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1 Lagrangian Mechanics

Mechanics as formulated by Newton suffers from two important limitations: (i)
it deals with particles; (ii) it describes their motion in special Cartesian coordinate
systems: if the numbers z; are the coordinates of a particle in an inertial Cartesian
coordinate system, then the position of the particle when subjected for a force with
components f;(t) may be determined by solving the differential equations #; = f;(t).
Since an extended body can be decomposed into its consituent particles, and its motion,
once determined, can be transformed into any reference frame, Newton’s machinery
enables us to determine the motion of any body in any reference frame notwithstanding
these limitations. But in practice it is better to determine the dynamics of complex
dynamical systems from a more powerful principle than Newton’s laws of motion.
Lagrangian dynamics provides just such a principle.

Let ¢; 2 = 1,..., N be generalized coordinates for some system. That is, these
N numbers enable us to specify precisely the system’s configuration. For example, six
numbers suffice to specify a configuration of a rigid body such as a hard-boiled egg:
we can take (¢1,¢2,¢3) to be the coordinates in some system, such as spherical polar
coordinates, of the body’s centre of mass, and (¢4, ¢5, ¢s ) to be the three angles that are
required to define its orientation. (Box 1 defines Euler angles, the standard angles
for specifying the orientation of a rigid body.) The number of generalized coordinates
N required by a system is called the system’s number of degrees of freedom.

At each instant our system is at some point in configuration space — an imag-
inary N-dimensional space for which the ¢; constitute Cartesian coordinates. As the
system moves, its representative point in configuration space sweeps out a path q(t).
Since Newton’s laws of motion are 2nd order in time, we expect this path to be uniquely
determined by specifying at some time #; both q(#1) and ¢(¢1). In Lagrangian me-
chanics we take rather a different point of view: we do not specify q(#;) but instead
specify q at a second time t5. That is, we ask what path does our system follow if its
configuration at time t; is q(t1) and at time ¢ is q(¢2)? For reasons that give deep
insight into the connection between classical and quantum mechanics, it turns out that
the sought-after path q(t) is the path that extremizes a certain quantity S. Our next
task is to introduce the mathematical machinery required to define S and to show that
it is extremized on the Newtonian path. At the end of the course we shall investigate
the connection between the extremization of S and quantum mechanics.

1.1 Paths, functionals & the calculus of variations

Before a 'plane takes off from New York for London, its computer chooses an optimal
path x(t); i.e., it finds that sequence of longitudes, latitudes and altitudes at each
moment ¢t of the flight which, given prevailing winds, will get it to London at the
prescribed time with least expenditure of fuel. The quantity of fuel required to get to
London in a given time is a single number F that depends on the whole path x(t); one
says that F' is a functional F[x] of the path x(#).
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The simplest functionals are integrals along the path of functions of x(¢) and its
derivatives with respect to ¢:

Fi[x] E/t2|x(t)|2dt
Fy[x] E/t2|>'<(t)|2dt
F3[X]E/t2x-5((t)dt

1

How do we find the path that minimizes a functional

Flx] = /t "%, 1) dt ? (1.1)

Let X(t) be the minimizing path and let 5(¢) be a small variation, so that x(t) =
X(t) +m(t) =~ X(t). We insist on ) vanishing at t = t1,¢5 so that X(¢) and the modified
path both start and finish at the same places at the same times. Then'

FR| < Fixl= [ fx+mn5+0,0)d
t2 . 0 0
:/t <f(i,i,t)+a—i-n+a—£-ﬁ+--->dt (1.2)
_ 2 Of of .
:F[X]_|_/t1 <8_X'n+8_)'('n+”'>dt'

We now integrate by parts the second term in the integral of the last line:

I BRI [g—f"} [ GG e (13)

1 t1

Since n(t1) = n(t2) = 0, the [.] vanishes. Putting this into (1.2) we have

OZF[X]—F[X]:/tt2 [(g—i—%g—i)-m---}dt. (1.4)

This relation must hold for any 1, no matter how small. So the higher terms indicated
by +--- can be neglected. The remaining integrand is proportional to 1, so if it were
non-zero for some particular function n(t), it would have the opposite sign for n' = —n.
The inequality on the extreme left would then be violated for one of i of n'. Hence

3
dx;

a
1 We use the convention that y - ™ = E Y; -
7
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the integral must vanish for all 5. This is possible only if the coefficient of 1 vanishes
for all t; < t < t9: if it did not vanish for some ¢, say ', the integral would fail to
vanish for the particular choice 7 = 6(¢f — t'). So X(¢) minimizes F if and only if

— L _Z_y (1.5)

all along the path ().

Eq (1.5) is called the Euler-Lagrange equation (‘EL eqn’), and the theory that
underlies it is called the calculus of variations. It is one of the few results we have
in the theory of functionals—one everywhere in physics encounters problems that cry
out for a fully fledged calculus of functions that shows how to integrate, Taylor expand,
exponentiate etc functionals the way we do functions.

Legend has it that the calculus of variations was invented by Newton after dinner
one evening to solve this challenge problem (set in 1695 by Johann Bernoulli):

Example 1
A bead slides on a smooth wire that passes through two rings, one at the origin,
the other at (z',y',2") = (20,0, —20) with zg > 0. To what curve (the ‘brachys-
tochrone’) must the wire be bent in order to minimize the time required for the
bead to slide from rest at the upper ring to the lower ring?

Solution: The optimal curve obviously lies in the plane y' = 0. It is convenient
to work in coordinates (x,y, z) such that z increases downwards. Then the time

of flight 1s
/ZO dz
T = .
0 z
But %(xZ —|- 22) =gz, so Z = \/292/[((11'/(12)2 —|— 1] and

—/ZO—dZ (d—x>2+1 (1.6)
= 0 29z dz ' '

We need to minimize 7[x(z)] from (1.6) with respect to the path x(z). We may
use the EL-eqn (1.5) provided we make the substitutions

t— 2, f<:1;,j—j,z> = \/2157 <j—j>2—|—1. (1.7)

Since f does not depend on z, the optimal path satisfies

Ozdi<f¢<j//iﬁ>

z Az
= 1/ d
“(2) /0 1Az

which implies
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where A is a constant of integration. In terms of variable sin® § = Az the answer
1s

r = %(9 — %sin29>. (1.8)

If we write ¢ = 26 this may be written z = (1 — cos ¢)/2A4, v = (¢ — sin¢)/2A4,
which is a cycloid with the origin at its cusp. A may be determined by first
solving xg/z0 = (¢ — singg)/(1 — cos ¢g) for ¢y and then using this value in

A= %(1 — cos ¢g)/ 2.
(v

9\

1.2 The Principle of Least Action

As was stated above, the path q(t) taken through configuration space by a dynami-
cal system can be found by identifying the path which extremizes a quantity S[q(t)]
between specified locations q(#1) and q(t2) of the system at given times t1, t2. S is
called the action and is usually (but not invariably) minimized by the dynamical path.
Hence the idea that the dynamical path can be determined by extremizing .S is called
the principle of least action.

S takes the form of an integral over ¢ of a function L of q and q:

S= /t2 L(q,q) dt. (1.9)

t1

Here L is just a function (rather than a functional) of its arguments. It is called the
Lagrangian of the system. Since the dynamical evolution of the system is entirely
determined by L, writing down L amounts to specifying the physical content of the
system.

There is no entirely general rule for writing down L — one would hardly expect one
rule to be valid for every possible dynamical system — but there is a rule that works
for most simple systems: L is the difference between the system’s kinetic energy T and
its potential energy V;

L=T-V. (1.10)

Let’s se how this works out in a simple case: a particle of mass m moving in a grav-

itaional potential ®(x). Now T = %m)'cz, V =md. So L(x,x) = %mf{z — m®(x).

Setting f = L in the EL equations (1.5) we obtain the equations of motion as
—mx+m—=20 (1.11)

as required.



1.0 LLquatlolls O 1otion Iroil Lagrallgialls J

Exercise (1):
Consider a shell that is fired at #; and hits its target at t5. Explain in general terms
why its action would be larger if it flew on either a higher or a lower trajectory
than it actually does.

1.3 Equations of motion from Lagrangians

The Lagrangian provides a neat way of calculating the eqns of motion of a particle when
referred to an odd coordinate system because it is easier to transform a single function
to new-fangled coordinates that a set of eqns of motion. Consider, for example, motion

in a rotating frame.
Suppose both primed and unprimed coordinates share the

Yy Y same origin, but the primed coordinates rotate with angular
velocity w with respect to the unprimed coordinates, which
wxa are inertial. Then

xz Vinertial = I:l + w X r'.
w

So written in terms of the primed coordinates the k.e. is

T =Lmo? = Ll + w x ¢'|?
2V 2m“ + | (1.12)
= Imr'P + mr' - (w x ')+ Imfw x o'
The p.e. is just V(r', 1) so
L = %m|1r’|2 +omr - (wxr')+ %m|w xr']? —V. (1.13)

In writing down the EL-eqns we recall that r' - (w x ¥') = ¢’ - (r' x w). We then find

_d oL IL
((11t 81'" or' | ; (1.14)
= E(m]f-’ +mw xr') — |mr’ X w+ @<%m|w xr'|? — V)}
Collecting everything together we have finally
} : av.
mr' = 2mr' X w — 5 lﬂ where Veg =V — tmjw x r'|%. (1.15)
r

In a rotating frame there is a contribution to the “acceleration” r' from the Coriolis
force 2mw x I:’, and the potential needs to be augmented by a term that gives rise
to the centrifugal force rw? — (w - r')w. Forces such as these, which appear because
one’s frame is non-inertial, are called pseudo-forces.

A second example illustrates that Lagrangians work even for coordinates that
depend explicitly on time. In cosmology it is handy to use ‘comoving’ coordinates such
that the spatial coordinates of particles that move apart as the Universe expands are
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constant. Let the primed system be inertial and the unprimed system comoving. Then
r' = a(t)r, where a(t) is the cosmic scale factor. So

T = %mi"z = %m(ai‘ + dr)z. (1.16)
Writing the potential energy as V = m® the EL eqns are
0P
0= T [m(ai‘ + dr)a] — m(ar + ar)a + ma
Cleaning up we get
7 1 0%
2 -r=——— 1.17
r+ r—l— r iy ( )

A final example illustrates how to get T in a weird curvilinear coordinate system.
Oblate spheroidal coordinates (u, v, ¢) are related to regular cylindrical polars (R, z, ¢)
by

R = Acoshucosv ; z=Asinhusinwv. T
(1.18) 2

Slightly changing u, v and ¢ in turn while leav-
ing the other coordinates alone, generates small

displacements

z /A
o
\‘\\\\‘\\\\ \\\\‘\\\\‘\

6, = Adu(sinhu cos vR + cosh u sin vz) )
6, = Aév(—coshusinvf{—l— sinh u cos vz) .
~ —2
6¢ = R6¢¢- 1l 1 ‘ | AN ‘ Il Il ‘ 11 ‘ 11 \:
0 1 2 3 4 5

R/A

It is easy to check that these three displacement vectors are mutually perpendicular.
So the distance one goes on changing all of (u, v, ¢) simultaneously is
=18y + 8, + 8y|* =0, + 65 + 6
= A? [(5u)2(sinh2 u cos® v + cosh? u sin® v) (1.19)
+ ((51}) (cosh usin? v + sinh? u cos v) ((5(/5) cosh? u cos® v] '

= AZ{(cosh2 — cos v)[((?u) + ((51}) |+ cosh? u cos v(éqﬁ)z}.
Dividing through by d#? we get the kinetic energy in terms of (1, v, qb)

ds\ 2 )
T = %m(d—j> = %mAz{(cosh2 u — cos’ v)[u2 + 1}2] + cosh? u cos? vqbz}. (1.20)

The eqns of motion are therefore

d .

77”LA2{E [((COSh2 U — Cos2 v)u] — %SlﬂhQu(uz + 1-)2 + C0s2 v¢2>} n aa—v 0
u

mA E[((cosh u — cos® v)0] — Lsin2v(4? 4+ 0% — cosh®ug?) ¢ + A 0
v
: av

2| 4 9 . v _
mA dt<COSh U Ccos vqﬁ)] + 3 0.
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1.4 Lagrangian for a rigid body

Lagrangian dynamics really comes into its own for the dynamics of a rigid body — that
is an object such as a spanner that contains a vast number N of particles that are so
strongly coupled to each other that we may consider the distances between them to
be fixed. In this approximation, the coordinates of every particle are known as soon
as we have determined the six generalized coordinates that are required to specify the
position and orientation of the body. Mathematically, if r; is the position vector of the
ith particle, ri(q1,...,¢6). Newton’s law of motion states that for ¢ =1,..., N

mit; — F; =0 (1.21)

where F; is the force on the :th particle. There are two contributions to F;: any

external force Fge) and the internal stress f; that keeps this particle in its alloted
position relative to the other particles in the body. Now we imagine instantaneously
displacing the body such that r; — r; 4+ ér;. In view of (1.21) we have

N
0= Z(mlrl — FZ) . (SI'Z‘
i (1.22)

N
= Z(mlrl — Fge) — fl) . (SI'Z‘.

The contribution El f; - or; = 0 because the internal stresses do no work (the body is
rigid). So
N
0= Z(mlrl — Fge)) . (SI'Z‘.

?

Now the ér; are not all independent — they arise from a displacement of the entire

body so they are functions of six independent coordinates d¢y,...,6¢s. Hence we may
write
N 6 o, 6
0= Z Z mst; - a—f&@ — Z Q;0q;, (1.23a)
i=1 j=1 4 j=1
where the generalized force Q is defined by
al Or
_ (e) 7
= F.7 —. 1.23b
@ ; b Og 1:230)

Since the é¢; are all independent, (1.23a) implies that the coefficient of each d6¢; indi-
vidually vanishes. That is

N ory
ozzmiri-a—qj—cgj. (1.24)
=1
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Now we have that
6
ar; azri or;
. ) i — .. ori s 195
r Z 0.k T Z aqlaqkqm -I-Z aquk (1.25)
0 (1.24) can be written

:Zml< Z 825; QIQk-I-ZarZ '>'§—Z—Qy‘. (1.26)

=1 k=1

By the chain rule the body’s k.e. is

N 6
or;
T=1%"m Zar drl (1.27)
i=1 =1 Zk
SO 6
8T 8ri . 8ri
9L N, . 1.28
9q; Z (; Iqn Qk> 9g; 129
and

d /0T al o’ri . . or; .\ Or;
It <aqj> 2_; sz; dqidgr "M T 2= By q’“) dq;
- . (1.29)
r; . r; .
_I_ . .
() (S
This expression for (d/dt)(0T/0¢;) contains two of the terms that appear in equa-

tion (1.26). Unfortunately its last term is unwanted. We can obtain an alternative
expression for this unwanted term by calculating

o = Z (S ai) (Sopsgir) (1.50)

Hence we can write (1.26) as

oT oT
0:_<_‘>___ - 1.31
Now we specialize the the case in which @); is generated by a potential V: @Q; =
—(0V/0q;). Then equation (1.31) is easily seen to the EL equation for L =T — V.

This analysis shows that we can obtain the equations of motion of any rigid body
from the EL equations as soon as we have expressions for the body’s kinetic and
potential energies in terms of any set of independent coordinates. The analysis is
easily extended to the case of a body that is made up of several rigid bodies that
swivel or slide smoothly on one another.
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Box 1: [Euler Angles

To specify the orientation of a rigid body, we
imagine starting with the body axes b; aligned
with the coordinate axes and then moving to an
arbitrary orientation by compounding three ro-
tations. We label the body axes by, by and by
according to whether they start parallel to i, j or
k. Now we rotate by ¢ about k, then we rotate

by 8 about the new position of by and finally we
rotate by ¢ about the new position of bj.

Note:

Notice that the dimensions of the generalized force (); are energy divided by those
of ¢;. The latter is frequently dimensionless (because it is an angle, for example),
so generalized forces don’t necessarily have dimensions of force!

Let p(x) be the density of a rigid body that is rotating with angular velocity w
about the coordinate origin. Then the body’s angular momentum about the origin is

J:/d3x,ox><(w><x)

(1.32)
= /d3x,o (22w — (w - x)x].
We rewrite this formula in tensor notation as
J; = Zfijwj where I;; = /d3xp(:1;2(5ij — z;25). (1.33)

J

Here ¢;; is the 75 element of the identity matrix: it is zero if ¢ # 7, and unity if 7 = j.
The matrix I defined by (1.33) is the body’s moment of inertia tensor. Since it is a
real symmetric matrix it has real eigenvalues I; and eigenvectors b;. The b; are called
body axes and the I; are called principal moments of inertia. When the body
is rotated, the body axes rotate with it so they should be thought of as fixed within
the body. According to (1.33), when the body spins such that its angular velocity
lies along a body axis, its angular momentum is parallel to its angular velocity, and
the proportionality constant between these two vectors is the appropriate principal
moment of inertia.
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The kinetic energy of our spinning body is
T= %/d3x,o|w x x|?

= %/d?)x,ow % X (w x x)] (1.34)

—1.,.71.
—ZwIw.

This expression is especially simple in the body-axis frame:

3
T = % Z Liw?, (body-axis frame). (1.35)

=1

If all three moments of inertia are different, evaluating 7' from (1.35) in terms of
the derivatives of Euler angles (Box 1) is tedious. So consider the case I; = I of an
axisymmetric body, such as a saucer. Since the Euler angle v is a rotation about the
final position of bg, it is clear that ;/) contributes ¢b3 to w. Since I; = I; we can
adopt any two mutually orthogonal vectors in the body’s equatorial plane as by and
b2. So let’s choose by to be the axis about which we rotated through Euler angle 6.
Then 6 contributes by to w. An increment in ¢ rotates the system about k. This
lies in the plane of by and bz and is inclined at angle 6 to b;. Hence qb contributes
q'ﬁ(cos 6bs — sinfby) to w. Adding all three contributions together to form w and
substituting the result into (1.35) we find that the kinetic energy of an axisymmetric
body 1is ‘ ‘ ‘ ‘

T = %Il(qﬁz sin29—|—92)—|— %I3(¢COS€-|—77Z))2. (1.36)

The potential energy of an axisymmetric body can depend only on 8 and is usually
easy to write down for any particular physical situation. Hence with (1.36) in hand
the Lagrangian follows easily — see the problems.

1.5 Lagrangian for motion in an e.m. field

The simple rule L = T—V does not work for a charged particle that moves in a magnetic
field B. To see this, recall that B does no work on the particle, so it contributes to
neither T nor V. Hence it cannot appear in equations of motion that are derived from
only T and V. We now show that the correct equations of motion follow from

L=1mx*+Q(x-A—9¢), (1.37)

where @ is the particle’s charge, A(x,t) is the magnetic vector potential and ¢(x,1) is
the electrostatic potential. Indeed, (1.37) gives the action as

S = / [imx® + Q(x- A — ¢)] dt, (1.38)

so the EL eqn is

%(miﬁ—QA) +QV(o—x-A)=0. (1.39)
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Here the derivative w.r.t. t is along the path, so

dA  0A .
E = E ‘|‘(XV)A (1.40)
The partial derivative here can be combined with the V¢ term in (1.39) to produce
the electric field E = —V¢ — 0A /0t. Putting all these things back into the EL eqn
(1.39) yields
mx=Q[E+V(x-A)—(x-V)A]. (1.41)

It’s now straightforward to show that the last two terms on the right of (1.41) equal
x X B as one would hope: bearing in mind that Vx = 0 we have

x X B=xx(VxA)
=V(x-A)—(x-V)A

Thus the EL eqn applied to the action (1.38) gives
mx = Q(E +x x B) (1.42)
as required.

Note:

The action (1.38) looks rather arbitrary at this stage but is revealed to be beau-
tifully natural when one looks at the problem in a relativistically covariant way,
as one should.

1.6 Normal modes from Lagrangians

Obviously, when a system is in equilibrium all its time derivatives vanish. From the
EL eqns we infer that equilibrium configurations correspond to 0V /d¢; = 0, where ¢;
is any coordinate. By expanding V(q) around the stationary point qs corresponding
to an equilibrium configuration and plugging the expansion into the EL eqns, one sees
that the equilibrium is stable if q, is a local minimum of V', and unstable otherwise.

When slightly disturbed from an stable equilibrium, the system will oscillate in
a motion that can be represented as a superposition of normal modes. Lagrangians
provide a relatively painless route to the frequencies and forms of these normal modes.
The trick is to expand L(q, q) in a Taylor series around the equilibrium configuration
q = qs, q = 0, discarding terms of higher than second order in 6q = q — q, and its
derivatives. Thus we write

L~ %Z <MZ](5ql(5q] + CZ](Sql(Sq] + %Fijéqi(SQj) + ZA16QZ + Lo, (1.43)

where M, C, F and A are constant matrices or vectors. Since the EL eqns involve
only derivatives of L, we can discard the constant Ly. It is also easy to check that the
term involving A makes no net contribution to the equations of motion. Nor does that
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involving C unless the latter is antisymmetric, which it won’t be in practice. So we

take the EL eqns to be
> Miji; =Y Fyag. (1.44)
J J

This is easily solved by writing q(t) = Qe'“!, whence the eigenfrequencies w are the
roots of

det(F + w*M) = 0. (1.45)
Example 2

The governor of a steam engine contains two balls of
mass m that are mounted on light rods, and these are
in turn attached to a vertical axis. The plane of the
rods rotates at constant angular velocity € about the

vertical axis. A spring connects the two rods in such
a way that the potential energy stored in the spring
is %k times the square of the distance between the
centres of the balls. Find a point of equlibrium and

determine the frequencies of the normal modes.

Solution: Application of the cosine law to the triangle formed by the balls and
their point of suspension shows that the potential energy is

V = —mga(cos ¢ + cos ) + %kaz [2 — 2cos(¢ + 9)]
Subtracting this from the kinetic energy, we find that
L= %ma2(¢2+92)—|—%ma292(sin2 ¢-+sin? 8)+mga(cos d+cos §)—ka [1—cos(q§—|—9)] )

By the system’s symmetry, there is a point of equilibrium with ¢ = 8 = ;. Setting
to zero OL/06 evaluated at this point, we find the equlibrium point to satisfy

sinfy =0 or
. : ] ;
0 = ma’Q?sin By cos §y — mgasin §y — ka®sin26, = cos On = Yy
= — 9
02 — 202’

where w? = g/a, w2 = k/m. At (6, 6;) the second derivatives of L are

O*L 9 2
502 = (mQ* — k)a” cos 20y — mga cos b 2L ,
pog 2 2 2604 = —ka”“ cos 26,
902 = (mQ* — k)a” cos 260y — mga cos b,
2 2
Hence the equations %<Z_§> = 2912; 00 + 88981;5 0¢ etc. that govern the normal

modes are

- 2 2 2
<(59> _ (:1; y) <69> where z = (27 —w;)cos 26y — w, cos by (1.46)
6¢ y 6¢ y = —w? cos 26,
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The normal frequencies w are given by the eigenvalues of the matrix: w? =
—x £+ y The lowest squared frequency, wg cos By — Q% cos26,, is negative for
0% > wZ cos by / cos 26, which indicates that the system is unstable for large (2.

Example 3
A cylinder of mass m and radius a rolls on a rough horizontal table. A second
cylinder, mass m and radius %a rolls inside the first. Find the normal frequencies

for small disturbances from equilibrium.

Solution: Let 6 be the angle through which the first cylinder has turned from
equilibrium, and ¢ be the angle through which the second cylinder has rolled
relative to the first (see figure). Then the line between the two centres makes an
angle

p=6—1 (1.47)

2
with the vertical. The kinetic energy of the first cylinder (translational plus rota-
tional) is
T, = %m(aé)z + %mazéz. (1.48)
The motion of the centre of the second cylinder is a compound of the leftward
motion af of the centre of the first cylinder, plus %a;/') tangent to the line joining
the centres. The second cylinder rotates with respect to inertial space at angular

velocity q'ﬁ—l— ;/) The total kinetic energy is therefore
T = m(aé)2 + %m [(%a;/) cos ) — aé)z + (%a;/; sin ;/))2] + %m(a/Q)z(q; + ;/))2 (1.49)
The potential energy is simply
V= —mg%acos 1. (1.50)

In T, which is quadratic in the velocities, we set ¢ = 0 and we expand V to second
order in ¥, to find ‘ N ‘
T = Yma? (38 + 166+ 167),

1.51
V' = constant + imga(G — %qﬁ)z ( )
Defining wy = y/¢/a the equations of motion become
504+ 16+ w2(0—L1g) =0,

+1d 1o 1s)=0.

The eigenfrequencies are now straightforwardly found to be w = 0 and w = v/2wy.
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1.7 Noether’s theorem

A constant of motion is any function C(q,q) that satisfies dC/dt = 0, where q(t)
is a solution of the eqns of motion. For example, in a ‘conservative’ system, energy is
conserved, so E(q,q) is a constant of motion. Finding a constant of motion is a big
step towards obtaining a general solution of the equations of motion.

In general, a system with N degrees of freedom ¢1,...,gn admits 2N — 1 inde-
pendent constants of motion. We show this by arguing that given (q,q) at any time
t, the equations of motion allow us to give the position and velocity (q(o), q<0>) at any

reference time ty. Thus q( ) or ql( ) is a function falq,q,t) with o = 1,...,2N. On

eliminating t between these 2N functions, we have 2N — 1 constants of motion.

It seldom happens that we can find 2N — 1 constants of motion—a rare exception
is the case of motion in a Kepler potential V' oc 1/r. In fact it turns out that essentially
complete information about solutions of the equations of motion can be extracted from
N constants of motion. A system for which N constants of motion can be found is
said to be integrable.

A theorem proved by Emmy Noether (1882-1935) provides a powerful way of
extracting constants of motion from Lagrangians. Noether’s theorem involves identi-
fying a flow in configuration space that leaves L invariant. A ‘flow’ is an infinitesimal
transformation aq

q—q =q+ %5/\ (1.53)

For example, the transformation x — x + 16, is a flow.

A flow changes the path q(¢) into the path q'(#) and thus changes the value of the

Lagrangian at time t by

L L
sz = 9L sq+ 9L 54 (1.54)

dq
d4q
Notice that 6q is well defined: 6q = a—

Invariance of L just means that L takes the same value at all points that are
joined by the flow. Noether’s theorem states that if ¢ L vanishes along the dynamically
determined path, then

dq 0L

A\ aq
is a constant of motion. Thus from the invariance of L under translation x — x + 16\
along the z-axis, Noether’s theorem deduces the constancy of

. 0L 0L
5 = 5 (1.56)

For a particle moving in a velocity-independent potential this is just the z-momentum

(1.55)

ma.
The proof of Noether’s theorem is simple. Equating to zero equation (1.54) for

6L we have oL oL
0=0L = S0q 4 =
Jq

74 - 6q. (1.57)
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Using the EL eqns to eliminate 0L/dq this becomes

= i{og) 00+ G v .
d /0L '
- 3(5q 99)

and the result follows on writing 6q = (dq/dA)dA.

Consider the proof of conservation of angular momentum by Noether’s theorem.
A rotation by 66 about the unit vector n changes x by é6n x x. So if L is invariant
under this rotation, the following is a constant of motion:

. oL
JEHXX-a—,
aj‘j (1.59)

For a particle moving in a velocity-independent potential this is just the component of
mx X X parallel to n.

Example 4
A certain system with coordinates z, y, and z has Lagrangian

L= %(ml:ijz +may? + mgz'z) + A(t)z — %k[(:z; — y)2 +(y — 2)2 +(z — :1;)2],

where my, mg and k are constants and A(?) is a given function of time. Obtain
an expression for A(t) — A(0) in terms of the values of #, y and Z at time ¢ and at
time zero.

Solution: L depends only on the difference between coordinates, so it is invariant
under (x,y,z) — (z + €,y + €,z + €). The associated invariant is

oL 0L 0L . .
—‘-|-—‘—|-—_:m1(:1;—|—y)—|—m22—|—z4(t) (1‘60)
ox Oy 02

SO

Here’s an application to motion in a uniform magnetic field B = Bk. Let’s choose
A = (—By,0,0). Then by (1.37) L = %m:i;z — @QBya is invariant under two flows: (i)

X — X + 16X and (ii) x — x + kéA. Hence we have two invariants

= _j;:va_QBy ;op. = a—Z = mv,. (1.62&)

Choosing A = (0, Bx,0) we find a third invariant for the same physical problem:

L
Py = N = muvy + QBz. (1.62b)
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The physical meaning of p. is obvious, but what do p, and p, mean physically? Add

them up:
P=yp, +1p, = m(v, +1v,) + QB(1iz —
P Py ( ‘ v+ OB v) where £ =z +1y. (1.63)
=mé +i1QB¢
Solving this first-order d.e. for £ we find
. iP QB
t) = Rk h = — 1.64
) = €07 + L where o= (1.64)

is the Larmor frequency. It is now easy to see that the real and imaginary parts of P
encode the y and = coordinates of the guiding centre around which the particle gyrates.

1.8 Constraints

Sometimes it 1s convenient to work with more coordinates than a system has degrees of
freedom. Suppose, for example, that the system consists of a dumbell of length s that
is free to slide on a smooth table. This system has three degrees of freedom, namely
the position of the centre of mass and the orientation of the dumbell. But we might
prefer to describe the system in terms of the x and y coords of the dumbell’s particles.
These are not independent, but satisfy the constraint

(21 —29)” + (1 —y2)* = 57 (1.65)
The dynamics of the system are obtained by extremizing the action subject to this

constraint equation. Lagrange multipliers enable us to do this simply. We write the
constraint equation as C'(q) = 0 and evaluate

0:6S—|—/dt/\60

— /t2 dt Zéqi{g—; — %(g;) —|-/\gch,

tl ;

(1.66)

Here A(q,t) is an arbitrary function. As in Lagrange’s standard argument, we choose
A to ensure that the coefficient of one of the 6¢; vanishes, and then conclude from the
independence of the remaining ¢; that their coefficients must vanish too. Hence we
have for every ¢ that

d /00N AL  aC
E<aq¢> = 5 o0 (1.67)

Specifically for our dumbell example, L = %m(v% +v2), so the equations of motion are

mi; = =2XNx1 —x2)  mi = —2My1 — y2) (1.68)
mi'z = 2/\(1’1 — 1’2) myz = 2/\(y1 — y2) ‘
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Adding the lower to the upper equations we obtain the equations of motion of the
centre of mass: R = 0, where R = %(rl + r2). Dividing the top left equation by the
bottom right equation and the bottom left equation by the top right equation and then
subtracting the resulting equations, we obtain zy — zy = 0, where © = 1 — 2 etc,

which expresses conservation of the system’s angular momentum: %(:i;y —zy) =0.

We shall see below that p; = JL/0¢; is the momentum ‘conjugate’ to ¢;. Equation
(1.67) expresses the rate of change of p; as a sum of two generalized forces. The
term OL/0q; is simply minus the gradient of the potential that would be associated
with the coordinates in the absence of the constraint. This vanishes in our dumbell
example. The term —A(0C/0q;) describes the force associated with maintenance of
the constraint. In the case of the dumbell, for example, we have that the tension T in
its bar is given by

Example 5

A lawn-mower engine contains a vertically mounted piston

cylinder of mass m that is coupled to a fly-wheel of moment of inertia
I by a light connecting rod of length I. The system has only
one degree of freedom but two natural coordinates, ¢ and .
The constraint equation is

fly wheel
12 =22 4% —9rzcos 0. (1.70)
The Lagrangian is
L= %Iq'ﬁz + %m:i;z — mgz. (1.71)

From (1.67) the equations of motion are

d
d—(m:z;) = —mgx — \(2x — 2r cos ¢)
S - (1.72)
E(Iqﬁ) = —A2rzsin ¢.
Eliminating A we find that = and ¢ satisfy the d.e.
t ,
i 4+ <co ¢ B CoseC¢>I¢ +mg = 0. (1.73)
r

Sometimes it is in principle possible to write the Lagrangian in terms of as many
coordinates as the system has degrees of freedom. In such a case the constraint is called
holonomic. Clearly, the constraint (1.65) of the dumbell is of this class, although in
practice holonomic constraints will be more complex than (1.65) and correspondingly
algebraically hard to eliminate.
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Sometimes a constraint cannot be eliminated, even in principle. Such unavoidable
constraints are called non-holonomic. The classic example of a non-holonomic con-
straint occurs in the problem of a rough ball moving on a rough plane. Five natural
coordinates for the problem comprise the (x,y) coordinmates of the ball’s centre to-
gether with three Euler angles to specify the ball’s orientation. Two constraints couple
the velocities of these coordinates since if the ball is moving parallel to either axis, it
must be rolling and therefore the Euler angles must be incrementing in a definite way.
On the other hand, it is not possible to eliminate any of these coordinates because
it turns out that by rolling the ball to a chosen position, spinning it there about its
point of contact with the plane and then rolling it back, one can arrange for any given
values of the Euler angles to be associated with given values of (z,y). We can obtain
equations of moton for the ball’s five coordinates by a straightforward generalization
of the formalism described above: we express the ball’s Lagrangian (its kinetic energy)
as a function of q = (z,y, ¢,6,¢) and their derivatives and then extremize the action
subject to the two constraints Co(q,q) (o = 1,2) on the positions and velocities.

2 Hamiltonian Dynamics

The Lagrangian of a dynamical system depends on 2N variables, the system’s N
coordinates and N velocities. The 2N-dimensional space of initial conditions (q, q) is
called phase space. The eqns of motion allow one to determine uniquely the system’s
future and past from its present position in phase space. Geometrically, through every
point of phase space there runs a curve along which the system evolves. These curves
never intersect one another.

It turns out that (q,q) are not the ideal coordinates for phase space. The natural
coordinates are (p,q), where

= — (2.1)

is the momentum ‘conjugate to q’. Changing coordinates from q to p is analogous in
thermodynamics to replacing the volume V by the pressure P since P = —(9U/0V )s
just as p = (OL/0q)q. We are replacing a variable by the gradient of some function
of that variable. Transformations of this type are called Legendre transforms — see
Box 2. When in thermodynamics we eliminate V in favour of P it is expedient to
introduce a new function H(S, P) = U + PV. So here we introduce the Hamiltonian

H(p,q)=p-q- L, (2.2)

where it 1s understood that q is to be eliminated in favour of q, p, and t using equation

(2.1).

Example 6
When the single degree of freedom of the lawn-mower of Example 5 is taken to be
¢ (that is, = is considered to be a function of ¢), the momentum conjugate to ¢ is

oz

pg = <Z_g>¢ = I+ i (2.3)
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Box 2: Legendre transforms

Let ¢g(z) be a convex function, that is, a function such that ¢"(z) > 0. Then
the Legendre transform g(p) of ¢ is defined by

where x(p) is implicitly defined e
as the root for given p of P=9

g(p) = ap — g(x) (B2.1)
The convexity of ¢ guarantees that the equation defining x(p) can be solved for
any p that lies between the maximum and minimum gradients of g. Thus g(p) is
well defined. It is straightforward to show that Legendre transforms are invertible.
In fact a Legendre transform is its own inverse: g(z) = g(z).

It is often helpful to consider the function G(x,p) = xp — g(x) of two indepen-
dent variables (x,p). Graphically, G(x,p) is the vertical displacement at ordinate
& between the straight line y = pr and the upward curving graph of ¢(z):

Yy=px

alp)si S 7=E)

X

The Legendre transform g(p) is the value of G at the point x(p) at which the curve
runs parallel to the line. Since

oG o

or U7 ox
x(p) is the value of @ which extremizes G for given p, as is already evident from
the figure.

(B2.2)

Differentiating the constraint eq first w.r.t. ¢ and then w.r.t. qb we have

0:2:]2;(:1;—rc0s¢)—|—2r:1;sin¢q;

= 8_:1; T — T Ccos r sin (2:4)
O_aﬁ ¢) + ¢

po= [T m ()G 2.3)

T —TCcoso

Hence

The total derivative of the Hamiltonian is

S oL oL . oL
dep-dq—l—q-dp—(a—> -dq—(a—,> -dq—<8—> dt
a4/ g, a4/ g, ¢ 9,9

’ 2.
e (), - (5)
q-dap aq i q o i )

)
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where the first and fourth terms cancel by (2.1). But we may also write

OH OH OH
ar = (22 .d+(_) .d+(_) . 21
< 8p >q,t P 8q p,t a ot q,p ( )

Since equations (2.6) and (2.7) must be the same, we have

q_<a_H> . (a_H> __<3_L> . (a_H> __<8_L> (2.9)
Jp q’t’ oq ) 5, dq q,t’ Ot ) qp ot q,q‘ '

Using the EL eqns and simplifying the notation, the first two of these equations lead
us to Hamilton’s equations

. OH ) OH
Q—% 3 P——a—q- (2-9)

Along a trajectory (q(t), p(t)), the Hamiltonian H(q(t), p(t), t) changes at a rate

dH OH . OH . O0H O0H

A " oq o P e

Hence, if 0L/0t = 0, it follows from equation (2.8) that the Hamiltonian is conserved

along all dynamical trajectories. We can think of this as an extension of Noether’s
theorem: the integral H arises from the time-translation invariance of L.

(2.10)

Thus, for example, consider motion in the time-independent potential V(x). If we

work in Cartesian coordinates, the Lagrangian L = %mf{z — V(x) depends only on x
and x, so 0L/0t = 0. Hence the Hamiltonian H is conserved. The physical quantity

to which H corresponds is easily found. We have p = 0L/0x = mx and

H(x,p)=p-x—1L
_ i_|_v(x)7 (2.11)

2m
which 1s simply the total energy E = k.e. + p.e.. Thus for motion in a fixed potential
the Hamiltonian is equal to the total energy.

What are p and H in a rotating frame? From (2.1) and (1.13) we have
p=m(r+w xr) (2.12)
which shows that p isn’t always the same as mq. In fact, here p is identical with mass

times velocity in the underlying inertial frame.

Using (2.12) to eliminate r from (2.2) and (1.13) we find that the Hamiltonian for

a rotating frame is
2

Hzp-(E—wxr>—p——|—V
, 2m (2.13)
:§—m+V—w-(r><p).

The first two terms sum to the energy in an underlying inertial frame, and the last term
is w-J, where J is the angular momentum. Unless V' is axisymmetric [V = V(|w x r|)],
the energy in an inertial frame changes as V does work on the potential, but H is
nonetheless constant.
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Exercise (2):
Show that in a rotating frame we may write H = %m|i‘|2 — %m|w x r|?> + V. What
is the physical interpretation of the second term on the r.h.s?

From the Lagrangian (1.37) for non-relativistic motion in an e.m. field we find
p = mx + QA. (2.14)

Thus in an e.m. field p is not just mx. Problem xx explains this result by demonstrating
that the e.m. field contributes QA to p. In quantum mechanics the distinction between
p and mx is of the utmost importance because it turns out that when one quantizes,
it is p rather than mx that should be replaced by —iAV.

Using (2.14) in (2.2) we find H for motion in an e.m. field is
H=(mx+QA) x— %m|X|2—|-Q(XA—q$)
~ Ll + Q0 (215)
1
= o lp— QAP + Q0.
m

Although H is just what one would naively think of as the energy, when expressed in
terms of p it looks odd.

2.1 Liouville’s theorem

If we imagine releasing a bunch of dynamically identical systems from neighbouring
initial conditions, then the ‘phase points’ describing these systems flow through phase
space like a fluid. This flow is governed by Hamilton’s equations (2.9). It is an
incompressible flow: the ‘velocity’” of the fluid is (p,q) and the divergence of this
velocity is

dvip.a) = (50 + 53
O°H  0*H
- <_ Opdq + 8q8p> =0

The divergence-freeness of the phase flow is known as Liouville’s theorem.

Let f be the probability density of systems in phase-space. Then conservation of
probability requires that f obey the continuity equation

0 .
a_{ +div((p.4)f)

0 of .  Of .

—a—{+£-p+£-q (2.16)
af of 0H  Of 0H

ot dp Oq ' dq Op

0=

where Liouville’s theorem has been used. The continuity equation of f in either of the
last two forms is known as Liouville’s equation.
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2.2 Poisson brackets and canonical coordinates

Let A(q,p) and B(q,p) be any two functions of the phase-space coordinates. Then
the Poisson bracket [A, B] is defined by

9A 0B 0A OB
A Bl = 5 5 0 T (2.17)

It is straightforward to verify the following properties of Poisson brackets:
(1) [AvB] = _[BvA] and [A—I_ B,C] = [A,C] + [B,C],
(ii) [[A,B],C]+[[B,C], Al +[[C,A],B] =0 (Jacobi identity),
(iii) The coordinates (q, p) satisfy the canonical commutation relations
[pi,pil = lgi;q;] =0 and [qi, p;] = 6ij. (2.18)

(iv) Hamilton’s equations may be written

¢ =g, H] 3 pi = [pi, H]. (2.19)

If we write (w; = ¢i, wn+; = pi ¢ = 1,...,N), and define the symplectic
matrix c by

+1 forf=a+N,1<a, f<2N;

Cap = [Wa wg] = {O otherwise, (2.20a)
we have N
2
JA OB
a,Bf=1 @

Any set of 2N phase-space coordinates {W,} (o = 1,...,2N) is called a set of canon-
ical coordinates if [W,, W3] = cqp. Let {W,} be such a set; then with equation
(20b) and the chain rule we have

2N
0A 0B W, OW,\ 0A OB
[A,B] = Z Caﬁ%% - Z (anﬁ awa 8wﬁ>8W,{ aW)\
52 o N ap o (2.21)
A OB A OB
= > (W, W] oW, OWx 2; AW oW

KA

Thus the derivatives involved in the definition (2.17) of the Poisson bracket can be
taken with respect to any set of canonical coordinates, just as the vector formula
V-a=73 .(0a;/0x;) is valid in any Cartesian coordinate system.

The rate of change of an arbitrary canonical coordinate W, along an orbit is

W, = W, (2.22)
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Box 3: Lorentz invariance & Symplectic structure

inertial coordinates +« canonical coordinates

Lorentz transformations <«  canonical transformations
Nuv < Cag

Lorentz invariant |x|* // dp - dq (Poincaré invariant )

where, as usual, w = (q,p). With Hamilton’s equations (2.19) and equation (2.21)
this becomes

: 8W 8w5 OH oW, 0H
Wa — Jwg Z 8w6 8w Ows Z 8w7 Ows (2.23)
= Wy, H].

Thus Hamilton’s equations (2.19) are valid in any canonical coordinate system.

Poisson brackets allow us to associate a one-parameter family of maps B, of phase
space onto itself with any function B(q, p) on phase space: from each point (qo, po) of
some (2N — 1)-dimensional surface in phase space we integrate the coupled ordinary
differential equations

dgq dp
TS [ 7B] T [ 7B]

D - T (2.24)

from the initial conditions q(0) = qg, p(0) = po. If the initial (2)V — 1)-surface is large
enough, the integral curves {q(b), p(d)} of B reach every point of phase space. Then
the map By is defined by

By(q(d'),p(b')) = (q(b+0"),p(b+0")). (2.25)

The function B(q, p) is indistinguishable from a Hamiltonian, since it satisfies Hamil-
ton’s equations (2.24), with b playing the role of the time ¢.

2.3 Canonical transformations*

Suppose you have a function S(P, q) of some new variables P;, ¢ = 1, N and the regular
coordinates ¢; such that the equation

aS

P= g (2.26a)

*

Lies beyond the syllabus
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can be interpreted as defining P(p,q). Then it turns out that the coordinates (P, Q)
are canonical, where

a5
= —. 2.26b
Q=2 (2.260)
That is, one may show (see Appendix I) that with these definitions, [@;,Q;] = 0,
(Q:, Pj] = 65, [P;, P;] = 0. The transformation (p,q) — (P, Q) is called a canonical
transformation and S the generating function of the transformation.

The function that generates a canonical transformation need not be of the form
S(P,q); other forms are S(P,p), S(Q,q) and S(Q, p). The generating function is al-
ways a function of one old coordinate and one new one. An entertaining transformation
is generated by S = Q - q:

25 a5

P:a—q—Q 3 P:%ZQ- (2.27)

Canonical transformations are closely connected to the one-parameter maps in-
troduced above. To see this consider functions S of the form

S=P-q+s(P,q)ou, (2.28)

where du < 1. For S of this form we have

Q=q+%;u; p=P+§%u =
d (2.29)

Thus S = P - q generates the identity transformation P = p, Q = q. Moreover,

Q-q O0s
su 0P
P—p__% (2.30)
ou  Oq

In the limit éu — 0 we can identify P with p on the right, and these equations become

dq d

_u = [qv 8] ) £ = [p,S], (231)

which is identical with (2.24). Thus canonical transformations generated by functions
of the form (2.28) may be thought of as infinitesimal canonical maps.

There is no fundamental difference between a map and a coordinate transforma-
tion: every map generates a coordinate transformation and every transformation a
map since one can treat changed coordinates as new numbers describing an old point
(a coordinate change), or as old numbers describing a new point (a mapping).
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2.4 Point transformations*

If(Qi(q), e =1,...,N) are any N independent functions of the generalized coordinates
q, then by equation (2.1) we obtain the new momenta P; = (8L/8Qi) by expressing
the Lagrangian as a function L(Q, Q) of the (); and their time derivatives. The co-
ordinate change (q,p) — (Q,P) is called a point transformation, because the new
coordinates are functions only of the old. It is straightforward to show that the new
coordinates are canonical, by evaluating their Poisson brackets.

The importance of these results is that it is often convenient to work in curvilinear
coordinates Q and derive the corresponding momenta P = (8L/8Q). Since the coor-
dinates (Q, P) are canonical, the Poisson bracket (2.17) can be equally well evaluated
by taking derivatives with respect to Q and P as with respect to q and p. Hence all
curvilinear coordinates have equal status in Hamiltonian mechanics.

Example 7
A particle of mass m and charge (); moves in a bound orbit around a fixed charge
Q)2 in the plane perpendicular to a constant magnetic field B. Determine the
system’s Hamiltonian in polar coordinates (r,6) on the orbital plane. Hence show
that mr26 + %Ql r? B is constant on the orbit.

Solution: The vector potential can be written A = %rBeg. From (1.37) the
Lagrangian is

L =Lim(i* +r26%) + Q (réérB S > (2.32)

4egr

so the momenta are

pr=mr  pp=mrif + %erzB (2.33)

Finally, the Hamiltonian is

2 1 22

p (po — 3Q1Br?) Q1Q:
H f) =" :

(pr,po;7:6) 2m + 2mr? + dmeyr
The constancy of pg follows because H is independent of 6. Notice that (2.33) is
not simply the translation into polar coordinates of equation (2.15), which gives
H in Cartsesian coordinates: when translating H from one coordinate system to
another one must pass through the Lagrangian.

2.5 Phase-space volumes*

Often, for example when doing statistical mechanics, one needs a credible defini-
tion of ‘phase-space volume’. If one is using Cartesian coordinates to describe a
system of n particles of mass m;, it is natural to take the volume element to be
dr = H?(m?d?)xid?)vi). But it isn’t immediately obvious what to use for dr in a more
complex case. In particular, if one decided to describe the system of particles by some

*

Lies beyond the syllabus
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curvilinear coordinates (x) and their conjugate momenta p, one would expect dr to

be of the form
" a(mZVZ,XZ) 3 3 )
dr = —d’p:d®q; | . 2.34

One of the most beautiful and useful results in the subject is that the Jacobian here
is just one. In fact, the Jacobian between any pair of canonical coordinates is always
one. That is, the volume of an arbitrary region is

V://v dequ://V dVpdVqQ, (2.35)

where (p,q) and (P, Q) are any canonical coordinates.

2.6 Hamilton-Jacobi Equation*

Suppose we could find N constants of motion I,...,Ix. And suppose it were possible
to find a system of canonical coordinates (P, Q) such that P; = I; etc. Then the
equations of motion for the P’s would be trivial,

0=P, =[P, H]
_ OH (2.36)
0Q;
and would demonstrate that H(P) would be independent of the @’s. This last obser-
vation would allow us to solve the equations of motion for the ()’s: we would have

_0H
- OP;

Q; =w;, aconstant = Q;(t) = Q;(0)+ wit. (2.37)
So everything would lie at our feet if we could find N constants of the motion and
could embed these as the ‘momenta’ of a system of canonical coordinates.? The magic
coordinates P = I and Q are called action-angle coordinates, the I’s being the actions
and the @)’s the angles.

Let S(I,q) be the generating function of the transformation between regular
coordinates (p,q) and action-angle coordinates. Then we can use this to eliminate
p = 05/0q from H, expressing H as a function of (I, q):

H(lLq) = H(Z—i,@. (2.38)

By moving on an orbit we can vary the ¢; pretty much at will while holding constant
the I;. As we vary the ¢; in this way H must remain constant at the energy E of the
* Lies beyond the syllabus

2 Notice that to be able to embed the I’s as a set of momenta, we require [Ii,Ij] = 0; functions

satisfying this condition are said to be ‘in involution’.
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orbit in question. This suggests that we investigate the non-linear partial differential
equation

H<g—i, q> = F, (Hamilton-Jacobi equation). (2.39)

If we can solve this equation, we identify the arbitrary constants on which the solution
S(q) depends with functions of the constants of motion I;. For example, the H-J eqn
for a free particle moving in two dimensions is

VS|2

2m

E (2.40)

We write S(x) = Sy(x) + Sy(y) and solve (2.40) by separation of variables:

constant = I, = <g—i>2 =2mE — <g—j>2

I, (2.41)

This example is very tame, but the technique works also for more complicated Hamil-
tonians that cannot be solved by other means.

The similarity between the H-J eqn and the time-independent Schrodinger eqn is
obvious.

2.7 The Hamiltonian principle of least action*

The principle of least action

§5=0 (2.42)

is concerned with paths q(t) through coordinate space. We can derive classical mechan-
ics from another, closely related, variational principle which involves paths (p(t), q(t))
through phase space rather than coordinate space. This principle is that the path
actually followed between (t;,q;) and (¢, qr) is that for which

65 =0 where S = /p -dq — H(p,q) dt. (2.43)

Here the path of integration runs between (t;, qi) and (¢, qs) — neither p(t;) nor p(t)
is constrained. Showing that this principle yields Hamilton’s equations (2.9) is easy:

. . 0H OH
55_/<5p-q+p-5 —%-6p—a—q-6q>dt

= [la=55) o0 (oo 55 st ol

Since 6q vanishes at ¢; and #; by hypothesis, the final term in (2.44) vanishes. Then,
with ¢p and d6q subject to arbitrary variation, it is clear that 6.5 = 0 only if the contents

(2.44)

*

Lies beyond the syllabus
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of the pairs of large round brackets in (2.44) vanish. But the vanishing of brackets is
precisely the content of Hamilton’s equations.

Notice that a very remarkable thing is being done with the variational principle
(2.43): we are treating p as quite independent of the value of q along the path. This
makes perfectly good sense from the point of view of phase-space geometry, but it
makes a mockery of our original definition (2.1) of p. This definition is recovered for
the true path as a consequence of the variational principle (2.43):

. 0H

q=—>—=--(p-q— L)
o dp . (2.45)
d aq/) op’

Recall that we introduced H as p - q — L, with q eliminated in favour of p. Now
that we are treating p as independent of q, p - q — H becomes a quantity different
from L; indeed, L depends only on the projection of a phase-space path (p(t),q(t))
onto configuration space, while p - q — H depends on p(t) as well as q(¢). Thus the
action principle (2.43) is entirely different from (2.42), although the extremal values of
the two integrals are the same because along the extremal path p = 0L/9q.

In Appendix II (2.43) is derived from the Schrédinger equation. The basic idea
is simple: from the Schrodinger equation we calculate the quantum amplitude to get
from (#,qi) to (#1,qs) and show that it can be expressed as a sum over all possible
paths between these events of amplitudes proportional to €%/? where S is defined
by (2.43). Then we argue that the only paths which make a net contribution to the
overall amplitude are those whose values of S lie within ~ & of a stationary value, since
the contributions of other paths are cancelled by oppositely signed contributions from
neighbouring paths. Thus the overall amplitude is dominated by contributions from
paths that lie within ~ h of the classical, extremizing, path, and from a macroscopic
point of view these paths are identical with the classical path.

Appendix I: Proof that generating functions generate canonical
transformations

We prove that given S(q,P), P and Q = 05/0P satisfy the canonical commutation
relations. From the chain rule we have that

2) _<3_P> .i)
ap q ap q oP q

oy o) L(wy o)
dq/, 0J4/)p 8qp8Pq'

Applying these formulae to p; and using dp; /P = §?S5/0¢;0P = 8Q/dq; yields
@@
N ;) q \04/,
Opi (0P 0Q
(o)~ (), (5,

(AL1)

(AL2)
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Multiplying these equations together and summing over j we find

an) <3Ql> PP :_<3pi> <3pi/>
;(a% o \ Ogir q[ - dqyr p+ 04 ) p

__»s oS _
-~ 0¢i0q;  0q;0qy

(AL3)
0.

Since the matrix 0Q/0¢; has an inverse by (AI2), this shows that [Py, P] = 0.

Working again from equations (AL.1) we have

(5),-(5), (50),
), Ga) ) (),
(), (&), (%),

(2), G- (3)

(AL4)

Similarly,

a‘ P/,
(5, (), (), o
-(5), (5), (1
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But kY _ 8275 5O
oP q_aqkaP7
0Q; oP Opk 0Q);
0-21=%(57), (o). (57, - (57)
j zk: or, ) \ope ) \op), " \ap; ),
_ 99, 00 (AL5)
OP; OP;
9*s 9*s

0. <

~ 9P,0P; OP;0P,

Appendix II: Derivation of (2.43) from the Schrodinger equation

We start by finding the amplitude A;2 to get from (#1,qy) to (t2, qz), where the interval
to — ty 1s small. In Dirac’s notation, this amplitude is

A12 = <Q2|¢7t2>7 (AII]-)

where [1),12) is the ket into which |qi) has evolved at t2. In other words, |¢,t2) is
the solution of the time-dependent Schroédinger equation (TDSE) for initial condition
|77Z),t1> = |q1> This 1s A

[ih,80) = e/ T q ). (AIL2)

Here the exponential is the operator with the same eigen-kets |E,) as the Hamiltonian
H, and eigenvalues equal to elf»(t2=1)/% where the E, are the eigen-values of H.

That is, A
GH (t2—t1) /b — Z |En>e_iE"(t2_t1)/h<En|- (AIL3)

(To prove that (AIL2) satisfies the TDSE, just substitute (AIL3) into (AIL.2) and
differentiate w.r.t. t3.) Our amplitude can now be written

Ay = (qa|e 7 HE2m10/0 g )

. (AIL4)
:/d3p<qz|p><p|6_lH(t2_“)/h|q1>,

where use has been made of the fact that [d®p|p)(p| is just the identity operator
since the states |p) of well-defined momentum form a complete set.

H and thus the function of it appearing in (AIl.4) is a function of the operators p
and q. Let’s assume that every p has been positioned to the left of every q. Then every
p can be considered to act to the left and be replaced by its eigen-value p, while every
q acts similarly to the right. So the complex number (p|e 1H 2=t/ q,) becomes
simply

. e—ipai/h

e—iH(t2—t1)/h< — e_iH(t2_t1)/

Plai) = N (AIL5)
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where H is the classical Hamiltonian evaluated at the classical phase-space point (p, q)
and we have used the fact that (p|qy) is just the complex conjugate of the wave-function
of a particle of well-defined momentum p. When we insert (AIL5) into (AIL4) and

similarly replace (qz|p) by a plane wave, we find
1 i

Equation (AIL6) for the amplitude to get from one event to another is only valid
for infinitesimal t5 — t;. There are two issues: (i) H may be time-dependent; (ii) for
finite 7 the operator e—iHT — 1 _iHr + %(ﬁr)z + - -+ involves high powers of H and
so many reversals of the order of the operators p and § will be required to ensure that
the p’s are to the left of all q’s. In view of these objections we use (AIL6) only for
small t2 — t;. Given two widely separated events (¢, qi) and (¢, qs), we express the
amplitude to pass between them by a particular path q; — q1 — ... — q¢ as the

product
A11A12 X oo X Am’f (AII?))

of m amplitudes of the form (AIL.6) over small intervals (t;_1,%;). We then obtain the
amplitude to pass between (¢, qi) and (t1,qs) by eny path by summing (AILT) over
all values of the intermediate positions q;. The final amplitude is

Aig = lim_ hi’% / H(d3pjd3q]‘) exp {% Z <Pk (dkt1 —gr) — H(tgyr — tk))}
k

= constant X /Dqu exp {%/ <p -dq — Hdtﬂ.
(AILg)
Here the symbol DpDq means one is to sum the integrand over all paths (p(t), q(t))
which pass through (#i, qi) and (¢, qr).

Thus, as claimed in §3.3, the amplitude to get from (¢, qi) to (¢, qr) is a sum over
all paths of e"5/" where S is the classical action for that path. When |S| > & the
contributions from non-classical paths that do not extremize S will cancel each other
out to high precision.

Exercise (3):
In (AILS8) replace H with %pz/m +V(q) and dq by qdt. Then do the integration
over every p; by completing the square and using f_oooo et dr = /7. Explain
the relation of the resulting expression for Aj; to the Lagrangian principle of least
action.
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