi
, ∂

∂xα

}
an F–natural frame field on (M,F). Then the transformations of F–natural
frame fields on (M,F) are given by (1.3) and

∂

∂xα
=

∂x̃i

∂xα

∂

∂x̃i
+

∂x̃β

∂xα

∂

∂x̃β
· (1.6)

Similarly, {dxi, dxα} is called an F–natural coframe field on (M,F). Then
by using (1.5) we deduce that the transformations of F–natural coframe fields
on (M,F) are given by

(a) dx̃i =
∂x̃i

∂xj
dxj +

∂x̃i

∂xα
dxα,

(b) dx̃α =
∂x̃α

∂xβ
dxβ .

(1.7)

Now, we present another approach to foliations on manifolds. First, we note
that an n–foliated manifold (M,F) admits an n–distribution D. Indeed, for
any x ∈ M , we take the leaf Lt of F passing through x, and define Dx = TxLt.
We denote this distribution by D(F) and call it the tangent distribution
to the foliation F . If {(U , ϕ) : (xi, xα)} is a foliated chart on (M,F), then{

∂

∂x1
, · · · , ∂

∂xn

}
are tangent to Lt ∩ U and therefore locally we have

D(F) = span
{

∂

∂x1
, · · · , ∂

∂xn

}
·

Thus by assertion (iii) of Theorem 1.1.1 we deduce that the tangent distribu-
tion to a foliation is integrable. Conversely, suppose that D is an integrable
n–distribution on M . Then by definition (see Section 1.1), for any x ∈ M
there exists a local chart {(U , ϕ) : (xi, xα)} on M such that all the subma-
nifolds of U given by xα = cα, α ∈ {n + 1, ..., n + p}, are integral manifolds
of D. According to the terminology we introduced for a foliation, we are en-
titled to call these integral manifolds as plaques of D in M . Then consider
on M a new topology τ(D) whose basis consists of all plaques of D in M .
As M is covered by the set of all plaques of D we deduce that (M, τ(D)) is
an n–dimensional integral manifold of D. Moreover, it follows that any other
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n–dimensional integral manifold of D is an open submanifold of (M, τ(D)). A
connected component of (M, τ(D)) passing through x ∈ M is called a leaf of
D through x. Thus M admits a disjoint partition defined by the leaves of D,
and there exists on M an n–foliated atlas that consists of local charts covered
by plaques of D. Hence an integrable n–distribution D defines an n–foliation
F(D) of M . Based on this discussion we may state the following.

Theorem 1.1. Let M be an (n+p)–dimensional manifold. Then the following
assertions are equivalent:

(i) There exists an n–foliation on M .
(ii) There exists an integrable n–distribution on M .

Next, we discuss the relationship between involutive and integrable distri-
butions. To achieve this in its full generality, we first refer to line fields. Let
D be a line field on M represented locally by a vector field:

X = Xa(x1, ..., xm)
∂

∂xa
, ∀ (xa) ∈ U ⊂ M. (1.8)

According to the definition of integral manifolds of a distribution (see Section
1.1), the integral curves of D on U should be curves that are tangent to
X. Thus they are given by the solutions of the following system of ordinary
differential equations

dxa

dt
= Xa(x1, .., xm). (1.9)

Then we recall the following (cf. Sternberg [Ste83], p. 372).

Theorem 1.2. (Existence and Uniqueness Theorem for ODE). Let
fa(t, xb), a, b ∈ {1, ..., m}, be smooth functions defined in some neighbourhood
of the origin in IRm+1. Then there exist neighbourhoods, I of 0 in IR and U
of the origin in IRm such that for any (xa

0) ∈ U and all t ∈ I there are unique
functions ua(t, xb

0) such that

dua

dt
= fa(t, ub) and ua(0, xb

0) = xa
0 , a, b ∈ {1, ..., m}.

Thus applying this theorem to our system (1.9) we deduce that there exists
a unique integral curve of X passing through a fixed point x0 = (xa

0) ∈ U .
Then we can state the following.

Proposition 1.3. Any line field D on a manifold M is integrable.

Taking into account Theorem 1.1 and Proposition 1.3 we obtain:

Corollary 1.4. Any line field D on M defines a 1–foliation F(D) of M .
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Also, we note that a line field D on M is involutive, since [X, X] = 0, for
any X ∈ Γ (D). To obtain, in general, the relationship between integrable and
involutive distributions we prove the following.

Lemma 1.5. Let X be a smooth vector field on an open subset V of M , and
x0 ∈ V such that X(x0) �= 0. Then there exists a local chart {(U , ϕ) : (xa)}
about x0, such that X =

∂

∂x1
on U .

Proof. As X is smooth on V and X(x0) �= 0, there exists a neighbourhood Ũ
of x0 such that X(x) �= 0 for all x ∈ Ũ . Thus D = span{X|Ũ} is a line field on
Ũ . Making Ũ smaller, if necessary, by Corollary 1.4 there exists a 1–foliated
local chart {(Ũ , ϕ̃) : (x̃1, x̃2, ..., x̃m)} about x0. This means that Ũ is covered
by integral curves Γ̃c given by equations x̃α = cα, for α ∈ {2, ..., m}. On the
other hand, by assertion (iii) of Theorem 1.1.1 we may write

D = span
{

∂

∂x̃1

}
on Ũ .

Hence X is expressed as follows

X = X̃1(x̃1, x̃2, ..., x̃m)
∂

∂x̃1
,

where X̃1 is a smooth non–zero function on Ũ . Now, on each integral curve
Γ̃c we define the function

x1 =
∫ x̃1

0

1

X̃1(t, c2, ..., cm)
dt = f1(x̃1, c2, ..., cm).

Then it is easy to check that the functions

x1 = f1(x̃1, x̃2, ..., x̃m), x2 = x̃2, ..., xm = x̃m,

define a new foliated chart {(U , ϕ) : (x1, x2, ..., xm)} about x0, and X =
∂

∂x1

on U .

Now, suppose that {Ei}, i ∈ {1, ..., n} is a system of smooth vector fields
on an open subset V of an (n + p)–dimensional manifold M , n > 1, p > 0.
Then we say that {Ei} is an Abelian (commutative) system of vector
fields if we have

[Ei, Ej ] = 0, ∀ i, j ∈ {1, ..., n}. (1.10)

Then Lemma 1.5 can be generalized as follows.

Lemma 1.6. Let {Ei} be an Abelian system of vector fields on an open subset
V of M and x0∈V such that {Ei(x0)}, i∈{1, ..., n}, are linearly independent.
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Then there exists a local chart {(U , ϕ) : (x1, ..., xn, xn+1, ..., xn+p)} about x0,
such that

Ei =
∂

∂xi
, i ∈ {1, ..., n}. (1.11)

Proof. As {E1, ..., En} are smooth on V and linearly independent at x0,
there exists a neighbourhood Ũ of x0 on which these vector fields are linearly
independent. Thus

D = span{E
1|Ũ , ..., E

n|Ũ},

is an n–distribution on Ũ . First, for n = 1 the assertion is true by Lemma 1.5.
Suppose the assertion is true for 1 < h < n, that is, there exists a local chart
{(U , ϕ) : (x̄1, ..., x̄n, x̄n+1, ..., x̄n+p)} such that

E1 =
∂

∂x̄1
, · · · , Eh =

∂

∂x̄h
on U .

With respect to this coordinate system we set

Er = E
i

r

∂

∂x̄i
+ E

α

r

∂

∂x̄α
, ∀ r ∈ {h + 1, ..., n}.

Then we see that

[Es, Er] = 0, ∀ s ∈ {1, ..., h}, r ∈ {h + 1, ..., n},

imply that the local components (E
a

r) of the vector field Er, do not depend
on (x̄1, ..., x̄h), for any r ∈ {h+1, ..., n}. Now, we consider the transformation
of coordinates

x
′s = x̄s + fs(x̄h+1, ..., x̄n, x̄n+1, ..., x̄n+p), s ∈ {1, ..., h},

x
′r = x̄r, r ∈ {h + 1, ..., n},

x
′α = x̄α, α ∈ {n + 1, ..., n + p},

where fs are solutions of the linear first order partial differential equations

∂us

∂x̄r
E

r

h+1 +
∂us

∂x̄α
E

α

h+1 = 0, s ∈ {1, ..., h}.

It is easy to see that with respect to the new coordinate system the vector
field Eh+1 is expressed as follows

Eh+1 = E
r

h+1

∂

∂x′r + E
α

h+1

∂

∂x′α
,

where the local components depend only on (x
′h+1, ..., x

′n, x
′n+1, ..., x

′n+p).
Finally, apply Lemma 1.5 for Eh+1 and obtain a coordinate system
(x1, ..., xn, xn+1, ..., xn+p), where:
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xs = x
′s, s ∈ {1, ..., h},

xr = xr(x
′h+1, ..., x

′n; x
′n+1, ..., x

′n+p), r ∈ {h + 1, ..., n},
xα = xα(x

′h+1, ..., x
′n, x

′n+1, ..., x
′n+p), α ∈ {n + 1, ..., n + p},

with respect to which E1 =
∂

∂x1
, · · · , Eh+1 =

∂

∂xh+1
· This completes the

proof of the lemma.

Now, we can give a very simple proof of a famous theorem on the geometry
of distributions.

Theorem 1.7. (Frobenius Theorem). Let M be an m–dimensional ma-
nifold and D an n–distribution on M with 0 < n < m. Then the following
assertions are equivalent:

(i) D is an integrable distribution.
(ii) D is an involutive distribution.

Proof. (i) =⇒ (ii). Since D is integrable, by the assertion (iii) of
Theorem 1.1.1, for any point x ∈ M there exists a foliated chart
{(U , ϕ) : (x1, ..., xn, xn+1, ..., xn+p)} such that

D = span
{

∂

∂x1
, · · · , ∂

∂xn

}
, on U .

Thus we have
X = Xi ∂

∂xi
and Y = Y i ∂

∂xi
,

for any X, Y ∈ Γ (D). Then by direct calculations using (1.1.8) we obtain

[X, Y ] =
(

Xj ∂Y i

∂xj
− Y j ∂Xi

∂xj

)
∂

∂xi
,

that is, [X, Y ] ∈ Γ (D). Hence D is involutive.

(ii) =⇒ (i). Let {(U , ϕ); (xa)} be a local chart on M . D being involutive,
it is defined on U by n linearly independent vector fields {Ei} such that

[Ei, Ej ] = Ci
k

j Ek, (1.12)

where Ci
k

j are n3 smooth functions on U . When all Ci
k

j vanish on U , the
assertion is proved by Lemma 1.6 via Theorem 1.1.1. If {Ei} is not an Abelian
system of vector fields on U , we shall construct an Abelian one {Ei} as follows.
We put p = m−n and consider (x1, ..., xn, xn+1, ..., xn+p) as local coordinates
on U . Since {Ei} are linearly independent on U , we have

Ei = Ej
i

∂

∂xj
+ Eα

i

∂

∂xα
, and rank[Ej

i , Eα
i ] = n, i, j ∈ {1, ..., n},

α ∈ {n + 1, ..., n + p}.
(1.13)
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With no loss of generality we may suppose that det[Ej
i ] �= 0 on U . Then we

solve the equations (1.13) with respect to
{

∂

∂xi

}
and obtain

∂

∂xi
= Lj

iEj + Lα
i

∂

∂xα
, i ∈ {1, ..., n}.

Next, consider D spanned on U by Ei = Lj
iEj , i ∈ {1, ..., n}. Thus we have

Ei =
∂

∂xi
− Lα

i

∂

∂xα
· (1.14)

Taking into account that D is involutive we should have

[Ei, Ej ] = Ci
k

jEk. (1.15)

Finally, using (1.14) in (1.15) and taking into account that
{

∂

∂xa

}
is a frame

field on U , we deduce that Ci
k

j = 0 for any i, j, k ∈ {1, ..., n}. Hence {Ei} is
an Abelian system of vector fields, and our assertion follows from Lemma 1.6
and Theorem 1.1.1.

Now, we combine Theorems 1.1 and 1.7 and obtain the following corollary.

Corollary 1.8. Let M be an (n+p)–dimensional manifold. Then the following
assertions are equivalent:

(i) There exists an n–foliation on M .
(ii) There exists an integrable n–distribution on M .
(iii) There exists an involutive n–distribution on M .

Next, we suppose that D is an n–distribution on M locally defined by the
1– forms {ωα}, α ∈ {n + 1, ..., n + p}, that is,

Γ (D) = {X ∈ Γ (TM) : ωα(X) = 0, ∀α ∈ {n + 1, ..., n + p}}. (1.16)

Complete {ωα} with n local 1– forms {ωi} and obtain a non–holonomic
coframe field {ωi, ωα} on M . Apply the exterior differentiation operator d
to each ωα and write

dωα = Ai
α

j
(i<j)

ωi ∧ ωj + Bi
α

γ ωi ∧ ωγ + Cβ
α

γ
(β<γ)

ωβ ∧ ωγ . (1.17)

Now consider the dual non–holonomic frame field {Ei, Eα} on M . Then we
have

dωα(Ei, Ej) = Ei(ωα(Ej)) − Ej(ωα(Ei)) − ωα([Ei, Ej ])

= −ωα([Ei, Ej ]).
(1.18)
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On the other hand, from (1.17) we deduce that

dωα(Ei, Ej) = Ai
α

j . (1.19)

Clearly, D is involutive if and only if the right hand side in (1.18) vanishes
identically. Thus from (1.17), (1.18) and (1.19) we deduce that D is involutive
if and only if

dωα = (Bi
α

γ ωi + Cβ
α

γ ωβ) ∧ ωγ .

Taking into account that any line field is involutive (cf. Proposition 1.3) we
state the following.

Theorem 1.9. Let M be an (n+ p)–dimensional manifold with n > 1, p > 0,
and D be an n–distribution on M locally defined by the 1–forms {ωα},
α ∈ {n + 1, ..., n + p}. Then D is involutive if and only if there exist some
1–forms θα

γ , such that
dωα = θα

γ ∧ ωγ . (1.20)

We close this section with some examples of foliations.

Example 1.1. Let M be an m–dimensional manifold, m > 1, and f : M −→ IR
be a smooth function on M . For any coordinate system {(U , ϕ) : (xa)} on M
consider the coordinate representative fϕ = f ◦ ϕ−1 of f . Then we say that
f is without critical points on M , if with respect to any local chart on M we
have

rank
[
∂fϕ

∂xa

]
= 1, on U .

In this case, for any c ∈ f(M), f−1(c) is a hypersurface of M . Moreover, each
component of U ∩ f−1(c) is given by the equation

fϕ(x1, ..., xm) = c.

Without loss of generality, we may assume that
∂fϕ

∂xm
�= 0 on U . Then on the

same domain U , we consider new coordinate functions

x̃i = xi, x̃m = fϕ(x1, ..., xm), i ∈ {1, ...,m − 1},

with respect to which any component of U ∩ f−1(c) is given by x̃m = c.
Thus any f without critical points defines a foliation Ff of M whose leaves
are connected components of level hypersurfaces of f . Next, we present two
particular functions which have some relevance to semi–Riemannian geometry
of foliations. First, we consider the Lorentz space IR4

1 and the x1–axis L. Then

f(x1, x2, x3, x4) = x1 −
√

(x2)2 + (x3)2 + (x4)2,
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is a smooth function without critical points on M = IR4
1\L. It is easy to see

that the tangent distribution D to the foliation Ff is spanned by the non–
holonomic frame field

{E1 = (x2, h, 0, 0), E2 = (x3, 0, h, 0), E3 = (x4, 0, 0, h)},

where we set h =
√

(x2)2 + (x3)2 + (x4)2. Then consider

ξ = x2E1 + x3E2 + x4E3,

and obtain g(ξ, X) = 0 for any X ∈ Γ (D), where g is the Lorentz metric
(1.4.10) for m = 4. Thus D is a partially null distribution and therefore all
leaves of Ff are degenerate hypersurfaces of IR4

1. Actually, each leaf of Ff is
a half–cone with vertex (c, 0, 0, 0) and is situated in the domain x1 > c of M .
Also, we consider the Lorentz space IR3

1 and the function

f(x1, x2, x3) = (x1)2 + (x2)2 − (x3)2.

Then f is smooth and has no critical points on M = IR3\{0}. Two of the
leaves of Ff are the half–cones of the light–like cone

(x2)2 + (x2)2 − (x3)2 = 0, x �= 0,

situated in x3 > 0 and x3 < 0. Thus they are degenerate hypersurfaces of M .
The other leaves are hyperboloids of one sheet and hyperboloids of two sheets
situated in the exterior and interior of the cone, respectively. Thus we conclude
that the tangent distribution to this foliation is neither semi–Riemannian nor
partially null.

A generalization of this type of foliations is presented in the next example.

Example 1.2. Let M and N be two manifolds of dimensions m and p res-
pectively and f : M −→ N be a smooth function. For any point x ∈ M we
consider the local charts {(U , ϕ) : (xa)} and {(V, ψ) : (yα)} in M and N about
x and f(x) respectively. Let fs, s ∈ {1, ..., p} be the functions which locally
represent f with respect to these local charts. Then it is easy to check that
the linear mapping

f∗x : TxM −→ Tf(x)N ; f∗x

(
Xa ∂

∂xa

∣∣∣∣
x

)
=

∂fs

∂xa
Xa ∂

∂ys

∣∣∣∣
f(x)

,

is well–defined, that is, it does not depend on local charts. Thus we have a
vector bundle morphism f∗ : TM −→ TN , which is called the differential
mapping of f . When rank f∗x = r for a point x ∈ M , we say that f has the
rank r at x. Then f is of constant rank on M , if f has the same rank for all
points of M. If in particular, f is of constant rank r=p on M, then we say that
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f is a submersion. Thus f is a submersion if and only if f∗x is a surjection
for any x ∈ M. If y is a point in the range of the submersion f then f−1(y) is
called the fiber of f over y. To discuss the differential (topological) structure
on a fiber we first note that m ≥ p. When r = p = m, by elementary properties
of linear mappings it follows that f∗x is an isomorphism, and therefore f is
locally a diffeomorphism. Thus for any x ∈ M there exist two neighbourhoods
U and V of x and y = f(x) respectively such that f : U −→ V is a diffeomor-
phism. It follows that f−1(y) ∩ U = {x} and therefore the induced topology
on f−1(y) is the discrete topology which makes this case not interesting for
our study. For this reason, from now on, we consider f as a submersion with
m > p and put n = m − p. If (c1, ..., cp) are the local coordinates of a point
c ∈ f(M) and {(U , ϕ) : (xa)} is a local chart in M about a point of f−1(c),
then U ∩ f−1(c) is given by the equations

fs(x1, ..., xm) = cs, s ∈ {1, .., p}, rank
[
∂fs

∂xa

]
= p.

Thus f−1(c) is a closed imbedded submanifold of M . Without loss of generality

we may suppose that det
[
∂fs

∂xt

]
�= 0, for s, t ∈ {1, ..., p}. Then we take a new

coordinate system (ui, vs) on M , given by

ui = xi, vs = fs(x1, ..., xm), i ∈ {1, ..., n}, s ∈ {1, ..., p},

with respect to which a component of U∩f−1(c) is given by equations vs = cs,
s ∈ {1, ..., p}. Thus the submersion f defines a foliation of M whose leaves are
its fibers. Moreover, from the above discussion we deduce that for any x ∈ M
there exist two local charts {(U , ϕ) : (ui, vs)} and {(V, ψ) : (vs)} about x and
f(x) respectively such that f is locally represented by a projection

ψ ◦ f ◦ ϕ−1(u1, ..., un; v1, ..., vp) = (v1, ..., vp).

Remark 1.3. Any n–foliation of M can be locally visualized as a submersion.
Indeed, if {(U , ϕ) : (xi, xα)} is an n–foliated chart on M then the mapping

F : U −→ IRp, f(xi, xα) = xα,

is a submersion whose fibers are plaques of the foliation.

Example 1.4. Let M,N and F be manifolds of dimensions m, p and n res-
pectively, with m = n + p. Then we say that π : M −→ N is a fiber bundle
(fibering) with F as model fiber, if for any x ∈ N there exist an open neigh-
bourhood V of x in N and a diffeomorphism h : π−1(V) −→ F×V such that
p2 ◦ h = π, where p2 : F×V −→ V is the projection onto the second factor.
It follows that π is a surjection and each fiber π−1(x) is a closed embedded
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submanifold of M diffeomorphic to F . We call M, N and π the total space,
the base space and the projection of the fiber bundle, respectively. As h
is a diffeomorphism and p2 is a projection, π has a constant rank p on M .
Thus π is a submersion, and therefore the total space of a fiber bundle has an
n–foliation whose leaves are the components of fibers of π. In particular, we
take IRn as model fiber and assume that the fiber π−1(x) is a vector space and
hx : π−1(x) −→ IRn×{0} is an isomorphism of vector spaces. In this case we
call π : M −→ N a vector bundle over N . The tangent distribution to the
foliation determined by fibers of π is called the vertical distribution and it is
denoted by V M . Finally, each local chart {(V, ψ) : (xα)}, α ∈ {n+1, ..., n+p}
on N determines an n–foliated local chart {(U , ϕ) : (xi, xα)}, i ∈ {1, ..., n},
on M . The transformation of coordinates on M is given by

x̃i = Ai
j(x

n+1, ..., xn+p)xj , x̃α = x̃α(xn+1, ..., xn+p). (1.21)

It is interesting to note that on the total space of a vector bundle there exists
a globally defined vector field. Indeed, consider the vector field ξ locally given
by

ξ = xi ∂

∂xi
, (1.22)

and by using (1.21) we deduce that ξ is globally defined on M . We call ξ
the Liouville vector field on M . A typical example of a vector bundle is
the tangent bundle TN of a manifold N . In this case, the vertical distribution
V TN of TN is the tangent distribution to the foliation determined by fibers of
π : TN −→ N. As it is well known (see Bejancu–Farran [BF00a]) the geometry
of Finsler manifolds can be fully developed via the vertical distribution.

Example 1.5. Let G be an m–dimensional Lie group with operation ∗ and
H be an n–dimensional connected Lie subgroup of G. For any a ∈ G, the
function

La : G −→ G ; La(g) = a ∗ g, ∀ g ∈ G,

is called the left translation defined by a on G. Since both La and La−1 are
smooth on G we conclude that La is a diffeomorphism of G onto itself. Thus
the left coset a∗H = La(H) is an n–dimensional connected submanifold of G.
Hence the set of left cosets {a∗H} determines a foliation FH of G. Moreover, if
H is a closed subgroup then G/H is an (m−n)–dimensional manifold and FH

is just the foliation determined by the submersion π : G −→ G/H. Now we
describe an interesting particular case of this foliation. By using the canonical
identification of the complex numbers space C with IR2, we consider the circle
S1 of IR2 as the set of points {eti}t∈IR of C. Then S1 becomes a Lie group
with the natural operation

(eti, esi) −→ e(t+s)i.
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Thus the 2–dimensional torus T 2 = S1×S1 is also a Lie group. Next, we
consider a fixed irrational number λ and define the 1–dimensional submani-
fold

H = {(eλti, eti)}t∈IR,

of T 2. It is easy to see that H is a connected Lie subgroup of T 2. Moreover,
since λ is irrational we deduce that H is dense in T 2. Thus the foliation FH

on T 2 is an example of foliation whose leaves are improper immersed subma-
nifolds.

Example 1.6. Let M be a smooth manifold and Φ : IR×M −→ M be a
smooth mapping satisfying the conditions:

(i) Φ(t, Φ(s, x)) = Φ(t + s, x), ∀ t, s ∈ IR, x ∈ M.
(ii) Φ(0, x) = x, ∀x ∈ M.

For a fixed t ∈ IR, define Φt : M −→ M , Φt(x) = Φ(t, x) and from (i) and (ii)
we deduce that it has Φ−t as inverse function. As any Φt is smooth on M , we
obtain a family of diffeomorphisms {Φt} of M onto itself, which is called a
one parameter group of smooth transformations of M . Also, for a fixed
x ∈ M , the map t −→ Φt(x) defines a smooth curve Cx passing through x. If
Xx is the tangent vector to Cx at x, then X : x −→ Xx is a smooth vector
field on M for which Cx is the maximal integral curve through x. However,
X is not necessarily non–zero on M . Indeed, if we take

Φ : IR×IR2 −→ IR2; Φ(t, x1, x2) = et(x1, x2), (1.23)

we obtain X = x1 ∂

∂x1
+x2 ∂

∂x2
which vanishes at (0, 0). If X is non–zero on

M then we obtain a 1–foliation on M , which justifies the name global flow
on M given to Φ. In this case, X is called the infinitesimal generator of the
one parameter group {Φt} or of the global flow Φ. Also, since every integral
curve of X is defined for all t ∈ IR, X is a complete vector field.

The converse of the above construction, in general, is not true. However,
locally it is true. To state this, we give the following definition. A local flow
around a point x0 ∈ M is a smooth mapping Φ : (−ε, ε)×V −→ M , where V
is a neighbourhood of x0 and ε > 0, satisfying the conditions:

(i) Φ(t, Φ(s, x)) = Φ(t + s, x), ∀x ∈ V, and t, s, t + s ∈ (−ε, ε).
(ii) Φ(0, x) = x, ∀x ∈ V.

Theorem 1.10. Let X be a vector field on M . Then there exists a local flow
around any point x0 ∈ M.

Proof. Let {(U , ϕ):(xa)} be a local chart about x0 such that ϕ(x0)=(0, ..., 0).

Then we write X = Xa ∂

∂xa
on U and consider the system of ordinary diffe-

rential equations
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dua

dt
= Xa(u1, ..., um), a ∈ {1, ...,m}.

By Theorem 1.2 there exist ε > 0 and a neighbourhood V∗ ⊂ ϕ(U) of the
origin in IRm, such that for any (x1, ..., xm) ∈ V∗ the system has the unique
solution ua(t, x1, ..., xm) satisfying

ua(0, x1, ..., xm) = (x1, ..., xm). (1.24)

Next, consider V = ϕ−1(V∗) and the smooth mapping Φ : (−ε, ε)×V → M,
locally represented by

Φa(t, x1, ..., xm) = ua(t, x1, ..., xm). (1.25)

Since the solutions ua(t + s, xb) and ua(t, ub(s, xc)) satisfy the same initial
condition (0, ua(s, xb)), (i) is a consequence of the uniqueness of the solution
from Theorem 1.2. Finally, (ii) follows from (1.24) and (1.25).

Taking into account Corollary 1.4 we deduce that local flows of a non–zero
vector field on M determine a 1–foliation.

It is worth mentioning here that a non–singular system of ordinary diffe-
rential equations, when reduced to first order, becomes a non–zero vector field.
Using Theorem 1.10 above, we see that the orbits of the local flow represent
the local solutions of the system, and these fit together to give a 1–foliation
(see Proposition 1.3 and Corollary 1.4).

Both Examples 1.5 and 1.6 are particular cases of locally free actions of
Lie groups on manifolds, which we describe in the next example.

Example 1.7. Let G be an n–dimensional Lie group whose operation is
denoted by ∗ and M be an m–dimensional manifold. Then we say that G acts
as a Lie transformation group on M if there exists a smooth mapping
Φ : G×M −→ M satisfying the conditions:

(i) Φ(g, Φ(h, x)) = Φ(g ∗ h, x), ∀ g, h ∈ G, x ∈ M.
(ii) Φ(e, x) = x, ∀x ∈ M, where e is the unit element of G.

The orbit through the point x ∈ M is the range of the smooth mapping

Φx : G −→ M ; Φx(g) = Φ(g, x), ∀ g ∈ G.

We say that the action Φ of G on M is locally free if for any x ∈ M , there
exists a neighbourhood V of e in G such that Φx is injective on V. It is easy
to see that Φ is locally free if and only if for each x ∈ M the isotropy group
Gx = {g ∈ G : Φ(g, x) = x} is discrete. Clearly, any orbit of a locally free
action is an n–dimensional immersed submanifold of M . Moreover, in this
case, all orbits of Φ determine an n–foliation of M . We note that the action in
Example 1.5 is given by left translations on G and therefore {e} is the isotropy
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group of any g ∈ G. On the contrary, if we consider the action (1.23), then
the isotropy group of (0, 0) is IR, and thus that action does not determine a
foliation of IR2.

Foliations can also be induced by some geometric structures on subma-
nifolds. In the next example we present a large class of real submanifolds of
a Kähler manifold which admits a totally real foliation (in a sense which is
going to be defined).

Example 1.8. Let (M, J) be an almost complex manifold, where M is
a real 2m–dimensional manifold and J is a tensor field of type (1, 1) on M
satisfying J2 = −I on TM . The Nijenhuis tensor field of J is a tensor field of
type (1, 2) on M given by

[J, J ](X, Y ) = [JX, JY ] − [X, Y ] − J [JX, Y ] − J [X, JY ], (1.26)

for any X, Y ∈ Γ (TM). If there exists a complex coordinate system about
each point of M , and the transformations of such coordinates are holomorphic
functions, then M is called a complex manifold. By a famous result of
Newlander and Nirenberg [NN57] it is known that an almost complex mani-
fold (M, J) is a complex manifold if and only if the Nijenhuis tensor field of J
vanishes identically on M . Next we suppose that g is a Hermitian (almost
Hermitian) metric on the complex (almost complex) manifold (M, J), that
is,

(a) g(JX, JY ) = g(X, Y ), or equivalently

(b) g(X, JY ) + g(JX, Y ) = 0,
(1.27)

for any X, Y ∈ Γ (TM). Then we say that (M, J, g) is a Hermitian (al-
most Hermitian) manifold. Finally, we define the fundamental 2– form Ω
of (M, J, g) by

Ω(X, Y ) = g(X, JY ), ∀X, Y ∈ Γ (TM). (1.28)

If Ω is closed, that is, dΩ = 0, we say that the Hermitian (almost Hermitian)
manifold (M, J, g) is a Kähler (almost Kähler) manifold. If ∇̃ is the Levi–
Civita connection on M with respect to g, then it is proved that (M,J, g) is
a Kähler manifold if and only if J is parallel with respect to ∇̃, that is (cf.
Yano–Kon, [YK84], p. 128),

(∇̃XJ)(Y ) = ∇̃XJY − J∇̃XY = 0, ∀X, Y ∈ Γ (TM). (1.29)

Now, we consider a real n–dimensional submanifold N of a Kähler manifold
(M, J, g). Then we say that N is a CR–submanifold (Cauchy–Riemann
submanifold) of M if there exists on N a real 2p–dimensional distribution
D satisfying the following conditions:
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(i) D is a holomorphic (J–invariant) distribution, i.e. J(D) = D.
(ii) The complementary orthogonal distribution D⊥ to D in TN is totally

real (J–anti–invariant), i.e. J(D⊥) is a vector subbundle of the normal
bundle TN⊥ of N .

Since 1978, when the concept of CR–submanifold was introduced by
Bejancu [B78], several interesting results on its differential geometry have
been obtained, some of them being brought together in the monographs of
Yano and Kon [YK83] and Bejancu [B86a]. When D⊥ = {0} (resp. D = {0})
N becomes a complex (resp. totally real) submanifold of M . It is note-
worthy that any real hypersurface N of M is a CR–submanifold which is
neither complex nor totally real, provided m > 1. Indeed, in this case we
define D⊥ = J(TN⊥) and take D as complementary orthogonal distribution
to D⊥ in TN . Since D⊥ is a line field on N , by Corollary 1.4 we can state the
following.

Proposition 1.11. Any real hypersurface of a real 2m–dimensional Kähler
manifold admits a totally real 1–foliation, provided m > 1.

It is interesting that this result can be extended to any CR–submanifold
of a Kähler manifold. To achieve this, we first use (1.5.9), (1.29), (1.27) and
(1.5.8) and for any X, Y ∈ Γ (D⊥) and Z ∈ Γ (D), we obtain

g(∇̃XY, JZ) = −g(Y, J∇̃XZ) = g(JY, ∇̃XZ) = g(JY, ∇̃ZX).

Similarly, we deduce that

g(∇̃Y X, JZ) = g(JX, ∇̃ZY ) = −g(J∇̃ZX, Y ) = g(∇̃ZX, JY ).

Then by using again (1.5.8) for ∇̃ we obtain

g([X, Y ], JZ) = g(∇̃XY − ∇̃Y X, JZ) = 0.

Thus [X, Y ] ∈ Γ (D⊥), that is, D⊥ is involutive. Taking into account that the
leaves of D⊥ are totally real submanifolds we call the foliation defined by D⊥

a totally real foliation of N . When N is neither a complex submanifold
nor a totally real submanifold, we say that it is a proper CR–submanifold.
Then the above discussion enables us to present a new class of foliations.

Theorem 1.12. Let N be a proper CR–submanifold of a Kähler manifold
(M, J, g). Then there exists on N a totally real foliation.

The concept of CR–submanifold has been considered by several authors for
manifolds endowed with geometrical structures other than the Kählerian one.
For example we mention: locally conformal symplectic structure (cf. Blair–
Chen [BC79], Ornea [Orn86]), Sasakian structure (cf. Yano–Kon [YK82],
Bejancu–Papaghiuc [BP81]), quaternionic Kählerian structure (cf. Barros–
Chen–Urbano [BCU81], Bejancu [B86b]), etc. The integrability of D⊥ was
first proved by Blair–Chen [BC79] for CR–submanifolds of locally conformal
symplectic manifolds.
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2.2 Adapted Tensor Fields on a Foliated Manifold

Let M be an (n + p)–dimensional manifold and F be an n–foliation of M .
Denote by D the tangent distribution to F and consider a complementary
distribution D′ to D in TM . As it was shown in Section 1.1, the paracom-
pactness of M guarantees the existence of D′. However, in this chpater, D′

is not an intrinsic object of the foliation. Thus we may say that our study of
the foliation F is developed with respect to a fixed transversal distribution
D′ (for terminology see Section 1.2). When a Riemannian (semi–Riemannian)
metric is considered on M (this is always the case starting from Chapter 3) a
canonical D′ is defined and thus the study depends on both the foliation and
the metric.

The purpose of this section is to develop a tensor calculus adapted to the
decomposition

TM = D ⊕D′, (2.1)

where D′ is a fixed transversal distribution. To achieve this goal we first con-
struct a local frame field adapted to (2.1) as follows. Let {(U , ϕ) : (xi, xα)},
i ∈ {1, ..., n}, α ∈ {n + 1, ..., n + p}, be a foliated chart on (M,F). Then D
is locally represented on U by the natural field of frames

{
∂

∂x1
, · · · , ∂

∂xn

}
.

If {En+1, ..., En+p} locally represents D′ on U , then
{

∂

∂xi
,Eα

}
is a non–

holonomic frame field on U with respect to (2.1). Now we express each
∂

∂xα

with respect to this frame field:

∂

∂xα
= Ai

α

∂

∂xi
+ Aβ

α Eβ . (2.2)

As the transition matrix from the non–holonomic frame field
{

∂

∂xi
, Eα

}
to

the natural frame field
{

∂

∂xi
, ∂

∂xα

}
is

Λ =

[
δi
j Ai

α

0 Aβ
α

]
,

we conclude that [Aβ
α] is a non–singular matrix of functions on U . Thus

δ

δxα
= Aβ

αEβ , α ∈ {n + 1, ..., n + p},

also represent locally D′ on U . Then (2.2) becomes

δ

δxα
=

∂

∂xα
− Ai

α

∂

∂xi
· (2.3)
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Next, we consider another foliated chart {(Ũ , ϕ̃) : (x̃i, x̃α)} such that
U ∩ Ũ �= ∅. Then, by direct calculations using (2.3) for both charts, (1.3)
and (1.6) we deduce that

δ

δxα
=

∂x̃β

∂xα

δ

δx̃β
, (2.4)

and

Aj
α

∂x̃i

∂xj
= Ãi

β

∂x̃β

∂xα
+

∂x̃i

∂xα
, (2.5)

on U ∩ Ũ .
Thus, for a given D′ there exist np functions Ai

α on U which satisfy (2.5)
with respect to the coordinate transformations (1.5) of two foliated charts.
The converse is also true. If Ai

α are functions on U satisfying (2.5), then

define
δ

δxα
by (2.3) and obtain (2.4). Thus we obtain a distribution D′ that

is complementary to D in TM and locally represented by
{

δ

δxα

}
· Summing

up this discussion we can state the following.

Theorem 2.1. Let (M,F) be a foliated manifold whose tangent distribution is
D. Then there exists a complementary distribution D′ to D in TM if and only
if on the domain of each foliated chart on M there exist np smooth functions
Ai

α satisfying (2.5) with respect to (1.5).

We call
{

∂

∂xi
, δ

δxα

}
, where

δ

δxα
, α ∈ {n+1, ..., n+p} are given by (2.3) a

semi–holonomic frame field on U . Vector fields of the form (2.3) have been
used by Reinhart [Rei59a] and Vaisman [Vai71] in their works on foliations.

In particular, if D is a line field on M then (2.3) becomes

δ

δxα
=

∂

∂xα
− Aα

∂

∂x1
, α ∈ {2, ..., m}, (2.6)

where Aα are m − 1 functions on U satisfying

Aα
∂x̃1

∂x1
= Ãβ

∂x̃β

∂xα
+

∂x̃1

∂xα
, α, β ∈ {2, ...,m}, (2.7)

with respect to the transformations

x̃1 = x̃1(x1, xα), x̃α = x̃α(xβ), α, β ∈ {2, ...,m}. (2.8)

Similarly, if D is a distribution of codimension one, then both D and D′ are in-
tegrable and we may consider foliated charts whose coordinates (x1, ..., xm−1, t)
and (x̃1, ..., x̃m−1, t̃) are transformed as follows

x̃i = x̃i(xj), t̃ = t̃(t), i, j ∈ {1, ...,m − 1}. (2.9)
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In this case we can choose a natural frame field
{

∂

∂xi
, ∂

∂t

}
on M such that

∂

∂xi
∈ Γ (D) and

∂

∂t
∈ Γ (D′).

Now, we come back to the general case and consider the dual vector bun-
dles D∗ and D′∗ to D and D′ respectively. Then an adapted tensor field of
type (q, s; r, t) on the foliated manifold (M,F) is an F (M) − (q + r + s + t)–
multilinear mapping

T : Γ (D∗)q×Γ (D′∗)r×Γ (D)s×Γ (D′)t −→ F (M).

In order to define the local components of T we consider the dual semi–

holonomic frame field {δxi, dxα} to
{

∂

∂xi
, δ

δxα

}
, where we set

δxi = dxi + Ai
αdxα. (2.10)

Thus, locally T is given by nq+s · pr+t smooth functions

T
i1...iq α1...αr

j1...js β1...βt
(xi, xα)

= T

(
δxi1 , ..., δxiq , dxα1 , ..., dxαr ,

∂

∂xj1
, · · · , ∂

∂xjs

, δ

δxβ1
, · · · , δ

δxβt

)
.

(2.11)
Next, by direct calculations using (2.10), (1.7) and (2.5) we obtain

(a) δx̃i =
∂x̃i

∂xj
δxj , and (b) dx̃α =

∂x̃α

∂xβ
dxβ , (2.12)

with respect to the coordinate transformations (1.5) on (M,F). Then, taking
into account (2.11), (2.12), (1.3) and (2.4) we state the following.

Theorem 2.2. Let (M,F) be a foliated manifold with transversal distribution
D′. Then there exists on M an adapted tensor field of type (q, s; r, t) if and
only if on the domain of each foliated chart on M there exist nq+s ·pr+t smooth
functions T

i1...iq α1...αr

j1...js β1...βt
satisfying

T̃
k1...kq γ1...γr

h1...hs ε1...εt

∂x̃h1

∂xj1
· · · ∂x̃hs

∂xjs

∂x̃ε1

∂xβ1
· · · ∂x̃εt

∂xβt

= T
i1...iq α1...αr

j1...js β1...βt

∂x̃k1

∂xi1
· · · ∂x̃kq

∂xiq

∂x̃γ1

∂xα1
· · · ∂x̃γr

∂xαr

,
(2.13)

with respect to (1.5).

Remark 2.1.
(i) It is easy to check that any F (M) − (s + t)–multilinear mapping

T : Γ (D)s×Γ (D′)t −→ Γ (D),

defines an adapted tensor field of type (1, s; 0, t) and viceversa.
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(ii) Similarly, any F (M) − (s + t)–multilinear mapping

T : Γ (D)s×Γ (D′)t −→ Γ (D′),

defines an adapted tensor field of type (0, s; 1, t) and viceversa.

Remark 2.2. The order of indices (first the latin and then the greek indices)
is not necessarily the same throughout the book. As an example the n2p2

functions Tαi
βj satisfying

T̃ γk
εh

∂x̃ε

∂xβ

∂x̃h

∂xj
= Tαi

βj

∂x̃γ

∂xα

∂x̃k

∂xi
,

define an adapted tensor field of type (1, 1; 1, 1) on (M,F).

In particular, an adapted tensor field of type (0, s; 0, 0):

ω : Γ (D)s −→ F (M),

satisfying
ω(Xσ(1), ..., Xσ(s)) = ε(σ)ω(X1, ..., Xs),

for any permutation σ of {1, ..., s}, where ε(σ) = ±1 is the signature of σ, is
called a structural s– form on (M,F). Similarly, an adapted tensor field of
type (0, 0; 0, t):

Ω : Γ (D′)t −→ F (M),

which satisfies
Ω(Yσ(1), ..., Yσ(t)) = ε(σ)Ω(Y1, ..., Yt),

is called a transversal t– form on (M,F). It is easy to see that any structural
1– form (resp. transversal 1– form) is a section of D∗ (resp. D′∗). We also call
a section of D (resp. D′) a structural (resp. transversal) vector field on
the foliated manifold (M,F). We can extend this terminology to the general
case of adapted tensor fields as follows. We say that an adapted tensor field T
is a structural (resp. transversal) tensor field if it is locally represented
by functions T

i1...iq

j1...js
(resp. Tα1...αr

β1...βt
). By direct calculations, using (2.13) for a

transversal tensor field, and (1.3), we deduce that

∂T̃ γ1...γr
ε1...εt

∂x̃k

∂x̃k

∂xi

∂x̃ε1

∂xβ1
· · · ∂x̃εt

∂xβt
=

∂Tα1...αr

β1...βt

∂xi

∂x̃γ1

∂xα1
· · · ∂x̃γr

∂xαr
·

This enables us to give the following definition. We say that a transversal
tensor field T = (Tα1...αr

β1...βt
) is basic if we have

∂Tα1...αr

β1...βt

∂xi
= 0, (2.14)



80 2 STRUCTURAL AND TRANSVERSAL GEOMETRY OF FOLIATIONS

for any i ∈ {1, ..., n} and α1, ..., αr, β1, ..., βt ∈ {n + 1, ..., n + p}, with respect
to any foliated chart {(U , ϕ) : (xi, xα)} on (M,F).

In particular, a transversal t– form Ω = (Ωβ1...βt) is basic if and only if

∂Ωβ1...βt

∂xi
= 0, ∀ i ∈ {1, ..., n}, β1, ..., βt ∈ {n + 1, ...., n + p}, (2.15)

on the domain of any foliated chart. It is easy to see that a t– form Ω on M
is transversal if and only if

Ω(X,Y1, ..., Yt−1) = 0, ∀X ∈ Γ (D), Y1, ..., Yt−1 ∈ Γ (D′). (2.16)

A t– form Ω on (M,F) which satisfies both (2.15) and (2.16) is called basic by
Reinhart [Rei83], p. 171. As the exterior differential of a basic form is basic
too, a cohomology theory of basic forms has been developed (cf. Reinhart
[Rei59b]). Similarly, a function f on M is called a basic function if it depends
on (xα) alone, that is, f is constant on each leaf of F .

Next, we consider the projection morphisms Q and Q′ of TM on D and
D′ respectively and state the following.

Lemma 2.3. The mapping T : Γ (D′)×Γ (D′) −→ Γ (D) given by

T (Q′X,Q′Y ) = Q[Q′X,Q′Y ], ∀X, Y ∈ Γ (TM), (2.17)

defines an adapted tensor field on (M,F) of type (1, 0; 0, 2).

Proof. First, from (2.17) it follows that T is an F (M)–bilinear mapping.
Then take s = 0 and t = 2 in assertion (i) of Remark 2.1 and deduce that T
is an adapted tensor field of type (1, 0; 0, 2).

Lemma 2.4. Let
{

∂

∂xi
, δ

δxα

}
be a semi–holonomic frame field on (M,F).

Then we have [
δ

δxα
, δ

δxβ

]
= Tα

i
β

∂

∂xi
, (2.18)

where we set

Tα
i
β =

δAi
α

δxβ
− δAi

β

δxα
· (2.19)

Proof. By direct calculations using (2.3) and elementary properties of Lie
bracket we obtain (2.18).

Finally, from (2.18) and (2.17) we see that Tα
i
β are the local components

of the adapted tensor field T , that is, we have

T

(
δ

δxα
, δ

δxβ

)
= Tα

i
β

∂

∂xi
· (2.20)
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We call T the integrability tensor of the transversal distribution D′. From
(2.17) we see that D′ is integrable if and only if T vanishes identically on M ,
which justifies the above name for T .

In the next section we will see that both torsion and curvature tensor fields
of an adapted connection are determined by adapted tensor fields. As adapted
connections play an important role in studying foliations, we consider adapted
tensor fields as a need for this type of geometry.

2.3 Structural and Transversal Linear Connections

In the first part of this section we develop a general theory of linear connections
on vector bundles over foliated manifolds. We show that two types of covariant
derivatives are naturally defined by a linear connection on a vector bundle:
the structural and the transversal covariant derivatives. Then we apply this
theory to the structural and transversal distributions to a foliation and ob-
tain the local components of curvature and torsion tensor fields of both the
structural and transversal connections.

Let F be an n–foliation on the (n + p)–dimensional manifold M and D
be the tangent distribution (structural distribution) to F . Throughout this
section we suppose that D′ is a transversal distribution to F locally defined
by the functions {Ai

α}, i ∈ {1, ..., n}, α ∈ {n + 1, ..., n + p} satisfying (2.5).
Then on the domain of a foliated chart {(U , ϕ) : (xi, xα)} we consider the

semi–holonomic frame field
{

∂

∂xi
, δ

δxα

}
, where

δ

δxα
are given by (2.3).

Next, we consider a vector bundle E of rank h over (M,F), that is, the
dimension of each fiber of E is h. Let ∇ be a linear connection on E and {Sa},
a ∈ {1, ..., h} be a basis of Γ (E) on U . Then we put

(a) ∇ δ
δxα

Sa = Fa
b
α Sb and (b) ∇ ∂

∂xi
Sa = Ca

b
iSb, (3.1)

where {Fa
b
α, Ca

b
i}, a, b ∈ {1, ..., h}, i ∈ {1, ..., n}, α ∈ {n + 1, ..., n + p} are

smooth functions on U . Two local bases {Sa} and {S̃a} of Γ (E) are related
by

Sa = Sb
aS̃b, (3.2)

where Sb
a are smooth functions on the common domain of two foliated charts

on M . Then by direct calculations using (1.3), (2.4), (3.2) and (3.1) we deduce
that the local coefficients of ∇ satisfy the following with respect to (1.5) and
(3.2):

Fa
b
αSc

b = F̃d
c
βSd

a

∂x̃β

∂xα
+

δSc
a

δxα
, (3.3)

Ca
b
iS

c
b = C̃d

c
jS

d
a

∂x̃j

∂xi
+

∂Sc
a

∂xi
· (3.4)
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Here we use the indices a, b, . . . ∈ {1, . . . , h}, i, j, . . . ∈ {1, . . . , n},
α, β, . . . ∈ {n + 1, . . . , n + p}. Conversely, suppose that on the domain of each
foliated chart on (M,F) there exist smooth functions {Fa

b
α, Ca

b
i} satisfying

(3.3) and (3.4) with respect to (1.5) and (3.2). Then for any Y = Y α δ

δxα
,

X = Xi ∂

∂xi
and Z = ZaSa, we define

(a) ∇Y Z = Y αZa|αSa and (b) ∇XZ = XiZa‖iSa, (3.5)

where we set

(a) Za|α =
δZa

δxα
+ ZbFb

a
α and (b) Za‖i =

∂Za

∂xi
+ ZbCb

a
i. (3.6)

Extend ∇ by linearity to any vector field on M and by using (3.3)–(3.6) we
deduce that ∇ is a linear connection on the vector bundle E. Thus we may
state the following.

Theorem 3.1. Let (M,F) be a foliated manifold with structural and transver-
sal distributions D and D′, and E be a vector bundle over M . Then there exists
a linear connection on E if and only if on the domain of each foliated chart
on M there exist real smooth functions {Fa

b
α, Ca

b
i} satisfying (3.3) and (3.4)

with respect to (1.5) and (3.2).

We call Za|α and Za‖i given by (3.6a) and (3.6b) respectively the transver-
sal covariant derivative and structural covariant derivative of the sec-
tion Z.

In particular, we suppose that ∇′ and ∇ are linear connections on distri-
butions D′ and D respectively. Then by using the semi–holonomic frame field{

∂

∂xi
, δ

δxα

}
induced by D′, we put:

(a) ∇′
δ

δxβ

δ

δxα
= F ′

α
γ

β
δ

δxγ
, (b) ∇′

∂

∂xi

δ

δxα
= C ′

α
γ

i
δ

δxγ
, (3.7)

(a) ∇ δ

δxβ

∂

∂xi
= Fi

k
β

∂

∂xk
, (b) ∇ ∂

∂xj

∂

∂xi
= Ci

k
j

∂

∂xk
· (3.8)

We call ∇′ (resp. ∇) a transversal (resp. structural) linear connection
of the foliation F on M . Now, we take in turn D′ and D instead of E from
Theorem 3.1 and obtain the following.

Theorem 3.2. Let (M,F) be a foliated manifold with structural and transver-
sal distributions D and D′. Then we have the following assertions:
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(i) There exists a transversal linear connection ∇′ of F if and only if on
the domain of each foliated chart on M there exist real smooth functions
{F ′

α
γ

β , C ′
α

γ
i} satisfying

F ′
α

γ
β

∂x̃ε

∂xγ
= F̃ ′

µ
ε
ν

∂x̃µ

∂xα

∂x̃ν

∂xβ
+

∂2x̃ε

∂xα∂xβ
, (3.9)

C ′
α

γ
i

∂x̃ε

∂xγ
= C̃ ′

β
ε
j

∂x̃β

∂xα

∂x̃j

∂xi
, (3.10)

with respect to (1.5).
(ii)There exists a structural linear connection ∇ of F if and only if on the

domain of each foliated chart on M there exist real smooth functions
{Fi

k
α, Ci

k
j} satisfying

Fi
k

α
∂x̃j

∂xk
= F̃h

j
β

∂x̃h

∂xi

∂x̃β

∂xα
+

δ

δxα

(
∂x̃j

∂xi

)
, (3.11)

Ci
k

j
∂x̃h

∂xk
= C̃r

h
t

∂x̃r

∂xi

∂x̃t

∂xj
+

∂2x̃h

∂xi∂xj
, (3.12)

with respect to (1.5).

According to the terminology from Section 1.2, a linear connection ∇∗ on
M is called an adapted linear connection with respect to the decomposition
(2.1) if and only if (1.2.1) and (1.2.2) are satisfied. Moreover, a pair (∇,∇′),
where ∇ and ∇′ are linear connections on D and D′ respectively determines
an adapted linear connection ∇∗ and viceversa (cf. Theorem 1.2.1). Thus from
Theorem 3.2 we deduce the following corollary.

Corollary 3.3. Let (M,F) be a foliated manifold with structural and transver-
sal distributions D and D′. Then there exist on M an adapted linear connec-
tion ∇∗ if and only if on the domain of each foliated chart on M there exist
real smooth functions {Fi

k
α, Ci

k
j , F

′
α

γ
β , C ′

α
γ

i} satisfying (3.9)–(3.12) with
respect to (1.5).

Next, we consider a structural vector field X = Xi ∂

∂xi
and from (3.6) we

deduce that its transversal and structural covariant derivatives with respect
to ∇ on D are given by

Xi|α =
δXi

δxα
+ XjFj

i
α, (3.13)

and

Xi‖j =
∂Xi

∂xj
+ XkCk

i
j , (3.14)

respectively. Similarly, the transversal and structural covariant derivatives of

a transversal vector field Y = Y α δ

δxα
with respect to ∇′ on D′ are given by
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Y α|β =
δY α

δxβ
+ Y γF ′

γ
α

β , (3.15)

and
Y α‖i =

∂Y α

∂xi
+ Y βC ′

β
α

i. (3.16)

Now, we consider an adapted linear connection ∇∗ = (∇,∇′) on (M,F) lo-
cally given by the functions {Fi

k
α, Ci

k
j , F

′
α

γ
β , C ′

α
γ

i} and an adapted ten-
sor field T of type (q, s; r, t) with local components T

i1...iq α1...αr

j1...js β1...βt
. Then the

transversal covariant derivative of T with respect to ∇∗ is defined by

T
i1...iq α1...αr

j1...js β1...βt|γ =
δT

i1...iq α1...αr

j1...js β1...βt

δxγ

+
q∑

a=1

T
i1...hia+1...iq α1...αr

j1...js β1...βt
Fh

ia
γ +

r∑
b=1

T
i1...iq α1...εαb+1...αr

j1...js β1...βt
F ′

ε
αb

γ

−
s∑

c=1

T
i1...iq α1...αr

j1...hjc+1...js β1...βt
Fjc

h
γ −

t∑
d=1

T
i1...iq α1...αr

j1...js β1...εβd+1...βt
F ′

βd
ε
γ .

(3.17)

Similarly, we define the structural covariant derivative of the adapted
tensor field T with respect to ∇∗ by

T
i1...iq α1...αr

j1...js β1...βt‖k =
∂T

i1...iq α1...αr

j1...js β1...βt

∂xk

+
q∑

a=1

T
i1...hia+1...iq α1...αr

j1...js β1...βt
Ch

ia
k +

r∑
b=1

T
i1...iq α1...εαb+1...αr

j1...js β1...βt
C ′

ε
αb

k

−
s∑

c=1

T
i1...iq α1...αr

j1...hjc+1...js β1...βt
Cjc

h
k −

t∑
d=1

T
i1...iq α1...αr

j1...js β1...εβd+1...βt
C ′

βd
ε
k.

(3.18)

In particular, for a structural 1– form ω = ωiδx
i we have:

(a) ωi|α =
δωi

δxα
− ωjFi

j
α and (b) ωi‖j =

∂ωi

∂xj
− ωkCi

k
j . (3.19)

Similarly, for a transversal 1– form θ = θαdxα we obtain:

(a) θα|β =
δθα

δxβ
− θγF ′

α
γ

β and (b) θα‖i =
∂θα

∂xi
− θγC ′

α
γ

i. (3.20)

Remark 3.1. It is noteworthy that both covariant derivatives given by (3.17)
and (3.18) define adapted tensor fields of type (q, s; r, t + 1) and (q, s + 1; r, t)
respectively.
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Next, in order to obtain the local components of curvature and torsion
tensor fields of both ∇′ and ∇ we state the following.

Lemma 3.4. Let
{

∂

∂xi
, δ

δxα

}
be a semi–holonomic frame field on a do-

main of a foliated chart on (M,F), where
δ

δxα
is given by (2.3) for any

α ∈ {n + 1, ..., n + p}. Then we have:[
δ

δxα
, ∂

∂xi

]
=

∂Aj
α

∂xi

∂

∂xj
· (3.21)

Proof. It follows by using (2.3) and properties of the Lie bracket.

An interesting geometric property of the non–holonomic basis
{

δ

δxα

}
of

Γ (D′) follows from (3.21). To state this we first give the following definition.
Let X be a vector field on an open subset V of M and Φt : V ′ −→ V be the
local flow of X around x ∈ V. Then we say that the foliation F is invariant
with respect to the action of Φt if for any leaf L with L ∩ V ′ �= ∅ we have

Φt(L ∩ V ′) ⊂ L′, (3.22)

where L′ is also a leaf of F .
Now, we prove the following.

Lemma 3.5. Let (M,F) be a foliated manifold and X a vector field on an
open subset V of M . Then the foliation F is invariant with respect to the
actions of all local flows of X if and only if

[X, Y ] ∈ Γ (D|V), ∀Y ∈ Γ (D|V). (3.23)

Proof. Let Φt be the local flow of X around x ∈ V. If Φt satisfies (3.22) then
D|V is invariant with respect to Φt∗. Then we use the following formula for
Lie bracket at a point (cf. O’Neill [O83], p. 31)

[X,Y ]x = lim
t→0

1
t

(Φ−t∗(YΦt(x)) − Yx),

and obtain [X,Y ]x ∈ Dx. Conversely, suppose that (3.23) is satisfied and
consider a foliated chart {(U , ϕ) : (xi, xα)} of M such that U ⊂ V. Then with

respect to the natural field of frames
{

∂

∂xi
, ∂

∂xα

}
we have

X|U = X
′i ∂

∂xi
+ X

′α ∂

∂xα
·
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Taking into account that [
X|U ,

∂

∂xi

]
∈ Γ (D|U ),

we deduce that X
′α do not depend on (x1, ..., xn). Next, we consider the

system of differential equations

dxi

dt
= X

′i(xj , xβ), i, j ∈ {1, ..., n},

dxα

dt
= X

′α(xβ), α, β ∈ {n + 1, ..., n + p},

whose solutions define local flows of X. If (xi
0, x

α
0 ) ∈ U is an initial condition,

then we have
Φt(xi

0, x
α
0 ) = (xj(t, xi

0, x
α
0 ), xβ(t, xi

0, x
α
0 )).

From the last p equations in the above system we deduce that xβ(t, xi
0, x

α
0 ),

β ∈ {n + 1, ..., n + p} do not depend on (xi
0). Hence Φt carries the plaque

xα = xα
0 to the plaque xβ = xβ(t, xα

0 ), which completes the proof of the
lemma.

Next, we consider the projection morphisms Q and Q′ of TM to D and
D′ with respect to (2.1) and write X ∈ Γ (TM) as follows

X = QX + Q′X. (3.24)

Then we call QX (resp. Q′X) the structural (resp. transversal) compo-
nent of X. Now we state the following interesting characterization of invariant
foliations.

Lemma 3.6. Let (M,F) and X be as in Lemma 3.5. Then F is invariant
with respect to the actions of all local flows of X if and only if the transversal
component of X is basic.

Proof. Consider a foliated chart and write X with respect to the semi–

holonomic frame field
{

∂

∂xi
, δ

δxα

}
as follows

X = Xi ∂

∂xi
+ Xα δ

δxα
· (3.25)

Then by direct calculations using (3.21) and (3.25) we obtain[
X,

∂

∂xj

]
=
(

Xα ∂Ak
α

∂xj
− ∂Xk

∂xj

)
∂

∂xk
− ∂Xα

∂xj

δ

δxα
· (3.26)

Thus the assertion follows from (3.26) by using Lemma 3.5.
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Taking into account Lemmas 3.4 and 3.5 we obtain the following.

Theorem 3.7. Let F be a foliation of M and D′ be a transversal distribution
to F . Then F is invariant with respect to local flows of all non–holonomic

vector fields
δ

δxα
, α ∈ {n + 1, ..., n + p}, given by (2.3).

Next we consider an adapted linear connection ∇∗ = (∇,∇′) on (M,F)
and denote by R∗, R and R′ the curvature tensor fields of ∇∗,∇ and ∇′

respectively. Then we have

R∗(X,Y )Z = R(X,Y )QZ + R′(X, Y )Q′Z, (3.27)

R(X, Y )QZ = ∇X∇Y QZ −∇Y ∇XQZ −∇[X,Y ]QZ, (3.28)

R′(X, Y )Q′Z = ∇′
X∇′

Y Q′Z −∇′
Y ∇′

XQ′Z −∇′
[X,Y ]Q

′Z, (3.29)

for any X, Y, Z ∈ Γ (TM). Take a semi–holonomic frame field
{

∂

∂xi
, δ

δxα

}
and put:

(a) R∗
(

δ

δxβ
, δ

δxα

)
∂

∂xi
= R

(
δ

δxβ
, δ

δxα

)
∂

∂xi
= Ri

h
αβ

∂

∂xh
,

(b) R∗
(

∂

∂xk
, δ

δxα

)
∂

∂xi
= R

(
∂

∂xk
, δ

δxα

)
∂

∂xi
= Ri

h
αk

∂

∂xh
,

(c) R∗
(

∂

∂xk
, ∂

∂xj

)
∂

∂xi
= R

(
∂

∂xk
, ∂

∂xj

)
∂

∂xi
= Ri

h
jk

∂

∂xh
,

(3.30)

and

(a) R∗
(

δ

δxγ
, δ

δxβ

)
δ

δxα
= R′

(
δ

δxγ
, δ

δxβ

)
δ

δxα
= R′

α
ε
βγ

δ

δxε
,

(b) R∗
(

∂

∂xi
, δ

δxβ

)
δ

δxα
= R′

(
∂

∂xi
, δ

δxβ

)
δ

δxα
= R′

α
ε
βi

δ

δxε
,

(c) R∗
(

∂

∂xj
, ∂

∂xi

)
δ

δxα
= R′

(
∂

∂xj
, ∂

∂xi

)
δ

δxα
= R′

α
ε
ij

δ

δxε
·

(3.31)

Then by using (3.28), (3.30), (3.8), (3.21) and taking into account that the
adapted tensor field Tα

i
β given by (2.19) is skew–symmetric with respect to

lower indices we obtain:

Ri
h

αβ =
δFi

h
α

δxβ
− δFi

h
β

δxα
+ Fi

j
αFj

h
β − Fi

j
βFj

h
α + Ci

h
jTα

j
β , (3.32)

Ri
h

αk =
∂Fi

h
α

∂xk
− δCi

h
k

δxα
+ Fi

j
αCj

h
k − Ci

j
kFj

h
α + Ci

h
j

∂Aj
α

∂xk
, (3.33)
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Ri
h

jk =
∂Ci

h
j

∂xk
− ∂Ci

h
k

∂xj
+ Ci

�
jC�

h
k − Ci

�
kC�

h
j . (3.34)

Similarly, by using (3.29), (3.31), (3.7), (2.18) and (3.21) we deduce that:

R′
α

ε
βγ =

δF ′
α

ε
β

δxγ
− δF ′

α
ε
γ

δxβ
+F ′

α
µ

βF ′
µ

ε
γ−F ′

α
µ

γF ′
µ

ε
β +C ′

α
ε
jTβ

j
γ , (3.35)

R′
α

ε
βi =

∂F ′
α

ε
β

∂xi
− δC ′

α
ε
i

δxβ
+F ′

α
µ

βC ′
µ

ε
i −C ′

α
µ

iF
′
µ

ε
β +C ′

α
ε
j

∂Aj
β

∂xi
, (3.36)

R′
α

ε
ij =

∂C ′
α

ε
i

∂xj
− ∂C ′

α
ε
j

∂xi
+ C ′

α
β

iC
′
β

ε
j − C ′

α
β

jC
′
β

ε
i. (3.37)

Remark 3.2. It is easy to check that (3.32)–(3.34) and (3.35)–(3.37) can
be also obtained from (1.2.20) and (1.2.21) respectively by replacing the non–

holonomic frame field {Ei, Eα} by the semi–holonomic frame field
{

∂

∂xi
, δ

δxα

}
.

Taking into account (3.30) and (3.31), we state the following.

Theorem 3.8. The local components of the curvature tensor field of the
adapted linear connection ∇∗ = (∇,∇′) with respect to the semi–holonomic

frame field
{

∂

∂xi
, δ

δxα

}
are given by (3.32)–(3.37).

Next, we proceed with local components for torsion tensor fields of ∇∗,∇
and ∇′. Denote by T ∗ the torsion tensor field of ∇∗ and by using (1.2.14),
(3.7), (3.8), (3.21) and (2.18) we obtain

T ∗
(

∂

∂xj
, ∂

∂xi

)
=
(
Ci

k
j − Cj

k
i

) ∂

∂xk
,

T ∗
(

∂

∂xj
, δ

δxα

)
= −T ∗

(
δ

δxα
, ∂

∂xj

)
=
(

∂Ak
α

∂xj
− Fj

k
α

)
∂

∂xk
+ C ′

α
γ

j
δ

δxγ
,

T ∗
(

δ

δxβ
, δ

δxα

)
= Tα

k
β

∂

∂xk
+ (F ′

α
γ

β − F ′
β

γ
α)

δ

δxγ
·

(3.38)

On the other hand, we set:

T ∗
(

∂

∂xj
, ∂

∂xi

)
= T ∗

i
k

j
∂

∂xk
,

T ∗
(

∂

∂xj
, δ

δxα

)
= T ∗

α
k

j
∂

∂xk
+ T ∗

α
γ

j
δ

δxγ
,

T ∗
(

δ

δxβ
, δ

δxα

)
= T ∗

α
k

β
∂

∂xk
+ T ∗

α
γ

β
δ

δxγ
·

(3.39)
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Comparing (3.38) and (3.39) we obtain the following.

Theorem 3.9. The local components of the torsion tensor field of the adapted
linear connection ∇∗ = (∇,∇′) are given by

(a) T ∗
i
k

j = Ci
k

j − Cj
k

i, (b) T ∗
α

k
j =

∂Ak
α

∂xj
− Fj

k
α,

(c) T ∗
α

γ
j = C ′

α
γ

j , (d) T ∗
α

γ
β = F ′

α
γ

β − F ′
β

γ
α,

(e) T ∗
α

k
β = Tα

k
β =

δAk
α

δxβ
− δAk

β

δxα
·

(3.40)

In Section 1.2, by using the Otsuki connections on a vector bundle we
defined a torsion tensor field for a linear connection on a distribution. More
precisely, according to (1.2.25) and (1.2.26), the linear connections ∇ and ∇′

on D and D′ have the torsion tensor fields:

T (X,QY ) = ∇XQY −∇QY QX − Q[X, QY ], (3.41)

and
T ′(X, Q′Y ) = ∇′

XQ′Y −∇′
Q′Y Q′X − Q′[X, Q′Y ], (3.42)

respectively, for any X,Y ∈ Γ (TM). Now, take the semi–holonomic frame

field
{

∂

∂xi
, δ

δxα

}
and put:

(a) T

(
∂

∂xj
, ∂

∂xi

)
= Ti

k
j

∂

∂xk
,

(b) T

(
δ

δxα
, ∂

∂xi

)
= −Tα

k
i

∂

∂xk
,

(3.43)

and

(a) T ′
(

∂

∂xj
, δ

δxα

)
= T ′

α
γ

j
δ

δxγ
,

(b) T ′
(

δ

δxβ
, δ

δxα

)
= T ′

α
γ

β
δ

δxγ
·

(3.44)

Then, by using (3.41), (3.42), (3.7), (3.8) and (3.21) we obtain

(a) Ti
k

j = Ci
k

j − Cj
k

i = T ∗
i
k

j , (b) Tα
k

i =
∂Ak

α

∂xi
− Fi

k
α = T ∗

α
k

i, (3.45)

and

(a) T ′
α

γ
j = C ′

α
γ

j = T ∗
α

γ
j , (b) T ′

α
γ

β = F ′
α

γ
β −F ′

β
γ

α = T ∗
α

γ
β . (3.46)

Therefore, we can state the following.
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Theorem 3.10. The local components of the torsion tensor fields of the struc-
tural and transversal linear connections ∇ and ∇′ with respect to the semi–

holonomic frame field
{

∂

∂xi
, δ

δxα

}
are given by (3.45) and (3.46) respectively.

Remark 3.3. The local components of the curvature and torsion tensor fields
of the structural and transversal linear connections ∇ and ∇′ with respect to
a semi–holonomic frame field define adapted tensor fields on (M,F).

Remark 3.4. The Schouten–Van Kampen and Vrănceanu connections are
examples of adapted connections on a foliated manifold. We shall make use of
them in Chapter 3 for studying foliated manifolds endowed with a Riemannian
(semi–Riemannian) metric.

2.4 Ricci and Bianchi Identities

Let (M,F) be a foliated manifold with D the structural distribution and
D′ a transversal distribution on M . Suppose that ∇ and ∇′ are structural
and transversal connections on M . In the present section we use both the
structural and transversal covariant derivatives in order to obtain Ricci and
Bianchi identities for ∇ and ∇′.

First, we consider a structural vector field U = U i ∂

∂xi
and by using (3.8),

(3.13) and (3.14) obtain

(a) ∇ δ
δxα

U = U i|α
∂

∂xi
, (b) ∇ ∂

∂xj
U = U i‖j

∂

∂xi
· (4.1)

By direct calculations using transversal and structural covariant derivatives of
adapted tensor fields (see (3.17) and (3.18)) we obtain the following covariant
derivatives of order two:

∇ δ

δxβ
∇ δ

δxα
U =

(
U i|α|β + U i|γF ′

α
γ

β

) ∂

∂xi
, (4.2)

∇ ∂

∂xj
∇ δ

δxα
U =

(
U i|α‖j + U i|γC ′

α
γ

j

) ∂

∂xi
, (4.3)

∇ δ
δxα

∇ ∂

∂xj
U =

(
U i‖j|α + U i‖hFj

h
α

) ∂

∂xi
, (4.4)

∇ ∂

∂xk
∇ ∂

∂xj
U =

(
U i‖j‖k + U i‖hCj

h
k

) ∂

∂xi
· (4.5)

Then by using (4.2)–(4.5) in (3.28) and taking into account (3.30), (2.18),
(3.21), (3.45) and (3.46) we obtain the following identities:
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U i|α|β − U i|β|α = U jRj
i
αβ − U i|γT ′

α
γ

β − U i‖kTα
k

β , (4.6)

U i|α‖j − U i‖j|α = UhRh
i
αj − U i|γC ′

α
γ

j − U i‖kTα
k

j , (4.7)

U i‖j‖k − U i‖k‖j = UhRh
i
jk − U i‖hTj

h
k. (4.8)

Next, we consider a transversal vector field Z = Zα δ

δxα
, and by using

(3.7), (3.15) and (3.16) we obtain

(a) ∇′
δ

δxβ
Z = Zα|β

δ

δxα
, (b) ∇′

∂

∂xi
Z = Zα‖i

δ

δxα
· (4.9)

Then we deduce that

∇′
δ

δxγ
∇′

δ

δxβ
Z =

(
Zα|β|γ + Zα|εF ′

β
ε
γ

) δ

δxα
, (4.10)

∇′
∂

∂xj
∇′

δ

δxβ
Z =

(
Zα|β‖j + Zα|εC ′

β
ε
j

) δ

δxα
, (4.11)

∇′
δ

δxβ
∇′

∂

∂xj
Z =

(
Zα‖j|β + Zα‖kFj

k
β

) δ

δxα
, (4.12)

∇′
∂

∂xk
∇′

∂

∂xj
Z =

(
Zα‖j‖k + Zα‖hCj

h
k

) δ

δxα
· (4.13)

Finally, by using (4.10)–(4.13) in (3.29) and taking into account (3.31), (2.18),
(3.21), (3.45) and (3.46) we obtain the identities:

Zα|β|γ − Zα|γ|β = ZεR′
ε
α

βγ − Zα|εT ′
β

ε
γ − Zα‖iTβ

i
γ , (4.14)

Zα|β‖j − Zα‖j|β = ZεR′
ε
α

βj − Zα|εC ′
β

ε
j − Zα‖iTβ

i
j , (4.15)

Zα‖j‖k − Zα‖k‖j = ZεR′
ε
α

jk − Zα‖iTj
i
k. (4.16)

According to the name given for such identities in case of a linear connection
on a manifold, we call the groups of identities {(4.6), (4.7), (4.8)} and {(4.14),
(4.15), (4.16)} the structural Ricci identities and transversal Ricci i-
dentities respectively on the foliated manifold (M,F).

In order to obtain some Bianchi identities for both the structural and
transversal linear connections ∇ and ∇′ we consider the adapted linear con-
nection ∇∗ = (∇,∇′) given by

∇∗
XY = ∇XQY + ∇′

XQ′Y, ∀X, Y ∈ Γ (TM). (4.17)

Then we recall the Bianchi identities (see Kobayashi–Nomizu [KN63], p. 135)
for the linear connection ∇∗:∑

(X,Y,Z)

{∇∗
XT ∗)(Y, Z) + T ∗(T ∗(X,Y ), Z) − R∗(X, Y )Z} = 0, (4.18)
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and ∑
(X,Y,Z)

{(∇∗
XR∗)(Y,Z) + R∗(T ∗(X, Y ), Z)} (U) = 0, (4.19)

for any X, Y, Z, U ∈ Γ (TM), where
∑

(X,Y,Z)

denotes the cyclic sum with respect

to X, Y, Z and T ∗ and R∗ are the torsion and curvature tensor fields of ∇∗.
For local expressions of (4.18) we have to consider the following cases.

Case I. X =
δ

δxγ
, Y =

δ

δxβ
, Z =

δ

δxα
·

Then by direct calculations using (3.39), (3.45), (3.46) and (3.17) we obtain(
∇∗

δ
δxγ

T ∗
)( δ

δxβ
, δ

δxα

)
= Tα

i
β|γ

∂

∂xi
+ T ′

α
ε
β|γ

δ

δxε
, (4.20)

and

T ∗
(

T ∗
(

δ

δxγ
, δ

δxβ

)
, δ

δxα

)
=
(
Tα

i
jTβ

j
γ + Tα

i
εT

′
β

ε
γ

) ∂

∂xi

+
(
C ′

α
ε
jTβ

j
γ + T ′

α
ε
µT ′

β
µ

γ

) δ

δxε
·

(4.21)

We now use (4.20), (4.21) and (3.31a) and taking into account that
{

δ

δxε

}
and

{
∂

∂xi

}
are local bases for Γ (D′) and Γ (D) respectively, we deduce the

identities: ∑
(α,β,γ)

{
Tα

i
β|γ + Tα

i
jTβ

j
γ + Tα

i
εT

′
β

ε
γ

}
= 0, (4.22)

and ∑
(α,β,γ)

{
T ′

α
ε
β|γ + C ′

α
ε
jTβ

j
γ + T ′

α
ε
µT ′

β
µ

γ − R′
α

ε
βγ

}
= 0, (4.23)

where
∑

(α,β,γ)

denotes the cyclic sum with respect to (α, β, γ).

Similarly, we obtain the local expressions of (4.18) for the next three cases.

Case II. X =
∂

∂xk
, Y =

δ

δxβ
, Z =

δ

δxα
·

Tα
i
β‖k + Tβ

i
k|α − Tα

i
k|β + Tk

i
jTα

j
β − T ′

α
ε
βTε

i
k + Tα

i
jTβ

j
k

−Tβ
i
jTα

j
k + Tα

i
εC

′
β

ε
k − Tβ

i
εC

′
α

ε
k − Rk

i
αβ = 0,

(4.24)
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T ′
α

γ
β‖k + C ′

β
γ

k|α − C ′
α

γ
k|β − T ′

α
ε
βC ′

ε
γ

k + C ′
α

γ
jTβ

j
k

−C ′
β

γ
jTα

j
k + T ′

α
γ

εC
′
β

ε
k − T ′

β
γ

εC
′
α

ε
k

+R′
β

γ
αk − R′

α
γ

βk = 0.

(4.25)

Case III. X =
∂

∂xk
, Y =

∂

∂xj
, Z =

δ

δxα
·

Tα
i
j‖k − Tα

i
k‖j + Tj

i
k|α + Tα

i
hTj

h
k + Tk

i
hTα

h
j − Tj

i
hTα

h
k

+ C ′
α

ε
kTε

i
j − C ′

α
ε
jTε

i
k + Rj

i
αk − Rk

i
αj = 0,

(4.26)

C ′
α

γ
j‖k − C ′

α
γ

k‖j

+ C ′
α

γ
hTj

h
k + C ′

α
ε
kC ′

ε
γ

j − C ′
α

ε
jC

′
ε
γ

k − R′
α

ε
jk = 0.

(4.27)

Case IV. X =
∂

∂xk
, Y =

∂

∂xj
, Z =

∂

∂xi
·

∑
(i,j,k)

{
Ti

h
j‖k + Ti

h
rTj

r
k − Ri

h
jk

}
= 0. (4.28)

The local expressions for (4.19) are obtained by considering eight cases.

Case I. X =
δ

δxγ
, Y =

δ

δxβ
, Z =

δ

δxα
, U =

∂

∂xi
·

∑
(α,β,γ)

{
Ri

h
αβ|γ + Ri

h
αjTβ

j
γ + Ri

h
αεT

′
β

ε
γ

}
= 0. (4.29)

Case II. X =
δ

δxγ
, Y =

δ

δxβ
, Z =

∂

∂xj
, U =

∂

∂xi
·

Ri
h

βγ‖j + Ri
h

γj|β − Ri
h

βj|γ + Ri
h

jkTβ
k

γ − Ri
h

εjT
′
β

ε
γ

+Ri
h

βkTγ
k

j − Ri
h

γkTβ
k

j + Ri
h

βεC
′
γ

ε
j

−Ri
h

γεC
′
β

ε
j = 0.

(4.30)

Case III. X =
δ

δxγ
, Y =

∂

∂xk
, Z =

∂

∂xj
, U =

∂

∂xi
·

Ri
h

jk|γ + Ri
h

γj‖k − Ri
h

γk‖j + Ri
h

γrTj
r
k + Ri

h
krTγ

r
j

−Ri
h

jrTγ
r
k + Ri

h
εjC

′
γ

ε
k − Ri

h
εkC ′

γ
ε
j = 0.

(4.31)
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Case IV. X =
∂

∂xh
, Y =

∂

∂xk
, Z =

∂

∂xj
, U =

∂

∂xi
·∑

(j,k,h)

{
Ri

r
jk‖h + Ri

r
jsTk

s
h

}
= 0. (4.32)

Case V. X =
δ

δxγ
, Y =

δ

δxβ
, Z =

δ

δxα
, U =

δ

δxµ
·∑

(α,β,γ)

{
R′

µ
ε
αβ|γ + R′

µ
ε
γiTα

i
β + R′

µ
ε
γνT ′

α
ν

β

}
= 0. (4.33)

Case VI. X =
δ

δxγ
, Y =

δ

δxβ
, Z =

∂

∂xj
, U =

δ

δxµ
·

R′
µ

ν
βγ‖j + R′

µ
ν

γj|β − R′
µ

ν
βj|γ + R′

µ
ν

jkTβ
k

γ

−R′
µ

ν
εjT

′
β

ε
γ + R′

µ
ν

βkTγ
k

j − R′
µ

ν
γkTβ

k
j

+R′
µ

ν
βεC

′
γ

ε
j − R′

µ
ν

γεC
′
β

ε
j = 0.

(4.34)

Case VII. X =
δ

δxγ
, Y =

∂

∂xk
, Z =

∂

∂xj
, U =

δ

δxµ
·

R′
µ

ν
jk|γ + R′

µ
ν

γj‖k − R′
µ

ν
γk‖j + R′

µ
ν

γhTj
h

k + R′
µ

ν
khTγ

h
j

−R′
µ

ν
jhTγ

h
k + R′

µ
ν

εjC
′
γ

ε
k − R′

µ
ν

εkC ′
γ

ε
j = 0.

(4.35)

Case VIII. X =
∂

∂xh
, Y =

∂

∂xk
, Z =

∂

∂xj
, U =

δ

δxµ
·∑

(j,k,h)

{
R′

µ
ν

jk‖h + R′
µ

ν
jrTk

r
h

}
= 0. (4.36)

We call {(4.22), (4.24), (4.26), (4.28), (4.29)–(4.32)} and {(4.23), (4.25),
(4.27), (4.33)–(4.36)} the structural Bianchi identities and transversal
Bianchi identities respectively, corresponding to the adapted linear connec-
tion ∇∗ = (∇,∇′) on (M,F).

Remark 4.1. The above Ricci and Bianchi identities were obtained by
Bejancu–Farran [BF03a]. If in particular, we consider the foliation determined
by the vertical bundle on the tangent bundle of a Finsler manifold, then we
obtain all the Ricci and Bianchi identities for a Finsler connection (see Mat-
sumoto [Mat86], pp.79,80, Bejancu–Farran [BF00a], pp.34,35).



3

FOLIATIONS ON SEMI–RIEMANNIAN
MANIFOLDS

In this chapter, we apply the results obtained in Chapter 1 and Chapter 2 to
the elegant situation of a semi–Riemannian manifold with a non–degenerate
foliation. In this case, there is a canonical distribution that is transversal to the
foliation. In Sections 3.1 and 3.2 we study the Vrănceanu connection and the
Schouten–Van Kampen connection and relate their geometry to the geometry
of the foliation, the integrability of the transversal distribution, and to the
geometry of the ambient manifold.

This approach enables us to extend the notion of foliations with bundle–
like metrics to semi–Riemannian manifolds and to study their geometry. This
is done in Section 3.3.

Section 3.4 is devoted to foliations with certain geometric features. Here
we study foliations that are totally geodesic, totally umbilical, or minimal.

In the last section we discuss degenerate foliations of codimension one. This
will be the first step towards degenerate foliations (of arbitrary codimension)
that will be considered in the next chapter.

3.1 The Vrănceanu Connection on a Foliated
Semi–Riemannian Manifold

Let (M, g) be an (n + p)–dimensional semi–Riemannian manifold and F be
an n–foliation on M . We assume that the tangent distribution D to the fo-
liation is semi–Riemannian, that is, the induced metric tensor field on D is
non–degenerate and of constant index on M (see Section 1.4). Then we call F
a non–degenerate foliation on (M, g), and (M, g,F) is a foliated semi–
Riemannian manifold. The complementary orthogonal distribution D⊥ to
D in TM is semi–Riemannian too, and we take it as the transversal dis-
tribution to the foliation F . Also, we call D the structural distribution
of F . The projection morphisms of TM on D and D⊥ with respect to the
decomposition

TM = D ⊕D⊥, (1.1)

95
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are denoted by Q and Q′ respectively. Then according to Theorem 1.5.1. we
can state the following.

Theorem 1.1. Let D and D⊥ be the structural and transversal distributions
on the foliated semi–Riemannian manifold (M, g,F). Then we have the fol-
lowing assertions:

(i) There exists a unique linear connection D on D satisfying the conditions:

DXQY − DQY QX − Q[X, QY ] = 0, ∀X, Y ∈ Γ (TM), (1.2)

and

(DQXg)(QY, QZ) = QX(g(QY, QZ)) − g(DQXQY, QZ)

− g(QY, DQXQZ) = 0, ∀X, Y, Z ∈ Γ (TM).
(1.3)

(ii)There exists a unique linear connection D⊥ on D⊥ satisfying the condi-
tions:

D⊥
XQ′Y − D⊥

Q′Y Q′X − Q′[X, Q′Y ] = 0, ∀X, Y ∈ Γ (TM), (1.4)

and

(D⊥
Q′Xg)(Q′Y, Q′Z) = Q′X(g(Q′Y, Q′Z)) − g(D⊥

Q′XQ′Y,Q′Z)

− g(Q′Y, D⊥
Q′XQ′Z) = 0, ∀X, Y, Z ∈ Γ (TM).

(1.5)

Moreover, from (1.5.3) and (1.5.4) we see that D is given by

2g(DQXQY, QZ) = QX(g(QY, QZ)) + QY (g(QZ, QX))

−QZ(g(QX, QY )) + g([QX, QY ], QZ)

− g([QY, QZ], QX) + g([QZ, QX], QY ),

(1.6)

and
DQ′XQY = Q[Q′X, QY ], (1.7)

for any X, Y, Z ∈ Γ (TM). Similarly, we deduce that D⊥ is given by

2g(D⊥
Q′XQ′Y, Q′Z) = Q′X(g(Q′Y, Q′Z)) + Q′Y (g(Q′Z, Q′X))

−Q′Z(g(Q′X, Q′Y )) + g([Q′X, Q′Y ], Q′Z)

− g([Q′Y,Q′Z], Q′X) + g([Q′Z, Q′X], Q′Y ),

(1.8)

and
D⊥

QXQ′Y = Q′[QX, Q′Y ], (1.9)

for any X,Y, Z ∈ Γ (TM). We keep for D and D⊥ the names as intrinsic
linear connections on D and D⊥ respectively (see Section 1.5).
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It is common in the literature to use the quotient bundle D̃ = TM/D
when studying the geometry of the foliation F . However, when M is a semi–
Riemannian manifold, then D̃ is metric isomorphic to D⊥. Indeed, if v ∈ TxM
defines the equivalence class [v] ∈ TxM/Dx, then kx : TxM/Dx −→ D⊥

x ;
kx([v]) = Q′(v) defines a metric isomorphism k : (D̃, k∗g) −→ (D⊥, g), where
k∗g is the pull–back of g by k. By using this isomorphism it is easily seen that
our differential operator D⊥ : Γ (D)×Γ (D⊥) −→ Γ (D⊥) defined by (1.9) gives
what is known in the literature by Bott connection on D⊥ ≈ D̃. Though
the Bott connection defines only structural covariant derivatives of transversal
vector fields, it has all the properties of a usual linear connection on D⊥. This
is a consequence of the fact that the Bott connection is the restriction of our
intrinsic connection D⊥ to Γ (D)×Γ (D⊥).

Next, we consider the Levi–Civita connection ∇̃ on (M, g). Then compa-
ring both (1.6) and (1.8) with (1.5.10) and taking into account (1.7) and (1.9)
we obtain

(a) DXQY = Q∇̃QXQY + Q[Q′X, QY ],

(b) D⊥
XQ′Y = Q′∇̃Q′XQ′Y + Q′[QX, Q′Y ],

(1.10)

for any X, Y ∈ Γ (TM). By using (1.10b) and the above isomorphism we
deduce that the intrinsic connection D⊥ on D⊥ is just the linear connection
∇ defined by the formula (3.3) in Tondeur [Ton97], p.21, which has been used
throughout that book and in several other works on foliations.

The adapted linear connection on (M, g,F) determined by the pair (D, D⊥)
is the Vrănceanu connection ∇∗ defined by the Levi–Civita connection ∇̃ (cf.
Theorem 1.5.3).

By using some general formulas for adapted linear connections (see (1.2.4)
and (1.3.16)) we deduce that the Vrănceanu connection is given either by

∇∗
XY = DXQY + D⊥

XQ′Y, (1.11)

or by

∇∗
XY = Q∇̃QXQY + Q′∇̃Q′XQ′Y + Q[Q′X,QY ] + Q′[QX,Q′Y ], (1.12)

for any X, Y ∈ Γ (TM). Moreover, from Corollary 1.5.4 we see that the Vrăn-
ceanu connection ∇∗ on (M, g,F) is the only adapted linear connection on
(M,D,D⊥) satisfying the conditions:

(a) (∇∗
QXg)(QY, QZ) = 0, (b) (∇∗

Q′Xg)(Q′Y, Q′Z) = 0, (1.13)

and
(a) Q(T ∗(X,QY )) = 0, (b) Q′(T ∗(X, Q′Y )) = 0, (1.14)

for any X, Y ∈ Γ (TM), where T ∗ is the torsion tensor field of ∇∗ given by

T ∗(X,Y ) = ∇∗
XY −∇∗

Y X − [X, Y ]. (1.15)
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Finally, we note that the semi–Riemannian metric g is not parallel with respect
to any of the intrinsic connections. More precisely, using (1.7), (1.9) and (1.11)
we deduce that

(DQ′Xg)(QY,QZ) = (∇∗
Q′Xg)(QY,QZ) = Q′X(g(QY,QZ))

− g([Q′X, QY ], QZ) − g([Q′X, QZ], QY ),
(1.16)

and

(D⊥
QXg)(Q′Y,Q′Z) = (∇∗

QXg)(Q′Y, Q′Z) = QX(g(Q′Y,Q′Z))

− g([QX, Q′Y ], Q′Z) − g([QX, Q′Z], Q′Y ),
(1.17)

for any X, Y, Z ∈ Γ (TM).
Now, we want to develop a study of the Vrănceanu connection in local

coordinate systems. First, we consider the natural frame field
{

∂

∂xi
, ∂

∂xα

}
,

where
∂

∂xi
∈ Γ (D), i ∈ {1, ..., n}, and put

(a) gij = g

(
∂

∂xi
, ∂

∂xj

)
, (b) giα = g

(
∂

∂xi
, ∂

∂xα

)
· (1.18)

Taking into account that
{

δ

δxα

}
, α ∈ {n + 1, ..., n + p}, given by (2.2.3) are

now orthogonal to
{

∂

∂xi

}
, i ∈ {1, ..., n}, we obtain

gjα − Ai
αgij = 0. (1.19)

Since [gij ] is the matrix of local components of the semi–Riemannian metric
induced by g on D, it has an inverse which we denote by [ghk]. Then from
(1.19) we deduce that

Ai
α = gijgjα. (1.20)

Next, we consider the semi–holonomic frame field
{

∂

∂xi
, δ

δxα

}
, where

δ

δxα
=

∂

∂xα
− Ai

α

∂

∂xi
, (1.21)

and Ai
α are given by (1.20). With respect to this frame field we set:

(a) ∇∗
∂

∂xj

∂

∂xi
= D ∂

∂xj

∂

∂xi
= Ci

k
j

∂

∂xk
,

(b) ∇∗
δ

δxα

∂

∂xi
= D δ

δxα

∂

∂xi
= Di

k
α

∂

∂xk
,

(1.22)

and



3.1 The Vrănceanu Connection on a Foliated Semi–Riemannian Manifold 99

(a) ∇∗
∂

∂xi

δ

δxα
= D⊥

∂

∂xi

δ

δxα
= Lα

γ
i

δ

δxγ
,

(b) ∇∗
δ

δxβ

δ

δxα
= D⊥

δ

δxβ

δ

δxα
= Fα

γ
β

δ

δxγ
·

(1.23)

Also we put

gαβ = g

(
δ

δxα
, δ

δxβ

)
, (1.24)

and denote by [gγµ] the inverse matrix of [gαβ ].

Proposition 1.2. The local coefficients of the intrinsic connections D and

D⊥ with respect to the semi–holonomic frame field
{

∂

∂xi
, δ

δxα

}
are given by

(a) Ci
k

j =
1
2

gkh

(
∂ghi

∂xj
+

∂ghj

∂xi
− ∂gij

∂xh

)
, (b) Di

k
α =

∂Ak
α

∂xi
, (1.25)

and

(a) Lα
β

i = 0, (b) Fα
β

γ =
1
2

gβµ

(
δgµα

δxγ
+

δgµγ

δxα
− δgαγ

δxµ

)
, (1.26)

respectively.

Proof. By direct calculations using (1.6)–(1.9), (1.11), (1.18a), (1.22)–(1.24),
(2.2.18) and (2.3.21).

Corollary 1.3. The local coefficients of the Vrănceanu connection with res-

pect to the semi–holonomic frame field
{

∂

∂xi
, δ

δxα

}
are given by (1.25) and

(1.26).

Remark 1.1. By using the Cartan method of differential forms, Vaisman
[Vai71] obtained the local coefficients given by (1.25) and (1.26) on a foliated
Riemannian manifold (M, g,F). He named the linear connection given locally
by (1.25) and (1.26) the second connection on (M, g,F), keeping the name
first connection for Levi–Civita connection on (M, g). On the other hand,
by using (1.12) we can easily see that the adapted connection ∇F defined
by Reinhart [Rei83], p. 147 is just the Vrănceanu connection ∇∗ on (M, g,F).
Taking into account that Vrănceanu [VG31] constructed first this connection
on non–holonomic manifolds (see Sections 1.3 and 1.5), throughout the book,
we call ∇∗ given invariantly by (1.2) and locally by (1.25) and (1.26), the
Vrănceanu connection on (M, g,F).

Now, we deduce the local components of the torsion and curvature tensor
fields of ∇∗. First, we prove the following.
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Proposition 1.4. The local components of the torsion tensor field T ∗ of the
Vrănceanu connection are given by

(a) T ∗
i
k

j = 0, (b) T ∗
α

k
i = 0, (c) T ∗

α
γ

i = 0,

(d) T ∗
α

γ
β = 0, (e) T ∗

α
k

β =
δAk

α

δxβ
− δAk

β

δxα
,

(1.27)

where Ak
α are given by (1.20).

Proof. By using (1.25) and (1.26) into (2.3.40).

As T ∗
α

k
β is the integrability tensor for the transversal distribution (see

(2.2.18)–(2.2.20)), we can state the following.

Theorem 1.5. The transversal distribution to the foliation F is integrable if
and only if the Vrănceanu connection on (M, g,F) is torsion–free.

Finally, by using (1.22) and (1.23) in (2.3.32)–(2.3.37) we obtain the fol-
lowing.

Proposition 1.6. The local components of the curvature tensor fields R and
R′ of the intrinsic connections D and D⊥ with respect to the semi–holonomic

frame field
{

∂

∂xi
, δ

δxα

}
are given by

Ri
h

αβ =
δDi

h
α

δxβ
− δDi

h
β

δxα
+ Di

j
α Dj

h
β

−Di
j
β Dj

h
α + Ci

h
j T ∗

α
j
β , (1.28)

Ri
h

αk =
∂Di

h
α

∂xk
− δCi

h
k

δxα
+ Di

j
α Cj

h
k

−Ci
j
κ Dj

h
α + Ci

h
j Dk

j
α, (1.29)

Ri
h

jk =
∂Ci

h
j

∂xk
− ∂Ci

h
k

∂xj
+ Ci

�
j C�

h
k − Ci

�
k C�

h
j , (1.30)

R′
α

ε
βγ =

δFα
ε
β

δxγ
− δFα

ε
γ

δxβ
+ Fα

µ
β Fµ

ε
γ − Fα

µ
γ Fµ

ε
β , (1.31)

R′
α

ε
βi =

∂Fα
ε
β

∂xi
, (1.32)

R′
α

ε
ij = 0, (1.33)

where in the left hand side we use the notations from (2.3.30) and (2.3.31).
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Taking into account that ∇∗ = (D,D⊥) we deduce that all the local
components of the curvature tensor field of the Vrănceanu connection are
given by (1.28)–(1.33).

By using the local coefficients of the Vrănceanu connection ∇∗ on (M, g,F)
we can define the transversal and structural Vrănceanu covariant deri-
vatives of an adapted tensor field T =

(
T

i1...iqα1...αr

j1...jsβ1...βt

)
as follows (see (2.3.17)

and (2.3.18)):

T
i1...iqα1...αr

j1...jsβ1...βt|γ =
δT

i1...iqα1...αr

j1...jsβ1...βt

δxγ

+
q∑

a=1

T
i1...hia+1...iqα1...αr

j1...jsβ1...βt
Dh

ia
γ +

r∑
b=1

T
i1...iqα1...εαb+1...αr

j1...jsβ1...βt
Fε

αb
γ

−
s∑

c=1

T
i1...iqα1...αr

j1...hjc+1...jsβ1...βt
Djc

h
γ −

t∑
d=1

T
i1...iqα1...αr

j1...jsβ1...εβd+1...βt
Fβd

ε
γ ,

(1.34)

and

T
i1...iqα1...αr

j1...jsβ1...βt‖k =
∂T

i1...iqα1...αr

j1...jsβ1...βt

∂xk

+
q∑

a=1

T
i1...hia+1...iqα1...αr

j1...jsβ1...βt
Ch

ia
k −

s∑
c=1

T
i1...iqα1...αr

j1...hjc+1...jsβ1...βt
Cjc

h
k,

(1.35)

respectively.
When the transversal (resp. structural) Vrănceanu covariant derivative of

T vanishes identically on M , we say that T is transversal (resp. structural)
Vrănceanu parallel. As examples we have the adapted tensor fields gij and
gαβ which are structural and transversal Vrănceanu parallel respectively (see
Proposition 1.8).

Remark 1.2. Each of these covariant derivatives is defined by using both in-
trinsic connections D and D⊥. If we consider only the connection
D⊥ = (Lα

γ
i, Fα

γ
β) on the transversal distribution (which was considered

so far in the literature), none of the above covariant derivatives can be de-
fined. Thus from this point of view, our study is completely different from
what is known in the literature.

Due to (1.26a) the structural Vrănceanu covariant derivative has a sub-
stantially simplified form in comparison with (2.3.18). In particular, for a
transversal tensor field T =

(
Tα1...αr

β1...βt

)
, from (1.35) we deduce that

Tα1...αr

β1...βt‖k =
∂Tα1...αr

β1...βt

∂xk
· (1.36)

Then taking into account the definition of basic transversal tensor fields (see
(2.2.14)) and (1.36) we obtain the following.
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Theorem 1.7. A transversal tensor field on a foliated semi–Riemannian ma-
nifold (M, g,F) is basic if and only if it is structural Vrănceanu parallel.

We now exemplify the above covariant derivatives for three classes of
adapted tensor fields: vector fields, 1–forms and semi–Riemannian metrics.
First, if X = Xi∂/∂xi and Y = Y αδ/δxα are structural and transversal
vector fields, then we have

(a) Xi|γ =
δXi

δxγ
+ XjDj

i
γ , (b) Xi‖k =

∂Xi

∂xk
+ XjCj

i
k, (1.37)

and
(a) Y α|γ =

δY α

δxγ
+ Y βFβ

α
γ , (b) Y α‖k =

∂Y α

∂xk
, (1.38)

respectively. Similarly, for ω = ωiδx
i and θ = θαdxα, we obtain:

(a) ωi|γ =
δωi

δxγ
− ωjDi

j
γ , (b) ωi‖k =

∂ωi

∂xk
− ωjCi

j
k, (1.39)

and
(a) θα|γ =

δθα

δxγ
− θβFα

β
γ , (b) θα‖k =

∂θα

∂xk
, (1.40)

respectively. Finally, we note that the semi–Riemannian metric on D (resp.
D⊥) is a structural (resp. transversal) tensor field with local components gij

(resp. gαβ) given by (1.18a) (resp. (1.24)).

Proposition 1.8. The structural and transversal Vrănceanu covariant deri-
vatives of gij and gαβ are given by

(a) gij‖k = 0, (b) gij|γ =
δgij

δxγ
− ghj

∂Ah
γ

∂xi
− gih

∂Ah
γ

∂xj
,

(c) gij‖k = 0,

(1.41)

and
(a) gαβ‖k =

∂gαβ

∂xk
, (b) gαβ|γ = 0, (c) gαβ |γ = 0, (1.42)

respectively.

Proof. We replace {QX, QY,QZ} in (1.13a) by
{

∂

∂xk
, ∂

∂xj
, ∂

∂xi

}
and by

using (1.18a), (1.22a) and (1.35) for gij , we obtain (1.41a). In a similar way
(1.42b) follows from (1.13b). Next, we apply (1.34) for gij and by using (1.25b)
we infer (1.41b). Also, from (1.36), (1.42a) follows. Finally, (1.41c) and (1.42c)
are consequences of (1.41a) and (1.42b) respectively.

We note that (1.41b) is more complicated than all the other covariant
derivatives. For this reason we present an equivalent formula to (1.41b). First
we define the local functions
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Γiαj =
1
2

(
∂giα

∂xj
+

∂gjα

∂xi
− ∂gij

∂xα

)
, (1.43)

where gij and giα are given by (1.18). Then we state the following.

Proposition 1.9. The transversal Vrănceanu covariant derivative of gij is
given by

gij|γ = 2
(
Ci

k
j gkα − Γiγj

)
. (1.44)

Proof. Take the partial derivatives of gihAh
γ = giγ with respect to xj and

obtain

gih

∂Ah
γ

∂xj
=

∂giγ

∂xj
− Ah

γ

∂gih

∂xj
· (1.45)

Then by using (1.21), (1.45) and (1.43) in (1.41b) we deduce that

gij|γ =
∂gij

∂xγ
− Ah

γ

∂gij

∂xh
+ Ah

γ

∂gjh

∂xi
− ∂gjγ

∂xi
+ Ah

γ

∂gih

∂xj
− ∂giγ

∂xj

= Ah
γ

(
∂gjh

∂xi
+

∂gih

∂xj
− ∂gij

∂xh

)
− 2Γiγj .

(1.46)

Thus (1.44) follows from (1.46) by using (1.20) and (1.25a).

Finally, from Section 2.4 we derive the Ricci and Bianchi identities for the
Vrănceanu connection. First, we use (1.27) and (1.33) in (2.4.6)–(2.4.8) and
(2.4.14)–(2.4.16), and deduce that the structural and transversal Ricci
identities for ∇∗ are given by:

U i|α|β − U i|β|α = U jRj
i
αβ − U i‖kT ∗

α
k

β , (1.47)

U i|α‖j − U i‖j|α = UhRh
i
αj , (1.48)

U i‖j‖k − U i‖k‖j = UhRh
i
jk, (1.49)

and
Zα|β|γ − Zα|γ|β = ZεR′

ε
α

βγ − ∂Zα

∂xk
T ∗

β
k

γ , (1.50)

Zα|β‖j − Zα‖j|β = ZεR′
ε
α

βj , (1.51)

Zα‖j‖k − Zα‖k‖j = 0, (1.52)

respectively.
Next, by using (1.27) and (1.26a) in (2.4.22), (2.4.24), (2.4.26), (2.4.28)

and (2.4.29)–(2.4.32), we obtain the following structural Bianchi identities
for the Vrănceanu connection:
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(α,β,γ)

{
T ∗

α
i
β|γ
}

= 0, (1.53)

T ∗
α

i
β‖k = Rk

i
αβ , (1.54)

Rj
i
αk = Rk

i
αj , (1.55)∑

(i,j,k)

{
Ri

h
jk

}
= 0, (1.56)

∑
(α,β,γ)

{
Ri

h
αβ|γ + Ri

h
αj T ∗

β
j
γ

}
= 0, (1.57)

Ri
h

βγ‖j + Ri
h

γj|β − Ri
h

βj|γ + Ri
h

jk T ∗
β

k
γ = 0, (1.58)

Ri
h

jk|γ + Ri
h

γj‖k − Ri
h

γk‖j = 0, (1.59)∑
(j,k,h)

{
Ri

r
jk‖h

}
= 0. (1.60)

Similarly, by using (1.27), (1.26a) and (1.33) in (2.4.23), (2.4.25), (2.4.27) and
(2.4.33)–(2.4.36) we deduce the following transversal Bianchi identities
for the Vrănceanu connection: ∑

(α,β,γ)

{R′
α

ε
βγ} = 0, (1.61)

R′
α

γ
βk = R′

β
γ

αk, (1.62)∑
(α,β,γ)

{
R′

µ
ε
αβ|γ + R′

µ
ε
γi T ∗

α
i
β

}
= 0, (1.63)

R′
µ

ν
βγ‖j + R′

µ
ν

γj|β − R′
µ

ν
βj|γ = 0, (1.64)

R′
µ

ν
γj‖k = R′

µ
ν

γk‖j . (1.65)

Because of (1.26a) and (1.33) the identities (2.4.27) and (2.4.36) become trivial
for the Vrănceanu connection. All these Ricci and Bianchi identities have been
obtained by the authors in Bejancu–Farran [BF03a].

Remark 1.3. The above Bianchi identities shed more light on the curvatu-
re tensor field of the Vrănceanu connection. For example, the identity (1.54)
gives an elegant formula for Rk

i
αβ (compare with (1.28)). Also, from (1.55)

and (1.62) we deduce that Rj
i
αk and R′

α
γ

βk are symmetric adapted tensor
fields with respect to indices (jk) and (αβ) respectively.
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3.2 The Schouten–Van Kampen Connection
on a Foliated Semi–Riemannian Manifold

Let (M, g,F) be an (n + p)–dimensional foliated semi–Riemannian manifold
with structural and transversal distributions D and D⊥ of rank n and p respec-
tively. In this section we develop a study that is inspired by the theory of non–
degenerate submanifolds of semi–Riemannian manifolds (cf. O’Neill [O83],
p. 97), and obtain some induced geometrical objects on both distributions D
and D⊥. In particular, the pair of induced connections (∇,∇⊥) determines
the Schouten–Van Kampen connection induced by the Levi–Civita connection
on (M, g) (see Section1.5).

Let ∇̃ be the Levi–Civita connection on (M, g). Then according to the
theory we developed in Section 1.5 (see (1.5.17)–(1.5.20)) we have

∇̃XQY = ∇XQY + h(X, QY ), (2.1)

and
∇̃XQ′Y = h′(X,QY ) + ∇⊥

XQ′Y, (2.2)

where we set:

(a) ∇XQY = Q∇̃XQY, (b) ∇⊥
XQ′Y = Q′∇̃XQ′Y, (2.3)

and
(a) h(X, QY ) = Q′∇̃XQY, (b) h′(X, Q′Y ) = Q∇̃XQ′Y, (2.4)

for any X, Y ∈ Γ (TM). Here, ∇ and ∇⊥ are the induced connections on D
and D⊥ respectively. Also, we call h : Γ (D)×Γ (D) −→ Γ (D⊥) given by

h(QX,QY ) = Q′∇̃QXQY, ∀X, Y ∈ Γ (TM), (2.5)

the second fundamental form of the foliation F . Clearly, at any point
x ∈ M , h coincides with the second fundamental form of the leaf of F passing
through x. Similarly, we call h′ : Γ (D⊥)×Γ (D⊥) −→ Γ (D) defined by

h′(Q′X, Q′Y ) = Q∇̃Q′XQ′Y, ∀X, Y ∈ Γ (TM), (2.6)

the second fundamental form of the transversal distribution D⊥.

Lemma 2.1. The induced geometric objects ∇,∇⊥, h and h′ satisfy the fol-
lowing equalities:
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(a) ∇QXQY −∇QY QX − [QX, QY ] = 0,

(b) h(QX, QY ) = h(QY,QX),

(c) ∇Q′XQY − DQ′XQY = h′(QY, Q′X),

(d) ∇⊥
QY Q′X − D⊥

QY Q′X = h(Q′X, QY ),

(e) h′(Q′X,Q′Y ) − h′(Q′Y, Q′X) = Q[Q′X, Q′Y ],

(f) ∇⊥
Q′XQ′Y −∇⊥

Q′Y Q′X = Q′[Q′X, Q′Y ],

(g) ∇QXQY = DQXQY,

(h) ∇⊥
Q′XQ′Y = D⊥

Q′XQ′Y,

(k) (∇Xg)(QY, QZ) = X(g(QY, QZ)) − g(∇XQY, QZ)
−g(QY,∇XQZ) = 0,

(�) (∇⊥
Xg)(Q′Y,Q′Z) = X(g(Q′Y,Q′Z)) − g(∇⊥

XQ′Y, Q′Z)
−g(Q′Y,∇⊥

XQ′Z) = 0,

(2.7)

for any X, Y, Z ∈ Γ (TM), where D and D⊥ are the intrinsic connections on
D and D⊥ respectively.

Proof. By direct calculations using (2.3), (2.4), (1.7), (1.9), (1.10) and taking
into account that D is integrable and ∇̃ satisfies (1.5.8) and (1.5.9).

Corollary 2.2. Let (M, g,F) be a foliated semi–Riemannian manifold. Then
we have the assertions:

(i) The second fundamental form of the foliation is symmetric.
(ii)The second fundamental form of the transversal distribution is symmetric

if and only if D⊥ is integrable.

Next, from (2.1) and (2.2) we obtain

(a) ∇̃QXQY = ∇QXQY + h(QX, QY ),

(b) ∇̃QXQ′Y = −AQ′Y QX + ∇⊥
QXQ′Y,

(2.8)

where AQ′Y : Γ (D) → Γ (D) is an F (M)–linear operator given by

AQ′Y QX = −h′(QX, Q′Y ) = −Q∇̃QXQ′Y. (2.9)

According to the terminology from the theory of submanifolds we call AQ′Y
the shape operator of the foliation F with respect to the normal section
Q′Y . Similarly, we write:

(a) ∇̃Q′XQ′Y = h′(Q′X, Q′Y ) + ∇⊥
Q′XQ′Y,

(b) ∇̃Q′XQY = ∇Q′XQY − A′
QY Q′X,

(2.10)
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where A′
QY : Γ (D⊥) → Γ (D⊥) is an F (M)–linear operator given by

A′
QY Q′X = −h(Q′X, QY ) = −Q′∇̃Q′XQY. (2.11)

Then we call A′
QY the shape operator of the transversal distribution with

respect to QY ∈ Γ (D).
Taking into account that h is symmetric (see (2.7b)) and by using (1.5.23)–

(1.5.25) and the assertion (iii) of Lemma 1.5.5 we state the following:

Lemma 2.3. The second fundamental forms and the shape operators of F
and D⊥ satisfy:

(a) g(h(QX,QY ), Q′Z) + g(h′(QX, Q′Z), QY ) = 0,

(b) g(h′(Q′X, Q′Y ), QZ) + g(h(Q′X, QZ), Q′Y ) = 0,

(c) g(AQ′ZQX, QY ) = g(QX, AQ′ZQY ) = g(h(QX, QY ), Q′Z),

(d) g(A′
QZQ′X,Q′Y ) = g(h′(Q′X, Q′Y ), QZ),

(2.12)

for any X, Y, Z ∈ Γ (TM).

Corollary 2.4.
(i) The shape operator of the foliation F is self–adjoint.
(ii)The shape operator of the transversal distribution is self–adjoint if and

only if D⊥ is integrable.

The basic properties of foliations with special second fundamental forms
are presented in Section 3.4.

Next, we denote by ∇◦ the Schouten–Van Kampen connection determined
by the Levi–Civita connection ∇̃ on (M, g), that is, we have (cf. (1.3.15))

∇◦
XY = Q∇̃XQY + Q′∇̃XQ′Y, ∀X, Y ∈ Γ (TM). (2.13)

Remark 2.1. From (2.13) we can see that the almost product connec-
tion defined by Reinhart [Rei83], p. 147 is just the Schouten–Van Kampen
connection.

Next, from Theorem 1.5.7 it follows that ∇◦ is an adapted linear connec-
tion on (M,D,D⊥) determined by the pair of induced connections (∇,∇⊥).
Hence we have:

∇◦
XY = ∇XQY + ∇⊥

XQ′Y, ∀X, Y ∈ Γ (TM). (2.14)

Taking into account that on (M, g,F) we also constructed the Vrănceanu
connection ∇∗, we should investigate the case ∇◦ = ∇∗. This was done in a
more general setting in Section 1.5 for two complementary orthogonal semi–
Riemannian distributions. Thus we only recall here the following important
result (see Theorem 1.5.8).
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Theorem 2.5. Let (M, g,F) be a foliated semi–Riemannian manifold. Then
the Schouten–Van Kampen and Vrănceanu connections coincide if and only if
D⊥ is integrable and M is a locally semi–Riemannian product of local leaves
of D and D⊥.

Now, we find the local coefficients for the Schouten–Van Kampen connec-
tion. First, we put:

(a) ∇◦
∂

∂xj

∂

∂xi
= ∇ ∂

∂xj

∂

∂xi
= C◦

i
k

j
∂

∂xk
,

(b) ∇◦
δ

δxα

∂

∂xi
= ∇ δ

δxα

∂

∂xi
= D◦

i
k

α
∂

∂xk
,

(2.15)

and
(a) ∇◦

∂

∂xi

δ

δxα
= ∇⊥

∂

∂xi

δ

δxα
= L◦

α
β

i
δ

δxβ
,

(b) ∇◦
δ

δxγ

δ

δxα
= ∇⊥

δ
δxγ

δ

δxα
= F ◦

α
β

γ
δ

δxβ
·

(2.16)

Also we need some local components for the bilinear mappings h and h′:

(a) h

(
δ

δxα
, ∂

∂xi

)
= hα

β
i

δ

δxβ
,

(b) h′
(

∂

∂xi
, δ

δxα

)
= h′

i
k

α
∂

∂xk
·

(2.17)

Proposition 2.6. The local coefficients of the induced connections ∇ and ∇⊥

with respect to the semi–holonomic frame field
{

∂

∂xi
, δ

δxα

}
are given by

(a) C◦
i
k

j = Ci
k

j =
1
2

gkh

(
∂ghi

∂xj
+

∂ghj

∂xi
− ∂gij

∂xh

)
,

(b) D◦
i
k

α =
1
2

gkj

(
δgij

δxα
+ Di

k
α gkj − Dj

k
α gki

)
= Di

k
α + h′

i
k

α,

(2.18)

and

(a) L◦
α

β
i =

1
2

gβγ

(
∂gαγ

∂xi
− T ∗

α
k

γ gki

)
= hα

β
i,

(b) F ◦
α

β
γ = Fα

β
γ =

1
2

gβµ

(
δgµα

δxγ
+

δgµγ

δxα
− δgαγ

δxµ

)
,

(2.19)

respectively, where (Ci
k

j , Di
k

α, Fα
β

γ) are the local coefficients of ∇∗ and
T ∗

α
k

β is the integrability tensor of D⊥.
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Proof. By using (2.7g), (2.7h), (2.15a) and (2.16b) we obtain (2.18a) and
(2.19b). Next, we use (2.3), (1.5.10), (2.15b), (2.16a), (2.2.18), (2.3.21), and
we deduce the first equalities in (2.18b) and (2.19a). Finally, the second equa-
lities in (2.18b) and (2.19a) follow by using (2.7c), (2.7d), (2.15b), (2.16a),
(1.22b), (1.23a) and (2.17).

Corollary 2.7. The local coefficients of the Schouten–Van Kampen connec-

tion with respect to the semi–holonomic frame field
{

∂

∂xi
, δ

δxα

}
are given by

(2.18) and (2.19).

As a consequence of (2.7�) and (2.7k) we state the following.

Proposition 2.8. The Schouten–Van Kampen connection ∇◦ is a metric
adapted linear connection on (M, g,F), that is, we have

(a) gij‖◦k = 0,

(b) gij|◦γ = 0,

(c) gαβ‖◦k = 0,

(d) gαβ|◦γ = 0.

(2.20)

where we denoted by |◦ and ‖◦ the transversal and structural covariant deri-
vatives with respect to Schouten–Van Kampen connection.

Also, by using (2.3.40), (2.18), (2.19) and (1.25b) we obtain the following.

Proposition 2.9. The local components of the torsion tensor field T ◦ of the
Schouten–Van Kampen connection are given by

(a) T ◦
i
k

j = 0,

(b) T ◦
i
k

α = −T ◦
α

k
i = h′

i
k

α,

(c) T ◦
α

γ
β = 0,

(d) T ◦
α

β
i = L◦

α
β

i = hα
β

i,

(e) T ◦
α

k
β = T ∗

α
k

β =
δAk

α

δxβ
− δAk

β

δxα
·

(2.21)

Finally, by using (2.3.32)–(2.3.37), (2.18), (2.19), (1.28)–(1.33), (2.3.17)
and (2.3.18) we deduce all the local components of R◦ as they are stated in
the next proposition.

Proposition 2.10. The local components of the curvature tensor field R◦ of
the Schouten–Van Kampen connection are given by
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(a) R◦
i
t
αβ=Ri

t
αβ+h′

i
t
α|β−h′

i
t
β|α+h′

i
j
α h′

j
t
β−h′

i
j
β h′

j
t
α,

(b) R◦
i
t
αk=Ri

t
αk+h′

i
t
α‖k,

(c) R◦
i
t
jk = Ri

t
jk,

(d) R◦
α

ε
βγ = R′

α
ε
βγ + hα

ε
j T ∗

β
j
γ ,

(e) R◦
α

ε
βi = R′

α
ε
βi − hα

ε
i|β ,

(f) R◦
α

ε
ij =

∂hα
ε
i

∂xj
− ∂hα

ε
j

∂xi
+ hα

β
i hβ

ε
j − hα

β
j hβ

ε
i,

(2.22)

where the terms appearing on the right hand side of these equations are the
local components of the torsion and curvature tensor fields of the Vrănceanu
connection ∇∗, and all covariant derivatives are considered with respect to ∇∗.

3.3 Foliated Semi–Riemannian Manifolds
with Bundle–Like Metrics

The purpose of this section is to study the geometry of foliations with bundle–
like metrics on semi–Riemannian manifolds. This important class of foliations
was introduced by Reinhart [Rei59a] in the Riemannian case. First we in-
troduce those foliations and then we find several of their geometric charac-
terizations. This is followed by determining explicit expressions for the local
components of the curvature tensor of the intrinsic connection D⊥ on D⊥,
and for the transversal Bianchi identities with respect to the Vrănceanu con-
nection. It is noteworthy that the curvature tensor field of D⊥ satisfies the
same identities as the curvature tensor field of the Levi–Civita connection.
This enables us to define and study foliated semi–Riemannian manifolds of
constant transversal Vrănceanu curvature and transversal Einstein foliated
semi–Riemannian manifolds.

Let (M, g,F) be an (n + p)–dimensional foliated semi–Riemannian mani-
fold, where F is a non–degenerate n–foliation. Consider the intrinsic connec-
tion D⊥ on the transversal distribution D⊥ (see (1.8) and (1.9)), and give
the following definition. We say that the semi–Riemannian metric g on M
is bundle–like for the non–degenerate foliation F if the induced semi–Rie-
mannian metric on D⊥ by g (denoted by the same symbol g) is parallel with
respect to the intrinsic connection D⊥, that is, we have (see (1.5.28))

(D⊥
Xg)(Q′Y, Q′Z) = X(g(Q′Y,Q′Z)) − g(D⊥

XQ′Y, Q′Z)

− g(Q′Y, D⊥
XQ′Z) = 0, ∀X, Y, Z ∈ Γ (TM).

(3.1)

When for a given foliation F there exists a semi–Riemannian (Riemannian)
metric g on M which is bundle–like for F , we say that F is a semi–Rieman-
nian (Riemannian) foliation on (M, g), and g is bundle–like for F . An
explanation of the above name for F is given later on in this section.
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Comparing with the terminology we introduced in Section 1.7 on non–
holonomic manifolds, we see that g is bundle–like if and only if g is Vrăncea-
nu–parallel on D⊥.

Moreover, taking into account (1.5), (1.17) and (3.1) we state the following.

Theorem 3.1. The semi–Riemannian metric g on M is bundle–like for F if
and only if we have

QX(g(Q′Y, Q′Z)) − g([QX, Q′Y ], Q′Z) − g([QX,Q′Z], Q′Y ) = 0, (3.2)

for any X, Y, Z ∈ Γ (TM).

Remark 3.1. By using the metric isomorphism D⊥ ≈ TM/D it is easy to
see that the characterization of a bundle–like metric stated in Theorem 3.1
coincides with the one presented in Tondeur [Ton97], p. 43, for a Riemannian
metric. Also, in the above reference, the foliation F is called a Riemannian
foliation or a foliation with holonomy invariant transversal bundle.

Since it was introduced by Reinhart, the class of foliations with bundle–like
metrics on Riemannian manifolds was the focus of investigation and attention
of many geometers. Several interesting results appeared. We will not present
all those results here, but we refer the reader to Tondeur for references to the
original papers.

Our definition of foliations with bundle–like metric is not the definition
given originally by Reinhart. However, those two definitions are equivalent as
we see below.

To reach the original definition given by Reinhart, we consider locally a

semi–holonomic frame field
{

∂

∂xi
, δ

δxα

}
on (M, g,F), where

δ

δxα
are given

by (1.21). Then, by using the dual semi–holonomic frame field {δxi, dxα},
where we put

δxi = dxi + Ai
α dxα, (3.3)

we obtain the following local expression for the semi–Riemannian metric g:

glocal = gij(xk, xγ)δxi δxj + gαβ(xk, xγ)dxα dxβ , (3.4)

where gij and gαβ are defined by (1.18a) and (1.24) respectively.

Theorem 3.2. The semi–Riemannian metric g on M is bundle–like if and
only if the transversal local components gαβ of g define a basic transversal
tensor field, that is, we have

∂gαβ

∂xi
= 0, ∀ i ∈ {1, ..., n}, α, β ∈ {n + 1, ..., n + p}. (3.5)
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Proof. Replace {QX, Q′Y, Q′Z} from (3.2) by
{

∂

∂xi
, δ

δxα
, δ

δxβ

}
and by

using (1.24) we obtain

∂gαβ

∂xi
− g

([
∂

∂xi
, δ

δxα

]
, δ

δxβ

)
− g

([
∂

∂xi
, δ

δxβ

]
, δ

δxα

)
= 0.

Taking into account that the above Lie brackets do not have transversal com-
ponents (see (2.3.21)), we deduce that (3.2) and (3.5) are equivalent.

Remark 3.2. The condition (3.5) for the semi–Riemannian metric g repre-
sents the definition given by Reinhart [Rei59a], p.122, for Riemannian bundle–
like metrics.

Remark 3.3. By using (3.5) we also see that g is bundle–like for F if and
only if the transversal tensor field gαβ is structural Vrănceanu parallel.

Due to (3.4) and Theorem 3.2 we deduce that the local expression for the
bundle–like semi–Riemannian metric g is the following

glocal = gij(xk, xγ)δxi δxj + gαβ(xγ)dxα dxβ . (3.6)

Remark 3.4. An intuitive geometrical meaning of a bundle–like Riemannian
metric g was given by Reinhart [Rei59a], p. 123. Namely, he proved that g
is bundle–like if and only if each geodesic in (M, g) which is tangent to D⊥

at one point remains tangent for its entire length. This characterization of a
bundle–like Riemannian metric gives a reason for the name totally geodesic
distribution for D⊥ (cf. Reinhart [Rei83], p. 150). When the leaves of the
foliation are totally geodesic immersed in (M, g), Yorozu [Y83] proved that g
is bundle–like if and only if all geodesics in M make a constant angle with
leaves.

Several characterizations of bundle–like metrics are presented in the next
theorem.

Theorem 3.3. Let (M, g,F) be a foliated semi–Riemannian manifold, where
F is a non–degenerate foliation. Then the following assertions are equivalent:

(i) g is a bundle–like metric for F .
(ii)The induced metric g on D⊥ is parallel with respect to Vrănceanu connec-

tion ∇∗.
(iii)The Levi–Civita connection ∇̃ on (M, g) satisfies any one (and hence all)

of the following equalities:

g(∇̃Q′Y QX, Q′Z) + g(∇̃Q′ZQX, Q′Y ) = 0, (3.7)

g(QX, ∇̃Q′Y Q′Z + ∇̃Q′ZQ′Y ) = 0, (3.8)

2g(∇̃Q′Y Q′Z, QX) = g([Q′Y, Q′Z], QX), (3.9)
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(iv) QX is a D⊥–Killing vector field for any X ∈ Γ (TM).
(v) The second fundamental form h′ of D⊥ is given by

h′(Q′Y, Q′Z) =
1
2

Q[Q′Y, Q′Z], ∀Y, Z ∈ Γ (TM). (3.10)

(vi) The symmetric second fundamental form h
′s of D⊥ vanishes identically

on M .
(vii)For any X ∈ Γ (TM) the shape operator A′

QX of D⊥ is skew–symmetric
with respect to g, that is, we have

g(A′
QXQ′Y, Q′Z) + g(Q′Y,A′

QXQ′Z) = 0, ∀Y, Z ∈ Γ (TM). (3.11)

(viii)The torsion tensor field of Vrănceanu connection ∇∗ is given by

T ∗(X,Y ) = −2h′(Q′X, Q′Y ), ∀X, Y ∈ Γ (TM). (3.12)

Proof. The equivalence of (i) and (ii) follows by using (3.1) and (1.11). By
using (1.5.8) and (1.5.9) for ∇̃ in (3.2) we deduce that (3.2) and (3.7) are
equivalent. The same conditions (1.5.8) and (1.5.9) for ∇̃ imply the equivalence
of (3.7), (3.8) and (3.9). Thus (i) and (iii) are equivalent. By using (1.5.35) for
D⊥ we infer the equivalence of (3.7) and (iv) and therefore of (iii) and (iv).
Next, by using (2.6) and (3.9) we obtain

g(h′(Q′Y,Q′Z), QX) = g(Q∇̃Q′Y Q′Z,QX) =
1
2

g(Q[Q′Y,Q′Z], QX),

which proves the equivalence of (3.9) and (3.10). Taking into account (1.5.34)
we deduce that the symmetric second fundamental form h

′s of D⊥ is given by

h
′s(Q′Y, Q′Z) =

1
2

(h′(Q′Y, Q′Z) + h′(Q′Z, Q′Y )),

∀Y, Z ∈ Γ (TM).
(3.13)

Then by using (2.6), (3.8) and (3.13) we deduce the equivalence of (vi) and
(iii). Clearly, (vi) and (vii) are equivalent via (2.12d). Finally, since h is sym-
metric, by using (1.6.14) we obtain the equivalence of (vi) and (viii).

Theorem 3.4. Let (M, g,F) be a foliated semi–Riemannian manifold, where
F is a non–degenerate foliation and g is bundle–like for F . Then the following
assertions are equivalent:

(i) D⊥ is an integrable distribution.
(ii)The second fundamental form h′ of D⊥ vanishes identically on M , that is,

we have
h′(Q′X, Q′Y ) = 0, ∀X, Y ∈ Γ (TM). (3.14)
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(iii) The F (M)-bilinear mapping h given by (2.4a) satisfies

h(Q′X, QY ) = 0, ∀X, Y ∈ Γ (TM). (3.15)

Proof. The equivalence of (i) and (ii) follows from (3.10). Next, by using
(2.12b) we obtain

g(h(Q′X, QY ), Q′Z) + g(h′(Q′X,Q′Z), QY ) = 0, ∀X, Y, Z ∈ Γ (TM),

which proves that (ii) and (iii) are equivalent.

Examples of foliations with bundle–like metric on Riemannian (semi–Rie-
mannian) manifolds are abundent. Here we present some of them.

Example 3.5. Let X be a non–zero Killing vector field on a semi–Rieman-
nian manifold (M, g), that is LX g = 0 where L is the Lie derivative. This is
equivalent to saying that X and g satisfy (cf. O’Neill [O83], p. 251)

g(∇̃Y X, Z) + g(∇̃ZX,Y ) = 0, ∀Y,Z ∈ Γ (TM),

where ∇̃ is the Levi–Civita connection on (M, g). Then the flow of X defines a
bundle–like foliation on (M, g). This follows from the assertion (iv) of Theorem
3.3, taking into account that any Killing vector field is D⊥–Killing.

Example 3.6. Let M be the total space of a fiber bundle over a semi–Rie-
mannian manifold (N,h). Denote by F the foliation by components of fibers
of M (see Example 2.1.4), and by D the tangent distribution to F . Let D′

be a transversal distribution to D and k be a semi–Riemannian metric on D.
The paracompactness of M and N guarantees the existence of D′ and of a
Riemannian metric k on D. Let {(U , ϕ) : (xi, xα)} be a foliated chart on M

which induces the semi–holonomic frame field
{

∂

∂xi
, δ

δxα

}
, i ∈ {1, ..., n},

α ∈ {n+1, ..., n+ p}. As in this case (xα) are the local coordinates on N , the
local components of h are given by

hαβ(xn+1, ..., xn+p) = h

(
∂

∂xα
, ∂

∂xβ

)
·

Also, since
∂

∂xi
∈ Γ (D) we put

kij(xi, xα) = k

(
∂

∂xi
, ∂

∂xj

)
·

Then we define a semi–Riemannian metric g on M , locally given by:
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g

(
δ

δxα
, δ

δxβ

)
= hαβ , g

(
δ

δxα
, ∂

∂xi

)
= g

(
∂

∂xi
, δ

δxα

)
= 0,

g

(
∂

∂xi
, ∂

∂xj

)
= kij .

Since hαβ depend only on {xn+1, ..., xn+p}, by Theorem 3.2 we conclude that
g is bundle–like for F .

Example 3.7. Let (M, g) and (N, h) be two semi–Riemannian manifolds and
π : M −→ N be a submersion of M onto N . Then the set of fibers of π defines
a foliation F whose tangent distribution we denote by D (see Example 2.1.2).
A vector field X on M is called vertical (resp. horizontal) if X ∈ Γ (D)
(resp. X ∈ Γ (D⊥)), where D⊥ is the complementary orthogonal distribution
to D in TM with respect to g. If the fibers π−1(x), x ∈ N , are semi–Rie-
mannian submanifolds of M and π∗ preserves the lengths of horizontal vector
fields, then π is called a semi–Riemannian submersion (cf. O’Neill [O83],
p. 212). In this case, if {(U , ϕ) : (xi, xα)} is a foliated chart on M we have

π∗

(
δ

δxα

)
=

∂

∂xα
and therefore

gαβ = g

(
δ

δxα
, δ

δxβ

)
= h

(
∂

∂xα
, ∂

∂xβ

)
= hαβ(xn+1, ..., xn+p).

Thus by Theorem 3.2 g is bundle–like for F .

More examples of foliations with bundle–like metric arise as level sets of
mappings or as orbits of group actions (see Reinhart [Rei83], pp. 161–163).

As we defined a bundle–like metric on a foliated semi–Riemannian mani-
fold by a condition on the intrinsic connection D⊥ on D⊥, we expect that this
connection, in this case, must have some special properties. We give some of
these properties in the next theorem.

Theorem 3.5. Let (M, g,F) be a foliated semi–Riemannian manifold as in
Theorem 3.4. Then we have the following assertions:

(i) The local coefficients of the intrinsic connection D⊥ on D⊥ with respect

to
{

∂

∂xi
, δ

δxα

}
are given by

(a) Lα
β

i = 0, (b) Fα
β

γ =
1
2

gβµ

(
∂gµα

∂xγ
+

∂gµγ

∂xα
− ∂gαγ

∂xµ

)
. (3.16)

(ii)The local components of the curvature tensor field R′ of D⊥ are given by
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(a) R′
α

ε
βγ =

∂Fα
ε
β

∂xγ
− ∂Fα

ε
γ

∂xβ
+ Fα

µ
β Fµ

ε
γ − Fα

µ
γ Fµ

ε
β ,

(b) R′
α

ε
βi = 0,

(c) R′
α

ε
ij = 0.

(3.17)

(iii)The transversal Bianchi identities for the Vrănceanu connection are given
by

(a)
∑

(α,β,γ)

{R′
α

ε
βγ} = 0,

(b)
∑

(α,β,γ)

{R′
µ

ε
αβ|γ} = 0,

(c) R′
α

ε
βγ‖j =

∂R′
α

ε
βγ

∂xj
= 0.

(3.18)

Proof. First, (3.16) follows from (1.26) by using (3.5). Then taking into ac-
count that gαβ and gαβ are functions of (xγ) alone, from (3.16b) we deduce
that Fα

β
γ are so. Thus (3.17) follows from (1.31), (1.32) and (1.33). Finally,

we use (3.17b) and (3.17c) in (1.61)–(1.65) and obtain (3.18).

Next, we need (3.18) expressed in an invariant form. As the Vrănceanu
connection ∇∗ on (M, g,F) is an adapted connection on M , from (2.3.27) we
deduce that

R∗(X, Y )Q′Z = R′(X, Y )Q′Z, ∀X, Y, Z ∈ Γ (TM), (3.19)

where R∗ and R′ are the curvature tensors of ∇∗ and D⊥ respectively. Taking
into account that g is bundle–like, that is, g is Vrănceanu–parallel on D⊥, we
can apply results from Section 1.7, but for the transversal distribution D⊥.
First we put

R′(Q′U,Q′Z, Q′X, Q′Y ) = g(R′(Q′X, Q′Y )Q′Z, Q′U),

∀X, Y, Z, U ∈ Γ (TM).
(3.20)

It is easy to see that R′ defined by (3.20) is a transversal tensor field of type
(0, 0; 0, 4) (see Section 2.3). Its main properties are given next.

Theorem 3.6. Let (M, g,F) be as in Theorem 3.4. Then the curvature tensor
field R′ of the intrinsic connection D⊥ on D⊥ satisfies the following identities:

(a) R′(Q′U,Q′Z, Q′X, Q′Y ) + R′(Q′U,Q′Z, Q′Y, Q′X) = 0,

(b) R′(Q′U,Q′Z, Q′X.Q′Y ) + R′(Q′Z,Q′U,Q′X, Q′Y ) = 0,

(c) R′(Q′U,Q′Z, Q′X,Q′Y ) = R′(Q′X, Q′Y, Q′U,Q′Z),

(d)
∑

(Q′Z,Q′X,Q′Y )

{R′(Q′U,Q′Z,Q′X, Q′Y )} = 0,

(3.21)

for any X, Y, Z, U ∈ Γ (TM).
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Proof. First, we suppose that D⊥ is integrable. Then, by using (1.6.29),
(3.19), (3.14), (1.6.13) and (1.6.14) we deduce that

R′(Q′U,Q′Z, Q′X, Q′Y ) = g(R̃(Q′X, Q′Y )Q′Z,Q′U)

= R̃(Q′U,Q′Z,Q′X, Q′Y ),
(3.22)

where R̃ is the curvature tensor field of the Levi–Civita connection ∇̃ on
(M, g). As R̃ satisfies all identities (3.21) (cf. O’Neill [O83], p.75), from (3.22)
we conclude that they are also satisfied by R′. In case D⊥ is not integrable we
apply Lemma 1.7.1 and Corollary 1.7.2 for D⊥, and by using (3.19) we obtain
(3.21).

Theorem 3.7. Let (M, g,F) be as in Theorem 3.4. Then we have∑
(Q′X,Q′Y,Q′Z)

{(
D⊥

Q′XR′) (Q′Y, Q′Z)
}

(Q′U) = 0, ∀X, Y, Z ∈ Γ (TM). (3.23)

Proof. By using (3.12) and (2.6) we deduce that T ∗(X, Y ) ∈ Γ (D), for any
X, Y ∈ Γ (TM). Then by (3.19) and (3.17b) we infer that

R∗(T ∗(Q′X, Q′Y ), Q′Z)Q′U = R′(T ∗(Q′X, Q′Y ), Q′Z)Q′U = 0. (3.24)

Finally, by using (3.24) in (2.4.19) and taking into account that

∇∗
XQ′Y = D⊥

XQ′Y, ∀X, Y ∈ Γ (TM), (3.25)

we obtain (3.23).

Remark 3.8. Clearly, (3.21d) and (3.23) represent the coordinate–free form
of (3.18a) and (3.18b) respectively. However, we presented here new proofs
based on the geometry of distributions developed so far.

In case D⊥ is integrable and g is bundle–like for F , from (1.6.5) we deduce
that

R̃(Q′U,Q′Z, Q′X, Q′Y ) = g(R⊥(Q′X, Q′Y )Q′Z,Q′U), (3.26)

where R⊥ is the curvature tensor field of the induced connection on D⊥.
Thus the sectional curvature of any leaf of D⊥ is just the restriction of the
sectional curvature of (M, g) to non–degenerate planes lying in D⊥. This is
not surprising because by (3.14) any leaf of D⊥ is totally geodesic immersed
in (M, g).

Next we consider the case when D⊥ is not integrable but g is bundle–
like for F . Thus (M, g,F) is a foliated semi–Riemannian manifold, where F
is a non–degenerate foliation and g is bundle–like for F , but (M, g,D⊥) is
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a semi–Riemannian non–holonomic manifold (see the terminology in Section
1.7). Then according to (1.7.14) and (3.19), we can define the Vrănceanu
sectional curvature of D⊥ as a real–valued function K ′ on the set of all
non–degenerate planes in D⊥, given by

K ′(Q′X ∧ Q′Y ) =
R′(Q′X, Q′Y, Q′X, Q′Y )

∆(Q′X, Q′Y )
, (3.27)

where at any point x ∈ M , {Q′X, Q′Y } represents a basis of a non–degenerate
plane in D⊥

x . When K ′ does not depend on the non–degenerate planes in D⊥

we say that D⊥ is of scalar Vrănceanu sectional curvature K ′.
Now, we are able to state a theorem which is a generalization of Schur

Theorem from Riemannian (semi–Riemannian) geometry.

Theorem 3.8. Let (M, g,F) be a foliated connected semi–Riemannian mani-
fold, where F is a non–degenerate foliation and g is bundle–like for F . Suppose
that the transversal distribution D⊥ is of scalar Vrănceanu sectional curvature
K ′. Then K ′ is a constant, provided D⊥ is a p-distribution with p > 2.

Proof. First we note that K ′ depends on (xα) alone. This is a consequence of
(3.27), taking into account that both Rα

µ
βγ and gαβ depend on (xα) alone.

Then we consider the 4–linear mapping

F : (Γ (D⊥))4 −→ F (M); F (Q′U,Q′Z, Q′X, Q′Y )

= K ′(xα)(g(Q′U,Q′X)g(Q′Z, Q′Y ) − g(Q′Z,Q′X)g(Q′U,Q′Y )).

It is easy to check that F satisfies the same identities (3.21) which were stated
for R′. Thus F is a D⊥–curvature–like mapping satisfying

K ′(xα) =
F (Q′X, Q′Y,Q′X, Q′Y )

∆(Q′X, Q′Y )
·

Hence, by Corollary 1.7.4 we deduce that

R′(Q′U,Q′Z,Q′X, Q′Y ) = K ′(xα)(g(Q′U,Q′X)g(Q′Z,Q′Y )

− g(Q′Z,Q′X)g(Q′U,Q′Y )),

which is equivalent to

R′(Q′X, Q′Y )Q′Z = K ′(xα)(g(Q′Z,Q′Y )Q′X − g(Q′Z, Q′X)Q′Y ). (3.28)

Taking into account that g is parallel with respect to the intrinsic connection
D⊥ (cf. (3.1)), from (3.28) we obtain

(D⊥
Q′UR′)(Q′X, Q′Y )Q′Z

= Q′U(K ′(xα))(g(Q′Z, Q′Y )Q′X − g(Q′Z,Q′X)Q′Y ).
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Then by using (3.23) we infer that

0 = Q′U(K ′(xα))(g(Q′Z, Q′Y )Q′X − g(Q′Z, Q′X)Q′Y )

+ Q′X(K ′(xα))(g(Q′Z, Q′U)Q′Y − g(Q′Z, Q′Y )Q′U)

+ Q′Y (K ′(xα))(g(Q′Z,Q′X)Q′U − g(Q′Z, Q′U)Q′X).

(3.29)

Since p > 2, for an arbitrary Q′X, we may choose Q′Y and Q′Z such that
Q′X, Q′Y and Q′Z are mutually orthogonal nowhere zero vector fields. Finally,

take Q′U = Q′Z and Q′X =
δ

δxα
in (3.29) and obtain

0 =
δK ′

δxα
=

∂K ′

∂xα
− Ai

α

∂K ′

∂xi
·

As K ′ depends on (xα) alone, we deduce that
∂K ′

∂xα
= 0, for any

α ∈ {n + 1, ..., n + p}, that is, K ′ is a constant on M .

Remark 3.9. When D = {0}, that is D⊥ = TM , the intrinsic connection on
D⊥ is just the Levi–Civita connection on M , and thus Theorem 3.8 becomes
the well known Schur Theorem on (M, g).

If K ′ is a constant on M then we say that (M, g,F) is a foliated manifold of
constant transversal Vrănceanu curvature. Then from (3.28) we deduce
that the curvature tensor field R′ of the intrinsic connection D⊥ satisfies

R′(Q′X, Q′Y )Q′Z = c{g(Q′Z, Q′Y )Q′X − g(Q′Z,Q′X)Q′Y }, (3.30)

for any X, Y, Z ∈ Γ (TM), provided (M, g,F) is of constant transversal Vrăn-
ceanu curvature c. By using a general result about Vrănceanu curvature of
distributions (see Corollary 1.7.8) we may state the following interesting re-
sult.

Theorem 3.9. Let M be an open submanifold of the Euclidean space (IRm, g)
and (M, g,F) be a foliated Riemannian manifold such that g is bundle–like
and (M, g,D⊥) is a Riemannian non–holonomic manifold. Then we have the
assertions:

(i) At any point of M the Vrănceanu sectional curvature of D⊥ must be non–
negative.

(ii) If (M, g,F) is of constant transversal Vrănceanu curvature c, then c > 0.
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The example presented at the end of Section 1.7 proves the existence
of foliated Riemannian manifolds of positive constant transversal Vrănceanu
curvature. Thus the problem of classifying foliated Riemannian (semi–Rie-
mannian) manifolds of constant transversal Vrănceanu curvature is a natural,
interesting and non-easy open problem that deserves to be addressed.

Now we are in a position to introduce the transversal Ricci tensor and
transversal scalar curvature of a semi–Riemannian foliated manifold (M, g,F).
To this end we consider an orthonormal frame field {Eα}, α ∈ {n+1, ..., n+p}
for the transversal distribution D⊥, and denote by {εα} the signature of
{Eα}, that is εα = g(Eα, Eα). Then we define the transversal Ricci tensor
Rictr by (see (3.20))

Rictr(Q′X, Q′Y ) =
n+p∑

α=n+1

εαR′(Eα, Q′Y,Eα, Q′X). (3.31)

It is easy to check that Rictr is independent of the choice of the orthonormal
frame field. Moreover, when g is bundle–like for F , by using (3.21c) we deduce
that Rictr is a symmetric adapted tensor field on M of type (0, 0; 0, 2). Next

we consider the non–holonomic frame field
{

δ

δxα

}
defined by (1.21) and put

(a) Eα = Eγ
α

δ

δxγ
and (b)

δ

δxα
= E

γ

α Eγ . (3.32)

Then we obtain (see (1.24))

(a) gαβ =
n+p∑

γ=n+1

εγE
γ

αE
γ

β and (b) gαβ =
n+p∑

γ=n+1

εγEα
γ Eβ

γ . (3.33)

We also put

Rictr

(
δ

δxβ
, δ

δxα

)
= R′

αβ ,

and by using (3.31) and (3.33) we deduce that

R′
αβ = R′

α
γ

βγ . (3.34)

Finally, by using (3.31), (3.27) and (1.7.13) we obtain

Rictr(Eγ , Eγ) = εγ

n+p∑
α=n+1
α�=γ

K ′(Eα ∧ Eγ), (3.35)

for any vector field Eγ from the orthonormal frame field {Eα} on D⊥.
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The transversal scalar curvature of (M, g,F) is a function on M de-
noted by Str and defined by

Str =
n+p∑

α=n+1

εα Rictr(Eα, Eα), (3.36)

where {Eα} is an orthonormal frame field in Γ (D⊥). Then by using (3.36)
and (3.33b) we obtain

Str = gαβR′
αβ . (3.37)

Also, taking into account (3.36), (3.31) and (3.27) we can express the transver-
sal scalar curvature by means of Vrănceanu sectional curvature K ′ of D⊥, as
follows

Str =
∑
α
=β

K ′(Eα ∧ Eβ) = 2
∑
α<β

K ′(Eα ∧ Eβ). (3.38)

Theorem 3.10. Let (M, g,F) be a foliated connected semi–Riemannian ma-
nifold, where F is a non–degenerate foliation and g is bundle–like for F . If
Rictr = λg, where λ is a smooth function on M , then λ is necessarily a
constant provided D⊥ is a p-distribution with p > 2.

Proof. First we put
R′

αβγµ = gβεR
′
α

ε
γµ. (3.39)

Then we see that (3.21a) and (3.21b) imply

R′
αβγµ = −R′

βαγµ = −R′
αβµγ . (3.40)

Also, by using (3.34), (3.39) and the hypothesis on Rictr we obtain

R′
αβ = gγµR′

αγβµ = λgαβ . (3.41)

Taking into account (3.39), (1.42b) and the Bianchi identities (3.18b) we de-
duce that

R′
αβγµ|δ + R′

αβµδ|γ + R′
αβδγ|µ = 0. (3.42)

Contracting (3.42) by gαγgβµ and using (1.42c), (3.40), (1.42b) and (3.41) we
obtain

(p − 2)λ|δ = 0.

As p > 2, we conclude that λ|δ = 0, that is (see (1.21))

0 = λ|α =
δλ

δxα
=

∂λ

∂xα
− Ai

α

∂λ

∂xi
·

Finally, from (3.41) we deduce that λ is a function of (xα) alone, and thus
∂λ

∂xi
= 0, for all i ∈ {1, ..., n}. Hence

∂λ

∂xα
= 0, for all α ∈ {n + 1, ..., n + p}.

As M is connected, we deduce that λ is a constant on M .
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According to the terminology from Riemannian (semi–Riemannian) geo-
metry, we call (M, g,F) a transversal Einstein foliated semi–Rieman-
nian manifold, if the transversal Ricci tensor satisfies

Rictr = λg, (3.43)

where λ is a constant on M . By using (3.43) and (3.36) we deduce that
λ = Str/p, and therefore (3.43) becomes

Rictr =
Str

p
g or R′

αβ =
Str

p
gαβ . (3.44)

Theorem 3.11. Let (M, g,F) be a foliated connected semi–Riemannian ma-
nifold, where F is a non–degenerate foliation and g is bundle–like for F . If
(M, g,F) is of constant transversal Vrănceanu curvature then it is transversal
Einstein.

Proof. Let {Eα} be an orthonormal basis in Γ (D⊥). Then any Q′X ∈ Γ (D⊥)
is expressed as follows (see Lemma 1.4.1)

Q′X =
n+p∑

α=n+1

εαg(Q′X, Eα)Eα, εα = g(Eα, Eα). (3.45)

This implies

g(Q′X, Q′Y ) =
n+p∑

α=n+1

εαg(Q′X, Eα)g(Q′Y,Eα), (3.46)

for any Q′X,Q′Y ∈ Γ (D⊥). Now, by using (3.31), (3.20), (3.30) and (3.46)
we obtain

Rictr(Q′X,Q′Y ) = c

n+p∑
α=n+1

{g(Q′X, Q′Y ) − εαg(Q′X, Eα)g(Q′Y, Eα)}

= c(p − 1)g(Q′X, Q′Y ).
(3.47)

Thus (M, g,F) is transversal Einstein.

The next theorem is a generalization of a result obtained by Schouten and
Struik [SS21].

Theorem 3.12. Let (M, g,F) be an (n+3)–dimensional transversal Einstein
semi–Riemannian foliated manifold, where F is a non–degenerate n–foliation
and g is bundle–like for F . Then (M, g,F) is of constant transversal Vrăn-
ceanu curvature.



3.3 Foliated Semi–Riemannian Manifolds with Bundle–Like Metrics 123

Proof. Let {E1, E2, E3} be an orthonormal frame field in Γ (D⊥). Then by
using (3.35) and (3.43) we calculate Rictr(Et, Et), t ∈ {1, 2, 3}, and obtain

K ′(E1 ∧ E2) + K ′(E1 ∧ E3) = K ′(E1 ∧ E2) + K ′(E2 ∧ E3)

= K ′(E1 ∧ E3) + K ′(E2 ∧ E3) = λ.

Thus we have K ′(E1 ∧ E2) = K ′(E1 ∧ E3) = K ′(E2 ∧ E3) =
λ

2
, which

completes the proof of the theorem.

We end this section by describing a geometrically interesting class of fo-
liations with bundle–like metric. This is the class of transversally symmetric
foliations introduced by Tondeur and Vanhecke [TV90]. Roughly speaking,
these are Riemannian foliations whose transversal geometry is locally model-
led on a Riemannian symmetric space. To be more specific we proceed as
follows.

Let F be an n–foliation of an (n + p)–dimensional manifold M and
{(U , ϕ) : (xi, xα)} be a foliated chart on M . Taking into account that any
submersion is an open mapping (cf. Brickell–Clark [BC70], p. 87) and by
using Remark 2.1.3 we conclude that the leaves of F in U are given as the
fibers of a submersion π : U −→ V ⊂ IRp onto an open subset V of IRp.
Next, we suppose that g is a bundle–like Riemannian metric on M for the
foliation F . Then according to (3.5), the functions gαβ given by (1.24) de-
fine a Riemannian metric on V. Since the induced Riemannian metric by g
on D⊥

|U is also given by gαβ , we may claim that π : U −→ V is a Rieman-
nian submersion. Hence the plaques of F in U are the fibers of a Riemannian
submersion π : U −→ V ⊂ N onto an open subset V of a transversal model
Riemannian manifold N . This justifies the name Riemannian foliation for F .
Then following Tondeur–Vanhecke [TV90] we say that the foliation F with
bundle–like metric g is transversally symmetric if N is a locally symmetric
Riemannian space. To be more specific, we take a point x ∈ N and a normal
neighbourhood Vx of x. Then for each y ∈ Vx consider the geodesic t −→ γ(t)
within Vx passing through x and y such that γ(0) = x and γ(1) = y. The
mapping y −→ y′ = γ(−1) of Vx onto itself is called the geodesic symmetry
(reflection) with respect to x. Now, according to Helgason [Hel01], p. 200, N
is called a locally symmetric Riemannian space if for each x ∈ N there
exists a normal neighbourhood of x on which the geodesic symmetry with
respect to x is an isometry.

Next, to state some characterizations of transversally symmetric foliations
we need the following. We considered in Section 1.6 the tensor field A (see
(1.6.33)) which was introduced by O’Neill [O66] for submersions. In case of a
foliation with bundle–like metric, by using (1.6.33) and (3.10) we deduce that

AXY =
1
2

Q[Q′X, Q′Y ], ∀X, Y ∈ Γ (TM). (3.48)
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Remark 3.10. By using (3.10), (3.12) and (3.48) we deduce that in case
F is a foliation with bundle–like metric, the torsion tensor field T ∗ of the
Vrănceanu connection ∇∗ and the O’Neill tensor field A are related by

T ∗ = −2A. (3.49)

Also, from (3.48) and (3.49) it follows that both T ∗ and A are obstructions
to the integrability of the distribution D⊥.

Finally, we denote by R̃ and R∗ the curvature tensor fields of the Levi–
Civita connection ∇̃ on (M, g) and of the Vrănceanu connection ∇∗ defined
by ∇̃. Then we put

(a) R̃(X,Y, Z, U) = g(R̃(Z,U)Y,X),

(b) R∗(X,Y, Z, U) = g(R∗(Z, U)Y, X), ∀X, Y, Z, U ∈ Γ (TM).
(3.50)

Taking into account the above discussion we can restate a result due to Ton-
deur and Vanhecke [TV90] as follows.

Theorem 3.13. Let F be a Riemannian foliation on (M, g) and g a bundle–
like metric for F . Then the following conditions are equivalent:

(i) F is transversally symmetric.
(ii)The local geodesic symmetries on the model space are isometries.

(iii)∇∗
U (R∗(U, V, U, V )) = 0, ∀U, V ∈ Γ (D⊥).

(iv)∇̃U (R̃(U, V, U, V )) + 2R̃(U,AUV, U, V ) = −6g((∇̃UA)UV, AUV ),
∀U, V ∈ Γ (D⊥).

(v) ∇̃U (R̃(U, V, U, V )) − R̃(U, T ∗(U, V ), U, V ) = 3g((∇̃UT ∗)(U, V ), T ∗(U, V )),
∀U, V ∈ Γ (D⊥).

We note that the last three conditions are automatically satisfied when F
is of codimension one. Therefore we have the following corollary.

Corollary 3.14. Any Riemannian foliation of codimension one is transver-
sally symmetric.

The geometry of the ambient space M has a strong effect on the existence
of transversally symmetric foliations. As an example we give the following.

Corollary 3.15. (Tondeur–Vanhecke [TV90]). Let F be a foliation on a space
of constant curvature (M, g) such that g is bundle–like for F . If D⊥ is inte-
grable, then F is transversally symmetric.
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Results on the influence of the existence of transversally symmetric fo-
liations on the geometry of the ambient manifold can be found in Tondeur–
Vanhecke [TV90].

We close this section with a new characterization of transversally sym-
metric foliations. To state this we consider the semi–holonomic frame field{

∂

∂xi
, δ

δxα

}
on (M, g). Then by using (3.50) and (3.19) we obtain

R∗
(

δ

δxα
, δ

δxβ
, δ

δxα
, δ

δxβ

)

= g

(
R′
(

δ

δxα
, δ

δxβ

)
δ

δxβ
, δ

δxα

)
= R′

β
γ

βα gγα.

(3.51)

Clearly, Λαβ = R′
β

γ
βαgγα define the local components of an adapted tensor

field Λ of type (0, 0; 0, 2) (see Section 2.2). Now we state the following.

Theorem 3.16. Let F be a Riemannian n–foliation on an (n+p)–dimensional
Riemannian manifold (M, g) and g a bundle–like metric for F . Then F is
transversally symmetric if and only if for any fixed pair (α, β),
α, β ∈ {n + 1, ..., n + p}, the local components Λαβ of Λ depend only on xε,
where ε �= α and ε �= β.

Proof. We take U =
δ

δxα
and V =

δ

δxβ
into (iii) of Theorem 3.13 and by

using (3.51) we obtain

δ

δxα
(Λαβ) = 0. (3.52)

Since g is bundle–like for F , gαβ do not depend on xi, i ∈ {1, ..., n} (see (3.5)).
Hence by (3.17a), R′

α
ε
βγ do not depend on xi, and therefore

∂Λαβ

∂xi
= 0, ∀ i ∈ {1, ..., n}. (3.53)

Then, by using (1.21), (3.52) and (3.53), we deduce that

∂Λαβ

∂xα
= 0. (3.54)

As Λαβ = −Λβα, from (3.53) and (3.54) we conclude that for any fixed pair
(α, β), Λαβ does not depend on (xi, xα, xβ), i ∈ {1, ..., n}. Thus the proof is
complete.
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In particular, if F is of codimension two then Λ has the components
Λ12 = −Λ21. Thus from Theorem 3.16 we obtain the following.

Corollary 3.17. Let F be a Riemannian foliation of codimension two on
(M, g) and g a bundle–like metric for F . Then F is transversally symmetric
if and only if for each point x ∈ M there exists a foliated chart (U , ϕ) such
that Λ12 is a constant on U .

We will visit transversally symmetric foliations again in the next section.

3.4 Special Classes of Foliations

The purpose of this section is to present the main problems related to three
important classes of foliations: totally geodesic, totally umbilical and minimal
(harmonic) foliations. First, by using both the induced and intrinsic con-
nections on the structural distribution we present several characterizations
of totally geodesic foliations. Then we deduce two differential equations of
Riccati type and use them for studying the integrability of the transversal
distribution and the existence of totally geodesic foliations. By using results
from Walschap [Was97] and our theory on structural and transversal diffe-
rentiations, we give complete characterizations of totally umbilical foliations
with bundle–like metric on Riemannian spaces of constant curvature. Finally,
by using the intrinsic covariant derivative D⊥ and the D⊥–divergence ope-
rator we introduce and study minimal foliations. Most of the results of the
section are presented in the general framework of non–degenerate foliations
on semi–Riemannian manifolds.

3.4.1 Totally Geodesic Foliations on Semi–Riemannian Manifolds

Throughout this section F represents a non–degenerate n–foliation on an
(n + p)–dimensional semi–Riemannian manifold (M, g). If each leaf of F is a
totally geodesic submanifold of (M, g) we say that F is a totally geodesic
foliation. Then by using a well known characterization of totally geodesic
submanifolds (cf. O’Neill [O83], p.104) and (2.12c) we can state the following.

Theorem 4.1. F is totally geodesic if and only if one of the following condi-
tions is satisfied:

(i) The second fundamental form of F vanishes identically on M , i.e., we
have

h(QX, QY ) = Q′∇̃QXQY = 0, ∀X, Y ∈ Γ (TM). (4.1)

(ii)The shape operator of the structural distribution D vanishes identically on
M , i.e., we have

AQ′XQY = −Q∇̃QY Q′X = 0, ∀X, Y ∈ Γ (TM). (4.2)
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Now, we remark that the symmetric second fundamental form hs of D
(see (1.5.34)) coincides with h. Then taking into account that D is integrable,
from Theorems 1.5.6, 1.5.9 and 1.5.10 we deduce several characterizations of
totally geodesic foliations as follows.

Theorem 4.2. Let (M, g) be a semi–Riemannian manifold and F be a non–
degenerate foliation on M . Then the following assertions are equivalent:

(i) F is a totally geodesic foliation.
(ii) The induced connection∇ coincides with the intrinsic connection D on D.
(iii) g is parallel with respect to the intrinsic connection D on D.
(iv) Q′X is a D–Killing vector field, for any X ∈ Γ (TM).
(v) The induced connection ∇ on D is torsion–free.

Remark 4.1. The condition (iii) was given as characterization of totally
geodesic foliations by Sanini [San82]. In our terminology from Section 1.5 this
condition can be read as follows:

(iii′) g is bundle–like for the transversal distribution.

Next, we consider the curvature tensor field R̃ of the Levi–Civita connec-
tion ∇̃ on (M, g), the intrinsic connection D⊥ on D⊥ and the shape operator
A′

QX of D⊥ for X ∈ Γ (TM). Then we prove the following.

Lemma 4.3. Let F be a totally geodesic foliation on a semi–Riemannian
manifold (M, g). Then we have

(D⊥
QXA′

QX)(Q′Y ) = (A′
QX)2(Q′Y )

−Q′R̃(QX, Q′Y )QX + A′
∇QXQXQ′Y,

(4.3)

for any X, Y ∈ Γ (TM).

Proof. By direct calculations using (1.9), (1.5.8), (2.11) and (4.1) we obtain

(D⊥
QXA′

QX)(Q′Y ) = D⊥
QX(A′

QXQ′Y ) − A′
QX(D⊥

QXQ′Y )

= Q′[QX,A′
QXQ′Y ] − A′

QX(Q′[QX, Q′Y ])

= Q′(∇̃QX(A′
QXQ′Y )) − Q′(∇̃A′

QX
Q′Y QX) + Q′∇̃Q′[QX,Q′Y ]QX

= A′
QX(A′

QXQ′Y ) + Q′(∇̃[QX,Q′Y ]QX − ∇̃QX∇̃Q′Y QX).

(4.4)

On the other hand, by using (1.2.17) and (2.11) we deduce that

Q′(∇̃[QX,Q′Y ]QX − ∇̃QX∇̃Q′Y QX)

= Q′(∇̃[QX,Q′Y ]QX − ∇̃QX∇̃Q′Y QX + ∇̃Q′Y ∇̃QXQX)

−Q′∇̃Q′Y ∇̃QXQX = −Q′R̃(QX, Q′Y )QX + A′
∇QXQXQ′Y,

(4.5)

since ∇̃QXQX = ∇QXQX. Finally, by using (4.5) in (4.4) we obtain (4.3).



128 3 FOLIATIONS ON SEMI–RIEMANNIAN MANIFOLDS

Next, by using (2.7d) and (2.11) we deduce that the induced and intrinsic
connections ∇⊥ and D⊥ on D⊥ are related by

∇⊥
QXQ′Y = D⊥

QXQ′Y − A′
QXQ′Y, ∀X, Y ∈ Γ (TM). (4.6)

Then we prove the following.

Lemma 4.4. Let (M, g,F) be a foliated semi–Riemannian manifold. Then
we have

∇⊥
QXA′

QX = D⊥
QXA′

QX , ∀X ∈ Γ (TM). (4.7)

Proof. By using (4.6) we obtain

(∇⊥
QXA′

QX)(Q′Y ) = ∇⊥
QX(A′

QXQ′Y ) − A′
QX(∇⊥

QXQ′Y )

= D⊥
QX(A′

QXQ′Y ) − (A′
QX)2QY − A′

QX(D⊥
QXQ′Y − A′

QXQ′Y )

= (D⊥
QXA′

QX)(Q′Y ), for any Y ∈ Γ (TM),

which proves (4.7).

Based on (4.7) we can rewrite (4.3) in the equivalent form

(∇⊥
QXA′

QX)(Q′Y ) = (A′
QX)2(Q′Y ) − Q′R̃(QX, Q′Y )QX

+ A′
∇QXQXQ′Y, ∀X, Y ∈ Γ (TM).

(4.8)

Now, consider a unit–speed geodesic γ(t) that lies in a leaf of the totally
geodesic foliation F , that is,

∇̃γ̇(t)γ̇(t) = ∇γ̇(t)γ̇(t) = 0, g(γ̇(t), γ̇(t)) = 1,

where ∇ is the induced connection on D and γ̇(t) is the tangent vector field
to γ. Then by using (4.3) and (4.8) we can state the following.

Theorem 4.5. Let γ be a unit–speed geodesic that lies in a leaf of a totally
geodesic foliation F on a semi–Riemannian manifold (M, g). Then we have

(D⊥
γ̇(t)A

′
γ̇(t))(Q

′Y ) = (∇⊥
γ̇(t)A

′
γ̇(t))(Q

′Y )

= (A′
γ̇(t))

2(Q′Y ) − Q′R̃(γ̇(t), Q′Y )γ̇(t),
(4.9)

for any Y ∈ Γ (TM).

The equation (4.9) is known as a Riccati type differential equation (cf.
K. Abe [Abe73]), and it was first obtained by D. Ferus [Fer70] for totally
geodesic foliations on a Riemannian manifold. Also, D. Ferus [Fer70] proved
that the dimension of leaves of a totally geodesic foliation on a Riemannian
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manifold cannot exceed a certain limit, provided the leaves are complete and
the sectional curvature of M has the same positive value for all planes spanned
by {QX,Q′Y }, X, Y ∈ Γ (TM). In other words, the codimension of a such
totally geodesic foliation is either zero or large.

For the next results we restrict our study to totally geodesic foliations on
Riemannian manifolds. In this case we show that some conditions on the sec-
tional curvature of the ambient manifold have a great impact on the transver-
sal geometry of the foliation. To state these results we denote by K̃(X∧Y ) the
sectional curvature of (M, g) for the plane determined by {X, Y }. Then we call
K̃(QX ∧ Q′Y ) the mixed sectional curvature determined by QX ∈ Γ (D)
and Q′Y ∈ Γ (D⊥). First we prove the following.

Theorem 4.6. Let F be a totally geodesic foliation on a Riemannian mani-
fold (M, g). If all mixed sectional curvatures of M at a point x0 are positive,
then the transversal distribution is not integrable.

Proof. Let u be a non-zero vector in Dx0 . Then there exists a vector field
QX ∈ Γ (D) on a neighbourhood U ⊂ M of x0 such that QX(x0) = u and

(∇QXQX)(x0) = (∇̃QXQX)(x0) = 0, (4.10)

where ∇ is the induced connection by ∇̃ on D. Now, suppose by absurd
that D⊥ is integrable. Then by the assertion (ii) of Corollary 2.4 we de-
duce that A′

QX is self–adjoint. Next, consider A′
QX restricted to the local leaf

U⊥ = U ∩ L⊥, where L⊥ is the leaf of D⊥ through x0. Suppose λ is an
eigenfunction of A′

QX on U⊥ with unit eigenvector field Q′Y . Then by using
(4.8), (4.10) and a formula for K̃ similar to (1.7.14), we obtain

g((∇⊥
QXA′

QX)(Q′Y ), Q′Y )(x0)

= λ2(x0) + K̃(QX ∧ Q′Y )(x0)∆(QX,Q′Y )(x0),
(4.11)

where ∆ is given by (1.7.13). On the other hand, taking into account that g
is parallel with respect to the induced connection ∇⊥ (cf. Lemma 1.5.5) and
that A′

QX is self–adjoint, the left hand side in (4.11) becomes

g(∇⊥
QX(A′

QXQ′Y ) − A′
QX(∇⊥

QXQ′Y ), Q′Y )(x0)

= g(∇⊥
QX(λQ′Y ), Q′Y )(x0) − g(∇⊥

QXQ′Y, λQ′Y )(x0) = QX(λ)(x0).

As λ is a function of (xα) alone and QX = Xi ∂

∂xi
we deduce that

QX(λ)(x0) = 0. But both K̃(QX ∧ Q′Y )(x0) and ∆(QX, Q′Y )(x0) are posi-
tive, so the right part in (4.11) is a positive number. Thus, from (4.11), we
have a contradiction which proves our theorem.

When M is supposed to have positive sectional curvatures, Theorem 4.6
was obtained by K. Abe [Abe73]. Also, we have the following.
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Corollary 4.7. Let (M, g) be a Riemannian manifold whose mixed sectional
curvatures at a point x0 are positive. Then there exist no totally geodesic
foliations of codimension 1 on (M, g).

Proof. If F is totally geodesic and of codimension 1, then D⊥ is a line dis-
tribution, so it is integrable. This is impossible by Theorem 4.6.

Corollary 4.8. (K. Abe [Abe73]). Let (M, g) be a 2–dimensional manifold
with positive Gaussian curvature. Then any totally geodesic foliation is a triv-
ial one. In particular, any vector field on M whose integral curves are geodesics
must have at least one zero.

Proof. If F is not a trivial foliation, then D⊥ is a line distribution, so it is
integrable. By Theorem 4.6 this is impossible. Clearly, the second part of the
corollary is a consequence of the first part.

Based on our general formula (4.8) we prove the following.

Theorem 4.9. (Tanno [Tan72]). Let F be a totally geodesic foliation on a
Riemannian manifold (M, g). Suppose that all mixed sectional curvatures of
M vanish identically on M and the transversal distribution D⊥ is integrable.
Then the foliation F⊥ defined by D⊥ is also totally geodesic.

Proof. By (2.12d) and Theorem 4.1 for D⊥ we deduce that F⊥ is totally
geodesic if and only if

A′
QX = 0, ∀X ∈ Γ (TM).

Suppose by absurd that F⊥ is not totally geodesic. Thus there exist a point
x0 ∈ M and a vector u ∈ Dx0 such that A′

u is a non-zero linear operator on
D⊥

x0
. Then consider a vector field QX ∈ Γ (D) on a neighbourhood U ⊂ M

of x0 such that QX(x0) = u and (4.10) is satisfied. Making U smaller if
necessary, by continuity we may suppose that A′

QX �= 0 on U . Now, we take
the restriction of A′

QX to U⊥ = U∩L⊥, where L⊥ is the leaf of D⊥ through x0.
Since A′

QX is a non-zero self-adjoint operator on Γ (D⊥
|U⊥) (cf. (ii) of Corollary

2.4) it has a non-zero eigenfunction λ on U⊥. Then we take Q′Y from (4.8) as a
unit eigenvector field associated to λ, and by using (4.10) and the hypothesis,
that is, K̃(QX ∧ Q′Y ) = 0, we deduce that

g((∇⊥
QXA′

QX)(Q′Y ), Q′Y ) = λ2.

In a similar way as in the proof of Theorem 4.6 it follows that the left hand side
of the above equality vanishes on U⊥. As λ �= 0 on U⊥ we get a contradiction.
This completes the proof of the theorem.
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In particular, we deduce that (M, g) from Theorem 4.9 is locally a Rieman-
nian product of local leaves of D and D⊥. By using other geometrical condi-
tions on totally geodesic foliations, K. Abe [Abe73], Brito and Walczak [BW86]
and R.H. Escobales Jr. [Esc82] obtained such theorems of decomposition of
(M, g).

Next, we study the existence of totally geodesic foliations with bundle–like
metrics and subject to some curvature conditions.

First, we state a lemma whose proof is similar to that of Lemma 4.4.

Lemma 4.10. Let ∇ and D be the induced and intrinsic connections on the
structural distribution of a non–degenerate foliation F on (M, g). Then we
have

∇Q′XAQ′X = DQ′XAQ′X , ∀X ∈ Γ (TM). (4.12)

Now we prove the following.

Lemma 4.11. Let (M, g,F) be a foliated semi–Riemannian manifold, where
F is a non–degenerate foliation and g is bundle–like for F . Then we have

(DQ′XAQ′X)QY = (∇Q′XAQ′X)QY = (AQ′X)2QY

+QR̃(QY, Q′X)Q′X − h′(h(Q′X, QY ), Q′X)

−Q∇̃QY ∇̃Q′XQ′X, ∀X, Y ∈ Γ (TM),

(4.13)

where R̃ is the curvature tensor field of the Levi–Civita connection ∇̃ on
(M, g), and h and h′ are given by (2.4).

Proof. First, by using (2.11) for h, (2.9) and (1.5.8) we obtain

(DQ′XAQ′X)QY = DQ′X(AQ′XQY ) − AQ′X(DQ′XQY )

= Q[Q′X, AQ′XQY ] − AQ′X(Q[Q′X,QY ])

= Q∇̃Q′X(AQ′XQY ) − Q∇̃AQ′XQY Q′X + Q∇̃Q[Q′X,QY ]Q
′X

= (AQ′X)2(QY ) + Q(∇̃Q[Q′X,QY ]Q
′X − ∇̃Q′XQ∇̃QY Q′X).

Taking into account that Q and Q′ are complementary projectors, and by
using (1.2.17) for R̃ and (2.6) we deduce that

(DQ′XAQ′X)(QY ) = (AQ′X)2(QY )

+Q(∇̃[Q′X,QY ]Q
′X − ∇̃Q′X∇̃QY Q′X + ∇̃QY ∇̃Q′XQ′X)

−Q(∇̃Q′[Q′X,QY ]Q
′X − ∇̃Q′XQ′∇̃QY Q′X + ∇̃QY ∇̃Q′XQ′X)

= (AQ′X)2(QY ) + QR̃(QY, Q′X)Q′X

−h′(Q′[Q′X,QY ], Q′X) + h′(Q′X, Q′∇̃QY Q′X)

−Q∇̃QY ∇̃Q′XQ′X.

(4.14)
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Finally, by using (1.5.8), the assertion (vi) of Theorem 3.3 and (2.11) for h,
we infer that

h′(Q′X, Q′∇̃QY Q′X) − h′(Q′[Q′X, QY ], Q′X)

= h′(Q′X, Q′∇̃QY Q′X) + h′(Q′∇̃QY Q′X, Q′X)

−h′(Q′∇̃Q′XQY, Q′X) = −h′(h(Q′X, QY ), Q′X).

(4.15)

Thus by using (4.15) in (4.14) we obtain (4.13).

Next, we consider F on (M, g) such that g is bundle–like for F . Then we
may take a geodesic γ that is tangent to the transversal distribution, that is,
γ̇(t) ∈ Γ (D⊥) (cf. Remark 3.4). Replace Q′X from (4.13) by γ̇(t) and taking
into account that ∇̃γ̇(t)γ̇(t) = 0, we obtain the Riccati type equation

Dγ̇(t)Aγ̇(t)= ∇γ̇(t)Aγ̇(t) = A2
γ̇(t) + QR̃(·, γ̇(t))γ̇(t)

−h′(h(γ̇(t), ·), γ̇(t)).
(4.16)

When (M, g) is Riemannian, (4.16) is equivalent to the Riccati type equations
obtained by Kim–Tondeur [KT92] and Walschap [Was97].

Theorem 4.12. Let F be a totally geodesic non–degenerate n–foliation on an
(n + p)–dimensional, p ≥ 1, semi–Riemannian manifold (M, g) such that g is
bundle–like for F . If there exists a neighbourhood U ⊂ M such that

QR̃(QY, Q′X)Q′X �= 0, on U ,

for any non-zero vector fields QY and Q′X, then n ≤ p − 1.

Proof. First, for any Q′X �= 0 we consider the F (M)–linear operator

PQ′X : Γ (D) −→ Γ (D⊥) : PQ′X(QY ) = h(Q′X, QY ), ∀Y ∈ Γ (TM). (4.17)

Then by using (4.17) and (2.12b) we obtain

g(PQ′X(QY ), Q′X) = −g(h′(Q′X,Q′X), QY ) = 0, (4.18)

since g is bundle–like for F (see (3.10)). Now we choose Q′X as a vector
field that is not light–like with respect to g at any point of M . Then from
(4.18) we deduce that the range of PQ′X lies in the orthogonal complement
of span{Q′X} in Γ (D⊥). Thus we have

rankPQ′X ≤ p − 1, at any point of M. (4.19)

Now, suppose by absurd that n > p−1. Then by (4.17) and (4.19) there exists
a non–zero vector field QY ∈ Γ (D) such that PQ′X(QY ) = 0. Thus for the
above choice of both Q′X and QY , (4.13) becomes
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QR̃(QY, Q′X)Q′X = Q∇̃QY ∇̃Q′XQ′X, (4.20)

since by assertion (ii) of Theorem 4.1, AQ′X vanishes identically on M . Next,
by using (2.10a) and taking into account that g is bundle–like we obtain

∇̃Q′XQ′X = ∇⊥
Q′XQ′X. (4.21)

Finally, (4.21) and (2.9) imply

Q∇̃QY ∇̃Q′XQ′X = Q∇̃QY ∇⊥
Q′XQ′X = −A∇⊥

Q′XQ′XQY = 0,

since F is totally geodesic. Hence (4.20) becomes

QR̃(QY, Q′X)Q′X = 0, on M,

which contradicts the hypothesis of the theorem. Thus the proof is complete.

In case (M, g) is a Riemannian manifold, from Theorem 4.12 we deduce
the following.

Corollary 4.13. Let F be a totally geodesic n-foliation of an (n + p)–
dimensional, p ≥ 1, Riemannian manifold such that g is bundle–like for F . If
all mixed sectional curvatures of M at a point x0 are non-zero, then n ≤ p−1.

Corollary 4.14. Let (M, g) be a positively or negatively curved semi–Rie-
mannian manifold. Then we have the assertions:

(i) There exist no totally geodesic foliations with bundle–like metric on M
such that D⊥ is integrable.

(ii)There exist no totally geodesic foliations with bundle–like metric and of
codimension 1 on M .

(iii)If F is a totally geodesic foliation with bundle–like metric of codimension
2, then dim M = 3. In particular, there exist no totally geodesic foliations
with bundle–like metric of codimension 2 on spheres Sn with n ≥ 4.

Proof. Suppose there exists F satisfying conditions in (i). Then D⊥ defines
a totally geodesic foliation F⊥ with bundle–like metric. Indeed, since D⊥ is
integrable and F is bundle–like, we deduce that h′ is both symmetric and
skew-symmetric on D⊥. Hence h′ = 0 on D⊥. Finally, because h = 0 on D,
it follows that F⊥ is with bundle–like metric. Thus, we may apply Theorem
4.12 for both F and F⊥, that is, n ≤ p − 1 and p ≤ n − 1, which lead to a
contradiction. The assertion (ii) is a consequence of (i) since D⊥ is a line field
in this case. Finally, if F is the one from assertion (iii) then by Theorem 4.12
we have n ≤ 1, that is n = 1 and thus dimM = 3. This completes the proof
of the corollary.
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Other non-existence theorems on totally geodesic foliations can be found
in Tondeur–Vanhecke [TV96].

By the next example we show that the above estimation for n is optimal.

Example 4.2. Let (M, g) be a real (2n + 1)–dimensional Riemannian mani-
fold endowed with a tensor field ϕ of type (1, 1), a vector field ξ and a 1–form
η. Then we say that (M, g, ϕ, ξ, η) is a contact metric manifold if these
tensor fields satisfy

(a) ϕ2 = −I + η⊗ ξ, (b) η(X) = g(X, ξ), (c) g(X, ϕY ) = dη(X, Y ), (4.22)

for any X, Y ∈ Γ (TM). By using (4.22) it is easy to check the following

(a) η(ξ) = 1, (b) g(X, ϕY ) + g(Y, ϕX) = 0,

(c) g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ),
(4.23)

for any X, Y ∈ Γ (TM). Finally, we say that (M, g, ϕ, ξ, η) is a Sasakian
manifold if we have (cf. Blair [Bla76], p.73)

(∇̃Xϕ)Y = g(X, Y )ξ − η(Y )X, ∀X, Y ∈ Γ (TM), (4.24)

where ∇̃ is the Levi–Civita connection on (M, g). In this case, two important
identities are satisfied by the characteristic vector field ξ:

(a) ∇̃ξξ = 0 and (b) ∇̃Xξ = −ϕX, ∀X ∈ Γ (TM). (4.25)

By (4.25a) we see that ξ defines on (M, g) a totally geodesic 1-foliation Fξ.
Moreover, by using (4.25b) and (4.23b) we deduce that

g(X, ∇̃Y ξ) + g(Y, ∇̃Xξ) = 0, ∀X, Y ∈ Γ (TM), (4.26)

that is ξ is a Killing vector field on (M, g). The contact distribution D⊥ on
(M, g, ϕ, ξ, η) is the complementary orthogonal distribution to D = span{ξ}.
Then from (4.26) it follows that , in particular, ξ is D⊥–Killing. Thus by
assertion (iv) of Theorem 3.3 we deduce that g is bundle–like with respect
to Fξ. Also, the curvature R̃ of ∇̃ on a Sasakian manifold satisfies (cf. Blair
[Bla76], p.74)

R̃(ξ, X)X = ξ, (4.27)

for any unit vector field X∈Γ (D⊥). Thus in our notations QR̃(ξ, X)X = ξ �= 0.
There have been constructed Sasakian structures with interesting curvature
properties on IR2n+1 and on the unit sphere S2n+1 by Okumura [Oku62] and
Tanno [Tan68], [Tan69]. Thus, summing up the above results we may state
the following.

Theorem 4.15. The foliation Fξ determined by the characteristic vector field
of a Sasakian manifold (M, g, ϕ, ξ, η) is totally geodesic, with bundle–like me-
tric and QR̃(ξ, Q′X)Q′X �= 0.
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In particular, we deduce that Fξ on both IR3 and S3 satisfies all the con-
ditions from Theorem 4.14 with n = p − 1 = 1. Thus the estimation for n
in Theorem 4.14 cannot be improved. Later in this book (see Section 5.2) we
present some n–foliations on (2n + 1)–dimensional contact manifolds.

It is noteworthy that the important class of totally geodesic foliations with
bundle–like metrics is characterized only by means of Vrănceanu connection
as follows.

Theorem 4.16. Let F be a non–degenerate n–foliation on an (n + p)–
dimensional semi–Riemannian manifold (M, g). Then the following conditions
are equivalent:

(i) F is totally geodesic with bundle–like metric.
(ii)The Vrănceanu connection is a metric connection with respect to g.

Proof. By condition (iii) of Theorem 4.2 and (3.1) we see that F is totally
geodesic with bundle–like metric if and only if we have

(∇∗
Xg)(QY, QZ) = 0 and (∇∗

Xg)(Q′Y,Q′Z) = 0,

for any X,Y, Z ∈ Γ (TM), where ∇∗ is the Vrănceanu connection induced by
the Levi–Civita connection ∇̃ on (M, g). On the other hand, since ∇∗ is an
adapted linear connection on the almost product manifold (M,D,D⊥) (see
Section 1.2), we have

(∇∗
Xg)(QY,Q′Z) = X(g(QY, Q′Z)) − g(∇∗

XQY, Q′Z)

− g(QY,∇∗
XQ′Z) = 0, ∀X, Y, Z ∈ Γ (TM).

Comparing the above equations satisfied by ∇∗ and g with (1.5.9) we conclude
that ∇∗ is a metric connection with respect to g. Thus the proof is complete.

An important question for foliations can be stated as follows. Given a
foliation F on a manifold M , is there a Riemannian metric g on M such
that F is totally geodesic? In the affirmative case F is called a geodesible
foliation (cf. Johnson–Whitt [JW80]). When M is compact, Ghys [Ghy83]
has classified the geodesible foliations of codimension 1. However in higher
codimension the existence of geodesible foliations is still an open problem.
From Theorem 4.16 it follows that the existence of geodesible foliations with
bundle–like metric is equivalent to the existence of a Riemannian (semi–Rie-
mannian) metric with respect to which the Vrănceanu connection is a metric
connection.

Also, there were several investigations on totally geodesic foliations whose
leaves are preserved by the flow of a Killing vector field. Important results
on this problem have been obtained by Johnson and Whitt [JW80], Oshikiri
[Osh83], [Osh86] and Curras–Bosch [CB88].
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Now, we consider a foliation F on a Riemannian manifold (M, g) with
bundle–like metric g. As we have seen at the end of the previous section, the
geodesic symmetries of the transversal model Riemannian manifold need not
be isometries. However, as the next theorem shows, this is true when both F
and M satisfy some additional conditions.

Theorem 4.17. (Tondeur–Vanhecke [TV90]). Let (M, g) be a Riemannian
manifold of constant curvature, and F be a totally geodesic foliation on (M, g)
with bundle–like metric g. Then F is transversally symmetric.

According to the result stated in Theorem 4.12, we conclude that foliations
from the above theorem must be of large codimension, when M has non–zero
constant curvature.

At the end of Section 3.3 we have presented the transversally symmetric
foliations in relation with locally symmetric Riemannian spaces. Here, we con-
sider a class of totally geodesic foliations which is in relation with generalized
symmetric Riemannian spaces. To introduce these concepts we start with a
Riemannian manifold (M, g). An isometry of (M, g) with an isolated fixed
point x ∈ M is called a symmetry of (M, g) at x. A family {sx : x ∈ M}
of symmetries of (M, g) is called an s–structure on (M, g). When each sym-
metry sx is involutive we call {sx : x ∈ M} an involutive s–structure on
(M, g). Then (M, g) is called a (globally) symmetric Riemannian space
if it admits an involutive s–structure. The main results on the geometry of
(locally or globally) symmetric Riemannian spaces can be found in the book
of Helgason [Hel01].

Next, we say that the s–structure {sx : x ∈ M} is regular if it satisfies

sx ◦ sy = sz ◦ sx, z = sx(y),

for every two points x, y ∈ M. Then (M, g) is called a generalized symme-
tric Riemannian space (s–manifold) if it admits a regular s–structure (cf.
Kowalski [Kow80], p. 8). A study of the geometry of generalized symmetric
Riemannian spaces has been presented in the book of Kowalski [Kow80].

Now, let F be an n–foliation on an (n + p)–dimensional Riemannian ma-
nifold. Denote by G the group of all leaf–preserving isometries of M . Thus
f ∈ G if and only if f is an isometry of M , and for each x ∈ M , f(Lx) = Ly,
where y = f(x) and Lx, Ly are the leaves through x and y respectively. If
θ : M −→ M̃ denotes the continuous projection to the leaf space M̃ = M/F ,
then an isometry f of M is an element of G if and only if there is a homeomor-
phism f̃ : M̃ −→ M̃ , necessarily unique, such that θ ◦ f = f̃ ◦ θ. A leaf L is
said to be a fixed leaf of f if f(x) = x for every x ∈ L. That is, L is a fixed
leaf of f , if and only if L is point–wise fixed by f . Finally, a fixed leaf L is
said to be an isolated fixed leaf if L is an isolated fixed point of M̃ .

With the concept of generalized symmetric Riemannian space in mind, we
say that F is a symmetric foliation of M if, for each leaf L of F , there
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is a leaf–preserving isometry fL of M for which L is an isolated fixed leaf.
Thus the concept of symmetric foliation, introduced by Farran and Robertson
[FR96], reduces to that of generalized symmetric Riemannian space when the
foliation of the manifold is the trivial foliation of M by point leaves. A family
of examples of symmetric foliations is provided by the Hopf fiberings of the
(2n + 1)–dimensional sphere S2n+1 over the complex projective space Pn(C)
by great circles, and of the sphere S4n+3 over the quaternionic projective
space Pn(IH) by great 3–spheres. We present other examples after the next
theorems which have been proved by Farran and Robertson [FR96].

Theorem 4.18. Every symmetric foliation F of a Riemannian manifold
(M, g) is totally geodesic. Moreover, every leaf of F is a closed subset of M .

Theorem 4.19. Let F be a symmetric foliation of a Riemannian manifold
(M, g). Then the leaf space M̃ = M/F has a structure of a smooth, possibly
non–Hausdorff manifold for which θ : M → M̃ is a submersion.

Theorem 4.20. Let F be a symmetric foliation with compact leaves of a
Riemannian manifold (M, g). Then we have the following:

(i) θ : M → M̃ is a fibering, provided M is complete.
(ii) The group G of leaf–preserving isometries of M acts transitively on M̃.

(iii) If g̃ is a G-invariant Riemannian metric on M̃ , then (M̃, g̃) is a genera-
lized symmetric Riemannian manifold.

The two notions of transversally symmetric foliation (see Section 3.3) and
symmetric foliation on a Riemannian manifold have been introduced indepen-
dently in Tondeur–Vanhecke [TV90] and Farran–Robertson [FR96] respecti-
vely. Now, we would like to discuss the relationship between these two classes
of foliations. The following remarks will explain this relationship.

Remark 4.3. Transversally symmetric foliations need not be symmetric fo-
liations. The next example supports our assertion.

Example 4.4. let F be the foliation of M = IR2\{0} by circles with center
at the origin, and g be the Euclidean metric on M . Then it is easy to see
that g is a bundle–like metric for F . Also, since F is of codimension one, by
Corollary 3.14 we conclude that F is transversally symmetric. However F is
not a symmetric foliation because its leaves are not totally geodesic submani-
folds of M .

Also, the foliation in Example 4.4.1 supports the above assertion. Indeed,
that foliation is with bundle–like metric (being parallel) and it is transversally
symmetric (being of codimension one). However, it is not a symmetric foliation
because its leaves are not closed subsets of the torus.
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Remark 4.5. Symmetric foliations need not be transversally symmetric fo-
liations. We give two examples to support this assertion.

Example 4.6. Let F be the foliation of M = IR2 \ {0} by straight rays
emanating from the origin, and g be the Euclidean metric on M . Every leaf
(ray) L determines a unique straight line SL through the origin. We take fL to
be the reflection with respect to SL. Then fL is a leaf–preserving isometry for
which L is an isolated fixed leaf. Thus F is a symmetric foliation. However, F
is not a transversally symmetric foliation because g is not bundle–like for F .

Example 4.7. Let (P, h) be a generalized symmetric Riemannian space which
is not a locally symmetric Riemannian space, and (P ′, h′) be any Riemannian
manifold. Take (M, g) to be the Riemannian product (P, h)×(P ′, h′) and F
the foliation of M by copies of (P ′, h′). Then the leaf space of F can be
identified with (P, h) and therefore F is a symmetric foliation. However F
is not transversally symmetric because the transversal model of F is not a
locally symmetric Riemannian space.

3.4.2 Totally Umbilical Foliations on Semi–Riemannian Manifolds

Let F be a non–degenerate n–foliation on an (n + p)–dimensional semi–Rie-
mannian manifold (M, g). Consider the second fundamental form h of F given
by (2.5) and choose an orthonormal frame field {E1, ..., En} of signature
{ε1, ..., εn} in Γ (D), where D is the structural distribution of F . Then we
define the mean curvature vector field H of F by the formula

H =
1
n

n∑
i=1

εih(Ei, Ei). (4.28)

It is easy to check that H does not depend on the orthonormal basis
{Ei}, so it is a global section of the transversal distribution D⊥. If {Eα},
α ∈ {n + 1, ..., n + p} is an orthonormal basis with signature {εα} in Γ (D⊥),
we denote by Aα the shape operators of F with respect to Eα (see (2.9)).
Then by using (3.45) and (2.12c) we express H as follows

H =
1
n

n+p∑
α=n+1

n∑
i=1

εαεig(AαEi, Ei)Eα. (4.29)

We note that nH is denoted in Kamber–Tondeur [KT82] by τ and it is called
the tension field of F . The mean curvature form of the foliation F on
(M, g) is a 1–form k on M defined by

k(X) = g(X, H), ∀X ∈ Γ (TM). (4.30)
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Thus we have

(a) k(QX) = 0 and (b) k(Q′X) = g(Q′X, H), ∀X ∈ Γ (TM). (4.31)

By using (4.28) and (4.29) in (4.31b) we deduce that

k(Q′X) =
1
n

n∑
i=1

εig(h(Ei, Ei), Q′X)

=
1
n

n+p∑
α=n+1

n∑
i=1

εαεig(AαEi, Ei)g(Eα, Q′X).

(4.32)

Now, let
{

∂

∂xi
, δ

δxα

}
be a semi–holonomic frame field on the foliated semi–

Riemannian manifold (M, g,F) (see (1.21)). Then we put

(a) H = Hα δ

δxα
and (b) kα = k

(
δ

δxα

)
· (4.33)

Thus H (resp. k) is a transversal vector field (resp. transversal 1–form), and
on the domain of a foliated chart on M we have

kα = gαβHβ . (4.34)

Next, we suppose that at any point of M , H is not a light–like vector. In this
case we consider the unit vector field N in the direction of H, that is, we have

N =
1

‖H‖ H. (4.35)

Then we define the mean curvature function τ of the foliation F with
respect to N by

τ = nk(N) = ng(N, H). (4.36)

By using (4.28), (2.5) and (4.35) in (4.36) we obtain

(a) τ =
n∑

i=1

εig(N, h(Ei, Ei)) =
n∑

i=1

εig(N, ∇̃EiEi),

(b) τ = nεN‖H‖,
(4.37)

where εN = ±1 is the signature of N and ∇̃ is the Levi–Civita connection on
(M, g). In the Riemannian case (4.37a) becomes (see Oshikiri [Osh90])

τ =
n∑

i=1

g(N, ∇̃EiEi). (4.38)

For a foliation of codimension one the choice of N as in (4.35) gives an orien-
tation for the transversal distribution. In this case there were found conditions
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for a smooth function on M in order to be represented as a mean curvature
function with respect to a metric on M (cf. Walczak [Wa84], Oshikiri [Osh90],
[Osh91]).

Now, we come back to the general case and give the following definition.
We say that a non–degenerate foliation F on a semi–Riemannian manifold
(M, g) is totally umbilical if its second fundamental form h given by (2.5)
satisfies

h(QX, QY ) = g(QX, QY )H, ∀X, Y ∈ Γ (TM), (4.39)

where H is the mean curvature vector field of F . Clearly F is totally umbilical
if and only if its leaves are totally umbilical (see O’Neill [O83], p. 106). In
particular, from (4.39) we obtain

h(QX, QX) = g(QX, QX)H, ∀X ∈ Γ (TM),

which says that the leaves of F bend toward H in space–like directions and
away from H in time–like directions.

The condition (4.39) can also be expressed by using the shape operator of
the foliation. Indeed, by using (2.12c) and (4.39) we obtain

g(AQ′ZQX, QY ) = g(h(QX, QY ), Q′Z) = g(g(H, Q′Z)QX,QY ).

Thus F is totally umbilical if and only if its shape operators satisfy

AQ′ZQX = k(Q′Z)QX, ∀X, Z ∈ Γ (TM). (4.40)

Now, we put Aα = A δ
δxα

, α ∈ {n + 1, ..., n + p} and by using (4.40) obtain
the following.

Theorem 4.21. A non–degenerate foliation F on a semi–Riemannian mani-
fold (M, g) is totally umbilical if and only if its shape operators Aα satisfy

Aα = kαI, α ∈ {n + 1, ..., n + p}, (4.41)

where I is the identity on Γ (D) and kα are the local components of the mean
curvature form given by (4.34).

Proposition 4.22. Any non–degenerate 1–foliation on a semi–Riemannian
manifold (M, g) is totally umbilical.

Proof. Let E1 be a unit vector field spanning D in a certain neighbourhood.
Then by (4.28) we have

H = ε1h(E1, E1).

Thus for any X ∈ Γ (D) we have X = fE1 and

h(X, X) = f2h(E1, E1) = f2ε1H = f2g(E1, E1)H = g(X, X)H,

which proves our assertion.
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Example 4.8. Let IRn+1
q , n ≥ 2, be the (n + 1)–dimensional semi–Euclidean

space of index 0 ≤ q ≤ n. Then the pseudo–sphere of radius r > 0 in IRn+1
q

is the hyperquadric defined by

Sn
q (r) = {x ∈ IRn+1

q : g(x, x) = r2},

where g is given by (1.4.9). Similarly, the pseudo–hyperbolic space of ra-
dius r > 0 in IRn+1

q+1 is the hyperquadric

Hn
q (r) = {x ∈ IRn+1

q+1 : g(x, x) = −r2}.

It is known (see O’Neill [O83], p.111) that both Sn
q (r) and Hn

q (r) are totally
umbilical hypersurfaces of IRn+1

q and IRn+1
q+1 respectively. Therefore the set

of all pseudo–spheres in IRn+1
q (resp. pseudo–hyperbolic spaces in IRn+1

q+1 ) de-
fines a totally umbilical foliation on M = IRn+1

q \{0} (resp. M = IRn+1
q+1 \{0}).

In particular, the set of all spheres centered at the origin defines a totally
umbilical foliation on IRn+1\{0}.

Let M be a non–degenerate real hypersurface of an indefinite almost Her-
mitian manifold (M̃, J, g). If TM⊥ is the normal bundle of M , then J(TM⊥)
defines a line field on M . Thus, by Proposition 4.22, M carries a totally um-
bilical 1–foliation. In particular, any non–degenerate hypersurface of IR2n

q is
endowed with a totally umbilical 1–foliation.

To state some results on the geometry of totally umbilical foliations we give
the following definitions. We say that the foliation F is homogeneous if it is
an orbit foliation of a group of isometries. When the transversal distribution
D⊥ to a foliation F defines a totally geodesic foliation we say that F is flat.
It was proved by Gromoll and Grove [GG85] that line fields with bundle–like
metrics (Riemannian flows) are always flat or homogeneous in any space
of constant curvature. This result was generalized by Walschap [Was97] to
totally umbilical foliations as follows.

Theorem 4.23. (Walschap [Was97]). Let F be a totally umbilical n–foliation,
n > 1, on a complete simply connected Riemannian manifold (M(c), g) of
constant curvature c, such that g is bundle–like for F . Then F is flat if c ≤ 0
and homogeneous (actually totally geodesic) if c ≥ 0.

The proof of this theorem is based on the Riccati type equation (4.16) and
we omit it here.

Next, we want to get more information about the geometry of F on con-
stant curvature manifolds. First we recall that the curvature tensor field R̃ of
(M(c), g) is given by (cf. Chen [C73], p. 47)

R̃(X,Y )Z = c(g(Z, Y )X − g(Z, X)Y ), ∀X, Y, Z ∈ Γ (TM). (4.42)
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The case c ≥ 0 is the most simple. Indeed, since F is a totally geodesic
foliation, by using (4.1) and (4.42) in (1.6.3) we deduce that all leaves of F
are also Riemannian manifolds of constant curvature c. To study the case c ≤ 0
we first consider the curvature tensor field R of the induced connection ∇ on
the structural distribution D (see (2.3a)). Then we say that F is a foliation
of scalar curvature K if R can be expressed as follows on Γ (D)

R(QX,QY )QZ = K(g(QZ, QY )QX − g(QZ, QX)QY ), (4.43)

for any X,Y, Z ∈ Γ (TM). As the restriction of R to each leaf of F is just
the curvature tensor field of that leaf, by Schur Theorem for Riemannian ma-
nifolds (cf. Kobayashi–Nomizu [KN63], p.202) we conclude that the function
K from (4.43) must be basic, that is, K depends on (xn+1, ..., xn+p) alone
provided n > 2. Now, by using (4.39), (4.42) and (4.30) in (1.6.3) we obtain

R(QX, QY )QZ = (c + k(H))(g(QZ,QY )QX − g(QZ,QX)QY ), (4.44)

where k(H) depends on (xα) alone, if n > 2. Next, from (1.6.13) we deduce
that the torsion tensor field of the Schouten–Van Kampen connection satisfies

T ◦(QX, QY ) = 0, ∀X, Y ∈ Γ (TM). (4.45)

Then we take X = QX and Y = QY = QZ in (1.6.4) and by using (4.42),
(4.39), (4.45) and taking into account that ∇ is a metric connection (cf. (i) of
Lemma 1.5.5) we obtain

∇⊥
QXH = 0, ∀X ∈ Γ (TM), (4.46)

which implies that k(H) is basic in any dimension. When k(H) is a constant
on M , that is all leaves of F have the same constant curvature, we say that
the foliation is of constant curvature. Now we state the following.

Theorem 4.24. Let F be a totally umbilical n–foliation, n > 1, on a complete
simply connected Riemannian manifold (M(c), g) with bundle–like metric and
c ≤ 0. Then we have the assertions:

(i) F is of scalar curvature c + k(H), where k(H) is a basic function.
(ii)F is of constant curvature if and only if all leaves of F are flat, that is,

they are of zero sectional curvature.

Proof. Clearly, the first assertion follows from the arguments stated before
the theorem.

Next, by using (4.42) and (2.12b) in (1.6.3) and taking into account that
F is flat we obtain

g(R(Q′X, QY )QZ, QU) = g(h(QY, QZ), h(Q′X, QU))

−g(h(Q′X, QZ), h(QY,QU)) = g(h′(Q′X, h(QY, QU)), QZ)

−g(h′(Q′X, h(QY, QZ)), QU) = 0,
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since h′ vanishes on D⊥. Thus R(Q′X,QY )QZ = 0, which in local coordinates
means (see (2.3.30))

Ri
h

γj = 0. (4.47)

Then by direct calculations using (2.17), (4.39), (4.30) and (4.33b) we deduce
that

(a) hα
β

i = 0 and (b) h′
i
k

α = −kαδk
i . (4.48)

Now we use the Bianchi identity (2.4.31) for the Schouten–Van Kampen con-
nection ∇◦ on (M(c), g). By using Proposition 2.9 and (4.48) we deduce that
the adapted torsion tensor fields from (2.4.31) are given by

(a) Tj
r
k = T ◦

j
r
k = 0, (b) Tγ

r
j = −h′

j
r
γ = kγδr

j ,

(c) C ′
γ

ε
k = T ◦

γ
ε
k = hγ

ε
k = 0.

(4.49)

Thus by (4.47) and (4.49) we see that (2.4.31) becomes

Ri
h

jk|◦γ − 2kγRi
h

jk = 0, (4.50)

where |◦ represents transversal covariant derivative with respect to ∇◦ (see
Section 3.2) and Ri

h
jk are the local components of R from (4.44) with respect

to the semi–holonomic frame field
{

∂

∂xi
, δ

δxα

}
, i.e., we have

Ri
h

jk = (c + k(H))(gijδ
h
k − gikδh

j ). (4.51)

Taking the transversal covariant derivative in (4.51) and by using (2.19b) and
(2.3.17) we obtain

Ri
h

jk|◦γ =
∂(k(H))

∂xγ
(gijδ

h
k − gikδh

j ), (4.52)

since k(H) is a basic function on M(c). Comparing (4.50) with (4.52) and
using (4.51) we deduce that(

∂(k(H))
∂xγ

− 2kγ(c + k(H))
)

(n − 1)δh
k = 0,

which implies
∂(k(H))

∂xγ
= 2kγ(c + k(H)), (4.53)

since n > 1. Now, suppose that F is of constant curvature. Then from (4.44)
it follows that c + k(H) must be a constant on M . As k(H) is basic, from
(4.53) we obtain

(a) c + k(H) = 0 or (b) kα = 0, for all α ∈ {n + 1, ..., n + p}.
But (b) can not occur because kα = 0 implies H = 0 and thus F is totally
geodesic with bundle–like metric on M(c). As by Theorem 4.23 F is flat, we
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apply assertion (i) of Corollary 4.14 and justify our assertion. Thus only (a)
can occur, and this proves the assertion (ii) of our theorem.

In case of positively curved manifolds a similar result to the one stated in
Corollary 4.13 for totally geodesic foliations has been obtained.

Theorem 4.25. (Walschap [Was97]). Let F be a totally umbilical n–foliation
with bundle–like metric on an (n + p)–dimensional Riemannian manifold
(M, g) of positive curvature. Then n ≤ p − 1.

Finally, we mention here that a foliation F on a manifold M is said to be
umbilicalizable if there exists a Riemannian (semi–Riemannian) metric g on
M for which F is totally umbilical. As it is well known, any totally umbilical
and minimal non–degenerate submanifold of a semi–Riemannian manifold is
totally geodesic. However, such an assertion on umbilicalizable and geodesible
foliations is not obvious. Results on this matter can be found in Carrière
[Car81] and Cairns [Cai90]. Also, some decomposition theorems for Rieman-
nian manifolds endowed with two complementary orthogonal totally umbilical
foliations have been obtained by Koike [K90].

3.4.3 Minimal Foliations on Riemannian Manifolds

Let (M, g) be an (n + p)–dimensional semi–Riemannian manifold and F be a
non–degenerate n–foliation on M with D and D⊥ as structural and transversal
distributions respectively. Consider the Levi–Civita connection ∇̃ on (M, g)
and the intrinsic connection D⊥ on D⊥ defined by (1.10b). Now, we define
a D⊥–valued differential r–form on M , as an F (M)–multilinear mapping
ω : Γ (TM)r −→ Γ (D⊥) such that

ω(Xσ(1), ..., Xσ(r)) = ε(σ)ω(X1, ..., Xr),

for any permutation σ of {1, 2, ..., r}, where ε(σ) = ±1 is the signature of
σ. Then we define the intrinsic covariant derivative of ω with respect to
X ∈ Γ (TM) as the r–form D⊥

Xω given by

(D⊥
Xω)(Y1, ..., Yr) = D⊥

X(ω(Y1, ..., Yr)) −
r∑

i=1

ω(Y1, ..., ∇̃XYi, ..., Yr), (4.54)

for any Yi ∈ Γ (TM), i ∈ {1, ..., r}. Next, denote by Ar(M,D⊥) the F (M)–
module of all D⊥–valued differential r–forms on M . Then we define the
D⊥–exterior derivative as the differential operator

d : Ar(M,D⊥) −→ Ar+1(M,D⊥),

given by
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dω(Y1, ..., Yr+1) =
r+1∑
i=1

(−1)i+1(D⊥
Yi

ω)(Y1, ..., Ŷi, ..., Yr+1), (4.55)

where Ŷi means that Yi is omitted. As in Section 3.1 denote by R′ the curva-
ture tensor field of D⊥ and keep the same symbol for the L(D⊥,D⊥)–valued
2–form

(X, Y ) −→ R′(X, Y ), ∀X, Y ∈ Γ (TM).

Then it can be proved that

d2ω = R′ ∧ ω,

where ∧ is the usual exterior product of vector bundles valued forms. Accor-
ding to (1.33) we have R′(QX, QY ) = 0 for any X, Y ∈ Γ (TM), and therefore
d2ω = 0 for any ω restricted to Γ (D)r. Thus a De Rham cohomology of D⊥–
valued forms along the leaves can be developed. This was done in more general
setting by using the quotient bundle TM/D by several authors (cf. Vaisman
[Vai71], Kamber–Tondeur [KT71]).

Next, we consider the D⊥–divergence operator

d∗ : Ar(M,D⊥) −→ Ar−1(M,D⊥),

given by

d∗ω(Y1, ..., Yr−1) = −
n+p∑
A=1

εA(D⊥
EA

ω)(EA, Y1, ..., Yr−1), (4.56)

where {EA}, A ∈ {1, ..., n + p} is an orthonormal field of frames on (M, g) of
signature {εA}, adapted to the decomposition (1.1). We note that A0(M,D⊥)
is identified with Γ (D⊥).

More about the above three operators D⊥, d, d∗ on Riemannian manifolds
can be found in Tondeur [Ton97], where D⊥ = ∇, d = d∇ and d∗ = δ∇.
Also, in the Riemannian case the name divergence operator was given to d∗

by Sanini [San82].
Our purpose is to present the basic properties of these operators on semi–

Riemannian manifolds. To this end we consider the projection morphism
Q′ : Γ (TM) −→ Γ (D⊥) as a D⊥–valued 1–form. Then we apply D⊥, d and
d∗ to Q′ and by using (4.54), (4.55) and (4.56) we obtain

(D⊥
XQ′)(Y ) = D⊥

XQ′Y − Q′(∇̃XY ), (4.57)

dQ′(X, Y ) = (D⊥
XQ′)(Y ) − (D⊥

Y Q′)(X), (4.58)

and

d∗Q′ = −
n+p∑
A=1

εA(D⊥
EA

Q′)(EA), (4.59)
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respectively. According to the name we gave to d∗, we also call d∗Q′ the
divergence of Q′. Now, we prove the following.

Lemma 4.26. Let F be a non–degenerate n–foliation on an (n+p)–dimensional
semi–Riemannian manifold (M, g). Then we have

(a) (D⊥
XQ′)(QY ) = −h(X, QY ),

(b) (D⊥
XQ′)(Q′Y ) = −h(Q′Y,QX),

(c) dQ′ = 0, (d) d∗Q′ = nH,

(4.60)

where H is the mean curvature vector field of F and h is the F (M)–bilinear
form given by (2.4a).

Proof. By using (4.57) and (2.4a) we obtain (4.60a). Then we use (4.57),
(2.3b) and (2.7d) and deduce (4.60b). Next, taking into account (4.58), (1.5.8),
(1.4) and (1.9) we infer that

dQ′(X, Y ) = D⊥
XQ′Y − D⊥

Y Q′X − Q′[X, Y ]

= {D⊥
XQ′Y − D⊥

Q′Y Q′X − Q′[X, Q′Y ]}
− Q′[QY, Q′X] − Q′[X,QY ]

= −Q′{[QY, Q′X] + [Q′X, QY ]} − Q′[QX, QY ] = 0,

which proves (4.60c). Finally, we use (4.60a), (4.60b) and (4.28) into (4.59)
and obtain

d∗Q′ = −
n∑

i=1

εi

(
D⊥

Ei
Q′)Ei −

n+p∑
α=n+1

εα

(
D⊥

Eα
Q′)Eα

=
n∑

i=1

εih(Ei, Ei) +
n+p∑

α=n+1

εαh(Q′Eα, QEα)

=
n∑

i=1

εih(Ei, Ei) = nH,

that is, (4.60d) is proved.

For foliations on Riemannian manifolds the proofs of (4.60c) and (4.60d)
were given by Kamber and Tondeur [KT82] (cf. Propositions 2.2 and 3.2).

From (4.60c) we see that the exterior derivative of Q′ vanishes identically
on M , while its intrinsic covariant derivative and divergence, in general, do
not. When this happens the foliation has some special geometric properties
as we see in the next two theorems.

Theorem 4.27. Let F be a foliation as in Lemma 4.26. Then the intrinsic
covariant derivative of Q′ vanishes identically on M if and only if (M, g) is
a locally semi–Riemannian product with respect to the decomposition (1.1).
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Proof. From (4.60a) and (4.60b) we deduce that D⊥
XQ′ = 0 for any

X ∈ Γ (TM) if and only if

(a) h(QX,QY ) = 0 and (b) h(Q′X, QY ) = 0, ∀X, Y ∈ Γ (TM). (4.61)

Next, by using (2.12b) we see that (4.61b) is equivalent to

h′(Q′X, Q′Z) = 0,∀X, Z ∈ Γ (TM).

So D⊥
XQ′ = 0 for any X ∈ Γ (TM) if and only if the second fundamental

forms h and h′ of D and D⊥ vanish identically on M , that is, M is a locally
semi–Riemannian product (see Section 1.5).

Theorem 4.28. Let F be a foliation as in Lemma 4.26. Then the following
assertions are equivalent:

(i) The divergence of Q′ vanishes identically on M .
(ii) The mean curvature vector H of F vanishes identically on M .
(iii) The mean curvature form k of F vanishes identically on M .

Proof. The equivalence of (i) and (ii) follows from (4.60d). Also, (4.30) implies
the equivalence of (ii) and (iii).

From now on, we restrict our study to foliations on Riemannian manifolds.
In this case, the equivalence of (i) and (ii) in Theorem 4.28 has been proved
by Kamber and Tondeur [KT82]. If one of the assertions in Theorem 4.28
is satisfied (and therefore all) we say that F is a minimal foliation or a
harmonic foliation. By assertion (ii) we see that F is minimal if and only
if all leaves of F are minimal submanifolds of (M, g). This gives us a reason
to call F a minimal foliation. Also by (i) we see that if F is harmonic then
the Laplacian of Q′ given by ∆Q′ = dd∗Q′ +d∗dQ′ vanishes via (4.60c). Thus
Q′ is a harmonic D⊥–valued 1–form, which justifies the name harmonic for
F . When (M, g) is compact and oriented, and g is bundle–like for F , it was
proved by Kamber and Tondeur [KT82] that ∆Q′ = 0 implies d∗Q′ = 0.

Proposition 4.29. Let F be a foliation on a Riemannian manifold (M, g)
such that:

(i) The mean curvature vector is parallel with respect to the intrinsic connec-
tion D⊥ on D⊥, i.e., we have

D⊥
XH = 0, ∀X ∈ Γ (TM). (4.62)

(ii) The transversal Ricci tensor of F is non–degenerate on M .

Then F is a minimal foliation.
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Proof. Locally (4.62) is equivalent to

(a) Hα‖k = 0, (b) Hα|β = 0. (4.63)

Then by using (4.63) and (1.38b) in (1.50) we deduce that

HεR′
εβ = 0,

which implies Hε = 0 for any ε ∈ {n + 1, ..., n + p}, since [R′
αβ ] is non–

degenerate. Hence F is minimal.

Remark 4.9. The condition (ii) is satisfied by any foliation that is transversal
Einstein with non-zero transversal scalar curvature. Also, we have the same
conclusion if we replace (ii) by the topological condition (see Kamber–Tondeur
[KT82])

(ii′) M is a compact and oriented manifold.

As in the case of the other two classes of foliations studied in the pre-
vious subsections, there were several studies on the existence of a Rieman-
nian metric g on M with respect to which the foliation F is minimal. In the
affirmative case the foliation is called geometrical taut. It was first Sullivan
[Sul79] who found a necessary and sufficient condition for F to be taut. Then
Rummler [Rum79] and Haefliger [Hae80] obtained geometrical and topological
characterizations of taut foliations.

Finally, we note that the three problems on the existence of a Rieman-
nian metric g with respect to which F falls into one of the categories: totally
geodesic, totally umbilical or minimal become much more difficult in the semi–
Riemannian case. This is because the existence of such a metric requires some
strong topological conditions. For instance, a Lorentz metric exists on M if
and only if either M is noncompact, or M is compact and has Euler number
χ(M) = 0 (cf. O’Neill [O83], p. 149). In general, there is a close relationship
between the existence of a semi–Riemannian metric of index q on a mani-
fold M and the existence of a q–distribution on M . More precisely, a smooth
compact manifold admits a semi–Riemannian metric of index q if and only if
it admits a q–distribution (see Steenrod [Stee51], p. 207). This explains the
above results on the Euler number of a compact manifold endowed with a
Lorentz metric.

3.5 Degenerate Foliations of Codimension One

In the present section we initiate a study of the geometry of a degenerate
foliation of codimension one on a semi–Riemannian manifold. We introduce
the concept of screen distribution on a manifold endowed with a degenerate
foliation and construct the null transversal bundle to the foliation. Though



3.5 Degenerate Foliations of Codimension One 149

this bundle depends on the screen distribution, the second fundamental form
of a degenerate foliation is the same for all screen distributions.

Let (M, g) be an (n + 1)–dimensional proper semi–Riemannian manifold
and F be an n–foliation with structural and transversal distribution D and D⊥

respectively. Suppose that the null distribution N = D ∩ D⊥ is of maximum
rank 1, that is, all fibers of N are 1–dimensional. Then we say that F is
a degenerate foliation on (M, g). In this case N = D⊥ and thus F is
degenerate if and only if D⊥ is a subbundle of D. On the other hand, if F is
degenerate then the induced tensor field by g on D is of rank n− 1, since the
null distribution is of rank 1. The converse is also true. Finally, F is degenerate
if and only if each leaf of F is a degenerate hypersurface (cf. Bejancu [B96]).
Thus summing up this discussion we may state the following.

Theorem 5.1. Let F be a foliation of codimension one on an (n + 1)–
dimensional proper semi–Riemannian manifold (M, g). Then the following
assertions are equivalent:

(i) F is a degenerate foliation.
(ii) D⊥ is a vector subbundle of D.
(iii) The induced tensor field by g on D is of rank n − 1.
(iv) Any leaf of D is a degenerate hypersurface.

Hence, from now on D⊥ is a totally null distribution, that is, locally there
exists a null vector field ξ such that D⊥ = span{ξ}. We call ξ the null struc-
tural vector field of the degenerate foliation F . Before we go further into
the study let us present some examples of degenerate foliations.

Example 5.1. Let IRn+1
q = (IRn+1, g) be the (n + 1)–dimensional semi–

Euclidean space with g given as in (1.4.9). Then consider n + 1 fixed real
numbers λ1, ..., λn+1 satisfying

q∑
t=1

(λt)2 =
n+1∑

s=q+1

(λs)2, (λ1, ..., λn+1) �= (0, ..., 0).

It is easy to see that the foliation by hyperplanes

n+1∑
a=1

λaxa = c, c ∈ IR,

is a degenerate foliation on IRn+1
q with null structural vector field

ξ = −
q∑

t=1

λt
∂

∂xt
+

n+1∑
s=q+1

λs
∂

∂xs
·

Example 5.2. Let IRn+1
1 = (IRn+1, g) be the (n + 1)–dimensional Lorentz

space with g given as in (1.4.10). Denote by L the x1–axis of IRn+1
1 and
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consider the open submanifold M = IRn+1
1 \{L} of IRn+1

1 . Then denote by F+

and F− the foliations on M with leaves given by

x1 =

(
n+1∑
s=2

(xs)2
)1/2

+ c, c ∈ IR,

and

x1 = −
(

n+1∑
s=2

(xs)2
)1/2

+ c, c ∈ IR,

respectively. Both F+ and F− are degenerate foliations on M with null struc-
tural vector fields

ξ+ =
∂

∂x1
+

1
α

n+1∑
s=2

xs ∂

∂xs
,

and

ξ− =
∂

∂x1
− 1

α

n+1∑
s=2

xs ∂

∂xs
,

respectively, where we set

α =

(
n+1∑
s=2

(xs)2
)1/2

.

According to the terminology in physics under which leaves for c = 0 are
known, we call F+ and F− the future cones foliation and the past cones
foliation respectively.

Example 5.3. Let M be the hypersurface of IRn+1
1 situated in the half space

xn+1 > 0 and given by the equation

n+1∑
s=3

(xs)2 = 1.

Consider the distribution D on M spanned by the vector fields

X2 =
∂

∂x1
+

∂

∂x2
, Xs =

∂

∂xs
− xs

xn+1

∂

∂xn+1
, s ∈ {3, ..., n}.

It is easy to check that D is an integrable distribution and D⊥ is spanned by
ξ = X2. Therefore D⊥ is a vector subbundle of D, and by (ii) of Theorem 5.1
we conclude that D defines a degenerate foliation on M .

According to the general theory of degenerate distributions developed in
Section 1.8 we may state the following (see Theorems 1.8.2 and 1.8.4).
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Theorem 5.2.

(i) Let F be a totally-null foliation on a 2-dimensional Lorentz manifold
(M, g). Then there exists a unique totally-null distribution D′ that is com-
plementary to D in TM .

(ii)Let F be a degenerate n–foliation on an (n+1)–dimensional semi–Rieman-
nian manifold (M, g) with n > 1. Then for a screen distribution S on M
there exists a unique totally-null distribution D′(S) that is complementary
to D in TM .

As the case n = 1 was fully analyzed in Section 1.8 we concentrate only on
the case n > 1. The second fundamental form B of the degenerate distribution
D (cf. (1.8.19)) is also called second fundamental form of the degenerate
foliation F . B is a degenerate F (M)–bilinear form on Γ (D), and does not
depend on the screen distribution S on M . As in case of non–degenerate
foliations we say that F is totally geodesic if B vanishes identically on M .
Also, we say that F is totally umbilical if on each coordinate neighbourhood
U ⊂ M there exists a smooth function ρ such that

B(X, Y ) = ρg(X, Y ), ∀X, Y ∈ Γ (D|U ). (5.1)

It is easy to see that the foliation from Example 5.1 is totally geodesic because
its leaves are degenerate hyperplanes which are totally geodesic immersed in
IRn+1

q (cf. Bejancu [B96]). Now, we consider the foliation F+ from Example
5.2. Then the distribution D is spanned by the vector fields

Xs =
∂

∂xs
+

xs

α

∂

∂x1
, s ∈ {2, ..., n + 1}.

By direct calculations using (1.8.19) and (1.8.15a) we obtain

B(Xs, Xr) = g(∇̃XsXr, ξ
+) =

1
α3

(xsxr − α2δsr).

Also, by (1.4.10) we have

g(Xs, Xr) =
1
α2

(α2δsr − xrxs).

Thus the future cones foliation F+ is totally umbilical with ρ = − 1
α
· Similarly,

it follows that F− is also totally umbilical with the same function ρ.

Theorem 5.3. (Bejancu–Farran [BF03b]). Let (M, g) be a 3–dimensional
Lorentz manifold. Then any degenerate foliation of codimension one is either
totally geodesic or totally umbilical.

Proof. Suppose that locally D = span{E, ξ} where ξ spans D⊥ and E is a
non–null vector field. Then by (1.8.25) we have
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B(ξ, ξ) = B(E, ξ) = 0.

As g(ξ, ξ) = g(E, ξ) = 0, we see that (5.1) is satisfied with

ρ = h(E, E)/g(E, E).

Hence the foliation is either totally geodesic or totally umbilical, depending
on whether h(E, E) = 0 or h(E,E) �= 0, respectively.

Now, according to the terminology in Section 1.5, ξ is D–Killing if and
only if

(Lξg)(Y,Z) = ξ(g(Y, Z)) − g([ξ, Y ], Z)

−g([ξ, Z], Y ) = 0, ∀Y, Z ∈ Γ (D),
(5.2)

where L is the Lie derivative on M . It is easy to see that (5.2) should be
verified only for Y, Z ∈ Γ (S), where S is a screen distribution for D⊥. Thus
comparing (5.2) with (3.2) we may say that the degenerate metric g on D is
bundle–like for the foliation F⊥ determined by D⊥. Next, we consider the
second fundamental form B of F (cf. (1.8.19) and (1.8.15a))

B(Y, Z) = g(∇̃Y Z, ξ), ∀Y, Z ∈ Γ (D). (5.3)

Then by using (1.5.10) and taking into account that g(X, ξ) = 0 for any
X ∈ Γ (D), we obtain

B(Y, Z) = −1
2
{ξ(g(Y, Z)) − g([ξ, Y ], Z) − g([ξ, Z], Y )}. (5.4)

Comparing (5.4) with (5.2) we deduce an interesting characterization of totally
geodesic degenerate foliations of codimension one.

Theorem 5.4. Let F be a degenerate foliation of codimension one on (M, g)
and F⊥ be the totally–null foliation determined by D⊥. Then F is totally
geodesic if and only if g is bundle–like for F⊥.

We should note that D⊥ ⊂ D, so we may say that F⊥ is a subfoliation of
F . However by the above result we can see that F⊥ gives a lot of information
about the ambient foliation F .



4

PARALLEL FOLIATIONS

This chapter is dedicated to studying the geometry of parallel foliations on
semi–Riemannian manifolds. These are foliations whose tangent distributions
are invariant under parallel transport with respect to the Levi–Civita connec-
tion. The way these distributions behave with respect to the semi–Riemannian
metric is crucial and plays a major role in determining the geometry of both
the foliations and the ambient manifolds. Although, the case when a tangent
distribution is non–degenerate is very well determined, the situation for the
degenerate case is still very far from being understood.

Our aim is to give a fairly comprehensive picture of what is known (or at
least of what we know) about the geometry of a semi–Riemannian manifold
on which a parallel foliation is defined. In the degenerate case this problem
was completely solved as far as a local structure is concerned by A.G. Walker
in the fifties of the last century. A definitive global structure theorem for the
Riemannian case was obtained few years earlier by de Rham. The theorem of
de Rham was extended by Wu to include the non–degenerate semi–Rieman-
nian case, but as mentioned above, the global structure in the degenerate case
has not been settled yet. We hope that geometers will be encouraged by this
exposition to tackle the remaining unsolved problems.

The first section introduces the notion of parallelism in general, while
the second discusses parallelism on almost product manifolds. In the third
we move to parallelism with respect to the Levi–Civita connection on a semi–
Riemannian manifold. Section 4.4 treats the non–degenerate case culminating
with the most general form of the de Rham decomposition theorem.

Walker’s results lie on the heart of the remaining sections. These sections
were also greatly influenced by the way Walker’s results were exploited by
Robertson and Furness. The totally–null case was treated in Sections 4.5 and
4.6. The partially–null case is the most complicated and less understood one. It
was visited briefly in Sections 4.7 and 4.8. Section 4.8 also treats the situation
when the largest parallel degenerate foliation has a complementary foliation.
The last section embarks on a very important notion in differential geometry,
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namely that of G–structures. The purpose of the section is to study parallel
foliations on semi–Riemannian manifolds by using the theory of G–structures.

4.1 Parallelism

Let ∇ be a linear connection on a smooth m–dimensional manifold M . Recall
that the tangent bundle TM has a natural m–foliation by fibers (see Exam-
ple 2.1.4). The distribution V TM tangent to this foliation is known as the
vertical distribution on TM . Geometrically, the linear connection ∇ as-
signs an m–distribution HTM on TM complementary to V TM as follows.
Let (xa, ya) be a coordinate system on TM , where (xa), a ∈ {1, ..., m} are
local coordinates on M . Then we put

∇ ∂

∂xb

∂

∂xa
= Γa

c
b(x)

∂

∂xc
, (1.1)

and consider the functions

Hc
b (x, y) = ya Γa

c
b(x). (1.2)

Taking into account that {Γa
c
b(x)} are the local coefficients of a linear con-

nection on M , we define HTM as the distribution that is locally spanned
by

δ

δxa
=

∂

∂xa
− Hb

a(x, y)
∂

∂yb
, a ∈ {1, ..., m}. (1.3)

From now on, HTM is called the horizontal distribution on TM induced
by ∇.

A path σ∗ : [0, 1] −→ TM is said to be horizontal if
dσ∗

dt
∈ HTMσ∗(t),

for all t ∈ [0, 1]. Now, if σ : [0, 1] −→ M is a piecewise smooth path in
M taking x = σ(0) to y = σ(1) in M , then for each u ∈ TxM , there is a
unique horizontal lift σ∗ : [0, 1] −→ TM with σ∗(0) = u. This says that σ∗

is horizontal and that π(σ∗(t)) = σ(t) where π : TM −→ M is the natural
projection. Then it is easy to check that for any t ∈ [0, 1]

τσ(t) : TxM −→ Tσ(t)M, τσ(t)(u) = σ∗(t),

is an isomorphism of vector spaces. τσ(t) is known as the parallel displace-
ment or parallel transport along σ. If in particular, M carries a semi–Rie-
mannian metric g and ∇ is the Levi–Civita connection with respect to g, then
τσ(t) is a linear isometry (cf. O’Neill [O83], p.66).

Conversely, given a distribution HTM complementary to V TM , the pa-
rallel displacement can be used to define covariant differentiation. This is done
as follows. Let X and Y be two vector fields on M . For any point x ∈ M we
take the integral curve σ : [0, 1] −→ M of X through x, that is, σ(0) = x and
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σ′(t) = X(σ(t)). Then the covariant derivative ∇XY of Y with respect to X
is the vector field given by

(∇XY )(x) = lim
t→0

1
t

(
τ−1
σ(t)Y (σ(t)) − Y (x)

)
. (1.4)

Now, if x ∈ M , and σ : [0, 1] −→ M is a loop at x (that is σ(0) = σ(1) = x),
then the parallel displacement τσ(t) is an automorphism of TxM . All such
automorphisms define a group Φx known as the holonomy group of the
connection ∇ at x. Since M is supposed to be connected, then holonomy
groups at different points are isomorphic to each other and we can speak of
the holonomy group Φ of the connection ∇. If the action of Φx on TxM leaves
a non–trivial k–dimensional subspace Dx of TxM invariant, then Φ is said
to be k–reducible. Accordingly, if Φ is k–reducible then we say that M is
∇–reducible. Otherwise, M is called ∇–irreducible.

We are now in a position to define parallel distributions on manifolds. So,
let ∇ be a linear connection on an (n+p)–dimensional manifold M with n > 0,
p > 0. An n–distribution D on M is said to be parallel with respect to ∇ if
D is invariant under parallel displacements. That is to say, for all x, y ∈ M
and all piecewise smooth paths σ from x to y we have τσ(Dx) = Dy.

Theorem 1.1. Let ∇ be a linear connection on a connected smooth (n + p)–
dimensional manifold M with n > 0, p > 0. Then M admits an n–distribution
D parallel with respect to ∇ if and only if Φ is n–reducible.

Proof. First, if D is a parallel n–distribution on M , then for any x ∈ M , and
any loop σ at x we have τσ(Dx) = Dx, and hence Φ is n–reducible. Conversely,
suppose that Φ is n–reducible. Then for some x ∈ M we take Dx to be the
subspace invariant under Φx. Now we define a distribution D on M as follows.
For any other point y ∈ M we take Dy to be the image of Dx under any
parallel displacement τσ from TxM to TyM . To show that Dy is independent
of the choice of σ, we consider any other path δ taking x to y. Then δ−1 ◦ σ
is a loop at x and hence Dx is invariant under the parallel displacement
τδ−1◦σ = τ−1

δ ◦τσ. Thus τ−1
δ ◦τσ(Dx) = Dx, and hence τσ(Dx) = τδ(Dx). Thus

D is well defined on M . The smoothness and parallelism of D follow directly
from its construction.

Given a linear connection ∇ on M , the above theorem discusses the exis-
tence problem for a distribution D that is parallel with respect to ∇. The
converse problem is to start with a distribution D on M and discuss the
existence of a linear connection ∇ on M with respect to which D is parallel.
Before we discuss this issue, we state a proposition whose proof follows directly
by using (1.4).

Proposition 1.2. Let ∇ be a linear connection and D a distribution on a ma-
nifold M . Then D is parallel with respect to ∇ if and only if ∇ is an adapted
connection to D.
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Now, we state the following.

Proposition 1.3. Let D be a distribution on a paracompact manifold M .
Then there is a linear connection on M with respect to which D is parallel.

Proof. Since M is paracompact, it admits a Riemannian metric g and hence a
Levi–Civita connection ∇̃ (see Corollary 1.5.2). The connection we are looking
for is nothing but the Vrănceanu connection defined by ∇̃ (see (3.1.12)).

In what follows we show that the integrability of a distribution is closely
related to the torsion of a linear connection. First, we prove the following.

Proposition 1.4. Let ∇ be a linear connection and D a distribution on a
manifold M . If ∇ is torsion–free and D is parallel with respect to ∇, then D
is integrable.

Proof. Using Theorem 2.1.7, it is enough to show that D is involutive. Taking
into account that ∇ is torsion–free, we have

[X, Y ] = ∇XY −∇Y X, ∀X, Y ∈ Γ (TM).

Then, by using Proposition 1.2, we deduce that [X, Y ] ∈ Γ (D), for any
X, Y ∈ Γ (D). Hence D is involutive.

Next, by using the Vrănceanu connection, we prove the converse of the
above proposition.

Proposition 1.5. Let D be an integrable distribution on a paracompact mani-
fold M . Then there exists a torsion–free linear connection ∇ on M such that
D is parallel with respect to ∇.

Proof. Let g be a Riemannian metric on M and ∇∗ be the Vrănceanu con-
nection defined by the Levi–Civita connection ∇̃ on (M, g). Since the second
fundamental form h of D is symmetric (see the assertion (iii) of Lemma 1.5.5),
from (1.6.14) we deduce that the torsion tensor field T ∗ of ∇∗ is given by

T ∗(X, Y ) = h′(Q′Y,Q′X) − h′(Q′X, Q′Y ), ∀X, Y ∈ Γ (TM).

Then, by (1.5.21b) we obtain

T ∗(X, Y ) = Q∇̃Q′Y Q′X − Q∇̃Q′XQ′Y = −Q[Q′X, Q′Y ], (1.5)

since ∇̃ is torsion–free. Now, we define a new linear connection

∇XY = ∇∗
XY − 1

2
T ∗(X, Y ), ∀X, Y ∈ Γ (TM). (1.6)
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By using (1.5) and taking into account that D is parallel with respect to
∇∗, we conclude that D is parallel with respect to ∇ too. Finally, by direct
calculations using (1.6) we deduce that ∇ is a torsion–free linear connection
on M . This completes the proof of the proposition.

Next, by combining Propositions 1.4 and 1.5, we can state the following.

Theorem 1.6. (Willmore [Wil56], Walker [Wal55], [Wal58]). A distribution
D on a manifold M is integrable if and only if there exists a torsion–free linear
connection ∇ on M such that D is parallel with respect to ∇.

In fact, Walker [Wal55] has studied the integrability and parallelism of a
complete system of distributions in relation to the torsion of a linear connec-
tion. A family of r distributions D1, ...,Dr on M is said to be a complete sys-
tem of distributions if Di∩Dj = {0} for any i �= j, and D1⊕· · ·⊕Dr = TM.
Since the only complete system of interest to us is composed of two comple-
mentary distributions, we only prove the following. (Technically, if the number
of distributions is more than two, the proof is essentially similar.)

Theorem 1.7. Let (D,D′) be a pair of complementary distributions on a
manifold M . Then we have the assertions:

(i) There exists a linear connection ∇ on M such that both D and D′ are
parallel distributions with respect to ∇

(ii)D and D′ are both integrable if and only if there exists a torsion–free linear
connection ∇∗ on M such that D and D′ are parallel with respect to ∇∗.

Proof. Clearly, the Vrănceanu and Schouten–Van Kampen connections de-
fined by the Levi–Civita connection on M with respect to a Riemannian me-
tric have the property required in (i). The assertion (ii) is a consequence of
Theorem 1.3.3.

In general, a foliation F on a manifold M is said to be parallel with
respect to a linear connection ∇, if the tangent distribution D of F is parallel
with respect to ∇. Then from Proposition 1.5 and the assertion (ii) of Theorem
1.7 we deduce the following.

Corollary 1.8.

(i) For any foliation F there exists a torsion–free linear connection ∇ on M
such that F is parallel with respect to ∇.

(ii)For any two complementary foliations F and F ′ on M there exists a
torsion–free linear connection ∇ on M such that both F and F ′ are parallel
with respect to ∇.

.



158 4 PARALLEL FOLIATIONS

Before we end this section on parallelism, it is worth describing two weaker
notions of parallelism that deserve some attention. These are the notions of
relative parallelism and self–parallelism that we describe below.

Let H be a distribution on a manifold M . A path σ : [0, 1] −→ M is said
to be tangent to H (or an integral path of H) if for all t ∈ [0, 1] we have
dσ

dt
∈ Hσ(t). In particular, if H is integrable, then the integral paths of H

are just paths in the leaves of the foliation determined by H. Now, suppose
that D is another distribution on M (not necessarily distinct from H), and
∇ a linear connection on M . We say that D is ∇ parallel relative to H if
D is invariant under parallel displacements τσ for all paths σ tangent to H.
When D is ∇ parallel relative to itself, then it is called self–parallel. The
next proposition follows directly from (1.4).

Proposition 1.9.

(i) D is ∇–parallel relative to H if and only if ∇XY ∈ Γ (D) for any X ∈ Γ (H)
and Y ∈ Γ (D).

(ii)D is self–parallel if and only if ∇XY ∈ Γ (D) for any X, Y ∈ Γ (D).

It is interesting to note that in case of torsion–free linear connections the
self–parallelism implies the parallelism, as it is stated below.

Proposition 1.10. Let D be a self–parallel distribution with respect to a
torsion–free linear connection ∇. Then D is parallel with respect to a torsion–
free linear connection ∇′.

Proof. Since ∇ is torsion–free, D is integrable. Then apply Proposition 1.5
and obtain the assertion.

4.2 Parallelism on Almost Product Manifolds

Let D be an n–distribution on an (n+p)–dimensional manifold M . In Section
1.1 we saw that we can always find a p–distribution D′ complementary to D,
thus obtaining an almost product structure F on M given by (1.1.11). As
usual, for the almost product manifold (M,D,D′) we keep the notations Q
and Q′ for the projection morphisms of TM on D and D′ respectively. Then
using Theorem 1.2.2 and Proposition 1.2 we obtain the following.

Theorem 2.1. Let ∇∗ be a linear connection on an almost product manifold
(M,D,D′). Then the following assertions are equivalent:

(i) Both D and D′ are parallel with respect to ∇∗.
(ii) F is parallel with respect to ∇∗.
(iii) Both Q and Q′ are parallel with respect to ∇∗.

–

–
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If in particular ∇∗ is a torsion–free linear connection, then by assertion
(ii) of Theorem 1.7 we conclude that any of the assertions in Theorem 2.1
implies the integrability of both distributions D and D′. Thus M is endowed
with two complementary foliations F and F ′. Robertson [Rob70] called such
a pair a ∇∗–grid, and the structure (M,∇∗,F ,F ′), a grid manifold.

To study the global geometry of almost product manifolds satisfying cer-
tain integrability and parallelism conditions we need the following models.
Let N and N ′ be two smooth manifolds and M = N×N ′ be their product
manifold. Then M carries two complementary foliations F and F ′ by copies
of N and N ′ respectively. Let D and D′ be their tangent distributions with
projection morphisms Q and Q′. Now, if ∇ and ∇′ are linear connections
on N and N ′ respectively, then we can define a linear connection ∇∗ on M
as follows. For any point x∗ = (x, x′) of M consider the coordinate systems
(x1, ..., xn;U) and (xn+1, ..., xn+p;U ′) about x ∈ N and x′ ∈ N ′ respectively.
Then (x1, ..., xn, xn+1, ..., xn+p;U×U ′) is a coordinate system about x∗. Sup-
pose {Γj

i
k}, i, j, k ∈ {1, ..., n} and {Γ ′

β
α

γ}, α, β, γ ∈ {n+1, ..., n+p} are the
local coefficients of ∇ and ∇′ with respect to the coordinate systems (xi;U)
and (xα;U ′) respectively. Then we define the local coefficients of ∇∗ with
respect to the coordinate system (xi, xα;U×U ′) as follows:

(a) Γ ∗
j
i
k = Γj

i
k, i, j, k ∈ {1, ..., n},

(b) Γ ∗
β

α
γ = Γ ′

β
α

γ , α, β, γ ∈ {n + 1, ..., n + p},
(c) Γ ∗

r
t
s = 0, for all other triplets.

(2.1)

Also, we can express ∇∗ by the following invariant form

∇∗
XY = (∇QXQY,∇′

Q′XQ′Y ), ∀X, Y ∈ Γ (TM). (2.2)

The pair (M,∇∗) is called the affine product of (N,∇) and (N ′,∇′).
Next, we consider the manifolds N and N ′ endowed with two semi–

Riemannian metrics g = [gij(xk)], i, j, k ∈ {1, ..., n} and g′ = [g′αβ(xγ)],
α, β, γ ∈ {n + 1, ..., n + p}, respectively. Then we define the semi–Rieman-
nian metric g̃ on M = N×N ′ by the formula

g̃(X,Y ) = g(QX, QY ) + g′(Q′X, Q′Y ), ∀X, Y ∈ Γ (TM). (2.3)

Locally, we put

g̃ab = g̃

(
∂

∂xa
, ∂

∂xb

)
, a, b ∈ {1, ..., n + p},

where{
∂

∂xa

}
=
{

∂

∂xi
, ∂

∂xα

}
, a ∈ {1, ..., n+p}, i ∈ {1, ..., n}, α ∈ {n+1, ..., n+p},

is the natural field of frames on U×U ′. Then from (2.3) we deduce that
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[g̃ab(xc)] =

[
gij(xk) 0

0 g′αβ(xγ)

]
, (2.4)

is the matrix of the local components of g̃. The manifold (M, g̃) is called the
semi–Riemannian product of (N, g) and (N ′, g′).

The above two types of products will serve as local models for foliated
almost product manifolds.

Theorem 2.2. Let (M,D,D′) be an almost product manifold. If both D and
D′ are integrable, then every point x∗ ∈ M has a neighbourhood V∗ = V×V ′,
where V and V ′ are open submanifolds of leaves of D and D′ through x∗.

Proof. We assume that D and D′ are integrable distributions of rank n and
p respectively. Then we have two complementary foliations F and F ′ whose
leaves are of dimensions n and p respectively. Take L and L′ to be the leaves
through x∗ of F and F ′ respectively. Then there is a foliated chart (U , ϕ) about
x∗ with local coordinates (x1, ..., xn, xn+1, ..., xn+p) such that each plaque of
F is given by the equations

xn+1 = cn+1, ..., xn+p = cn+p.

Moreover, since x∗ is the origin of the coordinate system, we may take
(x1, ..., xn, 0, ..., 0) as local coordinates on U ∩L. Similarly, we take another fo-
liated chart (U ′, ϕ′) about x∗ with respect to F ′ such that
(0, ..., 0, xn+1, ..., xn+p) are local coordinates on U ′ ∩ L′. Then we choose the
open neighbourhoods V and V ′ of x∗ in L and L′ such that V×V ′ ⊂ U ∩ U ′.
Thus V∗ = V×V ′ is the required neighbourhood of x∗ in M .

It is worth mentioning that we can take (x1, ..., xn, xn+1, ..., xn+p) as a
coordinate system on V∗ compatible with both foliations F and F ′. That is
to say,

D = span
{

∂

∂x1
, · · · , ∂

∂xn

}
and D′ = span

{
∂

∂xn+1
, · · · , ∂

∂xn+p

}
, (2.5)

on V∗.
The above theorem justifies the term locally product manifold for a

manifold with two complementary integrable distributions as we have seen in
Section 1.5.

Theorem 2.3. Let (M,D,D′) be an almost product manifold, and ∇∗ a
torsion–free linear connection on M . If D and D′ are parallel with respect
to ∇∗, then for each x∗ ∈ M there is a neighbourhood V∗ ⊂ M and two
submanifolds V and V ′ of M admitting torsion–free linear connections ∇ and
∇′ such that (V∗,∇∗) is the affine product of (V,∇) and (V ′,∇′).
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Proof. By the assertion (ii) of Theorem 1.7 we deduce that both distributions
D and D′ are integrable. Thus we can apply Theorem 2.2 and obtain the local
product V∗ = V×V ′, where V and V ′ are open submanifolds of the leaves
L and L′ respectively. Now, using Theorem 1.2.1 we infer that ∇∗ induces
two linear connections ∇ and ∇′ on D and D′ respectively, and we have (see
(1.2.4))

∇∗
XY = ∇XQY + ∇′

XQ′Y, ∀X, Y ∈ Γ (TM). (2.6)

By using (2.5) and (2.6) we obtain

∇ ∂

∂xj

∂

∂xi
= ∇∗

∂

∂xj

∂

∂xi
, ∇′

∂

∂xβ

∂

∂xα
= ∇∗

∂

∂xβ

∂

∂xα
· (2.7)

Thus ∇ and ∇′ from (2.6) define two torsion–free linear connections on V and
V ′ whose coefficients are related with coefficients of ∇∗ on V∗ by (2.1a) and
(2.1b). Moreover, from (2.7) we deduce that

Γ ∗
i
α

j = Γ ∗
α

i
β = 0. (2.8)

Next, since ∇∗ is torsion–free, we have

∇∗
∂

∂xi

∂

∂xα
= ∇∗

∂
∂xα

∂

∂xi
·

As the two parts of this equality belong to complementary distributions, we
conclude that they must be zero. Hence we have

Γ ∗
α

k
i = Γ ∗

α
γ

i = Γ ∗
i
k

α = Γ ∗
i
γ

α = 0. (2.9)

Finally, (2.8) and (2.9) imply (2.1c), and therefore (V∗,∇∗) is an affine product
of (V,∇) and (V ′,∇′).

A manifold satisfying the conditions of Theorem 2.3 is called a locally
affine product manifold. It is clear that every locally affine product mani-
fold is a locally product manifold. The relationship in the opposite direction
is given by the following corollary.

Corollary 2.4. Every locally product manifold M admits a linear connection
∇∗ such that (M,∇∗) is a locally affine product manifold.

Proof. Suppose that (M,D,D′) is a locally product manifold, that is, D and
D′ are both integrable. Then by the assertion (ii) of Theorem 1.7 it follows
that there exists a torsion–free linear connection ∇∗ on M with respect to
which D and D′ are parallel. Hence by Theorem 2.3 (M,D,D′) is a locally
affine product manifold with respect to ∇∗.

Now, if in addition ∇∗ is complete and M is simply connected, then
(M,D,D′) from Theorem 2.3 is globally an affine product. To be more specific,
we end this section by stating the following important result of Kashiwabara
[Kas59].
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Theorem 2.5. Let ∇∗ be a complete torsion–free linear connection on an
almost product manifold (M,D,D′), where M is simply connected. If D and
D′ are parallel with respect to ∇∗, then there exist two manifolds L and L′

admitting linear connections ∇ and ∇′ such that (M,∇∗) is the affine product
of (L,∇) and (L′,∇′).

In fact, the manifolds L and L′ are two leaves through a point x∗ ∈ M of
the foliations F and F ′ defined by D and D′ respectively. The connections ∇
and ∇′ are induced by ∇∗ as we defined them in the proof of Theorem 2.3.
However, the complete proof of the above theorem is too technical and will
be omitted. It uses parallel transport along piecewise geodesic segments in L
and L′ to construct a covering map from (L,∇)×(L′,∇′) to (M,∇∗). Then
the result follows from the fact that M is simply connected.

4.3 Parallelism on Semi–Riemannian Manifolds

Let (M, g) be an m–dimensional semi–Riemannian manifold, and ∇̃ the Levi–
Civita connection on M . As we have seen in Section 1.4, if D is a distribution
on M , then using g we define the orthogonal distribution D⊥. Two more
distributions arise in a natural way, namely, the distribution D+ = D + D⊥

and N = D ∩D⊥. Notice that, in general, D+ need not be equal to TM and
N need not be trivial, because this depends upon the degree of nullity of D.
Of course, if (M, g) is Riemannian, or in general when D is semi–Riemannian,
then D+ = TM and N = {0}.

Now, we suppose that N ,D and D⊥ are distributions of rank r, r + s and
r+u respectively. To determine the rank for D+, we recall the following result
from linear algebra with respect to the dimensions of subspaces in a vector
space (see O’Neill [O83], p. 49)

dimD+
x = dimDx + dimD⊥

x − dimNx, ∀x ∈ M. (3.1)

Hence D+ is a distribution of rank r + s + u. Moreover, by using (1.4.3) in
(3.1) we deduce that D+ is of rank m−r. Hence the dimension of the manifold
can be expressed as follows

m = 2r + s + u. (3.2)

In order to stress the degree of nullity for each of the above distributions, we
also say that D,D⊥,D+ and N are of types (r, s), (r, u), (r, s + u) and (r, 0)
respectively. Now, by using the terminology from Section 1.4 we see that D
must be in exactly one of the following three classes:

a) D is non–degenerate (semi–Riemannian), if r = 0, s > 0.
b) D is partially–null, if r > 0, s > 0.
c) D is totally–null, if r > 0, s = 0.
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Remark 3.1. Parallelism, in the rest of this chapter will be considered only
with respect to the Levi–Civita connection on (M, g).

Theorem 3.1. Let D be a distribution that is parallel with respect to the Levi–
Civita connection ∇̃ on (M, g). Then D⊥,D+ and N are also parallel with
respect to ∇̃.

Proof. First let us show that D⊥ is parallel with respect to ∇̃. Since g is
parallel with respect to ∇̃, from (1.5.9) we deduce that

g(∇̃XY,Z) + g(Y, ∇̃XZ) = 0, ∀X ∈ Γ (TM), Y ∈ Γ (D), Z ∈ Γ (D⊥).

As ∇̃XY ∈ Γ (D), we have g(∇̃XY,Z) = 0. Hence g(Y, ∇̃XZ) = 0, which
implies that ∇̃XZ ∈ Γ (D⊥). Thus D⊥ is parallel with respect to ∇̃. Next, let
U ∈ Γ (D+), that is, U = Y + Z, where Y ∈ Γ (D) and Z ∈ Γ (D⊥). Then by
using the linearity of ∇̃ and the parallelism of both D and D⊥ we obtain

∇̃XU = ∇̃XY + ∇̃XZ ∈ Γ (D+), ∀X ∈ Γ (TM).

Hence D+ is parallel with respect to ∇̃. Finally, take Y ∈ Γ (N ) and X ∈
Γ (TM). Then Y ∈ Γ (D) and Y ∈ Γ (D⊥), which implies that ∇̃XY ∈ Γ (D)
and ∇̃XY ∈ Γ (D⊥). Hence ∇̃XY ∈ Γ (N ), that is, N is parallel with respect
to ∇̃.

Next, due to (3.2) we identify IRm with the product IRr×IRs×IRu×IRr,
and denote points of IRm by the 4–tuples (x, y, z, t) accordingly. Then we have
the following.

Theorem 3.2. Let D be a parallel distribution of type (r, s) on the (2r+s+u)–
dimensional semi–Riemannian manifold (M, g). Then M admits a foliated
atlas A in which the coordinate transformations are given by

x̃ = x̃(x, y, z, t), ỹ = ỹ(y, t),

z̃ = z̃(z, t), t̃ = t̃(t).
(3.3)

Furthermore, the distributions N ,D,D⊥ and D+ are locally spanned by

(a)
{

∂

∂x1
, · · · , ∂

∂xr

}
,

(b)
{

∂

∂x1
, · · · , ∂

∂xr
, ∂

∂y1
, · · · , ∂

∂ys

}
,

(c)
{

∂

∂x1
, · · · , ∂

∂xr
, ∂

∂z1
, · · · , ∂

∂zu

}
,

(d)
{

∂

∂x1
, · · · , ∂

∂xr
, ∂

∂y1
, · · · , ∂

∂ys
, ∂

∂z1
, · · · , ∂

∂zu

}
,

(3.4)

respectively.
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Proof. Using Theorem 3.1, we have altogether four distributions parallel with
respect to the torsion–free linear connection ∇̃ on (M, g). Thus by Theorem
1.6, the distributions N ,D,D⊥ and D+ define four parallel foliations FN , F ,
F⊥ and F+ respectively. Then the two assertions of the theorem follow from
(2.1.5) and Theorem 1.1.1, taking into consideration that FN foliates every
leaf of F , F⊥ and F+, and that both F and F⊥ foliate every leaf of F+.

A foliation F on a semi–Riemannian manifold (M, g) is said to be of type
(r, s) if its tangent distribution D is of type (r, s). Thus F is non–degenerate
(partially–null, totally–null) if D is so. When r > 0, s > 0, u > 0 it is easy
to see that FN is totally–null, while the other three foliations are partially–
null. We also note that in this study we have two flags of foliations:

FN ⊂ F ⊂ F+ and FN ⊂ F⊥ ⊂ F+.

In general, a flag of foliations is a family of foliations F1, ...,Fk of codimensions
q1, ..., qk (q1 ≤ q2 ≤ · · · ≤ qk) such that for i < j the leaves of Fj are submani-
folds of leaves of Fi. Feigin [Fei75] introduced the concept of flag of foliations
and developed a theory of its characteristic classes. In this respect, several
results have been obtained for flags with two foliations, which are also called
subfoliations (see Cordero [Cor85], Cordero–Gadea [CG76]).

The information we have from Theorem 3.2 will be used in what follows
to study the geometry of semi–Riemannian manifolds admitting a parallel
foliation F . We must distinguish between the cases where F is non–degenerate,
partially–null or totally–null.

4.4 Parallel Non–Degenerate Foliations

Let F be a parallel non–degenerate n–foliation on an (n + p)–dimensional
semi–Riemannian manifold (M, g̃). Thus the tangent distribution D to F is
non–degenerate and parallel with respect to the Levi–Civita connection ∇̃ on
(M, g̃). Hence D⊥ is parallel, non–degenerate and complementary orthogonal
to D. This gives the second parallel p–foliation F⊥. Thus (M,D,D⊥) is an
almost product manifold and the pair (F ,F⊥) is a ∇̃–grid. Using Theorem
3.2 for r = 0 and Theorem 2.3 we obtain the following.

Theorem 4.1. Let F be a parallel non–degenerate n–foliation on an (n+ p)–
dimensional semi–Riemannian manifold (M, g̃). Then we have the assertions:

(i) For each x ∈ M there is a coordinate neighbourhood V∗ and two subma-
nifolds V and V⊥ of M admitting torsion–free linear connections ∇ and
∇⊥ such that (V∗, ∇̃) is the affine product of (V,∇) and (V⊥,∇⊥).
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(ii) If (x1, ..., xn, xn+1, ..., xn+p) are the coordinates on V∗, then

D = span
{

∂

∂x1
, · · · , ∂

∂xn

}
, D⊥ = span

{
∂

∂xn+1
, · · · , ∂

∂xn+p

}
,

and the transformations of coordinates are given by

x̃i = x̃i(xj), x̃α = x̃α(xβ).

It is clear that with respect to the above coordinate system the matrix of
the local components of g̃ has the form

[g̃ab] =

[
gij(x) 0

0 gαβ(x)

]
, a, b ∈ {1, ..., n + p},

where we set

gij(x) = g̃

(
∂

∂xi
, ∂

∂xj

)
, i, j ∈ {1, ..., n},

and

gαβ(x) = g̃

(
∂

∂xα
, ∂

∂xβ

)
, α, β ∈ {n + 1, ..., n + p}.

Now, we want to show that the matrices [gij(x)] and [gαβ(x)] define semi–
Riemannian metrics g and g⊥ on V and V⊥ respectively. Thus we must show
that gij are independent of (xn+1, ..., xn+p) for all i, j ∈ {1, ..., n} and gαβ are
independent of (x1, ..., xn) for all α, β ∈ {n + 1, ..., n + p}. First, from (2.2)
written for ∇̃,∇ and ∇⊥ we deduce that ∇̃XY = 0 for any X ∈ Γ (D⊥) and
Y ∈ Γ (D). Then since g̃ is parallel with respect to ∇̃, we obtain

X(g̃(Y,Z)) = g̃(∇̃XY, Z) + g̃(Y, ∇̃XZ) = 0,

for any X ∈ Γ (D⊥) and Y, Z ∈ Γ (D). Now, take X =
∂

∂xα
, Y =

∂

∂xi
and

Z =
∂

∂xj
, and obtain that gij are independent of (xn+1, ..., xn+p). Similarly,

[gαβ ] defines a semi–Riemannian metric on V⊥. Summing up, we have proved
the following.

Theorem 4.2. Let F be a parallel non–degenerate n–foliation on an (n + p)–
dimensional semi–Riemannian manifold (M, g̃). Then for any point x ∈ M ,
there is a neighbourhood V∗ ⊂ M and two submanifolds V and V⊥ of dimen-
sions n and p, admitting semi–Riemannian metrics g and g⊥ such that (V∗, g̃)
is the semi–Riemannian product of (V, g) and (V⊥, g⊥).

From the above theorem we deduce that the matrix of the local components
of g̃ has the canonical form
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[g̃ab] =

[
gij(xk) 0

0 gαβ(xγ)

]
, (4.1)

where a, b ∈ {1, ..., n + p}, i, j, k ∈ {1, ..., n}, α, β, γ ∈ {n + 1, ..., n + p}.
Now, we characterize semi–Riemannian manifolds from the above theorem

by using totally geodesic foliations studied in Section 3.4.
First, we note that a parallel non–degenerate foliation F on (M, g̃) is

totally geodesic since ∇̃XY ∈ Γ (D) for any X, Y ∈ Γ (D). However, the
converse is not true. To show this we consider M = IR2\{0} endowed with
the usual Euclidean metric g̃ (see (1.4.11)). Then the connected components
of the lines ax+by = 0 taken for all (a, b) �= (0, 0), determine a totally geodesic
foliation on (M, g̃) which is not parallel. The next theorem sheds more light
on this problem.

Theorem 4.3. Let (M, g̃) be a semi–Riemannian manifold. Then the fol-
lowing assertions are equivalent:

(i) There exists a parallel non–degenerate foliation on M .
(ii) There exist two complementary orthogonal totally geodesic foliations

on M .

Proof. Let F be a parallel non–degenerate foliation on M and D its tangent
distribution. Then for any X, Y ∈ Γ (D) we have ∇̃XY ∈ Γ (D). Thus, by
(3.2.5) it follows that the second fundamental form h of F vanishes identically
on M . Hence F is totally geodesic. Now, by Theorem 3.1, D⊥ is also parallel
with respect to ∇̃ and therefore integrable. In a similar way as above, it fol-
lows that F⊥ is totally geodesic. Thus (i) implies (ii). Next, suppose (F ,D)
and (F⊥,D⊥) are two complementary orthogonal totally geodesic foliations
on M . Hence both are necessarily non–degenerate foliations. Now, by (3.2.5)
and (3.2.6) we obtain

∇̃QXQY ∈ Γ (D) and ∇̃Q′XQ′Y ∈ Γ (D⊥), ∀X, Y ∈ Γ (TM).

Moreover, since g̃ is parallel with respect to ∇̃, we have

g̃(∇̃Q′XQY, Q′Z) = −g(QY, ∇̃Q′XQ′Z) = 0.

Hence, ∇̃Q′XQY ∈ Γ (D), and thus D is parallel with respect to ∇̃.

The above equivalence can be used to get an elegant proof of the last part
of the assertion in Theorem 4.2. Indeed, since we have two complementary
totally geodesic non–degenerate foliations, their second fundamental forms
vanish identically on M . Thus by assertion (vi) of Theorem 3.3.3 we deduce
that both foliations are with bundle–like metric. Finally, by Theorem 3.3.2
we obtain that [gij ] and [gαβ ] represent the matrices of two semi–Riemannian
metrics on V and V⊥ respectively.
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The Theorem 4.2 justifies the name locally semi–Riemannian product
used in Section 1.5. Also we note that the manifold (M, g̃) in this theorem
does not have to be a global product as we can see from the following example.

Example 4.1. Consider the 2-dimensional torus TT2 as the quotient space
TT2 = IR2/ ZZ 2 defined using the action (m,n)(x, y) = (x + m, y + n). Let θ
be an irrational number, and F the parallel foliation of IR2 whose leaves are
straight lines of slope θ. This foliation is invariant under the action of ZZ 2,
which acts as a group of isometries of IR2. So F induces a parallel foliation
F̃ on the torus TT2. Both foliations F̃ and F̃⊥ have no compact leaves. Thus
the product L×L⊥ of two leaves is not compact, and therefore cannot be
diffeomorphic (not even homeomorphic) to the compact manifold TT2.

Now, let (M, g̃) be a complete and simply connected semi–Riemannian
manifold which admits a parallel non–degenerate foliation F . Then using
Theorem 2.5 and Theorem 4.2 one concludes that (M, g̃) is a global semi–
Riemannian product (L, g)×(L⊥, g⊥), where L and L⊥ are leaves of F and
F⊥ through a point x ∈ M . To be more specific we give the following
definition. Let (M, g) and (M, ḡ) be two m–dimensional semi–Riemannian
manifolds endowed with foliations F and F respectively. Then an isometry
f : (M, g) −→ (M, ḡ) is called a foliation preserving isometry if it carries
every leaf of F to a leaf of F . Now, we can state the following.

Theorem 4.4. Let (M, g̃) be a complete and simply connected semi–Rieman-
nian manifold which admits a parallel non–degenerate foliation F . Then there
exists a foliation preserving isometry from (M, g̃) onto the semi–Riemannian
product (L, g)×(L⊥, g⊥), where L and L⊥ are the leaves of F and F⊥ through
a point x ∈ M , and g and g⊥ are the semi–Riemannian metrics induced by g̃
on L and L⊥ respectively.

If the manifold is not simply connected, the following will be an immediate
corollary.

Corollary 4.5. Let (M, g̃) be a complete semi–Riemannian manifold which
admits a parallel non–degenerate foliation F . Then there is a semi–Rieman-
nian product (M∗, g∗) = (L, ḡ)×(L

⊥
, ḡ⊥) and a properly discontinuous group

G of isometries of (M∗, g∗) such that (M, g) is isometric to (M∗, g∗)/G. Fur-
thermore, L and L

⊥
are universal covering spaces of the leaves L and L⊥ of

F and F⊥ through a point x ∈ M , and G is isomorphic to Π1(M).

Let us give here some history of studying the geometry of a semi–Rieman-
nian manifold admitting a parallel non–degenerate foliation. The local product
situation (Theorem 4.2) was first proved by Thomas [Tho39] in 1939 for Rie-
mannian manifolds. The global product result (Theorem 4.4) was first proved
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by de Rham [deR52] in 1952, again in the Riemannian case only. Another
proof of this theorem in the Riemannian case was given in Kobayashi–Nomizu
[KN63], p. 187. This proof uses Reinhart’s work [Rei59a] on foliations with
bundle-like metric (see Section 3.3). A proof in the general situation of semi–
Riemannian manifolds was first given by Wu [Wu64] in 1964. Wu used the
holonomy theorem of Ambrose and Singer to convert the reducibility property
into a statement about the behaviour of curvature under parallel displacement.
Since parallel displacement of curvature determines M up to isometry, the
local product decomposition is obtainable from a study of the curvature form,
and the global structure is then deduced using the simple connectedness. The
proof using Kashiwabara’s result (Theorem 2.5) was given by Furness [Fur72]
in 1972.

We cannot end this section without giving the general de Rham De-
composition Theorem. So, let (M, g̃) be a Riemannian manifold and ∇̃
the Levi–Civita connection defined by g̃. In what follows we suppose that M
is ∇̃-reducible. Shortly, we say that M is reducible. If M admits a parallel
foliation F , then F is automatically non–degenerate. Then it might happen
that F admits a parallel subfoliation F ′, and we can subject F ′ to the same
scrutiny. Thus we can envisage a maximal decomposition of M into mutually
orthogonal parallel foliations F1, ...,Fk. This can be done precisely by looking
again at the action of the holonomy group Φx (see Section 4.1) on TxM with
respect to ∇̃. First consider the set

T 0
x = {v ∈ TxM : τ(v) = v, ∀ τ ∈ Φx}.

That is, T 0
x is the set of all fixed points of Φx. Then T 0

x is a linear subspace of
TxM and its orthogonal complement (T 0

x )⊥ in TxM is also invariant under Φx.
Thus (T 0

x )⊥ may be decomposed into a direct sum T 1
x ⊕· · ·⊕T r

x of irreducible
mutually orthogonal Φx–invariant subspaces of TxM . The decomposition

TxM = T 0
x ⊕ T 1

x ⊕ · · · ⊕ T r
x ,

is called the canonical decomposition of TxM . Since M is supposed
to be reducible, this decomposition is non–trivial, that is, it has at least
two subspaces of TxM . Now, it follows that parallel displacements of T i

x,
i ∈ {0, ..., r}, yield parallel distributions Di that are mutually orthogonal.
Each Di is integrable and non–degenerate (since (M, g̃) is Riemannian) thus
giving a parallel non–degenerate foliation F i. The foliation F0 has the spe-
cial feature that each of its leaves is locally Euclidean. Thus for each x ∈ M ,
the leaf L0 through x is a flat Riemannian manifold, that is, L0 admits, lo-
cally, a basis of s parallel vector fields, where s = dim L0 (cf. Besse [Be87],
p. 283). Indeed, since the holonomy group of L0 consists of the identity only,
T 0

x = S1
x ⊕ · · · ⊕ Ss

x, where St
x, t ∈ {1, ..., s} are Φx–invariant lines. Now, on a

neighbourhood V0 in L0 we consider the unit vector fields Xt that span the
line distributions

St =
⋃

x∈V0

St
x, ∀ t ∈ {1, ..., s}.
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Finally, taking into account that St are parallel and Xt are unit vector fields,
we deduce that ∇̃XXt = 0, for any X ∈ Γ (TV0) and t ∈ {1, ..., s}. Thus
{X1, ..., Xs} is the basis we were looking for.

Summing up the above discussion and taking into account that Theorem
4.2 is true for more than two distributions, we obtain the following.

Theorem 4.6. Let (M, g̃) be a reducible Riemannian manifold with the canon-
ical decomposition

TM = D0 ⊕D1 ⊕ · · · ⊕ Dr.

Then any point x ∈ M has a neighbourhood V∗ = V0×V1× · · ·×Vr such that
(V∗, g̃) is the Riemannian product (V0, g0)×(V1, g1)× · · ·×(Vr, gr), where Vi

are neighbourhoods in the leaves Li of Di through x, and gi are the Rieman-
nian metrics induced by g̃ on Vi, i ∈ {0, ..., r}. Moreover, any leaf of L0 is
locally Euclidean.

The foliation F0 is unique, and F1, ...,Fr are unique up to order. This
follows from the corresponding uniqueness properties of the canonical de-
composition. Finally, by using Theorem 4.4 for more than two foliations and
Theorem 4.6, we obtain the following general version of the de Rham Decom-
position Theorem.

Theorem 4.7. A complete, simply connected and reducible Riemannian
manifold (M, g̃) is isometric to the Riemannian product
(L0, g0) × (L1, g1) × · · · × (Lr, gr), where (L0, g0) is a Euclidean space
(possibly of dimension 0) and (Li, gi), i ∈ {1, ..., r} are complete, simply con-
nected and irreducible Riemannian manifolds. This decomposition is unique
up to an order.

If (M, g̃) is not simply connected, then as in Corollary 4.5 it is isometric to
the quotient space of such a Riemannian product under the action of a proper
discontinuous group G that is isomorphic to Π1(M).

The case in which an m–dimensional semi–Riemannian manifold (M, g̃)
has a parallel non–degenerate 1–foliation F , has some special features of in-
terest. By Corollary 4.5, (M, g̃) is universally covered by M̃ = IR×N , where N
is some simply connected (m−1)–dimensional manifold. This suggests a way of
constructing semi–Riemannian manifolds admitting parallel non–degenerate
foliations, using the technique of suspending a diffeomorphism as follows. Let
N be a smooth n–dimensional manifold, where n = m−1, and let f : N −→ N
be a diffeomorphism. Take M̃ = IR×N = {(t, x) : t ∈ IR, x ∈ N}, and define
an action of the additive group ZZ of integers on M̃ by

Φi(t, x) = (t + i, f i(x)), ∀ i ∈ ZZ , (t, x) ∈ IR×N.

Then M = M̃/ ZZ is an m–dimensional manifold, and is said to be the manifold
obtained by the suspension of f . But M̃ being a global product, it has a
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pair of complementary foliations: a 1–foliation F̃ given by x = constant and
an (m − 1)–foliation F̃ ′ given by t = constant. The action of ZZ , as defined
above, preserves both of the foliations F̃ and F̃ ′, thus inducing a pair F ,F ′

of complementary foliations on M , where F is of dimension 1. Now, suppose
that N has a semi–Riemannian metric h for which f is an isometry, and let
e be the standard Euclidean metric on the real line IR. Then g̃ = e×h is a
semi–Riemannian metric on M̃ and ZZ acts on (M̃, g̃) as a group of isometries
preserving the product structure. Thus g̃ projects to define a metric g on M
with respect to which F is parallel and non–degenerate. It is worth mentioning
that F ′, as well, is parallel and non–degenerate with respect to g. Conversely,
if there is a metric g on M such that F and F ′ are parallel, non–degenerate
and mutually orthogonal, then there is a unique metric g̃ on M̃ such that the
covering is Riemannian (see Wolf [Wol67]). Since g is locally the product of
two metrics, then g̃ is locally the product of two metrics, one is on IR, the
second is on N . Let us denote this second metric by h. Since M̃ is a global
product, then h defines a metric on N . Moreover, the group ZZ is a group of
isometries of (M̃, g̃) and hence, integer powers of f are isometries of (N, h).
Thus f is an isometry of (N, h). Therefore, we have proved the following.

Theorem 4.8. (Farran [Far81]). Let f : N −→ N be a diffeomorphism,
M̃ = IR × N and M = M̃/ ZZ as above. Then M admits a semi–Rieman-
nian metric such that F and F ′ are parallel, non–degenerate and mutually
orthogonal, if and only if N admits a semi–Riemannian metric with respect
to which f is an isometry.

4.5 Parallel Totally–Null Foliations

Let F be a totally–null r–foliation on an m–dimensional proper semi–Rie-
mannian manifold (M, g). Thus using the notations introduced in Section
4.3, F is of type (r, 0), r > 0. If D is the tangent distribution to F , then
D = N = D ∩ D⊥, and hence D ⊂ D⊥ and D+ = D⊥. Therefore D⊥ can be
thought of as a partially–null (r + u)–distribution, provided u > 0. Thus, in
this section we have m = 2r + u where both r and u are positive integers.
Now, we take m = 2r + u in Theorem 3.2 and obtain the following.

Theorem 5.1. Let D be a parallel totally–null distribution of type (r, 0) on
a (2r + u)–dimensional proper semi–Riemannian manifold (M, g). Then M
admits a foliated atlas A in which the transformations of coordinates are given
by

x̃ = x̃(x, z, t), z̃ = z̃(z, t), t̃ = t̃(t). (5.1)

Moreover, the distributions D,D⊥ are locally spanned by
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(a)
{

∂

∂x1
, · · · , ∂

∂xr

}
,

(b)
{

∂

∂x1
, · · · , ∂

∂xr
, ∂

∂z1
, · · · , ∂

∂zu

}
,

(5.2)

respectively.

Hence, at an arbitrary point of M there exists a foliated chart (U , ϕ) with
local coordinates (x1, ..., xr, z1, ..., zu, t1, ..., tr) such that the plaques of F⊥

and F are given by the equations ti = bi and ti = bi, zα = cα, respectively,
where i ∈ {1, ..., r}, α ∈ {1, ..., u}.

As in the case of parallel non–degenerate foliations, the first step in study-
ing the geometry of (M, g) endowed with the totally–null foliation F , is to
find a foliated atlas for which the metric has a certain canonical form (see
(4.1) in the non–degenerate case). In the present case, the canonical form of
g was found by Walker [Wal50a].

Theorem 5.2. (Walker [Wal50a]). Let (M, g) be a (2r+u)–dimensional proper
semi–Riemannian manifold, and F an r–foliation on M . Then F is a parallel
totally–null foliation if and only if there is a foliated atlas A on M satisfying
(5.1) and (5.2) with respect to which the matrix of g takes the canonical form⎡⎢⎣ 0 0 Ir

0 A(z, t) H(z, t)

Ir HT (z, t) B(x, z, t)

⎤⎥⎦ , (5.3)

where the non–zero submatrices satisfy the following conditions:

(i) Ir is the r×r identity matrix. A is a non–singular symmetric u×u ma-
trix and B is a symmetric r×r matrix. H is of size u×r and HT is the
transpose of H.

(ii) A and H (and therefore HT ) are independent of (x1, ..., xr).

Proof. First, suppose that F is a parallel totally–null r–foliation on (M, g).
Then by Theorem 5.1 there exists an atlas A on M satisfying (5.1) and (5.2).
Let (U , ϕ) be a foliated chart from A with local coordinates (xi, zα, ti), where
i ∈ {1, ..., r} and α ∈ {1, ..., u}. Since F is totally–null we have

(a) g

(
∂

∂xi
, ∂

∂xj

)
= 0, (b) g

(
∂

∂xi
, ∂

∂zα

)
= g

(
∂

∂zα
, ∂

∂xi

)
= 0, (5.4)

which justify the existence of the zero submatrices in (5.3). Now, we consider
the vector fields {ξi}, i ∈ {1, ..., r} defined on U by

g(ξi, X) = dti(X), ∀X ∈ Γ (TM|U ). (5.5)
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Then it follows that {ξi} are orthogonal to any X ∈ Γ (D⊥) and hence they
lie in Γ (D). Moreover, they are linearly independent since {dti} are so. Next,

let
{

∂

∂xa

}
, a ∈ {1, ..., 2r + u} be the local frames field, where we have

∂

∂xi
∈ Γ (D) , ∂

∂xr+α
=

∂

∂zα
, ∂

∂xr+u+i
=

∂

∂ti
,

i ∈ {1, ..., r},
α ∈ {1, ..., u}. (5.6)

Now, we put

(a) gab = g

(
∂

∂xa
, ∂

∂xb

)
, (b) ξi = ξa

i

∂

∂xa
, (5.7)

and from (5.5) we deduce that

(a) gabξ
b
i = δi∗

a , (b) ξa
i = gabδi∗

b , i∗ = r + u + i. (5.8)

By using (5.8a) and taking into account that ξi ∈ Γ (D) for all i ∈ {1, ..., r},
we obtain

ξa
i δj∗

a = 0, ∀ j ∈ {1, ..., r}. (5.9)

Also, since D is parallel with respect to the Levi–Civita connection ∇̃ on
(M, g), there exist some functions Ai

k
b on U such that

ξa
i|b = Ai

k
bξ

a
k , (5.10)

where | represents the covariant derivative with respect to ∇̃. Now, by direct
calculations using (5.8), (5.9) and (5.10) we infer that

ξa
i ξb

j|a= gacδi∗
c (gbdδj∗

d )|a = gacδi∗
c gbd(δj∗

a|d)

= ξc
j|dδ

i∗
c gbd = Aj

k
dξ

c
kδi∗

c gbd = 0.

Thus we obtain
[ξi, ξj ] = (ξa

i ξb
j|a − ξa

j ξb
i|a)

∂

∂xb
= 0.

Then by Lemma 2.1.6 there exists a local chart (U , ϕ) on M with coordi-

nates (x̄a) such that ξi =
∂

∂x̄i
· Then we choose the coordinates (x̄i, zα, ti) on

U ∩ U , and taking into account that (5.8a) is invariant with respect to the
transformations of coordinates, we obtain

ξ
b

i = δb
i and ḡj∗i = δi∗

j∗ .

Thus there exists an atlas A satisfying (5.1) and (5.2) and with respect to
which (we omit the bar)

gij∗ = δi∗j∗ . (5.11)
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This proves the existence of the matrix Ir in (5.3).
Next, we show that A and H are independent of (x1, ..., xr). First, taking

into account that both D and D⊥ are parallel with respect to ∇̃ we have

(a) g

(
∇̃ ∂

∂zα

∂

∂xi
, ∂

∂zβ

)
= 0, (b) g

(
∇̃ ∂

∂tj

∂

∂xi
, ∂

∂zα

)
= 0,

(c) g

(
∇̃ ∂

∂tj

∂

∂zα
, ∂

∂xi

)
= 0.

(5.12)

Then, by direct calculations using (5.12) and (5.11), and taking into account
that ∇̃ is a torsion–free metric connection (see (1.5.8) and (1.5.9)) we obtain

∂

∂xi
g

(
∂

∂zα
, ∂

∂zβ

)
= g

(
∇̃ ∂

∂xi

∂

∂zα
, ∂

∂zβ

)
+ g

(
∂

∂zα
, ∇̃ ∂

∂xi

∂

∂zβ

)

= g

(
∇̃ ∂

∂zα

∂

∂xi
, ∂

∂zβ

)
+ g

(
∂

∂zα
, ∇̃ ∂

∂zβ

∂

∂xi

)
= 0,

and

∂

∂xi
g

(
∂

∂zα
, ∂

∂tj

)
= g

(
∇̃ ∂

∂xi

∂

∂zα
, ∂

∂tj

)
+ g

(
∂

∂zα
, ∇̃ ∂

∂xi

∂

∂tj

)
= g

(
∇̃ ∂

∂zα

∂

∂xi
, ∂

∂tj

)
+ g

(
∂

∂zα
, ∇̃ ∂

∂tj

∂

∂xi

)
= −g

(
∂

∂xi
, ∇̃ ∂

∂zα

∂

∂tj

)
= −g

(
∂

∂xi
, ∇̃ ∂

∂tj

∂

∂zα

)
= 0.

Thus the matrices A and H (and therefore HT ) are independent of (x1, ..., xr).
This completes the proof of the assertions (i) and (ii).

Conversely, suppose F is an r–foliation on (M, g) and there exists a folia-
ted atlas A satisfying (5.1) and (5.2) with respect to which g has the canonical
form (5.3). Then the zero matrix from the corner of the matrix in (5.3) indi-
cates that F is a totally–null foliation. Next, we put

∇̃ ∂
∂xa

∂

∂xi
= Ai

k
a

∂

∂xk
+ Bi

α
a

∂

∂zα
+ Ci

k
a

∂

∂tk
· (5.13)

From (5.3) we deduce that

g

(
∂

∂xj
, ∂

∂tk

)
= δjk, (5.14)

and thus (5.13) implies

Ci
j
a = g

(
∇̃ ∂

∂xa

∂

∂xi
, ∂

∂xj

)
·



174 4 PARALLEL FOLIATIONS

Also, from (5.3) and condition (ii) we obtain

(a)
∂

∂xi
g

(
∂

∂xj
, ∂

∂xa

)
= 0, (b)

∂

∂xi
g

(
∂

∂zα
, ∂

∂xa

)
= 0,

(c)
∂

∂zα
g

(
∂

∂xa
, ∂

∂xi

)
= 0.

(5.15)

Now, by using (1.5.10) for ∇̃, and (5.15a) we infer that

2g

(
∇̃ ∂

∂xa

∂

∂xi
, ∂

∂xj

)
=

∂

∂xa
g

(
∂

∂xi
, ∂

∂xj

)
+

∂

∂xi
g

(
∂

∂xj
, ∂

∂xa

)
− ∂

∂xj
g

(
∂

∂xa
, ∂

∂xi

)
= 0.

Hence Ci
j
a = 0 and thus (5.13) becomes

∇̃ ∂
∂xa

∂

∂xi
= Ai

k
a

∂

∂xk
+ Bi

α
a

∂

∂zα
· (5.16)

Now, from (5.16) we obtain

g

(
∇̃ ∂

∂xa

∂

∂xi
, ∂

∂zβ

)
= Bi

α
a Aαβ , where Aαβ = g

(
∂

∂zα
, ∂

∂zβ

)
.

By similar calculations as above, using (1.5.10), (5.15b) and (5.15c) we deduce
that

g

(
∇̃ ∂

∂xa

∂

∂xi
, ∂

∂zβ

)
= 0.

Since the matrix A from (5.3) is non–singular and Aαβ are its entries, we infer
that Bi

α
a = 0. Hence (5.16) becomes

∇̃ ∂
∂xa

∂

∂xi
= Ai

k
a

∂

∂xk
·

Thus F is a parallel totally–null foliation. This completes the proof of the
theorem.

The atlas A given by Theorem 5.2 will be called a Walker atlas. Now,
since in a Walker atlas, the change of coordinates preserves the canonical form
(5.3) of the metric g, we expect that these coordinate transformations take
a special form. To express this explicitly we start with (5.1) from which we
deduce that

(a)
∂

∂xi
=

∂x̃j

∂xi

∂

∂x̃j
, (b)

∂

∂zα
=

∂x̃j

∂zα

∂

∂x̃j
+

∂z̃β

∂zα

∂

∂z̃β
,

(c)
∂

∂ti
=

∂x̃j

∂ti
∂

∂x̃j
+

∂z̃β

∂ti
∂

∂z̃β
+

∂t̃k

∂ti
∂

∂t̃k
·

(5.17)
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Then, by direct calculations, taking into account that (5.14) is true for any
local chart of a Walker atlas, we obtain

δij =
∂x̃h

∂xi

∂t̃k

∂tj
δhk,

which implies
∂x̃i

∂xj
= Li

j(t), where Li
j(t) =

∂tj

∂t̃i
· (5.18)

Thus the coordinate transformations in a Walker atlas are given by

x̃i = Li
j(t)x

j + Si(z, t)

z̃α = z̃α(z, t),

t̃i = t̃i(t).

(5.19)

Taking into account that the canonical form (5.3) is preserved with respect
to the coordinate transformations (5.19), from Theorem 5.2 we deduce the
following.

Theorem 5.3. Let M be a (2r+u)–dimensional manifold that admits an atlas
in which the change of coordinates is given by (5.19). If F is the r–foliation

whose tangent distribution is locally represented by
{

∂

∂xi

}
, then there exists

on M a proper semi–Riemannian metric g such that F is totally–null and
parallel with respect to the Levi–Civita connection on (M, g).

To state the next result on the leaves of F we introduce a special class of
manifolds. Let N be an r–dimensional manifold and ∇ be a linear connection
on N . Then ∇ is locally represented by r3 smooth functions Γi

k
j satisfying

(Kobayashi–Nomizu [KN63], p. 141)

Γ̃�
h

p
∂x̃�

∂xi

∂x̃p

∂xj
− Γi

k
j

∂x̃h

∂xk
=

∂2x̃h

∂xi∂xj
, (5.20)

with respect to a coordinate transformation x̃i = x̃i(xj). Then the local com-
ponents Ti

k
j and Ri

k
j� of the torsion tensor field T and the curvature tensor

field R with respect to the natural frame field
{

∂

∂xi

}
are given by

Ti
k

j = Γi
k

j − Γj
k

i, (5.21)

and

Ri
k

jh =
∂Γi

k
j

∂xh
− ∂Γi

k
h

∂xj
+ Γi

s
j Γs

k
h − Γi

s
h Γs

k
j . (5.22)

When both T and R vanish identically on N we say that N is a locally affine
manifold and (N,∇) is a locally affine structure. To justify this name we
consider the system of partial differential equations

,
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∂2x̃h

∂xi∂xj
+ Γi

k
j

∂x̃h

∂xk
= 0,

which has solutions (x̃h), h ∈ {1, ..., r}, provided T = 0 and R = 0 on N . Then
by (5.20) we deduce that Γ̃�

h
p = 0 for all h, �, p ∈ {1, ..., r}. Thus there exists

an atlas on N with respect to which all the connection coefficients vanish, and
hence (5.20) implies

∂2x̃h

∂xi∂xj
= 0.

Thus the coordinate transformations on N must be affine transformations

x̃i = ai
jx

j + bi, (5.23)

where ai
j and bi are constant. Conversely, if on N there exists an atlas sa-

tisfying (5.23), then by (5.20), Γi
k

j = 0 with respect to any local chart,
determine a globally defined linear connection with T = 0 and R = 0. An
atlas on N with coordinate transformations given by (5.23) is called an affine
atlas. Then based on the above discussion we can state the following.

Theorem 5.4. (Auslander–Marcus [AM55]). A smooth manifold N is locally
affine if and only if there exists on N an affine atlas.

The most familiar example of a locally affine manifold is (IEn, ∇̃), where
IEn is the Euclidean n-space and ∇̃ is the standard Euclidean connection
on IEn.

Next, in order to state a result on the global structure of a locally affine
manifold, we give the following definitions. Let ∇ and ∇′ be two linear con-
nections on N and N ′ and f : N −→ N ′ be a smooth map. Then we say that
f is a connection preserving map if it satisfies

f∗(∇XY ) = ∇′
f∗Xf∗Y, ∀X, Y ∈ Γ (TM).

When f is both a diffeomorphism and a connection preserving map we say
that it is an affine equivalence of (N,∇) and (N ′,∇′). Now, we can state
the following.

Theorem 5.5. (Auslander–Marcus [AM55], Wolf [Wol67]). Every complete lo-
cally affine n–dimensional manifold (N,∇) is affinely equivalent to (IEn, ∇̃)/G,
where G is some properly discontinuous group of automorphisms of (IEn, ∇̃).

Now, suppose F is an n–foliation on an (n + p)–dimensional manifold M .
Denote by C(M,F) the class of torsion–free linear connections on M with
respect to which F is parallel. Proposition 1.5 guarantees that C(M,F) is
non–empty. Let N be a leaf of F and ∇̃ ∈ C(M,F). Then ∇̃ induces a
torsion–free linear connection ∇ on N given by
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∇XY = ∇̃XY, ∀X, Y ∈ Γ (TN).

The foliation F is called locally affine if there exists ∇̃ ∈ C(M,F) which
induces on each leaf N of F a locally affine structure (N,∇). Next, we denote
by (xi, xα), i ∈ {1, ..., n}, α ∈ {n + 1, ..., n + p} the local coordinates on
M with respect to the leaf atlas on (M,F) (see Section 2.1). Then a local
characterization of locally affine foliations can be stated as follows.

Theorem 5.6. (Furness [Fur72], p. 35). The foliation F is locally affine on
M if and only if there exists a leaf atlas on (M,F) with coordinate transfor-
mations given by

x̃i = Ai
j(x

α)xj + Bi(xα), i, j ∈ {1, ..., n},
x̃α = Cα(xβ), α, β ∈ {n + 1, ..., n + p}. (5.24)

This theorem is a generalization of Theorem 5.4 and we omit its proof here.
Comparing (5.24) and (2.1.21) we may state the following.

Corollary 5.7. The vertical foliation on the total space of a vector bundle is
locally affine.

Another large class of locally affine foliations is provided by the next theo-
rem.

Theorem 5.8. (Furness [Fur72], p. 42). Any 1–foliation on a paracompact
manifold is locally affine.

Now, let F be a parallel totally–null r–foliation on a semi–Riemannian
manifold (M, g). Then comparing the coordinate transformations (5.19) in a
Walker atlas with (5.24) we can state the following.

Theorem 5.9. Any parallel totally–null foliation on a semi–Riemannian ma-
nifold is locally affine.

The above theorem is a particular case of a general result obtained by
Robertson–Furness [RF74] (see Theorem 7.2).

We have no universal model for manifolds admitting a parallel totally–null
foliation. It is important, therefore, to look for general constructions of such
foliations. One such construction is the following.

Let M be an (n + p)–dimensional manifold and F be an n–foliation on
M . Then we consider the tangent distribution D to F and define a vector
subbundle D∗ of the cotangent bundle T ∗M as follows. For each x ∈ M the
fiber D∗

x of D∗ consists of all linear mappings ω : TxM −→ IR such that
ω(X) = 0 for all X ∈ Dx. We call D∗ the conormal bundle of F on M . It
is easy to see that D∗ is bundle isomorphic to TM/D and therefore its fiber
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dimension is p. Thus the total space of the vector bundle π∗ : D∗ −→ M is
an (n + 2p)–dimensional manifold and the fibers D∗

x, x ∈ M , are the leaves of
a p–foliation G on D∗.

Theorem 5.10. There exists a semi–Riemannian metric on D∗ with respect
to which the foliation G is totally–null and parallel.

Proof. Let A be a leaf atlas for the n–foliation F on M with coordinate
transformations (see (2.1.5))

x̃i = x̃i(xj , xβ), i, j ∈ {1, ..., n},
x̃α = x̃α(xβ), α, β ∈ {n + 1, ...n + p}. (5.25)

Then A induces an atlas A∗ on the (n + 2p)–dimensional manifold D∗ as
follows. Locally, ω ∈ Γ (D∗) is written ω = yβdxβ . Then the coordinates on
D∗ are taken (xi, xα, yβ), i ∈ {1, ..., n}, α, β ∈ {n + 1, ..., n + p}. By using
(5.25) and taking into account that ω is an 1–form on M we deduce that the
coordinate transformations of A∗ have the following form

ỹα = Lβ
α(xγ)yβ , Lβ

α(xγ) =
∂xβ

∂x̃α
,

x̃i = x̃i(xj , xβ),

x̃α = x̃α(xβ).

(5.26)

Comparing (5.26) with (5.19) we deduce that A∗ is a Walker atlas on D∗, and
the assertion follows from Theorem 5.3.

Finally, we note that locally, the leaves of the foliation G are given by
xi = const., xα = const., while the leaves of the orthogonal foliation G⊥ are
given by xα = const. For convenience, we refer to a totally–null foliation con-
structed in the above fashion as a totally–null conormal bundle foliation
to F .

Another source of examples for parallel totally–null r–foliations, for r = 1
this time, is the technique of suspensions discussed in Section 4.4. So, let N
be an (m − 1)–dimensional manifold and f : N −→ N be a diffeomorphism.
Suppose M = M̃/ ZZ is the foliated manifold obtained by suspension of f ,
and let F be the 1–foliation on M . As in the non–degenerate case, we look
for necessary and sufficient conditions for the existence of a semi–Riemannian
metric on M such that F is totally–null and parallel.

First, we need the following definitions. Let (N,h) be a complete Rie-
mannian manifold and f : N −→ N a diffeomorphism. Then f is said to be
expanding if there exist real numbers c > 0 and λ > 1 such that

‖Tfn(v)‖ ≥ cλn‖v‖, (5.27)
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for all v ∈ TM and all positive integers n, where Tfn is the differential of fn

and ‖·‖ is the norm on TM given by h. The diffeomorphism f is contracting
if there exist real numbers c > 0 and 0 < λ < 1 such that

‖Tfn(v)‖ ≤ cλn‖v‖. (5.28)

Obviously, if f is expanding then f−1 is contracting and viceversa. It is well
known (see Nitecki [Nit71] and Shub [Shu69]) that if f is expanding or con-
tracting then it has a unique fixed point, and when N is compact, the property
of being expanding or contracting is independent of the choice of the metric.
Now, we are in a position to prove the following.

Theorem 5.11. (Farran [Far81]). Let f : N −→ N be a diffeomorphism and
M = M̃/ ZZ be the manifold obtained by the suspension of f , and take F as
the induced 1–foliation on M . If M admits a proper semi–Riemannian metric
for which F is totally–null and parallel, then f cannot be either expanding or
contracting.

Proof. Recall from Section 4.4 that M̃ = IR×N and for each i ∈ ZZ we have
a diffeomorphism Φi : M̃ −→ M̃ given by

Φi(t, x) = (t + i, f i(x)).

On the (m−1)–dimensional manifold N we consider an atlas A={(Wα, ψα)}α∈A

and take the open sets of M̃ :

Uα = (0, 1)×Wα and Vα =
(
−1

2
, 1
2

)
×Wα.

Then we define ϕα : Uα −→ IRm and ηα : Vα −→ IRm, by

ϕα(t, x) = (t, ψα(x)) and ηα(s, y) = (s, ψα(y)).

Since the natural projection p : M̃ −→ M is injective on each of Uα and Vα,
then Uα = p(Ua) and Vα = p(Vα) are open sets of M on which we can define
the following:

ϕα : Uα −→ IRm, ϕα = ϕα ◦ p−1, and

ηα : Vα −→ IRm, ηα = ηα ◦ p−1.

Thus, (Uα, ϕα) and (Vα, ηα) are two local charts in the atlas on M induced
by the atlas A on N . Now, if f : N −→ N has no fixed points, then it
cannot be expanding or contracting, and we are done. So let us assume that
f has at least one fixed point, say x. Let (Wα, ψα) be a chart in A about
x, and (Uα, ϕα), (Vα, ηα) the corresponding two charts of M as above. Now,
Uα ∩ Vα = P ∪ Q where P and Q are connected components which come
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under p from
(

0,
1
2

)
×Wα and

(
1
2
, 1
)
×Wα respectively (see Brickell–Clark

[BC70], p. 104). The change of coordinates ηα ◦ ϕ−1
α on ϕα(P ) is given by

(t, x) −→ (t, x) and it arises from the identity Φ0. The change of coordinates
ηα ◦ ϕ−1

α on ϕα(Q) is given by (t, x) −→ (t − 1, f−1(x)) and it arises from
Φ−1. So the change of coordinates on Q is given by

t̃ = t − 1, x̃i = (f i)−1(x1, ..., xm−1), i ∈ {1, ..., m − 1}. (5.29)

Now, if M admits a semi–Riemannian metric for which F is totally–null and
parallel, then there is an atlas A on N such that the induced atlas on M is
a Walker atlas. Thus, by (5.19) and (5.18) the change of coordinates in that
Walker atlas must be of the form

t̃ =
dxm−1

dx̃m−1
t + S(x1, ..., xm−1),

x̃α = x̃α(x1, ..., xm−1), α ∈ {1, ..., m − 2},
x̃m−1 = x̃m−1(xm−1).

(5.30)

Comparing (5.29) and (5.30) we conclude that x̃m−1 = xm−1 + c where c is a
real constant. Using this, we deduce that Txf−1 : TxM −→ TxM has a matrix
of the form [

A b

0 1

]
,

where A is a non singular (m − 1)×(m − 1) matrix and b ∈ IR. Therefore,
Txf−1 has at least one eigenvalue which is equal to 1. Thus f can not be
either expanding or contracting, which completes the proof of the theorem.

Theorem 5.12. (Farran [Far81]). Let (N,h) be an (m− 1)–dimensional Rie-
mannian manifold admitting a parallel 1–foliation, and let f : N −→ N be a
diffeomorphism. If f is an isometry of (N,h) then there exists a semi–Rieman-
nian metric on M = M̃/ ZZ such that the 1–foliation F obtained by suspension
of f is parallel and totally–null.

Proof. Since (N, h) admits a parallel 1–foliation, by using Theorems 4.1 and
5.5 we deduce that there exists an atlas A on N in which the change of
coordinates is given by

x̃i = x̃i(x1, ..., xm−2), i ∈ {1, ..., m − 2}.
x̃m−1 = xm−1 + c, c is a real constant.

So, M̃ = R×N admits an atlas B in which the transformations of coordinates
are given by
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t̃ = t,

x̃i = x̃i(x1, ..., xm−2),

x̃m−1 = xm−1 + c.

(5.31)

Moreover, the Riemannian metric h must be locally represented by the fol-
lowing matrix [

A 0

0 b

]
,

where A is a non–singular (m−2)×(m−2) matrix whose entries are functions
of (x1, ..., xm−2) and b is a non–zero function of xm−1 alone. Now, we take
the matrix

C =

⎡⎢⎣0 0 1

0 A 0

1 0 b

⎤⎥⎦ ,

where A and b are as above, which gives a semi–Riemannian metric in every
chart of B. But the change of coordinates (5.31) in B preserves C, and hence
we obtain a semi–Riemannian metric ρ on the whole of M̃. Then, by Theorem
5.2, the foliation on M̃ locally given by xa = ca, a ∈ {1, ...,m − 1} is parallel
and totally–null with respect to ρ. Since f is an isometry of (N, h), then an
argument similar to that of the proof of Theorem 4.8 shows that ρ projects
to a semi–Riemannian metric g on M . Clearly, F is parallel and totally null
with respect to g.

4.6 Parallel Totally–Null r–Foliations on 2r–Dimensional
Semi–Riemannian Manifolds

Let (M, g) be a 2r–dimensional proper semi–Riemannian manifold, and D be
a totally–null r–distribution on M , that is, we have

g(X, Y ) = 0, ∀X,Y ∈ Γ (D). (6.1)

In the first part of this section we will construct a complementary totally–
null r–distribution D to D in TM . Then we use D to study the geometry of
parallel totally–null r–foliations on M .

First, we consider a complementary distribution D′ to D in TM that is
locally represented on U ⊂ M by the vector fields {V1, ..., Vr}. Then suppose
that D is locally represented by {ξ1, ..., ξr} and consider the r×r matrices
C = [Cij ] and D = [Dij ] where we put

(a) Cij = g(Vi, ξj) and (b) Dij = g(Vi, Vj). (6.2)

Thus the matrix of g with respect to the non–holonomic frame field {ξi, Vi},
i ∈ {1, ..., r} has the form
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[g] =

[
0 C

CT D

]
, (6.3)

which implies that C must be nonsingular. Next, we consider the r×r matrices
A = [Aij ] and B = [Bij ] given by

(a) A = −1
2

C−1D(C−1)T and (b) B = C−1. (6.4)

Then we construct the vector fields

ηi =
r∑

j=1

{Aijξj + BijVj}, i ∈ {1, ..., r}. (6.5)

By direct calculations using (6.2) and (6.5) we obtain

g(ηi, ξk) =
r∑

j=1

BijCjk,

and

g(ηi, ηj) = 2Aij +
r∑

k,h=1

{BikDkhBjh},

since A is a symmetric matrix. Hence, by (6.4) we deduce that

(a) g(ηi, ξk) = δik and (b) g(ηi, ηj) = 0. (6.6)

Now, we are in a position to prove the following.

Theorem 6.1. Let D be a totally–null r–distribution on a 2r–dimensional
semi–Riemannian manifold (M, g). Then there exists a totally–null r–distri-
bution D complementary to D in TM and locally represented by the vector
fields {ηi}, i ∈ {1, ..., r}, given by (6.5).

Proof. First, by using (6.6a), it is easy to see that {ηi} are linearly indepen-
dent on U ⊂ M . Then we consider another coordinate neighbourhood Ũ ⊂ M
such that U∩Ũ �= ∅. The corresponding objects on Ũ to the ones defined above
on U will have a tilde. To simplify the calculations we put [η] = [η1, ..., ηr]T ,
[ξ] = [ξ1, ..., ξr]T and [V ] = [V1, ..., Vr]T on U and keep the same notation on
Ũ . Since D and D′ are distributions on M , on U ∩ Ũ we have

(a) [ξ̃] = E[ξ] and (b) [Ṽ ] = F [V ], (6.7)

where E and F are non–singular matrices. Then, by using (6.2) and (6.7), we
obtain

(a) C̃ = FCET and (b) D̃ = FDFT . (6.8)
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Now, by using (6.4), (6.5), (6.7) and (6.8), we deduce that

[η̃] = −1
2

C̃−1D̃(C̃−1)T [ξ̃] + C̃−1[Ṽ ]

= −1
2

(ET )−1C−1F−1FDFT (FT )−1(C−1)T E−1E[ξ] + (ET )−1C−1F−1F [V ]

= (ET )−1

(
−1

2
C−1D(C−1)T [ξ] + C−1[V ]

)
= (ET )−1[η].

Hence we have a distribution D on M locally defined by {ηi}, i ∈ {1, ..., r},
given by (6.5). According to (6.6b) D is totally–null. Finally, from (6.6a) we
deduce that at any point of U none of the vector fields {ηi} lies in D. Hence
D and D are complementary totally–null distributions on M . This completes
the proof of the theorem.

As we can see from the above proof, the construction of D depends upon
the choice of D′ and hence D is not unique. However, as we see below, we may
get information on the geometry of D by using some geometric objects which
do not depend on D. Indeed, locally we define the functions

hijk = g
(
∇̃ξiξj , ξk

)
, (6.9)

where ∇̃ is the Levi–Civita connection on (M, g). Clearly, hijk are independent
of the transversal distribution D. Moreover, since g is parallel with respect to
∇̃, by using (6.9) and (6.1) we obtain

hijk + hikj = 0. (6.10)

Now, we can state the following.

Theorem 6.2. Let D be an integrable totally–null r–distribution on a 2r–
dimensional semi–Riemannian manifold (M, g). Then D is self–parallel with
respect to ∇̃.

Proof. Taking into account that D is integrable, by using (6.9) and (6.1), we
deduce that

hijk = hjik. (6.11)

Next, from (6.10), we obtain

hjki + hjik = 0 and hkij + hkji = 0. (6.12)

Then, by using (6.10)–(6.12), we obtain hijk = 0. Finally, by using (6.9), we
deduce that ∇̃ξj ξj ∈ Γ (D) for any i, j ∈ {1, ..., r}. Hence D is self–parallel
with respect to ∇̃.
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Next, we consider the foliation FD tangent to D and take a leaf N of FD.
Then, by the above theorem, the restriction of ∇̃ to N is a torsion–free linear
connection on N . Thus any geodesic of N is a geodesic of (M, g). This enables
us to state the following important result on totally–null foliations.

Theorem 6.3. Any totally–null r–foliation on a 2r–dimensional semi–Rie-
mannian manifold is totally geodesic.

Now, we suppose that F is a parallel totally–null r–foliation on a 2r–
dimensional semi–Riemannian manifold (M, g). If D is the tangent distribu-
tion to F then D = D⊥ = N . Then a foliated atlas on (M, g) has the coordi-

nates (xi, ti) and D is locally spanned by
{

∂

∂xi

}
, i ∈ {1, ..., r}. Moreover, by

a similar proof as of Theorem 5.2, we obtain the following.

Theorem 6.4. Let (M, g) be a 2r–dimensional proper semi–Riemannian ma-
nifold, and F an r–foliation on M . Then F is a parallel totally–null foliation
if and only if there is a foliated atlas A on M with respect to which the matrix
of g takes the canonical form [

0 Ir

Ir B(x, t)

]
, (6.13)

where B is a symmetric r×r matrix.

We keep for A the name Walker atlas and note that the coordinate
transformations in A are given by (see (5.19))

(a) x̃i = Li
j(t)x

i + Si(t), Li
j(t) =

∂tj

∂t̃i
,

(b) t̃i = t̃i(tj).
(6.14)

Since the canonical form (6.13) is preserved with respect to the change of
coordinates (6.14), by using Theorem 6.4, we deduce the following.

Theorem 6.5. Let M be a 2r–dimensional manifold that admits an atlas in
which the change of coordinates is given by (6.14). If F is the r–foliation whose

tangent distribution is locally represented by
{

∂

∂xi

}
, i ∈ {1, ..., r}, then there

exists on M a proper semi–Riemannian metric g such that F is totally–null
and parallel with respect to the Levi–Civita connection on (M, g).

Now, suppose that F is a parallel and totally–null r–foliation on a 2r–
dimensional semi–Riemannian manifold (M, g). Since the tangent distribution
D to F is parallel with respect to the Levi–Civita connection ∇̃ on (M, g) we
put
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∇̃ ∂

∂xj

∂

∂xi
= Γi

k
j

∂

∂xk
· (6.15)

Take a leaf N of F and denote by ∇ the induced connection by ∇̃ on N , that

is, by (6.15) ∇ = ∇̃ on Γ (TN). From (6.13), we have g

(
∂

∂xk
, ∂

∂th

)
= δkh,

where (xk, th) are coordinates in the Walker atlas on (M, g). Thus (6.15)
implies

g

(
∇ ∂

∂xj

∂

∂xi
, ∂

∂th

)
= Γi

h
j .

On the other hand, taking into account (1.5.10) and (6.13), we obtain

2g

(
∇ ∂

∂xj

∂

∂xi
, ∂

∂th

)
=

∂

∂xj
(δih) +

∂

∂xi
(δjh) = 0.

Hence the leaf N admits a linear connection ∇ whose local coefficients Γi
h

j

vanish on the domain of each local chart of the Walker atlas. Thus N is a
locally affine manifold and therefore the foliation F is locally affine. Actually,
this follows immediately from (6.14) via Theorem 5.6. The above discussion
about the induced connection ∇ on N shows a little more than this. Namely,
it shows that the curvature tensor field R̃ of the Levi–Civita connection ∇̃ on
(M, g) satisfies

R̃(X, Y )Z = 0, ∀X,Y, Z ∈ Γ (D). (6.16)

Moreover, based on this discussion we can state the following.

Theorem 6.6. Let D and D be two complementary parallel totally–null r–
distributions on a 2r–dimensional proper semi–Riemannian manifold (M, g).
Then we have the assertions:

(i) Both foliations F and F defined by D and D are locally affine.
(ii) M is locally a product of two locally affine manifolds.
(iii) The curvature tensor field R̃ of the Levi–Civita connection on (M, g) sa-

tisfies (6.16) and

R̃(X, Y ) Z = 0, ∀ X, Y , Z ∈ Γ (D). (6.17)

We show now that cotangent bundles are natural models for 2r–dimensional
manifolds that admit parallel totally–null r–foliations.

Theorem 6.7. (Patterson–Walker [PW52]). The cotangent bundle T ∗M of a
manifold M admits a proper semi–Riemannian metric such that the foliation
by fibers of T ∗M is parallel and totally–null.

Proof. Let (ti, xi), i ∈ {1, ..., r}, be the local coordinates on T ∗M , where (ti)
are the local coordinates on M . Then the change of coordinates on T ∗M is
given by
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(a) x̃i =
∂tj

∂t̃i
xj , (b) t̃i = t̃i(tj). (6.18)

Comparing (6.18) with (6.14) via (5.18) we conclude that the natural atlas
A with local coordinates (ti, xi) on T ∗M is a Walker atlas with respect to
the r–foliation F by fibers of T ∗M . Finally, apply Theorem 6.5 and conclude
that T ∗M admits a proper semi–Riemannian metric with respect to which F
is parallel and totally–null.

Finally, we note that totally–null distributions (foliations) are deeply in-
volved into the geometry of para–Kählerian manifolds. To show this we first
present some definitions. Let F be an almost product structure on a 2r–
dimensional manifold M , and g be a semi–Riemannian metric on M such
that

g(X,FY ) + g(Y, FX) = 0, ∀X, Y ∈ Γ (TM). (6.19)

Then we say that (M,F, g) is an almost para–Hermitian manifold. If
moreover, F is integrable, that is, the Nijenhuis tensor field N of F given by

N(X,Y ) = [FX,FY ] − F [FX, Y ] − F [X, FY ] + [X, Y ],

∀X, Y ∈ Γ (TM),
(6.20)

vanishes identically on M , then (M, F, g) is said to be a para–Hermitian
manifold. Next, we denote by D+ and D− the eigendistributions of F corres-
ponding to its eigenvalues (+1) and (−1) respectively. As (6.19) is equivalent
to

g(FX, FY ) + g(X, Y ) = 0, ∀X, Y ∈ Γ (TM), (6.21)

we conclude that D+ and D− are totally–null complementary r–distributions
on M . Moreover, we have the following.

Proposition 6.8. The distributions D+ and D− define on a 2r–dimensional
para–Hermitian manifold (M, F, g) two complementary totally geodesic and
totally–null r–foliations.

Proof. Take X, Y ∈ Γ (D+) and since N = 0 on M , from (6.20) we obtain
F ([X, Y ]) = [X, Y ]. Hence [X, Y ] ∈ Γ (D+), that is, D+ is integrable. Thus
D+ defines a totally–null foliation F+ on M . Finally, from Theorem 6.3 we
deduce that F+ is a totally geodesic foliation. Similar arguments apply to
D−, defining a totally geodesic and totally–null r–foliation F−.

Next, a para–Hermitian manifold (M, F, g) is called para–Kählerian if
F is parallel with respect to the Levi–Civita connection ∇̃ on M , that is, we
have

(∇̃XF )Y = 0, ∀X, Y ∈ Γ (TM).
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Examples and several results on the geometry of para–Kählerian manifolds
can be found in a survey of Cruceanu, Fortuny and Gadea [CFG96]. Now,
by using the above theory of parallel totally–null foliations we can prove the
following.

Theorem 6.9. Let (M,F, g) be a para–Kählerian manifold and F+ and F−

be the foliations defined by the eigendistributions D+ and D− of F . Then we
have the assertions:

(i) F+ and F− are locally affine, parallel and totally–null foliations.
(ii) M is locally a product of two locally affine manifolds.
(iii) The curvature tensor field R̃ of ∇̃ satisfies

(a) R̃(X, Y )Z = 0 and (b) R̃(U, V )W = 0,

for any X, Y, Z ∈ Γ (D+) and U, V, W ∈ Γ (D−).

Proof. By Proposition 6.8 both foliations F+ and F− are totally–null. Then
applying Theorem 2.1 we deduce that F+ and F− are parallel with res-
pect to ∇̃. Thus M is endowed with two complementary parallel totally–null
r–foliations. Hence Theorem 6.6 applies and we obtain all the assertions of
the theorem.

An important relation between parallel totally–null r–foliations on
2r–dimensional semi–Riemannian manifolds and Lagrangian foliations on
symplectic manifolds is presented in Section 5.1.

To investigate that relation we need the following result of Robertson and
Furness [RF74].

Theorem 6.10. Let F be a parallel totally–null r–foliation on a 2r–dimensio-
nal semi–Riemannian manifold (M, g). Then there is a bundle isomorphism
TM ∼= D⊕D, where D is the tangent distribution to F . Moreover, M admits
an almost complex structure J given by

Jx(u, v) = (−v, u), ∀x ∈ M, (u, v) ∈ Dx×Dx.

4.7 Parallel Partially–Null Foliations

This section discusses the most general situation of a parallel partially–null
foliation F on an m–dimensional semi–Riemannian manifold (M, g). Using
the terminology of Section 4.3, F is a foliation of type (r, s) with integers
r > 0 and s > 0. As we saw in Theorem 3.1, F induces three other parallel
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foliations F⊥,F+ and FN of type (r, u), (r, s+u) and (r, 0) respectively, where
r, s, u verify (3.2).

Unlike the non–degenerate situation (see Section 4.4) the geometry of pa-
rallel partially–null foliations is very far from being understood. The global
structure of semi–Riemannian manifolds admitting such foliations has not
been determined yet. Walker [Wal50b] found a canonical form of the semi–
Riemannian metric on such manifolds. Robertson and Furness [RF74] used the
transformation of coordinates in a Walker atlas to obtain information on the
structure of the leaves of the foliation. Under certain additional conditions,
some more results concerning the leaves and the manifold were obtained by
Furness [Fur72], [Fur74] and Farran [Far79], [Far80].

In what follows we discuss the main ideas and results obtained for parallel
partially–null foliations on semi–Riemannian manifolds. First, using the nota-
tions from Theorem 3.2 we can state the following characterization of parallel
partially–null foliations.

Theorem 7.1. (Walker [Wal50b]). Let (M, g) be a (2r + s + u)–dimensional
proper semi–Riemannian manifold and F be an (r + s)–foliation on M . Then
F is a parallel partially–null foliation of type (r, s), if and only if there is
a foliated atlas A on M satisfying (3.3) and (3.4) with respect to which the
matrix of g takes the canonical form⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 Ir

0 A(y, t) 0 F (y, t)

0 0 B(z, t) G(z, t)

Ir FT (y, t) GT (z, t) C(x, y, z, t)

⎤⎥⎥⎥⎥⎥⎥⎦ , (7.1)

where the non–zero submatrices satisfy the following conditions:

(i) Ir is the r×r identity matrix. A and B are non–singular symmetric ma-
trices of sizes s×s and u×u respectively. C is a symmetric r×r matrix.
F and G are matrices of sizes s×r and u×r respectively with transposes
FT and GT respectively.

(ii)A and F (and therefore FT ) are independent of (x1, ..., xr, z1, ..., zu).
B and G (and therefore GT ) are independent of (x1, ..., xr, y1, ..., ys).

The proof of this theorem is a slight extension of the proof of Theorem
5.2, so we omit it here. It is easy to see that Theorem 7.1 is a generalization
of both Theorem 5.2 and Theorem 6.4. For the atlas A we keep the name
Walker atlas.

In this present section we use the following range of indices: i, j, k, ... ∈
{1, ..., r}; α, β, γ, ... ∈ {1, ..., u}; λ, µ, ν, ...,∈ {1, ..., s}. Also, we keep the no-
tations from Section 4.3 with respect to the tangent distributions to the fo-
liations we study here. Thus D,D⊥ and N are tangent distributions to the
foliations F ,F⊥ and FN respectively.
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Now, let (U , ϕ) and (Ũ , ϕ̃) be two local charts from A with overlapping
domains. If (xi, yλ, zα, tj) and (x̃i, ỹλ, z̃α, t̃j) are the local coordinates on U
and Ũ respectively, then by using (3.3) we deduce that

(a)
∂

∂xi
=

∂x̃j

∂xi

∂

∂x̃j
,

(b)
∂

∂yλ
=

∂x̃j

∂yλ

∂

∂x̃j
+

∂ỹµ

∂yλ

∂

∂ỹµ
,

(c)
∂

∂zα
=

∂x̃j

∂zα

∂

∂x̃j
+

∂z̃β

∂zα

∂

∂z̃β
,

(d)
∂

∂ti
=

∂x̃j

∂ti
∂

∂x̃j
+

∂ỹµ

∂ti
∂

∂ỹµ
+

∂z̃β

∂ti
∂

∂z̃β
+

∂t̃j

∂ti
∂

∂t̃j
,

(7.2)

on U ∩ Ũ . By (7.1) we obtain

g

(
∂

∂xi
, ∂

∂tj

)
= δij and (b) g

(
∂

∂x̃h
, ∂

∂t̃k

)
= δhk. (7.3)

By using (7.2a) and (7.2d) into (7.3a) and taking into account that N is
orthogonal to both D and D⊥, we infer that

δij =
∂x̃h

∂xi

∂t̃k

∂tj
δhk. (7.4)

From (7.4) it follows that

(a)
∂x̃i

∂xj
= Li

j(t), where (b) Li
j(t) =

∂tj

∂t̃i
· (7.5)

Thus (3.3) and (7.5) imply the following coordinate transformations in A:

(a) x̃i = Li
j(t)x

j + Si(y, z, t), (b) ỹλ = ỹλ(y, t),

(c) z̃α = z̃α(z, t), (d) t̃i = t̃i(t),
(7.6)

where Si are smooth functions on U ∩ Ũ . Next, denote by Aλµ and Fλi the
entries of the matrices A(y, t) and F (y, t) from (7.1). Hence we have

(a) Aλµ = g

(
∂

∂yλ
, ∂

∂yµ

)
and (b) Fλi = g

(
∂

∂yλ
, ∂

∂ti

)
· (7.7)

Then, by direct calculations using (7.7), (7.2b), (7.2d) and (7.1) we obtain

Fλi =
∂x̃j

∂yλ

∂t̃k

∂ti
δjk +

∂ỹµ

∂yλ

∂ỹν

∂ti
Ãµν +

∂ỹµ

∂yλ

∂t̃k

∂ti
F̃µk. (7.8)
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By contracting (7.8) with
∂ti

∂t̃h
we deduce that

∂x̃j

∂yλ
are functions of (yµ, tk)

alone. Then (7.6a) implies that
∂Si

∂yλ
are functions of (yµ, tk) alone, and there-

fore Si are written as follows:

Si(y, z, t) = F i(y, t) + Gi(z, t).

Hence (7.6) has the final form (cf. Robertson–Furness [RF74])

(a) x̃i = Li
j(t)x

j + F i(y, t) + Gi(z, t),

(b) ỹλ = ỹλ(y, t), (c) z̃i = z̃α(z, t), (d) t̃i = t̃i(t).
(7.9)

Moreover, comparing (7.9) with (5.24) we can state the following.

Theorem 7.2. (Robertson–Furness [RF74]). Let F be a parallel partially–null
foliation on a proper semi–Riemannian manifold (M, g). Then the totally–null
foliation FN on M is a locally affine foliation.

Taking into account that the canonical form (7.1) is preserved by the
coordinate transformations (7.9), from Theorem 7.1 we deduce the following.

Theorem 7.3. Let M be a (2r + s+u)–dimensional manifold that admits an
atlas in which the change of coordinates is given by (7.9). If F is the (r + s)–

foliation whose tangent distribution is locally represented by
{

∂

∂xi
, ∂

∂yλ

}
,

i ∈ {1, ..., r}, λ ∈ {1, ..., s}, then there exists on M a proper semi–Rieman-
nian metric g such that F is partially–null of type (r, s) and parallel with
respect to the Levi–Civita connection on (M, g).

Remark 7.1. It is easy to check that (7.1) is also preserved by the change
or coordinates (7.6). Therefore Theorem 7.3 is still true when M admits an
atlas whose change of coordinates is given by (7.6).

4.8 Manifolds with Walker Complementary Foliations

Given a distribution D on a manifold M , we saw in Chapter 1 the importance
of using a complementary distribution D′ for obtaining tools that help in un-
derstanding the geometry of the manifold. A good example of the importance
of complementary distributions is the complete understanding of the global
geometry of a semi–Riemannian manifold admitting a parallel non–degenerate
distribution (where a natural complementary distribution exists) (see Section
4.4). The lack of global results for the partially–null case is due to the fact
that, in general, such a ”natural” complementary distribution does not exist.
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In this section we study the geometry of proper semi–Riemannian mani-
folds admitting a parallel partially–null distribution and a natural complemen-
tary distribution. The emphasis will be on parallel totally–null r–foliations of
2r–dimensional semi–Riemannian manifolds. But first, let us make the term
”natural complementary” a specific one.

Let (M, g) be an m–dimensional proper semi–Riemannian manifold and D
be a parallel partially–null distribution of type (r, s) (see Section 4.3). Hence D
is an integrable distribution that is tangent to a parallel partially–null (r+s)–
foliation F . By Theorem 3.1, M admits three more parallel foliations F⊥,F+

and FN with tangent distributions D⊥, D+ = D + D⊥ and N = D ∩ D⊥

respectively. We have seen in Section 4.7 that on (M, g,F) there exists a
Walker atlas A whose local coordinates (xi, yλ, zα, ti) are changed according

to (7.9). Taking into account (7.2d) we deduce that
{

∂

∂t1
, · · · , ∂

∂tr

}
on the

domain U of any local chart (U ;ϕ) from A need not define a global distribution
on M .

In this section we impose the additional condition that the local vector

fields
{

∂

∂ti

}
, i ∈ {1, ..., r}, induced by a Walker atlas define a global distri-

bution Dc on M . We call Dc the Walker complementary distribution.
By using Theorem 1.1.1. and the definition of Dc we obtain the following.

Proposition 8.1. The Walker complementary distribution is integrable.

Thus we obtain a fifth foliation Fc whose tangent distribution is Dc and
therefore it is complementary to F+. We call Fc the Walker complemen-
tary foliation. The next theorem states an interesting result on the local
structure of Fc.

Theorem 8.2. Let (M, g) be a (2r + s + u)–dimensional proper semi–Rie-
mannian manifold and F be a parallel partially–null foliation of type (r, s) on
M . Suppose that M admits a Walker complementary foliation Fc. Then Fc

is a locally affine foliation.

Proof. In the previous section we have seen that M admits a Walker atlas
A in which the change of coordinates is given by (7.9). Since M also admits
a Walker complementary foliation Fc, the functions x̃i, ỹλ and z̃α from (7.9)
must be independent of (t1, ..., tr). Thus from (7.9a) we deduce that Li

j(t)
given by (7.5b) must be constant. Then (7.9) becomes

(a) x̃i = bi
jx

j + F i(y) + Gi(z),

(b) ỹλ = ỹλ(y), (c) z̃α = z̃α(z), (d) t̃i = ai
jt

j + bi,
(8.1)

where ai
j , b

i
j , b

i are constant and we have

[bi
j ] = ([ai

j ]
T )−1. (8.2)

Then our assertion follows from (8.1) by using Theorem 5.6.
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Corollary 8.3. Let (M, g) be a 2r–dimensional proper semi–Riemannian ma-
nifold and F be a parallel totally–null r–foliation on M . Suppose that M
admits a Walker complementary foliation Fc. Then M is a locally affine ma-
nifold.

Proof. By the same arguments as in the proof of the above theorem, we
deduce that the coordinate transformations (6.14) in a Walker atlas on M
become

x̃i = bi
jx

j + ci,

t̃i = ai
jt

j + bi.
(8.3)

Then the assertion follows from (8.3) by using Theorem 5.4.

Now, combining Theorem 5.5 with Corollary 8.3, we state the following
result on the global structure of (M, g).

Corollary 8.4. Let (M, g,F) be a foliated semi–Riemannian manifold as in
Corollary 8.3. Then M is affinely equivalent to (IE2r, ∇̃)/G where G is a
properly discontinuous subgroup of the affine group A(2r, IR) that is isomorphic
to Π1(M).

Now, we want to relate complex structures on manifolds with parallel
totally–null foliations on 2r–dimensional semi–Riemannian manifolds. To this
end we need some terminology. Let M be a complex manifold of complex
dimension r. Then M can be considered as a real 2r–dimensional manifold
with local coordinates (x1, ..., xr, t1, ..., tr) where zj = xj + itj , j ∈ {1, ..., r},
are the local complex coordinates on M . Moreover, the coordinate transfor-
mations on M , given by

x̃i = x̃i(xj , tj), t̃i = t̃(xj , tj), (8.4)

satisfy the Cauchy–Riemann equations:

(a)
∂x̃i

∂xj
=

∂t̃i

∂tj
, (b)

∂x̃i

∂tj
= − ∂t̃i

∂xj
· (8.5)

The above atlas of real charts on M is called a Cauchy–Riemann atlas.
When M admits a semi–Riemannian metric g and a parallel totally–null fo-
liation F whose leaves are locally given by ti = constant, we say that M has a
Cauchy–Riemann atlas of Walker type. Now, we can prove the following.

Theorem 8.5. Let M be a complex manifold which admits a Cauchy–Rie-
mann atlas of Walker type. Then M must be locally Euclidean.

Proof. Since M admits the foliation F , t̃i from (8.4) must be independent of
(x1, ..., xr). Thus, by (8.5b), x̃i from (8.4) must be independent of (t1, ..., tr).
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This means that M admits a Walker complementary foliation Fc. Then, by
Corollary 8.3, we deduce that M is a locally affine manifold. Moreover, by
using (8.5a) and (8.3), we obtain ai

j = bi
j . Taking into account (8.2) we con-

clude that the transformations (8.3) are local isometries of a 2r–dimensional
semi–Euclidean space. Hence M is a locally Euclidean manifold.

In the last part of this section we show the existence of a Walker com-
plementary foliation to the foliation by fibers on the cotangent bundle of a
locally affine manifold. First we prove the following.

Proposition 8.6. Let M be a locally affine r–manifold. Then the cotangent
bundle T ∗M admits a complementary foliation to that given by fibers.

Proof. Let (ti, xi), i ∈ {1, ..., r}, be the local coordinates on T ∗M , where (ti)
are the local coordinates on M . Then by (5.23) and (6.18) the transformations
of coordinates on T ∗M have the special form

t̃i = ai
jt

j + bi, xi = aj
i x̃j , i ∈ {1, ..., r}.

Thus on a coordinate neighbourhood in T ∗M we have

∂

∂ti
= aj

i

∂

∂t̃j
, i ∈ {1, ..., r}.

Hence there exists an integrable distribution on T ∗M locally spanned by{
∂

∂ti

}
, i ∈ {1, ..., r}. Clearly, the corresponding foliation is complementary

to the foliation by fibers.

We note that the above proposition is a general one in the sense that the
parallelism and nullity of the foliation by fibers were not mentioned. This
enables us to obtain the following general corollary.

Corollary 8.7. The cotangent bundle T ∗M of a locally affine r–manifold M
is diffeomorphic to IE2r/G, where G is a subgroup of affine transformations
of IE2r acting freely and properly discontinuously.

Proof. Since M is locally affine, by Proposition 8.6 we see that T ∗M admits
a foliation complementary to that given by fibers. But Theorem 6.7 says that
T ∗M admits a proper semi–Riemannian metric such that the foliation by
fibers is parallel and totally–null. As the atlas on T ∗M with local coordinates
(ti, xi) is a Walker atlas (see the proof of Theorem 6.7), we apply Corollary
8.4 and obtain our assertion.

Now, we recall from Section 4.6 that para–Kählerian manifolds provide
examples of 2r–dimensional semi–Riemannian manifolds that admit pairs of
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parallel and totally–null complementary foliations. We show here that cotan-
gent bundles of locally affine manifolds are another good source of such ex-
amples. But first we recall the concept of Riemann extension introduced by
Patterson–Walker [PW52]. Let ∇ be a torsion–free linear connection on an
r–dimensional manifold M . Denote by (ti, xj) the local coordinates on T ∗M
and by Γi

k
j the local coefficients of ∇ with respect to the local coordinates

(ti) on M . Then the matrix

[h] =

[
−2xkΓi

k
j δij

δij 0

]
, (8.6)

defines a global semi–Riemannian metric h on T ∗M which is called a Rie-
mann extension. Now, we can prove the following.

Theorem 8.8. Let M be a locally affine r–dimensional manifold and T ∗M
the cotangent bundle of M . If F is the foliation of T ∗M by fibers, then T ∗M
admits a foliation Fc complementary to F and a semi–Riemannian metric
for which both F and Fc are parallel and totally–null.

Proof. Since M is locally affine, by Proposition 8.6 a complementary foliation
Fc to F exists on M . Also, on M there exists a torsion–free linear connection
∇ with vanishing curvature. Moreover, M admits local coordinates (ti) with
respect to which all the local coefficients of ∇ vanish on M . Then we consider
the induced local coordinates (ti, xi) on T ∗M and by using (8.6) we obtain a
semi–Riemannian metric h on T ∗M whose matrix is

[h] =

[
0 Ir

Ir 0

]
. (8.7)

Finally, comparing (8.7) with (6.13) and applying Theorem 6.4, we conclude
that both F and Fc are parallel and totally–null with respect to h.

4.9 Parallel Foliations and G–Structures

In Chapter 2 we presented different approaches to foliations. We discuss now
yet another approach that was not mentioned there. This is the approach
to foliations using G–structures. In particular, we obtain characterizations of
parallel foliations in terms of G–structures.

The theory of G–structures was introduced by Chern [Che53] and plays a
central role in differential geometry. Let us start by giving a brief introduction
to the subject.

Let P be a manifold and G a Lie group. Suppose that G acts to the
right as a Lie transformation group on P , i.e., there exists a smooth mapping
Φ : P×G −→ P satisfying the conditions (see Example 2.1.7)
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(i) Φ(Φ(p, a), b) = Φ(p, a ∗ b), ∀ a, b ∈ G, p ∈ P, where ∗ is the operation
on G.

(ii) Φ(p, e) = p, ∀ p ∈ P , where e is the unit element of G. Thus, for any a ∈ G
we have a diffeomorphism Ra of P onto itself given by Ra(p) = Φ(p, a).
Next, we consider a manifold M and a smooth map π of P onto M . Then
(P, M, π, G) is said to be a principal bundle over M with structure
group G (shortly principal G–bundle) if the following conditions are
satisfied (cf. Sternberg [Ste83], p. 294)

(a) G acts freely on P , i.e., for any p ∈ P if Ra(p) = p, then a = e.
(b) Let p and p′ be any two points of P . Then π(p) = π(p′) if and only if

there is an a ∈ G such that Ra(p) = p′. Thus M can be thought of (via π)
as a quotient space of P under the action of G.

(c) P is locally trivial over M , that is, any x ∈ M has a neighbourhood U
and a diffeomorphism Ψ : π−1(U) −→ U×G such that Ψ(p) = (π(p), ϕ(p))
and Ψ(Ra(p)) = (π(p), ϕ(p) ∗ a). According to the condition (c) we can
choose an open covering {Uα} of M such that Ψα(p) = (π(p), ϕα(p)) are
diffeomorphisms of π−1(Uα) onto Uα×G and ϕα(Ra(p)) = ϕα(p)∗a. Then
for any p ∈ π−1(Uα ∩ Uβ) we have

ϕβ(Ra(p)) ∗ (ϕα(Ra(p)))−1 = ϕβ(p) ∗ (ϕα(p))−1.

Thus the map p −→ ϕβ(p) ∗ (ϕα(p))−1 is constant along fibers over Uα ∩ Uβ .
This enables us to define the map

Ψβα : Uα ∩ Uβ −→ G, Ψβα(x) = ϕβ(p) ∗ (ϕα(p))−1, (9.1)

where p is any point of π−1(x). The maps Ψβα are called the transition func-
tions of the principal bundle (P,M, π, G) with respect to the covering {Uα}
of M . By using (9.1) it is easy to check that the transition functions satisfy

Ψγβ ∗ Ψβα = Ψγα. (9.2)

It is important to note that a principal bundle can be constructed by using
some functions Ψβα satisfying (9.2). More precisely, the following proposition
is proved in Kobayashi–Nomizu [KN63], p. 52.

Proposition 9.1. Let M be a manifold, {Uα} an open covering of M and
G a Lie group. Given a mapping Ψβα : Uα ∩ Uβ −→ G for every non–empty
Uα ∩ Uβ, in such a way that (9.2) is satisfied, we can construct a principal
fiber bundle (P,M, π, G) with transition functions Ψβα.

Next, let (P2, M, π2, G2) be a principal G2–bundle over M and G1 a Lie
subgroup of G2. Then it is said that P2 has a reduction to a G1–bundle
(P1, M, π1, G1) if there exists a smooth map f : P1 −→ P2 satisfying

f(Ra(p1)) = Ra(f(p1)), ∀ p1 ∈ P1 and ∀ a ∈ G1.

.
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Also we say that P2 is reducible to the subgroup G1, if there exists a re-
duction of P2 to a G1–bundle P1. The following theorem is well known (see
Sternberg [Ste83], p. 296 for a proof).

Theorem 9.2. Let P2 be a principal G2–bundle over M and G1 be a Lie
subgroup of G2. Then P2 has a reduction to a principal G1–bundle if and only
if there is a covering of M whose transition functions take their values in G1.

The bundle of linear frames over a manifold has a great role in studying
G–structures and linear connections. We present it here as an example of a
principal bundle. Let M be an m–dimensional manifold and L(M) be the
set of all (m + 1)–tuples (x; E1, ..., Em), where x ∈ M and (E1, ..., Em) is
a basis of TxM which is called a linear frame at x. If {e1 = (1, 0, ..., 0), ...,
em = (0, ..., 0, 1)} is the natural basis for IRm, then a linear frame (E1, ..., Em)
at x can be thought of as a linear map p : IRm −→ TxM such that p(ei) = Ei,
i ∈ {1, ..., m}. The general linear group GL(m; IR) of all non–singular m×m
matrices acts to the right on L(M) as follows. If (x;E1, ..., Em) ∈ L(M) then

Ra(x;E1, ..., Em) = (x; ai
1Ei, ..., a

i
mEi),

where a = [ai
j ] ∈ GL(m; IR). Now, let {(U , η) : (x1, ..., xm)} be a local chart

about a point x ∈ M . Then any vector of the linear frame (E1, ..., Em) can
be expressed as follows

Ei = Ej
i

∂

∂xj

∣∣∣∣
x

, i ∈ {1, ..., m}. (9.3)

Denote by π : L(M)−→M the natural projection, that is, π(x; E1, ..., Em) = x,
and define (xj , Ej

i ) as local coordinates in π−1(U) ⊂ L(M). Thus L(M) be-
comes an m(m + 1)–dimensional smooth manifold. Moreover it is easy to
check that (L(M), M, π, GL(m; IR)) is a principal bundle. Finally, we note
that L(M) is known under the name bundle of linear frames over M .

Now, let G be a Lie subgroup of GL(m; IR). Then a G–structure on M
is a reduction of the bundle of linear frames L(M) to a principal G–bundle.
Thus a G–structure on M is a submanifold SG of L(M) with the property
that for any p ∈ SG and any a ∈ GL(m; IR) the point Ra(p) belongs to SG

if and only if a ∈ G. Moreover, from Theorem 9.2 we immediately obtain the
following.

Corollary 9.3. Let M be an m–dimensional manifold and G a Lie subgroup
of GL(m; IR). Then M admits a G–structure if and only if there is a covering
of M whose transition functions take their values in G.

The importance of G–structures comes from the fact that various geome-
tric structures on a manifold M are reflected as G–structures, and conversely,
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if G is a Lie subgroup of GL(m; IR), then a G–structure on M has its geome-
tric interpretation. Moreover, the existence of a G–structure on M is closely
related to the geometry and topology of M . For example, if G = {e} is the
identity subgroup of GL(m; IR), then a G–structure on M defines a linear
frame (E1, ..., Em) at each point x ∈ M . We therefore have a family of m
independent vector fields globally defined on M . For this reason it is said
that an {e}–structure determines a parallelization on M , or M is a paral-
lelizable manifold. In this case the tangent bundle TM is trivial, i.e., it is
diffeomorphic to M×IRm. Any Lie group is a parallelizable manifold with a
parallelization given by the left invariant vector fields. Also, the spheres S1, S3

and S7 are parallelizable (see Brickell–Clark [BC70], p. 117).
We shall see later on in this section that Riemannian (semi–Riemannian)

structures, distributions and foliations can be defined in terms of G–structures.
Another example is when G represents the general linear complex group
GL(n;C), embedded as a subgroup of GL(2n; IR) in a natural way. In this
case a G–structure on a real 2n–dimensional manifold is nothing but an al-
most complex structure on M (see Example 2.1.8). We can describe, in a
similar way, almost Hermitian structures, almost symplectic structures, con-
formal structures, etc., as G–structures with the corresponding subgroups G
of GL(m; IR). More examples and results on the theory of G–structures can
be found in Bernard [Ber60], Chern [Che66], Fujimoto [Fuj60] and in Chapter
VII of Sternberg’s book [Ste83].

Now, to describe foliations on Riemannian (semi–Riemannian) manifolds
using G–structures, it might be useful to start with some elementary linear al-
gebra. Let n and p be two positive integers and m = n+p. As in Section 2.1 we
identify IRm with IRn×IRp, and let a, b, c, ... ∈ {1, ...,m}, i, j, k, ... ∈ {1, ..., n}
and α, β, γ, ... ∈ {n + 1, .., n + p}. Consider the natural basis {e1, ..., em} of
IRm, where e1 = (1, 0, ..., 0), ..., em = (0, ..., 0, 1). Using this basis, the group
of all linear isomorphisms of IRm is identified with GL(m; IR). Now if we look
at IRn as a subspace of IRm, then the subgroup G of all linear isomorphisms
of IRm that leave IRn invariant is identified with the group of all non–singular
m×m matrices of the form [

Aij Biβ

0 Cαβ

]
. (9.4)

Next, we consider an integer 0 ≤ r ≤ m and define the pseudo–orthogonal
group O(m; r) as follows

O(m; r) = {A ∈ GL(m; IR) : AT I(r,m−r)A = I(r,m−r)}, (9.5)

where we put

I(r,m−r) =

[
Im−r 0

0 −Ir

]
,

and Is is the identity s×s matrix. In particular, for r = 0 we obtain the
orthogonal group
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O(m) = {A ∈ GL(m; IR) : AT A = Im}. (9.6)

Now, we are in a position to present distributions, foliations and Rieman-
nian (semi–Riemannian) structures by using G–structures.

Theorem 9.4. Let M be a real m–dimensional manifold and G the group of
all non–singular matrices of the form (9.4). Then M admits an n–distribution
if and only if M admits a G–structure.

Proof. Let D be an n–distribution on M . Then for any x ∈ M we denote
by Sx the set of all linear frames (E1, ..., En, En+1, ..., En+p) at x such that
{E1, ..., En} spans Dx. Thus, taking into account the form of matrices in G

given by (9.4), we conclude that S =
⋃

x∈M

Sx is a G–structure on M . Indeed,

for any p = (x; E1, ..., Em) ∈ S and any a ∈ GL(m; IR) we have Ra(p) ∈ S if
and only if a ∈ G. Conversely, let SG be a G–structure on M with G given by
(9.4). Then for any x ∈ M we take p = (x; E1, ..., En, En+1, ..., En+p) ∈ SG

and define Dx as the subspace of TxM spanned by {E1, ..., En}. Now, Dx is
independent of the choice of p. Indeed, if q = (x;F1, .., Fn, Fn+1, ..., Fn+p)∈SG

then there exists a ∈ GL(m; IR) such that q = Ra(p). Since both p, q ∈ SG,
then a ∈ G. Thus if D′

x = span{F1, ..., Fn}, then D′
x = Rg(Dx) = Dx since the

action of G leaves Dx invariant. This shows that M admits an n–distribution.

Now, we recall from Section 1.1 that M has an almost product structure if
and only if M admits two complementary distributions. Then from Theorem
9.4 we deduce the following.

Corollary 9.5. An m–dimensional manifold M , m > 1, admits an almost
product structure if and only if there exists a positive integer n < m such that
M admits a G–structure, where G is the subgroup of GL(m; IR) of matrices
of the form [

Aij 0

0 Bαβ

]
,

i, j ∈ {1, ..., n}
α, β ∈ {n + 1, ...,m}. (9.7)

Next, to characterize foliations by using G–structures, we need to intro-
duce a particular class of G–structures. Let SG be a G–structure on an m–
dimensional manifold M . A local chart {(U , ϕ) : (x1, ..., xm)} in M is said

to be admissible with respect to SG if the frame field
{

∂

∂x1
, · · · , ∂

∂xm

}
is

a section of SG over U . A G-structure SG on M is called integrable if M
admits an atlas A of admissible charts. Now, combining Theorems 1.1.1, 2.1.1
and 9.4 we obtain the following.

Theorem 9.6. Let M be an (n+ p)–dimensional manifold with n > 0, p > 0.
Then M admits an n–foliation if and only if it admits an integrable G–
structure, where G is given by (9.4).
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As a consequence of Theorem 9.6 and Corollary 9.5 we can state the fol-
lowing.

Corollary 9.7. An m–dimensional manifold M , m > 1, admits a pair of
complementary foliations if and only if there exists a positive integer n < m
such that M admits an integrable G–structure, where G is given by (9.7).

Now, we present Riemannian (semi–Riemannian) manifolds by using the
theory of G–structures where G is the orthogonal group (pseudo–orthogonal
group). First we prove the following.

Proposition 9.8. Let M be an m–dimensional manifold. Then any O(m)–
structure on M gives rise to a Riemannian metric on M . Conversely, any
Riemannian metric on M defines an O(m)–structure on M .

Proof. Let S be an O(m)–structure on M and h : IRm×IRm −→ IR be the
Euclidean inner product on IRm (see (1.4.11)). Take x ∈ M and p ∈ π−1(x),
where π : S −→ M is the projection map. Then we define the map

gx : TxM×TxM −→ IR; gx(u, v) = h(p−1(u), p−1(v)),

where we consider p as a linear isomorphism from IRm onto TxM . First we
note that gx is independent of the choice of p since h is invariant under the
action of O(m). Then we see that gx is positive definite and symmetric bilinear
map, because h is so. Thus the map g : x −→ gx is a Riemannian metric on
M . Conversely, let g be a Riemannian metric on M . Then for any x ∈ M we
define Sx as the set of (m+1)–tuples (x; E1, ..., Em), where (E1, ..., Em) is an
orthonormal basis with respect to gx. Then S =

⋃
x∈M

Sx is an O(m)–structure.

Indeed, for any p ∈ S and a ∈ GL(m; IR), Ra(p) ∈ S if and only if a ∈ O(m).
This is because the transition matrix between two orthonormal bases must be
an orthogonal matrix. Thus the proof is complete.

Corollary 9.9. Let K and L be two manifolds of dimensions k and � res-
pectively, and M = K×L. Then a G–structure SG on M defines a product
Riemannian metric g = h×λ, where h and λ are Riemannian metrics on K
and L respectively, if and only if G = O(k)×O(�).

Theorem 9.10. Let (M, g̃) be a Riemannian m–dimensional manifold and
n, p be two positive integers such that m = n + p. Then (M, g̃) admits a
parallel n–foliation with respect to the Levi–Civita connection if and only if it
admits an integrable G–structure, where G is the subgroup of GL(m; IR) given
by (9.7) with [Aij ] ∈ O(n) and [Bαβ ] ∈ O(p).

Proof. Let F be a parallel n–foliation of (M, g̃). Using Theorem 4.2 we con-
clude that any point x ∈ M has a coordinate neighbourhood Ṽ such that
(Ṽ, g̃) = (V, g)×(V⊥, g⊥), where (V, g) and (V⊥, g⊥) are Riemannian subma-
nifolds of (M, g̃) of dimensions n and p respectively. Since g̃ = g×g⊥ (see



200 4 PARALLEL FOLIATIONS

(4.1)), then using Corollary 9.9 we conclude that the G–structure defined by
g̃ must have G = O(n)×O(p). This says that elements of G are of the form
(9.7) with [Aij ] ∈ O(n) and [Bαβ ] ∈ O(p). Conversely, suppose that (M, g̃) ad-
mits an integrable G–structure with G as in the theorem. Then it follows from
Corollary 9.7 that (M, g̃) admits a pair of complementary foliations F and F ′

of codimensions p and n respectively. Using Theorem 2.2 we deduce that for
every x ∈ M , there is a coordinate neighbourhood Ṽ = V×V ′, where V and V ′

are open submanifolds of leaves of F and F ′ through x. Then using Corollary
9.9 again, we conclude that (Ṽ, g̃) is a Riemannian product (V, g)×(V ′, g′) (see
(2.4)). Thus (V, g) and (V ′, g′) are totally geodesic immersed in (Ṽ, g̃), and
by Theorem 4.3 the foliations F and F ′ ar parallel and mutually orthogonal
with respect to g̃.

Now, we note that Proposition 9.8 can be extended to semi–Riemannian
manifolds. That is, the existence of an O(m, r)–structure on M is equivalent
to the existence of a semi–Riemannian metric of index r on M , where O(m; r)
is the pseudo–orthogonal group given by (9.5). Moreover, a slightly modified
version of Theorem 9.10 is still true for parallel non–degenerate foliations on
semi–Riemannian manifolds. This is because Theorems 4.2 and 4.3 still apply
to this case. To be more specific, we give the following theorem, whose proof
is similar to that of Theorem 9.10 and will be omitted here.

Theorem 9.11. Let (M, g̃) be a semi–Riemannian m–dimensional manifold
of index r, and n, p be two positive integers such that m = n + p. Then
(M, g̃) admits a parallel non–degenerate n–foliation if and only if it admits
a G–structure, where G is the subgroup of GL(m; IR) given by (9.7) with
[Aij ] ∈ O(n; s) and [Bαβ ] ∈ O(p; t) for some non–negative integers s, t with
s + t = r.

We go now to study parallel partially–null foliations by using G–structures.
The case of parallel totally–null foliations will be obtained as a special case.

From now on, in this section, r will be a positive integer, s and u are
non–negative integers and m = 2r + s + u. Let W (m, r, s) be the collection of
all elements of GL(m; IR) of the form⎡⎢⎢⎢⎢⎣

(A−1
11 )T A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A11

⎤⎥⎥⎥⎥⎦ , (9.8)

where A11, A22 and A33 are non–singular r×r, s×s and u×u matrices respec-
tively. The order of the other submatrices is determined accordingly. It is easy
to check that W (m, r, s) is a Lie subgroup of GL(m; IR). Moreover we have
the following characterization of parallel degenerate foliations.

Theorem 9.12. (Farran [Far80]). If an m–dimensional semi–Riemannian
manifold (M, g) admits a foliation F of type (r, s), then it admits an inte-
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grable W (m, r, s)–structure. Conversely, an m–dimensional manifold M with
an integrable W (m, r, s)–structure admits a foliation F and a semi–Rieman-
nian metric g such that F is parallel of type (r, s) with respect to g.

Proof. Suppose that the manifold (M, g̃) admits a parallel foliation F of type
(r, s). Then M also admits three more parallel foliations F⊥,F+ and FN of
type (r, u), (r, s + u) and (r, 0) respectively, where r, s, u verify (3.2) (see
Section 4.7). Using Theorem 7.1 we conclude that M admits a Walker atlas
A in which the change of coordinates takes the form (7.9). Now, we consider
the covering of M by coordinate neighbourhoods {Uα} of A and define the
transition functions

ψβα : Uα ∩ Uβ −→ GL(m; IR), ψβα(x) = Jβα(x),

where [Jβα(x)] is the Jacobian matrix of the transformation of coordinates
(7.9). It is easy to see that ψβα take all their values in W (m, r, s) and hence
by Corollary 9.3 we conclude that M admits a W (m, r, s)–structure. Since
A is an atlas with admissible local charts with respect to this structure, it
follows that the W (m, r, s)–structure is integrable.

Conversely, suppose that M admits an integrable W (m, r, s)–structure.
Then consider the decomposition IRm = IRr×IRs×IRu×IRr and take on M an
atlas A with local coordinates (xi, yλ, zα, tj) such that the local natural field

of frames
{

∂

∂xi
, ∂

∂yλ
, ∂

∂zα
, ∂

∂tj

}
belongs to the W (m, r, s)–structure. This is

possible because the W (m, r, s)–structure is supposed to be integrable. We use
here the same range of indices as in Section 4.7, that is: i, j, k, ... ∈ {1, ..., r};
α, β, γ, ... ∈ {1, ..., u} and λ, µ, ν, ... ∈ {1, ..., s}. Taking into account the zero
submatrices in (9.8) we deduce that the entries of the Jacobian matrix of the
transformation of coordinates in A should satisfy the following:

∂ỹλ

∂xi
=

∂z̃α

∂xi
=

∂t̃j

∂xi
= 0,

∂z̃α

∂yλ
=

∂t̃j

∂yλ
= 0,

∂ỹλ

∂zα
=

∂t̃j

∂zα
= 0.

Hence the change of coordinates in A must be of the form

(a) x̃i = x̃i(x, y, z, t), (b) ỹλ = ỹλ(y, t),

(c) z̃α = z̃α(z, t), (c) t̃j = t̃j(t).
(9.9)

Thus M admits four foliations Fx,Fxy,Fxz and Fxyz whose tangent distri-

butions are locally spanned by
{

∂

∂xi

}
,
{

∂

∂xi
, ∂

∂yλ

}
,
{

∂

∂xi
, ∂

∂zα

}
, and
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∂

∂xi
, ∂

∂yλ
, ∂

∂zα

}
respectively. Moreover, since the first submatrix on the

main diagonal in (9.8) is the transpose of the inverse of A11, we conclude that

∂x̃i

∂xj
= Li

j(t), where Li
j(t) =

∂tj

∂t̃i
·

Thus (9.9) becomes (7.6), and therefore by Remark 7.1 we conclude that there
exists a semi–Riemannian metric g on M such that the foliation Fxy is parallel
and partially–null of type (r, s) with respect to g. Finally, by using Theorems
5.3 and 6.5 we obtain the same conclusion for s = 0, u > 0 and for s = u = 0
respectively. This completes the proof of the theorem.

Notice that in the above proof we have assumed that r is positive, but s
and u were only assumed non–negative. Thus the result stated in Theorem
9.12 is general and takes care of all the following cases:

(i) Parallel totally–null r–foliations of 2r–dimensional semi–Riemannian ma-
nifolds are obtained when s = 0 and u = 0.

(ii) Parallel totally–null r–foliations of m–dimensional semi–Riemannian ma-
nifolds are obtained when s = 0 and u > 0.

(iii) Parallel partially–null r–foliations for s > 0.

Finally, we remark that the case (iii) includes the special case when u = 0.
In this case we have only two distinct parallel foliations, namely Fx and Fxy.
This is because Fxz coincides with Fx and Fxyz with Fxy.



5

FOLIATIONS INDUCED BY GEOMETRIC
STRUCTURES

This chapter deals with some interesting areas of interaction between the
theory of foliations and several geometric structures. We will see that certain
geometric structures on manifolds give rise to families of foliations on these
manifolds in a natural way. Moreover, there is a strong relationship between
the geometry of the manifold and that of the foliation.

The first section deals with Lagrange foliations on symplectic manifolds.
We give Weinstein’s results on the local structure of symplectic manifolds with
Lagrange foliations. Also, we show a relationship between Lagrange foliations
on symplectic manifolds and totally–null r–foliations on 2r–dimensional semi–
Riemannian manifolds (cf. Farran [Far79]).

Section 5.2 discusses Legendre foliations on contact manifolds. Following
Pang [Pan90] and Libermann [Lib91] we present the local structure of both
the Legendre foliations and the contact manifolds which carry such foliations.
We also give some of the main results on the geometry of Legendre foliations
on contact metric manifolds (cf. Jayne [Jay92], [Jay94]).

In Section 5.3 we investigate many natural foliations on the tangent bundle
of a Finsler manifold. We show that information about these foliations can
be interpreted as information about the Finsler structure and vice versa. It is
noteworthy that the Vrănceanu connection which comes from the geometry
of foliations (or, more generally, from the geometry of non–holonomic mani-
folds) incorporates all the classical connections from Finsler geometry: Ber-
wald connection, Cartan connection, Rund connection and Hashiguchi con-
nection. This new approach of Finsler geometry might help in solving some
difficult problems in this field.

In the last section, following the general trend of this chapter, we investi-
gate the relationship between the geometry of the totally real foliation on a
CR–submanifold of a Kähler manifold and the geometry of the CR–submani-
fold itself. The section ends with results on the geometry of a CR–submanifold
when its totally real foliation admits a complementary orthogonal complex fo-
liation.

320
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5.1 Lagrange Foliations on Symplectic Manifolds

We start the section with a brief presentation of the basic notions and results
we need about symplectic vector spaces and symplectic manifolds.

Let V be a real m–dimensional vector space and Ω : V ×V → IR be a sym-
plectic form on V , that is Ω is a skew–symmetric non–degenerate bilinear
form on V . Thus we have Ω(u, v) + Ω(v, u) = 0 for any u, v ∈ V and if
Ω(u, v) = 0 for all v ∈ V , then u = 0. It follows that m must be even, and
from now on we take m = 2n. A vector space V endowed with a symplectic
form Ω is denoted by (V, Ω) and it is called a symplectic vector space. A
basis e = {e1, ..., e2n} can be chosen in (V, Ω) such that

Ω = e∗1 ∧ e∗n+1 + · · · + e∗n ∧ e∗2n, (1.1)

where e∗ = {e∗1, ..., e∗2n} is the dual basis to e and ∧ represents the exterior
product on the dual space V ∗ of V .

Example 1.1. Let IR2n be equipped with the natural basis e = {e1, ..., e2n}.
Then we define the bilinear map

Ω : IR2n×IR2n −→ IR, Ω(u, v) =
n∑

i=1

{un+ivi − uivn+i}, (1.2)

where we put

u =
n∑

i=1

{uiei + un+ien+i}, v =
n∑

i=1

{viei + vn+ien+i}.

It is easy to check that Ω is a symplectic form on IR2n. The symplectic vector
space (IR2n, Ω) with Ω given by (1.2) is known as the standard symplectic
space.

Next, let (V,Ω) and (V ′, Ω′) be two symplectic spaces of dimensions 2n
and 2n′ respectively. Then a linear map L : V −→ V ′ is called symplectic if

Ω′(Lu,Lv) = Ω(u, v), ∀u, v ∈ V. (1.3)

Taking into account that Ω is non–degenerate we deduce that a symplectic
linear map is injective and therefore n ≤ n′. Thus, for n = n′,
L must be an isomorphism of vector spaces. A symplectic isomorphism
is called symplectomorphism. In particular, any symplectic linear map
L : (V, Ω) −→ (V,Ω) is necessarily an automorphism of (V, Ω). The set Sp(V )
of all symplectic linear maps of (V, Ω) is a group with respect to the usual
composition. Sp(V ) is called the symplectic group of (V,Ω). In particular,
when V = IR2n and Ω is given by (1.2) the symplectic group will be denoted
Sp(2n; IR). To see the form of matrices in Sp(2n; IR) we put
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S =

[
0 In

−In 0

]
,

where In is the n×n identity matrix, and denote by U and V the column
matrices whose entries are the components of vectors u and v respectively.
Then the symplectic form Ω given by (1.2) is written in the matrix form as
follows

Ω(u, v) = UT SV, (1.4)

where UT is the transpose of U . By using (1.3) and (1.4) we deduce that
A ∈ Sp(2n; IR) if and only if

AT SA = S.

Two vectors u and v in a symplectic space (V,Ω) are called Ω–orthogonal
or skew–orthogonal if Ω(u, v) = 0. Since Ω is skew–symmetric, then every
vector u ∈ (V, Ω) is self Ω–orthogonal since Ω(u, u) = 0.

Now, let W be a p–dimensional subspace of a 2n–dimensional symplectic
space (V,Ω). Then define the Ω–orthogonal space to W by

W⊥ = {u ∈ V : Ω(u,w) = 0 for all w ∈ W}. (1.5)

The usual properties we met in the theory of semi–Euclidean geometry (see
Section 1.4) are also true here, that is, we have

(a) dimV = dim W + dimW⊥, (b) (W⊥)⊥ = W. (1.6)

Also, we define the radical of W as the subspace rad W of W given by

radW = W ∩ W⊥. (1.7)

Denote by Ω|W the restriction of Ω to W and suppose that the rank of Ω|W
is 2q. Then we have

dimW = dim radW + 2q. (1.8)

By using W and W⊥ we may consider the subspace

W+ = W + W⊥, (1.9)

whose dimension is given by

dimW+ = dim W + dimW⊥ − dim radW = 2n − p + 2q. (1.10)

A symplectic space (V, Ω) has some interesting subspaces W . These subspaces
are determined according to the behaviour of Ω on W . We describe in what fol-
lows some of these subspaces. First, we say that W is non–degenerate (resp.
degenerate) if Ω|W is non–degenerate (resp. degenerate). Clearly, (W,Ω|W )
is a symplectic vector space when W is non–degenerate. By using (1.8) we
can state the following:

Proposition 1.1. Let W be a p–dimensional subspace of a symplectic vector
space (V, Ω) and 2q = rankΩ|W . Then we have the assertions:
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(i) W is non–degenerate if and only if p = 2q, or equivalently radW = {0}.
(ii) W is degenerate if and only if p > 2q, or equivalently radW �= {0}.

Next, let W be a p–dimensional degenerate subspace of a 2n–dimensional
symplectic space (V, Ω). Then W �= {0} and W⊥ �= {0}, that is, 2n > p > 0.
We say that W is isotropic (coisotropic) when W ⊂ W⊥ (resp. W⊥ ⊂ W ).
If W is both isotropic and coisotropic, that is W = W⊥, we say that it is
a Lagrangian subspace. Taking into account (1.5)–(1.7) we obtain the fol-
lowing characterizations.

Proposition 1.2. Let W be a degenerate subspace of a symplectic space
(V, Ω). Then we have the assertions:

(i) W is isotropic if and only if Ω|W = 0.
(ii) W is coisotropic if and only if Ω|W⊥ = 0.
(iii) W is Lagrangian if and only if Ω|W+ = 0.

If (V, Ω) is a 2n–dimensional symplectic space, then all its Lagrangian
subspaces must be of dimension n. This follows immediately from (1.6a).
Now, let W be a given Lagrangian subspace of (V, Ω). Then, following the
idea from the proof of Theorem 4.6.1, using Ω instead of g, we can find a
complementary Lagrangian subspace W t to W in V . Thus we have

V = W ⊕ W t, (1.11)

where W and W t are both Lagrangian subspaces of the same dimension n.
W t is called a transversal Lagrangian subspace to W . Moreover, applying
the construction for vector fields given by (4.6.5) to the symplectic case, we
obtain a basis {ei, en+i} in (V, Ω) such that {ei} and {en+i} are bases in W
and W t respectively, and satisfy

(a) Ω(ei, ej) = Ω(en+i, en+j) = 0,

(b) Ω(ei, en+j) = δij .
(1.12)

Clearly, W t given in (1.11) is not unique. Indeed, it is easy to check that
span{en+1 + e1, ..., e2n + en} is another transversal Lagrangian subspace to
W . More about symplectic algebra can be seen in Artin [Art75] and Berndt
[Ber01].

Now we extend the above symplectic algebra to a symplectic geometry on
a manifold. Let M be a real 2n–dimensional manifold. Then we say that M
is an almost symplectic manifold if it is equipped with a non–degenerate
2–form Ω. Then (TzM, Ωz) is a symplectic vector space for any z ∈ M. If, in
addition, Ω is closed (i.e. dΩ = 0), then (M,Ω) is called a symplectic ma-
nifold. Let (M, Ω) and (M ′, Ω′) be two symplectic manifolds. Then a smooth
map f : M → M ′ is called a symplectic morphism if f∗Ω′ = Ω, that is, at
any point z ∈ M we have

Ωz(u, v) = Ω′
f(z)(f∗u, f∗v), ∀u, v ∈ TzM,
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where f∗ is the differential at z of f . It follows that f∗ is injective and therefore
dimM ≤ dimM ′. In particular, if f is a symplectic diffeomorphism then we
call it a symplectomorphism. The next theorem describes completely the
local structure of a symplectic manifold. For its proof we recommend Blair
[Bla01], p.8.

Theorem 1.3. (Darboux’s Theorem). Let (M, Ω) be a 2n–dimensional
symplectic manifold and z a point of M . Then there exists a local chart
{(U , ϕ) : (x1, ..., xn, y1, ..., yn)} about z such that Ω is expressed on U as
follows

Ω =
n∑

i=1

dxi ∧ dyi. (1.13)

For examples of symplectic manifolds we first consider IR2n with global
coordinates (x1, ..., xn, y1, ..., yn) and Ω expressed as in (1.13). Then (IR2n, Ω)
is a symplectic manifold. The next example has its roots in classical mechanics
and it is of great importance in studying symplectic geometry.

Example 1.2. Let T ∗M be the cotangent bundle of an n–dimensional ma-
nifold M . Let (xi, yi), i ∈ {1, ..., n} be the local coordinates on T ∗M , where
(xi) are the local coordinates on M and (yi) are the fiber coordinates. Then
the change of coordinates on T ∗M is given by

(a) x̃i = x̃i(x1, ..., xn), (b) ỹi =
∂xj

∂x̃i
yj . (1.14)

By using (1.14) it is easy to check that

ω = yidxi, (1.15)

is a 1–form globally defined on T ∗M . This 1–form is known as the Liouville
form on T ∗M . Finally, consider the 2–form

Ω = −dω = dxi ∧ dyi, (1.16)

which is closed and non–degenerate. Thus (T ∗M, Ω), where Ω is given by
(1.16) is a symplectic manifold. In mechanics, M plays the role of configuration
space and T ∗M that of phase space (see Sternberg [Ste83], p.144).

Now, we want to present an important relationship between symplectic
geometry on the one side and Riemannian and complex geometries on the
other side. First suppose that (M, J, g) is an almost Kähler manifold with
fundamental 2–form Ω given by (2.1.28). As Ω is closed and non–degenerate
we conclude that (M, Ω) is a symplectic manifold. The converse is also true
(see Blair [Bla01], p. 35). That is to say that any symplectic manifold (M, Ω)
admits a Riemannian metric g and an almost complex structure J such that
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(M, J, g) is an almost Kähler manifold. We call (g, J) the associated almost
Kähler structure to the symplectic structure defined by Ω on M . It is impor-
tant to note that for the symplectic form Ω there is a path of associated metrics
gt, t ∈ IR (see Blair [Bla01], p.37). Finally, we note that these geometric
objects are related by (see (2.1.28))

Ω(X, Y ) = g(X, JY ), ∀X, Y ∈ Γ (TM). (1.17)

In conclusion, we can state the following.

Theorem 1.4. A smooth manifold admits a symplectic structure if and only
if it admits an almost Kähler structure.

From the above theorem it follows that any Kähler manifold admits a
symplectic structure. However, the converse is not true. Thurston [Thu76]
constructed the first example of compact symplectic manifold that does not
admit a Kähler structure.

Next, we consider a submanifold N of a 2n–dimensional symplectic mani-
fold (M, Ω). Then we use the algebra discussed earlier to classify N according
to the behaviour of Ω on the tangent bundle TN . If TzN is a non–degenerate
subspace of (TzM, Ωz) for all z ∈ N, then N is called a symplectic subma-
nifold. This is because (N, Ω|TN ) is also a symplectic manifold. To study the
degenerate case we consider the Ω–orthogonal space of TzN, that is,

TzN
⊥
Ω = {u ∈ TzM : Ωz(u, v) = 0, for all v ∈ TzN}. (1.18)

If for every z ∈ N , TzN is isotropic (coisotropic) subspace of (TzM, Ωz) we
say that N is an isotropic (coisotropic) submanifold of (M, Ω). Thus N
is isotropic (coisotropic) if and only if TzN ⊂ TzN

⊥
Ω (TzN

⊥
Ω ⊂ TzN). In

particular, if N is isotropic (coisotropic) then dimN ≤ n (dimN ≥ n). If for
all z ∈ N , TzN is a Lagrangian subspace of (TzM, Ωz) then we say that N
is a Lagrangian submanifold. In this case N is necessarily of dimension n.
Now, suppose that the radicals radTzN, z ∈ N , define an r–distribution on N
which we denote by rad TN. In this case, we say that N is a submanifold of
type r. Then we may describe all the other classes of submanifolds in terms
of submanifolds of a certain type as follows.

Theorem 1.5. Let N be a p–dimensional submanifold of a 2n–dimensional
symplectic manifold (M,Ω). Then we have the following assertions:

(i) N is a symplectic submanifold if and only if it is of type r = 0.
(ii) N is an isotropic submanifold if and only if it is of type r = p < n.
(iii) N is a coisotropic submanifold if and only if it is of type r = 2n− p < p.
(iv) N is a Lagrangian submanifold if and only if it is of type r = p = n.
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Submanifolds of the types given in the above theorem are abundant. To
show this we consider the symplectic manifold (M, Ω) as an almost Kähler ma-
nifold (M,J, g). Then a submanifold N of M is an invariant submanifold if
J(TN) = TN. In this case it is easy to see that (N, J, g) is an almost Kähler
manifold and therefore (N, Ω|TN ) is a symplectic manifold. Thus, all inva-
riant submanifolds are symplectic submanifolds. Hence any complex projec-
tive space CPn is a symplectic submanifold of CPm, for n < m. On the other
hand, any curve C in (M,Ω) is an isotropic submanifold because Ω|TC = 0,
and therefore C is a submanifold of type r = 1. Now, let N be a hypersurface
of (M, Ω). Then TzN

⊥
Ω is of dimension 1, and thus Ωz(TzN

⊥
Ω , TzN

⊥
Ω ) = 0

for any z ∈ N. So any hypersurface of a symplectic manifold is coisotropic.
Finally, let u be a non–zero vector at z ∈ M . Then, by Lemma 2.1.5 and
Theorem 1.3, we may choose the local coordinates (xi, yi) about z such that

u =
∂

∂y1
(z) and Ω is expressed by (1.13). Thus, xi = const., i ∈ {1, ..., n}

define a Lagrangian submanifold of (M, Ω) through z and tangent to u.
Here the focus of our attention is on the geometry of Lagrangian subma-

nifolds and Lagrangian foliations. However, as far as we know, the geometry
of the other submanifolds of type r from Theorem 1.5 is yet to be settled.

Lagrangian submanifolds play an important role in understanding the lo-
cal structure of symplectic manifolds. To be more precise, we identify the
n-dimensional manifold N with the zero section in T ∗N . Thus N can be con-
sidered as a Lagrangian submanifold of the symplectic manifold (T ∗N,−dω)
(see Example 1.2). This natural geometric structure turns out to be locally
symplectomorphic to any 2n–dimensional symplectic manifold. The following
theorem gives the precise meaning of this equivalence.

Theorem 1.6. (Weinstein [Wei71]). Let N be a Lagrangian submanifold of
a symplectic manifold (M, Ω). Then there exists a neighbourhood of N in M
that is symplectomorphic to a neighbourhood of the zero section of T ∗N .

Because Ω vanishes identically on Γ (TN)×Γ (TN), there are no geometric
objects induced by the symplectic structure on the Lagrangian submanifold
N . However, if we consider an associated almost Kähler structure (g, J) to
Ω then N inherits an interesting geometric structure as we can see from the
next theorem.

Theorem 1.7. Let N be an n–dimensional submanifold of the 2n–dimensional
symplectic manifold (M, Ω). Then N is a Lagrangian submanifold if and only
if it is a totally real submanifold with respect to the associated almost Kähler
structure (g, J).

Proof. N is Lagrangian if and only if Ω(X, Y ) = 0 for any X, Y ∈ Γ (TN).
Thus, by (1.17), we deduce that N is Lagrangian if and only if

g(X, JY ) = 0, ∀X, Y ∈ Γ (TN). (1.19)
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According to the terminology we introduced in Example 2.1.8, (1.19) holds if
and only if N is totally real. Indeed, (1.19) holds if and only if J(TN) = TN⊥,
and therefore the holomorphic distribution on N is trivial.

Proposition 1.8. Let N be a Lagrangian submanifold of a symplectic mani-
fold (M,Ω). Then the normal bundle TN⊥ with respect to g is a Lagrangian
subbundle of TM|N , that is, we have

Ω(U, V ) = 0, ∀U, V ∈ Γ (TN⊥).

Proof. From the above proof we see that JV ∈ Γ (TN) for any V ∈ Γ (TN⊥).
Then the assertion follows by using (1.17).

If {Ei}, i ∈ {1, ..., n} is a local orthonormal frame field on N , then
{Ei, JEi}, i ∈ {1, ..., n} is a local orthonormal frame field on M along N .
If X, Y ∈ Γ (TM|N ), we put

X = XiEi + Xn+iJEi, Y = Y iEi + Y n+iJEi,

and by using (1.17) we obtain

Ω(X, Y ) =
n∑

i=1

{Xn+iY i − XiY n+i}.

Thus, along a Lagrangian submanifold the symplectic form is expressed as the
standard symplectic form of IR2n (see Example 1.1). The above frame field is
used in the book Yano–Kon [YK84] to give many results on the geometry of
N as a totally real submanifold of (M, g, J).

Next, let (M, Ω) be a 2n–dimensional symplectic manifold and F be a fo-
liation on M . Then F is called a Lagrange foliation (cf. Weinstein [Wei71])
if every leaf of F is a Lagrangian submanifold of M . If D is the tangent
distribution to F , then F is a Lagrange foliation if and only if the fibers of D
are Lagrangian subspaces of fibers of TM . As a standard example of Lagrange
foliation we have the foliation by fibers of the cotangent bundle of a manifold
(see Example 1.2). Actually, from the next theorem we see that any Lagrange
foliation is locally symplectomorphic to the standard Lagrange foliation of the
cotangent bundle. To state this we give the following definition. A Lagrangian
submanifold N of (M, Ω) is said to be transversal to a Lagrange foliation F
if at any point x ∈ N we have

TxM = TxN ⊕Dx.

Now, we can state the following.
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Theorem 1.9. (Weinstein [Wei71]). Let F be a Lagrange foliation of a sym-
plectic manifold (M, Ω) and N be a transversal Lagrangian submanifold to F .
Then there exists a symplectomorphism of a neighbourhood of N in M onto
a neighbourhood of the zero section of T ∗N which takes the leaves of F onto
the fibers of T ∗N .

From this theorem we deduce the following corollary.

Corollary 1.10. (Weinstein [Wei71]). Let F be a Lagrange foliation of the
2n–dimensional symplectic manifold (M, Ω) and x ∈ M be any point. Then
there exists a symplectomorphism of a neighbourhood of x in M onto a neigh-
bourhood of 0 ∈ T ∗Rn ≡ IR2n which takes the leaves of F onto the fibers of
T ∗IRn.

It is interesting to note that the leaves of Lagrange foliations inherit a
special geometric structure. More precisely, we have the following.

Theorem 1.11. (Weinstein [Wei71]). The leaves of a Lagrange foliation on
a symplectic manifold are locally affine manifolds. Conversely, if N admits
a locally affine structure, then it is a leaf of a Lagrange foliation of some
symplectic manifold.

Remark 1.3. Theorems 1.6, 1.9 and 1.11 and Corollary 1.10 were originally
stated by Weinstein [Wei71] in terms of the local manifold pairs modelled on
Banach spaces. Here we stated Theorem 1.6 as it is in Blair [Bla01], p. 9, and
by using his terminology we stated Theorems 1.9, 1.11 and Corollary 1.10.

Now, we are in a position to relate Lagrange foliations on a symplectic
manifold with parallel totally–null foliations on semi–Riemannian manifolds
(see Sections 4.5 and 4.6).

Theorem 1.12. (Farran [Far79]). Let F be a Lagrange foliation on a 2n–
dimensional symplectic manifold (M,Ω). Then M admits a semi–Riemannian
metric g such that F is totally–null and parallel with respect to the Levi–Civita
connection on (M, g).

Proof. From Corollary 1.10 we conclude that M can be covered by the do-
mains of an atlas A, whose transformations of coordinates are local diffeomor-
phisms of IR2n, preserving both the canonical symplectic form of T ∗IRn and
its foliation by fibers. Hence A is a special leaf atlas on M . Thus if (xi, ti),
i ∈ {1, ..., n}, are local coordinates on M , where (xi) are the leaf coordinates,
the change of coordinates is given by (cf. (2.1.5))

x̃i = x̃i(x, t), t̃i = t̃i(t), i ∈ {1, ..., n}. (1.20)
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Accordingly, we have

∂

∂xi
=

∂x̃j

∂xi

∂

∂x̃j
, ∂

∂ti
=

∂x̃j

∂ti
∂

∂x̃j
+

∂t̃j

∂ti
∂

∂t̃j
· (1.21)

The canonical symplectic form of T ∗IRn has the matrix (cf. (1.2))

[Ω] =

[
0 In

−In 0

]
.

Taking into account that [Ω] is preserved by (1.21) we deduce that

∂x̃i

∂xj
=

∂tj

∂t̃i
·

Thus (1.20) becomes

x̃i = Li
j(t)x

j + Si(t), Li
j(t) =

∂tj

∂t̃i
,

t̃i = t̃i(t).
(1.22)

Comparing (1.22) with (4.6.14) and using Theorem 4.6.5 we obtain the asser-
tion of the theorem.

A converse of the above theorem can be stated as follows.

Theorem 1.13. (Farran [Far79]). Let F be a parallel totally–null n–folia-
tion on a 2n–dimensional semi–Riemannian manifold M . Then M admits an
almost symplectic structure such that F is a Lagrange foliation.

Proof. Since M is paracompact, there exists a Riemannian metric g on M .
On the other hand, by Theorem 4.6.10 there exists on M an almost complex
structure J . Now we consider the almost Hermitian metric ḡ given by

ḡ(X, Y ) = g(X, Y ) + g(JX, JY ), ∀X, Y ∈ Γ (M). (1.23)

Then it is easy to see that Ω given by

Ω(X, Y ) = ḡ(X, JY ), ∀X, Y ∈ Γ (M), (1.24)

is skew–symmetric and non–degenerate. Hence (M,Ω) is an almost symplec-
tic manifold. Next, by using the bundle isomorphism TM ∼= D ⊕ D from
Theorem 4.6.10, we can identify any X ∈ Γ (TM) with a pair (U, V ), where
U, V ∈ Γ (D). In particular, U ∈ Γ (D) can be thought of either as the pair
(U, 0) or (0, U). Then the almost complex structure on M is given by

J(U, V ) = (−V, U), ∀U, V ∈ Γ (D). (1.25)
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Finally, by using (1.23), (1.24) and (1.25) we obtain

Ω(U, V ) = ḡ((U, 0), J(V, 0))

= g((U, 0), (0, V )) − g((0, U), (V, 0))

= 0, for any U, V ∈ Γ (D).

Hence any leaf of F is an isotropic submanifold of (M, Ω). As F is an n–folia-
tion of a 2n–dimensional manifold, we conclude that F is a Lagrange foliation
on (M, Ω). This completes the proof of the theorem.

We think that the above link between Lagrange foliations and parallel
totally–null foliations might be extended to more general foliations on sym-
plectic manifolds.

5.2 Legendre Foliations on Contact Manifolds

Let M be a real (2n + 1)–dimensional manifold and η be a 1–form on M
satisfying η ∧ (dη)n �= 0 everywhere on M , where the exponent denotes the
nth exterior power. Then we say that (M, η) is a contact manifold with
contact form η (cf. Blair [Bla76], p.1). A contact manifold (M, η) admits a
natural distribution H. This is simply the subbundle of TM on which η = 0.
To be more specific we write

Γ (H) = {X ∈ Γ (TM) : η(X) = 0}.
The distribution H is called the contact distribution on (M, η). Now, we
want to relate contact manifolds with the contact metric manifolds defined
in Chapter 3 (see Example 3.4.2). We recall that (M, g, ϕ, ξ, η) is a contact
metric manifold, where g is a Riemannian metric, ϕ is a tensor field of type
(1, 1), ξ is a vector field and η is a 1–form satisfying:

(a) ϕ2 = −I + η ⊗ ξ, (b) η(X) = g(X, ξ),

(c) g(X, ϕY ) = dη(X, Y ), (d) η(ξ) = 1, (e) ϕ(ξ) = 0,

(f) η(ϕX) = 0, (g) g(X,ϕY ) + g(Y, ϕX) = 0,

(h) g(ϕX, ϕY ) = g(X,Y ) − η(X)η(Y ),

(2.1)

for any X,Y ∈ Γ (TM). Actually, only (a), (b), (c) have been used to define
a contact metric structure, while all the others can be deduced (see (3.4.22),
(3.4.23)). It is easy to see that a contact metric manifold is a contact mani-

Yano–Kon [YK84], p.256).

Theorem 2.1. Any contact manifold (M, η) admits a contact metric structure
(g, ϕ, ξ, η).

fold. By the next theorem, the converse is also true (see Blair [Bla76], p.25,
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By (2.1c) we define a 2–form Ω on M by

Ω(X, Y ) = g(X,ϕY ), ∀X,Y ∈ Γ (TM), (2.2)

and call it the fundamental 2–form of the contact metric structure
(g, ϕ, ξ, η). It is easy to see that Ω defines a symplectic structure on the
contact distribution, that is, Ω is non–degenerate and dΩ = 0 on Γ (H)3. The
vector field ξ is called the characteristic vector field or Reeb vector field
on the contact manifold (M,η).

Now, we want to examine the integrability of the contact distribution. By
(2.1b) we see that the contact distribution H coincides with the complemen-
tary orthogonal distribution to the characteristic distribution span{ξ}.
Now, suppose that H is integrable. Then, for any X, Y ∈ Γ (H) we have
[X,Y ] ∈ Γ (H), that is η([X, Y ]) = 0. Thus dη(X, Y ) = 0 for any X, Y ∈ Γ (H).
As from (2.1c) and (2.1e) we have

dη(X, ξ) = 0, ∀X ∈ Γ (TM), (2.3)

we conclude that dη = 0 on M , which is impossible because M is a contact
manifold. Thus we may state the following.

Proposition 2.2. The contact distribution on a contact manifold is not in-
tegrable.

For the exterior derivative of η we use the formula (cf. Kobayashi–Nomizu
[KN63], p.36)

dη(X, Y ) =
1
2

(X(η(Y )) − Y (η(X)) − η([X, Y ])), (2.4)

for any X, Y ∈ Γ (TM). Then, by using (2.3), (2.4), (2.1d) and (2.1b) we
obtain

η([X, ξ]) = 0, ∀X ∈ Γ (H). (2.5)

Now, suppose that N is a p–dimensional integral manifold of the contact
distribution H. Then, by (2.4), we obtain

dη(X, Y ) = 0, ∀X, Y ∈ Γ (TN). (2.6)

Hence, by (2.1c), we deduce that g(X, ϕY ) = 0, which means that ϕ(TN) ⊂
TN⊥. Therefore, N is an anti–invariant submanifold of (M, g, ϕ, ξ, η), which
is normal to ξ (cf. Yano–Kon [YK84], p.344). As ϕ is an automorphism of
Γ (H) we conclude that p < n + 1. Hence the maximum dimension of an
integral manifold of H is p = n. Fortunately, there exist integral manifolds of
maximum dimension. To show this we present the following theorem (see a
proof in Blair [Bla01], p.18).
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Theorem 2.3. (Darboux’s Theorem). Let (M,η) be a (2n + 1)–dimensional
contact manifold. Then about each point there exists local coordinates
(x1, ..., xn, y1, ..., yn, z) such that

η = dz −
n∑

i=1

yidxi. (2.7)

Then from (2.7) it follows that xi = const., z = const., i ∈ {1, ..., n}, define
an n–dimensional integral manifold of H.

Summing up the above discussion, we may state the following.

Theorem 2.4. Let (M, η) be a (2n + 1)–dimensional contact manifold. Then
there exist integral manifolds of the contact distribution H of dimension n,
but of no higher dimension.

We now present some examples of contact manifolds.

Example 2.1. (Blair [Bla76], p.7). Consider (xi, yi, z), i ∈ {1, ..., n}, as

Cartesian coordinates on IR2n+1 and define the 1–form η = dz −
n∑

i=1

yidxi.

Then (IR2n+1, η) is a contact manifold with contact distribution D spanned
by

Xi =
∂

∂xi
+ yi ∂

∂z
, Xn+i =

∂

∂yi
, i ∈ {1, ..., n},

and with characteristic vector field ξ =
∂

∂z
·

Example 2.2. Let T ∗M be the cotangent bundle of an (n + 1)–dimensional
manifold. We take (xi, yi), i ∈ {1, ..., n + 1} as local coordinates on T ∗M ,
where (xi) are the local coordinates on M and (yi) are the fiber coordinates.
Now, we consider the open submanifold T ∗

◦ M of non–zero covectors in T ∗M ,
and suppose there exists a function F : T ∗M −→ [0,∞) that is smooth on
T ∗
◦ M and satisfies

F (tv) = tF (v), for all t ≥ 0 and v ∈ T ∗M.

Then S∗
F M = {v ∈ T ∗M : F (v) = 1} is a hypersurface of T ∗M , and therefore

is a (2n+1)–dimensional manifold. If we consider the Liouville form ω = yidxi

on T ∗M (see Example 1.2), then (S∗
F M,η) is a contact manifold, where η is the

pull–back to S∗
F (M) of ω. This example is due to Pang [Pan90]. In particular,

if g is a Riemannian metric on M , then we can consider F as the norm defined
by g. In this case S∗

F M is known as the cotangent sphere bundle of the Rie-
mannian manifold(M, g) (cf. Blair [Bla01], p.22). In general, we call S∗

F M the
unit cotangent bundle with respect to F .
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Next, following Pang [Pan90] we give the following definition. A Legendre
foliation of a contact manifold (M, η) is a foliation of M by n–dimensional
integral manifolds of the contact distribution H. Thus a foliation F of (M, η)
is a Legendre foliation if and only if the distribution D tangent to F is an
n-subbundle of the 2n–distribution H. The main results on the geometry
of Legendre foliations can be found in Pang [Pan90], Libermann [Lib91] and
Jayne [Jay92], [Jay94]. Some of these results will be presented in the remaining
part of this section.

Now, we give two examples of Legendre foliations. If (IR2n+1, η) is the
contact manifold in Example 2.1, then the two distributions spanned by {Xi}
and {Xn+i}, i ∈ {1, ..., n}, are integrable. Thus there exist two complementary
Legendre foliations on (IR2n+1, η). Next, we consider the unit cotangent bundle
S∗

F M from Example 2.2. Then the foliation by fibers of the projection map
π : S∗

F M −→ M is a Legendre foliation, which we denote by FF .
Next, let (M, η) and (M̃, η̃) be two contact manifolds of the same dimen-

sion 2n+1. Then two Legendre foliations F and F̃ on M and M̃ respectively,
are said to be locally equivalent if for any point x ∈ M there exist a
neighbourhood U of x and a dioffeomorphism Φ : U −→ Ũ , where Ũ is a
neighbourhood of Φ(x), such that

Φ∗η̃|Ũ = η|U and Φ−1(F̃|Ũ ) = F|U ,

where Φ∗η̃Ũ is the pull–back to U of η̃|Ũ and Φ−1(F̃|Ũ ) is the foliation of U
whose leaves are the inverse images under Φ of leaves of F̃Ũ . Now, we state
the following theorem about local equivalence of Legendre foliations.

Theorem 2.5. (Pang [Pan90]). Any Legendre foliation F is locally equivalent
with one of the form FF .

Moreover, Pang [Pan90] shows that the above theorem generalizes to a
global equivalence theorem, provided the leaves of F are compact and simply
connected. It is interesting to note that in this case F defines a Finsler metric
on the manifold.

Following some ideas from Finsler geometry Pang [Pan90] defined two
invariants on a Legendre foliation F on (M,η). To present them we denote
by D the tangent distribution to F . Then the first invariant is a symmetric
F (M)–bilinear form Π on Γ (D) given by

Π(X, Y ) = −(LXLY η)(ξ), ∀X, Y ∈ Γ (D), (2.8)

where L is the Lie derivative on M . By elementary calculations, using (2.1d)
and (2.5) we obtain

Π(X, Y ) = η([Y, [ξ, X]]). (2.9)

We remark that Π does not depend on either, the Riemannian metric g or the
tensor field ϕ of any contact metric structure (g, ϕ, ξ, η). However, by using
(2.9), (2.4), (2.5), (2.1e) and (2.1g) we deduce that (cf. Jayne [Jay92], p.32)
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Π(X, Y ) = 2g([ξ, X], ϕY ). (2.10)

The Legendre foliation F is called flat when Π vanishes identically on M .
Two interesting characterizations for this class of foliations are given in the
next theorem.

Theorem 2.6. Let F be a Legendre foliation on the contact manifold (M, η).
Then the following assertions are equivalent:

(i) F is flat.
(ii) [ξ, X] ∈ Γ (D), for any X ∈ Γ (D).
(iii) F is invariant with respect to the actions of all local flows of ξ.

Proof. The equivalence of (i) and (ii) is obtained by using (2.5), (2.10), and
by taking into account that the leaves of D are anti–invariant submanifolds.
Finally, by Lemma 2.3.5 we deduce the equivalence of (ii) and (iii).

Also, some results of Weinstein (see Theorem 1.11 and Corollary 1.10) for
Lagrange foliations have been extended to flat Legendre foliations.

Theorem 2.7. (Pang [Pan90]). Let F be a flat Legendre foliation on (M, η)
and x ∈ M. Then there are coordinates (xi, yi, z) about x, such that

η = dz +
n∑

i=1

yidxi,

and the foliation is defined by xi = const. and z = const. Moreover, the leaves
of F are locally affine manifolds.

Jayne [Jay92], p. 63, has presented an example of a metric manifold which
admits five different contact metric structures. Corresponding to each contact
metric structure he defined a flat Legendre foliation. Four of these foliations
are totally geodesic and one is harmonic.

When Π is non–degenerate (resp. positive definite) on Γ (D)×Γ (D), the
Legendre foliation is called non–degenerate (resp. positive definite). The
theory of non–degenerate Legendre foliations was developed by Pang [Pan90]
as a generalization of Finsler manifolds. More precisely, he extended Chern’s
theory on Finsler manifolds (Chern [Che48]) to non–degenerate Legendre fo-
liations. In particular, he proved the following.

Theorem 2.8. (Pang [Pan90]). A Legendre foliation F is locally equivalent
to one of the form FF with F a Finsler metric, if and only if it is positive
definite.

The second invariant for a Legendre foliation was also introduced by Pang
[Pan90] as follows:
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G(X,Y, Z) =
1
2
{XΠ(Y, Z) + Y Π(Z, X) + ZΠ(X, Y )

+ (LY LXLZη + LZLXLY η)ξ},
for any X, Y, Z ∈ Γ (D).

Theorem 2.9. (Pang [Pan90]). A non–degenerate Legendre foliation F is
locally equivalent to FF with F a norm defined by a semi–Riemannian metric
if and only if G = 0. When non–degeneracy is replaced by positive definiteness,
then the semi–Riemannian metric is Riemannian.

The next theorem states the local structure of any contact manifold that
admits a Legendre foliation.

Theorem 2.10. (Libermann [Lib91]). Let F be a Legendre foliation on a
contact manifold (M, η). Then for any x ∈ M , there exists an open neigh-
bourhood U which admits local coordinates (x1, ..., xn, p1, ..., pn, t) such that η
is given by

η =
n∑

i=1

pidxi − Hdt,

with H a function of (xi, pi, t) satisfying the condition: the function

A =
n∑

i=1

pi
∂H

∂pi
− H

has no zero. By means of these coordinates the characteristic vector field ξ is
expressed by

ξ =
1
A

(
∂

∂t
+

n∑
i=1

(
∂H

∂pi

∂

∂xi
− ∂H

∂xi

∂

∂pi

))
,

and the symmetric bilinear form Π on D is given by

Π

(
∂

∂pi

, ∂

∂pj

)
= − 1

A

∂2H

∂pi∂pj
·

Next, we suppose that (g, ϕ, ξ, η) is a contact metric structure on the
contact manifold (M, η). As M carries the Riemannian metric g, it is inte-
resting to study the conditions for a Legendre foliation to fall into one of the
classes of foliations presented in Chapter 3. First we fix some notations. If D
is the tangent distribution to the Legendre foliation F , then D⊥ represents
the complementary orthogonal distribution to D in TM with respect to g. As
any integral manifold of D is anti–invariant with respect to ϕ, we have

g(X, ϕY ) = 0, ∀X, Y ∈ Γ (D). (2.11)
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Hence the contact distribution H has the following decomposition

H = D ⊕ ϕD, (2.12)

where
ϕD = {ϕX : ∀X ∈ Γ (D)}.

Now, according to Theorem 3.3.1, we deduce that g is bundle–like for F if
and only if

X(g(U, V )) = g([X,U ], V ) + g([X, V ], U), (2.13)

for any X ∈ Γ (D) and U, V ∈ Γ (D⊥).

Lemma 2.11. Let F be a Legendre foliation on the contact metric manifold
(M, g, ϕ, ξ, η) such that

g([X, ϕY ], ξ) + g([X, ξ], ϕY ) = 0, ∀X, Y ∈ Γ (D). (2.14)

Then we have
Π(X, Y ) = 4g(X, Y ), ∀X, Y ∈ Γ (D). (2.15)

Proof. By using (2.10) and (2.1b), (2.14) becomes

η([X, ϕY ]) − 1
2

Π(X, Y ) = 0. (2.16)

Finally, by using (2.4), (2.1c) and (2.1a) in (2.16) we obtain (2.15).

Theorem 2.12. Let F be a Legendre foliation on (M, g, ϕ, ξ, η) such that g
is bundle–like Riemannian metric for F . Then F is locally equivalent to one
of the form FF with F a Finsler metric.

Proof. We replace U and V from (2.13) by ϕY and ξ respectively and obtain
(2.14). Then, from (2.15) we deduce that F is positive definite. Finally, the
assertion follows by applying Theorem 2.8.

Now, we consider the second fundamental form h (see 3.2.5) of a Legendre
foliation F on (M, g, ϕ, ξ, η). Also, denote by H the mean curvature vector
field of F . Finally, we recall (see Section 3.2) that the Levi–Civita connection
∇̃ induces two linear connections ∇ and ∇⊥ on D and D⊥ respectively. Then
we say that F has parallel second fundamental form if we have

(∇Xh)(Y, Z) = ∇⊥
X(h(Y,Z)) − h(∇XY, Z) − h(Y,∇XZ) = 0, (2.17)

for any X ∈ Γ (TM) and Y, Z ∈ Γ (D). Similarly, we say that the mean curva-
ture vector H of F is parallel if we have
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∇⊥
XH = 0, ∀X ∈ Γ (TM). (2.18)

If (2.17) and (2.18) are satisfied only for X ∈ Γ (D), then we say that h
and H are D–parallel. Clearly, when h and H are parallel they are D–
parallel. Surprisingly, the converse is also true, provided (M, g, ϕ, ξ, η) is a
K–contact manifold (see the assertions (i) and (ii) in Theorem 2.14). We say
that (M, g, ϕ, ξ, η) is a K–contact manifold if ξ is a Killing vector field. In
this case, we have (cf. Blair [Bla76], p.64)

∇̃Xξ = −ϕX, ∀X ∈ Γ (TM). (2.19)

First, we need the following lemma.

Lemma 2.13. Let F be a Legendre foliation on a K–contact manifold
(M, g, ϕ, ξ, η). Then we have

g(h(X, Y ), ξ) = 0, ∀X, Y ∈ Γ (D). (2.20)

Proof. Taking into account that D is anti–invariant with respect to ϕ and by
using (2.19), (1.5.9) and (3.2.8a) we obtain

0 = g(X, ϕY ) = −g(X, ∇̃Y ξ)

= g(∇̃Y X, ξ) = g(h(X, Y ), ξ),

for any X, Y ∈ Γ (D).

Now, we can prove the following.

Theorem 2.14. (Jayne [Jay92]). Let F be a Legendre foliation on a (2n+1)–
dimensional K–contact manifold (M, g, ϕ, ξ, η). Then we have the following
assertions:

(i) If the second fundamental form of F is D–parallel, then F is a totally
geodesic foliation.

(ii) If the mean curvature vector of F is D–parallel, then F is a harmonic
foliation.

(iii) If (M, g, ϕ, ξ, η) is a (2n + 1)–dimensional Sasakian manifold with n > 1
and F is totally umbilical, then it is totally geodesic.

Proof. First, we suppose (2.17) is satisfied for any X, Y, Z ∈ Γ (D). Then, by
using (1.5.2), (2.20) and (2.19) we deduce that

0 = g((∇Xh)(Y,Z), ξ) = −g(h(Y, Z), ∇̃Xξ)

= g(h(Y, Z), ϕX), ∀X, Y, Z ∈ Γ (D).
(2.21)
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Thus, the assertion (i) follows from (2.21) and (2.20) since by (2.12)
D⊥ = ϕD ⊕ span{ξ}. Now, suppose H is D–parallel. Then, by using (2.18),
(3.2.8b), (1.5.9) and (2.19) we obtain

0 = g(∇⊥
XH, ξ) = g(∇̃XH, ξ) = −g(H, ∇̃Xξ)

= g(H,ϕX), ∀X ∈ Γ (D).
(2.22)

On the other hand, by (2.20) and (3.4.28) we infer that

g(H, ξ) = 0. (2.23)

Then, from (2.22) and (2.23) we deduce the assertion (ii). Finally, we suppose
that F is totally umbilical that is, we have (cf. (3.4.39))

h(X, Y ) = g(X,Y )H, ∀X, Y ∈ Γ (D). (2.24)

Next, we consider an orthonormal frame field {Ei}, i ∈ {1, ..., n}, for the
tangent distribution D. Then, by using (2.24) and (3.2.8a) we obtain

g(H,ϕEi) = g(g(Ej , Ej)H,ϕEi)

= g(h(Ej , Ej), ϕEi)

= g(∇̃Ej Ej , ϕEi),

(2.25)

for any i, j ∈ {1, ..., n}. On the other hand, by using (1.5.9), (3.4.24), (2.1g),
(3.2.8a) and (2.24) we deduce that

g(∇̃Ej Ej , ϕEi) = −g(Ej , ∇̃Ej ϕEi)

= −g(Ej , ϕ∇̃Ej
Ei)

= g(ϕEj , ∇̃Ej Ei)

= g(ϕEj , h(Ej , Ei))

= g(ϕEj , g(Ej , Ei)H) = 0, for i �= j.

(2.26)

As n > 1, from (2.25) and (2.26) we conclude that

g(H,ϕEi) = 0, ∀ i ∈ {1, ..., n}. (2.27)

Thus (2.27) and (2.23) (which is true for any Legendre foliation on a
K–contact manifold) imply H = 0. Hence by (2.24) we obtain h = 0, that is,
F is totally geodesic.

Jayne [Jay92] also studied an interesting class of Legendre foliations. To
present it, let us first consider a Legendre foliation F on the contact metric
manifold (M, g, ϕ, ξ, η) with tangent distribution D. When the distribution
ϕD (which is orthonormal to D) is integrable, it is said that the foliation F
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determined by ϕD is the conjugate foliation to F . It is easy to see that when
M is a 3–dimensional contact metric manifold the conjugate foliation exists
on M . Indeed, in this case, the contact distribution is of rank 2 and hence
the existence of F implies the existence of F , since ϕD is a line distribution.
Also, when F is a flat Legendre foliation on (M, η), Jayne [Jay92] constructed
a canonical contact metric structure on M with respect to which the conjugate
foliation F exists and is flat too.

To state another interesting result on the existence of conjugate folia-
tions we first define some geometric objects on a contact metric manifold
(M, g, ϕ, ξ, η). Let ψ be a tensor field of type (1, 1) on M given by

ψX =
1
2

(Lξϕ)X, ∀X ∈ Γ (TM). (2.28)

Among the properties of ψ we only need the following

(a) ψξ = 0 and (b) ψϕ + ϕψ = 0. (2.29)

Remark 2.3. In most of the papers published on the geometry of contact
metric structures we find the above tensor field denoted by h (cf. Blair [Bla76],
p.66). We changed this notation because throughout this book, h denotes the
second fundamental form of a foliation.

According to Blair et al. [BKP95] the (k, µ)–nullity distribution of a
contact metric manifold (M, g, ϕ, ξ, η) for the pair (k, µ) ∈ IR2 is the distribu-
tion

N(k, µ) : x −→ Nx(k, µ), where

Nx(k, µ) = {Z ∈ TxM : R(X, Y )Z = k(g(Y, Z)X

−g(X, Z)Y ) + µ(g(Y,Z)ψX − g(X, Z)ψY )}.
Now we can state the following.

Theorem 2.15. (Blair–Koufogiorgos–Papantoniou [BKP95]). Let (M, g, ϕ, ξ, η)
be a contact metric manifold with ξ belonging to the (k, µ)–nullity distribu-
tion. Then k ≤ 1. If k = 1, then ψ = 0 and M is a Sasakian manifold. If
k < 1, then M admits three mutually orthogonal and integrable distributions
D(0),D(λ) and D(−λ) determined by the eigenspaces of ψ, where λ =

√
1 − k.

Also, the authors of the above paper proved that the tensor fields ϕ and ψ
are related by

ψ2 = (k − 1)ϕ2. (2.30)

Since ϕ is an almost complex structure on the contact distribution H, from
(2.30) we deduce that

ψ2X = (1 − k)X, ∀X ∈ Γ (H).
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Thus two of the eigenvalues of ψ are
√

1 − k and −√
1 − k. Moreover, from

(2.29b) it follows that if X is eigenvector for
√

1 − k, then ϕX is eigenvector for
−√

1 − k. Hence, the distributions D(λ) and D(−λ) are both n–distributions
on M . Finally, from (2.29a) we infer that D(0) is spanned by ξ. Thus, from
Theorem 2.15 we obtain the following corollary.

Corollary 2.16. Let (M, g, ϕ, ξ, η) be a contact metric manifold with ξ be-
longing to the (k, µ)–nullity distribution. Then the Legendre foliations F(λ)
and F(−λ) whose tangent distributions are D(λ) and D(−λ) respectively, are
conjugate to each other.

So far, we presented results about flat or non–degenerate Legendre folia-
tions whose symmetric bilinear form Π is vanishing or has maximum rank n
respectively. If the rank of Π is between 1 and n−1 we say that the Legendre
foliation is degenerate. Very little is known about this type of Legendre folia-
tions. If D is the tangent distribution to a degenerate foliation F it was proved
by Libermann [Lib91] and Pang [Pan90] that the totally null distribution N
is integrable and its leaves are locally affine manifolds. This result might have
some connections with the general theory of parallel partially–null foliations
(see Section 4.7).

5.3 Foliations on the Tangent Bundle of a Finsler
Manifold

Let M be a real m–dimensional manifold and TM the tangent bundle of M
with canonical projection π : TM → M. Then a local chart (U , ϕ) on M with
local coordinates (xa) for x∈U , a∈{1, ...,m}, defines a local chart (π−1(U), Φ)

on TM with local coordinates (xa, ya) for y = ya ∂

∂xa

∣∣∣∣
x

∈ π−1(U). The coor-

dinate transformations on TM are given by

x̃a = x̃a(x1, ..., xm), ỹa = Ja
b (x)yb, (3.1)

where Ja
b (x) =

∂x̃a

∂xb
· As a consequence of (3.1) the local frame fields{

∂

∂xa
, ∂

∂ya

}
and

{
∂

∂x̃a
, ∂

∂ỹa

}
are related by

∂

∂xa
= Jb

a(x)
∂

∂x̃b
+ Jb

ac(x)yc ∂

∂ỹb
, Jb

ac(x) =
∂2x̃b

∂xa∂xc
, (3.2)

and
∂

∂ya
= Jb

a(x)
∂

∂ỹb
· (3.3)
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Denote by θ the zero section of TM and consider TM◦ = TM\θ(M). Suppose
that there exists a function F : TM −→ [0,∞) which vanishes only on the
zero section of TM and is smooth on TM◦. Moreover, for any local chart
(π−1(U), Φ; xa, ya) on TM◦, F satisfies the following conditions:

(F1) It is positively homogeneous of degree one with respect to (ya), i.e.,
we have

F (xa, kya) = kF (xa, ya), a ∈ {1, ..., m},
for any k > 0.

(F2) The matrix

[gbc(xa, ya)] =
[
1
2

∂2F 2

∂yb∂yc

]
, a, b, c ∈ {1, ..., m}, (3.4)

is positive definite on Φ(π−1(U)). Then we say that IFm = (M, F ) with F
satisfying (F1) and (F2) is a Finsler manifold and F is the fundamental
function of IFm.

Remark 3.1. The fundamental function F of IFm is surjective on IR+ =
(0,∞). Indeed, let (x, y) ∈ TM◦ with y �= 0 such that F (x, y) = a. Then by
the homogeneity of F we deduce that F

(
x,

c

a
y
)

= c for any c ∈ IR+.

A more general concept of Finsler manifold has been considered by the
authors in [BF00a], wherein F is smooth on an open submanifold of TM◦.
Moreover, the condition (F2) is replaced by

(F ′
2) [gbc(xa, ya)] is non–degenerate of constant index.

However, here we consider the above classical concept of Finsler manifold
which enables us to emphasize the role of foliations in Finsler geometry.

Clearly, any Riemannian manifold (M, g) is an example of Finsler mani-
fold. Indeed, the fundamental function is

F (xa, ya) = (gbc(xa)ybyc)1/2,

where gbc(xa) are the local components of g. Now, suppose that (M, g) is
endowed with a 1–form η such that ‖η‖ < 1, where the norm is considered
with respect to g. Then

F (xa, ya) = (gbc(xa)ybyc)
1
2 + ηa(x)ya,

is a positive function on TM◦ that satisfies (F1) and (F2). The Finsler ma-
nifold with the above fundamental function is known as Randers mani-
fold. The classification of an important class of Randers manifolds of positive
constant curvature has been recently obtained by the authors [BF02], [BF03c].
More examples of Finsler (pseudo–Finsler) manifolds can be found in Bejancu–
Farran [BF00a] and Matsumoto [Mat86].
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We show here that the geometry of a Finsler manifold IFm = (M, F ) is
strongly related to the geometry of some foliations on TM◦. First, we recall
that the vertical bundle V TM◦ of TM◦ is the tangent distribution to the
foliation determined by fibers of π : TM◦ −→ M (see Section 2.1). If (xa, ya)

are local coordinates on TM◦, then V TM◦ is locally spanned by
{

∂

∂ya

}
, a ∈

{1, ..., m}. In this case a canonical transversal distribution is constructed
as follows (cf. Bejancu–Farran [BF00a], p.38). Denote by [gab(x, y)] the inverse
matrix of [gab(x, y)] from (3.4). Then locally define the functions

Ga(x, y) =
1
4

gab(x, y)
(

∂2F 2

∂yb∂xc
yc − ∂F 2

∂xb

)
(x, y). (3.5)

Then there exists on TM◦ an m–distribution HTM◦ locally spanned by the
vector fields

δ

δxa
=

∂

∂xa
− Gb

a(x, y)
∂

∂yb
, a ∈ {1, ...,m}, (3.6)

where Gb
a(x, y) are given by

Gb
a(x, y) =

∂Gb

∂ya
· (3.7)

Moreover, it is easily seen that HTM◦ is complementary to V TM◦ in TTM◦.
By using the decomposition

TTM◦ = HTM◦ ⊕ V TM◦, (3.8)

we define the Riemannian metric G on TM◦ by the matrix

GAB(x, y) =

[
gab(x, y) 0

0 gab(x, y)

]
,

A,B ∈ {1, ..., 2m},
a, b ∈ {1, ..., m}. (3.9)

This means that with respect to the semi–holonomic frame field
{

δ

δxa
, ∂

∂ya

}
locally defined on TM◦, we have

(a) G

(
δ

δxa
, δ

δxb

)
= G

(
∂

∂ya
, ∂

∂yb

)
= gab,

(b) G

(
δ

δxa
, ∂

∂yb

)
= 0.

(3.10)

Thus the two distributions V TM◦ and HTM◦ are complementary orthogonal
with respect to G. The Riemannian metric G is known as the Sasaki–Finsler
metric on TM◦.
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The above discussion shows us that on the Riemannian manifold (TM◦, G)
we have a foliation FV with V TM◦ and HTM◦ as structural and transver-
sal distributions respectively. Thus, the theory we developed so far for non–
degenerate foliations on semi–Riemannian manifolds applies to the present
foliation FV , which from now on is called the vertical foliation on (TM, G).

First, from (2.3.21), (2.2.18) and (2.2.19) we deduce that

(a)
[

δ

δxa
, ∂

∂yb

]
=

∂Gc
a

∂yb

∂

∂yc
,

(b)
[

δ

δxa
, δ

δxb

]
= Rc

ab
∂

∂yc
,

(3.11)

where we set
Rc

ab =
δGc

a

δxb
− δGc

b

δxa
· (3.12)

Then denote by ∇̃ the Levi–Civita connection on (TM◦, G) and by ∇∗ and
∇◦ the Vrănceanu and Schouten–Van Kampen connections defined by ∇̃ (see
Sections 3.1 and 3.2). If D and D⊥ are the intrinsic linear connections on
V TM◦ and HTM◦ respectively (see (3.1.10)), then, according to (3.1.22)
and (3.1.23), we put

(a) ∇∗
∂

∂yb

∂

∂ya
= D ∂

∂yb

∂

∂ya
= Ca

c
b

∂

∂yc
,

(b) ∇∗
δ

δxb

∂

∂ya
= D δ

δxb

∂

∂ya
= Ga

c
b

∂

∂yc
,

(3.13)

and
(a) ∇∗

∂

∂yb

δ

δxa
= D⊥

∂

∂yb

δ

δxa
= La

c
b

δ

δxc
,

(b) ∇∗
δ

δxb

δ

δxa
= D⊥

δ

δxb

δ

δxa
= Fa

c
b

δ

δxc
·

(3.14)

Then we state the following.

Proposition 3.1. The local coefficients of the intrinsic connections D and
D⊥ on V TM◦ and HTM◦ with respect to the semi–holonomic frame field{

δ

δxa
, ∂

∂ya

}
are given by

(a) Ca
c
b =

1
2

gcd ∂gab

∂yd
,

(b) Ga
c
b =

∂Gc
b

∂ya
,

(3.15)

and
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(a) La
c
b = 0,

(b) Fa
c
b =

1
2

gcd

(
δgda

δxb
+

δgdb

δxa
− δgab

δxd

)
,

(3.16)

respectively.

Proof. First, by using (3.4) we obtain

∂gab

∂yc
=

∂gac

∂yb
=

∂gbc

∂ya
· (3.17)

Then (3.15) follows from (3.1.25) by using (3.17). Finally, (3.16) is a conse-
quence of (3.1.26).

According to Matsumoto [Mat86], p.120, the following four Finsler con-
nections play an important role in studying Finsler geometry:

– The Cartan connection CΓ = (Fa
c
b, G

c
a, Ca

c
b) ,

– The Rund connection RΓ = (Fa
c
b, G

c
a, 0) ,

– The Berwald connection BΓ = (Ga
c
b, G

c
a, 0) ,

– The Hashiguchi connection HΓ = (Ga
c
b, G

c
a, Ca

c
b) .

By a Finsler connection we understand a pair (HTM◦,∇) where HTM◦

is the canonical transversal distribution locally spanned by
{

δ

δxa

}
from (3.6)

(and hence given by Gb
a) and ∇ is a linear connection on V TM◦ or HTM◦.

Comparing the local coefficients of the above four Finsler connections with
the local coefficients of the Vrănceanu connection presented in Proposition 3.1
we obtain the following interesting result.

Theorem 3.2.

(i) The linear connections which determine the Hashiguchi and Rund con-
nections coincide with the intrinsic connections D and D⊥, that is, they
are the restrictions of the Vrănceanu connection to V TM◦ and HTM◦

respectively.
(ii)The pair (CΓ, BΓ ) of Cartan connection and Berwald connection deter-

mines the Vrănceanu connection and viceversa.

Therefore, the Vrănceanu connection induced by the Levi–Civita connec-
tion on (TM◦, G) is equivalent to each of the two pairs of Finsler connections
(HΓ,RΓ ) and (CΓ, BΓ ) on the Finsler manifold IFm = (M,F ). Also, we
remark that the Rund and Hashiguchi connections are naturally induced by
the Vrănceanu connection on HTM◦ and V TM◦ respectively, which is not
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the case for the Cartan and Berwald connections. However, for the Cartan
connection we have the following important property.

Theorem 3.3. (Bejancu–Farran [BF00b]). The Cartan connection on the Fin-
sler manifold IFm = (M, F ) is the projection of the Levi–Civita connection ∇̃
of (TM◦, G) on V TM◦. That is to say that we have

(a) G

(
∇̃ ∂

∂yb

∂

∂ya
, ∂

∂yc

)
= Ca

d
bgdc,

(b) G

(
∇̃ δ

δxb

∂

∂ya
, ∂

∂yc

)
= Fa

d
bgdc.

(3.18)

Moreover, we can prove the following.

Theorem 3.4. The Levi–Civita connection ∇̃ on (TM◦, G) is locally ex-
pressed as follows

(a) ∇̃ δ

δxb

δ

δxa
= −

(
Ca

c
b +

1
2

Rc
ab

)
∂

∂yc
+ Fa

c
b

δ

δxc
,

(b) ∇̃ ∂

∂yb

∂

∂ya
= Ca

c
b

∂

∂yc
− 1

2
gab|d gdc δ

δxc
,

(c) ∇̃ δ

δxb

∂

∂ya
= Fa

c
b

∂

∂yc
+
(

Ca
c
b +

1
2

gad Rd
eb gec

)
δ

δxc

= ∇̃ ∂
∂ya

δ

δxb
+ Ga

c
b

∂

∂yc
,

(3.19)

where the covariant derivative in (3.19b) is the transversal Vrănceanu cova-
riant derivative, that is, we have (see (3.1.41b))

gab|d =
δgab

δxd
− gcb Ga

c
d − gac Gb

c
d. (3.20)

Proof. By using (1.5.10) for the pair (∇̃, G) and (3.11) we deduce that

G

(
∇̃ δ

δxb

δ

δxa
, ∂

∂yc

)
= −1

2

(
∂gab

∂yc
+ gcd Rd

ab

)
,

and

G

(
∇̃ δ

δxb

δ

δxa
, δ

δxc

)
=

1
2

(
δgac

δxb
+

δgbc

δxa
− δgab

δxc

)
·

Then taking into account (3.15a) and (3.16b) we obtain (3.19a). By similar
calculations, using (1.5.10), (3.11) and (3.18), one can deduce (3.19b) and
(3.19c).
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Since G is parallel with respect to ∇̃, we have

G

(
∇̃ ∂

∂yb

∂

∂ya
, δ

δxc

)
+ G

(
∂

∂ya
, ∇̃ ∂

∂yb

δ

δxc

)
= 0.

Then we use (3.19b) and the second equality in (3.19c) to obtain

gab|c = 2
(
Fb

d
c − Gb

d
c

)
gad. (3.21)

Thus (3.19b) becomes

∇̃ ∂

∂yb

∂

∂ya
= Ca

c
b

∂

∂yc
+ gae (Gb

e
d − Fb

e
d) gdc δ

δxc
· (3.22)

Next, let us consider the Schouten–Van Kampen connection ∇◦ induced
by ∇̃ on (TM◦, G). First, since both distributions V TM◦ and HTM◦ are
parallel with respect to ∇◦ we put

(a) ∇◦
∂

∂yb

∂

∂ya
= C◦

a
c
b

∂

∂yc
,

(b) ∇◦
δ

δxb

∂

∂ya
= G◦

a
c
b

∂

∂yc
,

(c) ∇◦
∂

∂yb

δ

δxa
= L◦

a
c
b

δ

δxc
,

(d) ∇◦
δ

δxb

δ

δxa
= F ◦

a
c
b

δ

δxc
·

(3.23)

Then by using (3.2.13) and Theorem 3.4 we obtain the following.

Proposition 3.5. The local coefficients of the induced connections ∇ and
∇⊥ on V TM◦ and HTM◦ with respect to the semi–holonomic frame field{

δ

δxa
, ∂

∂ya

}
are given by

(a) C◦
a

c
b = Ca

c
b,

(b) G◦
a

c
b = Fa

c
b,

(3.24)

and
(a) L◦

a
c
b = Ca

c
b +

1
2

gbd Rd
ea gec,

(b) F ◦
a

c
b = Fa

c
b,

(3.25)

respectively, where Ca
c
b, Fa

c
b and Ra

c
b are given by (3.15a), (3.16b) and (3.12)

respectively.

Corollary 3.6. The linear connection which determines the Cartan connec-
tion on IFm = (M, F ) is just the induced connection ∇ on V TM◦, i.e., it coin-
cides with the restriction of the Schouten–Van Kampen connection to V TM◦.
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Now, we recall that in Chapter 3 we presented several classes of foliations
on semi–Riemannian manifolds. We have seen also that for every Finsler ma-
nifold IFm = (M, F ) there is a natural foliation FV on TM◦. We will see
later in this section that TM◦ admits some more natural foliations. So it is
interesting to investigate the geometry of IFm when those foliations belong to
any of these classes. That is to say, we will study the relationship between the
geometry of the foliations on TM◦ on the one hand, and the geometry of IFm

on the other hand.
First, we recall that IFm = (M, F ) is a Landsberg manifold (see

Bejancu–Farran, [BF00a], p.64) if the Berwald connection coincides with the
Rund connection, that is, we have

Fa
c
b = Ga

c
b, ∀ a, b, c ∈ {1, ..., m}. (3.26)

The next theorem gives an interesting characterization of a Landsberg mani-
fold by means of the vertical foliation.

Theorem 3.7. A Finsler manifold IFm = (M,F ) is a Landsberg manifold if
and only if the vertical foliation FV on the Riemannian manifold (TM◦, G)
is totally geodesic.

Proof. Taking into account (3.26), (3.24) and (3.15) we deduce that IFm is a
Landsberg manifold if and only if the induced connection ∇ coincides with the
intrinsic connection D on V TM◦. Then the assertion of the theorem follows
from (i) and (ii) of Theorem 3.4.2.

Now, we recall that a Finsler manifold IFm = (M, F ) is a Riemannian
manifold, if and only if the Finsler metric (3.4) depends on (xa) alone, that
is,

∂gab

∂yc
= 0, ∀ a, b, c ∈ {1, ..., m}. (3.27)

Taking into account (3.15a), we deduce that IFm is Riemannian if and only if

Ca
c
b = 0, ∀ a, b, c ∈ {1, ...,m}. (3.28)

The vertical foliation on (TM◦, G) can be used to characterize Riemannian
manifolds as follows.

Theorem 3.8. A Finsler manifold IFm = (M, F ) is a Riemannian manifold if
and only if the Sasaki–Finsler metric G on TM◦ is bundle–like for the vertical
foliation.

Proof. It follows by using (3.27) and Theorem 3.3.2.

On the other hand, any Riemannian manifold is a Landsberg manifold.
Then, from Theorems 3.7 and 3.8, we deduce the following.
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Corollary 3.9. Let (M, g) be a Riemannian manifold. Then the vertical fo-
liation FV is totally geodesic on (TM, G) and G is bundle–like for FV .

Next, we consider two globally defined vector fields on TM◦ which have
an important impact on Finsler (Riemannian) geometry. We define them as
follows:

(a) L = ya ∂

∂ya
,

(b) L∗ = ya δ

δxa
,

(3.29)

where
{

δ

δxa

}
, a ∈ {1, ...,m}, are given by (3.6). Both L and L∗ are globally

defined on TM◦ since, with respect to the coordinate transformation (3.1),
we have (3.3) and

δ

δxa
= Jb

a(x)
δ

δx̃b
· (3.30)

L is known as the Liouville vector field on TM◦. As L∗ lies in the transver-
sal distribution to the vertical foliation on TM◦ we call it the transversal
Liouville vector field. Now, we denote by L and L∗ the line fields spanned
by L and L∗ and call them the Liouville distribution and the transversal
Liouville distribution on TM◦. Now, we need some identities from Finsler
geometry. First, because most of the geometric objects from Finsler geometry
are positive homogeneous of certain degree we present the following.

Theorem 3.10. (Euler’s Theorem). A smooth function f(y1, ..., ym) on
IRm\{0} is positively homogeneous of degree r if and only if it satisfies the
condition

ya ∂f

∂ya
= rf. (3.31)

Next, from the definition of the Finsler manifold we see that gab(x, y),
Ga(x, y) and Ga

b (x, y) are positively homogeneous of degrees 0, 2 and 1 res-
pectively. Thus, by using (3.31), (3.7) and (3.15) we obtain

(a) yaCa
c
b = 0,

(b) yaGb
a = 2Gb,

(c) yaGa
b
c = Gb

c.

(3.32)

Now, we define the functions γabc and γb
a

c by

(a) γabc =
1
2

(
∂gba

∂xc
+

∂gbc

∂xa
− ∂gac

∂xb

)
,

(b) γb
a

c = gadγbdc,

(3.33)
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and by direct calculations using (3.4), (3.5) and (3.33) we deduce that

(a) Ga =
1
2

γb
a

c ybyc,

(b) gad Ga =
1
2

γbdc ybyc.

(3.34)

Then, differentiating (3.33) with respect to ye and taking into account (3.15a)
we infer that

∂γabc

∂ye
=

∂

∂xc

(
gedCb

d
a

)
+

∂

∂xa

(
gedCb

d
c

)− ∂

∂xb

(
gedCa

d
c

)
. (3.35)

By contracting (3.35) with yayc and using (3.32a) we obtain

∂γabc

∂ye
yayc = 0. (3.36)

We differentiate (3.34b) with respect to ye and by using (3.15a), (3.7) and
(3.36) we deduce that

Gc
b = ya γa

c
b − 2GaCa

c
b. (3.37)

Now, by direct calculations using (3.6), (3.33) and (3.15a), (3.16b) becomes

Fa
c
b = γa

c
b − Gd

aCd
c
b − Gd

bCd
c
a + Gd

eg
cegdfCa

f
b. (3.38)

Finally, by contracting (3.38) by ya and using (3.32b), (3.32a) and (3.37) we
obtain

yaFa
c
b = Gc

b. (3.39)

We also note that Ca
c
b, Ga

c
b and Fa

c
b are symmetric with respect to (ab).

Next, by using (3.6) we infer that

δya

δxb
= −Ga

b . (3.40)

To compute the covariant derivative of L with respect to the induced con-
nection ∇ on V TM◦, we note that ∇ is the restriction of the Schouten–Van
Kampen connection ∇◦ to V TM◦. Then, by using (3.40), (3.23b), (3.24b) and
(3.39) we deduce that

∇ δ
δxa

L = ∇◦
δ

δxa
yb ∂

∂yb
=

δyb

δxa

∂

∂yb
+ yc ∇◦

δ
δxa

∂

∂yc

=
(−Gb

a + ycFc
b
a

) ∂

∂yb
= 0.

(3.41)

Similarly, by using (3.23a), (3.24a) and (3.32a) we obtain
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∇ ∂
∂ya

L = ∇◦
∂

∂ya
yb ∂

∂yb
=

∂

∂ya
· (3.42)

Now, denote by R the curvature tensor field of ∇. Then, by direct calculations
using (1.2.17), (3.11b), (3.41) and (3.42), we infer that

R

(
δ

δxc
, δ

δxb

)
L = Ra

bc
∂

∂ya
· (3.43)

Thus, if we put

R

(
δ

δxc
, δ

δxb

)
∂

∂ya
= Ra

d
bc

∂

∂yd
, (3.44)

then (3.43) implies
yaRa

d
bc = Rd

bc. (3.45)

In the terminology of Finsler geometry Ra
d

bc are the local components of the
h–curvature tensor field of the Cartan connection (see Matsumoto, [Mat86],
p.114).

We denote by H and V the projection morphisms of TTM◦ on HTM◦

and V TM◦ respectively. Then, by (1.6.3), we have

G(R̃(X, Y )V Z, V U) = G(R(X, Y )V Z, V U)

+ G(h(X,V Z), h(Y, V U))

−G(h(Y, V Z), h(X, V U)),

(3.46)

where R̃ is the curvature tensor field of the Levi–Civita connection ∇̃ on
(TM◦, G) and h is given by (see (1.5.20a))

h(X, V Z) = H∇̃XV Z, ∀X,Z ∈ Γ (TTM).

Further, we put

Rabcd = G

(
R

(
δ

δxd
, δ

δxc

)
∂

∂ya
, ∂

∂yb

)
= gbeRa

e
cd, (3.47)

and from (3.46) we deduce that

Rabcd + Rbacd = 0. (3.48)

Finally, we put
Rbcd = gba Ra

cd, (3.49)

and, by using (3.45) and (3.47), we obtain

Rbcd = ya Rabcd. (3.50)

Thus, from (3.48) and (3.50) we deduce the following important identity
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ybRbcd = 0. (3.51)

Now, we decompose each X ∈ Γ (TTM◦) as follows

X = V X + HX = (V X)a ∂

∂ya
+ (HX)a δ

δxa
· (3.52)

Then we prove the following.

Lemma 3.11. Let IFm = (M, F ) be a Finsler manifold. Then for any
X ∈ Γ (TTM◦) we have

(a) ∇̃XL = V X,

(b) ∇̃XL∗ =
1
2

(HX)bRa
bc yc ∂

∂ya

+
(

(V X)a +
1
2

(V X)cRcbd yd gba

)
δ

δxa
,

(c) ∇◦
XL = ∇∗

XL = V X,

(d) ∇◦
XL∗ =

(
(V X)a +

1
2

(V X)cRcbd yd gba

)
δ

δxa
,

(e) ∇∗
XL∗ = (V X)a δ

δxa
,

(3.53)

where ∇̃ is the Levi–Civita connection on (TM◦, G) and ∇∗ and ∇◦ are the
Vrănceanu and Schouten–Van Kampen connections defined by ∇̃ with respect
to the decomposition (3.8).

Proof. First, by direct calculations, using (3.52), (3.29a) and (3.40), we de-
duce that

∇̃XL = (V X)a ∂

∂ya
− (HX)bGa

b

∂

∂ya

+ (V X)bya∇̃ ∂

∂yb

∂

∂ya
+ (HX)bya∇̃ δ

δxb

∂

∂ya
·

Then we replace the above covariant derivatives by their expressions from
(3.22) and (3.19c) and using (3.32a), (3.32c), (3.39) and (3.51) we obtain
(3.53a). Similar calculations lead us to (3.53b). Next, from (3.41) and (3.42)
we infer that

∇◦
XL = V X.

Also, by using (3.1.12), (3.29a), (3.11a), (3.15b), (3.32a), (3.32c) and (3.53a)
we deduce that

∇∗
XL = V ∇̃V XL + V [HX, L]

= V X + (HX)a(ybGb
c
a − Gc

a)
∂

∂yc
= V X.
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This completes the proof for (3.53c). By similar calculations for the Schouten–
Van Kampen and Vrănceanu covariant derivatives of L∗ we obtain (3.53d) and
(3.53e).

As a consequence of (3.53a) and (3.53b) we obtain the following.

Corollary 3.12. Let IFm = (M, F ) be a Finsler manifold and ∇̃ be the Levi–
Civita connection on (TM◦, G). Then we have

(a) ∇̃V XL = V X, (b) ∇̃HXL = 0, ∀X ∈ Γ (TTM),

(c) ∇̃LL = L, (d) ∇̃L∗L∗ = 0.
(3.54)

Moreover, we prove the following theorem.

Theorem 3.13. Let IFm = (M, F ) be a Finsler manifold. Then the vector
fields L and L∗ determine two totally geodesic foliations on (TM◦, G).

Proof. Denote by hL the second fundamental form of the foliation determined
by L. Then by using (3.2.5) and (3.54c) we obtain

G(h(L,L), X) = G(∇̃LL,X) = G(L,X) = 0,

for any vector field X on TM◦ that is orthogonal to L. Hence the foliation
determined by L is totally geodesic. Similarly, by using (3.2.5) for the second
fundamental form of L∗ and (3.54d) we deduce that L∗ determines a totally
geodesic foliation too.

From (3.54d) we see that the integral curves of L∗ are geodesics in
(TM◦, G). The next proposition says that L∗ could give us more informa-
tion about the geometry of the Finsler manifold IFm itself. Actually, Theorem
3.23 is a result in this direction.

Proposition 3.14. Let IFm = (M, F ) be a Finsler manifold. Then the pro-
jection of an integral curve of the transversal Liouville vector field L∗ on M
is a geodesic of IFm.

Proof. By using (3.29b) and (3.6), we deduce that an integral curve
Γ : xa = xa(t), ya = ya(t), t ∈ I of L∗ is a solution of the differential
system

dxa

dt
= ya,

dya

dt
= −ybGa

b (x, y).

Thus the projection C : xa = xa(t), t ∈ I, of Γ on M is a solution of the
system
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d2xa

dt2
+ Ga

b (x(t), x′(t))
dxb

dt
= 0.

Hence, according to Matsumoto [Mat86], p. 281, C is a geodesic of IFm.

Apart from the foliations with tangent distributions V TM◦, L and L∗, on
the open submanifold TM◦ of the tangent bundle TM of a Finsler manifold
IFm = (M, F ) there are three more foliations. To introduce them we denote
by L′ and L⊥ the complementary orthogonal distributions to L in V TM◦ and
TTM◦ respectively. Then we prove the following.

Theorem 3.15. Let IFm = (M,F ) be a Finsler manifold. Then the distribu-
tions L⊥,L′ and L ⊕ L∗ are integrable.

Proof. First, let X, Y ∈ Γ (L⊥). Then, by using the properties of the Levi–
Civita connection ∇̃ on (TM◦, G) and (3.53a), we obtain

G([X, Y ], L) = G(∇̃XY − ∇̃Y X, L) = G(X, ∇̃Y L) − G(Y, ∇̃XL)

= G(V X, V Y ) − G(V Y, V X) = 0.
(3.55)

Hence L⊥ is integrable. Now, we take X,Y ∈ Γ (L′). Then since V TM◦ is
integrable and L′ is a vector subbundle, we conclude that [X, Y ] ∈ Γ (V TM◦).
Then, from (3.55), we deduce that [X,Y ] ∈ Γ (L′), that is, L′ is integrable
too. Finally, by direct calculations, using (3.53a), (3.53b) and (3.51), we infer
that

(a) ∇̃L∗L = 0 and (b) ∇̃LL∗ = L∗. (3.56)

Thus
[L,L∗] = ∇̃LL∗ − ∇̃L∗L = L∗ ∈ Γ (L ⊕ L∗),

and hence L ⊕ L∗ is an integrable 2–distribution.

Moreover, from (3.54c), (3.54d) and (3.56), we deduce the following.

Corollary 3.16. The foliation determined by the distribution L⊕L∗ is totally
geodesic on (TM◦, G).

Next, we want to show that the leaves of the foliations determined by L⊥

and L′ are defined by means of the fundamental function F of IFm and to
point out some interesting properties of them. First, we recall that F is a
positive–valued smooth function on TM◦. Moreover, it has no critical points.
Indeed, by contracting (3.4) with ybyc and using Euler theorem, we deduce
that

F 2(x, y) = gab(x, y)yayb. (3.57)

Differentiating (3.57) with respect to yc and using (3.17) and (3.32a) we obtain
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∂F

∂yc
= gcb(x, y)

yb

F
�= 0, on TM◦. (3.58)

Hence F defines a foliation FF of TM◦ whose leaves are connected components
of level hypersurfaces of F (see Example 2.1.1). We denote by IM(c) a leaf of
FF given by the equation

F (x, y) = c, (3.59)

where c is a positive constant. Now, we recall that the gradient of F is a
vector field denoted by gradF and defined by (cf. O’Neill [O83], p.85)

G(gradF, X) = X(F ), ∀X ∈ Γ (TTM◦). (3.60)

Moreover, gradF is the normal vector field to the leaf IM(c) given by (3.59).
Then, by using (3.60) and the decomposition (3.52), we deduce that X is
tangent to IM(c) if and only if

(V X)a ∂F

∂ya
+ (HX)a δF

δxa
= 0. (3.61)

Now, we express (3.57) as follows

F 2 = G(L,L). (3.62)

Apply
δ

δxa
to (3.62) and by using (3.54b) and (1.5.9) for (∇̃, G) we obtain

F
δF

δxa
= 2G

(
∇̃ δ

δxa
L,L

)
= 0,

which implies
δF

δxa
= 0, ∀ a ∈ {1, ..., m}. (3.63)

Thus, taking into account (3.61) and (3.63), we deduce that a vector field X
is tangent to IM(c) if and only if

(V X)a ∂F

∂ya
= 0, (3.64)

which, via (3.58), is equivalent to

gab(V X)ayb = 0. (3.65)

As (3.65) also represents the condition for X to be orthogonal to L, we can
state the following.

Proposition 3.17.

(i) The foliation FF determined by the level hypersurfaces of the fundamental
function F of the Finsler manifold IFm is just the foliation determined by
the distribution L⊥.
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(ii) The Liouville vector field L is orthogonal to the foliation FF .
(iii) The transversal Liouville vector field L∗ is tangent to the foliation FF .

As FF is determined by the fundamental function F of IFm we call it the
fundamental foliation on (TM◦, G).

Next, we consider a fixed point x0 = (xa
0) on M and the hypersurface

Ix0M(c), c > 0, in Tx0M given by the equation

F (x0, y) = c, ∀ y ∈ Tx0M. (3.66)

According to Matsumoto [Mat86], p.105, Ix0M(1) is called the indicatrix of
the Finsler manifold IFm at x0. In general, we say that Ix0M(c) is the c–indi-
catrix of IFm at x0. To state some properties of Ix0M(c) we consider Tx0M
as a Riemannian manifold with the Riemannian metric gx0 = (gab(x0, y)). A
vector field X tangent to Tx0M is expressed as follows

X = Xa(x0, y)
∂

∂ya

∣∣∣∣
(x0,y)

, y ∈ Tx0M.

Then, by a similar reason as for the leaf IM(c) of FF , we deduce that X is
tangent to Ix0M(c) if and only if

(a) Xa(x0, y)
∂F

∂ya
(x0, y) = 0, or

(b) gab(x0, y)Xa(x0, y)yb = 0.

(3.67)

From (3.67b) it follows that the Liouville vector field L is the normal vector
field to each hypersurface Ix0M(c) in the Riemannian manifold (Tx0M, gx0).
Moreover {Ix0M(c)}c∈IR+ are level hypersurfaces for the function Fx0(y) =
F (x0, y) on Tx0M which does not have critical points (see (3.58)). Hence the
set of all c–indicatrices at x0 determines a foliation of codimension 1 of the
m–dimensional Riemannian manifold (Tx0M, gx0). We denote it by Ix0M and
call it the indicatrix foliation at x0.

Next, from (3.62) we obtain G(�, �) = 1, where � is the unit Liouville
vector field, that is, we have

� =
1
F

L = �a ∂

∂ya
, where �a =

ya

F
· (3.68)

Let ∇′ and ∇′′ be the Levi–Civita connections on (Tx0M, gx0) and (Ix0M(c), gx0)
respectively. Then we have

(a) ∇̃XY = ∇′
XY + hx0(X, Y ),

(b) ∇′
XY = ∇′′

XY + B(X, Y )�,
(3.69)

where ∇̃ is the Levi–Civita connection on (TM◦, G), and hx0 and B are the
second fundamental forms of Tx0M and Ix0M(c) as submanifolds of TM◦
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and Tx0M respectively. Then, by using (3.69), (3.53a) and properties of ∇̃,
we obtain

B(X, Y ) = gx0(∇′
XY, �)

= G(∇̃XY, �) = −G(Y, ∇̃X�)

= −G

(
Y,X

(
1
F

)
L +

1
F

∇̃XL

)
= − 1

F
G(X, Y ),

for any X, Y ∈ Γ (TIx0M(c)). This means that any c–indicatrix at x0 is totally
umbilical immersed in Tx0(M). Hence the indicatrix foliation at x0 is a totally
umbilical foliation of Tx0M . Finally, since L is the normal vector field to
each c–indicatrix we deduce that the leaves of L′ (see Theorem 3.15) are
c–indicatrices. Summing up the above discussion we state the following.

Proposition 3.18. Let IFm = (M,F ) be a Finsler manifold. Then we have
the assertions:

(i) At any point x ∈ M the indicatrix foliation IxM is a totally umbilical
foliation of (TxM, gx).

(ii) The leaves of the foliation FL′ determined by the integrable distribution
L′ are c–indicatrices of IFm.

(iii) Each leaf of FL′ is a totally umbilical submanifold of a leaf of the vertical
foliation FV .

Now, we consider a leaf IM(c) of the fundamental foliation FF on
(TM◦, G). Then, by (3.59) and (3.66) we deduce that

IM(c) =
⋃

x∈M

IxM(c).

Thus we may call IM(c) the c–indicatrix bundle over M . We show in what
follows an interesting relationship between the geometry of the c–indicatrix
bundle over M and that of the curvature of M . To this end we start with the
identity (cf. Bejancu–Farran [BF00a], p.52)

Rabc + Rbca + Rcab = 0. (3.70)

Contracting (3.70) by yc and using (3.51) we obtain

Rbcayc = Racby
c,

since Rabc is skew–symmetric with respect to the pair (bc). Hence

Rab = Racby
c, a, c ∈ {1, ..., m}, (3.71)

are the components of a symmetric Finsler tensor field of type (0, 2) on TM◦

(cf. Bejancu–Farran [BF00a], p.13). We also consider the angular metric hab

of IFm (cf. Matsumoto [Mat86], p.101)
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hab = gab − �a�b, (3.72)

where we set

�a = gab�
b = gab

yb

F
· (3.73)

Finally, we define the symmetric Finsler tensor field Λ = (Λab) given by

Λab = Rab − hab. (3.74)

We consider Λ as a symmetric bilinear F (TM◦)–form on Γ (HTM◦) and call
it the curvature–angular form.

Proposition 3.19. For any X ∈ Γ (HTM◦) we have

Λ(L∗, X) = 0, (3.75)

that is, the curvature–angular form is degenerate.

Proof. By using (3.74), (3.71), (3.51), (3.72), (3.73) and (3.57) we obtain

Λaby
a = yaRacby

c − yagab + ya�a�b

= −F�b + yagac
yc

F
�b

= −F�b + F�b = 0,

which proves (3.75).

Next, we consider the foliation determined by the transversal Liouville vec-
tor field L∗. By Theorem 3.13 we have seen that this foliation is totally geo-
desic on (TM◦, G). Moreover, by (3.54d) we deduce that it is totally geodesic
on any c–indicatrix bundle (IM(c), G). Here and in the sequel, we denote by
the same symbol G the induced Riemannian metric on IM(c) by the Sasaki–
Finsler metric G on TM◦, and call it the Sasaki–Finsler metric on IM(c).
The next theorem gives an interesting condition for G to be bundle–like for
the above foliation.

Theorem 3.20. Let IFm = (M,F ) be a Finsler manifold and IM(c) be a
c–indicatrix bundle over M . Then the following assertions are equivalent:

(i) The Sasaki–Finsler metric G on IM(c) is bundle–like for the foliation F
determined by the transversal Liouville vector field L∗ on IM(c).

(ii)The curvature–angular form Λ vanishes identically on IM(c).

Proof. Let ∇ be the Levi–Civita connection on (IM(c), G) and L′′ be the
complementary orthogonal distribution to L∗ in HTM◦. Here all the vector
bundles are considered over IM(c). Then L⊥ = L′ ⊕ L′′ ⊕ L∗ is the tangent
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bundle of IM(c). From assertion (iii) of Theorem 3.3.3 we deduce that G is
bundle–like for F if and only if

G(∇XL∗, Y ) + G(∇Y L∗, X) = 0, ∀X, Y ∈ Γ (L′ ⊕ L′′),

which is equivalent to

G(∇̃XL∗, Y ) + G(∇̃Y L∗, X) = 0, ∀X, Y ∈ Γ (L′ ⊕ L′′). (3.76)

We consider the following three cases to analyze (3.76).

Case 1. X ∈ Γ (L′), Y ∈ Γ (L′). Then, from (3.53b) we deduce that ∇̃XL∗ ∈
Γ (HTM◦) and ∇̃Y L∗ ∈ Γ (HTM◦). Thus, in this case (3.76) is identically
satisfied because L′ and HTM◦ are orthogonal vector bundles with respect
to G.

Case 2. X ∈ Γ (L′′), Y ∈ Γ (L′′). Now, (3.53b) implies ∇̃XL∗ ∈ Γ (V TM◦)
and ∇̃Y L∗ ∈ Γ (V TM◦), and therefore (3.76) is identically verified.

Case 3. X ∈ Γ (L′), Y ∈ Γ (L′′). In this case we have X = Xa ∂

∂ya
and

Y = Y a δ

δxa
, where the local components satisfy

(a) gabX
ayb = 0 and

(b) gabY
ayb = 0.

(3.77)

Then, by using (3.53b), (3.49) and (3.71), the condition (3.76) becomes

(gab − Rab)XaY b = 0. (3.78)

Next, taking into account (3.72), (3.73) and (3.77), we deduce that

habX
aY b = gabX

aY b. (3.79)

Hence, by using (3.79) into (3.78) and taking into account (3.74), we obtain

ΛabX
aY b = 0. (3.80)

Now, we consider the isomorphism of vector bundles

Φ : L′ −→ L′′; Φ

(
Xa ∂

∂ya

)
= X∗ = Xa δ

δxa
·

Then (3.80) is equivalent to

Λ(X∗, Y ) = 0, ∀X∗, Y ∈ Γ (L′′). (3.81)

Finally, from (3.81) and (3.75) we conclude that (3.76) is equivalent to Λ = 0
on IM(c), which completes the proof of the theorem.
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Apparently, the condition (3.76) seems to be weaker than the condition
for L∗ to be Killing vector field on IM(c). However, we prove the following.

Theorem 3.21. The transversal Liouville vector field L∗ is a Killing vector
field on IM(c) if and only if the curvature–angular form Λ vanishes identically
on IM(c).

Proof. Suppose L∗ is Killing on IM(c). Then we have

G(∇̃XL∗, Y ) + G(∇̃Y L∗, X) = 0, ∀X, Y ∈ Γ (L⊥). (3.82)

Thus (3.76) is satisfied, and by Theorem 3.20 it follows that Λ = 0 on IM(c).
Conversely, if Λ = 0 on IM(c), by the same theorem we deduce that (3.76)
holds. To prove (3.82) we need to show that

G(∇̃L∗L∗, Y ) + G(∇̃Y L∗, L∗) = 0, ∀Y ∈ Γ (L′ ⊕ L′′). (3.83)

By (3.54d) the first term in (3.83) vanishes. Now, take Y ∈ Γ (L′′) and from
(3.53b) we see that ∇̃Y L∗ ∈ Γ (V TM◦). Hence the second term in (3.83)
vanishes too. Finally, take Y ∈ Γ (L′), that is,

Y = Y a ∂

∂ya
and Y agaby

b = 0.

Then, by using again (3.53b) and taking into account that Rabc is skew–
symmetric with respect to (bc), we obtain

G(∇̃Y L∗, L∗) =
(

Y a +
1
2

Y cRcbdy
dgba

)
yegae

= Y agaey
e +

1
2

Y cRcbdy
byd = 0.

Thus (3.83) is identically satisfied, and therefore L∗ is a Killing vector field
on IM(c).

Next, denote by the same symbol L∗ the transversal Liouville vector at a

point (x, y) ∈ TM◦ and consider a vector X = Xa δ

δxa
∈ HTM◦(x, y) such

that {L∗, X} are linearly independent. Then the plane Π = span {L∗, X} is
called the horizontal flag at (x, y) with L∗ as flagpole and X as transverse
edge. The horizontal flag curvature of the Finsler manifold IFm = (M,F )
with respect to the horizontal flag Π is defined by (cf. Bejancu–Farran
[BF00a], p.57)

K(x, y; Π) =
Rabcdy

aXbycXd

F 2habXaXb
, (3.84)

where Rabcd and hab are the local components of the h–curvature tensor
field of the Cartan connection and of the angular metric respectively. When
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K(x, y; Π) is independent of the horizontal flag Π, IFm is called a Finsler
manifold of scalar curvature K(x, y). If moreover K(x, y) is a constant k
on TM◦, then IFm is said to be a Finsler manifold of constant curvatu-
re k. Thus, by using (3.50) and (3.71) into (3.84), we deduce that IFm is of
constant curvature k if and only if

Rab(x, y) = kF 2(x, y)hab(x, y), ∀ (x, y) ∈ TM◦. (3.85)

The next theorem will allow us to relate the geometry of foliations on TM◦

with the geometry of Finsler manifolds of positive constant curvature.

Theorem 3.22. Let IFm = (M,F ) be a Finsler manifold and k ∈ IR+. Then
IFm is of positive constant curvature k if and only if the curvature–angular

form Λ vanishes identically on the indicatrix bundle IM(c), where c =
1√
k
·

Proof. Suppose IFm is a Finsler manifold of positive constant curvature k.

The indicatrix bundle IM(c) with c =
1√
k

is non–empty and has the equation

F (x, y) =
1√
k
· Then from (3.85) we obtain

Rab(x, y) = hab(x, y), ∀ (x, y) ∈ IM(c). (3.86)

Thus, according to (3.74), we have Λab(x, y) = 0 for any (x, y) ∈ IM(c). Hence
the curvature–angular form Λ vanishes on IM(c). Conversely, suppose Λ = 0
on IM(c), that is, we have (3.86). Thus (3.85), which we want to prove, is true
for any (x, y) ∈ IM(c). Now, take a point (x, y) ∈ TM◦\IM(c). Since TM◦

admits the fundamental foliation FF , there exists c∗ > 0 such that (x, y) ∈
IM(c∗), and hence F (x, y) = c∗. Since F is positively homogeneous of degree
1, we deduce that F

(
x,

c

c∗
y
)

= c, which means that
(
x,

c

c∗
y
)

∈ IM(c).

Thus, from (3.86), we obtain

Rab

(
x,

c

c∗
y
)

= hab

(
x,

c

c∗
y
)
· (3.87)

Now, from (3.72) it follows that hab are positively homogeneous of degree
zero with respect to (ya). On the other hand, taking into account that Gb

a

are positively homogeneous of degree 1 (see (3.7) and (3.5)), from (3.12) and
(3.71) we deduce that Rab are positively homogeneous of degree 2 with respect
to (ya). Hence form (3.87) we obtain

Rab(x, y) =
(c∗)2

c2
hab(x, y) = kF 2(x, y)hab(x, y), ∀ (x, y) ∈ IM(c∗),

that is, (3.85) is satisfied at any point of IM(c∗). Thus (3.85) is true at any
point of TM◦, and therefore IFm is a Finsler manifold of positive constant
curvature k.
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Finally, we combine Theorems 3.20, 3.21 and 3.22 and obtain the following
interesting characterizations of Finsler manifolds of positive constant curva-
ture.

Theorem 3.23. Let IFm = (M, F ) be a Finsler manifold and k, c two positive
numbers such that c

√
k = 1. Then the following assertions are equivalent:

(i) IFm is a Finsler manifold of constant curvature k.
(ii) The Sasaki–Finsler metric G on the indicatrix bundle IM(c) is bundle–

like for the foliation determined by the transversal Liouville vector field L∗

on IM(c).
(iii)The transversal Liouville vector field is a Killing vector field on (IM(c), G).
(iv) The curvature–angular form Λ vanishes identically on IM(c).

The equivalence of (i) and (iii) was proved by Bejancu and Farran [BF00b]
for k = 1. If, in particular, IFm = (M, F ) is a Riemannian manifold, then
IM(1) is known as the tangent sphere bundle. Tashiro [Tash69] inves-
tigated the geometry of a Riemannian manifold by using a contact metric
structure on the tangent sphere bundle. The above results establish a new
approach for studying the geometry of Finsler (Riemannian) manifolds. This
is done by investigating the geometry of the natural foliations induced on the
tangent bundles of such manifolds. The next theorem is another step in this
direction.

Let (M, g) be a Riemannian manifold and { a
b c} be the Christoffel coeffi-

cients (see 1.5.12)). In this case, the canonical transversal distribution HTM
is defined by (3.6) where Gb

a are given by

Gb
a(x, y) = yc

{
b

c a

}
(x).

Then it is easy to check that the curvature tensor field R′ = (R′
a

b
cd) of the

Levi–Civita connection ∇′ on (M, g) satisfies the identities

yaR′
a

b
cd(x) = Rb

cd(x, y) and
∂Rb

cd

∂ya
(x, y) = R′

a
b
cd(x).

Finally, recall that when R′ = 0 on M we say that (M, g) is locally Euclidean.
When a Finsler manifold is Riemannian with locally Euclidean metric, we say
that the Finsler metric given by (3.4) is locally Euclidean. Now we prove
the following.

Theorem 3.24. Let IFm = (M, F ) be a Finsler manifold. Then the following
assertions are equivalent:

(i) The Finsler metric is locally Euclidean.
(ii) The Sasaki–Finsler metric G is bundle–like for the vertical foliation FV

and HTM◦ is integrable.
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(iii) HTM◦ is an integrable distribution that is tangent to a totally geodesic
foliation FH on (TM◦, G).

(iv) HTM◦ is parallel with respect to the Levi–Civita connection ∇̃ on
(TM◦, G).

(v) HTM◦ and V TM◦ are tangent distributions to two totally geodesic fo-
liations on (TM◦, G).

(vi) The Vrănceanu and Schouten–Van Kampen connections induced by ∇̃ on
(TM◦, G) with respect to (3.8) coincide.

Proof. First, we note that the Finsler metric given by (3.4) is locally Euclidean
if and only if

(a) Ca
c
b = 0 and (b) Rc

ab = 0. (3.88)

Then, by using (3.11b), (3.88) and Theorem 3.8, we deduce that (i) and (ii)
are equivalent. Now, suppose (3.88) is true. Then from (3.11b) and (3.19a)
we infer that HTM◦ is integrable and the foliation FH is totally geodesic.
Conversely, we suppose (iii) is true and by using (3.11b) and (3.19a) we ob-
tain (3.88). This proves the equivalence of (i) and (iii). Next, if (3.88) is true,
then from (3.19a) and (3.19c) we have

(a) ∇̃ δ

δxb

δ

δxa
= Fa

c
b

δ

δxc
,

(b) ∇̃ ∂
∂ya

δ

δxb
= (Fa

c
b − Ga

c
b)

∂

∂yb
·

(3.89)

But from (3.88a) it follows that IFm is Riemannian, so it is Landsberg. Then,
taking into account (3.26), from (3.89b) we obtain

∇̃ ∂
∂ya

δ

δxb
= 0. (3.90)

Thus, from (3.89a) and (3.90), we deduce that HTM◦ is parallel with respect
to ∇̃. Hence (i)=⇒(iv). Now, suppose that (iv) is true. Since ∇̃ is torsion–free,
by Proposition 4.1.4 we infer that HTM◦ is integrable. Hence, by (3.11b), we
have (3.88b). Then, by using (3.88b) in (3.19a) and taking into account that
HTM◦ is parallel with respect to ∇̃, we obtain (3.88a). Hence (iv)=⇒(i),
proving the equivalence of (i) and (iv). Next, the equivalence of (iv) and (v)
follows from Theorem 4.4.3. Finally, (v) is equivalent to (vi) via Theorem
1.5.8.

5.4 Foliations on CR-Submanifolds

Many well known concepts for surfaces in IR3 have been generalized to give
corresponding concepts for submanifolds in general. One such generalization
that concerns foliations and will be used in this section is that of a ruled
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surface of IR3. We define it as follows. Let M be a submanifold of a Rie-
mannian manifold (M̃, g̃). Then we say that M is a ruled submanifold if
it carries a foliation whose leaves (rulings) are totally geodesic immersed in
(M̃, g̃). Two chapters of the book by Rovenskii [Rov98] were dedicated to the
theory of ruled submanifolds. We use here this theory to characterize some
classes of CR–submanifolds.

When the ambient manifold has some additional geometric structures, the
study of foliations on a submanifold should focus on interrelations between
these structures and foliations. It is the purpose of this section to present
a study of the geometry of CR–submanifolds (see Example 2.1.8) stressing
on the links between the foliations on these submanifolds and the complex
structure on the embedding manifold.

Let (M̃, g̃, J̃) be a Kähler manifold where g̃ is the Riemannian metric and
J̃ is the complex structure on M̃ . Suppose M is a CR–submanifold of M̃ ,
that is, M admits two complementary orthogonal distributions D and D⊥

such that

(i) D is J̃–invariant, i.e., J̃(D) = D.
(ii) D⊥ is J̃–anti–invariant, i.e., J̃(D⊥) ⊂ TM⊥.

By Proposition 2.1.11 we know that any real hypersurface of M̃ is an example
of a CR–submanifold with D �= {0} and D⊥ �= {0}. On the other hand,
Theorem 2.1.12 states that D⊥ is always integrable , and therefore any CR–
submanifold admits a J̃–anti–invariant (totally real) foliation which we
denote by F⊥.

To continue the study of the geometry of M we recall some concepts and
facts from the general theory of submanifolds (see Chen [C73]). Let ∇̃ be the
Levi–Civita connection defined by g̃ on M̃ . Then we put

∇̃XY = ∇XY + B(X, Y ), ∀X, Y ∈ Γ (TM), (4.1)

and
∇̃XN = −ANX + ∇⊥

XN, ∀X ∈ Γ (TM), N ∈ Γ (TM⊥). (4.2)

Here ∇ is the Levi–Civita connection on (M, g), where g is the induced Rie-
mannian metric by g̃ on M . Also, ∇⊥ is a linear connection on the normal
bundle TM⊥, which is called the normal connection. Finally, B and AN

are the second fundamental form of M and the shape operator of M
associated to the normal section N of M respectively. It is important to note
that B is a symmetric F (M)–bilinear form and AN is a self–adjoint operator,
that is, we have

(a) B(X,Y ) = B(Y,X) and

(b) g(ANX, Y ) = g(X, ANY ),
(4.3)

for any X, Y ∈ Γ (TM) and N ∈ Γ (TM⊥). Moreover, B and AN are related
by
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g̃(B(X, Y ), N) = g(ANX, Y ). (4.4)

From Section 1.5 we recall that M is totally geodesic when B vanishes iden-
tically on M . Thus by (4.4) we deduce that M is totally geodesic if and only
if AN = 0 for any N ∈ Γ (TM⊥).

Finally, denote by R̃ and R the curvature tensor fields of ∇̃ and ∇ res-
pectively. Then the Gauss equation for the immersion of (M, g) in (M̃, g̃)
is written as follows:

g̃(R̃(X, Y )Z,U) = g(R(X, Y )Z, U)

+ g̃(B(X, Z), B(Y, U))

− g̃(B(Y, Z), B(X, U)),

(4.5)

for any X, Y, Z, U ∈ Γ (TM).
Now, taking into account the concepts we introduced for foliations we

may say that F⊥ is a foliation on M with structural distribution D⊥ and
transversal distribution D. Then we denote by h⊥ and h the second funda-
mental forms of F⊥ and D respectively (see Section 3.2). By the definition of
a CR–submanifold we have the orthogonal decomposition

TM = D ⊕D⊥. (4.6)

Also, the normal bundle TM⊥ has the orthogonal decomposition

TM⊥ = J̃(D⊥) ⊕ µ, (4.7)

where µ is the complementary orthogonal vector bundle to J̃(D⊥) in TM⊥.
We say that D (resp. D⊥) is AN–invariant, if ANX ∈ Γ (D) (resp.
ANZ ∈ Γ (D⊥)) for any X ∈ Γ (D) (resp. Z ∈ Γ (D⊥)). Then we can state
the following characterizations of totally geodesic J̃–anti–invariant foliations
on CR–submanifolds.

Theorem 4.1. Let F⊥ be the J̃–anti–invariant foliation on a CR–subma-
nifold M of a Kähler manifold (M̃, g̃, J̃). Then the following assertions are
equivalent.

(i) F⊥ is totally geodesic.
(ii) The second fundamental form of M satisfies

B(X, Y ) ∈ Γ (µ), ∀X ∈ Γ (D⊥), Y ∈ Γ (D). (4.8)

(iii) D⊥ is AN–invariant for any N ∈ Γ (J̃D⊥).
(iv) D is AN–invariant for any N ∈ Γ (J̃D⊥).

Proof. First, by using (2.1.27b), (2.1.29), (4.2) and (4.4) we obtain



248 5 FOLIATIONS INDUCED BY GEOMETRIC STRUCTURES

g̃(J̃(∇XZ), Y ) = −g̃(∇XZ, J̃Y )

= −g̃(∇̃XZ, J̃Y )

= g̃(∇̃X J̃Z, Y )

= −g(A
J̃Z

X, Y )

= −g̃(B(X, Y ), J̃Z),

(4.9)

for any X, Z ∈ Γ (D⊥) and Y ∈ Γ (D). Now, suppose that F⊥ is totally
geodesic. Then, by (3.4.1) we have h⊥ = 0, or equivalently

∇XZ ∈ Γ (D⊥), ∀X,Z ∈ Γ (D⊥). (4.10)

Then (4.8) follows from (4.9) by using (4.10) and (4.7). Conversely, if (4.8)
is satisfied, then from (4.9) we deduce that J̃(∇XZ) is orthogonal to D. If
P and Q are the projection morphisms of TM on D and D⊥ respectively,
then we have J̃P (∇XZ) = 0. As J̃ is an automorphism on Γ (D) we conclude
that P (∇XZ) = 0, that is, ∇XZ ∈ Γ (D⊥). Hence F⊥ is totally geodesic.
This proves the equivalence of (i) and (ii). Due to (4.4), we obtain the equi-
valence of (ii) and (iii). Finally, by (4.3b) we deduce that (iii) and (iv) are
equivalent.

We say that M is mixed geodesic if we have

B(X, Y ) = 0, ∀X ∈ Γ (D⊥), Y ∈ Γ (D). (4.11)

Also, when µ = {0} we say that a CR–submanifold is an anti–holomorphic
submanifold. Thus, any real hypersurface of M is anti–holomorphic. Now,
from Theorem 4.1 we have the following corollaries.

Corollary 4.2. Let M be a mixed geodesic CR–submanifold of (M̃, g̃, J̃).
Then the J̃–anti–invariant foliation is totally geodesic.

Corollary 4.3. If M is a totally geodesic CR–submanifold of (M̃, g̃, J̃), then
the J̃–anti–invariant foliation is totally geodesic.

Corollary 4.4. Let M be an anti–holomorphic submanifold of (M̃, g̃, J̃). Then
M is mixed geodesic if and only if the J̃–anti–invariant foliation is totally
geodesic.

Corollary 4.4 gives us an interesting geometric characterization of mixed
geodesic anti–holomorphic submanifolds. Namely, M is mixed geodesic if and
only if any geodesic of a leaf of D⊥ is a geodesic of (M, g). Also, according to
Corollary 4.3, when M is totally geodesic, then any geodesic of a leaf of F⊥ is
a geodesic of M which in turn is a geodesic of M̃ . Thus, any geodesic of a leaf
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of F⊥ is a geodesic of M̃ , which means that any leaf of F⊥ is totally geodesic
immersed in (M̃, g̃, J̃). A CR–submanifold which is a ruled submanifold with
respect to the foliation F⊥ is called a totally real ruled CR–submanifold.
Then the above discussion enables us to state the following.

Corollary 4.5. Any totally geodesic CR–submanifold of a Kähler manifold
is a totally real ruled CR–submanifold.

Now, we can present characterizations of a totally real ruled CR–subma-
nifold by means of the geometric objects induced on its normal bundle. For
one of these characterizations we need the following definition. We say that
the vector bundle JD⊥ is D⊥–parallel if we have

∇⊥
X J̃Z ∈ Γ (J̃D⊥), ∀X,Z ∈ Γ (D⊥). (4.12)

Theorem 4.6. Let M be a CR–submanifold of a Kähler manifold (M̃, g̃, J̃).
Then the following assertions are equivalent.

(i) M is a totally real ruled CR–submanifold.
(ii) The second fundamental form of M satisfies (4.8) and

B(X, Z) = 0, ∀X, Z ∈ Γ (D⊥). (4.13)

(iii) J̃(D⊥) is D⊥–parallel and the second fundamental form of M satisfies

B(X, Y ) ∈ Γ (µ), ∀X ∈ Γ (D⊥), Y ∈ Γ (TM). (4.14)

(iv) The shape operators of M satisfy

A
J̃Z

X = 0, ∀X, Z ∈ Γ (D⊥), (4.15)

and
ANX ∈ Γ (D), ∀X ∈ Γ (D⊥) and N ∈ Γ (µ). (4.16)

Proof. By using (4.1) and (3.2.8a) we obtain

∇̃XZ = ∇D⊥
X Z + h⊥(X, Z) + B(X, Z), ∀X, Z ∈ Γ (D⊥), (4.17)

where ∇D⊥
is the induced connection by ∇ on D⊥ (see Section 3.2). As the

last two terms in (4.17) belong to complementary vector bundles, we deduce
that any leaf of D⊥ is totally geodesic immersed in M̃ if and only if

(a) h⊥ = 0, and

(b) B(X, Z) = 0, ∀X, Z ∈ Γ (D⊥).
(4.18)

By Theorem 4.1 we see that (4.18a) is equivalent to (4.8). Thus the equiva-
lence of (i) and (ii) is proved. Next, by using (2.1.27a), (2.1.29), (4.1), (4.2)
and (4.4) we obtain
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g̃(∇̃XZ, U) = g̃(∇̃X J̃Z, J̃U) = −g̃(B(X, J̃U), J̃Z), (4.19)

g̃(∇̃XZ, J̃W ) = g̃(B(X, Z), J̃W ), (4.20)

g̃(∇̃XZ, N) = g̃(∇̃X J̃Z, J̃N) = g̃(∇⊥
X J̃Z, J̃N), (4.21)

for any X,Z, W ∈ Γ (D⊥), U ∈ Γ (D) and N ∈ Γ (µ). As M is a totally real
ruled CR–submanifold if and only if ∇̃XZ ∈ Γ (D⊥) for any X, Z ∈ Γ (D⊥),
from (4.19), (4.20) and (4.21) we deduce the equivalence of (i) and (iii). Finally,
by using (4.4) it follows that (ii) and (iv) are equivalent. Thus the proof is
complete.

Now, we present the necessary and sufficient conditions under which the
Riemannian metric g is bundle–like for the totally real foliation F⊥ on (M, g).

Theorem 4.7. Let M be a CR–submanifold of a Kähler manifold (M̃, g̃, J̃).
Then the following assertions are equivalent:

(i) The induced Riemannian metric g on M is bundle–like for the totally real
foliation F⊥.

(ii)The second fundamental form of M satisfies

B(U, J̃V ) + B(V, J̃U) ∈ Γ (µ), ∀U, V ∈ Γ (D). (4.22)

Proof. By using (3.3.7) we deduce that g is bundle–like for F⊥ if and only if
the Levi–Civita connection ∇ on (M, g) satisfies

g(∇UX,V ) + g(∇V X, U) = 0, ∀X ∈ Γ (D⊥), U, V ∈ Γ (D). (4.23)

Then, by using (4.1), (2.1.27a) and (2.1.29), we see that (4.23) is equivalent
to

g̃(∇̃U J̃X, J̃V ) + g̃(∇̃V J̃X, J̃U) = 0. (4.24)

Finally, by using (1.5.9) and (4.1) in (4.24), we obtain

g(J̃X, B(U, J̃V ) + B(V, J̃U)) = 0,

which proves the equivalence of the assertions.

Corollary 4.8. Let (M, g) be an anti–holomorphic submanifold of (M̃, g̃, J̃).
Then g is bundle–like for F⊥ if and only if

B(U, J̃V ) + B(V, J̃U) = 0, ∀U, V ∈ Γ (D). (4.25)

By combining Corollaries 4.4 and 4.8 we obtain the following.
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Corollary 4.9. Let (M, g) be an anti–holomorphic submanifold of (M̃, g̃, J̃).
Then F⊥ is totally geodesic with bundle–like metric g if and only if (4.11) and
(4.25) are satisfied.

Next, we discuss the integrability of the J̃–invariant distribution D and
state some decomposition theorems for CR–submanifolds. First, we prove the
following theorems.

Theorem 4.10. (Bejancu [B78]). Let M be a CR–submanifold of a Kähler
manifold (M̃, g̃, J̃). Then the J̃–invariant distribution D is integrable if and
only if

B(U, J̃V ) − B(V, J̃U) ∈ Γ (µ), ∀U, V ∈ Γ (D). (4.26)

Proof. Let U, V ∈ Γ (D). Then, by Frobenius theorem, D is integrable if and
only if

g([U, V ], X) = 0, ∀X ∈ Γ (D⊥),

which is equivalent to

g̃(J̃∇̃UV − J̃∇̃V U, J̃X) = 0.

By using (2.1.29) and (4.1), we deduce that D is integrable if and only if

g̃(B(U, J̃V ) − B(V, J̃U), J̃X) = 0, ∀X ∈ Γ (D⊥).

This completes the proof of the theorem.

Theorem 4.11. (Chen [C81]). Let M be a CR–submanifold of a Kähler ma-
nifold (M̃, g̃, J̃). Then we have the following assertions:

(i) The J̃–invariant distribution D is integrable and the foliation F defined
by D is totally geodesic if and only if

B(U, V ) ∈ Γ (µ), ∀U, V ∈ Γ (D). (4.27)

(ii)The J̃–invariant distribution D is integrable and M is a ruled submanifold
with respect to the foliation F determined by D if and only if

B(U, V ) = 0, ∀U, V ∈ Γ (D). (4.28)

Proof. D is integrable and F is totally geodesic if and only if ∇UW ∈ Γ (D)
for any U,W ∈ Γ (D), that is

g(∇UW, X) = 0, ∀X ∈ Γ (D⊥).

By (4.1) this is equivalent to
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g̃(∇̃UW, X) = 0, ∀X ∈ Γ (D⊥).

Then, taking into account (2.1.27a) and (2.1.29), we write the above condition
as follows

g̃(∇̃U J̃W, J̃X) = 0, ∀X ∈ Γ (D⊥),

which, by (4.1), is equivalent to

g̃(B(U, J̃W ), J̃X) = 0, ∀X ∈ Γ (D⊥).

As J̃ is an automorphism of D we conclude that F exists and it is totally
geodesic if and only if (4.27) is satisfied. Next, we denote by ∇D the induced
connection by ∇ on D and by h the second fundamental form of the distribu-
tion D (see (1.5.21)). Then, by (4.1) and (1.5.17), we have

∇̃UV = ∇D
U V + h(U, V ) + B(U, V ), ∀U, V ∈ Γ (D). (4.29)

Thus, D is integrable and its leaves are totally geodesic immersed in (M̃, g̃, J̃)
if and only if ∇̃UV ∈ Γ (D) for any U, V ∈ Γ (D). By (4.29) this is equivalent
to

(a) h(U, V ) = 0 and

(b) B(U, V ) = 0, ∀U, V ∈ Γ (D).
(4.30)

But (4.30a) is the condition for F to be totally geodesic and hence it is
equivalent to (4.27). As (4.30b) implies (4.27), the proof of (ii) is complete.

Taking into account Corollary 4.5 and the assertion (ii) of Theorem 4.11,
we state the following corollary.

Corollary 4.12. Let M be a totally geodesic CR–submanifold of a Kähler
manifold (M̃, g̃, J̃). Then the J̃–invariant distribution D is integrable and M
is a ruled submanifold with respect to both foliations F and F⊥.

Now, following Chen [C81], we say that a CR–submanifold of a Kähler
manifold (M̃, g̃, J̃) is a CR–product if D is integrable and both foliations
F and F⊥ determined by D and D⊥ are totally geodesic. Then, according
to Theorems 4.4.3 and 4.4.2, both distributions D and D⊥ are parallel with
respect to the Levi–Civita connection ∇ on (M, g), and M is locally a Rieman-
nian product L×L⊥ where L and L⊥ are local leaves of D and D⊥ respectively.
From Corollary 4.12 we deduce the following.

Corollary 4.13. Any totally geodesic CR–submanifold of a Kähler manifold
is a CR–product.

Moreover, from (i) of Theorem 4.11 and (ii) of Theorem 4.1, we deduce
the following characterizations of a CR–product.
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Theorem 4.14. Let M be a CR–submanifold of a Kähler manifold (M̃, g̃, J̃).
Then M is a CR–product if and only if the second fundamental form of M
satisfies

B(X, U) ∈ Γ (µ), ∀X ∈ Γ (TM), U ∈ Γ (D). (4.31)

Corollary 4.15. Let M be an anti–holomorphic submanifold of a Kähler ma-
nifold (M̃, g̃, J̃). Then M is a CR–product if and only if

B(X, U) = 0, ∀X ∈ Γ (TM), U ∈ Γ (D). (4.32)

Next, let M̃(c) be a complex space form, that is M̃(c) is a Kähler
manifold (M̃, g̃, J̃) of constant holomorphic sectional curvature c. Then the
curvature tensor field R̃ of M̃(c) is given by

R̃(X, Y )Z =
c

4

{
g̃(Y, Z)X − g̃(X, Z)Y + g̃(Z, J̃Y )J̃X

−g̃(Z, J̃X)J̃Y + 2g̃(X, J̃Y )J̃Z
}

,
(4.33)

for any X, Y, Z ∈ Γ (TM̃(c)). If we denote by RD⊥
the curvature tensor of the

induced linear connection ∇D⊥
on D⊥ and by R the curvature tensor of the

Levi–Civita connection ∇ on (M, g), then by (1.6.3) we have

g(R(X, Y )Z, Z′) = g(RD⊥
(X, Y )Z, Z ′)

+ g(h⊥(X, Z), h⊥(Y, Z ′))

− g(h⊥(Y, Z), h⊥(X, Z ′)),

(4.34)

for any X,Y ∈ Γ (TM) and Z,Z ′ ∈ Γ (D⊥). Now, suppose that F⊥ is a totally
geodesic foliation, that is h⊥ = 0 on Γ (D⊥)×Γ (D⊥). In this case, (4.34) and
(4.5) imply

g̃(R̃(X, Y )Z,Z ′) = g(RD⊥
(X, Y )Z,Z ′)

+g(B(X, Z), B(Y, Z ′))

− g(B(Y, Z), B(X, Z ′)),

(4.35)

for any X,Y, Z, Z′ ∈ Γ (D⊥). If moreover, M is a totally real ruled CR–subma-
nifold then, by (4.13), we see that (4.35) becomes

g̃(R̃(X, Y )Z,Z ′) = g(RD⊥
(X, Y )Z,Z ′). (4.36)

Theorem 4.16. Let M be a totally real ruled CR–submanifold of a complex
space form M̃(c). Then the totally real foliation F⊥ on M is of constant
curvature c

4 , that is,

g(RD⊥
(X, Y )Y,X) =

c

4
, (4.37)
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for any two orthogonal unit vector fields X, Y ∈ Γ (D⊥).

Proof. It follows from (4.36), by using (4.33) and taking into account that
J̃D⊥ is a subbundle of TM⊥.

Now, if D is integrable and the foliation F determined by D is totally
geodesic, then from (1.6.3) we deduce that

g(R(U, V )W,W ′) = g(RD(U, V )W, W ′), (4.38)

for any U, V, W,W ′ ∈ Γ (D). If moreover, M is a ruled submanifold with
respect to F , then by using (4.38), (4.5) and (4.28) we deduce that

g̃(R̃(U, J̃U)J̃U, U) = g(RD(U, J̃U)J̃U, U),

for any U ∈ Γ (D). If we take U as unit vector field, by using (4.33) we deduce
that

g(RD(U, J̃U)J̃U, U) = c,

which means that any leaf of D is a complex space form of holomorphic
constant curvature c. Summing up this discussion and taking into account
Theorem 4.16 we can state the following.

Theorem 4.17. Let M be a CR–submanifold of a complex space form M̃(c).
If D is integrable and M is a ruled submanifold with respect to both foliations
F and F⊥, then M is a CR–product. Moreover, locally M is a Rieman-
nian product L×L⊥ where L is a complex space form of constant holomorphic
curvature c, and L⊥ is a real space form of constant curvature

c

4
·

The concept of CR–submanifold of a Kähler manifold has been extended to
submanifolds of manifolds endowed with various geometric structures like: lo-
cally conformal symplectic structures, contact metric structures, quaternionic
structures, etc. It could be both interesting and useful to extend the study
from this section to these structures.



6

A GAUGE THEORY ON A VECTOR
BUNDLE

As it is well known, gauge theory has started as a mathematical formalism to
provide a unified mathematical framework to describe the quantum field theo-
ries of electromagnetism, the weak interactions and the strong interactions.
The original challenge was (still is) for a framework that unifies these with
gravity as well.

Classically, gauge theories, used to deal with physical fields that live on a
4–dimensional Lorentz manifold (space time). The purpose of this chapter is to
present a generalization of classical gauge theory. More precisely, we construct
a gauge theory with respect to some physical fields defined on the total space
E of a vector bundle ξ = (E, π,M) over a smooth manifold M as a base
space. But, total spaces of vector bundles admit a natural foliation, namely
the foliation by fibers. Thus the theory presented in Sections 2.2, 2.3 and 2.4
to develop a tensor calculus on foliated manifolds can be used to investigate
physical fields on such total spaces. So the physical fields QA, A ∈ {1, ..., q}, in
this case will be expressed locally as QA(x1, ..., xp; t1, ..., tn) where (x1, .., xp)
are the local coordinates of a point x ∈ M , and the perturbation parameters
(t1, ..., tn) represent the local coordinates of a point in the fiber Ex = π−1(x).
In the first section we apply this tensor calculus theory to the particular case of
the total space of a vector bundle. Then we study the global gauge invariance
of Lagrangians on a vector bundle. In Section 6.3 we define the horizontal
and vertical gauge covariant derivatives and give a method to obtain a local
gauge invariant Lagrangian from a global gauge invariant Lagrangian. Also,
we construct the horizontal, mixed and vertical Lagrangians for gauge fields
and show that they are locally gauge invariant. In the last two sections we will
display the deep involvement of the Vrănceanu connection into this study. By
using it we obtain the equations of motion and the conservation laws for the
full Lagrangian of the gauge theory on a vector bundle. Also, we derive the
Bianchi identities for the strength fields of gauge fields. More about direction–
dependent gauge theories can be found in Bejancu [B88], [B89].

The gauge theory we develop in this chapter suggests that some physical
theories can be reconsidered to deal with a gauge theory that involves physical

255
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fields and Lagrangians that are functions which depend on more coordinates
than the space time coordinates. This happens, for example, in the theory of
supergravity as a generalization of the theory of gravity. This new theory uses
two families of coordinates: the Bose coordinates and the Fermi coordinates.

6.1 Adapted Tensor Fields on the Total Space
of a Vector Bundle

Let ξ = (E, π,M) be a vector bundle with M as a base space, E as the
total space and π : E → M as the projection mapping. Suppose M is a
p–dimensional manifold and ξ is of rank n, that is, the fibers Ex = π−1(x)
are n–dimensional for any x ∈ M . We choose the coordinates (xα, ti),
α ∈ {1, ..., p}, i ∈ {1, ..., n}, where (xα) are the local coordinates on M .
Then the transformation of coordinates on E is given by

(a) x̃α = x̃α(x1, ..., xp), (b) t̃i = Bi
j(x

1, ..., xp)tj , (1.1)

where Bi
j are real smooth functions locally defined on M and rank[Bi

j(x)] = n
on any coordinate neighbourhood.

Throughout this chapter we shall use the following ranges for indices:
α, β, γ, ... ∈ {1, ..., p}; i, j, k, ... ∈ {1, ..., n}; A,B, C, ... ∈ {1, ..., q} and
a, b, c, ... ∈ {1, ..., r}.

From (1.1) it follows that

(a)
∂

∂tj
= Bi

j(x)
∂

∂t̃i
, (b)

∂

∂xα
= Jβ

α(x)
∂

∂x̃β
+

∂Bi
j

∂xα
tj

∂

∂t̃i
, (1.2)

where we put

Jβ
α(x) =

∂x̃β

∂xα
· (1.3)

The tangent distribution to the foliation determined by the fibers of π is the
vertical distribution on E and it is denoted by V E (see Example 2.1.4). Then{

∂

∂ti

}
, i ∈ {1, ..., n}, is a local basis for Γ (V E). Next, suppose HE is a

complementary distribution to V E in TE, that is, we have the decomposition

TE = V E ⊕ HE. (1.4)

We call HE the horizontal distribution on E. The existence of HE is
guaranteed by the paracompactness of the manifold E. Now we apply the
tensor calculus we developed in Section 2.2 to the particular case of the fo-
liation determined by V E. Thus by (2.2.3) a local non–holonomic frame field

on Γ (HE) is
{

δ

δxα

}
, α ∈ {1, .., p}, given by
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δ

δxα
=

∂

∂xα
− Ai

α

∂

∂ti
, (1.5)

where Ai
α are np functions locally defined on E satisfying (see (2.2.5))

Aj
αBi

j = Ãi
βJβ

α +
∂Bi

j

∂xα
tj , (1.6)

with respect to (1.1). Moreover, we have

δ

δxα
= Jβ

α

δ

δx̃β
· (1.7)

A smooth section of HE (resp. V E) is called a horizontal (resp. vertical)
vector field on E. Similarly, a smooth section of the dual vector bundle
HE∗ (resp. V E∗) is called a horizontal (resp. vertical) 1–form on E.
More generally, an adapted tensor field of type (m, s; �, t) on E is an
F (E) − (m + � + s + t)–multilinear mapping

T : (Γ (V E∗))m×(Γ (HE∗))�×(Γ (V E))s×(Γ (HE))t −→ F (E).

By using another approach, Miron [Mir82] introduced such geometric objects
in order to develop a Finsler geometry on a vector bundle.

Locally, a horizontal vector field X and a vertical vector field Y on E are
expressed as follows

(a) X = Xα(x, t)
δ

δxα
and (b) Y = Y i(x, t)

∂

∂ti
, (1.8)

where Xα and Y i satisfy

X̃β = Jβ
αXα and (b) Ỹ j = Bj

i Y
i. (1.9)

Now, we denote by {δti, dxα} the dual semi–holonomic frame field of{
∂

∂ti
, δ

δxα

}
, where we put

δti = dti + Ai
αdxα. (1.10)

Then we have (see (2.2.12))

(a) δt̃i = Bi
jδt

j and (b) dx̃β = Jβ
αdxα, (1.11)

with respect to (1.1). Thus a horizontal 1–form ω and a vertical 1–form Ω are
locally expressed as follows:

(a) ω = ωαdxα and (b) Ω = Ωiδt
i, (1.12)

where ωα and Ωi satisfy
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(a) ωα = Jβ
α ω̃β and (b) Ωj = Bi

jΩ̃i. (1.13)

In general, an adapted tensor field T of type (m, s; �, t) is locally represented
by nm+sp�+t functions T i1...imα1...α�

j1...jsβ1...βt
satisfying

T̃ k1...kmγ1...γ�

h1...hsε1...εt
Bh1

j1
· · ·Bhs

js
Jε1

β1
· · ·Jεt

βt

= T i1...imα1...α�

j1...jsβ1...βt
Bk1

i1
· · ·Bkm

im
Jγ1

α1
· · ·Jγ�

α�
,

(1.14)

with respect to (1.1). Certainly, horizontal and vertical vector fields and 1–
forms are examples of adapted tensor fields on E. Also, according to Lemma
2.2.4

Tα
i
β =

δAi
α

δxβ
− δAi

β

δxα
, i ∈ {1, ..., n},
α, β ∈ {1, ..., p}, (1.15)

define an adapted tensor field on E of type (1, 0; 0, 2). This is the integrability
tensor of the horizontal distribution HE since we have (cf. (2.2.18))[

δ

δxα
, δ

δxβ

]
= Tα

i
β

∂

∂ti
· (1.16)

Next, let ∇ be an adapted linear connection on E, that is, we have (cf.
(1.2.1) and (1.2.2))

(a) ∇ZX ∈ Γ (HE) and (b) ∇ZY ∈ Γ (V E), (1.17)

for any X ∈ Γ (HE), Y ∈ Γ (V E) and Z ∈ Γ (TM). Then we put

(a) ∇ δ

δxβ

δ

δxα
= Fα

γ
β

δ

δxγ
, (b) ∇ ∂

∂ti

δ

δxα
= Lα

γ
i

δ

δxγ
, (1.18)

and
(a) ∇ δ

δxβ

∂

∂ti
= Di

k
β

∂

∂tk
, (b) ∇ ∂

∂tj

∂

∂ti
= Ci

k
j

∂

∂tk
· (1.19)

As we know from Section 2.3, the adapted linear connection ∇ defines two
types of covariant derivatives for adapted tensor fields: the transversal and
structural covariant derivatives. Here, according to the names of V E and HE,
we call them the horizontal and vertical covariant derivatives. Thus, if X is
a horizontal vector field given by (1.8a), then its horizontal and vertical
covariant derivatives are given by

Xα|β =
δXα

δxβ
+ XγFγ

α
β , (1.20)

and
Xα‖i =

∂Xα

∂ti
+ XγLγ

α
i, (1.21)

respectively. Similarly, the horizontal and vertical covariant derivatives
of a vertical vector field Y given by (1.8b) are given by
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Y i|α =
δY i

δxα
+ Y jDj

i
α, (1.22)

and

Y i‖j =
∂Y i

∂tj
+ Y kCk

i
j , (1.23)

respectively. For the horizontal 1–form ω given by (1.12a) we have

(a) ωα|β =
δωα

δxβ
− ωγFα

γ
β , (b) ωα‖i =

∂ωα

∂ti
− ωγLα

γ
i. (1.24)

Similarly, for the vertical 1–form Ω from (1.12b) we obtain

(a) Ωi|α =
δΩi

δxα
− ΩkDi

k
α, (b) Ωi‖j =

∂Ωi

∂tj
− ΩkCi

k
j . (1.25)

The general formulas (2.3.17) and (2.3.18) for transversal and structural co-
variant derivatives of an adapted tensor field on a foliated manifold give us
the corresponding formulas for horizontal and vertical covariant derivatives on
E. We only write them for an adapted tensor field T with local components
T iα

jβ . Thus, applying (2.3.17) and using (1.18) and (1.19), we obtain for the
horizontal covariant derivative of T the following formula

T iα
jβ|γ =

δT iα
jβ

δxγ
+ T kα

jβ Dk
i
γ + T iε

jβFε
α

γ − T iα
kβDj

k
γ − T iα

jε Fβ
ε
γ . (1.26)

Similarly, the vertical covariant derivative of T is given by

T iα
jβ‖k =

∂T iα
jβ

∂tk
+ Thα

jβ Ch
i
k + T iε

jβLε
α

k − T iα
hβCj

h
k − T iα

jε Lβ
ε
k. (1.27)

The local components of the torsion tensor field of the adapted linear connec-
tion ∇ = {Fα

γ
β , Lα

γ
i, Di

k
α, Ci

k
j} are given by Tα

i
β from (1.15) and

(a) Ti
k

j = Ci
k

j − Cj
k

i, (b) Tα
k

j =
∂Ak

α

∂tj
− Dj

k
α,

(c) Tα
γ

j = Lα
γ

j , (d) Tα
γ

β = Fα
γ

β − Fβ
γ

α.

(1.28)

Next, we suppose that the total space E of the vector bundle ξ is en-
dowed with a semi–Riemannian metric g and the vertical distribution is also
semi–Riemannian (non–degenerate) with respect to g. Then we choose the
complementary orthogonal distribution to V E in TE as horizontal distribu-
tion HE. Thus HE is semi–Riemannian too. In this case the functions Ai

α

from (1.5) are determined by g as follows (see (3.1.20))

Ai
α = gijgjα, (1.29)

where
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gjα = g

(
∂

∂tj
, ∂

∂xα

)
,

and gij are the entries of the inverse matrix of [gij ], where

gij = g

(
∂

∂ti
, ∂

∂tj

)
· (1.30)

We also put

hαβ = g

(
δ

δxα
, δ

δxβ

)
· (1.31)

Now, we consider the Levi–Civita connection ∇ on (E, g) and the Vrănceanu
connection ∇∗ with respect to ∇ (see Section 3.1), which is an adapted linear
connection on E. Thus, ∇∗ is given by (see (3.1.12))

∇∗
XY = Q∇QXQY + Q′∇Q′XQ′Y + Q[Q′X,QY ] + Q′[QX,Q′Y ], (1.32)

for any X, Y ∈ Γ (TE), where Q and Q′ are the projection morphisms of TE
on V E and HE respectively. The local coefficients of ∇∗ are given by (see
Proposition 3.1.2)

(a) Ci
k

j =
1
2

gkh

(
∂ghi

∂tj
+

∂ghj

∂ti
− ∂gij

∂th

)
, (b) Di

k
α =

∂Ak
α

∂ti
,

(c) Lα
γ

i = 0, (d) Fα
γ

β =
1
2

hβµ

(
δhµα

δxβ
+

δhµβ

δxα
− δhαβ

δxµ

)
,

(1.33)

where hβµ are the entries of the inverse matrix of [hαβ ]. Thus, by (1.28) and
(1.33), all the local components of the torsion tensor field of ∇∗ vanish, except
Tα

i
β given by (1.15). We note that {hαβ} and {gij} are the local components

of an adapted tensor field of type (0, 0; 0, 2) and (0, 2; 0, 0) respectively on E.
Moreover, from Proposition 3.1.8 we deduce that the Vrănceanu connection
∇∗ is h–metrical and v–metrical, that is, we have

(a) hαβ|γ = 0 and (b) gij‖k = 0. (1.34)

Finally, by (1.33b) and (2.3.21), we deduce that[
δ

δxα
, ∂

∂ti

]
=

∂Ak
α

∂ti
∂

∂tk
= Di

k
α

∂

∂tk
· (1.35)

The above properties of the Vrănceanu connection will enable us to develop,
in the remaining part of this chapter, a gauge theory on the total space of a
vector bundle.
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6.2 Global Gauge Invariance of Lagrangians
on a Vector Bundle

Let ξ = (E, π, M) be a vector bundle and QA : M → IR, A ∈ {1, ..., q},
be some physical fields on the base manifold M . As it is well known (see
Chaichian–Nelipa [CN84]), the simplest Lagrangian on M is of the following
form

L0(x) = L

(
QA(x),

∂QA

∂xα
(x)

)
, (2.1)

where L is a real smooth function on a domain of IRq(1+p).
Now, we consider some scalar fields QA(x, t), A ∈ {1, ..., q}, on E. Then

we note that by (1.7) the transformation of
δQA

δxα
(x, t) with respect to (1.1)

on E is the same as the transformation of
∂QA

∂xα
(x) with respect to (1.1a) on

M . This enables us to obtain from (2.1) a Lagrangian on E given by

L′
0(x, t) = L

(
QA(x, t),

δQA

δxα
(x, t)

)
, (2.2)

where, this time, QA : E → IR. Thus we have a general method to con-
struct Lagrangians on the total space of a vector bundle from Lagrangians on
the base space, provided there exists on E a horizontal distribution HE. As
(1.5) shows, the Lagrangian (2.2) contains both types of partial derivatives
∂QA

∂xα
(x, t) and

∂QA

∂ti
(x, t) but incorporated in

δQA

δxα
(x, t). Next, we suppose

that E is endowed with a semi–Riemannian metric g such that V E is a non–
degenerate distribution. Then we consider a Lagrangian on E of the following
general form

L0(x, t) = L
(

QA(x, t),
δQA

δxα
(x, t),

∂QA

∂ti
(x, t)

)
, (2.3)

where L is a smooth function on a domain of IRs, s = q(1 + p + n). As we
have seen in Section 6.1, hαβ and gij determine some adapted tensor fields on
E. Thus, according to (1.14), we have

hαβ(x, t) = h̃γµ(x̃, t̃)Jγ
α(x)Jµ

β (x), (2.4)

and
gij(x, t) = g̃hk(x̃, t̃)Bh

i (x)Bk
j (x), (2.5)

with respect to the change of coordinates (1.1) on E. Also, it is easy to see

from (1.7) and (1.2a) that
δQA

δxα
and

∂QA

∂ti
are the local components of a

horizontal and vertical 1–form respectively on E, for each A ∈ {1, ..., q}. Now,
we define locally on E and M the functions:
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(a) H(x, t) = (| det[hαβ(x, t)]|)1/2,

(b) V (x, t) = (| det[gij(x, t)]|)1/2,
(2.6)

and
(a) J(x) = det[Jβ

α(x)], (b) B(x) = det[Bj
i (x)], (2.7)

respectively. Then, by using (2.4)–(2.7), we obtain

(a) H(x, t) = H̃(x̃, t̃)|J(x)| and (b) V (x, t) = Ṽ (x̃, t̃)|B(x)|. (2.8)

Further, we define locally the function

L∗
0(x, t) = L0(x, t)H(x, t)V (x, t). (2.9)

Then, by using (2.8) and (2.9), we deduce that

L∗
0(x, t) = L∗

0(x̃, t̃)J(x)B(x), (2.10)

provided E is an orientable manifold. Thus L∗
0(x, t) is a Lagrangian density

on E which enables us to define the functional

I(Ω) =
∫

Ω

L∗
0(x, t)dx1 ∧ · · · ∧ dxp ∧ dt1 ∧ · · · ∧ dtn, (2.11)

where Ω is a compact domain of E. By using (1.10) it is easy to see that

dx1 ∧ · · · ∧ dxp ∧ dt1 ∧ · · · ∧ dtn = dx1 ∧ · · · ∧ dxp ∧ δt1 ∧ · · · δtn,

which together with (2.10) implies that I(Ω) is independent of coordinates on
E.

Next, the variational principle

δ(I(Ω)) = 0

implies the following Euler–Lagrange equations for QA(x, t) :

∂L∗
0

∂QA
− ∂

∂xα

⎛⎜⎜⎝ ∂L∗
0

∂

(
∂QA

∂xα

)
⎞⎟⎟⎠− ∂

∂ti

⎛⎜⎜⎝ ∂L∗
0

∂

(
∂QA

∂ti

)
⎞⎟⎟⎠ = 0. (2.12)

In (2.12) and in some other lengthy formulas we omit the point (x, t) where
the geometric objects are considered. Also, in (2.12) we have summations
about both indices α ∈ {1, ..., p} and i ∈ {1, ..., n}. We want now to express
(2.12) by using horizontal and vertical covariant derivatives with respect to
the Vrănceanu connection. To this end we put

Qhα
A =

∂L
∂

(
δQA

δxα

) , (2.13)
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and
Qvi

A =
∂L

∂

(
∂QA

∂ti

) � · (2.14)

The star in (2.14) means that we take partial derivatives of L only with respect

to variables
∂QA

∂ti
which do not appear in the expression of

δQA

δxα
· Then, by

using (1.2a) and (1.7), we deduce that

(a) Q̃hβ
A = Qhα

A Jβ
α(x) and (b) Q̃vj

A = Qvi
A Bj

i (x). (2.15)

Hence
(a) Qh

A = Qhα
A

δ

δxα
and (b) Qv

A = Qvi
A

∂

∂ti
, (2.16)

are q horizontal and vertical vector fields on E respectively. Now we can state
the following.

Theorem 2.1. The Euler–Lagrange equations for the scalar fields QA(x, t),
A ∈ {1, ..., q}, can be expressed in terms of the horizontal and vertical cova-
riant derivatives induced by the Vrănceanu connection on E as follows

∂L
∂QA

− Qhα
A |α − Qvi

A ‖i = EA, (2.17)

where we put

EA =
{

1
HV

δ(HV )
δxα

− Di
i
α − Fα

γ
γ

}
Qhα

A

+
{

1
HV

∂(HV )
∂tj

− Cj
i
i

}
Qvj

A .

(2.18)

Proof. First, by using (2.9) and (2.3), we obtain

∂L∗
0

∂QA
=

∂L
∂QA

HV. (2.19)

Next, by using (2.9), (1.5) and (2.13), we deduce that

∂L∗
0

∂

(
∂QA

∂xα

) =
∂L

∂

(
δQA

δxα

) HV = Qhα
A HV. (2.20)

Then, taking into account (1.5) and (1.20), from (2.20) we infer that
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∂

∂xα

⎛⎜⎜⎝ ∂L∗
0

∂

(
∂QA

∂xα

)
⎞⎟⎟⎠ =

(
δQhα

A

δxα
+ Ai

α

∂Qhα
A

∂ti

)
HV

+
(

δ(HV )
δxα

+ Ai
α

∂(HV )
∂ti

)
Qhα

A

=
(

Qhα
A |α − Qhγ

A Fγ
α

α + Ai
α

∂Qhα
A

∂ti

)
HV

+
(

δ(HV )
δxα

+ Ai
α

∂(HV )
∂ti

)
Qhα

A .

(2.21)

In the next derivative we must be careful that
∂QA

∂ti
might appear in the

expression of
δQA

δxα
· Thus, by (2.9) and (1.5), we obtain

∂L∗
0

∂

(
∂QA

∂ti

) = − ∂L
∂

(
δQA

δxα

) Ai
αHV +

∂L
∂

(
∂QA

∂ti

) � (HV )

= −Ai
αQhα

A HV + Qvi
A HV.

Then take partial derivatives with respect to ti and by using (1.22) and (1.33b)
we deduce that

∂

∂ti

⎛⎜⎜⎝ ∂L∗
0

∂

(
∂QA

∂ti

)
⎞⎟⎟⎠ = −Di

i
αQhα

A HV − Ai
α

∂Qhα
A

∂ti
HV

−Ai
αQhα

A

∂(HV )
∂ti

+
(
Qvi

A ‖i + Qvj
A Cj

i
i

)
HV + Qvi

A

∂(HV )
∂ti

·

(2.22)

Finally, we use (2.19), (2.21) and (2.22) in (2.12) and taking into account
(2.18) we obtain (2.17).

Next, we consider an r–dimensional Lie group G and denote by G∗ its Lie
algebra. Let V be a real q–dimensional vector space and g�(V ) be the Lie
algebra of all endomorphisms of V with the bracket operation

[A,B] = AB − BA, ∀A,B ∈ g�(V ).

In what follows in this chapter we suppose that G∗ has a q–dimensional
representation ρ on V , that is, ρ is a homomorphism of Lie algebras of G∗

into g�(V ). We fix a basis {Xa}, a ∈ {1, ..., r}, of the Lie algebra G∗ and
express any X ∈ G∗ by X = εaXa, where εa, a ∈ {1, ..., r}, are real constants.
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Now, a global gauge action of G on the physical fields QA(x, t),
A ∈ {1, ..., q}, is given by the infinitesimal transformations

Q
′A(x, t) = QA(x, t) + δ(QA(x, t)), (2.23)

where we put
δ(QA(x, t)) = εa[Xa]ABQB(x, t). (2.24)

Here, by [Xa]AB we denote the q×q matrix corresponding to Xa by the

q–dimensional representation ρ. Applying the operators
δ

δxα
and

∂

∂ti
from

the semi–holonomic frame field
{

∂

∂ti
, δ

δxα

}
to (2.23) and taking into account

(2.24), we obtain
δQ

′A

δxα
=

δQA

δxα
+ δ

(
δQA

δxα

)
, (2.25)

and
∂Q

′A

∂ti
=

∂QA

∂ti
+ δ

(
∂QA

∂ti

)
, (2.26)

where we put

δ

(
δQA

δxα

)
= εa[Xa]AB

δQB

δxα
, (2.27)

and

δ

(
∂QA

∂ti

)
= εa[Xa]AB

∂QB

∂ti
, (2.28)

respectively. Next, we define locally the functions

Jhα
a = −Qhα

A [Xa]ABQB , (2.29)

and
Jvi

a = −Qvi
A [Xa]ABQB . (2.30)

As Qhα
A and Qvi

A are the local components of horizontal and vertical vector
fields on E, we conclude that

(a) Jh
a = Jhα

a

δ

δxα
and (b) Jv

a = Jvi
a

∂

∂ti
, (2.31)

are horizontal and vertical vector fields on E respectively.
We call Jh

a and Jv
a , a ∈ {1, ..., r}, the horizontal and vertical currents

on E respectively. If L0(x, t) from (2.3) is invariant with respect to the infi-
nitesimal transformations (2.23), (2.25) and (2.26) we say that it is globally
gauge G–invariant. Then we prove the following.

Proposition 2.2. L0(x, t) is globally gauge G–invariant if and only if for any
a ∈ {1, ..., r} we have
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∂L

∂QA
QB + Qhα

A

δQB

δxα
+ Qvi

A

∂QB

∂ti

}
[Xa]AB = 0. (2.32)

Proof. L0 is globally gauge G–invariant if and only if δL = 0, which is
equivalent to

∂L
∂QA

δQA +
∂L

∂

(
δQA

δxα

) δ

(
δQA

δxα

)
+

∂L
∂

(
∂QA

∂ti

) � δ

(
∂QA

∂ti

)
= 0. (2.33)

Now, we use (2.24), (2.27), (2.28), (2.13) and (2.14) in (2.33) and obtain{
∂L

∂QA
QB + Qhα

A

δQB

δxα
+ Qvi

A

∂QB

∂ti

}
εa[Xa]AB = 0. (2.34)

As (2.34) must be valid for any X = εaXa, we conclude that it is equivalent
to (2.32).

Proposition 2.3. Let QA(x, t) be physical fields satisfying the Euler–Lagran-
ge equations (2.17). If the Lagrangian L0(x, t) from (2.3) is globally gauge
G–invariant then the horizontal and vertical currents satisfy the identities

Jhα
a |α + Jvi

a ‖i = EA[Xa]ABQB , ∀ a ∈ {1, ..., r}. (2.35)

Proof. First, multiplying (2.17) by [Xa]ABQB and taking summation about
A, we obtain

(
Qhα

A |α + Qvi
A ‖i

)
[Xa]ABQB =

(
∂L

∂QA
− EA

)
[Xa]ABQB . (2.36)

Then take the horizontal covariant derivative in (2.29) and the vertical cova-
riant derivative in (2.30) and, by adding them, we deduce that

Jhα
a |α + Jvi

a ‖i = − (Qhα
A |α + Qvi

A ‖i

)
[Xa]ABQB

−
(

Qhα
A

δQB

δxα
+ Qvi

A

∂QB

∂ti

)
[Xa]AB .

(2.37)

Finally, by using (2.36) in (2.37) and taking into account (2.32), we obtain
(2.35).

The identities (2.35) are called the conservation laws for the global
gauge invariance of the Lagrangian L0(x, t) from (2.3).

As it is well known, many physical theories are developed on a cartesian
product of a manifold (sometimes supposed to be compact) and a flat space.
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For this reason we think that it is instructive to apply the above theory to
a trivial vector bundle ξ whose total space is E = M×IRn. In this case the
coordinate transformations are given by

(a) x̃α = x̃α(x1, ..., xp) and (b) t̃j = Bj
i t

i, (2.38)

where Bj
i are real constants such that det[Bj

i ] �= 0. Suppose that IRn is
equipped with a semi–Euclidean metric g = [gij ] and M carries a semi–Rie-
mannian metric h = [hαβ(x)]. Take on E the semi–Riemannian metric g×h
and from (1.29) obtain Ai

α = 0. Thus, from (1.33), we deduce that Ci
k

j = 0,
Di

k
α = 0 and

Fα
γ

β =
1
2

hγµ(x)
{

∂hµα

∂xβ
+

∂hµβ

∂xα
− ∂hαβ

∂xµ

}
· (2.39)

Hence, in this case the Vrănceanu connection on E induces the Levi–Civita
connections on both M and IRn. Moreover, it is easy to check that the Euler–
Lagrange equations (2.17) and the conservation laws (2.35) become

∂L
∂QA

− Qhα
A |α − Qvi

A ‖i = 0, (2.40)

and
Jhα

a |α + Jvi
a ‖i = 0, (2.41)

respectively, since EA = 0 on E for any A ∈ {1, ..., q}. In this case, the vertical
covariant derivative Qvi

A ‖j reduces to the partial derivative with respect to tj .

6.3 Local Gauge Invariance on a Vector Bundle

In the present section we suppose that the Lie group G acts locally on the
physical fields QA(x, t), A ∈ {1, ..., q}. This means that the constants εa,
a ∈ {1, ..., r} from the previous section are now replaced by smooth functions
εa(x, t) locally defined on E. Then the local gauge action of G on QA(x, t)
is given by

Q
′A(x, t) = QA(x, t) +

∗
δ(QA(x, t)), (3.1)

where we put
∗
δ(QA(x, t)) = εa(x, t)[Xa]ABQB(x, t). (3.2)

In this case we obtain

δQ
′A

δxα
=

δQA

δxα
+ εa[Xa]AB

δQB

δxα
+

δεa

δxα
[Xa]AB QB , (3.3)

and
∂Q

′A

∂ti
=

∂QA

∂ti
+ εa[Xa]AB

∂QB

∂ti
+

∂εa

∂ti
[Xa]AB QB . (3.4)
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Thus, if the Lagrangian from (2.3) is globally gauge invariant with respect to
(2.23), (2.25) and (2.26), it may fail to be locally gauge invariant with respect
to (3.1), (3.3) and (3.4).

In order to obtain a local gauge invariant Lagrangian from a global gauge
invariant Lagrangian L0(x, t) given by (2.3) we introduce new adapted tensor
fields and some special covariant derivatives. First, we suppose that on E
there exist r horizontal 1–forms and r vertical 1–forms given locally by

(a) Ha = Ha
α(x, t)dxα and (b) V a = V a

i (x, t) δti, (3.5)

respectively. We call {Ha} and {V a}, a ∈ {1, ..., r}, the horizontal gauge
fields and the vertical gauge fields respectively. Now we assume that the
local action of G on the above gauge fields is given by

∗
δ(Ha

α(x, t)) = εb(x, t)Cb
a

cH
c
α(x, t) +

δεa

δxα
(x, t), (3.6)

and ∗
δ(V a

i (x, t)) = εb(x, t)Cb
a

cV
c
i (x, t) +

∂εa

∂ti
(x, t), (3.7)

where Cb
a

c are the structure constants of the Lie algebra of G with respect
to the basis {Xa}, that is we have

[Xb, Xc] = Cb
a

cXa. (3.8)

Elementary properties of the Lie bracket imply that (cf. Helgason, [Hel01],
p.136)

(a) Cb
a

c = −Cc
a

b,

(b) Cb
e
c Ce

a
d + Cc

e
d Ce

a
b + Cd

e
b Ce

a
c = 0.

(3.9)

On the other hand, for the physical fields QA(x, t) we define the horizontal
gauge covariant derivative

Dh
δ

δxα
QA(x, t) =

δQA

δxα
(x, t) − Ha

α(x, t)[Xa]ABQB(x, t), (3.10)

and the vertical gauge covariant derivative

Dv
∂

∂ti
QA(x, t) =

∂QA

∂ti
(x, t) − V a

i (x, t)[Xa]ABQB(x, t). (3.11)

To simplify the notation, we put

Dh
αQA(x, t) = Dh

δ
δxα

QA(x, t) and Dv
i QA(x, t) = Dv

∂

∂ti
QA(x, t).

Then we prove the following.
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Proposition 3.1.

(i) For each A ∈ {1, ..., q}, Dh
αQA and Dv

i QA are the local components of the
horizontal and vertical 1–forms:

(a) DhQA = Dh
αQAdxα and (b) DvQA = Dv

i QAδti,

respectively.
(ii)The local actions of the Lie group G on the gauge covariant derivatives

are given by the following homogeneous transformations:

∗
δ(Dh

αQA)(x, t) = εa(x, t)[Xa]ABDh
αQB(x, t), (3.12)

and ∗
δ(Dv

i QA)(x, t) = εa(x, t)[Xa]ABDv
i QB(x, t). (3.13)

Proof. From (3.10) we deduce that Dh
αQA are the local components of some

horizontal 1–forms since
δQA

δxα
, A ∈ {1, ..., q}, and Ha

α, a ∈ {1, ..., r}, are so.

Similarly, from (3.11) it follows that Dv
i QA are the local components of some

vertical 1–forms. This proves (i). Next, from (3.3) and (3.4) we infer that

∗
δ

(
δQA

δxα

)
= εa[Xa]AB

δQB

δxα
+

δεa

δxα
[Xa]ABQB , (3.14)

and
∗
δ

(
∂QA

∂ti

)
= εa[Xa]AB

∂QB

∂ti
+

∂εa

∂ti
[Xa]ABQB . (3.15)

Then, we apply the local gauge action operator
∗
δ to (3.10) and by using (3.14),

(3.6) and (3.2), we obtain

∗
δ(Dh

αQA) =
∗
δ

(
δQA

δxα

)
−

∗
δ(Ha

α)[Xa]ABQB − Ha
α[Xa]AB

∗
δQB

= εa[Xa]AB
δQB

δxα
− εbHc

αCb
a

c[Xa]ACQC − εbHc
α[Xc]AB [Xb]BCQC .

(3.16)

Now, since G has a q–dimensional representation, from (3.8), we deduce that

Cb
a

c[Xa]AC = [Xb]AB [Xc]BC − [Xc]AB [Xb]BC . (3.17)

Thus (3.12) follows from (3.16) by using (3.17). Similarly, by using (3.11),
(3.7), (3.2) and (3.15), we obtain (3.13).

Next, we consider the Lagrangian

L′
0(x, t)=L(QA(x, t), Dh

αQA(x, t), Dv
i QA(x, t)), (3.18)
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where L is the same function we considered in the global gauge invariant

Lagrangian given by (2.3). If
∗
δL′

0(x, t) = 0, then we say that L′
0 is locally

gauge G–invariant.

Proposition 3.2. If the Lagrangian L0(x, t) from (2.3) is globally gauge G–
invariant, then L′

0(x, t) given by (3.18) is locally gauge G–invariant.

Proof. By direct calculations, using (3.2), (3.12) and (3.13), we obtain

∗
δL′

0(x, t) =
∂L

∂QA

∗
δQA +

∂L
∂(Dh

αQA)

∗
δ(Dh

αQA) +
∂L

∂(Dv
i QA)

∗
δ(Dv

i QA)

=
(

∂L
∂QA

QB +
∂L

∂(Dh
αQA)

Dh
αQB +

∂L
∂(Dv

i QA)
Dv

i QB

)
[Xa]ABεa.

Then, taking into account (2.32), we deduce that
∗
δL′

0(x, t) = 0, that is, L′
0(x, t)

is locally gauge G–invariant.

In conclusion, we may say that from a globally gauge G–invariant Lagran-
gian L0(x, t) we obtain a locally gauge G–invariant Lagrangian by a simple

replacement of
δQA

δxα
and

∂QA

∂ti
from L0 by Dh

αQA and Dv
i QA respectively.

Now, by means of the gauge fields and the Vrănceanu connection on E,
we define locally the following functions

Ra
αβ =

δHa
α

δxβ
− δHa

β

δxα
− Cb

a
cH

c
αHb

β + Tα
i
βV a

i , (3.19)

P a
αi =

∂Ha
α

∂ti
− δV a

i

δxα
− Cb

a
cH

c
αV b

i + Di
k

αV a
k , (3.20)

Sa
ij =

∂V a
i

∂tj
− ∂V a

j

∂ti
− Cb

a
cV

c
i V b

j , (3.21)

where Tα
i
β and Di

k
α are given by (1.15) and (1.33b) respectively.

Proposition 3.3. For each a ∈ {1, ..., r}, the functions Ra
αβ , P a

αi and Sa
ij

define the adapted tensor fields Ra, P a and Sa of type (0, 0; 0, 2), (0, 1; 0, 1)
and (0, 2; 0, 0) on E, respectively.

Proof. By using (1.13a) for the horizontal gauge fields, we obtain

δHa
α

δxβ
=

δH̃a
γ

δx̃ε
Jγ

αJε
β + H̃a

γ

∂2x̃γ

∂xα∂xβ
, (3.22)

with respect to (1.1). Next, we apply (1.13b) for the vertical gauge fields V a
i

and (1.14) for Tα
i
β , and obtain
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Tα
i
βV a

i = Tα
i
βBj

i Ṽ
a
j = T̃γ

j
εJ

γ
αJε

βṼ a
j . (3.23)

Then, by using (3.22) and (3.23) in (3.19), we deduce that

Ra
αβ = R̃a

γεJ
γ
αJε

β ,

that is, Ra
αβ define an adapted tensor field of type (0, 0; 0, 2). Now, applying

the operators
∂

∂ti
and

δ

δxα
to (1.13a) and (1.13b) for Ha

α and V a
i respectively,

and by using (1.7) and (1.2a), we infer that

∂Ha
α

∂ti
=

∂H̃a
β

∂t̃j
Bj

i J
β
α , (3.24)

and
δV a

i

δxα
=

δṼ a
j

δx̃γ
Jγ

αBj
i + Ṽ a

j

δ

δxα
(Bj

i ). (3.25)

We follow the transformations (2.3.11) for Di
k

α and obtain

Di
k

αV a
k = Di

k
αBj

kṼ a
j = D̃h

j
βBh

i Jβ
α Ṽ a

j + Ṽ a
j

δ

δxα
(Bj

i ). (3.26)

By direct calculations, using (3.24)–(3.26) into (3.20), we deduce that P a
αi

are the components of an adapted tensor field of type (0, 1; 0, 1). Similarly,
it follows that Sa

ij define an adapted tensor field of type (0, 2; 0, 0) for any
a ∈ {1, ..., r}.

We call the tensor fields Ra = (Ra
αβ), P a = (P a

αi) and Sa = (Sa
ij),

a ∈ {1, ..., r}, the horizontal, mixed and vertical strength fields for the
gauge theory we develop on the total space E of the vector bundle ξ.

Now, in order to construct some Lagrangians for the gauge fields
Ha = (Ha

α) and V a = (V a
i ) we suppose that E is endowed with a semi–Rie-

mannian metric g, and V E is a semi–Riemannian distribution with respect to
g. As in Section 6.1, we denote by {gij} and {hαβ} (see (1.30) and (1.31)) the
local components of the semi–Riemannian metrics induced by g on V E and
HE respectively. Also, we need some concepts and results from the theory of
Lie algebras. First, for any X ∈ G∗, we have the linear transformation

ad X : G∗ → G∗, (adX)(Y ) = [X, Y ], ∀Y ∈ G∗. (3.27)

It is easy to check that ad X is a homomorphism of the Lie algebra G∗. Hence
X → ad X is a representation of G∗ on G∗. In the literature this representation
is known as the adjoint representation of G∗. Then, we define the mapping

K : G∗×G∗ → IR; K(X, Y ) = Tr(adX ad Y ), ∀X, Y ∈ G∗, (3.28)

where Tr represents the trace operator. It is easy to see that K is a symmetric
bilinear form on G∗. Moreover, K satisfies (cf. Helgason [Hel01], p.131)
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K(X, [Y,Z]) = K(Y, [Z, X]) = K(Z, [X, Y ]), (3.29)

for any X, Y, Z ∈ G∗. The form K is called the Killing form of G∗. If Cb
a

c

are the structure constants of G∗ with respect to the basis {Xa}, a ∈ {1, ..., r},
then from (3.27) and (3.28) it follows that K is given by the matrix [Kab],
where

Kab = Ca
c
d Cb

d
c. (3.30)

Also, (3.29) is equivalent to

Kad Cb
d

c = Kbd Cc
d

a = Kcd Ca
d

b. (3.31)

If K is non–degenerate, then G∗ (resp. G) is called a semisimple Lie algebra
(resp. Lie group). From now on we consider that G is a semisimple compact
Lie group. In this case, the Killing form is negative definite.

Next, on each coordinate neighbourhood of E we define the smooth func-
tions:

LH(x, t) = −1
4

Kabh
αβ(x, t)hγε(x, t)Ra

αγ(x, t)Rb
βε(x, t), (3.32)

LHV (x, t) = −1
2

Kabh
αβ(x, t)gij(x, t)P a

αi(x, t)P b
βj(x, t), (3.33)

LV (x, t) = −1
4

Kabg
ij(x, t)ghk(x, t)Sa

ih(x, t)Sb
jk(x, t). (3.34)

Taking into account that hαβ and gij are the local components of some
adapted tensor fields of type (0, 0; 2, 0) and (2, 0; 0, 0) respectively, and using
Proposition 3.3, we conclude that LH , LHV and LV define three Lagrangians
on E which we call the horizontal, mixed and vertical Lagrangian res-
pectively, for the gauge fields Ha and V a. Moreover, we prove the following
important result.

Theorem 3.4. The horizontal, mixed and vertical Lagrangians for the gauge
fields on the total space of a vector bundle are locally gauge G–invariant.

Proof. First, by using (3.6), we obtain

∗
δ

(
δHa

α

δxβ

)
=

δεb

δxβ
Cb

a
cH

c
α + εb Cb

a
c

δHc
α

δxβ
+

δ

δxβ

(
δεa

δxα

)
, (3.35)

and
∗
δ(Cb

a
cH

c
αHb

β)

= εb(Ce
c
bCc

a
d + Cb

c
dCc

a
e)He

αHd
β + Cb

a
c

(
δεc

δxα
Hb

β +
δεb

δxβ
Hc

α

)
·

(3.36)

By the identity (3.9b), (3.36) becomes
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∗
δ(Cb

a
cH

c
αHb

β) = εbCb
a

cCd
c
eH

e
αHd

β + Cb
a

c

(
δεc

δxα
Hb

β +
δεb

δxβ
Hc

α

)
· (3.37)

On the other hand, by (3.7) we deduce that

Tα
i
β

∗
δV a

i = εbCb
a

cTα
i
βV c

i + Tα
i
β

∂εa

∂ti
· (3.38)

Now, applying the local gauge operator
∗
δ to (3.19) and by using (3.35), (3.37),

(3.38) and (1.16) we obtain

∗
δRa

αβ = εbCb
a

cR
c
αβ . (3.39)

Similar calculations for the mixed and vertical strength fields lead us to the
following transformations

(a)
∗
δP a

αi = εbCb
a

cP
c
αi, (b)

∗
δSa

ij = εbCb
a

cS
c
ij . (3.40)

Now, we apply
∗
δ to LH and taking into account (3.39) we infer that

∗
δLH = −1

4
hαβhγµεd(KabCd

b
e + KebCd

b
a)Ra

αγRe
βµ. (3.41)

Then, by using (3.31) and (3.9a) in (3.41), we deduce that
∗
δLH = 0, which

means that LH is locally gauge G–invariant. In a similar way, by using (3.40,

(3.31) and (3.9a), we obtain
∗
δLHV =

∗
δLV = 0.

6.4 Equations of Motion and Conservation Laws

In the present section we consider the Lagrangian

L(x, t) = L′
0(x, t) + LH(x, t) + LHV (x, t) + LV (x, t), (4.1)

where L′
0 is given by (3.18) and LH , LHV and LV are the Lagrangians

for gauge fields given by (3.32), (3.33) and (3.34) respectively. By Propo-
sition 3.2 and Theorem 3.4 we deduce that L(x, t) given by (4.1) is locally
gauge G–invariant. Thus L(x, t) can be proposed as full Lagrangian for the
gauge theory we want to develop on the total space E of the vector bundle
ξ = (E, π, M). To this end we define the Lagrangian density

L∗(x, t) = L(x, t)H(x, t)V (x, t), (4.2)

where H(x, t) and V (x, t) are given by (2.6). Then we consider the variational
principle
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δ

(∫
Ω

L∗(x, t)dx1 ∧ · · · ∧ dxp ∧ dt1 ∧ · · · ∧ dtn
)

= 0. (4.3)

The same principle was considered by Asanov [Asa85], p.244, but with respect
to some other Lagrangians. As L∗(x, t) contains the physical fields QA(x, t)
and the gauge fields Ha

α(x, t) and V a
i (x, t), we have the following Euler–La-

grange equations:

∂L∗

∂QA
− ∂

∂xα

⎛⎜⎜⎝ ∂L∗

∂

(
∂QA

∂xα

)
⎞⎟⎟⎠− ∂

∂ti

⎛⎜⎜⎝ ∂L∗

∂

(
∂QA

∂ti

)
⎞⎟⎟⎠ = 0, (4.4)

∂L∗

∂Ha
α

− ∂

∂xβ

⎛⎜⎜⎝ ∂L∗

∂

(
∂Ha

α

∂xβ

)
⎞⎟⎟⎠− ∂

∂ti

⎛⎜⎜⎝ ∂L∗

∂

(
∂Ha

α

∂ti

)
⎞⎟⎟⎠ = 0, (4.5)

∂L∗

∂V a
i

− ∂

∂xα

⎛⎜⎜⎝ ∂L∗

∂

(
∂V a

i

∂xα

)
⎞⎟⎟⎠− ∂

∂tj

⎛⎜⎜⎝ ∂L∗

∂

(
∂V a

i

∂tj

)
⎞⎟⎟⎠ = 0. (4.6)

According to the theory we developed in Section 6.2, the equations in (4.4)
can be expressed as follows (see (2.17))

∂L
∂QA

− Qhα
A |α − Qvi

A ‖i = EA, (4.7)

where Qhα
A , Qvi

A and EA are given by (2.13), (2.14) and (2.18) respectively. It
is also important to mention that the covariant derivatives in (4.7) are taken
with respect to the Vrănceanu connection given by (1.33). We look now for
similar expressions as in (4.7) but for (4.5) and (4.6). To this end we first put

(a) Hhαβ
a =

∂L
∂

(
δHa

α

δxβ

) , (b) Hvαi
a =

∂L
∂

(
∂Ha

α

∂ti

) � , (4.8)

and
(a) V hiα

a =
∂L

∂

(
δV a

i

δxα

) , (b) V vij
a =

∂L
∂

(
∂V a

i

∂tj

) � , (4.9)

where � in (4.8b) and (4.9b) means that we take partial derivatives of L only

with respect to the variables
∂Ha

α

∂ti
and

∂V a
i

∂tj
which are not incorporated in

the expressions of
δHa

α

δxβ
and

δV a
i

δxα
respectively.
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Proposition 4.1. The smooth functions Hhαβ
a , Hvαi

a , V hiα
a , V vij

a define
adapted tensor fields on E of type (0, 0; 2, 0), (1, 0; 1, 0), (1, 0; 1, 0) and (2, 0; 0, 0)
respectively, for any a ∈ {1, ..., r}.
Proof. By direct calculations using (3.22), we obtain

H̃hγε
a =

∂L

∂

(
δH̃a

γ

δx̃ε

) =
∂L

∂

(
δHa

α

δxβ

) ∂

(
δHa

α

δxβ

)
∂

(
δH̃a

γ

δx̃ε

) = Hhαβ
a Jγ

αJε
β ,

with respect to the coordinate transformations (1.1) on E. Hence, Hhαβ
a define

an adapted tensor field of type (0, 0; 2, 0) on E for each a ∈ {1, ..., r}. Next,
by (3.24) we deduce that

H̃vγj
a =

∂L

∂

(
∂H̃a

γ

∂t̃j

) � =
∂L

∂

(
∂Ha

α

∂ti

) �

∂

(
∂Ha

α

∂ti

)
∂

(
∂H̃a

γ

∂tj

) = Hvαi
a Bj

i J
γ
α .

Thus, for each a ∈ {1, ..., r}, Hvαi
a define an adapted tensor field of type

(1, 0; 1, 0) on E. By similar calculations it follows that V hiα
a and V vij

a define
adapted tensor fields of type (1, 0; 1, 0) and (2, 0; 0, 0) respectively.

Moreover, Hhαβ
a and V vij

a define skew–symmetric adapted tensor fields on
E. Indeed, by using (3.19) and (3.21) we deduce that

(a) Hhαβ
a = 2

∂L
∂Ra

αβ
and (b) V vij

a = 2
∂L

∂Sa
ij
· (4.10)

Then Hhαβ
a and V vij

a are skew–symmetric since Ra
αβ and Sa

ij are so.

Proposition 4.2. The Euler–Lagrange equations (4.5) and (4.6) can be writ-
ten as follows

∂L
∂Ha

α

− Hhαβ
a |β − Hvαi

a ‖i = Ehα
a , (4.11)

and
∂L
∂V a

i

+ Dj
i
αV hjα

a − V hiα
a |α − V vij

a ‖j = Evi
a , (4.12)

where the horizontal and vertical covariant derivatives are taken with respect
to the Vrănceanu connection, and we put

Ehα
a =

{
1

HV

δ(HV )
δxβ

− (
Di

i
β + Fβ

γ
γ

)}
Hhαβ

a

+
{

1
HV

∂(HV )
∂ti

− Ci
j
j

}
Hvαi

a ,

(4.13)
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and

Evi
a =

{
1

HV

δ(HV )
δxα

− (
Dj

j
α + Fα

γ
γ

)}
V hiα

a

+
{

1
HV

∂(HV )
∂tk

− Ck
j
j

}
V vik

a .

(4.14)

Proof. First, by using (4.2), (1.5) and (4.8), we obtain

∂L∗

∂

(
∂Ha

α

∂xβ

) = Hhαβ
a HV, (4.15)

and
∂L∗

∂

(
∂Ha

α

∂ti

) =
{
Hvαi

a − Ai
βHhαβ

a

}
HV. (4.16)

Next, the horizontal covariant derivative of Hhαβ
a with respect to the Vrănceanu

connection is given by (see Section 6.1)

Hhαβ
a |γ =

δHhαβ
a

δxγ
+ Hhεβ

a Fε
α

γ + Hhαε
a Fε

β
γ .

By contraction over β and γ, and taking into account that Hhεβ
a are skew–

symmetric while Fε
α

γ are symmetric (see 1.33d), we deduce that

Hhαβ
a |β =

δHhαβ
a

δxβ
+ Hhαε

a Fε
β

β . (4.17)

Also, by using (1.33c), we obtain

Hvαi
a ‖i =

∂Hvαi
a

∂ti
+ Hvαk

a Ck
i
i. (4.18)

Now replace the partial derivatives of L∗ from (4.15) and (4.16) into (4.5) and
by a lengthy (but not difficult) calculation using (4.17), (4.18) and (1.33b) we
derive (4.11). Similar calculations lead us to 4.12.

As a consequence of the above theorem we may see that (4.7), (4.11) and
(4.12) are the equations of motion with respect to the variational principle
(4.3) on the total space E of the vector bundle ξ.

To obtain the corresponding conservation laws we first note that the full
Lagrangian L(x, t) given by (4.1) is locally gauge G–invariant, that is, we have
∗
δL(x, t) = 0. Then, by using (2.13), (2.14), (4.8) and (4.9), we obtain



6.4 Equations of Motion and Conservation Laws 277

∂L
∂QA

∗
δ(QA) + Qhα

A

∗
δ

(
δQA

δxα

)
+ Qvi

A

∗
δ

(
∂QA

∂ti

)

+
∂L

∂Ha
α

∗
δ(Ha

α) + Hhαβ
a

∗
δ

(
δHa

α

δxβ

)
+ Hvαi

a

∗
δ

(
∂Ha

α

∂ti

)

+
∂L
∂V a

i

∗
δ(V a

i ) + V hiα
a

∗
δ

(
δV a

i

δxα

)
+ V vij

a

∗
δ

(
∂V a

i

∂tj

)
= 0.

(4.19)

Taking into account that
∗
δ commutes with both

δ

δxα
and

∂

∂ti
, and by using

the equations of motion, we deduce that

δ

δxβ

(
Qhβ

A

∗
δ(QA) + Hhαβ

a

∗
δ(Ha

α) + V hiβ
a

∗
δ(V a

i )
)

+
∂

∂tj

(
Qvj

A

∗
δ(QA) + Hvαj

a

∗
δ(Ha

α) + V vij
a

∗
δ(V a

i )
)

+
(

Qhβ
A

∗
δ(QA) + Hhαβ

a

∗
δ(Ha

α) + V hiβ
a

∗
δ(V a

i )
)

Fβ
γ

γ

+
(

Qvj
A

∗
δ(QA) + Hvαj

a

∗
δ(Ha

α) + V vij
a

∗
δ(V a

i )
)

Cj
k

k

+EA

∗
δ(QA) + Ehα

a

∗
δ(Ha

α) + Evi
a

∗
δ(V a

i ) = 0.

(4.20)

Next, we replace
∗
δ(QA),

∗
δ(Ha

α) and
∗
δ(V a

i ) from (3.2), (3.6) and (3.7) respec-
tively to (4.20) and arrange it as follows{

EA[Xa]ABQB + Ehα
b Ca

b
cH

c
α + Evi

b Ca
b
cV

c
i

− δ

δxβ
(Jhβ

a ) − ∂

∂tj
(Jvj

a ) − Jhβ
a Fβ

γ
γ − Jvj

a Cj
k

k

}
εa

+
{

δHhβα
a

δxα
+

∂Hvβj
a

∂tj
−Jhβ

a +Hhβγ
a Fγ

α
α+Hvβk

a Ck
j
j+Ehβ

a

}
δεa

δxβ

+
{

δV hjβ
a

δxβ
+

∂V vji
a

∂ti
− Jvj

a +V hjγ
a Fγ

β
β+V vjk

a Ck
i
i + Evj

a

}
∂εa

∂tj

+
{

Hhαβ
a

δ

δxβ

(
δεa

δxα

)
+ V hiα

a

δ

δxα

(
∂εa

∂ti

)
+Hvαi

a

∂

∂ti

(
δεa

δxα

)
+ V vij

a

∂2εa

∂tj∂ti

}
= 0,

(4.21)

where we put

Jhβ
a = −Qhβ

A [Xa]ABQB − Hhαβ
b Ca

b
cH

c
α − V hiβ

b Ca
b
cV

c
i , (4.22)
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and
Jvj

a = −Qvj
A [Xa]ABQB − Hvαj

b Ca
b
cH

c
α − V vij

b Ca
b
cV

c
i . (4.23)

Now, we examine the terms between the last brackets { } in (4.21). First,
taking into account that Hhαβ

a is a skew–symmetric adapted tensor field for
any a ∈ {1, ..., r}, and by using (1.16), we obtain

Hhαβ
a

δ

δxβ

(
δεa

δxα

)
=

1
2

Hhαβ
a

(
δ

δxβ

(
δεa

δxα

)
− δ

δxα

(
δεa

δxβ

))
=

1
2

Hhαβ
a Tβ

j
α

∂εa

∂tj
·

(4.24)

Then, by using (1.35), we deduce that

V hiα
a

δ

δxα

(
∂εa

∂ti

)
+ Hvαi

a

∂

∂ti

(
δεa

δxα

)

=
(
V hiα

a + Hvαi
a

) ∂

∂ti

(
δεa

δxα

)
+ V hiα

a Di
j
α

∂εa

∂tj
·

(4.25)

Finally, since V vij
a is a skew–symmetric adapted tensor field for any a∈{1,...,r},

we have

V vij
a

∂2εa

∂tj∂ti
= 0. (4.26)

By using (4.24)–(4.26) into (4.21) and taking into account the arbitrariness
of εa, we obtain the following:

EA[Xa]ABQB + Ehα
b Ca

b
cH

c
α + Evi

b Ca
b
cV

c
i

− δ

δxβ
(Jhβ

a ) − ∂

∂tj
(Jvj

a ) − Jhγ
a Fγ

β
β − Jvi

a Ci
j
j = 0,

(4.27)

δHhβα
a

δxα
+

∂Hvβj
a

∂tj
− Jhβ

a + Hhβγ
a Fγ

α
α + Hvβk

a Ck
j
j + Ehβ

a = 0, (4.28)

δV hjβ
a

δxβ
+

∂V vji
a

∂ti
− Jvj

a + V hjγ
a Fγ

α
α

+ V vjk
a Ck

i
i + Evj

a +
1
2

Hhαβ
a Tβ

j
α + V hiα

a Di
j
α = 0,

(4.29)

and
V hiα

a + Hvαi
a = 0. (4.30)

Then, by using (4.11), (4.17) and (4.18) in (4.28), we infer that

Jhβ
a =

∂L
∂Ha

β

· (4.31)

In a similar way, from (4.29) we obtain
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Jvj
a =

∂L
∂V a

j

+
1
2

Hhαβ
a Tβ

i
α + V hiα

a Di
j
α. (4.32)

Thus the new formulas (4.31) and (4.32) for Jhβ
a and Jvj

a do not contain
the structure constants of the Lie group G which are present in (4.22) and
(4.23). On the other hand, taking into account Proposition 4.1, from (4.22)
and (4.23) we deduce that Jhβ

a and Jvj
a define a horizontal vector field and a

vertical vector field for each a ∈ {1, ..., r}. We call

(a) Jh
a = Jhβ

a

δ

δxβ
and (b) Jv

a = Jvj
a

∂

∂tj
, (4.33)

the horizontal currents and vertical currents respectively, corresponding
to the full Lagrangian L(x, t). Finally, we state the following.

Theorem 4.3. The conservation laws for the local gauge action of the Lie
group G with respect to the variational principle (4.3) are given by

Jhβ
a |β + Jvj

a ‖j = EA[Xa]ABQB + Ehα
b Ca

b
cH

c
α + Evi

a Ca
b
cV

c
i , (4.34)

where the horizontal and vertical covariant derivatives are taken with respect
to the Vrănceanu connection.

Proof. It follows from (4.27) by using (1.20) and (1.23).

In concluding this section we apply the above gauge theory to a full La-
grangian L(x, y) on a trivial vector bundle ξ with total space M×IRn, where
M is a p–dimensional manifold. As we have seen in Section 6.2, EA = 0 for
any A ∈ {1, ..., q}. Also we have Ci

k
j = 0 and Di

k
α = 0. Finally, by using

(2.39) and (2.6a), we deduce that

1
H

δH

δxβ
=

1
H

∂H

∂xβ
= Fβ

γ
γ .

Thus, in this particular case, Ehα
a and Evi

a from (4.13) and (4.14) vanish
on M×IRn for all a ∈ {1, ..., r}, α ∈ {1, ..., p} and i ∈ {1, ..., n}. Then, by
Proposition 4.2 and Theorem 4.3, we may state the following.

Theorem 4.4. Let L(x, t) be a full Lagrangian given by (4.1) on M×IRn.
Then we have the following assertions:

(i) The equations of motion are given by

∂L
∂QA

− Qhα
A |α − Qvi

A ‖i = 0, (4.35)

∂L
∂Ha

α

− Hhαβ
a |β − Hvαi

a ‖i = 0, (4.36)

∂L
∂V a

i

− V hiα
a |α − V vij

a ‖j = 0. (4.37)
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(ii) The conservation laws are given by

Jhβ
a |β + Jvj

a ‖j = 0. (4.38)

We have to mention that here the horizontal and vertical covariant deri-
vatives are also taken with respect to the Vrănceanu connection. Thus this is
another proof of the usefulness of the Vrănceanu connection in applying the
geometry of foliations in physics.

6.5 Bianchi Identities for Strength Fields

In the first part of this section we show that the horizontal and vertical gauge
covariant derivatives of strength fields are adapted tensor fields. Then by using
the Vrănceanu connection we obtain the Bianchi identities for strength fields
and their gauge covariant derivatives.

Let ∇ be an adapted linear connection on the total space E of a vector bun-
dle ξ = (E, π,M) endowed with a horizontal distribution HE. According to
(1.18) and (1.19), ∇ is locally given by the functions (Fα

γ
β , Lα

γ
i, Di

k
α, Ci

k
j).

Then we define the horizontal gauge covariant derivatives and the ver-
tical gauge covariant derivative of the strength fields by

(a) Ra
αβ|γ =

δRa
αβ

δxγ
+ Cb

a
cR

b
αβHc

γ

−Ra
εβFα

ε
γ − Ra

αεFβ
ε
γ ,

(b) P a
αi|β =

δP a
αi

δxβ
+ Cb

a
cP

b
αiH

c
β

−P a
εiFα

ε
β − P a

αjDi
j
β ,

(c) Sa
ij|α =

δSa
ij

δxα
+ Cb

a
cS

b
ijH

c
α

−Sa
kjDi

k
α − Sa

ikDj
k

α,

(5.1)

and

(a) Ra
αβ‖i =

∂Ra
αβ

∂ti
+ Cb

a
cR

b
αβV c

i

−Ra
εβLα

ε
i − Ra

αεLβ
ε
i,

(b) P a
αi‖j =

∂P a
αi

∂tj
+ Cb

a
cP

b
αiV

c
j

−P a
εiLα

ε
j − P a

αkCi
k

j ,

(c) Sa
ij‖k =

∂Sa
ij

∂tk
+ Cb

a
cS

b
ijV

c
k

−Sa
hjCi

h
k − Sa

ihCj
h

k,

(5.2)
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respectively. Now we state the following.

Proposition 5.1. The horizontal and vertical gauge covariant derivatives
Ra

αβ|γ , P a
αi|β , Sa

ij|α, Ra
αβ‖i, P a

αi‖j and Sa
ij‖k are the local components

of some adapted tensor fields on E of type (0, 0; 0, 3), (0, 1; 0, 2), (0, 2; 0, 1),
(0, 1; 0, 2), (0, 2; 0, 1) and (0, 3; 0, 0) respectively for each a ∈ {1, ..., r}.

Proof. Since Ra
αβ are the components of an adapted tensor field of type

(0, 0; 0, 2) we have
Ra

αβ = R̃a
νµJν

αJµ
β , (5.3)

with respect to the coordinate transformations (1.1). Then we apply
δ

δxγ
to

(5.3) and by using (1.7) we obtain

δRa
αβ

δxγ
=

δR̃a
νµ

δx̃ε
Jν

αJµ
β Jε

γ+R̃a
νµJµ

β

∂2x̃ν

∂xγ∂xα
+R̃a

νµJν
α

∂2x̃µ

∂xγ∂xβ
· (5.4)

Also, from (2.3.9) we deduce that

Fα
γ

βJε
γ = F̃µ

ε
νJµ

αJν
β +

∂2x̃ε

∂xα∂xβ
· (5.5)

Then, by direct calculations using (5.3)–(5.5), (1.13a) and (5.1a) for R̃a
νµ, we

obtain
R̃a

νµ|εJν
αJµ

β Jε
γ = Ra

αβ|γ ,

that is, Ra
αβ|γ define an adapted tensor field of type (0, 0; 0, 3) for each

a ∈ {1, ..., r}. Next, by (2.3.10) we deduce that Lα
γ

i from (1.18b) define
an adapted tensor field, i.e., we have

Lα
γ

iJ
ε
γ = L̃β

ε
jJ

β
αBj

i . (5.6)

Now, we take partial derivatives in (5.3) with respect to ti and by using (1.2a)
we obtain

∂Ra
αβ

∂ti
=

∂R̃a
νµ

∂t̃j
Jν

αJµ
β Bj

i . (5.7)

Then, by using (5.3), (5.6), (5.7), (1.13b) and (5.2a) we deduce that

R̃a
νµ‖jJ

ν
αJµ

β Bj
i = Ra

αβ‖i,

which means that Ra
αβ‖i define an adapted tensor field of type (0, 1; 0, 2) for

each a ∈ {1, ..., r}. Therefore, both the horizontal and vertical gauge covariant
derivatives of horizontal strength fields define adapted tensor fields on E. In
a similar way can prove the same assertion for mixed and vertical strength
fields.
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Proposition 5.2. The local gauge action of the Lie group G on the horizon-
tal and vertical gauge covariant derivatives of strength fields is given by the
adjoint representation of G, that is, we have:

(a)
∗
δRa

αβ|γ = εbCb
a

cR
c
αβ|γ ,

(b)
∗
δP a

αi|β = εbCb
a

cP
c
αi|β ,

(c)
∗
δSa

ij|α = εbCb
a

cS
c
ij|α,

(5.8)

and
(a)

∗
δRa

αβ‖i = εbCb
a

cR
c
αβ‖i,

(b)
∗
δP a

αi‖j = εbCb
a

cP
c
αi‖j ,

(c)
∗
δSa

ij‖k = εbCb
a

cS
c
ij‖k.

(5.9)

Proof. Apply
∗
δ to (5.1a) and by using (3.39), (3.6) and (3.9) we obtain (5.8a).

The other equalities are obtained in a similar way.

Next, we consider the semi–holonomic frame field
{

∂

∂ti
, δ

δxα

}
on E and

write down the following Jacobi identities∑
(α,β,γ)

{[[
δ

δxα
, δ

δxβ

]
, δ

δxγ

]}
= 0, (5.10)

and [[
δ

δxα
, δ

δxβ

]
, ∂

∂ti

]
+
[[

δ

δxβ
, ∂

∂ti

]
, δ

δxα

]

+
[[

∂

∂ti
, δ

δxα

]
, δ

δxβ

]
= 0.

(5.11)

Then, by using (1.16) and (1.35), it is easy to see that (5.10) and (5.11) become∑
(α,β,γ)

{
δTα

i
β

δxγ
+ Tα

j
βDj

i
γ

}
= 0, (5.12)

and
∂Tα

j
β

∂ti
=

δDi
j
α

δxβ
− δDi

j
β

δxα
+ Di

k
αDk

j
β − Di

k
βDk

j
α, (5.13)

respectively. Now, we can prove the following.

Theorem 5.3. The horizontal and vertical gauge covariant derivatives of the
strength fields with respect to the Vrănceanu connection satisfy the following
identities:
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(α,β,γ)

{
Ra

αβ|γ + P a
αiTβ

i
γ

}
= 0, (5.14)

∑
(i,j,k)

{
Sa

ij‖k

}
= 0, (5.15)

P a
αi‖j − P a

αj‖i + Sa
ij|α = 0, (5.16)

P a
αi|β − P a

βi|α − Ra
αβ‖i − Sa

ijTα
j
β = 0. (5.17)

Proof. First, by using (5.1a), (3.19), (1.16), (3.9) and taking into account
that Fα

γ
β = Fβ

γ
α, we obtain

∑
(α,β,γ)

{
Ra

αβ|γ
}

=
∑

(α,β,γ)

{
δRa

αβ

δxγ
+Cb

a
cR

b
αβHc

γ

}

=
∑

(α,β,γ)

{
δTα

i
β

δxγ
V a

i − ∂Ha
α

∂ti
Tβ

i
γ +

δV a
i

δxγ
Tα

i
β+Cb

a
cH

c
γTα

i
βV b

i

}
.

(5.18)

On the other hand, (3.20) implies∑
(α,β,γ)

{
P a

αiTβ
i
γ

}
=
∑

(α,β,γ)

{
∂Ha

α

∂ti
Tβ

i
γ− δV a

i

δxα
Tβ

i
γ−Cb

a
cH

c
γTα

i
βV b

i +Tα
j
βDj

i
γV a

i

}
.

(5.19)

Then (5.14) follows from (5.18) and (5.19) via (5.12). Next, by using (5.2c)
and taking into account that Cj

i
k = Ck

i
j , we deduce that

∑
(i,j,k)

{
Sa

ij|k
}

=
∑

(i,j,k)

{
∂Sa

ij

∂tk
+ Cb

a
cS

b
ijV

c
k

}
. (5.20)

Now we use (3.21) and (3.9a) and obtain∑
(i,j,k)

{
∂Sa

ij

∂tk

}

=
∑

(i,j,k)

{
∂2V a

i

∂tk∂tj
− ∂2V a

j

∂tk∂ti
− Cb

a
c

∂V c
i

∂tk
V b

j − Cb
a

cV
c
i

∂V b
j

∂tk

}

= Cc
a

b

∑
(i,j,k)

{
∂V c

i

∂tk
V b

j + V c
i

∂V b
j

∂tk

}
.

(5.21)

By using (3.21) and (3.9b), we infer that
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(i,j,k)

{
Cb

a
cS

b
ijV

c
k

}

= Cb
a

c

∑
(i,j,k)

{
∂V b

i

∂tj
− ∂V b

j

∂ti

}
V c

k + V e
i V d

j V c
k

∑
(c,d,e)

Cc
a

bCd
b
e

= Cb
a

c

∑
(i,j,k)

{
V c

i

∂V b
j

∂tk
+ V b

k

∂V c
j

∂ti

}
.

(5.22)

Thus (5.15) follows from (5.20)–(5.22). By a little longer calculation than
above, using (3.19)–(3.21), (5.1), (5.2), (3.9), (1.16), (1.35) and (5.13), we
obtain (5.16) and (5.17).

We call (5.14)–(5.17) the Bianchi identities for the strength fields Ra
αβ ,

P a
αi and Sa

ij with respect to the Vrănceanu connection. The Bianchi iden-
tities with respect to an arbitrary adapted connection have been obtained by
Bejancu [B89]. In particular, when E is a trivial vector bundle M×IRn, the
above Bianchi identities become∑

(α,β,γ)

{
Ra

αβ|γ
}

= 0, (5.23)

∑
(i,j,k)

{
Sa

ij‖k

}
= 0, (5.24)

P a
αi‖j − P a

αj‖i + Sa
ij|α = 0, (5.25)

P a
αi|β − P a

βi|α − Ra
αβ‖i = 0, (5.26)

since in this case the Vrănceanu connection is torsion–free.



BASIC NOTATIONS AND TERMINOLOGY

Throughout the book we use the Einstein convention, that is, repeated indices
with one upper index and one lower index denotes summation over their range.

All manifolds are supposed to be connected, paracompact and smooth (dif-
ferentiable of class C∞). Also, all geometric objects on manifolds are supposed
to be smooth.

The quotations of formulas, theorems, etc., are made as follows: Formula
(1.2.3), Theorem 1.2.3, Proposition 1.2.3, Lemma 1.2.3, Corollary 1.2.3, Re-
mark 1.2.3 or Example 1.2.3, means that they have the number 2.3 in Chapter
1. When we do not mention the first number, it is understood that we refer
to a formula, theorem, etc., in the chapter where the quotation is made. Thus
Theorem 2.3 means the theorem with the number 2.3 in the chapter where
we make the quotation. The sections are quoted as they are in the chapter.
Thus Section 1.3 means the third section in Chapter 1.

We now present the basic notations and symbols which appear frequently
throughout the book.

IRm – the space of m–tuples (x1, ..., xm) of real numbers

M – an m–dimensional smooth manifold

TM – tangent bundle of M

TxM – tangent space of M at x

T ∗M – cotangent bundle of M

T ∗
x M – cotangent space of M at x

Π1(M) – the fundamental group of M

D – a distribution on a manifold

Dx – the fiber of D over x ∈ M

F – a foliation on a manifold

285
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g or g̃ – a semi–Riemannian (Riemannian) metric on a manifold

(M,F) – a foliated manifold

(M, g,F) – a foliated semi–Riemannian (Riemannian) manifold

F (M) – the algebra of smooth functions on M

Γ (D) – the F (M)–module of smooth sections of D (this notation is also used
for any other vector bundle over M)

Lx(Dx,Dx) – the vector space of linear mappings on Dx

L(D,D) – the vector bundle with fibers Lx(Dx,Dx)

Γ (D)r – Γ (D)× · · ·×Γ (D)︸ ︷︷ ︸
r times

∇, ∇̃ – linear connections on a manifold or on a vector bundle. If ∇̃ is the Levi–
Civita connection on (M, g), then we denote by ∇◦ and ∇∗ the Schouten–Van
Kampen connection and the Vrănceanu connection respectively defined by ∇̃

∇ and ∇⊥ are the induced connections by ∇̃ on D and D⊥ respectively

D and D⊥ are the intrinsic connections on D andD⊥ respectively

If (xi, xα), i ∈ {1, ..., n}, α ∈ {n + 1, ..., n + p} are the local coordinates on a
foliated manifold (M,F), where (xi) are the leaf coordinates, then

δ

δxα
=

∂

∂xα
− Ai

α

∂

∂xi
, α ∈ {n + 1, ..., n + p}

determine locally the transversal distribution of F{
∂

∂xi
, δ

δxα

}
is the semi–holonomic frame field on (M,F) or (M, g,F)

The structural and transversal covariant derivatives of an adapted tensor field
T =

(
T iα

jβ

)
with respect to an adapted linear connection on (M,F) are de-

noted by T iα
jβ‖k and T iα

jβ|γ respectively.∑
(i,j,k)

and
∑

(α,β,γ)

– cyclic sums with respect to the indices (i, j, k) and (α, β, γ)

respectively∑
(X,Y,Z)

– cyclic sum with respect to the vector fields (X, Y, Z)
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of normal contact spaces, Tôhoku Math. J., 14, 398–412 (1962).
[O66] O’Neill, B.: The fundamental equations of a submersion, Michigan Math.

J., 13, 459–469 (1966).
[O83] O’Neill, B.: Semi–Riemannian Geometry with Applications to Relativity,

Academic Press, New York (1983).
[Orn86] Ornea, L.: On CR–submanifolds of a locally conformal Kähler manifold,

Demonstratio Mathematica, 19, No. 4, 863–869 (1986).



References 291

[Osh83] Oshikiri, G.: Totally geodesic foliations and Killing fields, Tôhoku Math.
J., 35, 387–392 (1983).

[Osh86] Oshikiri, G.: Totally geodesic foliations and Killing fields, II, Tôhoku
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[VG31] Vrănceanu, G.: Sur quelques points de la théorie des espaces non

holonomes, Bul. Fac. St. Cernăuţi, 5, 177–205 (1931).
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L’ Académie de la République Populaire de Roumanie (1957).
[Wa84] Walczak, P.: Mean curvature functions for codimension–one foliations

with all leaves compact, Czech . Math. J., 34, 146–155 (1984).
[Wal50a] Walker, A.G.: Canonical form for a Riemannian space with a parallel field

of null planes, Quart. J. Math. Oxford, 1 (2), 69–79 (1950).
[Wal50b] Walker, A.G.: Canonical forms (II): Parallel partially null planes, Quart.

J. Math. Oxford, 1 (2), 147–152 (1950).
[Wal55] Walker, A.G.: Connextions for parallel distributions in the large, Quart.

J. Math. Oxford, 6 (2), 301–308 (1955).
[Wal58] Walker, A.G.: Connections for parallel distributions in the large, II, Quart.

J. Math. Oxford, 9 (2), 221–231 (1958).
[Was97] Walschap, G.: Umbilic foliations and curvature, Illinois J. Math., 41,

No. 1, 122–128 (1997).
[Wei71] Weinstein, A.: Symplectic manifolds and their Lagrangian submanifolds,

Advances in Mathematics, 6, 329–346 (1971).
[Wil56] Willmore, T.J.: Parallel distributions on manifolds, Proc. London Math.

Soc., 6 (3), 191–204 (1956).
[Wol67] Wolf, G.: Spaces of Constant Curvature, McGraw Hill, New York (1967).



References 293

[Wu64] Wu, H.: On the de Rham decomposition theorem, Illinois J. Math., 8,
291–311 (1964).

[YK82] Yano, K. and Kon, M.: Contact CR–submanifolds, Kodai Math. J., 5,
238–252 (1982).

[YK83] Yano, K. and Kon, M.: CR–Submanifolds of Kählerian and Sasakian Ma-
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Vrănceanu covariant derivative 101
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