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Introduction ix

Introduction

These two volumes have grown out of about seven years of graduate
courses on various aspects of representation theory and cohomology of groups,
given at Yale, Northwestern and Oxford. The pace is brisk, and beginning
graduate students would certainly be advised to have at hand a standard
algebra text, such as for example Jacobson [128].

The chapters are not organised for sequential reading. Chapters 1, 2, 3 of
Volume I and Chapter 1 of Volume II should be treated as background refer-
ence material, to be read sectionwise (if there is such a word). Each remaining
chapter forms an exposition of a topic, and should be read chapterwise (or
not at all).

The centrepiece of the first volume is Chapter 4, which gives a not entirely
painless introduction to Auslander-Reiten type representation theory. This
has recently played an important role in representation theory of finite groups,
especially because of the pioneering work of K. Erdmann [101]-[105] and
P. Webb [204]. Our exposition of blocks with cyclic defect group in Chapter 6
of Volume I is based on the discussion of almost split sequences in Chapter 4,
and gives a good illustration of how modern representation theory can be
used to clean up the proofs of older theorems.

While the first volume concentrates on representation theory with a co-
homological flavour, the second concentrates on cohomology of groups, while
never straying very far from the pleasant shores of representation theory. In
Chapter 2 of Volume II, we give an overview of the algebraic topology and
K-theory associated with cohomology of groups, and especially the extraor-
dinary work of Quillen which has led to his definition of the higher algebraic
K-groups of a ring.

The algebraic side of the cohomology of groups mirrors the topology,
and we have always tried to give algebraic proofs of algebraic theorems. For
example, in Chapter 3 of Volume II you will find B. Venkov's topological
proof of the finite generation of the cohomology ring of a finite group, while
in Chapter 4 you will find L. Evens' algebraic proof. Also in Chapter 4
of Volume II, we give a detailed account of the construction of Steenrod
operations in group cohomology using the Evens norm map, a topic usually
treated from a topological viewpoint.

One of the most exciting developments in recent years in group coho-
mology is the theory of varieties for modules, expounded in Chapter 5 of
Volume II. In a sense, this is the central chapter of the entire two volumes,
since it shows how inextricably intertwined representation theory and coho-
mology really are.

I would like to record my thanks to the people, too numerous to mention
individually, whose insights I have borrowed in order to write these volumes;
who have pointed out infelicities and mistakes in the exposition; who have
supplied me with quantities of coffee that would kill an average horse; and
who have helped me in various other ways. I would especially like to thank
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Ken Brown for allowing me to explain his approach to induction theorems in I,
Chapter 5; Jon Carlson for collaborating with me over a number of years, and
without whom these volumes would never have been written; Ralph Cohen
for helping me understand the free loop space and its role in cyclic homology
(Chapter 2 of Volume II); Peter Webb for supplying me with an early copy
of the notes for his talk at the 1986 Arcata conference on Representation
Theory of Finite Groups, on which Chapter 6 of Volume II is based; David
Tranah of Cambridge University Press for sending me a free copy of Tom
Korner's wonderful book on Fourier analysis, and being generally helpful in
various ways you have no interest in hearing about unless you happen to be
David Tranah.

There is a certain amount of overlap between this volume and my Springer
lecture notes volume [17]. Wherever I felt it appropriate, I have not hesitated
to borrow from the presentation of material there. This applies particularly
to parts of Chapters 1, 4 and 5 of Volume I and Chapter 5 of Volume II.

THE SECOND EDITION. In preparing the paperback edition, I have taken
the liberty of completely retypesetting the book using the enhanced features
of LATE 2E, ASS-I#TEY 1.2 and Xy-pic 3.5. Apart from this, I have corrected
those errors of which I am aware. I would like to thank the many people who
have sent me lists of errors, particularly Bill Crawley-Boevey, Steve Donkin,
Jeremy Rickard and Steve Siegel.

The most extensively changed sections are Section 2.2 and 3.1 of Volume I
and Section 5.8 of Volume II, which contained major flaws in the original
edition. In addition, in Section 3.1 of Volume I, I have changed to the more
usual definition of Hopf algebra in which an antipode is part of the definition,
reserving the term bialgebra for the version without an antipode. I have made
every effort to preserve the numbering of the sections, theorems, references,
and so on from the first edition, in order to.avoid reference problems. The
only exception is that in Volume I, Definition 3.1.5 has disappeared and
there is now a Proposition 3.1.5. I have also updated the bibliography and
improved the index. If you find further errors in this edition, please email
me at djb@byrd.math.uga.edu.

Dave Benson, Athens, September 1997
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CONVENTIONS AND NOTATIONS.

All groups in Volume I are finite, unless the contrary is explicitly
mentioned.
Maps will usually be written on the left. In particular, we use the
left notation for conjugation and commutation: 9h = ghg-1, [g, h]
ghg-'h-1, and 9H = gHg-1.
We write G/H to denote the action of G as a transitive permutation
group on the left cosets of H.
We write H <G K to denote that "H is G-conjugate to a subgroup of
K". Similarly h EG K means "h is G-conjugate to an element of K".
Thus we write for example ® to denote a direct sum over conjugacy

9EGG
classes of elements of G.
The symbol denotes the end of a proof.
We shall use the usual notations Op(G) for the largest normal p-
subgroup of G, OP(G) for the smallest normal subgroup of G for which
the quotient is a p-group, G(°°) for the smallest normal subgroup of G
for which the quotient is soluble, 4(P) for the Frattini subgroup of a
p-group P, i.e., the smallest normal subgroup for which the quotient
is elementary abelian, Z(G) for the centre of G, c11(G) for the sub-
group of an abelian p-group G generated by the elements of order p,
and so on. The p-rank rp(G) is defined to be the maximal rank of an
elementary abelian p-subgroup of G.
If H and K are subgroups of a group G, then EHgK will denote a
sum over a set of double coset representatives g of H and K in G.
We shall write AMr to denote that M is a A-P-bimodule, i.e., a left
A-module which is simultaneously a right r-module in such a way that
(Am)y = .A(my) for all A E A, m E M and y E r.
If G is a group of permutations on the set {1, ... , n} and H is another
group, we write G 1 H for the wreath product; namely the semidirect
product of G with a direct product of n copies of H. Thus elements
of G? H are of the form (7r; hl,... , hn) with 7r E G, hl,... , hn c H
and multiplication given by

(ir;hi,... ,hn) = ,h',

If X is a set with a right G-action and Y is a set with a left G-action,
then we write X xG Y for the quotient of X x Y by the equivalence
relation (xg, y) - (x, gy) for all x E X, g E G, y e Y.





CHAPTER 1

Background material from rings and modules

Group representations are often studied as modules over the group al-
gebra (see Chapter 3), which is a finite dimensional algebra in case the co-
efficients are taken from a field, and a Noetherian ring if integer or p-adic
coefficients are used. Thus we begin with a rather condensed summary of
some general material on rings and modules. Sources for further material
related to Chapters 1 and 3 are Alperin [3], Curtis and Reiner [64, 65, 66],
Feit [107] and Landrock [148]. We return for a deeper study of modules over
a finite dimensional algebra in Chapter 4.

Throughout this chapter, A denotes an arbitrary ring with unit, and M
is a (left) A-module.

1.1. The Jordan-Holder theorem
DEFINITION 1.1.1. A composition series for a A-module M is a series

of submodules

O=Mo<M1 <. <M1z,=M

with Mi/Mi_1 irreducible.
A module M is said to satisfy the descending chain condition (D.C.C.)

on submodules if every descending chain of submodules eventually stops, and
the ascending chain condition (A.C.C.)if every ascending chain of submodules
eventually stops. A module satisfying A.C.C. on submodules is said to be
Noetherian.

LEMMA 1.1.2 (Modular law). If A and B D C are submodules of M then

(C+A)nB=C+(AnB).
PROOF. Clearly C + (A n B) C (C + A) n B. Conversely if b = c + a E

(C+A)nBthen a=b-cEAnBandsobEC+(AnB).
THEOREM 1.1.3 (Zassenhaus isomorphism theorem). If U D V and U' D

V' are submodules of M then

(U+V')nU' _ UnU' (U'+V)nU
(V+V')nU' (U'nV)+(UnV') - (V'+V)nU'

PROOF. It suffices to prove the first isomorphism. The kernel of the
composite map

Un U''- ((U+V') nU') -H ((U+V) n U')/((V+V') n U')
1



2 1. BACKGROUND MATERIAL FROM RINGS AND MODULES

is

(unu')n((v+v')nu')=u'n(v+v')nu=(u'nv)+(unv')
by two applications of the modular law.

THEOREM 1.1.4 (Jordan-Holder). Given any two series of submodules

O=M0<...<Mr=M
OMo<...<M, M

of a A-module M, we may refine them (i.e., stick in extra terms) to series of
equal length

O=Lp <... <Ln=M
O=Lo<...<L'n=M

so that the factors Li/Li_1 are a permutation of the factors (up to
isomorphism). Thus the following conditions on M are equivalent.

(i) M has a composition series.
(ii) Every series of submodules of M can be refined to a composition

series.
(iii) M satisfies A. C. C. and D. C. C. on submodules.

PROOF. Between Mi and Mi+1 we insert the terms (Mjl + Mi) n Mi+1,
and between Mj' and Mj'+1 we insert the terms (Mi + M,1) n Mj'+1. Now use
the Zassenhaus isomorphism theorem.

REMARK. It follows that the length of a composition series, if one exists,
is an invariant of the module. It is called the composition length of the
module.

A module M is said to be uniserial if it has a unique composition series.
This is the same as saying that M has a unique minimal submodule M0,
MIMo has a unique minimal submodule M1/Mo, and so on.

EXERCISE. Suppose that M is a module of finite composition length.
Show that the submodules of M satisfy the distributive laws

(A+B)nC= (A n C) + (B n C)
(An B)+C=(A+C)n(B+C)

if and only if M has no subquotient isomorphic to a direct sum of two iso-
morphic simple modules.

Read about Birkhoff's theorem for distributive lattices of finite length in
Aigner [1]. In effect, this says that for a module with the above property,
one can draw a diagram, whose vertices represent the composition factors,
and whose edges describe how they are "glued together." In fact, there is
a generalisation of Birkhoff's diagrams to modular lattices of finite length
(Benson and Conway [22]), but this method quickly becomes cumbersome,
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as there are usually many more vertices than composition factors. For fur-
ther discussions of diagrams for modules, see Alperin [2] and Benson and
Carlson [21].

1.2. The Jacobson radical

DEFINITION 1.2.1. The socle of a A-module M is the sum of all the
irreducible submodules of M, and is written Soc(M). The socle layers
of M are defined inductively by Soc°(M) = 0, Soc' (M)/Soc'-1(M)
Soc(M/Soc"t-1(M)).

The radical of M is the intersection of all the maximal submodules of
M, and is written Rad(M). The radical series or Loewy series of M is
defined inductively by Rad°(M) = M, Radn(M) = Rad(Rad"`-1(M)). The
nth radical layer or Loewy layer is Rad"e-1(M)/Rad'(M).

The module M is said to be completely reducible or semisimple if
M = Soc(M). This is equivalent to the condition that every submodule has
a complement, by Zorn's lemma. If M satisfies D.C.C. then M is completely
reducible if and only if Rad(M) = 0. In this case, M is a finite direct sum of
irreducible modules.

The head or top of M is Head(M) = M/Rad(M).
If M has socle length n (i.e., Socn(M) = M but Socn-1(M) # M) then

M also has radical length n (i.e., Rad'(M) = 0 but Rad7e-1(M) 0 0) and
Soci (M) D Rad `-j(M) for all 0 < j < n.

The annihilator of an element m E M is the set of all elements A E A
with Am = 0. It is a left ideal, which is maximal if and only if the submodule
generated by m is irreducible. The annihilator of M is defined to be the
intersection of the annihilators of the elements of M. It is a two sided ideal I
which is primitive, meaning that A/I has a faithful irreducible module. We
define J(A), the Jacobson radical of A to be the intersection of the maximal
left ideals, or equivalently the intersection of the primitive two sided ideals.

We claim that J(A) consists of those elements x E A such that 1 - axb
has a two sided inverse for all a, b E A, so that it does not matter whether
we use left or right ideals to define J(A). If x E J(A) then 1 - x cannot be in
any maximal left ideal (since otherwise 1 would be!) so it has a left inverse,
say t(1 - x) = 1. Then 1- t = -tx E J(A) sot has a left inverse, and is hence
a two sided inverse for 1- x. Applying this with axb in place of x shows that
1 - axb has a two sided inverse. Conversely, if 1 - axb has a two sided inverse
for all a, b E A, and I is a maximal left ideal not containing x, then we can
write 1 as ax plus an element of I, contradicting the invertibility of 1 - ax.

If we let A act on itself as a left module, we call this the regular rep-
resentation AA. Since submodules are the same as left ideals, we have
J(A) = Rad(AA). We say that A is semisimple if J(A) = 0. Note that
A/J(A) is always semisimple.

LEMMA 1.2.2. If a E J(A) then 1 - a has a left inverse in A.
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PROOF. Since 1 =a+ (1 -a) we have A= J(A)+A(1-a). If A(1 -a) # A,
then by Zorn's lemma there is a maximal left ideal I with A(1 - a) C I. By
definition of J(A) we also have J(A) C I, and so A C I. This contradiction
proves the lemma.

LEMMA 1.2.3 (Nakayama). If M is a finitely generated A-module and
J(A)M = M then M=0.

PROOF. Suppose that M # 0. Choose ml, ... , Mn generating M with n
minimal. Since J(A)M = M, we can write mn = 1 aimi with ai E J(A).
By Lemma 1.2.2, 1 - an has a left inverse b in A. Then (1 - an)mn =
rZ 1 aimi, and so Mn = b(E2 it aimi), contradicting the minimality of
n.

LEMMA 1.2.4. If A is semisimple and satisfies D.C.C. on left ideals, then
every A-module is completely reducible. Conversely if A satisfies D.C. C. on
left ideals and AA is completely reducible then A is semisimple.

PROOF. If A is semisimple then Rad(AA) = J(A) = 0 and so AA is
completely reducible. Choosing a set of generators for a module displays it
as a quotient of a direct sum of copies of AA, and hence every module is
completely reducible. Conversely if AA is completely reducible then AA
A/J(A) ® J(A) and so as A-modules,

J(A) = J(A).(A/J(A) ® J(A)) = J(A).J(A)

so that by Nakayama's lemma J(A) = 0.

PROPOSITION 1.2.5. If M is a finitely generated A-module then J(A)M =
Rad(M).

PROOF. If M' is a maximal submodule of M then by Nakayama's lemma
we have J(A)(M/M') = 0 so that J(A)M C M', and hence J(A)M C
Rad(M). Conversely M/J(A)M is completely reducible by Lemma 1.2.4
and so Rad(M/J(A)M) = 0, which implies that Rad(M) C J(A)M.

DEFINITION 1.2.6. A ring A is said to be Noetherian if it satisfies
A.C.C. on left ideals, and Artinian if it satisfies D.C.C. on left ideals. A A-
module is Noetherian/Artinian if it satisfies A.C.C./D.C.C. on submodules.

THEOREM 1.2.7. If A is Artinian then
(i) J(A) is nilpotent.
(ii) If M is a finitely generated A-module then M is both Noetherian and

Artinian.
(iii) A is Noetherian.

PROOF. (i) Since A satisfies D.C.C. on left ideals, for some n we have
J(A)- = J(A)2n. If J(A)n 0, then again using D.C.C. we see that there
is a minimal left ideal I with J(A)"I : 0. Choose x E I with J(A)n.x 0,
and in particular x # 0. Then I = J(A)n.x by minimality of I, and so for



1.3. THE WEDDERBURN STRUCTURE THEOREM 5

some a E J(A)n, we have x = ax. But then (1 - a)x = 0, and so x = 0 by
Lemma 1.2.2.

(ii) Let Mi = J(A)1M. Then Mi/Mi+1 is annihilated by J(A), and is
hence completely reducible by Lemma 1.2.4. Since M is a finitely generated
module over an Artinian ring, it satisfies D.C.C., and hence so does Mi/Mi+1
Thus Mi/MM+i is a finite direct sum of irreducible modules, and so it satisfies
A.C.C. It follows that M also satisfies A.C.C.

(iii) This follows by applying (ii) to the module AA.

The following proposition shows that whether a ring homomorphism to an
Artinian ring is surjective can be detected modulo the square of the radical.

PROPOSITION 1.2.8. Suppose that A is an Artinian ring and A' is a sub-
ring of A such that A'+ J2(A) = A. Then A' = A.

PROOF. We show that A' + Jn(A) = A' + Jn+1(A) for n > 2, so that by
induction and part (i) of the previous theorem we deduce that A' = A. If
x E Jn-1(A) and y E J(A), choose x' E Jn_1(A)nA'such that x-x' E J1(A)
and y' E J(A) n A' such that y - y' E J2(A). Then

xy=x(y-y)+(x-X
, )y'+xy'

E Jn-1(A)J2(A) + Jn(A)(J(A) n A') + (Jn-1(A) n A')(J(A) n A')

c Jn+1(A) + A'.

EXERCISES. 1. If A is a Noetherian ring, show that a A-module is finitely
generated if and only if it is Noetherian. Deduce that every submodule of a
finitely generated A-module is finitely generated.

2. Give an example of a simple ring (i.e., one with no non-trivial two
sided ideals) which is not Noetherian.

1.3. The Wedderburn structure theorem
LEMMA 1.3.1 (Schur). If M1 and M2 are irreducible A-modules, then for

M1 M2, HomA(MI, M2) = 0, while HomA(M1, M1) = EndA(M1) is a
division ring.

PROOF. Clear.

DEFINITION 1.3.2. An idempotent in A is a non-zero element e with
e2 = e.

Note that if e # 1 is an idempotent then so is 1 - e, and we have AA =
Ae ®A(1 - e).

LEMMA 1.3.3. (i) If M is a A-module and e is an idempotent in A then.

eM = HomA(Ae, M).

(ii) We have an isomorphism of rings eAe = EndA(Ae)°P (A°P denotes the
opposite ring to A, where the order of multiplication has been reversed).
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PROOF. (i) Define maps f1 : eM - HomA(Ae, M) by f, (em) : ae H aem
and f2 : HomA(Ae,M) --> eM by f2 : a H a(e). It is easy to check that f1
and f2 are mutually inverse.

(ii) This follows by applying (i) with M = Ae. It is easy to check that f1
and f2 reverse the order of multiplication.

THEOREM 1.3.4. Let M be a finite direct sum of irreducible A-modules,
say M = MI ® . . . ® Mr, with each Mi a direct sum of ni modules Mi,1

® Mi,,,,i isomorphic to a simple module Si, and Si Sj if i # j. Let
Di = EndA(Si). Then Di is a division ring, EndA(M) - Matni(Aj), and
EndA(M) _ ®i EndA(Mi) is semisimple.

PROOF. By Lemma 1.3.1, Li is a division ring. Choose once and for all
isomorphisms O3 : Mid -+ Si. Now given A E EndA(Mj), we define Ajk E Li
as the composite map

eikl
Si = MikyMi->Mi-+M13 -Si.

The map A H (A k) is then an injective homomorphism EndA(Mi) -*
Mat,,i(D4). Conversely, given (Aik), we can construct A as the sum of the
composite endomorphisms

M,
Bik ' k

9u
Mik L--- Si - Si - Mij ' Mi.

Finally, EndA(M) _ ®i EndA(Mi) since if i j, Lemma 1.3.1 implies
that HomA(Si, Sj) = 0.

THEOREM 1.3.5 (Wedderburn-Artin). Let A be a semisimple Artinian
ring. Then A = @'j=1 Ai, Ai - Matni(Ai), Ai is a division ring, and the Ai
are uniquely determined. The ring A has exactly r isomorphism classes of
irreducible modules Mi, i = 1, ... , r, EndA(Mi) - 0°P, and dimA-P (Mi) _
ni. If A is simple then A = Matn(A).

PROOF. By Lemma 1.2.4, AA is completely reducible. By Lemma 1.3.3
with e = 1, A - EndA(AA)°P. The result now follows by applying Theo-
rem 1.3.4 to AA. Note that the opposite ring of a complete matrix ring is
again a complete matrix ring, over the opposite division ring.

REMARKS. (i) Wedderburn has shown that every division ring with a
finite number of elements is a field.

(ii) If A is a finite dimensional algebra over a field k, then each Ai for
A/J(A) in the above theorem has k in its centre. If for each i we have
Ai = k, then k is called a splitting field for A. This is true, for example,
if k is algebraically closed, since in this case there are no finite dimensional
division rings over k (apart from k itself).

Finally, the following special case of the Skolem-Noether theorem is often
useful.
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PROPOSITION 1.3.6. Suppose that V is a vector space over afield k. Then
every k-linear automorphism of Endk(V) is inner (i.e., effected by a conju-
gation in Endk(V)).

PROOF. Since the regular representation of Endk(V) is a direct sum of
copies of V, it follows that Endk(V) has only one isomorphism class of simple
modules. Thus if f : Endk(V) -> Endk (V) is an automorphism, then f
defines a new representation of Endk(V) on V, which is therefore conjugate
to the old one. Thus f is conjugate to the identity map.

EXERCISE. If A is a finite dimensional algebra over k, show that some
finite extension k' of k is a splitting field for A (i.e., for k' (gk A). If k is
algebraically closed, then k is a splitting field for A.

1.4. The Krull-Schmidt theorem

DEFINITION 1.4.1. A (not necessarily commutative) ring E is said to be
a local ring if it has a unique maximal left ideal, or equivalently a unique
maximal right ideal. This maximal ideal is automatically two-sided (see the
remarks in Section 1.2) and consists of the non-invertible elements of E. The
quotient by the unique maximal ideal is a division ring.

It is easy to see that E is local if and only if the non-invertible elements
form a left ideal.

DEFINITION 1.4.2. A A-module M has the unique decomposition
property if

(i) M is a finite direct sum of indecomposable modules, and
(ii) Whenever M = @'I I Mi = (D 1 Mi with each Mi and each Mi

non-zero indecomposable, then m = n, and after reordering if necessary,
Mi=Ni.

A ring A is said to have the unique decomposition property if every finitely
generated A-module does.

THEOREM 1.4.3. Suppose that M is a finite sum of indecomposable A-
modules Mi with the property that the endomorphism ring of each Mi is a
local ring. Then M has the unique decomposition property.

PROOF. Let M = ®7 ` 11171 = ®Z I M' and work by induction on m.
Assume m > 1. Let ai and 3i be the composites

ai:Mt yM-Mi
and

'3i: M1yM-HM'.
Then idM, ai o Ni : M1 ---> M1. Since EndA(M1) is a local ring, some
ai. o 131 must be a unit. Renumber so that a1 o 131 is a unit. Then M1 = M1'.

Consider the map p = 1 - 6, where B is the composite
_1 m

8:M-HMI -' Mi'M-®Mi'-M.
i=2
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Then µM,' = M1, and p(®Z_` 2 Mi) = ®m 2 Mi, so p is onto. If p(w) = 0,
then w = 0(w) and so w E ®i"2 Mi. But then 0(w) = 0.

Thus p is an automorphism of M with µM,' = Mi, and so
n m

M' = M/Mil M/M1 = ® M.

LEMMA 1.4.4 (Fitting). Suppose that M has a composition series (i.e.,
satisfies A.C. C. and D.C. C. on submodules, see Theorem 1.1.4) and f E
EndA(M). Then for large enough n, M = Im(fn) ® Ker(fn).

PROOF. By A.C.C. and D.C.C. on submodules of M, there is a positive
integer n such that for all k > 0 we have Ker(f n) = Ker(fn+k) and IM(fn)
Im(fn+k). If X E M, write fn(x) = f2n(y). Then x = fn(y) + (x - fn(y)) E
Im(f n) + Ker(f n). If f '(X) E Im(f n) f1 Ker(f n) then f 2n(x) = 0, and so
f n(x) = 0.

LEMMA 1.4.5. Suppose that M is an indecomposable module with a com-
position series. Then EndA(M) is a local ring.

PROOF. Let E = EndA(M), and choose I a maximal left ideal of E.
Suppose that a I. Then E = Ea + I. Write 1 = Aa +,u with A E E, and
p E I. Since p is not an isomorphism, Lemma 1.4.4 implies that pn = 0 for
some n. Thus so
a is invertible.

THEOREM 1.4.6 (Krull-Schmidt). Suppose that A is Artinian. Then A
has the unique decomposition property.

PROOF. Suppose that M is a finitely generated indecomposable A-mod-
ule. Then by Theorem 1.2.7 M has a composition series, and so by Lemma
1.4.5, EndA(M) is a local ring. The result now follows from Theorem 1.4.3.

EXERCISE. Suppose that 0 is the ring of integers in an algebraic number
field. Show that the Krull-Schmidt theorem holds for finitely generated 0-
modules if and only if 0 has class number one.

1.5. Projective and injective modules

DEFINITION 1.5.1. A module P is said to be projective if given modules
M and M', a map A : P -* M and an epimorphism p : M--+ M there exists
a map v : P -+ M' such that the following diagram commutes.

P

M'-M 0
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A module I is said to be injective if given two modules M and M', a
map A : M -+ I and a monomorphism M -p M', there is a map v : M' -* I
such that the following diagram commutes.

0 aM-A M'
Al

4
I

LEMMA 1.5.2. The following are equivalent.
(i) P is projective.
(ii) Every epimorphism ).: M -* P splits.
(iii) P is a direct summand of a free module.

PROOF. The proof of this lemma is left as an easy exercise for the reader.
0

Note that if P is a projective left A-module and

...- Mn- X-1->Mn_2 ...
is a long exact sequence of right A-modules then the sequence

...->M.®AP->Mn_1®AP-Mn_2®AP- ...
is also exact. A left module with this property is called flat. Similarly a
right A-module with the above property with respect to long exact sequences
of left A-modules is called flat.

Since every module M is a quotient of a free module, it is certainly a
quotient of a projective module. If A is Artinian, and P1 and P2 are minimal
projective modules (with respect to direct sum decomposition) mapping onto
a finitely generated module M, then we have a diagram

M1Z
P2

If the composite map P1 - P2 -> Pi is not an isomorphism then by Fitting's
lemma P1 has a summand mapping to zero in M and so P1 is not minimal.
Applying this argument both ways round, we see that P1 - P2. This module
is called the projective cover PM of M. We write 11(M) for the kernel, so
that we have a short exact sequence

0-j1(M)-PM-- M-*0.
Even when A is not Artinian, we have the following.

LEMMA 1.5.3 (Schanuel). Suppose that 0 --* M1 P1 -* M ---> 0 and
0 - M2 -> P2 --* M -> 0 are short exact sequences of modules with P1 and
P2 projective. Then M1 ® P2 = P1 ® M2.
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PROOF. Let X be the submodule of P1® P2 consisting of those elements
(x, y) where x and y have the same image in M (the pullback of P1 --> M
and P2 - M). Then we have a commutative diagram with exact rows and
columns

0 0

M2 M2

0 M1 >X_P2---0

0 'M1 P1'M-0

The two sequences with X in the middle must split since they end with a
projective module, and so we have M1 ® P2 = X - M2 ® P1.

Thus if we define S2(M) to be the kernel of some epimorphism P -+ M
with P projective, Schanuel's lemma shows that 11(M) is well defined up to
adding and removing projective summands.

If a : M1 -+ M2 is a module homomorphism then we may lift as in the
following diagram

0 -52(MJ)- P1-M1 -0

0 -S2(M2) P2 -M2 -0

and obtain a map 11(a) : 11(M1) - 11(M2) which is unique up to the addition
of maps factoring through a projective module. For a discussion of the right
functorial setting for f2, see Section 2.1.

The discussion of injective modules is achieved by means of a dualising
operation as follows.

LEMMA 1.5.4. Every A-module may be embedded in an injective module.

PROOF. If M is a left A-module, the dual abelian group

M° = Homz (M, Q/7L)

is a right A-module in the obvious way, and vice-versa. There is also an
obvious injective map M -+ M°°. If P is projective, then the dual P° is
injective, as is easy to see by applying duality to the definition. Thus if P is
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a projective right A-module mapping onto M° then M '--* M°° -* P° is an
embedding of M into an injective left A-module.

If M -+ I is an embedding of M into an injective module I then we write
52-1(M) for the cokernel.

Injective modules are better behaved than projective modules in the sense
that for any ring A and any module M there is a unique minimal injective
module I (with the obvious universal property) into which M embeds. This
is called the injective hull of M. A proof of this statement, which is the
Eckmann-Schopf theorem, may be found in Curtis and Reiner [64], Theo-
rem 57.13. If M --> I is the injective hull of M, we write Q-1(M) for the
cokernel.

ExERCISE. (Broue) Suppose that A is a k-algebra. Write QA for the
kernel of the multiplication map A ®k A -* A, so that 11A is a A-A-bimodule
(usually called the degree one differentials). Show that if M is a A-module
then 11A ®A M is a A-module of the form 11(M).

1.6. Frobenius and symmetric algebras

Suppose that A is an algebra over a field k. If M is a left A-module,
then the vector space dual M* = Homk(M, k) has a natural structure as a
right A-module, and vice-versa. If M is finite dimensional as a vector space,
which it usually is because we are normally interested in finitely generated
modules, then there is a natural isomorphism (M*)* = M. If M is injective
then M* is projective, and vice-versa, since duality reverses all arrows.

In general, projective and injective modules for a ring are very different.
However, there is a special situation under which they are the same.

DEFINITION 1.6.1. We say a finite dimensional algebra A over a field k
is Frobenius if there is a linear map A : A -+ k such that

(i) Ker(A) contains no non-zero left or right ideal.
We say that A is symmetric if it satisfies (i) together with

(ii) For all a, b E A, .(ab) = A(ba).
We say that a ring A is self injective if the regular representation AA is

an injective A-module.

PROPOSITION 1.6.2. (i) If A be a Frobenius algebra over k, then (AA)*
AA. In particular A is self injective.

(ii) Suppose that A is self injective. Then the following conditions on a
finitely generated A-module M are equivalent:

(a) M is projective (b) M is injective
(c) M* is projective (d) M* is injective.

PROOF. (i) We define a linear map 0: AA - (AA)* via O(x) : y -+ A(yx).
Then if ry E A,

(7(0(x)))y = (O(x))(y'Y) = A(y'Yx) = (c('Yx))y,
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so 0 is a homomorphism. By the defining property of A, 0 is injective, and
hence surjective by comparing dimensions.

(ii) It follows from self injectivity that M is projective if and only if M*
is projective, so that (a) and (c) are equivalent. We have already remarked
that (a) e-* (d) and (b) # (c) hold for all finite dimensional algebras.

It follows from the above proposition that if P is a projective indecom-
posable module for a Frobenius algebra then not only P/Rad(P) but also
Soc(P) are simple. In general they are not isomorphic, but in the special
case of a symmetric algebra we have the following:

THEOREM 1.6.3. Suppose that P is a projective indecomposable module
for a symmetric algebra A. Then Soc(P) = P/Rad(P).

PROOF. Let e be a primitive idempotent in A with P = Ae. Let A : A -p k
be a linear map as in Definition 1.6.1. Then Soc(P) = Soc(P).e is a left ideal
of A and so there is an element x E Soc(P) with A(x.e) # 0. By the symmetry,
A(e.x) 54 0 and so e.Soc(P) 0. But e.Soc(P) = HomA(P,Soc(P)) by
Lemma 1.3.3 (i), and so there is a non-zero homomorphism from P to Soc(P),
which therefore induces an isomorphism from P/Rad(P) to Soc(P).

REMARK. We shall see in Section 3.1 that the group algebra of a finite
group over a field of any characteristic is an example of a symmetric algebra.

EXERCISES. 1. Show that for a module M over a self injective algebra
we have

M - Sl r'(M) ® (projective) = 1l '[ (M) ® (projective).

In particular, as long as M has no projective summands, M is indecomposable
if and only if 1(M) is indecomposable.

2. Show that a finite dimensional algebra A is self injective if and only if
for each simple A-module S with projective cover PS, Soc(PS) is simple, and
whenever S 94 S', Soc(PS) Soc(Ps,).

3. Show that a finite dimensional self injective algebra A is Frobenius if
and only if for each projective indecomposable A-module P, dimk Soc(P) _
dimk P/Rad(P).

4. Show that if A is a finite dimensional symmetric algebra then so is
Mat,,,(A).

1.7. Idempotents and the Cartan matrix
Recall that an idempotent in a ring A is a non-zero element e with

e2 = e. If e 1 is an idempotent then so is 1 - e.

DEFINITION 1.7.1. Two idempotents el and e2 are said to be orthogonal
if ele2 = e2e1 = 0. An idempotent e is said to be primitive if we cannot
write e = el + e2 with el and e2 orthogonal idempotents.
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There is a one-one correspondence between expressions 1 = el + + en
with the ei orthogonal idempotents, and direct sum decompositions AA =
Al ® ... E) An of the regular representation, given by Ai = Aei. Under this
correspondence, ei is primitive if and only if Ai is indecomposable.

PROPOSITION 1.7.2. Two idempotents e and e' are conjugate in A if and
only ifAe=Ae' and A(1-e)=A(1-e').

PROOF. If e and e' are conjugate, say eµ = µe' with it invertible, then
(1-e)µ = µ(1-e') and so µ induces an isomorphism form Ae to Ae' and from
A(1 - e) to A(1 - e'). Conversely if Ae = Ae' and A(1 - e) = A(1 - e'), then
by Lemma 1.3.3 there are elements µ1 E eAe', µ2 E e'Ae, µ3 E (1-e)A(1-e')
and µ4 E (1 - e')A(1 - e) such that

µ1µ2 = e µ2µ1 = e'

µ3µ4 = 1 - e µ413 = 1 - e'.

Letting µ = Al + µ3 and µ' = µ2 + µ4, we have µµ' = µ'µ = 1 and ep = µ1 =
µe'.

Under the circumstances of the above proposition, we say e and e' are
equivalent. Note that if the Krull-Schmidt theorem holds for finitely gen-
erated A-modules, then Ae = Ae' implies A(1 - e) = A(1 - e') since AA
Ae®A(1-e).

THEOREM 1.7.3 (Idempotent Refinement). Let N be a nilpotent ideal in
A, and let e be an idempotent in A/N. Then there is an idempotent f in A
with e = f.

If el is equivalent to e2 in A/N, 11 = el and 12 = e2, then f1 is equivalent
to f2 in A.

PROOF. We define idempotents ei E A/N' .inductively as follows. Let
el = e. For i > 1, let a be any element of A/N' with image ei_1 in A/N'-1

Then a2 - a E N'-1/N', and so (a2 - a)2 = 0. Let ei = 3a2 - 2a3. Then ei
has image ei_1 in A/Ni-1, and

e? - ei = (3a2 - 2a3)(3a2 - 2a3 - 1) = -(3 - 2a)(1 + 2a)(a2 - a)2 = 0.

If Nr = 0, we take f = er.
Note that in this proof, if A happens to be an algebra over a field k of

characteristic p, we can instead take ei = al' if we wish.
Now suppose that e1 is conjugate to e2, say µe1 = e2µ for some p E A.

Let v = f2µfi + (1- f2)µ(1 - f1). Then vf1 = f2v, and 1 - v = f2µ+µf1 -
2f2µf1 = (f2µ-µf1)(1-2f1) ENsothat 1+(1-v)+(1-v)2+ is an
inverse for v.

COROLLARY 1.7.4. Let N be a nilpotent ideal in A. Let 1 = e1 + + en,
with the ei primitive orthogonal idempotents in A/N. Then we can write
1 = f, + + fn with the fi primitive orthogonal idempotents in A and
fi = ei. If e2 is conjugate to ej then fi is conjugate to f;.
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PROOF. Define idempotents fi inductively as follows. fl = 1, and for
i > 1, fi is any lift of ei + ei+i + + e,,, to an idempotent in the ring
f'_1Af'_1. Then fi'fi+l = fZ+1 = fi+1f Let fi = fi - fi+l Clearly A = ei.
If j > i, f; = fi+lfifi+l, and so fife = (fi - fi'+1)fi+lfifi'+1 = 0. Similarly
fjfi = 0.

Now for the rest of this section, suppose that A satisfies D.C.C. on left
ideals. Then by the Wedderburn Structure Theorem 1.3.5, we may write
A/J(A) 1 Mat,, (z ). Write Si for the simple A-module correspond-
ing to the i1h matrix factor. Then the regular representation of A/J(A) is
isomorphic to ®i 1 niSi. This decomposition corresponds to an expression
1 = e1 + e2 + in A/J(A) with the ei orthogonal idempotents. Lifting to
an expression 1 = fl + f2 + in A as in the above corollary, we have a
direct sum decomposition

r

AA = ni Pi
i=1

with Pi/J(A)Pi = Si. By the Krull-Schmidt theorem, every projective inde-
composable module is isomorphic to one of the Pi.

LEMMA 1.7.5. HomA(Pi, Sj) _
Ai if i = j

10 otherwise.

PROOF. Pi has a unique top composition factor, and this is isomorphic
to Si.

LEMMA 1.7.6. dimo; HomA(Pi, M) is the multiplicity of Si as a compo-
sition factor of M.

PROOF. Use the previous lemma and induction on the composition length
of M. Since Pi is projective, an exact sequence

0-*M'->M-->S3-*0
induces a short exact sequence

0 -* HomA(Pi, M') -* HomA(Pi, M) -> HomA(Pi, Si) 0.

Dually we have:

LEMMA 1.7.7. Suppose that IS is the injective hull of a simple A-module
S, and 0 = EndA(S). Then dims HomA(M, IS) is equal to the multiplicity
of S as a composition factor of M.

Combining these lemmas, we have the following:

THEOREM 1.7.8 (Landrock [147]). Suppose that S and T are simple
modules for a finite dimensional algebra A over a splitting field k. Then
the multiplicity of T as a composition factor in the nth Loewy layer of the
projective cover PS is equal to the multiplicity of the dual S* (which is a right
A-module) as a composition factor in the nth Loewy layer of the projective
cover PT..



1.8. BLOCKS AND CENTRAL IDEMPOTENTS 15

PROOF. Since k is a splitting field, each Li is equal to k. Since

Rad'Soc'IT = 0 and Socn(PS/RadnPS) = Ps/RadnPS,

we have

HomA(PS/RadnPS, IT) = HomA(PS/RadnPS, SocnIT)

= HomA(Ps, SocnIT).

By Lemma 1.7.7, the dimension of the left hand side is equal to the multi-
plicity of T as a composition factor in the first n Loewy layers of Ps. By
Lemma 1.7.6, the dimension of the right hand side is equal to the multiplicity
of S in the first n socle layers of IT. The dual of IT is PT., so this is equal to
the multiplicity of S* in the first n Loewy layers of PT.. The theorem follows
by subtraction.

DEFINITION 1.7.9. The Cartan invariants of A are defined as

cij = dimp, HomA(Pi, Pj),

namely the multiplicity of Si as a composition factor of Pj. The matrix (cij)
is called the Cartan matrix of the ring A.

In general, the matrix (cij) may be singular, but we shall see in Corol-
lary 5.3.5 that this never happens for a group algebra of a finite group. In
fact, we shall see in Corollary 5.7.2 and Theorem 5.9.3 that the determinant
of the Cartan matrix of a group algebra over a field of characteristic p > 0 is
a power of p.

Finally, the following general fact about idempotents is often useful.

LEMMA 1.7.10 (Rosenberg's lemma). Suppose that e is an idempotent in
a ring A, eAe is a local ring (cf. Lemmas 1.3.3, 1.4.5 and Theorem 1.9.3),
and e E E,, 1,, where Ia is a family of two-sided. ideals in A. Then for some
a we have e E Ia.

PROOF. Each elae is an ideal in the local ring eAe, and so for some value
of a we have elae = eAe.

1.8. Blocks and central idempotents

DEFINITION 1.8.1. A central idempotent in A is an idempotent in the
centre of A. A primitive central idempotent is a central idempotent not
expressible as the sum of two orthogonal central idempotents. There is a one-
one correspondence between expressions 1 = el + + es with ei orthogonal
central idempotents and direct sum decompositions A = B1 ® ... ® Bs of A
as two-sided ideals, given by Bi = eiA.

Now suppose that A is Artinian. Then we can write A = B1 ® ... e BS
with the Bi indecomposable two-sided ideals.

LEMMA 1.8.2. This decomposition is unique; i.e., if A = B1® . ®B3 =
Bi ® . . . + Bt then s = t and after renumbering if necessary, Bi = B.
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PROOF. Write 1 = el + + es = ei + + et. Then eie'J is either a
central idempotent or zero for each pair i, j. Thus ei = eie1 + + eiet, so
that for a unique j, ei = eie' = ej.

DEFINITION 1.8.3. The indecomposable two-sided ideals in this decom-
position are called the blocks of A.

Now suppose that M is an indecomposable A-module. Then M = e1MT
® e8M shows that for some i, eiM = M, and ejM = 0 for j i. We then

say that M belongs to the block Bi. Thus the simple modules and projec-
tive indecomposables are classified into blocks. Clearly if an indecomposable
module is in a certain block, then so are all its composition factors.

The following proposition states that the block decomposition is deter-
mined by what happens modulo the square of the radical. It first appears in
this form in the literature in Kulshammer [144], although equivalent state-
ments have been well known for a long time.

PROPOSITION 1.8.4. Suppose that A is Artinian and I is a two sided
ideal contained in J2(A). Then the natural map A -> A/I induces a bijection
between the set of idempotents in the centre Z(A) and the set of idempotents
in Z(A/I).

PROOF. If f is an idempotent in Z(A) then clearly f is an idempotent
in Z(A/I). If f = f' then f - f f' is nilpotent and idempotent, hence zero,
so f = ff' = P.

Conversely if e is an idempotent in Z(A/I) then by Theorem 1.7.3 there
is an idempotent f in A with f = e. So we must show that f E Z(A). Since
f E Z(A/I), we have f (A/I)(1 - f) = 0 and so fA(1- f) C I C J2. Since f
and 1 - f are idempotent it follows that f A(1 - f) = f J2(1 - f ). We show
by induction on n that f A(1 - f) = fJn (1 f ). Namely

fA(1-f)=
f Jn-1 f) + f Jn(1 - f)J(1 - f) C f jn+1(1 - f ).

Since J is nilpotent we thus have f A(1 - f) = 0, and so for a E A we have
f a = faf + fall - f) = faf . Similarly of = faf and so f a = a f , so that
f E Z(A).

The following should be compared with the Wedderburn-Artin theo-
rem 1.3.5.

PROPOSITION 1.8.5. Suppose that M is a simple A-module which is both
projective and injective. Then M is the unique simple module in a block
B of A with B = Matn(A). Here, A is the division ring EndA(M)°P and
n = dimooP(M).

PROOF. Since M is both projective and injective, we can write AA =
n.M ® P, where P is a projective module which does not involve M. Hence
by Lemma 1.3.3 A = EndA(AA)°P = Matn(EndA(M))°P ® EndA(P)°P.
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EXERCISE. Show that every commutative Artinian ring is a direct sum
of local rings.

1.9. Algebras over a complete domain

In order to compare representations in characteristic zero with represen-
tations in characteristic p, we use representations over the p-adic integers as
an intermediary. This is easier than using the ordinary integers because, as
we shall see, we have a Krull-Schmidt theorem. It is better than using the p-
local integers (i.e., the integers with numbers coprime to p inverted) because
of the idempotent refinement theorem, which enables us to lift projective
indecomposables from characteristic p.

Since it is often convenient to deal with fields larger than the rationals,
we also look at rings of p-adic integers for p a prime ideal in a ring of algebraic
integers. The most general set up of this sort is a complete rank one discrete
valuation ring, but we shall be content with rings of p-adic integers. If 0 is
the ring of integers in an algebraic extension K of Q and p is a prime ideal
in 0 lying above a rational prime p, we form the completion

Op = lim O/pn.
n

The natural map 0 -* Op is injective, and so K is a subfield of the field
of fractions Kp of Op. The ring Op has a unique maximal ideal pp, which
is principal, pp = (ir). In particular Op is a principal ideal domain, so that
finitely generated torsion-free modules are free. The quotient field

k = Op/pp - 0/p
is a field of characteristic p. We say that (Kr, Op, k) is a p-modular system.
More generally, if 0 is a complete rank one discrete valuation ring with field
of fractions K of characteristic zero, maximal ideal p = (ir), and quotient
field k = 0/p of characteristic p, we shall say that (K, 0, k) is a p-modular
system. For the remainder of this section, K, 0 and k will be of this form.

Let A be an algebra over 0 which as an 0-module is free of finite rank.
Let A = K ®p A and A = k ®0 A = A/7rA. By a A-lattice we mean a finitely
generated 0-free A-module. If M is a A-lattice then we set M = K ®o M as
a A-module, and M= k ®o M = M/7rM as a A-module. If K is a splitting
field for A and k is a splitting field for A, we say that (K, 0, k) is a splitting
p-modular system for A.

We call A-modules ordinary representations, A-lattices integral rep-
resentations and A-modules modular representations.

LEMMA 1.9.1. If V is a A-module then there is a A-lattice M with M
V.

PROOF. Choose a basis vi,... , vn for V as a vector space over K and
let M = Av1 + + Avn C V. As an 0-module, M is finitely generated and
torsion free, and hence free. Choose a free basis x1, ... , X. Then the xi
span V and are K-independent, and hence m = n, and V = K 00 M.
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Such a A-lattice M is called an 0-form of V. In general a A-module has
many non-isomorphic 0-forms.

LEMMA 1.9.2 (Fitting's lemma, p-adic version). Let M be a A-lattice and
suppose that f E EndA(M). Write Im(f °°) _ nn,=1 Im(fn) and Ker(f °°) _
{x E M I d n> O El m> O s.t. fm(x) E J(A)nM}. Then

M=Im(f°O)®Ker(f°°).
PROOF. This follows from the usual version of Fitting's lemma.

THEOREM 1.9.3 (Krull-Schmidt theorem, p-adic version). (i) If M is an
indecomposable A-lattice then EndA(M) is a local ring.

(ii) The unique decomposition property holds for A-lattices.

PROOF. The proof of (i) is the same as the proof of 1.4.5, and (ii) follows
by Theorem 1.4.3.

THEOREM 1.9.4 (Idempotent refinement). (i) Let e be an idempotent in
A. Then there is an idempotent f in A with e = 1. If el is conjugate to e2
in A, fl = el and 12 = e2 then fl is conjugate to f2 in A.

(ii) Let 1 = el + . + en with the ei primitive orthogonal idempotents
in A. Then we can write 1 = fl + + fn with the fi primitive orthogonal
idempotents in A and fi = ei. If ei is conjugate to ej then fi is conjugate to
fi.

(iii) Suppose that reduction modulo p is a surjective map from the centre
Z(A) to Z(A). Let 1 = el + +en with the ei primitive central idempotents
in A. Then we can write 1 = fl + + fn with the fi primitive central
idempotents in A and fi = ei.

PROOF. (i) We may apply the idempotent refinement theorem 1.7.3 for
nilpotent ideals to obtain idempotents fi E A/-7riA whose image in A/iri-'A
is fi_1. These define an element of A = limA/1rnA which is easily seen to be

n
idempotent.

The conjugacy statement is proved exactly as in 1.7.3.
(ii) Apply the same argument to Corollary 1.7.4.
(iii) Apply (ii) to the centre of A.

REMARK. We shall see that the hypothesis in (iii) is satisfied by group
algebras of finite groups.

It follows from the above theorem that the decomposition of the regular
representation AA into projective indecomposable modules lifts to a decom-
position of AA. So given a simple A-module Sj, it has a projective cover
Pj = Qj for some projective indecomposable A-module Qj unique up to
isomorphism.

DEFINITION 1.9.5. Suppose that V1,... , Vt are representatives for the
isomorphism classes of irreducible A-modules, and M1i ... , Mt are 0-forms
of them (see the above lemma). Then we define the decomposition number
did to be the multiplicity of Sj as a composition factor of Mi.
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The following proposition shows that the decomposition numbers are in-
dependent of the choices of 0-forms.

PROPOSITION 1.9.6. Suppose that (K, 0, k) is a splitting system for A,
and that A is semisimple. Then dij is the multiplicity of V as a composition
factor of Qj. In particular

eij = > dkidkj.
k

PROOF. We have

dij = dimk HomA(Pj, Mi) by 1.7.6

= rankOHomA(Qj, Mi) since Qj is projective

= dimk HomA(Qj, Vi)

which is equal to the multiplicity of Vi as a composition factor of Qj since A
is semisimple.

REMARKS. (i) Note carefully what this proposition is saying. It is saying
that the decomposition matrix can be read in two different ways. The rows
give the modular composition factors of modular reductions of the ordinary
irreducibles, while the columns give the ordinary composition factors of lifts
of the modular projective indecomposables. It is thus clear that the decom-
position matrix times its transpose gives the modular irreducible composition
factors of the modular projective indecomposables, namely the Cartan ma-
trix.

(ii) If A is a group ring, we shall see in Chapter 3 that k is semisimple,
so that this proposition applies in this case.

(iii) This proposition makes it clear that the decomposition numbers dij
are independent of the choice of 0-form Mi chosen for the Vi.

(iv) It also follows from this proposition that the Cartan matrix (cij) is
symmetric in this case. This is not true for more general algebras, even over
splitting systems.

(v) In case (K, 0, k) is not a splitting system, a modification of the above
proposition is true. Namely the multiplicity of V as a composition factor of
Qj is

dij. dimk EndA(Sj)/ dimk EndA(V )

and so

cij = E dkidkj. dimk End,& (Sj) / dimk End,& (Vk).
k

The proof is the same.





CHAPTER 2

Homological algebra

2.1. Categories and functors

We shall assume that the reader is familiar with the elementary no-
tions of category and functor (covariant and contravariant) as explained
in MacLane [149, Sections 1.7 and 1.8].

DEFINITION 2.1.1. If F, F' : C -> D are covariant functors, a natural
transformation ¢ : F F' assigns to each object X E C a map ¢x
F(X) -* F'(X) in such a way that the square

F(X) F'(X)
F(a) I F'(a)

F(Y) Y F'(Y)

commutes for each morphism a : X -* Y in C. Similarly if F and F' are
contravariant, we make the same definition, but with the vertical arrows
in the above diagram reversed. We write Nat(F, F') for the set of natural
transformations from F to F'. A natural transformation 0 : F F' is a
natural isomorphism if Ox is an isomorphism for each X E C.

An equivalence of categories is a pair of functors F : C -* D and
F' : D -i C such that F o F' and F' o F are naturally isomorphic to the
appropriate identity functors.

The following are examples of categories we shall be interested in during
the course of this book:

(i) The category Grp of groups and homomorphisms.
(ii) The categories AMod of left A-modules and Amod of finitely generated
left A-modules, for a ring A.
(iii) The categories Set of sets, Ab of abelian groups and kVec of k-vector
spaces.
(iv) The category of functors from Amod to Ab, or from Amod to kVec if A is
a k-algebra. In this category the morphisms are the natural transformations.
(v) The category of topological spaces and (continuous) maps.
(vi) The category of CW-complexes and homotopy classes of maps.
(vii) The category of chain complexes and chain maps.

21
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The correct setting for doing homological algebra is an abelian cate-
gory. A typical example of an abelian category is a category of modules for
a ring.

DEFINITION 2.1.2. An abelian category is a category with the following
extra structure.

(i) For each pair of objects A and B the set of maps Hom(A, B) is given
the structure of an abelian group.

(ii) There is a zero object 0 with the property that Hom(A, 0) and
Hom(0, A) are the trivial group for all objects A.

(iii) Composition of maps is a bilinear map

Hom(B, C) x Hom(A, B) -+ Hom(A, C).

(iv) Finite direct sums exist (with the usual universal definition).
(v) Every morphism 0 : A -* B has a kernel, namely a map a : K --+ A

such that 0 o or = 0, and such that whenever o,' : K' -+ A with 0 o a' = 0
there is a unique map A : K' -+ K with a' = a o A.

(vi) Every morphism has a cokernel (definition dual to that of kernel).
(vii) Every monomorphism (map with zero kernel) is the kernel of its

cokernel.
(viii) Every epimorphism (map with zero cokernel) is the cokernel of

its kernel.
(ix) Every morphism is the composite of a monomorphism and an epi-

morphism.
An additive functor F from one abelian category to another is one

which induces a homomorphism of abelian groups

Hom(A, B) -* Hom(F(A), F(B))

for each pair A and B.

Freyd [108] has shown that given any small abelian category A (i.e., one
where the class of objects is small enough to be a set) there is a full exact
embedding F : A -+ AMod for a suitable ring A. Here, full means that
for X, Y E A, every map in AMod from F(X) to F(Y) is in the image of
F. Exact means that F takes exact sequences to exact sequences. This has
the effect that diagram chasing may be performed in an abelian category
as though the objects had elements. Since we shall only be working with
categories where this is obviously true, we shall write our proofs this way. It
is a simple matter and a worthless exercise to translate such a proof into a
proof using only the axioms.

Thus you should not memorise the definition of an abelian category, but
rather remember the Freyd category embedding theorem, and look up the
definitions whenever you need them.

Often in representation theory, it is more convenient to work not in a
module category but in a stable module category. We write Amod for
the category of finitely generated A-modules modulo projectives. Namely, the
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objects of Amod are the same as those of Amod, but two maps in Amod are
regarded as the same in Amod if their difference factors through a projective
module. Thus for example the projective modules are isomorphic to the zero
object in Amod. We write HomA(M, N) and EndA(M) for the hom sets in
Amod, namely homomorphisms modulo those factoring through a projective
module.

If the Krull-Schmidt theorem holds in Amod then the indecomposable
objects in Amod correspond to the non-projective indecomposable objects
in Amod.

Recall from Section 1.5 that if M is a A-module then fl(M) is defined to
be the kernel of some epimorphism P --> M with P projective. Schanuel's
lemma can be interpreted as saying that while S2 is not a functor on Amod,
it passes down to a well defined functor

Q: Amod -> Amod.

Similarly we write Amod for the category of finitely generated A-modules
modulo injectives, and HomA(M, N) and EndA(M) for the hom sets in
Amod. The functor 52-1 passes down to a well defined functor

SZ-1 : Amod -` Amod.

If A is self injective, so that finitely generated projective and injective
modules coincide, then Amod = Amod and the functors ft and ci are
inverse to each other.

REPRESENTABLE FUNCTORS.

DEFINITION 2.1.3. A covariant functor F : C -+ Set is said to be repre-
sentable if it is naturally isomorphic to a functor of the form

(X, -) : Y --> Hom(X,Y).

A contravariant functor is representable if it is' naturally isomorphic to a
functor of the form

(-, Y) : X , Hom(X, Y).
If Hom sets in C have natural structures as abelian groups or vector

spaces, then we have the same definition of representability of functors F :
C->AborF:C->kVec.

One of the most useful elementary lemmas from category theory is Yon-
eda's lemma, which says that natural transformations from representable
functors are representable.

LEMMA 2.1.4 (Yoneda). (i) If F : C , Set is a covariant functor and
(X, -) is a representable functor then the set of natural transformations from
(X, -) to F is in natural bijection with F(X) via the map

Nat((X, -), F) -° F(X)

(0 : (X, -) F) -Ox (idx).
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(ii) If F': C --- Set is a contravariant functor and (-, X) is a repre-
sentable functor then the set of natural transformations from (-, X) to F is
in natural bijection with F(X) via the map

Nat((-,X),F)+F(X)
(0 : (-, X) -+ F) -Ox (idx ).

PROOF. (i) It is easy to check that the map

F(X) -*Nat((X,-),F)
xEF(X)H(q :(X,-)-F

Oy(a:X ->Y)=F(a)(x) EF(Y) )
is inverse to the given map. The proof of (ii) is similar.

ADJOINT FUNCTORS.

DEFINITION 2.1.5. An adjunction between functors F : C -+ D and
G : D -+ C consists of bijections

Hom(FX, Y) -+ Hom(X, GY)

natural in each variable X E C and Y E D. We say that F is the left adjoint
and G is the right adjoint.

It is not hard to see that if a functor has a right (or left) adjoint, then it
is unique up to natural isomorphism. Examples of adjunction abound. The
most familiar example is probably the adjunction

Hom(X x Y, Z) = Hom(Y, Hom(X, Z))

between the functors X x - and Hom(X, -) on Set. Similarly in kVec we
have

Hom(U ® V, W) = Hom(V, Hom(U, W)).

Another class of examples is given by free objects. For example if F : Set
Grp takes a set to the free group with that set as basis, then F is left adjoint
to the forgetful functor G : Grp -* Set which assigns to each group its
underlying set of elements.

LEMMA 2.1.6. Suppose that C and D are abelian categories and F : C -*
D has a right adjoint G : D -+ C. Then F takes epimorphisms to epimor-
phisms and G takes monomorphisms to monomorphisms.

PROOF. A map X -+ X' is an epimorphism if and only if for every Z E C,
the map Hom(X', Z) -+ Hom(X, Z) is injective. In particular

Hom(X', GY) -+ Hom(X, GY)

is injective so that

Hom(FX',Y) -+ Hom(FX,Y)
is injective for every Y E D. Thus FX - FX' is an epimorphism. The other
statement is proved dually.
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2.2. Morita theory

When are two module categories AMod and rMod equivalent as abelian
categories? Let F : AMod -+ rMod, F' : rMod -> AMod be an equiva-
lence. Since the definition of a projective module is purely categorical, F and
F' induce an equivalence between the full subcategories AProj and rProj
of projective modules. Among all projective modules, one can recognise the
finitely generated ones as the projective modules P for which HomA(P, -)
distributes over direct sums. So F and F' induce an equivalence between the
full subcategories Aproj and rproj of finitely generated projective modules.

The image of the regular representation P = F'(rI') E AMod has the
following properties:

(i) P is a finitely generated projective module.
(ii) Every A-module is a homomorphic image of a direct sum of copies of

P.

(iii) I' = EndA(P)°P.
Conversely, we shall see that if P is a A-module satisfying (i) and (ii) then
letting r = EndA(P)°P, AMod is equivalent to rMod. The proof goes
via an intermediate characterisation of equivalent module categories, using
bimodules.

DEFINITION 2.2.1. A A-module P satisfying conditions (i) and (ii) above
is called a progenerator for AMod.

If A is an Artinian ring with A/J(A) = ® Mat,,, (Ai) and corresponding
projective indecomposables Pi, so that AA =EE) niPi, then a finitely gener-
ated projective module P = ®miPi is a progenerator if and only if each
mi > 0. If F = EndA(P)°P then r/J(I') = ®Mat.,,,i(Di). Thus the simple
modules have changed dimension from ni to mi, without changing any other
aspect of the representation theory. The smallest possibility for IF is to take
each mi = 1. In this case, we say that I is the basic algebra of A. Basic
algebras are characterised by the property that every simple module is one
dimensional over the corresponding division ring.

DEFINITION 2.2.2. Two rings A and IF are said to be Morita equivalent
if there are bimodules APF and FQA and surjective maps 0: P or Q -+ A of
A-A-bimodules and,0 : Q®AP ` IF of P-F-bimodules satisfying the identities
xO(y ® z) = O(x ® y)z and yq(z ® w) = z/i(y ® z)w for x and z in P and y
and w in Q.

LEMMA 2.2.3. If P is a progenerator for AMod, and t = EndA(P)°P
then A and I are Morita equivalent.

PROOF. The ring t acts on P on the right, making P into a A-F-
bimodule. Let Q = HomA(P, A), as a F-A-bimodule. The map 0 : P or,
HomA(P, A) -+ A given by evaluation is surjective, since A is a homomor-
phic image of a sum of copies of P, while the map 0 : HomA(P, A) ®A P
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EndA(P)°p given by T/i(f ® x)°P(y) = f (y).x is surjective since P is a sum-
mand of a finite sum of copies of AA, so that every endomorphism is a sum of
endomorphisms factoring through AA. The identities are easy to check.

LEMMA 2.2.4. If APT and rQA are bimodules as in the definition of
Morita equivalence, then the maps ¢ : P Or Q --+ A and 0 : Q ®A P -+ IF are
isomorphisms.

PROOF. We shall show that Ker(O) = 0. Let cb(Ei xi ® yi) = 1 E IF and
suppose that O(Ej zj 0 wj) = 0. Then

E zj 0W3 = >(zj ®wj)O(xi ®yi) = > zj 0 O(wj ®xi)yi
j i,j i,j

=>zj'(wj®xi)®yi=Eb(zj®wj)(xi®yi)=0.
i,j i,j

PROPOSITION 2.2.5. Suppose that A and F are Morita equivalent, with
bimodules P and Q and maps q : P Or Q -# A and Eli : Q ®A P --+ IF as in
the above definition. Then the functors

Q ®A - : AMod - rMod, P ®r - : rMod ` AMod

provide an equivalence of abelian categories between AMod and rMod. They
also induce equivelences between Amod and rmod.

PROOF. This follows directly from the associativity of tensor product and
the above lemma.

THEOREM 2.2.6 (Morita). Two module categories AMod and rMod are
equivalent if and only if Amod and rmod are equivalent. This happens if
and only if r = EndA(P)°P for some P of AMod.

PROOF. This follows from Lemma 2.2.3 and Proposition 2.2.5.

PROPOSITION 2.2.7. If AMod is equivalent to rMod then the centres
Z(A) and z(r) are isomorphic rings.

PROOF. If A E Z(A), then multiplication by A is a natural transfor-
mation from the identity functor on AMod to itself. Conversely, we claim
that all such natural transformations are of this form. Given such a natural
transformation 0, let A be the value on the identity element of the regular
representation, A = 4,AA(1) E A. Then for any A-module M and m c M, we
define f : AA -+ M by f (A) = Am. By naturality we have

4,M(m) = 4,Nt(f (1)) = f (4AA(1)) = f (A) = Am.

Thus 0 is equal to multiplication by A, which in particular implies that A E
Z(A).

It follows that the ring Z(A) may be recovered from AMod, so that
Z(A) = Z(I').
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EXERCISES. 1. If A and IF are Morita equivalent, prove that A is semisim-
ple Artinian if and only if r is.

2. If A and r are finite dimensional algebras over a field, prove that a
Morita equivalence between A and IF induces a bijection between the sim-
ple A-modules and the simple r-modules, and that corresponding projective
modules have the same multiplicities of corresponding simple modules in each
Loewy layer.

3. If A and r are Morita equivalent 0-algebras of the form described in
Section 1.9, prove that A and t have the same decomposition matrices.

4. Show that if A and t are Morita equivalent finite dimensional algebras
then A is self injective if and only if t is self injective, and that A is symmetric
if and only if t is symmetric. Show that if A is Frobenius then r does not
have to be Frobenius. Show that the basic algebra of a finite dimensional self
injective algebra is always Frobenius.

5. Show that if APr and FQA are bimodules inducing a Morita equivalence
between A and IF then there are adjunctions

HomA(P Or -, -) = Homr(-, Q ®A -)
HomA(-, P Or -) ?' Homr(Q ®A -, -)

so that P or - is both left and right adjoint to Q ®A -.
Use these adjunctions and the fact that

Z(A) = HomA®AoP (P ®r Q, A)

to give an alternative proof that Z(A) = Z(r).

2.3. Chain complexes and homology

Homological and cohomological concepts can be associated to groups, to
modules, to topological spaces, to posets, and so on. These concepts form a
major part of the subject matter of this book. They are defined in terms of
chain complexes and cochain complexes.

DEFINITION 2.3.1. Let A be an abelian category. A chain complex of
objects in A (for example, a chain complex of abelian groups, or of vector
spaces, or of modules) consists of a collection C = {C,,, I n E Z} of objects
Cn E A indexed by the integers, together with maps an : C -> C,,,_I (called
the differentials) satisfying an o an+I = 0.

A cochain complex of objects in A consists of a collection C = {Cn I
n E Z} of objects Cn E A indexed by the integers, together with maps
Sn : Cn -, Cn+1 satisfying 6n o 6n-1 = 0.

If x E Cn or Cn, we write deg(x) = n and say x has degree n.

REMARK. If {Cn, an} is a chain complex then letting Cn = C_n, bn =
a_n, we obtain a cochain complex {C', Sn}, and vice-versa. Thus in some
sense chain complexes and cochain complexes are the same thing. In the
end, whether we regard something as a chain complex or a cochain complex
usually depends on where it came from. It often happens, for example, that
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Cn = 0 (resp. Cn = 0) for n < 0 or for n < -1. We say that a (co)chain
complex C is bounded below if Cn = 0 (resp. Cn = 0) for all n sufficiently
large negative, and bounded above if this holds for all n sufficiently large
positive. C is bounded if it is bounded both below and above.

DEFINITION 2.3.2. The homology of a chain complex C is given by

H (C) H (C 8 ) Ker(8n Cn Cn-1) = Zn(C). _ n , * _
Im(C7n+1 Cn+1 - Cn) Bn(C)

The cohomology of a cochain complex C is given by

Ker(Sn : Cn -+ Cn+1)
nn *

Zn(C)
(C'E(C) = HH ) - Im(sn-I : Cn-1 -* Cn)

-
Bn(C).

If X E Cn with 8n(x) = 0 (resp. X E Cn with 6n(X) = 0) then x E Zn(C)
is called a cycle (resp. x E Zn(C) is a cocycle), and we write [x] for the
image of x in Hn(C) (resp. Hn(C)). If x = 8n+1(y) with y E Cn+1 (resp.
x = Sn-1(y) with y E Cn-1) then x E Bn(C) is called a boundary (resp.
x c Bn(C) is a coboundary). Thus Hn(C) (resp. Hn(C)) consists of cycles
modulo boundaries (resp. cocycles modulo coboundaries).

DEFINITION 2.3.3. If C and D are chain complexes (resp. cochain com-
plexes), a chain map (resp. cochain map) f : C -> D consists of maps
fn : Cn -+ Dn (resp. fn : Cn -+ D'), n E Z, such that the following diagram
commutes.

Cn
an

Cn_1 (resp. Cn
bn

Cn+1 ).

fn A- I I A fn+1
I I n I

Dn Dn_1 Dn b-_ Dn+1

Clearly a (co)chain map f : C -* D induces a well defined map f*
Hn(C) - Hn(D) (resp. f* : H'(C) -+ Hn(D)) defined by f. [x] = [f(x)]
(resp. f*[x] = [f(x)]) for x E Zn (resp. Zn).

From now on, we shall formulate concepts and theorems for chain com-
plexes, and leave the reader to formulate them for cochain complexes.

DEFINITION 2.3.4. If f, f' : C - D are chain maps, we say f and f'
are chain homotopic (written f ^- f') if there are maps hn : Cn -> Dn+1>
n E Z, such that

fn -fn=8n+lohn+hn-1o8n.

hn+l

an+1

Cn an
Cln-1

fn

V

A-1
hn-

an Dn-1
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We say C and D are chain homotopy equivalent (written C 2-, D) if
there are chain maps f : C -> D and f' : D -> C such that the composites
are chain homotopic to the identity maps f o f idD and f' o f -- idc.

We say C is chain contractible if it is chain homotopy equivalent to
the zero complex. This is equivalent to the condition that there is a chain
contraction, i.e., a collection of maps sn : Cn -> Cn+1 with idc, = an+1 0
Sn + Sn-1 0 On.

The reason for this definition is that homotopic maps between topological
spaces (see Chapter 1 of Volume II) give rise to chain homotopic maps be-
tween their singular chain complexes. A contractible space will have a chain
contractible reduced singular chain complex. See for example Spanier [190,
Section 4.4]. Thus the following proposition is the algebraic counterpart of
the fact that the singular homology groups of a topological space are homo-
topy invariants.

PROPOSITION 2.3.5. If f, f : C -+ D are chain homotopic then f, = f; :
Hn(C) -> Hn(D). Thus a homotopy equivalence C -- D induces isomor-
phisms Hn(C) = Hn(D) for all n E Z.

PROOF. If x E Cn with an(x) = 077 then

f.[x] - f*[x] = [fn(x) - fn(x)] = [an+1(hn(x)) + hn-1(an(x))]

= [an+1(hn(x))] = 0.

THE LONG EXACT SEQUENCE IN HOMOLOGY.

DEFINITION 2.3.6. A short exact sequence 0 -> C' --+ C -> C" --> 0
of chain complexes consists of maps of chain complexes C' --> C and C -> C"
such that for each n, 0 -> Cn -+ Cn -> Cn ---> 0 is a short exact sequence.

0 0 0

I I , I
nI+1 n n-1

Ion+l 10n
.11.

an+l a-Cn+1 Cn
-n

I

Cn_1

/'v

I V)n+l I
/'v
I_i

-* c +1 an+l, /-yam an V-1 - .. .

iii
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PROPOSITION 2.3.7. A short exact sequence 0 -+ C' -+ C - C" -* 0 of
chain complexes gives rise to a long exact sequence

... - HH(C') - Hn(C) - Hn(C") - Hn-1(C') - Hn-1(C) -' ...
PROOF. We define the switchback map or connecting homomor-

phism

0: Hn(C") Hn-1(C')

as follows. If x E Cn with en(x) = 0, so that [x] E Hn(C"), choose y E Cn
with On(y) = x. Then'in-18n(y) = 8nOn(y) = 0 and so 8n(y) = On-1(z)
with z E Cn_1. We have On-28'n_1(z) = 8n-I0n-1(z) = 8n-18n(y) = 0 and
so 8n_1(z) = 0. We define 8[x] = [z] E Hn-1(C').

If y' is another element of Cn with n(y') = x and z' E Cn_1 with
8n(y') _ On_1(z'), then V)n(y-y') = 0, and so y-y' = on(u) for some u E C.
We have On-l8n(u) = 8ngn(u) = 8n(y) - 8n(y') = On-1(z) - On-1(z') and so
en (u) = z - z'. Thus [z] = [z'] E Hn-1(C'). This shows that 8 : Hn(C") -->
Hn-1(C') is well defined. Exactness of the sequence is not hard to check.

We find it worthwhile to record the cohomological version of the above
proposition.

PROPOSITION 2.3.8. A short exact sequence of cochain complexes gives
rise to a long exact sequence

... - Hn(C') -> H"(C) ->.Hn(C"") -f Hn+l(C') -r Hn+l(C) ...

A particular case of the above exact sequences is the following:

LEMMA 2.3.9 (Snake Lemma). A commutative diagram of short exact se-
quences

0 Ci , CI - Cl - 0

0 ' Cp Co , CIO, , 0
gives rise to a six term exact sequence

0 -> Kera -p Ker,3 -> Kerry -* Cokera -> Coker,3 -> Coker-y -* 0.

PROOF. We regard the diagram as a short exact sequence of chain com-
plexes of length two, and apply Proposition 2.3.7.

2.4. Ext and Tor

Our first application of the theory of chain complexes and homology is
to define functors Ext and Tor for modules over a ring. We shall interpret
Ext in terms of extensions of modules.
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DEFINITION 2.4.1. A projective resolution of a A-module M is a long
exact sequence

52... P-* 2 P1
al.

PO

of modules with the Pn projective and with Po/Im(al) = M. In other words,
the sequence

...--4 P2-P1-fPO --+ M-0

is exact. Since every module is a homomorphic image of a free module,
projective resolutions always exist.

We shall regard the sequences in the above definition as chain complexes.
The module M appears in degree -1 in the second sequence.

THEOREM 2.4.2 (Comparison theorem). Any map of modules M -> M'
can be extended to a map of projective resolutions

P2 az P1 al-Po -M _0

If2 Ifi Ifo
I... Q2 '

Given any two such maps I fn} and I fn}, there is a chain homotopy
hn : Pn -4 Qn+l, so that fn - fn = an+1 o hn + hn-1 o an.

PROOF. We construct the fn Pn -> Qn inductively as follows. Since

en-l o fn-1 o an = fn-2 o 8n-1 o an = 0,

we have

Pn

fn-10&n4a,
Qn n Im(c9) ' 0

and so we can find a map fn : Pn -> Qn with an o In = fn-1 o an.
We also construct the hn inductively. We have

i iOno (fn - fn - hn-loan) = (A-1 - fn-l - anr o hn-1) o an
=hn-20an-loan=0

and so we may find a map hn Pn - Qn+1 with fn - fn - hn-1 o an =
an+1 o hn.

REMARK. The proof of the above theorem did not use all the hypotheses.
It suffices for the upper complex to consist of projective modules but it need
not be exact, and for the lower complex to be exact but not necessarily to
consist of projective modules. We shall sometimes use this stronger form of
the theorem.
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If M' is a right A-module and

P2-P1al.Po
is a projective resolution of a left A-module M, we have a chain complex

...M ®AP2 1082 , M'®AP1 1®*M'®APO-

This complex is no longer necessarily exact, although it is clear that (1 ®
an_1)0 (1®0n)=0.

It follows from the above theorem that this complex is independent of
choice of projective resolution, up to chain homotopy equivalence. Thus the
homology groups are independent of this choice, and we define

Torn(M', M) = H" (M, ® P, 1® a.).

Similarly if M' is a left A-module and

-,P2 - P1
.91

PO

is a projective resolution of a left A-module M, we have a cochain complex

HomA(Po, M') b_. HomA(PI, M') b-. HomA(P2, M') - .. .

where Sn is given by composition with an+I. This complex is independent of
choice of projective resolution, up to chain homotopy equivalence. Thus its
cohomology groups are independent of this choice, and we define

ExtnA(M, M') = Hn(HomA(P, M'), b*).

Note that Toro (M', M) = M' ®A M and Exto(M, M') = HorA(M, M').

EXAMPLE. In case A = Z, a A-module is the same as an abelian group.
Since every subgroup of a free abelian group is again a free abelian group,
it follows that every module has a projective resolution of length one (i.e.,
Pn, = 0 for n > 2), and so Tort and Extn are zero for n > 2.

It was conjectured by J. H. C. Whitehead that if Ext'(A, 7G) = 0 then
A is free as an abelian group. It is now known, thanks to the extraordinary
work of S. Shelah [187] that the truth of this conjecture depends on the set
theory being used!

REMARKS. (i) If M is projective, then P can be taken to be non-zero
only in degree zero, and equal to M there, so that in this case ExtnA (M, M')
and Torn (M, M') are zero for n > 0.

(ii) We write up(M) for Ker(an_1) in a projective resolution of M. Note
that by Schanuel's lemma if Sin(M)' is defined similarly using another pro-
jective resolution of M then there are projective modules P and P' with
f2- (M) ® P' = Sin (M)' ® P. If M is finitely generated and the Krull-Schmidt
theorem holds for finitely generated A-modules then there is a unique mini-
mal resolution of M, and we write Sin(M) for Ker(an_1) in this particular
resolution.

Dually we write Si-n(M) for the nth cokernel in an injective resolution,
and Q-n(M) if the resolution is minimal.
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(iii) The discussion above of Ext and Tor is a particular case of the
concept of derived functors. Suppose that A and B are abelian categories
and that every object in A is a quotient of a projective object. If F : A -> 13
is a covariant additive functor, and M is an object in A, we form a projective
resolution

... -, P2 - P1
al

P°

of M, apply F to obtain a chain complex

F(P2)
F F(Pi) F(01) F(Po)

whose homology groups are the left derived functors

L,,,,F(M) = H,,(F(P), F(a*)).

Using the comparison theorem in the same way as before, we see that these
are independent of the choice of resolution. If F is right exact then L°F(M) _
F(M). Thus for example the left derived functors of M' ®A - are

L,,,(M'®A-) =Torn(M',-).

Similarly, the right derived functors of the covariant additive functor
F are defined by applying F to an injective resolution

60 61Io - Il -` 12-

of M. The right derived functors are then the cohomology groups

RnF(M) = HT (F(I, F(b*)).

If F is left exact then R°F(It'I) = F(M).
For contravariant functors, the left derived functors are defined using an

injective resolution and the right derived functors are defined using a projec-
tive resolution. Thus for example the right derived functors of HomA(-, M')
are R"HomA(-, M') = Extn(-, M').

The reader may wonder why we have not discussed Lam(- ®A M) and
RThHomA(M, -). This is because it turns out that we get nothing but Tor
and Ext again, as we shall see in Proposition 2.5.5.

PROPOSITION 2.4.3. Suppose that A is Artinian, and P = Ae and P' _
Ae' are projective indecomposable A-modules, so that P/Rad(P) = S and
P'/Rad(P') = S' are simple (by the idempotent refinement theorem). Then

ExtX(S, S') = HomA(Rad(P)/Rad2(P), S').

As an EndA (S') -EndA (S) -bimodule this is dual to the EndA(S)-EndA(S')-
bimodule e'J(A)e/e'J2(A)e. In particular, if A is a finite dimensional algebra
over a field k, then

dimk S') = dimk (e'J(A)e/e'J2(A)e).
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PROOF. If Rad(P)/Rad2(P) = ®i niSi as a direct sum of simple mod-
ules, then letting Pi/Rad(Pi) = Si, the minimal projective resolution of S
has the form

... - (D niPi --4 P

and so

ExtI(S, S') = HomA((DniPi, S') = HomA((D niSi, S')
i i

which we can rewrite as HomA(Rad(P)/Rad2(P), S'). This is dual to

HomA(S', Rad(P)/Rad2(P)) = HomA(P', Rad(P)/Rad2(P))

HomA(P',Rad(P))/HomA(P',Rad2(P)) = e'J(A)e/e'J2(A)e

by Lemma 1.3.3.

AUGMENTED ALGEBRAS.

DEFINITION 2.4.4. An augmented algebra A over a commutative ring
of coefficients R is an algebra together with a surjective augmentation map
e : A --> R of R-algebras.

If A is an augmented algebra, then R may be given the structure of a left
A-module via A(x) = E(A)x, and of a right A-module via (x)A = E(A)x.

We define the homology groups of A with coefficients in a right A-
module M to be

H,,(A, M) = Torn (M, R)

and the cohomology groups of A with coefficients in a left A-module M to
be

H'(A, M) = Ext'(R, M).

The special case M = R is of particular importance, since as we shall see in
Section 2.6, there is a ring structure in this case.

REMARK. Suppose that R -* R' is a homomorphism of coefficient rings,
and A is projective as an R-module. Then tensoring with R' will take a
projective resolution of R as a A-module to a projective resolution of R' as
an R' ®R A-module. Thus we have

HT(A, R') = H",(R' (9R A, R'), HT (A, R') = H_(R' ®R A, R').

EXERCISE. Show that Ext and Tor are bilinear in the sense that there
are natural isomorphisms

®M', M") = ExtA(M, M") ® Extn(M', M")

ExtA(M, M' (D M") = Extn(M, M") ® Extn(M, M")

and similarly for Torn.
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2.5. Long exact sequences

LEMMA 2.5.1 (Horseshoe lemma). If 0 --+ M' -4 M -> M" -* 0 is a
short exact sequence of left A-modules, then given projective resolutions

p2 -, pi -, PO, ... p2 + pl -* po

of M' and M", we may complete to a short exact sequence of chain complexes

0 0 0 0

P2' P1' _ po-M'

®P2 -..PIED PI -Po®Po ->M-0

P2------------- pill ----- po

0 0 0 0

PROOF. It is easy to construct the required maps by induction, using the
definition of a projective module.

PROPOSITION 2.5.2. Suppose that

0-*M'-+M-M" -+ 0
is a short exact sequence of left A-modules.

(i) If Mo is a right A-module, there is a long exact sequence

TorA(MO, M') -* TorA(MO, M) -* TorA(MO, M") _, Torn_1(Mo, M')

- Tori(Mo, M,,) -* MO ®A M'- MO ®A M -* MO (DA M" 1 0.

(ii) If Mo is a left A-module there is a long exact sequence

0 -i HomA(M", Mo) HomA(M, Mo) -, HomA(M', Mo) -> Extn(M", Mo)

- Extn(M", Mo) -> Extn(M, Mo) - Extn(M', Mo) -+ Extn+1(M", Mo) -

PROOF. (i) Tensor Mo with the diagram given in the lemma and use
Proposition 2.3.7.

(ii) Take horns from the diagram given in the lemma to Mo and use
Proposition 2.3.8.

Exactly the same proof shows in general that if F : A -3 B is a right
exact covariant additive functor then there is a long exact sequence

LnF(M') --* L"F(M) , LnF(M") , L,,,_IF(M') , ...
-> L1F(M") -+ F(M') -> F(M) - F(M") -* 0,
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while if F is a left exact contravariant additive functor then there is a long
exact sequence

0 -, F(M") -, F(M) -* F(M') -* R1F(M") ,
-> RF(M") -> RnF(M) - R'"F(M') , Rn+1F(M") ->

Of course, similar statements are true of the right derived functors of a left
exact covariant functor and left derived functors of right exact contravariant
functors. We leave the interested reader to formulate these cases.

We also obtain exact sequences in the other variable as follows.

PROPOSITION 2.5.3. (i) Suppose that

0-+Mo->M1-*M2->0

is a short exact sequence of right A-modules, and M' is a left A-module. Then
there is a long exact sequence

Torn(Mo,M') -, Torn(M1,M') Torn(M2,M') -, Tornn_1(Mo,M') -' ...

Tori(Mz> MI) - Mo OA M'- Ml ®A MI ' M2 ®A M1 ' 0.

(ii) Suppose that 0 -, M0 -, M1 -, M2 -, 0 is a short exact sequence of
left A-modules and M' is a left A-module. Then there is a long exact sequence

0 -, HomA(M', Mo) -* HomA(M', M1) -, HomA(M', M2) -, Mo) -

Extn(M', Mo) -, Extn(M', M1) --, Extn(M', M2) -+ Extn+1(M', Mo) -,

PROOF. (i) Tensoring the short exact sequence with a resolution

P2 -, P1 -, PO

of M' as a left A-module gives a short exact sequence of chain complexes

0 0 0

M0®P2M0®P1"M0®Po

M10P2M1 ®P1' 'MI®Po

M2P2'M2®PiM2Po

0 0 0

Applying Proposition 2.3.7 yields the required long exact sequence.

(ii) If

... P2 -, P1'
- PO'
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is a projective resolution of M' as a left A-module, then applying Proposi-
tion 2.3.8 to the short exact sequence of cochain complexes

0 0 0

HomA(Po, Mo) , HomA(Pi, Mo) -- HomA(P2, Mo)' ...

HomA(PP, M1) , HomA(Pj, M1) -- HomA(P2, M1) ' ...

HomA(Po, M2) , HomA(Pj, M2) - HomA(P2, M2) ' .. .

If

0 0 0

yields the required long exact sequence.

COROLLARY 2.5.4. If M is a module for an Artinian ring A and S is a
simple A-module then

(i) Extn(M, S) c--- HoMA(QnM, S)
(ii) Extn(S, M) = HomA(S, Q-nM).

PROOF. (i) Let

... -, P2 -> P1 -. Po

be a minimal resolution of M. Then the complex

HomA(Po, S) - HomA(Pl, S) --> HomA(P2, S) -> .. .

has zero differential, since if the composite Pn+1 -> Pn -> S is non-zero then
Pn has a summand isomorphic to the projective cover of S and which is in
the image of Pn+1 -> Pn and hence in the kernel of Pn -4 Pn_1, contradicting
the minimality of Pn. Hence

ExtA(M, S) = HomA(Pn, S) = HomA(Pn/Im(Pn+l - Pn), S)
= HomA(52nM, S).

(ii) is proved similarly, using part (ii) of the following proposition.

PROPOSITION 2.5.5. (i) Suppose that M' is a right A-module and
a2 a'

is a resolution of M' by projective right A-modules. Then

Torn(M',M) Hn(P'0M,8 ®1).
In particular if M' is projective then Tor,A (M', M) = 0 for n > 0.

(ii) Suppose that M' is a left A-module and

is an injective resolution of M. Then
ExtnA(M, M') = Hl(HomA(M, I'), 8*).
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In particular if M' is injective then Extn(M, M') = 0 for n > 0.

PROOF. We shall prove (ii), since the proof of (i) is the dual of the same
argument. The proof is an example of the inductive technique of dimension
shifting. We denote by EXTnA(M, M') the groups Hn(HomA(M, I'), S*), and
we wish to show that ExtnA (M, M') = £XTR (M, M').

Choose a short exact sequence

0->M1-->P-+M->0

with P projective. Then the long exact sequence

ExtA 1(P, M') -> ExtA 1(M1, M') ->

ExtA(M, M') -> ExtA(P, M')

shows that Extn(M, M') = Ext 1(Ml, M').
The functor £XT also clearly has long exact sequences in each vari-

able by the same arguments as above, and so we obtain £XTx(M, M')
£XTn-1(M1, M').

We are now finished by induction, since the case n = 1 follows from the
diagram

0 - HomA(M,M') - HomA(P,M') - HomA(M1,M') - Ext' (M,M') - 0

0 -- HomA(M,M') - HomA(P,M') - HomA(M1,M') EXT1(M,M') - 0.

COROLLARY 2.5.6. If either M or M' is flat then Torn (M', M) = 0 for
all n > 0.

The proof of the following may now be safely left to the reader.

PROPOSITION 2.5.7.
(i) Extn(M, M') = Ext 1(M), M') = Ext 1(M, 1l-1(M'))
(ii) Torn(M,M') = Torn_1(1l(M),M') = Torn_1(M,f (M')).

EXERCISE. Formulate and prove a version of Proposition 2.5.5 for derived
functors of functors of two variables with appropriate exactness properties.

2.6. Extensions

DEFINITION 2.6.1. If M and M' are left A-modules, an n-fold extension
of M by M' is an exact sequence

0->M'-4 MM,-1-4Mn-2_ ...-+MO-+M->0

beginning with M' and ending with M, and with n intermediate terms.
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Two n-fold extensions are equivalent if there is a map of n-fold ex-
tensions

0 - '- M -...- M _ M _0M M -1 o

0 ' Mn ... - M t M 0M _1 o .

We complete this to an equivalence relation by symmetry and transitivity in
the usual way.

For n = 1, we simply call an n-fold extension an extension. Note that
an equivalence of extensions is an isomorphism of short exact sequences.

LEMMA 2.6.2. Suppose that A is an algebra over a field k, and

0->M1-*M2->M3- 0
is a short exact sequence of A-modules of finite k-dimension. If M2
M1 ® M3 then the sequence splits; i.e., it represents the zero element of
ExtA(M3, Ml).

PROOF. By dimension counting, the last map in the exact sequence

0 -f HomA(M3, M1) -p HomA(M3, M2) -+ HomA(M3, M3) -+ Ext3(M3, M1)

is zero, so the previous map is surjective. A pre-image under this map of the
identity homomorphism of M3 is a splitting for the sequence. 0

An n-fold extension of M by M' determines an element of ExtX(M, M')
by completing the diagram

Pn+1 - P. a" P'_1

0-,M', Mn_1 - _ ... _ Mo M _ 0

using the remark after Theorem 2.4.2. By enlarging the projective resolution
of M if necessary, we may assume that 0 is surjective.

It is easy to see that equivalent n-fold extensions define the same element
of Ext'(M, M'). Conversely, if two n-fold extensions define the same element
of ExtA(M, M') then we have a commutative diagram

0--M'-Mn_1- -Mn_2- ...--Mo-M- 0

0- M'-Pn_1/8n(Ker0)- Pn-2- ...-Po- M - 0

0'M' Mn-1 , 0

and so they are equivalent. Thus we have interpreted Extn(M, M') as the
set of equivalence classes of n-fold extensions of M by M'. In particular,
Ext1(M, M') is the set of equivalence classes of extensions 0 - M' Mo --f
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M -* 0, and in this case the equivalence relation reduces to isomorphism of
short exact sequences.

If C E Ext'(M, M'), we write for the corresponding map St"(M) -, M'.
By rechoosing the projective resolution of M if necessary, we may always
assume that is an epimorphism, and we define LS to be its kernel. Thus
we have a commutative diagram

0 0

L( L(

0 ' Qn(M) P"-1 Pn-2 - ... PO M 0

0 - M'- P"-1/L(- Pn-2-'>- ...- P0- M-0

0 0

where the bottom row is an n-fold extension representing
Note that LS is only determined up to addition of projective modules, in

the sense that if L' is defined using another projective resolution of M then
there are projective modules P and P' with L(® P = L' e P'.

YONEDA COMPOSITION. If

0-->M'->Mn_1 ---+ MO M --+ 0,

represent elements E Extn (M, M') and i E ExtA (M', M"), then we can
form their Yoneda splice as follows.

0-4 M"-'M;L-1-*...->MM -> Mn_1-4...-MO- M-,0

M'
/ \,

0 0

to obtain an element i o ( of Ext'+m (M, M"). This way we obtain a bilinear
map

Ext- (M', M") X Extn(M, M') -* Extn+m(M, M")

called Yoneda composition. If m or n is equal to zero (recall Ext0 =
Hom) this map is defined by pushing out or pulling back in the obvious way.
This composition is clearly associative, and so it defines a ring structure on
ExtX(M, M), and ExtX(M, M') is an ExtX(M', M')-Ext*(M, M)-bimodule.
The reader should be warned that the ring Ext*(M, M) is often far from
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being commutative, even when A is a group ring RG, although it does turn
out that H*(RG, R) = ExtRG(R, R) is graded commutative. For further
details see Section 3.2.

If (E Extn(M, M') is represented by a map : Stn(M) -+ M' and
71 E Extm (M', M") is represented by : S2m(M') --f M", we obtain a rep-
resentative i o ( of the Yoneda splice as follows. As in Section 1.5, we may
form S2'"(() : Sln+m(M) . ! t'n(M') and then set

o (= o f1m(() : stn+m(M) -> M".

EXERCISES. 1. Show that a chain complex is chain contractible if and
only if it is a Yoneda splice of split short exact sequences.

2. Show that the natural isomorphism

Extn(M (D M', M") - Extn(M, M") ® Extn(M', M")

corresponds to a pushout diagram

0-M"EBM"-->M, 1®M,,_1 -M-2®Mi_2 ->-...-MOEMM--M®M'--0

I 1 11 II II

0->M" X ' Mn-2EMn_2 MpEMO - MEW'- 0.

Similarly, write down a pullback diagram for the natural isomorphism

ExtA(M, M' ® M") - Extn(M, M') ® Extn(M, M").

Deduce that Yoneda composition is compatible with direct sum decom-
position, so that elements of

Extn(Mi®...®Mm N1®...(D Nn)
may be written as matrices ((ij) with (ij c Extn(Mi, Nj), and Yoneda com-
position corresponds to matrix multiplication.

3. (Feit) If A is self injective, show that for n > 0 there is a natural
isomorphism

Extn(M, M') = Extn(1lM, QM')

compatible with Yoneda composition, so that in particular

Ext* (M, M) - Ext* (QM, SlM)

as graded rings
(after quotienting out the elements of Extn(M, M) = HomA(M, M) which
factor through a projective module).

4. Suppose that A is a ring and

0-*MI `M2-+M3-*0
is a short exact sequence of A-modules representing an element

p E M1).

Show that for any A-module N, the connecting homomorphisms

Ext 1(N, M3) -> Extn(N, M1), Ext 1(M1i N) -j Extn(M3, N)
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are equal to Yoneda composition with p.
5. Suppose that A is an Artinian ring, and that PM is the projective cover

of a A-module M with kernel Q(M). Show that the isomorphism between
HorA(SlM, S) and Ext3(M, S) given in Corollary 2.5.4 can be described as
follows. If 0 E HomA(SZM, S) then applying the snake lemma to the
diagram

0 - KerO- QM 0 S -0

0, 1M >PM--0 0

we obtain a non-split extension of M by S.

2.7. Operations on chain complexes

In this section, we discuss tensors and horns, duality, Ext and Tor for
chain complexes. The theory is parallel to the theory for modules, but the
signs need some attention. We leave the reader to formulate the correspond-
ing notions for cochain complexes.

We begin by discussing tensor products. If C and D are chain complexes
of right, resp. left A-modules, we define

(C ®A D)n = ® CZ ®A Di.
i+j=n

The differential

8n : (C OA D),, --+ (C-(DA D)n-1

is given by

an.(x ®y) = 82(x) ®y + (-1)'x ®aj(y)

for x c CZ, y E Dj. The introduction of the signs (-1)Z ensures that 8n o
an+1 = 0, as is easily checked.

The general convention about signs is that if we pass something of degree
i through something of degree j, we should multiply by the sign (-1)'J. We
regard a as being of degree -1, so that the above sign of (-1)' comes from
passing the 8 through the x. As long as one follows this convention carefully,
the signs should take care of themselves.

This boundary formula shows that if x and y are cycles then so is x ®y,
and if one is a cycle and the other is a boundary then x ® y is a boundary.
Thus we have a well defined product map

H2(C) ®A H3(D) - HZ+j (C ®A D).
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THEOREM 2.7.1 (Kiinneth theorem). If the cycles Z,,(C) and the bound-
aries Bn(C) are flat A-modules for all n, then there is a short exact sequence

0 -> ® Hi(C) ®A HA(D) -> Hn(C (9A D)
i+j=n

TorA(HH(C), Hj(D)) - 0.
i+j=n-1

PROOF. Since Z(C) is flat, we have

(Z(C) ®A Z(D))n = Ker(1 0 e : (Z(C) ®A D)n ` (Z(C) ®A D)n-1)

(Z(C) ®A B(D))n = Im(10 0: (Z(C) ®A D)n+1 ' (Z(C) ®A D)n)

and so

Similarly

H(Z(C) ®A D) = Z(C) ®A H(D).

H(B(C) ®A D) = B(C) ®A H(D).

We now tensor the short exact sequence of complexes

0-B(C) Z>Z(C) -H(C)-->0
with H(D). By Corollary 2.5.6, Tori (Z(C), H(D)) = 0 and so the long exact
sequence of Section 2.5 becomes

0 -> Tori (H(C), H(D)) -> H(B(C) ®A D) Z'> H(Z(C) ®A D)

->H(C)®AH(D)--*0. t

We next tensor the short exact sequence of complexes

0->Z(C)->C-+B(C)[-1]-+ 0
(where [-1] denotes a shift of degree -1, so that (B(C)[-1])n = Bn_1(C))
with D. Since Tori (B(C), D) = 0 we obtain a short exact sequence

0-*Z(C)OA D->C®AD-+(B(C)OA D)[-1]-0.
Taking homology we obtain

H(B(C) ®A D) -> H(Z(C) ®A D) -> H(C ®A D)

-> H(B(C) ®A D)[-1] H(Z(C) ®A D)[-1] -> ...

It is not hard to show that the boundary map of this sequence is the map i.,
and so we have

0 - Coker(i.) --> H(C ®A D) -> Ker(i.)[-1] -* 0

which, using the exact sequence (t) above, becomes

0 -> H(C) ®A H(D) -> H(C ®A D) -> Tori (H(C), H(D))[-1] -> 0. El
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COROLLARY 2.7.2. If Zn(C) and Hn(C) are projective A-modules for all
n then

Hn(C ®A D) ® Hi(C) ®A Hj(D)
i+j=n

PROOF. The sequence

0->Bn(C)->Zn(C)-Hn(C)-+0
splits since Hn(C) is projective, and so Bn(C) is also projective. Thus ZZ(C)
and B,,(C) are flat, and also Tori (H, (C), Hj(D)) = 0, so the result follows
from the Kenneth theorem.

COROLLARY 2.7.3. If Zn(C) and Hn(C) are projective A-modules and
either C or D is exact then so is C ®A D.

REMARK. The case A = R a commutative ring of coefficients is a useful
special case of the above theorems. In particular, if R is hereditary, namely
if every submodule of a projective module is projective (for example this
happens if R is a Dedekind domain) then as long as the modules Cn are
projective over R then the cycles Zn(C) and boundaries Bn(C) are projective
and hence flat, so that the hypothesis of Theorem 2.7.1 is satisfied.

We shall see in Section 3.6 of Volume II that the Kenneth theorem is
an especially simple case of the Kenneth spectral sequence in which the
hypotheses on Zn(C) and Bn(C) are dropped. This special case is the one
where the spectral sequence has only two non-vanishing columns, and no
non-zero differentials.

Next we discuss homomorphisms. If C and D are chain complexes of left
A-modules, we define a new chain complex

HomA(C, D)n = II HomA(Ci, Dj)
i+n=j

with differential

an : HomA(C, D)n -> HomA(C, D)n_1

defined so that

aj(f(x)) = an(.f)(x) + (-1)nf(ai+1(x))

for f E HomA(Ci, Dj). In other words, On is defined by

(anf)(x) = aj(f(x)) - (-1)nf(0i+1(x))'
i.e., a f = [e, f], the graded commutator of 8 and f.

If M is a left A-module, we write M[n] for the chain complex consisting
of M in degree -n and zero elsewhere. If C is a chain complex of left A-
modules, we write C[n] for A[n] ®A C. Namely we have (C[n])i = (C)i+n.
Note that the differential in C[n] is (-1)n times the differential in C.
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The dual of C is the chain complex of right A-modules HomA(C, A[O]).
Note that the differential on the dual is given by

(anf)(X) = (-1)n-If(0-n+1(x))
Evaluation is a map of chain complexes

HomA(C, A[0]) ®A C -> A[O]

sending f ® x to f (x).
We now discuss Ext and Tor for chain complexes. This is sometimes also

called hypercohomology.

DEFINITION 2.7.4. Suppose that C is a chain complex of left A-modules,
bounded below. Then a projective resolution of C is a chain complex P
of projective left A-modules, bounded below, together with a map of chain
complexes P -> C which is an isomorphism on homology.

Note that in the case C = M[0], this agrees with Definition 2.4.1. Exis-
tence of projective resolutions is easy to prove inductively using the definition
of projective modules. The Comparison Theorem 2.4.2 also holds for projec-
tive resolutions of chain complexes, with exactly the same proof.

If D is a chain complex of right A-modules, we may thus define

Torn(D, C) = Hn(D ®A P),

and this will be independent of the choice of projective resolution P. Note
that if D is also bounded below, and P' is a projective resolution of D, then
D ®A P - P' ®A P -> P' ®A C are homotopy equivalences, so that

TorA(D, C) = Hn(P' ®A C).

This gives an alternative proof of Proposition 2.5.5.
Similarly if D is a chain complex of left A-modules, we may define

ExtA(C, D) = Hn(HomA(P, D)).

(Note that Hn really means H_n; we are regarding a chain complex as a
cochain complex by negating the degrees.) If D is bounded above, and I is
an injective resolution of D (defined in the obvious way), then

HomA(P, D) -* HomA(P, I) - HorA(C, I)

are homotopy equivalences, and so

Extn(C, D) = Hn(HomA(C, I)).

If A is an augmented algebra, we write Hn(A, C) and Hn(A, C) for the abelian
groups Torn (C, R) and Extn (R, C).

Composition of maps in Horn gives rise to Yoneda composition

ExtX(D, E) ® Ext*(C, D) -+ Ext*(C, E),

which agrees with the usual Yoneda composition in case C, D and E are
modules concentrated in degree zero. Indeed, this was part of the original
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motivation for the definition of the derived category, which is really what we
are using in disguise (see [70], Appendix 1).

EXERCISE. Show that an element f E HomA(C,D)o is a map of chain
complexes if and only if f is a cycle ((90f = 0), and that f and g are homotopic
if and only if f - g is a boundary.

2.8. Induction and restriction
DEFINITION 2.8.1. If r is a subring of a ring A and M is a A-module then

we may restrict the action to give the restricted P-module which we write as
M J.T. If N is a I'-module we define the induced A-module N 1A= A Or N,
where A is regarded as a A-t-bimodule by left and right multiplication. We
define the co-induced A-module N f1'A= Homr(A, N), where A is regarded
as a r-A-bimodule by left and right multiplication.

LEMMA 2.8.2. If r and A are rings, and we have a left A-module M, a
A-F-bimodule A and a left r-module N, then there is a natural isomorphism

Homr(N, HomA(A, M)) = HomA(A Or N, M).

In other words, A®r - is left adjoint to HomA(A, -).

PROOF. We have maps

0: Homr(N, HomA(A, M)) -* HomA(A OF N, M)

given by 0(a) (a ® n) = a(n)(a) and

0: HomA(A Or N, M) --> Homr(N, HomA(A, M))

given by 0(0)(n)(a) = ,3(a ® n). It is easy to check that these are inverse
isomorphisms.

PROPOSITION 2.8.3 (Nakayama relations). If IF is a subring of A, M is
a A-module and N is a r-module then there are natural isomorphisms

(i) Homr(N, M IT) = HorA(N 1A, M),
(ii) Homr(M IT, N) = HomA(M, NBA).

In other words, IF has a left adjoint 1r and a right adjoint f[A.

PROOF. (i) Put A equal to A as a A-F-bimodule in the lemma, and notice
that HOMA (A, M) is equal to M jr as a IF-module.

(ii) Put A equal to A as a r-A-bimodule and swap the roles of A and r,
and of M and N in the lemma. Notice that A ®A M is equal to M jr as a
I'-module.

It is worth pointing out that the natural maps 77: M -j M and q' :
M jr1A-> M corresponding to the identity map on M jr under the Nakayama
isomorphisms have an obvious interpretation. Namely ij(m) E Homr(A, M)
is given by 77(m)(.\) = Am; and if A 0 m E A or M then q'(A ® m) = Am.
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COROLLARY 2.8.4 (Eckmann-Shapiro Lemma).
(sometimes this is known as Shapiro's lemma, but see [93]) Suppose that

P is a subring of A, and that A is projective as a I'-module. If M is a
A-module and N is a r-module, then

(i) Extr(N, M 1r) = ExtnA(N 1", M).
(ii) Extn(M1r,N) = Extn(M,N

PROOF. Choose a projective resolution

P : ... ` P2 -> P1 ` PO

of N as a I'-module. Since (rr)1A= AA and induction preserves direct sums,
induction takes projective r-modules to projective A-modules. Since A is
projective as a I'-module, induction takes exact sequences to exact sequences,
and so

p 1A: ... P21"-> Pi 1A_ Po 1"

is a projective resolution of N1" as a A-module. Hence

Extr(N, M Jr) = Hn(Homr(P, M Jr))

Hn(HomA(P 1", M)) = Extn(N 1", M).

The argument for co-induction is similar. D

Note that there is a natural surjective map from M 1r1A to M given by
A ® m " Am, and injective map from N to NIA1r given by n --* 1® n.

In terms of n-fold extensions, the correspondence given by the Eckmann-
Shapiro lemma is as follows. If

0 -' M lr--* Nn-1 ->... -r No -* N - 0

represents an element of Extr(N, M 1r) then we can form the pushout

M 1r1" ' Nn-11"

M-X
to obtain an n-fold extension

0->M`X `Nn-21"-,... No1"--) N1"->0.
Conversely if

0-+M->Afin-1 --+ N1"->0

represents an element of Ext'(N1",M) then we form the pullback

Y -N

Momr ' N 1"1r
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to obtain an n-fold extension

0->Mjr->Mn-1 lr-#...->Mllr- Y-+N-+O.
Finally, the following is a dimension-shifted version of Lemma 2.8.2.

PROPOSITION 2.8.5. If I' and A are rings, and we have an injective left
A-module I, a A-F-bimodule A and a left r-module N, then

Extr(N, HomA(A, I)) - HomA(Tornr (A, N), I).

PROOF. Choose a projective resolution
P: ...-->P2-->PI---*PO

of N as a r-module. Then
Extr(N, HomA(A, I)) = HT(Homr(P, HomA(A, I)))

Hn (HomA (A Or P, I) )

Since I is injective HomA(-, I) takes exact sequences to exact sequences and
so this is equal to

HomA(Hn(A Or P), I) = HomA(Torr(A, N), I).

EXERCISE. Suppose that r is a subring of A, and that A is projective as
a r-module. If M and N are A-modules, denote by q : M - M 1r11A and
7 : M.fr?A-+ M the natural maps discussed above. Show that the following
diagrams commute.

'ExtA(N, M) -- ExtA(N, M 1r1TA) ExtA(M, N) (n')
ExtA(M 1r1A, N)

resA,r $ resA,r

Extr(N M 1r) Extn(M jr, NJr)

Here, the vertical maps are the Eckmann-Shapiro isomorphisms.



CHAPTER 3

Modules for group algebras

In Chapter 1 we gave a brief summary of some standard material on rings
and modules. In this chapter we investigate what more we can say if the ring
is the group algebra RG of a finite group G over a ring of coefficients R. The
major new feature we find here is that we may give the tensor product over
R of two RG-modules the structure of an RG-module. Of course, we also try
to relate the subgroup structure of the group with the representation theory.

Throughout this chapter, R will denote a commutative ring of coefficients,
and k will denote a field of coefficients. All RG-modules and kG-modules
will be finitely generated.

3.1. Operations on RG-modules

DEFINITION 3.1.1. If G is a finite group and R is a commutative ring,
we may form the group ring RG whose elements are the formal linear
combinations Ei rigi with ri E R and gi E G. Addition and multiplication
are given by

rigi + > r j g j = 1:(ri + ri)gi rigi > r gj rirj (gigj)
j i j i,j

Thus RG is an R-algebra, which as an R-module is free of rank JGJ.
Of course, this definition also makes sense for infinite groups, provided

we restrict our attention to finite sums.

The group ring RG is an augmented algebra with augmentation e
RG -+ R given by

E(Erigi) =>ri
i i

(cf. Section 2.4). Thus it makes sense to talk of the trivial RG-module R.
We write H,, (G, M) and Hn(G, M) for the homology and cohomology groups
with coefficients in M, namely the groups H,,,(RG, M) and H" (RG, M) de-
fined in Section 2.6. Note that in the former case we should regard the left
RG-module M as a right module via mg = g-lm. This is a standard device
which we shall make explicit in this section. Similarly we write Hn(G, C) and
Hn(G, C) for the hyperhomology and hypercohomology groups discussed in
Section 2.7.

We shall see in Section 3.4 that a particular resolution called the stan-
dard resolution or bar resolution may be used to write down explicit

49
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cocycles and coboundaries. This approach is only really useful for low degree
cohomology, and in Section 3.7 we provide group theoretical interpretations
of degree one and degree two cohomology.

In case R = k is a field, the group ring kG is a symmetric algebra by
the following proposition:

PROPOSITION 3.1.2. The linear map A : kG -* k sending a linear com-
bination of group elements to the coefficient of the identity element satis-
fies the conditions of Definition 1.6.1. In particular, every projective kG-
module is injective, and if P is a projective indecomposable kG-module then
Soc(P) = P/Rad(P).

PROOF. Suppose I is a non-zero left ideal of kG. If >i rigi is in I with
rj :A 0, then g_, I(Ei rigi) is also an element of I and is not contained in
Ker(A). The same applies to right ideals and so condition (i) is satisfied.
Condition (ii) is clearly satisfied. The remaining statements now follow by
applying Proposition 1.6.2 and Theorem 1.6.3.

DEFINITION 3.1.3. A representation of G over R is a homomorphism
G -i GL,,,(R), the group of non-singular n x n matrices over R, for some
n. Two representations are equivalent if one may be transformed into the
other by a change of basis in R'. A representation is called an ordinary
representation if R is a field of characteristic zero (or more generally of
characteristic not dividing JGI), a modular representation if R is a field
of characteristic p dividing 1GJ, and an integral representation if R is a
ring of algebraic integers or one of its localisation or completions at a prime
ideal.

Note that a representation : G --f GL,,,(R) makes R" into an RG-
module via

rigi)x = ricb(gi)(x)-
i

This gives a one-one correspondence between equivalence classes of represen-
tations and isomorphism classes of finitely generated R-free RG-modules.

One is often interested in a slightly wider class of modules. An RG-
lattice is a finitely generated R-projective RG-module. We demand that a
map of RG-lattices, when restricted to R, is a composite of a split epi and a
split mono.

TENSORS AND HoMS. If M and N are RG-modules, then we make M®R
N and HomR(M, N) into RG-modules via

(1: rigi) (m 0 n) = E ri(gi(m) 0 gi(n)),
i i

( rigi) (.0) (m) _ rigi(0(gi 'm)).
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Note that only the group elements, and not general elements of the group
algebra, act "diagonally" in this definition. Thus we need to know where the
group is, inside the group algebra. This notion is captured in the following
definition:

DEFINITION 3.1.4. A bialgebra consists of an algebra A over a commu-
tative ring R together with maps of algebras

A:A->AOR A

called the comultiplication and

E:A-R
called the co-unit, such that the following diagrams commute:

A - A®RA°
o l I0®1

A®RA 1®° A®A®RA

(co-associativity) and

01 -
A®RA

106 A®RRR®RA -
(co-unitary property)

Let r : A ®R A -+ A OR A be the twist map T(µ ® v) = v 0 µ. We say
that A is cocommutative if the following diagram commutes:

A

AORA TA®RA

A Hopf algebra is a bialgebra A together with an R-linear map

,q:A A

called the antipode such that if 0(A) _ Ei yj 0 vi then

E µin(vi) = j(N'i)vi = e(A).1 E A.

We are mostly interested in the case where A is either commutative or co-
commutative. In this case, the antipode is unique, it is an anti-automorphism
of A (i.e., 77(A a) and its square is the identity map. See for ex-
ample Sweedler [194, Chapter 4] for more details.
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If A is a bialgebra over R and M, N are (left) A-modules, we make
M OR N into a A-module as follows. If

A(A)=Eµi®viEA®RA

then

A(m ®n) = E µi(m) ® vi(n)-

We also make R into a A-module via A(r) = E(A)r. This module is called the
trivial module.

If A is a Hopf algebra over R and M and N are (left) A-modules, then we
make HomR(M, N) into a A-module as follows. If 0(A) = >i µi®vi E A®RA
and ¢ E HomR(M, N) then

A(0)(m) _ (0(77(vi)(m)))

We shall write M* for the dual module to M, namely the module
HomR(M, R). Note that we are viewing the dual of a left A-module as a left
A-module. What is happening here is that because of the antipode, we can
regard right A-modules as left A-modules via Am = mq(A) and vice-versa.

Suppose that R = k is a field and A is cocommutative. If M and N are
finite dimensional as k-vector spaces, then the natural vector space isomor-
phisms

Homk(M, N) M* ®k N, M** = M

etc. are A-module isomorphisms.

For example, a group algebra RG is a cocommutative Hopf algebra, with

0 (rii) _ rigi ®gi, E I ri9i) =

_1
,(Eri = > rig. .

i i

With these definitions, the action of RG on a tensor product M OR N is
given by

g(m ®n) = gm ®gn.

The action on HomR(M, N) is given by

(9o)(m) = 9(x(9-im))
If R is an integral domain, we can recover the group G from the Hopf

algebra RG as the set of grouplike elements, i.e., the set of non-zero ele-
ments A E RG satisfying A(A) = A ® A. Thus while many groups may have
the same group algebra as an algebra, the same is not true as a Hopf algebra.
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PROPOSITION 3.1.5. Suppose P is a projective module and M is an R-
free module for a Hopf algebra A over R. Then P OR M is projective.

PROOF. Since projective modules are the same as direct summands of
free modules, it suffices to prove that A OR M is free. Notice that the action
of A on A OR M is the diagonal one defined through the map 0, rather
than the action given in the definition (2.8.1) of an induced module. For the
induced module definition it is clear that A OR M is free, because if {ma} is
a free R-basis of M then {1® ma} is a free A-basis of A OR M. So we define
an R-linear map

A®RM-A®RM
as follows. If 0()) pi ® v2 then A ® m - >i pi ® vim. This is an
isomorphism of R-modules with inverse given by A ® m - E® µi ®q(vi)m.
Furthermore, it defines a A-module isomorphism from A OR M with the
structure of induced module to A®RM with the required diagonal action.

COROLLARY 3.1.6. Suppose M and N are modules for a Hopf algebra A,
and N is R-free. Then

11(M) OR N ® (projective) - 1l(M OR N) ® (projective).

If A is finite dimensional over a field k, then

11(M) ®k N = 1(M ®k N) ® (projective).

PROOF. Tensor the short exact sequence

0,fS(M)-P-*M-0
with N and use the proposition.

For group algebras we have another identity which is not obvious in the
more general case of a Hopf algebra.

PROPOSITION 3.1.7. If M and N are RG-modules then

HomRG(R, HomR(M, N)) = HomRG(M, N).

PROOF. We can regard the left hand side of this as an R-submodule of
HomR(M, N) by evaluating at the identity. Then it consists of the elements
¢ of HomR(M, N) such that for all g E G, go(g-lm) = 0(m). This is
equivalent to the statement that 0 is an RG-module homomorphism.

PROPOSITION 3.1.8. Suppose M1, M2 and M3 are modules for a group
algebra RG. Then there are natural isomorphisms

(i) HomRG(M1 OR M2, M3) = HomRG(M2, HomR(M1, M3))
(ii) If M1 is R-projective, then

ExtRG(MI OR M2, M3) = ExtRG(M2, HomR(Ml, M3))

(iii) If MI is R-projective, then

ExtRG(Ml, M3) - HT(G, HomR(Ml, M3))
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PROOF. (i) It is easy to check that the isomorphism

HomR(M1 OR M2, M3) = HomR(M2, HomR(Ml, M3))

of Lemma 2.8.2 is an isomorphism of RG-modules. Now apply HomRG(R, -)
to both sides.

(ii) This follows from (i) by the usual dimension-shifting argument.
(iii) This is the special case of (ii) in which M2 = R.

In general, tensor products of modules are hard to decompose. However,
under suitable conditions we can always tell when the trivial module is a
direct summand of a tensor product. The following theorem is proved in [20]:

THEOREM 3.1.9. Suppose R = k is an algebraically closed field of char-
acteristic p (possibly p = 0), and G is a group. If M and N are finite
dimensional indecomposable kG-modules, then M ®k N has the trivial mod-
ule k as a direct summand if and only if the following two conditions are
satisfied.

(i) M=N*
(ii) p f dim(N).

(Note that if p = 0 then (ii) is automatically satisfied.)
Moreover if k is a direct summand of N* ®k N then it has multiplicity

one (i.e., k (D k is not a summand).

PROOF. The trivial kG-module k is a direct summand of M ®k N if and
only if we can find homomorphisms

k - M ®kN -+k
whose composite is non-zero.

Using the isomorphism

HomkG(k, M ®k N) - HomkG(N*, M)

we see that the sum of the submodules of M ®k N isomorphic to k is
HomkG(N*, M). Thus the trivial module is a summand if and only if the
composite map

HomkG(N*, M) M ®k N - (HomkG(M, N*))*

is non-zero.
Associated to p o i, there is a map

rl : HomkG(N*, M) ®k HomkG(M, N*) -p k

with the property that p o i # 0 if and only if q 0. This map is given as
follows. Choose a basis n1i ... , nT for N and let ni, ... , n,'T be the dual basis
for N*. Let a E HomkG(N*, M) and 3 E HomkG(M, N*). Then

i(a) _ a(nj) ® nj, p(m 0 n)(,Q) = ,(3(m)(n),
j=1
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and so by definition

r
(a ®/j) _ ((p ° p E a(nj) (&nj ()3)

j=1
r r

_ E p(a(n'j) ®n,)(/3) _ i3(a(n'j))(nj) = tr(f3 o a).
j=1 j=1

Hence we may factor q as composition followed by trace

HomkG(N*, M) ®k HomkG(M, N*) °> EndkG(N*) - k.

Since N* is indecomposable, EndkG(N*) is a local ring (Lemma 1.4.5),
and so since k is algebraically closed, every kG-module endomorphism of N*
is of the form AI+n with A E k and n nilpotent. Now we have tr(n) = 0, and
tr(I) = dim(N*) = dim(N). Thus for k to be a direct summand of M ®k N
(i.e., for 77 to be non-zero) p cannot divide dim(N). Moreover, we must have
elements a E HomkG(N*, M) and 0 E HomkG(M, N*) such that tr(,3oa) # 0;
namely, such that 3 o a is an isomorphism. Since M is indecomposable this
means we must have M = N*. Moreover, in the case where p fi dim(N) and
Al = N*, it is clear that q7(,3 o a) 0 for any isomorphisms a and a.

Finally, suppose k is a direct summand of N* ®k N with multiplicity
greater than one. Then the image of poi has dimension greater than one. This
means that there are subspaces of HomkG(N*, M) and HomkG(M, N*) of
dimension greater than one, on which rl is a non-singular pairing. Thus there
is a subspace of HomkG(N*, M) of dimension greater than one all of whose
non-zero elements are isomorphisms, and this we know to be impossible. El

See also Auslander and Carlson [9] for a discussion of more general coef-
ficient rings R. The following is also useful:

PROPOSITION 3.1.10. If M is a finite dimensional module for a cocom-
mutative Hopf algebra A over a field k, then M is a summand of M ®k M* ®k
M. Thus the following are equivalent:

(i) M is projective
(ii) M ®k M* is projective
(iii) M ®k M is projective
(iv) M* is projective
(v) M is injective.

PROOF. Choose dual bases ml,... , mr of M and in , ... , m' of M*. We
have maps

M k®kM - (M®kM*)®kM = M®k(M*(DkM) M®kk M

m = 1®m H (E mi®mi)®m = mt®(mi®m) H ^it®m%(m) = M.

Thus M is a summand of M ®k M* ®k M.
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COROLLARY 3.1.11. If A is a finite dimensional cocommutative Hopf al-
gebra over a field k, then A is self injective.

In fact, this corollary is still true without the assumption of cocommuta-
tivity, but the argument is harder.

3.2. Cup products
Suppose A is a Hopf algebra over R which is projective as an R-module.

If M, M', N and N' are A-modules which are projective as R-modules, then
we define the cup product

u:Ext'(M,M') xExt'(N,N')->Ext'+"(MOR N,M'ORN')
as follows. Choose exact sequences

0 MO M->0
O-*N'->N"_1-> +No -+N->O

representing the given elements ( E Ext' (M, M') and 77 E Ext'(N, N'). We
can make sure the Mi and Nj are R-projective, for example by choosing the
sequences

0M'->Pm,-i/LS ...-->Po->M->0

of Section 2.4. By Corollary 2.7.3 of the Kiinneth theorem, the tensor product
over R of the complexes

0 N' N,,-, No

is a sequence

0,M'OR N'->(M..-iOR MO OR No

whose homology is M OR N in degree zero and is exact elsewhere. Thus we
may complete to an exact sequence

0-> M'ORN'' (Mm-1 OR N')®(M'ORN"-1) ->
...-MO OR NO- MORN->0

representing an element of Ext'+"(M OR N, M' OR N'). Maps of m-fold
and n-fold extensions, as in Definition 2.6.1, tensor together to give a map of
(m + n)-fold extensions, and so the resulting element (ur7 of Ext,+"(M OR
N, M' OR N') depends only on ( and r/.

Since tensor products of chain complexes are associative, cup product is
also associative.

If A is cocommutative, then tensor products of complexes are graded
commutative in the sense that given complexes C and D of A-modules,
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there is an isomorphism of complexes

CORD DORC
X ® y (-1)deg(x) deg(y)y ® x

It follows that the cup product is graded commutative in the same sense.
In particular the cup product makes ExtA(R, R) a graded commutative ring
with unit.

If
In terms of projective resolutions, cup product can be viewed as follows.

P : ... -+ P2 -> P1 -> Po

Q -rQ2-fQ1 -}Qo

are resolutions of M and N respectively then again by the Kiinneth theorem
the tensor product over R of these complexes is a projective resolution of
MORN. If E Ext (M, M') and E ExtA(N, N') are represented by maps

Pm,M'andQ,,,-+ N'then ®i :Pm®RQn->M'OR N'can be
extended by zero to give a map (P OR Q)m+n - M' OR N. Since

6( ® rl) = 6(c) ® + (-1)deg(S)c

the product of two cocycles is a cocycle, and the product of a cocycle with a
coboundary or a coboundary with a cocycle is a coboundary. This product
therefore passes down to a well defined product on cohomology which may
easily be checked to agree with the map defined above.

In particular, if M = N = R then we may take P = Q. Thus the
extension of c ® to a cocycle P OR P -> M' OR N' may be composed with
a chain map P --* P OR P extending the obvious isomorphism R OR R -> R
to give a cocycle P ` M' OR N'. Such a chain map 0 : P -> P O P
exists and is unique up to homotopy by the Comparison Theorem 2.4.2.
It also follows from the comparison theorem that such a map is homotopy
cocommutative and co-associative, in the sense that the composite of 0 with
the map PORP -* PORP sending xOy H (-1)deg(x)deg(y)yOx is homotopic
to A, and (10 0) o 0 is homotopic to (0 0 1) o A. Such a map A is called
a diagonal approximation. In fact we shall see that using the standard
resolution, which we shall investigate soon, the diagonal approximation may
be chosen to be co-associative (not just up to homotopy). The same is not
true of cocommutativity, and this is really the reason for the existence of
Steenrod operations, which we shall discuss in Chapter 4 of Volume II.

We now have two different definitions of products on Ext*(R, R), namely
Yoneda composition (Section 2.6) and cup product. The following propo-
sition shows that these agree, and that more generally every cup product
may be viewed as a Yoneda composition. The converse is not true, because
for example Yoneda composition is in general not graded commutative on
Extk.G(M, M).
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PROPOSITION 3.2.1. If M, M', N and N' are modules for a Hopf algebra
A, and c E Ext' (M, M'), i E Extn(N, N'), then the cup product

Sui E Extn+"`(M OR N, M®R N')

is equal to the Yoneda composite of

®idN, E Ext'(MOR N',M'(DRN')

and

idM ®77 E ExtA(M ®R N, M OR N').

PROOF. Denote by M and N complexes

0M'-->Mm-i->..._,MO
0-+N'-,NN,_1 -+ ... -, No

which together with maps e : Mo -> M and e' : No -+ N correspond to
elements S E Ext (M, M') and rl E ExtA(N, N'). Then we have a map of
(m + n)-fold extensions

0 - M'®RN' (MORN)-+n-1 - ... ... _ (M®RN)o - MORN -o- 0

II
Ilk-+n-1 00

11

M0 Nn-1-... NO > MORN--0

given by the composite maps

J(M®RN)i->Mo®RNi- M®RNi O<i<n-1
(M OR N)i -- M'i-n ®RN n<i<m+n-1.

It is easy to check that this diagram commutes, which proves the proposition.

COROLLARY 3.2.2. Suppose A is a cocommutative Hopf algebra (for ex-
ample a group algebra). If S E H*(A, R) = Ext*A (R, R), denote by (M the
image of ( under the natural map

R)
®RM,

Ext* (M, M)

given by tensoring exact sequences with M. Then for any E Ext* (M, M)
we have

(M,, 6 = (-1)deg(() deg(()6 p (M.

In fact, the above discussion becomes clearer at the level of hypercoho-
mology (see Section 2.7). The tensor product map

HomA(C, D) OR HomA(C', D') HomA(C OR C', D OR D')

gives rise to a cup product map

ExtA*(C, D) ®R Ext-(C', D') ExtX(C ®R C', D ®R D')
(®n H (u17.
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uct
LEMMA 3.2.3. If ( E ExtRG(C, D), r, E ExtRG(C', D') then the cup prod-

(u77 E ExtRGn(C OR C', D (OR D')

is equal to the Yoneda composite of

®idD EExtRG(COR D',DOR D')

and

idC0iiEExtRG(COR C,COR D').

PROOF. This follows easily from the corresponding (obvious) statement
at the level of Hom.

Since tensor products are graded commutative, so are cup products, in
the sense that the following diagram commutes:

Extn (C, D) OR Extn(C', D') - Extn+n(C OR C', D OR D')

I Sl=

Extn(C', D') OR Extn (C, D) - Extn+n(C' OR C, D' ®R D)

But in general Yoneda products are not graded commutative. So Ext* (C, C)
is in general a non-commutative graded ring and a module over the graded
commutative ring H* (A, R) = Ext* (R, R).

EXERCISES. 1. (Massey products) Suppose P is a projective resolution
of the trivial module R over a Hopf algebra A, and A : P -* P OR P is a
diagonal approximation. Choose a chain homotopy 0 : P -> P OR P OR P
from (0 ®1) o A to (1®0) o A. If a, /3 and -y are cocycles P --> R representing
cohomology classes a, b and c, and with cup products ab = 0 and be = 0,
choose cochains u and v with (a ®/3) 0 0 = bu and (/3 ® ry) 0 0 = Sv. Show
that the cochain

(u ®'y) 0 A_ (-1)deg(a) (a O v) 0 A_ (-1)deg(a)+deg(/3)+deg(Y)(.0,307) 00

is a cocycle, and its cohomology class is well defined modulo the ideal gen-
erated by a and c, and independent of the choices of P, A, 0, u and v. This
cohomology class is called the Massey product (a, b, c).

Note that there are two extreme cases in the above set-up. In case 0 is
strictly co-associative (for example for the bar resolution, Section 3.4), the
formula simplifies since we may take 0 = 0. In the other extreme, if we are
in a situation where we may take for P the minimal resolution (for example
if A is finite dimensional over a field) then we have u = v = 0 and so the
other two terms drop out. Thus non-trivial Massey products may be viewed
as obstructions to finding a strictly co-associative comultiplication on the
minimal resolution.

2. Give a definition of Massey product with respect to Yoneda compo-
sition. Show that in the circumstances where the Yoneda composition is
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expressible as a cup product as above, your definition agrees with the above
definition.

3.3. Induction and restriction
Let G be a finite group. If H < G, then RH is a subring of RG, and so by

Section 2.8 if M is an RG-module we can restrict it to an RH-module which
we write as M J.H. If N is an RH-module we have the induced RG-module
NTG= RG ®RH N. Since RG is free as a right RH-module, of rank IG : H1,
we can write NTG= ®giEG/H gi ® N as a sum of R-modules, where the sum
runs over a set of coset representatives of H in G. The action of G is given
by g(gi ® n) = gj ® hn, where gj is the coset representative with ggi = gjh
and h E H.

Since RG = (RG)* = HomR(RG, R) as RG-RG-bimodules, induction
and restriction behave well under duality in the sense that we have (M*) IH=
(M J.H)* and (N*) 1G= (N TG)*. It also follows that induction and co-
induction coincide since

NTG= RG ®RH N = (RG)* ®RH N = HOmRH(RG, N) = Nl .

PROPOSITION 3.3.1 (Nakayama relations).
(i) HOmRH(N, M 1H) = HomRG(NT G, M)
(ii) HomRH(MIH, N) = HomRG(M, NTG)

PROOF. This was proved in Section 2.8. This version for groups is also
called Frobenius reciprocity.

EXERCISE. Show that the Nakayama isomorphism

HomRH(M 1H, N) = HomRG(M, NTG)

is given by the exterior trace map TrH,G defined by

`nH,G(qS)(m) _ E 9 ®q(9-1'm,).
gEG/H

Note that the expression g ® q(g-lm) only depends on the left coset gH of
H in G.

COROLLARY 3.3.2 (Eckmann-Shapiro Lemma).

ExtRH(N,MIH) = ExtRG(N1G,M)

PROOF. This was proved in Section 2.8, since RG is projective (even free)
as an RH-module.

PROPOSITION 3.3.3. (i) (N OR M 1H) I G _ N 1G ®RM
(ii) HomR(N, M 1H) T G= HomR(NTG, M).

PROOF. (i) By the associativity of tensor product we have

(N (DR M 1H) 1G = RG ®RH (N OR M IH)

(RG ®RH N) OR M = NTG ®RM.
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(ii) By Lemma 2.8.2 we have

HomR(N, M IH) TG HomR(N, M .H)11G= HomRH(RG, HomR(N, M 1H))

- HomR(RG ®RH N, M) = HomR(NTG, M).

Now if H and K are subgroups of G, we wish to describe what hap-
pens if we induce a module from K to G and then restrict to H. Thus we
need to examine RG as an RH-RK-bimodule, with left and right action by
multiplication. We have

RHRGRK = ®R(HgK)
HgK

where R(HgK) denotes a free R-module on the elements of the double coset
HgK, with left RH-action and right RK-action given by multiplication as
before.

If M is a module for K, we write g ® M or gM for the 9K-module with

(gkg-1)(g ®m) = go km.
With this notation we have

R(HgK) = RH ®R(Hn9K) (g 0 RK)
hgkE--->h®g®k.

THEOREM 3.3.4 (Mackey Decomposition Theorem).
If M is an RK-module then

MTGJ.H- ®('M)1Hn1KTH .

HgK

PROOF. As RH-modules we have

M TG1H - RHRGRK ®RK M 2-' ®R(HgK) ®RK M
HgK

® RH ®R(Hn9K) (g ® RK) ®RK M
HgK

® RH ®R(Hn9K) (g 0 M) . Hn9K- ® (9M) 1Hn9KT H .
HgK HgK

REMARK. For a more traditional proof without this notational overload,
see for example Curtis and Reiner [64], §44.

COROLLARY 3.3.5. If M is an RK-module and N is an RH-module then
we have

(i) M IG ®RNTG= ®(gMIHn9K ®RNlHn9K)TG
HgK

(ii) HomR(MTG,NTG) - ®(HomR(gM..Hn9K,NtHn9K))TG
HgK

(iii) MTG ®RGNTG= ®(gMHn9K ®R(Hn9K) NtHn9K)
HgK
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(iv) HomRG(MTG, N IG) = ® (HOmR(Hn9K)(9MIHn9K, NIHn9K))
HgK

(v) TorRG(M1G,N1G) = ®(TorR(HngK)(9MIHn9K,N1Hn9K))
HgK

(vi) ExtRG(MTG,N1G) = (EXtR(Hn9K)(9MIHn9K,N1Hn9K))
HgK

PROOF. (i) Using Proposition 3.3.3 and the Mackey decomposition the-
orem we have

MTG ®RNTG- (MTGIH ®RN)TG- ((® gMlHngKTH) OR N)TG
HgK

(((® gM1HngK)®RN1Hn9K) 1 H) 1 ® (gM1HngK ®RN1Hn9K) T G .

HgK HgK

The proofs of (ii), (iii) and (iv) are similar, and (v) and (vi) follow from (iii)
and (iv) by dimension shifting.

In terms of the above descriptions, composition of maps is given as fol-
lows. Suppose M1, M2 and M3 are RH, RK and RL-modules respectively,
where H, K and L are three subgroups of G. If double coset multiplication
is given by

(HgK)(Kg'L) = > nZ(Hgkig'L)

and

a E HomRG(M2TG,MITG), a E HomRG(M31G,M2TG)

are elements corresponding to

a E HomR(Hn9K)('M21Hn9K, M11Hn9K),

1 E HomR(Kng, L)(g'M31Kn9'L, M21Kn9'L)

then a o,3 is the sum of the elements corresponding to nja o

a o E HomR(Hngkig'L)(gk`g'M3, Ml)

is the composite map

gkj/3), where

skin
gki9 M3 gkz M2 = gM2 M1

Applying dimension shifting as usual, we obtain a similar formula for
Yoneda composition of elements

a E ExtRG(M2TG,Ml1G), O E ExtRG(M3TG,M21G)

as the sum of the elements corresponding to the Yoneda composites nia o
(gkj)
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3.4. Standard resolutions

Suppose G is a group and R is a commutative ring of coefficients. The
standard resolution of R as an RG-module is the resolution

... - F2
82 F1 -* Fo

where Fn is the free R-module on (n + 1)-tuples (go,... , gn) of elements of
G, with G-action given by

The boundary map On is given by
n

d

an(go, ... , gn) = E(-1)1(90.... T ... , 9n)
i=o

where the vertical arrow denotes that gi is missing from the list. This def-
inition should be compared with the usual boundary map in simplicial ho-
mology. See for example Spanier [190, Chapter 4]. It is easy to check that
ano0n+1=0.

The map hn : Fn -* Fn+1 given by

hn(90, ,9n) = (1,go, ,9n)
satisfies

idF = 8n+1 0 hn + hn_1 0 an

and is hence a chain contraction (as a complex of R-modules, not of RG-
modules) of the augmented complex

...->F2 F1 al. Fo -*R, 0
where E(g) = 1 for all g E G. Thus the complex is acyclic, i.e., Im(8n+i) _
Ker(8n), see Section 2.3.

To see that Fn is a free RG-module, we rewrite it in the bar notation
_1 _1

-1(90, ,9n) = 90[9o 91191

[911...19n]=(1,91)
n-1

an[911 ' 19n1 = 91[921 ' 19n] 19i9i+11 ... 19n]
i=1

+ (-1)`[911 ... I9n-11
It is easy to see that Fn is the free RG-module on basis elements given by
the symbols [gi 1 ' . 19n] Thus for example F0 is the free module on the single
symbol [ ]. Because of this notation, the standard resolution is also known
as the bar resolution.

So we see that the IF,, 8n} form a free resolution of Coker(81) = R by
RG-modules.

Now if M is an RG-module we may form complexes

M ®RG F2
1®a1, M ®RG F1 1®a1, M ®RG Fo
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and

HomRG(Fo, M) - HomRG(F1, M) Si
HomRG(F2, M) .. .

where 6' is given by composition with an+1 Since the IF, an} form a free
resolution of R as an RG-module we have

H,, (G, M) = R) = Hn(M ®RG F, 1® a*)
Hn(G, M) = ExtRG(R, M) = Hn(HomRG(F, M), 6*),

see Section 2.3. Some people start with this definition in terms of the stan-
dard resolution as their basic definition of group homology and cohomology.

Notice how explicit the above description is. Since HomRG(Fn, M)
HomR(RGn, M), an n-cocycle is a function from Gn to M, and the cobound-
ary formula above is given by

n )b a g1i ... > 9n+1 = 91a 92> ... , 9n+1)

1(-1)Za(91, ... , 9i9i+1,... , 9n+1) + (-1)n+1a(g1, ... , 9n)
i=1

For the standard resolution, there is a strictly co-associative diagonal
approximation called the Alexander-Whitney map given by

n

A(90,... ,9n) =1:(90, 9j)0 (9j, ,9n)
j=0

or in bar notation,
n

A[91I...I9n] _ E[911...J9j] ®91...9j[9j+11...19n]

j=0

INFLATION. If N is a normal subgroup of G and M is an R(G/N)-module
then we have an inflation map

infG/N,G : H' (GIN, M) -' Hn(G, M)

given as follows. If P is a projective resolution of M as an R(G/N)-module
and Q is a projective resolution of M as an RG-module, then by the Com-
parison Theorem 2.4.2 and the remark after it, the identity map of M lifts
to a chain map p : Q -> P uniquely up to homotopy. Thus if c : Pn -> M
is a cocycle representing ( E Hn(G/N, M) then ( o p : Qn -> M is also a
cocycle and represents infG,N(() E Ht(G, M). It is easy to check that any
other cocycle representing ( will give rise to the same element of Hn(G, M).

If N does not act trivially on M, then we still write infG/N,G for the
composite of the inflation from Hn(G/N, MN) to Hn(G, MN) with the map
Hn(G, MN) -> HN(G, M) induced by the inclusion.

In terms of the standard resolution, we may take p to be the obvious map
sending group elements to their coset representatives, so that o p is constant
on cosets.
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EXERCISE. Using the standard resolutions for G and G/N, show that if
M is an RG-module then there is a five-term exact sequence

0 -> H' (GIN, MN) ' HI (G, M) -> HI (N, M)GtN

-> H2(G/N, MN)- H2(G, M).

This sequence does not continue. We shall derive this sequence in Chapter 3
of Volume II as a consequence of the spectral sequence of the group extension.

Note that by using the resolution for G to calculate H* (N, M), it is clear
that GIN acts, and that the image of restriction H*(G, M) -> H*(N, M) lies
in the fixed points of this action.

3.5. Cyclic and abelian groups

The standard resolution constructed above is of exponential growth,
whereas we shall see in Chapter 5 of Volume II that for finite groups there
always exist resolutions of polynomial growth. The problem is that resolu-
tions of polynomial growth are in general much harder to write down. One
case where there is an easily describable periodic resolution is the case of a
cyclic group.

Let Z/n = (x I xn = 1) be a cyclic group of order n. We have two maps

N : R(Z/n) - R(Z/n) T : R(7G/n) -p R(Z/n)

x_ 1+x+...+xn-1 x X.

PROPOSITION 3.5.1. The sequence

- R(Z/n) L R(Z/n) -+ R(Z/n) L R(Z/n)
is a free resolution of R as an R(Z/n)-module.

PROOF. This is easy to check.

COROLLARY 3.5.2. If M is an R(Z/n)-module then

H°(7L/n, M) = Mz/n = {m E M I (1 - x)m = 0}

H2r(Z/n, M) = MZ/n/(1 + x +... + xn-1)M (r > 0)
Her+l(Z/n, M) = {m E M 1 (1 + x + + xn-1)m = 0}/(1 - x)M.

COROLLARY 3.5.3. Suppose M is an RG-module, and H is a normal
subgroup of G with G/H cyclic. If M J.H is projective then

M ® (projective) = 122(M) ® (projective).

PROOF. Since M tH is projective, so is

MTHTG= M ®R RJ.HTG= M OR R(G/H).

Thus tensoring M with the sequence

0-+R,R(G/H) LR(G/H)- R->0
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we obtain a sequence of the form

0 -* M -> (projective) -+ (projective) -> M -> 0.

The proof of the above corollary also shows the following.

COROLLARY 3.5.4. Suppose G = Z/n is cyclic of order n. Then there is
an element v E H2(G, R) such that for all RG-modules M, cup product with
o, induces an isomorphism

Hr(G M) -+ HT+2 (G M)

for all r > 0. In particular, if n is not invertible in R then a is not nilpotent.

PROOF. We take Q E Ext2 G(R, R) to correspond to the 2-fold extension

0--+ R ->RGLRG ->R - 0.

We now calculate the ring structure of H* (Z/n, k), where k is a field of
characteristic p. The above calculation shows that Hr(7G/n, k) is one dimen-
sional over k for each r. Choose a non-zero element x E H1(7L/n, k). This is
represented, as in Section 2.6, by a map x : S1(k) -+ k. Now the projective
cover of k is k(Z/ps), where ps is the exact power of p dividing n. In other
words, the generator for the cyclic group is represented by a Jordan block
of size ps with eigenvalue 1. The remaining projective modules are obtained
by tensoring this one with the simple modules for k(Z/n) (if k is a splitting
field, these are one dimensional and there are n/ps of them). Thus S1(k) is
a uniserial module of length ps - 1 with all its composition factors trivial.
The map x takes the unique top composition factor of 1(k) onto the trivial
module.

Now choose a non-zero element y E H2(Z/n, k). Since Q2(k) = k,
12(k) -* k is an isomorphism. We calculate products by the method at the
end of Section 2.6. Namely, y2 is represented by the map

y o 1l2 (y) : 114 (k) ---> k

which is again an isomorphism, so that y2 is a non-zero element of H4(Z/n, k).
Continuing this way, the powers yr are non-zero elements in H2r(Z/n, k).
Similarly xyr is represented by the surjective map

x o St(y) o 13(y) o ... o 1l2r-1(y) : 12r+1(k) = 1(k) , k

and is hence a non-zero element of Her+1(4/n k).
The only thing left to do now is to calculate x2. This is represented by

the map

xoSt(x):522(k)=k- 52(k)->k.

If p3 - 1 = 1 this composite is a non-zero multiple of y. If ps - 1 > 1 then
the composite is zero and so x2 = 0.

We summarise the results of this calculation in the following proposition.
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PROPOSITION 3.5.5. Suppose ps is the p-part of n, and k is a field of
characteristic p. Then the cohomology ring H*(Z/n, k) has the following
structure.

(i) If ps = 2 then H*(7L/n, k) = k[x] with deg(x) = 1.
(ii) If ps > 2 then H*(Z/n,k) = k[x, y]/(x2) with deg(x) = 1 and

deg(y) = 2.

An alternative proof is given in Cartan and Eilenberg [53, Chap. XII
§7], where more general coefficient rings are discussed. They use the explicit
diagonal approximation Ors : R(Z/n) -* R(7L/n) OR R(7L/n) given by

1101 r even
l o x r odd, s even
F-0<i<j<n-1 x i ®xj r odd, s odd.

To calculate the cohomology of a general finite abelian group, we need a
version of the Kunneth formula.

THEOREM 3.5.6. Suppose R is a hereditary ring of coefficients (see the
remark at the end of Section 2.7). If GI and G2 are groups, MI is an RG1-
module and M2 is an RG2-module, then there is a short exact sequence

0 -' ® HZ(Gi, M1) ®R H3(G2, M2) - H?(Gi x G2, M1 (DR M2)
i+j=n

-> ® TorR(Hi(Gl, Mi), H3(G2, M2)) -j 0.
i+j=n-1

Here, M1ORM2 is regarded as an R(GI xG2) -module via (g1ig2)(m1®m2) _
91m1 ®g2m2

PROOF. If P and Q are projective resolutions of R as RG1 and RG2-
modules respectively, then P OR Q is a projective resolution of R as an
R(G1 x G2)-module (exactness follows from the Kunneth theorem 2.7.1 since
R is hereditary). The theorem now follows by applying Theorem 2.7.1 to the
complex

HomR(G1xG2)(P OR Q, M1(DR M2) = HomRG1(P, M1) OR HomRG2(Q, M2)
0

REMARK. If R = k is a field then H*(G1 x G2, k) = H*(G1,k) Ok
H* (G2, k) as graded rings; i.e., (x 0 y) (XI ®y') = (_1)deg(y)deg(x')xx' 0 yy'.

This follows from the cup product description of the ring structure and the
corresponding commutativity formula for tensor products of chain complexes.

COROLLARY 3.5.7. If G = (7L/p)s is an elementary abelian group of order
ps and k is a field of characteristic p then the cohomology ring H*(G, k) has
the following structure.

(i) If p = 2 then H*(G, k) = k[x1i... , x5] is a polynomial algebra with
deg(xi) = 1.
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(ii) If p > 2 then H* (G, k) = A(xl,... , xs) ®k k[yi, ... , y,] is a tensor
product of an exterior algebra and a polynomial algebra with deg(xi) = 1,
deg(yi) = 2 .

3.6. Relative projectivity and transfer

DEFINITION 3.6.1. Suppose H is a subgroup of G. An RG-module M
is said to be projective relative to H or relatively H-projective if
whenever we are given modules M1 and M2, a map A : M - M1 and an
epimorphism y : M2 -> M1 such that there exists a map of RH-modules
V : M J.H-> M2 IH with A = p o v, then there exists a map of RG-modules
v':M-->M2with A=pov'.

V I'
M2

µ, Ml 0

If H = 1 and R is a field, this agrees with the definition of projective RG-
module given in Section 1.5.

An RG-module M is said to be injective relative to H or relatively H-
injective if whenever we are given modules Ml and M2, a map A : M1 -* M
and a monomorphism p : M1 -> M2 such that there exists a map of RH-
modules v : M1 I H-> M IH with A = v o µ, then there exists a map of
RG-modules v' : M11H--* M.IH with A = v' o M.

0--M1 M2
4

M

A short exact sequence of RG-modules is H-split if it splits on restriction
to H.

The concept of relative projectivity was studied by D. G. Higman, who
related it to the transfer map as follows:

DEFINITION 3.6.2. If H is a subgroup of G, and M and M' are RG-
modules, we define the transfer or trace map

TrH G : HomRH(M' J H, M 1 H) -> HomRG(M', M)

as follows. Choose a set {gi, i (=- I} of left coset representatives of H in G
and set

TrH,G(q)(m) = Egiq(gi 1m)
iEI

Since 0 is an RH-module homomorphism, gi(4(g,, lm) only depends on the left
coset giH and so this map is independent of choice of coset representatives
ofHinG.
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In other words, TrH,G is the composite of the exterior trace map

TrH,G : HomRG(M' -LH, M tH) -' HomRG(M', M 1HIG)

defined in Section 3.3 and the map induced by the natural surjection
MIH1G-* M.

We write (M', M)G for HomRG(M', M), we write (M', M)H for the image
of TrH,G, and we set

(M', M)G,H = (MI, M)G/(MI, M)G

as an R-module. Similarly if X is a collection of subgroups of G we write
(M', M)G for the linear span of the (M', M)H, H E X, and (M', M)G,X for

(MI, M)G/(MF, M)G

In case M' = R, (R, M)G is just the space of fixed points MG. In this case
we write MH and MG,H for the image and cokernel of TrH,G : MH _, MG.

LEMMA 3.6.3. (i) If a E HomRH(MI, M2) and,3 E HomRG(M2i M3) then

/3 o TH,G(a) = TrH,G()3 o a).

(ii) If a E HomRG(MI, M2) and 13 E HomRH(M2i M3) then

TH,G(R) o a = TrH,G(,(3 o a).

(iii) If H < K < G then TrK,GTH,K(a) = TrH,G(a)
(iv) If H and K are two subgroups of G, then for a E HomRK(M1, M2),

TrK,G(a) = >HgKTrHn9K,H(ga). Recall that (ga)(m) = g(a(g-lm)).
(v) If a E EndRH(M) and /3 E EndRK(M), then

TH,G(a)TrK,G(13) = T'HneK,G(ag,a)
HgK

(vi) Suppose K < H < G, Mi is an RG-module, M2 is an RH-module
and i : M2 -* M21G1H is the natural map taking m to 1® m. Then

TrH,GTrK,H(a)(m) = TrK,G(i o a)(m).

PROOF. (i), (ii) and (iii) are clear from the definition.
(iv) For each double coset HgK, let .\(g) be a set of left coset represen-

tatives of H fl 9K in H. Then UHgK{hg I h E .\(g)} is a set of left coset
representatives of K in G.

(v) We have

TrH,G(a)TrK,G(/3) = TrH,G(a%,G(/3)) = TrH,G(J: aTrHn9K,H(9,3))
HgK

TrH,G(E TrHn9K,H(ag,3)) = E TrHn9K,G(ag,Q)
HgK HgK
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(vi) We have

TrH,GTrK,H(a)(m) = g
®hah-'g-1(m)

gEG/H hEH/K

_ g ®ag-1(m) = TrK,G(i o a)(m).
gEG/K

Setting M = M1 = M2 = M3 in parts (i) and (ii) of the above lemma, it
follows that (M, M)G is a two-sided ideal in EndRG(M), and so the quotient
(M, M)G H inherits a ring structure. Similarly, (M, M)G is a two-sided ideal
and (M, M)G,X is a ring.

The following two propositions explain the relationship between relative
projectivity and transfer:

PROPOSITION 3.6.4 (D. G. Higman). Let M be an RG-module and H a
subgroup of G. Then the following are equivalent:

(i) M is projective relative to H.
(ii) Every H-split epimorphism of RG-modules A : M' -> M (i.e., one

which splits as a map of RH-modules) splits.
(iii) M is injective relative to H.
(iv) Every H-split monomorphism of RG-modules splits.
(v) M is a direct summand of M 1HTG
(vi) M is a direct summand of some module induced from H.
(vii) (Higman's criterion) The identity map on M is in the image of

TrH,G

PROOF. The implications (i) (ii) . (v) (vi) and (iii) (iv) (v)
are clear, using the natural H-split maps M y M 1HTG and M 1HTG--» M.

(vi) (vii) : If M is a direct summand of N TG for an RH-module N
then we denote by p the RH-module endomorphism N T G T H.* N T GI H given
by

(g®n ifgEH
p(g ®n)

0 otherwise

i.e., the projection onto N as a summand of NTG1H (cf. the Mackey decom-
position theorem). Then we have TrH,G(p) = 1, the identity endomorphism
of NTG.

Now we denote by 0 the RH-module endomorphism of M given by the
composite

0: M1x' NTGTHL NTG1H- MIH .

By Lemma 3.6.3 (i) and (ii), we have TrH,G(0) = 1.
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(vii) (i) : Let

M2 M1 -0
be as in the definition of relative projectivity. If 0 E EndRH(M1) with
TrH,G(O) = 1 then we let v' = TrH,G(v o 0). By Lemma 3.6.3 (i) and (ii)
we have

µov =A0TrH,G(vo0) =TrH,G(/.µovo0)
= TrH,G(A 0 0) = A o TrH,G(0) = A.

(vii) (iii) is proved dually.

COROLLARY 3.6.5. Suppose an RG-module M is projective as an R-
module and has a finite projective resolution as an RG-module. Then M
is projective as an RG-module.

PROOF. Let

0 >Pn--Pn-1->...-a P6 ,M-,0
be a projective resolution of M with n minimal. Since M is R-projective, this
sequence is R-split. By Proposition 3.6.4, Pn is injective relative to the trivial
subgroup, and so the map Pn - Pn_1 splits, contradicting the minimality of
n unless n = 0.

PROPOSITION 3.6.6. Suppose Ml and M2 are RG-modules, H is a sub-
group of G and a E HomRG(M1i M2). Then the following are equivalent.

(i) a E (MI, M2)Gi
(ii) a factors as Ml -> M21HTG_* M2 where the latter map is the natural

surjection M2 .tHT G- M2.
(iii) a factors as M1 -+ M 2. M2 for some M projective relative to H.

PROOF. (i) ' (ii) : This follows from the fact that TrH,G is the composite
of TrH,G and the map induced by M21HTG- M2.

(ii) = (iii) is clear.
(iii) (i) : Write idM = TrH,G(O) as in the previous proposition. If

a=a2oal then
a = a2 o TrH,G(O) o al = TrH,G(02 o 0 o al) E (MI, M2)H

by Lemma 3.6.3 (i) and (ii).

COROLLARY 3.6.7. If M and N are RG-modules with M relatively H-
projective, then M OR N is also relatively H-projective.

PROOF. This follows from the Proposition 3.6.4, using the identity

MjHTG ®RN = (M I.H ®RN jH)TG

(Proposition 3.3.3).
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COROLLARY 3.6.8. If M and N are RG-modules with M relatively H-
projective and N relatively K-projective, then M OR N is a summand of a
sum of modules which are projective relative to subgroups of the form Hn 9K.

PROOF. This follows in the same way, using Corollary 3.3.5 (i).

COROLLARY 3.6.9. Suppose I G : HI is invertible in R. Then every RG-
module M is projective relative to H.

PROOF. TrH,G(idM/IG; HI) = idM.

COROLLARY 3.6.10. Suppose R is a field of characteristic p or a com-
mutative local ring whose residue class field has characteristic p. Suppose
H contains a Sylow p-subgroup of G. Then every RG-module is projective
relative to H.

COROLLARY 3.6.11. Suppose I GI is invertible in R. Then every RG-
module which is projective as an R-module is projective as an RG-module.
In particular every short exact sequence of such modules splits.

COROLLARY 3.6.12 (Maschke's theorem). Suppose k is a field of char-
acteristic coprime to IGI. Then every short exact sequence of kG-modules
splits. In particular kG is semisimple.

REMARK. The usual proof of Maschke's theorem is as follows. If M1 is a
submodule of a kG-module M and if p is any linear projection of M onto M1
then p' = >9EG gpg-1 is a G-invariant projection and so M = M1® Ker(p').
This is in a sense the prototype for the proof of Higman's criterion.

DEFINITION 3.6.13. If X is a permutation representation of G, we write
RX for the corresponding matrix representation whose basis elements are the
elements of X, and we say a short exact sequence 0 -* M1 - M2 -> M3 -> 0
is X-split if the sequence

0-+RX®RM1-*RXOR M2-->RX®RM3-*0

splits.
We say that M is projective relative to X, or relatively X-projective, if

every X-split epimorphism M' -* M -> 0 splits.

The following two lemmas show that these concepts are equivalent to
those introduced in Definition 3.6.1, but better behaved on restriction to
subgroups.

LEMMA 3.6.14. Suppose X is a transitive permutation representation of
G with point stabiliser H. Then a short exact sequence of RG-modules is X -
split if and only if it is H-split. An RG-module M is relatively X -projective
if and only if it is relatively H-projective.

LEMMA 3.6.15. Suppose X is a permutation representation of G and H
is a subgroup of G.
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(i) If a short exact sequence of RG-modules is X-split then its restriction
to H is also X -split.

(ii) If an RG-module M is relatively X -projective then M 1H is also
relatively X-projective.

TRANSFER IN COHOMOLOGY. We can extend the notion of transfer
from Hom to Ext as follows. First note that projective RG-modules are still
projective as RH-modules for H < G. So a projective resolution of M as an
RG-module gives us a projective resolution of M as an RH-module. Thus
we obtain a restriction map

rest H : ExtRG(M, M') -f ExtRH(M, M').

If
P22PI 8,Po

is a projective resolution of an RG-module M, and M' is another RG-module
then for any a E HomRH(Pn, M') we have TrH,G(a) o8n+I = TrH,G(aoan+I)
and On o TrH,G(a) = TrH,G(an o a) by Lemma 3.6.3. Thus TrH,G induces a
well defined map

TrH,G : ExtRH(M, M') --> ExtRG(M, M').

It is easy to check that this is independent of the choice of the resolution.

LEMMA 3.6.16. (i) If a E ExtRH(M1, M2) and 0 E ExtRG(M2, M3) then

0 o TrHG(a) = TFHG(reSG,H(3) o a) E ExtRGn(Mi, M3).

(ii) If a E ExtRG(MI, M2) and /3 E ExtRH(M2i M3) then

TrH,G(3) o a = TrH,G(/3 o resG,H(a))

(iii) If H < K < G then TrK,GTFH,K(a) = TrH,G(a).
(iv) (Mackey formula) If H, K < G, then for a E ExtRK(Ml, M2) we

have

resG,HTrK,G(a) = E TrHn9K,H reSK,Hn9K(9a)
HgK

(v) If a E ExtRH(M, M) and,3 E ExtRK(M, M), then

TrH,G(a)TrK,G(3) _)7 TrHn9K,G(a9/3)
HgK

PROOF. This is clear from Lemma 3.6.3.

PROPOSITION 3.6.17. If a E ExtRG(M, M') then TFH,G reSG,H(a) = I G :
HI.a. In particular for any a E ExtRG(M, M') with n > 0, we have IGI.a =
0.

COROLLARY 3.6.18. If IG : HI is invertible in R then the restriction map

resG,H : ExtRG(M, M') ExtRH(M, M')
is injective. In particular, if I GI is invertible in R and M is R-projective, then
ExtRG(M, M') = 0 for n > 0.
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COROLLARY 3.6.19. Suppose a Sylow p-subgroup P of G is a T.I. set
(i.e., for all g c G we have either 9P = P or 9P fl P = {1}), and suppose
JG : PI is invertible in R. Then the restriction map

resG,NG(P) : ExtRG(M, M') - ExtRNc(p) (M, M')

is an isomorphism, and multiplication by IG : NG(P)I - 1 annihilates every
element of ExtRG(M M'), for n > 0. Moreover, ExtRNG(p)(M, M') is equal
to the invariants of NG(P)/P acting on ExtRp(M, M').

PROOF. As above, TrNG(p)GreSGNG(p)(a) = IG : NG(P)la, so that
resG,NG(p) is injective. But on the other hand, the Mackey formula 3.6.16
(iv) shows that

resG,NG(p)TrNG(p),G(+Q) = a

since the intersection of any two distinct conjugates of NG(P) is a group of
order dividing IG : P1. Hence rest NG(p) and TrNG(P),G are inverse isomor-
phisms, and IG : NG(P)la = a.

Finally, the Mackey formula shows that if a E ExtRp(M, M') then

resNG(p),pTrp,NG(p)(a) _ ga.
9ENG(P)/P

Since ING(P)/PI is invertible in R, the image of >9ENG(P)/pg is equal to
the invariants.

EXAMPLE. Suppose G = Sp, the symmetric group on p letters, for p odd,
and k is a field of characteristic p. A Sylow p-subgroup P of G is a cyclic
group of order p, whose normaliser is a Frobenius group of order p(p - 1)

NG(P) = (g, h I gp = 1 hp-1 = 1, hgh-1 = gs)

where s is a primitive root modulo p. Now by Proposition 3.5.5, we have

H* (P, k) = k[x, y]l (x2)

with deg(x) = 1 and deg(y) = 2. It is easy to check that the action of NG(P)
on H*(P, k) is given by h : x i--> sx, h : y --> sy (for example, use the explicit
description of degree one and degree two cohomology given in Section 3.7).

Now by Corollary 3.6.19, it follows that

H*(Sp, k) = H*(NG(P), k) = H*(P, k)NN(P)lP.

Since h : yn --> sny' and h : xy'n-1 H snxyn-1, it follows that the invariants
have a basis consisting of the elements of the form yk(p-1) and xyk(p-1)-1.

These elements therefore form a basis for H*(Sp, k).
Similarly, if e denotes the sign representation of Sp, then E J p= k t p, so

H* (P, E) is as before. However, as modules for NG(P)/P we have H* (P, E) =
H*(P, k) ®k E. Since h is an odd element of Sp, it acts as -1 = s(p-1)12 on E.
Thus we have h : yn H s(p-1)/2+nyn and h : xyn-1 h-) s(p-1)/2+nxy"-1, and
so

H*(Sp, e) -- H*(NG(P), E) = [H*(P, k) ®k E]Nc(P)lP
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has a basis consisting of the elements of the form
y(2k+1)(p-1)/2 and xy(2k+1)(p-1)/2-1

3.7. Low degree cohomology

We first give a group theoretic interpretation of

H'(G, M) - ExtRG(R, M) = Ext'G(Z, M)
for an RG-module M, for n = 1 and 2. Such group theoretic interpretations
have been given for all n, but soon become contrived. The real home for
cohomology of groups is in module theory.

DEFINITION 3.7.1. An extension of a group G by an RG-module M is
a short exact sequence of groups

1->M-+G-*G->1
where M is regarded as an abelian group (now written multiplicatively) and
the action of G on M by conjugation is the same as the module action. A
central extension of G is as above but with trivial G-action on M. The
extension splits if there is a copy of G complementary to M in G. In this
case the group G may be written as matrices of the form (19 ).

An isomorphism of extensions must be the identity on both M and
G.

PROPOSITION 3.7.2. The cohomology group Hi (G, M) parametrises the
set of conjugacy classes of complements to the subgroup M in the split exten-
sion G.

PROOF. We write elements of G as matrices as above. Then a comple-
mentary copy of G in G is given by matrices (a[9] 0g). Since

. 3[g1] gi ( 13[92] 92) = . 3[9192] 9192

we have /3[gi] + gi,3[g2] _ ,3[9192] and so /3 : G -> M is a 1-cocycle for the
bar resolution. Conjugating by (. 901 ) replaces /3 by /3' where

-3'[g] -13[9] = (1 -9)(m-j3[9])
which is the coboundary of the 0-cochain [ ] H m -,3[g'].

In terms of extensions, there is an obvious action of G on M = R ® M
given by

n
( ml g ) ( m2

n
) - (nmi + g(rrt2)

The above calculation shows that two complementary copies of G in G are
conjugate if and only if the restrictions of the short exact sequence 0 -+ M
M -4 R -> 0 correspond to the same element of ExtRG(R, M).

DEGREE TWO COHOMOLOGY.
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PROPOSITION 3.7.3. The cohomology group H2(G, M) parametrises the
set of isomorphism classes of extensions of G by the RG-module M.

PROOF. If 1 -* M - G -i G -+ 1 is an extension, choose a set of coset
representatives of M in G, and write g for the representative corresponding
to an element 9EG. Define a function a:GxG - Mby

9192 = 0'[911921§'192-

Because of the associative law in G, we have

a[91192] + a[9192193] = 91a[92193] + 01[9119293]

(recall that addition in M is really multiplication in G, and the action of G
on M corresponds to conjugation in d) so that 6a[91 1921931 = 0, and a is a 2-
cocycle for the bar resolution. Choosing new coset representatives g = ,3[g]g
replaces a[g1Ig2] by

a[91 1921 +,3[911 +81/3[92] - /3[9192]

In other words it changes a by the coboundary of the 1-cochain /3.
Conversely given a 2-cocycle a, we can define an extension G by putting

a multiplication on the set of pairs m E M, g E G as follows :

(Ml, 91)(M2,92) = (ml +g1(m2) +a[91I92],9192)

As above, the associative law corresponds to the equation Sa = 0.

If you like thinking in terms of matrices, suppose

0->M->A->B- R->0
represents an element of H2(G, M) = Ext2RG(R, M). Letting

M'=Coker(M-*A)=Ker(B->R)
we can think of A and B as matrices of the form

gym, (9) 0 1 0
A a(g) Om(9) ) B : (

b(g) km,(9))
The group G then consists of all matrices of the form

1 0 0

b(g) Om, (9) 0
* a(g) Om(g)

where * takes all possible values in M = HomR(R, M). The matrices

1 0 0
0 1 0

* 0 1

form a normal subgroup isomorphic to M, and the quotient is isomorphic to
G.

The splitting of the extension corresponds to being able to choose con-
sistent values c(g) for the entry *, preserved by multiplication. This is the
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same as the Yonedaproduct of 0-fM->A-->M'-pOand 0-pM'->B->
R -> 0 being the zero element of Ext2 (R, M). The choice c(g) + c(g) also
works if and only if

1 0

fi(g) gNr(g)

is an extension in ExtkG(R, M) = H1 (G, M).

COROLLARY 3.7.4. If IGI is invertible in R and M is an RG-module then
every extension of G by M splits.

PROOF. This follows from Proposition 3.7.3, Corollary 3.6.18 and the
fact that

H2(G, M) = ExtRG(R, M). 13

PROPOSITION 3.7.5. Let G be a central extension of a finite group G by
the multiplicative group k> of a field k in which every element has a IGIth
root. Then there is a finite subgroup G of G with G = 6.k", and.G f1 k> a
cyclic group of order prime to p = chark. In particular, if G is a p-group
and k is a perfect field, then the extension splits and G = G x V.

PROOF. Since every element of k has a IGIth root, the map k" -> k"
given by raising to the IGIth power is onto, with kernel of order dividing
IGIp'. The short exact sequence

0-*Z/IGIp,->k>< ->k'< -*1

(where 1 is the zero group written multiplicatively and Z/IGI' is the IGIth
roots of unity written additively) gives rise to an exact sequence

... -> H2(G,Z/IGjp,) -* H2(G,k") O .H2 (C,kx) - ...

where the second map is multiplication by IGI, and is hence zero by Propo-
sition 3.6.17. Thus we may choose representatives gi in G of the elements gi
of G so that letting gig'j = a[gjIgj]gigj, the 2-cocycle a takes values in the
IGIth roots of unity. We take G to be the group generated by these 9i, so
that On k> is contained in the finite cyclic group of IGIth roots of unity.

REMARKS. '(i) The example k = Q, G = Z/2, G = (Q, /2) shows that
the hypothesis that every element has a IGIth root is necessary.

(ii) If a : G x G -* k" is a 2-cocycle on G, then the twisted group ring
[kG],, has basis elements 9i for gi E G and multiplication gigj = a[gilgj]gigj
According to the above proposition, if k is algebraically closed there is a finite
cyclic p'-central extension

1-- Z->G-G-1
and an injective map Z y k> such that [kG]a is the summand of kG on which
Z acts as scalars via this map, so that as a kG-module we have [kG], = sz Tc
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COROLLARY 3.7.6. Suppose that a finite group G acts as algebra auto-
morphisms on Endk(V), where V is a finite dimensional vector space over
an algebraically closed field k of characteristic p. Then a finite cyclic p'-
central extension G of G acts on V in such a way that the induced action on
V ®k V* = Endk(V) is the given one.

PROOF. Every automorphism of Endk(V) is inner by Proposition 1.3.6,
and so we obtain a map G , PGL(V) = GL(V)/k". This gives rise to a
central extension G of G by k" and a map G --+ GL(V). By the proposition,
we may pass down to a finite extension G of G and a map G --* GL(V), as
required.

EXERCISE. Show that ExtRG(R, R) is isomorphic to the set Hom(G, R+)
of group homomorphisms from G to the additive group of R. Note that
every such homomorphism has the derived group of G in its kernel, and that
Hom(G, R+) is an abelian group in an obvious way.

LIFTING THEOREMS. We now give an application of the above interpre-
tation of degree two cohomology to the problem of lifting representations.

THEOREM 3.7.7 (Green). Suppose (K, 0, k) is a p-modular system (see
Section 1.9) with k = 0/p, and M is a finitely generated kG-module such
that ExtkG(M, M) = 0. Then there is an OG-lattice k with M/p = M.

PROOF. We prove by induction that M = M1 lifts to an (0/p')G-lattice
Mi with Mi/pi-1 - Mi_1. If such a lift Mi has been found, then finding
Mi+1 is the same as finding the diagonal map in the following diagram.

G

I
1 - Endk(M) - GLn(d/pz+I) - GL,(G/pi) -- 1

The obstruction to finding such a lift lies in

H2(G, Endk(M)) = ExtkG(M, M) = 0,

and so the diagonal map exists. Such a map gives a representation of G as
matrices over 0/pi+1. By completeness of 0, we now obtain an OG-lattice
k with the desired properties.

In general, a representation may lift to 0/pi for i arbitrarily large, and
then fail to lift further. For example, the trivial representation of the cyclic
group of order two over F2 lifts to the matrix (2z-1 + 1) as a representation
over Z/2i, which then fails to lift to a representation over Z/2'+'. But in
a sense, this lift only failed because we chose the wrong lift from Z/2-' to
Z/21. The following theorem shows that if we can lift as far as Z/p2''+1,
where pr is the order of the Sylow subgroups, then the reduction to Z/p''+1
lifts to the p-adics.

The following theorem is essentially due to Maranda [150].



3.8. STABLE ELEMENTS 79

THEOREM 3.7.8. Suppose G is a finite group of order prq with q coprime
to p, and (K, 0, k) is a p-modular system. If M is a finitely generated kG-
module'which lifts to a finitely generated O/pa-free (O/pa)G-module k with
a > 2r + 1, then there is a finitely generated 0 -free OG-module M with
M/pa-TM = M/pa-rM.

PROOF. Suppose M has dimension n over k. Since 2(a - r) > a + 1, the
kernel of the map

GLn(O/pa+l) -> GLn(O/pa-r)

is an abelian group, isomorphic to Endp(M/pr+1M). Now consider the fol-
lowing diagram of groups and homomorphisms.

I
1 - Endo(M/pr-1M) - GL,,,(O/pa+r+l) - GLn(O/pa) - 1

1

pr

1 -- Endo(M/pr-1M) - GLn(0/pa+1) - GLn(0/pa-r) - 1

The obstruction to lifting G -> GLn(O/pa) to a map G --> GLn(O/pa+r+l)
lies in H2(G,Endo(M/pr+1M)). Since pr is the p-part of IGI, by Proposi-
tion 3.6.17, multiplication by pr annihilates this cohomology group. Thus
the composite G -* GLn(O/pa) --> GLn(O/pa-r) lifts to a map G -
GLn(O/pa+1) Now proceed by induction and use completeness to obtain an
appropriate map G - GLn(O) lifting the given map G -> GLn(O/pa-r)

3.8. Stable elements

In the last section (Corollary 3.6.18), we saw that if IG: HI is invertible in
R then rest H : ExtRG(M, M') - ExtRH(M, M') is injective. More generally
(cf. Corollary 3.6.9) we shall see in this section that if M or M' is projective
relative to H then the above map resG,H is injective, and we identify the
image as the stable elements in ExtRH(M, M').

DEFINITION 3.8.1. If H is a subgroup of G and M, M' are RG-modules,
an element a of ExtRH(M, M') is said to be stable with respect to G if for
all g E G

resH,Hn9H(a) = res9H,Hn9H(ga)

PROPOSITION 3.8.2. Suppose H is a subgroup of G, and M, M' are RG-
modules with either M or M' projective relative to H. Then the map

resG,H : ExtRG(M, M') -j ExtRH(M, M')

is injective, and its image is the set of stable elements with respect to G.

PROOF. We shall deal with the case where M' is projective relative
to H; the case where M is projective relative to H is similar. Let 6 E
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EndRH(M') with TrH,G(9) = 1 as in Higman's criterion (Proposition 3.6.4).
By Lemma 3.6.16 (i), if a E ExtRG(M, M') then

TrH,G(resG,H(a)6) = aTrH,G(O) = a.

This proves that resG,H is injective, since a may be recovered from resG,H(a).
Conversely, suppose that 3 E ExtRH(M, M') is stable with respect to G.

Then by Lemma 3.6.16 we have

resG,HTrH,G(e/3) = TrHn9H,Hres9H,Hn9H(g(e13))
HgH

TrHng H,H (reSg H,Hn9 H (9 (9)) reSg H,Hn9 H(9(0)))
HgH

E TrHn9H,H(res9H,Hn9H(9(O))reSH,Hn9H(/3))
HgH

TrHn9H,Hres9H,Hn9H(9(0)) I 0 = =0
H9H

and so 0 is in the image of resG,H.

Of course, the same description may be applied to Hn(G, M) since this
is just ExtRG(R, M).

DEFINITION 3.8.3. A subgroup H of G is said to control p-fusion in
G if it contains a Sylow p-subgroup of G, and whenever K1 and K2 are p-
subgroups of H and 9K1 = K2 for some g E G then there is an h E H with
gklg 1 = hklh 1 for all k1 E K1.

PROPOSITION 3.8.4. If H controls p-fusion in G, and the p' part of ClJis
invertible in R, then the restriction map

resG,H : Hn(G, R) ' Hn(H, R)

is an isomorphism.

PROOF. Let S be a Sylow p-subgroup of G. We must show that if we
calculate Hn(G, R) or HT(H, R) as stable elements in HT(S, R) we get the
same result in both cases.

If g E G, let K1 = 9-'S fl S and K2 = S f1 9S. Then 9K1 = K2, so there
is an element h E H with gklg-1 = hklh-1 for all k1 E K1. In particular
h lg centralises K1, and so if a E H' (Ki, R) then ga = ha E H'(K2, R) so
that the stable element calculations do give the same answer.

REMARK. The above proof does not work for the restriction map from
ExtRG(M1, M2) to ExtRH(M1, M2) if M1 and M2 are non-trivial. The prob-
lem is that CG(Ki) does not necessarily act trivially on ExtRKI(M1, M2).
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3.9. Relative cohomology

LEMMA 3.9.1 (Relative Schanuel's lemma). Suppose 0 -> Ml -* Xl --
M -> 0 and 0 -* M2 -> X2 -+ M --> 0 are H-split short exact sequences of
modules with Xl and X2 projective relative to H. Then Ml ®X2 = M2 ®X1.

PROOF. Form a pullback diagram just as in the proof of Schanuel's
lemma 1.5.3.

DEFINITION 3.9.2. A relatively H-projective resolution of an RG-
module M is a long exact sequence

...->X2-a2
+ X1091 * Xo

of RG-modules with the following properties.
(i) Xo/Im(81) = M.
(ii) Each XZ is projective relative to H.
(iii) Each sequence

0 -> Xn+1/Ker(an+1) -- Xn --> Im(an) -> 0

as well as

0-*Im(al)-Xo--*M-p0
splits on restriction to H.

Since the surjection M J H?G--> M always splits on restriction to H,
relatively H-projective resolutions always exist.

THEOREM 3.9.3 (Comparison theorem). Given a map of modules M
M' and relatively H-projective resolutions of M and M', we can extend to a
map of chain complexes

02 X1 a' X0 -M '0X2

f2 Ifi al lfo I
... _ Y2 _ Y1 _ Y0 M' -0

Given any two such maps if.) and {fn}, there is a chain homotopy
hn : Xn -> Yn+l, so that fn - fn = an+l o hn + hn_1 o an.

If M' is an RG-module and

is a relatively H-projective resolution of an RG-module M, we have a chain
complex

b° i

.. .HomRG(Xo, M) -i HomRG(Xl, M') -* HomRG(X2, M)

where Sn is given by composition with an+i By the comparison theorem this
complex is independent of choice of relatively H-projective resolution, up to
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chain homotopy equivalence. Thus its cohomology groups are independent
of this choice, and we define

ExtG H(M, M') = H"(HomRG(X, M') b*).

We can now define the relative cohomology of G to be

H"`(G, H, M) = ExtG,H(R, M).

Just as in Section 2.4, we may view elements of ExtG,H(M, M') as equiv-
alence classes of H-split n-fold extensions

Two such are equivalent if there is a map of H-split n-fold extensions taking
one to the other. We complete this as usual to an equivalence relation. Note
that two H-split n-fold extensions can be equivalent as n-fold extensions
without being equivalent as H-split n-fold extensions, so that the natural
map

ExtG,H(M, M') -+ ExtRC(M, M')

is not necessarily injective.
Yoneda composition gives an associative bilinear product

ExtG H(M', M") x ExtG,H(M, M') -> ExtcH (M, M")

and hence a ring structure on Ext* H(M, M). Note that in general the ring
ExtG,H(R, R) is not necessarily Noetherian, even when R is a field. This
is in contrast to the case of ExtRG(R, R), which is known to be Noetherian
whenever R is (see Chapter 4 of Volume II).

LONG EXACT SEQUENCES.

LEMMA 3.9.4 (Relative horseshoe lemma). If 0 -* M' - M -* M" -> 0
is an H-split short exact sequence of left A-modules, then given relatively
H-projective resolutions

X2->X,-*Xo, ... -,X2-,Xl-,X/
of M' and M", we may complete to a short exact sequence of chain complexes

0 0 0 0

.-Xo M' >0

Xo M" - 0

0 0 0 0
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Thus as in Section 2.4, if Mo is another RG-module we have long exact
sequences

0 - HomRG(M", Mo) --> HomRG(M, Mo) -> HomRG(M', Mo) ->

ExtG,H (M", Mo) , ... -> ExtG H(M" Mo)

ExtG x(M, Mo) ExtG,H(M', Mo) -* Extc H(M", Mo)

and

0 -> HomRG(Mo, M') -> HomRG(Mo, M) - HomRG(MO, M")

ExtG,H(Mo, M') -> ... -> ExtG H(Mo,

ExtG,H(Mo, M) --> ExtG,H(M0, M") -> Extc H(Mo, M') -> .. .

3.10. Vertices and sources

In this section, R is a ring of coefficients such that the Krull-Schmidt
theorem holds for finitely generated RG-modules (e.g. R a field or a complete
local domain).

DEFINITION 3.10.1. Let M be an indecomposable RG-module. Then D
is a vertex of M if M is projective relative to D but not relative to D' for any
proper subgroup D' of D. A source of M is an indecomposable RD-module
Mo, where D is a vertex of M, such that M is a direct summand of Mo TG
(cf. Proposition 3.6.4).

PROPOSITION 3.10.2 (Green). Let M be an indecomposable RG-module.
(i) The vertices of M are conjugate in G.
(ii) Let Mo and M1 be two RD-modules which are both sources of M.

Then there is an element g E NG(D) such that Mo = 9M1.
(iii) If the p' part of JGJ is invertible in R, then the vertices of M are

p-subgroups.

PROOF. (i) If M is a summand of M 1H IG and also of M 1K TG then it
is a summand of

MJHTG1KTG= ® MlHn9KTG
HgK

by the Mackey decomposition theorem, so that if H and K are both vertices
of M then H = gK for some g E G.

(ii) By Proposition 3.6.4, some summand M2 of M ID is a source of M.
Thus M2 is also a summand of

MoTG4D- ®g MO1Dn9DTD .

DgD

Thus for some g E NG(D), M2 = 9Mo.
(iii) This follows from Corollary 3.6.9.
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EXERCISE. Use Rosenberg's lemma, Higman's criterion and Lemma 3.6.3
(v) to give an alternative proof of part (i) of the above proposition, under
the assumption that the endomorphism ring EndRG(M) is a local ring.

3.11. Trivial source modules

As we shall see in Chapter 5, trivial source modules control quite a lot of
the structure of representation rings.

Throughout this section, R is an arbitrary commutative ring of coef-
ficients such that the Krull-Schmidt theorem holds for finitely generated
RG-modules, and (K, 0, k) is a p-modular system.

DEFINITION 3.11.1. An RG-module M is a trivial source module if
each indecomposable summand of M has the trivial module R as its source.

LEMMA 3.11.2. An indecomposable RG-module M has trivial source if
and only if it is a direct summand of a permutation module.

PROOF. Suppose M is a summand of RH TG. Let D be a vertex of M,
and Mo be a source. Then by the Mackey decomposition theorem, Mo is a
summand of

RHTGID= ®RDf19HTD .

HgD

Since D is a vertex, Mo = RD.

One of the principal properties of trivial source modules is that they lift
from characteristic p to characteristic zero.

THEOREM 3.11.3 (Scott). Let M1 and M2 be the OG-permutation mod-
ules on the cosets of H1 and H2 respectively. Then the natural homomor-
phism from HomoG(M1, M2) to HomkG(Ml, M2) given by reduction modulo
p is surjective.

PROOF. By the Mackey decomposition theorem, the free 0-module
HomoG(Ml, M2) and the k-vector space HomkG(M1i M2) have the same
rank, namely the number of double cosets H2gH1.

COROLLARY 3.11.4. (i) Every trivial source kG-module lifts to a trivial
source CMG-module, unique up to isomorphism.

(ii) If M1 and M2 are trivial source CMG-modules, then the natural map

HomoG(M1, M2) --> HomkG(M1, M2)

given by reduction modulo p is surjective.

PROOF. By the theorem, reduction modulo p is surjective on endomor-
phism rings of permutation modules. A trivial source module corresponds
to an idempotent in such an endomorphism ring, and so by the Idempotent
Refinement Theorem 1.9.4, trivial source modules lift.

Applying the theorem again, we see that homomorphisms between triv-
ial source modules lift. Uniqueness of the lifts follows from the conjugacy
statement in Theorem 1.9.4.
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3.12. Green correspondence

For the purpose of this section, R is a commutative ring of coefficients
such that the Krull-Schmidt theorem holds for finitely generated RG-mod-
ules, and such that the p'-part of IGI is invertible in R.

Let D be a fixed p-subgroup of G and let H be a subgroup of G contain-
ing NG(D). In this situation, Green correspondence is a tool for reducing
questions about representations of G to questions about representations of
H, modulo stuff "coming from below". Naively, this means induced from
proper subgroups of D, but we can refine the statement to see exactly what
subgroups are involved. Of course, the main tool here is Mackey decomposi-
tion.

Let

X={X < G I X <9DflDforsome gEG\H}
y={Y<GIY<9DflHforsome gEG\H}.

Note that X C Y and D V Y.

LEMMA 3.12.1. Let M be an indecomposable RH-module which is pro-
jective relative to D.

(i) Let M Tc1H= M ® M'. Then M' is a sum of modules projective
relative to subgroups Y E Y.

(ii) Let M TG= V ® V' with V indecomposable and M a summand of
V .H. Then V is a sum of modules projective relative to subgroups X E X.

PROOF. (i) Let U be an indecomposable RD-module with UTH= M®MO
for some Mo. Then

UTG1H- MTG1H ®MOTG1H

But by the Mackey decomposition theorem,

UTG1H= UTH ®U'

with U' a sum of modules projective relative to subgroups Y E Y. Thus

11'ITG1H®MOlGJ.H=M®Mo®U'
and so by the Krull-Schmidt theorem, MTG J,H= M ® M' with M' a sum of
modules projective relative to subgroups Y E Y.

(ii) It is clear that V' is projective relative to D. Suppose it has an
indecomposable summand V1 which is not projective relative to a subgroup
in X, and suppose D1 < D is a vertex of V1. Let U1 be a source of V1. Then
U1 is a summand of V1 ID1, and so for some indecomposable summand M1
of V1 J.H, U1 is a summand of M1 ID,. Thus M1 is not projective relative to
a subgroup in y, and hence neither is V' J.H, contradicting (i).

THEOREM 3.12.2 (Green Correspondence). Suppose as above that H is a
subgroup of G containing NG(D). Then there is a one-one correspondence
between indecomposable RG-modules with vertex D and indecomposable RH-
modules with vertex D given as follows.
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(i) If V is an indecomposable RG-module with vertex D, then V IH has
a unique indecomposable summand f (V) with vertex D, and the remaining
summands have vertices in Y.

(ii) If M is an indecomposable RH-module with vertex D, then MTG has
a unique indecomposable summand g(M) with vertex D, and the remaining
summands have vertices in X.

(iii) We have f (g(M)) = M and g(f (V)) = V.
(iv) The correspondences f and g take trivial source modules to trivial

source modules.
(v) If V1 and V2 are RG-modules with vertex D, then the trace map TrH,G

induces an isomorphism

(f(V1), f(V2))H'X
G

(VV2)G'X

(see Definition 3.6.2 for the notation).

PROOF. (i) Let S be a source of V and let S T H= M ® M' with M an
indecomposable module such that V is a summand of MTG. By part (i) of
the above lemma, M is the only summand of M T G I H with D as vertex, and
the rest have vertices in Y. But some summand of V 1H has vertex D, since
V is a summand of V IHTG, and so we take f (V) = M.

(ii) Choose an indecomposable summand V of M TG such that M is a
summand of V J.H. Then by part (ii) of the above lemma, M TG= V ® V'
with V' a sum of modules with vertices in X. We take g(M) = V.

(iii) and (iv) are clear from (i) and (ii).
(v) According to Proposition 3.3.1 and the exercise following it, the ex-

terior trace map TrH,G induces an isomorphism

(V1 lH f (V2))H (Vi, f (V2) TG)G.

By Lemma 3.6.3 (vi), this takes homomorphisms in (V1 i,H, f (V2))X to ho-
momorphisms in (V1i f (V2) TG)X and induces an isomorphism

(V1tH,f(V2))H'X (V1,f(V2)TG)G'X.

Since f (V2) TG is a direct sum of V2 and modules projective relative to sub-
groups in X we have

(Vl,f(V2)TG)G'X (V1,V2)G'X.

Since TrH,G is the composite of TrH,G and the map induced by the natural
surjection V21HTG-4 V2, it follows that if we regard f (V2) as a summand of
V21H then TrH,G induces an isomorphism

(Vl J H, f (V
n c

2))H'X (V1, V2)G'X.

Finally, Vl jH is a direct sum of f (V1) and modules projective relative to sub-
groups in Y. Since f (V2) is projective relative to D, applying Lemma 3.6.3 (v)
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shows that any homomorphism from a module projective relative to a sub-
group in Y to f (V2) is a sum of transfers from subgroups in X. Thus

(VlJH,f(V2))H'X - (f(V1),f(V2))' .

The following theorem gives us more information in the situation where
we have Green correspondence.

THEOREM 3.12.3 (D. Burry and J. F. Carlson [47], L. Puig [161]).
Suppose that H is a subgroup of G containing NG(D). Let V be an

indecomposable RG-module such that V 1H has a direct summand M with
vertex D. Then V has vertex D, and V is the Green correspondent g(M).

PROOF. Let e = TrD,H(a) E (V,V)D be the idempotent corresponding
to the summand M of V 1H. By Lemma 3.6.3, we have

Tr'D,G(a) _ TrHn9D,H(ga) = e + E TrHn9D,H(ga) = e mod (V,V)y.
HgD HgD

gOH

Since M is not Y -projective, e (V, V)y , and so TrD,G(a) is an idempotent in
(V,V)G/((V,V)G f1 (V,V)y). Since (V,V)G is a local ring, this means that
(V, V)G = TI D,G(a) (V, V )G C (V, V )DG, and so V is projective relative to D.
Hence V has vertex D and M is its Green correspondent.

Once Green correspondence has been applied, we are left with a mod-
ule which is projective relative to a normal p-subgroup. Analysis of such a
situation is the subject of the next section.

3.13. Clifford theory

Clifford theory is concerned with the relationship between modules and
normal subgroups. In this section we present a primitive version of the Clif-
ford theory developed by Clifford, Cline, Conlon, Dade, Green, Knorr, Puig,
Ward, Willems and others. Throughout this section, R is a ring of coef-
ficients with the property that finitely generated RG-modules satisfy the
Krull-Schmidt theorem for all finite groups G.

Suppose N is a normal subgroup of a finite group G, and Mo is an
indecomposable RG-module which is projective relative to N. Then there is
a RN-module M such that Mo is a summand of MTG. Now by the Mackey
decomposition theorem

MTGIN= ED gm
9EG/N

is a sum of conjugates of M. So by the Krull-Schmidt theorem, MO IN is a
direct sum of conjugates of M.

DEFINITION 3.13.1. If M is an indecomposable RN-module with N 4 G,
we define the inertia group T = T(M) to be the set of all g c G such that
M'-9M.
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Thus in particular N.CG(N) < T, and 9M = 9'M if and only if g and g'
are in the same left coset of T in G. If T = G, we say M is inertial.

PROPOSITION 3.13.2. Suppose M is an indecomposable RN-module with
N 4 G, and with inertia group T. Let

MTT=Ml®...®Mr,

with each Mi indecomposable. Then each Mi TG is indecomposable, and
Mi1G=MjTG if and only if Mi=Mj.

PROOF. Since T is the inertia group, Mi IN is a sum of copies of M, say
Mi IN= ni.M. Then

MjTGJN= ® (9®Mi)1N- ® ni9M.
gEG/T gEG/T

Now Mi is a summand of Mi 1G IT, and so if Mi 1G is decomposable one
of the summands, X say, has the property that Mi is a summand of X IT,
and so ni.M is a summand of X IN. But then since G acts on X, ni.9M is
also a summand of X IN. Since 9M 9'M if g and g' are in different left
cosets of T in G, this implies that all summands of Mi TGIN appear in X IN,
so that counting summands we must have X = Mi 1G

If Mi 1G= Mj TG but Mi Mj, then by the Krull-Schmidt theorem Mi
is a summand of Y, where Mj 1GtT= Mj Y. Then Y IN is a sum of copies
of 9M for g ¢ T, while Mi IN is a sum of copies of M. Since 9M M for
g 0 T, this is impossible.

The effect of this proposition is that from now on we may assume that
M is inertial, so that Mo is a summand of M TG, and M 1GI N is a sum of
copies of M. We shall also assume that R = k is an algebraically closed field,
and under these hypotheses we examine idempotents in E = EndkG(M 1G).
By Frobenius reciprocity we have

E = HomkN(M,MTGIN) HomkN(M,9M).
gEG/N

Since M = 9M for all g E G/N, we may decompose E into a sum of pieces
of the same dimension

E = ® Eg, Eg = HomkN(M,9M).
gEG/N

We have E9Eg, = Eggs, El = EndkN(M) is a local ring, and J(EI)Eg =
E9J(EI) is of codimension one in Eg, consisting of the non-isomorphisms.
This is an example of what Dade calls a strongly G/N-graded algebra.
In particular we have J(EI)E C J(E), and each Eg/J(El)Eg is one dimen-
sional, so that E/J(El)E is a twisted group algebra for GIN. Thus by
Proposition 3.7.5 and the remarks following it, there is a p'-cyclic central
extension 1 --+ Z -+ GIN - GIN - 1 and an injective map Z k" such
that E/J(E1)E is isomorphic to the summand of kG/N on which Z acts
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as scalars via this map. Thus by the Idempotent Refinement Theorem 1.7.3
the summands of M IG are in one-one correspondence with the projective
indecomposable kG/N-modules lying in this summand.

As an application of this set-up, we prove the following theorem.

THEOREM 3.13.3 (Green's indecomposability theorem). Suppose that N
is a normal subgroup of G such that GIN is a p-group, and M is an abso-
lutely indecomposable kN-module (i.e., k' (Dk M is indecomposable for all
extension fields k' of k). Then MTG is absolutely indecomposable.

PROOF. Without loss of generality k is algebraically closed. By applying
induction on IG : NI, we may suppose IG : NI = p. If M is not inertial, then
by Proposition 3.13.2 MTG is indecomposable, and so we may suppose M is
inertial. Letting

E = EndkG(MTG) = ® E9
gEG/N

as above, E/J(E1)E is a twisted group algebra for GIN. But every p'-cyclic
central extension of a cyclic group of order p splits, and so E/J(E1)E is
isomorphic to the group algebra of GIN. Since J(E1)E C_ J(E), this implies
that E/J(E) - k and so MTG is indecomposable.

Returning to the set-up discussed before the theorem, the projective in-
decomposable kG/N-module corresponding to a summand Mo of M TG is
called the multiplicity module, and another equivalent description of it is
as follows. If we let MO 1N= M ®k V for some k-vector space V, then

EndkN(Mo.N)/JEndkN(MOIN) = Endk(V)

admits an action of GIN as algebra automorphisms, so that by Corollary
3.7.6, there is a finite p'-central extension GIN of GIN and an action of GIN
on V compatible with this. This kG/N-module is the multiplicity module.
Its dimension gives the multiplicity of M as a summand of MO IN-

If Endk(M) - M®kM* extends to a kG-module, then by Corollary 3.7.6,
there is a finite p'-central extension G of G and a kG-module k such that
Endk(M) = Endk(M) as algebras with G-action. This central extension
splits on N, so that G is a pullback

1--Z-G >G--1

--GIN

and M .NXZ= M ®k e-1 for an appropriate one dimensional representation
e of Z. Thus if we regard M TG as a representation of 6 with Z in its kernel
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then

MTG = (M ®k E-1 ®k E)NxZ T6= (k J.NxZ ®kE) to

M ®k ENxz TG= M ®k [kG/N]a

where [kG/N]a is the twisted group algebra for the 2-cocycle a corresponding
to the one dimensional representation E of Z (see the remarks after Proposi-
tion 3.7.5). Thus as a module for G, the original module Mo breaks up as a
tensor product MO ®k V where V is the multiplicity module as before.

The extension M does not always exist, as is easily seen by looking at
the example where G = Z/pn, N = Z/p, and M is any kN-module with
non-trivial action.

In general, the problem of whether M can be extended to a module k for
a suitable G can be rephrased as follows. Consider for each g E G the set of
all possible linear maps 09 : M -* M such that g ®09 : 9M = g ® M -+ M is
an isomorphism of kN-modules. Then for g = 1 this gives the multiplicative
group (EndkN(M)°P)x. If we endow the set of all such pairs (g,09) with
the composition (g,¢9).(g',V)9,) = (gg',0. o then we obtain a (usually
infinite) group G, which fits into the following diagram:

1 - (EndkN(M)°P)x - G - G - 1

1 - (EndkN(M)°P) x - G/N - GIN - 1

and the kN-module M extends in an obvious way to a kG-module M. The
question is, can this be reduced to a central extension? In other words, if we
let K be the kernel of the determinant map (EndkN(M)°P)x -> kx and set
GIN = (G/N)/K = G/(N x K), then we have a diagram of the form

1 -- K - (EndkN(M)°P)x - kIIx -- 1
y

1 -- K > G/N - G/N - 1
I I

GIN GIN

1 1
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and the question is, does the exact sequence 1 -> K -* G/N -> G/N --* 1
split? If it does, then the kG-module M restricts to give a kG-module M as
required.

There are two cases of interest where the answer is yes. The first is the
case K = 1, in other words where EndkN(M) = k. In this case we have
G = G and so we can take M = M. The second case is the case where GIN
is a p'-group. In this case, K is a (usually infinite non-abelian) nilpotent
group in which every element has order a power of p, and so the splitting
follows by repeated application of Corollary 3.7.4.

We summarise what we have proved in the following theorem:

THEOREM 3.13.4. Let N be a normal subgroup of a finite group G and k
an algebraically closed field. Suppose M is an inertial kN-module, and either

(i) EndkN(M) = k, or
(ii) chark = 0 or chark does not divide IG/N1.

Then there is a p'-cyclic central extension

1- -Z-G ' G ' 1

1- Z-G/N- GIN-1
such that M extends to a module k for G.

If Mo is a direct summand of M TG, then regarding Mo as a module for
G with Z in the kernel, we have

Mo ®k V.

Here, V is the multiplicity module for Mo, regarded as a module for G with
N in the kernel. 0

3.14. Modules for p-groups

For a p-group P over a field k of characteristic p, we shall see that there
is only one simple module, namely the one dimensional trivial module. But
all the complications of how simple composition factors glue together to form
an arbitrary module are already present in the case of a p-group.

LEMMA 3.14.1. Suppose P is a p-group and k is a field of characteristic
p. Then there is only one simple kP-module, namely the one dimensional
trivial module k.

PROOF. If M is a kP-module, we shall show that P has a non-zero fixed
subspace in its action on M. Since the fixed subspace is a submodule, it
then follows that if M is simple then P acts trivially on M and M is one
dimensional.

Choose a non-zero element m of M and consider the (additive) abelian
subgroup of M generated by the images g(m), g e P. This is a finite abelian
p-group which admits the action of P. Since all orbits must have size a power
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of p, the number of fixed points is divisible by p. Since the zero element is
fixed, there must be some other fixed point.

Thus the decomposition matrix has only one column, and its entries are
the dimensions of the ordinary irreducible representations. The Cartan ma-
trix has only one entry, which is the group order.

Since there is only one projective indecomposable kP-module, namely
the projective cover of the trivial module, this must be equal to the regular
representation. Thus kP has a unique minimal left ideal, also isomorphic to
the trivial module. It is equal to the last non-zero power of the radical, and is
hence a two sided ideal. We write Soc(kP) for this minimal ideal. Since the
projective indecomposable kP-module is also injective, whenever it is a sub-
module of another kP-module it is a summand. Thus every non-projective
indecomposable kP-module has Soc(kP) in its kernel. So studying the rep-
resentation theory of kP is almost the same as studying the representation
theory of kP/Soc(kP).

More generally, every transitive permutation module for kP has a one
dimensional socle, since the sum of the elements being permuted spans the
unique minimal submodule. Thus a transitive permutation module for kP is
automatically indecomposable.

Since every kP-module is obtained by gluing together one dimensional
composition factors, it is important to understand Extkp(k, k).

PROPOSITION 3.14.2. There is a natural isomorphism

HI(P, k) = Extkp(k, k) = Hom(P/(D(P), k+)

where k+ denotes the additive group of k. Thus if P/4(P) is elementary
abelian of rank n then Ext)p(k, k) is an n-dimensional vector space over k.

PROOF. An extension

0-ik-iM-->k->0
of kP-modules is the same as a matrix representation of the form

gH(1 a(g)
0 1

where a : P -* k+ is a homomorphism of groups from P to the additive group
of k. The kernel of a must contain (b(P), since k+ is abelian of exponent
p.

In fact the same argument shows that for any finite group G, any element
of Extk'G(k, k) corresponds to a two dimensional representation of G with
OP(G) in its kernel, and so we have the following.

PROPOSITION 3.14.3. For any finite group G we have

H1(G,k) = HI(G/OP(G),k).
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The next observation about cohomology of p-groups is that we can tell
whether a module is projective just by looking at its cohomology.

PROPOSITION 3.14.4. Suppose P is a p-group and M is a kP-module.
Then the following are equivalent.

(i) M is projective
(ii) Hn(P, M) = 0 for some n > 0
(iii) Hn(P, M) = 0 for all n > 0.

PROOF. By Corollary 2.5.4 we have

Hn(P, M) = Extnp(k, M) = Homkp(k, Q-nM),

which is non-zero whenever St-nM is non-zero, namely whenever M is not
projective (remember kP is a self injective algebra).

COROLLARY 3.14.5. Suppose P is a p-group and M and N are kP-mod-
ules. Then the following are equivalent.

(i) M* Ok N is projective
(ii) Extkp(M, N) = 0 for some n > 0
(iii) Extkp(M, N) = 0 for all n > 0.

PROOF. By Proposition 3.1.8 we have

Extkp(M, N) = Ext-p(k, M* Ok N) = Hn(P, M* Ok N).

Now apply the above proposition.

JENNINGS' THEOREM. We now give an account of Jennings' theorem
[131], which describes the radical layers of the group algebra of a p-group.
Our presentation is closer to the one given in Quillen [165].

Suppose P is a p-group of order pn, and k is a field of characteristic p.
We define the dimension subgroups of P to he

Fr(P)={gEPI g-1EJD(kP)}
where Jr(kP) is the rth power of the Jacobson radical of the group algebra
kP. Since

(gh-1)=(g-1)+(h-1)+(g-1)(h-1)
(g-1 - 1) = -g-1(g - 1), (hgh-1 - 1) = h(g - 1)h-1

Fr(P) is a normal subgroup of P. Also since

(g'-1)=(g--1), ([g,h] - 1) = ((g - 1)(h - 1) - (h - 1)(g - 1))g-1h-1

the pth power of an element of Fr(P) is in Fp,.(P), and the commutators
[Fr(P), Fs (P)] are contained in Fr+s(P). Also it is easy to see that F1(P) = P
and F2(P) = 4>(P), the Frattini subgroup of P.

We denote by rr(P) the lowest central series with the above properties.
Namely we begin with 171 (P) = P, and then rr(P) is generated by all com-
mutators [r3(P),rt(P)] with s + t > r, and all pth powers of elements in
rs(P) with ps > r. This series is called the Jennings series of P. It is clear
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from the above discussion that Fr(P) rr(P) for all r > 0. We shall prove
below that Fr(P) = I'r(P) for all r > 0.

It follows from the definition that each rr(P)/I'r+1(P) is an elementary
abelian p-group, which we regard as a vector space over IFp, say of dimension
nr. We form the associated graded object and tensor with k

Jen.(P) = ®k OF, (rr(P)/rr+1(P))
r>1

This is a Lie algebra, with the Lie bracket given by commutators. The Jacobi
identity follows from Philip Hall's identity

(I [X, [y-l,z]])(z[y, [z-1,x]])(x[z, [x-1,y]]) = 1.
This Lie algebra also comes equipped with a pth power operation, the pth
power of an element of degree r being an element in degree pr. Such an object
is called a p-restricted Lie algebra (it is not necessary for our purposes to
know the exact axioms).

We define the restricted universal enveloping algebra UJen.(P) as
follows. It is the (associative) graded algebra over k generated by the graded
vector space Jen.(P), subject to the relations that xy - yx is equal to the
commutator [x, y], and the pth power xp agrees with the pth power operation
defined above. By definition, the identity element of UJen.(P) spans a copy
of the field in degree zero.

We now filter kP by the powers of the radical, and define the associated
graded object

gr.kP = ® Ji(kP)/J2+1(kP)
i>°

where J°(kP) = U. Since the product of elements in Ji(kP) and Jj(kP)
lies in Ji+j(kP), gr.kP inherits the multiplication to form an associative
graded algebra over k.

Since rr(P) C Fr(P), we have a vector space homomorphism

0: Jen.(P) -> gr.kP

induced by sending an element g E IF,(p) to (g - 1) E Jr(kP). This has the
property that the Lie bracket [g, h] goes to 0(g)¢(h) - 0(h)o(g), and gp goes
to q(g)p. So by the definition of the restricted universal enveloping algebra,
the map 0 extends to an algebra homomorphism

: UJen.(P) --> gr.kP.

Since Jeni(P) = ri(P)/172(P) = P/4(P), the map V) is an isomorphism
in degree one. Now gr.kP is generated by elements of degree one, and so
0 is surjective. In fact, it is an isomorphism, as we now show by counting
dimensions. This dimension count also gives us the dimensions of the radical
layers of U.
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To count dimensions, we give a basis of UJen.(P), called the Poincare-
Birkhoff--Witt basis. First, we choose a basis x1i... , xn of Jen.(P), in such a
way that the first n1 vectors form a basis of Jen1(P), the next n2 vectors form
a basis of Jen2(P), and so on. It may happen that some of these are the zero
space, but this does not worry us. We have n, = dimk Jenr(P), n = E n,.,
and I P 1 = p. We claim that the elements xi' ... x"n with 0 < aj < p span
Wen. (P) as a vector space. This is clear, because the generators in Jen.(P)
are certainly in this span, and because of the commutator and pth power
formulas, a product of such elements is again a linear combination of such
elements.

This proves that the dimension of UJen.(P) is at most pn. But we have
a surjective map z/i : UJen.(P) --> gr.kP, and the dimension of gr.kP is pn.
This proves that the above elements are linearly independent, and that '0 is
an isomorphism. Moreover, an element of rr(P) not in r,+1 (P) gives rise to
a non-zero element of Jenr(P) and hence has non-zero image in grr(kP). It
follows that Pr(P) = F,.(P).

Finally the above basis allows us to give the dimension of grrkP. This is
easiest to write down in terms of Poincare series.

(1_tPr)'r
E t' dimk(J'kP/J'+1kP) = fl(1 + tr + ... + t(1'-1)r)nr =
2>Q r r 1 - tr

We summarise what we have proved in the following theorem.

THEOREM 3.14.6 (Jennings, Quillen). Suppose that P is a finite p-group.
Then the dimension subgroups Fr(P) are equal to the Jennings subgroups
Fr(P). The map

0 : Wen. (P) -> gr.kP

defined above is a isomorphism. In particular, the Poincare series of the
radical layers of kP is given by

(t'dimk(J'kPIJ'+'kP) = 1 - tpr ) nrE fl 1 - tr
i>O r

where II'r(P)/I'r+1(P) = pnr. Thus the radical length of kP is

1 + E(p - 1)rnr.
r

COROLLARY 3.14.7. The radical layers of kP are equal to the socle layers.

PROOF. The Poincare series given above is symmetric. Namely, if we set

1 = 1 + >(p - 1)rnr,

the radical length of kP, then the above formula shows that

dimk(JikP/Ji+1kP) = dimk(J1-i-1kP/J'-'kP).
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By Proposition 3.1.2, kP is self-dual as a kP-module, so that

dimk(JZkP/J2+1kP) = dim,t(Soc'+1kP/Soc'kP).

Since SocxkP D Jt-ikP, it follows by induction that we have equality.

3.15. Tensor induction

We saw in Section 2.8 that if r is a subring of a ring A then we may
induce modules from r to A. The particular case of induction and restriction
for group algebras was briefly discussed in Section 3.3. The corresponding
notion of tensor induction for modules for group algebras, however, does not
easily generalise.

As in Section 3.3, if H < G and M is an RH-module we can write

MTG=RG®RHM= ® g®M.
9EG/H

One way of checking that this gives a well defined RG-module which is
independent of the choice of coset representatives of H in G is to introduce
the following construction. Let n = IG : HI. Recall that the wreath product
En? H consists of elements (7r; h1i ... , hn) with it E En and h1, ... , hn E H,
and with multiplication given by

r(r7r hl, ... , h') hl,... , hn) = ( ; h,T(1)h1, hninihn)-

Given a choice of coset representatives gl, ... , gn of H in G, we obtain an
injective group homomorphism i : G -; En H as follows. For a given
g E G, we can write g.gj = g,ijihj for uniquely defined elements 7r E En
and h1, ... , hn E H depending on g. We then set i(g) = (7r; h1, ... , hn). A
different choice of coset representatives gives rise to a conjugate embedding
ofGinEn1H.

Now given an RH-module M, we can make a direct sum Mn of n copies
of M into a module for En t H via

(it; hl, ... , hn)(m1, ... , mn) = (h,r-1(l)m7r-,(1), ... , h7r-i(n)ma-i(n)).

The induced module is then

MTG= i*(Mn) = (Mn) iG
In a similar way, since tensor product is commutative, we can make the tensor
product M®n of n copies of M into a module for En i H via

(it; h1, ... , hn)(m1 ® ... 0 Mn) = h,- 1 i1i-rn,r_1 (1) ®... ®h,-1inim,r_1ini.

DEFINITION 3.15.1. The tensor induced module MSG is defined to be

MIG = i*(M®n) = (M®n) IG

The basic properties of tensor induction are given in the following propo-
sition.
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PROPOSITION 3.15.2. Suppose H < G and M1, M2 and M3 are RH-
modules.

(1) (Ml OR M1V OR
(ii) If H' < H < G and M is an RH'-module then M0,G ?' M.
(iii) (Mi ® M2) P = Mle ® M2 P ® M', where M' is a direct sum of

modules induced from proper subgroups K containing the intersection of the
conjugates of H.

(iv) If H' < H and M is an RH'-module then M TH e is a direct
sum of modules induced from subgroups K containing the intersection of the
conjugates of H', and with K fl H < H'.

(v) (Mackey formula) If K, H < G and M is an RK-module then

MSG 1H ® gM 1Hf1sK H.
H\G/K

(vi) (Dress [89]) Suppose X is a permutation representation of G and
0 -+ M1 --+ M2 -> M3 -> 0 is an X-split short exact sequence of RH-modules
(see Definition 3.6.13). Then

RXOR (M2f-)=RXOR ((M1®M3)4G).

PROOF. (i) and (ii) are clear from the definitions.
(iii) As modules for En 1 H we have

(Ml®M2)®n-M®n®M®n®M'

where

M' = ® (M®r OR M®(n-r) )(£rXE-,)2H TE-1H

1<r<n-1

and the result follows by restricting to G.
(iv) The module

On

(MTH)®n g ® M
gEH/H'

is a direct sum of submodules corresponding to the En? H-orbits of ways of
choosing an n-tuple of coset representatives of H' in H. The stabiliser in H
of such an n-tuple is the intersection of the corresponding conjugates of H',
and is therefore contained in some conjugate of H'. The result follows by
restricting to G.

(v) This follows by partitioning the set of left coset representatives of K
in G as a disjoint union of orbits of H corresponding to the double cosets.

(vi) Regard Ml as a submodule of M2 by abuse of notation. As an
RG-module, M26G has a natural filtration

M16G=U0 <U1 <... <V..=M2$
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(n = IG : HI), where Uj is the linear span of the tensors ml 0 . 0 m,,, for
which at most j of the mi do not lie in M1. It is easy to see that

Thus we must show that tensoring with RX splits the above filtration of
M2V.

Suppose f : RX OR M3 --+ RX OR M2 is an X-splitting of the sequence
0-*M1-*M2->M3->0of the form

f(Ex®mx) = Ex®fx(mx)
xEX xEX

with fx linear maps from M3 to M2 (if there is any splitting of the form
f (>xEX x ® mx) = Ex ,'VEX x ® fxy(my), then by dropping the terms with
x # y, we obtain a splitting of the desired form). Since f is an RH-module
homomorphism, we have hfx(mx) = fhx(hmx) for h E H. Now a splitting
for the map

RX OR Uj --H (RX OR Uj)/(RX OR Uj-1) - RX OR (Uj/Uj-1)
is given as follows. The typical generator for the right hand side is given as
x ®(ml ®. . . ®m,), where j of the mi are in M3 and n -j are in M1. To apply
0, we leave the x and those mi which are in M1 alone, and we replace those
mi which are in M3 by f9ti ix(mi), where gi is the coset representative of H
in G labelling the ith copy of M2 in M26G = M®n. It is easily checked that
0 is an RG-module homomorphism which splits the above surjection.

The reader is referred to Chapter 4 of Volume II for an extensive dis-
cussion of the tensor induction construction at the level of chain complexes.
In particular this gives rise to the Evens norm map and Steenrod operations
in cohomology. The algebraic proof by Evens that the cohomology ring of a
finite group is finitely generated depends heavily on this construction.



CHAPTER 4

Methods from the representations of algebras

4.1. Representations of quivers

It follows from Morita theory (Section 2.2) that to study the represen-
tations of a finite dimensional algebra over an algebraically closed field, it
suffices to consider the case where every irreducible module is one dimen-
sional. We shall see that such an algebra is expressible as a quotient of the
path algebra of a quiver (directed graph) by an ideal contained in the ideal
of paths of length at least two. More generally, a finite dimensional basic
algebra over any field can be expressed essentially uniquely as a quotient of
a "modulated quiver" by such an ideal, provided certain sequences of bimod-
ules over division rings split (this condition is always satisfied over a perfect
field). This makes the representations of quivers important to the study of
representations of finite dimensional algebras.

DEFINITION 4.1.1. A quiver is a directed graph, possibly with multiple
arrows and loops.

If Q is a quiver and k is a field, we define the path algebra kQ as follows.
It is an algebra over k, which as a vector space has a basis consisting of the
paths - -+ --> in Q. Multiplication is given on basis elements
by composition of paths in reverse order (because we are dealing with left
rather than right modules) if the paths are composable in this way, and zero
otherwise. Thus for example corresponding to each vertex x there is a path
of length zero giving rise to an idempotent basis element denoted ex. A free
algebra is an example of a path algebra, for a graph with only one vertex.
Clearly kQ is finitely generated if and only if Q has only finitely many vertices
and arrows, and finite dimensional if and only if in addition it has no oriented
cycles.

A representation of a quiver Q associates to each vertex x of Q a vector
space Vx, and to each arrow x -+ y a linear transformation Vx -> V. between
the corresponding vector spaces.

There is a natural one-one correspondence between representations of Q
and kQ-modules given as follows. Given a representation of Q, we form a
kQ-module whose underlying vector space is ®x Vx, and where the action
of a basis element xl -- -* x2 is as the composite of the corresponding
maps:

(@ V. - V x 1 -' ... Vx2 ®Vx .

x x

99
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So for example the action of the idempotent e., is to project onto V.
Conversely, given a kQ-module V, we form a representation of Q by

setting Vx = exV. If u is the basis element of kQ corresponding to an arrow
x --f y, then eyu = u = uex, and so u maps VV to Vy. These are the maps we
use to define the representation of Q. It is clear that the above procedures
are mutually inverse.

There is a simple kQ-module Sx of dimension one corresponding to each
vertex x of Q. It consists of a one dimensional vector space at the vertex x,
and a zero dimensional vector space at each other vertex. In case kQ is finite
dimensional, these are the only simple kQ-modules, but otherwise there are
others. For example, for a free algebra with at least two generators, there
are simple modules of every dimension.

EXAMPLE. Let Q be the following quiver.

- F
T

If any of the maps corresponding to the four arrows is not injective, then the
kernel splits off as a direct summand. Thus apart from four simple modules,
the indecomposable kQ-modules are in one-one correspondence with inde-
composable four subspace systems; namely a vector space V together with
four given subspaces V1, V2, V3, V4. There is an obvious notion of direct sum
for such systems, namely V ® W ; V1® W1,... , V4 ® W4. The four subspace
problem is the problem of classifying the indecomposable four subspace sys-
tems. This problem was solved in 1970 by Gel'fand and Ponomarev [114].
It turns out that for at most three subspaces, there are only finitely many
isomorphism types of indecomposable system. For four subspaces, there are
infinitely many, but they are classifiable (this situation is called tame), while
for at least five they are in some sense unclassifiable (wild). We shall discuss
all this in more detail later.

The projective module P1 = kQ.ex corresponding to an idempotent ex
may be described as follows. The basis elements correspond to the paths in
Q which begin with the vertex x, and the action of kQ is given by (reverse)
composition of paths as before. We now show that these are essentially the
only projective modules, and that every submodule of a projective module is
projective.

DEFINITION 4.1.2. A ring A is (left) hereditary if every submodule of
a projective (left) A-module is projective.

Thus for example the ring of integers in an algebraic number field is
hereditary, and the next theorem shows that the path algebra of a quiver
with finitely many vertices is hereditary.
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DEFINITION 4.1.3. We write kQ(n) for the linear span in kQ of the paths
of length at least n. It is a two sided ideal in kQ.

As a (left) kQ-module, kQ(n)/kQ(n+l) is semisimple. It is a direct sum of
simple modules of the form Sx, and the copies of a particular Sx correspond
to the paths of length n ending at x. That is, ex.kQ(n)/kQ(n+l) has a basis
consisting of the paths of length n ending at x. For example, if kQ is finite
dimensional then kQ(n) = Jn(kQ).

Now a path of length m, x -> -> y, induces an injective map

ex.kQ(n)/kQ(n+l) - ey.kQ(n+m)/kQ(n+m+l)

and the images of these maps for distinct paths are linearly independent.
If F is any free kQ-module (not necessarily finitely generated) with a

chosen basis, then it inherits a filtration F(n) from the above filtration on
kQ. Again if x - -+ y is a path of length m then the induced map

ex.F(n)/F(n+1) ey.F(n+m)/F(n+m+1)

is injective, and the images of these maps for distinct paths are linearly
independent.

THEOREM 4.1.4. Suppose Q has only finitely many vertices. Then every
submodule of a free kQ-module is isomorphic to a direct sum of modules of the
form kQ.ex, so that kQ is a hereditary algebra. The Krull-Schmidt theorem
holds for finitely generated projective kQ-modules.

PROOF. We shall only prove the first statement in case kQ is finite di-
mengional. The general case may be found in Bergman [24, Cor. 2.6], and is
quite hard.

Suppose P is a submodule of a free kQ-module F. Define F(n) as above,
and P(n) = P fl F(n). Since

I In F(n) = {0} we have
I In P(n) = {0}. As above,

if x --> -> y is a path of length m then the induced map ex.P(n)/P(n+l) -*
is injective.

Since kQ is finite dimensional, we have kQ(1) = J(kQ). Now P/kQ(1).P
is a module for kQlkQ(1), which is a finite direct sum of copies of k. Thus
we may write P/kQ(1).P as a direct sum of modules isomorphic to some Sx,
say

®Sx,a
x,a

with Sx,a = Sx. Letting Px,a '= kQ.ex be the corresponding projective kQ-
module, we have a surjective kQ-module homomorphism

0 : ® Px,a -> P/kQ(1).P
x,a

which may be lifted to a kQ-module homomorphism

V) :®Px,a-*P.
x,a
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We claim that z/' is an isomorphism. The injectivity of bi follows from
the injectivity of eS.P(,,,)/P(,,,+1) -+ above. Write X for
Coker(zb). Tensoring the short exact sequence

0-4 ®Px,a +P-*X-+0
x,a

over kQ with kQ/kQ(1), we obtain

® Sx,a -+ P/kQ(1).P -+ X/kQ(1).X -+ 0
x,a

so that X/J(kQ).X = X/kQ(1).X = 0, and hence by Nakayama's lemma
X = 0, so that V) is an isomorphism.

To prove the Krull-Schmidt theorem for finitely generated projective kQ-
modules, we note that

kQ/kQ(1) ®kQ ®Px,a = ® Sx,a
x,a x,a

with Sx,a = Sx. Thus if the module is finitely generated, the number of copies
of of each Px,a is finite, and hence well defined by applying the Krull-Schmidt
theorem for finitely generated kQ/kQ(1)-modules.

COROLLARY 4.1.5. Every projective module over a free algebra (over a
field) is free.

EXAMPLE. The following is an example where Q has infinitely many
vertices, so that kQ is a ring without identity. Let Q be the quiver

Then a representation V of Q is the same thing as an inverse system of vector
spaces -> V2 --> V1 -> V0. A kQ-module is projective if and only if every
map involved is injective, and the inverse limit is zero. Thus every submodule
of a projective kQ-module is projective, and so kQ is hereditary.

Let k denote the representation -> k -+ k - k of Q in which each
arrow is the identity map. Then giving a homomorphism k --+ V is the same
thing as choosing an element v2 in each V in such a way that v2 goes to vi-1
in V_1. Thus HomkQ(k, V) = lim V. Since every submodule of a projective
module is projective, every module has a projective resolution of length one,
and so ExtkQ(k, V) = 0 for n > 1. The functor ExtkQ(k, V) is usually written
lime V or R1 lim V2, since it is the first (and only) right derived functor of lim.

By Proposition 2.5.2, given a short exact sequence 0 -+ V' -+ V -+ V" -+ 0
of kQ-modules, there is a six term exact sequence

0 --+ lim V' -+ lim V -+ lim V" --+ lime V' -+ lime V -* liml Vi" ---> 0.

Of course, the above discussion applies equally well when the field k is re-
placed by Z, because a subgroup of a free abelian group is again free abelian.
Thus we have a functor lime for inverse systems of abelian groups, and a six
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term sequence as before. For further discussion of liml, see Milnor [151] and

Bousfield-Kan [35], Sections IX.2 and XI.6.

DEFINITION 4.1.6. Suppose A is a finite dimensional algebra over an al-
gebraically closed field k. Let S1,... , Sr be the isomorphism classes of simple
A-modules with projective covers Pi = Aei. The Ext-quiver Q(A) has ver-
tices x1, ... , x, corresponding to these simple modules, and the number of
arrows from xi to xj is dimk ExtA(Si, Sj). Note that according to the remarks
in Section 2.4, this is the same as the dimension of

HomA (Pj, Rad(Pi)) /HomA (Pj, Rad2 (Pi)) = ejJ(A)ei /ej J2 (A)ei.

PROPOSITION 4.1.7 (Gabriel [112]). Suppose A is a finite dimensional
basic algebra over an algebraically closed field k, and let Q = Q(A) be its
Ext-quiver. Then there is a surjective map of algebras 0: kQ -» A such that
the kernel of 0 is contained in the ideal of paths of length at least two. In
particular, in case kQ is finite dimensional, this latter ideal is equal to the
square of the radical, and ¢ induces a bijection between the simple A-modules
and the simple kQ-modules, and between the blocks of A and the blocks of
kQ.

PROOF. Since A is a basic algebra, we can choose the ei with el + +
e,. = 1 and eiej = ejei = 0, and send the idempotent corresponding to
xi in kQ to the idempotent ei in A. Choose a complement to ejJ2(A)ei
in ejJ(A)ei as a vector space, and choose a basis for it. Send the basis
elements of kQ corresponding to the arrows from xi to xj to these basis
elements. Every relation in kQ says that products of non-composable paths
are zero. These relations are satisfied by the corresponding products in A
by the relations eiej = ejei = 0, and so this map extends to a well defined
map kQ -> A. It is surjective modulo J2(A), and so by Proposition 1.2.8 it
is surjective. In case kQ is finite dimensional, the bijection of blocks comes
from Proposition 1.8.4.

DEFINITION 4.1.8. A system of linear relations on a quiver Q is a
two sided ideal I contained in the ideal of paths of length at least two. This
is the same as assigning to each pair of vertices x and y in Q a subspace of
the space of paths of length at least two from x to y, called the relations,
in such a way that composing a relation on either side with any path gives
another relation.

We call the pair (Q, I) a quiver with relations. The path algebra of
a quiver with relations is the algebra kQ/I.

The importance of the above definition is that by the proposition, every
basic algebra over an algebraically closed field is isomorphic to the path
algebra of a quiver with relations.

EXAMPLE. Let Q be the quiver
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and let I be the ideal generated by the paths of length at least two. Then
a kQ-module is the same thing as a chain complex of vector spaces. The
projective kQ-modules are the exact complexes.

More generally, for any ring A, one may form the path algebra AQ in the
obvious way, and a AQ-module is the same as a chain complex of A-modules.
The projective AQ-modules are the split exact sequences of projective A-
modules.

We now indicate what modifications have to be made to the above dis-
cussion in case k is not algebraically closed. We confidently leave the details
to the reader.

DEFINITION 4.1.9. A labelled graph is an undirected graph together
with a pair of positive integers (xdy, for each edge x ry y. We usually
omit to write in the label in case xdy = ydxy = 1. An orientation of a
labelled graph assigns a direction x -> y or x F- y to each edge x - y.

A valued graph is a labelled graph with the property that there exist
positive integers fx, one for each vertex, with xdy fy = ydxlfx for each edge
x ry y. Thus for example a labelled graph with no cycles is always a valued
graph.

A modulation of a valued graph consists of an assignment of a division
ring Ax to each vertex x, and a Ax-Dy-bimodule xMy to each edge x 7 y
satisfying

(i) yMx = Homox(xMJ, Ax) = Homoy(xMy, Ay)
(ii) dimo, (xMy) = xdy.
Finally, a modulated quiver consists of a valued graph together with

an orientation and a modulation.

If A is a finite dimensional algebra over afield k, which is not necessarily
algebraically closed, its Ext-quiver is defined as a modulated quiver as fol-
lows. Again the vertices xi correspond to the isomorphism classes of simple
modules Si, with Di = EndA(Si)°P. There is an arrow xi xj if and only if
Extra(Si, Si) 54 0, and

DMZ = Mi.7 = ExtX(Si, Sj) as a L -Di-bimodule,

iM.7 = M = Homk(jMM , k) = Homoi(jMi , Di) = Homo (jMi , Aj)

j di = di7 = dimoi (j MM )

ids = d2 = dimo3 (iM7) and f i = dimk(Di)

Note that if ExtA(Si, Sj) 0 0 and Ext.(Sj, Si) # 0 then there are two distinct

arrows xi + xj and xj - xi with separate bimodules.
A representation V of a modulated quiver assigns to each vertex x a

Ox-module Vx and to each arrow x y a homomorphism

yMX ®Ax Vx --* V.



4.1. REPRESENTATIONS OF QUIVERS 105

Just as before, representations of a modulated quiver Q are in natural
one-one correspondence with modules for the path algebra kQ. We give
a more abstract definition of this path algebra than in the unmodulated
case, but it amounts to the same thing. Namely we set 0 = ®, Ate, M =
® -My as a 0-0-bimodule, and then we define the space kQ(,,)/kQ(n+1)

of paths of length n to be the n-fold tensor product M ®p M ®p . . . ®o M
(and kQ(o)/kQ(1) = 0). Then the path algebra kQ is the direct sum of the
kQ(n)/kQ(n+1) as a tensor algebra.

Imitating the proof of Proposition 4.1.7, we find that there are two pos-
sible obstructions, both of which disappear over a perfect field.

PROPOSITION 4.1.10. Suppose that A is a finite dimensional basic algebra
over a field k. Suppose that

(i) the map of algebras A -+ A/J(A) splits, so that we may choose a copy
of Di in EndA(Pi) complementary to JEndA(Pi), and

(ii) the short exact sequence

0 -* eiJ2(A)ej -+ eiJ(A)ej --+ eiJ(A)/J2(A)ej -y 0

splits as a sequence of L -Di-bimodules.
Then A is a quotient of the path algebra of its Ext-quiver by an ideal

contained in the ideal of paths of length at least two. 0
COROLLARY 4.1.11. Suppose that A is a finite dimensional basic algebra

over a perfect field k. Then A is a quotient of the path algebra of its Ext-quiver
by an ideal contained in the ideal of paths of length at least two.

PROOF. Over a perfect field, there are no inseparable extensions, and
so Li ®O'P is semisimple. Thus every exact sequence of Ai-Lj-bimodules
splits. In particular the sequence

0 J(A)/J2(A) A/J2(A) -* A/J(A) -+ 0

of A/J(A)-A/J(A)-bimodules splits and so the Ai's lift to A/J2(A). Con-
tinuing inductively, the map A -+ A/J(A) splits, and so we may apply the
proposition. El

REMARKS. (i) There should be a way of modifying the definition of the
Ext-quiver of A to contain sufficient cocycle information so that a suitable
"path algebra" will always map onto A. To the best of my knowledge no-one
has attempted to do this.

(ii) Let ko be a field of characteristic p. Over the field k = ko(x), which
is not perfect, let A be the commutative algebra k[y, EJ/(0, yP - x - E) of
dimension p2. Then A/J(A) = ko(y) is an inseparable extension of k of degree
p, and the map A -+ A/J(A) does not split as a map of algebras over k. This
example shows that the above corollary does not extend to non-perfect fields.

(iii) Since the group algebra of a finite group over the field of p elements
has a finite splitting field, the above corollary is true for a block of such a
group algebra over any field.



106 4. METHODS FROM THE REPRESENTATIONS OF ALGEBRAS

4.2. Finite dimensional hereditary algebras

In the last section, we saw that the path algebra of a quiver with finitely
many vertices is hereditary. Conversely, we shall see in this section that over
an algebraically closed field, every finite dimensional hereditary algebra is
Morita equivalent to the path algebra of a quiver with finitely many vertices
and no oriented cycles.

LEMMA 4.2.1 (Eilenberg and Nakayama [94]). Let A be a ring and I a
two sided ideal contained in j2(A) which is finitely generated both as a left
ideal and as a right ideal. If A/I is hereditary then I = 0.

PROOF. Since I is finitely generated as a right ideal, by Nakayama's
lemma, if I = I.J(A) then I = 0. Thus it suffices to work modulo I.J(A),
and so we assume I.J(A) = 0. Let r = A/I, so that IF is hereditary. Since I
annihilates the A-module J(A), we may regard J(A) as a r-module. The map
of I'-modules J(A) -+ J(A)/I = J(P) splits, as J(r) is a projective r-module,
so J(A) = J(A)/I I. But I C J2(A) = (J(A)/I).J(A) = Rad(J(A)) as a
r-module, so by another application of Nakayama's lemma (this time on the
left), I = 0.

LEMMA 4.2.2. Suppose A is a finite dimensional hereditary algebra and
Si, Sj are simple modules with Extp(Si, Sj) 0. Then the projective cover Pi
of Si contains a copy of the projective cover Pj of S; as a proper submodule.

PROOF. Since Extn(Si, Si) 0, there is a non-zero homomorphism Pj ->
Pi whose image is in J(Pi) but not in J2(Pi). The image of this map is a
submodule of a projective module, and hence projective, and so the map
splits. Since Pj is indecomposable, this implies that this homomorphism is
injective.

LEMMA 4.2.3. If A is a finite dimensional hereditary algebra then the
Ext-quiver of A contains no oriented cycles.

PROOF. Suppose S1 -* S2 -p --> Sn - Si is an oriented cycle. Then
by the previous lemma we have P1 C P2 C C Pn C P1. These are strict
inclusions of finite dimensional modules, and so this situation is impossible.

0
PROPOSITION 4.2.4. Suppose A is a finite dimensional hereditary basic

algebra over an algebraically closed field. Then A = kQA, the path algebra of
its Ext-quiver.

PROOF. By Lemma 4.2.3, kQA is finite dimensional, and so JnkQA is the
ideal of paths of length at least n. By Proposition 4.1.7, there is a surjective
map 0 : kQA -f A whose kernel is contained in J2kQA. Thus by Lemma 4.2.1
0 is an isomorphism.

The same arguments apply in the case of a modulated quiver, using Corol-
lary 4.1.11.
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PROPOSITION 4.2.5. Suppose A is a finite dimensional hereditary basic
algebra over a perfect field. Then A = kQA, the path algebra of its Ext-
quiver.

REMARK. The above proposition is no longer true over a field which is
not perfect, since the splitting condition in Proposition 4.1.10 may fail. An
example of a finite dimensional hereditary algebra which is not isomorphic
to the path algebra of its Ext-quiver may be found in Dlab and Ringel [79].

4.3. Representations of the Klein four group

In this section we work through an example in detail to illustrate the
concepts introduced in the last two sections.

Denote by V4 the Klein four group (Kleinsche Vierergruppe), namely a
direct product of two cyclic groups of order two

V4=(x,yIx2=y2=[x,y]=1).
Let k be a field of characteristic two. We shall investigate the representations
of kV4. According to Section 3.14, there is only one simple kV4-module,
gamely the trivial one dimensional module k, and we have

dimk Extkv4(k, k) = 2.

Thus the Ext-quiver for kV4 is the following graph:

a( D b
The arrows a, b correspond to elements x - 1 and y - 1 of J(kV4) comple-
menting J2(kV4). The relations are a2 = 0, b2 = 0 and ab = ba.

Unfortunately the kernel of the natural map from the path algebra of
this graph to kV4 is rather large, and so we try to be a bit cleverer. Now
according to Section 3.14, if we want to understand indecomposable kV4-
modules, it suffices to understand A-modules, where A = kV4/Soc(kV4) is
the three dimensional ring with basis elements 1, x - 1 and y - 1, and

(x-1)2=(y-1)2=(x-1)(y-1)=0.
DEFINITION 4.3.1. The Kronecker quiver is the following graph:

a

Q= X S S X 2

b

The path algebra of this quiver has two simple modules, S1 and S2,
corresponding to xl and x2. We have

dimk Extk
2

Q(Sz, Sj) =
(0 ifi=1,j=2

otherwise.

If M is a kA-module, we obtain a representation of the quiver Q by
letting the vector spaces V1 and V2 corresponding to the vertices x1 and x2
be M/(Im(x-1)+Im(y-1)) and Im(x-1)+Im(y-1). The relations above for
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(x-1) and (y-1) imply that they both act trivially on Im(x - 1) + Im(y - 1),
so that they induce maps a and b from V1 to V2.

Conversely if a, b : V1 ---> V2 is a representation of Q, we obtain a kA-
module whose underlying vector space is Vl ® V2, and where x acts as 1 + a,
and y acts as 1 + b.

These recipes are not quite inverse, but they do set up a one-one cor-
respondence between A-modules and representations of Q for which V2 =
Im(a) + Im(b), and preserving direct sums. There is only one indecompos-
able representation of Q for which V2 0 Im(a) + Im(b), namely the simple
module S2, and so the above is a one-one correspondence between indecom-
posable A-modules and indecomposable kQ-modules other than S2.

Beware that the isomorphism between a A-module M and its image un-
der the composite of these functors depends on a choice of complement for
Im(x - 1) + Im(y - 1) in M, and so it is not a natural isomorphism of functors.
In particular, endomorphism rings are not preserved by the above correspon-
dences.

THEOREM 4.3.2 (Kronecker). Suppose a, b : V1 -+ V2 is a pair of linear
maps constituting a finite dimensional indecomposable representation of the
Kronecker quiver over a field k. Then one of the following holds:

(i) The vector spaces V1 and V2 have the same dimension, and the deter-
minant of a + .b is a non-zero element of k[)].

In this case, if det(a) 54 0 then the representations can be written in the
form

aHI, b'-J
where I is an identity matrix and J is an indecomposable rational canonical
form. A rational canonical form is indecomposable if and only if it has only
one block, and is associated to a polynomial which is a power of an irreducible
polynomial over k.

If det(a) = 0 then the representation can be written in the form

a-J0, b --*I

where Jo is a rational canonical form associated with a polynomial of the
form An. In some sense this corresponds to the "rational canonical form at
infinity. "

(ii) The dimension of V2 is one larger than the dimension of V1, and bases
may be chosen so that a and b are represented by the matrices

a=
1 0 0 0 1 0

, b=
0 1 0 0 0 1

(iii) The dimension of V1 is one larger than the dimension of V2i and
bases may be chosen so that a and b are represented by the transposes of the
above matrices.
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PROOF. We first deal with case (i). If V1 and V2 have the same dimension
and det(a) # 0, then we can choose bases so that a is represented by the
identity matrix. Then b is determined up to conjugation, and the result
follows from the theory of rational canonical forms.

In case det(a + Ab) # 0 in k[A] but det(a) = 0 we argue as follows.
We homogenise by introducing a new variable ,a, so that det(pa + Ab) is a
non-zero homogeneous polynomial in k[A, p]. Suppose first that k is infinite.
Then there is some point (Al : pi) in the projective line P1(k) over k so that
det(pia + alb) # 0. We set a' = µ1a + )alb and b' = a and argue as before.
Since a rational canonical form can have at most one eigenvalue in k, we
deduce that det(b) 0 and the result follows by reversing the roles of a and
b.

In case k is finite we use Galois descent as follows. For some finite ex-
tension k of k we can find a point µ1a+.1b with (Al : µ1) E P1(k) as above.
Now the representation does not have to stay indecomposable over k, but
it will be a sum of Galois conjugates of the same indecomposable, and the
restriction back to k will just be a direct sum of [k : k] copies of the original
representation. Thus we again deduce that det(b) # 0 and proceed as before.

If case (i) does not occur then either Vl and V2 have different dimensions
or a + Ab is singular as a matrix over k[A]. In either case, after dualising
(and switching the roles of V1 and V2) if necessary, we have a vector v(A) _
y o(-1)iviA' satisfying (a + Ab)v(7) = 0, i.e., avo = 0, avi = bvi-1 and
bvn = 0. Suppose such a v(A) has been chosen with n minimal. Our goal is
to show that dim V1 = n, dim V2 = n + 1, and for a suitable choice of bases

a+Ab=
1 A 0

0 1 A

Let us write EA(n) for this matrix.
First we claim that the vectors avl, ... , avn are linearly independent. For

otherwise if 1 aiavi = 0, we set v = 0 aivi_n+j (with the convention
that vi = 0 if i < 0), and notice that

n n

(a + Ab) T (-1)iv3A = E(-1)j(av - bv'j_1)aj
j=0 j=0

n

_
i, j =0

(-1)iai(avi_n+j - bvi-n+j-1)A3 = 0,

contradicting the minimality of n. In particular it follows that vo, ... , vn, are
linearly independent.

Now if we choose our basis of Vl to begin with vo, ... , vn and of V2 to
begin with avl, ... , avn, then a + Ab is represented by a matrix of the form

E,\(n) C + AD
0 A+ AB'
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Thus the theorem will follow as soon as we show that we can find matrices
X and Y with

l( l ( l
AB'( 0 I )CE 0n) A'+AB'/ 0 I /-\E 0n)

A'+0

since one of the hypotheses was indecomposability. This equation is the same
as

X(A'+AB')+(C+AD)+Ea(n)Y=0.
Separating out the constant term and the coefficient of A, we obtain

XA'+C+Y=O
XB'+D+Y=O

where Y and Y denote the matrices obtained by removing the first, resp. the
last row of Y. Eliminating the terms in Y, we end up with an equation of
the form

A' 0
I -B' At

-B'
A'

0 -B'
n-1

_ (d21 - X11, , d2,m-1 - C1,m-1, d31 - X21, ... , do+l,m-1 - Cn,m-1)

and so it remains to show that this (n - 1)(m - 1) x nm matrix has full
column rank. But a row vector

(fl11, ... )u1m, U21, , flnm)

annihilated by this matrix gives rise to a vector

v '(A) = (U11 - U21A + ... ± unlAn-1 ... , ulm - 762m)1 + ... unmA n-1

of degree (n - 1) in A satisfying v'(A)(A' + AB') = 0. Thus

(0, v'(A)) C
E ,\(n)

A'+ AB') = 0

and so there is also a column vector of degree (n - 1) in A annihilated by
a + Ab, contradicting the minimality of n.

We may now read off the classification of indecomposable modules for
kV4

THEOREM 4.3.3 (Basev[12], Heller and Reiner[124]).
A complete set of representatives of isomorphism classes of indecompos-

able kV4 -modules is given as follows.
(i) The projective indecomposable module of dimension 4.
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(ii) For each even dimension 2n and each indecomposable rational canon-
ical form J of dimension n there is an indecomposable representation

IxH \0 1) y0 J).
(iii) For each even dimension 2n there is an indecomposable representa-

tion of the form

xH ( 0I Ic ) y~' (0 I )'
where J0 denotes the rational canonical form associated to the irreducible
polynomial An.

(iv) For each odd dimension 2n + 1 there are two indecomposable repre-
sentations

I 11 0 0 1 / l 0 1 0 1

X H

and (v)

X --*

I

0

I

0

0 1 0

I

y

1 0

I

y

I

0

I

0

0 0 1

I

J

0 1

I

which are isomorphic if and only if n = 0.

PROOF. Apart from the projective indecomposable module, the indecom-
posable kV4-modules are in one-one correspondence with those for A. Apart
from the one dimensional simple module S2, these are in one-one correspon-
dence with those for kQ. The modules appearing in (ii) and (iii) of the
previous theorem, while cases (iv) and (v) correspond to cases (ii) and (iii).
The disappearance of the module S2 corresponds to the isomorphism between
(iv) and (v) in the case n = 0.

REMARK. If k is algebraically closed, the indecomposable rational canon-
ical forms are powers of a linear factor (A - cx)n. We write Vn," for the
corresponding indecomposable representation of type (ii) in this case. The
representations of type (iii) are written Vn,,,. Thus for each n > 1 there is a
family of modules parametrised by ID1(k). The modules of type (iv) are the
modules Q-'(k), and those of type (v) are the modules S2n(k).
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We can also read off the classification of indecomposable modules for the
alternating group A4 in characteristic two using Clifford theory. Namely,
every such module is a summand of a module induced from V4. Let us
suppose for convenience that. k is algebraically closed, and let be
the cube roots of unity in k. The action of an element t of order three
on the indecomposable kV4-modules is easy to see. Namely, it fixes the
modules 5211(k), so that these extend in three ways to form the modules
Stan of the three one dimensional simples k, w, Co. The action on P1(k) is
via a H 1/(1 - a). Thus the fixed points correspond to the cube roots of
unity w and w. Fo a non-fixed a, Wn a = Vn a TA4 is indecomposable. For
a E {w, w} Vn TA4 has three summands, Wn,a(1), Wn,a(w) = Wn,a(1) ® w
and Wn,a(w) = Wn,a(1) ®w. For example, Wn,,,(1) is given in terms of
matrices as follows.

x0 I ) y~'(0 I )
t H diag(wn_2 wn-4 w-n wn n-2 w-n+2)

where X (resp. Y) is an n x n matrix with Co (resp. w) on every diagonal entry,
w (resp. w) on every entry just below the diagonal, and zeros elsewhere.

LINEAR RELATIONS. Following Ringel [175], we use Kronecker's classi-
fication to classify the linear relations on a vector space. We shall use this
later in the classification of representations of dihedral groups.

DEFINITION 4.3.4. A linear relation on a vector space V is a subspace
of V x V. For example, if A : V --> V is an endomorphism then we also
write A for the graph of A, namely the relation {(v, A(v))} < V x V. If
C is a linear relation and U is a subspace of V, we write CU for {v E
V I for some u E U, (u, v) E C}. We write C-1 for the linear relation
{(v, w) E V x V I (w, v) E C}. If C and D are relations, we write CD for the
linear relation {(v, w) E V x V I for some x E V, (v, x) EC and (x, w) E D}.

If a, b : W -+ V is a representation of the Kronecker quiver, then we
obtain a linear relation {(a(v),b(v)),v E W} < V x V. Conversely, if
C < V x V is a linear relation then the projections lfl, T2 : C -* V give
us a representation of the Kronecker quiver. These recipes set up a one-
one correspondence between the representations of the Kronecker quiver for
which Ker(a) fl Ker(b) = 0, and linear relations. The only indecomposable
representation of the Kronecker quiver for which Ker(a) fl Ker(b) # 0 is the
simple module Si. Thus we may read off the list of indecomposable linear
relations from Theorem 4.3.2.

One particular consequence of this classification which we shall need later
is the following. If C is a linear relation on V, let C' = Un CTOv, and
C" = nn CnV. Then C' < C", and C"/C' is called the regular part of the
relation. The following proposition asserts that the regular part of a relation
splits off:
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PROPOSITION 4.3.5. If C is a linear relation on V, then there are sub-
spaces U andW of V with V = U®W, andC = (Cn(UxU))®(Cfl(WxW)),
with C n (U x U) the graph of an automorphism of U, and C' (D U = C". The
regular part of C n (W x W) is zero.

PROOF. This follows from the classification.

Note in particular that C induces an automorphism ¢ of C"/C', defined
by

o(x+C') _ (CxnC")+C'.
COROLLARY 4.3.6. If C is a linear relation on V, and U is chosen as

above, then (C-')'ED U = (C-1)".

INTEGRAL REPRESENTATIONS. The integral representations of the Klein
four group were first classified by L. A. Nazarova [154]. We shall follow the
approach of M. C. R. Butler [49]. In both these approaches, the problem
is reduced to the four subspace problem, which had already been solved by
Gel'fand and Ponomarev [114]. We shall give an outline of this reduction
here. For a list of the four subspace configurations, see Brenner [38].

Suppose R is a principal ideal domain in which 2 0 is prime (e.g.
R = Z), let K be the field of fractions of R, a field of characteristic zero,
and k = R/(2), a field of characteristic two. Then we can make R into
an RV4-module in four different ways, corresponding to the four different
choices of signs. We call these rank one modules L1, L2, L3 and L4, and we
write el,... , e4 for the corresponding idempotents in KG (a typical one is
(l+x-y-xy)/4),sothat eiej =bijej

an R-torsion free RG-module, we say M is
reduced if it has no summands isomorphic to Ll,... , L4 or RG.

If M is a reduced RG-module, we define e*M = e,M+ +e4M C KM.
Since el + + e4 = 1, we have e*M = M + eiM + ejM + ekM for any
{i, j, k} C {1,2,3,4}. Thus letting

V= e*M/M, V= (eiM + M)/M C V
we have a four subspace system V; Vl,... , V4 in which V is the sum of any
three of the Vi.

DEFINITION 4.3.8. A four subspace system V; V1, ... , V4 is reduced if
V is the sum of any three of the Vi.

It turns out that all but five of the indecomposable four subspace systems
are reduced.

Conversely, given a reduced four subspace system V; Vl,... , V4, we form
a reduced RV4-module as follows. Let Mi be a direct sum of dim(U) copies
of Li, so that Mi/2Mi = Vi. Then we have a map M, ® ... ® M4 -; V given
by reduction modulo two followed by inclusion, and we define M to be the
kernel of this map. It is easy to see that this is a reduced RV4-module.
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THEOREM 4.3.9. The above processes set up a one-one correspondence
between the reduced R-torsion free RV4 -modules and the reduced four subspace
systems. This correspondence preserves direct sums.

PROOF. See Butler [49].

COROLLARY 4.3.10. The Krull-Schmidt theorem holds for R-torsion free
RV4-lattices.

4.4. Representation type of algebras

In this section, we describe without proof the trichotomy theorem for the
representation type of finite dimensional algebras. We then investigate the
representation type of finite dimensional hereditary algebras. There are many
variations of the following definitions in the literature. The idea is always the
same. An algebra is of finite representation type if there are only finitely many
indecomposables; otherwise it is of infinite representation type. It is of tame
representation type if the indecomposables in each dimension come in finitely
many one parameter families with finitely many exceptions. In some sense
this is supposed to represent classifiability of the representations, although in
particular cases this can be a very hard problem. It is of wild representation
type if the representation theory "includes" that of a free algebra in two
variables. The latter in some sense includes the representation theory of an
arbitrary finite dimensional algebra, and the consensus feeling is that the
representations of a wild algebra are in some sense unclassifiable. This is the
same as the problem of finding a canonical form for pairs of not necessarily
commuting matrices. The definition of tame does not make sense over a finite
field, for obvious reasons.

DEFINITION 4.4.1. Suppose k is an infinite field.
A finite dimensional algebra A is of finite representation type if there

are only finitely many isomorphism classes of indecomposable A-modules.
A finite dimensional algebra A is of tame representation type if it

is not of finite representation type, and for any dimension n, there is a fi-
nite set of A-k[T]-bimodules Mi which are free as right k[T]-modules, with
the property that all but a finite number of indecomposable A-modules of
dimension n are of the form Mi ®k[T] M for some i, and for some indecom-
posable k[T]-module M. If the Mi may be chosen independently of n, we
say A has domestic representation type. Note that the indecomposable
k[T]-modules are classified by their rational canonical forms, which are the
powers of irreducible polynomials over k.

A finite dimension algebra A has wild representation type if there is
a finitely generated A-k(X, Y)-bimodule M which is free as a right k(X, Y)-
module, such that the functor M ®I(X,Y) - from finite dimensional k(X, Y)-
modules to finite dimensional A-modules preserves indecomposability and
isomorphism class. Here, k(X, Y) is the free algebra on two variables; namely
the path algebra of the graph with one vertex and two arrows.
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We shall omit the proof of the following trichotomy theorem, which is
rather technical.

THEOREM 4.4.2 (Drozd [91, 92]; Crawley-Boevey [63]).
Over an algebraically closed field, every finite dimensional algebra is of

finite, tame or wild representation type, and these types are mutually exclu-
sive.

A precise statement about the unclassifiability of finite dimensional mod-
ules over a free algebra on two variables is the following. The theory of finite
dimensional A-modules is said to be decidable if there is a Turing machine
algorithm which will decide the truth or falsehood of any sentence in the
language of finite dimensional A-modules.

THEOREM 4.4.3 (Baur [13]; Kokorin and Mart'yanov [142]).
Let k be any field. Then the theory of finite dimensional k (X, Y) -modules

is undecidable.

The proof consists of encoding the word problem for finitely presented
groups into the module theory of k(X, Y). It is conjectured that for finite
.dimensional algebras A, the theory of finite dimensional A-modules is un-
decidable if and only if A has wild representation type. For an extensive
discussion of this question, see Prest [160], where a proof is also given for
the above theorem. The conjecture has been verified for path algebras of
quivers (without relations).

For group algebras the trichotomy theorem is much easier to prove. The
following is a more precise statement:

THEOREM 4.4.4 (Bondarenko and Drozd [34]; see also Ringel [174]).
Let G be a finite group and k an infinite field of characteristic p.
(i) kG has finite representation type if and only if G has cyclic Sylow

p-subgroups.
(ii) kG has domestic representation type if and only if p = 2 and the

Sylow 2-subgroups of G are isomorphic to the Klein four group.
(iii) kG has tame representation type if and only if p = 2 and the Sylow

2-subgroups are dihedral, semidihedral or generalised quaternion.
(iv) In all other cases kG has wild representation type.

We shall be investigating the indecomposable representations of some of
the tame group algebras later in this chapter. We shall also see that for
path algebras, there is a connection between the representation type and
the positivity of a certain quadratic form defined in terms of the quiver.
In fact, the representation type is finite if and only if the associated form
is positive definite, and tame if and only if the associated form is positive
semidefinite (and not definite). We shall only prove some of these results,
and give references for the rest. The classification of quivers according to the
associated quadratic form is the subject of the next two sections, and leads
to the Dynkin and Euclidean diagrams.
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EXERCISE. Use the theory of vertices and sources to prove part (i) of the
above theorem. For a proof of a stronger version of this, see Corollary 6.3.5.

4.5. Dynkin and Euclidean Diagrams

In our discussion of representation type, and also in our discussion of
tree classes of Auslander-Reiten quivers later in this chapter, we shall have
need to refer to the list of diagrams given in the following definition. The
infinite diagrams are only needed in the latter topic. For the moment you
should ignore the numbers attached to the vertices of the Euclidean and
infinite Dynkin diagrams; these will appear in the proofs of Lemma 4.5.5 and
Proposition 4.5.7.

DEFINITION 4.5.1. (i) The following labelled graphs are called the (finite)
Dynkin diagrams.

An E6

B,, E7

C" .. . E8

D,-,, j ... -.-. F4

(n nodes) G2

In these pictures, we have used = and => to denote the labelled edges
(2,1) (3,1)

and respectively.
(ii) The following are the infinite Dynkin diagrams.

1 2 3
D,,

A00
1 1 1

1 2 2

(iii) The following are the Euclidean diagrams.

All (1 4)

2 1

(2,2)
A12

>2)
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Cn E61
2 2 2 1

'1

2

I.-.- -.-.
1 2 3 2 1

Dn
\ E7 2

2 2 2 2\
1 ' 1 2 3 4 3 2 1

BCn 2 2 2
2

1

E8

- 1.-.-.- -.-.
1 2 3 4 5 6 4 2

BDn 2 2

CDn 22
(n + 1 nodes)

F'41 2
2 2 1

F42 2 23 4 2
621 !2< -= !

G22 1

Note that Ao consists of a single vertex with a loop, and Al consists of
two vertices with two distinct edges going between them. Also note that
B2 = C2 and A3 = D3, but that there are no further duplications in the
above list.

Given two labelled graphs T1 and T2, we say that T1 is smaller than T2 if
there is an injective morphism of graphs p : T1 --> T2 such that for each edge
x yin T1, xdy < n(x) (y)

and strictly smaller if p can be chosen not
to be an isomorphism. Note that an infinite labelled graph may be strictly
smaller than itself. A,,, is an example of this.

LEMMA 4.5.2. Given any connected labelled graph T, either T is a (finite
or infinite) Dynkin diagram or there is a Euclidean diagram which is smaller
than T. Both possibilities may not occur simultaneously.

PROOF. Suppose there is no Euclidean diagram which is smaller than
T. Looking at An, we see that T has no cycles, and is hence a labelled
tree. Looking at All and A12, all edges are of the form (1, 1), (2, 1) or (3, 1).
Looking at 02, and 022, if an edge of type (3,1) occurs then T = G2. Looking
at Bn, Cn and BCn, there is at most one edge of type (2,1). Looking at BDn

'1
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and CD, if there is an edge of the form (2, 1) then
T = ...

and looking at F41 and F42 this forces T = F4, B, C, B., or C. Otherwise
T is a tree with all edges of type (1, 1). Then looking at b,,, it has at most
one branch point. Finally, looking at E6i E7 and E8 completes the proof.

DEFINITION 4.5.3. The Cartan matrix of a labelled graph T (not to
be confused with the Cartan matrix of an algebra) is the matrix whose rows
and columns are indexed by the vertices of the graph, and with entries cxy =
26xy - E,y xdy, where the sum runs over edges x It y in T.

The symmetrised Cartan matrix of a valued graph has entries cxy =
Cxy fy, where fy is as given in the definition of a valued graph. Note that this
matrix is symmetric.

Thus for example the Cartan matrix of F4 is the matrix

2 -1 0 0
-1 2 -2 0

0 -1 2 -1
0 0 -1 2

DEFINITION 4.5.4. A subadditive function on a labelled graph T is
a function x '--> nx from the vertices of T to the positive rationals satisfy-
ing Ex nxcxy > 0 for all y. A subadditive function is called additive if
Ex nxcxy = 0 for all y.

If T is a labelled graph, the opposite labelled graph T°P has the same
vertices and edges, but with the label xdy replaced by ydx. If T is a valued
graph, then so is T°P, by replacing the fx by n/ fx for some positive integer
n.

REMARK. This broadens the usual definition, where the nx are taken
to be positive integers. We shall make use of this broader definition in our
analysis of periodic modules.

LEMMA 4.5.5. (i) Each Euclidean diagram admits an additive function.
(ii) If TOP admits an additive function then every subadditive function on

T is additive.
(iii) Every subadditive function on a Euclidean diagram is additive.

PROOF. (i) The numbers attached to the vertices of the Euclidean dia-
grams in the illustration form an additive function in each case.

(ii) Suppose x --* nx is a subadditive function on T. By hypothesis there is
a function x --> n'X such that Y-y cxyny = 0 for all x. Thus Ex ,y nxcxyny = 0,
while Ex nxcxy > 0 and n'y > 0 for each y. Hence we have equality and
x F--> nx is additive.

(iii) follows from (i) and (ii), since the opposite of any Euclidean diagram
is Euclidean.
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LEMMA 4.5.6. Suppose T and T' are connected labelled graphs and T is
strictly smaller than V. Suppose also that x H nx is a subadditive function
on V. Then identifying T with a subgraph of T', the restriction of x --+ nx
to T is a subadditive function' on T which is not additive.

PROOF. For x a vertex of T, we have

2ny > E n.x xdy > E nx xdy,
x,yET' x,ryET

where the sums are over edges x 7 y, and the xdy are the values in T' in
the first sum and in T in the second. Since T is strictly smaller than T', for
some y E T the second inequality is strict, and so the restriction of x H nx
is not additive.

PROPOSITION 4.5.7. Each of the infinite Dynkin diagrams admits an ad-
ditive function.

(i) For A,,. there are also subadditive functions which are not additive.
(ii) For the other infinite Dynkin diagrams every subadditive function is

a multiple of a given bounded additive function.

PROOF. The numbers attached to the vertices in the illustration form an
additive function in each case.

(i) A,,, is strictly smaller than itself, and so by Lemma 4.5.6 there is a
subadditive function which is not additive.

(ii) First we show that every subadditive function on A' is constant and
additive. We label the vertices of A' with the integers. Suppose j H nj
is a subadditive function on A', and suppose nj_1 < nj for some j. The
inequality 2nj_1 > nj + nj_2 may be written in the form nj_1 - nj_2 >
nj - nj_1i so that by induction on r we have nj_r < nj - r(nj - nj_1) for
all r > 0. Choosing r large enough so that r(nj - nj_1) > nj we see that
nj_r < 0, contradicting the definition of subadditive function. Similarly if
nj_1 > nj we find that some nj+r < 0.

For B,),), C,), and D,,, given a subadditive function we form a subadditive
function on A' according to the following scheme.

0 0 0- ... H ... 0- 0_
np nl n2 n2 Ti! no nj n2

.==>.-.- ... H
no nj n2

07,9 .-/nl n2
no

2 T! 2no nl n2

n2 n1 no+n
.-ni n2

o

The result follows immediately for B,,) and C. For Do,, we obtain no+n' =
n1. Subadditivity forces 2no > n1 and 2n0 ' > n1 whence no = n'o, and the
result follows.
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The following is a generalisation by Happel, Preiser and Ringel [122] of
the characterisation by Vinberg [200] and by Berman, Moody and Wonen-
burger [25] of the finite Dynkin diagrams.

THEOREM 4.5.8. Let T be a connected labelled graph, and x -+ nx a
subadditive function on T. Then the following hold:

(i) T is either a Dynkin diagram (finite or infinite) or a Euclidean dia-
gram.

(ii) If x H nx is not additive then T is a finite Dynkin diagram or A.
(iii) If x --> nx is additive then T is an infinite Dynkin diagram or a

Euclidean diagram.
(iv) If x s--* nx is unbounded then T = A.

PROOF. (i) Suppose this is false. Then by Lemma 4.5.2 there is a Eu-
clidean diagram which is strictly smaller than T. Thus by Lemma 4.5.6 there
is a subadditive function on this Euclidean diagram which is not additive.
This contradicts Lemma 4.5.5 (iii).

(ii) This follows from Lemma 4.5.5 (iii) and Proposition 4.5.7 (ii).
(iii) Suppose this is false. Then T is a finite Dynkin diagram by (i),

and hence so is T°P. Thus T°P is strictly smaller than some Euclidean dia-
gram, and so by Lemma 4.5.6 and Lemma 4.5.5 (i), T°P admits a subadditive
function which is not additive, contradicting Lemma 4.5.5 (ii).

(iv) If x H nx is unbounded then T is infinite, and so by (i) it is an
infinite Dynkin diagram. Hence by Proposition 4.5.7 (ii), T = Ate.

4.6. Weyl groups and Coxeter transformations

In this section, we examine the geometry of a certain real vector space
associated with the graphs discussed in the last section.

DEFINITION 4.6.1. Given a valued graph T with no loops (edges from a
vertex to itself), we form the real vector space RT with R-basis elements vx
corresponding to the vertices x in T, and with symmetric bilinear form given
by the symmetrised Cartan matrix

(vx,vy) = Cxy'

The Weyl group W(T) is the group generated by the reflections

wx(v) = v - 2(v,vx)vx
(vx, vx)

It is easy to check that the wx are transformations of order two preserving
the bilinear form, and fixing the hyperplane perpendicular to x. Note that
if Q is a (modulated) quiver with underlying valued graph T, and V is a
representation of Q, then the dimension of V is in a natural way a vector in
IRT. Namely the coefficient of vx is the dimension over Ax of Vx. This vector
is called the dimension vector of V.

LEMMA 4.6.2. For x y, the product wxwy has order 2, 3, 4, 6 or oc
according as cxycyx is 0, 1, 2, 3 or at least 4 respectively.
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PROOF. This is an easy exercise in two dimensional geometry.

PROPOSITION 4.6.3. Let T be a finite connected valued graph without
loops.

(i) T is a finite Dynkin diagram if and only if the bilinear form (,) is
positive definite on RT.

(ii) T is a Euclidean diagram if and only if (,) is positive semidefinite
on RT. In this case every null vector is a multiple of the vector given by the
additive function shown in Definition 4.5.1.

(iii) If T is neither Dynkin nor Euclidean, then there is a vector v E RT
with non-negative integral coordinates with respect to the basis vectors vx,
such that (v, v) < 0.

PROOF. Suppose T is a Euclidean diagram. By Lemma 4.5.5 (i), there
is an additive function x H nx on T. For a particular value of x, we have
Ey#x nycyx/nx = -2, and so the norm of a typical vector Ex axvx is

axvx, axvx) = 2 ax fx + axaycxyfy
x x x x#y

2

2

E(axny xfx + aynn xyfy) + axaycxy fy

x0y
x

y x0y

1 nxnycxyfy(axlnx - ay/ny)2.9 E
x#y

which is positive semidefinite since the cxy are negative for x 0 y, and the
nx and fx are positive. Moreover for a null vector, all the ax/nx must have
the same value, so that the null space is one dimensional.

Since every Dynkin diagram is strictly smaller than a Euclidean diagram,
it follows that ( , ) is positive definite on the Dynkin diagrams.

If T is neither Euclidean nor Dynkin then by Lemma 4.5.2 there is a
Euclidean diagram T' which is strictly smaller than T. If T' contains all the
points of T, then a null vector for T' has negative norm for T. Otherwise
choose a point of T adjacent to a point of T', and add a small enough positive
rational multiple of the corresponding basis element to the null vector for T',
to obtain a vector of negative norm. A suitable multiple of this vector has
non-negative integral coordinates with respect to the basis vectors vx.

PROPOSITION 4.6.4. (i) Suppose T is a finite Dynkin diagram. Then
W (T) is a finite group of automorphisms of RT. There is no non-zero vector
in RT fixed by the whole of W(T).

(ii) Suppose T is a Euclidean diagram. Let n be the null vector given
by the additive function x H nx shown in Definition 4.5.1. Then W(T)
preserves (n) and acts as a finite group of automorphisms of RT/(n).

PROOF. (i) Since the matrices in W(T) have integer entries with respect
to our basis vx, W(T) is a discrete subgroup of the compact orthogonal group.
Thus it is finite. A vector in RT fixed by the whole of W(T) would have to
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have zero inner product with each basis vector v, and hence it would have
to be zero.

(ii) Since (n) is the radical of (, ), (n) is preserved by W(T). Now W(T)
acts as a discrete subgroup of the compact orthogonal group on RT/(n), and
this action is therefore finite.

DEFINITION 4.6.5. A Coxeter transformation on RT is a linear trans-
formation obtained by applying all the w,, once each, in some order.

If T is a finite Dynkin or Euclidean diagram and c is a Coxeter transfor-
mation, then by the above Proposition, c has finite order h on RT in the first
case, and on IRT/(n) in the second. This number h is called the Coxeter
number.

If T is Euclidean and v E RT then the defect ac(v) of v with respect to
a Coxeter transformation c is defined by

ch(v) = v + aa(v)n.

Thus a, is a linear form RT - R, and the map a, gives us a splitting RT =
Ker(a,) ® (n).

EXERCISE. Show that if T is a tree then all the Coxeter transformations
are conjugate in W(T).

LEMMA 4.6.6. Suppose T is a Euclidean diagram. The following two con-
ditions on a vector v E RT are equivalent:

(i) v has infinitely many images under c.
(ii) ac(v) 0 0.
If (i) and (ii) are satisfied then some image of v under some power of c

has negative coordinates.

PROOF. This is clear from the previous discussion.

DEFINITION 4.6.7. If T is a finite Dynkin diagram, then the root system
associated to T is the finite subset 4) of RT consisting of the images under
W(T) of the basis vectors v.,. These are exactly the root systems in the
sense of for example Humphreys [127, Chapter III]. The elements of are
called the roots. Since the matrices in W(T) have integer entries, all roots
are integral combinations of the basis vectors. Reflection in the hyperplane
perpendicular to a root permutes the set of roots. If v is a root we write w
for this reflection.

A non-zero vector which is a non-negative linear combination of the v', is
called positive, and a vector v is negative if -v is positive.

LEMMA 4.6.8. Suppose T is a Dynkin diagram.
(i) If v is a root then so is -v.
(ii) Suppose v and v' are roots, neither a multiple of the other, and suppose

(v, v') > 0. Then either (v', v') = 2(v, v) or (v, v) = 2(v, v'). The vector v-v'
is also a root.

(iii) If v is a positive root and wx is a reflection then either w,,(v) is
positive or v = v., and w,,(v) = -vs.
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(iv) Every root is either positive or negative.

PROOF. (i) wv(v) = -v.
(ii) The reflection perpendicular to v of v' is a root, as is the reflection of

v' perpendicular to v, and 2(v, v')/(v, v) and 2(v, v')/(v', v') are integers. If
9 is the angle between v and v', then

2(v, v') 2(v, v') _ 4(v, v')2 204cos <4.
(v, v) (v', v') (v, V) (VI, v')

Thus if (v, v') > 0 then either (v', v') = 2(v, v') or (v, v) = 2(v, v'). In the
former case wv'(v) = v - v', while in the latter case wv(v') = v' - v and we
use (i).

(iii) Suppose v is an image w(vy) under W(T) of the basis vector vy. If
v 54 v, and w,, (v) is not positive, then (v, v,,) > 0. As in (ii), we have two
cases according as 2(v,v,,) = (v,,, v,,) or 2(v,v.,) = (v,v) = (vy,v..). In the
former case, w,,(v) = v - v,,. Since v must involve a strictly positive multiple
of v,, in order that (v, v.,) > 0, we conclude that w., (v) is again positive.

In the latter case, we argue as follows. There is an isomorphism p : RT .
IiBT°P given by setting p(Ey axvx) = E. ax fxvx, and it is easy to check that
this isomorphism commutes with the actions of the reflections wx, so that
the two Weyl groups are isomorphic. In fact the role of p is to make long
roots short and vice versa. We now look at the vector v' = w(vy) E RT°P. If
2(v, vx) = (v, v) in IRT then 2(v', vx) = (v.,, vx) in RT°P and so we may apply
the argument of the previous paragraph to deduce that wx(v') is positive,
and hence wx(v) is positive.

(iv) This easily follows from (iii).

LEMMA 4.6.9. Suppose T is a Dynkin diagram, with vertices x1, ... x,,,

and corresponding basis elements v1, ... , vn of RT, reflections wl, ... , wn on
RT and Coxeter transformation c = w1 ... wn.

(i) The transformation c has no non-zero fixed points on RT.
(ii) Given any vector v E RT, for some value of m > 0 the vector cm(v)

is not positive.

PROOF. (i) Suppose v = Ei rivi and c(v) = v. Then

W1 (V) = w2 ... wn(v)

and so the multiple of vl in wl(v) is still r1, and hence wl(v) = v. Repeating
this argument, we see that

w2(v) = w3 ... wn(v)

and hence w2(v) = v. Continuing this way, we see that v is fixed by all the
wi, and is hence zero.

(ii) If eTn (v) is positive for all in, then Eho ci (v) is a positive vector fixed
by c, contradicting (i).
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4.7. Path algebras of finite type

The main theorem of this section is Gabriel's theorem, which says that
the path algebra of a (modulated) quiver Q is of finite representation type if
and only if Q is a Dynkin diagram (with some orientation). In this case, the
indecomposable kQ-modules are in one-one correspondence with the posi-
tive roots in the associated root system. The proofs we shall give for these
statements are due to Tits and Bernstein-Gel'fand-Ponomarev.

PROPOSITION 4.7.1. (i) If Q is a modulated quiver of finite representation
type then the underlying valued graph T of Q is a Dynkin diagram.

(ii) If Q is of tame representation type then T is either Dynkin or Eu-
clidean. (In fact T is Euclidean, but this requires the proof, given later in this
section, that the Dynkin diagrams are indeed of finite representation type.)

PROOF. (i) We shall first give the proof in the case of a quiver (i.e.,
the case where all the xdy are equal to one) over an infinite field, and then
indicate what alterations are needed for the general case.

Suppose T is not a Dynkin diagram. Then by Proposition 4.6.3, there
is a vector v = Ex nxvx E RT with the nx non-negative integers, such that
(v, v) < 0. In other words,

22 1: nx < nxny.
X x-y

Each edge gets counted both ways round in this sum, so this can be written
as

2nx < nxny.
X x-+y -

Let Vx be a vector space of dimension nx. We shall show that there are
infinitely many isomorphism classes of representations of T using these par-
ticular Vx, and hence with dimension vector (nx). Such a representation is
determined by assigning a linear map Vx --+ Vy to each arrow x -- y, and two
such representations are isomorphic if and only if there are automorphisms
in flx GL(Vx) taking one to the other. In other words we are interested in
the orbits of rjx GL(Vx) on jjx_y Hom(Vx, Vy). The former is an algebraic
group of dimension >x n' while the latter is an algebraic variety of dimen-
sion Ex-y nxny. Moreover, the diagonally embedded scalars act trivially, so
that we are really looking at the action of jjx GL(Vx)/scalars, of dimension
(Ex n') - 1. According to the above inequality, this algebraic group has
strictly smaller dimension than the variety, and so there must be infinitely
many orbits and T is not of finite representation type.

if k is not infinite, then we apply the above argument over the algebraic
closure k of k. Each representation over the algebraic closure is defined over
some finite extension of k, and so gives rise to a representation of larger
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dimension over k by restriction of scalars. Only finitely many representa-
tions over k give rise to each representation over k this way, and so we have
infinitely many representations over k.

If Q is a modulated quiver then we must replace by GLpy(Vi)
where n., = dimoy (Vx) so that this has dimension n2 f.'. We replace the
space Hom(Vx, Vy) by Homo,, (yMM ®Ay Vx, Vy) of k-dimension nxny ydx fem.
The corresponding inequality is

ny fx < E nxny yd- fx
x 7y

and so the proof proceeds as before.
(ii) If T is neither Dynkin nor Euclidean, then there is a Euclidean dia-

gram strictly smaller than T. Thus by Proposition 4.6.3, there is a non-zero
vector v with non-negative integral coordinates with respect to the vx, and
with (v, v) < 0. The same argument as in (i) then shows that the space of
orbits with this particular dimension vector is at least two dimensional. This
is not quite enough to complete the proof, because a direct sum of two one
,parameter families can be used to give a two parameter family. However, the
point is that (nv, nv) = n2(v, v) is strictly negative, and grows quadratically
in size with n. It follows that the spaces of orbits with these dimension vec-
tors are also growing quadratically in dimension with n, whereas finite sums
of one parameter families can only account for a number of parameters which
grows linearly with n.

This means that we must now concentrate on the representations of
Dynkin diagrams. For this purpose, we introduce the concept of a reflec-
tion functor, which is a means of reversing the orientations on some of the
edges of a quiver, while almost giving an equivalence of categories.

DEFINITION 4.7.2. A vertex x of a (modulated) quiver is a sink (resp.
source) if all the arrows between x and another vertex point towards (resp.
away from) x.

If x is any vertex of Q we define a new (modulated) quiver sxQ with the
same underlying (labelled) graph as Q but with the orientations of the edges
meeting x reversed.

An ordering x1i ... , x,,, of the vertices of Q is admissible if for each i, xi
is a sink for si+i ... sn,Q. There exists an admissible ordering for the vertices
of Q if and only if there are no oriented cycles in Q.

Now suppose y is a sink in Q. We define functors

Sy : kQmod k(5 Q)mod, Sy : k(8 Q)mod -> kQmod

as follows. Given a representation V = {VV} of Q, we define a representation
S+(V) = W = {WW} of syQ by letting WW = V, for x y, and letting WY
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be the kernel of the sum of the maps going towards Vy:

0->Wy-> ®
x-I*yinQ

There are obvious maps

Wy ->yMX ®pyVV

and hence

xMy®pyWY -.WW

since xMy = Homo,, (yM,2 , A.). Thus the Wy form a representation of syQ.
A map of representations V -> V' of Q gives rise in an obvious way to a map
of representations S+V -j SyV' of syQ.

The functor Sy is constructed dually. Given a representation {Wx} of
syQ, we let Vx = Wx for x 0 y, and we let Vy be the cokernel of the sum of
the maps going away from Wy. Namely, each map xMy (&A,, Wy -> Wx gives
rise as above to a map Wy - yMX ®o, Wx, and we have an exact sequence

Wye ®
y-7>x in syQ

If we start off with a representation V of Q for which the map 0 above is
surjective, it is clear that Sy S+(V) = V. Thus Sy and Sy give an equiva-
lence between the subcategory of kQmod for which the map ¢ is surjective,
and the subcategory of k(SyQ)mod for which the map 7P is injective.

Now every representation of Q breaks up as a direct sum of the cokernel of
concentrated at x, and a representation for which ¢ is surjective. Similarly,

every representation of syQ breaks up as a direct sum of the kernel of 0
concentrated at x, and a representation for which z/i is injective. Thus we
have established the following proposition.

PROPOSITION 4.7.3. The functors Sy and Sy establish a bijection be
tween the indecomposable representations of Q and the indecomposable rep-
resentations of syQ, with the exception of the simple module Sx corresponding
to x in each case, which is killed by these functors. D

Now let us examine the effect of these functors on dimension vectors. If V
is a representation of Q for which the map 0 is surjective, then the dimension
over Ay of W. is equal to

dimoy Wy = ydx fx dimo. Vx - dimoy Vy.

in Q

The dimension of the remaining Wx is the same as the dimension of Vx.
Therefore the effect of Sy on the dimension vector is the same as the effect
of applying the reflection wx.
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Conversely if W is a representation of syQ for which the map b is injec-
tive, then the effect of S1 on the dimension vector of W is again the same
as the effect of applying the reflection w.,.

DEFINITION 4.7.4. Suppose x1, ... , xn is an admissible ordering for the
vertices of a (modulated) quiver Q. Then the Coxeter functor with respect
to this ordering is the functor

C+=S
Note that since each arrow gets reversed twice, Si ... s,Q = Q. We also set

C = Sin ... SS1 : kQmod -* kQmod.

LEMMA 4.7.5. Given any indecomposable kQ-module V, either
(i) C-C+(V) = V, and the effect of C+ on the dimension vector of V is

the same as the effect of the Coxeter transformation c = w1... wn, or
(ii) C+(V) = 0.

PROOF. This is clear from the above discussion.

We are now ready to classify the indecomposable representations of a
Dynkin diagram.

THEOREM 4.7.6 (Gabriel). Suppose Q is a modulated quiver whose un-
derlying labelled graph T is a Dynkin diagram. Then there is a natural one-
one correspondence between the indecomposable representations of Q and the
positive roots in ]EST' in such a way that each indecomposable is associated to
its dimension vector. In particular, Q has finite representation type.

PROOF. (Bernstein-Gel'fand-Ponomarev [26]) Choose an admissible or-
dering for the vertices of Q (this may be done since every Dynkin diagram is a
tree). Let C+ be the corresponding Coxeter functor on kQmod and c the cor-
responding Coxeter transformation on RT. Suppose V is an indecomposable
representation of Q, with dimension vector v E RT. By Lemma 4.6.9 (ii), for
some m > 1 the vector cm(v) is not positive. Thus by Lemma 4.7.5 we have
(C+)m(V) = 0. Choose m as small as possible with (C+)m(V) = 0. Thus
for some i, S ti Sn (C+)m-1(V) # 0 but SZ S +1 ... S (C+)m-1(V) = 0.

So by Proposition 4.7.3 we have S +1 S +(C+)--'(V) = Si, and
V (C-)m-1Sn ... Si+1(Si)

Thus the dimension vector of V is c m+lwn ... wi+1(vi), a positive root. This
argument also shows that any indecomposable representation with the same
dimension vector as V is isomorphic to V.

Conversely, if v is a positive root then for some m > 1 the vector cm(v)
is not positive. Choose the shortest expression of the form

wi ... wn(wi ... wn)m-1(v)

which is not a positive root. Then by Lemma 4.6.8 (iii), wi+1 ... wncm-1(v) _
vi and so the representation (C-)m-1Sn . . . S1-+1Si has dimension vector v.
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COROLLARY 4.7.7. If Q is a modulated quiver of tame representation type
then T is a Euclidean diagram.

PROOF. This follows from Proposition 4.7.1 and Theorem 4.7.6.

We shall not prove that if T is a Euclidean diagram then Q is in fact
tame. A proof of this can be found in Dlab and Ringel [78]. A complete
classification of the indecomposables in the case of the Euclidean diagrams
of types A, f),, and t,, may be found in Ringel [177].

4.8. Functor categories

In the last section, we classified the indecomposable representations of
the Dynkin diagrams by using the geometry of root systems. In the next
few sections, we present another method of classification, first formulated
explicitly by Gabriel. This is the method of functorial filtrations, and is based
on Auslander's work on the structure of functor categories. The idea is as
follows. We consider functors from the module category in question to vector
spaces. There are obvious notions of subfunctor and quotient functor, and it
turns out that the simple functors are in one-one correspondence with the
indecomposable modules. It is this observation of Auslander that initiated
this circle of ideas. It follows that to find all the indecomposable modules, it
suffices to find all the simple functors. We look at any functor which reflects
isomorphisms (see Definition 4.10.1), for example the underlying vector space
functor, and find its simple composition factors. Of course, in practice this is
easier said than done, but we shall give some examples where this method has
proved effective. We shall study in detail the case of the group algebras of the
dihedral groups (Ringel [175]), and mention without proof the corresponding
answer for the semidihedral groups (Crawley-Boevey [62]). Our exposition
is broadly based on Gabriel [111] and Ringel [175].

DEFINITION 4.8.1. If A is a finite dimensional algebra over a field k, we
denote by Fun(A) (resp. Fun°(A)) the category whose objects are the co-
variant(resp. contravariant) additive functors Amod - kVec from finitely
generated A-modules to k-vector spaces, and whose morphisms are the nat-
ural transformations of functors.

EXAMPLES. (i) There is the forgetful functor p c Fun(A) which assigns
to each A-module its underlying vector space.

(ii) Duality is a contravariant functor D : kVec -> kVec. Composing with
this duality functor gives contravariant functors also denoted D : Fun(A) -*
Fun°(A) and D : Fun°(A) -> Fun(A).

(iii) For any A-module M there is a covariant representable functor

(M, -) = HorA(M, -) E Fun(A)

and a contravariant representable functor

(-, M) = HOInA(-, M) E Fun°(A).
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There are also the dual functors

D(M, -) E Fun°(A) and D(-, M) E Fun(A).

It is easy to check directly that Fun(A) satisfies the axioms for an abelian
category, and we shall see later that it has a natural interpretation as a
module category for the Auslander algebra.

The kernel of a natural transformation F1 F2 of functors is the functor
assigning to each module M the vector space kernel of F1 (M) -+ F2 (M) and
to each homomorphism M -p M' the map of kernels making the following
diagram commute.

0 - V - F1(M) - > F2(M)

0 - V'- F1(M') ' F2(M')

Cokernels are constructed dually. A natural transformation F1 F2 is a
monomorphism if and only if Fi(M) ---* F2(M) is injective for each M. In
this case we may identify F1 as a subfunctor of F2. The quotient functor

'F2/F1 is defined by (F21F1)(M) = F2(M)/FI(M). A simple functor is
defined to be a non-zero functor with no proper subfunctors. A finitely
generated functor is one which is isomorphic to a quotient of (M, -) for
some M.

Similarly Fun°(A) is an abelian category and the notions of subfunctor,
quotient functor, simple functor and finitely generated functor and defined
analogously.

THEOREM 4.8.2 (Auslander). The finitely generated projective objects in
the category Fun(A) (resp. Fun°(A)) are the representable functors (M, -)
(resp. (-, M)).

If M is indecomposable then the functor (M, -) (resp. (-, M)) has a
unique maximal subfunctor, written Rad(M, -) (resp. Rad(-, M)), consist-
ing of those homomorphisms which are not split monomorphisms (resp. split
epimorphisms). Every simple functor in Fun(A) (resp. Fun°(A)) is of the
form SM = (M, -)/Rad(M, -) (resp. SM = (-, M)/Rad(-, M)) for some
indecomposable A-module M.

PROOF. We shall prove these statements in Fun(A); the statements in
Fun°(A) are proved dually.

First we shall prove that representable functors are projective. To show
that (M, -) is projective, we must show that given natural transformations
A and µ as in the following diagram

(M,-)
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we may find v such that p o v = A. But by Yoneda's Lemma 2.1.4,

Nat((M, -), Fi) = Fi(M)

so that the map

Nat((M, -), F1) -* Nat((M, -), F2)

is epi and so we may find v such that p o v = µ*(v) = A.
Conversely, if F is a finitely generated projective object in Fun(A) then

F is a quotient of (M, -) for some M. Thus there is a short exact sequence
of functors

OAF' -+ (M,-)-->F-+0.
Since F is projective, this sequence splits and (M, -) = F ® F'. So there
is an idempotent natural transformation from (M, -) to itself whose image
is F. But by Yoneda's Lemma, all natural transformations from (M, -)
to itself come from endomorphisms of M, and so F = (M', -) for some
direct summand M' of M. This completes the determination of the finitely
generated projectives in Fun(A).

Now if M is indecomposable, every proper subfunctor F of (M, -) is
contained in Rad(M, -), since if a split monomorphism f : M -> M' with
splitting f : M' -> M (so that f' o f = idM) is in F(M'), then given any
map f" : M -+ N we have

f" = f""of'of = F(f"of')(f) E F(N)-
Now if S is a simple functor, then choose an indecomposable module M

with S(M) # 0. By Yoneda's Lemma, there is a non-zero natural transfor-
mation from (M, -) to S. Since S is simple, this natural transformation is
an epimorphism. The kernel is a proper subfunctor of (M, -), and is hence
contained in the radical. Since S is simple, the kernel is equal to the radi-
cal.

4.9. The Auslander algebra

DEFINITION 4.9.1. The Auslander algebra of a finite dimensional al-
gebra A is defined to be

Aus(A) = EndAP)

where E _ ®a M,,, is a direct sum of one A-module from each isomorphism
class of finitely generated indecomposable A-modules.

The following lemma is a direct consequence of the definitions.

LEMMA 4.9.2. The following are equivalent:
(i) A has finite representation type.
(ii) ° is a finitely generated A-module.
(iii) Aus(A) is a finite dimensional algebra.
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Now given a covariant additive functor F : Amod ` kVec we produce
a module for Aus(A) by taking the direct sum ®a F(Ma) as the underlying
vector space, and letting Aus(A) act in the obvious way. Namely, an endo-
morphism of ®a Ma is specified by giving a homomorphism Ma -> Mp for
each pair of indices a, j3 in such a way that for each a all but finitely many
are zero. This gives a homomorphism F(MM) -> F(Mp) for each pair, with
the same restriction, and hence an endomorphism of ®a F(Ma). Of course,
if A has finite representation type then this module is just F(E). We shall
write F(s) for this Aus(A)-module even when A does not have finite repre-
sentation type, despite the fact that in this case EE is not in Amod. All we
are really doing is extending F in a natural way to the category of A-modules
which are (possibly infinite) direct sums of finite dimensional ones.

Conversely, if X is an Aus(A)-module then we define a covariant additive
functor 4)X : Amod -> kVec as follows. If M is a finitely generated A-
module, then HomA(M, E-) is an Aus(A)-module and we set

tX(M) = HomAus(A)(HomA(M, E), X).

LEMMA 4.9.3. If F : Amod -> kVec is a covariant additive functor then
there is a natural isomorphism

HomAus(A) (HomA(M, E), F(°)) = F(M).

PROOF. Since both sides are additive in M, we may assume without loss
of generality that M is indecomposable. Choose a split surjection 7r : ° -* M,
with splitting i : M y °, so that 7r o i = idM. If 0 is an element of the left
hand side of the above equation, then F(7r)(q5(i)) E F(M). Conversely if
x E F(M) then the map taking p : M -427 to F(p)(x) E F(°) is an Aus(A)-
module homomorphism. It is easy to check that these processes are mutually
inverse. In particular, any other split surjection gives rise to a map with the
same inverse, which is therefore the same map.

PROPOSITION 4.9.4. There is an equivalence of categories between Fun(A)
and the category of Aus(A)-modules, given in one direction by F -+ F(°) and
in the other direction by X --* 4)X.

The finitely generated functors correspond to Aus(A)-modules which are
quotients of HomA(M, °) for some finitely generated A-module M. Note that
this is not the same as the category of finitely generated Aus(A)-modules
unless A has finite representation type.

PROOF. If X is an Aus(A)-module then

,bX (-) = HomAus(A) (HomA (27, °), X) = HomAus(A) (Aus(A), X) = X.

Conversely if F E Fun(A) then

HomAus(A)(HomA(M, -), F(E)) = F(M)
by the lemma.

The statement about finitely generated functors follows immediately from
the definitions.
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COROLLARY 4.9.5. There is a natural one-one correspondence between
simple Aus(A) -modules and finitely generated indecomposable A-modules.

PROOF. This follows from Theorem 4.8.2 and Proposition 4.9.4.

REMARKS. (i) In the case of finite representation type, a similar equiva-
lence exists between Fun°(A) and Aus(A)°P-modules, but this breaks down
for infinite representation type.

(ii) The simple Aus(A)-module corresponding to an indecomposable A-
module M is HomA (M, 8) modulo those homomorphisms which are not split
monomorphisms. We shall give this the same name SM as the corresponding
functor. As a vector space, this is just EndA(M)/JEndA(M). Endomor-
phisms of M give rise to endomorphisms of SM, and so we have

EndAUS(A)(SM) = EndA(M)/JEndA(M).

(iii) We shall see later that in fact the algebra Aus(A) has global dimen-
sion two. In other words, every Aus(A)-module has a projective resolution
of the form

0-,P2--> P1 -*Po-->X->0.
This is related to the theory of almost split sequences. The Ext-quiver of
Aus(A) is called the Auslander-Reiten quiver of A, and this is also in-
timately connected with the theory of almost split sequences. But more of
this later.

4.10. Functorial filtrations

DEFINITION 4.10.1. A functor F E Fun(A) is said to reflect isomor-
phisms if a homomorphism f : M --> M' in Amod is an isomorphism if and
only if F(f) : F(M) -* F(M') is an isomorphism. For example, the underly-
ing vector space functor reflects isomorphisms. Note in particular that if F
reflects isomorphisms and M 0 then F(M) # 0.

LEMMA 4.10.2. If F is a functor which reflects isomorphisms then F has
every simple functor SM as a subquotient.

PROOF. If M is a finitely generated indecomposable module, then by
Yoneda's lemma

Nat((M, -), F) = F(M) 0

and so there is a non-zero natural transformation from (M, -) to F. The
image of this modulo the image of Rad(M, -) is the desired subquotient.

DEFINITION 4.10.3. A collection of subquotients, or intervals FFIF, of
a functor F E Fun(A) is said to cover F if given any M E Amod and
x E F(M) there is an index a with x E F,,(M) but x 0 Fx'(M). Two
intervals F,,,/F,,,' and F)3'IF' are said to avoid each other if either F, < F1
or FQ > F. A filtration of F is a collection of intervals covering F and
avoiding each other.



4.10. FUNCTORIAL FILTRATIONS 133

LEMMA 4.10.4. Suppose F is a functor which reflects isomorphisms and
F,',,/Fe' is a collection of intervals covering F. Then f : M -> M' is an
isomorphism if and only if (Fa/Fa) (f) is an isomorphism for each index a.

PROOF. Suppose (F«/F,)(f) is an isomorphism for each a. Since the
Fa/Fa cover F, it follows that F(f) is an isomorphism. Since F reflects
isomorphisms, f is an isomorphism.

LEMMA 4.10.5. Suppose {Ma} is a complete set of representatives of the
isomorphism classes of finitely generated A-modules, and {Sa} are the cor-
responding simple functors. Then we have the following:

f EndA(M,3)/JEndA(M,3) if a =,3
i S 1 M( ) /3) 0 otherwise.

(ii) A homomorphism f : M -- M' in Amod is an isomorphism if and
only if Sa (f) is an isomorphism for each a.

PROOF. (i) This is clear from the discussion earlier in this section.
(ii) If f : M --+ M' is not an isomorphism then it is either not injective

or not surjective. If it is not injective then some indecomposable summand
Ma of M intersects the kernel non-trivially, and then Sa (f) is not an isomor-
phism. Similarly if f is not surjective then some indecomposable summand
Mp of M' is not contained in the image, and then SS(f) is not an isomor-
phism.

REMARK. The number of times a simple functor SM occurs in a filtration
of the underlying vector space functor is equal to the dimension of M (over
the division ring EndA(M)/JEndA(M)) by part (i) of the above lemma. So
when we filter the underlying vector space functor we should expect to have
this many repetitions of the simple functors, and it is important to discard
all except one copy at some stage so that the list of functors obtained can
satisfy (i).

We now present a naive form of the functorial filtration method, and then
we state the method in the generality we need. For convenience we state the
following proposition over an algebraically closed field.

PROPOSITION *4.10.6. Let A be a finite dimensional algebra over an alge-
braically closed field k.

Suppose {Ma} is a collection of finitely generated A-modules and {Sa} is
a collection of functors in Fun(A) such that

(i)Sa(MQ)Sk
if a=,3

0 otherwise.
(ii) Sa(M) is finite dimensional for all finitely generated A-modules M,

so that Sa(M) ®k Ma makes sense as a finitely generated A-module and has
the property that Sc(Sc(M) 0 M(,,) = Sa(M). Moreover, for every finitely
generated A-module M there is a map ya,M : Sa 0 Ma -i M such that
Sa(rya,M) is an isomorphism.
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(iii) A map f : M --> M' in Amod is an isomorphism if and only if Sa(f )
is an isomorphism for all indices a.

(iv) For any finitely generated A-module M, only finitely many of the
S, ,(M) are non-zero.

Then the Ma are indecomposable and form a complete set of represen-
tatives of the isomorphism classes of finitely generated indecomposable A-
modules without repetitions.

PROOF. Suppose M is a finitely generated A-module. By (iv), the sum
Sa(M) ® Ma is a finitely generated A-module. By (ii) there is a natural

map

E'Ya,M:®Sa(M)®Ma-->M
a a

and by (i) So (E. rya,M) is an isomorphism for each /3. So by (iii) Ea rya,M
is an isomorphism. Thus every finitely generated A-module is uniquely ex-
pressible as a direct sum of modules Ma from the given list. In particular,
these must be indecomposable and form a complete list of representatives
of the isomorphism classes of indecomposable finitely generated A-modules
without repetition.

REMARKS. (i) One of the remarkable things about this proposition is that
we do not have to demonstrate explicitly that the Ma are indecomposable or
non-isomorphic in order to satisfy the hypotheses of the proposition.

(ii) Condition (ii) of the proposition is implied by the existence of a
surjective natural transformation (Ma, -) M+ Sa for each a, but is some-
times easier to check. The reason for this implication is as follows. Let
xa E Sa(Ma) correspond to the given natural transformation via Yoneda's
lemma. Since the natural transformation is surjective, given a finitely gen-
erated A-module M and a basis {va,j} for Sa(M) for each a, we can find
homomorphisms Ya,j,M : Ma -+ M such that Sa(rya,j,M)(xa) = va,j. Then
we take 'Ya,M=Ej1`a,j,M:Sa(M)®Ma-*M.

(iii) Condition (iii) is guaranteed if there is a functor F which reflects
isomorphisms and a set of intervals covering F and each isomorphic to some
S.-

(iv) If we filter the underlying vector space functor then only finitely many
of the intervals can be non-zero on a given finitely generated A-module, since
the underlying vector space is finite dimensional.

EXAMPLE. The group algebra of a cyclic p-group over an algebraically
closed field of characteristic p is of the form A = k[T]/(Tn), where n is the
order of the group and T is of the form g - 1 for a generator g. It is easy
to classify the modules for this algebra using Jordan canonical forms, but we
shall use it as an example to illustrate the functorial filtration method.

As our modules we take Mi = k[T]/(Ti), a uniserial A-module of dimen-
sion i for 1 < i < n. We have functors

Fi7 = Ker(T') fl (Im(T3) + Ker(Tz-1)) E Fun(A).
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Since Ker(Ti) 2 Im(Ti) if i > n - j, we have Fi+1,n_i(M) = Ker(T2) =
Fi,o(M), and so we only consider the Fii with i < n - j. If M is a A-module
with underlying vector space V, we have the inclusions

V = Fn,o(M) 2 (Fn,1(M) =)Fn-1,0(M) 2 Fn-1,1(M)
2 (Fn-1,2(M) =)Fn-2,0(M) 2 ... 2 F1,n-1(M) 2 F1,n(M) = 0.

Moreover, if n - j > i > 0, the action of T induces an isomorphism from
FiJ_11Fi1j to Fi_1,j/Fi_1,j+1. Thus if we take as our functors Si = Fi,o/Fi,l

= F1,i_1/F1,i, then Si appears as an interval in our filtration exactly i
times. Since (Mi, -) = Ker(Ti) = Fi,o, each Si is a quotient of (Mi, -)
and so condition (ii) is satisfied according to remark (ii). The other condi-
tions are easily checked using the other remarks. So we may conclude that
the Mi form a complete list of representatives of the isomorphism classes of
indecomposable A-modules, without repetitions.

The following is the form of the functorial filtration theorem used by
Ringel [175] for his classification of the indecomposable modules for the di-
hedral 2-groups. The point of this version is that it allows for the classifica-
tion of entire one parameter families of modules at a time. We shall give an
outline of Ringel's classification in the next section.

THEOREM 4.10.7. Let M and Aa be abelian categories, and let Sa : M -->
Aa and Ta : Aa -> M be additive functors such that the following conditions
are satisfied.

W S«TR =
1dA. if a =,3
0 otherwise.

(ii) For every M in M there is a map rya,M : TaSQ(M) --> M such that
Sa(-ya,M) is an isomorphism.

(iii) A map f : M -* M' in M is an isomorphism if and only if Sa (f) is
an isomorphism for all indices a.

(iv) For any M in M, only finitely many of the Sa(M) are non-zero.
Then the objects Ta (A) with A indecomposable in A,,,, are indecomposable

and form a complete set of representatives of the isomorphism classes of
indecomposable objects in M without repetitions.

PROOF. The proof is exactly the same as the proof of the above propo-
sition.

Note that we are interested in the case where M is the category of fi-
nite dimensional A-modules for some algebra A. The Aa are things like the
category of finite dimensional vector spaces or the category of finite dimen-
sional k[T]-modules. The latter will be used to capture entire one parameter
families of modules at once.

4.11. Representations of dihedral groups

As an example of the method of functorial filtrations, in this section, we
present Ringel's classification [175] of the finite dimensional modules for the
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algebra

A = k(X, Y)/(X2,1'2),

namely the quotient of the free algebra on the two non-commuting variables
X and Y by the ideal generated by X2 and y2, over any field k.

The relationship with the finite dihedral 2-groups is as follows. If

G=(x,y:x2=y2=1)
is the infinite dihedral group and k is a field of characteristic 2 then A = kG
via X <--> x - 1, Y H y - 1. The finite dihedral 2-groups are the quotients

D4q = (x, y : x2 = y2 = 1, (xy)q = (yx)q)
(q a power of 2).

LEMMA 4.11.1. For q a power of 2 we have

kD4q = A/((XY)q - (YX)q).

PROOF. In A '-' kG we have

(xy)q - (yx)q = (xy - yx)q = ((x - 1)(y - 1) - (y - 1)(x - 1))q

= ((x - 1)(y - 1))q - ((y - 1)(x - 1))q = (XY)q - (YX)q.

THE MODULES. Let W be the set of words in the direct letters a and
b, and the inverse letters a-1 and b-1, such that a and a-1 are always
followed by b or b-1 and vice versa, together with the "zero length words" la,
and lb (which are regarded as "beginning" with a and b respectively). If C is
a word, we define C-1 as follows. (1a)-1 = 1b, (1b)-1 = 1a; and otherwise we
reverse the order of the letters in the word and invert each letter according
to the rule (a-1)-1 = a, (b-1)-1 = b. Let W1 be the set obtained from W
by identifying each word with its inverse.

The nth power of a word of even length is obtained by juxtaposing n
copies of the word. Let W' be the subset of W consisting of all words of
even non-zero length which are not powers of smaller words. Let V denote
the set of isomorphism classes of pairs (V, ¢) where V is a finite dimensional
vector space over k and 0 is an indecomposable automorphism of V (0 is
indecomposable if its rational canonical form has only one block, and that
block is associated with a power of an irreducible polynomial over k). Let
W2 be the set obtained from W' x V by identifying each word in W' with its
images under cyclic permutations

L1 ... fn '

and by identifying (C, (V, 0)) with (C-1, (V, 0-1)). Let W2 be the set ob-
tained from W' by identifying a word with its cyclic permutations and its
inverse.

The following is a list of all the isomorphism types of finite dimensional
indecomposable A-modules. The rest of the section will then be devoted to
proving this statement.
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MODULES OF THE FIRST KIND. These are also called string modules.
They are in one-one correspondence with the elements of WI. Let C =
t, ... f, c W. Let M(C) be a vector space over k with basis zo,... , z,,, on
which A acts according to the schema

21 t' Znkzo F- kzl <- kz2 ... E- kzo

where X acts via a and Y acts via b. For example, if C = ab-laba-1 then
the schema is

kzo
a kzl b

kz2
a

kz3
b

kz4
a

kz5

and the module is given by

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0

XH 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0
00000 0J 000000

It is clear that M(C) = M(C-1).

MODULES OF THE SECOND KIND. These are also called band modules.
They are in one-one correspondence with the elements of W2. Let 0 be an
indecomposable automorphism of a finite dimensional k-vector space V, and
let C = L1 ... P,,, be a word in W'. Let M(C, 0) be given as a vector space by
M(C, ®i o V with V = V, on which A acts according to the schema

6=0 e2=id en-1=id
V0E V1E V2E ... E Vri,-2E Vn-1

2n=id

where again X acts as a and Y acts as b in the same sense as above. It is
clear that if (C, (V, ¢)) and (C', (V', 0')) represent the same element of W2
then M(C, 0) = M(C', O').

One of the above modules has (XY)q - (YX)q in its kernel if and only if
one of the following holds:

(i) The module is of the first kind and the corresponding word does not
contain (ab)q, (ba)q or their inverses.

(ii) The module is of the second kind and no power of the corresponding
word contains (ab)q, (ba)q or their inverses.

(iii) The module is M((ab)q(ba)-q, idk) (of the second kind). This is
the projective indecomposable module for the quotient algebra A/((XY)q -
(YX)q).

THE FUNCTORS. As usual, we provide a filtration of the underlying
vector space functor. Each isomorphism type will appear more than once,



138 4. METHODS FROM THE REPRESENTATIONS OF ALGEBRAS

and so we then give lemmas which remove the repetitions. The final index
set for the categories A,,, is W1 U W2.

Denote by M the category of finite dimensional modules for

A = (X,Y)/(X2,Y2).

If C, D and C-1D are words in W, we set AC,D = ,mod, the category of
finite dimensional vector spaces. The functor TC,D : AC,D --* M is defined
via TC,D(k) = M(C-1D). This depends up to isomorphism only on the
equivalence class of C-1D in W1.

If C is a word in W', we let AC be the subcategory of k[T,T-1jmod consist-

ing of finite dimensional k[T,T-1]-modules. A finite dimensional k[T,T-1]-
module is the same as a vector space V together with an automorphism ¢.
The functor TC : AC -> M is defined via TC(V, 0) = M(C, 0). This depends
up to isomorphism only on the equivalence class of C in W2.

We now describe the functors SC,D : M -> AC,D and SC : M -f AC as
intervals (i.e., subquotients) of the underlying vector space functor. If C is
a word in W, then there is a unique direct letter d such that Cd is again a
word. If M E M, we define C-(M) = CdM and C+(M) = Cd-10M, where
the letters a and b stand for the actions of X and Y on M, so that words are
interpreted as the corresponding linear relations on M. Thus for example if
C = a-lb then C-(M) is the subspace of elements of M whose images under
X are expressible as YX(m) for some m c M, and C+(M) is the subspace
of elements of M whose image under X are expressible as Y(m) for some
m E M with X (m) = 0. We define

SC,D = ((D+ + C-) n C+)l((D + C-) n C+)
(C+nD+)/((C+nD)+(C nD+)).

Note that if C, D and CdD are words, with d a direct letter, then

CdD- < CdD+ < C- < C+ < Cd-1D_ < Cd-1D+.

LEMMA 4.11.2. The isomorphism type of the functor SC,D only depends
on the equivalence class of the word C-1D in W1.

PROOF. The above isomorphism shows that SC,D - SD,C, and so it
suffices to show that if d is a direct letter and C and D are words with
C-1dD a word in W then Sc,dD Sd-'C,D But this follows from the fact
that multiplication by the corresponding element X or Y in A defines a
natural isomorphism

((d-1D+ + C-) n C+)(M) ((D+ + dC-) n dC+)(M)
((d-1D- + C-) n C+)(M) ((D- + dC-) n dC+)(M)

If C is a word in W' and M E M, we set C'(M) = Un Cn0M and
C"(M) = nnCn'M. Then C'(M) < C"(M), and C determines a vector
space automorphism cC,M of C"(M)/C'(M). Set

SC(M) = (C"(M)/C'(M),Oc,M) E Ac.
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LEMMA 4.11.3. Suppose C = el ... en is a word in W'.
(i) Let C(i) = ei+1 ... easel ... L. Then Sc = Sc(.) .
(ii) Suppose Sc(M) = (V, 0). Then Sc-1 (M) = (V, ¢-1).
Thus the isomorphism type of the functor Sc only depends on the equiv-

alence class of C in W2, as long as we allow ourselves to apply the automor-
phism T H T-1 of Ac if necessary.

PROOF. (i) Let Vi = C(2) (M) /C(i) (M). If ti is a direct letter then multi-

plication by the corresponding element X or Y of A induces an epimorphism
U -+ V_1. If ti is an inverse letter then multiplication by the corresponding
element of A induces a monomorphism V _ 1 -> Vi. Thus we have

dimVo <dimV1 < . <dim Vn_1 <dimVo

and so all these maps are isomorphisms. The map cbc,M is the composite of
these maps, and up to conjugacy only depends on the cyclic ordering.

(ii) Sc(M) is the largest interval of the underlying vector space of M
on which the action of the word C is invertible, in the sense that any such
interval is an interval of Sc (M). Thus Sc-i (M) = SC (M) as vector spaces.
The action of C-1 on this interval is inverse to the action of C.

We now show that our intervals form a filtration of the underlying vector
space functor. We start with a lemma.

LEMMA 4.11.4. Suppose d : V -> V is an endomorphism with d2 = 0. If
U1 < U2 are subspaces of V then

dim U2/U1 > dimdU2/dUi + dim d-1 U2/d-1 U1.

PROOF. The action of d defines isomorphisms d-1U2/d-1U1 = ((U2 fl
Im(d)) + U1)/U1 and U2/(U2 fl (Ker(d) + U1)) = dU2/dU1, so that the in-
equality follows from the inclusions

U1 < (U2 fl Im(d)) + U1 < U2 fl (Ker(d) + Ui) < U2.

PROPOSITION 4.11.5. The intervals Sc,D for which C starts with a}1 and
D starts with btl, together with the intervals Sc for which C starts with a,
form a filtration of the underlying vector space functor M -' kmod.

PROOF. For the purpose of proving this, we introduce the set of infinite
words e1e2 ... where the letters are a±1 and b}l, and the restrictions are the
same as for the words in W. In other words, if A = ele2... is an infinite
word then every initial segment A[ ,,l = e1e2 ... en is in W. If C is a word of
length m in W', we write C°° for the infinite word with (C')[ .... C'. We
call such infinite words periodic.

First, we claim that if x is an element of M E M then either there is a
finite word C starting with a+1 such that x E C+ but x ¢ C-, or there is
an infinite word A starting with af' such that x E A"(M) =n. A[.] (M)
but x ¢ A'(M) = (Jas A[nIOM. To prove this, we totally order the (finite and
infinite) words starting with a}1 as follows. We write C < D if there is a
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direct letter d, a finite word C1, and words El and E2 such that C = C1 or
C1dE1i and D = C1 or C1d-1E2. Note that if C < D then C(M) _< D(M) for
all M. Let A[,,,l be the smallest word with respect to this ordering of length
n such that x E A1nj(M). Thus if x E A1,,,Id(M) then A[,+1] = A[n]d, and
otherwise A(n+1] = A1njd-1. This way we construct an infinite word A with
x E A"(M). If x A'(M) we are done. If X E A'(M) then x E A[n+1](OM)
for some n. Choose n minimal with this property. Then the last letter of
A[n+1] has to be inverse, and we have x E Ann] (M). By construction of A,
x 0 A-"] (M), and we are done. Note that the total order also implies that
these intervals C+/C- and A"/A' all avoid each other.

Next, we claim that if A is an infinite word with A' 54 A", then A is
periodic. For suppose M is a module with A'(M) 54 A"(M). If we chop any
initial segment off from A, we obtain another infinite word B with B'(M)
B"(M). If BI # B2 are different infinite words obtained this way, then
the intervals Bl (M)/B' (M) and B2 (M)/B2(M) avoid each other in the
sense that either B2(M) > Bl (M) or BZ (M) < B' (M). Since M is finite
dimensional, this implies that there are only finitely many different words
obtainable from A in this way. This shows that A = A1nIC°° for some value
of n and some C in W. Suppose n is minimal with this property. We wish
to show that n = 0. If not, then the last letter of A1n1 is inverse (say d-1)
and the last letter of C is d. So we have (d-1C00)'(M) # (d-1C°°)"(M) and
(dC°°)'(M) 91 (dC°°)"(M). But by the Lemma, for any k we have

dim CkM/CkOM > dim dCkM/dCkOM + dim d-1CkM/d-1CkOM,

while for k large we have

dim CkM/CkOM = dim dCkM/dCkOM.

This proves the assertion.
Finally, we claim that the quotient C+/C- is covered by the intervals

((D+ + C-) fl C+)/((D- + C-) fl C+) for words D in W starting with b.
Applying what we know so far (replacing words starting with a by those
starting with b), it is certainly covered by these together with the intervals
((D"+C-)f1C+)/((D'+C-)f1C+) for words D in W' starting with b. So we
must show that (D'+C-)f1C+ = (D"+C-)f1C+. Now by Proposition 4.3.5
and its corollary, the regular part of the relation D splits off, and if U is this
regular part then D'® U = D" and (D-1)'(1) U = (D-1)". Since D-1 starts
with a, either C+ < (D-1)' or C- > (D-1)". In either case we have the
desired equality.

It is clear from the total order that the given intervals avoid each other.

Our next task is to evaluate the functors on the modules.

PROPOSITION 4.11.6. (i) If C, D and C-1D are words in W then the
following hold.
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(a) If M(E) is a module of the first kind, then SC,D(M(E)) = kzi if
E = C-1D, where i is the length of C, and SC,D(M(E)) = 0 if C-1D # E #
D-1C.

(b) If M(E, 0) is a module of the second kind then SC,D(M(E, ¢)) = 0.
(ii) If C is a word in W' then the following hold.
(a) If M(E) is a module of the first kind then SO(M(E)) = 0.
(b) If M(E, 0) is a module of the second kind, where ¢ is an automor-

phism of a vector space V, then SO(M(E, (V, 0) if E is of the form
C(i) or Chi) for some value of i.

PROOF. (i) If C = la, and M is a module of the first or second kind, it
is easy to see that C+(M) = a-10M is the sum of C-(M) = aM and those
spaces occurring at the end of a schema for which the end letter is b". This
is because Ker(a) = Im(a) on the rest of the schema. By induction, it is
now easy to see that for any C in W, C+ is equal to C- on a module of the
second kind. If M = M(E) is a module of the first kind with E a word of
length n, then C+(M) is the sum of C-(M) and those spaces kzi for which
either C-1 is an initial segment of E of length i or C is a final segment of
E of length n - i. Thus if (D+ + C-) n C+ # (D- + C-) n C+ then either
M = M(C-1D) or M = M(D-1C), and these are isomorphic modules. If
M = M(C-1D) then the space kzi forms a complement to (D- + C-) n C+
in (D+ + C-) n C+.

(ii) Without loss of generality C is a word of length n beginning with
all. Since C is not a power of a smaller word, and is of even length, the
words

C(O), ... v C(n-1), (n1 1)

are all distinct, while by Lemma 4.11.3 they give,rise to isomorphic functors.
Recall from the proof of the last proposition that we have a total order on the
words of length n starting with a:L1. Thus we may replace C by a rotation
of C or C-1 in such a way that C is strictly smaller than any rotation of C
or C-1 other than itself. We now assume this has been done.

Let M = M(C, ¢) _ ®i o V , V = V. It is easy to see by induction
on length that if E is any word of length at most n starting with a}1, then
EOM is the sum of those V for which C(1) or (C(i))-1, whichever starts with
at1, is > E in the total order. In particular, taking E = C, we see by the
choice made above that COM = OM. Thus C'(M) = 0. On the other hand,
Vo < C"(M), and so V0 embeds into (C"/C')(M).

Thus the n different words among the rotations of C and C-1 starting
with a:L 1 define subquotients of M each of dimension at least dim V. These
subquotients avoid each other by the previous proposition, and so the di-
mension must equal dim V and all other SE must take zero value. Thus
C"(M) = V0, and the automorphism induced by C on Vo is of course just 0.

In a similar fashion, the intervals SC,D already exhaust the dimension of
M(C-1D) so that the Sc must take zero value on these too.



142 4. METHODS FROM THE REPRESENTATIONS OF ALGEBRAS

THE MAPS 'YO,M. In order to invoke Theorem 4.10.7, it remains to
construct maps y,,M for each a E W1 U W2 as in part (ii) of the Theorem.

PROPOSITION 4.11.7. For every module M E M and every pair of words
C, D E W such that C-1D is also a word, there is a map

'YC,D,M : TC,DSC,D(M) -p M

such that SC,D(YC,D,M) is an isomorphism.

PROOF. For any element x E (C+ fl D+)(M), there is a map

-y M(C-1D) -f M

such that 'y(zi) = x, where i is the length of C. Choosing a basis for a
complement of ((C+ fl D-) + (C- fl D+)) (M) in (C+ fl D+) (M), we obtain a
map from a direct sum of dimSC,D(M) copies of M(C-1D) to M such that
the sum of the basis vectors corresponding to zi map to the chosen basis for
the complement. This is the required map yc,D,M

PROPOSITION 4.11.8. For every module M E M and every C E W there
is a map YC,M : TCSC(M) - M such that Sc(yC,M) is an isomorphism.

PROOF. We consider C as a linear relation on M. By Proposition 4.3.5,
the regular part of C splits off, so that there is a subspace U of M such that
C'(M) ® U = C"(M), and C induces an automorphism 0 on U via Cx fl U =
{4(x)} for x E U. Thus if we choose a basis xi of U, and C = Q1 ... $n, we can
choose elements E M with xi, xik-1) E and ¢(xi).
This then defines a map from TCSc(M) = Tc(U, 0) -> M taking the basis
element xi of Uk = U to xik). This is the required map 1C,M. El

REMARK. Using similar but more complicated techniques, Crawley-Boe-
vey [62] has classified the indecomposable representations of the semidihedral
groups SD2m+l of order 2m+1 (m > 2)

G = (x, y I x2- = y2 = 1, Y 1xy =
x2,,.-'-1)

in characteristic two. In this case, the appropriate algebra is

kG/Soc(kG) = k(X,Y)/(X3,Y2,X2 - (YX)nY)

with n = 2m_1 - 1. The classification is similar to the dihedral case, but
with added complications coming from symmetry conditions on the words
involved.

It is interesting to note that the subalgebra of the Steenrod algebra gen-
erated by Sq1 and Sq2 (see Chapter 4 of Volume II) is the case n = 1 of
the above algebra, corresponding to the non-existent "semidihedral group of
order eight". This explains why the cohomology of this subalgebra (which
is the E2 = E,,,, page of the Adams spectral sequence converging to the real
Bott periodicity groups) is the same as the cohomology of the semidihedral
groups.
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The classification of the indecomposable modules for the generalised qua-
ternion groups ought to be similar in nature to the case of the semidihedral
groups, but no-one has succeeded in completing this case.

4.12. Almost split sequences

Almost split sequences were introduced by Auslander and Reiten [10].
They proved their existence for Artin algebras (a ring is an Artin algebra if
it is finitely generated as a module over its centre, and its centre is an Artinian
ring). We shall content ourselves with the case of a finite dimensional algebra,
even though the proof for a general Artin algebra is not much harder. Finally
we shall show how almost split sequences are related to functor categories.

DEFINITION 4.12.1. Let A be a ring. A short exact sequence of finitely
generated A-modules

0-+M-+E ° N-+0
is called an almost split sequence or Auslander-Reiten sequence if the
following conditions are satisfied:

(i) M and N are indecomposable.
(ii) The map a does not split.
(iii) Given any A-module N' and map p : N' --+ N which is not a split

epimorphism then p factors through a as in the following diagram:

N'
IP

0 - M- E-N-0
Note that if p is a split epimorphism, that is, N is a summand of N' and p
is the projection, then by condition (ii) p cannot factor through a.

The extraordinary thing about this definition is that such sequences
should exist at all. Clearly if N is projective, there can be no almost split
sequence terminating in N.

THEOREM 4.12.2 (Auslander, Reiten [10]). Suppose A is an Artin alge-
bra. Given any finitely generated indecomposable non-projective module N,
there exists an almost split sequence terminating in N. This sequence is
unique up to isomorphism of short exact sequences.

We shall only prove this theorem for finite dimensional algebras. We first
prove uniqueness, since this is a general argument and is quite easy.

LEMMA 4.12.3. Suppose

0->M->E °+N->0

0-+M'--E'- N-*0
are almost split sequences terminating in the same module N. Then they are
isomorphic as short exact sequences.
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PROOF. The definition guarantees us a commutative diagram:

0-M 'E 'N '0

0 M' ' E'--N--0

0--M-E 'N '0
The composite map M -+ M' ---* M is not nilpotent since otherwise the map
o, would split. Thus by Fitting's Lemma 1.4.4 it is an isomorphism, and so
by the five lemma the sequences are isomorphic.

The idea of the proof of existence of almost split sequences is as follows.
Given an indecomposable module N, let us suppose that we can find an inde-
composable module M depending functorially on N, and such that there is a
natural duality between HomA(N, -) and Ext1(-, M). Well, we should mod-
ify this slightly since Ext does not see homomorphisms which factor through
a projective module. So we work in the stable module category Amod (see
Section 2.1), and let us suppose that HomA(N, -) and Ext'(-, M) are dual.
Since for N non-projective EndA(N) is a local ring and Ext'(N,M) is its
dual, the latter has a simple socle as an EndA(N)-module. We claim that
any extension 0 -+ M -> E °> N -> 0 representing a non-zero element of
this socle is an almost split sequence. This is because

p : N' -* N is split epi

p* : HomA(N, N') -> EndA(N) has idN in its image

p* : HomA(N, N') -* EndA(N) is surjective

p* : Ext1(N, M) -+ Ext'(N', M) is injective

p* does not kill SocExtA(N, M)
'' p does not factor through or.

The required functor taking N to M is called the Auslander-Reiten
translation DTr, and is the composite of two contravariant functors Tr and
D.

The first clue as to how to obtain the required functor is the identity

Ext1 (N, Homk(N', k)) = Homk(Tori (N', N), k)

from Proposition 2.8.5. So the functor D is simply the duality functor. If M
is a finitely generated module then we set

D(M) = M* = Homk(M, k) = HomA(M, Homk(A, k)) = HomA(M, A*),

as a finitely generated A°P-module. Here, A* is a A-A-bimodule in the obvious
way. We also write D for the corresponding functor from finitely generated
A°P-modules to finitely generated A-modules, so that D2 : Amod -i Amod
is isomorphic to the identity functor. D passes down to these quotients to
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give dualities D : Amod -> AoPmod and D : Amod -> AoPmod. It should
be pointed out that we now have three different notations for vector space
duality, namely D(M), M* and Homk(M, k). We apologise for this burden
on the reader, which has arisen in an attempt not to break with traditional
notations.

We are thus left with the problem of finding a contravariant functor
Tr : Amod -f AoPmod with the property that

HoiA(N,-) =Tori (Tr N,-).
The way to construct this functor is as follows. Form the beginning of a
projective resolution

P1 -* Po --+ N -*0

and let Tr N be the cokernel of the A°P-module homomorphism

f * : HomA(Po, A) -* HomA(Pl, A).

Now Tr is a well defined contravariant functor from Amod to AoPmod,
and it is easy to see that Tr2 : Amod -> Amod is isomorphic to the identity
functor.

We have an exact sequence

0 , HomA(N, A) - HomA(Po, A) -> HomA(P1, A) - Tr N -> 0

whose last three terms form the beginning of a projective resolution of Tr N
as a A°P-module, and so we may use it to calculate Tor. Namely,

T A Tr N N') = Ker(HomA(Po, A) ® N' - HomA(P1i A) ® N')
1 ( Im(HomA(N, A) ® N' -* HomA(Po, A) ® N')

_ Ker(HomA(Po, N') -* HomA(Pl, N'))
Im(HolnA(N, A) ®N' -t HomA(Po, N'))

_ HomA(N, N')
Im(HomA(N, A) ®N') -> HomA(N, N'))

= Ho1A(N, N').

We have thus proved that

HoJA(N, N') = Tori (Tr N, N')

so that

Ext1 (N', DTr N) = Ext1 (N', Homk(Tr N, k))

Homk(Tori (Tr N, N'), k)

Homk(HomA(N, N'), k)

as required. To complete the proof of the existence of almost split sequences
for finite dimensional algebras, we only need show that DTr takes indecom-
posables to indecomposables. But both D and Tr are self inverse, and so
they must take indecomposables to indecomposables.
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Note that DTr gives a bijection between the non-projective indecompos-
able A-modules and the non-injective indecomposable A-modules. Thus given
any non-injective indecomposable A-module M, there is a unique almost split
sequence beginning with M, and it has the form 0 -* M -> E -> TrD M --+ 0.
This is related to the following dual property of almost split sequences.

PROPOSITION 4.12.4. If 0 -+ M -0-"+ E -+ N --> 0 is an almost split
sequence and p : M -+ M' is not a split monomorphism then p factors
through v'.

PROOF. Suppose p does not factor through o-'. Then in the pushout

0- M a E- N- 0
0 M' 'E' -- N ->0

the second sequence does not split. Thus we may complete a diagram

O -M ° E -N -0

0 M'--E' ' N--0

0 -M >E-N-0
Since p' o p is not nilpotent it is an isomorphism by Fitting's Lemma 1.4.4,
and so p is a split monomorphism.

COROLLARY 4.12.5. If 0 - M -. E -+ N -+ 0 is an almost split sequence
then so is 0->N*->E*-+M*--+0.

We now give an interpretation of almost split sequences in terms of func-
tor categories. The following proposition is clear from the definition:

PROPOSITION 4.12.6. An almost split sequence of A-modules

0--+M--+E--*N-+0
gives rise to exact sequences

0 --+ HomA(N', M) -+ HomA(N', E) -+ HomA(N', N) -+ 0

if N' has no summand isomorphic to N, and

0 -+ HomA(N, M) -+ HomA(N, E) , EndA(N)

-+ EndA(N)/JEndA(N) -* 0.

Dually, we have exact sequences

0 -+ HomA(N, M') -+ HomA(E, M') --+ HomA(M, M') --+ 0
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if M' has no summand isomorphic to M, and

0 -> HomA(N, M) -> HomA(E, M) -* EndA(M)

-> EndA(M)/JEndA(M) - 0.

We may express this in terms of functors as an exact sequence of covariant
functors

0-(-,M)- (-,E)-->(-,N)->SN->0
where SN is the simple functor associated to N, as in Theorem 4.8.2.

Similarly the dual property of almost split sequences shows that there is
also an exact sequence of contravariant functors

0 - (N, -) ---> (E, -) ---> (M, -) -G SM -+ O.

Since M and N are indecomposable, (M, -), (N, -), (-, M) and (-, N)
are projective indecomposable functors, and so the above sequences are min-
imal projective resolutions of the simple functors SN for N non-projective
indecomposable and SM for M non-injective indecomposable in Fun°(A) and
F un(A) respectively.

Similarly if N is projective indecomposable then there is a minimal pro-
jective resolution of SN in Fun(A) of the form

0->(-,Rad(N)),(-,N)-->SN,0
while if M is injective indecomposable then there is a minimal resolution of
SM in Fun°(A) of the form

0->(M/Soc(M),-)->(M,-)-*SM0.
Dually, we have injective resolutions

0->SM-*D(M,-)->D(E,-)-->D(N,-)->0
and

0--+ SN-#D(-,N)- D(-,E)- D(-,M)-*0
in Fun(A) and Fun°(A) respectively, and similarly for the injective/projec-
tive modules.

EXERCISE. Show that if 0 -i M -> E ---> N -> 0 is a short exact sequence
of finitely generated A-modules with the property that

0 - (-,M)-,(-,E)->(-,N)->SN0--+ 0
is exact, then the sequence is the sum of the almost split sequence terminating
in No and a split sequence. (Hint: write N = n.No ® N' and apply the
sequence of functors to N)

There is one situation in which the almost split sequence is easy to write
down.
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PROPOSITION 4.12.7. Suppose P is a projective and injective indecom-
posable module. Then there is an almost split sequence

0 -4 Rad(P) - P ® Rad(P)/Soc(P) -i P/Soc(P) 0.

This is the only almost split sequence having P as a summand of the middle
term.

PROOF. It is easy to check directly from the definitions that this is an
almost split sequence. Conversely, if P is a summand of the middle term
of an almost split sequence and the right-hand term is not P/Soc(P), then
there is a map from P/Soc(P) to the right-hand term which is not a split
epimorphism and does not lift, contradicting the definition of an almost split
sequence.

We are particularly interested in almost split sequences for group algebras
of finite groups. The first observation holds for all symmetric algebras.

PROPOSITION 4.12.8. Suppose A is a finite dimensional symmetric alge-
bra. Then for any non-projective indecomposable module M we have
DTr(M) = 112(M), the second kernel of a minimal resolution of M.

PROOF. Since A is symmetric, A = A* as A-A-bimodules. Hence the
functors HomA(-,A*) and HomA(-, A) coincide, and so the functor Tr ap-
plied to M yields the dual of 112(M).

Note in particular that in this situation

ExtA(N, DTr M) = Ext'(N,112(M)) -_ HomA(N,11(M))

and so the duality between HomA(M, N) and ExtX(N, DTr M) becomes a
duality between the spaces HomA(M, N) and HomA(N, 1(M)).

PROPOSITION 4.12.9. Suppose A is a finite dimensional symmetric alge-
bra. Then there is a natural duality between the spaces HomA(M, N) and
HomA(N, Q(M)).

REMARK. In case A is self injective but not necessarily symmetric, we may
modify the above propositions as follows. We define v to be the Nakayama
functor

v = A®®A - = DHomA(-, A).

Then we have DTr = vut2, and there is a natural duality between the spaces
HOMA(M, N) and HomA(N, v1(M)).

We now specialise to group algebras.

PROPOSITION 4.12.10. An almost split sequence 0 -> M -* E -* N -p 0
of modules for a group algebra kG splits on restriction to a subgroup H if
and only if H does not contain a vertex of N (or equivalently of M).
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PROOF. The sequence splits on restriction to H if and only if for all
kH-modules N' the sequence

0 -* HomkH(N', M J.H) -> HomkH(N', E 1H) --k HomkH (N', M I H) -4 0

is exact. By the Nakayama relations 3.3.1 this happens if and only if the
sequence

0-> HomkG(N'TG,M) -* HomkG(N'1G,E) -> HomkG(N'TG,N) - 0

is exact. By the defining property of almost split sequences, this happens if
and only if N is not a direct summand of N' T G for any kH-module N'.

The following theorem was proved in [23].

THEOREM 4.12.11. Suppose M is an indecomposable kG-module with ver-
tex D, and suppose H is a subgroup of G containing NG(D), so that the
Green correspondent f (M) is defined as a kH-module. If 0 --> p2 f (M) ,
E -> f (M) - 0 is the almost split sequence terminating in f (M), then the
induced sequence 0 -* 112 f (M) 1G_, E 1G, f (M) 1G- 0 is isomorphic to
the direct sum of the almost split sequence terminating in M and a (possibly
zero) split short exact sequence.

PROOF. By the Nakayama Relations 3.3.1 and Proposition 4.12.6, we
have a diagram

0 - HomkG(N,H2f(M)TG) HomkG(N,ETG) - HomkG(N,f(M)TG)

I° h
0 - HomkH(NIH,02f(M)) - Homkri(NJH,E) - HomkH(NNH,f(M)) a Sf(nr)(N1H) - 0.

By the Burry-Carlson-Puig Theorem 3.12.3, we have S f(M)(N 1H) = SM(N),
and so we have an exact sequence

0 -* HomkG(N,H2f(M)TG) - HomkG(N,E1G)

- HomkG(N, f (M)1G) SM(N) --+ 0.

The result now follows from the exercise before Proposition 4.12.7.

4.13. Irreducible maps and the Auslander-Reiten quiver

In this section, we describe a certain modulated quiver called the Aus-
lander-Reiten quiver, associated with almost split sequences, and describe
its elementary properties.

DEFINITION 4.13.1. Suppose M and N are finitely generated indecom-
posable A-modules. A map A : M -> N is said to be irreducible if A has no
left or right inverse, and whenever A = v o ti, is a factorisation of A, either u
has a left inverse or v has a right inverse.

If M = ® Mi and N = ® N. with the Mi and N. indecomposable, we
denote by Rad(M, N) the space of maps M -- N with the property that no
component Mi -> Nj is an isomorphism. We denote by Rad2(M, N) the space
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spanned by the homomorphisms of the form v op with it E Rad(M, M') and
v E Rad(M', N) for some M'. Then the set of irreducible maps is precisely
Rad(M, N) \ Rad2(M, N). The space Irr(M, N) = Rad(M, N)/Rad2(M, N)
is an (EndA(N)/JEndA(N))-(EndA(M)/JEndA(M))-bimodule.

The Auslander-Reiten quiver of A is the modulated quiver given as
follows. The vertices x,,, are indexed by the finitely generated indecomposable
A-modules Ma, with associated division ring

Aa = (EndA(Ma)/JEndA(M«))°p

There is an arrow x« -l > xp if and only if Irr(M,,, Mp) 0, and

0M.' = Map = Irr(M., MO)

=Homk(3M«,k) =Homo(3M,,,Da) Homo.(aMZ,Op)aMp =M'10
pda = dap = dimA. (0M.1)

adQ=d'ap=dimo.(,MQ) and

fa = dimk(Da)-

LEMMA 4.13.2. If A : M -> N is irreducible, then A is either an epimor-
phism whose kernel is indecomposable, or a monomorphism whose cokernel
is indecomposable.

PROOF. The factorisation M -+ M/Ker(A) V> N shows that A is either
an epimorphism or a monomorphism.

Suppose A is an epimorphism with kernel A ® B. Then there is a factori-
sation

MOM/A _v_4 MI(A E) B) c---- N.

Since y is an epimorphism it does not have a left inverse, and so v has a right
inverse p : N --> M/A. Similarly we obtain a right inverse p' : N - M/B
for the map v' : M/B -p N. Since M is the pullback of v and v', p and p'
determine a map N --+ M right inverse to A, and so A is not irreducible. The
dual argument works for A a monomorphism.

PROPOSITION 4.13.3. (i) If N is a non-projective indecomposable A-mod-
ule, let the almost split sequence terminating in N be 0 -> DTr N -> E -->
N °> 0. Then A : N' -+ N is irreducible if and only if N' is a summand of
E and A = o o i with i an inclusion of N' as a summand of E.

If N is projective indecomposable, A : N' -> N is irreducible if and only
if A is an inclusion of N' as a summand of Rad(N).

(ii) If M is a non-injective indecomposable A-module, let the almost split

sequence beginning with M be 0 -* M -> E - TrD M -> 0. Then A : M -->
M' is irreducible if and only if M' is a summand of E and A = it o Q' with it
a projection of E onto M' as a summand.

If M is injective indecomposable, A : M -> M' is irreducible if and only
if A is a projection of M/Soc(M) onto M' as a summand.
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PROOF. (i) Suppose first that N is non-projective.

N'
Fi

I a

0 -DTrN 'E-°-N-0
Since A is not an isomorphism, A factors as or o p. Since a does not have a
left inverse, p has a right inverse. Thus we may take i =y.

Conversely if N' is a direct summand of E with inclusion i, we must
show that a o i is irreducible. Suppose it can be expressed as a composite
N' - N" -+ N. If v does not have a left inverse, then v factors through a,
and so µ has a right inverse.

If N is projective then every map to N either has a right inverse or lands
inside Rad(N). Thus an irreducible map to N must be an injection, and the
inclusion into Rad(N) has a left inverse.

(ii) This is proved dually.

REMARKS. (i) This proposition implies that for Ma non-injective, dap is
equal to the multiplicity of Mp as a direct summand of the middle term of the
almost split sequence beginning with Ma, while for Ma injective dap is equal
to the multiplicity of Mp as a direct summand of Ma/Soc(Ma). Similarly
for Mp non-projective dap is the multiplicity of Ma as a direct summand of
the almost split sequence terminating in Mp, while for Mp projective dip
is the multiplicity of Ma as a direct summand of Rad(Mp). It follows that
the Auslander-Reiten quiver is a locally finite graph; that is, each vertex is
incident with only finitely many edges.

It is conjectured that the Auslander-Reiten quiver of a finite dimensional
algebra of infinite representation type always has infinitely many connected
components. This has been proved by Crawley-Boevey [63] in the case of
tame representation type over an algebraically closed field, but otherwise this
conjecture is still open.

(ii) Comparing this proposition with the minimal resolutions for the sim-
ple functors found in the last section, it is not hard to see that the Auslander-
Reiten quiver of A is the Ext-quiver of the Auslander algebra Aus(A).

LEMMA 4.13.4. Suppose M and N are indecomposable A-modules and
f : M -4 N is non-zero and is not an isomorphism.

(i) There is an irreducible map A : M -* M' and a map p : M' -> N with
µoA 0.

(ii) There is a map v : M -+ N' and an irreducible map A : N'--+ N with
Aov}A 0.

PROOF. We shall prove (ii); (i) is proved dually using Proposition 4.12.4.
Suppose N is not projective. Let 0 --+ DTr N -> E °> N -+ 0 be the almost
split sequence terminating in N. Since f is not an isomorphism it factors
through a. Write E _ ®i Ei and f = a o p = Ei of o pi with ai : Ei -> N
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and pi : M - > Ei. Since f 0, some o i o pi # 0, and Qi is an irreducible map.
On the other hand if N is projective then f factors through the injection
Rad(N) -+ N and we apply the same argument.

PROPOSITION 4.13.5. Suppose M and N are indecomposable A-modules,
and f : M -* N is non-zero and is not an isomorphism. Suppose there is no
chain of irreducible maps from M to N of length less than n.

(i) There exists a chain of irreducible maps

M=Mo --,MI - ...-+Mn_1-+Mn
and a map Mn - N such that the composite map from M to N is non-zero.

(ii) There exists a chain of irreducible maps

No-->N1->...->Nn_1->N, = N
and a map M -+ No such that the composite map from M to N is non-zero.

PROOF. This follows from the lemma and induction on n.

Finite quiver components are especially easy to deal with. The idea of
the proof of the following proposition will reappear in the next chapter when
we deal with bilinear forms on representation rings.

PROPOSITION 4.13.6. Suppose that a component Q of the Auslander-
Reiten quiver of A has only finitely many vertices. Then Q consists of all the
indecomposable modules in a block of A of finite representation type.

PROOF. Let cQ be a complex vector space whose basis elements ex cor-
respond to the vertices of Q. Letting Mx denote the indecomposable A-
module corresponding to x, we impose a bilinear form on cQ by setting
(ex, ey) = dimk HomA(Mx, My). For each non-projective M, we have an
almost split sequence

O-*M,(x) -+Ex= ®My->Mx->0

and we set
yEx-

fx = ex + e7-(x) - E ey E CQ.
yEx-

If Mx is projective, then Rad(Mx) _ - ®yEx- My and we set

fx = ex - E ey E CQ.
yEx-

It follows from Proposition 4.12.6 for Mx non-projective, and is clear for Mx
projective, that (ex, fy) = 0 unless x = y, and

(ex, fx) = dimk EndA (Mx) /JEndA (Mx) 0.

Thus the bilinear form ( , ) is non-singular on cCQ.
Now if Q does not consist of all the indecomposable modules in a block

of A, then there is an indecomposable module M not in Q and a non-zero
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homomorphism from M to some M. By the non-singularity of (, ), we can
find a non-zero element E A.,e,: E CQ such that

dimk HomA(M, My) = (E Axex, ey)

for all y e Q. Choose x with Ax :A 0, so that (E Axes, ff) # 0. If MM is not
projective, then the sequence

0 --> HomA(M, M ,(x)) -' HomA(M, Ex) -> HomA(M, MM)

is not exact on the right. Hence using Proposition 4.12.6 again, M = M,
contradicting the fact that M is not in Q. On the other hand, if MM is
projective, then

HomA(M, Rad(M,,,)) --> HomA(M, MM)

is not surjective, and so there is a surjective map M -> M. Since M., is
projective, this forces M = M.

The projective and injective modules often get in the way when we are
looking at the Auslander-Reiten quiver. Indeed, if we remove all the modules
of the form (DTr)'(I) for I injective and (TrD)n(P) for P projective, we
obtain the largest subquiver of the Auslander-Reiten quiver for which DTr
is an automorphism. This is called the stable quiver. In Section 4.15 we
investigate the possible structure of a connected component of the stable
quiver.

EXERCISE. Show that any short exact sequence 0 -> M -> E -> N -> 0
with M = DTr(N) indecomposable and both maps irreducible is an almost
split sequence.

4.14. Rojter's theorem
The main theorem of this section (4.14.3) was conjectured by Brauer and

Thrall, and first proved by Rojter. The proof we give is due to Auslander.
We refer to Ringel [176], Bautista [13], and Nazarova and Rojter [155] for
more information on this and another conjecture of Brauer and Thrall, solved
by Nazarova and Rojter.

We begin with a lemma.

LEMMA 4.14.1 (Harada, Sai [123]). Let Mo,... , M2.._1 be indecompos-
able modules, each having at most n composition factors, and suppose fi :

Mi_1 -> Mi is a homomorphism which is not an isomorphism. Then f2^_1 o
...of2o.f1=0.

PROOF. We show by induction on m that the image of o ... o f1
has at most n - m composition factors. The assertion is clear for m = 1,
since f1 is not an isomorphism. Let f = f2m-1_1 o o f1, g = f2 -1 and
h = f2m_1 o ... o f2_-i+1. By the inductive hypothesis, the images off and h
each have at most n-m+1 composition factors. If either has strictly less, we
are done, so suppose the images of f, h and hog o f each has exactly n - m + 1
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composition factors. Then Ker(h o g) fl lm(f) = 0 and Ker(h) fl Im(g o f) = 0,
and so by counting composition factors we have M2m_1 - Ker(h o g) (D Im(f)
and M2,.. = Ker(h) ®Im(go f ). Since each is indecomposable, hog is injective
and g o f is surjective. Thus g is an isomorphism, contrary to hypothesis.

THEOREM 4.14.2 (Auslander [7]). Suppose A is a finite dimensional al-
gebra and Q is an infinite -connected component of the Auslander-Reiten
quiver of A-modules. Then Q has modules with an arbitrarily large num-
ber of composition factors.

PROOF. Suppose to the contrary that all modules in Q have at most n
composition factors. Suppose M is an indecomposable A-module in Q. For
some projective indecomposable A-module P we have a non-zero homomor-
phism ¢ : P --> M (for example, take for P the projective cover of a simple
submodule of M). If P is not in the component Q, then by Proposition 4.13.5
there is a chain of irreducible mapsf'E .. . f2"-'M0 , MM - M2n_1=M
and f : P -> Mo such that f2^_1 o ... o f2 o f1 o f = 4, so that by the lemma
¢ = 0. It follows that P is in Q, and P is connected to M by a chain of
irreducible maps of length at most 2n - 1. Since Q has finite valence, and
there are only finitely many projective A-modules, this forces Q to have only
finitely many vertices, contrary to assumption.

THEOREM 4.14.3 (Rojter [181]). Suppose A is a finite dimensional alge-
bra of infinite representation type. Then there are finitely generated indecom-
posable A-modules with an arbitrarily large number of composition factors.

PROOF. (Auslander) By Proposition 4.13.6 the Auslander-Reiten quiver
of finitely generated A-modules has an infinite connected component. Now
apply the above theorem.

REMARK. Almost split sequences exist for an arbitrary Artin algebra,
and so Auslander's proof of Rojter's theorem works in this generality.

4.15. The Riedtmann structure theorem

We now describe the Riedtmann structure theorem, which describes the
structure of an abstract stable representation quiver, of which the stable
quivers described in the last section are examples. The necessary terminology
is given in the following definitions. The proof of the structure theorem
involves a variant of the classical universal cover construction.

DEFINITION 4.15.1. A morphism of quivers 0 : Q -* Q' assigns to
each vertex x of Q a vertex ¢(x) of Q' and to each arrow x y in Q an

arrow O(x)* b(y) in Q'.
If x is a vertex in a quiver Q we write x- for the set of vertices y in

Q such that there is an arrow y -* x in Q, and we write x+ for the set of
vertices y in Q such that there is an arrow x --4y in Q.
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A quiver is locally finite if the sets x+ and x- are finite sets for each x
in Q. A loop in Q is an arrow from a vertex to itself. A multiple arrow in
Q is a set of at least two arrows from a given vertex to another given vertex.
To a quiver Q without loops or multiple arrows, we associate an undirected
graph Q whose vertices are the same as the vertices of Q, and where two
vertices x and y are joined by an edge in Q if there is an arrow x -> y or
y ->xinQ.

A stable representation quiver or translation quiver is a quiver
Q together with an automorphism T called the translation such that the
following conditions are satisfied.

(i) Q contains no loops or multiple arrows.
(ii) For all vertices x in Q, x- = T(x)+.
A morphism of stable representation quivers is a morphism of quivers

commuting with the translation.
A stable representation quiver is connected if it is non-empty and can-

not be written as a disjoint union of two subquivers each stable under the
translation. Note that this does not imply that the underlying quiver is
connected.

The reduced graph or orbit graph of a stable representation quiver
Q is the graph obtained from Q by identifying each vertex x with T(x) and
then replacing each pair of arrows x -> y and y -> x by an undirected edge
x-y

Thus for example the stable quiver of finitely generated A-modules is a
stable representation quiver with translation DTr.

To a directed tree B we associate a stable representation quiver ZB as
follows. The vertices of 7LB are the pairs (n, x) with n E 7L and x a vertex of B.
For each arrow x -> y in B and each n E Z we have two arrows (n, x) -> (n, y)
and (n, y) --> (n-1, x). The translation is defined via -r (n, x) = (n+1, x). We
regard B as embedded in 7LB as the vertices (0, x) and the arrows connecting
them.

EXAMPLES. If B then B = 1- and

7LB =

If B = / then B and ZB are again as above. Keep this example

in mind when reading the proof of the next proposition.
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LEMMA 4.15.2. Let B be a directed tree and Q a stable representation
quiver. Given a quiver morphism 0 : B -+ Q and an integer n, there is
a unique morphism of stable representation quivers f : ZB -* Q such that
f(n,x) = O(x).

PROOF. f (m, x) = _rm-nq5(x) is clearly the unique such morphism.

PROPOSITION 4.15.3. Let B and B' be directed trees. Then 7LB '-' ZB'
as stable representation quivers if and only if B = B'.

PROOF. Since B is the reduced graph of ZB, if ZB ?' ZB' then B ^' B'.
Conversely, suppose ¢ : B = B'. Choose a vertex x of B, and send it to
(0, ¢(x)) in 7LB'. Since B is connected we may extend this uniquely to a
morphism of quivers B -p ZB' in such a way that each x in B is sent to
some (ax, ¢(x)) in Y. Now by the lemma, we obtain a morphism of stable
representation quivers ZB -+ ZB' sending (n, x) to (n+ax, ¢(x)). This is an
isomorphism with inverse sending (n, O(x)) to (n - ax, x).

DEFINITION 4.15.4. A group II of automorphisms of a stable represen-
tation quiver Q is said to be admissible if no orbit of II on the vertices
of Q intersects a set of the form {x} U x+ or {x} U x- in more than one
point. The quotient quiver Q/lI, defined in the obvious way, is then a stable
representation quiver.

A morphism of stable representation quivers ¢ : Q -* Q' is called a
covering if it is surjective, and for each vertex x of Q the induced maps
x- -f O(x)- and x+ --> O(x)+ are bijective. It is clearly enough to check
that x+ ---. O(x)+ is bijective for each vertex x of Q.

Thus for example the canonical projection Q -* Q/II, for II an admissible
group of automorphisms of Q, is a covering.

EXAMPLE. Taking B = A, we obtain a stable representation quiver

Let II be the group of automorphisms generated by the nth power of the
translation, r. Then H is admissible, and the resulting stable representation
quiver 7LAm/(n) is called an tube; see Section 4.16.

LEMMA 4.15.5. Let B be a directed tree, n : 7LB --+ Q a morphism of
stable representation quivers, 0 : Q' -f Q a covering, and (n, x) a vertex of
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7LB. Then for each vertex y of Q' with q(y) = 7r(n, x), there is a unique
morphism 0 : ZB -* Q' with ¢ o 0 = 1r and y = (n, x).

ZB

Q

PROOF. The map V)(n, x) = y clearly extends uniquely to a map from
the copy of B consisting of the elements (n, -) to Q whose composite with
0 is 7r. The lemma now follows from Lemma 4.15.2.

THEOREM 4.15.6 (Riedtmann structure theorem).
Given a connected stable representation quiver Q, there is a directed

tree B and an admissible, group of automorphisms H C_ Aut(ZB) such that
Q = 7LB/l. The graph B associated to B is determined by Q uniquely up
to canonical isomorphism, and II is uniquely defined up to conjugation in
Aut (7LB) .

PROOF. Given Q, we construct B as follows. Choose a vertex x of Q,
and let B have as vertices the paths

(x = y0 - y1 -*... -+ yn) (n > 0)

for which no y2 = 7(y2+2). The arrows of B are

(x = y0-- yn-lyn)
Clearly B is a directed tree.

The quiver morphism B ---> Q given by
(x=yo-...-yn)Hyn

extends uniquely, by Lemma 4.15.2, to a morphism 0 : ZB - Q. We check
that 0: ZB -* Q is a covering morphism. If

u=(x=Y0-->...-.'yn)

is a vertex of B, then u+ is the set of vertices of the form

(x=y0- ...-yn-'z)
for which r(z) # yn_1 if n > 1, while u- consists of the single vertex (x =
yo yam.-1). Thus

(m, u)+ _ {(m, v), v E u+} U {(m - 1,v), v E }

has image {z E yn+ I T(z) yn_1} U {T-'(y._1)} = ya in Q. Thus (m, u)+ is
in bijection with T(yn)+ as desired.

Now let II be the fundamental group of Q at x, namely the group of
morphisms of stable representation quivers p : ZB -* 7LB with 0 o p = 0.
Since Q has no loops, II is admissible. It follows from Lemma 4.15.5 that II
is transitive on the vertices of 7LB whose image is a given vertex of Q, and
so Q = 7LB/II.
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Also by Lemma 4.15.5, we see that if ZB -p Q and ZB' -p Q are two such

covers, then we obtain inverse isomorphisms ZB -+ ZB' and ZB' ZB.
Hence II' = gIlg-1, and so by Proposition 4.15.3, B = Y.

The stable representation quiver ZB is called the universal cover of Q,
and the isomorphism type of B is called the tree class of Q.

LEMMA 4.15.7. There is a natural map r, from the tree B associated to Q
to the reduced graph of Q, which is surjective and does not identify adjacent
points in B.

PROOF. The composite map from 7LB to Q and then to the reduced
graph of Q is surjective, and has the property that (n, x) and (n + 1, x) have
the same image. Thus we have a well defined surjective map from B to
the reduced graph of Q. Since Q = 7LB/II with II an admissible group of
automorphisms, this map does not identify adjacent points.

Finally, we note that a connected component Q of the stable quiver of
A-modules comes with a modulation which is invariant under the translation
DTr. Thus the tree class and reduced graph of Q are modulated graphs, and
in particular have labelled graphs associated to them.

We shall see that for group algebras the tree class and reduced graph are
very restricted in possible shape.

4.16. Tubes

In this section we investigate a special type of stable quiver component
called tubes.

DEFINITION 4.16.1. An infinite n-tube is a stable representation quiver
of the form (7L/n)A,,,. A finite n-tube of length q is a stable representation
quiver of the form (Z/n)Aq.

A module M is said to be DTr-periodic (or just periodic) if (DTr)nM
M for some n > 1.

Note that in case A is symmetric we have DTr = 122 by Proposition 4.12.8,
so that a DTr-periodic module is the same as an 11-periodic module.

THEOREM 4.16.2 (Happel, Preiser and Ringel [122]). Suppose that Q is
a connected component of the stable quiver of finitely generated A-modules
which contains some periodic module. Then every module in Q is periodic.
If Q is infinite then it is a tube. If Q is finite then the tree class is a finite
Dynkin diagram, and is equal to the reduced graph (but Q need not be a tube).

PROOF. Suppose (DTr)nM = M, and let x be the vertex of Q corre-
sponding to M. Then (DTr)n induces a permutation on x-, which is a finite
set by Proposition 4.13.3, and so some power of (DTr)n stabilises x point-
wise. The same is true of x+, so arguing by induction we see that every
module in Q is periodic.
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Now the function on the reduced graph or tree class of Q which assigns to
each vertex the average number of composition factors in the (finite) DTr-
orbit in Q corresponding to the vertex is easily seen to be subadditive. So
by Theorem 4.5.8 (i) this graph is either a Dynkin diagram or a Euclidean
diagram. If Q is infinite and this subadditive function is additive, then Q is
a component of the Auslander-Reiten quiver, and so by Theorem 4.14.2 this
additive function is unbounded. By Theorem 4.5.8 (ii) and (iv) this cannot
happen. If Q is infinite and this subadditive function is not additive, then
by Theorem 4.14.2 (iv) the tree class is A. Since the only automorphisms
of ZAP are the translations, by Theorem 4.15.6 it follows from the fact that
every module is periodic that for some n > 1, Q = (7L/n)A,,,,.

If Q is finite, then it is connected to at least one projective or injective
module, since otherwise Q is a component of the Auslander-Reiten quiver,
and we deduce from Proposition 4.13.6 that Q consists of all the indecom-
posable modules in a block of A of finite representation type. Thus the above
subadditive function is not additive. So by Theorem 4.5.8 (ii) the tree class
and reduced graph are both finite Dynkin diagrams. Finally by Lemma 4.15.7
and the fact that finite Dynkin diagrams are trees, we see that the tree class
and reduced graph are equal.

4.17. Webb's Theorem

Webb [204] constructed a subadditive function on the labelled tree asso-
ciated by the Riedtmann structure theorem to a connected component of the
stable quiver of kG-modules. It then follows from Theorem 4.5.8 that this
labelled tree is either a Dynkin diagram (finite or infinite) or a Euclidean
diagram. He then went on to examine each possibility in detail. His con-
struction used the finite generation of group cohomology. We shall present
Okuyama's approach [156] to this theorem, in which it is only necessary to
understand the cohomology of cyclic groups of prime order.

LEMMA 4.17.1. Let M1 and M2 be indecomposable kG-modules in the
same connected component of the stable quiver, and let N be a kG-module.
Then M1 ® N is projective if and only if M2 0 N is projective.

PROOF. It suffices to prove this in case there is an irreducible map M1 -->
M2. If M2 ®N is projective, then so is l2(M2) ®N by Corollary 3.1.6. Thus
if we tensor the almost split sequence terminating in M2 with N we obtain a
sequence with both ends projective, and hence the middle is projective. But
M1ON is a summand of this middle term by Proposition 4.13.3, and is hence
projective. The dual argument shows that if M1 ® N is projective then so is
M2®N.

Now given a connected component Q of the stable quiver of kG-modules,
we construct a subadditive function as follows. Choose a fixed indecompos-
able kG-module Mo in Q. Let P be a minimal p-subgroup of G such that
the restriction Mo J.p is not projective. If P is a maximal subgroup of P,
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then Mo J,p' is projective, P' is normal in P and PIP' is a cyclic group of
order p. Thus by Corollary 3.5.3, if X is an indecomposable summand of
Mo, p then X = 522(X). By Proposition 3.1.10, X® ® X is not projective,
and hence neither are X* ® Mo J,p nor (X* ® Mo 1P) 1G= X* 1G ®Mo. Thus
by the lemma, for any indecomposable kG-module M in Q, X* 1G ®M is
not projective.

We now define a function f from the vertices of Q to the natural numbers
via

f (M) = dimk ExtkG(X 1 G, M),

which is equal to dimk Extk'p(X, M Jp) by the Eckmann-Shapiro lemma.

LEMMA 4.17.2. The above constructed function f from the vertices of Q
to the natural numbers has the following properties:

(i) f (M) > 0 for every M in Q
(ii) f(112(M)) = f(M)
(iii) If 0 -+ 12(M) -+ E -> M -> 0 is the almost split sequence terminat-

ing in M then

f (E) < f (M) + f (522(M)) = 2f (M).

If f (E) < 2f (M) then M is periodic (i.e., 52nM = M for some n > 1).

PROOF. (i) This follows from Corollary 3.14.5.
(ii) By Proposition 2.5.7, we have

f (S12(M)) = dimk Extk'G(X 1 G, l2(M))

= dimk ExtLG(12(X 1G), l2(M))

= dimk ExtI (X 1G, M) = f (M).

(iii) This inequality follows from the long exact Ext sequence

- Ext)p(X, fl2M 1P) --> Extkp(X, E J.p) -> ExtkP(X, M J p) ->

If M is not periodic then the restriction of M to a vertex is still not periodic,
and so the subgroup P used in the construction of f is a proper subgroup of
the vertex. But then by Proposition 4.12.7 the sequence 0 -> 112(M) -i E -+
M -+ 0 splits on restriction to P and so the long exact Ext sequence reduces
to a short exact sequence and f (E) = 2f (M).

THEOREM 4.17.3. (i) (Webb [204]) Let T be the tree class of a connected
component Q of the stable quiver of kG-modules. Then T is either a Dynkin
diagram (finite or infinite) or a Euclidean diagram (apart from An).

(ii) The reduced graph T of Q is also either a Dynkin diagram (finite or
infinite) or a Euclidean diagram (this time An is allowed).

PROOF. (Okuyama) By the lemma, the function f commutes with the
translation 522 of Q, and satisfies 2f (x) > Eye, f (y). Thus f passes to a
subadditive function on both T and T. The result now follows from Theo-
rem 4.5.8.
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REMARK. Webb's original subadditive function was constructed as fol-
lows [204] (see also the treatment given in [17]). Let

00

TIM(t) = 1: t- din1k (P.)
n=0

where

...`P2`P1`Po
is a minimal resolution of M. Then it follows from the finite generation of
cohomology that 77M(t) is a rational function of t of the form p(t)/ f 1(1-
tki). If the pole at t = 1 of 77M(t) has order c (this is the same as the
complexity of M, see Chapter 5 of Volume II) then let 77(M) be the value
of the rational function (fl 1 ki)r)M(t)(1 - t)c at t = 1. Then i7(112(M)) _
77(M), and if 0 --> 112(M) --> E -* M -> 0 is the almost split sequence
terminating in M then 77(E) < 277(M). Thus 77 passes to a subadditive
function on T and T as above.

Following Webb, we now investigate the possibilities allowed by Theo-
rem 4.17.3.

THEOREM 4.17.4. Let Q be a connected component of the stable quiver
of kG-modules. Then one of the following occurs.

(i) Q consists of all the non-projective modules in a block of kG of finite
representation type. (We investigate this situation in Corollary 6.3.5 and
Theorem 6.5.5, where we see that Q is a finite tube (7G/e)Ap-_1.)

(ii) Q is isomorphic to ZT for some infinite Dynkin diagram T = Ate,
Cam, D,,, or A'. (Components of type ZAP are in fact by far the most00

common. To the best of my knowledge nobody knows of an example where
ZB,,, or ZC, occurs. ZA' occurs for infinitely many components in the case
of a block with dihedral defect group in characteristic two, and ZD,,, occurs
for infinitely many components in the case of a block with semidihedral defect
group in characteristic two.)

(iii) Q contains a periodic module. In this case Q is an infinite n-tube
(7L/n)Ac, for some n > 1.

(iv) The reduced graph is a Euclidean diagram. (This possibility has been
investigated by Okuyama [156] and Bessenrodt [32], who have shown that
this only occurs in characteristic two for blocks whose defect group is a Klein
four group. In this case the reduced graph is A12, B3 or A5.)

PROOF. By Theorem 4.17.3, the reduced graph is either a Dynkin dia-
gram (finite or infinite) or a Euclidean diagram. The latter is covered by case
(iv), so we concentrate on the former.

It the reduced graph is a finite Dynkin diagram then by Theorem 4.5.8 (iii)
the subadditive function f used in the proof of Theorem 4.17.3 is not additive.
So by Lemma 4.17.2 (iii) there is a periodic module in Q. By Theorem 4.16.2
every module in Q is periodic, so Q has only finitely many vertices. Now by
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Proposition 4.13.6, Q consists of all the modules in a block of kG of finite
representation type, and we are in case (i).

If the reduced graph is an infinite Dynkin diagram, i.e., one of Ate, B",
Cam, Dam, Ate, then the tree class T is also an infinite Dynkin diagram by
Lemma 4.15.7, and by the Riedtmann structure theorem Q = ZT/lI for
some admissible group of automorphisms II. If II is trivial then Q = ZT
and we are in case (ii). If T is one of A., Bw, C,,, or D., then every
non-trivial admissible group of automorphisms will identify two vertices in
the same DTr-orbit. In this case Q contains a periodic module and so by
Theorem 4.16.2, Q is an infinite tube, and we are in case (iii). If T = A"
then every non-trivial admissible group of automorphisms will either identify
two vertices in the same DTr-orbit so that again using Theorem 4.16.2 we
are in case (iii), or produce a quotient with only finitely many DTr-orbits so
that the reduced graph is of type An and we are in case (iv).

EXAMPLES. (i) In Section 4.3 we described the classification of modules
for the Klein four group. It is not hard to see that for the indecomposable
modules M of even dimension we have Q (M) = M, so that M lies in a
1-tube. The indecomposable rational canonical forms corresponding to the
modules going up this 1-tube correspond to the ascending powers of a given
irreducible polynomial. For example, if k is algebraically closed, the 1-tubes
take the form

Vl,a om V2,a = V3,a tom ...

and so the corresponding almost split sequences are

0 -* Vn a 4 Vn_l,a ® Via+l,a - V..,a -4 0.

So these modules form a family of 1-tubes parametrised by Pl (k). The re-
maining modules are the projective indecomposable and the modules of the
form S2t'(k). These form a quiver component of type ZA12.

...
112(k) 11(k)

2
k

2 1-1(k) 2 cl-2(k) ...

Pk

(ii) We also described in Section 4.3 the classification of modules for the
alternating group A4 in characteristic two. The modules W,,,,a for a V {w,
are periodic of period one and hence lie in 1-tubes. For a E {w, w} the
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modules W.,«(1), W a(w) and Wn a(w) form a 3-tube as follows:

W4,a (a) W4,a (1) W4,a (a)

W3,a (1) W3,a (d) W3,a (a) W3,a (1)

W2,a (a) W2,a (1) W2,« (a)

W1,«(1) W1,a(a) Wl,a(a) W1,a(1)

(identify left and right edges to make a 3-tube)
The modules Q" of simples all lie in a single quiver component isomorphic
to 7LA5 as follows:

Q2 (k) k Q-2(k)

Q(w) P,,, Q -'(W)

_
S22(w) Coz \, z "" "Q(k),Pk,Q (k)

S22(w) WZ "\\ ', '\\,
Q(w) PC, Q -1(w)

12
z i z(k) k Q -2(k)

(identify top and bottom edges to make a 7GA5).
The same story holds over any field containing three cube roots of unity.

If k does not have three cube roots of unity the the simple modules are k and
a two dimensional module S which when tensored with the field extension
obtained by adjoining cube roots of unity gives w ® (D. In this case the
only difference is that the modules Q" of simples form a quiver component

Q-2p)

Q-2(W)
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isomorphic to 7GB3 as follows:

112(k) 52-2(k)

(1,2) (2,1) (1,2) (2,1)

Q(S) , PS -1(S)

122(S) S Q-2(S)
(2,1) (1,2) (2,1) (1,2)

52(k) , Pk - Q-1(k)
(No identifications).

(iii) In Section 4.11 we described the classification of modules for the
dihedral group D4q in characteristic two, where q is a power of two. The
almost split sequences and Auslander-Reiten quiver are described as follows.
We define two functions Lq and Rq from the set W of words to itself as follows.
Let A = (ab)q-Ia and B = (ba)q-1b. If a word C starts with Ab-1 or Ba-1
then Lq(C) is obtained by removing that part; otherwise Lq(C) = A-1bC
or B-1aC, whichever is a word. Similarly if C ends in aB-1 or bA-1 then
Rq(C) is obtained by removing that part; otherwise Rq(C) = Ca-1B or
Cb-1A, whichever is a word. The maps Lq and Rq are bijections from W to
itself, and we have Lq o Rq = Rq o Lq.

The Auslander-Reiten translate on modules for D4q is given on modules
of the first kind by S22M(C) = M(LqRqC), and on modules of the second
kind by 12M(C, ) = M(C, ). The almost split sequence terminating in
M(C) is

0 -> M(LgRgC) - M(LqC) ® M(RqC) M(C) 0

unless C or C-1 is A, B or AB-1, in which case the almost split sequences
are

0 - M(A) -> M(Ab-IA) - M(A) - 0
0 -- M(B) -+ M(Ba-1B) -* M(B) - 0

0 -> M(A-1B) M((ab)q-1) ® M((ba)q-1) ® P - M(AB-1) -* 0

where P is the projective indecomposable of dimension 4q.
If p(x) is an irreducible polynomial in k[x], let 0,,,p denote an indecom-

posable automorphism of a finite dimensional vector space, with rational
canonical form associated to the polynomial p(x)n. Then the almost split
sequence terminating in the module of the second kind M(C, is

0 M(C, mn,p) - M(C, cn+l,p) T M(C, 0n-1,p) M(C, mn,p) -* 0

(where the term M(C, /n_1,p) is absent if n = 1).
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The modules of the first kind form an infinite set of quiver components
of type ZA'

M(RgC) M(Lq 1RgC) M(Lq 2C)

M(RqC) M(Lg1C)
A

.. .

M(LqRqC) M(C) M(Lg1Rg1C)

( f (C) M(R-1C)A
q

q -v/> >1 A y
M(L2gC) M(LgRg1C) M(Rg2C)

One of these has P attached to it:

M(RqAB-1)

M(A-1B) - P - M(AB-1)

... M(LqAB-1) ...

There are also two 1-tubes of modules of the first kind:

M(A) M(RqA) M(RQA)

M(B) M(RqB) M(R22B)

All the modules of the second kind lie in 1-tubes:

M(C, 01,p) = M(C, 02,p) = M(C, 03,p) .. .

4.18. Brauer graph algebras

In this section we describe some finite dimensional algebras which arise
in the representation theory of finite groups, namely the class of Brauer
graph algebras. We show that there is a simple condition given in terms
of almost split sequences which guarantees that a finite dimensional algebra
is a Brauer graph algebra. Among the Brauer graph algebras, we identify
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the ones of finite representation type as being the Brauer tree algebras. In
Section 6.5, we shall see that blocks of cyclic defect of a finite group are
Brauer tree algebras. The ideas involved in this section are an adaptation
of the ideas in Erdmann [101]. Throughout this section we work over an
algebraically closed field k of coefficients.

DEFINITION 4.18.1. A Brauer graph consists of a finite undirected con-
nected graph (possibly with loops and multiple edges), together with the fol-
lowing data. To each vertex we assign a cyclic ordering of the edges incident
to it, and an integer greater than or equal to one, called the multiplicity of
the vertex.

A Brauer tree is a Brauer graph which is a tree, and having at most
one vertex with multiplicity greater than one. If there is such a vertex, it is
called the exceptional vertex, and its multiplicity is called the exceptional
multiplicity; otherwise the exceptional multiplicity is defined to be one.

Note that at least in the case of a tree, the cyclic ordering on the edges
around a vertex is usually indicated by drawing the tree in such a way that
the ordering is anticlockwise around each vertex. Thus the cyclic orderings
are sometimes thought of as being given by a "planar embedding".

We say a finite dimensional algebra A is a Brauer graph algebra for a given
Brauer graph, if there is a one-one correspondence between the edges j of the
graph and the simple A-modules Sj in such a way that the projective cover
Pj of Sj has the following description. We have Pj/Rad(Pj) = Soc(Pj) = Sj,
and Rad(Pj)/Soc(Pj) is a direct sum of two (possibly zero) uniserial modules
Uj and Vj corresponding to the two vertices u and v at the end of the edge
j. If the edges around u are cyclically ordered i, j1, j2, ... , j,., j and the
multiplicity of the vertex u is eu, then the corresponding uniserial module Uj
has composition factors (from the top)

Sj1, Si2,... ,
Sar)

Sj, Sil I... ,Sill S;,... ,... ,Oj,

so that Sat, ... , Sj,, appear eu times and Sj appears eu - 1 times.
For example, a Brauer graph algebra for the Brauer graph

3
S1

S4
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(unmarked vertices have multiplicity one, and the cyclic ordering is anticlock-
wise around the vertices) has projective modules as follows:

S1 S2
S2 S1 S3

S1 S2 S4 S2

S2 S3 S1 S1

S1 S2 S3 S4

S2 S1 S3

S1 S2

54
S3

S2

S4

Note that by the methods of Section 4.1, at least if there are no loops,
the basic algebra of a Brauer graph algebra over an algebraically closed field
is almost determined by the Brauer graph. Namely, the Ext-quiver consists
of one vertex for each edge of the Brauer graph, and directed edges going in
oriented cycles corresponding to the vertices of the Brauer graph (or rather,
those with either valency or multiplicity greater than one). For example, the
Ext-quiver in the above example is

There is one relation corresponding to each edge, and it says that going round
the cycle corresponding to the vertex at one end, a number of times equal to
the multiplicity, is equal to some non-zero multiple of doing the same for the
vertex at the other end. In the above example the relations say that there
are constants A1i A2, A3 with

/3aoa,8a = A1.y6, a,3a/3a3 = A2.slj(, 6'y = AV1(e, (erg = 0.

By replacing the generators by multiples of the same generators, some of
the parameters can be set equal to one. If the graph is a tree, then all the
parameters can be set equal to one by this method, but in general the number
of remaining parameters will equal the number of edges minus the number of
vertices plus one (this is H1 of the graph!). However, even these parameters
are forced to be equal to one if the algebra is assumed to be symmetric. Thus
in the above example Al and A2 may be set equal to one by replacing -y and
e by suitable multiples, but then A3 is fixed. But if A is a linear map on A
as in the definition of a symmetric algebra, then

A(i(s) = A(ey() = A(a(a,13a,3) = A(,3a)3a,Qa)

= A(yb) = A(by) = A3.A(,q(-,)
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and so since A may not vanish on the one dimensional ideal defined by this
element, we have 1\3 = 1.

We now investigate some conditions which force a finite dimensional sym-
metric algebra to be a Brauer graph algebra. Suppose A is a finite dimensional
symmetric algebra. If S is a simple A-module with projective cover PS, and
U is a summand of Rad(PS)/Soc(PS), then we write U for the extension of
S = Ps/Rad(Ps) by U

S-+0
and U for the extension of U by S = Soc(PS)

0->S->U-#U->0.
LEMMA 4.18.2 (Erdmann [101]). Suppose A, S, Ps, U and U are as

above. If 0 $ U 0 Rad(Ps)/Soc(Ps) then in the almost split sequence ending
in U, the middle term is indecomposable.

PROOF. Suppose Rad(Ps)/Soc(Ps) decomposes as U ® V with U and V
non-zero. Note that V = 1(U). Let m be the number of simple summands
in Soc(U) = Soc(U) and n be the number of simple summands in

V/Rad(V) = V/Rad(V) = Soc(SZV) = Soc(cl2U).

If the almost split sequence ending in U is

0->S22U-*M__01+ U->0

then since U PS/Soc(PS), M has no projective summands. The almost
split sequence beginning with V = I1U is

0->V XQ-1M->SZ-2V-+ 0
and so by dualising and reversing the roles of U and V if necessary, we may
assume that _n < m. Since Soc(U) is a proper submodule of U, the inclusion
Soc(U) --> U factors through a and so Soc(M) has m + n < 2m simple
summands. _

If M = ®i` 1 Mi then the components ai : Mi -> U of a are irreducible
maps by Proposition 4.13.3. Since U has a unique maximal submodule, if
ai is injective, then Mi is a summandof U. But then ai has the non-trivial
factorisation Mi --> Ps/Soc(Ps) -» U. So each ai is surjective, and the
map PS -» U lifts to PS --> Mi. This lift has Soc(Ps) in its kernel, and
Ps/Soc(Ps) -» U is surjective on socles, so ai(Soc(Mi)) = Soc(U). If ai
is injective on socles then it is injective, contradicting the fact that it is an
irreducible map. Thus Soc(Mi) has strictly greater than m summands. Since
Soc(M) has at most 2m summands, this forces M to be indecomposable.

THEOREM 4.18.3. Suppose A is a finite dimensional symmetric algebra
with e simple modules, none of which is projective or periodic of period one.
Then there are at least 2e almost split sequences whose middle terms have
only one non-projective summand. If there are exactly 2e such almost split
sequences then A is a Brauer graph algebra.
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PROOF. For each simple module S we produce at least two almost split
sequences satisfying the given condition. Let PS be the projective cover of
S. Then Soc(Ps) < Rad(Ps) and Rad(PS)/Soc(PS) is non-zero, since S is
not projective or periodic of period one. If it is indecomposable then the
almost split sequences terminating in S and PS/Rad(PS) satisfy the given
condition (see Proposition 4.12.7). If Rad(Ps)/Soc(Ps) = U®V with U and
V non-zero then by the lemma the almost split sequence terminating in U
and V satisfy the given condition. It is easy to see that the 2e almost split
sequences produced in this way are distinct.

Now suppose there are e simple modules S1,... , Se and exactly 2e such
almost split sequences. Let Pi be the projective cover of Si. Then the quotient
Rad(Pi)/Soc(Pi) has at most two indecomposable summands, since otherwise
we can produce more almost split sequences by the above process. If there
are exactly two summands, we call them Ui and V. If Rad(Pi)/Soc(Pi) is
indecomposable we write Ui for it, and set V= 0 and Vi = Vi = Si. Now
the 2e almost split sequences ending in the Ui and Vi have to equal, as a
set, the 2e almost split sequences ending in Ui and V. Thus each Ui and
Vi is one of the Uj or Vj. In particular there is a permutation p of the
-set {Ui,Vi, 1 < i < e} with p(Ui) = Ui and p(Vi) = V. Thus Soc(Ui)
and Soc(Vi) are simple. Arguing by induction using the maps Ui -+ Ui and
Vi -* Vi which have kernel and cokernel Si, we see that each Ui and Vi
is uniserial and of the same length as p(Ui), resp. p(Vi). The composition
factors, from the top, of Ui are given by repeated application of p:

Ui/RadUi, PUi/RadpUi, P2Ui/RadP2U2, ...
We build the Brauer graph corresponding to A by taking an edge for each

Si. The two ends of this edge correspond to Ui and Vi. The edges in cyclic
order around the vertex at the end at Ui correspond to the simple modules
in the list above. The length of Ui is a multiple of the number of distinct
modules in this list, namely the number of images of Ui under p, and this
multiple is used as the multiplicity at the vertex.

PROPOSITION 4.18.4. If A is a Brauer graph algebra of finite representa-
tion type then the Brauer graph is a Brauer tree.

PROOF. We first show that if the graph has a cycle then the algebra has
infinite representation type. If Si,...... , S, are simple modules which form a
cycle in the graph of minimal length, then the projective cover Pi of Si has a
quotient Mi with Mi/Rad(Mi) = Si and Soc(Mi) = S2_1 ® Si+i, where the
subscripts are taken modulo r, and Rad(Mi)/Soc(Mi) does not involve any
of S1, ... , Sr as subquotients. So M1 ® M3 has a diagonal copy of S2 as a
submodule, which we may quotient out. Similarly M1® M3 ® M5 ® ... ®M,._ 1
(going once round the cycle if r is even and twice if r is odd) has a diago-
nally embedded submodule S2 ® S4 ®. . . ® Sr-2 which we quotient out to
make a module k, which still has two copies of Sr in its socle. Since k
is infinite, there are infinitely many isomorphisms A from the copy of Sr in
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Soc(M1) and the copy in Soc(Mr_1). Each such isomorphism defines a diag-
onally embedded copy of S1 in k, and we write M(A) for the quotient. We
claim that the M(A) are non-isomorphic indecomposable A-modules. First
we show that M(A) is indecomposable. If r = 1 or 2 then M(A) has a
unique minimal submodule and is hence indecomposable, so suppose r > 2.
Note that M(A)/Rad(M(A)) has no composition factors in common with
Rad(M(A))/Soc(M(.\)). Denote by Oi(A) the map Mi -> M(A) defined by
the construction. Suppose M(A) = M' ED M". Since M(A)/Rad(M(A)) is
multiplicity free, the image of 4i(A) composed with projection onto one of
the summands, say M', has non-zero image in M'/Rad(M') and the com-
posite with the other projection has zero image in M"/Rad(M"). Since Si
does not appear as a composition factor of Rad(M")/Soc(M") this means

that the image of Min M(A) - M" lies in Soc(M") and so the image
of Soc(Mi) in M" is zero. Thus both the simple summands of Soc(Mi) lie in
M'. One of these simple summands also lies in the image of Soc(Mi+1), and
so arguing by induction we see that every simple module in the socle of M
lies in the socle of M' and so M" = 0.

Next we show that if M(A) = M(p) then A = p. Suppose that
M(A) M(µ) is an isomorphism. Then z/' o ¢i(A) agrees on Soc(Mi) with
some non-zero multiple ai¢i(p) of q5 (p). Comparing the socles of Mi and
Mi+1, we see that ai = ai+1, so that by induction a1 = ar. Then comparing
the socles of M1 and Mr we see that A = p. We have assumed that r > 2 in
this argument, but a similar argument works for r < 2.

We have now shown that if A is of finite representation type then the
graph has no cycles, so it remains to show that there is at most one vertex
with multiplicity greater than one. If there is more than one, we may choose
a path with no repetitions, where the two end vertices have multiplicity
greater than one and none of the remaining vertices do. Let Si,...... , Sr be
the simple modules corresponding to the edges along this path. As before,
the projective cover Pi of Si has a quotient Mi with Mi/Rad(Mi) = Si,
Rad(Mi)/Soc(Mi) does not involve any of Si,... , Sr, Soc(Mi) = Si-1 EB Si+1
for 2 < i < r - 1, Soc(Mi) = Si ® S2 and Soc(Mr) = Sr_1 Sr. So we
may apply exactly the same procedure as before to obtain quotients M(A) of

M1 M3®
EB Mr-1 ED Mr-3 ED . . . EB M2 if r is odd. Exactly the same

arguments show that the M(A) are distinct and indecomposable.

RECENT PROGRESS: Since the first edition of this book was published,
Erdmann [226] has proved that for a block of a group algebra having wild
representation type, all connected components of the stable quiver have type
A,,.



CHAPTER 5

Representation rings and Burnside rings

Representation rings are a convenient way of organising information about
direct sums and tensor products of modules. J. A. Green was the first person
to make a systematic investigation of representation rings in the 1960's [117].
For this reason representation rings are also known as Green rings. In this
chapter we investigate representation theory from the point of view of the
structure of representation rings.

In the study of representation theory in characteristic zero, it is custom-
ary to work in terms of the character table, namely the square table whose
rows are indexed by the ordinary irreducible representations, whose columns
are indexed by the conjugacy classes of group elements, and where a typi-
cal entry gives the trace of the group element on the representation. Why
do we use the trace function? This is because the maps M --* tr(g, M) are
precisely the ring homomorphisms from the representation ring to C, and
these homomorphisms separate representations. In particular, in this case
the representation ring is semisimple. This has the effect that we can com-
pute with representations easily and effectively in terms of their characters;
representations are distinguished by their characters, direct sum corresponds
to addition and tensor product corresponds to multiplication. The orthog-
onality relations state that we may determine the dimension of the space
of homomorphisms from one representation to another by taking the inner
product of their characters.

How much of this carries over to characteristic p, where p I JGJ? The first
problem is that Maschke's theorem no longer holds; a representation may be
indecomposable without being irreducible. Thus the concepts of representa-
tion ring a(G) and Grothendieck ring do not coincide. The latter is a quotient
of the former by the "ideal of short exact sequences" ao (G, 1). Brauer dis-
covered the remarkable fact (he did not state it in this language) that the
Grothendieck ring 1Z(G) = a(G)/ao(G,1) is semisimple, and found the set of
algebra homomorphisms from this to C, in terms of lifting eigenvalues. Thus
he gets a square character table, giving information about composition fac-
tors of modules, but saying nothing about how they are glued together. For
some time, it was conjectured that a(G) has no nilpotent elements in general.
However, it is now known that a(G) has no nilpotent elements whenever the
Sylow p-subgroups of G are cyclic (p is the characteristic of k), as well as
a few other cases in characteristic two, whilst in general there are nilpotent
elements (Green [117], O'Reilly [158], Zemanek [208, 210], Benson and
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Carlson [20]). It is still not known whether there are nilpotent elements in
the representation ring of an elementary abelian 2-group of order at least
eight.

The next feature of ordinary character theory which we may wish to
mimic is the bilinear form and orthogonality relations. There are two sensible
bilinear forms to use here, which both agree with the usual inner product in
the case of characteristic zero. These are

(M, N) = dimk HomkG(M, N), (M, N) = rank of g on Homk(M, N).
gEG

There are elements u and v of a(G) with uv = 1, (M, N) = (v.M, N) _
(M, u.N) and (M, N) = (u.M, N) = (M, v.N). It is thus easy to pass back
and forth between these two bilinear forms, and the second has the advantage
that it is symmetric. The non-singularity of these bilinear forms follows from
the fact that the almost split sequences provide dual elements to the inde-
composable modules. These dual elements correspond to the simple modules
and the almost split sequences.

5.1. Representation rings and Grothendieck rings

Suppose R is a commutative ring of coefficients. We define the represen-
tation ring a(G) = a(RG) to be the ring with generators the isomorphism
classes [M] of RG-lattices (finitely generated R-projective RG-modules), and
relations

[M] + [N] = [M ®N], [M ®N].

The identity and zero elements of this ring are given by

1 = [R], 0 = [0]

where R is the trivial RG-lattice and 0 is the zero lattice.
The usual properties of direct sum and tensor product show that a(G) is

a commutative associative ring with identity. In the presence of the Krull-
Schmidt theorem, the additive structure of a(G) is clear. Each element can
be written uniquely as a finite sum Ei ni [Mi] with the Mi indecomposable.
Thus the additive group of a(G) is free abelian on generators [Ma], one for
each isomorphism class of indecomposable lattice Ma. Note that there are
usually infinitely many of these, so that a(G) is quite a large object. It is,
for example, usually not a Noetherian ring.

It is often convenient to introduce various rings of coefficients (not to be
confused with the ring R) into the representation ring. We set

A(G) = C ®z a(G), a(G)Q = Q ®z a(G), a(G)p = Z[1/p] ®z a(G).

More generally, if S is a set of primes, we can look at the localised rep-
resentation ring a(G)(s), obtained by allowing denominators coprime to S.
Thus for example if S = {p}, we write a(G)(p) for the p-local representation
ring, and if S is the set of all primes other than p, we obtain a(G)p as above.
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We also introduce various ideals and subrings of a(G) as follows. If H
is a subgroup of G, we denote by a(G, H) the ideal (cf. Corollary 3.6.7) in
a(G) spanned by the relatively H-projective RG-lattices. If X is a permu-
tation representation of G, we write a(G, X) for the ideal spanned by the
relatively X-projective RG-lattices (see Definition 3.6.13). Similarly, if X is
a collection of subgroups closed under conjugation and intersections, we de-
note by a(G, X) the ideal (cf. Corollary 3.6.8) in a(G) spanned by summands
of sums of relatively H-projective RG-lattices for H E X. We similarly write
A(G, H), A(G, X), A(G, X), a(G, H)Q, and so on, for the corresponding no-
tions in A(G), a(G)Q, etc.

If H is a subgroup of G, we denote by ao(G, H) the ideal spanned by the
difference elements of the form M2 - M1 - M3, where 0 -> M1 -+ M2 -->
M3 -p 0 is a short exact sequence of RG-lattices which splits on restriction
to H. If X is a permutation representation of G, we write ao(G,X) for
the ideal spanned by the difference elements of the above form for X-split
sequences. If X is a collection of subgroups closed under conjugation and
intersections, we write ao(G, X) for the intersection of the ao(G, H) for H E
X. The Grothendieck ring of RG-lattices is by definition the quotient
R(G) = a(G)/ao(G,1). Note that all short exact sequences of RG-lattices
split on restriction to the trivial subgroup, since RG-lattices are by definition
projective as R-modules.

We write Ko(RG) for the ring with generators the isomorphism classes
[P] of finitely generated projective RG-modules, with the same relations

[P] + [Q] _ [P ®Q], [P] [Q] _ [P ®Q]
as before. This is called the Grothendieck ring of projective RG-modules.
The same definition may be made with RG replaced by any ring A.

Now in case H = 1, an RG-lattice which is relatively 1-projective is
projective. It follows that a(RG, 1) is the image in a(RG) of the natural map
Ko(RG) - a(RG). If the Krull-Schmidt theorem holds for RG-lattices, this
map is injective and we have Ko(RG) = a(RG, 1). It is unclear whether this
is true in the absence of the Krull-Schmidt theorem.

If H is a subgroup of G, we have restriction and induction maps on rep-
resentation rings and Grothendieck rings given by restriction and induction
of RG-lattices and RH-lattices

resG,H : a(RG) -* a(RH) resG,H : Ko(RG) - Ko(RH)
indH,G : a(RH) -> a(RG) indH,G : K0(RH) - Ko(RG).

Note that resG,H is a ring homomorphism, while indH,G is just an additive
map, whose image is an ideal by Proposition 3.3.3 (i).

Tensor induction is not additive. However, by Proposition 3.15.2 (i), (iii)
and (iv), it induces a well defined ring homomorphism

indHG : a(RH)/ E Im(indK,H) , a(RG)/ E Im(indK,G).
K<H K<G
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5.2. Ordinary character theory

The easiest case in which to understand a(G) is the case R = C. In a
sense, this is the model for all further developments. In this case, we have
ring homomorphisms

tg:a(G),C
M - tr(g, M),

one for each conjugacy class of elements g E G. Using modules induced from
cyclic subgroups, it is easy to see that these homomorphisms are distinct (the
argument is spelled out in detail in Lemma 5.3.1).

LEMMA 5.2.1. The 7L-rank of a(CG) (i.e., the number of isomorphism
types of ordinary irreducible representations of G) is equal to the number of
conjugacy classes of elements of G.

PROOF. By Maschke's theorem, a(CG) = R(CG) has a Z-basis consist-
ing of the irreducible CG-modules. Using the Wedderburn structure theorem
(Section 1.3), CG is a sum of matrix algebras over C. Each matrix compo-
nent corresponds to an isomorphism class of simple module, and has a one
dimensional centre given by scalar matrices. Thus the Z-rank of a(CG) is
equal to the dimension of Z(CG). The lemma now follows from the fact that
the conjugacy class sums form a basis for Z(CG).

LEMMA 5.2.2. Suppose Rl is a commutative ring, and R2 is an integral
domain. Then any set of distinct ring homomorphisms Xi : R1 ---+ R2 is
linearly independent over R2.

PROOF. Suppose 1 aiAi = 0 is a linear relation between such ring
homomorphisms, with ai E R2 and n minimal. There is no linear relation
with n = 1. Choose y E R1 such that A, (y) .2 (y). Then for all x E Rl we
have

n n

E aiAi(x)Ai(y) = E aiAi(xy) = 0
i=1 i=1

and so
n

E ai(Ai(y) - A1(y))Ai(x) = 0.
i=2

Since R2 is an integral domain, the coefficient of A2 is non-zero, and so this is
a shorter linear relation among the .i, contradicting the minimality of n.

PROPOSITION 5.2.3. Every ring homomorphism R(CG) = a(CG) -+ C
is of the form tg for some g E G. The sum of these maps is an isomorphism
after tensoring with C :

tg : C ®z R(G) = A(G) C.
ccl's

of gEG
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PROOF. Using the above two lemmas, with R1 = a(CG) and R2 = C,
we see that there can be at most as many ring homomorphisms a(CG) -+ C
as there are conjugacy classes of elements in G. Since the tg are such ring
homomorphisms, we have equality.

The character of a CG-module is its image under the above map > t9.

5.3. Brauer character theory
If R = k is a field of characteristic p, we have to modify the procedure

given in the last section for obtaining ring homomorphisms a(kG) -+ C. Let
k be an algebraic closure of k, and let y be the p'-part of the exponent of G.
Then the -yth roots of unity in k and in C both form a cyclic group of order
-y. We choose once and for all an isomorphism between these cyclic groups.
Let g be a p'-element of G. Given a kG-module M, we restrict it to (g) and
extend the field to k. Then the representation breaks up as a direct sum of
eigenspaces of g, and each eigenvalue of g is a yth root of unity in k. We
define tg(M) to be the sum of the corresponding roots of unity in C. It is
clear that t9 : a(G) -+ C is a ring homomorphism. We also write t9 for the
corresponding algebra homomorphism A(G) --* C.

LEMMA 5.3.1. Suppose k contains the primitive yth roots of unity, where
y is the p'-part of the exponent of G. Let t9 be as above. Then there is an
element x E A(G, 1) with tg(x) # 0 and tg'(x) = 0 for g' a p'-element not
conjugate to g in G.

PROOF. Suppose g has order n, and let e be the primitive nth root of
unity in k corresponding to e2"Z/n E C. Let Mj be the one dimensional
representation g H (ei) of (g) and take

n
x= E e-2,rij/n A T GI E A(G).

j=1

If g' is not conjugate to an element of (g) then Mj TG j.(g') is a free module
(for example by the Mackey decomposition theorem) and so tg (x) = 0. We
also have

M j 1 G j (9) = hI f ® (free)
hE Nc (9) / (9)

so that since

E e-2rrij/nt9r(hMj) _
n if hgh-1 = gm'

0 otherwisej=1

it follows that t.-(x) : 0 if and only if gm is conjugate to g in NG(g).

PROPOSITION 5.3.2. Suppose M and M' are kG-modules. Then the fol-
lowing are equivalent:

(i) tg(M) = tg(M') for all p'-elements g E G.
(ii) M and M' have the same composition factors.
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PROOF. Since all short exact sequences split on restriction to (g) for g
a p'-element, it is clear that (ii) implies (i). Conversely, suppose t9(M) =
t9 (M') for all p'-elements g E G. We may replace M and M' with completely
reducible modules with the same composition factors, without affecting the
values of tg(M) and tg(M'). Let the irreducible kG-modules be MI,... , M,.,
and let the multiplicity of Mi in M be ai and in M' be bi.

If k' is a finite extension of k, then the map R(kG) -s 7Z(k'G) given by
extension of scalars is injective, since composing with the map R(k'G) ->
R(kG) given by restriction of scalars gives multiplication by Ik' : ki. We may
thus assume that k is a splitting field for G.

By the Wedderburn structure theorem, we may choose elements xi E kG
with trace 1 on Mi and zero on the other Mj. Namely, regarding kG/J(kG)
as a sum of matrix algebras over k, we choose a pre-image xi in kG of the
element consisting of a 1 in the top left entry of the ith matrix component
and zeros everywhere else.

Since the trace of an element of G is equal to the trace of its p'-part, the
hypothesis tells us that every element of kG has the same trace on M as on
M'. In particular, the elements xi do, and so ai = bi mod p. So stripping
off some common direct summands, we may assume that ai = bi = 0 mod
p. If we divide these multiplicities by p, the values of t9 are also divided by
p, and so we may continue by induction to show that the multiplicities are
equal.

THEOREM 5.3.3. Every ring homomorphism R(G) = a(kG)/ao(kG,1) ->
C is of the form tg for some p'-element g E G. If k contains the -yth roots of
unity, then the sum of these maps is an isomorphism after tensoring with C:

t9 : C ®z R(G) = A(G)/Ao(G,1) ® C.
ccl's of

p'-elements gEG

PROOF. By the proposition, the map E tg is injective. By Lemmas 5.3.1
and 5.2.2, the tg are linearly independent, and so E tg is surjective, and there
are no more ring homomorphisms a(kG)/ao(kG,1) - C.

The Brauer character of a kG-module is its image under the above map
tg. In contrast to the situation in characteristic zero, it turns out that in

characteristic p the field of definition of a representation may be deduced
from the character values, in the following sense.

PROPOSITION 5.3.4. Let k be an algebraically closed field of characteristic
p, and let 0 : G -* GLr(k) be a map affording a kG-module M. Denote by
Fn : GLr(k) -> GLr(k) the Frobenius map, which replaces matrix entries
by their path powers. If the representation Fn (M) afforded by the map Fn o
is isomorphic to M, then there is an FpnG-module Mo with

k ®Fpn Mo = M.

Note that the character of Fn(M) is given by tg(Fn(M)) = tgpn (M).
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PROOF. Since M = Fn(M), there is a matrix X E GLr(k) such that for
all g E G, X¢(g)X-1 = Fnlb(g). By a theorem of Lang (see for example
Srinivasan [191], p. 11), the map Y --> Fn(Y)-1Y on GLr(k) is surjective,
and so we may write X = Fn(Y)-lY for some Y E GLr(k). Then for all
g E G we have Y¢(g)Y-1 = Fn(Yca(g)Y-1). Thus changing basis by means
of Y, we see that the image of G -* GLr (k) lies in GLr (IFp..) as required.

COROLLARY 5.3.5. Suppose k contains the primitive 7th roots of unity,
where ry is the p'-part of the exponent of G. Then the Z-rank of R(kG) (i.e.,
the number of isomorphism types of p-modular irreducible representations of
G) is equal to the number of conjugacy classes of p'-elements of G.

EXERCISE. Use the above arguments to count the number of isomorphism
types of p-modular irreducible representations of G in case k does not contain
the -yth roots of unity.

COROLLARY 5.3.6. The representation ring A(G) decomposes as a direct
sum of ideals

A(G) = A(G,1) ® Ao(G,1).

The Cartan homomorphism
c : A(G,1) y A(G) -» A(G)/Ao(G,1)

is an isomorphism. In particular, the Cartan matrix is non-singular. Thus
projective kG-modules with the same Brauer character are isomorphic.

PROOF. By Lemmas 5.3.1 and 5.2.2, the t9 are linearly independent on
A(G, 1), and so c is injective. But the number of isomorphism types of
projective indecomposables is equal to the number of isomorphism types of
irreducibles, so the dimensions of A(G, 1) and A(G)/Ao(G,1) are equal, so
c is an isomorphism. Letting e = c-1(1), we see that e is an idempotent,
A(G, 1) = e.A(G), and Ao(G,1) _ (1 - e).A(G).

5.4. G-sets and the Burnside ring
We now go through the same process with permutation representations

as we went through in the last two sections with linear representations. The
result is called the Burnside ring. There is a natural homomorphism from
the Burnside ring to the representation ring of RG for any coefficient ring R,
and we shall use this fact to obtain information about representation rings
(namely various "induction theorems") in Section 5.6.

We define the Burnside ring b(G) to be the ring with generators the
isomorphism classes [X] of permutation representations of G on finite sets,
and relations

[X] + [Y] = [XIJY], [X].[Y] = [X X Y]

giving the addition and multiplication in terms of disjoint union and Carte-
sian product. The identity element of this ring corresponds to the one point
set with trivial action, and the zero element corresponds to the empty set.
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Now any permutation representation X of G may be expressed uniquely
as a disjoint union of orbits. The isomorphism classes of transitive permuta-
tion representations are in one-one correspondence with the conjugacy classes
of subgroups in such a way that the permutation representation G/H corre-
sponds to the conjugacy class of H, which is characterised as the stabiliser
of a point. So the additive structure of b(G) is easy to describe. It is the
free abelian group, with basis corresponding to the transitive permutation
representations [G/H], one for each conjugacy class of subgroups H < G.

EXAMPLE. Suppose G is the symmetric group S3. Then we shall denote
the transitive permutation representations of G by 1, a, b and c, on 1, 2, 3
and 6 objects respectively. The multiplication table of b(G) is as follows:

x 1 a b c
1 1 a b c
a a 2a c 2c

b b c b+c 3c
c c 2c 3c 6c

What are the ring homomorphisms f : b(G) -* C? Clearly for any such
ring homomorphism we have f (1) = 1. Since f (c)2 = 6f (c), either f (c) = 0
or f (c) = 6.

Case (i): f (c) = 6. In this case f (a) f (c) = 2f (c) implies that f (a) = 2,
while f (b) f (c) = 3f (c) implies that f (b) = 3.

Case (ii) : f (c) = 0 implies that f (a) f (b) = 0. In this case we have
f (a)2 = 2f (a) and f (b)2 = f (b), and so we have either f (a) = 0, f (b) = 1,
or f (a) = 2, f (b) = 0, or f (a) = 0, f (b) = 0.

We may summarise this information in the following table:

c

b

a

1

6 0 0 0

3 1 0 0
2 0 2 0

1 1 1 1

We can interpret this table in terms of the numbers of fixed points on sub-
groups as follows. If H < G, the map

fH:b(G),ZCC
sending a permutation representation X to IXHI is a ring homomorphism,
since

I (X u y)HI
= IXHI + IYHI ,

I (X X y)HI
= I XHIIYHI

Clearly if H is not conjugate to K then fH : fK (evaluate on G/H and
G/K).

LEMMA 5.4.1. We have fH(G/K) 0 if and only if H is conjugate to a
subgroup of K.
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Let B(G) = C ®z b(G). Then fH extends in an obvious way to a C-linear
ring homomorphism

fH:B(G)-*C
THEOREM 5.4.2. Every ring homomorphism b(G) -> C is of the form fH

for some H < G. The sum of these maps is an isomorphism after tensoring
with C:

fH : B(G) , ® C.
H<GG

PROOF. By Lemma 5.2.2, the fH are linearly independent, and so the
above map E fH is surjective. Since dime B(G) is equal to the number of
conjugacy classes of subgroups, it follows that it is an isomorphism.

We write EH for the primitive idempotent corresponding to H in the right
hand side of the above isomorphism, and eH for the corresponding element
of B(G).

It follows from the above theorem that

fH:b(G)-> ® Z
H<GG

is injective with finite cokernel. How big is this cokernel? Choosing bases by
listing subgroups in non-decreasing order of size, the matrix of E fH is

The diagonal entries are fH(G/H) = ING(H) : HI, and so the size of the
cokernel, which is the determinant of this matrix, is equal to

fl ING(H) : H1.
H<GG

REMARK. Burnside calls the above matrix the table of marks. In sec-
tion 185 of his book 144], you will find the following table of marks for the
alternating group A4.

1 C2 C3 V4 A4
1 12 0 0 0 0

C2 6 2 0 0 0

C3 4 0 1 0 0

V4 3 3 0 3 0

A4 1 1 1 1 1

CONGRUENCES AND IDEMPOTENTS IN b(G). The idempotents in B(G)
are the elements

E eH
HER
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where f is a collection of representatives of distinct conjugacy classes of
subgroups.

QUESTION 5.4.3. When is EHErf eH in b(G) ?

More generally, if S is a set of primes, we can look at the localised Burn-
side ring b(G)(S), obtained by allowing denominators coprime to S. Thus for
example if S = {p}, we write b(G)(p) for the p-local Burnside ring, and if S
is the set of all primes other than p, we write b(G)p for Z[l/p] ®z b(G). All
these rings may be thought of as subrings of B(G).

QUESTION 5.4.4. When is EHEf eH in b(G)(S) ?

LEMMA 5.4.5 (Burnside). The number of orbits of G on X is equal to

IX(g) I
IGI

and in particular
gEG

J` Jx(g)I = 0 (mod IGI).
9EG

PROOF. Count {(x,g) I xg = x} in two ways.

Hence, if H < K < G, then the quotient group K/H acts on X H, and
we have

IX(H,k) I = 0 (mod IK/HI ).
kEK/H

Here, k denotes any pre-image of k in K, and the group (H, k) is clearly
independent of this choice.

We can obtain a complete set of congruences (i.e., characterising the im-
age of b(G) under the map E fH) by taking K = NG(H) for each conjugacy
class of subgroups H of G.

These congruences are independent since they form a lower triangular
matrix of congruences with ones on the diagonal. For example, in the case
of the example above from Burnside's book, the congruences say that

12 0 0 0 0 1 0 0 0 0

6 2 0 0 0 3 1 0 0 0

4 0 1 0 0 8 0 1 0 0 - 0 (mod (12 2 1 3 1)).
3 3 0 3 0 0 1 0 1 0
1 1 1 1 1 0 0 0 2 1

The second matrix in the above equation has its rows and columns labelled
by the conjugacy classes of subgroups of G, and has a non-zero entry if and
only if the subgroup H corresponding to the column is contained normally
in a conjugate of the subgroup K corresponding to the row, with cyclic
quotient. The entry is the number of times conjugates of K appear in the
above congruence for NG(H)/H; namely the sum, over the subgroups K in
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the given G-conjugacy class- that contain H normally with cyclic quotient, of
the number of generators of the cyclic group K/H.

These congruences therefore define an additive subgroup of EH<GG Z of
the same index as b(G), which therefore is b(G). We have therefore proved
the following theorem of Dress [86] (our presentation follows tom Dieck [72]).

THEOREM 5.4.6. The image of the map

fH:b(G)-> ® Z
H<GG

is given by the congruences

E i{generators of K/H}I. fH(x) - 0 (mod JNG(H) : HI)
k

where the sum runs over the subgroups K < G with H < K and K/H
cyclic.

Note that we can separate these congruences into p-primary components
by using the pairs of groups H < N < G with N/H E Sylp(NG(H)/H).

THEOREM 5.4.7 (Dress). (i) An idempotent FHEH eH E B(G) lies in
b(G) if and only if, whenever H < H' with cyclic quotient, H E N H' E H.

(ii) An idempotent EHErc eH E B(G) lies in b(G)(s) if and only if, when-
ever H < H' of index p E S, H is conjugate to a subgroup in 7-l if and only
if H' is.

PROOF. Suppose EHE7-I eH E b(G)(s) and H < H' with cyclic quotient of
order p E S. Then the congruence I X H I = I X H' mod H' : HI implies that
for all x E b(G)(s), fH(x) - fH'(x). Since 0 # 1 mod p, H E H H' E H.
Conversely, by the above theorem, if these congruences are satisfied then
EHER eH E b(G)(s).

COROLLARY 5.4.8 (Dress). (i) The primitive idempotents in b(G) are of
the form

eH
H(°°)=Ho

where H runs through representatives of conjugacy classes of subgroups of G
for which H(°°) is a given perfect subgroup Ho of G.

In particular, G is soluble if and only if the only idempotents in b(G) are
0 and 1.

(ii) The primitive idempotents in b(G)(p) are of the form

E eH
OP(H)=Ho

where H runs through representatives of conjugacy classes of subgroups of G
for which OP(H) is a given p-perfect subgroup Ho of G (i.e., subgroup with
no normal subgroup of index p).
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INDUCTION AND RESTRICTION. If H < G, restriction is a ring homo-
morphism

resG,H : b(G) - b(H).

Induction is defined on permutation representations as follows. If X is
an H-set, define

GxHX=(GxX)/-
where the equivalence relation - is given by (gh, x) - (g, hx) for all h e H.
The map

indH,G : b(H) -> b(G)

X --*GxHX
is a homomorphism of additive groups, but not of rings. The following lemma
summarises some properties of induction and restriction.

LEMMA 5.4.9. (i) (G XH X)G = 0 if H < G.
(ii) indH,G(a.resG,H(b)) = indH,G(a).b.
(iii) (Mackey formula):

resG,HindK,G(a) _ indHn9K,HresgK,Hn9K(9a).
HgK

PROOF. This is left as an easy exercise.

THEOREM 5.4.10. Suppose H is a subgroup of G. Then
(i) indH,G(eH) = ING(H) : HIeH, where the first eH is in B(H) and the

second is in B(G). In particular, as an element of B(G), we have

eH E Im (indH,G)

(ii) B(G) = Im(indH,G) ® Ker(resG,H) as a direct sum of ideals.

PROOF. The restriction of eH to any proper subgroup of H is zero, since
all fk vanish on it. So by the Mackey formula, for K < G we have

resG,KindH,G(eH) = E indKngH,KresgH,Kn9H(geH) = ind9H,K(geH).
KgH KgH

K> 9H

The value of fk on an element induced from a proper subgroup of K is zero,
and so we have

fk(indH,G(eH)) = fk(resG,KindH,G(eH)) = to
NG(H) HI H

H -
K

96 K .

It follows that fk(indH,G(eH) = fk(ING(H) : HIGH) for all K < G, and so
by Theorem 5.4.2 we have indH,G(eH) = ING(H) : HIeH.

It now follows that the eH, with H' < H lie in Im(indH,G) while the eH'
with H' not conjugate to a subgroup of H lie in Ker(resG,H), which proves
the given direct sum decomposition.
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The second part of the above theorem has the following implication for
representation rings [23].

COROLLARY 5.4.11. For any coefficient ring R we have

A(RG) = Im(indH,G) ® Ker(resG,H)

as a direct sum of ideals.

PROOF. There is a natural map 0: b(G) -* a(RG), which takes a permu-
tation representation to the matrix representation with the permuted points
as basis. We also write 0 for the corresponding map B(G) -> A(RG). Writ-
ing 1 = e + e' with e E Im(indH,G) and e' E Ker(resG,H) as in the theorem,
we see that 1 = O(e) + ¢(e') in A(RG) so that

A(RG) = Im(indH,G) + Ker(resG,H).

If x E Im(indH,G) n Ker(resG,H) then x = x.1 = x.o(e) + x.O(e') = 0 since
the product of elements of Im(indH,G) and Ker(resG,H) is zero.

5.5. The trivial source ring
At the end of the last section, we made use of the natural map

b(G) -+ a(RG), which takes a permutation representation to the matrix
representation with the permuted points as basis. In other words, if X is a
permutation representation, then the free R-module RX is an RG-module
with the obvious action. The map 0 is usually not injective, but we wish
to study its image. For many purposes, it is better to work with subrings
of a(RG) which are closed under taking direct summands, so we make the
following definition.

DEFINITION 5.5.1. We write a(G,Triv) or a(RG, Triv) for the subring
of a(RG) consisting of linear combinations of trivial source modules (i.e.,
direct summands of permutation modules). As usual, we write A(G, Triv)
for C ®Z a(G, Triv), and so on.

Let (K, 0, k) be a splitting p-modular system for G and all its subgroups.
We investigated trivial source modules in Section 3.11, and found that a
trivial source kG-module has a unique lift to a trivial source OG-module.
Thus we have the following.

LEMMA 5.5.2. The natural map

a(OG,Triv) - a(kG, Triv),

given by reducing trivial source OG-modules modulo p, is an isomorphism of
rings.

We now investigate the ring homomorphisms

a(kG, Triv) = a(OG, Triv) -* C.
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DEFINITION 5.5.3. A group H is said to be p-hypo-elementary if the
quotient H/Op(H) is cyclic; in other words, if H has a normal p-subgroup
for which the quotient is a cyclic p'-group.

If H is a p-hypo-elementary subgroup of G, and g E H/Op(H), we define
a ring homomorphism

5H,g : a(kG, Triv) -> C

as follows. If M is a trivial source kG-module, let M JH= M1 ® M2, where
M1 is a direct sum of indecomposable modules with vertex Op(H), and M2
is a direct sum of indecomposable modules with vertex properly contained in
Op(H). Since M is a trivial source module, Op(H) acts trivially on M1i and
so M1 is a module for H/Op(H). We define

SH,g(M) = tg(Ml)

Since the tensor product of any module with a module whose vertex is prop-
erly contained in Op(H) is a direct sum of such modules (Corollary 3.6.7), it
is clear that sH,g is a ring homomorphism.

PROPOSITION 5.5.4 (Conlon). Suppose M1 and M2 are trivial source kG-
modules and sH,g(MI) = SH,g(M2) for all pairs (H,g). Then M1 = M2.

PROOF. By stripping off common direct summands, we may suppose that
no direct summand of M1 is isomorphic to a direct summand of M2. Let D be
a maximal element of the set of vertices of summands of M1 and M2. Suppose
MI.INN(D)= Mi®M1 and M21NN(n)= M2® M2, where M1' and M2 are sums
of modules with vertex D, and All , M2 are sums of modules whose vertex
does not contain D. Thus Mil and M2 are projective NG(D)/D-modules.
Since tg(MI) = tg(M2) for all p'-elements gE NG(D)/D, by Corollary 5.3.6
we have M1' = M2 as modules for NG(D)/D. By Theorem 3.12.2, the Green
correspondents of summands of M1' and A12' are summands of M, and M2,
contradicting the fact that MI and M2 have no isomorphic summands.

COROLLARY 5.5.5. Every ring homomorphism a(G, Triv) --+ C is of the
form SH,g for some pair (H, g) with H p-hypo-elementary and g a generator
of H/Op(H). The sum of these maps is an isomorphism after tensoring with
C:

E SH,g : A(G, Triv) --> ® C.
ccl's of

pairs (H, g)

PROOF. By the proposition, the map E SH,g is injective. To show that
the sH,g are distinct, we evaluate them on Green correspondents of projec-
tive NG(D)/D-modules (viewed as NG(D)-modules) as in the proof of the
proposition. By Lemma 5.2.2 it follows that F_ sH,g is an isomorphism, and
that there are no more ring homomorphisms from a(G, Triv) to C.



5.6. INDUCTION THEOREMS 185

5.6. Induction theorems

As an application of the theory of Burnside rings and trivial source rings,
we shall prove some induction theorems in representation theory. Each of
these theorems says that a representation ring can be written as a sum of
the images of induction from a certain class of subgroups. Which class of
subgroups is involved depends on whether we look at the full representation
ring or just the Grothendieck ring, and what coefficients we allow in the
representation ring. The four induction theorems we have in mind are:

A) Artin's induction theorem,
B) Brauer's induction theorem,
C) Conlon's induction theorem,
D) Dress' induction theorem.
The first two of these are theorems about Grothendieck rings, while the

last two are about representation rings.
The approach we shall be taking was communicated to me by Ken Brown,

to whom I am very grateful for permission to use this material here. It is a
distillation of ideas of many people, and I am sure they'll not feel too hurt if
they are not mentioned here.

THEOREM 5.6.1 (Artin's induction theorem). Suppose k is a field. Then

C ®z R(kG) = Im(ind(9),G).
(9) <G

Here, (g) runs over the cyclic subgroups of G if k has characteristic zero, and
the cyclic subgroups of order prime to the characteristic otherwise..

PROOF. The proof of this theorem is easy, and will be our model for
proving the other induction theorems. We start off by writing down a com-
mutative diagram:

B(G) ® C
H<GG

C ®z R(G) - ® C
9EGG

In this diagram, 0 is the map which takes a permutation representation
to the matrix representation with the permuted points as basis. The elements
g run through a set of representatives of the conjugacy classes of elements
of G if k has characteristic zero, and the conjugacy classes of elements of
order prime to the characteristic otherwise. The horizontal maps are the
ones given in Proposition 5.2.3, Theorem 5.3.3 and Theorem 5.4.2. Write EH
for the primitive idempotents in the top right hand corner of this diagram,
and eg for the primitive idempotents in the bottom right. Recall that eH is
the preimage in B(G) or 6H. The map A takes a primitive idempotent EH to
E(g)=H eg if H is cyclic, and 0 otherwise. It is an easy exercise to check that

10
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this diagram commutes. One proceeds coordinate at a time, and one uses
the fact that the trace of a group element on a permutation representation
is equal to the number of fixed points.

It follows that lp(eH) = 0 unless H is cyclic. But in Section 5.4 we showed
that eH E Im(indH,G). So applying ¢ to the equation

1= E eH
H<GG

in B(G), we obtain the equation

1 = cb(eH)
H<GG
cyclic

in C ®z R(G). In particular, we have

1 E Im(ind(g),G).

(g)<G

However, by the identity

indH,G(a.resG,H(b)) = indH,G(a).b

this sum of images of induction maps is an ideal in C ®z R(G). Artin's
induction theorem now follows from the fact that an ideal containing the
identity element must be the whole ring.

We now turn our attention to Brauer's induction theorem. This time,
we work with integer, rather than complex coefficients in our representation
iings. However, since b(G) does not have many idempotents (see Section 5.4),
we must work with q-local coefficients as an intermediate step, where q is a
prime which may or may not equal the characteristic of k.

b(G)(q) - ® C
H<GG

R(G)(q) > ® C
gEGG

Recall from Section 5.4 that the primitive idempotents in b(G)(q) are of
the form

E eH
O9(H)=Ho

where H runs through representatives of conjugacy classes of subgroups of
G for which Oq(H) is a given q-perfect subgroup Ho of G. Now 0 kills such
an idempotent if and only if Ho is non-cyclic. So in R(G)(q) we have

1= E O(eH)
Ho cyclic OQ(H)=Ho
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DEFINITION 5.6.2. A group H is q-hyperelementary if Oq(H) is cyclic.
In other words, H has a normal cyclic q'-subgroup for which the quotient is
a q-group.

PROPOSITION 5.6.3.

R(kG)(q) _ Im(indH,G)
H q-hyper-
elementary

Similarly, if S is the set of all primes not dividing IGI then

R(G)(s) = R(G)[IGI-1] = > Im(indH,G).
H cyclic

Combining these statements using the Chinese remainder theorem, we
obtain the first form of the Brauer induction theorem.

THEOREM 5.6.4 (Brauer's induction theorem).

R(kG) = Im(indH,G).
H q-hyper-
elementary
for some q

COROLLARY 5.6.5. Suppose (K, 0, k) is a p-modular system. Then the
decomposition map

d : R(KG) -> R(kG)

(see Section 1.9) is surjective.

PROOF. Since indH,G commutes with d, it follows from Brauer's induc-
tion theorem that it suffices to prove that d is surjective in case G is q-
hyperelementary for some prime q. Since R(kG) = R(kG/Op(G)), we may
also assume that Op(G) = 1. If q p it follows that G has order prime to p
so that d is an isomorphism. If q = p then G is a split extension of a cyclic
p'-group by a p-group acting faithfully, and one can check using Clifford the-
ory that in this case the simple kG-modules lift to OG-lattices so that d is
onto in this case.

Examination of the representations of a q-hyperelementary group shows
the following, which we shall not prove.

DEFINITION 5.6.6. If H is a q-hyperelementary group, let E be a primitive
IHIth root of unity, and let Oq(H) = (a). Then H is k-elementary if for all
Galois automorphisms E i--> Et of k(e) over k, there exists an element b E H
such that bab-1 = at.

THEOREM 5.6.7 (Witt-Berman). We have

R(kG) = E Im(indH,G).
H<G

k-elementary
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In particular, if k = C, the elementary subgroups are the subgroups
which are a direct product of a q-group and a cyclic q'-group. The full form
of Brauer's induction theorem is the statement that R(CG) is the sum of the
images of induction from the elementary subgroups.

Next, we turn our attention to Conlon's induction theorem. This time,
we are working with the full ring of all representations in characteristic p, and
there are usually more of those than we can reasonably handle. The usual
way to get around this is to choose particular kinds of modules which are
suited to the problem in hand. In our case, we are trying to prove induction
theorems, which means that we are trying to prove that the identity element
of the representation ring is in a certain sum of ideals. This means that we
need to look at a suitable subring of the representation ring containing at
least the image of the natural map from the Burnside ring. It turns out that
the trivial source subring is the right one to look at.

Recall from Proposition 5.5.4 and its corollary that every ring homomor-
phism from a(G, Triv) to C is of the form sH,g for some pair (H, g) with
H p-hypo-elementary and g an element of H/OP(H), and that we have an
isomorphism

A(G, Triv) ® C.
ccl's of

pairs (H,g)

Just as before we draw a commutative diagram:

B(G) ® C
H<GG

11\

A(G, Triv) s @ C
ccl's of

pairs (H,g)

Write eH for the primitive idempotents in the top right hand corner of
this diagram, and eH,g for the primitive idempotents in the bottom right. The
map A sends eH to Eg e(H,g) if H is p-hypo-elementary, and zero otherwise.
We now deduce in the usual way that

1A(G,Triv) E Im(indH,G).
H p-hypo-
elementary

We have thus proved the following theorem.

THEOREM 5.6.8 (Conlon's induction theorem).
Suppose k is a field of characteristic p. Then

A(kG) = E Im(indH,G).
H p-hypo-
elementary
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In contrast to the situation for the Brauer induction theorem, however,
none of these subgroups goes away when the field becomes large. One can
show that all the conjugacy classes of maximal p-hypo-elementary subgroups
are really necessary in the above theorem.

COROLLARY 5.6.9. The sum of the restriction maps

resG,H : A(kG) , ® A(kH)
ccl's of H

p-hypo-elementary

is injective.

PROOF. We express the identity element 1 E A(kG) as a sum of elements
indH,G(xH) with XH E A(kH) and H p-hypo-elementary. If y E A(kG), then

y = y. indH,G(xH) =

It follows that if resG,H(y) is zero for all H p-hypo-elementary then y = 0.

Finally, Dress' induction theorem consists of doing all of the above at
once. Let q be a prime, which may equal p or not. Then we have as usual a
commutative diagram:

b(G)(q) ® C
H<GG

a(G, TI iv)(q) - ® C
ccl's of

pairs (H,g)

The primitive idempotent

1: eH E b(G)(q)
O (H)=Ho

goes to zero in a(G, Triv)(q) unless Ho is p-hypo-elementary, and so a(G) is
the sum of the images of induction from the so-called "Dress subgroups".

DEFINITION 5.6.10. If q is a prime (not necessarily different from p), a
(p, q)-Dress subgroup is a subgroup H such that H/Op(H) is q-hyper-
elementary. A k-Dress subgroup is a subgroup H such that H/Op(H) is
k-elementary for the field k of characteristic p.

THEOREM 5.6.11 (Dress' induction theorem). Suppose that k is afield of
characteristic p and S is a set of primes. Then

a(kG)(s) = E Im(indH,G).
H (p,q)-Dress
subgroup, qES
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In particular, taking for S the set of all primes,

a(kG) = Im(indH,G)
H (p,q)-Dress

subgroup, any q

As with the Witt-Berman theorem, one can show that over a given field k,
the necessary subgroups are the k-Dress subgroups. Thus for a large enough
field k, the subgroups needed are the subgroups H for which H/Op(H) is a
direct product of a q-group and a cyclic group of order coprime to p and q.
This time, we may assume p # q, since otherwise the Op just grows.

5.7. Relatively projective and relatively split ideals

Suppose k is a field of characteristic p. The main theorem in this section
is a theorem of Dress [89], which states that for any subgroup H < G, the
representation ring with p inverted

a(G)p = Z[1/p] ®z a(G)

decomposes as a direct sum of the ideal of relatively H-projective modules
a(G, H)p and the ideal of H-split sequences ao(G, H)p. More generally, for
any permutation representation X of G, a(G)p decomposes as a direct sum
of a(G, X)p and ao(G, X)p. This latter statement is more amenable to proof
by induction. The case H = 1 (or equivalently X is the trivial permutation
representation on one point) will tell us that the determinant of the Cartan
matrix is a power of p. We give another proof of this using psi operations in
Section 5.9. Brauer's original proof used his characterisation of characters.

THEOREM 5.7.1 (Dress). Suppose X is a permutation representation of
G, and k is a field of characteristic p. Then

a(kG)p = a(G, X)p ® ao(G, X)p.

PROOF. We first observe that it suffices to show that the identity element
1 E a(G)p lies in a(G, X)p+ao(G, X)p. For since a(G, X)p and ao(G, X)p are
ideals, we then have a(G)p = a(G, X )p + ao (G, X )p. Elements of a(G, X )p
and ao(G, X )p have zero product, so if 1 = a +,3 with a E a(G, X )p and
,3 E ao(G,X)p then for any x E a(G,X)p n ao(G,X)p we have

x=x.1=x.a+x.,(3=0,
and so a(G, X)p n ao(G, X)p = 0.

We prove the theorem by induction on the order of G. For any subgroup
H of G we have

indH,G(a(H,X)p) C a(G,X)p, indH,G(ao(H,X)p) C ao(G,X)p.

If G is not a (p, q)-Dress subgroup for some q 54 p, then Dress' induction
theorem 5.6.11 (with S equal to the collection of all primes other then p) says
that a(G)p is the sum of the images of induction from proper subgroups. We
may thus suppose that G is a (p, q)-Dress subgroup for some prime q # p. In
particular, setting P = Op(G), we see that G/P is a p'-group. If P stabilises
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any point in X, then by Corollary 3.6.9, a(G)p = a(G, X)p, and we are done.
So we may suppose P does not stabilise any point in X.

Recall that the tensor induction map

indPG : a(P)p/ E Im(indK,p) -> a(G)p/ E Im(indK,G).
K<P K<G

is a ring homomorphism. By Proposition 3.15.2 (vi), the image of ao(P,X)p
under this map lies in ao (G, X )p. It thus suffices to show that the identity
element of a(P)p lies in ao(P,X)p+>K<PIm(indK,p). Now if X = X1UX2
then ao(P, X)p = ao(P, X1)p f1 ao(P, X2)p, so since P does not stabilise any
point in X, we may suppose that X is a non-trivial transitive permutation
representation of P. Let P be a maximal subgroup of P containing the
stabiliser of a point in X, so that ao(P, X)p > ao(P, P')p. Since P' is normal
in P, and P/P' is a cyclic group of order p, a(P/P',1) = Im(indl,p/p,) is
spanned by the regular representation. The composition factors of this are
exactly p copies of the trivial module, and so we have

a(P/P')p = a(P/P',1)p ® ao(P/P',1)p = Im(indl,p/p,) ® ao(P/P',1)p

(cf. Corollary 5.3.6). Inflating to P, we see that the identity element of a(P)p
lies in Im(indp,,p) + ao(P, P')p as required.

REMARK. The statement of the theorem is equivalent to the statement
that the quotient a(G)/(a(G, X) + ao(G, X)) is entirely p-torsion.

COROLLARY 5.7.2 (Brauer). Suppose that k is a field of characteristic p.
Then the determinant of the Cartan matrix of kG is a power of p.

PROOF. This is the case of the theorem in which X is a single point (cf.
Corollary 5.3.6). For another proof of this theorem using psi operations, see
Theorem 5.9.3.

5.8. A quotient without nilpotent elements
In this section, we prove that if k is a field of characteristic p, then A(kG)

has a fairly large quotient A(G)/A(G; p) with no non-zero nilpotent elements.
As an application of this, we show that if G has cyclic Sylow p-subgroups then
A(G) has no non-zero nilpotent elements. This was first proved by Green and
O'Reilly [118, 159] using some heavy computations for metacyclic groups.
The proof we present here is taken from [20].

PROPOSITION 5.8.1. Let k be an algebraically closed field of characteristic
p. Suppose M is a finitely generated kG-module with pl dimk M. Then for
any kG-module N and any summand U of M ® N we have pl dimk U.

PROOF. Suppose dimk U is not divisible by p. Then by Theorem 3.1.9,
the trivial module k is a summand of U ® U* and hence of (M 0 N) ® U* =
M 0 (N 0 U*). But again applying Theorem 3.1.9, we see that this implies
that dimk M is not divisible by p, contradicting the hypothesis.
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DEFINITION 5.8.2. Suppose k is a field of characteristic p. We write
a(G; p) for the additive span in a(kG) of the elements [M] with the property
that for any extension field k D k, every summand of k ®k M has dimension
divisible by p. We write A(G; p) for C ®z a(G; p) C A(G).

LEMMA 5.8.3. (i) a(G;p) is an ideal in a(G).
(ii) A(G;p) is an ideal in A(G).

PROOF. This follows immediately from Proposition 5.8.1.

LEMMA 5.8.4. If x = E ai [Mi] E A(G), write x* for E ai [Mil where ai
is the complex conjugate of ai. If xx* E A(G;p) then x E A(G;p).

PROOF. Without loss of generality, k is algebraically closed. If the trivial
module [k] does not appear with positive multiplicity in

xx* JaiI2[Mi ®Mi]+Eaiaj[Mi®Mf]

then by Theorem 3.1.9, each [Mi] lies in A(G; p).

THEOREM 5.8.5. The quotient ring A(G)/A(G; p) has no non-zero nilpo-
tent elements.

PROOF. If A(G)/A(G; p) has a non-zero nilpotent element, then there is
a non-zero element x E A(G), not in A(G;p), but with x2 E A(G;p). Let
y = xx*. Then yy* = (xx*)2 E A(G;p). Applying the lemma twice, we
deduce first that y E A(G;p), and then that x E A(G;p).

LEMMA 5.8.6. Suppose k is algebraically closed. Suppose H is p-hypo-
elementary with 1 D = Op(H) cyclic. Let H1 be a subgroup of H of index
p (it is easy to see that there is one, but it need not be normal). Then

A(H;p) = Im(indH,,H).

PROOF. It follows from Jordan normal form that the indecomposable
kD-modules are just the Jordan blocks of size at most IDI with eigenvalue
one, so that they are uniserial modules.

Since kH/J(kH) = k(H/D) is a direct sum of distinct one dimensional
modules, the Idempotent Refinement Theorem 1.7.3 shows that each projec-
tive indecomposable module for kH restricts to the regular representation of
kD, which is uniserial of length IDI. It follows that if M is any indecompos-
able kH-module then M is uniserial and MID is indecomposable.

Let D1 be the subgroup of D of index p. If M1 is an indecomposable
kDl-module then HomkD(k, M1 TD) = HomkD1(k, Ml) is one dimensional,
and so M1 T D is indecomposable. It follows that a kD-module has dimension
divisible by p if and only if it is induced from a kD1-module. Thus an
indecomposable kH-module M has dimension divisible by p if and only if it
is projective relative to H1.

It only remains to show that if N is an indecomposable kH1-module then
N 1H is indecomposable. But this is clear since N 1 H I-D= N t D, T D by the
Mackey decomposition theorem.
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THEOREM 5.8.7 (Green, O'Reilly). Suppose that the group G has cyclic
Sylow p-subgroups, and k is a field of characteristic p. Then A(kG) has no
nilpotent elements.

PROOF. Without loss of generality k is algebraically closed. By Corol-
lary 5.6.9, the sum of the restriction maps to A(kH) with H p-hypo-ele-
mentary is injective, so it suffices to prove the theorem in case G = H is
p-hypo-elementary with D = Op(H) cyclic. We prove the theorem by induc-
tion on IDS. If IDI = 1 then H has order coprime to p, and the theorem
follows from Proposition 5.2.3. If IDI > 1, let H1 be a subgroup of H of
index p. Then by Corollary 5.4.11 and the lemma, we have

A(H) = Im(indH,,H) ® Ker(resH,H,) = A(H;p) ® Ker(resH,H, )

as a direct sum of ideals. Thus resH,H, maps A(H; p) injectively into A(H1),
and so A(H; p) has no nilpotent elements by the inductive hypothesis. Since
A(H)/A(H; p) has no nilpotent elements by Theorem 5.8.5, this completes
the proof of the theorem. El

REMARK. It turns out that if the Sylow p-subgroups of G are not cyclic, or
elementary abelian 2-groups (with p = 2), then there are nilpotent elements
in A(G) (Zemanek [208, 210]). In case p = 2 and the Sylow 2-subgroups of
G are elementary abelian of order four, Conlon [55] has shown that there are
no nilpotent elements in A(G). For larger elementary abelian 2-groups, this
question is still open. See also Section 5.9 of Volume II for a cohomological
method for producing nilpotent elements in A(G).

5.9. Psi operations
In this section we construct psi operations on : a(kG) --* a(kG). These

are the representation theoretic version of raising group elements to the
nth power, in the sense that the effect on Brauer characters is given by
t9(On(x)) = t9 (x). They were first introduced in characteristic zero by
Frobenius, who used them to study the number of solutions of x' = 1 in a
group. As an application of these operations, we give Kervaire's proof [136]
that the determinant of the Cartan matrix is a power of p. In Chapter 2 of
Volume II we shall study the analogous operations in topological K-theory,
and explain how these are related to the cohomology of the finite general
linear groups.

We first construct the operations V)' in the case where n is coprime to p.
Let k be a field of characteristic p and let k[E] be the field obtained from k
by adjoining a primitive nth root of unity E to k. Let

T=(tI to=1)
be a cyclic group of order n. If M is a kG-module then M®n is a k(T x G)-
module with T permuting the tensor multiplicands (this is just the tensor
induced module MJ"G). Since n is coprime to p, after tensoring with k[E],
this breaks up as a direct sum of eigenspaces on which t acts with eigenvalues
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ej. Each eigenspace is a k[e]G-module, and whenever (tj) = (tj') the ej
eigenspace is isomorphic to the eY eigenspace. By considering the action of
the Galois group Gal(k[e]/k), it follows that these eigenspaces are defined
over k. We write [M®n]ej = [M®n]d for the eigenspace corresponding to
a primitive dth root of unity ej with din, considered as a kG-module. We
define

n
bn(M) _ 1` e2aij/n[M®n]j E A(G).

jjJ1

Now E 1<j<d is equal to the Mobius function p(d), which takes values
(j,d)=1

0 or +1. It follows that

,Pn(M) = Ep(d)[M®nId
dIn

is an element of a(G).

PROPOSITION 5.9.1. If M1 and M2 are kG-modules then
(i) 1n(M1 (D M2) _ on(Ml) +,On(M2).
(ii) Ln(M1 ® M2) _n(M1)V)n(M2)

PROOF. (i) As kG-modules, we have

(Ml ®M2)®n = ® (Mjj ®... (s Mj.n)
j1=1,2,

jn=1,2

Under the action of T, there are two fixed summands, namely M®n and
M®n. Apart from these, each orbit forms a k(T x G)-module induced from
a proper subgroup of the form T' x G. It is easy to check that for such a
module, the sum of e2"2j/n times the e3 eigenspace is zero.

(ii) (Ml (D M2)®n = M®n ® M®n, and so
n

[(M1 ®M2)®n],j = ®[M®n]Em [M®n]Ej

Thus we have

m=1

n

t'n(M1 ® M2) = r e27rij/n[(M1 ® M2)®n],j
j=1

n
e27rim/n[M®n]Eme27ri(j-m)/n[M®n]Ej-+n = V)n(M1)0n(M2).

j,m=1

It follows from this proposition that we may extend on linearly to give a
ring homomorphism

1/in : a(G) -4 a(G).
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Note that since bn is given in terms of direct summands of tensor powers,
the image of a(G, H) is contained in a(G, H), and the image of a(G, Triv) is
contained in a(G, Triv).

PROPOSITION 5.9.2. Let t9 be the ring homomorphism a(G)/ao(G,1) -+
C defined in Section 5.3. Then

tg(ln(x)) = tgn(x).

PROOF. Suppose M is a kG-module, and suppose without loss of gener-
ality that k is algebraically closed. Then we may choose a basis ml,... , mr
of M consisting of eigenvectors of g. Let gmj = Ajmj. Then

t9(V)n(M)) = tg(resG,(9) bn(M)) = t9(/n(M1<9>)) = tg(,pn((@ (mj)))
j=1

r r

t9 n((m,)) = ),j = tgn(M).
j=1 j=1

THEOREM 5.9.3 (Brauer). Suppose k is a field of characteristic p. Then
the determinant of the Cartan matrix is a power of p.

PROOF. (Kervaire; for another proof see Corollary 5.7.2). This is the
same as saying that the cokernel of the Cartan homomorphism

c : a(G, 1) -+ a(G) -> a(G)/ao(G, 1) = R(G)

is a p-group.
Let m be the p'-part of the exponent of G. If x E a(G, 1) then m(x) is

again an element of a(G, 1). By Proposition 5.9.2, each tg has value

t9(wm(x)) = ti(x)
equal to the "dimension" of x. Thus by Proposition 5.3.2, if P is a projective
kG-module then (dimk P).1 is in the image of c.

For each prime q p dividing JGI, let Q be a Sylow q-subgroup of G.
Then kQ TG is a projective kG-module since it is induced from a projective
kQ-module. Thus by the above, IG : QI.1 E Im(c). It now follows from the
Chinese remainder theorem that IGIp.1 E Im(c), where JGIp is the p-part of
the order of G. Since Im(c) is an ideal, it follows that JGip annihilates the
cokernel of c, and the theorem is proved.

Finally, we show how Corollary 5.6.5 leads to an explicit description of
R(kG) in case k is a field of pn elements, in terms of the operation n/1pn

PROPOSITION 5.9.4 (The Brauer Lift). Let (K, 0, k) be a p-modular sys-
tem. Then for every n the decomposition map

d : R(KG) - R(kG)
induces an isomorphism

R(KG)''pn = R(kG)o pn = R(koG)



196 5. REPRESENTATION RINGS AND BURNSIDE RINGS

where ko={AEkI AP"=A}.

PROOF. By Theorem 5.3.3 we have a diagram

R(KG) E t9 - ® C
H<GG

d

Y,
I

R(kG) - ® C
p'-elements

gEGG

so that by Proposition 5.9.2, d commutes with the action of the operations.
It also follows from Proposition 5.9.2 that for m large enough, O'"' kills the
kernel of d. Suppose x E R(kG) is fixed by V )P'. Choose m as above to be
a multiple of n. By Corollary 5.6.5, x has a pre-image y in R(KG). Since
OP" (y) - y is killed by d, it is killed by OP"`, and so op-+n (y) = OP- (y) is a
pre-image of x which is fixed by P". Thus d : R(KG)'0P" -> R(kG)'Pp" is
an isomorphism.

Finally, by Proposition 5.3.4 we have R(koG)."

The way the above proposition is usually stated is that given a modular
representation M, the class function which assigns to each element g E G the
value of tg" (M), where g' is the p'-part of g, is a generalised ordinary character
(i.e., the character of a difference of two characteristic zero representations).

5.10. Bilinear forms on representation rings

The material in this and the next section comes from [23]. We define two
different bilinear forms ( , ) and ( , ) on a(kG) and A(kG) as follows. If M
and N are finitely generated kG-modules, we let

([M], [N]) = dimk HomkG(M, N) = dimk(M* ® N)G.

We extend ( , ) bilinearly to give a bilinear form on a(G) and A(G).
Now the bilinear form ( , ) is usually not symmetric, but it is very closely

related to the symmetric bilinear form (,) defined by bilinearly extending

([M], [N]) = dimk(M, N)1

the dimension of the space of homomorphisms from M to N which factor
through some projective module (see Definition 3.6.2).

DEFINITION 5.10.1. We define elements u and v of a(G) /via

u = UkG = [Pk] - [Q-1(k)]+ v = VkG = [Pk] - [Q(k)]

where Pk is the projective cover (= injective hull) of the trivial kG-module
k, 1(k) is the kernel of Pk -» k and Sl-1(k) is the cokernel of k y Pk. Note
that Pk = Pk and Q-1(k) = 1(k)*, so that v is the `dual' of u.
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LEMMA 5.10.2. The following expressions are equal:
(i) ([M], [N]),
(ii) The multiplicity of Pk as a summand of Homk(M, N) = M* ® N,
(iii) (u, [Homk(M, N)]) = (u. [M], [N]),
(iv) The rank of the element >gEG g of the group algebra kG in its matrix

representation on Homk(M, N).
In particular, since Pk is self-dual, (ii) shows that (,) is symmetric.

PROOF. Since each of these expressions is unaffected if we replace M by
the trivial module k and N by HomkG(M, N), we may assume that M = k.
Also, since each expression is additive in N, we may suppose that N is
indecomposable. We shall show that each of these expressions is equal to 1
when N = Pk and 0 otherwise.

(i) If ([k], [N]) 0 then there is a non-zero map k -> N which is a transfer
from the trivial subgroup. The image of 1 under such a map is of the form
EgEG g(x) for some x E N. Let A : P -» N be the projective cover of N,
and choose y E P with A(y) = x. Then EgEG g(y) is a non-zero G-invariant
element of P which is sent to the non-zero element >9EG g(x) by A. Since
projective kG-modules are injective (Proposition 3.1.2) and Soc(Pk) = k
(Theorem 1.6.3), the injective map k - P taking 1 to F-gEG g(y) extends to
an inclusion of Pk as a direct summand of P. The map A does not kill the
socle of this copy of Pk, so since Pk is injective, it is a summand of N. Since
N is indecomposable this forces N = Pk. Clearly ([k], [Pk]) = 1.

(ii) The multiplicity of Pk as a summand of an indecomposable module
N is clearly equal to 1 when N = Pk and zero otherwise.

(iii) A homomorphism from Pk to N factors through St-1(k) = Pk/k
unless N = Pk, since Pk is injective. Thus if N Pk we have (u, [N]) = 0.
On the other hand, if N = Pk, then any homomorphism Pk - N is a multiple
of this isomorphism plus a homomorphism factoring through Q- 1 (k), and so
(u,[Pk]) = 1.

(iv) This is clearly equal to (i).

LEMMA 5.10.3. In a(G) we have uv = 1.

PROOF. Tensoring the short exact sequence 0 --> S2(k) -* Pk -> k -> 0
with 52-1(k), we obtain a short exact sequence

0 --> 1(k) ® Q-1(k) " Pk ® St-1(k) , Q-1(k) -> 0.

We also have a short exact sequence 0 --> k -> Pk -> Q-1(k) -> 0 so that by
Schanuel's lemma we obtain

P k E ) ®52-1(k) = k ( D ®52-1(k).

Since tensoring with Pk splits short exact sequences, we also have

Pk®PkPk®52(k)®Pk
and so

Pk®Pk®S2(k)®52-1(k) =k®Pk®52-1(k)®Pk(DQ(k).
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It follows that

([Pk] - [1(k)])([Pk] - [1l 1(k)]) = [k]
in a(G).

PROPOSITION 5.10.4. If x and y are elements of a(G) or A(G), then
(i) (x, y) _ (vx, y) _ (x, uy)
(ii) (x, y) _ (ux, y) _ (x, vy)
(iii) (x, y) _ (y, vex) = (u2y, x).
PROOF. It follows from Lemma 5.10.2 that (x, y) = (ux, y). The rest

follows from the identity uv = 1 and the fact that u is obtained from v by
dualising.

LEMMA 5.10.5. If H is a subgroup of G then resG,H(ukG) = ukH and
resH,G(vkG) = vkH

PROOF. The first of these follows by applying Schanuel's lemma to the
sequences

0 - I(k)kG IH- (Pk)kG IH-* k -* 0
0-- Q(k)kH- (Pk)kH- k-*0

and the second follows by duality.

PROPOSITION 5.10.6. If x E a(H) and y E a(G) then
(1) (x, resG,H(y)) _ (indH,G(x), y) and (resG,H(y), x) = (y, indH,G(x))
(ii) (x, resG,H(y)) _ (indH,G(x), y).

PROOF. The first of these follows from the Nakayama relations, and the
second follows since

(x, resG,H(y)) = (ukHx, resG,H(y)) = (indH,G(ukHx), y)

= (indH,G(resG,H(ukG)x), y) = (ukGindH,G(x), y) = (indH,G(x), y).

5.11. Non-singularity

In this section we use the almost split sequences, discussed in Chapter 4,
to prove that the bilinear forms (, ) and (, ) on a(G) introduced in the last
section are non-singular. The material in this section comes from [23].

Recall from Theorem 4.12.2 that given any non-projective module N,
there is an almost split sequence terminating in N

0-*M--+ E--+ N-*0
unique up to isomorphism of short exact sequences, and by Proposition 4.12.7
we have M = S22(N).

Recall also from Proposition 4.12.6 that an almost split sequence

O-+ M->E->N->0
gives rise to an exact sequence

0 -+ HomA(N', M) -> HomA(N', E) -> HomA(N', N) -* 0
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if N' has no summand isomorphic to N, and

0 -+ HomA(N, M) -* HomA(N, E) -> EndA(N)

-> EndA(N)/JEndA(N) -> 0.

It follows that if we set ro[N] = [N] + [M] - [E] in a(G) then we have

([N'] To[N]) _
(d(N) if N = N'

S
0 otherwise

(where d(N) = dimk EndkG(N)/JEndkG(N), which is always 1 if k is alge-
braically closed), so that the To [N] form a sort of "dual basis" to the basis of
indecomposable modules [N] for a(G).

There are two problems with this statement. The first is that we have
only defined TO[N] for N a non-projective indecomposable. However, it is easy
to see that the right definition for N projective is To[N] = [N] - Rad(N).
This is because any homomorphism to N whose image does not lie in Rad(N)
is surjective and hence splits.

Having now defined To on the basis elements [N], we extend antilinearly
to define

To E ai[Ni] = E aiTO[Ni]

in A(G), where ai denotes the complex conjugate of ai.
The second problem is that for infinite dimensional vector spaces, duality

does not work very well, and it turns out that the TO[N] do not form a basis
of A(G) unless A(G) is finite dimensional (which happens if and only if the
Sylow p-subgroups of G are cyclic; see Theorem 4.4.4). But in any case,
we have now proved the following theorem, which may be thought of as a
non-singularity statement for the bilinear form ( , ).

THEOREM 5.11.1. Suppose N and N' are indecomposable kG-modules,
and To is as defined above. Then

([N'],TO[N]) _
Id(N) if N = N'

0 otherwise

where d(N) = dimk EndkG(N)/JEndkG(N).
Thus for any x = a[M] E A(G) we have (x,TO(x)) = EiJail2 > 0

with equality if and only if x = 0.

The following corollary may also be proved directly without using almost
split sequences.

COROLLARY 5.11.2. Suppose N1 and N2 are two kG-modules, such that
for every kG-module M we have

dimk HomkG(M, N1) = dimk HomkG(M, N2).

Then N1 = N2.
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So far, everything we have done works just as well for an arbitrary finite
dimensional algebra. However, we now wish to do the same for the inner
product ( , ), and for this we need to use the multiplication in A(G), as well
as the fact that kG is a symmetric algebra.

In the last section, we saw that it is very easy to pass between the (, )
and (,) using the elements u and v. We take

T1 [N] = u.To [N],

so that ([N'],T1[N]) = ([N'],To[N]) is equal to d(N) if N = N' and zero
otherwise.

Now suppose N is a non-projective indecomposable. By Corollary 3.1.6
we have N ®Sl(k) = 11(N) ® (projective), and so modulo projectives we have

u.To[N] = -11 1(To[N]) = -[11-I(N)] - [I-1(M)] + [52-1(E)].

But recall from Corollary 5.3.6 that A(G) = A(G, 1) ® Ao(G,1) as a direct
sum of ideals. Since To[N] E Ao(G, 1), this shows that the above equation
holds without working modulo projectives.

On the other hand, if N is projective indecomposable, then N = PS is
the projective cover of a simple module S. Schanuel's lemma shows that
v.[S] = [Ps] - [1(S)] =To[N], and so T1 [N] = u.v.[S] = [S].

We record what we have proved in the following theorem, which is a
non-singularity statement for ( , ).

THEOREM 5.11.3. Suppose N and N' are indecomposable kG-modules,
and define Ti [N] to be N/Rad(N) = Soc(N) if N is projective, and

[X] - [1-1(N)] - [11(N)]
if N is not projective, where

0-*1-1(N)-*X--*1(N)-+0
is the almost split sequence terminating in 1(N). Then

' _ {d(N) if N = N'
([N]' T1 [N]) 0 otherwise

where d(N) = dimk EndkG(N)/JEndkG(N).



CHAPTER 6

Block theory

There are now quite a few decent expositions of block theory available.
The reader is advised to consult Alperin [3], Curtis and Reiner [66], Dorn-
hoff [84], Feit [107], Landrock [148], Nagao and Tsushima [153], and of
course the collected works of Brauer [36]. For this reason, we shall not at-
tempt an encyclopaedic treatment, but we shall rather try to concentrate on
aspects of the theory which are closely related to other topics discussed in
this book.

The approach we shall take is the module theoretic approach initiated by
Green [119]. In this approach, the group algebra kG is regarded as a module
for k(G x G), and the indecomposable direct summands of this module are
the blocks. A vertex of a block as a k(G x G)-module is always conjugate to
a diagonally embedded subgroup diag(D), D < G, and D is called a defect
group of the block. It turns out that the group D in some sense determines
how complicated the block is.

Throughout this chapter, (K, 0, k) will denote a p-modular system. Thus
0 is a complete rank one discrete valuation ring with field of fractions K of
characteristic zero, maximal ideal p, and quotient field k of characteristic p.
When we write R for the coefficient ring, we shall assume that R E {O, k}.

6.1. Blocks and defect groups

Recall from Section 1.8 that a block of kG is an indecomposable two-sided
ideal direct summand. A decomposition of kG into blocks

B,

corresponds to a decomposition of the identity element

as a sum of orthogonal primitive central idempotents. The correspondence
is given by Bi = ei.kG.

Since both Z(OG) and Z(kG) have a basis consisting of the conjugacy
class sums in G, it follows that reduction modulo p is a surjective map
Z(OG) - Z(kG), and so by Theorem 1.9.4 (iii), the idempotents ei E kG
may be lifted to orthogonal primitive central idempotents fi E OG. We thus
have

OG=B1®...®B8
with Bi = fi.OG and Bi = k ®o Bi.

201
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Now if M is an indecomposable kG-module, the equation

M=e1MED ...®e3M

shows that M = eiM for a unique i, and ejM = 0 for j # i. Similarly if
M is an indecomposable OG-lattice, then fiM = M and fjM = 0 for j # i.
Finally, if M is an irreducible KG-module (recall that all indecomposable
KG-modules are irreducible by Maschke's theorem) then fiM = M for a
unique i, and fjM = 0 for j # i.

We thus think of a block as a sort of receptacle, into which are thrown
indecomposable summands of the algebras kG and OG, primitive idempo-
tents in Z(kG) and Z(OG), indecomposable modules for kG, OG and KG,
and so on.

Now the two sided ideal direct summands of RG (recall R E {O, k}) are
the same as the direct summands of RG as an R(G x G)-module, where the
action of R(G x G) on RG is via left and right multiplication

(91,92):9-919921
With this action, RG is equal to the permutation module of R(G x G) on
the cosets of the diagonal

0(G)={(g,g),gEG}cGxG.
In other words, RG = RA(G) TGxG It follows that the R(G x G)-module
RG is projective relative to 0(G), and so the vertices of any indecomposable
summand B = e.RG are conjugate to some subgroup of the form 0(D) C
0(G), where D is a p-subgroup of G determined up to conjugacy by the
block B. The group D = D(B) is called the defect group of the block B.
If I D I = pa, we say that B is a block of defect a.

PROPOSITION 6.1.1 (J. A. Green). The defect group D of any block B of
RG is expressible as an intersection S n gS of two Sylow p-subgroups of G.

PROOF. By the Mackey decomposition theorem, the restriction of RG to
an R(S x S)-module is

RA(G) IGxG.Sxs= ® R(sxs)n0,9)A(G) tsxs
(1,g)ESxS\GxG/A(G)

The double coset representatives may be chosen to be of the form (1, g) by
adjusting by elements of 0(G). But

(S x S) n (1,9)A(G) = (1,9)A(S n 9-'S)

and so the restriction of RG to R(S x S) is a direct sum of permutation
modules on cosets of subgroups of the form (1,g)(5 n g-' S). Each transitive
permutation module for S x S is indecomposable, since for R = k it has a one
dimensional socle (see Section 3.14). So the vertex of R 1 TSxS

(1,s)A(Sn9 b)



6.1. BLOCKS AND DEFECT GROUPS 203

is exactly (1'9)A(S n 9-1S). Since RG is projective relative to S x S (Corol-
lary 3.6.9) it follows that each indecomposable summand of RG as an R(G x
G)-module has a subgroup of the form A(S n 9S) as a vertex.

PROPOSITION 6.1.2 (J. A. Green). Suppose B = e.RG is a block of RG
with defect group D. Then e lies in RGA(H) C Z(RG) if and only if H con
tains a conjugate of D (see Definition 3.6.2 for the notation). Furthermore,
every RG-module in the block B is projective relative to D.

PROOF. We have seen that as an R(G x G)-module, B is projective rela-
tive to 0(G). Thus by Higman's criterion (Proposition 3.6.4), H contains a
defect group of B if and only if there is a map a E EndR(H) (RG) such that
Tr (H),A(G) (a) is the identity map on B = e.RG. If a is such a map then
we have

e = (Tr (H),o(G)(6))(e) = (9,9)6((9-1,9-1)(e))
(9,9)EA(G)/i (H)

E 96(e)9 1 = rz (H),o(G)a(e)
9EG/H

and so e E RGo( H)). Conversely if e = Tro(H),A(G)(a) E RGo(H) then we

define a map a : RG --> RG by a(x) = a.x. Since a E RGA(H) we have
a E EndRO(H) (RG), and for x E e.RG we have

(TrA(H),O(G)(a))(x) _ (g, 9)9((9 1,9 1)(x))
(9,9)ED(G)/I (H)

= E g.a.g-lxg.g-1 = (TrA(H),o(G)(a)).x = ex = x.

9EG/H

Finally, if M is an RG-module in the block B, then e acts as the identity
on M, and so the above element a = a(e) acts as an endomorphism of M
whose transfer is the identity. Again applying Higman's criterion, we see that
M is projective relative to D.

REMARK. In fact there is always an indecomposable module in B whose
vertex is exactly D, as we shall see when we come to discuss Brauer's second
main theorem in Section 6.3.

EXAMPLE. The block of RG containing the trivial RG-module R is called
the principal block. Since a Sylow p-subgroup of G is a vertex of the
trivial module, it is also a defect group of the principal block, by the above
proposition. The principal block is usually denoted Bo = Bo(G).

COROLLARY 6.1.3. If B is a block of kG and b is the corresponding block
of CMG then B and b have the same defect groups.
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PROOF. If D is a defect group of B then by the proposition the corre-
sponding central idempotent e lies in (kG)A(D). Thus the central idempo-

tent e corresponding to b lies in (OG)A(D) + pZ(OG). So by Rosenberg's

Lemma 1.7.10 we have either e E (OG)A(D) or e E pZ(OG). But pZ(OG) C

pG C J(OG) so the latter is impossible. Conversely if e c (OG)o(D) then

e E (kG)A(D). El

6.2. The Brauer map

From now on, we restrict our attention to the (diagonal) action of G on G
by conjugation, and drop the symbol 0 used in the last section. The following
lemma is our starting point for the discussion of the Brauer map and Brauer's
three main theorems. The first of these gives a one-one correspondence
between blocks of RG with defect group D and blocks of RNG(D) with
defect group D. First note that we are assuming that R is either 0 or k, so
that by Corollary 6.1.3 it suffices to consider the case R = k.

LEMMA 6.2.1. Suppose D is a p-subgroup of G. With the notation of
Definition 3.6.2, we have

(i) (kG)D = kCG(D) ® LDP<D(kG)D'
(ii) (kG) Nc(D) = (kCG(D))Nc(D) ® ED4Q<NG(D)(kC-T)QG(D)

in each case as a direct sum of a subring and a two-sided ideal. Each sum-
mand in (ii) is contained in the corresponding summand in (i).

PROOF. The space (kG)D has as a basis the orbit sums of D on elements
of G. The orbits of length one span kCG(D), and the sums of orbits of length
greater than one are transfers from proper subgroups of D. The intersection
of kCG(D) and >D,<D(kG)DD, is zero since k has characteristic p.

Similarly, for the second statement we split up the orbits of NG(D) into
those on which D acts trivially and those on which D has no fixed points.

In each case, the right-hand summand is a two-sided ideal by Lemma 3.6.3
(i) and (ii).

REMARK. The above lemma does not hold with k replaced by 0 since the
two pieces on the right hand sides do not intersect in zero. However, it follows
from the discussion in the last section that there is a one-one correspondence
between blocks of kG and blocks of OG preserving defect groups, so that if
we wish to count blocks then it suffices to work over k.

PROPOSITION 6.2.2. Suppose D is a normal p-subgroup of G. Then every
idempotent in Z(kG) lies in kCG(D). In particular, if CG(D) < D them kG
has only one block.

PROOF. Since D is a p-subgroup, it acts trivially on every simple kG-
module (its fixed points form a non-zero invariant submodule, by Lemma
3.14.1), and hence on kG/J(kG). Since transfer from a proper subgroup
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D' < D to D is zero on a module on which D acts trivially, we have
>D'<D(kG)D, C J(kG). It now follows from Lemma 6.2.1 (i) that every
idempotent in (kG)D lies in kCG(D). If CG(D) < D then CG(D) is a p-
group, and so kCG(D) has only the identity as an idempotent, and hence kG
has only one block.

DEFINITION 6.2.3. We define the Brauer map

BrD : (kG)D -* kCG(D)

to be the projection onto the first factor in the decomposition given in
Lemma 6.2.1 (i). Since the second factor in this decomposition is a two-sided
ideal, this map is a ring homomorphism. Note also that by Lemma 6.2.1 (ii),
the kernel of BrD on (kG)Nc(D) is equal to ED4Q<vG(D)(kG)QG(D)

In a sense, we are only really interested in the map

BrD : Z(kG) --* Z(kCG(D))

obtained by restricting the above map to Z(kG) = (kG)G C_ (kG)D, and
its effect on idempotents. The point of the extended definition will become
clearer in Lemma 6.2.5.

If H is a subgroup of G with DCG(D) < H < NG(D) then by the above
proposition, every idempotent in Z(kH) lies in kCG(D). Let e E Z(kH) be a
primitive idempotent corresponding to a block b of kH, and 1 = el + + es
be a decomposition of 1 as a sum of primitive orthogonal idempotents in
Z(kG) corresponding to the block decomposition kG = Bl + + B. Then
in Z(kH) we have

e = e.BrD(1) = e.BrD(el) + + e.BrD(es).

Since e is primitive, we have e = e.BrD(ei) for some i, and e.BrD(ej) = 0
for j i. We define the Brauer correspondent bG of b to be the block Bi of
kG. In general, the Brauer correspondence is not a one-one correspondence,
but in case H = NG(D), Brauer's first main theorem, which we prove next,
states that it is a one-one correspondence between blocks with defect group
D.

LEMMA 6.2.4. A block idempotent e E Z(kG) has defect group D if and
only if e E (kG)D and BrD(e) # 0.

PROOF. By Proposition 6.1.2, e has defect group D if and only if e E
(kG)D and e V (kG)D, for D' < D. By Rosenberg's Lemma 1.7.10, the latter
condition is equivalent to e V

F-D,<D(kG)D,.
The lemma now follows from

the fact that the kernel of BrD on (kG)D is >D,<D(kG)D
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LEMMA 6.2.5. We have a commutative diagram

(kG)D BrD _ kCG(D)

ITtD,G TrD,NG(D)

(kG)D
B

kCG(D)DG(D)

in which the bottom map is surjective. Note that we have (kG)D C (kG)G =
Z(kG) and kCG(D)DG(D) C Z(kCG(D)).

PROOF. By Lemma 3.6.3 (iv), for x E (kG)D we have

BrD(TrD,G(x)) = BrD( E TrNG(D)n9D,NG(D)(gx)) = BrD(TrD,NG(D)(x))
NG(D)gD

since the Brauer map is defined in such a way that it vanishes on the remain-
ing terms. Comparing parts (i) and (ii) of Lemma 6.2.1, we see that BrD
commutes with TrD,NG(D), and so the above diagram commutes. Since the
top and right hand maps are surjective, it follows that the bottom map is
also surjective.

THEOREM 6.2.6 (Brauer's first main theorem). The map BrD establishes
a one-one correspondence, called the Brauer correspondence, between
block idempotents in Z(kG) with defect group D and block idempotents in
Z(kNG(D)) with defect group D. If b is a block of kNG(D) with defect group
D then bG is the corresponding block of kG with defect group D.

PROOF. By Lemma 6.2.4, a block idempotent e E Z(kG) has defect
group D if and only if e E (kG)D and BrD(e) # 0. By Lemma 6.2.5, the map
BrD : (kG)D -f kCG(D)DG(D) is onto, and by Proposition 6.2.2, every block
idempotent in Z(kNG(D)) with defect group D lies in kCG(D)DG(D). El

Brauer's first main theorem allows us to extend the above notation bG as
follows. If DCG(D) < H < G (but H not necessarily contained in NG(D))
and b is a block of H with defect group D, then by the first main theorem,
there is a unique block b' of NH(D) with (b')H = b. We then write bG for the
block (b')G. It is easy to see that if H < K < G then (bx)G = bG

Another way to view the Brauer correspondence, due to Alperin, is as
follows.

LEMMA 6.2.7. Suppose DCG(D) < H < G and b is a block of kH with
defect group D. Then bG is the unique block B of kG such that b is a summand
of the restriction BJ..HXH as a k(H x H)-module.

PROOF. We first show that kG has a unique block B with b a summand
of B 1HxH As in Proposition 6.1.1, we have

kGTHxH=kA(G)TGxGTH,H= ® k(HxH)n(is)A(G)THxH

(1,g)EHx H\GxG/A(G)
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and

(H x H) n (1,9)p(G) = (1,9)0(H n 9-1H).

If (1'9)A(H n 9-'H) > (h1,h2)0(D) then for x E D we have hlxhj 1 =
g-lh2xh21g and so h2-1gh1 E CG(D) < H and so g E H. It follows that
for g 0 H, no summand k(HXH)n(1,9)A(G)THxH has vertex containing 0(D).
The identity double coset corresponds to the summand kH, and so kG 1H > A
has only one summand isomorphic to b. It follows that there is a unique
block of kG whose restriction to H x H has a summand isomorphic to b.

To prove that this summand is bG, we argue as follows. It suffices to
prove this in case H < NG(D), since applying this case twice yields the
general case. But in this case, if B is a summand of kG such that b is not
a summand of BIHXH, and e and e' are the central idempotents in kH and
kG corresponding to b and B respectively, then the projection of ee' onto kH
as a summand of kG is zero, so eBrD(e') = BrD(ee') = 0 and B # bG.

6.3. Brauer's second main theorem

The following is Nagao's module theoretic version of Brauer's second main
theorem.

THEOREM 6.3.1 (Nagao). Let e E Z(kG) be a central idempotent, let D
be a p-subgroup of G, and let K be a subgroup with CG(D) < K < NG(D).
If M is a kG-module with M = e.M then

MJK= ®M'

where M' is a direct sum of modules projective relative to p-subgroups Q with

PROOF. We have M' = (1 - BrD(e)).MK. Since e acts as the identity
endomorphism of M, e - BrD(e) acts as the identity endomorphism on M'.
So by Lemma 6.2.1 (ii) we have

1M E (M', M')QC(D) C (M', M')Q.

Thus by Rosenberg's Lemma 1.7.10 and Higman's criterion 3.6.4, each inde-
composable summand of M' is projective relative to some p-subgroup Q with

D is a p-subgroup of G, M is an indecompos-
able kG-module with vertex D, and e is a primitive idempotent in Z(kG). If
we denote by M' the NG(D) module corresponding to M under the Green cor-
respondence (see Theorem 3.12.2), then e.M = M if and only if BrD(e).M' =
M'.

COROLLARY 6.3.3. Suppose B = e.kG is a block with defect group D.
Then there is an indecomposable trivial source module M = e.M in the block
B, with vertex exactly D.
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PROOF. Let Mo be a projective indecomposable k(NG(D)/D)-module
regarded as an indecomposable kNG(D)-module with vertex D, and chosen so
that BrD(e).Mo = Mo. Then by the above corollary the Green correspondent
M of Mo is a trivial source indecomposable kG-module with vertex D, and
e.M = M.

COROLLARY 6.3.4 (Blocks of defect zero). If B = e.kG is a block with
defect group D, then the following are equivalent:

(i) J(B) = 0 (and hence B is a complete matrix ring over a division
ring).

(ii) D is the trivial subgroup of G.
(iii) B contains a projective simple module.

PROOF. By the above corollary and Proposition 6.1.2, D is the trivial
subgroup if and only if every module in B has vertex the trivial subgroup,
which is the same as being projective. By Lemma 1.2.4 this is equivalent to
the condition that J(B) = 0. Now by Proposition 3.1.2 projective modules
for kG are injective, and so by Proposition 1.8.5 this happens if and only if
B contains a projective simple module.

COROLLARY 6.3.5. If B is a block of kG with defect group D, then B has
finite representation type if and only if D is cyclic.

PROOF. If D is cyclic, then every subgroup D' of D is cyclic and so
kD' has finite representation type So by Proposition 6.1.2 there are only
finitely many possible sources for modules in B, and therefore B has finite
representation type. Conversely, if D is not cyclic then D has a quotient
Z/p x Z/p, so there are infinitely many indecomposable kD-modules with
vertex exactly D. Let b be the Brauer correspondent of B, as a block of
NG(D). Now if we induce the trivial kD-module to NG(D) then the resulting
module k(NG(D)/D) has summands in every block of kNG(D) (since every
simple kNG(D)-module has D acting trivially). So given any indecomposable
kD-module M with vertex D, M I NG (D) has some summand M' in b. Since
M T NG(D) D is a sum of conjugates of M, the module M is a source of M.
Since each conjugacy class in NG(D) of kD-modules has finite cardinality,
we obtain infinitely many non-isomorphic indecomposable modules in b with
vertex D this way. By Corollary 6.3.2, the Green correspondents of these give
infinitely many non-isomorphic indecomposable modules in B with vertex
D.

6.4. Clifford theory of blocks

In this section we examine the relationship between blocks and normal
subgroups. We use this to establish the extended version of Brauer's first
main theorem, and Brauer's third main theorem.

Let N be a normal subgroup of G, e a primitive central idempotent in
kN, and b = e.kN the corresponding block of kN. For any g E G, geg-1 is
again a primitive central idempotent in kN, and is hence either equal to or
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orthogonal to e. We define the inertia group T(b) to be the subgroup of G
consisting of those elements g with geg-1 = e. Thus

f geg-1

9EGIT(b)

is a central idempotent in kG.
The identity element of kG can be written as the sum of such elements f,

one for each conjugacy class in kG of blocks of kN. Thus given any primitive
central idempotent e' in kG corresponding to a block B = e'.kG, there exists
a block b of kN as above, unique up to conjugacy, such that B is a summand
of f.kG. This is equivalent to the condition that e'f = e', which in turn
happens if and only if e' f # 0 since e' is primitive. In the above situation,
we say that the block B covers the block b. Clearly every block of kN is
covered by some block of kG.

THEOREM 6.4.1. Suppose B is a block of kG, and N is a normal subgroup
of G.

(i) The blocks of kN covered by B form a single G-conjugacy class of
blocks of kN.

(ii) Suppose b = e.kN is a block of kN covered by B. Then some defect
group D(B) is contained in the inertia group T = T(b).

(iii) Let f = gEG/T
geg-1 as above. Then we have f.kG = Matn(e.kT)

where n = IG: TI.
(iv) For some choice of D(B) (but not necessarily for all choices of D(B))

the group D(B) fl N is a defect group of b.
.(v) If CG(D(b)) < N then bG = B and B is the unique block covering b.

Finally, if k is algebraically closed then IT : D(B)NI is not divisible by p.

PROOF. (i) This is clear from the definitions.
(ii) As a k(N x N)-module we have kG = ®gEG/N g.kN, and so letting

f be the idempotent F-gEG/T geg-1 as above, we have

f.kG = ® g(f.kN) = ® ® g(he.kN.h-1) _ ® 91bg 1.
gEG/N gEG/N hEG/T (gi,9z)E

(GxG)/(O(T).NxN)

The latter is just b regarded as a k(A(T).N x N)-module induced up to
G x G. It follows that as a k(G x G)-module, every block B covering b is
projective relative to A(T).N x N. Thus for some defect group D(B) we
have A(D(B)) < A(T).N x N. Since N < T, it follows that D(B) < T.

(iii) We have

f.kG = ® 91(e.kT)g2 1.

(91,92)E(GxG)/(TxT)

Similarly, e.kG can be written as an e.kT-module in the form

e.kG = ® (e.kT)g-1
gEG/T
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so that it is free of rank n = IG : TI over e.kT. Thus we have

Ende.kT(e.kG)°P = Matn,(e.kT).

We have an algebra homomorphism f.kG -+ Ende.kT(e.kG)°P given by right
multiplication. This is injective since if (ey)(fx) = 0 for all y c kG then
f X = N Xf x = EgEG/T geg-1. f x = 0. It is surjective since the matrix entry
corresponding to sending (e.kT)gj 1 to (e.kT)g2 1 with right multiplication
by x E bT is achieved by the element glxg2 l E f.kG.

(iv) Since B is a trivial source module with vertex A(D(B)), the restric-
tion to A(D(B)) has the trivial module as a summand. Hence the restriction
to A(D(B)) n (N x N) also has the trivial module as a summand, and so
some summand of B INxN has vertex containing A(D(B)) fl (N x N). But
the restriction of B to N x N is a sum of modules of the form 91bg2 1. The
vertices of these modules are all G x G-conjugate to A(D(b)), and so some
G-conjugate of D(B) fl N is contained in D(b). Since b is a summand of
B INxN, it is projective relative to some G-conjugate of A(D(B) fl N), and
so we have equality.

(v) If CG(D(b)) < N, then by Lemma 6.2.7 bG is the only block B of kG
such that b is a summand of BINxN, and is hence the only block covering b.

Finally, suppose k is algebraically closed, and let S be a Sylow p-subgroup
of T containing D(B). As in the proof of (ii), we regard b as a module
for A(T)(N x N) whose restriction to N x N is indecomposable. Hence
bIA(S)(NxN) is indecomposable and projective relative to A(D(B))(N x N),
so that by Green's Indecomposability Theorem 3.13.3 it is induced from a
module for A(D(B))(N x N). Since b 1A(D(B))(NxN) is indecomposable the
Mackey decomposition theorem implies that A(D(B))(N x N) = A(S)(N x
N), so that D(B)N = SN. This implies that IT: D(B)NI is not divisible
by p.

LEMMA 6.4.2. Suppose Q is a p-subgroup of G and G = QCG(Q). Then
the natural map 7r : kG --> kG/Q induces a one-one correspondence between
blocks of kG with defect group D (which of course contain Q, for example by
Proposition 6.1.1) and blocks of kG/Q with defect group D/Q.

PROOF. By Proposition 6.2.2, every idempotent in Z(kG) lies in kCG(Q).
Conversely Z(kCG(Q)) < Z(kG) since G = QCG(Q), and so the primi-
tive idempotents in Z(kG) are the same as the primitive idempotents in
Z(kCG(Q)).

Now the map

7r: kG , kG/Q = kCG(Q)/Z(Q)
maps Z(kCG(Q)) surjectively onto Z(kCG(Q)/Z(Q)), and has as its kernel
J(kQ).CG(Q), which is nilpotent. So by the idempotent refinement theorem
it induces a one-one correspondence between idempotents in Z(kCG(Q)) and
in Z(kG/Q). Since the image under of (kG)D is (kG/Q)DIQ the statement
about defect groups follows from Proposition 6.1.2.
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THEOREM 6.4.3 (Brauer's first main theorem, extended version).
Suppose that k is algebraically closed. Then there is a one-one correspon-

dence between the following:
(i) Blocks of kG with defect group D.
(ii) Blocks of kNG(D) with defect group D.
(iii) NG(D)-conjugacy classes of blocks b of kDCG(D) with defect group

D, such that IT(b) : DCG(D) I is not divisible by p.
(iv) NG(D)-conjugacy classes of blocks b of kDCG(D)/D of defect zero,

such that IT(b) : DCG(D)I is not divisible by p.
The correspondence between (i), (ii) and (iii) is given by the Brauer map

b H bG, while the correspondence between (iii) and (iv) is given by the natural
map 7r: kDCG(D) -* kDCG(D)/D.

PROOF. The correspondence between (i) and (ii) was shown in Theo-
rem 6.2.6. The correspondence between (iii) and (iv) was shown in the above
lemma (with Q = D). So it remains to discuss the correspondence between
(ii) and (iii). We may thus assume that D is normal in G. We apply The-
orem 6.4.1 with N = DCG(D). This says that if B is a block of kG with
defect group D then the blocks of kN covered by B also have D as defect
group and p does not divide IT(b) : DCG(D)I. Conversely if b is a block of
DCG(D) with defect group D and p does not divide IT(b) : DCG(D)l then
B = bG is the unique block of kG which covers b. Moreover the defect group
D(bG) is a p-subgroup of T(b) which intersects DCG(D) in exactly D, so that
since p does not divide IT(b) : DCG(D)I, D is a defect group of bG.

It is worth making more explicit the structure of the blocks given in part
(iii) of the above theorem.

PROPOSITION 6.4.4. Suppose k is an algebraically closed field, and sup-
pose B is a block of kG with normal defect group D and G = DCG(D). Then
B = Matn(kD).

PROOF. Since D acts trivially on simple kG-modules, and the block of
defect zero of kG/D corresponding to B as in the last theorem has only
one simple module by Corollary 6.3.4, it follows that B has only one simple
module S. So to prove that B = Matn,(kD) it suffices to show that B is
Morita equivalent to kD.

If M is a kD-module then M TG is a kG-kCG(D)-bimodule, with right
CG(D)-action given by (g ® m)x = gx ® m. So we have a functor kDmod ->

mod given by M --> M T®®kcc(D)S. Similarly, we regard the dual S*
of S as a kD-kG-bimodule with trivial left action and we have a functor
Bmod -4 kDmod given by N '--> S*®kGN. Using the identity S*®kCG(D)S
HomkCG(D)(S, S) = k it is easy to see that these functors give an equivalence
of categories.

THEOREM 6.4.5 (Brauer's third main theorem). Suppose H is a subgroup
of G with DCG(D) < H, and b is a block of kH with defect group D. Then
bG is the principal block B0(kG) if and only if b is the principal block Bo(kH).
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PROOF. If we.apply Nagao's Theorem 6.3.1 to the trivial module, we find
that if b = Bo(kH) then B = Bo(kG). Conversely, suppose bG = Bo(kG).
We may suppose H < NG(D), since applying this case twice gives the general
case. Let D' be a defect group of bNG(D). Then D < D' < NG(D) so that
CG(D') < CG(D) < NG(D) and hence DCCG(D') < NG(D). By the extended
first main theorem there is a unique NG(D')-conjugacy class of blocks b' of
kD'CG(D') with (b')G = Bo(kG). Since Bo(kD'CG(D')) is such a block and
is stable under NG(D')-conjugation, this is the unique such block. But there
is also a block b' of kD'CG(D') with (b')NG(D) = bNG(D). For such a block we
also have (b')G = Bo(kG) and hence b' = Bo(kD'CG(D')). Now by the first
part of the proof we have bNG(D) = Bo(kNG(D)). So we may assume that D
is normal in G.

We now apply Theorem 6.4.1 with N = DCG(D). Let b' be a block of
kN covered by b. By part (iv) of this theorem D is a defect group of V. Since
CG(D) < N, by part (v) we have (b')H = b and so (b')G = Bo(kG). But also
Bo(kN)G = Bo(kG), so that since Bo(kN) is stable under G-conjugation we
have b' = Bo(kN) and hence b = (b')H = Bo(kH).

6.5. Blocks of cyclic defect

The situation of a block whose defect groups are cyclic is one which
is very well understood. The case of a cyclic defect group of order p was
originally described by Brauer. Using ideas of Green and Thompson, the
general case was analysed by Dade. We shall only describe that part of
the theory which has to do with the modular representations. We shall not
describe the ordinary characters or decomposition numbers.

Suppose B is a block of kG whose defect group D is cyclic of order pn. By
Proposition 6.1.2 every indecomposable module in B has vertex contained in
D. Since a cyclic group has only finitely many indecomposable modules, there
are only finitely many sources and hence only finitely many indecomposables
in B. Thus B has finite representation type.

Let Q be the unique subgroup of D of order p, so that NG(Q) > NG(D).
By Brauer's first main theorem, there is a unique block b of NG(Q) with
bG = B. By Theorem 6.4.1, there is a unique NG(Q)-conjugacy class of blocks
bi of CG(Q) (note that Q < CG(Q)) with bi (Q) = b (so that bG = B). Let
T = T(b1) < NG(Q) be the inertia group of b1i and set e = IT: CG(Q)I, the
inertial index of B (this is not the usual definition, but it is equivalent and
more suitable for our purposes). We shall not use the letter e to stand for an
idempotent during this section, so there should be no notational confusion.
Note that e divides ING(Q) : CG(Q)I, which in turn divides p - 1 since
NG(Q)/CG(Q) is isomorphic to a group of automorphisms of Q.

We next analyse the Green correspondence between modules for G and
NG(Q)
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LEMMA 6.5.1. Green correspondence between G and NG(Q) sets up a
one-one correspondence between non-projective modules in B and non-pro-
jective modules in b, in such a way that

M.tNG(Q) = f (M) ® (projective) ® (modules not in b)

M'TG = g(M') ® (projective).

If M1 and M2 are modules in B then

(Ml, M2)G'1 - (f (Ml), c
J

(M2))NG(Q),1.

(see Definition 3.6.2 for the notation).

PROOF. By Proposition 6.1.2 every non-projective module in B has ver-
tex D' with 1 < D' < D. Since Q is a characteristic subgroup of D' this
means that NG(D') < NG(Q) and so we may apply Green correspondence.
By Nagao's theorem a module with vertex D' lies in B if and only if its Green
correspondent lies in b.

The theorem now follows from Theorem 3.12.2 once we have evaluated
the sets of subgroups X and Y. Since Q is the unique minimal subgroup of
D, if x V NG(Q) then we have XD fl D = 1, and so X = {1}. Similarly Y
consists of subgroups of NG(Q) not containing Q, so that any non-projective
indecomposable kNG(Q)-module with vertex in Y does not lie in b by Propo-
sition 6.1.2.

We shall also need the following lemma.

LEMMA 6.5.2. Suppose A is a finite dimensional algebra with the prop-
erty that every projective indecomposable A-module and every injective inde-
composable A-module is uniserial. Then every indecomposable A-module is
uniserial, and in particular is a quotient of a projective indecomposable.

PROOF. Suppose M is indecomposable and S is a simple submodule of
M. Let M' be a submodule of M which is maximal subject to the condition
S fl M' = 0. Then M/M' has S as its socle since otherwise we could enlarge
M'. So the injective hull of M/M' is the injective hull of S and hence
uniserial, and so M/M' is uniserial. So the projective cover P of M/M'
is also uniserial. The map P -* M/M' lifts to a map P --* M whose image
M" is a uniserial submodule of M containing S and hence intersects M'
trivially. Thus M = M' ® M", and since M" # 0 we have M' = 0.

We now analyse blocks of cyclic defect with inertial index one. This is
an easy case to understand, and acts as a model for the arguments in the
general case.

PROPOSITION 6.5.3. Suppose B is a block of kG with cyclic defect group
D of order pn and with inertial index one. Then there is only one simple
module S in B, and the projective cover of S is uniserial of length ptm.
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PROOF. We first prove that if B has only one simple module S then the
projective cover of S is uniserial. For this purpose we use the fact that B has
finite representation type.

Denote by Ps the projective cover of S. We have Rad(Ps)/Rad2(PS) 54 0,
since otherwise S is projective so that by Corollary 6.3.4 S lies in a block of
defect zero. If Rad(Ps)/Rad2(Ps) is a sum of at least two copies of S then
PS has a quotient M with Rad(M) = S ® S and M/Rad(M) - S. Thus
the basic algebra EndkG(PS)°p of B is a quotient of the algebra End(M)°P.
Setting A = EndkG(S)°P we have EndkG(M)°P = A[X,Y]/(X2,XY,Y2).
This algebra has infinitely many non-isomorphic indecomposable modules.
This may be seen as follows. The algebra A[X,Y]/(X2,Y2) is a self-injective
algebra of dimension four over A, and the modules Sl'k are all non-isomorphic
indecomposables on which XY acts as zero. Since B has only finitely many
indecomposables, we deduce that Rad(Ps)/Rad2(PS) = S. It follows that
Ps is uniserial, since by induction on r, if Rad'(Ps)/Rad'+1(Ps) = S then
Radi(Ps)/Radi+2(Ps) is a quotient of Ps/Rad2(Ps) and so we have either
Radi+1(PS) = 0 or Radi+l(Ps)/Radi+2(Ps) = S.

We now prove the proposition by induction on the order of G, and we
begin with the case where the subgroup Q of order p in D is central in G
(note that the case D = 1 was dealt with in Corollary 6.3.4). Applying
Lemma 6.4.2, we see that the natural map r : kG -> kGIQ induces a one-
one correspondence between blocks of kG with defect group D and blocks of
kGIQ with defect group DIQ. If B is the block of kGIQ corresponding to
B then the inertial index of B is again one, and since G/Q is smaller than G
the inductive hypothesis shows that B has only one simple module S. Since
Q acts trivially on simple B-modules, B also has only one simple module,
namely S again. Now if g is a generator of Q then as a kG-module we have

(g - 1)1kG/(g - 1)j+1kG = kG/Q

for j = 0,1, ... , p - 1, and (g - 1)P = 0. Thus (g - 1)jB/(g - 1)j+1B
and so the length of the projective cover of S as a B-module is p times what
it is as a B-module. This completes the proof in case Q < Z(G).

Next, we treat the case where Q is normal but not central. In this case
we apply Theorem 6.4.1 to the normal subgroup CG(Q), which is equal to
T since e = 1. We see that if b1 is a block of kCG(Q) covered by B then
B = Mat,,,,(b1), where m = IG : TI. Thus B is Morita equivalent to b1 and
the result follows in this case.

Finally, if Q is not normal in G then we apply Green correspondence be-
tween G and NG(Q), as in the Lemma 6.5.1. If B has more than one simple
module, say S and S' are simple B-modules, then the Green correspondents
f (S) and f (S') are uniserial modules for NG(Q), and so one is a quotient
of the other, say f (S') is a quotient of f (S). Now it follows from Proposi-
tion 3.6.6 that a homomorphism from one module to another lies in the image
of Tr1,G if and only if it factors through the projective cover of the second
module. Since f (S) is not projective, the surjection f (S) -- f (S') does not
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lie in (f (S), f (S'))i GiQi. Hence we have (f (S), f (S'))Nc(Q)"1 # 0 so that
by Lemma 6.5.1 (S, S')G,1 0. Since S and S' are distinct simple modules
this is absurd, and so B has only one simple module. Since the length of
the projective cover of this simple module is one more than the number of
non-projective indecomposables in B, it also follows from the Green corre-
spondence that this is the same as the length for the corresponding block of
NG(Q).

The next easiest case to consider is the one in which Q is normal in G.
To avoid complications we assume that k is algebraically closed.

PROPOSITION 6.5.4. Suppose k is algebraically closed, and B is a block
of kG with cyclic defect group D of order pn and inertial index e. Suppose
further that the subgroup Q of D of order p is normal in G. Then there
are e simple modules in B, all of the same dimension over k. These simple
modules may be labelled S1, ... , Se in such a way that the projective cover
Pj of Sj is uniserial of length pn with Rad2(Pj)/Rad'+1(Pj) = Sti+j, with the
subscripts being taken modulo e.

B is Morita equivalent to the group algebra of a split extension with nor-
mal subgroup D and complement cyclic of order e acting faithfully on D.

PROOF. Let b1 be a block of CG(Q) covered by B, and let T = T(bl)
be the inertia group. Then by Theorem 6.4.1 B is isomorphic to a complete
matrix algebra over bi. It thus suffices to prove the proposition with G = T.
We may apply the last proposition to b1 to see that it has a unique simple
module S, and its projective cover is uniserial of length n.

We first claim that S extends to a simple kG-module in exactly e ways,
and that these are all the simple modules in B (note that this is not true
unless G = T). Since b1 is stable under conjugation by G, so is the simple
module S. Thus if g E G generates the cyclic group G/CG(Q) we have
g 0 S -- S. Let 0 be an element of Endk(S) such that g 0 s t--+ 0(s) is such
a kCG(Q)-module isomorphism. In other words, 6(g-lhg(s)) = h(0(s)) for
h E CG(Q). Then gi 0 s H 03(s) gives an isomorphism gi ® S = S. Since
ge E CG(Q), ge(s) H Be(s) is a kCG(Q)-module endomorphism of S. Since k
is algebraically closed, it'follows that for some p c- k we have ge(s) = pee(s).
Since e is coprime to p, there are exactly e distinct choices for an element
A E k with ae = A. For each such choice, we may extend S to a simple
kG-module by letting g act as the endomorphism A0. Distinct choices of A
give non-isomorphic extensions of S to a kG-module, since an isomorphism
between two such extensions restricts to give an isomorphism on CG(Q),
which may therefore be taken to be the identity map.

If we let S1, ... , Se be the extensions of S to kG-modules, then

HomkG(Si, STG) = HomkC,3 (Q) (S, S) = k
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and so by counting dimensions we have S TG= Sl ® Se. Now if M is
any simple kG-module then

HomkG(M, STG) = HomkcG(Q)(MjcG(Q), S) $ 0

and so M must be one of the Sj.
Now by the Eckmann-Shapiro lemma

so that there is a unique value of i for which Ext)GA, Si) = k, and for
the remaining values of i we have ExtLG(Si, Si) = 0. Since B is a block, all
simple modules are connected by some chain of extensions, and it follows that
we may label the simple modules in such a way that Extk'G(Sj, Sj+1) = k,
where j is taken modulo e. Thus if we denote by Pj the projective cover of
S. we have Rad(Pj)/Rad2(Pj) = S +1. It follows that Pj is uniserial with
either Radi(Pj)/Radi+1(Pj) = Si+j or Radi(Pj) = 0, since by induction on
i, if Radi(Pj)/Radi+1(Pj) c-& Si+j then Radi(Pj)/Radi+2(Pj) is a quotient of
Pi+j/Rad2(Pi+j) and so either Radi+'(Pj) = 0 or Radi+l(pj)/ di+2(pl)

Si+j+1 The restriction of Pj to CG(Q) is some multiple of PS; this multiple
has to be one since PS TG is projective and hence equal to the sum of the P9.
Thus the length of Pj is the same as the length of PS, namely pn.

Finally, to see that B is Morita equivalent to the group algebra of a split
extension of D by Z/e, we notice that the Ext-quiver is an oriented cycle
of length e with relations saying that any composite of pn successive arrows
is zero, so this determines the basic algebra by the method of Section 4.1.
Since the group algebra of the split extension is a block of the type being
considered, it has the same Morita type.

THEOREM 6.5.5. Suppose k is algebraically closed, and B is a block of
kG with cyclic defect group D of order pn and inertial index e. Then there
are e simple modules and e.pn indecomposable modules in B. The stable
Auslander-Reiten quiver of B is a finite tube (Z/e)Apn_1. The algebra B is
a Brauer tree algebra (see Section 4.18) for a Brauer tree with e edges and
exceptional multiplicity (pn - 1)/e.

PROOF. Let Q be the subgroup of D of order p, and let b be the Brauer
correspondent of B in NG(Q). Then by the previous proposition there are
e simple modules in b, and their projective covers are uniserial of length pn.
Thus every indecomposable in b is uniserial and a quotient of a projective
indecomposable. Each projective indecomposable has pn - 1 non-projective
quotients, and so b has e(pn - 1) non-projective indecomposables. It now
follows from the Green correspondence (Lemma 6.5.1) that B also has e(pn -
1) non-projective indecomposables. So we must show that B has e simple
modules, and hence also e projective indecomposables.

We first claim that if S and S' are simple B-modules then the Green
correspondents f (S) and f (S') have non-isomorphic heads. For otherwise,
since they are uniserial modules, one is a quotient of the other, and just as
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in the proof of Proposition 6.5.3 this implies that 0 (f (S), f (S'))NG(Q),1
(S, S')G,1 which is absurd. Thus there are at most e simple modules in B.

Conversely if So and So are simple modules in b, we claim that the same
simple B-module S cannot appear in the top radical layer of the Green cor-
respondents g(So) and g(SS). For if S appears in g(So)/Radg(So) then
0 (g(So), S)G,1 = (So, f (S))n'GiQ>,1 so that So is a submodule of f (S),
and similarly So' is also a submodule of f (S) and so So = S. So there are at
least e simple modules in B.

It follows from Lemma 6.5.1, Corollary 6.3.2 and Theorem 4.12.11 that
the induction to G of an almost split sequence of modules in b is a sum of
an almost split sequence of modules in B and a split sequence of projective
modules. Thus the stable Auslander-Reiten quiver of B is isomorphic to
that for b. It is easy to see from the structure of the projective modules in b
given in the previous proposition that the irreducible maps between modules
in b are the injections and surjections with simple kernels and cokernels, so
that the stable Auslander-Reiten quiver of b, and hence also for B, is a
tube of type (Z/e)Apn_1. In particular there are at most 2e almost split
sequences in B with the property that the middle term has only one non-
projective summand. Thus we may apply Theorem 4.18.3 to deduce that
B is a Brauer graph algebra. Since B has finite representation type, we
may then apply Theorem 4.18.4 to deduce that B is a Brauer tree algebra.
The number of edges in the tree is equal to the number of isomorphism
classes of simple modules, namely e. Following Alperin [3], the multiplicity
of the exceptional vertex may be determined by looking at the determinant
of the Cartan matrix as follows. It follows from Lemma 6.5.1 that Green
correspondence gives an isomorphism between the cokernels of the Cartan
homomorphisms for b and for B (cf. Corollary 5.3.5 and Theorem 5.9.3). So
the determinant of the Cartan matrix of B is equal to that of b, namely
det(I + ((p"` - 1)/e)J) = pn, where I is an e x e identity matrix and J is
a matrix of the same size with all entries equal to one. We claim that for
a Brauer tree with e edges and exceptional multiplicity m the determinant
of the Cartan matrix is em + 1, which gives the value of m as (pfl - 1)/e
as required. We prove this by induction on e. We first treat the case in
which the tree is a star; in other words there is at most one vertex of valency
greater than one. If the exceptional vertex is the one with valency greater
than one, then as above the determinant is det(I + mJ) = em + 1, while if
the exceptional vertex has valency one then the determinant is

m+1 1 ... 1

1 2
det

1 1 2

=em+1.

Finally, if the tree is not a star then there exists an edge E such that neither
of the vertices at its ends has valency one. Denote by L and R the trees to
the left and right of E, intersecting in exactly E, and with union the whole
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tree. Denote by L0 and Ro the trees obtained from L and R by removing
the edge E. We choose the labelling so that the exceptional vertex, if there
is one, lies in L. Denote by 1 and r the numbers of edges in L and R, so that
1 + r = e + 1. The Cartan matrix has the form

C=

with a single entry z in the overlap, equal to either 2 or m + 1, depending on
whether the exceptional vertex is the left-hand vertex of E or not. Denote
by X0 and Y0 the submatrices of X and Y obtained by removing the row
and column containing the overlap. Then X, Y, X0 and Y0 are the Cartan
matrices of L, R, L0 and R0. By the inductive hypothesis we know the
determinants of X, Y, X0 and Y0.

Expanding det(C) about the row containing the overlap, we see that

det(C) = det(X) det(Yo) + det(Xo) det(Y) - z. det(Xo) det(Yo).

If z = 2 this equals

(lm + 1)r + ((l - 1)m + 1)(r + 1) - 2((l - 1)m + 1)r = em + 1,

while if z = m + 1 it equals

(lm + 1)r + ((l - 1)m + 1)(rm + 1) - (m + 1)((l + 1)m + 1)r = em + 1.

This completes the calculation of the determinant of C. 0

6.6. Klein four defect groups

In this section we show how the methods of the last section can be pushed
to determine the structure of blocks whose defect groups are Klein four
groups. In an extraordinary series of papers, Erdmann [101, 102, 103,
104, 105] has taken this method to its natural conclusion by completing the
analysis of tame blocks of group algebras; namely those whose defect groups
are dihedral, semidihedral or generalised quaternion. For all other possible
defect groups the representation type is wild, and so one does not expect an
analysis of almost split sequences to determine the algebra structure.

Suppose k is an algebraically closed field of characteristic two, and sup-
pose B is a block of kG whose defect group D is a Klein four group Z/2 x Z/2.
By Brauer's first main theorem, there is a unique block b of NG(D) with bG =
B. By the extended first main theorem there is a unique NG(D)-conjugacy
class of blocks b1 of kCG(D) (note that D < CG(D)) with bi G(°) = b (so
that bl = B). Let T = T(b1) < NG(D) be the inertial group of b1, and set
e = IT: CG(D)I, the inertial index of B. Since NG(D)/CG(D) is isomorphic
to a subgroup of Aut(D), which has order six, and e is coprime to p = 2, it
follows that e = 1 or 3. We begin with the case e = 1.

THEOREM 6.6.1. Suppose k is an algebraically closed field of character-
istic two, and B is a block of kG with Klein four defect group D and inertial
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index e =.1. Then there is a unique simple module S in B, and if PS is its
projective cover then Rad(Ps)/Soc(Ps) = S ® S. For some n > 1 we have
B = Matn(kD).

PROOF. We begin with the case where D is central in G. In this case
Proposition 6.4.4 shows that B = Matn(kD). Next, if D is normal but not
central then by Theorem 6.4.1 there is a unique conjugacy class of blocks b
of CG(D) covered by B. Since e = 1 the inertial group of b is CG(D) and so
B = Mat,,, (b), where m = IG : CG(D)1.

To examine the case where D is not normal in G, we first examine the
stable Auslander-Reiten quiver of kG-modules. Let b be the Brauer cor-
respondent of B as a block of kNG(D). Referring to the examples as the
end of Section 4.17, we see that the stable quiver of b-modules consists of
a component of type ZA12 and an infinite set of 1-tubes, each fixed by Q.
Since every proper subgroup of D is cyclic, all but a finite number of these
modules have vertex D, and the remaining modules lie in 1-tubes. It thus
follows from Proposition 4.12.11 and Corollary 6.3.2 that the stable quiver
of B-modules also consists of a component of type ZA12 and an infinite set
of 1-tubes, each fixed by Q.

Now suppose PS is the projective cover of a simple B-module S. If PS is
attached at the end of a 1-tube then Rad(Ps) = Ps/Soc(PS). It is easy to
see that this implies Ps is uniserial with all composition factors isomorphic
to S and hence S is the only simple module in a block of finite representation
type. This is absurd, and so Ps is connected to the component of type
ZA12. This implies that Rad(Ps)/Soc(Ps) = S ® S. So S is the only simple
module in B, and by Morita theory B = Matn(EndB(Ps)°p). Let a be
an endomorphism of Ps taking the top composition factor to one of the
summands of the middle, and ,3 be an endomorphism taking it to the other
summand. Since the image M of a is a module with a resolution by projective
modules all of dimension four, it follows from Auslander's Theorem 4.14.2
that M does not lie in the 7GA12 component and so it satisfies M = S1(M),
so that a2 = 0. Similarly ,32 = 0 and al3 is some non-zero multiple of ,3ca.
But B, and hence also EndB(Ps), is a symmetric algebra. If A is a linear
map as in the definition of a symmetric algebra, then .(a13) = A(f a). Since
A cannot vanish on the left ideal generated by aI3, we have a/3 = 3a and so
EndB(PS) - -,(3a) = kD.

THEOREM 6.6.2. Suppose k is an algebraically closed field of character-
istic two, and B is a block of kG with Klein four defect group D normal
in G, and inertial index e = 3. Then there are three simple modules, S1,
S2, S3 in B with projective covers P1, P2, P3. We have Rad(Pj)/Soc(Pj)
Sj_1 ®Sj.}1 where the indices are taken modulo three. For some n > 1 we
have B = Matn(kA4), where A4 is the alternating group of degree four.

PROOF. Let b be a block of kCG(D) covered by B. Then T(b) = G,
JG : CG(D)I = 3, and by the previous theorem we have b - Matn(kD). Let
S be the simple module in b. Then S is stable under conjugation by G, and
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so by the same argument as we used in the proof of Proposition 6.5.4, we
see that S extends to give three non-isomorphic B-modules Si, S2, S3, and
this is a complete list of simple B-modules. Also PS TG- P1 ® P2 ® P3 and
Pi P. Thus Rad(Pj)/Soc(Pj) is isomorphic to a direct sum of two
simples. Since the three simples are related by tensoring with the three one
dimensional modules for kG/CG(D) = k(Z/3), the whole picture is invariant
under the substitution Sj H Sj+1. Now the fact that the determinant of the
Cartan matrix is a power of two (see Corollary 5.7.2 or Theorem 5.9.3) leaves
only one possibility, namely Rad(Pj)/Soc(Pj) = Pj_1 ® Pj+1. We now com-
pute the basic algebra by the method of quivers with relations (Section 4.1).
The Ext-quiver is as follows:

The relations are 0 = ba = ,3y = a(= e/3 = (b = rye, and there are non-zero
constants Pl, P2, P3 with,3a = Pl(e, eC = P26ry and ryb = µ3a,3. By replacing
(say) ( and 6 by non-zero multiples, we may assume that Pl = P2 = 1. Now
B is a symmetric algebra, and hence so is the basic algebra. If A is a linear
map as in the definition of symmetric algebra then

0 A(01)3) = a(,3a) = a(le) = ales) = v(67) = v(76) = P3A(aa)
and so P3 = 1. Thus the basic algebra is completely determined. Now kA4
is an example of such a block B, and is basic. Since Si, S2, S3 have the
same dimension, n say, Morita theory implies that B is isomorphic to the
endomorphism ring of a direct sum of copies of the regular representation of
kA4, i.e., B - Mat,,,(kA4).

THEOREM 6.6.3. Suppose k is an algebraically closed field of character-
istic two, and B is a block of kG with Klein four defect group D of inertial
index e = 3. Then there are three simple B-modules Si, S2, S3 with projective
covers P1, P2, P3. One of the following possibilities holds:

(i) B is Morita equivalent to the group algebra kA4. In this case

Rad(Pj)/Soc(Pj) - Sj_1 ® Sj+i,
where the indices are taken modulo three.

(ii) B is Morita equivalent to the principal block Bo(kA5) of the group
algebra of the alternating group A5. In this case, after re-indexing if necessary
we have

Rad(P1)/Soc(P1) = Uni(S2, S1, S3) ® Uni(S3, S1, S2)

Rad(P2)/Soc(P2) = Uni(Si, S3i S1)

Rad(P3)/Soc(P3) = Uni(Si, S2i S1).
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Here, Uni(A, B, ...) denotes a uniserial module with composition factors
A, B.... starting from the top.

PROOF. The proof of this theorem is a variant of the ideas in Theo-
rem 4.18.3 in which the almost split sequences considered have non-isomor-
phic ends. The problem with applying the theorem as it stands is that there
are infinitely many 1-tubes, as we shall see.

We use Green correspondence to examine the stable Auslander-Reiten
quiver of B-modules. Let b be the block of kNG(D) corresponding to B by
Brauer's first main theorem, and b1 a block of kCG(D) covered by b. By the
previous theorem, b is Morita equivalent to the group algebra kA4 of the alter-
nating group of degree four, and so by the example at the end of Section 4.17,
the stable quiver of b-modules consists of one component ZA5, two 3-tubes,
and an infinite set of 1-tubes, and Sl fixes each component setwise. The non-
projective modules in b with vertex a proper subgroup of D lie at the ends of
1-tubes. Moreover, if M is an indecomposable non-projective module in B
with vertex a proper subgroup D' of D, then by Nagao's Theorem, the Green
correspondent f (M) is a module lying in b " ' . This is a block with defect
group D and inertial index one, and so by Theorem 6.6.1, f (M) = Q f (M)
and hence M = 1(M). It now follows from Proposition 4.12.11 that the
stable quiver of B-modules consists of one component ZA5, two 3-tubes, and
an infinite set of 1-tubes, and S2 fixes each component setwise. The non-
projective indecomposable modules with vertex a proper subgroup of D lie
in 1-tubes.

We shall show that for each simple B-module S we can produce two
almost split sequences satisfying the following conditions:

(a) The middle term has at most one non-projective summand.
(b) The left and right hand terms are non-isomorphic.

Such an almost split sequence cannot lie in a ZA5 component or a 1-tube, so
it must lie at the end of a 3-tube. Since there are only six modules lying at
the ends of 3-tubes, this will say there are at most three simple modules.

Suppose S is a simple module with projective cover Ps. If S lies in a tube
it lies at the end, and so Rad(Ps)/Soc(Ps) is indecomposable. Conversely, if
Rad(Ps)/Soc(Ps) is indecomposable, then the almost split sequences termi-
nating in U = PS/Soc(Ps) and V = S (notation as in Section 4.18) satisfy
(a) by Proposition 4.12.9, and S lies at the end of a tube. Since S 5t 11(S),
these almost split sequences satisfy (b), and S lies at the end of a 3-tube.

On the other hand, if Rad(Ps)/Soc(Ps) is decomposable, then it has
exactly two summands U and V, and S lies in the 7GA5 component. By
Lemma 4.18.2, the almost split sequences terminating in U and V satisfy
(a). If 12(U) = U, then since every periodic module has period one or three,
we have 11(U) = U, i.e., V = U. Since Rad(PS), U, V and PS/Soc(PS) lie
in the ZA5 component, there is an irreducible morphism 11(V) - U, and
11(V) 5f Rad(Ps). Since 1(V) has more composition factors than U, a is
surjective and has Soc1(V) = V/Rad(V) = U/Rad(U) = S in its kernel.
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But Q(V)/Soc1Z(V) = V (DS and so either U = V or U = S. Since neither of
these holds we have 112 (U) U and so the almost split sequences terminating
in U and V satisfy (b).

We now know that there are at most three simple B-modules. Next,
we note that not all simple B-modules can be periodic, since otherwise by
the Horseshoe Lemma 2.5.1, all finitely generated B-modules would have
resolutions by projective modules of bounded dimension. But then the ZA5
component would contradict Auslander's Theorem 4.14.2.

Let S1 be a non-periodic simple module whose projective cover has as
few composition factors as possible. Then S1 lies in the ZA5 component, and
hence so does 12(S1). So Rad(P1)/Soc(P1) - U1®V1 with U1 and V1 non-zero
indecomposable. An examination of the action of 1Z on the ZA5 component
shows that there have to be almost split sequences 0 -> 1Z(U1) -> V1 ® Si ->
11 '(U1) -> 0 and 0 -> 11(V1) -> U1 ® S1 -> SZ-1(V1) -> 0 with the possible
addition of a projective summand in the middle. We divide into two cases
according to whether such a projective summand appears in at least one of
these sequences.

First suppose that one of these sequences has a projective summand,
say 0 --> 1t(U1) --> V1 ® S1 ® P2 -> Q-1(U1) -> 0. In this case we have
U2 = V1, V2 = S1 and S2 = U1, and so there is an almost split sequence
0 -* 1Z(V1) - S1 ® S2 -> 1Z-1(V1) ---> 0 with the possible addition of a
projective summand in the middle. But this almost split sequence does not
make sense without a projective summand in the middle, so in fact it is
0 -> Q(V1) -> Si ® S2 ® P3 -> 1Z-1(V1) -> 0. Thus there are exactly three
simple modules and Rad(Pj)/Soc(Pj) = Pj_1ED Pj+1 (indices modulo three).
We now argue as in the proof of the previous theorem to show that the basic
algebra of B is isomorphic to kA4.

Now suppose that we have almost split sequences 0 -> 11(U1) -> V1®S1 ->
Q-1(U1) --> 0 and 0 -> 1Z(V1) -* U1 ® S1 -> St-1(VI) -> 0 without projective
summands in the middle. If the projective cover of U1 has the projective cover
of a non-periodic simple as a summand then 11(U1) has more composition
factors than V1 ® S1, so this cannot happen. Therefore there is at least one
periodic simple, say S2, which lies at the end of a 3-tube. The modules at
the end of this 3-tube are therefore Rad(P2) = U2, P2/Soc(P2) = U2 and
S2=V2= V2.

Now consider the four modules U1, V1, U1 and V1. Since these all lie
at the ends of 3-tubes, either two of them are isomorphic, or one of them is
isomorphic to one of S2, U2 or U2. In the first case, since V1 is not isomor-
phic to either U1 or U1, without loss of generality we have V1 = V1. This
implies that V1 is uniserial with all composition factors isomorphic to S1.
Since there is an injective irreducible map 11(U1) -+ V1i 11(U1) has the same
property, contradicting the fact that the projective cover of U1 does not have
P1 as a summand. Thus the second case holds, and by dualising all argu-
ments if necessary we may assume without loss of generality that U1 - U2.
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Hence VI = Q W0 = U2 and so U2/Rad(U2) = Soc(U2) = S1, and hence
Ext1 (Si, S2) = k. Now S2(V1) = 11(U2) = S2 and hence 1(V1) is a non-
split extension 0 -> S2 -p 11(V1) -> S1 -> 0. Now, Soc2(U1) = Soc2(Ul)
Soc2(U2) is also a non-split extension 0 -> S2 -> Soc2(Ul) --> Sl -> 0, so the
irreducible map SZ(Vl) -> Ul is injective with simple cokernel. We claim that
this simple cokernel is not isomorphic to Sl or S2. If it were isomorphic to
Si then Ul = Uni(Si, S1, S2) and Vl/Soc(Vl) = S2 so that there would be no
surjective map from Pi to U1, which contradicts the fact that U1 has a pro-
jective cover. If it were isomorphic to S2 then Rad(Pl)/Rad2(P1) = S2 ® S2i
which would contradict the fact that ExtB1 (Si, S2) = k. Thus there is a third
simple module S3, and we have Ul = Uni(S3, S1, S2), U2 = Uni(Si, S3, S1)
and Vl = Uni(S2, S1, S3). Since the projective cover of U1 does not have the
projective cover of a non-periodic simple as a summand, P3 is attached at
the end of the other 3-tube. It is now easy to see that U3 = U1, so that
U3 = Uni(Si, S2, Si). We have proved that B is a Brauer graph algebra, and
so finally the basic algebra may be determined by the method of quivers and
relations as explained in Section 4.18. As usual, the last scalar is determined
using the fact that B is a symmetric algebra.

Since A5 = SL2(4), the principal block of kA5 has a two dimensional
simple module whose restriction to a Sylow 2-subgroup is indecomposable of
even dimension and hence periodic, so this principal block is an example. of
a block of type (ii).

REMARK. Part of this theorem, namely the fact that there are three
simple modules in B, may be given an alternative proof using generalised
decomposition numbers, see Brauer [36] (Vol. III, 20-52: Some Applications
of the Theory of Blocks of Characters of Finite Groups, IV). The above
proof in fact shows something stronger, namely that any finite dimensional
symmetric algebra A whose stable Auslander-Reiten quiver is isomorphic to
that of kA4 is in fact Morita equivalent to one of the two algebras listed, and
in particular has exactly three simple modules.

Auslander has conjectured that if A and I are any finite dimensional
algebras such that Amod is equivalent to rmod (such algebras are said
to be stably equivalent) then A and IF have the same number of simple
modules (other than those lying in summands isomorphic to complete matrix
algebras). This may be related to a conjecture of Alperin, which says that
if B is a block of kG with abelian defect group D and Brauer correspondent
b as a block of NG(D), then the number of simple modules in B is equal to
the number of simple modules in b. A theorem of Knorr implies that in this
situation D is a vertex of every simple module in B, and so this is a special
case of a more general conjecture, usually called Alperin's conjecture. This
says that if B is a block of kG with defect group D (not necessarily abelian),
then the number of simple modules in B is equal to the sum over all conjugacy
classes of p-subgroups P of G of the number of projective simple modules for
NG(P)/P which when viewed as modules for NG(P) lie in a block b for which



224 6. BLOCK THEORY

bG = B. In other words, the number of simple modules in B, which may
be thought of as a global invariant, is equal to the number of simple Green
correspondents of modules in B, which may be calculated locally. This is
considered by many to be one of the most important conjectures in modular
representation theory at this time.
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of groups, 75
of modules, 39
split, 75

exterior trace map, 60

F4, 116
F41, F42, 117
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fH, 178
field

of coefficients, 1

splitting, 6
filtration, functorial, 132
finite

Dynkin diagram, 116
representation type, 114, 208

finitely generated
functor, 129
module, 49

first main theorem, Brauer's, 206
Fitting's lemma, 8, 18
flat module, 9
form, 18

bilinear, 172
four

group, Klein, 107, 115, 162, 218
subspace problem, 100

Frattini subgroup, v
free

module, 9
resolution, 63

Freyd category embedding theorem, 22
Frobenius

algebra, 11
group of order p(p - 1), 74
map, 176
reciprocity, 60

full exact embedding, 22
Fun(A), Fun°(A), 128
function, (sub)additive, 118
functor, 21

additive, 22
adjoint, 24
contravariant, 21, 128
covariant, 21, 128
Coxeter, 127
derived, 33
finitely generated, 129
left derived, 33
Nakayama, 148
projective, 129
quotient, 129
representable, 23
right derived, 33, 102
simple, 129

functorial filtration, 132
fundamental group, 157
fusion, control of, 80

G/H, v
G°°, v

INDEX

G2, 116
[G/HI, 178

G21, 622, 117
[91I ... I9+.], 63
Gabriel's theorem, 103, 127
Galois descent, 109
generalised quaternion groups, 115, 143
graded

algebra, 94

strongly group-, 88
commutative, 41, 56

graph, 112
Brauer, 166
labelled, 104
opposite, 118
orbit, 155
reduced, 155
valued, 104

Green
's indecomposability theorem, 89
's lifting theorem, 78
correspondence, 85, 212
ring, 171

Grothendieck ring, 171, 172
group

-like elements, 52
algebra, 49
alternating

A4, 112, 162, 179, 220
A5,220,223

cyclic, 175, 193
defect, 202
dihedral, 115
Dress, 189
elementary, 187
extension of, 75
Frobenius, of order p(p - 1), 74
fundamental, 157
generalised quaternion, 115, 143
hyperelementary, 187
hypo-elementary, 184
inertia, 87
Klein four, 107, 115, 218
metacyclic, 191
nilpotent, 91
ring, 49

twisted, 77
semidihedral, 115, 142
soluble, 181
symmetric

S3, 178
Si,, 74

Weyl, 120



Grp, 21

Ham,, H", 28
H (G, M), H- (G, M), 49
Hall's identity, 94
Harada-Sai lemma, 153
head of a module, 3
hereditary ring, 44, 100
Higman's criterion, 70
Horn, 44
homology, 28

of an augmented algebra, 34
homomorphism

Cartan, 177
connecting, 30

homotopy, chain, 28
Hopf algebra, 51
horseshoe lemma, 35

relative, 82

H-split, 68
hull, injective, 11
hypercohomology, 45
hyperelementary group, 187
hypo-elementary group, 184

ideal
maximal, 3
nilpotent, 13
primitive, 3
relatively

projective, 190
split, 190

idempotent, 5, 12
central, 15, 201
conjugate, 13
equivalent, 13
in b(G), 179
orthogonal, 12
primitive, 12
primitive central, 15, 201
refinement theorem, 13, 18

identity
Jacobi, 94
Philip Hall's, 94

indy G, 173
indH,G, 173, 182
indecomposability theorem, Green's, 89
indecomposable

absolutely, 89
four subspace system, 100

index, inertial, 212
induction, 46, 182

tensor, 96, 173

INDEX

theorem, 185
Artin's, 185
Brauer's, 187
Conlon's, 188
Dress', 189

inertia group, 87, 209
inertial index, 212
infinite

Dynkin diagram, 116
representation type, 114

inflation, 64
injective

hull, 11
module, 8
relatively, 68

inner product, 172
integral representation, 17, 50
intersection of Sylow subgroups, 202
interval, 132
invariants, Cartan, 15
irreducible map, 149
isomorphism

natural, 21
of extensions, 75
reflecting, 132
theorem, Zassenhaus, 1

Jacobi identity, 94
Jacobson radical, 3
Jennings' theorem, 93
Jordan-Holder theorem, 1

Ko(RG), 173
kernel, 22
Klein four group, 107, 115, 162

as defect group, 218
Kronecker quiver, 107
Krull-Schmidt theorem, 7, 18, 172
Kiinneth

spectral sequence, 44
theorem, 42, 67

labelled graph, 104
smaller, 117
strictly smaller, 117

AA, 3
Landrock's theorem, 14
lattice, 17, 50
law, modular, 1
layer

Loewy, 3, 14
radical, 3, 95

left
adjoint, 24
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derived functors, 33

lemma
Burnside's, 180
Eckmann-Shapiro, 47, 60
Eilenberg-Nakayama, 106
Fitting's, 8, 18
Harada-Sai, 153
horseshoe, 35
Nakayama's, 4
relative

horseshoe, 82

Schanuel's, 81
Rosenberg's, 15, 204
Schanuel's, 9
Schur's, 5
Shapiro's, 47
snake, 30
Yoneda's, 23, 130

length
composition, 2
radical, 3
socle, 3

<c, V
Lie algebra, restricted, 94

lift, Brauer, 195
lifting theorem

Green's, 78
Scott's, 84

lim', 102
linear relation, 112

on a quiver, 103
local ring, 7
locally finite quiver, 155
Loewy

layer, 3, 14
series, 3

long exact sequence, 29, 35, 82
loop, 155
low degree cohomology, 75

Mackey
decomposition theorem, 61
formula, 73

for permutation representations, 182
map

Brauer, 205
(co)chain, 28
Frobenius, 176

Maranda's theorem, 78
Maschke's theorem, 72
Massey product, 59
matrix, Cartan, 12, 118
maximal ideal, 3

INDEX

metacyclic groups, 191
minimal resolution, 32, 147
Mobius function, 194
AMod, Amod, 21
Amod, 23
Amod, 22
modular

law, 1
representation, 17, 50

modulated quiver, 104
modulation, 104
module

band, 137
flat, 9
for group algebra, 49

free, 9
head of, 3
injective, 8
multiplicity, 89
Noetherian, 1
periodic, 158
projective, 8
radical of, 3
semisimple, 3
socle of, 3
string, 137
theory, decidable, 115
top of, 3
trivial, 49, 52

source, 84, 183
uniserial, 2

monomorphism, 22
Morita theory, 25
morphism of quivers, 154
µ(d), 194
multiple arrow, 155
multiplicity

exceptional, 166
in Brauer graph, 166

module, 89

Nagao's theorem, 207
Nakayama

functor, 148
lemma, 4
relations, 46, 60

natural
isomorphism, 21
transformation, 21

negative vector, 122
nilpotence of J(A), 4
nilpotent

elements in A(G), 191



group, 91
ideal, 13

Noetherian
module, 1
ring, 4

non-singularity
representation rings, 198

v, 148
number, Coxeter, 122

0, 17
object, zero, 22
Ir(M), Q--(M), 32
11(M), 9
Q-1(M), 11
Q, (G), v
(z' (M), f2-°(M), 32
fl(M), 10
Op(G), 0"(G), v
operations

on RG-modules, 49
psi, 193

opposite graph, 118
orbit, 178

graph, 155

ordering, admissible, 125
ordinary

character, 174
representation, 17, 50

orientation, 104
orthogonal idempotents, 12
orthogonality relations, 172

PM, 9
p, 17
p-fusion, control of, 80
p-local Burnside ring, 180
p-modular system, 17, 201
p-rank, v
path algebra, 99, 103
periodic

module, 158
resolution, 65
word, 139

'D, v
planar embedding, 166
Poincare

-Birkhoff-Witt basis, 95
series, 95

positive vector, 122
primitive

central idempotent, 15, 201
ideal, 3

INDEX 243

idempotent, 12
principal block, 203
product

cup, 56
inner, 172
Massey, 59

progenerator, 25

projective

cover, 9
functor, 129
module, 8
relatively, 68

resolution, 31

of chain complex, 45
relatively, 81

psi operations, 193
pullback, 10

quaternion groups, generalised, 115, 143
quiver, 99

Auslander-Reiten, 132, 150
covering of, 156
Ext-, 103
Kronecker, 107
locally finite, 155
modulated, 104
morphism of, 154
representation of, 99
stable, 153
translation, 155
with relations, 103

quotient
cyclic, 180, 184
functor, 129

1Z(G), 173
r1,(G), v
radical

filtration of kP, 94
Jacobson, 3
layers, 3, 95
length, 3
of a module, 3
series, length, 3

rational canonical form, 108, 114
reciprocity, Frobenius, 60
reduced graph, 155
reducible, completely, 3
refinement, idempotent, 13
reflecting isomorphisms, 132
reflection, 120
regular

part of relation, 112
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representation, 3

relations, 103
linear, 112
Nakayama, 46, 60
orthogonality, 172
quiver with, 103
regular part, 112

relative
cohomology, 81
horseshoe lemma, 82
injectivity, 68
projectivity, 68
Schanuel's lemma, 81

relatively
projective

ideal, 190
resolution, 81

split ideal, 190
representable functor, 23
representation, 50

integral, 17, 50
modular, 17, 50
of a quiver, 99
ordinary, 17, 50
quiver, stable, 155
regular, 3
ring, 171, 172
type, 114

domestic, 114
finite, 114, 208
infinite, 114
tame, 100, 114
wild, 100, 114

resG,H, 173, 182
resolution

free, 63
minimal, 32, 147
periodic, 65
projective, 31
relatively projective, 81
standard, 63

restricted Lie algebra, 94
restriction, 46, 182

in cohomology, 73
Riedtmann structure theorem, 154
right

adjoint, 24

derived functors, 33, 102
ring

Artinian, 4
Burnside, 171, 177
division, 6
Green, 171

INDEX

Grothendieck, 171, 172
group, 49
hereditary, 44, 100
local, 7
Noetherian, 4
representation, 171, 172
self injective, 11
semisimple, 3, 72, 171
twisted group, 77

Rojter's theorem, 153
root system, 122
Rosenberg's lemma, 15, 204

SM, 129
Schanuel's lemma, 9

relative, 81
Schur's lemma, 5
Scott's lifting theorem, 84
second main theorem, Brauer's, 207
self injective ring, 11
semidihedral groups, 115, 142
semisimple

module, 3, 101
ring, 3, 72, 171

sequence
almost split, 143
Auslander-Reiten, 143
long exact, 29, 35, 82

series
composition, 1
Jennings, 93
Loewy, 3

Set, 21
Shapiro's lemma, 47
sign convention, 42
simple functor, 129
sink, 125
Skolem-Noether theorem, 6
SL2(4), 223
smaller (labelled graph), 117
snake lemma, 30
socle

of a module, 3
series, layer, length, 3

soluble group, 181
source, 83, 125

trivial, 84

spectral sequence

Adams, 142
Kiinneth, 44

splice, Yoneda, 40
split extension, 75
splitting



p-modular system, 17
field, 6

, v
stable

elements, 79
module category, 22
quiver, 153
representation quiver, 155

connected, 155
stably equivalent algebras, 223

standard resolution, 63
string modules, 137
strongly group-graded algebra, 88
structure theorem, Wedderburn, 5
subadditive function, 118
subfunctor, 129
subgroups

cyclic, 174, 185
dimension, 93
Sylow, 72, 78, 80, 203

F_H9K' V
switchback map, 30
Sylow subgroups, 72, 78, 80, 203

cyclic, 115, 171, 191
dihedral, 115
generalised quaternion, 115
intersection of, 202
Klein four, 115
semidihedral, 115
T.L, 74

symmetric
algebra, 11, 50
group Sa, 178
group Sp, 74

symmetrised Cartan matrix, 118
system

of linear relations, 103
p-modular, 17, 201
root, 122

T(b), 209
table of marks, 179
tame

group algebras, 115
representation type, 100, 114, 218

TO, Tl, 199
tensor

induction, 96, 173, 193
product, 50

of complexes, 42
96

theorem
Artin's induction, 185

INDEX

Auslander's, 129, 154
Brauer's

first main, 206
induction, 187
second main, 207
third main, 211

Burry-Carlson-Puig, 87
comparison, 31, 81
Conlon's induction, 188
Dress' induction, 189
Eckmann-Schopf, 11
extended first main, 211
Gabriel's, 103, 127
Green's

indecomposability, 89
lifting, 78

idempotent refinement, 13, 18
induction, 185

Artin's, 185
Brauer's, 187
Conlon's, 188
Dress', 189

Jennings', 93
Jordan-Holder, 1
Kiinneth, 42, 67
Krull-Schmidt, 7, 18, 172
Landrock's, 14
Mackey decomposition, 61
Maranda's, 78
Maschke's, 72
Morita, 26
Nagao's, 207
Riedtmann structure, 154
Rojter's, 153
Scott's lifting, 84
Skolem-Noether, 6
trichotomy, 115
Webb's, 159
Wedderburn

on finite division rings, 6
structure, 5

Witt-Berman, 187
Zassenhaus isomorphism, 1

theory, Clifford, 87
third main theorem, 211
T.I. set, 74
top of a module, 3
Tor, 30
Tr, 68
Tr, 60
trace, 171

map, 68
exterior, 60
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transfer, 68
in cohomology, 73

transformation
Coxeter, 122
natural, 21

translation, 155
Auslander-Reiten, 144
quiver, 155

tree
Brauer, 166
class, 158
directed, 155

trichotomy theorem, 115
trivial

module, 49, 52
source module, 84, 183

tube, 156, 158
'Iluring machine, 115
twisted group ring, 77

u, 196
UJen.(P), 94
undecidable module theory, 115
unique decomposition property, 7
uniserial module, 2
universal

cover, 158
enveloping algebra, 94

V4, 107
,,.o,, 111
v, 196
valued graph, 104

kVec, 21
vector

defect of, 122
dimension, 120
negative, 122
positive, 122

vertex, 83
exceptional, 166

W,a,, 112
Webb's theorem, 159
Wedderburn structure theorem, 5
Weyl group, 120
Whitehead's conjecture, 32
wild representation type, 100, 114
Witt-Berman theorem, 187
word, periodic, 139
wreath product, v

INDEX

lemma, 23, 130
splice, 40

ZA5, 221
ZA12, 219
ZA--, 165
Zassenhaus isomorphism theorem, 1
ZB, 155
ZB3, 164
zero object, 22
Z(G), v
Z(kG), Z(OG), 201

Yoneda
composition, 40
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