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A PRIMER OF INFINITESIMAL ANALYSIS
SECOND EDITION

One of the most remarkable recent occurrences in mathematics is the refound-
ing, on a rigorous basis, of the idea of infinitesimal quantity, a notion that
played an important role in the early development of calculus and mathemat-
ical analysis. In this new edition, basic calculus, together with some of its
applications to simple physical problems, is represented through the use of a
straightforward, rigorous, axiomatically formulated concept of ‘zero-square’,
or ‘nilpotent’ infinitesimal – that is, a quantity so small that its square and
all higher powers can be set, literally, to zero. The systematic employment of
these infinitesimals reduces the differential calculus to simple algebra and, at
the same time, restores to use the ‘infinitesimal’ methods figuring in traditional
applications of the calculus to physical problems – a number of which are dis-
cussed in this book. This edition also contains some additional applications to
physics.

John L. Bell is Professor of Philosophy at the University of Western Ontario. He
is the author of seven other books, including Models and Ultraproducts with
A. B. Slomson, A Course in Mathematical Logic with M. Machover, Logical
Options with D. DeVidi and G. Solomon, Set Theory: Boolean-Valued Models
and Independence Proofs, and The Continuous and the Infinitesimal in Mathe-
matics and Philosophy.

‘This might turn out to be a boring, shallow book review: I merely LOVED
the book. . . the explanations are so clear, so considerate; the author must have
taught the subject many times, since he anticipates virtually every potential
question, concern, and misconception in a student’s or reader’s mind.’

– Marion Cohen, MAA Reviews

‘The book will be of interest to philosophically orientated mathematicians and
logicians.’

– European Mathematical Society

‘John Bell has done a first rate job in presenting an elementary introduction to
this fascinating subject. . . . I recommend it highly.’

– J. P. Mayberry, British Journal for the Philosophy of Science
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Preface

A remarkable recent development in mathematics is the refounding, on a
rigorous basis, of the idea of infinitesimal quantity, a notion which, before being
supplanted in the nineteenth century by the limit concept, played a seminal role
within the calculus and mathematical analysis. One of the most useful concepts
of infinitesimal to have thus acquired rigorous status is that of a quantity so small
(but not actually zero) that its square and all higher powers can be set to zero. The
introduction of these ‘zero-square’ or ‘nilpotent’ infinitesimals opens the way to
a revival of the intuitive, and remarkably efficient, ‘pre-limit’ approaches to the
calculus: this little book is an attempt to get the process going at an elementary
level. It begins with a historico-philosophical introduction in which the leading
ideas of the basic framework – that of smooth infinitesimal analysis or analysis
in smooth worlds – are outlined. The first chapter contains an axiomatic descrip-
tion of the essential technical features of smooth infinitesimal analysis. In the
chapters that follow, nilpotent infinitesimals are used to develop single- and
multi-variable calculus (with applications), the definite integral, and Taylor’s
theorem. The penultimate chapter contains a brief introduction to synthetic
differential geometry – the transparent formulation of the differential geometry
of manifolds made possible in smooth infinitesimal analysis by the presence
of nilpotent infinitesimals. In the final chapter we outline the novel logical
features of the framework. Scattered throughout the text are a number of
straightforward exercises which the reader is encouraged to solve.

My purpose in writing this book has been to show how the traditional infinites-
imal methods of mathematical analysis can be brought up to date – restored, so
to speak – allowing their beauty and utility to be revealed anew. I believe that
the greater part of its contents will be intelligible – and rewarding – to anyone
with a basic knowledge of the calculus.*

* The only exception to this occurs in Chapters 7 and 8, and the Appendix (all of which can be
omitted at a first reading) whose readers are assumed to have a slender acquaintance with differ-
ential geometry, logic, and category theory, respectively.
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x Preface

A final remark: The theory of infinitesimals presented here should not be con-
fused with that known as nonstandard analysis, invented by Abraham Robinson
in the 1960s. The infinitesimals figuring in his formulation are ‘invertible’ (aris-
ing, in fact, as the ‘reciprocals’ of infinitely large quantities), while those with
which we shall be concerned, being nilpotent, cannot possess inverses. The two
theories also have quite different mathematical origins, nonstandard analysis
arising from developments in logic, and that presented here from category the-
ory. For a brief discussion of nonstandard analysis, see the final chapter of the
book.

In this second edition of the book, I have added some new material and taken
the opportunity to correct a number of errors.
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Introduction

According to the Encyclopedia Britannica (11th edition, 1913, Volume 14,
p. 535, emphasis added),

The infinitesimal calculus is the body of rules and processes by which continuously
varying magnitudes are dealt with in mathematical analysis. The name ‘infinitesimal’
has been applied to the calculus because most of the leading results were first obtained by
means of arguments about ‘infinitely small’ quantities; the ‘infinitely small’ or ‘infinites-
imal’ quantities were vaguely conceived as being neither zero nor finite but in some
intermediate, nascent or evanescent state.

In this passage attention has been drawn to two important, and closely related,
mathematical concepts: continuously varying magnitude and infinitesimal. The
first of these is founded on the traditional idea of a continuum, that is to say,
the domain over which a continuously varying magnitude actually varies. The
characteristic features of a (connected) continuum are, first, that it has no gaps –
it ‘coheres’ – so that a magnitude varying over it has no ‘jumps’ and, secondly,
that it is indefinitely divisible. Thus it has been held by a number of prominent
thinkers that continua are nonpunctate, that is, not ‘composed of’ or ‘synthesized
from’ discrete points. Witness, for example, the following quotations:

Aristotle: . . . no continuum can be made up out of indivisibles, granting that the line is
continuous and the point indivisible.

(Aristotle, 1980, Book 6, Chapter 1)

Leibniz: A point may not be considered a part of a line.
(Quoted in Rescher, 1967, p. 109)

Kant: Space and time are quanta continua . . . points and instants mere positions . . . and
out of mere positions viewed as constituents capable of being given prior to space and
time neither space nor time can be constructed.

(Kant, 1964, p. 204)

1
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Poincaré: . . . between the elements of the continuum [there is supposed to be] a sort of
intimate bond which makes a whole of them, in which the point is not prior to the line,
but the line to the point.

(Quoted in Russell, 1937, p. 347)

Weyl: Exact time- or space-points are not the ultimate, underlying, atomic elements of
the duration or extension given to us in experience.

(Weyl, 1987, p. 94)

A true continuum is simply something connected in itself and cannot be split into separate
pieces; that contradicts its nature.

(Weyl, 1921: quoted in van Dalen, 1995, p. 160)

Brouwer: The linear continuum is not exhaustible by the interposition of new units and
can therefore never be thought of as a mere collection of units.

(Brouwer, 1964, p. 80)

René Thom: . . . a true continuum has no points.
(See Cascuberta and Castellet (eds), 1992, p. 102)

We note that these views are much at variance with the generally accepted
set-theoretical formulation of mathematics in which all mathematical entities,
being synthesized from collections of individuals, are ultimately of a discrete
or punctate nature. This punctate character is possessed in particular by the set
supporting the ‘continuum’ of real numbers – the ‘arithmetical continuum’. As
applied to the arithmetical continuum ‘continuity’ is accordingly not a property
of the collection of real numbers per se, but derives rather from certain features
of the additional structures – order-theoretic, topological, analytic – that are
customarily imposed on it.

Closely associated with the concept of continuum is the second concept, that
of ‘infinitesimal’. Traditionally, an infinitesimal quantity is one which, while
not necessarily coinciding with zero, is in some sense smaller than any finite
quantity. In ‘practical’ approaches to the differential calculus an infinitesimal
quantity or number is one so small that its square and all higher powers can be
neglected, i.e. set to zero: we shall call such a quantity a nilsquare infinitesimal.
It is to be noted that the property of being a nilsquare infinitesimal is an intrinsic
property, that is, in no way dependent on comparisons with other magnitudes
or numbers. An infinitesimal magnitude may be regarded as what remains
after a (genuine) continuum has been subjected to an exhaustive analysis, in
other words, as a continuum ‘viewed in the small’. In this sense an infinitesi-
mal1 may be taken to be an ‘ultimate part’ of a continuum: in this same sense,

1 Henceforth, the term ‘infinitesimal’ will mean ‘infinitesimal quantity’, ‘infinitesimal number’ or
‘infinitesimal magnitude’, and the context allowed to determine the intended meaning.
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mathematicians have on occasion taken the ‘ultimate parts’ of curves to be
infinitesimal straight lines.

We observe that the ‘coherence’ of a genuine continuum entails that any of
its (connected) parts is also a continuum, and accordingly, divisible. A point,
on the other hand, is by its nature not divisible, and so (as asserted by Leibniz
in the quotation above) cannot be part of a continuum. Since an infinitesimal
in the sense just described is a part of the continuum from which it has been
extracted, it follows that it cannot be a point: to emphasize this we shall call
such infinitesimals nonpunctiform.

Infinitesimals have a long and somewhat turbulent history. They make an
early appearance in the mathematics of the Greek atomist philosopher Democri-
tus (c. 450 bc), only to be banished by the mathematician Eudoxus (c. 350 bc)
in what was to become official ‘Euclidean’ mathematics. Taking the somewhat
obscure form of ‘indivisibles’, they reappear in the mathematics of the late
middle ages and were systematically exploited in the sixteenth and seventeenth
centuries by Kepler, Galileo’s student Cavalieri, the Bernoulli clan, and oth-
ers in determining areas and volumes of curvilinear figures. As ‘linelets’ and
‘timelets’ they played an essential role in Isaac Barrow’s ‘method for finding
tangents by calculation’, which appears in his Lectiones Geometricae of 1670.
As ‘evanescent quantities’ they were instrumental in Newton’s development of
the calculus, and as ‘inassignable quantities’ in Leibniz’s. De l’Hospital, the
author of the first treatise on the differential calculus (entitled Analyse des Infin-
iment Petits pour l’Intelligence des Lignes Courbes, 1696) invokes the concept
in postulating that ‘a curved line may be regarded as made up of infinitely small
straight line segments’ and that ‘one can take as equal two quantities which dif-
fer by an infinitely small quantity’. Memorably derided by Berkeley as ‘ghosts
of departed quantities’ and roundly condemned by Bertrand Russell as ‘unnec-
essary, erroneous, and self-contradictory’, these useful, but logically dubious
entities were believed to have been finally supplanted by the limit concept which
took rigorous and final form in the latter half of the nineteenth century. By the
beginning of the twentieth century, most mathematicians took the view that –
in analysis at least – the concept of infinitesimal had been thoroughly exploded.

Now in fact, the proscription of infinitesimals did not succeed in eliminating
them altogether but, instead, drove them underground. Physicists and engineers,
for example, never abandoned their use as a heuristic device for deriving (cor-
rect!) results in the application of the calculus to physical problems. And differ-
ential geometers as reputable as Lie and Cartan relied on their use in formulating
concepts which would later be put on a ‘rigorous’ footing. And, in a technical
sense, they lived on in algebraists’ investigations of non-archimedean fields.
The concept of infinitesimal even managed to retain some public champions,
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one of the most active of whom was the philosopher–mathematician Charles
Sanders Peirce, who saw the concept of the continuum (as did Brouwer) as
arising from the subjective grasp of the flow of time and the subjective ‘now’
as a nonpunctiform infinitesimal. Here are a few of his observations on these
matters:

It is singular that nobody objects to
√ − 1 as involving any contradiction, nor, since

Cantor, are infinitely great quantities objected to, but still the antique prejudice against
infinitely small quantities remains.

(Peirce, 1976, p. 123)

It is difficult to explain the fact of memory and our apparently perceiving the flow of
time, unless we suppose immediate consciousness to extend beyond a single instant. Yet
if we make such a supposition we fall into grave difficulties, unless we suppose the time
of which we are immediately conscious to be strictly infinitesimal.

(ibid., p. 124)

[The] continuum does not consist of indivisibles, or points, or instants, and does not
contain any except insofar as its continuity is ruptured.

(ibid., p. 925)

In recent years, the concept of infinitesimal has been refounded on a solid basis.
First, in the 1960s Abraham Robinson, using methods of mathematical logic,
created nonstandard analysis, in which Leibniz’s infinitesimals – conceived
essentially as infinitely small but nonzero real numbers – were finally incorpo-
rated into the real number system without violating any of the usual rules of
arithemetic (see Robinson, 1966). And in the 1970s startling new developments
in the mathematical discipline of category theory led to the creation of smooth
infinitesimal analysis, a rigorous axiomatic theory of nilsquare and nonpunc-
tiform infinitesimals. As we show in this book, within smooth infinitesimal
analysis the basic calculus and differential geometry can be developed along
traditional ‘infinitesimal’ lines – with full rigour – using straightforward calcu-
lations with infinitesimals in place of the limit concept.

Just as with nonEuclidean geometry, the consistency of smooth infinitesi-
mal analysis is established by the construction of various models for it2. Each
model is a mathematical structure (a category) of a certain kind containing
all the usual geometric objects such as the real line and Euclidean spaces,
together with transformations or maps between them. Their key feature is that
within each all maps between geometric objects are smooth3 and a fortiori

2 For a sketch of the construction of these models, see the Appendix.
3 A map between two mathematical objects each supporting a differential structure is said to

be smooth if it is differentiable arbitrarily many times. In particular, a smooth map and all its
derivatives must be continuous.
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continuous4. For this reason, any one of these models of smooth infinitesimal
analysis will be referred to as a smooth world; we shall sometimes use the
symbol S to denote an arbitrary smooth world.

Now in order to achieve universal continuity of maps within smooth worlds,
and thereby to ensure the consistency of smooth infinitesimal analysis, it
turns out that a certain logical price must be paid. In fact, one is forced to
acknowledge that the so-called law of excluded middle – every statement is
either definitely true or definitely false – cannot be generally affirmed within
smooth worlds5. This stems from the fact that unconstrained use of the law of
excluded middle legitimizes the construction of discontinuous functions, as the
following simple argument shows. Assuming the law of excluded middle, each
real number is either equal to 0 or unequal to 0, so that correlating 1 to 0 and 0 to
each nonzero real number defines a function – the ‘blip’ function – on the real
line which is obviously discontinuous. So, if the law of excluded middle held in
a smooth world S, the discontinuous blip function could be defined there (see
Fig. 1). Thus, since all functions in S are continuous, it follows that the law of

Fig. 1 The blip function

excluded middle must fail within it. More precisely, this argument shows that
the statement

for any real number x, either x = 0 or not x = 0

is false in S.
Another way of showing that arbitrary statements interpreted in a smooth

world cannot be regarded as possessing one of just two ‘truth values’ true or
false runs as follows. Let � be the set of truth values in S (which we assume
contains at least true and false as members). Then in S, as in ordinary set theory,

4 Thus each such model may be thought of as embodying Leibniz’s doctrine natura non facit
saltus – nature makes no jump.

5 As the following quotation shows, Peirce was aware, even before Brouwer, that a faithful account
of the truly continuous will involve jettisoning the law of excluded middle:

Now if we are to accept the common idea of continuity . . . we must either say that a continuous line contains
no points or . . . that the principle of excluded middle does not hold of these points. The principle of excluded
middle applies only to an individual . . . but places being mere possibilities without actual existence are not
individuals.

(Peirce, 1976, p. xvi: the quotation is from a note written in 1903)
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functions from any given object X to � correspond exactly to parts of X, proper
nonempty parts corresponding to nonconstant functions. If X is a connected
continuum (e.g. the real line), it presumably does have proper nonempty parts
but certainly no nonconstant continuous functions to the two element set {true,
false}. It follows that, in S, the set of truth values cannot reduce to {true, false}.
Thus logic in smooth worlds is many-valued or polyvalent.

Essentially the same argument shows that, in a smooth world, a connected
continuum X is continuous in the strong sense that its only detachable parts
are X itself and its empty part: here a part U of X is said to be detachable
if there is a complementary part V of X such that U and V are disjoint and
together cover X. For, clearly, detachable parts of X correspond to maps on
X to {true, false}, so since all such maps on X are constant, and they in turn
correspond to X itself and its empty part, these latter are the sole detachable parts
of X6.

Now at first sight in the failure of the law of excluded middle in smooth
worlds may seem to constitute a major drawback. However, it is precisely this
failure which allows nonpunctiform infinitesimals to be present. To get some
idea of why this is so, we observe that since the law of excluded middle fails in
any smooth world S, so does its logical equivalent the law of double negation:
for any statement A, not not A implies A. If we now call two points a,b on the
real line distinguishable or distinct when they are not identical, i.e. not a = b –
which as usual we shall write a �= b – and indistinguishable in the contrary case,
i.e. if not a �= b, then, in S, indistinguishability of points will not in general imply
their identity. As a result, the ‘infinitesimal neighbourhood of 0’ comprising
all points indistinguishable from 0 – which we will denote by I – will, in S, be
nonpunctiform in the sense that it does not reduce to {0}, that is,

it is not the case that 0 is the sole member of I.

If we call the members of I infinitesimals, then this statement may be rephrased:

it is not the case that all infinitesimals coincide with 0.

Observe, however, that we evidently cannot go on to infer from this that

there exists an infinitesimal which is �=0.

6 In this connection it is worth drawing attention to the remarkable observation of Weyl (1940),
who realized that the essential nature of continua can only be given full expression within a
context resembling our smooth worlds:

A natural way to take into account the nature of a continuum which, following Anaxagoras, defies ‘chopping
off its parts with a hatchet’ would be by limiting oneself to continuous functions.
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For such an entity would possess the property of being both distinguishable
and indistinguishable from 0, which is clearly impossible7. What this means is
that, while in S, it would be incorrect to assume that all infinitesimals coincide
with 0, it would be no less incorrect to suppose that we can single out an actual
nonzero infinitesimal, i.e. one which is distinguishable from 0. In other words,
nonzero infinitesimals can, and will, be present only in a ‘virtual’ sense8. Nev-
ertheless, as we shall see, this virtual existence will suffice for the development
of ‘infinitesimal’ analysis in smooth worlds.

In traditional mathematics two distinct, but closely related, conceptions of
nonpunctiform infinitesimal can be discerned. Both may be considered as result-
ing from the attempt to measure continua in terms of discrete entities. The first
of these conceptions stems from the idea that, just as the perimeter of a poly-
gon is the sum of its finite discrete collection of edges, so any continuous
curve should be representable as the ‘sum’ of an (infinite) discrete collection of
infinitesimally short linear segments – the ‘linear infinitesimals’ of the curve.
This conception was formulated by l’Hospital, and also advanced in some
form two millenia earlier by the Greek mathematicians Antiphon and Bryson
(c. 450 bc)9. The second concept arises analogously from the idea that a con-
tinuous surface or volume can be conceived as the sum of an indefinitely large,
but discrete assemblage of lines or planes, the so-called indivisibles10 of the
surface or volume. This idea, exploited by Cavalieri in the seventeenth century,
also appears in Archimedes’ Method.

Let us show, by means of an example, how these two concepts of infinitesi-
mal are related, and how they give rise to the concept of nilsquare infinitesimal.
Given a smooth curve AB, suppose we want to evaluate the area of the region
ABCO by regarding it as the sum of thin rectangles XYRS (Fig. 2). If X and
S are distinguishable points then so are Y and R, so that the ‘area defect’ ∇
under the curve is nonzero; in this event the figure ABCO cannot literally be
the sum of such rectangles as XYRS. On the other hand, if X and S coincide,
then ∇ is zero but XYRS collapses into a straight line, thus failing altogether

7 Although the law of excluded middle has had to be abandoned, the law of noncontradiction – a
statement and its negation cannot both be true – will of course continue to be upheld in S.

8 The virtual infinitesimals of smooth worlds resemble both the virtual displacements of classical
dynamics and the virtual particles of contemporary particle physics. Each has no more than only
a transitory presence, and vanishes at the completion of a calculation (in the first two cases) or
an interaction (in the last case).

9 See Boyer (1959), Chapter II.
10 The use of this term in connection with continua, although traditional, is a trifle unfortunate

since no part of a continuum is ‘indivisible’. This fact seems to have contributed to the general
confusion – which I hope is not compounded here – surrounding the notion. See Boyer (1959),
especially Chapter III.
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Fig. 2

to contribute to the area of the figure. In order, therefore, for ABCO to be
the sum of rectangles like XYRS, we require that their base vertices X, S be
indistinguishable without coinciding, and yet the area defect ∇ be zero. This
desideratum (which is patently incompatible with the law of excluded mid-
dle) necessitates that the segment XS be a nondegenerate11 linear infinitesimal
of a special kind: let us appropriate Barrow’s delightful term and call it a
linelet.

Now to achieve our object we want YRZ to be a nondegenerate triangle of
zero area. For this to be the case we clearly require first that

(a) the segment YZ of the curve around the point P is actually straight and
nondegenerate (in particular, does not reduce to P).

In this event, the area ∇ of YRZ is proportional to the square of the length
of the line XS, so that, if this area is to be zero, we must further require
that

(b) XS is nondegenerate of length ε with ε2 = 0, that is, ε is a nilsquare
infinitesimal.

If, for any point P, a segment YZ of the curve exists such that the corresponding
conditions (a) and (b) are satisfied, then the rectangles XYRS may be regarded
as indivisibles whose sum exhausts the figure. Accordingly, an indivisible of
the figure may be identified as a rectangle with a linelet as base.

11 Here and throughout we term ‘nondegenerate’ any figure not identical with a single point.
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If this procedure is to be performable for any curve, (a) needs to be extended
to the following principle:

I. For any smooth curve C and any point P on it, there is a (small) nonde-
generate segment of C – a microsegment – around P which is straight, that
is, C is microstraight around P.

And (b) must be extended to the following principle:

II. The set � of magnitudes ε for which ε2 = 0 – the nilsquare infinitesimals –
does not reduce to {0}.

Principle II, which will be instrumental in reducing the differential calculus to
simple algebra in our account of smooth infinitesimal analysis, is actually a
consequence of Principle I. For, assuming I, consider the curve C with equa-
tion y = x2 (Fig. 3). Let U be the straight portion of the curve around the origin: U

Fig. 3

is the intersection of the curve with its tangent at the origin (the x-axis). Thus U
is the set of points x on the real line satisfying x2 = 0. In other words, U and �

are identical. Since I asserts the nondegeneracy of U, that is, of �, we obtain II.
Principle I, which we shall term the Principle of Microstraightness (for

smooth curves) – and which will play a key role in smooth infinitesimal anal-
ysis – is closely related both to Leibniz’s Principle of Continuity, and to what
we shall call the Principle of Microuniformity (of natural processes). Leibniz’s
principle, in essence, is the assertion that processes in nature occur continuously,
while the Principle of Microuniformity is the assertion that any such process
may be considered as taking place at a constant rate over any sufficiently small
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period of time (i.e. over Barrow’s ‘timelets’). For example, if the process is the
motion of a particle, the Principle of Microuniformity entails that over a timelet
the particle experiences no accelerations. This idea, although rarely explicitly
stated, is freely employed in a heuristic capacity in classical mechanics and
the theory of differential equations. We observe in passing that the Principle of
Continuity is actually a consequence of the Principle of Microuniformity.

The close relationship between the Principles of Microuniformity and
Microstraightness becomes manifest when natural processes – for example,
the motions of bodies – are represented as curves correlating dependent and
independent variables. For then, microuniformity of the process is represented
by microstraightness of the associated curve.

The Principle of Microstraightness yields an intuitively satisfying account
of motion. For it entails that infinitesimal parts of (the curve representing) a
motion are not degenerate ‘points’ where, as Aristotle observed millenia ago, no
motion is detectable (or, indeed, even possible!), but are, rather, nondegenerate
spatial segments just large enough to make motion over each one palpable.
On this reckoning, states of motion are to be taken seriously, and not merely
identified with their result: the successive occupation of a series of distinct
positions. Instead, a state of motion is represented by the smoothly varying
straight microsegment of its associated curve. This straight microsegment may
be thought of as an infinitesimal ‘rigid rod’, just long enough to have a slope –
and so, like a speedometer needle, to indicate the presence of motion – but too
short to bend. It is thus an entity possessing (location and) direction without
magnitude, intermediate in nature between a point and a Euclidean straight line.

This analysis may also be applied to the mathematical representation of time.
Classically, time is represented as a succession of discrete instants, isolated
‘nows’, where time has, as it were, stopped. The Principle of Microstraightness,
however, suggests rather that time be regarded as a plurality of smoothly over-
lapping timelets each of which may be held to represent a ‘now’ (or ‘specious
present’) and over which time is, so to speak, still passing. This conception of
the nature of time is similar to that proposed by Aristotle (Physics, Book 6,
Chapter ix) to refute Zeno’s paradox of the arrow.

Most important for our purposes, however, the Principle of Microstraight-
ness decisively solves the problem of assigning a quantitative meaning to the
concept of instantaneous rate of change – the fundamental concept of the dif-
ferential calculus. For, given a smooth curve representing a physical process,
the instantaneous rate of change of the process at a point P on the curve is
given simply by the slope of the straight microsegment � forming part of the
curve at P: � is of course part of the tangent to the curve at P. If the curve has
equation y = f (x) and P has coordinates (x0, y0), then the slope of the tangent
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to the curve is given, as usual, by the value f ′(x0) of the derivative f ′ of f at x0.
The presence of nilsquare infinitesimals guaranteed by the Principle of Micros-
traightness enables this value to be calculated in a straightforward manner, as
is shown by the following informal argument (Fig. 4).

Fig. 4

Let δx0 be any small change in x0. The corresponding small change δy0 in
y0 = f (x0), represented by the line SQ in Fig. 4, may then be split into two
components. The first of these is the change in y0 along the tangent to the curve
at P, and is represented by the line SR, which has length f ′(x0)δx0. The second
is represented by the line QR; we write its length in the form H (δx0)2, where
H is some quantity depending both on x0 and δx0. Thus

f (x0 + δx0) − f (x0) = δy0 = f ′(x0)δx0 + H (δx0)2.

Now suppose that δx0 is a nilsquare infinitesimal ε. Then (δx0)2 = ε2 = 012

and so the equation above reduces to

f (x0 + ε) − f (x0) = f ′(x0)ε.

Allowing x0 to vary, we see then that the value of f (x) attendant upon a nilsquare
infinitesimal change ε in x is exactly equal to f ′(x)ε. The derivative f ′(x) is
thus determined as that quantity A satisfying the equation

f (x + ε) − f (x) = Aε

for all nilsquare infinitesimal ε.

12 Notice that then the length H (δx0)2 of QR is zero. Thus Q and R coincide and so, in accordance
with the Principle of Microstraightness, the portion PQ of the curve coincides with the portion
PR of the tangent and is therefore ‘straight’.



P1: SBT
9780521867186int CUUS046/Bell 978 0 521 88718 2 November 1, 2007 16:0

12 Introduction

The axioms of smooth infinitesimal analysis will permit us to define the
derivative f ′(x) to be the unique quantity A satisfying this last equation for all
nilsquare infinitesimal ε. As we shall see, defining the derivative in this way
enables the basic rules and processes of the differential calculus to be reduced
to simple algebra.

In this book our main purpose will be to develop mathematics within smooth
infinitesimal analysis, and so we shall not be directly concerned with the tech-
nical construction of its models as categories. Here we give just a bare outline
of the construction: the Appendix contains a further sketch and full details may
be found in Moerdijk and Reyes (1991).

Roughly speaking, a category is a mathematical system whose basic con-
stituents are not only mathematical ‘objects’ (in set theory these are the ‘sets’),
but also ‘maps’ (‘functions’, ‘transformations’, ‘correlations’) between the said
objects. By contrast with set theory, in a category the ‘maps’ have an autonomous
character which renders them in general not definable in terms of the objects, so
that one has a great deal of freedom in deciding exactly what these maps should
be. A crucial feature of maps in a category is that each map f is associated with
a specific pair of objects written dom( f ), cod( f ) and called its domain and
codomain, respectively. We think of any map as being defined on its domain
and taking values in its codomain, or as going from its domain to its codomain:
to indicate this we employ the customary notation f : A → B, where f is any map
and A = dom( f ), B = cod( f ). Another basic feature of maps in a category is
that certain pairs of them can be composed to yield new maps. To be precise,
associated with each pair of maps f : A → B and g: B → C such that cod( f ) =
dom(g) ( f is then said to be composable with g) is a map g ◦ f: A → C called
its composite: it is supposed that composition is associative in the sense that, if
( f, g) and (g, h) are composable pairs of maps, then h ◦ (g ◦ f ) = (h ◦ g) ◦ f .
Finally, associated with each object A is a map 1A: A → A called the identity map
on A; it is assumed that, for any f : B → A and g: A → C we have 1A ◦ f = f
and g ◦ 1A = g. Possession of these three properties actually defines the notion
of category. Two prominent examples of categories are Set, the category of sets,
with all ordinary sets as objects and all functions between them as maps, and
Man, the category of (smooth) manifolds, with all smooth manifolds as objects
and all smooth functions between them as maps.

Now there is a certain sort of category possessing an internal structure suffi-
ciently rich to enable all of the usual constructions of mathematics to be carried
out. Categories of this sort are called toposes; Set (but not Man) is a topos13.

13 Without giving a formal definition of a topos, we may say that it is a category E which resembles
Set in the following respects: (1) it contains an object 1 which behaves like a one-element set;
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Toposes may be suggestively described as ‘universes of discourse’ within which
the objects are undergoing variation or change in some way: the category of
sets is a topos in which the variation of the objects has been reduced to zero,
the static, timeless case14. Associated with each such ‘universe of discourse’
is a mathematical language – a formal version of the familiar language used
in set theory – which serves to ‘chart’ that universe, and which contains, in
coded form, a complete description of it. Just as all the charts in an atlas share
a common geometry, so all the formal languages associated with toposes or
‘universes of discourse’ share a common logic. This logic turns out to be what
is known as constructive or intuitionistic logic15, in which existential proposi-
tions can be affirmed only when the term whose existence is asserted can be
constructed or named in some definite way, and in which a disjunction can be
affirmed only when a definite one of the disjuncts has been affirmed. Roughly
speaking, in constructive logic, all the principles of classical logic are affirmed
with the exception of those that depend for their validity on the law of excluded
middle16. (Recall that this law fails in smooth worlds.) If the general princi-
ples of constructive reasoning are adhered to – and all this means in practice is
avoiding certain ‘arguments by contradiction’17 – then mathematical arguments
within these ‘universes of discourse’ can take essentially the same form as they
do in ‘ordinary’ mathematics.

From the category-theoretic point of view, furnishing mathematical analysis
and differential geometry with a ‘set-theoretic’ foundation amounts to embed-
ding Man in Set: the latter’s stronger properties – it is a topos, Man is not – then
sanction the performance of necessary constructions (notably, the formation of

(2) any pair of objects A, B determines an object A × B which behaves like the Cartesian product
of A and B; (3) any pair of objects A, B determines an object AB which behaves like the ‘set of
all maps’ from B to A; (4) it contains an object � playing a role similar to that played in Set by
the ‘truth value’ set 2 = {0, 1}: maps from an arbitrary object A to � correspond bijectively to
‘subobjects’ of A. For some further details see the Appendix.

14 The simplest example of a topos in which genuine ‘variation’ is taking place is the category
Set2 of sets varying over two moments of time 0 (‘then’) and 1 (‘now’). The objects of Set2

are triples ( f, A0, A1) where f, A0 → A1 is a map in Set: we think of each such triple as a
‘varying set’ in which A0 was its state ‘then’, A1 its state ‘now’ and f is the transition function
between the two states. A map in Set2 between two such triples ( f, A0, A1) and (g, B0, B1)
is a pair h0: A0 → B0, h1: A1 → B1 in Set which preserve the transition functions f and g,
i.e. for which the composites g ◦ h0 and h1 ◦ f coincide. More generally, the simple structure
2 = {0, 1} may be replaced by an arbitrary category C to yield the category Setc of sets varying
over C. For details see, for example, Bell (1988b).

15 See Chapter 8 for a description of the rules of constructive logic.
16 By this we do not mean that the law of excluded middle is explicitly denied (i.e. that its negation

is derivable) in constructive logic, only that, as we have said, it is not affirmed. Because of this,
classical logic may be regarded as the special or idealized version of constructive logic in which
the law of excluded middle is postulated. And of course there are toposes, notably Set, whose
associated logic is classical, i.e. the law of excluded middle holds there.

17 To be precise, those reductio ad absurdum arguments that derive a proposition from the absurdity
of its denial.
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tangent spaces) which cannot be carried out directly in Man. However, in the
process of embedding Man in Set we obtain, not only new objects (i.e. pure
sets which are not correlated with manifolds), but also new (discontinuous)
maps between the old objects. (For example, the blip function considered ear-
lier appears in Set but not in Man.) Moreover, despite the (inevitable) presence
of many new objects in Set, none of them can play the role of ‘infinitesi-
mal’ objects such as � or I above18. By contrast, in constructing a smooth
world we seek to embed Man in a topos E which does not contain new maps
between manifolds (so that all such maps in E are still smooth), yet does contain
‘infinitesimal’ objects: in particular, an object � which realizes the Principle
of Microstraightness. Maps in E with domain � may then be identified with
‘straight microsegments’ of curves in the sense introduced above.

Recent work has shown that toposes – the so-called smooth toposes – can
be constructed so as to meet these requirements (and also to satisfy the addi-
tional principles to be introduced in the sequel). These toposes are obtained by
embedding the category of manifolds in an enlarged category C which contains
‘infinitesimal’ objects, and forming the topos Setc of sets ‘varying over’ C.
Each smooth topos E is then identified as a certain subcategory of Setc. Any
one of these toposes has the property that its objects are undergoing a form of
smooth variation, and each may be taken as a smooth world. Smooth infinites-
imal analysis – mathematics in smooth worlds – can then, as in any topos, be
developed in the straightforward informal style of ‘ordinary’ mathematics (a
procedure to be adopted in this book).

These facts guarantee the consistency of smooth infinitesimal analysis, and so
also the essential soundness of (many of) the infinitesimal methods employed
by the mathematicians of the past. This is a striking achievement, since the con-
ception of infinitesimal supporting these methods was vague and occasionally
gave rise to outright inconsistencies. Now it may be plausibly maintained that
such inconsistencies ultimately arose from the fact that infinitesimals, as intrin-
sically varying19 quantities, are logically incompatible – at least, within the
canons of classical logic – with the static quantities traditionally employed in
mathematics. So it would seem natural to attempt to eradicate this incompatibil-
ity by allowing the static quantities themselves to vary continuously in a manner
consonant with the variation of their infinitesimal counterparts. In the smooth
worlds constructed within category theory this goal is achieved, in essence, by

18 This is because the presence of objects like I or � leads to the failure of the law of excluded
middle, which, as we have observed, holds in Set.

19 This is a consequence of their being in a ‘nascent or evanescent state’.
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ensuring that all quantities – infinitesimal and ‘static’ alike – are undergoing
smooth variation. At the same time, the problem of vagueness of the concept of
infinitesimal is overcome through the device of furnishing every quantity – and
in particular every infinitesimal quantity – with a definite domain over which it
varies and a definite codomain in which it takes values. The presence of non-
punctiform infinitesimals happily restores to the continuum concept Poincaré’s
‘intimate bond’ between elements absent in arithmetical or set theoretic formu-
lations. And finally, the necessary failure in the models of the law of excluded
middle suggests that it was the unqualified acceptance of the correctness of
this law, rather than any inherent logical flaw in the concept of infinitesimal
itself, which for so long prevented that concept from achieving mathematical
respectability.

In the chapters that follow, we will show how elementary calculus and some of
its principal applications can be developed within smooth infinitesimal analysis
in a simple algebraic manner, using calculations with nilsquare infinitesimals
in place of the classifical limit concept. In Chapters 1 and 2 are described the
basic features of smooth worlds and the development of elementary calculus in
them. Chapters 3 and 4 are devoted to applications of the differential calculus in
smooth infinitesimal analysis to a range of traditional geometric and physical
problems. In Chapter 5 we introduce and apply the differential calculus of
several variables in smooth infinitesimal analysis. Chapter 6 contains a treatment
of the elementary theory of the definite integral in smooth infinitesimal analysis,
together with a discussion of higher-order infinitesimals and their uses. In the
penultimate chapter we give a brief and elementary introduction to differential
geometry in smooth infinitesimal analysis: we will see that the presence of
infinitesimals enables the basic constructions to be cast in a form that is simpler
and much more intuitive than is possible classically. The final chapter, which is
intended for logicians, contains an account of smooth infinitesimal analysis as an
axiomatic system, and a comparison with nonstandard analysis. In the Appendix
we sketch the construction of models of smooth infinitesimal analysis.

It is hoped that those readers less concerned with technical applications
than with the acquisition of a basic grasp of the principles underlying smooth
infinitesimal analysis will find that this introduction, conjoined with Chapters 1,
2 and 8, form a self-contained presentation meeting their requirements.
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Basic features of smooth worlds

The fundamental object in any smooth world S is an indefinitely extensible
homogeneous straight line R – the smooth, affine or real line. We assume that
we are given the notion of a location or point in R, together with the relation =
of identity or coincidence of locations. We use lower case letters a, b, . . . ,
x, y, . . . , α, β, . . . for locations. We write a �= b for not a = b: this may be read
‘a and b are distinct or distinguishable’. It is important to be aware (cf. the
remarks in the Introduction) that we do not assume that the identity relation on
R is decidable in the sense that, for any a, b, either a = b or a �= b: thus we allow
for the possibility that locations may not be presented with sufficient definite-
ness to enable a decision as to their identity or distinguishability to be made.

We assume given two distinct points on R which we will denote by 0 and 1
and call the zero and the unit, respectively. We also suppose that there is defined
on R an operation, denoted by −, which assigns, to each point a, a point −a
called its reflection in 0. We assume that − satisfies − (−a) = a and −0 = 0.

For each pair a, b of points we assume given an entity aˆb which we shall call
the oriented (a, b)-segment of R. We suppose that, for any points a, b, c, d, aˆb
and cˆd are identical if and only if a = c and b = d. The segment 0ˆa will
be denoted by a* and called simply the segment of R of length a. Segments
may be thought of as oriented linear magnitudes: in particular, for each point a,
the segment (−a)* is to be regarded as the segment a ‘pointing in the opposite
direction’. The (bijective) correspondence a a* between points and segments/
magnitudes enables us to identify each point a with its corresponding magni-
tude a*. We shall accordingly employ the terms ‘point’ and ‘magnitude’ syn-
onymously, allowing the context to determine which choice is appropriate.

We suppose that, for any pair of points, a, b, we can form a segment a*: b*
which we shall think of as the segment obtained by juxtaposing a* and b* (in
that order, and preserving their given orientation). We suppose that a*: b* is of
the form c* for some unique point c which, as usual, we call the sum of (the

16
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magnitudes associated with) a and b and denote by a + b. We write a − b for
a + (−b). We assume that the resulting operation + has the familiar properties:

0 + a = a a − a = 0 a + b = b + a (a + b) + c = a + (b + c).

In mathematical terminology, we are supposing that the operation + defines an
Abelian group structure on (the points of) R, with neutral element 0.

We assume that in S we can form the Cartesian powers R × R,

R × R ×R, . . . , Rn, . . . of R. Rn is, as usual, homogeneous n-dimensional
space, each point of which may be identified as an n-tuple (a1, . . . , an) of
points of R. We shall say that two points a = (a1, . . . an), b = (b1, . . . , bn)
are distinct, and write a �= b, if ai �= bi for some explicit i = 1, . . . , n. That is,
distinctness of points in n-dimensional space means distinctness of at least one
explicit coordinate.

We suppose that the usual Euclidean constructions of products and inverses
of magnitudes can be carried out in R × R. Thus (see Fig. 1.1), given two

Fig. 1.1

magnitudes a, b, to define their product a.b in R × R we take two perpendicular
copies R1 (the ‘x-axis’), whose points are exactly those of the form (x, 0) and
R2 (the ‘y-axis’, whose points are exactly those of the form (0, y)). R1 and R2

intersect at the point O = (0, 0), the ‘origin of coordinates’. Now consider the
segments OA, OI of lengths a,1, respectively, along R1 and the segment OB of
length b along R2. The points I and B, being distinct, determine a unique line IB.
The line through A parallel to IB intersects R2 in a point C whose y-coordinate
is defined to be the product a.b (which is, more often than not, written ab).

It is important to note that we do not assume that, if ab = 0, then either a =
0 or b = 0. For we do not want to exclude the possibility (which will indeed be
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realized in S) that a, although not identical with 0, is nonetheless so small that
its product with itself is identical with 0.

Given a �= 0, to construct the inverse a−1 or 1/a we take the x and y
axes as before and consider the segments OA, OI along the x-axis of lengths
1, a, respectively, and the segment OB of length 1 along the y-axis (see Fig. 1.2).

Fig. 1.2

The points A and B, being distinct, determine a unique line AB. The line through
I parallel to AB intersects the y-axis in a point C whose y-coordinate is defined
to be a−1.

Here it should be noted that, as usual, a−1 is defined only when a is distinct
from 0.

We assume that products and inverses satisfy the following familiar rules
(where we write a/b for a.b−1):

0.a = 0 1.a = a a.b = b.a a.(b.c) = (a.b).c

a.(b + c) = a.c + b.c a �= 0 implies a/a = 1.

In mathematical terminology, (the points of) R, together with the operations of
addition ( + ) and multiplication (·), forms a field.

We now suppose that we are given an order relation among the points of
R which we denote by < : a < b (also written b > a) is to be understood as
asserting that a is strictly to the left of b (or b is strictly to the right of a). We
shall assume that < satisfies the following conditions: for any a, b:

(1) a < b and b < c implies a < c.
(2) not a < a.
(3) a < b implies a + c < b + c for any c.
(4) a < b and 0 < c implies ac < bc.
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(5) either 0 < a or a < 1.
(6) a �= b implies a < b or b < a.

Condition (1) expresses the transitivity of <, (2) its strictness, (3) and (4) its
compatibility with + and ., and (5) the idea that 1 is sufficiently far to the right
of 0 (notice that (5) and (2) jointly imply 0 < 1) for each point to be either strictly
to the right of 0 or strictly to the left of 1. Finally, (6) embodies the idea that,
of any two distinguishable points, one is strictly to the left of the other. Notice
that (6) does not imply that < satisfies the law of trichotomy, namely, that for
any a,b either a < b or a = b or b < a. Thus we have automatically allowed
for the possibility (which will turn out to be a reality in S!) that two locations,
although not in fact coincident, are nonetheless sufficiently indistinguishable
that it cannot be decided whether one is to the right or left of the other.

We define the equal to or less than relation ≤ on R by

a ≤ b if and only if not b < a.

The open interval )a, b( is defined to consist of those points x for which both
a < x and x < b, and the closed interval [a, b] to consist of those points x for
which both a ≤ x and x ≤ b.

Exercises

1.1 Show that 0 < a implies 0 �= a; 0 < a iff −a < 0; 0 < 1 + 1; and (a < 0
or 0 < a) implies 0 < a2.

1.2 Show that, if a < b, then, for any x, either a < x or x < b.
1.3 Show that )a, b( is empty iff not a < b.
1.4 Show that ≤ satisfies the following conditions:

x ≤ y and y ≤ z implies x ≤ z x ≤ x

x ≤ y implies x + z ≤ y + z

x ≤ y and 0 ≤ t implies xt ≤ yt 0 ≤ 1.

1.5 Show that any closed interval is convex in the sense that, if x and y are in
it, so is x + t(y − x) for any t in [0,1].

We also assume that, in S, the extraction of square roots of positive quanti-
ties can be performed: that is, we assume the truth in R of the following asser-
tion:

for any a > 0, there exists b such that b2 = a.

This is tantamount to supposing that the usual Euclidean construction of the
square root of a segment can be carried out in S: if a segment of length a > 0
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is given, mark out a straight line OA of length a and AB of length 1 (see Fig. 1.3).
Draw a circle with the segment OB as diameter and construct the perpendicular

Fig. 1.3

to OB through A, which meets the circle in C (since a > 0, A is distinct from O
so C is well defined). Then AC has length

√
a = a

1
2 .

We recall that in our description of S we have not excluded the possibility
that, in R, a2 = 0 can hold without our being able to affirm that a = 0. That is,
if we define the part � of R to consist of those points x for which x2 = 0, or in
symbols,

� = {x: x2 = 0},
it is possible that � does not reduce to {0}: we shall, in fact, shortly adopt a
principle which explicitly ensures that this is the case in S.

Henceforth we shall use letters ε, η, ζ, ξ (possibly with subscripts) as variables
ranging over �: these will also be referred to as infinitesimal quantities or
microquantities. � will also be called the (basic) microneighbourhood (of 0).
We shall say that a part A of R is stable under the addition of microquantities,
or microstable, if a + ε is in A whenever a is in A and ε is in �.

Exercises

1.6 Show that, for all ε in �, (i) not (ε < 0 or 0 < ε), (ii) 0 ≤ ε and ε ≤ 0,
(iii) for any a in R, εa is in �, (iv) if a > 0, then a + ε > 0.

1.7 Show that for any a, b in R and all ε, η in �, [a, b] = [a + ε, b + η].
Deduce that [a, b] is microstable.

We now suppose that the notion of a function (also called map or mapping)
between any pair of objects of S is given. We adopt the usual notation f : X →
Y to indicate that f is a function defined on X with values in Y: X is called the
domain, and Y the codomain, of f. When the domain, codomain and values f (x)
of a function f are already known, we shall sometimes introduce f by writing y =
f (x) or x f (x). If J is R or any closed interval, a function f : J → R may be regar-
ded as determining a curve, which may be identified with its graph in R × R.
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Our single most important underlying assumption will be: in S, all curves
determined by functions from R to R satisfy the Principle of Microstraightness.

This assumption made, consider an arbitrary function f : R → R. Since the
curve y = f (x) is microstraight around each of its points, there is a microseg-
ment N of the curve y = f (x) around the point (0, f(0)) which is straight, and so
coincides with the tangent to the curve there. Now if f were a polynomial func-
tion, then N could be taken to be the image of � under f. To see this (Fig. 1.4)
observe that if f (x) = a0 + a1x + a2x2 + · · · + an xn, then f (ε) = a0 +
a1ε for any ε in �, so that (ε, f(ε)) lies on the tangent to the curve at the point
(0, a0). We shall assume that, in S, this remains the case for an arbitrary function
f : R → R, in other words, that arbitrary functions from R to R behave locally like
polynomials20. If we consider only the restriction g of f to �, this assumption
entails that the graph of g is a piece of a unique straight line passing through the
point (0,g(0)), in short, that g is affine on �. Thus we are led finally to suppose
that the following basic postulate holds in S, which we term the Principle of
Microaffineness.

Fig. 1.4

Principle of Microaffineness For any map g: � → R, there exists a unique
b in R such that, for all ε in �, we have

g(ε) = g(0) + b.ε.

This says that the graph of g is a straight line passing through (0, g(0)) with
slope b.

The Principle of Microaffineness may be construed as asserting that, in S, the
microneighbourhood � can be subjected only to translations and rotations, i.e.

20 The counterpart of this assumption in classical analysis is, of course, the fact that all smooth
functions have Taylor expansions.
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behaves as if it were an infinitesimal ‘rigid rod’. � may also be thought of as a
generic tangent vector because Microaffineness entails that it can be ‘brought
into coincidence’ with the tangent to any curve at any point on it. Since we
will shortly show that � does not reduce to a single point, it will be, so to
speak, ‘large enough’ to have a slope but ‘too small’ to bend. Thus (as we
have already remarked in the Introduction), � may be considered an entity
possessing both location and direction, but lacking genuine extension, or in
short, a pure synthesis of location and direction.

Let us assume that in S we can form the space R� of all functions from �

to R. If to each (a, b) in R × R we assign the function φab: � → R defined by
φab(ε) = a + bε, it is easily seen that the Principle of Microaffineness is
equivalent to the assertion that the resulting correspondence φ sending each
(a,b) to φab is a bijection between R × R and R�.

Exercise

1.8 R� is a ring with the natural operations + , . defined on it by ( f + g)(ε) =
f (ε) + g(ε), ( f.g)(ε) = f (ε).g(ε) for f, g in R�. Show that, if we de-
fine operations ⊕, 
 on R × R by (a, b) ⊕ (c, d) = (a + c, b + d),
(a, b) 
 (c, d) = (ac, ad + bc), then (R × R, ⊗, 
) is a ring and
φ as defined above is a ring isomorphism.

We conclude this chapter by deriving some important properties of �.

Theorem 1.1 In a smooth world S,

(i) � is included in the closed interval [0, 0], but is nondegenerate, i.e. not
identical with {0}.

(ii) Every element of � is indistinguishable from 0.
(iii) It is false that, for all ε in �, either ε = 0 or ε �= 0.
(iv) � satisfies the Principle of (Universal) Microcancellation, namely, for

any a, b in R, if εa = εb for all ε in �, then a = b. In particular, if
εa = 0 for all ε in �, then a = 0.

Proof (i) That � is included in [0,0] follows immediately from exercise 1.6(i).
Suppose that � did coincide with {0}. Consider the function g: � → R defined
by g(ε) = ε. Then g(ε) = g(0) + bε both for b = 0 and b = 1. Since 0 �= 1,
this violates the uniqueness of b guaranteed by Microaffineness. Therefore �

cannot coincide with {0}.
(ii) Suppose that, if possible, ε2 =0 and ε �=0. Then since R is a field, 1/ε exists

and ε.(1/ε) = 1. Hence 0 = 0.(1/ε) = ε2.(1/ε) = ε.(ε/ε) = ε.1 = ε. Therefore
the assumption ε2 = 0, i.e. ε in �, is incompatible with the assumption that ε �= 0.
But this is the assertion made in (ii).
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(iii) Suppose that

∗ for any ε in �, either ε = 0 or ε �= 0.

Then since by (ii) it is not the case that ε �= 0, it follows that the first disjunct ε =
0 must hold for any ε. This, however, is in contradiction with (i). It follows that
(*) must be false, which is (iii).

(iv) Suppose that, for all ε in �, εa = εb and consider the function g: � → R
defined by g(ε) = εa. The assumption then implies that g has both slope a and
slope b: the uniqueness clause in Microaffineness yields a = b.

The proof is complete.

The Principle of Microcancellation should be carefully noted, since we shall
be employing it constantly in order to ensure that microquantities (apart from 0)
do not figure in the final results of our calculations. Observe that the cancellation
of ε is only permissible when εa = εb for all ε in �: it is of course not enough
merely that εa = εb for some ε in �. However, this latter possibility will not
arise in practice because statements involving microquantities will invariably
concern arbitrary, rather than particular, microquantities (with the exception, of
course, of 0).

Exercises

1.9 Show that the following assertions are false in S: (i) ε.η = 0 for all ε, η in
�; (ii) � is microstable; (iii) x2 + y2 = 0 implies x2 = 0 for every x, y in
R. (Hint: use (iv) of Theorem 1.1.)

1.10 Call two points a, b in R neighbours if (a − b) is in �. Show that the
neighbour relation is reflexive and symmetric, but not transitive. (Hint:
use the previous exercise.)

1.11 Show that any map f : R → R is continuous in the sense that it sends
neighbouring points to neighbouring points. Use this to give another proof
of part (ii) of Theorem 1.1.

1.12 Show that, for any ε1, . . . , εn in �, we have (ε1 + · · · + εn)n+1 = 0.
1.13 Show that the following principle of Euclidean geometry is false in S:

Given any straight lines L , L ′ both passing through points p, p′, either
p = p′ or L = L ′. (Hint: consider lines passing through the origin with
slopes the microquantities ε, η respectively.)

But show that the following is true in S:

For any pair of distinct points, there is a unique line passing through
them both.
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Basic differential calculus

2.1 The derivative of a function

We turn next to the development of the differential calculus in a smooth world S.
We begin by defining the ‘derivative’ of an arbitrary given function f : R → R.
For fixed x in R, define the function g x: � → R by

g x (ε) = f (x + ε).

By Microaffineness there is a unique b in R, whose dependence on x we will
indicate by denoting it bx, such that, for all ε in �,

f (x + ε) = g x (ε) = g x (0) + b x .ε = f (x) + b x .ε. (2.1)

Allowing x to vary then yields a function x bx: R → R which is written f and
called, as is customary, the derivative of f. If f is given as y = f (x), we shall
occasionally adopt the familiar notation dy/dx for f . Equation (2.1), which may
be written

f (x + ε) = f (x) + ε f ′(x), (2.2)

for arbitrary x in R and ε in �, is the fundamental equation of the differential
calculus in S. The quantity f ′(x) is the slope at x of the curve determined by f,
and the microquantity

ε f ′(x) = f (x + ε) − f (x)

is precisely the change or increment in the value of f on passing from x to
x + ε21.

21 The exactness of the increment defined here is to be sharply contrasted with its ‘approximate’
counterpart in the classical differential calculus.

24
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We see that in S every map f : R → R has a derivative. It follows that the
process of forming derivatives can be iterated indefinitely22 so as to yield higher
derivatives f ′′, f ′ ′′, . . . . Thus the nth derivative f (n) of f is defined recursively
by the equation

f (n−1)(x + ε) = f (n−1)(x) + ε. f (n)(x).

It should be clear that the definition of the derivative given above can be
extended verbatim to any function defined on a microstable part of R, in partic-
ular, by exercise 1.7, on any closed interval.

In the remainder of this text we shall use the symbol J to denote an arbitrary
closed interval or R itself.

Exercise

2.1 For ε, η, ζ in �, show that f (x + ε + η) = f (x) + (ε + η) f ′(x) +
εη f ′′(x) and f (x + ε + η + ζ ) = f (x) + (ε + η + ζ ) f ′(x) + (εη +
εζ + ηζ ) f ′′(x) + εηζ f ′ ′′(x). Generalize.

This definition of the derivative, together with the Principle of Microcancel-
lation, enables the basic formulas of the differential calculus to be derived in a
straightforward purely algebraic fashion. The proofs of some of the following
examples are left as exercises to the reader.

Sum and scalar multiple rules For any functions f, g: J → R and any c in R,

( f + g)′ = f ′ + g′ (c. f )′ = c f ′,

where f + g, c.f are the functions x f (x) + g(x), x c f (x), respectively.

Product rule For any functions f, g J → R, we have

( f.g)′ = f ′.g + f.g′

where f.g is the function x f (x).g(x).

Proof We have, for any ε in �,

( f.g)(x + ε) = ( f.g)(x) + ε.( f.g)′(x) = f (x).g(x) + ε.( f.g)′(x) (2.3)

22 Thus in S every function f defined on R is smooth in the technical sense of possessing derivatives
of all orders.



P1: SBT
9780521867186c02 CUUS046/Bell 978 0 521 88718 2 November 1, 2007 15:55

26 Basic differential calculus

and

f (x + ε).g(x + ε) = [ f (x) + ε f ′(x)].[g(x) + εg′(x)]

= f (x)g(x) + ε[ f ′(x)g(x) + f (x)g′(x)]

+ ε2. f (x)g(x). (2.4)

Equating (2.3) and (2.4) and recalling that ε2 = 0 gives

ε( f.g)′(x) = ε.[ f ′(x)g(x) + f (x)g′(x)].

Since this is true for any ε, it may be cancelled to yield the desired result.

Polynomial rule If f (x) = a0 + a1x + · · · + an xn , then

f ′ =
n∑

k=1

kak xk−1.

In particular (cx) = c.

Quotient rule If g: J → R satisfies g(x) �= 0 for all x in J, then for any f : J →
R

( f/g)′ = ( f ′.g − f.g′)/g2,

where f/g is the function x f (x)/g(x).

Composite rule For any f, g: J → R we have

(g ◦ f )′ = (g′ ◦ f ). f ′,

where g ◦ f is the function x g( f (x)).

Proof We have

(g ◦ f )(x + ε) = (g ◦ f )(x) + ε(g ◦ f )′(x) = g( f (x)) + ε(g ◦ f )′(x). (2.5)

Since f (x + ε) = f (x) + ε f ′(x) and (by exercise 1.6) ε f ′(x) is in �, it follows
that

g( f (x + ε)) = g( f (x) + ε f ′(x)) = g( f (x)) + ε f ′(x).g′( f (x)). (2.6)

Equating (2.5) and (2.6), removing common terms and finally cancelling ε

yields the result.

Inverse Function rule Suppose that f : J1 → J2 admits an inverse, that is, there
exists a function g: J2 → J1 such that g( f (x)) = x and f (g(y)) = y for all x
in J1, y in J2. Then f and g are related by the equation

( f ′ ◦ g).g′ = (g′ ◦ f ). f ′ = 1.
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Proof By the polynomial rule the derivative of the function i(x) = x is 1. So
the result follows immediately from the Composite rule.

Observe that it follows from this last rule that the derivative of any function
admitting an inverse cannot vanish anywhere.

2.2 Stationary points of functions

One of the most important applications of the differential calculus is in determin-
ing ‘stationary points’ of functions. This can be carried out in S by what we shall
call the Method of Microvariations, which goes back in principle to Fermat.

We define a point a in R to be a stationary point, and f (a) a stationary value,
of a given function f : R → R if microvariations around a fail to change the value
of f there, i.e. provided that, for all ε in �,

f (a + ε) = f (a).

Now this holds if and only if, for all ε,

f (a) + ε f ′(a) = f (a + ε) = f (a),

i.e. if and only if ε.f ′(a) = 0 for all ε, or f ′(a) = 0 by microcancellation. This
establishes the following rule.

Fermat’s rule A point a is a stationary point of a function f if and only if
f ′(a) = 0.

It is instructive to examine in this connection an analysis actually carried
out by Fermat (presented in detail on pp. 167–8 of Baron, 1969). He wishes to
maximize the function f (x) = x(b − x). He allows x to become x + e and then
puts, for a stationary value, f (x) approximately equal to f (x + e), i.e.

x(b − x) ≈ (x + e)(b − x − e).

Then, removing common terms,

0 ≈ be − 2xe − e2,

so that, dividing by e,

0 ≈ b − 2x − e.

To obtain the stationary value he now sets e = 0 (i.e. f ′(x) = 0) and so obtains
2x = b. Clearly if in this argument we replace the suggestive but somewhat
vague notion of ‘approximate equality’ by literal equality, the process of ‘divid-
ing by e and setting e = 0’ is tantamount to assuming e2 = 0 and cancelling e.
In other words, e is implicitly being treated as a nilsquare infinitesimal. It thus
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seems fair to claim that Fermat’s method of determining stationary points is
faithfully represented in S by the method of microvariations.

2.3 Areas under curves and the Constancy Principle

Another important traditional application of the calculus is in calculating the
area under (or bounded by) a curve. Let us see how this can be effected in S. Sup-
pose given a function f : J → R; for x in J let A(x) be the area under the curve
defined by the function y = f (x) bounded by the x- and y-axes and the line
with abscissa x parallel to the y-axis (see Fig. 2.1). The resulting function A(x)

Fig. 2.1

will be called the area function associated with f : we are of course assuming
that A(x) is a well-defined function (this assumption will later be justified by
the Integration Principle in Chapter 6). Then, by the Fundamental Equation, for
ε in �,

A(x + ε) − A(x) = εA′(x).

Now

A(x + ε) − A(x) = � + ∇,

where � is the area of the indicated rectangular region and ∇ is the area of PQR.
Clearly � = ε f (x). Now, by Microstraightness, the microsegment PQ of the
curve is straight, so ∇ is genuinely a triangle of base ε and height f (x + ε) −
f (x) = ε f ′(x). Hence ∇ = (

1
2

)
ε.ε f ′(x) = 0 since ε2 = 0. Therefore εA′(x) =

A(x + ε) − A(x) = � = ε f (x). Since this equality holds for arbitrary ε, we
may cancel it on both sides to obtain23 the following theorem.

23 It will be apparent that our argument here is essentially a recapitulation of the discussion in the
Introduction relating linear infinitesimals and indivisibles.
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Fundamental Theorem of the Calculus For any function f: J → R, its area
function satisfies

A′(x) = f (x).

Now in order to be able to apply the Fundamental Theorem we need to assume
that the following principle holds in S:

Constancy Principle If f : J → R is such that f ′ = 0 identically, then f is
constant.

It is easily shown that the Constancy Principle may be equivalently expressed
in the form: if f : J → R satisfies f (x + ε) = f (x) for all x in J and all ε in � –
that is, if every point in the domain of f is a stationary point – then f is constant.
It also follows immediately from the Constancy Principle that if two functions
have identical derivatives, then they differ by at most a constant.

Exercise

2.2 Use the Fundamental Theorem and the Constancy Principle to deduce
Cavalieri’s Principle (1635): if two plane figures are included between
a pair of parallel lines, and if the two segments cut by them on any line
parallel to the including lines are in a fixed ratio, then the areas of the
figures are in this same ratio.

The Constancy Principle, together with the Principle of Microaffineness, also
has the following striking consequence. Call a part U of R detachable24 if, for
any x in R, it is the case that either x is in U or x is not in U. We can then prove
the following theorem.

Theorem 2.1 The only detachable parts of R are R itself and its empty part.

Proof Suppose that U is a detachable part of R. Then the map f defined for x
in R by

f (x) = 1 if x is in U,

f (x) = 0 if x is not in U,

is defined on the whole of R. We claim that the derivative f of f is identically
zero.

24 The definition of detachability given here is easily seen to be equivalent to that of the Introduction.
We call a part U of R ‘detachable’ because, if the condition is satisfied, U may be ‘detached’
from R leaving its ‘complement’ – the part of R consisting of all points not in U – cleanly behind.
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To prove this, take any x in R and ε in �. Then

[ f (x) = 0 or f (x) = 1] and [ f (x + ε) = 0 or f (x + ε) = 1].

Accordingly we have four possibilities:

(1) f (x) = 0 and f (x + ε) = 0
(2) f (x) = 0 and f (x + ε) = 1
(3) f (x) = 1 and f (x + ε) = 0
(4) f (x) = 1 and f (x + ε) = 1,

Since f is continuous and x, x + ε are neighbouring points, cases (2) and (3)
may be ruled out by exercise 1.11. This leaves cases (1) and (4), and in either
of these we have f (x) = f (x + ε). Hence for all x in R, ε in �,

ε f ′(x) = f (x + ε) − f (x) = 0,

so that, cancelling ε, we obtain f ′(x) = 0 for all x as claimed.
The Constancy Principle now implies that f is constant, that is, constantly 1

or constantly 0. In the former case, U is R, and in the latter, U is empty. The
proof is complete.

Thus, in S, the smooth line is indecomposable in the sense that it cannot
be split in any way whatsoever into two disjoint nonempty parts. It is easy to
extend this result to any closed interval.

2.4 The special functions

We shall need to introduce certain special functions into our smooth world S.
The first of these is the square root function

√
x or x

1
2 . We regard this function

as being defined on, and taking values in, R+, the part of R consisting of all x
for which x > 0. By exercise 1.6(iv), R+ is microstable, so x

1
2 has a derivative,

also with domain and codomain R+. Using the inverse function rule, it is easy
to show that this derivative is the function

x
(

1
2

)
1/

√
x = (

1
2

)
x− 1

2 ,

We shall also need to assume the presence in S of the familiar sine and cosine
functions sin: R → R and cos: R → R. As usual, if a, b, c are the sides of a
right-angled triangle with base angle x (measured in radians), we have

a = c cos x b = c sin x,
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We assume the familiar relations

sin 0 = 0 cos 0 = 1

sin2 x + cos2 x = 1

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y − sin x sin y.

We now determine sin ε and cos ε for ε in �. Consider a segment of angle
2ε (radians) of a circle of unit radius (Fig. 2.2). By Microstraightness, the arc AB

Fig. 2.2

of length 2ε is straight and therefore coincides with the chord AB, which has
length 2 sin ε. Accordingly 2ε = 2 sin ε, so that

sin ε = ε.

Moreover,

1 = sin2 ε + cos2 ε = ε2 + cos2 ε = cos2 ε,

so that

cos ε = 1.

These facts enable us to determine the derivatives of sin and cos. For ε in �

we have

sin x + ε sin′ x = sin (x + ε) = sin x cos ε + cos x sin ε = sin x + ε cos x,

so that ε sin x = ε cos x. Therefore, cancelling ε,

sin′ x = cos x .

A similar calculation gives

cos′ x = − sin x .
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Let f: J → R be any function. At a point A with abscissa x on the curve
determined by f let φ(x) be the angle the tangent to the curve there makes with
the horizontal x-axis (see Fig. 2.3). For ε in �, let B the point on the curve

Fig. 2.3

with abscissa x + ε. Then by Microstraightness the arc AB of the curve is
straight and so we may consider the microtriangle ABC as indicated in Fig. 2.3,
where C is the point (x + ε, f (x)). Clearly AB, BC have lengths ε, ε f ′(x),
respectively. Now let E be the foot of the perpendicular from C to the line AB.
Then, indicating lengths of lines by underscoring25, we have

AC . sin φ(x) = C E = BC . cos φ(x),

i.e.

ε sin φ(x) = ε f ′(x) cos φ(x).

Cancelling ε gives the fundamental relation26

sin φ(x) = f ′(x) cos φ(x). (2.7)

It follows from this that

1 − cos2 φ(x) = sin2 φ(x) = f ′(x)2 cos2 φ(x),

from which we infer

cos φ(x) = 1/
√

(1 + f ′(x)2).

In particular, cos φ(x) must always be �=0.
The other special function we shall consider to be present in S is the exponen-

tial function. For our purposes this will be characterized as a function h: R → R

25 In the remainder of this text we shall employ this device without comment.
26 In classical analysis this equation would be expressed as f ′(x) = tan θ (x), where tan is the usual

tangent function. However, since tan is not defined on the whole of R (being undefined at (2n + 1)
π /2 for integral n), we prefer to avoid its use in S.
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possessing the two following properties: h(x) > 0 for all x in R; h = h. Observe
that these conditions determine h up to a multiplicative constant. For if g is
another function satisfying them, we may consider the derivative of the func-
tion g/h:

(g/h)′ = (g′h − h′g)/h2 = (gh − hg)/h2 = 0.

Therefore, by the Constancy Principle, g/h = c for some c in R, whence g =
c.h. In particular, if g(0) = h(0), then c = 1 and g = h.

We may suppose without loss of generality that h(0) = 1, since, if necessary,
h may be replaced by the function h/h(0). Under these conditions we write
exp for h and call it the exponential function. The function exp: R → R is thus
characterized uniquely by the following conditions:

exp(x) > 0 exp′ = exp exp(0) = 1.

Exercise

2.3 Show that, for any a, b in R, b.exp(ax) is the unique function u: R → R
satisfying the conditions u(x) > 0, u(0) = b, u′ = au.

Note that, for ε in �,

exp(ε) = exp(0) + ε exp′(0) = 1 + ε.

Note also that exp satisfies the equation

exp(x + y) = exp(x).exp(y). (2.8)

For let y have a fixed but arbitrary value a. Then

[(exp(x + a)/exp(x)]′ = [exp(x)exp′(x + a)

− exp′(x)exp(x + a)]/exp(x)2 = 0.

So, by the Constancy Principle, there is b in R such that, for all x in R

exp(x + a)/exp(x) = b.

Taking x = 0, we have

b = exp(a)/exp(0) = exp(a).

Therefore, for arbitrary a in R,

exp(x + a) = b exp(x) = exp(x)exp(a),

as claimed.
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Exercise

2.4 Show that exp(– x) = 1/exp(x).

If, as usual, we write e for exp(1), it follows from (2.8) that, for any natural
number n,

exp(n) = exp(1).exp(1). . . . .exp(1)(n times) = en.

Thus 1 = exp(0) = exp(n – n) = exp(n)exp(– n), so that

exp(−n) = 1/exp(n) = e−n.

For any rational number m/n we then have

(exp(m/n))n = exp((m/n).n) = exp(m) = em,

so that

exp(m/n) = em/n.

Thus, for rational values of x, exp(x) behaves like the power ex.
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First applications of the differential
calculus

In this chapter we turn to some of the traditional applications of the calcu-
lus, namely, the determination of areas, volumes, arc lengths, and centres of
curvature. The arguments here take the form of direct computations, based on
the analysis of figures: they can be rigorized quite easily by introducing the
definite integral function over a closed interval, which will be deferred until
Chapter 6.

In these applications, as well as in the physical applications to be presented in
subsequent chapters, the role of infinitesimals will be seen to be twofold. First,
as straight microsegments of curves, they play a ‘geometric’ role, enabling
each infinitesimal figure to be taken as rectilinear, and as a result, ensuring that
its area or volume, as the case may be, is a definite calculable quantity. And
second, as nilsquare quantities, they play an ‘algebraic’ role in reducing the
results of these calculations to a simple form, from which the desired result can
be obtained by the Principle of Microcancellation27.

3.1 Areas and volumes

We begin by determining the area of a circle. The method here – which was
employed by Kepler (see Baron 1969) – is to consider the circle as being
composed of a plurality of small isoceles triangles, each with its base on the
circumference and apex at the centre (Fig. 3.1). Thus let C(x) be the area of the
sector OPQ of the given circle, where Q has abscissa x. Let s(x) be the length
of the arc PQ. Let R be the point on the circle with abscissa x + ε, where ε is
in �. Then we have

εC ′ (x) = C(x + ε) − C(x) = area OQR.

27 In this way we are, in the words of Weyl (1922, p. 92), employing ‘the principle of gaining
knowledge of the external world from the behaviour of its infinitesimal parts’.

35
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Fig. 3.1

Now, by Microstraightness, QR is a straight line of length

s(x + ε) − s(x) = εs ′(x) ,

so that, writing r for the circle’s radius, OQR is a triangle of area
(

1
2

)
r.QR = (

1
2

)
εrs ′(x).

Therefore

εC ′(x) = (
1
2

)
εrs ′(x),

so that, cancelling ε on both sides,

C ′(x) = (
1
2

)
rs ′(x).

Since C(0) = s(0) = 0, the Constancy Principle now yields

C(x) = (
1
2

)
rs(x).

Hence, taking x = r,

area of quadrant OPS = (
1
2

)
r.PS,

so that, multiplying both sides by 4,

area of circle = (
1
2

)
r.circumference.
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Assuming that the circumference of a circle is proportional to its radius (by the
customary factor 2π ), we thus arrive at the familiar formula for the area of a
circle:

A = πr2.

Exercises

3.1 Using a method similar to that just employed for determining the area of
a circle, show that the area of the curved surface of a cone is πrh, where r
is its base radius and h is the height of its curved surface. Deduce that the
area of the curved surface of a frustum of a cone is π (rl + r2)h, where r1

and r2 are its top and bottom radii and h is the height of its curved surface.
3.2 Use the formula for the area of a circle and Cavalieri’s Principle (exer-

cise 2.2) to show that the area of an ellipse with semiaxes of lengths a, b
is πab.

We next determine the volume of a cone. (The germ of the argument here
seems to have origininated with Democritus.) Referring to Fig. 3.2, let V (x) be

Fig. 3.2

the volume of the section OAB of the cone of length x, where O A has slope b.
Then for ε in �, we have

εV ′(x) = V (x + ε) − V (x)
= volume of APQB rotated about x-axis
= volume of ACEB rotated about x-axis + volume of ACP rotated

about x-axis.
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Now since the area of ACP is
(

1
2

)
ε.bε = 0, it follows that the volume of any

figure obtained by rotating it is also zero. Therefore, using the formula for the
area of a circle,

εV ′(x) = volume of ACEB rotated about x-axis = επb2x2.

Cancelling ε on both sides gives

V ′(x) = πb2x2. (3.1)

It now follows from the polynomial rule and the Constancy Principle that

V (x) = (
1
3

)
πb2x3 + k,

where k is a constant. Since V(0) = 0, k = 0 and so we get28

V (x) = (
1
3

)
πb2x3. (3.2)

Thus if h is the cone’s height we obtain finally

volume of cone = V (h) = (
1
3

)
πb2h3 = (

1
3

)
πh(bh)2 = (

1
3

)
πr2h.

Exercise

3.3 Show that the volume of a conical frustum of top and bottom radii r1 and
r2 and altitude h is

(
1
3

)
πh

(
r2

1 + r1r2 + r2
2

)
.

The formula for a volume of a cone figures in the ingenious method –
due to Archimedes – that we shall employ in S for determining the volume
of a sphere. This method uses the concept of the moment of a body about a
point (or line) which is defined to be the product of the mass of the body and
the distance of its centre of gravity from the point (or line).

Consider a sphere of radius r , positioned with its polar diameter along the
x-axis with its north pole N at the origin (Fig. 3.3: here we see a circular cross-
section of the sphere cut off by a plane passing through its centre). By rotating
the rectangle NABS and the triangle NCS, a cylinder and a cone are obtained.
We assume that the sphere, cone and cylinder are homogeneous solids of unit
density, so that the mass of each, and that of any part thereof, concides with its
volume.

Let T be a point on the x-axis at distance r from the origin in the opposite
direction from S. For θ in [0, π/2] consider now the line passing through N at
angle θ with NA, intersecting the circle at P. The line through P parallel to BS

28 In drawing similar conclusions in the remainder of this text we shall omit reference to the
polynomial rule, the Constancy Principle and the constant k (when this latter turns out to be
zero). Thus we shall merely say, for example, that an equation like (3.1) yields the corresponding
equation (3.2), without further comment.
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Fig. 3.3

intersects TS at a point Q at distance x = x(θ ) from N and y = y(θ ) from P.
By elementary trigonometry, x = 2r sin2 θ and y = 2r sin θ cos θ .

For i = 1, 2 , 3 let Vi (θ ) be the volume (= mass) of the segment of the sphere,
cone and cylinder, respectively, cut off at a distance x from N. Also for i = 1,
2 let

Mi (θ ) = moment about N of the whole mass of Vi (θ ) concentrated at T

and

M3(θ ) = moment about N of the whole mass of Vi (θ ) left where it is.

Now allow θ to vary to θ + ε, with ε in �. Then x varies to x + ε′ with

ε′ = x(θ + ε) − x(θ ) = 2r [sin2(θ + ε) − sin2 θ ] = 4εr sin2 θ cos θ.
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By a calculation similar to that performed for the volume of a cone, we find
that

εM ′
1 (θ ) = ε′r.πy2 = 4επr3 sin2 θ cos2 θ = 16επr4 sin3 θ cos3 θ

εM ′
2 (θ ) = ε′r.πx2 = 4ε′πr3 sin4 θ = 16επr4 sin5 θ cos θ

εM ′
3 (θ ) = ε′x .πr2 = ε′πr3 sin2 θ = 8επr4 sin3 θ cos θ.

It follows that

ε[M ′
1 (θ ) + M ′

2 (θ )] = 16επr4 sin3 θ cos θ [cos2 θ + sin2 θ ]

= 16επr4 sin3 θ cos θ = 2εM ′
3 (θ );

cancelling ε on both sides gives

M ′
1 (θ ) + M ′

2 (θ ) = 2M ′
3 (θ ).

So if in this equation we set θ = π/2, we get

(∗) moment of (mass of sphere + mass of cone concentrated at T ) about N

= 2 × moment of mass of cylinder about N .

Write Vi = Vi (π/2), i = 1, 2, 3 for the volume of the sphere, cone and cylinder,
respectively. Then the left-hand side of (∗) is r (V1 + V2) and the right-hand side
is 2r V3 (since, by symmetry, the centre of mass of the cylinder coincides with
its geomertrical centre). Equating these and cancelling r gives

V1 + V2 = 2V3.

Using the formula already obtained for the volume of a cone and the evident
formula for the volume of a cylinder, we obtain from this last equation

V1 + 8πr3/3 = 4πr3,

giving finally

V1 = 4πr3/3.

Remark The volume of a sphere can also be calculated in S by more conven-
tional means: we leave this as an exercise of the reader.

3.2 Volumes of revolution

In Fig. 3.4, suppose that the curve AB with equation y = f (x) makes a complete
revolution about the x-axis O X , thereby tracing out a surface. The section
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Fig. 3.4

of the surface by any plane perpendicular to OX – the axis of revolution – is a
circle. We wish to find the volume intercepted between the surface and planes
perpendicular to OX passing through A and B.

Write V (x) for the volume intercepted between the planes through O and P
perpendicular to OX, where P has abscissa x. Let Q be a point on the curve with
abscissa x + ε, with ε in �. Then by Microstraightness the arc PQ is straight
and we have

εV ′(x) = V (x + ε) − V (x)

= volume of conical frustum obtained by rotating PRSQ about OX.

By exercise 3.3, this last quantity is
(

1
3

)
π.RS(P R2 + P R.QS + QS2)

= (
1
3

)
π [ f (x)2 + f (x) f (x + ε) + f (x + ε)2]

= (
1
3

)
πε[ f (x)2 + f (x)( f (x) + ε f ′(x)) + f (x)2 + 2ε f (x) + ε2 f ′(x)2]

= επ f (x)2,

using ε2 = 0. Cancelling ε on both sides of the equation gives the relation

V ′(x) = π f (x)2.

As an example we calculate the volume of a torus. A torus or anchor ring
is the surface generated by a circle which revolves about an axis in its plane,
the axis not intersecting the circle (although it may be tangent to it). Let r be the
radius of the circle and c the distance of its centre from the axis (Fig. 3.5). The
equation of the circle may then be taken to be x2 + (y − c)2 = r2.

Let B1, B2 be the points of intersection with the circle of a line drawn parallel
to OP1 in such a way that the area of the segment P1 P2 B2 B1 is exactly half the
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Fig. 3.5

area of the semicircle P1 R P2. Write b for the length of O ′C where C is the
point of intersection of the B1 B2 with O ′ R; clearly b < r .

Now the equation of the arc P1 B1 is

y = f1(x) = c + (r2 − x2)
1
2

and that of P2 B2 is

y = f2(x) = c − (r2 − x2)
1
2

for x in [0, b]29.
For x in [0, b] let V (x) be the volume of the torus intercepted between planes

prependicular to the x-axis passing through O and M where M is at distance x
from O. Let V1(x), V2(x) be the volumes similarly intercepted of the surfaces of
revolution swept out by the curves P1 B1 and P2 B2. Then V (x) = V1(x) − V2(x),
so that

V ′(x) = V ′
1 (x) − V ′

2 (x).

By the formula for the volume of revolution obtained above, we have

V ′
1 (x) = π f1(x)2 = π

[
c + (r2 − x2)

1
2
]2

V ′
2 (x) = π f2(x)2 = π

[
c − (r2 − x2)

1
2
]2

.

Accordingly

V ′
1 (x) = π

[(
c + (r2 − x2)

1
2
)2 − (

c − (r2 − x2)
1
2
)2] = 4πc(r2 − x2)

1
2 . (3.3)

29 The point here is that the square root function in S is defined only for strictly positive arguments
so that f1 and f2 cannot be regarded as being defined on [0, r ]. However, since b < r, f1 f2 are
legitimate functions on [0, b]. This subtlety was overlooked in the first edition of this book.
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Now for x in [O, b], write A(x) for the area of the circle x2 + y2 = r2 inter-
cepted by the y-axis and a line parrallel to it at a distance x from the circle’s centre
(see figure immediately above). By the Fundamental Theorem of Calculus,

1

2
A′(x) = y = (r2 − x2)

1
2 .

Hence, by (3.3), V ′(x) = 2πcA′(x), whence V (x) = 2πcA(x). Therefore, since
A(b) is half the area of the semicircle,

V (b) = 2πcA(b) = 2πc.
πr2

4
= 1

2
π2r2c.

By symmetry, V (b) is one-fourth the volume of the torus, so it follows that the
volume of the torus is

4V (b) = 2π2r2c.

Exercises

3.4 A prolate (oblate) spheroid is the surface generated by an ellipse which
revolves around its major (minor) axis. If the major and minor axes are
of lengths 2a and 2b, respectively, show that the volume of the prolate
spheroid is 4πab2/3 and the oblate 4πa2b/3.

3.5 Show that the volume of a spherical cap of height h is πh2[r − (
1
3

)
h],

where r is the radius of the sphere.
3.6 Show that the volume intercepted between the plane through x = h per-

pendicular to the x-axis and the paraboloid generated by the revolution of
the parabola y2 = 4ax about the x-axis is 2πah2.

3.3 Arc length; surfaces of revolution; curvature

We next show how to derive the formula for the arc length of a curve. Let s(x) be
the length of the curve C with equation y = f (x) measured from a prescribed
point O on it (Fig. 3.6). Given a point P on C with abscissa x, consider a neigh-
bouring point Q on C with abscissa x + ε, where ε is in �. Let φ(x) be the angle
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Fig. 3.6

that the tangent to the curve at P makes with the x-axis. Then, by Microstraight-
ness, PQ is a straight line of length s(x + ε) − s(x) = εs ′(x), and we have

P Q. (1 + f ′(x)2)−
1
2 = P Q. cos φ(x) = P S = ε.

Hence

εs ′(x) = P Q = ε(1 + f ′(x)2)
1
2 .

Cancelling ε yields the familiar equation

s ′(x) = (1 + f ′(x)2)
1
2 . (3.4)

If the curve is defined parametrically by the equations

x = x(t) y = y(t),

then s may be regarded as a function s(t) of t, and we have

s ′(t) = s ′(x)x ′(t) y′(t) = y′(x)x ′(t) = f ′(x)x ′(t).

Squaring (3.4) and multiplying by x ′(t)2 then gives

s ′(t)2 = s ′(x)2x ′(t)2 = x ′(t)2[1 + f ′(x)2] = x ′(t)2 + x ′(t)2 f ′(x)2

= x ′(t)2 + y′(t)2,

so that

s ′(t) = [x ′(t)2 + y′(t)2]
1
2 .
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The equation for arc length is used in calculating areas of surfaces of revo-
lution. Thus let S(x) be the area of the surface traced out by the revolution of
the arc OP about the x-axis (Fig. 3.6). Since the arc PQ is straight, we have

εS′(x) = S(x + ε) − S(x)

= area of surface of conical frustum traced by rotating of PQ

= π (R P + T Q).P Q (by exercise 3.1)

= π [ f (x) + f (x + ε)][s(x + ε) − s(x)]

= π [2 f (x) + ε f ′(x)].εs ′(x) = 2επ f (x)s ′(x).

Hence, cancelling ε and using (3.4) above,

S′(x) = 2π f (x)s ′(x) = 2π f (x)[1 + f ′(x)2]
1
2 . (3.5)

Exercise

3.7 Use formula (3.5) to show that the area of a spherical cap of height h is
2πrh, where r is the radius of the sphere.

We define the curvature of the curve y = f (x) at P (Fig. 3.6) to be the ‘rate
of change’ of φ(x) with respect to microvariations in arc length, i.e. it is that
quantity κ = κ(x) such that, for all ε in �,

κ.P Q = φ(x + ε) = φ(x) = εφ′(x). (3.6)

In order to derive an explicit formula for κ , we start with the fundamental
relation ()

sin φ(x) = f ′(x) cos φ(x).

If we now form the derivatives of both sides of this equation we obtain

φ′(x) cos φ(x) = f ′′(x) cos φ(x) − φ′(x) f ′(x) sin φ(x)

= f ′′(x) cos φ(x) − φ′(x) f (x)2 cos φ(x).

Since cos φ(x) �= 0, it may be cancelled on both sides of this equation to yield

φ′(x) = f ′′(x) − f ′(x)2φ′(x),

whence

φ′(x) = f ′′(x)/(1 + f ′(x)2). (3.7)

Now

P Q = εs ′(x) = ε(1 + f ′(x)2)
1
2
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by (3.4). Substituting into (3.6) this expression for P Q and the expression for
φ′(x) given by (3.7), we obtain

εκ(1 + f ′(x)2)
1
2 = ε f ′′(x)/(1 + f ′(x)2).

Since this holds for any ε in �, we may cancel it on both sides and thereby
arrive at the well-known expression for the curvature of a curve at a point:

κ(x) = f ′′(x)/(1 + f ′(x)2)3/2.

We now determine the location of the centre of curvature at a point on the
curve. In S, this may be done by the traditional method of intersection of
consecutive normals (a device employed by Newton: see Chapter 7 of Baron,
1969). Thus let P and Q be points on the curve y = f (x) with abscissae x0, x0 + ε

and let NP be the normal to the curve at P. The normal NQ to the curve at Q
is called a consecutive normal from N. The centre of curvature of the curve at
P is defined to be the common point of intersection of all consecutive normals
from N. The coordinates of this point are easily determined as follows. Write
y0 = f (x0), f ′

0 = f ′(x0), f ′′
0 = f ′′(x0). The equation of NP is

(y − y0) f ′
0 + x − x0 = 0 (3.8)

and that of NQ is

[y − f (x0 + ε)] f ′(x0 + ε) + x − x0 − ε = 0,

i.e.

(y − y0 − ε f ′
0 ) + ε(y − y0) f ′′

0 + x − x0 − ε = 0. (3.9)

The coordinates (x,y) of the centre of curvature at P are the pair of solutions,
for all ε in �, of this pair of equations. Substituting in (3.9) the value of x – x0

given by (3.8) yields

ε(1 + f ′2
0 ) = ε f ′′

0 .(y − y0).

Since this equation is to hold for all ε, we may cancel ε on both sides to obtain

1 + f ′2
0 = f ′′

0 .(y − y0)

whence

y = y0 + (1 + f ′2
0 )/ f ′′

0

and

x = x0 − f ′
0 (1 + f ′2

0 )/ f ′′
0 .
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Exercise

3.8 (i) The distance between the centre of curvature at a point on a curve and
the point is called the radius of curvature of the curve at the point.
Show that, with the above notation, the radius of curvature at a point
on y = f (x) with abscissa x0 is the reciprocal of the curvature there,
that is, (1 + f ′2

0 )3/2/ f ′′
0 .

(ii) Let P be a point on a curve, let C be the centre of curvature and r the
radius of curvature of the curve at P. The circle of radius r and centre
C is called the circle of curvature (or osculating circle) of the curve
at P. Show that the circle of curvature has the same curvature, and the
same tangent at P, as the curve.

The curvature of lines in S is the source of a curious geometric phenomenon
with whose description we conclude this chapter. On the curve with equation
y = f (x), consider neighbouring points P, Q with abscissae x0, x0 + ε (Fig. 3.7).
Moving the origin of coordinates to P transforms the variables x, y to u, v given

Fig. 3.7

by u = x − x0, v = y − f (x0). Writing f ′(x0) = a, f ′′(x0) = b, the equation
of the tangent to the curve at P is, in terms of the new coordinates,

v = au, (3.10)

and that of the tangent at Q

v = (a + bε)u. (3.11)

It is readily checked that both of these lines pass through the points P and Q,
but (assuming b �= 0), we cannot affirm their identity since we cannot do so for
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their slopes a, a + bε. That is, although in S any two distinct points determine
a unique line, two neighbouring points do not necessarily do so30.

If the variable u just introduced is restricted to microvalues (i.e. values in
�), then the resulting line segments (3.10) and (3.11) represent the straight
microsegments of the curve around P and Q, respectively. In passing from
P to Q the straight microsegment is subjected to a microincrease in slope of
the amount bε. That is, the ‘curvature’ of a curve in S is manifested in the
microrotation of its straight microsegment as one moves along it.

30 In fact, two neighbouring points need not determine any line at all. For example, if ε,η are
members of � which are not proportional in the sense to be defined in the next chapter, there is
no straight line passing through the points (0, 0) and (ε, η).
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4

Applications to physics

In this chapter we present some of the traditional applications of the differential
calculus to physical problems.

4.1 Moments of inertia

Suppose that we are given a (flat) surface of uniform density ρ (Fig. 4.1). Con-
sider a rectangular microelement E of the surface with sides of lengths ε, η in �,

Fig. 4.1

at a distance x from the y-axis OY. The quantity m(E) = ρεη is called the mass
of E, and the quantity µ(E) = m(E).x2 the moment of inertia of E about OY.

Now consider (Fig. 4.2) a rectangular strip S of length a and infinitesimal
width η. Writing Sx for the portion of the strip of length x from OY, we shall
assume that the function µ assigning Sx its moment of inertia is defined for
arbitrary x and is microadditive in the sense that for any ε in �

µ(Sx + ε) = µ (Sx ) + µ(Ex ) ,

where Ex is the rectangular microelement of S between x and x + ε; we also
assume that µ(S0) = 0. Thus, if we define I0(x): = µ(Sx), it follows that

ε I ′
0 (x) = I0 (x + ε) − I0 (x) = µ (Ex ) = ερηx2,

49
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Fig. 4.2

so that, cancelling ε,

I ′
0 (x) = ρηx2,

giving (since I0(0) = µ(S0) = 0)

I0 (x) = (
1
3

)
ρηx3.

Accordingly, the moment of inertia µ(S) of S about OY is
(

1
3

)
ρηα3 or

(
1
3

)
ma2

where m = ρηa is (defined to be) the mass of S.
We use this in turn to determine the moments of inertia of a thin rectangular

lamina L about various axes. Suppose L (Fig. 4.3) has sides of lengths a,b.

Fig. 4.3

Cut L into strips of infinitesimal width parallel to the x-axis. Let I1(y) be the
moment of inertia (which we assume to be defined) about OY of the portion
of L with height y. Then, as before, the assumption of ‘microadditivity’ of the
moment of inertia function gives

ηI ′
1 (y) = I1(y + η) − I1(y) = µ(S) = (

1
3

)
ηρa3,
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where S is the strip bounded by the lines parallel to the x-axis at distances y,
y +η from it. Cancelling η on both sides of this equation yields I ′

1 (y) = (
1
3

)
ρa3,

whence I1(y) = (
1
3

)
ρa3 y, so that the moment of inertia of L about OY is

(
1
3

)
ρa3b = (

1
3

)
ma2,

where m = ρab is (defined to be) the mass of L. Hence, by symmetry, the
moment of inertia of L about OX is

(
1
3

)
mb2. By translation of axes to the centre

of L in accordance with the usual procedures of mechanics (see Banach, 1951),
we find that the moment of inertia of L about an axis through its centre parallel
to OY is (

1
3

)
ma2 − (

1
4

)
ma2 = ma2/12,

and the moment of inertia of L about a normal central axis is

µ(L) = m(a2 + b2)/12.

This last computation is used to determine the moment of inertia of an
isosceles triangular lamina. Thus consider such a lamina T (Fig. 4.4) of height

Fig. 4.4

h and base a, cut into strips of infinitesimal width parallel to its base. Let I2(x)
be the moment of inertia (assumed defined) of the segment of T of height x
about an axis through the origin O normal to the plane of T. For ε in �, let S
be the strip of T between x and x + ε. Then, as before, ‘microadditivity’ of the
moment of inertia function gives

ε I ′
2 (x) = I2(x + ε) − I2(x) = moment of inertia of S about O. (4.1)

Now the moment of inertia µ(S) of S (Fig. 4.5) about a normal central axis is,
by ‘microadditivity’, equal to µ(∇1) + µ(∇2) + µ(L), where ∇1, ∇2, L are the
regions indicated in the figure. But, writing b for the slope of OP, the masses of
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Fig. 4.5

∇1 and ∇2 are both equal to
(

1
2

)
ρbε2 = 0. Since moment of inertia is (we shall

suppose) proportional to mass, it follows that µ(∇1) = µ(∇2) = 0. Therefore,
using the calculation for I2,

µ(S) = µ(L) = mass (S).(ε2 + a2x2/h2)/12

= (1/12) ερax/h . a2x2/h2 = ερa3x3/12h3.

Hence, using translation of axes and ε2 = 0

moment of inertia of S about O = ερa3x3/12h3 + ερax(x + ε/2)2/h (4.2)

= ερax3(1 + a2/12h2)/h.

Accordingly, equating (4.1) and (4.2) and cancelling ε, we obtain

I2
′(x) = ρax3(1 + a2/12h2)/h,

giving

I2(x) = ax4(1 + a2/12h2)/4h.

Therefore the moment of inertia µ(T) of T about a normal axis through O is
(

1
4

)
ρah3(1 + a2/12h2) = 1

2 m(h2 + a2/12),

where m = (
1
2

)
ρah is (defined to be) the mass of T.

Finally we use this to determine the moment of inertia of a circular lamina
about a normal central axis. Thus consider such a lamina C (Fig. 4.6) of radius r.
Let I3(x) be the moment of inertia (assumed defined) about a normal axis through
O of the sector OPQ, where Q has abscissa x. Let s(x) be the length of the arc
PQ. Now let R be the point on the circle with abscissa x + ε, where ε is in �.
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Fig. 4.6

Then, by Microstraightness, the microsegment QR of the circle is a straight line
of length η, where

η = s(x + ε) − s(x) = εs ′(x).

Now the moment of inertia of OQR about a normal central axis through O is,
as we have seen,

(
1
2

)(
1
2

)
ηρr (r2 + ε2/12) = (

1
4

)
ηρr3 = (

1
4

)
ερr3s ′(x).

By assuming ‘microadditivity’ as before, we may equate this with I3(x + ε) −
I3(x) = ε I3

′(x) and cancel ε to give

I3
′(x) = ρr3s ′(x),

so that

I3(x) = (
1
4

)
ρr3s(x).

Accordingly the moment of inertia µ(C) of C about a normal central axis is(
1
4

)
ρr3.circumference of C. But we have already shown that the area of C is(

1
2

)
r .circumference of C, so that finally

µ(C) = (
1
2

)
mr2,

where m = ρ. area of C is (defined to be) its mass.
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Exercise

4.1 Use the calculation for the moment of inertia of a circular lamina to show
that (i) the moment of inertia of a cylinder of mass m, height h and cross-
sectional radius a about its axis is

(
1
2

)
ma2; (ii) the moment of inertia of a

sphere of mass m and radius R about a diameter is 2mr2/5; (iii) the moment
of inertia of a right circular cone of mass m, height h and base radius a
about its axis is 3ma2/10.

4.2 Centres of mass

The centre of mass of a body is the point at which the total mass of the body
may be regarded as being concentrated31. The centroid of a volume, area or line
is the centre of mass of a body of uniform density occupying the same space.
To determine a centre of gravity or centroid one calculates the total moment of
the mass about some chosen axis, as illustrated by the following example.

Suppose we want to find the centre of mass of a thin plate of uniform density
and thickness in the shape of a quadrant of a circle (Fig. 4.7). Let a be the

Fig. 4.7

radius of the plate and ρ the mass per unit area: the mass m of the plate is then(
1
4

)
πρa2. Let µ(x) be the moment about the line OA of the portion OBPM of

the plate, where O M = x and M P = y = (a2 − x2)
1
2 . Let Q be a point on the

circle with abscissa x + ε, with ε in �. The strip MPQN consists of a rectangular
portion MRQN together with the ‘triangular defect’ PQR which, being a triangle
whose base and altitude are both multiples of ε, has zero area and mass. The
centre of mass of MRQN coincides with its geometric centre (by symmetry)
and its moment about OA is

(
1
2

)
y.ρyε = (

1
2

)
ερy2. Therefore

εµ′(x) = µ(x + ε) − µ(x) = moment of M RQN = (
1
2

)
ερy2,

31 This point does not necessarily have to be contained in the body: for example, the centre of mass
of a thin circular wire is, by symmetry, at its geometric centre.
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so that, cancelling ε, µ′(x) = (
1
2

)
ρy2 = (

1
2

)
ρ(a2 − x2). Hence µ(x) =(

1
2

)
ρ
(
a2x − (

1
3

)
x3

)
, so that the total moment M of the quadrant about OA is

M = µ(a) = (
1
3

)
ρa3.

Now, writing m for the mass of the quadrant, the y-coordinate y* of its centre
of mass is given by my* = M, i.e.

(
1
4

)
πρa2 y∗ = (

1
3

)
ρa3, so that

y∗ = 4a/3π.

By symmetry, the x-coordinate of the centre of mass of the quadrant must be
the same as y*.

Exercise

4.2 Show in the same manner as above that:
(i) the centroid of a semicircle of radius a lies at a distance 4a/3π from

the centre of its diameter;
(ii) the coordinates of the centroid of a quadrant of an ellipse with axes

of lengths 2a, 2b are given by x∗ = 4a/3π, y∗ = 4b/3π ;
(iii) the coordinates of the centroid of the area bounded by an arc of the

parabola y2 = ax, the x-axis and the line parallel to the y-axis at the
point (h, k) are given by x∗ = 3h/5, y∗ = 3k/8;

(iv) the centroid of a right circular cone of height h is located at a distance(
1
4

)
h above the base.

4.3 Pappus’ theorems

The concept of centroid figures in the traditional geometric facts is known as
Pappus’ theorems. These may be stated as follows.

I. If an arc of a plane curve revolves about an axis in its plane which does
not intersect it, the area of the surface generated by the arc is equal to the
length of the arc multiplied by the length of the path of its centroid.

II. If a plane region revolves about an axis in its plane which does not intersect
it, the volume generated by the region is equal to the area of the region
multiplied by the length of the path of its centroid.

To prove these, consider (Fig. 4.8) the closed curve CP1P2 – which we
shall regard as a thin wire of unit density – composed of the two curves
CP1D and CP2D, with equations y = f1(x) and y = f2(x), respectively. Let
m, m1, m2; M,M1,M2 be the masses and the total moments about OX of the
curves CP1P2, CP1D and CP2D, respectively. Then the y-coordinates y, y ∗

1 , y ∗
2
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Fig. 4.8

of the centres of mass of these three curves are given by the equations

(m1 + m2)y∗ = my∗ = M = M1 + M2 m1 y ∗
1 = M1 m2 y ∗

2 = M2.

(4.3)
For i = 1, 2 let si (x) be the length and Mi (x) the moment about OX of the

arc CPi, where Pi has abscissa x. Let Qi be a point on CPiD with abscissa
x + ε, with ε in �. Then

εM ′
i (x) = Mi (x + ε) − Mi (x) = moment of Pi Qi about O X. (4.4)

Now PiQi is, by Microstraightness, a straight line of mass si (x + ε) − si (x) =
εs ′

i (x) and by symmetry its centre of mass coincides with its geometric centre,
whose y-coordinate is fi

(
x + (

1
2

)
ε
)
. Therefore

moment of Pi Qi about O X = εs ′
i (x). fi

(
x + (

1
2

)
ε
)

= εs ′
i (x)[ fi (x) + ( 1

2 )ε f ′
i (x)] = εs ′

i (x) fi (x).

Hence, using (4.4) and cancelling ε on both sides of the resulting equation,

M ′
i (x) = fi (x)s ′

i (x). (4.5)

Now, writing Si (x) for the area of the surface of revolution obtained by rotating
CPi about OX, we showed in the previous chapter that S ′

i (x) = 2π fi (x)si (x).
It follows from this and (4.5) that 2π M ′

i (x) = S ′
i (x), whence

2π Mi = Si , (4.6)
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where Si is the area of the surface of revolution generated by rotating CPiD
about OX. It now follows from (4.3) that 2πy ∗

i mi = Si . But mi is numerically
identical with the length si of CPiD, and so we finally obtain the equation

2πy ∗
i si = Si .

Since 2πyi
* is the distance that the centre of mass of CPi travels in the rotation

about OX, this establishes the first of Pappus’ theorems for the open curves CP1

and CP2.
Now write s for the length of the closed curve CP1DP2 and S for the area

of the surface it generates in rotation about OX. Then s = s1 + s2, S = S1 + S2

and so (4.3) and (4.6) give

2πy∗ = 2π (s1 + s2)y∗ = 2π (m1 + m2)y∗ = 2π (m1 + m2)y∗

= 2π (M1 + M2) = (S1 + S2) = S.

This establishes I for the closed curve.
To obtain II, we regard the (x,y) plane, including the curve CP1DP2, as a

flat plate of unit density. Let M(x) be the moment about OX of the area C P1 P2·
Then, for ε in �, we have

εM ′(x) = M(x + ε) − M(x) = moment of P1 Q1 Q2 P2 about O X. (4.7)

Using Microstraightness in the usual way we may regard P1Q1Q2P2 as a rect-
angle whose centre of mass coincides with its geometric centre, which has
y-coordinate

(
1
2

)[
f1

(
x + (

1
2

)
ε
) + f2

(
x + (

1
2

)
ε
)]

. Since the mass of this rect-
angle coincides with its area ε[ f1(x) − f2(x)], it follows that

moment of P1 Q1 Q2 P2 about O X = (
1
2

)
[ f1

(
x + (

1
2

)
ε
)

+ f2
(
x + (

1
2

)
ε
)
]ε[ f1(x) − f2(x)]

= (
1
2

)
ε[ f1(x) + f2(x)][ f1(x) − f2(x)]

= (
1
2

)
ε[ f1(x)2 − f2(x)2]. (4.8)

Equating (4.7) and (4.8) and cancelling ε gives

M ′(x) = (
1
2

)
[ f1(x)2 − f2(x)2]. (4.9)

Now let V (x), V1(x), V2(x) be the volumes of revolution generated by
rotating the areas C P1 P2, SC P1 R, SC P2 R about OX. Then clearly V (x) =
V1(x) − V2(x) and it was shown in the previous chapter that V ′

1 (x) =
π f1(x)2 and V ′

2 (x) = π f2(x)2. Substituting these into (4.9) gives

2π M ′(x) = π f1(x)2 − π f (x)2 = V ′
1 (x) − V ′

2 (x),



P1: SBT
9780521867186c04 CUUS046/Bell 978 0 521 88718 2 November 1, 2007 15:31

58 Applications to physics

from which we deduce

2π M(x) = V1(x) − V2(x) = V (x).

It follows that, if M is the total moment about OX of the region enclosed by
C P1 D P2 and V is the volume of the surface of revolution it generates,

2π M = V . (4.10)

Now the y-coordinate y* of the centre of mass of the region is given by M = my*,
where m is its mass, which coincides numerically with its area A. Thus M = Ay*.
Substituting this into (4.10) gives finally

2πy∗ A = V,

which is II.

Exercise

4.3 Use Pappus’ theorems to show that
(i) the centroid of a semicircular arc of radius r lies at distance 2r/π

from its centre;
(ii) the area of the surface of a torus generated by rotating a circle of

radius a about an axis at distance c from its centre is 4π2ac.

4.4 Centres of pressure

Suppose that we are given a plane area S immersed in a heavy liquid of uniform
density ρ. The pressure of the liquid exerts a certain thrust on S: the centre of
pressure in S is the point at which this thrust may be regarded as acting. To
determine this point, we take moments about two lines in the plane of S, as
illustrated by the following example.

Let S be a rectangle ABCD (Fig. 4.9) whose plane is vertical, one side being
parallel to the free surface, at which we assume the pressure is zero. Suppose
AB = a, AD = b and h is the depth of AB below the surface. Let T (x) be
the thrust on the rectangle APQB, where PQ is at depth x below AB. Now the
pressure per unit area at depth y below the free surface is ρy. So if RS is at
distance ε below PQ, with ε in �, the thrust on the rectangle PQSR is

average pressure per unit area over PQSR × area of PQSR

= ρ(h + x + ( 1
2 )ε).aε = ερa(h + x).

But this thrust is also equal to T (x + ε) − T (x) = εT ′(x). Equating these and
cancelling ε gives T ′(x) = ρa(h + x), yielding in turn

T (x) = ρahx + (
1
2

)
ρax2,
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Fig. 4.9

so that the thrust on the whole rectangle ABCD is

T (b) = ρabh + (
1
2

)
ρab2.

Now let M(x) be the moment about AB of the thrust on APQB. The moment
about AB of the thrust on PQSR is

ερa(h + x).
(
x + (

1
2

)
ε
) = ερax(h + x).

But this moment is also equal to M(x + ε) − M(x) = εM ′(x). Equating these
and cancelling ε gives M ′(x) = ερax(h + x), so that

M(x) = (
1
2

)
ρax2h + ( 1

3 )ρax3.

Accordingly the total moment about AB of the thrust on ABCD is

M(b) = (
1
2

)
ρab2h + (

1
3

)
ρab3.

If x* is the depth below AB of the centre of pressure, then this total moment
must be equal to T(b).x*. Thus we find

x∗ = ((
1
2

)
ρab2h + (

1
3

)
ρab3

) ÷ (
ρabh + (

1
2

)
ρab2

) = (
bh + (

2
3

)
b2

)
/(2h + b).

In particular, if AB is in the surface of the liquid, then h = 0 and x∗ = (
2
3

)
b.

Exercise

4.4 A plane lamina in the form of a parabola is lowered, with its axis vertical
and its vertex downwards, into a heavy liquid. Show that, if the vertex is
at depth d, the centre of pressure is at depth 4d/7.
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4.5 Stretching a spring

Let W (x) be the work done in stretching a spring from its natural length a to
the length a + x . By Hooke’s law the tension T (x) induced by that extension
is proportional to it, so that T (x) = Ex/a, where E is a constant. For ε in �,
the work done in further stretching the spring from length a + x to a + x + ε

is given by

εW ′(x) = W (x + ε) − W (x) = εTaverage,

where Taverage is the average tension over the interval between a + x and
a + x + ε, that is,

Taverage = (
1
2

)
[T (x + ε) + T (x)] = T (x) + (

1
2

)
εT ′(x).

Thus

εW ′(x) = ε
[
T (x) + (

1
2

)
εT ′(x)

] = εT (x),

so that, cancelling ε, W ′(x) = T (x) = Ex/a. It follows that

W (x) + (
1
2

)
Ex2/a = (

1
2

)
xT (x).

4.6 Flexure of beams

On a heavy uniform beam, resting horizontally on two supports near its ends, a
load is placed and as a result the beam bends slightly. We want to find an expres-
sion for the moment of the stress force acting across any given cross-section –
assumed to remain plane when the beam is bent – which is originally vertical
and perpendicular to the length of the beam. This will lead to an (approximate)
expression for the deflection of the beam.

In accordance with the usual theory of elasticity, we assume that there is a
bundle of filaments running from end to end of the beam which are neither
contracted nor extended, forming a surface which we shall call the neutral
surface. Let ABCD be a vertical section parallel to the length of the beam (see
Fig. 4.10) and let EF be the line in which this section cuts the neutral surface.
EF is not, by assumption, altered in length, but is curved slightly. Filaments in
the section ABDC parallel to the original position of EF are bent and contracted
when they lie between EF and CD, but are bent and elongated when they lie
between EF and AB.

To find the stress force, consider a cross-section originally parallel to the
given one and at a microdistance ε from it. After the beam is bent, both cross-
sections remain plane but are inclined to each other at a microangle. Let abc, def
be the lines in which they intersect the section ABDC, and let s be their point
of intersection. Now let gh be a filament joining the cross-sections parallel to,
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Fig. 4.10

and at distance x from, be. Before the beam is bent, gh has length ε; after the
beam is bent. Microstraightness ensures that gh remains straight and parallel to
be, but its length is now (1 + k)ε, where k – its extension – is some constant to
be determined.

Write r for the length of sb and β for the semiangle at s. Then

sin β = gh/2(r + x) = ε(1 + k)/2(2 + x).

Also (
1
2

)
ε = (

1
2

)
be = r sin β = ε(1 + k)/2(r + x).

So, cancelling ε and solving for k gives

k = x/r. (4.11)

Here r is evidently the radius of curvature (see exercise 3.8) at b of the curve
into which the neutral axis EF is bent.

We now take each filament (before bending) to be an extended parallelepiped
of infinitesimal rectangular cross-section with sides of microlengths η,ζ . The
stress force exerted on the cross-section of the filament gh at g is proportional
both to its extension k and to its cross-sectional area, and so, by (4.11), equal to
Ex ηζ/r , where E is a constant – the Young’s modulus of the material. Thus the
moment of this stress force about the neutral axis is Ex2ηζ/r : in other words,

(E/r )×(moment of inertia of the cross-section of filament about neutral axis).

In the same way as we calculated the moment of inertia of a rectangular
lamina at the beginning of this chapter, it follows then that the moment of the
total stress force exerted on the cross-section of the beam through abc is

(E/r ) × I,
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where I is the moment of inertia of the area of the cross-section of the beam
about the neutral axis.

Let us now consider a beam of uniform rectangular cross-section and length
L with a load W at the middle, the weight of the beam being neglected. We
assume that, when referring to the coordinates of a point on the beam, the point
is always taken to lie on the unstretched neutral axis – which in this case we
suppose passes through the centre of the beam – representing the curve into
which the beam is bent. Take the origin of coordinates at the midpoint of the
beam, the x-axis to be horizontal and the y-axis vertical, its positive direction
being upwards. Let P be the point (x, y).

The bending moment M at P is the moment about the horizontal line in the
cross-section through P of all the applied forces on either side of the section.
The only applied force to the right of P is the reaction at the right-hand support
which is

(
1
2

)
W; therefore

M = (
1
2

)
W

((
1
2

)
L − x

)
.

Since the cross-section is in equilibrium, the bending moment must equal the
moment of the stress exerted on it, so that

E I/r = (
1
2

)
W

((
1
2

)
L − x

)
. (4.12)

By exercise 3.8, if the equation of the curve into which the beam is bent is y =
f (x), then the radius of curvature r at the point (x, y) is (1 + f ′2)3/2/ f ′′. We now
make the assumption – customary in the theory of elasticity – that the bending
of the beam is so slight that the square of the gradient f ′ is approximately
equal to zero32. In that case we obtain (approximately) 1/r = f ′′. Therefore,
by (4.12),

E I f = (
1
2

)
W

((
1
2

)
L − x

)
.

At the origin both f and f ′ are zero, so this last equation yields

E I f = (
1
8

)
W x2

(
L − (

2
3

)
x
)
.

The greatest deflection f1 occurs, say, at the beam’s end, where x = (
1
2

)
L , so

that

f1 = W L3/48E I

32 Here f ′ is not being taken as a nilsquare quantity, but merely as one whose square is ‘approxi-
mately’ zero. It is important to note that this is the only place in our discussion where approxi-
mations are employed.
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approximately. If the section of the beam is of depth a and breadth b, then
(assuming the beam to be of unit cross-sectional density), by one of our previous
moment of inertia calculations,

I = (1/12)a2.ab = a3b/12.

So we finally obtain for the maximum deflection the approximate value

W L3/4Ea3b.

Therefore, to a good approximation, the deflection is proportional to the cube
of the length of the beam.

4.7 The catenary, the loaded chain and the bollard-rope

A uniform flexible chain of weight w per unit length is suspended from two
points A and B (Fig. 4.11). We want to determine the equation y = f (x) of the
curve the chain assumes.

Fig. 4.11

Let T (x) be the tension in the chain at a point P on it with abscissa x, letφ(x) be
the angle that the tangent to the curve at P makes with the x-axis and let s(x) be the
length of CP. If Q is a point on the chain with abscissa x + ε, with ε in �, then
the microstraight segment PQ of the chain is in equilibrium under the action of
three forces, namely, its weight w[s(x + ε) − s(x)] = εws ′(x) acting vertically
downwards, and the tensions T (x) and T (x + ε) at the ends P and Q acting
in the directions of the tangents. Resolving these forces horizontally gives

0 = T (x + ε) cos φ(x + ε) − T cos φ(x)

= [T (x) + εT ′(x)] cos(φ(x) + εφ′(x)) − T (x) cos φ(x)

= [T (x) + εT ′(x)][cos φ(x) − εφ′(x) sin φ(x)] − T (x) cos φ(x)

= εT ′(x) cos φ(x) − T (x)φ′(x) sin φ(x)].



P1: SBT
9780521867186c04 CUUS046/Bell 978 0 521 88718 2 November 1, 2007 15:31

64 Applications to physics

Hence, cancelling ε, we get

0 = T ′(x) cos φ(x) − T (x)φ′(x) sin φ(x) = [T (x) cos φ(x)]′.

Thus, by the Constancy Principle,

T (x) cos φ(x) = T0, (4.13)

where T0 is a constant representing the horizontal component of the tension.
Next, resolving vertically, we obtain

εws ′(x) = T (x + ε) sin φ(x + ε) − T (x) sin φ(x)

= [T (x) + εT ′(x)][sin φ(x) + εφ′(x) cos φ(x)] − T (x) sin φ(x)

= ε[T (x)φ′(x) cos φ(x) + T ′(x) sin φ(x)].

Hence, cancelling ε,

ws ′(x) = T (x)φ′(x) cos φ(x) + T ′(x) sin φ(x) = [T (x) sin φ(x)]′,

and so by the Constancy Principle,

T (x) sin φ(x) = ws(x). (4.14)

From this we see that the vertical tension in the chain at any point on it is equal
to its weight between that point and its lowest point.

Now recall the fundamental relation (2.7):

sin φ(x) = f ′(x) cos φ(x).

This and (4.14) give

T (x) f ′(x) cos φ(x) = ws(x),

and so, using (4.13),

T0 f ′(x) = ws(x).

Hence

T0 f ′′(x) = ws ′(x). (4.15)

Now s ′(x) = [1 + f ′(x)2]
1
2 and substitution of this expression into (4.15) gives

[1 + f ′(x)2]
1
2 = a f (x), (4.16)

where a = T0/w .
To obtain an explicit form for f (x), write u for f ′(x) so that (4.16) becomes

1 + u2 = a2u′2. (4.17)
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We now observe that, using (4.17)
[
u + (1 + u2)

1
2
]′ = u′ + uu′/(1 + u2)

1
2 = [

1 + u(1 + u2)−
1
2
]
u′

= [
1 + u(1 + u2)−

1
2
]
(1 + u2)

1
2 /a = [

u + (1 + u2)
1
2
]
/a.

Accordingly, writing v for u + (1 + u2)
1
2 , we obtain the equation

av′ = v.

Assuming that u = 0 when x = 0, it now follows from exercise 2.3 that v =
exp(x/a), that is,

exp(x/a) = u + (1 + u2)
1
2 .

Hence

exp(−x/a) = 1/ exp(a) = 1/
[
u + (1 + u2)

1
2
] = −u + (1 + u2)

1
2 .

Subtracting these two last equations and dividing by 2 gives

f ′(x) = u = (
1
2

)
[exp(x/a) − exp(−x/a)],

whence, supposing that f (0) = a (that is, the lowest point of the chain lies at
distance a above the x-axis),

y = f (x) = (
1
2

)
a[exp(x/a) − exp(−x/a)].

This is the required equation; the corresponding curve is called the (common)
catenary.

Exercise

4.5 Show that the tension at any point of the catenary is equal to the weight of
a piece of the chain whose length is equal to the y-coordinate of the point.

Next, we determine the equation of the curve assumed by a uniformly loaded
chain (or the cable of a suspension bridge). Here we assume that the ends A, B of
a chain are at the same level and that the chain bears a continuously distributed
load which is a constant weight w per unit run of span. Appealing to the same
figure (Fig. 4.11), notation and reasoning as for the catenary, in the situation at
hand we obtain the equations

T (x) cos φ(x) = T0 T (x) sin φ(x) = wx .

Then, using the fundamental relation sin φ(x) = f ′(x) cos φ(x), we obtain

T0 f ′(x) = T (x) f ′(x) cos φ(x) = wx .
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It follows from this that the equation of the curve is the parabola

y = f (x) = wx2/2T0.

Exercise

4.6 Show that, if the span AB of a uniformly loaded chain is of length 2b and
if the depth of the lowest point of the chain below AB is c, then the tension
at B is wb(b2 + 4c2)

1
2 /2c.

Finally, we determine the tension in a bollard-rope. We suppose that a rope,
with free ends, presses tightly against a bollard in the form of a rough cylinder
of coefficient of friction µ (Fig. 4.12). Suppose that the cord lies along the arc

Fig. 4.12

AB in a plane normal to the axis of the cylinder. Let T(θ ) be the tension at any
point P on the rope between A and B, where θ is the angle between OA and OP.
Let Q be a point on the rope such that OQ makes an angle ε with OP, where ε is
in �. The tension in the rope at either end of PQ exerts a force of magnitude

[T (θ + ε) + T (θ )] sin
(

1
2

)
ε = [2T (θ ) + εT ′(θ )]

(
1
2

)
ε = εT (θ )

normal to PQ. Therefore, if the rope is about to slip towards A, a force of
magnitude εµT(θ ) is exerted along PQ towards B. Since PQ is in equilibrium,
the total force acting along it must be zero, and so

0 = T (θ + ε) − T (θ ) + µεT (θ ) = εT ′(θ ) + µεT (θ ).
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Hence, cancelling ε, and rearranging, we obtain the equation

T ′(θ ) = −µT (θ ).

By exercise 2.3, T(θ ) must then have the form

T (θ ) = k exp(−µθ ),

where k = T(0) is the tension at A. Thus the tension in the rope falls off expo-
nentially.

4.8 The Kepler–Newton areal law of motion under a central force

We suppose that a particle executes plane motion under the influence of a force
directed towards some fixed point O (Fig. 4.13). If P is a point on the particle’s
trajectory with coordinates x,y, we write r for the length of the line PO and θ

for the angle that it makes with the x-axis OX. Let A be the area of the sector
ORP, where R is the point of intersection of the trajectory with OX. We regard
x, y, r, θ and A as functions of a time variable t: thus x = x(t), y = y(t), r =
r (t), θ = θ (t), A = A(t). Finally, let H be the acceleration towards O induced
by the force: H may be a function of both r and θ .

Fig. 4.13

Resolving the acceleration along and normal to OX, we have

x ′′ = H cos θ y′′ = H sin θ.

Also x = r cos θ , y = r sin θ . Hence

yx ′′ = H y cos θ = Hr sin θ cos θ xy′′ = H x sin θ = Hr sin θ cos θ,

from which we infer that

xy′′ − yx ′′ = 0. (4.18)
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Now let Q be a point on the trajectory at which the time variable has value
t + ε, with ε in �. Then by Microstraightness the sector OPQ is a triangle of
base r (t + ε) = r + εr ′ and height

r sin[θ (t + ε) − θ (t)] = r sin εθ ′ = rεθ ′.

The area of OPQ is thus(
1
2

)
base × height = (

1
2

)
(r + εr ′).rεθ ′ = (

1
2

)
εr2θ ′.

Therefore

εA′(t) = A(t + ε) − A(t) = area OPQ = (
1
2

)
εr2θ ′,

so that, cancelling ε,

A′(t) = (
1
2

)
r2θ ′. (4.19)

Since x = r cos θ, y = r sin θ, we have

x ′ = r ′ cos θ − rθ ′ sin θ y′ = r ′ sin θ + rθ ′ cos θ,

so that

yx ′ = rr ′ sin θ cos θ − r2θ ′ sin2 θ xy′ = rr ′ sin θ cos θ + r2θ ′ cos2 θ.

Hence

xy′ − yx ′ = r2θ ′(cos2 θ + sin2 θ ) = r2θ ′ = 2A′(t)

by (4.19). Then

2A′′(t) = (xy′ − yx ′)′ = x ′y′ + xy′′ − y′x ′ − yx ′′ = xy′′ − yx ′′ = 0

by (4.18). Thus A′′(t) = 0, so that, assuming A(0) = 0,

A(t) = kt,

where k is a constant.
We have therefore established the areal law of motion of a body under a

central force, namely, under such a force, the radius vector joining the body
to the point of origin of the force sweeps out equal areas in equal times. For
planets orbiting the sun, this law was first stated by Kepler in his Astronomica
Nova of 1609 and proved rigorously by Newton in Section II of his Principia.
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5

Multivariable calculus and applications

5.1 Partial derivatives

Let f : Rn → R be a function y = f (x1, . . . , xn1) of n variables. We define the
partial derivatives of f as follows. For given i = 1, . . . , n, fix x1, . . . , xn and
consider the function gi: � → R defined by

gi (ε) = f (x1, . . . , xi−1, xi + ε, xi+1, . . . , xn).

Then there is, by Microaffineness, a unique bi in R (depending on x1, . . . , xn)
such that, for all ε in �

gi (ε) = gi (0) + bi .ε,

i.e.

f (x1, . . . , xi + ε, . . . , xn) = f (x1, . . . , xn) + bi .ε.

The map from Rn to R which assigns bi as defined above to each (x1, . . . , xn)
in Rn is called the ith partial derivative of f and is written ∂ f/∂xi . If f is given
as a function f (x,y,z, . . .) of variables x,y,z, . . . , so that x1 is x, x2 is y, . . . ,

we usually write fx for ∂ f/∂x1, fy for ∂ f/∂x2, . . . . Clearly we have

f (x1, . . . , xi + ε, . . . , xn) = f (x1, . . . , xn) + ε∂ f /∂xi (x1, . . . , xn). (5.1)

The process of forming partial derivatives may be iterated in the obvious way
to obtain higher partial derivatives ∂2 f/∂xi∂xi , ∂2 f/∂x 2

i , etc. These will also
be written fxy, fxx , . . . .

Exercises

5.1 Establish the chain rule: if h = f (u(x, y, z), v(x, y, z), w(x, y, z), then

∂h/∂x = (∂ f/∂u)(∂u/∂x) + (∂ f/∂v)(∂v/∂x)

+ (∂ f/∂w)(∂w/∂x),

69
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with analogous expressions for y,z. Generalize to functions of arbitrarily
many variables.

5.2 Show that, for f : R2 → R, we have fxy = fyx , and generalize to functions
of arbitrarily many variables. (Hint: note that, for arbitrary ε,η in �,

ηε fxy = f (x + ε,y + η) − f (x + ε,y) − [ f (x,y + η) − f (x,y)]

= f (x + ε,y + η) − f (x,y + η) − [ f (x + ε,y) − f (x,y)]

= εη fyx .)

5.3 Suppose that f : R → R and h: R2 → R are related by the equation

h(x, f (x)) = 0.

(We say that h implicitly defines f.) Show that

hx + hy f ′ = 0.

Equation (5.1) shows how the value of a multivariable function changes when
one of its variables is subjected to a microdisplacement. We seek now to extend
this to the case in which all of its variables are so subjected.

Let us call a pair of microquantities ε, η proportional if aε + bη = 0 for
some a,b in R such that a �= 0 and b �= 0: this means that the point (ε, η) can be
joined to the origin by some definite straight line (with equation ax + by = 0),
in other words, that (ε, η) lies in a definite direction from the origin. The
region � consisting of all proportional pairs of microquantities is a natural
microneighbourhood of the origin in the plane R2, since it is the region ‘swept
out’ by � as it is allowed to rotate about the origin. � is to be distinguished
from the full Cartesian product � × �: it is in fact easily shown that � cannot
coincide with � × �: see below.

Evidently, if ε, η is a proportional pair, then ε.η = 0. It is this latter relation –
somewhat weaker than proportionality – which we shall find most useful. So
let us call a pair ε, η mutually cancelling if εη = 0. We note that, by exercise
1.9(i), it is not the case that every pair of microquantities is mutually can-
celling: it follows immediately from this that not every pair of microquantities
is proportional.

Extending these ideas to n-dimensional space Rn, we shall think of an n-
tuple of mutually cancelling microquantities (i.e. such that any pair of them is
mutually cancelling) as representing a definite direction from the origin in Rn:
for this reason we shall call such n-tuples n-(dimensional) microvectors. (Thus
a 2-microvector is just a mutually cancelling pair and a 1-microvector just a
microquantity.) We write �(n) for the collection of all n-microvectors; �(n) is
called the microspace of directions at the origin in Rn.

Now we can extend equation (5.1).
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Theorem 5.1 Let f : Rn → R. Then for any (x1, . . . , xn) in Rn and any
(ε1, . . . , εn) in �(n) we have

f (x1 + ε1, . . . , xn + εn) = f (x1, . . . , xn) +
n∑

i=1

εi (∂ f/∂xi )(x1, . . . , xn).

Proof By induction on n. For n = 1 the assertion is a special case of (5.1).
Assuming the result true for n, given f : Rn+1 → R, we fix xn+1 and εn+1 and
regard ( f (x1, . . . , xn, xn+1 + εn+1) as a function of x1, . . . , xn . By inductive
hypothesis,

f (x1 + ε1, . . . , xn + εn, xn+1 + εn+1) = f (x1, . . . , xn, xn+1 + εn+1)

(5.2)+
n∑

i=1
εi (∂ f/∂xi )(xi , . . . , xn, xn+1 + εn+1).

But

f (x1, . . . , xn, xn+1 + εn+1)= f (x1, . . . , xn+1) + εn+1(∂ f/∂xn+1)(x1, . . . , xn+1)

and

(∂ f/∂xi )(x1, . . . , xn, xn+1 + εn+1) = (∂ f/∂xi )(xi , . . . , xn, xn+1)

+ εn+1(∂2 f/∂xn+1∂xi )(x1, . . . , xn, xn+1).

Substituting these in (5.2) and recalling that the product of any pair of εi is zero
gives

f (x1 + ε1, . . . , xn+1 + εn+1) = f (x1, . . . , xn+1)

+
n+1∑
i=1

εi (∂ f/∂xi )(xi , . . . , xn+1),

completing the induction step, and the proof.
The quantity

δ f = δ f (ε1, . . . , εn) = f (x1 + ε1, . . . , xn + εn) − f (x1, . . . , xn)

=
n∑

i=1

εi∂ f/∂xi

is called the microincrement of f at (x1, . . . , xn) corresponding to the n-
microvector (ε1, . . . , εn). We then have

f (x1 + ε1, . . . , xn + εn) = f (x1, . . . , xn) + δ f (ε1, . . . , εn).

Notice that here δ f represents the change in the value of f exactly, in contrast
with the classical situation in which it represents that change only approxi-
mately.
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Clearly δ f may be regarded as a function – sometimes called the differential
of f – from Rn × �(n) to R given by

δ f (x1, . . . , xn, ε1, . . . , εn) =
n∑

i=1

εi (∂ f/∂xi )(x1, . . . , xn).

In order to be able to apply the concept of microincrement to concrete prob-
lems we shall need to extend the Microcancellation Principle to Rn. Thus we
establish the following principle.

Extended Microcancellation Principle Given (a1, . . . , an) in Rn, suppose
that

∑n
i=1 εi ai = 0 for any n-microvector (ε1, . . . , εn). Then ai = 0 for all i =

1, . . . , n.

Proof By induction on n. For n = 1 the result is (a special case of) the Micro-
cancellation Principle. For n=2, assume ε1a1 + ε2a2 = 0 for all 2-microvectors
(ε1, ε2). Noting that (ε1, −ε2) is a 2-microvector, we can take ε2 = −ε1 to obtain
ε1(a1 − a2) = 0 for any ε1, whence a1 = a2 by microcancellation. Therefore
2ε1a1 = 0 for any ε1, whence 2a1 = 0 and so a1 = 0. Thus a2 = a1 = 0.

Now, for any n ≥ 2, assume the result true for n and suppose that
∑n+1

i=1 εi ai =
0 for all (n + 1)-microvectors (ε1, . . . , εn+1). Then in particular, taking εn+1 =
−εn ,

0 =
n−1∑
i=1

εi ai + ε(an − an+1).

It follows from the inductive hypothesis that a1 = a2 = · · · = an−1 = an −
an+1 = 0. Hence an = an+1 and we may argue as in the case n = 2 to con-
clude that an = an+1 = 0. This completes the induction step and the proof.

We now turn to some applications of partial differentiation.

5.2 Stationary values of functions

If y = f (x1, . . . , xn) is a function from Rn to R, we shall call (a1, . . . , an) a
(unconstrained) stationary point of f and f (a1, . . . , an) a stationary value of f
if

f (a1 + ε1, . . . , an + εn) = f (a1, . . . , an),

i.e. if

δ f (a1, . . . , an, ε1, . . . , εn) = 0 (5.3)

for all n-microvectors (ε1, . . . , εn). In this definition we have specified n-
microvectors instead of arbitrary n-tuples of microquantities because we want
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the value of f to be stationary under microdisplacements which lie in definite
directions in Rn. Now (5.3) is the same as

n∑
i=1

εi (∂ f/∂xi )(a1, . . . , an) = 0,

and since this is to hold for arbitrary n-microvectors (ε1, . . . , εn), it follows
from the Extended Microcancellation Principle that

(∂ f/∂xi )(a1, . . . , an) = 0 i = 1, . . . , n

is a necessary and sufficient condition for (a1, . . . , an) to be an unconstrained
stationary point of f.

We next consider constrained stationary points. Thus suppose that we are
given a surface S in Rn defined by the k equations (the constraint equations)

gi (x1, . . . , xn) = 0 i = 1, . . . , k (5.4)

and that we wish to determine the stationary points of a given function
f (x1, . . . , xn) on S. We take a point P = (x1, . . . , x2) on S and subject it to
a microdisplacement given by an n-microvector (ε1, . . . , εn), so that P is dis-
placed to Q = (x1 + ε1, . . . , xn + εn). If Q is to remain on S, we must have

gi (xi + εi , . . . , xn + εn) = 0 i = 1, . . . , k.

Subtracting from these the corresponding equations (5.4) gives

δgi (ε1, . . . , εn) = 0 i = 1, . . . , k,

i.e.
n∑

i=1

ε j∂gi/∂x j = 0 i = 1, . . . , k. (5.5)

If f is to have a stationary value at P (while constrained to remain on S), then
whenever (5.4) holds we must have

δ f (a1, . . . , an, ε1, . . . , εn) = 0,

that is
n∑

j=1

ε j∂ f/∂x j = 0. (5.6)

Since (5.4) consists of k equations, we can determine k of the microquantities
εj in terms of the remaining n – k, which we shall denote by η1, . . . , ηn−k .
Substituting in (5.6) for the k thus determined εj in terms of η1, . . . , ηn−k gives

n−k∑
j=1

η j h j (x1, . . . , xn) = 0
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for some functions h1(x1, . . . , xn), . . . , hn−k(x1, . . . , xn). Since (η1, . . . , ηn−k)
is an arbitrary (n – k)-microvector, it now follows from the Extended Micro-
cancellation Principle that

h j (x1, . . . , xn) = 0 j = 1, . . . , n − k. (5.7)

The n equations (5.4) and (5.7) can now be solved for x1, . . . , xn which yield
the stationary values of f subject to the given constraints.

This technique provides a nice substitute for the standard method of Lagrange
multipliers employed in classical analysis. To illustrate, consider the following
example.

Example Determine the volume of the largest rectangular parallelepiped
inscribable in the ellipsoid

x2/a2 + y2/b2 + z2/c2 = 1 (a, b, c �= 0).

Solution If x, y, z are the sides of the parallelepiped, then we seek to maximize
xyz subject to the condition that the point (x/2, y/2, z/2) lies on the ellipsoid,
giving the constraint equation

x2/a2 + y2/b2 + z2/c2 = 4. (5.8)

Thus the conditions for a stationary point are, for a 3-microvector (ε,η,ζ ),

εyz + ηxz = ζ xy = 0 εx/a2 + ηy/b2 + ζ z/c2 = 0.

Multiplying the first of these by z/c2, the second by xy, and subtracting the
results gives

ε(yz2/c2 − x2 y/a2) + η(xz2/c2 − xy2/b2) = 0.

Applying extended microcancellation to this and cancelling y and x (since
clearly both must be �=0) yields

z2/c2 − x2/a2 = 0 = z2/c2 − y2/b2,

whence

x = az/c, y = bz/c.

Substituing these in (5.8) and solving for z gives z = 2c/
√

3, so that the sta-
tionary (maximum) value is xyz = 8 abc/3

√
3.
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Exercises

5.4 Determine the dimensions of the most economical cylindrical can (with a
lid) to contain n litres of water.

5.5 Find the largest volume a rectangular box can have subject to the constraint
that its surface area be fixed at m square metres.

5.6 Show that the maximum value of x2y2z2 subject to the constraint x2 +
y2 + z2 = c2 is c6/27.

5.7 A light ray travels across a boundary between two media. In the first
medium its speed is v1 and in the second it is v2. Show that the trip is
made in minimum time when Snell’s law holds:

sin θ1/sin θ2 = v1/v2,

where θ1, θ2 are the angles the light ray’s path make with the normal on either
side of the boundary at the point of incidence.

5.3 Theory of surfaces. Spacetime metrics

Consider a surface S in R3 defined parametrically by the equations

x = x(u,v) y = y(u,v) z = z(u,v), (5.9)

where (u,v) ranges over some region U in R2 (the (u,v)-plane). We think of pairs
(u,v) as coordinates of points on S. If P = (u,v) is a point in U, we write P∗ for
the corresponding point (x(u,v), y(u,v), z(u,v)) with ‘coordinates’ (u,v). We
may think of (5.9) as defining a transformation of U onto S: this transformation
sends each point P in U to the point P∗ on S.

For fixed v0, the function u (x(u,v0), y(u,v0), z(u,v0)) defines a curve
on S called the u-curve through v0: clearly a point of S lies on this curve
precisely when its v-coordinate is v0. Similarly, for fixed u0, the function
u (x(u0,v), y(u0,v), z(u0,v)) defines a curve on S called the v-curve through
u0: a point of S lies on this curve precisely when its u-coordinate is u0. It is nat-
ural to regard the system of u- and v-curves as constituting a coordinate system
(sometimes called a system of intrinsic or Gaussian coordinates: see Fig. 5.1)
on S. The u- and v-curves are obtained by applying the transformation (5.9) to
straight lines v = v0 and u = u0 in the (u,v)-plane, so that the coordinate system
on S may be thought of as the result of applying the transformation (5.9) to the
standard Cartesian coordinate system in the (u,v)-plane.

Suppose now we are given a curve C in U specified parametrically by the
equations

u = u(t) v = v(t). (5.10)
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Fig. 5.1

Here t ranges over an interval in R: the point (u(t), v(t)) on C is said to have
curve parameter t. Under the transformation determined by (5.9), the curve C
in U is transformed into a curve C∗ in S: each point P on C is mapped to the
point P∗ on C∗. The curve C∗ is defined parametrically by the equations

x = x(u(t), v(t)) = x(t) y = y(u(t), v(t)) = y(t)

z = z(u(t), v(t)) = z(t). (5.11)

The point (x(t), y(t), z(t)) on C∗ is said to have curve parameter t.
Let s(t) be the length of C from some fixed point M to the point with curve

parameter t, and let s∗(t) be the length of C∗ from the point M∗ to the point
with curve parameter t. Now consider points P, P∗ on C, C∗, respectively, with
common curve parameter t0. Let Q, Q∗ be the points on C, C∗ with common
curve parameter t0 + ε, where ε is in �. By a result established in Chapter 3,
the length of the (straight) arc PQ of C is

P Q = s(t0 + ε) − s(t0) = εs ′(t0) = ε
[
u′(t0)2 + v′(t0)2

] 1
2 . (5.12)

We now determine the length of the arc P∗ Q∗ of C∗ into which PQ is trans-
formed. By Microstraightness, P∗ Q∗ is straight, and its length is s∗(t0 + ε) −
s∗(t0) = εs ′

∗(t0). Let α, β, γ be the angles that P∗ Q∗ make with the x, y, z-axes:
then

εx ′(t0) = x(t0 + ε) − x(t0) = P∗ Q∗ cos α = εs ′
∗ (t0) cos α,

so that, cancelling ε,

x ′(t0) = s ′
∗ (t0) cos α.

Similarly, y′(t0) = s ′
∗ (t0) cos β, z′(t0) = s ′

∗ (t0) cosy. Now cos α, cos β, cos γ ,
being the direction cosines of a line in R3, are related by the equations33

cos2 α + cos2 β + cos2 γ = 1.

33 See Hohn (1972), Chapter 3.
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Therefore

x ′(t0)2 + y′(t0)2 + z′(t0)2 = s ′
∗ (t0)2

[
cos2 α + cos2 β + cos2 γ

] = s ′
∗ (t0)2.

(5.13)
Now by the chain rule (exercise 5.1) we have, writing x′ for x ′(t0), xu for
(∂x/∂u)(t0), etc.,

x ′ = xuu′ + xvv
′ y′ = yuu′ + yvv

′ z′ = zuu′ + zvv
′.

Substituting these into (5.13) gives

s ′
∗ (t0)2 = Eu′ 2 + 2Fu′v′ + Gv′ 2, (5.14)

where

E = x 2
u + y 2

u + x 2
u F = xu xv + yu yv + zuzv G = x 2

v + y 2
v + z 2

v .

These are known as the Gaussian fundamental quantities of the surface S.
Taking the square root of both sides of (5.14) and multiplying by ε gives

P∗ Q∗ = εs ′
∗ (t0) = ε

[
Eu′2 + 2Fu′v′ + Gv′2] 1

2 . (5.15)

Comparing (5.15) with (5.12), we see that the transformation (5.9) has ‘stressed’
(or ‘shrunk’) the microarc PQ of length ε(u′2 + v′2)

1
2 into the microarc P∗ Q∗

of length ε
[
Eu′2 + 2Fu′v′ + Gv′2] 1

2 .
Let us examine the special case in which the given curve C is a straight

line passing through (u(t0), v(t0) = (u0, v0) defined parametrically by the equa-
tions

u = u0 + k(t − t0) v = v0 + �(t − t0).

In this situation (Fig. 5.2) PQ is the diagonal of the ‘coordinate microrectangle’
in the (u,v)-plane bounded by the lines u = u0 + kε, v = v0, v = v0 + �ε, and
P∗ Q∗ is the diagonal of the ‘coordinate microquadrilateral’ on S bounded by
the v-curves through u0, u0 + �ε and the u-curves through v0, v0 + �ε. The
line PQ has length ε(k2 + �2)

1
2 , while, by (5.15), since u′ = k, v′ = �, P∗ Q∗

has length

P∗ Q∗ = εQ(K , �)
1
2 , (5.16)

where Q(k, �) = Ek2 + 2Fk� + G�2 is a quadratic form in k and � called the
‘fundamental form’ of the surface S. The microquantity (5.16) (whose value
depends on u0 and v0 in addition to k and �) is the magnitude of the total
displacement induced by subjecting the coordinates of a location on S to dis-
placements of kε and �ε units, respectively, in the u- and v-directions. For this
reason Q(k, �)

1
2 is called the intrinsic metric of S: it provides a measure of



P1: SBT
9780521867186c05 CUUS046/Bell 978 0 521 88718 2 November 1, 2007 15:23

78 Multivariable calculus and applications

Fig. 5.2

distance – in terms of the intrinsic coordinate system – between neighbouring
points on S.

Although (5.16) is a special case of (5.15) it is interesting to note that the
latter can in fact be recaptured from (5.16). For, given an arbitrary curve C
parametrically defined by u = u(t), v = v(t), by Microaffineness, we have, for
any ε in �,

u(t0 + ε) = u0 + εu′(t0) v(t0 + ε) = v0 + εv′(t0).

Thus the arc P∗ Q∗ of C∗ is identical with the corresponding part of the straight
line

u(t) = u0 + u′(t0)(t − t0) v(t) = v0 + v′(t0)(t − t0).

In that case (5.16) gives

P∗ Q∗ = εQ(u′(t0), v′(t0))
1
2 ,

which (aside from notational differences) is (5.15).
Finally, we return to equation (5.14). In the usual differential notation this

may be written as

(ds/dt)2 = E(du/dt)2 + 2F(du/dt)(dv/dt) + G(dv/dt)2. (5.17)

In classical differential geometry (see Courant, 1942, Volume II, Chapter III),
it is customary to suppress the parameter t and present (5.1) in the form

ds2 = Edu2 + 2Fdu dv + Gdv2. (5.18)

Here ds is called the line element on the surface S and the expression on the
right-hand side a quadratic differential form. Now we observe that the ‘differ-
entials’ ds, du, dv in (5.18) cannot be construed as arbitrary micro-quantities
in the sense of S, since all the squared terms would reduce to zero while du dv
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would, in general, not (see exercise 1.9). This being the case, what is the con-
nection between equations (5.18) and (5.16)? We explicate it by means of an
informal argument.

Think of du and dv in (5.18) as multiples ke and �e of some small quantity
e. Then (5.18) becomes

ds2 = e2
[
Ek2 + 2Fk� + G�2

]
,

and so

ds = e[Ek2 + 2Fk� + G�2]
1
2 .

If we now take e to be a microquantity ε, and define Q(k, �) as before, we obtain
for the line element ds the expression

εQ(k, �)
1
2 ,

i.e. (5.16). Thus the counterpart in the smooth world S of the classical equation
(5.18) is the equation

ds = εQ(k, �)
1
2 .

Spacetime metrics have some arresting properties in S. In a spacetime the
metric can be written as a quadratic differential form

ds2 = �gµνdxµdxν µ, ν = 1, 2, 3, 4. (5.19)

In the classical setting (5.19) is, like (5.18), an abbreviation for an equation
involving derivatives and the ‘differentials’ ds and dxµ are not really quantities
at all, not even microquantities. To obtain the form this equation takes in S, we
proceed as before by thinking of the dxµ as being multiples kµe of some small
quantity e. Then (5.19) becomes

ds2 = e2�gµνkµkν,

so that

ds = e(�gµνkµkν)
1
2 .

Now replace e by a microquantity ε. Then we obtain the metric relation in S:

ds = ε(�gµνkµkν)
1
2 .

This tells us that the ‘infinitesimal distance’ ds between a point P with coor-
dinates (x1, x2, x3, x4) and an infinitesimally near point Q with coordinates
(x1 + k1ε, x2 + k2ε, x3 + k3ε, x4 + k4ε) is ds = ε(�gµνkµkν)

1
2 . Here a curi-

ous situation arises. For when the ‘infinitesimal interval’ ds between P and Q



P1: SBT
9780521867186c05 CUUS046/Bell 978 0 521 88718 2 November 1, 2007 15:23

80 Multivariable calculus and applications

is timelike (or lightlike), the quantity �gµνkµkν is positive (or zero), so that its
square root is a real number. In this case ds may be written as εd, where d is a
real number. On the other hand, if ds is spacelike, then �gµνkµkν is negative,
so that its square root is imaginary. In this case, then, ds assumes the form iεd,
where d is a real number (and, of course i = √−1). On comparing these we see
that, if we take ε as the ‘infinitesimal unit’ for measuring infinitesimal timelike
distances, then iε serves as the ‘imaginary infinitesimal unit’ for measuring
infinitesimal spacelike distances.

For purposes of illustration, let us restrict the spacetime to two dimensions
(x, t), and assume that the metric takes the simple form ds2 = dt2 − dx2. The
infinitesimal light cone at a point P divides the infnitesimal neighbourhood at
P into A timelike region T and a spacelike region S bounded by the null lines �

and �′, respectively. If we take P as origin of coordinates, a typical point Q in
this neighbourhood will have coordinates (aε, bε) with a and b real numbers: if
|b| > |a|, Q lies in T; if a = b, P lies on � or �′; if |a| < |b|, p lies in S. If we
write d = |a2 − b2| 1

2 , then in the first case, the infinitesimal distance between
P and Q is εd , in the second, it is 0, and in the third it is iεd.

Minkowski introduced ‘ict’ to replace the ‘t’ coordinate so as to make the
metric of relativistic spacetime positive definite. This was purely a matter of
formal convenience, and was later rejected by (general) relativists34. In conven-
tional physics one never works with nilpotent quantities so it is always possible
to replace formal imaginaries by their (negative) squares. But spacetime theory
in S forces one to use imaginary units, since, infinitesimally, one cannot ‘square
oneself out of trouble’. This being the case, it would seem that, infinitesimally,
the dictum Farewell to ict35 needs to be replaced by

Vale ‘ict’, ave ‘iε’!

34 See, for example, Box 2.1. Farewell to ‘ict’, of Misner, Thorne and Wheeler (1973).
35 See footnote 34.
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To quote a well-known treaties on the theory of gravitation,

Another danger in curved spacetime is the temptation to regard . . . the tangent space
as lying in spacetime itself. This practice can be useful for heuristic purposes, but is
incompatible with complete mathematical precision.36

The consistency of smooth infinitesimal analysis shows that, on the contrary,
yielding to this temptation is compatible with complete mathematical precision:
in S tangent spaces may indeed be regarded as lying in spacetime itself.

5.4 The heat equation

Suppose we are given a heated wire W (Fig. 5.3); let T (x, t) be the temperature
at the point P at distance x along W from some given point O on it at time t.

Fig. 5.3

The heat content of the segment S of W extending from x to x + ε, with ε in
�, is then (by definition)

kεT (x, t)

where k is a constant. Thus the change in heat content from time t to time t +
η, with η in �, is

kε[T (x, t + η) − T (x, t)] = kεηTt (x, t). (5.20)

On the other hand, according to classical thermodynamics, the rate of flow of
heat across P is proportional to the temperature gradient there, and so equal to

�Tx (x, t)

where � is a constant. Similarly, the rate of heat flow across the point Q at
distance ε from P is

�Tx (x + ε, t).

Thus the heat transfer across P from time t to time t + η is

�ηTx (x, t),

and that across Q is

�ηTx (x + ε, t).

36 Op. cit., p. 205.
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So the net change in heat content in S from time t to time t + η is

�η [Tx (x + ε, t) − Tx (x, t)] = �ηεTxx (x, t). (5.21)

Equating (5.20) and (5.21) and cancelling η and ε yields the heat equation

kTt = �Txx .

5.5 The basic equations of hydrodynamics

Suppose we are given an incompressible fluid of uniform unit density flowing
smoothly in space. At any point (x, y, z) in the fluid and at any time t, let

u = u(x, y, z, t) v = v(x, y, z, t) w = w(x, y, z, t)

be the x, y, z-components of its velocity there. Consider a volume microelement
E (Fig. 5.4) at (x, y, z) which we take to be a parallelepiped with sides of length

Fig. 5.4

ε, η, ζ where ε, η, ζ are arbitrary microquantities. Let us first determine the
mass flow per unit time through E in the x-direction. The mass per unit time
entering the left face is uηζ , and the mass per unit time leaving the opposite
face is

u(x + ε, y, z)ηζ = (u + εux )ηζ.

The net mass gain in the x-direction is thus εηζux. Similar calculations for the
other directions gives the total mass gain

εηζ (ux + vy + wz).
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If there is to be no creation or destruction of mass, we may equate this expression
for the mass gain to zero. Since ε, η, ζ are arbitrary microquantities, they
may then be cancelled, and we arrive at Euler’s equation of continuity for an
incompressible fluid:

ux + vy + wz = 0.

We next need to determine the acceleration functions for the fluid. We define
these functions

u+ = u+(x, y, z, t) v+ = v+(x, y, z, t) w+ = w+(x, y, z, t)

to be the rates of change of u, v, w with respect to t as we move with the fluid.
That is, we want u+, v+, w+ to satisfy the following conditions. Consider again
the fluid element E at (x, y, z, t). For any microquantity ε, let xε, yε, zε be the
space coordinates of E at time t + ε. Then we require that

u(xε, yε, zε, t + ε) = u(x, y, z, t) + εu+(x, y, z, t)

v(xε, yε, zε, t + ε) = v(x, y, z, t) + εv+(x, y, z, t)

w(xε, yε, zε, t + ε) = w(x, y, z, t) + εw+(x, y, z, t).

Now clearly, since u,v,w are the components of velocity, we have

xε = x + εu yε = y + εv zε = z + εw .

Therefore

εu+ = u(x + εu, y + εv, z + εw, t + ε) − u = ε(uux + vuy + wuz + ut ),

so that, cancelling ε,

u+ = uux + vuy + wuz + ut . (5.22)

Similarly

v+ = uvx + vvy + wvz + vt (5.23)

w+ = uwx + vw y + wwz + wt . (5.24)

Now suppose in addition that the fluid is frictionless, and consider the forces
acting on E (Fig. 5.5). Let p = p(x, y, z, t) be the pressure function in the fluid.
Confining attention to the x-direction, the pressure force acting on the left face
of E is ηζ p(x, y, z, t), and that on the right face is

ηζ p(x + ε, y, z, t) = ηζ (p + εpx ).

So the net pressure force acting on E in the positive x-direction is

−εηζ px .
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Fig. 5.5

Assuming that there are no forces acting on the fluid other than those due to
pressure, then, since the force on E is the product of its mass and its acceleration,
it follows that

−εηζ px = εηζu+.

Hence, cancelling ε, η, ζ ,

−px = u+,

i.e. using (5.22),

−px = uux + vuy + wyz + ut .

Similarly, using (5.23) and (5.24),

−py = uvx + vvy + wvz + vt ,

−pz = uwx + vw y + wwz + wt .

These are Euler’s equations for a perfect fluid.

5.6 The wave equation

Assume that the tension T and density ρ of a stretched string are both constant
throughout its length (and independent of the time). Let u(x, t), θ (x, t) be,
respectively, the vertical displacement of the string and the angle between the
string and the horizontal at position x and time t.

Consider a microelement of the string between x and x + ε at time t . Its
mass is ερ cos θ (x, t) and its vertical acceleration utt (x, t). The vertical force
on the element is

T [sin θ (x + ε, t) − sin θ (x, t)] = εT θx (x, t) cos θ (x, t).
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By Newton’s second law, we may equate the force with mass × acceleration
giving

ερutt cos θ = εT θx cos θ.

Cancelling the universally quantified ε gives.

ρutt cos θ = T θx cos θ.

Since cos θ �= 0 it may also be cancelled to give

ρutt = T θx . (5.25)

Now we recall the fundamental equation governing sines and cosines (cf. (2.7))
which here takes the form

sin θ = ux cos θ. (5.26)

Applying
∂

∂x
to both sides of this gives

θx cos θ = −θx sin θ + ux cos θ.

Substituting (5.26) in this latter equation yields

θx cos θ = −θx u 2
x cos θ + uxx cos θ.

Cancelling cos θ and rearranging gives

θx = uxx/
(
1 + u 2

x

)
.

Substituting this in (5.25) yields the rigorous wave equation

utt = c2uxx/
(
1 + u 2

x

)
, (5.27)

with C =
√

T
P .

When the amplitude of vibration is small we may assume that u 2
x = 0 and

in that case (5.27) becomes the familiar wave equation

utt = c2uxx .
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5.7 The Cauchy–Riemann equations for complex functions

Let C be the field of complex numbers (or complex plane): writing i for
√ − 1

as usual, each complex number z is of the form x + iy with x, y in R. We define
a microcomplex number to be a complex number of the form ε + iη, where (ε,
η) is a 2-microvector. We write �∗ for the set of all microcomplex numbers.
Clearly z2 = 0 for z in �∗. Suppose now that we are given a function f : C → C

( f is called a complex function). We say that f is differentiable at a point z in C

if it is affine on the translate of �∗ to z, that is, if there is a unique w in C such
that, for all microcomplex λ,

f (z + λ) = f (z) + wλ. (5.28)

We write f ′(z) for w. The function f is analytic if it is differentiable at every
point of C: in that case, the function z f ′(z): C → C is called the derivative
of f.

We write u,v: R2 → R2 for the (functions giving the) real and imaginary
parts of f; thus, for x,y, in R

f (x + iy) = u(x,y) + iv(x,y).

We now prove the following theorem.

Theorem 5.2 The following conditions on a complex function f are equiv-
alent:

(i) f is analytic;
(ii) the real and imaginary parts u, v of f satisfy the Cauchy–Riemann equa-

tions, namely,

ux = vy vx = −uy .

Proof Suppose that (i) holds. Then for λ = ε + iη in �∗ we have, writing
a + ib for f ′(x + iy),

f ((x + iy) + (ε + iη)) = f (x + iy) + (ε + iη)(a + ib)

= u(x, y) + iv(x, y) + (εa − ηb) + i(ηa + εb).

(5.29)

But we have (independently of any assumptions),

f ((x + iy) + (ε + iη)) = u(x + ε, y + η) + iv(x + ε, y + η)

= u(x, y) + iv(x, y) + εux + ηuy + i(εvx + ηv).

(5.30)
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By equating (5.29) and (5.30), cancelling identical terms, equating real and
imaginary parts and rearranging, we obtain

ε(ux − a) + η(uy − b) = 0 ε(vx − b) + η(vy − a) = 0.

Applying the Extended Microcancellation Principle to these equations gives

ux = a vx = b uy = −b vy = a,

which immediately yields (ii).
Conversely, assume (ii). To obtain (i) we have to show that, for any z =

x + iy, there is a unique w = a + ib such that (5.28) holds for any microcomplex
λ = ε + iη. We first prove (independently of (ii)) the uniqueness of w. Suppose
that w1 = a1 +ib1, w2 = a2 + ib2 both satisfy the stated condition. Then for
any microcomplex ε + iη we have

f (z) + (ε + iη)(a1 + ib1) = f (z + (ε + iη)) = f (z) + (ε + iη)(a2 + ib2).

Cancelling f (z) on both sides, multiplying out, equating real parts37 and rear-
ranging gives

ε(a1 − a2) + η(b2 − b1) = 0.

Since (ε, η) is an arbitrary 2-microvector, we may invoke extended microcan-
cellation to infer that

a1 − a2 = b2 − b1 = 0,

whence w1 = w2. This proves the uniqueness condition.
To prove the existence of w, we note that (5.30) (which, as we observed

above, holds independently of any assumptions) and (ii) give

f (z + λ) = f ((x + iy) + (ε + iη))

= [u(x, y) + iv(x, y)] + εux − ηvx + i(εvx + ηux )

= f (z) + (ux + ivx )(ε + iη).

So we see that (5.28) is satisfied with w = ux + ivx . This gives (i), and com-
pletes the proof.

In classical complex analysis analyticity is not generally implied by satisfaction
of the Cauchy–Riemann equations; one also requires that certain continuity

37 We do not consider the imaginary part since, as is easily seen, it leads to essentially the same
equation as does the real part.
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conditions be satisfied. In S, however, these extra conditions are automatically
satisfied, so that the implication holds generally.

As a corollary to this theorem, we see immediately that, if f is analytic, so
is its derivative f ′. For if f = u + iv is analytic it follows from the proof of
the theorem that f ′ = ux + ivx , and since u and v satisfy the Cauchy–Riemann
equations we have

uxx = vyx = vxy,

vxx = −uyx = −uxy .

Thus the real and imaginary parts ux , vx of f ′ themselves satisfy the Cauchy–
Riemann equations; we infer from the theorem that f ′ is analytic. It follows
that, if a complex function is analytic, it has derivatives of arbitrarily high order.

In classical complex analysis the proof of this corollary employs complex
integration: the comparatively straightforward proof we have given is made
possible by the fact that, in S, analyticity is equivalent to satisfaction of the
Cauchy–Riemann equations.

Exercise

5.8 Establish, for complex functions, versions of the product and composition
rules for differentiation (Chapter 2).
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6

The definite integral. Higher-order
infinitesimals

6.1 The definite integral

In order to be able to handle definite integrals in S, we introduce the following
principle in place of the Constancy Principle.

Integration Principle For any f: [0, 1] → R there is a unique g: [0, 1] → R
such that g′ = f and g(0) = 0.

Intuitively, this principle asserts that for any f : [0, 1] → R, there is a definite
g: [0, 1] → R such that, for any x in [0, 1], g(x) is the area under the curve
y = f (x) from 0 to x. As usual, we write∫ x

0
f (t) dt or

∫ x

0
f

for g(x), and call it a definite integral of f over [0, x].

Exercises

6.1 Let f, g: [0, 1] → R. Show that

(a)
∫ x

0
( f + g) =

∫ x

0
f +

∫ x

0
g,

(b)
∫ x

0
r. f = r.

∫ x

0
f,

(c)
∫ x

0
f ′ = f (x) − f (0),

(d)
∫ x

0
f ′.g = f (x)g(x) − f (0)g(0) −

∫ x

0
f.g′ (integration by parts).

(Hint: show that the two sides of each equality have the same derivative
and the same value at 0.)

89
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6.2 Let f : [a, b] × [0, 1] → R and define g(s) =
∫ 1

0
f (t, s) dt . Show that

g′(s) =
∫ 1

0
fs(t, s) dt

We now want to extend the definite integral to arbitrary intervals. To do this we
first establish the following lemma.

Lemma 6.1 (Hadamard) For f : [a, b] → R and x, y in [a, b] we have

f (y) − f (x) = (y − x)
∫ 1

0
f ′(x + t(y − x)) dt.

Proof For any x, y in [a, b] we can define a map h: [0, 1] → [a, b] by h(t) =
x + t(y − x). Since h′ = y − x , we have

f (y)− f (x)= f (h(1)) − f (h(0))=
∫ 1

0
( f ◦ h)′(t) dt =

∫ 1

0
(y − x)( f ′ ◦ h)(t) dt

= (y − x)
∫ 1

0
( f ′ ◦ h)(t) dt,

which is the required equality.
We can now prove the following theorem.

Theorem 6.2 For any f : [a, b] → R there is a unique g: [a, b] → R such
that g′ = f and g(a) = 0.

Proof The uniqueness of g follows immediately from the observation that,
if h: [a, b] → R and h′ = 0, then h is constant. For if h satisfies the former
condition, then by Hadamard’s lemma, for x in [a, b],

h(x) − h(a) = (x − a)
∫ 1

0
h′(a + t(x − a)) dt = (x − a)

∫ 1

0
0 dt = 0.

To establish the existence of g, define

g(x) = (x − a)
∫ 1

0
f (a + t(x − a)) dt.

Clearly g(a) = 0 and

g′(x) = (x − a)
∫ 1

0
f (a + t(x − a)) dt + (x − a)

[∫ 1

0
f (a + t(x − a)) dt

]′
.
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Now, by exercise 6.2,

[∫ 1

0
f (a + t(x − a)) dt

]′
=

∫ 1

0
(∂/∂x) f (a + t(x − a)) dt

=
∫ 1

0
t. f ′(a + t(x − a)) dt.

Thus

g′(x) =
∫ 1

0
f (a + t(x − a)) dt +

∫ 1

0
t. f ′(a − t(x − a)) dt,

so that, writing h(t) = a + t(x − a), and using the composite rule and integra-
tion by parts,

g′(x) =
∫ 1

0
f (h(t)) dt +

∫ 1

0
t. f ′(h(t)).h′(t) dt

=
∫ 1

0
f (h(t)) dt +

∫ 1

0
t.( f ◦ h)′(t) dt

=
∫ 1

0
f (h(t)) dt + [1. f (h(1)) − 0. f (h(0))] −

∫ 1

0
f (h(t)) dt

= f (x).

The proof is complete.

As usual, we write
∫ x

a
f (t) dt or

∫ a

a
f for g(x), where g is the unique function

whose existence is established in this theorem.

Exercises

6.3 For f,g: [a,b] → R, show that

(a)
∫ b

a
f + g =

∫ b

a
f +

∫ b

a
g,

(b)
∫ b

a
r. f = r.

∫ b

a
f for r in R,

(c)
∫ b

a
f ′ = f (b) − f (a),

(d)
∫ b

a
f ′.g = f (b)g(b) − f (a)g(a) −

∫ b

a
f.g′.
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6.4 Let a ≤ b, c ≤ d, h: [a, b] → [c, d] with h(a) = c, h(b) = d, and f :
[c, d] → R. Establish the ‘change of variable’ formula∫ d

c
f (s) ds =

∫ b

a
f (h(t)).h′(t) dt.

(Hint: consider the functions

f1(u) =
∫ h(u)

c
f (s) ds, f2(u) =

∫ u

a
f (h(t)).h′(t) dt.

6.5 Show that
∫ x

a

∫ y

b
f (u, v) du dv = F(x,y) is the unique function such that

Fxy = f (x, y) and F(x, b)=F(a, y)=0 for all x, y. Deduce Fubini’s theorem:∫ x

a

∫ y

b
f (u,v) du dv =

∫ y

b

∫ x

a
f (u,v) dv du.

6.6 Let f : R → R. Show that, if x . f (x) = 0 for all x in R, then f = 0. (Hint: for
fixed but arbitrary r in R consider hr: R → R defined by hr (x) = x . f (r x).
Show that h′

r = 0.)
6.7 (a) Show that, for any f: R → R there is a unique f*: R × R → R such that

f (x) − f (y) = (x − y) f* (x, y) for all x, y in R. (Hint: use Hadamard’s
lemma.)

(b) Show that f ′ = f * (x, x).
(c) Prove the following version of l’Hospital’s rule. Given f,g: R → R

with f (0) = g(0) = 0, suppose that g*(x, 0) �= 0 for all x in R. Then there
is a unique h: R → R such that f = g.h. This function g satis-
fies f ′(0) = g′(0).h′(0). (Hint: define h(x) = f ∗(x, 0)/g∗ (x, 0). For
uniqueness, use exercise 6.6.)

6.2 Higher-order infinitesimals and Taylor’s theorem

If we think of those x in R such that x2 = 0 (i.e. the members of �) as ‘first-order’
infinitesimals (or microquantities), then, analogously, for k ≥ 1, the x in R for
which xk+1 = 0 should be regarded as ‘kth-order’ infinitesimals. Let us write �k

for the set of all kth-order infinitesimals in this sense: observe that then �� = �

and, for k ≤ �, �k is included in ��. Now the Principle of Microaffineness may
be taken as asserting that any R-valued function on � behaves like a polynomial
of degree 1. The natural extension of this to �k for arbitrary k is then the assertion
that any R-valued function on �k behaves like a polynomial of degree k38.

38 Recall that in Chapter 1 we provisionally assumed that all maps on R behave locally like
polynomials in order to justify the Principle of Microaffineness. Here we are finally conferring
formal status on this idea.
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This idea gains precise expression in the following principle whose truth in S

we now assume.

Principle of Micropolynomiality For any k ≥ 1 and any g: �k → R, there
exist unique b1, . . . , bk in R such that for all δ in �k we have

g(δ) = g(0) +
k∑

n=1

bnδ
n.

We may think of this as saying that �k is just large enough for a function defined
on it to have k derivatives, but no more. Just as the Principle of Microaffineness
implied that � �= {0}, the Principle of Micropolynomiality implies that �k �=
�k+1 for any k ≥ 1 (the simple argument establishing this is left to the reader.)
The members of the �k for arbitrary k ≥ 1 are collectively known as nilpotent
infinitesimals.

We now want to use micropolynomiality to derive a version of Taylor’s
theorem, namely, that, for any f: R → R, any x in R, and any δ in �k,

f (x + δ) = f (x) +
k∑

n=1

δn f (n)(x)/n!.

To do this we first prove (independently of micropolynomiality) that this equal-
ity holds for all δ in �k of the special form ε1 + · · · + εk (by exercise 1.12,
(ε1 + · · · + εk)k+1 = 0 whenever ε1, . . . , εk are in �). We then use micropoly-
nomiality to infer Taylor’s theorem for arbitrary δ in �k.

We begin with the following lemma.

Lemma 6.3 If f: R → R then for any x in R and ε1, . . . , εk in � we have

f (x + ε1 + · · · + εk) = f (x) +
k∑

n=1

(ε1 + · · · + εk)n f (n)(x)/n!.

Proof This goes by induction on k. For k = 1 the assertion is just the definition
of f ′(x). Assuming then that the assertion holds for k, we have, for ε1, . . . , εk+1

in �

f (x + ε1 + · · · + εk + εk+1)

= f (x + ε1 + · · · + εk) + εk+1 f ′(x + ε1 + · · · + εk)

= f (x) +
k∑

n=1

(ε1 + · · · + εk)n f (n)(x)/n!

+ εk+1[ f ′(x) +
k∑

n=1

(ε1 + · · · + εk)n f (n+1)(x)/n!].



P1: SBT
9780521867186c06 CUUS046/Bell 978 0 521 88718 2 November 1, 2007 15:17

94 The Definite integral. Higher-order infinitesimals

Now the coefficient of f (n)(x) in the expression on the right-hand side of this
last equation is, noting that, for any ε in � (u + ε)n + un−1(x + nε),

(ε1 + · · · + εk)n/n! + εk+1(ε1 + · · · + εk)n−1/(n − 1)!

= (ε1 + · · · + εk)n−1(ε1 + · · · + εk + nεk+1)/n!

= (ε1 + · · · + εk+1)n/n!.

This establishes the induction step and completes the proof.
Now, assuming micropolynomiality, we can prove the following theorem.

Theorem 6.4 (Taylor’s theorem) If f: R → R, then for any k ≥ 1, any x in R
and any δ in �k we have

f (x + δ) = f (x) +
k∑

n=1

δn f (n)(x)/n!.

Proof By micropolynomiality, for given x in R there are (unique) b1, . . . , bk

in R such that, for all δ in �k,

f (x + δ) = f (x) +
k∑

n=1

bn.δ
n. (6.1)

It suffices to show that bn = f (n)(x)/n! for n = 1, . . . , k. Taking δ in �1 gives
b1 = f ′(x) by the definition of f ′. Now suppose that bi = f (i)(x)/ i! for all
1 ≤ i ≤ n. Then for ε1, . . . , εn+1 in �, δ = ε1 + · · · + εn+1 is in �n+1 and by
the lemma

f (x + δ) = f (x) +
n∑

i=1

δi f (i)(x)/ i! + δn+1 f (n+1)(x)/(n + 1)!.

But by (6.1) and the inductive hypothesis we have

f (x + δ) = f (x) +
n∑

i=1

δi f (i)(x)/ i! + bn+1 δn+1.

Equating these two expressions for f (x + δ) gives

δn+1bn+1 = δn+1 f (n+1)(x)/(n + 1)!. (6.2)

But clearly δn+1 = (ε1 + · · · + εn+1)n+1 = (n + 1).ε1.ε2. . . . .εn+1, so that (6.2)
becomes

ε1. . . . . εn+1.bn+1 = ε1. . . . . εn+1. f (n+1)(x)/(n + 1)!.

Since ε1, . . . , εn+1 are arbitrary members of �, they may be cancelled to give

bn+1 = f (n+1)(x)/(n + 1)!.

This completes the induction step and the proof.
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Just as � = �1 behaves as a ‘universal first-order (i.e. affine) approxima-
tion’ to arbitrary curves, so, analogously, �k behaves as a ‘universal kth-order
approximation’ to them. When two curves have the same kth-order approxima-
tions at a point, they are said to be in kth-order contact at that point. This may
be made precise as follows.

Consider two curves given by y = f (x) and y = g(x). We may think of the
images39 f [�k], g[�k] as the kth-order microsegments of the two curves at 0.
We say that f and g have kth-order contact at 0 if their kth-order microsegments
coincide there, more precisely, if the restrictions of f and g to �k are identical. By
Taylor’s theorem and micropolynomiality, this will be the case if and only if

f (0) = g(0), f ′(0) = g′(0), . . . , f (k)(0) = g(k)(0).

Similarly, f and g are in kth-order contact at an arbitrary point a in R if

f (a) = g(a), f ′(a) = g′(a), . . . , f (k)(a) = g(k)(a).

Exercise

6.8 Show that f and g are in second-order contact at a point a for which
f (a) = g(a) if and only if their tangents, curvature and osculating circles
coincide there.

6.3 The three natural microneighbourhoods of zero

If we write

M1 for the set of nilpotent infinitesimals,
M2 for the set of x in R such that not x �= 0,
M3 for [0, 0],

then it is readily checked that Mi is included in Mj for i ≤ j . The Mi are called the
natural microneighbourhoods of zero. Each determines a proximity (or ‘close-
ness’) relation on R which is reflexive, transitive and symmetric. Specifically,
we define ≈i on R for ≈i = 1, 2, 3 by

x ≈i y if and only if x − y is in Mi .

The relations ≈1, ≈2, ≈3 are then naturally described as the proximity relations
on R determined by algebra, logic, and order, respectively. They are, in general,
distinct, but it has been shown that it is possible for them to coincide, in other
words, for M1 to be identical with M3 (and different from {0}).

39 Here the image f [X] of a set X under a map f is the set of all points of the form f (x) with x in X.
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Synthetic differential geometry

In this penultimate chapter we show how to formulate some of the fundamental
notions of the differential geometry of manifolds in S. In these formulations
the essential objects are synthesized directly from the basic constituents of S,
avoiding the use of classical analytical methods, and thereby effecting a remark-
able conceptual simplification of the foundations of differential geometry. For
this reason we call differential geometry developed in S synthetic. Our account
here, while purely introductory, will nevertheless enable the reader to get the
gist of the approach.

Let us call the objects in S (e.g. R, �) (smooth) spaces. We have implicitly
assumed that, for any pair of spaces S, T, we can form their product S × T in S.
We now postulate that in S we can form, for any spaces S,T, the space TS of all
(smooth) maps from S to T. The crucial fact about TS is that, for any space U,
there is, in S, a bijective correspondence between maps U → TS and maps U ×
S → T, which correlates each map f : U → T S with the map f :̂ U × S → T
defined by

f ∧(u, s) = f (u)(s)

for s in S, u in U. We depict this correspondence by

f : U → T S

f ∧ : U × S → T
.

7.1 Tangent vectors and tangent spaces

We recall that we can think of � as a generic tangent vector to curves in R2.
More precisely, the space R� of maps � → R is, by exercise 1.8, isomorphic
to R2, which may itself be regarded as the tangent bundle of R40. We extend

40 This is because each (a, b) in R2 may be regarded as specifying a ‘tangent vector’ with base
point a and slope b.

96
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Fig. 7.1

this idea by defining, for any space S, the tangent bundle of S to be the space41

S�. The members of S� are called tangent vectors to S. Associated with each
tangent vector τ to S is its base point τ (0) in S: τ itself may then be thought of
as a micropath, or as specifying a direction, in S from its base point. The base
point map π = πS: S� → S is given by π (τ ) = τ (0). For each point s in S we
write S�

s for π−1(s), the set of tangent vectors to S with base point s. S�
s is

called the tangent space (or space of micropaths) to S at s.
Here is another way of picturing tangent vectors (Fig. 7.1). For s in S, a

curve in S with base point s is a map c: J → S with J a closed interval in
R containing 0 (or R itself) such that c(0) = s. Call two curves c and d with
common base point s equivalent, and write c ≈ d, if c and d coincide on �42.
Thus c ≈ d means that c and d are going in the ‘same direction’ at s, that is,
are tangent at s. Clearly each tangent vector τ at s determines an equivalence
class of curves with base point s, namely, the class of all such curves whose
restriction to � coincides with τ . And conversely, any equivalence class of such
curves determines a tangent vector at s, namely, the common restriction to � of
all curves in the class. Thus tangent vectors may be identified with equivalent
classes of curves in this sense43.

Exercises

7.1 Using the fact that R × R is isomophic to R�, show that the tangent bundle
of Rn is isomorphic to Rn × Rn.

41 Thus the tangent bundle of any space may, in any smooth world, be regarded as a part of the
space. This is in marked contrast to the classical situation in which the tangent bundle of a
manifold only ‘touches’ the manifold.

42 Observe that any closed interval which contains 0 also includes �.
43 In classical differential geometry tangent vectors are sometimes defined as equivalence classes

of curves ‘pointing in the same direction’ at a given point: see, Spivak (1979).
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7.2 Any map f : S → T between spaces induces a map f�: S� →T� between
tangent bundles given by f� (τ ) = f ◦ τ , for τ in S�. Show that f ◦ πS =
πT ◦ f�, and that, for each s in S, f� carries S�

s to T�
f(s).

7.2 Vector fields

A vector field on a space S is an assignment of a tangent vector to S at each of
its points, that is, a map X: S → S� such that

X (s)(0) = s

for all points s of S. This is equivalent to the condition that the composite πS ◦ X
be the identity map on S, in other words, that X is a section of πS.

Now we know that there is a bijective correspondence of maps

X: S → S�

X∧: S × � → S

with X∧(s,ε) = X(s)(ε) for s in S, ε in �, so that X∧(s,0) = s for all s in S. Since
X∧(s, ε) is, intuitively, the point in S at ‘distance’ ε from s along the tangent
vector X (s), we may think of X∧ as having the effect of moving a particle
initially at s to X∧ (s, ε). Accordingly X∧ is called the microflow on S induced
by X.

There is a further bijective correspondence of maps

X∧: S × � → S

X∨: S → SS

with X∨(ε)(s) = X∧(s,ε), In particular we have

X∨(0)(s) = X∧(s,0) = s,

that is, X∨(0) is the identity map on S. Thus X∨ is a micropath in the function
space SS with the identity map on S as base point. For ε in � the map

X∨(ε) : S → S

is called the microtransformation of S induced by X (and ε).
We conclude that vector fields, microflows and microtransformations are

all essentially equivalent in S. In classical differential geometry the latter two
concepts cannot be rigorously defined, and figure only as suggestive metaphors.

7.3 Differentials and directional derivatives

Given f: S → R, we define the map df: S� → R by

(d f )(τ ) = ( f ◦ τ )′(0)
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for τ in S�. Since, for ε in �,

f (τ (ε)) = f (τ (0)) + ε( f ◦ τ )′(0)

= f (τ (0)) + ε(d f )τ,

it is apparent that (df )(τ ) indicates the ‘rate of change’ of f along the micropath τ .
Accordingly, df is naturally identified as the differential of f. Clearly

δ(f ◦ τ, ε) = ε(d f )(τ ),

where δ is the differential as defined in Chapter 5.

Exercise

7.3 For τ in S�
s define τ*: RS → R by τ*( f ) = (df )τ . Show that τ* is a

derivation at s, i.e. satisfies τ*(af + bg) = aτ*( f ) + bτ*(g), τ*( f.g)=
f (s) τ*(g)+ g(s)τ*( f ).Thus each tangent vector gives rise to a derivation44.

Now suppose we are given a vector field X: S → S� on S. For any f: S → R
we define X*f, the directional derivative of f along X, by

X∗ f = d f ◦ X∧.

Thus X∗ f is a map from S to R, and from the definition of df it follows that,
for ε in �, s in S,

f (X∧(s,ε)) = f (s) + ε(X∗ f )(s).

Therefore (X∗ f )(s) represents the rate of change of f in the direction of the
microflow at s induced by the vector field X.

In particular, we may consider the vector field on R

∂/∂x: R × � → R

given by (x, ε) x + ε. In this case the directional derivative (∂/∂x) ∗ f is the
usual derivative f ′.

Exercise

7.4 Let X be a vector field on a space S. Show that, for any f, g: S → R, r
in R:

(i) X∗(r. f ) = r.X∗ f ,

44 In classifical differential geometry tangent vectors are sometimes defined as derivations: see
Spivak (1979).
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(ii) X∗( f + g) = X∗ f + X∗g,
(iii) X∗( f.g) = f.X∗g + g.X∗ f .

A curve c: [a, b] → S is said to be a flow line of the vector field X on S if

c(x + ε) = X∧(c(x),ε)

for all x in [a, b] and all ε in �. Intuitively, this means that the values of c
‘go with the microflow’ induced by X. If a = b = 0 the flow line c is called a
microflow line of X at the point c(0) = s in S; clearly in this case we have, for
any ε in �,

c(ε) = X∧(c(0), ε) = X∧(s, ε) = X (s)(ε).

In other words, the restriction to � of any microflow line of X at a point s is
X (s).

Given f: S → R, the curve c in S is called a level curve of f if the composite
f ◦ c is constant, that is, if the value of f does not vary along c. We can now
prove the following theorem relating level curves and flow lines.

Theorem 7.1 Let X be a vector field on a space S and let f: S → R. Then the
following are equivalent:

(i) X * f = 0;
(ii) f ◦ X∨ (ε) = f for all ε in �, i.e. f is invariant under the microtrans-

formations of S induced by X;
(iii) every flow line of X is a level curve of f.

Proof The equivalence of (i) and (ii) is an immediate consequence of the
definitions of X∗ f and X∨. For the implication from (i) to (iii), we argue as
follows. Assuming (i), we have f(X∧(s, ε)) = f (s) for all s in S, ε in �, so if
c: [a, b] → S is a flow line of X, it follows that, for all x in [a, b], ε in �,

f (c(x + ε)) = f (X∧(x(x), ε)) = f (c(x)).

Therefore

( f ◦ c)′(x) = f (c(x + ε)) − f (c(x)) = 0,

so that ( f ◦ c)′ = 0 and f ◦ c is constant, i.e. c is a level curve of f.
Conversely, assuming (iii), for s in S any microflow line c for X at s is a level

curve of f, and so, since the restriction of c to � is X(s), we have, for ε in �,

f (X∧(s, ε)) = f (X (s)(ε)) = f (c(ε)) = f (c(0)) = f (X (s)(0)) = f (s).
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Hence

ε(X∗ f )(s) = f (X∧(s, ε)) − f (s) = 0,

and cancelling ε gives X∗ f = 0, i.e. (i).
The proof is complete.

Exercises

7.5 A space S is said to be microlinear if it satisfies the following condition.
For any point s in S and any n tangent vectors τ 1, . . . , τ n to S at s, there is
a unique map k: �(n) → S such that, for all j = 1, . . . , n and all ε in �,

τ j (ε) = k(0, . . . , ε, . . . , 0) (ε in j th place).

The Principle of Microaffineness for �(n) is the assertion that, for any
map f : �(n) → R there are unique a0, . . . , an in R such that, for all ε1, . . . ,
εn in � (n),

f (ε1, . . . , εn) = a0 +
n∑

i=1

εi ai .

Show that the Principle of Microaffineness for �(n) implies that R is
microlinear.

7.6 Let X be a vector field on a microlinear space S. Show that, for all (ε, η)
in �(2) and s in S,

X∧(X∧(s, ε), η) = X∧(s, ε + η).

(Hint: use the uniqueness property in the definition of microlinearity.)
Deduce that each microtransformation X∨ (ε): S → S is invertible, with
X∨ (−ε) as inverse. Thus any microtransformation on a microlinear space
is a permutation.

Remark In a microlinear space S it is possible to define an addition operation
on tangent vectors so as to make each tangent space a linear space over R, just
as in classical differential geometry. To be precise, if σ and τ are two tangent
vectors at the same point of S, the sum σ + τ is defined to be the map ε

k (ε, ε), where k: �(2) → S is the unique map satisfying k (ε, 0) =σ (ε), k (0, ε) =
τ (ε) for all ε in �. For details see Kock (1977), Lavendhomme (1996) or
Moerdijk and Reyes (1991).
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Smooth infinitesimal analysis as an
axiomatic system

At several points we have had occasion to note the fact that logic in smooth
worlds differs in certain subtle respects from the classical logic with which we
are familiar. These differences have not been obtrusive, and in developing the
calculus and its applications in a smooth world it has not been necessary to pay
particular attention to them. Nevertheless, it is a matter of logical interest to
examine these differences a little more closely, and also to formulate an explicit
description of the logical system which underpins reasoning in smooth worlds.

As explained in the Introduction, any smooth world S may be taken to be a
certain type of category called a topos, which may be thought of as a model for
mathematical concepts and operations in much the same way as the universe
of set theory serves as such a model. In particular, S will contain an object,
which we shall denote by �, playing the role of the set of truth values. In set
theory, � is the set 2 consisting of two distinct individuals true and false; we
assume that, in S, � contains at least two such distinct individuals. Now the key
property of � in any topos is that ( just as in set theory) maps from any given
object X to � correspond exactly to parts of X, the map with constant value true
corresponding to X itself, and the map with constant value false corresponding
to the empty part of X.

In set theory (or, more generally, classical logic), the usual logical operations
∧ (conjunction), ∨ (disjunction), → (implication) and ¬ (negation) are defined
by the familiar truth tables, so that each operation may be regarded as a map,
the first three from the Cartesian product 2 × 2 to 2, and the last from 2 to 2.
Similarly, the universal and existential quantifiers ∀ and ∃ may be thought of as
being determined by the maps ∀X, ∃X: 2X → 2, for each set X (where 2X is the
set of all maps X → 2), defined by

∀X ( f ) = true ⇐⇒ f (x) = true for all x ∈ X

∃X ( f ) = true ⇐⇒ f (x) = true for some x ∈ X.

102
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One then sees that the logical operators and quantifiers introduced in this way
satisfy all the familiar rules of classical logic.

In a topos such as S, logical operators and quantifiers can also be defined
in a natural way, not by means of truth tables, but rather by exploiting the key
fact that maps to � from objects X correspond to parts of X. For example, ∧:
� × � → � is the map corresponding to the part {〈true,true〉} of � × �

and ¬: � → � is the map corresponding to the part {false} of �. Now when
we come to describe the rules satisfied by the logical operations and quantifiers
introduced along these lines in a topos, we find that in general they fail to
include a central rule of classical logic, the law of excluded middle, namely, for
any proposition α,

α ∨ ¬ α.

Instead, we find that the resulting system of logical rules coincides with that
of (free45) first-order intuitionistic or constructive logic. (For accounts of intu-
itionistic logic, see Dummett, 1977; Heyting, 1971; Kleene, 1952; or Bell and
Machover, 1977.) Using standard logical notation, this has the following axioms
and rules of inference:

Axioms

α → (β → α)

[α → (β → γ )] → [(α → β) → (α → γ )]

α → (β → α ∧ β)

α ∧ β → α α ∧ β → β

α → α ∨ β β → α ∨ β

(α → γ ) → [(β → γ ) → (α ∨ β → γ )]

(α → β) → [(α → ¬β) → ¬ α]

¬ α → (α → β)

α(t) → ∃xα(x) ∀xα(x) → α(t) (x free in, and t free for x in, α)

x = x α(x) ∧ x = y → α(y).

Rules of inference

α, α → β/β (all variables free in α also free in β)

β → α(x)/β → ∀xα(x) α(x) → β/∃xα(x) → β (x not free in β)

45 A ‘free’ logic is one whose rules are valid even when the domain of interpretation is not presumed
to be nonempty.
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By adding the law of excluded middle as an axiom to this system, we obtain
(free) first-order classical logic.

It is to be noted that, not only is the law of excluded middle underivable in
intuitionistic logic, so is the (equivalent) classical law of reductio ad absurdum
or double negation

¬ ¬ α → α.

Nor can one derive the classical law governing the negation of the universal
quantifier

¬ ∀xα(x) → ∃x ¬ α(x)

(although the reverse implication, as well as the classical law governing the
negation of the existential quantifier

¬ ∃xα(x) ↔ ∀x ¬ α(x)

are both intuitionistically derivable). In intuitionistic logic, existential propo-
sitions can be affirmed only when the term whose existence is asserted can be
constructed or named in some definite way: it is not enough merely to assert
that the assumption that all terms fail to have the property in question leads to a
contradiction. In developing mathematics within a smooth world, we have not
found these ‘constraints’ irksome because elementary mathematics is construc-
tive: in practice, one always proves an existential proposition by producing an
object satisfying the relevant condition.

Having specified the basic system of logic in smooth worlds, we come now
to the specification of the axioms for the smooth line R therein. These are the
following (which can be stated in the usual language of first-order logic).

(R1) The structure R has specified points 0 and 1 and maps –: R → R, + :
R × R → R and ·: R × R → R that make it into a nontrivial field. That is, for
variables x, y, z ranging over R,

0 + x = x x + (−x) = 0 x + y = y + x 1.x = x x .y = y.x

(x + y) + z = x + (y + z) (x .y).z = x .(y.z)

x .(y + z) = (x .y) + (x .z)

¬ (0 = 1)

¬ (x = 0) → ∃y(x .y = 1).

(R2) There is a relation < on R which makes it into an ordered field in which
square roots of positive elements can be extracted. That is, for variables x, y, z
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ranging over R,

(x < y ∧ y < z) → x < z ¬ (x < x)

x < y → x + z < y + z x < y ∧ 0 < z → x .z < y.z

0 < 1 0 < x ∨ x < 1

0 < x → ∃y(x = y2)

x �= y → x < y ∨ y < x .

In stating the basic axioms for smooth infinitesimal analysis we employ
the usual set-theoretic notation (which is interpretable in any topos, see Bell,
1988b). Thus, for any sets X, Y, YX denotes the set of all maps from X to Y,
∀x ∈ Xα(x) and ∃x ∈ Xα (x) abbreviate ‘for all x in X, α(x)’ and ‘for some
x in X, α(x)’, and {x ∈ X : α(x)} denotes the set of all x in X for which α(x).
Define � = {x ∈ R : x2 = 0}. Then the basic axioms are:

(SIA1) ∀ f ∈ R�∃!a ∈ R∃!b ∈ R∀ε ∈ �. f (ε) = a + b.ε.

Here ∃! is the usual unique existential quantifier defined by ∃!xα(x) ≡
∃x∀y(α(y) ↔ x = y).

(SIA2) ∀ f ∈ RR[∀x ∈ R∀ε ∈ �. f (x + ε)

= f (x) → ∀x ∈ R∀y ∈ R. f (x) = f (y)].

The first of these is the Principle of Microaffineness and the second the
Constancy Principle.

The system comprising axioms R1, R2, SIA1 and SIA2, together with the
axioms and rules of inference of free intuitionistic logic, constitutes the system
BSIA of basic smooth infinitesimal analysis: we describe some of its fun-
damental features. To begin with, its consistency is guaranteed by the fact
that topos models (‘smooth worlds’) have been constructed for it. Now write
�BSIA α for ‘α is provable in BSIA’. Then the proof of exercise 1.9 can be
easily adapted to BSIA to yield

�BSIA ∀ f ∈ RR . f is continuous,

where f is continuous is defined to mean ∀x ∈ R∀y ∈ R[x − y ∈ � →
f (x) − f (y) ∈ �]. The proof of Theorem 1.1(ii) also adapts easily to BSIA to
yield

�BSIA ∀ε ∈ �¬ ¬(ε = 0), (8.1)

whence

�BSIA ¬ ∃ε ∈ �¬(ε = 0). (8.2)
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And the proof of Theorem 1.1(i) is readily adapted to BSIA to give

�BSIA ¬∀ε ∈ �.ε = 0. (8.3)

Note that of course we cannot go on to infer from (8.3) that �BSIA ∃ε ∈ �

¬(ε = 0), since the latter, together with (8.2), would make BSIA inconsistent.
Equations (8.2) and (8.3) together show that, while in BSIA it is false to suppose
that 0 is the sole member of �, it is equally false to suppose that there exists a
member of � which is distinct from 0. This shows how strongly the classical
law governing the negation of the universal quantifier, mentioned above, can
fail in intuitionistic logical systems such as BSIA.

From (8.1) and (8.3) it also follows that the law of excluded middle is refutable
in BSIA in the sense that

�BSIA ¬ ∀x ∈ R[x = 0 ∨ ¬(x = 0)]. (8.4)

For, assuming ∀x ∈ R[x =0 ∨ ¬(x =0)], then, arguing in BSIA, ∀ε∈�[ε=0∨
¬(ε = 0)]. Therefore ∀ε ∈ �[¬¬(ε = 0) → ε = 0]. This and (8.1) now give
∀ε ∈ �.ε = 0, which, with (8.3), would make BSIA inconsistent.

In connection with (8.4) it is interesting to note that46, in most models of
smooth infinitesimal analysis, the law of excluded middle is true in a certain
restricted sense, namely, if α is any closed sentence, i.e. having no free variables,
thenα ∨ ¬ α a holds. (Notice that the sentence in (8.3) is not of this form because
its quantifier appears ‘outside’.) Thus, in smooth infinitesimal analysis, the law
of excluded middle fails ‘just enough’ for variables so as to ensure that all maps
on R are continuous, but not so much as to affect the propositional logic of
closed sentences.

The refutability of the law of excluded middle in BSIA leads to the refutability
therein of an important principle of set theory, the axiom of choice. For our
purposes this will be taken in the particular form

(AC) for any family A of nonempty subsets of R, there is a function f : A → R
such that f (X) is a member of X for any X in A.

We prove that AC is refutable in BSIA by showing that AC implies an instance
of the law of excluded middle whose refutability in BSIA has already been
established. Our argument will be informal, but easily translatable into BSIA.

For each x ∈ R define

Ax = {y ∈ R: y = 0 ∨ (x = 0 ∧ y = 1)},
Bx = {y ∈ R: y = 1 ∨ (x = 0 ∧ y = 0)}.

46 See McLarty (1988).
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Clearly Ax and Bx are each nonempty since 0 ∈ Ax and 1 ∈ Bx for any x ∈ R.
Assuming AC, we obtain a map fx: {Ax , Bx } → {0,1} such that, for any
x ∈ R, fx (Ax ) ∈ Ax and fx (Bx ) ∈ Bx , in other words,

fx (Ax ) = 0 ∨ [x = 0 ∧ fx (Ax ) = 1],

fx (Bx ) = 1 ∨ [x = 0 ∧ fx (Bx ) = 0].

Then, using the distributive law for ∧ over ∨ (which is valid in intuitionistic
logic), we obtain

[ fx (Ax ) = 0 ∧ fx (Bx ) = 1] ∨ x = 0. (8.5)

Now

x = 0 → Ax = Bx = {0, 1},
whence

f0(A0) = f0(B0).

It follows that

[ fx (Ax ) = 0 ∧ fx (Bx ) = 1] → ¬(x = 0),

and this, together with (8.5) gives ¬ (x = 0) ∨ x = 0. Since this is the case for
any x ∈ R, we obtain

∀x ∈ R[x = 0 ∨ ¬(x = 0)],

which, with (8.4), would make BSIA inconsistent.
The refutability of the axiom of choice in BSIA, and hence its incompatibility

with the conditions of universal smoothness prevailing in smooth worlds, is not
surprising in view of the axiom’s well-known ‘paradoxical’ consequences. One
of these is the famous Banach–Tarski paradox (see Wagon, 1985) which asserts
that any solid sphere can be decomposed into finitely many pieces which can
themselves be reassembled to form two solid spheres of the same size as the
original. Paradoxical decompositions of this kind become possible only when
smooth geometric objects are analysed into discrete sets of points which the
axiom of choice then allows to be rearranged in an arbitrary (discontinuous)
manner. Such procedures are not admissible in smooth worlds.

In this connection, we may also mention that the classical intermediate value
theorem, often taken as expressing an ‘intuitively obvious’ property of continu-
ous functions, is false in smooth worlds. This is the assertion that, for any a, b ∈ R
such that a < b, and any (continuous) f : [a, b] → R such that f (a) < 0 < f (b),
there is x ∈ [a, b] for which f (x) = 0. In fact this fails even for polynomial
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functions in S, as can be seen through the following informal argument. Sup-
pose, for example, that the intermediate value theorem were true in S for the
polynomial function f (x) = x3 + t x + u. Then the value of x for which f (x) =
0 would have to depend smoothly on the values of t and u. In other words there
would have to exist a smooth map g: R2 → R such that

g(t, u)3 + tg(t, u) + u = 0.

A geometric argument shows that no such smooth map can exist: for details,
see Remark VII.2.14 of Moerdijk and Reyes (1991).

8.1 Natural numbers in smooth worlds

We have so far not had occasion to draw attention to the behaviour of the natural
numbers in smooth worlds. This is because the structure of the natural number
system as a whole has not played an explicit role in the basic applications we
have made of smooth infinitesimal analysis. However, in certain models thereof,
the system of natural numbers possesses subtle and intriguing features which,
as we will see, make it possible to introduce another type of infinitesimal –
the so-called invertible infinitesimals, which resemble those of nonstandard
analysis.

To begin with, we can define the set N of natural numbers to be the smallest
subset of R which contains 0 and is closed under the operation of adding 1. That
is, writing P(U) for the set of all subsets of any given set U,

N = {x ∈ R: ∀X ∈ P(R)[0 ∈ X ∧ ∀x(x ∈ X → x + 1 ∈ X ) → x ∈ X ]}.
Clearly then N satisfies the full induction principle, namely,

∀X ∈ P(N )[0 ∈ X ∧ ∀n ∈ N (n ∈ X → n + 1 ∈ X ) → X = N ].

We can now define a set X to be finite if

∃ n∈ N∃ f ∈ X N . X = { f (m): m < n}.
In classical analysis the real line satisfies the Archimedean Principle that

every real number is bounded by a natural number. Stated for R, this asserts

∀x ∈ R∃n ∈ N .x < n. (8.6)

Moreover, in classical analysis the real line is equipped with its usual order
topology which has as a base all open intervals (a, b). With this topology the
real line is locally compact, i.e. every open cover of a bounded closed interval has
a finite subcover. These conditions can also be stated for R in the obvious way.
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Now in several models of smooth infinitesimal analysis the smooth line R
resembles the classical real line in the sense of being both Archimedean and
locally compact. However, models have also been constructed in which R is
neither Archimedean nor locally compact. Because of this, in these models it is
more natural to consider, in place of N, the set N* of smooth natural numbers
defined by

N ∗ = {x ∈ R: x ≥ 0 ∧ sin πx = 0}.
N* is thus the set of points of intersection of the smooth curve y = sin πx with
the nonnegative x-axis (Fig. 8.1). In these models R can be shown to possess the

Fig. 8.1

Archimedean and local compactness properties provided that in their definitions
N is replaced everywhere by N*. (This fact enables the useful consequences of
these two properties to be partially restored.) In these models, then, N and N*
do not coincide, although of course the former is a subset of the latter.

In some (but not all) models of smooth infinitesimal analysis in which R is
non-Archimedean, i.e. in which (8.6) is false, it is possible to ensure that there
actually exist unbounded, or infinite, elements of R in the sense of exceeding
every natural number. That is, the assertion

∃x ∈ R∀n ∈ N . n < x (8.7)

becomes true in these models. Now from ∀n ∈ N . n < x it follows that

∀n ∈ N . − 1/(n + 1) < 1/x < 1/(n + 1),

and ¬(1/x = 0) since clearly x > 0. Thus (8.7) implies that

∃x ∈ R[¬ (x = 0) ∧ ∀n ∈ N (−1/(n + 1) < x < 1/(n + 1))]. (8.8)

Members of the set

I = {x ∈ R: ¬ (x = 0) ∧ ∀n ∈ N (−1/(n + 1) < x < 1/(n + 1)}
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are called invertible infinitesimals: they are the multiplicative inverses of ‘infi-
nite’ elements of R.

Exercises

8.1 Define � = {x ∈ R: ∀n ∈ N (−1/(n + 1) < x < 1/(n + 1))} : the mem-
bers of � are called infinitely small. Show that

x ≤ 0 ∧ 0 ≤ x → x ∈ �,

and deduce that � includes all the microneighbourhoods M1, M2, M3

defined in Chapter 6. That is, all infinitesimals of smooth infinitesimal
analysis are infinitely small in this sense.

8.2 Define �∗ = {x ∈ R: ∀n ∈ N ∗(−1/(n + 1) < x < 1/(n + 1)}. Assum-
ing that R is smoothly Archimedean, i.e. ∀x ∈ R∃n ∈ N ∗(x < n), show
that �∗ = M3.

Models of smooth infinitesimal analysis in which (8.8) holds are said to con-
tain invertible infinitesimals47 (in addition to the nilpotent ones). The presence
of invertible infinitesimals is a central feature of the theory of infinitesimals
known as nonstandard analysis. We conclude with a thumbnail sketch of that
theory, contrasting it with smooth infinitesimal analysis.

8.2 Nonstandard analysis

In nonstandard analysis one starts with the classical real line R and considers
a ‘universe’ over it: here by a universe is meant a set U containing R which
is closed under the usual set-theoretic operations of union, power set, Carte-
sian products and subsets. Let U be the structure (U, ∈), where ∈ is the usual
membership relation on U: associated with this is a first-order language L(U)
containing a binary predicate symbol, also written ∈, and a name for each ele-
ment of U. The restricted sentences of this language are those in which each
quantifier is of the form ∀x ∈ u or ∃x ∈ u, where u is the name for the element
u of U. Using the well-known compactness theorem for first-order logic, a new
set *U, called an enlargement of U, and a map u ∗u: U →∗U are constructed
so as to possess the following properties:

i. The map * is a restricted elementary embedding of U into the structure
*U = (*U, ∈), that is, for any restricted sentence α of L(U), α holds in U if

47 The principal use to which invertible infinitesimals have been put in smooth infinitesimal analysis
is in the theory of distributions and the construction of the Dirac δ-function, topics which are
too advanced to be treated in an elementary book of this kind. See Chapter VII of Moerdijk and
Reyes (1991).
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and only if it holds in *U when each name u occurring in α is interpreted
as the element *u of *U.

ii. The set *R properly includes the set {∗r: r ∈ R}.
It follows from (i) that *R has identical set-theoretical properties (i.e. express-
ible in terms ∈) as does R and is therefore a model of the classical theory of
real numbers. However, if we identify each r ∈ R with its image *r in *R,
thus identifying R as a subset of *R, (ii) tells us that R is a proper subset of
*R. Elements of R are called standard, and elements of *R − R nonstan-
dard real numbers. It can then be shown that among the nonstandard real
numbers there exist ones that are infinitely large in that they exceed all the
standard real numbers: the inverses of these (and their negatives) then con-
stitute the infinitesimals of nonstandard analysis. If we consider the set N of
(standard) natural numbers as a subset of R, and hence also of *R, then it is
easily seen that the set I of infinitesimals in the sense of nonstandard analysis is
exactly

{x ∈∗
R : ∀n ∈ N. − 1/(n + 1) < x < 1/(n + 1)}.

The members of I are thus cognate to the invertible infinitesimals present (as
discussed above) in certain models of smooth infinitesimal analysis.

Much of the usefulness of nonstandard analysis stems from the fact that
assertions involving infinitesimals (or more generally nonstandard numbers)
are succinct translations to *U of statements of standard classical analysis,
involving limits or the ‘(ε, δ)’ method. For example, let us say that x and y are
infinitesimally close if x − y is a member of I. Then we find that the truth in *U
of the sentence

f (a + η) is infinitesimally close to � for all infinitesimal η

is equivalent to the truth in U of the sentence

� is the limit of f (x) as x tends to a.

And the truth in *U of the sentence

f (a + η) is infinitesimally close to f (a) for all infinitesimal η

is equivalent to the truth in U of the sentence

f is continuous at a.

Examples such as these show that nonstandard analysis shares with smooth
infinitesimal analysis a concept of infinitesimal in which the idea of conti-
nuity is represented by the idea of ‘preservation of infinitesimal closeness’.
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Nevertheless, there are many differences between the two approaches. We con-
clude by stating some of them.

1. In models of smooth infinitesimal analysis, only smooth maps between
objects are present. In models of nonstandard analysis, all set-theoretically
definable maps (including discontinuous ones) appear.

2. The logic of smooth infinitesimal analysis is intuitionistic, making possible
the nondegeneracy of the microneighbourhoods � and Mi , i = 1, 2, 3. The
logic of nonstandard analysis is classical, causing all these microneighbour-
hoods to collapse to zero.

3. In smooth infinitesimal analysis, the Principle of Microaffineness entails
that all curves are ‘locally straight’. Nothing resembling this is possible in
nonstandard analysis.

4. The property of nilpotency of the microquantities of smooth infinitesimal
analysis enables the differential calculus to be reduced to simple algebra.
In nonstandard analysis the use of infinitesimals is a disguised form of the
classical limit method.

5. In any model of nonstandard analysis *R has exactly the same set-
theoretically expressible properties as R does: in the sense of that model,
therefore, *R is in particular an Archimedean ordered field. This means that
the ‘infinitesimals’ and ‘infinite numbers’ of nonstandard analysis are so not
in the sense of the model in which they ‘live’, but only relative to the ‘stan-
dard’ model with which the construction began. That is, speaking figura-
tively, a ‘denizen’ of a model of nonstandard analysis would be unable to
detect the presence of infinitesimals or infinite elements in *R. This contrasts
with smooth infinitesimal analysis in two ways. First, in models of smooth
infinitesimal analysis containing invertible infinitesimals, the smooth line is
non-Archimedean48 in the sense of that model. In other words, the presence of
infinite elements and (invertible) infinitesimals would be perfectly detectable
by a ‘denizen’ of that model. And secondly, the characteristic property
of nilpotency possessed by the microquantities of any model of smooth
infinitesimal analysis (even those in which invertible infinitesimals are not
present) is an intrinsic property, perfectly identifiable within that model.

The differences between nonstandard analysis and smooth infinitesimal analysis
may be said to arise because the former is essentially a theory of infinitesimal
numbers designed to provide a succinct formulation of the limit concept, while
the latter is, by contrast, a theory of infinitesimal geometric objects, designed
to provide an intrinsic formulation of the concept of differentiability.

48 It is, however, smoothly Archimedean in the sense of exercise 8.2.
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infinitesimal analysis

In this appendix we sketch the construction of models for smooth infinitesimal
analysis. We assume here an acquaintance with the basic concepts of category
theory (see Mac Lane and Moerdijk, 1992 or McLarty, 1992).

The central concept in the construction of such models is that of a topos. To
arrive at the concept of a topos, we start with the familiar category Set of sets
whose objects are all sets and whose maps are all functions between them. We
observe that Set has the following properties.

(i) It has a terminal object 1 such that, for any object X, there is a unique map
X → 1 (for 1 we may take any one-element set, in particular {0}). Maps
1 → X correspond to elements of X.

(ii) Any pair of objects A,B has a product A × B.
(iii) Corresponding to any pair of objects A, B there is an exponential object

BA whose elements correspond to arbitrary maps A → B.
(iv) It has a truth value object �, containing a distinguished element true,

with the property that for each object X there is a natural correspondence
between subobjects of X and maps X → �. (In the case of Set, � may be
taken to be any two-element Set, in particular the set {0, 1}, and true its
element 1.) For any object X, the exponential object �X then corresponds
to the power set (object of all subobjects) of X.

All four of these conditions can be formulated in purely category-theoretic
(i.e. maps only) language: a category satisfying them is called an (elementary)
topos.

Associated with each topos E is a formal language �(E) called its inter-
nal language (see Bell, 1988b). This is a language which resembles the usual
language of set theory in that among its primitive signs it has equality (=),
membership (∈) and the set formation operator ({:}). It is, however, a many-
sorted language, each sort corresponding to an object of E. Thus for each object

113
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A of E there is a list of variables of sort A in �(E). Each term t of �(E) is then
assigned an object B of E as a sort in such a way that, if t has free variables
x1, . . . , xk, of sorts A1, . . . , Ak, then t corresponds to a map [[t]] : A1 × · · · × Ak →
B in E called its interpretation in E. A formula, or proposition, is a term of sort
�. A formula φ is said to be true in E if its interpretation [[φ]]: A1 × · · · × Ak →
� has constant value true. It can be shown that all the axioms and rules of
inference of free intuitionistic logic (see Chapter 8) formulated in �(E) are true
in this sense. Thus any topos is a model of intuitionistic logic.

One of the most important kinds of topos is obtained as follows. Start with
any (small) category C. A presheaf on C is a functor49 from Cop – the opposite
category of C in which all maps are ‘reversed’ – to Set. The presheaf category
C˜ has as objects all presheaves on C and as maps all natural transformations50

between them. C˜ is a topos; it is helpful to think of it as the topos of ‘sets
varying over C’. There is a natural embedding51 – the Yoneda embedding – Y:
C → C˜, whose action on objects is defined as follows. For any object C of C,
YC is the presheaf on C which assigns, to each object X of C, the set Hom(X, C)
of maps in C from X to C. YC is the natural representative of C in C˜, and the
two are usually identified.

The concept of presheaf topos leads to the more general concept of
Grothendieck topos, whose definition rests on the idea of a covering system
(or Grothendieck topology) in a category. First, we define a sieve on an object
C in a category C to be a collection S of maps in C satisfying f ∈ S ⇒ f ◦ g ∈ S
for any map g composable with f. Equivalently, a sieve S may be regarded as a
subobject or subfunctor of YC. Note that, if S is a sieve on C and h: D → C is
any map with codomain C, then the set

h∗(S) = {g: cod (g) = D and h ◦ g ∈ S}
is a sieve on D. Now we define a covering system on C to be a function J which
assigns to each object C a collection J (C) of sieves on C in such a way that the
following conditions (i)–(iii) are satisfied. For any map f : D → C , let us say
that S(J−) covers f if f ∗(S) ∈ J (D).

(i) If S is a sieve on C and f ∈ S, then S covers f.

49 We recall that a functor between categories C, D is a function F that assigns to each object A of
C an object F A of D, and to each map f : A → B of C a map F f : F A → F B of D in such a
way that F1A = 1F A and, for composable maps f , g of C, F(g ◦ f ) = Fg ◦ F f .

50 We recall that a natural transformation between two presheaves F and G on C is a function η

assigning to each object A of C a map ηA: FA → GA of C in such a way that, for each map
f : A → B of C, we have G( f ) ◦ ηB = ηA ◦ F( f ).

51 A functor F : C → D is called an embedding if, for any objects A,B of C, any map F A → F B
in D is the form Ff for unique f : A → B in C.
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(ii) Stability: if S covers f : D → C , it also covers any composite f ◦ g.
(iii) Transitivity: if S covers f : D → C and R is a sieve on C which covers all

maps in S, then R also covers f.

We say that S covers C if it covers the identity map 1c on C.
A site is a pair (C, J) consisting of a category C and a covering system J on

it. Recall that any sieve S on an object C of C may be regarded as a subobject
of the object YC of C˜. In particular, S may be considered an object of C˜. Now
suppose we are given an object F of C˜ − a presheaf on C – and a map f: S →
F in C˜ − a natural transformation from S to F. A map g: YC → F in C˜ is
said to be an extension of f to YC if its restriction to the subobject S of YC
coincides with f. We now say that the presheaf F is a (J -)sheaf if, for any object
C, and any J-covering sieve S on C, any map f : S → F in C˜ has a unique
extension to YC. Thus, figuratively speaking, a J-sheaf is an object F of C˜
which ‘believes’ that (the canonical representative YC of) any object C of C
is ‘really covered’ by any of its J-covering sieves, in the sense that, in C˜, any
map from such a J-covering sieve to F fully determines a map from YC to F.

It can then be shown that, for any site (C, J), the full subcategory ShvJ(C)
of C˜ whose objects are all J-sheaves is a topos. Moreover, there is a natu-
ral functor L: C → ShvJ(C) called the associated sheaf functor which sends
each presheaf F to the sheaf LF which ‘best approximates’ it. A topos of the
form ShvJ(C) is called a Grothendieck topos. Models of smooth infinitesimal
analysis are particular kinds of Grothendieck topos which will be described
presently.

We say that a topos E is a model of BSIA if E contains an object R, together
with maps + : R × R → R, : R × R → R and elements 0, 1: 1 → R, for which
the axioms of BSIA – expressed in the internal language �(E) − are true in E.

To construct models of BSIA, we start with the category Man, whose
objects are smooth manifolds and whose maps are the infinitely differentiable –
smooth – maps between them. Now Man does not contain a microobject like
the microneighbourhood �. Nevertheless we can identify � indirectly through
its coordinate ring – that is, the ring R

� of smooth maps on � to the real line
R. In fact, we know from exercise 1.8 that the coordinate ring R

� should be
isomorphic to the ring R

* which has underlying set R × R and addition ⊕ and
multiplication ⊗ defined by (a, b) ⊗ (c, d) = (a + c, b + d) and (a, b) ⊗ (c, d) =
(ac, ad + bc). This suggests that, in order to ‘enlarge’ Man to a category con-
taining microobjects such as � – the first stage in the process of constructing
models of BSIA – we first ‘replace’ each manifold M by its coordinate ring
CM – the ring of smooth functions on M to R – and then ‘adjoin’ to the result
every ring which, like R

*, we want to be the coordinate ring of a microobject.
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More precisely, we proceed as follows. Each smooth map f: M → N of
manifolds yields a ring homomorphism Cf: CN → CM that sends each g in CN
to the composite g ◦ f : accordingly C is a (contravariant) functor from Man
to the category Ring of (commutative) rings. We select a certain subcategory
A of Ring, whose objects include all coordinate rings of manifolds, together
with all rings which ought to be coordinate rings of microobjects such as �,
but whose maps only include those ring homomorphisms which correspond to
smooth maps. The contravariant functor C is then an embedding of Man into
the opposite category Aop of A. Thus Aop is the desired enlargement of Man to
a category containing microobjects, and only smooth maps. However, Aop is not
a topos, so we need to enlarge it to one. The natural first candidate presenting
itself here is the presheaf topos SetA, with the Yoneda embedding Y: Aop →
SetA. The composite i = Y ◦ C then embeds Man in SetA. In the latter the role
of the smooth line R is played by the object i(R), and that of � by the object
Y(R*) – the images in SetA of CR and R

*, respectively.
Now SetA is ‘almost’ a model of BSIA. This is because the truth of most of

the axioms of BSIA in SetA can be shown to follow from certain facts about
R considered as a (classical) object of Man, or its coordinate ring CR as an
object of A. For instance, the assertion ‘R is a commutative ring with identity’
follows from the corresponding fact about R. The correctness of the Principle of
Microaffineness for R in SetA can be shown to follow from a result of classical
analysis known as Hadamard’s theorem, which asserts that, for any smooth map
F: R

n × R → R, there is a smooth map G: R
n × R →R such that

F(x, t) = F(x, 0) + t Ft (x, 0) + t2G(x, t).

(That is, modulo t2, any smooth map F(x, t) is affine in t.) Unfortunately,
however, certain key principles of BSIA are not true in SetA. For example,
the assertion that ∀x ∈ R(x < 1 ∨ x > 0), which may be paraphrased as ‘the
intervals (←, 1) and (0,→) cover R’, is false in SetA, although the corresponding
principle for R is evidently true. This may be summed by saying that the
embedding i fails to preserve open covers.

This deficiency is rectified by imposing a suitable covering system on Aop

and then considering the topos of sheaves with respect to this covering system.
This has the effect of cutting down SetA to those presheaves on Aop which
‘believe’ that open covers in Man are still open covers in SetA. It can then be
shown (see Moerdijk and Reyes, 1991) that the resulting topos E of sheaves
is a model of all the principles laid down in BSIA. In E, LR is the smooth
line and L� the principal microneighbourhood of 0, where L: SetA → E is the
associated sheaf functor.
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Suitable refinements of the choice of covering system in Aop lead to toposes
of sheaves which can be shown to satisfy the other principles of smooth infinites-
imal analysis discussed in the text. For each such topos E we have a chain of
functors

Man
C→ Aop Y→ SetA L→ E

whose composite s: Man → E can be shown to have the following properties.

s(R) = the smooth line R.
s(R − {0}) = the set of invertible elements of R.
s( f ′) = s( f )′ for any smooth map f : R → R.
s(T M) = (s M)� for any manifold M, where TM is its tangent bundle in
Man.

Such models of BSIA are said to be well adapted.
Let us call the image s(M) of a classical manifold M in a well-adapted model

E of BSIA its representative in E. At first it might be thought that classical man-
ifolds and their representatives are radically different. For example, classically,
for any point x on the real line R, either x = 0 or x �= 0, but as we know, this is
not the case for its representative the smooth line R. However, this difference is
less deep than it seems. In fact, if we analyse the meaning of any statement of
the internal language of E containing a variable over R, we find that it is true in
E if and only if the corresponding statement in Man is, in addition to being true
for all points of R, is also locally true for all smooth maps to R. A smooth map
f : → R may have f (a) = 0 for some point a and yet not be constantly zero on
any neighbourhood of a. This means that neither f = 0 nor f �= 0 is locally true
at a, so that ‘ f = 0 ∨ f �= 0’ fails to be locally true. Similarly, the trichotomy
law ∀x∀y (x < y ∨ x = y ∨ y < x), although true in R, fails for R, since for
smooth maps f , g: R → R there may be points a on no single neighbourhood
of which do we have f < g or f = g or g < f. On the other hand, since f is
continuous, each point a either has a neighbourhood on which 0 < f or one on
which f < 1, so that the statement ‘0 < x ∨ x < 1’ holds for every x in R.

Most well-adapted models E of BSIA have the further property that elements
of the smooth line R, that is, maps 1 → R in E, correspond to points of R in Man.
(This means that in passing from R to R no new ‘genuine’ elements are added,
but only ‘virtual’ ones.) As we remarked in Chapter 8 (see McLarty, 1988), it
can also be shown that these models satisfy the closed law of excluded middle
in the sense that α ∨ ¬ α is true whenever α is a closed sentence, that is, one
devoid of free variables. In particular, for any elements a,b of R the statement

a = b ∨ a �= b
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is true. But of course we cannot go on to infer from this that

∀x ∈ R∀y ∈ R[x = y ∨ x �= y],

hence we know from Theorem 1.1(iii) that this assertion is false in any smooth
world. Thus R is, unlike an ordinary set, more than the mere ‘sum’ of its
elements. This is in fact a typical feature of objects in a topos: for details see
Bell (1988b).
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Note on sources and further reading

The programme of developing the concept of smoothness in category-theoretic
terms and of reviving the use of nilpotent infinitesimals in the calculus and dif-
ferential geometry was first formulated by F. W. Lawvere in lectures delivered in
Chicago in 1967 (Lawvere, 1979; 1980), it is to be noted that a central motivation
for this programme (and for the subsequent development of topos theory) was
to furnish an adequate axiomatic framework for continuum mechanics. These
1967 lectures contain the first constructions of toposes realizing the principle
of Microaffineness in the sense of containing an ‘infinitesimal’ object � for
which R� is isomorphic to R × R. Here are also to be found the identification
of S� as the tangent bundle of a space S and the equivalence of vector fields,
microflows and microtransformations (as presented in Chapter 7). The Principle
of Microaffineness in the explicit form given in Chapter 1 (i.e. with a specified
isomorphism between R� and R × R: see exercise 1.6) was introduced by Kock
(1977) and is often referred to as the Kock–Lawvere axiom. The investigation of
toposes realizing the Principle of Microaffineness and into which the category
of manifolds can be ‘nicely’ embedded (the so-called ‘well-adapted’ models)
was first carried out in Dubuc (1979). The first systematic account of synthetic
differential geometry was given by Kock (1981): I have drawn on the first part
of this work extensively. Another useful work is Lavendhomme (1987, 1996),
which provides an elegant axiomatic development of the subject. There is also
a brief introductory account in McLarty (1992). The major work on the actual
construction of topos models for synthetic differential geometry is the book by
Moerdijk and Reyes (1991).

Elementary approaches to the smooth world include McLarty (1988), Bell
(1988a) – a principal source for this book – and Bell (1995).

The book by Lawvere and Schanuel (1997) contains an introduction to cate-
gory theory aimed at beginners. More advanced treatments include Mac Lane
(1971) and McLarty (1992). The literature now includes several books on topos

119
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theory. The most elementary of these is Goldblatt (1979), and the most advanced
Johnstone (1979). Somewhere in between are Barr and Wells (1985), Bell
(1988b), Freyd and Scedrov (1990), Lambek and Scott (1986), Mac Lane and
Moerdijk (1992), and McLarty (1992). Bell (1986) is an attempt to formulate
some of the philosophical ideas suggested in the emergence of topos theory.

For nonstandard analysis see Robinson (1966) and Bell and Machover 1977).
For intuitionistic or constructive logic see Bell and Machover (1977),

Dummett (1977) and Kleene (1952).
For an account of the development of the concepts of the continuum and the

infinitesimal see Bell (2005a), (2005b).
Finally, for the history of the calculus I have found the books of Baron (1969)

and Boyer (1959) most useful. Some of the applications in Chapter 4 have been
adapted from Gibson (1944).
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