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� Lagrangian Mechanics

Mechanics as formulated by Newton su
ers from two important limitations� �i�
it deals with particles� �ii� it describes their motion in special Cartesian coordinate
systems� if the numbers xi are the coordinates of a particle in an inertial Cartesian
coordinate system� then the position of the particle when subjected for a force with
components fi�t� may be determined by solving the di
erential equations �xi � fi�t��
Since an extended body can be decomposed into its consituent particles� and its motion�
once determined� can be transformed into any reference frame� Newton�s machinery
enables us to determine the motion of any body in any reference frame notwithstanding
these limitations� But in practice it is better to determine the dynamics of complex
dynamical systems from a more powerful principle than Newton�s laws of motion�
Lagrangian dynamics provides just such a principle�

Let qi i � �� � � � �N be generalized coordinates for some system� That is� these
N numbers enable us to specify precisely the system�s con�guration� For example� six
numbers su�ce to specify a con�guration of a rigid body such as a hard
boiled egg�
we can take �q�� q�� q�� to be the coordinates in some system� such as spherical polar
coordinates� of the body�s centre of mass� and �q�� q�� q�� to be the three angles that are
required to de�ne its orientation� �Box � de�nes Euler angles� the standard angles
for specifying the orientation of a rigid body�� The number of generalized coordinates
N required by a system is called the system�s number of degrees of freedom�

At each instant our system is at some point in con�guration space � an imag

inary N
dimensional space for which the qi constitute Cartesian coordinates� As the
system moves� its representative point in con�guration space sweeps out a path q�t��
Since Newton�s laws of motion are �nd order in time� we expect this path to be uniquely
determined by specifying at some time t� both q�t�� and �q�t��� In Lagrangian me

chanics we take rather a di
erent point of view� we do not specify �q�t�� but instead
specify q at a second time t�� That is� we ask what path does our system follow if its
con�guration at time t� is q�t�� and at time t� is q�t��� For reasons that give deep
insight into the connection between classical and quantum mechanics� it turns out that
the sought
after path q�t� is the path that extremizes a certain quantity S� Our next
task is to introduce the mathematical machinery required to de�ne S and to show that
it is extremized on the Newtonian path� At the end of the course we shall investigate
the connection between the extremization of S and quantum mechanics�

��� Paths� functionals � the calculus of variations

Before a �plane takes o
 from New York for London� its computer chooses an optimal
path x�t�� i�e�� it �nds that sequence of longitudes� latitudes and altitudes at each
moment t of the �ight which� given prevailing winds� will get it to London at the
prescribed time with least expenditure of fuel� The quantity of fuel required to get to
London in a given time is a single number F that depends on the whole path x�t�� one
says that F is a functional F �x� of the path x�t��



� Calculus of Variations

The simplest functionals are integrals along the path of functions of x�t� and its
derivatives with respect to t�

F��x� �
Z t�

t�

jx�t�j� dt

F��x� �
Z t�

t�

j �x�t�j� dt

F��x� �
Z t�

t�

x � �x�t� dt

� � � � � �

How do we �nd the path that minimizes a functional

F �x� �
Z t�

t�

f�x� �x� t� dt � �����

Let x�t� be the minimizing path and let ��t� be a small variation� so that x�t� �
x�t� ���t� � x�t�� We insist on � vanishing at t � t�� t� so that x�t� and the modi�ed
path both start and �nish at the same places at the same times� Then�

F �x� � F �x� �

Z t�

t�

f�x � �� �x� ��� t� dt
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�x
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We now integrate by parts the second term in the integral of the last line�Z t�

t�

�f

� �x
� �� dt �

�
�f

� �x
� �
�t�
t�

�
Z t�

t�

d
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��f
� �x

�
� � dt� �����

Since ��t�� � ��t�� � �� the ��� vanishes� Putting this into ����� we have

� � F �x�� F �x� �

Z t�

t�

h��f
�x

� d

dt

�f

� �x

�
� � � � � �

i
dt� �����

This relation must hold for any �� no matter how small� So the higher terms indicated
by � � � � can be neglected� The remaining integrand is proportional to �� so if it were
non
zero for some particular function ��t�� it would have the opposite sign for �� � ���
The inequality on the extreme left would then be violated for one of � of ��� Hence

� We use the convention that y �
�

�x
�

X

i

yi �
�

�xi
�



��� Paths� functionals � the calculus of variations �

the integral must vanish for all �� This is possible only if the coe�cient of � vanishes
for all t� � t � t�� if it did not vanish for some t� say t�� the integral would fail to
vanish for the particular choice � � ��t � t��� So x�t� minimizes F if and only if

d

dt

�f

� �x
� �f

�x
� � �����

all along the path x�t��

Eq ����� is called the Euler�Lagrange equation ��EL eqn��� and the theory that
underlies it is called the calculus of variations� It is one of the few results we have
in the theory of functionals�one everywhere in physics encounters problems that cry
out for a fully �edged calculus of functions that shows how to integrate� Taylor expand�
exponentiate etc functionals the way we do functions�

Legend has it that the calculus of variations was invented by Newton after dinner
one evening to solve this challenge problem �set in ���� by Johann Bernoulli��

Example �
A bead slides on a smooth wire that passes through two rings� one at the origin�
the other at �x�� y�� z�� � �x�� ���z�� with z� � �� To what curve �the �brachys

tochrone�� must the wire be bent in order to minimize the time required for the
bead to slide from rest at the upper ring to the lower ring�

Solution� The optimal curve obviously lies in the plane y� � �� It is convenient
to work in coordinates �x� y� z� such that z increases downwards� Then the time
of �ight is

� �

Z z�

�

dz

�z
�

But �
�� �x

� � �z�� � gz� so �z �
p

�gz���dx�dz�� � �� and

� �

Z z�

�

dzp
�gz

r�dx
dz

��
� �� �����

We need to minimize � �x�z�� from ����� with respect to the path x�z�� We may
use the EL
eqn ����� provided we make the substitutions

t� z� f
�
x�

dx

dz
� z
�
�

�p
�gz

r�dx
dz

��
� �� ��� �

Since f does not depend on x� the optimal path satis�es

� �
d

dz

�
dx�dzp

z
p
�dx�dz�� � �

�
�

which implies

x�z� �

Z z

�

r
Az

��Az
dz�
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where A is a constant of integration� In terms of variable sin� � � Az the answer
is

x �
�

A

�
� � �

�
sin ��

�
� �����

If we write 	 � �� this may be written z � �� � cos	���A� x � �	 � sin	���A�
which is a cycloid with the origin at its cusp� A may be determined by �rst
solving x��z� � �	� � sin	����� � cos	�� for 	� and then using this value in
A � �

�
�� � cos	���z��

��� The Principle of Least Action

As was stated above� the path q�t� taken through con�guration space by a dynami

cal system can be found by identifying the path which extremizes a quantity S�q�t��
between speci�ed locations q�t�� and q�t�� of the system at given times t�� t�� S is
called the action and is usually �but not invariably� minimized by the dynamical path�
Hence the idea that the dynamical path can be determined by extremizing S is called
the principle of least action�

S takes the form of an integral over t of a function L of q and �q�

S �

Z t�

t�

L�q� �q� dt� �����

Here L is just a function �rather than a functional� of its arguments� It is called the
Lagrangian of the system� Since the dynamical evolution of the system is entirely
determined by L� writing down L amounts to specifying the physical content of the
system�

There is no entirely general rule for writing down L � one would hardly expect one
rule to be valid for every possible dynamical system � but there is a rule that works
for most simple systems� L is the di�erence between the system�s kinetic energy T and
its potential energy V �

L � T � V� ������

Let�s se how this works out in a simple case� a particle of mass m moving in a grav

itaional potential !�x�� Now T � �

�m �x�� V � m!� So L�x� �x� � �
�m �x� � m!�x��

Setting f � L in the EL equations ����� we obtain the equations of motion as

d

dt
m �x�m

�!

�x
� � ������

as required�



��� Equations of motion from Lagrangians �

Exercise ���	
Consider a shell that is �red at t� and hits its target at t�� Explain in general terms
why its action would be larger if it �ew on either a higher or a lower trajectory
than it actually does�

��
 Equations of motion from Lagrangians

The Lagrangian provides a neat way of calculating the eqns of motion of a particle when
referred to an odd coordinate system because it is easier to transform a single function
to new
fangled coordinates that a set of eqns of motion� Consider� for example� motion
in a rotating frame�

Suppose both primed and unprimed coordinates share the
same origin� but the primed coordinates rotate with angular
velocity � with respect to the unprimed coordinates� which
are inertial� Then

vinertial � �r� � � � r��

So written in terms of the primed coordinates the k�e� is

T � �
�mv� � �

�m
�� �r� � � � r�

���
� �

�
mj �r�j� �m �r� � �� � r�� � �

�
mj� � r�j�

������

The p�e� is just V �r�� t� so

L � �
�
mj �r�j� �m �r� � �� � r�� � �

�
mj� � r�j� � V� ������

In writing down the EL
eqns we recall that �r� � �� � r�� � r� � � �r� � ��� We then �nd

� �
d

dt

�L

� �r�
� �L

�r�

�
d

dt
�m �r� �m� � r�� �

h
m �r� � � �

�

�r�

�
�
�mj� � r�j� � V

�i
�

������

Collecting everything together we have �nally

m�r� � �m �r� � � � �Ve�
�r�

where Ve� � V � �
�mj� � r�j�� ������

In a rotating frame there is a contribution to the "acceleration# �r� from the Coriolis
force �m� � �r�� and the potential needs to be augmented by a term that gives rise
to the centrifugal force r
� � �� � r���� Forces such as these� which appear because
one�s frame is non
inertial� are called pseudo�forces�

A second example illustrates that Lagrangians work even for coordinates that
depend explicitly on time� In cosmology it is handy to use �comoving� coordinates such
that the spatial coordinates of particles that move apart as the Universe expands are
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constant� Let the primed system be inertial and the unprimed system comoving� Then
r� � a�t�r� where a�t� is the cosmic scale factor� So

T � �
�m �r�� � �

�m�a �r� �ar��� ������

Writing the potential energy as V � m! the EL eqns are

� �
d

dt

	
m�a �r� �ar�a


�m�a �r� �ar� �a �m
�!

�r
�

Cleaning up we get

�r� �
�a

a
�r�

�a

a
r � � �

a�
�!

�r
� ���� �

A �nal example illustrates how to get T in a weird curvilinear coordinate system�
Oblate spheroidal coordinates �u� v� 	� are related to regular cylindrical polars �R� z� 	�
by

R � $coshu cos v � z � $sinhu sinv�
������

Slightly changing u� v and 	 in turn while leav

ing the other coordinates alone� generates small
displacements

�u � $�u�sinhu cos v %R� coshu sinv%z�

�v � $�v�� coshu sinv %R� sinhu cos v%z�

�� � R�	 %��

It is easy to check that these three displacement vectors are mutually perpendicular�
So the distance one goes on changing all of �u� v� 	� simultaneously is

ds� � j�u � �v � ��j� � ��u � ��v � ���

� $�
	
��u���sinh� u cos� v � cosh� u sin� v�

� ��v���cosh� u sin� v � sinh� u cos� v� � ��	�� cosh� u cos� v



� $�
�
�cosh� u� cos� v����u�� � ��v��� � cosh� u cos� v��	��

�
�

������

Dividing through by dt� we get the kinetic energy in terms of � �u� �v� �	��

T � �
�m
�ds
dt

��
� �

�m$�
�
�cosh� u� cos� v�� �u� � �v�� � cosh� u cos� v �	�

�
� ������

The eqns of motion are therefore

m$�



d

dt

	
��cosh� u� cos� v� �u


� �
� sinh�u

�
�u� � �v� � cos� v �	�

��
�
�V

�u
� �

m$�



d

dt

	
��cosh� u� cos� v� �v


� �
� sin �v

�
�u� � �v� � cosh� u �	�

��
�
�V

�v
� �

m$�

�
d

dt

�
cosh� u cos� v �	

��
�
�V

�	
� ��



��� Lagrangian for a rigid body �

��� Lagrangian for a rigid body

Lagrangian dynamics really comes into its own for the dynamics of a rigid body � that
is an object such as a spanner that contains a vast number N of particles that are so
strongly coupled to each other that we may consider the distances between them to
be �xed� In this approximation� the coordinates of every particle are known as soon
as we have determined the six generalized coordinates that are required to specify the
position and orientation of the body� Mathematically� if ri is the position vector of the
ith particle� ri�q�� � � � � q��� Newton�s law of motion states that for i � �� � � � �N

mi�ri � Fi � � ������

where Fi is the force on the ith particle� There are two contributions to Fi� any

external force F
�e	
i and the internal stress fi that keeps this particle in its alloted

position relative to the other particles in the body� Now we imagine instantaneously
displacing the body such that ri � ri � �ri� In view of ������ we have

� �
NX
i

�mi�ri � Fi� � �ri

�
NX
i

�mi�ri � F
�e	
i � fi� � �ri�

������

The contribution
P

i fi � �ri � � because the internal stresses do no work �the body is
rigid�� So

� �
NX
i

�mi�ri � F
�e	
i � � �ri�

Now the �ri are not all independent � they arise from a displacement of the entire
body so they are functions of six independent coordinates �q�� � � � � �q�� Hence we may
write

� �

NX
i
�

�X
j
�

mi�ri � �ri
�qj

�qj �
�X

j
�

Qj�qj � �����a�

where the generalized force Q is de�ned by

Qj �
NX
i
�

F
�e	
i � �ri

�qj
� �����b�

Since the �qj are all independent� �����a� implies that the coe�cient of each �qj indi

vidually vanishes� That is

� �

NX
i
�

mi�ri � �ri
�qj

�Qj � ������
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Now we have that

�ri �

�X
k
�

�ri
�qk

�qk � �ri �

�X
k�l
�

��ri
�ql�qk

�ql �qk �

�X
k
�

�ri
�qk

�qk� ������

so ������ can be written

� �

NX
i
�

mi

� �X
k�l
�

��ri
�ql�qk

�ql �qk �

�X
k
�

�ri
�qk

�qk

�
� �ri
�qj

�Qj � ������

By the chain rule the body�s k�e� is

T � �
�

NX
i
�

mi

���� �X
k
�

�ri
�qk

�qk

������ ���� �

so
�T

� �qj
�
X
i

mi

� �X
k
�

�ri
�qk

�qk

�
� �ri
�qj

������

and
d

dt

� �T
� �qj

�
�

NX
i
�

mi

��X
kl

��ri
�ql�qk

�ql �qk �
X
k

�ri
�qk

�qk

�
� �ri
�qj

�

�X
k

�ri
�qk

�qk

�
�
�X

l

��ri
�ql�qj

�ql

��
�

������

This expression for �d�dt���T�� �qj� contains two of the terms that appear in equa

tion ������� Unfortunately its last term is unwanted� We can obtain an alternative
expression for this unwanted term by calculating

�T

�qj
�

NX
i
�

mi

�X
k

�ri
�qk

�qk

�
�
�X

l

��ri
�qj�ql

�ql

�
� ������

Hence we can write ������ as

� �
d

dt

� �T
� �qj

�
� �T

�qj
�Qj � ������

Now we specialize the the case in which Qj is generated by a potential V � Qj �
���V��qj�� Then equation ������ is easily seen to the EL equation for L � T � V �

This analysis shows that we can obtain the equations of motion of any rigid body
from the EL equations as soon as we have expressions for the body�s kinetic and
potential energies in terms of any set of independent coordinates� The analysis is
easily extended to the case of a body that is made up of several rigid bodies that
swivel or slide smoothly on one another�
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Box �	 Euler Angles

To specify the orientation of a rigid body� we
imagine starting with the body axes bi aligned
with the coordinate axes and then moving to an
arbitrary orientation by compounding three ro

tations� We label the body axes b�� b� and b�

according to whether they start parallel to i� j or
k� Now we rotate by 	 about k� then we rotate
by � about the new position of b� and �nally we
rotate by � about the new position of b��

Note	

Notice that the dimensions of the generalized force Qi are energy divided by those
of qi� The latter is frequently dimensionless �because it is an angle� for example��
so generalized forces don�t necessarily have dimensions of force&

Let ��x� be the density of a rigid body that is rotating with angular velocity �
about the coordinate origin� Then the body�s angular momentum about the origin is

J �

Z
d�x �x � �� � x�

�

Z
d�x � �x�� � �� � x�x��

������

We rewrite this formula in tensor notation as

Ji �
X
j

Iij
j where Iij �
Z

d�x � �x��ij � xixj�� ������

Here �ij is the ij element of the identity matrix� it is zero if i 	� j� and unity if i � j�
The matrix I de�ned by ������ is the body�s moment of inertia tensor� Since it is a
real symmetric matrix it has real eigenvalues Ii and eigenvectors bi� The bi are called
body axes and the Ii are called principal moments of inertia� When the body
is rotated� the body axes rotate with it so they should be thought of as �xed within
the body� According to ������� when the body spins such that its angular velocity
lies along a body axis� its angular momentum is parallel to its angular velocity� and
the proportionality constant between these two vectors is the appropriate principal
moment of inertia�
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The kinetic energy of our spinning body is

T � �
�

Z
d�x � j� � xj�

� �
�

Z
d�x �� � �x � �� � x��

� �
�� � I � ��

������

This expression is especially simple in the body
axis frame�

T � �
�

�X
i
�

Ii

�
i � �body
axis frame�� ������

If all three moments of inertia are di
erent� evaluating T from ������ in terms of
the derivatives of Euler angles �Box �� is tedious� So consider the case I� � I� of an
axisymmetric body� such as a saucer� Since the Euler angle � is a rotation about the
�nal position of b�� it is clear that �� contributes ��b� to �� Since I� � I� we can
adopt any two mutually orthogonal vectors in the body�s equatorial plane as b� and
b�� So let�s choose b� to be the axis about which we rotated through Euler angle ��
Then �� contributes ��b� to �� An increment in 	 rotates the system about k� This
lies in the plane of b� and b� and is inclined at angle � to b�� Hence �	 contributes
�	�cos �b� � sin �b�� to �� Adding all three contributions together to form � and
substituting the result into ������ we �nd that the kinetic energy of an axisymmetric
body is

T � �
�
I�� �	

� sin� � � ���� � �
�
I�� �	 cos � � ����� ������

The potential energy of an axisymmetric body can depend only on � and is usually
easy to write down for any particular physical situation� Hence with ������ in hand
the Lagrangian follows easily � see the problems�

��� Lagrangian for motion in an e�m� �eld

The simple ruleL � T�V does not work for a charged particle that moves in a magnetic
�eld B� To see this� recall that B does no work on the particle� so it contributes to
neither T nor V � Hence it cannot appear in equations of motion that are derived from
only T and V � We now show that the correct equations of motion follow from

L � �
�m �x� �Q� �x �A� 	�� ���� �

where Q is the particle�s charge� A�x� t� is the magnetic vector potential and 	�x� t� is
the electrostatic potential� Indeed� ���� � gives the action as

S �

Z 	
�
�m �x� �Q� �x �A� 	�



dt� ������

so the EL eqn is
d

dt

�
m �x�QA

�
�Qr�	� �x �A� � �� ������



��� Normal modes from Lagrangians ��

Here the derivative w�r�t� t is along the path� so

dA

dt
�

�A

�t
� � �x � r�A� ������

The partial derivative here can be combined with the r	 term in ������ to produce
the electric �eld E � �r	 � �A��t� Putting all these things back into the EL eqn
������ yields

m�x � Q
	
E�r� �x �A� � � �x � r�A



� ������

It�s now straightforward to show that the last two terms on the right of ������ equal
�x�B as one would hope� bearing in mind that r �x � � we have

�x�B � �x� �r�A�

� r� �x �A� � � �x � r�A

Thus the EL eqn applied to the action ������ gives

m�x � Q�E� �x �B� ������

as required�

Note	

The action ������ looks rather arbitrary at this stage but is revealed to be beau

tifully natural when one looks at the problem in a relativistically covariant way�
as one should�

��
 Normal modes from Lagrangians

Obviously� when a system is in equilibrium all its time derivatives vanish� From the
EL eqns we infer that equilibrium con�gurations correspond to �V��qi � �� where qi
is any coordinate� By expanding V �q� around the stationary point qs corresponding
to an equilibrium con�guration and plugging the expansion into the EL eqns� one sees
that the equilibrium is stable if qs is a local minimum of V � and unstable otherwise�

When slightly disturbed from an stable equilibrium� the system will oscillate in
a motion that can be represented as a superposition of normal modes� Lagrangians
provide a relatively painless route to the frequencies and forms of these normal modes�
The trick is to expand L�q� �q� in a Taylor series around the equilibrium con�guration
q � qs� �q � �� discarding terms of higher than second order in �q � q � qs and its
derivatives� Thus we write

L 
 �
�

X
ij

�
Mij� �qi� �qj � Cij� �qi�qj �

�
�Fij�qi�qj

�
�
X
i

Ai� �qi �L�� ������

where M� C� F and A are constant matrices or vectors� Since the EL eqns involve
only derivatives of L� we can discard the constant L�� It is also easy to check that the
term involving A makes no net contribution to the equations of motion� Nor does that
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involving C unless the latter is antisymmetric� which it won�t be in practice� So we
take the EL eqns to be X

j

Mij �qj �
X
j

Fijqj � ������

This is easily solved by writing q�t� � Qei�t� whence the eigenfrequencies 
 are the
roots of

det�F � 
�M� � �� ������

Example �

The governor of a steam engine contains two balls of
massm that are mounted on light rods� and these are
in turn attached to a vertical axis� The plane of the
rods rotates at constant angular velocity ' about the
vertical axis� A spring connects the two rods in such
a way that the potential energy stored in the spring
is �

�
k times the square of the distance between the

centres of the balls� Find a point of equlibrium and
determine the frequencies of the normal modes�

Solution� Application of the cosine law to the triangle formed by the balls and
their point of suspension shows that the potential energy is

V � �mga�cos	� cos �� � �
�ka

�
	
�� � cos�	� ��



Subtracting this from the kinetic energy� we �nd that

L � �
�
ma�� �	�� ����� �

�
ma�'��sin� 	�sin� ���mga�cos	�cos ���ka�	��cos�	���
�

By the system�s symmetry� there is a point of equilibriumwith 	 � � � ��� Setting
to zero �L��� evaluated at this point� we �nd the equlibrium point to satisfy

� �ma�'� sin �� cos �� �mga sin �� � ka� sin��� �
���

sin �� � � or

cos �� �

�
g

'� � �
�
s

�

where 
�
g � g�a� 
�

s � k�m� At ���� ��� the second derivatives of L are

��L

���
� �m'� � k�a� cos ��� �mga cos ��

��L

�	�
� �m'� � k�a� cos ��� �mga cos ��

��L

���	
� �ka� cos ���

Hence the equations
d

dt

��L
� ��

�
�

��L

���
�� �

��L

���	
�	 etc� that govern the normal

modes are�
���
� �	

�
�

�
x y
y x

��
��
�	

�
where

�
x � �'� � 
�

s � cos ��� � 
�
g cos ��

y � �
�
s cos ���

������
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The normal frequencies 
 are given by the eigenvalues of the matrix� 
� �
�x � y The lowest squared frequency� 
�

g cos �� � '� cos ���� is negative for
'� � 
�

g cos ��� cos ���� which indicates that the system is unstable for large '�

Example 

A cylinder of mass m and radius a rolls on a rough horizontal table� A second
cylinder� mass m and radius �

�
a rolls inside the �rst� Find the normal frequencies

for small disturbances from equilibrium�

Solution� Let � be the angle through which the �rst cylinder has turned from
equilibrium� and 	 be the angle through which the second cylinder has rolled
relative to the �rst �see �gure�� Then the line between the two centres makes an
angle

� � � � �
�
	 ���� �

with the vertical� The kinetic energy of the �rst cylinder �translational plus rota

tional� is

T� � �
�m�a ���� � �

�ma� ���� ������

The motion of the centre of the second cylinder is a compound of the leftward
motion a �� of the centre of the �rst cylinder� plus �

�
a �� tangent to the line joining

the centres� The second cylinder rotates with respect to inertial space at angular
velocity �	� ��� The total kinetic energy is therefore

T � m�a ���� � �
�m
	
���a

�� cos�� a ��������a
�� sin���



� �

�m�a����� �	� ����� ������

The potential energy is simply

V � �mg �
�a cos�� ������

In T � which is quadratic in the velocities� we set � � � and we expand V to second
order in �� to �nd

T � �
�
ma���

�
��� � �

�
�� �	� �

�
�	���

V � constant � �
�mga�� � �

�	�
��

������

De�ning 
� �
p
g�a the equations of motion become

��� � �
�
�	� 
�

��� � �
�	� � ��

�
�
�� � �

�
�	� �

�

�
��� � �

�	� � ��
������

The eigenfrequencies are now straightforwardly found to be 
 � � and 
 �
p
�
��
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��� Noether�s theorem

A constant of motion is any function C�q� �q� that satis�es dC�dt � �� where q�t�
is a solution of the eqns of motion� For example� in a �conservative� system� energy is
conserved� so E�q� �q� is a constant of motion� Finding a constant of motion is a big
step towards obtaining a general solution of the equations of motion�

In general� a system with N degrees of freedom q�� � � � � qN admits �N � � inde

pendent constants of motion� We show this by arguing that given �q� �q� at any time
t� the equations of motion allow us to give the position and velocity �q��	� �q��	� at any

reference time t�� Thus q
��	
i or �q

��	
i is a function f��q� �q� t� with 
 � �� � � � � �N � On

eliminating t between these �N functions� we have �N � � constants of motion�

It seldom happens that we can �nd �N � � constants of motion�a rare exception
is the case of motion in a Kepler potential V � ��r� In fact it turns out that essentially
complete information about solutions of the equations of motion can be extracted from
N constants of motion� A system for which N constants of motion can be found is
said to be integrable�

A theorem proved by Emmy Noether ����������� provides a powerful way of
extracting constants of motion from Lagrangians� Noether�s theorem involves identi

fying a �ow in con�guration space that leaves L invariant� A ��ow� is an in�nitesimal
transformation

q � q� � q�
dq�q�

d�
��� ������

For example� the transformation x� x � i��� is a �ow�

A �ow changes the path q�t� into the path q��t� and thus changes the value of the
Lagrangian at time t by

�L �
�L

�q
� �q�

�L

� �q
� � �q� ������

Notice that � �q is well de�ned� � �q �
��q

�q
� �q�

Invariance of L just means that L takes the same value at all points that are
joined by the �ow� Noether�s theorem states that if �L vanishes along the dynamically
determined path� then

dq

d�
� �L
� �q

������

is a constant of motion� Thus from the invariance of L under translation x� x� i��
along the x
axis� Noether�s theorem deduces the constancy of

i � �L
� �q

�
�L

� �x
� ������

For a particle moving in a velocity
independent potential this is just the x
momentum
m �x�

The proof of Noether�s theorem is simple� Equating to zero equation ������ for
�L we have

� � �L �
�L

�q
� �q �

�L

� �q
� � �q� ���� �
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Using the EL eqns to eliminate �L��q this becomes

� �
d

dt

��L
� �q

�
� �q�

�L

� �q
� � �q

�
d

dt

��L
� �q

� �q
�
�

������

and the result follows on writing �q � �dq�d�����

Consider the proof of conservation of angular momentum by Noether�s theorem�
A rotation by �� about the unit vector %n changes x by ��%n � x� So if L is invariant
under this rotation� the following is a constant of motion�

J � %n� x � �L
� �x

� %n � x � �L

� �x
�

������

For a particle moving in a velocity
independent potential this is just the component of
mx� �x parallel to %n�

Example �
A certain system with coordinates x� y� and z has Lagrangian

L � �
�
�m� �x

� �m� �y
� �m� �z

�� �A�t� �z � �
�
k
	
�x � y�� � �y � z�� � �z � x��



�

where m�� m� and k are constants and A�t� is a given function of time� Obtain
an expression for A�t��A��� in terms of the values of �x� �y and �z at time t and at
time zero�

Solution� L depends only on the di
erence between coordinates� so it is invariant
under �x� y� z� � �x � �� y � �� z � ��� The associated invariant is

�L

� �x
�
�L

� �y
�
�L

� �z
� m�� �x � �y� �m� �z �A�t� ������

so
A�t� �A��� � �m�� �x � �x� � �y � �y�� �m�� �z � �z��� ������

Here�s an application to motion in a uniform magnetic �eld B � Bk� Let�s choose
A � ��By� �� ��� Then by ���� � L � �

�m �x� �QBy �x is invariant under two �ows� �i�
x� x� i�� and �ii� x� x� k��� Hence we have two invariants

px � �L

� �x
� mvx �QBy � pz � �L

� �z
�mvz� �����a�

Choosing A � ��� Bx� �� we �nd a third invariant for the same physical problem�

py � �L

� �y
�mvy �QBx� �����b�
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The physical meaning of pz is obvious� but what do px and py mean physically� Add
them up�

P � px � ipy �m�vx � ivy� �QB�ix � y�

�m �� � iQB�
where � � x � iy� ������

Solving this �rst
order d�e� for � we �nd

��t� � ����e�i�t �
iP

m

� where 
 � QB

m
������

is the Larmor frequency� It is now easy to see that the real and imaginary parts of P
encode the y and x coordinates of the guiding centre around which the particle gyrates�

��� Constraints

Sometimes it is convenient to work with more coordinates than a system has degrees of
freedom� Suppose� for example� that the system consists of a dumbell of length s that
is free to slide on a smooth table� This system has three degrees of freedom� namely
the position of the centre of mass and the orientation of the dumbell� But we might
prefer to describe the system in terms of the x and y coords of the dumbell�s particles�
These are not independent� but satisfy the constraint

�x� � x��
� � �y� � y��

� � s�� ������

The dynamics of the system are obtained by extremizing the action subject to this
constraint equation� Lagrange multipliers enable us to do this simply� We write the
constraint equation as C�q� � � and evaluate

� � �S �

Z
dt ��C

�

Z t�

t�

dt
X
i

�qi

h �L
�qi

� d

dt

� �L
� �qi

�
� �

�C

�qi

i
�

������

Here ��q� t� is an arbitrary function� As in Lagrange�s standard argument� we choose
� to ensure that the coe�cient of one of the �qi vanishes� and then conclude from the
independence of the remaining qi that their coe�cients must vanish too� Hence we
have for every i that

d

dt

� �L
� �qi

�
�

�L

�qi
� �

�C

�qi
� ���� �

Speci�cally for our dumbell example� L � �
�m�v�� � v���� so the equations of motion are

m�x� � ����x� � x��

m�x� � ���x� � x��

m�y� � ����y� � y��

m�y� � ���y� � y��
� ������
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Adding the lower to the upper equations we obtain the equations of motion of the
centre of mass� �R � �� where R � �

�
�r� � r��� Dividing the top left equation by the

bottom right equation and the bottom left equation by the top right equation and then
subtracting the resulting equations� we obtain �xy � x�y � �� where x � x� � x� etc�
which expresses conservation of the system�s angular momentum� d

dt � �xy � x �y� � ��

We shall see below that pi � �L�� �qi is the momentum �conjugate� to qi� Equation
���� � expresses the rate of change of pi as a sum of two generalized forces� The
term �L��qi is simply minus the gradient of the potential that would be associated
with the coordinates in the absence of the constraint� This vanishes in our dumbell
example� The term ����C��qi� describes the force associated with maintenance of
the constraint� In the case of the dumbell� for example� we have that the tension T in
its bar is given by

�T x
s
� Fx �m�x� � ���x � T � ��s� ������

Example �

A lawn
mower engine contains a vertically mounted piston
of massm that is coupled to a �y
wheel of moment of inertia
I by a light connecting rod of length l� The system has only
one degree of freedom but two natural coordinates� 	 and x�
The constraint equation is

l� � x� � r� � �rx cos 	� ��� ��

The Lagrangian is

L � �
�
I �	� � �

�
m �x� �mgx� ��� ��

From ���� � the equations of motion are

d

dt
�m �x� � �mgx� ���x � �r cos	�

d

dt
�I �	� � ���rx sin 	�

��� ��

Eliminating � we �nd that x and 	 satisfy the d�e�

m�x �
�cot	

x
� cosec	

r

�
I �	�mg � �� ��� ��

Sometimes it is in principle possible to write the Lagrangian in terms of as many
coordinates as the system has degrees of freedom� In such a case the constraint is called
holonomic� Clearly� the constraint ������ of the dumbell is of this class� although in
practice holonomic constraints will be more complex than ������ and correspondingly
algebraically hard to eliminate�
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Sometimes a constraint cannot be eliminated� even in principle� Such unavoidable
constraints are called non�holonomic� The classic example of a non
holonomic con

straint occurs in the problem of a rough ball moving on a rough plane� Five natural
coordinates for the problem comprise the �x� y� coordinmates of the ball�s centre to

gether with three Euler angles to specify the ball�s orientation� Two constraints couple
the velocities of these coordinates since if the ball is moving parallel to either axis� it
must be rolling and therefore the Euler angles must be incrementing in a de�nite way�
On the other hand� it is not possible to eliminate any of these coordinates because
it turns out that by rolling the ball to a chosen position� spinning it there about its
point of contact with the plane and then rolling it back� one can arrange for any given
values of the Euler angles to be associated with given values of �x� y�� We can obtain
equations of moton for the ball�s �ve coordinates by a straightforward generalization
of the formalism described above� we express the ball�s Lagrangian �its kinetic energy�
as a function of q � �x� y� 	� �� �� and their derivatives and then extremize the action
subject to the two constraints C��q� �q� �
 � �� �� on the positions and velocities�

� Hamiltonian Dynamics

The Lagrangian of a dynamical system depends on �N variables� the system�s N
coordinates and N velocities� The �N
dimensional space of initial conditions �q� �q� is
called phase space� The eqns of motion allow one to determine uniquely the system�s
future and past from its present position in phase space� Geometrically� through every
point of phase space there runs a curve along which the system evolves� These curves
never intersect one another�

It turns out that � �q�q� are not the ideal coordinates for phase space� The natural
coordinates are �p�q�� where

p � �L

� �q
�����

is the momentum �conjugate to q�� Changing coordinates from �q to p is analogous in
thermodynamics to replacing the volume V by the pressure P since P � ���U��V �S
just as p � ��L�� �q�q� We are replacing a variable by the gradient of some function
of that variable� Transformations of this type are called Legendre transforms � see
Box �� When in thermodynamics we eliminate V in favour of P it is expedient to
introduce a new function H�S�P � � U �PV � So here we introduce the Hamiltonian

H�p�q� � p � �q� L� �����

where it is understood that �q is to be eliminated in favour of q� p� and t using equation
������

Example 

When the single degree of freedom of the lawn
mower of Example � is taken to be
	 �that is� x is considered to be a function of 	�� the momentum conjugate to 	 is

p� �
��L
� �	

�
�
� I �	�m �x

� �x

� �	
� �����
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Box �	 Legendre transforms

Let g�x� be a convex function� that is� a function such that g���x� � �� Then
the Legendre transform g�p� of g is de�ned by

g�p� � xp� g�x�
where x�p� is implicitly de�ned
as the root for given p of

p �
�g

�x
� �B����

The convexity of g guarantees that the equation de�ning x�p� can be solved for
any p that lies between the maximum and minimum gradients of g� Thus g�p� is
well de�ned� It is straightforward to show that Legendre transforms are invertible�
In fact a Legendre transform is its own inverse� g�x� � g�x��

It is often helpful to consider the function G�x� p� � xp�g�x� of two indepen

dent variables �x� p�� Graphically� G�x� p� is the vertical displacement at ordinate
x between the straight line y � px and the upward curving graph of g�x��

The Legendre transform g�p� is the value of G at the point x�p� at which the curve
runs parallel to the line� Since

�G
�x

� p � �g

�x
� �B����

x�p� is the value of x which extremizes G for given p� as is already evident from
the �gure�

Di
erentiating the constraint eq �rst w�r�t� t and then w�r�t� �	 we have

� � � �x�x � r cos	� � �rx sin	 �	

� �
� �x

� �	
�x � r cos	� � rx sin 	

�����

Hence

p� �

�
I �m

� rx sin 	

x � r cos	

���
�	� �����

The total derivative of the Hamiltonian is

dH � p � d �q� �q � dp�
�
�L

�q

�
�q�t

� dq�
�
�L

� �q

�
q�t

� d �q�
�
�L

�t

�
q� �q

dt

� �q � dp�
�
�L

�q

�
�q�t

� dq�
�
�L

�t

�
q� �q

dt�

�����
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where the �rst and fourth terms cancel by ������ But we may also write

dH �

�
�H

�p

�
q�t

� dp�

�
�H

�q

�
p�t

� dq�

�
�H

�t

�
q�p

dt� ��� �

Since equations ����� and ��� � must be the same� we have

�q �

�
�H

�p

�
q�t

�

�
�H

�q

�
p�t

� �
�
�L

�q

�
�q�t

�

�
�H

�t

�
q�p

� �
�
�L

�t

�
q� �q

� �����

Using the EL eqns and simplifying the notation� the �rst two of these equations lead
us to Hamilton�s equations

�q �
�H

�p
� �p � ��H

�q
� �����

Along a trajectory
�
q�t��p�t�

�
� the Hamiltonian H

�
q�t��p�t�� t

�
changes at a rate

dH

dt
�

�H

�q
� �q�

�H

�p
� �p�

�H

�t
�

�H

�t
� ������

Hence� if �L��t � �� it follows from equation ����� that the Hamiltonian is conserved
along all dynamical trajectories� We can think of this as an extension of Noether�s
theorem� the integral H arises from the time
translation invariance of L�

Thus� for example� consider motion in the time
independent potential V �x�� If we
work in Cartesian coordinates� the Lagrangian L � �

�m �x� � V �x� depends only on x
and �x� so �L��t � �� Hence the Hamiltonian H is conserved� The physical quantity
to which H corresponds is easily found� We have p � �L�� �x �m �x and

H�x�p� � p � �x� L

�
p�

�m
� V �x��

������

which is simply the total energy E � k�e� � p�e�� Thus for motion in a �xed potential
the Hamiltonian is equal to the total energy�

What are p and H in a rotating frame� From ����� and ������ we have

p � m� �r� � � r� ������

which shows that p isn�t always the same as m �q� In fact� here p is identical with mass
times velocity in the underlying inertial frame�

Using ������ to eliminate �r from ����� and ������ we �nd that the Hamiltonian for
a rotating frame is

H � p � � p
m
� � � r

�� p�

�m
� V

�
p�

�m
� V � � � �r� p��

������

The �rst two terms sum to the energy in an underlying inertial frame� and the last term
is � �J� where J is the angular momentum� Unless V is axisymmetric �V � V �j��rj���
the energy in an inertial frame changes as V does work on the potential� but H is
nonetheless constant�
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Exercise ���	
Show that in a rotating frame we may write H � �

�
mj �rj�� �

�
mj�� rj� �V� What

is the physical interpretation of the second term on the r�h�s�

From the Lagrangian ���� � for non
relativistic motion in an e�m� �eld we �nd

p � m �x�QA� ������

Thus in an e�m� �eld p is not justm �x� Problem xx explains this result by demonstrating
that the e�m� �eld contributesQA to p� In quantum mechanics the distinction between
p and m �x is of the utmost importance because it turns out that when one quantizes�
it is p rather than m �x that should be replaced by �i(hr�

Using ������ in ����� we �nd H for motion in an e�m� �eld is

H � �m �x �QA� � �x�
h
�
�
mj �xj� �Q� �x �A� 	�

i
� �

�
mj �xj� �Q	

�
�

�m
jp�QAj� �Q	�

������

Although H is just what one would na�)vely think of as the energy� when expressed in
terms of p it looks odd�

��� Liouville�s theorem

If we imagine releasing a bunch of dynamically identical systems from neighbouring
initial conditions� then the �phase points� describing these systems �ow through phase
space like a �uid� This �ow is governed by Hamilton�s equations ������ It is an
incompressible �ow� the �velocity� of the �uid is � �p� �q� and the divergence of this
velocity is

div� �p� �q� �
�� �p
�p

�
� �q

�q

�
�
�
� ��H

�p�q
�

��H

�q�p

�
� ��

The divergence
freeness of the phase �ow is known as Liouville�s theorem�

Let f be the probability density of systems in phase
space� Then conservation of
probability requires that f obey the continuity equation

� �
�f

�t
�div

�
� �p� �q�f

�
�

�f

�t
�
�f

�p
� �p�

�f

�q
� �q

�
�f

�t
� �f

�p
� �H
�q

�
�f

�q
� �H
�p

������

where Liouville�s theorem has been used� The continuity equation of f in either of the
last two forms is known as Liouville�s equation�
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��� Poisson brackets and canonical coordinates

Let A�q�p� and B�q�p� be any two functions of the phase
space coordinates� Then
the Poisson bracket �A�B� is de�ned by

�A�B� � �A

�q
� �B
�p

� �A

�p
� �B
�q

� ���� �

It is straightforward to verify the following properties of Poisson brackets�

�i� �A�B� � ��B�A� and �A�B�C� � �A�C� � �B�C��

�ii� ��A�B�� C� � ��B�C�� A� � ��C�A�� B� � � �Jacobi identity��

�iii� The coordinates �q�p� satisfy the canonical commutation relations

�pi� pj � � �qi� qj � � � and �qi� pj � � �ij � ������

�iv� Hamilton�s equations may be written

�qi � �qi�H� � �pi � �pi�H�� ������

If we write �wi � qi� wN
i � pi i � �� � � � �N�� and de�ne the symplectic
matrix c by

c�� � �w�� w�� �


�� for � � 
�N � � � 
� � � �N �
� otherwise�

�����a�

we have

�A�B� �
�NX

���
�

c��
�A

�w�

�B

�w�
� �����b�

Any set of �N phase
space coordinates fW�g �
 � �� � � � � �N� is called a set of canon�
ical coordinates if �W��W�� � c��� Let fW�g be such a set� then with equation
���b� and the chain rule we have

�A�B� �

�NX
���
�

c��
�A

�w�

�B

�w�
�
X
��

�X
��

c��
�W�

�w�

�W�

�w�

�
�A

�W�

�B

�W�

�
X
��

�W��W��
�A

�W�

�B

�W�
�
X
��

c��
�A

�W�

�B

�W�
�

������

Thus the derivatives involved in the de�nition ���� � of the Poisson bracket can be
taken with respect to any set of canonical coordinates� just as the vector formula
r � a �

P
i��ai��xi� is valid in any Cartesian coordinate system�

The rate of change of an arbitrary canonical coordinate W� along an orbit is

�W� �
�NX
�
�

�W�

�w�
�w�� ������



��� Canonical transformations ��

Box 
	 Lorentz invariance � Symplectic structure

inertial coordinates 
 canonical coordinates

Lorentz transformations 
 canonical transformations

��� 
 c��

Lorentz invariant jxj� 

ZZ

dp � dq �Poincar*e invariant�

where� as usual� w � �q�p�� With Hamilton�s equations ������ and equation ������
this becomes

�W� �
�NX
�
�

�W�

�w�
�w��H� �

X
�	


�W�

�w�
c	


�w�

�w	

�H

�w

�
X
	


c	

�W�

�w	

�H

�w


� �W��H��

������

Thus Hamilton�s equations ������ are valid in any canonical coordinate system�

Poisson brackets allow us to associate a one
parameter family of mapsBa of phase
space onto itself with any function B�q�p� on phase space� from each point �q��p�� of
some ��N � ��
dimensional surface in phase space we integrate the coupled ordinary
di
erential equations

dq

db
� �q� B� �

dp

db
� �p� B� ������

from the initial conditions q��� � q�� p��� � p�� If the initial ��N ���
surface is large
enough� the integral curves fq�b��p�b�g of B reach every point of phase space� Then
the map Bb is de�ned by

Bb�q�b
���p�b��� � �q�b � b���p�b � b���� ������

The function B�q�p� is indistinguishable from a Hamiltonian� since it satis�es Hamil

ton�s equations ������� with b playing the role of the time t�

��
 Canonical transformations�

Suppose you have a function S�P�q� of some new variables Pi� i � ��N and the regular
coordinates qi such that the equation

p �
�S

�q
�����a�

� Lies beyond the syllabus
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can be interpreted as de�ning P�p�q�� Then it turns out that the coordinates �P�Q�
are canonical� where

Q � �S

�P
� �����b�

That is� one may show �see Appendix I� that with these de�nitions� �Qi� Qj � � ��
�Qi� Pj � � �ij � �Pi� Pj � � �� The transformation �p�q� � �P�Q� is called a canonical
transformation and S the generating function of the transformation�

The function that generates a canonical transformation need not be of the form
S�P�q�� other forms are S�P�p�� S�Q�q� and S�Q�p�� The generating function is al

ways a function of one old coordinate and one new one� An entertaining transformation
is generated by S � Q � q�

p �
�S

�q
� Q � P �

�S

�Q
� q� ���� �

Canonical transformations are closely connected to the one
parameter maps in

troduced above� To see this consider functions S of the form

S � P � q� s�P�q��u� ������

where �u� �� For S of this form we have

Q � q�
�s

�P
�u � p � P�

�s

�q
�u �

P � p� �s

�q
�u�

������

Thus S � P � q generates the identity transformation P � p� Q � q� Moreover�

Q� q

�u
�

�s

�P
P� p

�u
� � �s

�q

������

In the limit �u� � we can identify P with p on the right� and these equations become

dq

du
� �q� s� �

dp

du
� �p� s�� ������

which is identical with ������� Thus canonical transformations generated by functions
of the form ������ may be thought of as in�nitesimal canonical maps�

There is no fundamental di
erence between a map and a coordinate transforma

tion� every map generates a coordinate transformation and every transformation a
map since one can treat changed coordinates as new numbers describing an old point
�a coordinate change�� or as old numbers describing a new point �a mapping��



��
 Phase�space volumes� ��

��� Point transformations�

If �Qi�q�� i � �� � � � �N� are anyN independent functions of the generalized coordinates
q� then by equation ����� we obtain the new momenta Pi � ��L�� �Qi� by expressing
the Lagrangian as a function L�Q� �Q� of the Qi and their time derivatives� The co

ordinate change �q�p�� �Q�P� is called a point transformation� because the new
coordinates are functions only of the old� It is straightforward to show that the new
coordinates are canonical� by evaluating their Poisson brackets�

The importance of these results is that it is often convenient to work in curvilinear
coordinates Q and derive the corresponding momenta P � ��L�� �Q�� Since the coor

dinates �Q�P� are canonical� the Poisson bracket ���� � can be equally well evaluated
by taking derivatives with respect to Q and P as with respect to q and p� Hence all
curvilinear coordinates have equal status in Hamiltonian mechanics�

Example �
A particle of massm and charge Q� moves in a bound orbit around a �xed charge
Q� in the plane perpendicular to a constant magnetic �eld B� Determine the
system�s Hamiltonian in polar coordinates �r� �� on the orbital plane� Hence show
that mr� �� � �

�
Q�r

�B is constant on the orbit�

Solution� The vector potential can be written A � �
�rBe� � From ���� � the

Lagrangian is

L � �
�
m� �r� � r� ���� �Q�

�
r �� �

�
rB � Q�

����r

�
� ������

so the momenta are

pr �m �r p� � mr� �� � �
�Q�r

�B ������

Finally� the Hamiltonian is

H�pr � p�� r� �� �
p�r
�m

�
�p� � �

�
Q�Br

���

�mr�
�
Q�Q�

����r
�

The constancy of p� follows because H is independent of �� Notice that ������ is
not simply the translation into polar coordinates of equation ������� which gives
H in Cartsesian coordinates� when translating H from one coordinate system to
another one must pass through the Lagrangian�

��� Phase�space volumes�

Often� for example when doing statistical mechanics� one needs a credible de�ni

tion of �phase
space volume�� If one is using Cartesian coordinates to describe a
system of n particles of mass mi� it is natural to take the volume element to be
d� �

Qn
i �m

�
id

�xid�vi�� But it isn�t immediately obvious what to use for d� in a more
complex case� In particular� if one decided to describe the system of particles by some

� Lies beyond the syllabus
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curvilinear coordinates q�x� and their conjugate momenta p� one would expect d� to
be of the form

d� �
nY
i
�

�
��mivi�xi�

��pi�qi�
d�pid

�qi

�
� ������

One of the most beautiful and useful results in the subject is that the Jacobian here
is just one� In fact� the Jacobian between any pair of canonical coordinates is always
one� That is� the volume of an arbitrary region is

V �

ZZ
V

dNpdNq �

ZZ
V

dNPdNQ� ������

where �p�q� and �P�Q� are any canonical coordinates�

��
 Hamilton�Jacobi Equation�

Suppose we could �nd N constants of motion I�� � � � � IN � And suppose it were possible
to �nd a system of canonical coordinates �P�Q� such that Pi � Ii etc� Then the
equations of motion for the P �s would be trivial�

� � �Pi � �Pi�H�

� � �H

�Qi
�

������

and would demonstrate that H�P� would be independent of the Q�s� This last obser

vation would allow us to solve the equations of motion for the Q�s� we would have

�Qi �
�H

�Pi
� 
i� a constant � Qi�t� � Qi��� � 
it� ���� �

So everything would lie at our feet if we could �nd N constants of the motion and
could embed these as the �momenta� of a system of canonical coordinates�� The magic
coordinatesP � I andQ are called action�angle coordinates� the I�s being the actions
and the Q�s the angles�

Let S�I�q� be the generating function of the transformation between regular
coordinates �p�q� and action
angle coordinates� Then we can use this to eliminate
p � �S��q from H� expressing H as a function of �I�q��

eH�I�q� � H
��S
�q

�q
�
� ������

By moving on an orbit we can vary the qi pretty much at will while holding constant
the Ii� As we vary the qi in this way H must remain constant at the energy E of the

� Lies beyond the syllabus
� Notice that to be able to embed the I�s as a set of momenta� we require �Ii� Ij � � �� functions

satisfying this condition are said to be �in involution��



��	 The Hamiltonian principle of least action ��

orbit in question� This suggests that we investigate the non
linear partial di
erential
equation

H
��S
�q

�q
�
� E� �Hamilton�Jacobi equation�� ������

If we can solve this equation� we identify the arbitrary constants on which the solution
S�q� depends with functions of the constants of motion Ii� For example� the H
J eqn
for a free particle moving in two dimensions is

jrSj�
�m

� E ������

We write S�x� � Sx�x� � Sy�y� and solve ������ by separation of variables�

constant � Ix �
��S
�x

��
� �mE �

��S
�y

��
� Iy� ������

This example is very tame� but the technique works also for more complicated Hamil

tonians that cannot be solved by other means�

The similarity between the H
J eqn and the time
independent Schr�odinger eqn is
obvious�

��� The Hamiltonian principle of least action�

The principle of least action
�S � � ������

is concerned with paths q�t� through coordinate space� We can derive classical mechan

ics from another� closely related� variational principle which involves paths

�
p�t��q�t�

�
through phase space rather than coordinate space� This principle is that the path
actually followed between �ti�qi� and �tf �qf � is that for which

�S � � where S �
Z
p � dq�H�p�q� dt� ������

Here the path of integration runs between �ti�qi� and �tf �qf � � neither p�ti� nor p�tf �
is constrained� Showing that this principle yields Hamilton�s equations ����� is easy�

�S �

Z �
�p � �q� p � � �q� �H

�p
� �p� �H

�q
� �q

�
dt

�

Z h�
�q� �H

�p

�
� �p�

�
�p�

�H

�q

�
� �q

i
dt�

	
p � �q
tf

ti
�

������

Since �q vanishes at ti and tf by hypothesis� the �nal term in ������ vanishes� Then�
with �p and �q subject to arbitrary variation� it is clear that �S � � only if the contents
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of the pairs of large round brackets in ������ vanish� But the vanishing of brackets is
precisely the content of Hamilton�s equations�

Notice that a very remarkable thing is being done with the variational principle
������� we are treating p as quite independent of the value of �q along the path� This
makes perfectly good sense from the point of view of phase
space geometry� but it
makes a mockery of our original de�nition ����� of p� This de�nition is recovered for
the true path as a consequence of the variational principle �������

�q �
�H

�p
�

�

�p
�p � �q� L�

� �q�
�
p� �L

� �q

�
� � �q
�p

�

������

Recall that we introduced H as p � �q� L� with �q eliminated in favour of p� Now
that we are treating p as independent of �q� p � �q � H becomes a quantity di
erent
from L� indeed� L depends only on the projection of a phase
space path

�
p�t��q�t�

�
onto con�guration space� while p � �q �H depends on p�t� as well as q�t�� Thus the
action principle ������ is entirely di
erent from ������� although the extremal values of
the two integrals are the same because along the extremal path p � �L�� �q�

In Appendix II ������ is derived from the Schr�odinger equation� The basic idea
is simple� from the Schr�odinger equation we calculate the quantum amplitude to get
from �ti�qi� to �tf �qf � and show that it can be expressed as a sum over all possible
paths between these events of amplitudes proportional to eiS��h� where S is de�ned
by ������� Then we argue that the only paths which make a net contribution to the
overall amplitude are those whose values of S lie within � (h of a stationary value� since
the contributions of other paths are cancelled by oppositely signed contributions from
neighbouring paths� Thus the overall amplitude is dominated by contributions from
paths that lie within � (h of the classical� extremizing� path� and from a macroscopic
point of view these paths are identical with the classical path�

Appendix I	 Proof that generating functions generate canonical
transformations

We prove that given S�q�P�� P and Q � �S��P satisfy the canonical commutation
relations� From the chain rule we have that

�

�p

�
q

�

�
�P

�p

�
q

� �

�P

�
q

�

�q

�
p

�
�

�q

�
P

�

�
�P

�q

�
p

� �

�P

�
q

�

�AI���

Applying these formulae to pi and using �pi��P � ��S��qi�P � �Q��qi yields

�ij �

�
�P

�pj

�
q

�
�
�Q

�qi

�
q

�
�
�pi
�qj

�
P

�

�
�P

�qj

�
p

�
�
�Q

�qi

�
q

�AI���
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Multiplying these equations together and summing over j we �nd

X
kl

�
�Qk

�qi

�
q

�
�Ql

�qi�

�
q

�Pk� Pl� � �
�
�pi
�qi�

�
P

�

�
�pi�

�qi

�
P

� � ��S

�qi��qi
�

��S

�qi�qi�
� ��

�AI���

Since the matrix �Qk��qi has an inverse by �AI���� this shows that �Pk� Pl� � ��

Working again from equations �AI��� we have

�Qi� Pj � �

�
�Qi

�q

�
p

�
�
�Pj
�p

�
q

�
�
�Qi

�p

�
q

�
�
�Pj
�q

�
p

�

��
�Qi

�q

�
P

�

�
�Qi

�P

�
q

�
�
�P

�q

�
p

�
�
�
�Pj
�p

�
q

�
�
�Qi

�P

�
q

�
�
�P

�p

�
q

�
�
�Pj
�q

�
p

�

�
�Qi

�q

�
P

�
�
�Pj
�p

�
q

�

�
�Qi

�P

�
q

� �P� Pj �

�
��S

�Pi�q
�
�
�Pj
�p

�
q

�

�
�p

�Pi

�
q

�
�
�Pj
�p

�
q

� �ij �

�AI���

Similarly�

�Qi� Qj � �

��
�Qi

�q

�
P

�

�
�Qi

�P

�
q

�
�
�P

�q

�
p

�
�
�
�Qj

�p

�
q

�
�
�Qi

�P

�
q

�
�
�P

�p

�
q

�
�
�Qj

�q

�
p

�

�
�Qi

�q

�
P

�
�
�Qj

�p

�
q

�

�
�Qi

�P

�
q

� �P� Qj �

�

�
�Qi

�q

�
P

�
�
�Qj

�p

�
q

�
�
�Qi

�Pj

�
q

�
X
k

��S

�Pi�qk

�
�Qj

�P

�
q

�
�
�P

�pk

�
q

�
�
�Qi

�Pj

�
q

�
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But
�pk
�P

�
q

�
��S

�qk�P
� so

�Qi� Qj � �
X
k

�
�Qj

�Pl

�
q

�
�Pl
�pk

�
q

�
�pk
�Pi

�
q

�
�
�Qi

�Pj

�
q

�
�Qj

�Pi
� �Qi

�Pj

�
��S

�Pi�Pj
� ��S

�Pj�Pi
� �� �

�AI���

Appendix II	 Derivation of ����
� from the Schr�odinger equation

We start by �nding the amplitudeA�� to get from �t��q�� to �t��q��� where the interval
t� � t� is small� In Dirac�s notation� this amplitude is

A�� � hq�j�� t�i� �AII���

where j�� t�i is the ket into which jq�i has evolved at t�� In other words� j�� t�i is
the solution of the time
dependent Schr�odinger equation �tdse� for initial condition
j�� t�i � jq�i� This is

j�� t�i � e�i �H�t��t�	��hjq�i� �AII���

Here the exponential is the operator with the same eigen
kets jEni as the Hamiltonian
%H� and eigenvalues equal to eiEn�t��t�	��h� where the En are the eigen
values of %H�
That is�

ei
�H�t��t�	��h �

X
n

jEnie�iEn�t��t�	��hhEnj� �AII���

�To prove that �AII��� satis�es the tdse� just substitute �AII��� into �AII��� and
di
erentiate w�r�t� t��� Our amplitude can now be written

A�� � hq�je�i �H�t��t�	��hjq�i
�

Z
d�phq�jpihpje�i �H�t��t�	��hjq�i�

�AII���

where use has been made of the fact that
R
d�p jpihpj is just the identity operator

since the states jpi of well
de�ned momentum form a complete set�
%H and thus the function of it appearing in �AII��� is a function of the operators %p

and %q� Let�s assume that every %p has been positioned to the left of every %q� Then every
%p can be considered to act to the left and be replaced by its eigen
value p� while every

%q acts similarly to the right� So the complex number hpje�i �H�t��t�	��hjq�i becomes
simply

e�iH�t��t�	��hhpjq�i � e�iH�t��t�	��h
e�ip�q���h

p
��(h

� �AII���



Appendix II� Derivation of ������ from the Schrodinger equation ��

where H is the classical Hamiltonian evaluated at the classical phase
space point �p�q�
and we have used the fact that hpjq�i is just the complex conjugate of the wave
function
of a particle of well
de�ned momentum p� When we insert �AII��� into �AII��� and
similarly replace hq�jpi by a plane wave� we �nd

A�� �
�

h

Z
d�p exp

h i
(h

�
p � �q� � q���H�t� � t��

�i
� �AII���

Equation �AII��� for the amplitude to get from one event to another is only valid
for in�nitesimal t� � t�� There are two issues� �i� %H may be time
dependent� �ii� for

�nite � the operator e�i �H
 � �� i %H� � �
��
� %H� �� � � � � involves high powers of %H and

so many reversals of the order of the operators %p and %q will be required to ensure that
the %p�s are to the left of all %q�s� In view of these objections we use �AII��� only for
small t� � t�� Given two widely separated events �ti�qi� and �tf �qf �� we express the
amplitude to pass between them by a particular path qi � q� � � � � � qf as the
product

Ai�A�� � � � � �Am�f �AII� ��

of m amplitudes of the form �AII��� over small intervals �tj��� tj �� We then obtain the
amplitude to pass between �ti�qi� and �tf �qf � by any path by summing �AII� � over
all values of the intermediate positions qj � The �nal amplitude is

Aif � lim
m��

�

h�m

Z mY
j

�d�pjd
�qj� exp

h i
(h

mX
k

�
pk � �qk
� � qk��H�tk
� � tk�

�i
� constant�

Z
DpDq exp

h i
(h

Z �
p � dq�H dt

�i
�

�AII���
Here the symbol DpDq means one is to sum the integrand over all paths

�
p�t��q�t�

�
which pass through �ti�qi� and �tf �qf ��

Thus� as claimed in x���� the amplitude to get from �ti�qi� to �tf �qf � is a sum over
all paths of eiS��h� where S is the classical action for that path� When jSj � (h the
contributions from non
classical paths that do not extremize S will cancel each other
out to high precision�

Exercise �
�	
In �AII��� replace H with �

�p
��m�V �q� and dq by �qdt� Then do the integration

over every pj by completing the square and using
R�
��

e�x
�

dx �
p
�� Explain

the relation of the resulting expression for Aif to the Lagrangian principle of least
action�
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