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Introduction

This is the second of two volumes which have grown out of about seven
years of graduate courses on various aspects of representation theory and
cohomology of groups, given at Yale, Northwestern and Oxford. In this
second volume, we concentrate on cohomology of groups and modules. We
try to develop everything from both an algebraic and a topological viewpoint,
and demonstrate the connection between the two approaches. Having in mind
the die-hard algebraist who refuses to have anything to do with topology, we
have tried to make sure that if the reader omits all sections involving topology,
the rest is still a coherent treatment of the subject. But by trying to present
the topology with as few prerequisites as possible, we hope to entice such
a reader to a more broad-minded point of view. Thus Chapter 1 consists
of a predigested summary of the topology required to understand what is
happening in Chapter 2.

In Chapter 2, we give an overview of the algebraic topology and K-theory
associated with cohomology of groups, and especially the extraordinary work
of Quillen which has led to his definition of the higher algebraic K-groups of
a ring.

The algebraic side of the cohomology of groups mirrors the topology,
and we have always tried to give algebraic proofs of algebraic theorems. For
example, in Chapter 3 you will find B. Venkov's topological proof of the
finite generation of the cohomology ring of a finite group, while in Chapter 4
you will find L. Evens' algebraic proof. Also in Chapter 4, we give a detailed
account of the construction of Steenrod operations in group cohomology using
the Evens norm map, a topic usually treated from a topological viewpoint.

One of the most exciting developments in recent years in group coho-
mology is the theory of varieties for modules, expounded in Chapter 5. In a
sense, this is the central chapter of the entire two volumes, since it shows how
inextricably intertwined representation theory and cohomology really are.

I would like to record my thanks to the people, too numerous to mention
individually, whose insights I have borrowed in order to write these volumes;
who have pointed out infelicities and mistakes in the exposition; who have
supplied me with quantities of coffee that would kill an average horse; and
who have helped me in various other ways. I would especially like to thank
Ken Brown for allowing me to explain his approach to induction theorems in I,
Chapter 5; Jon Carlson for collaborating with me over a number of years, and
without whom these volumes would never have been written; Ralph Cohen
for helping me understand the free loop space and its role in cyclic homology
(Chapter 2 of Volume II); Peter Webb for supplying me with an early copy
of the notes for his talk at the 1986 Arcata conference on Representation
Theory of Finite Groups, on which Chapter 6 of Volume II is based; David
Tranah of Cambridge University Press for sending me a free copy of Tom
Korner's wonderful book on Fourier analysis, and being generally helpful in
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various ways you have no interest in hearing about unless you happen to be
David Tranah.

There is a certain amount of overlap between this volume and my Springer
lecture notes volume [28]. Wherever I felt it appropriate, I have not hesitated
to borrow from the presentation of material there. This applies particularly
to parts of Chapters 1, 4 and 5 of Volume I and Chapter 5 of Volume II.

THE SECOND EDITION. In preparing the paperback edition, I have taken
the liberty of completely retypesetting the book using the enhanced features
of LAT X 2,F, AA SLAT X 1.2 and Xy-pic 3.5. Apart from this, I have corrected
those errors of which I am aware. I would like to thank the many people who
have sent me lists of errors, particularly Bill Crawley-Boevey, Steve Donkin,
Jeremy Rickard and Steve Siegel.

The most extensively changed sections are Section 2.2 and 3.1 of Volume I
and Section 5.8 of Volume II, which contained major flaws in the original
edition. In addition, in Section 3.1 of Volume I, I have changed to the more
usual definition of Hopf algebra in which an antipode is part of the definition,
reserving the term bialgebra for the version without an antipode. I have made
every effort to preserve the numbering of the sections, theorems, references,
and so on from the first edition, in order to avoid reference problems. The
only exception is that in Volume I, Definition 3.1.5 has disappeared and
there is now a Proposition 3.1.5. I have also updated the bibliography and
improved the index. If you find further errors in this edition, please email
me at djb@byrd.math.uga.edu.

Dave Benson, Athens, September 1997
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CONVENTIONS AND NOTATIONS.

Maps will usually be written on the left. In particular, we use the
left notation for conjugation and commutation: 9h = ghg-1, [g, h] _
ghg-1h-1, and 9H = gHg-1.
We write G/H to denote the action of G as a transitive permutation
group on the left cosets of H.
We write H <G K to denote that "H is G-conjugate to a subgroup of
K". Similarly h EG K means "h is G-conjugate to an element of K".
Thus we write for example ® to denote a direct sum over conjugacy

9EGG
classes of elements of G.
The symbol denotes the end of a proof.
We shall use the usual notations Op(G) for the largest normal p-
subgroup of G, OP(G) for the smallest normal subgroup of G for which
the quotient is a p-group, G(00) for the smallest normal subgroup of G
for which the quotient is soluble, 4D(P) for the Frattini subgroup of a
p-group P, i.e., the smallest normal subgroup for which the quotient
is elementary abelian, Z(G) for the centre of G, S21(G) for the sub-
group of an abelian p-group G generated by the elements of order p,
and so on. The p-rank rp(G) is defined to be the maximal rank of an
elementary abelian p-subgroup of G.
If H and K are subgroups of a group G, then EHgK will denote a
sum over a set of double coset representatives g of H and K in G.
We shall write AMr to denote that M is a A-I'-bimodule, i.e., a left
A-module which is simultaneously a right I'-module in such a way that
(Am)-y = A(my) for aIIAE A, TnEM and E F.
If G is a group of permutations on the set { 1, ... , n} and H is another
group, we write G t H for the wreath product; namely the semidirect
product of G with a direct product of n copies of H. Thus elements
of G? H are of the form (1r; h1, ... , h,,,) with it E G, h1, ... , hn E H
and multiplication given by

(7r'; h1.... , hn)(it; h1, ... , hn) = (i it; h;r(1)hl, ... , h' (n)hn).

If X is a set with a right G-action and Y is a set with a left G-action,
then we write X xG Y for the quotient of X x Y by the equivalence
relation (xg, y) - (x, gy) for all x E X, g E G, y E Y.





CHAPTER 1

Background from algebraic topology

When we come to give a survey of the cohomology of groups in Chapter 2,
we shall need quite a lot of elementary homotopy theory. For the convenience
of the reader, we collect in this chapter some of the necessary topological
background, and indicate where further details may be found.

1.1. Spaces of maps

First we recall a basic fact from general topology about spaces of maps.
If X and Y are topological spaces, we write Map(X, Y) or YX for the space
of (continuous) maps from X to Y with the compact-open topology. This
is the topology for which the typical sub-basic open set is the set of maps
taking a given compact set in X into a given open set in Y.

PROPOSITION 1.1.1. If X and Y are Hausdorff and Y is locally compact,
then the natural map

Map(X x Y, Z) -> Map(X, Map(Y, Z))

sending f to the map f' defined by f'(x)(y) = f (x, y) is a homeomorphism.

PROOF. See for example Hu [128, Section V.3].

This isomorphism is called the exponential isomorphism. This termi-
nology becomes clearer if we write it in the form

ZYXX - (ZY)X

We shall also work with spaces X with a basepoint xo, which we shall
denote by (X, xo), and with pairs of spaces A C_ X and a basepoint xo E A,
which we shall denote by (X, A, x0). Maps of spaces should take the basepoint
to the basepoint.

If (X, x0) and (Y,yo) are based spaces, we write Map,, (X, Y) for the
subspace of Map(X, Y) consisting of those maps taking xo to yo. This is
a based space with the constant map as basepoint. If (Z, zo) is another
based space, then under the above correspondence, it is easy to see that the
subspace of Map(X x Y, Z) corresponding to the subspace

Map,, (X, Map,, (Y, Z)) C Map(X, Map(Y, Z))

consists of those maps sending (X x yo) U (xo x Y) to zo.

1
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DEFINITION 1.1.2. If (X, xo) and (Y, yo) are based spaces, we write XVY
(X wedge Y) for the subspace (X x yo) U (xo x Y) of X x Y, and X A Y (X
smash Y) for the quotient space of X x Y formed by identifying all points
of X V Y to a single basepoint *.

Thus we have the following:

PROPOSITION 1.1.3. If (X, xo) and (Y, yo) are Hausdorff and (Y, yo) is
locally compact, then the natural map

Map* (X A Y, Z) -p Map* (X, Map. (Y, Z))

defined above is a homeomorphism.

1.2. Homotopy groups

In this section we give an extremely compressed account of the homotopy
groups irn of a space. The interested reader is advised to refer to a standard
source, for example Mosher and Tangora [195], Spanier [247], Switzer [258],
Whitehead [284], for a more extensive account of this topic.

DEFINITION 1.2.1. If f, f : X -> Y are (continuous) maps of topological
spaces, then we say f is homotopic to f' (written f ^ f') if there exists a
map F : X x I - Y (where I is the unit interval [0, 1]) such that F(x, 0) =
f (x) and F(x, 1) = f'(x). It is clear that homotopy is an equivalence relation
on maps. We write [X; Y] for the homotopy classes of maps from X to Y.

We say X and Y are homotopy equivalent if there are maps f : X -
Y and f : Y -+ X such that the composites are homotopic to the identity
maps f o f' idy and f o f idX.

We say X is contractible if it is homotopy equivalent to a single point.
In particular, note that a contractible space must be non-empty.

We write [X, x0; Y, yo] for homotopy classes of maps respecting base-
points. The homotopies should respect basepoints in the sense that F(xo x
I) = yo. If A is a subspace of X containing xo and B is a subspace of Y
containing yo, we write f : (X, A, xo) - (Y, B, yo) to indicate that f (A) C B.
We write [X, A, xo; Y, B, yo] for homotopy classes of maps f : X -+ Y such
that f (A) C B and f(xo) = yo. Of course, the homotopies F : X x I - Y
should also have the property that F(A x I) C B and F(xo x I) = yo. If F
is constant on A, so that f and f' agree on A, we say that f is homotopic to
f' relative to A.

DEFINITION 1.2.2. The homotopy groups of a based space (X, xo) are
defined to be

xn(X, xO) = [Sn, SO; X, xo]

where (Sn, so) is an n-sphere with basepoint.

Thus for example 7r1(X, xo) is the set of equivalence classes of paths from
the basepoint to itself (loops), where two such are equivalent if one can
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be deformed to the other while keeping the two ends fixed. If X is path
connected and ir1(X, x°) = 0 then we say (X, x°) is simply connected.

Since S° consists of two points, one of which is the basepoint, 7r° (X, x°)
is the set of path components of X.

GROUP STRUCTURE. The set 7rn(X,x°) (n > 1) can be given the struc-
ture of a group as follows. We regard (Sn, so) as an n-cube with its boundary
identified to a single point, (In,IP). Now to compose two elements [f] and
[g] of 1rn(X, x°), we "divide and stretch" along the first coordinate:

f*g:In ->X
2r f (2s1 , S2 ... , Sn) 0 < Si

(f * g)(Sl ... , Sn) = S g(2s1 - 1, 82i ... , SO 2 < 31 < 1. (1)

It is easy to check that if f ^_ f' and g _ g' then f * g ^_ f' * g', so that this
induces a well defined multiplication on irn(X, x°).

PROPOSITION 1.2.3. The above defined multiplication makes 7rn(X, x°)
into a group for n > 1, and an abelian group for n > 2.

PROOF. The identity element is given by the constant map. The inverse
in irn (X, x°) of an element [f] is given by [f '], where

f'(81,S2,...'Sn)=f(1-S1iS2,...,Sn).
The associative law corresponds to the "obvious" homotopy from (f1 * f2) * f3
to f1 * (f2 * f3) given by

fl(f,s2...... n) 0<s1< 14t

F((si,...,Sn),t) = f2(481 - 1 - t,s2i...,sn) 14t < 81 < 24t

f3(4si-2-t S2,...,Sn) -< S1 < 1
2-t 4

(Draw a diagram!) Similarly for n > 2, the commutative law corresponds to
the following diagram:

fl f2

f2 f2
f1 f2 f1

Here, the horizontal and vertical directions are the first and second coordi-
nates in In, and the areas marked with an asterisk all go to the basepoint in
X.

REMARK. It is sometimes convenient to work with the (homotopy equiv-
alent) space of maps from [0, a] x In-1 to X (sending the boundary to x°)
rather than In to X, where a is regarded as a variable. Composition of a map
from [0, a] x In-1 and a map from [0, b] x In-1 gives a map from [0, a+b] x In-1

This composition has the advantage of being strictly associative rather than
just homotopy associative. For n = 1, such maps are called Moore loops
on X.
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FIGURE 1. The map 0

DEFINITION 1.2.4. The group irl (X, xo) is called the fundamental
group of the space (X, xo).

REMARK. The set of homotopy classes of paths in X with possibly dif-
ferent ends, where the homotopies are required to fix both ends of the path,
form a groupoid. Namely, we can only compose one path with another if the
endpoint of the first equals the starting point of the second. This groupoid
is called the fundamental groupoid of X, and does not depend on choice
of basepoint.

RELATIVE HOMOTOPY GROUPS. If (X, A, xo) is a based pair, we define
its relative homotopy groups to be

7rn(X, A, xo) = [D', 8n-1, so; X, A, x0] = [In, I' ,
Cn-1. X, A, xo].

Here Dn is the n dimensional disc, with boundary Sn-1, and Cn-1 = In \
O

In-1 is the boundary of In with the interior of the face In-1 (with the last
coordinate zero) removed. This subspace is identified to a point and regarded
as the basepoint.

For example if n = 2 then

Cn-1 =

PROPOSITION 1.2.5. Suppose 7rn(X, A, xo) = 0. Then any map

.f: (D', S'- 1, so) --+ (X, A, xo)

is homotopic relative to Sn-1 (i.e., via a homotopy which is constant on
Sn-1) to a map f' with f'(D') C A.

PROOF. Regard f as a map (In, In, Cn-1) -* (X, A, xo). There is a
homotopy F : In X I -p X with F(u, 0) = f (u) and F(u, 1) = xo for all
u E In, F(u,t) E A for all u E In, and F(u,t) = xo for all u E Cn-1

Composing F with the map 0 : In X I -p In x I given in Figure 1 we obtain
the required homotopy from f to a suitable f'.
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For n > 2, we can give 7rn(X, A, xo) a multiplication according to For-
mula 1.

PROPOSITION 1.2.6. The set 7rn(X, A, xo) is a pointed set (i.e., a set with
a distinguished element, namely the constant map at the basepoint) for n = 1,
a group for n > 2, and an abelian group for n > 3.

WARNING. There is no excision in homotopy, so that in general

7rn(X, A, xo) 0 7rn(X/A, A/A).

BOUNDARY MAP. If f : (In, In Cn-1) - (X, A, xo) then we define

an(f) = f II'i-1 : (In-1 In-1) -. (A, xo)

(note that In-1 C In and Cn-1 n In-1 = In-1) It is easy to check that if
f ^ f as maps of based pairs then 8n(f) ^ 8n(f') as maps of based spaces,
so that 8n induces a well defined map

On : 7rn(X, A, x0) ' 7rn-1(A, xo) (n > 1).

LONG EXACT SEQUENCE.

PROPOSITION 1.2.7. Given a based pair (X, A, xo), the natural maps i
(A, xo) '- (X, xo) and j : (X, xo) -+ (X, A, x0) together with the boundary
map defined above give rise to a long exact sequence

7rn+1(X, A, xo) 7rn(A, xo) -* 7rn(X, xo) -# 7rn(X, A, xo) . .

REMARK. Exactness of the above sequence should be interpreted as fol-
lows. For n > 1, it is an exact sequence of groups, and the image of
7r2(X, A, xo) lies in the centre of 7r1(A, xo). For n = 0, these are only pointed
sets (sets with a distinguished basepoint). The sequence is exact everywhere
in the sense that the kernel of each map (pre-image of the basepoint) is the
image of the previous map. Also, the map 7r1(X, A, xo) -4 7ro(A, xo) extends
to an action of 7r1(X, A, x0) on 7ro(A, x0), and elements are in the same orbit
if and only if they have the same image in 7ro(X, xo).

PROOF. We shall assume that n > 2 for the proof, and leave the reader
to make the necessary changes for n = 0 and 1. There are six separate checks
to be made here.

j* o i* = 0: If f : (In, In, Cn-1) - (X, A, xo) with f(I) C A then
we have a homotopy F : In X I -+ X given by F(tl,.._ , tn, t) _
P ti, ... , tn_1, t + (1 - t)tn), showing that [f] = 0 in 7rn(X, A, xo).

Ker(j*) C_ Im(i*): If f : (In, in) - (X, xo) and j. [f] = 0 then there is a
homotopy F : In x I -> X such that F(u, 0) = f (u) and F(u,1) = xo
for all u E In, F(u, t) E A for all u E In, and F(u, t) = xo for all
u E C". Compose F with the map 0 : In X I -+ In x I given in
Figure 1, to obtain a homotopy from f to a map (In, in) - (A, xo).

i* 0 8k = 0: If f : (In+1 In+1 Cn) -, (X, A, xo) then i,,0.[f] = [f IIn ].
The map f provides a homotopy from f1In to the constant map at x0.
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Ker(i*) C Im(8*): If f : (In, in) -* (A, xo) with i*[f] = 0 in 7rn(X, xo),
then there is a homotopy F : (In x I, in x I) - (X, xo) with F(u, 0) =
f (u) and F(u, 1) = xo. Regarding F as a map In+1 - X, [F] is an
element of 7rn+1(X, A, xo) with 8* [F] = [11.

8* o j* = 0: If f : (In, in) -' (X, xo) then 8*j*[f] = [f I-fl. Since f
sends In-1 to xo, 8* j* [ f ] = 0.

Ker(8*) C Im(j*): For this, we need the following fact. Given any map
from Fn x I U In x {0} to X, we may extend it to a map from In X I
to X. In other words, any partial homotopy may be extended to a
homotopy. We express this by saying that the pair (In, In) has the
homotopy extension property (HEP) with respect to X. A space
which has the homotopy extension property with respect to all spaces
X is called a cofibration. The reason why (In, in) is a cofibration
is because there is a retraction In x I --+ in X I U In x {0}, i.e.,
a map whose composite with the inclusion is the identity map on
in X I U In x {0}.

Now if f : (In, In, Cn-1) -+ (X, A, xo) with 8*[f] _ [f Ii'-1] = 0,
then there is a homotopy F : (In-1 X I, In-1 X I) -> (A, xo) with
F(u, 0) = f (u) and F(u, 1) = xo. Thus there is a partially defined
homotopy

FnxI U I n x0- X
(u, t) E In-1 x I -+ F(u, t)

(u t) E (In \ In-1) X I i-4 xo
(u, t) E In x 0 i--* f (u).

Extend to a homotopy In x I -+ X, and restrict to In x 1 to obtain a
map a : Fn --> X with f -- j (a), so that [1] = j* [a].

ACTION OF 71 ON 7rn, AND INVARIANCE OF BASEPOINT. If xo and xl are
two different basepoints in X, and w : I -* X is a path with w(0) = xo and
w(1) = xl, we define a map

w* : 7rn(X, xl) -+ 7rn(X, xo)

as follows. Given a /map f : (Sn, so) -- (Dn, Sn-1) , (X, xi) we define

w*(.f) : (Dn,Sn-1) (X,xo)
u f (2u) if 0 < Jul < 2

5t w(2 - 21ul) if 2 < Jul < 1

where Jul is the distance from the origin to u in Dn C Rn, and 2u is calculated
inside the vector space '. In words, the part of the disk from radius 1 to
radius 2 is sent along the path w. The part of the disk with radius at most
2 is homeomorphic to the whole disk, and is sent into X by composing the
original map with this homeomorphism.

If f ^ f then w*(f) -- w* (f') so that this map is well defined.
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Similarly if xo, xl E A C X are two different basepoints in (X, A), and
w : I -p A is a path with w(0) = xo and w(1) = xl, we define an isomorphism

W* :7rn(X,A,xi) -+7rn(X,A,x0)

as follows. Given a map f (Dn, Sn-1, (1, 0'... , 0)) - (X, A, xo), the map
w*(f) : (Dn, Sn-1, (1.0, ... , 0)) , (X, A, xi) is given by sending (xo,... , xn)
to w(xo) if 0 < xo < 1. We choose a homeomorphism between the half of
the disk with xo < 0 with the points with xo = 0 identified to a single point
*, and the entire disk Dn with basepoint (1, 0, ... , 0). We compose this
homeomorphism with the original map f to define w*(f) for xo < 0.

Again if f ^ f then w*(f) _- w* (f'), so that this map is well defined.

PROPOSITION 1.2.8. If w, w' : I - X are homotopic relative to 10, 11,
then w* = (w')* : 7rn(X,xi) 7rn(X,xo). For xo = x1, this constitutes a
group action of7r1(X,xo) on7rn(X,xo).

If w ^_ w' : I -+ A then w* _ (w')* : 7rn(X, A, xl) - 7rn(X, A, xo). For
xo = x1, this constitutes a group action of 7r1(A, xo) on 7rn(X, A, xo).

The long exact homotopy sequence

... - 7rn+1(X, A, x0) -p 7rn(A, xo) -# 7rn(X, x0) -p 7rn(X, A, x0) .. .

is a long exact sequence of 7r1(A,xo)-modules.

PROOF. This is a long but straightforward exercise in keeping your head.
See Spanier [247, Section 7.3] for the details.

NOTATION. We write 7r'n(X, xo) for the quotient of 7rn(X, xo) obtained
by identifying w* (f) with f for each [w] E 7r1(X, xo), and 7rn(X, A, xo) for
the quotient of 7rn(X, A, xo) obtained by identifying w*(f) with f for each
[w] E 7r1 (A, xo). Note that the action of 7r1 (X, xo) on itself is by conjugation,
so that 7ri (X, xo) is its abelianisation.

We say that (X, xo) is a simple space if 7r1(X, xo) acts trivially on
7rn(X, xo) for all n, so that 7r'n(X, xo) = 7rn(X, xo), and in particular 7r1(X, xo)
is abelian.

Elements of 7rn(X, xo) may be thought of as obstructions to extending
maps Sn -* X to maps Dn+1 _, X as shown by the following proposition:

PROPOSITION 1.2.9. Suppose X is path connected and 7rn(X, xo) = 0.
Then any map f : Sn -+ X may be extended to a map f : Dn+1 -+ X.

PROOF. Since X is path connected, 7rn(X, f (so)) = 0, so the map f
(Sn, so) -> (X, f (so)) is homotopic to the constant map at f (so). Such a
homotopy is a map Sn X I -> X sending S' x 0 U so x I to so and equal to f
on Sn x 1. Since (Sn X I, Sn X OUSn X 1Uso X I, Sn X OUso X I) = (D'+', S" 80)
the proposition follows.

The theory of obstructions was developed by Eilenberg and others, and
an account of it may be found, for example, in Mosher and Tangora [195,
Chapter 1].
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Loop SPACES. There is an alternative approach to homotopy groups
based on the concept of a loop space.

DEFINITION 1.2.10. We define the loop space S1X of a based space X
to be

QX = Map. (S1,X),

with the constant path at x0 (written *) as basepoint.

Now a path in QX is the same thing as a homotopy between loops in X
(by the correspondence given in Proposition 1.1.1), and so we have

ir1(X, xo) = 7ro(1 X, *).

By Proposition 1.1.3, we have

S22X = Map* (S', Map* (S', X)) c--- Map* (S' A S', X) c--- Map. (S2, X).

Continuing in this way, and using the fact that Sn-1 A S1 = Sn, we have

S2nX = Map,, (Sn,X).

A path in S2nX is the same as a homotopy between maps Sn -+ X, and so
we have proved the following:

PROPOSITION 1.2.11. 1rn(X, xo) = 1ro(QnX, *).

In a similar way, if (X, A, x0) is a based pair, we define P(X, A, xo) to
be the space of paths in X beginning at xo and ending in A. By a similar
argument to the above, we have the following:

PROPOSITION 1.2.12. it (X, A, xo) = iro(Sln-1P(X, A, x0), *).

For further details see for example Switzer [258, Chapter 3], where the
long exact sequence (Proposition 1.2.7) is developed from this point of view.

EXERCISE. The (reduced) suspension SX of a space X is defined to be
Sl A X. The nth suspension of X is S' X = S .. SX = S' A X. Show that
if X is Hausdorff then there is a natural homeomorphism

Map* (SX, Y) - Map* (X, QY).

Deduce that there is a natural bijection

[SnX; Y] = [X;1 Y].

Thus S and S2 are adjoint functors.
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1.3. The Hurewicz theorem

For an arbitrary topological space, we have the singular homology
Hp(X; R) with coefficients in a commutative ring R, defined as the homology
of the singular chain complex 0*(X, A; R) = 0*(X; R)/0*(A; R), where
/. (X; R) = Ap(X) ® R is the free R-module on the singular p-simplices.
A singular p-simplex in X is a (continuous) map AP -> X where AP is a
standard p-simplex

AP ={(xo,...,xp)ERP+Z xi=1 and each xi >01.

For more details see for example Spanier [247]. Similarly singular coho-
mology HP(X; R) is the cohomology of the cochain complex

AP(X, A; R) = AP(X, R)/AP(A; R),
where AP(X; R) = Hom(Lp(X), R). In case R = 7L, we write Hp(X) and
HP(X).

Recall that if (X, xo) is a based space then 7rn(X, xo) is defined to be the
group of homotopy classes of maps from (Sn, so) to (X, xo). If f : (Sn, so)
(X, xo) is such a map, then we have an induced map in homology

f* : HH(S') -* Hn(X)

which only depends on the homotopy class [f] E 7rn(X,xo). Since Hn(Sn)
7G, we can define

hn([f]) =f*(1) E Hn(X)
to obtain a well defined map

hn : 7rn(X,xo) Hn(X)
called the Hurewicz map.

Similarly if [1] E 7rn (X, A, xo), then [ f ] is represented by a map

f (Dn, Sn-1, so) (X, A, x0)

This induces a map

f* H. (D', Sn-1) H. (X, A) ,

and since Hn (Dn, Sn-1) = Z we can define

hn([f]) = f. (1) E H. (X, A)
to obtain a well defined Hurewicz map

hn : 7rn(X, A, xo) -> Hn(X, A).

PROPOSITION 1.3.1. If n > 1 then hn : 7rn(X,xo) -+ Hn(X) is a group
homomorphism. If w is a path in X then hn(w*(f )) = hn(f) (see Section 1.2
for notation), so that we have a well defined map hn : 7r'n(X, x0) -+ H, (X).

If n > 2 then h* : 7rn(X, A, xo) -4 Hn(X, A) is a group homomorphism.
If w is a path in A then hn(w*(f)) = hn(f), so that we have an induced map
hn : 7r'n(X, A, xo) -> Hn(X, A).
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PROOF. See Spanier [247, Section 7.4].

If we wish to compare the maps hn for different values of n, we must
choose the identifications Hn(S') = Z and HH(D', Sn-1) = Z in a consistent
way, since there are two possible choices for each n. Since (Sn, so) = (In, In)
and (Dn, Sn-1, so) = (In, In, Cn-1), we may do this inductively as follows.

Hn+1 (jn+1 Cn) Hn+1 (In+1, In+1) Hn(In+1 Cn)-Hn(In+1 Cn)
_f7.

0 Hn(In, In) 0

If zn is our choice of generator for Hn(IP, in) then we let zn+i = 8* li*(zn)-
With these choices of identifications, we have the following theorem:

THEOREM 1.3.2. Given a based pair (X, A, x0) we have a commutative
diagram

7rn+1(X,A,xo)'7rn(A,x0) -7n(X,x0) -7rn(X,A,xo) -...
hn+l I hri hn I hn

Hn+l(X,A) 'Hn(A)>Hn(X)>Hn(X,A) ...

PROOF. See Spanier [247, Section 7.4].

THEOREM 1.3.3 (Absolute Hurewicz theorem). Suppose that 7ri(X, xo) =
0 for i < n. Then H1(X) = 0 for 0 < i < n, and hn : 7r'n(X,xo) - Hn(X)
is an isomorphism. Note that if n > 1, 7rn(X, xo) = 7rn(X, xo), while
7r' (X, xo) = 7r1(X, xo)/[7r1(X, xo), 7r1(X, x0)], the abelianisation of 7r1(X, x0).

THEOREM 1.3.4 (Relative Hurewicz theorem). Suppose that A is path
connected and

7ri(X, A, xo) = 0 for i < n.

Then Hi (X, A) = 0 for i < n, and hn : 7rn(X, A, xo) -> Hn(X, A) is an
isomorphism.

PROOF. The above two theorems are proved simultaneously by induction,
together with a third theorem called the "homotopy addition theorem". For
the details, see Spanier [247, Section 7.5].

Note that the converse of the Hurewicz theorem is false. It is not hard to
construct spaces (X, xo) with 7ri(X, x0) non-zero for infinitely many different
i > 0, but with Hi(X) = 0 for all i > 0. However, the following theorem is
easy to deduce from the absolute Hurewicz theorem.

THEOREM 1.3.5. Suppose 7r1(X,xo) = 0 and Hi (X) = 0 for 0 < i < n.
Then 7ri(X, xo) = 0 for 0 < i < n, and hn : 7rn(X, xo) - H,(X) is an
isomorphism.
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EXAMPLE. Let n > 2. Since Hi(ST) = 0 for 0 < i < n, HH,(Sn) = Z, and
7r1(Sn, so) = 0, we have 7ri(Sn, so) = 0 for i < n and 7rn (Sn, so) = Z. One
of the hardest problems in algebraic topology, and one which has motivated
many developments in the subject, is the problem of determining 7ri(Sn, so)
for i > n. See for example Ravenel [219] for a detailed survey of this still
unsolved problem.

There is also a "local" version of the Hurewicz theorem at a prime.

THEOREM 1.3.6. Suppose that k is a field (of characteristic zero or p),
and that k ®z 7ri(X, xo) = 0 for i < n. Then Hi(X; k) = 0 for 0 < i < n and
hn : k ®z xo) -+ Hi(X; k) is an isomorphism.

PROOF. See Mosher and Tangora [195] Chapter 10.

1.4. The Whitehead theorem

There is a way of turning any map into an inclusion, as follows:

DEFINITION 1.4.1. If f : X - Y, we define the mapping cylinder Mf
of f as the quotient space

_(XxI)UY
M f

(x
1) - f(x)

(with the quotient topology).

We have maps i : X - M f sending x H (x, 0) and j : Y -# Mf sending
y'-' (y)

LEMMA 1.4.2. The inclusion j : Y -> M f is a homotopy equivalence.

PROOF. Define a map it : Mf -# Y via (x, t) H f (x), y H (y). Then
7roj = idy, and there is a homotopy F : jo7r _- idMf given by F((y), t') = (y),
F((x, t), t') = (x, 1 - t'(1 - t)).

Thus we may regard i : X -p Mf as an inclusion which is "f up to
homotopy" in the sense of the following diagram:

X f )Y

-

--Ii

X 2_ Mf

We define the mapping cone Cf to be the space obtained from Mf by
identifying the image of i to a single point. Thus for example Hn(Cf)
HH(Mf, X).

Since j. : 7rn(Y, yo) = 7rn(Mf, yo) = 7rn(Mf, xo), we may use this con-
struction to obtain long exact sequences in homotopy and homology from
any map as follows:

... -4 7.+1 (mf, X, xO) - xn(X, xo) 7rn(Y,po) - xn(Mf, X, xO) " ...
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Hn+1(Mf,X)-H.(X)f.

The Hurewicz map connects these long exact sequences to make a com-
mutative diagram as in Theorem 1.3.2.

THEOREM 1.4.3 (Whitehead). Suppose X and Y are path connected, and
f : (X, xo) - (Y, yo). Suppose that for some n > 1,

(A) f* : iri(X, xo) -> 7i(Y, yo) is { iso i < n
epi i = n.

Then

(B) f* : Hi (X) -> Hi (Y) is I iso i < n
l epi i = n.

Conversely if X and Y are simply connected, or more generally simple
spaces, then (B) (A).

PROOF. By the above long exact sequence, (A) is equivalent to the state-
ment that iri (M f, X, xo) = 0 for i < n, and (B) is equivalent to the statement
that Hi (M f, X) = 0 for i < n. Thus the theorem follows from the relative
Hurewicz theorem.

1.5. CW-complexes and cellular homology

For many purposes in algebraic topology one needs to have a "good"
category of spaces to work with, because an arbitrary topological space is
too badly behaved. For the most part we shall be interested in homotopy
properties of spaces, and it turns out that an appropriate category of spaces
to work in is that of CW-complexes. These are built up by an inductive
procedure of adding on cells, which we now describe.

DEFINITION 1.5.1. Let Dn denote an n-cell, i.e., a closed unit ball in
R, and let Sn-1 = D' be its boundary, an (n - 1)-sphere. Suppose A is
a Hausdorff topological space and { fa : Sn-1 -+ Al is a family of maps
(attaching maps). Let Z = U Dn be a disjoint union of n-cells indexed by
a. Then {f,,,} induces a map f : Z --+ A. Let

X=AUfZ=(ACiZ)/(z-f(z)forzEZ)
with the quotient topology. Then we say X is obtained from A by attach-
ing n-cells.

Let o be the image of Dn in X. Then we have a map

ga : (D n, Sn-1) - (X, A)

whose image is a'. This is called the characteristic map of the cell 6a.

Note that the space automatically has the weak topology: K C_ X is closed
if and only if K fl A is closed and K fl as is closed for each a.

DEFINITION 1.5.2. A relative CW-complex (X, A) is a pair A C X
with A Hausdorff, and a filtration A = X(-1) C X(°) C X(1) C ... C X such
that
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(i) X(10 is obtained from X("-') by attaching k-cells,
(ii) X = Uk X(k), and
(iii) X has the weak topology: K C_ X is closed if and only if K fl X (k)

is closed in X(k) for all k.
The subspace X(k) C X is called the k-skeleton of (X, A).

CLOSURE FINITENESS. Note that the boundary of a cell vka is compact,
and is hence contained in the union of A and a finite number of the attached
cells.

REMARK. "CW" stands for "Closure finite, Weak topology".

DEFINITION 1.5.3. A CW-complex is as above with A = 0. A CW-
complex is finite if it has only finitely many cells, and of finite type if it
has only finitely many cells in each dimension.

EXAMPLE. A simplicial complex is a CW-complex in which each cell is
a simplex and the attaching maps take the boundary of a cell (linearly) to
the union of the faces of the simplex. In particular the boundary maps here
are injective, which sometimes simplifies arguments. It turns out that every
CW-complex is homotopy equivalent to a simplicial complex.

REMARK. According to a theorem of Milnor [189], if X is a compact
topological space and Y has the homotopy type of a CW-complex then the
space of maps from X to Y (with the compact-open topology) has the ho-
motopy type of a CW-complex.

Note that with the usual product topology, the product of two CW-
complexes is not necessarily a CW-complex, unless one of them is finite,
or both of them are countable (see Milnor [186], p. 272). The problem is
that the product does not have the weak topology with respect to its finite
subcomplexes. To solve this problem, we take products in the category of
compactly generated spaces. This is the same as using the weak topology
with respect to the products of finite subcomplexes.

CELLULAR CHAINS. In the case of a CW-complex, there is a very efficient
way of calculating homology and cohomology, via cellular chains. If (X, A)
is a relative CW-complex, we define

Cp(X, A; R) = Hp(Xp, Xp-1; R) _ ® Ra
p-cells a

the free R-module on the p-cells. Then the short exact sequence of chain
complexes

0 - 0*(X(p-1) X(p-2) ; R) -, 0*(X(p) X(p-2). R)

-, p*(X(p) X(p-1); R) -* 0

gives rise to the boundary map of the triple

a : Hp(X(p) X(p-1); R) -, Hp_1(X(p-t) X(p-2) ; R)
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It is easy to check that a2 = 0, so we use this map

a : Cp(X,A;R)-Cr_1(X,A;R)
to make a chain complex (C*(X, A; R), a), the complex of cellular chains.

Similarly in cohomology the coboundary map

6 :
Hp-1(X(p-1) X(p-2);R) - HP(X(P) X(P-1);R)

gives us a cochain complex (C*(X, A; R), 6). This is the same as the complex
obtained by dualising the complex of cellular chains. It is called the complex
of cellular cochains.

Note that for a CW-complex of finite type, the cellular chains and cellular
cochains form complexes of finitely generated R-modules.

Since a sphere only has reduced homology in one degree, we have
Hq(X(P) X(P-1)) = 0

for q p. It is easy to deduce by induction from this that Hq(X(P),A) = 0
for q > p, and that Hq(X(P), A) = Hq(X, A) for q < p.

It is worth reading the proof of the following theorem before trying to
read the section on spectral sequences, since in some sense the argument is a
thinly disguised collapsing spectral sequence argument. We shall reprove the
theorem as an easy application of the spectral sequence of a filtered chain
complex in Section 3.2.

THEOREM 1.5.4. We have natural isomorphisms

Hp(X, A; R) = Hp(C*(X, A; R), a), HP(X, A; R) = HP(C*(X, A; R), 6).

PROOF. We have various long exact sequences which interlock as in the
following diagram.

Hp+1(X (P+1) X (P) ) 0= Hp-1(X (-2), A)

Hp(X(P-1) A) -- Hp(X(P) A) -' Hp(X (P) X(P-1)) i Hp_1(X(P-1) A)

f ;.o

PHp(X(+1), A) - Hp(X, A)

I

Hp_1(X(P-1) X(p-2))

HP(X(P1) X(P))=0

In this diagram, the rows and columns are exact. Thus we have

Hp(C*(X, A; R), a) = Ker(a)/Im(a) = Ker(i*)/Im(a)

Hp(X(P), A)/Im(a') = Hp(X(P), A)/Ker(j*)

Hp (X (P+ 1), A) c--- Hp (X, A).

Similarly for cohomology we use the dual of the above argument.
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CELLULAR APPROXIMATION.

DEFINITION 1.5.5. A map f : (X, A) - (Y, B) of relative CW-complexes
is said to be cellular if it maps the k-skeleton of (X, A) into the k-skeleton
of (Y, B) for each k > 0.

THEOREM 1.5.6 (Cellular Approximation Theorem). Every map

f : (X, A) - (Y, B)
of relative CW-complexes is homotopic (relative to A) to a cellular map.

PROOF. See Spanier [247, Section 7.6, Cor. 18].

WEAK HOMOTOPY EQUIVALENCES.

DEFINITION 1.5.7. A map f : X -* Y is a weak homotopy equiva-
lence if

f* :7rn(X,x) - 7rn(Y,f(x))

is an isomorphism for all n > 0, and for all x E X. Note that if X is path
connected then it is sufficient to check this for a single choice of basepoint,
by Section 1.2.

A space X is weakly contractible if 7rn(X, x) = 0 for all n > 0 and for
all x X.

It is clear that a homotopy equivalence is a weak homotopy equivalence.
We shall show that for CW-complexes, the converse is true.

THEOREM 1.5.8 (Whitehead). If X and Y are CW-complexes and f
X --+ Y is a weak homotopy equivalence, then f is a homotopy equivalence.
In particular if X is a weakly contractible CW-complex then X is contractible.

PROOF. By the cellular approximation theorem, we may assume that f is
cellular. This has the effect that the mapping cylinder Mf is a CW-complex.
Since f is a weak homotopy equivalence, the long exact sequence

... 7n+1(Mf,X,xo) - 1rn(X,x0) 1rn(Y,yo) - xn(Mf,X,XO)

of Section 1.4 shows that 7rn(Mf, X, xo) = 0 for all n > 0.
Now suppose (K, L) is a relative CW-complex and g : (K, L) - (Mf, X)

is a map. By induction, it is clear that the restriction of g to the n-skeleton
of (K, L) is homotopic relative to L to a map sending K(n) into X. Namely,
once the (n - 1)-skeleton is in, the obstruction to pushing the n-skeleton in
lies in 7rn(Mf, X, xo) = 0. We may fit these homotopies together by doing
the first skeleton in the interval [0, 2], the second in [2, 4], and so on, to show
that g is homotopic relative to L to a map sending K into X.

Applying the above statement to the identity map from (M f, X) to itself,
we see that the inclusion X C_ Mf is a homotopy equivalence. Hence by the
discussion in Section 1.4, so is f.
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1.6. Fibrations and fibre bundles
A fibre bundle is a sort of twisted product of one space by another, like for

example a Mobius band. A fibration is a homotopy theoretic generalisation
of this concept. The main homotopy theoretic properties of fibrations are the
long exact sequence in homotopy and the spectral sequence in homology.

DEFINITION 1.6.1. A map p : E -- B has the homotopy lifting prop-
erty (HLP) with respect to a space X if given the following commutative
diagram of spaces, a map H can always be found.

X x0-f E
H

hXxI -B
REMARK. You should think of this as saying that a lift f of one end of

the homotopy h can be extended to a lift H of the entire homotopy.

DEFINITION 1.6.2. A map p : E -i B is a Hurewicz fibration if it has
HLP with respect to all spaces X. It is a Serre fibration if it has HLP with
respect to all simplicial complexes.

REMARKS. (i) The reason why it is convenient to work with the larger
class of Serre fibrations rather than Hurewicz fibrations is that in general
fibre bundles are only Serre fibrations, and this condition is strong enough
for homotopy theoretic constructions. Note however that fibre bundles with
B paracompact are known to be Hurewicz fibrations. The proof is quite
involved, and is due to Hurewicz.

(ii) Note that taking X to be a single point in the definition shows that
the image of p is a union of path components of B.

(iii) The space B is called the base space of the fibration, while E is
called the total space. The inverse image in E of a point in B is called
a fibre and is usually denoted F. We shall see that all fibres in a path
component of B are homotopy equivalent.

The definition of fibration is easier to use in a slightly stronger form, as
given in the next lemma.

DEFINITION 1.6.3. A subspace A C X is called a strong deformation
retract of X if there is a homotopy h : X x I - X with h(x, 0) = x,
h(a,t)=aandh(x,1)EAforallxEX,aEAandtEI.

LEMMA 1.6.4. If (X, A) is a simplicial pair with A a strong deformation
retract of X and p : E -* B is a Serve fibration then we can lift maps as in
the following diagram:

A -- E
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PROOF. This follows from the diagram

A x I U X x 1 h A -E

XxI

17

The following is one of the important properties of fibrations:

THEOREM 1.6.5 (Fibring property). Suppose p : E ---+ B is a Serre fibra-
tion with basepoints p(eo) = bo. I f B' C_ B and E' = p 1(B'), then for n > 1,
P* : 7rn(E, E', eo) -> 7rn(B, B', bo) is an isomorphism.

PROOF. (i) p* is onto:
Elements of 7rn lift as in the following diagram, in which p* (y) = a:

Cn-1 -E

(ii) p* is one-one:
If h : p*(a) p*(,3) is a homotopy then we may lift it to a homotopy
H : a -- ,Q as in the following diagram:

(Inx0)U(Cn 1xI)U(Inx1) «u- E

where (eo) is the map sending the whole of Cn-I x I to the basepoint eo.

In the particular case where B' = {bo} we have E' = F = p 1(bo) and

p* : 7rn(E, F, eo) 7rn(B, bo, bo) = 7rn(B, bo)

Thus the long exact sequence (Proposition 1.2.7) of the pair (E, F) and
Proposition 1.2.8 give us the following theorem.

THEOREM 1.6.6. If F - E -P* B is a Serve fibration then there is a long
exact sequence of homotopy groups

... -y 7rn(F, eo) 7rn(E, eo) 7rn(B, bo)
7rn-1(F,

eo) .. .

where the map d* is given by the composite
_1

7rn(B,bo) 17rn(E',F,eo) irn-1(F',eo)

The above is a long exact sequence of modules for 7r1 (F, eo).
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Note that in homology, one does not obtain a long exact sequence, but
rather a spectral sequence. This is the subject of Section 3.3.

PROPOSITION 1.6.7. Suppose p : E - B is a fibration, and w : I -+ B is
a path in B. Then the fibres p I(w(0)) and p I(w(1)) at the two ends of the
paths are homotopy equivalent by a map whose homotopy class only depends
on the homotopy class of w (relative to its ends).

PROOF. Let F = p I(w(0)) and F' = p I(w(1)) be the fibres. Then the
diagram

F x 0

1FxI- I w> B

gives us a map F = F x 1 -+ F', and the diagram

Fx(Ix000xIUIx1) aU7rFUa' E

FxIxI I x I B

shows that any two maps a, a' obtained in this way from homotopic paths
w, w' are homotopic. If we do the same for the opposite path w(t) = w(1- t)
we obtain a map F' -> F, again well defined up to homotopy. Since w * w is
homotopic to the identity path, the composite of these maps F - F' -+ F
is homotopic to the identity map. The same applies to F' -> F -> F', and

Note that the proof of the above proposition gives us an action of the
fundamental groupoid of B on the fibres, up to homotopy. In particular, for
example, it shows that 7ri(B, bo) acts on homotopy invariants such as the
homology and cohomology groups of F.

DEFINITION 1.6.8. A fibre bundle with base B, total space E and fibre
F consists of a surjective map p : E -> B such that there is an open covering
{U,} of B and homeomorphisms qa making the following square commute:

Ua x F 0a°pI(Ua)

Ua Ua

In other words, a fibre bundle is locally like a product of B and F, but
may be globally twisted. Examples are given by the Mobius band, and by
tangent and cotangent bundles on a smooth manifold.

If = (p: E -p B) is a fibre bundle, we write for the total space E,
and B(t;) for the base space B.
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LEMMA 1.6.9. If E=BxF,p=7rB:E->Bthen p:E-+ B has HLP
with respect to all X. Thus p : E --+ B is a Hurewicz fibration.

PROOF. XXO f BxF
7ry

Yi

H '.7 I1rB

XxI B
Take H= h x (7rF o f oirX).

In order to show that fibre bundles are Serre fibrations, we need the
following lemma.

LEMMA 1.6.10. If p : E - B has the homotopy lifting property with
respect to all n-cubes In, then p : E -4 B has the homotopy extension
lifting property (HELP) with respect to simplicial pairs (X, A). In other
words, partial lifts of homotopies can be extended to lifts as in the following
diagram.

XxOUAxI f E

XXI B

In particular, p : E --4B is a Serre fibration.

PROOF. We proceed by induction on the skeleta of X, the zero skeleton
being easy to handle. Suppose we have extended the lift to X X 0UX(n-1) X I
and suppose A is an n-simplex of X, so that the boundary 0 C X(n-1). Then
we can extend h to X x 0 U (X(n-1) U A) x I as in the following diagram:

Ox000xI- E

HAXIhB
Fitting together these extensions for the various n-simplices of X, we have
extended to X X 0 U X(n) x I. By the weak topology we may continue and
extend to X x I.

THEOREM 1.6.11. If f : E -+ B is a fibre bundle then it is a Serre
fibration.

PROOF. By Lemma 1.6.10, we only need show that p has HLP for the
n-cube In.

Inx0---- 9 E

In XI B
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Let {U,,} be as in the definition of fibre bundle. Then {h-1(U«)} is an open
covering of In x I, and so by compactness we can choose E > 0 such that
the image under h of every ball of diameter less than E in In x I lies in some
Uc. (E is called the Lebesgue covering number of this open covering).
Cut In x I into subcubes Ij1,... ,j, x Ij each small enough to fit into a ball of
radius E. We order these subcubes lexicographically and define H on them
by induction. At each stage, we need to know that products U" x F have
HELP with respect to pairs of finite simplicial complexes made up out of
cubes. This follows from the above two lemmas.

COVERING SPACES.

DEFINITION 1.6.12. If p : E -> B is a fibre bundle in which the fibres are
discrete sets, then E is called a covering space of B. By Proposition 1.6.7,
there is an action of 7rl(B, bo) on F = p 1(bo). If E and B are path connected
then the homotopy sequence

(0 =)7rn(F, eo) -+ xn(E, eo) - 7rn(B, bo) -* 7rn-1(F, eo) (= 0) (n > 2)
(0 =)7r1(F, eo) - 7ri(E, eo) - 7r1(B, bo) - 7ro(F, eo)(= F) - 7ro(E, eo)(= 0)

shows that 7rn(E, eo) = 7rn(B, bo) for n > 2, 7r1 (B, bo) acts transitively on
F, and 71 (E, eo) is the stabiliser of the point eo E F. If E and B are
path connected and 7r1(E,eo) = 0, then E is called the universal cover of
B. Under these conditions F is the regular permutation representation of
7r1 (B, bo).

THEOREM 1.6.13. Suppose B is path connected, and every neighbourhood
of a point in B contains a simply connected neighbourhood. Then B has a
universal cover p : (E, eo) -, (B, bo). In particular, every connected CW-
complex has a universal cover.

If p' : (E', e'o) -# (B, bo) is any other cover then there is a unique map
(E, eo) -> (E', e'0) whose composite with p' gives p. In particular, the univer-
sal cover is unique up to isomorphisms of fibre bundles over B.

There is a one-one correspondence between isomorphism classes of path
connected covering spaces p' : (E', eo) -> (B, bo) and conjugacy classes of
subgroups H < 7r1 (B, bo), given by (E', eo) = (E, eo)/H.

PROOF. See Spanier [247, Sec. 2.5], where this theorem is proved under
slightly weaker hypotheses. The idea of the proof is as follows. We construct
E as the set of ordered pairs (x, [w]) consisting of a point x in B and a
homotopy class [w] of paths from bo to x. This set is topologised by taking
as a base for the topology sets of the following form. If U is open in B, and
[w] is a path from bo to x E U, let (U, w) be the set consisting of the pairs
(u, [w * w']) where w' is a path inside U. It is easy to check that this gives a
fibre bundle, and hence a Serre fibration.

If p' : (E', e'') -* (B, bo) is another cover, then we construct a map
(E, eo) -4 (E', eo) using the homotopy lifting property with respect to the
unit interval. Such a lift is, of course, unique, since otherwise at the point
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of bifurcation there is no neighbourhood in B whose pre-image in E' is a
product.

If E' is path connected then the map (E, eo) - (E', e0') is surjective.
Letting H = Im(irl (E', eo) -> 7r1(B, bo)), the long exact homotopy sequence
shows that H is the stabiliser of a point F' and so (E', e'o) = (E, eo)/H.

EXAMPLES. (i) The universal cover of the circle Si is the real line R. The
pre-image of the basepoint is 7r1(S1, so) = Z.

(ii) The universal cover of the projective space RP' is the sphere S.
The pre-image of the basepoint is 7r1(RPn, xo) = Z/2.

(iii) The universal cover of the torus T2 is the plane R2. The pre-image
of the basepoint is irl (T2, xo) = Z2.

EXERCISE: THE PATH FIBRATION. If X is a based space, denote by PX
the path space Map,, ((1, 0), (X, xo)) of paths in X starting at the basepoint
xo. Show that the map PX -+ X sending a path w : (1, 0) - (X, xo) to w(1)
is a Hurewicz fibration, with fibre QX. Show that PX is contractible.

REPLACING A MAP BY A FIBRATION. If f : Y -- X is a map of based
spaces, denote by Pf the space of ordered pairs (y, w) consisting of a point y
in Y and an unbased map w : I - X with w(1) = f (y); in other words, the
pullback

Show that Pf is homotopy equivalent to Y via the first projection (y, w) y.
Show that the composite map Pf - Y - X is homotopic to the map Pf - X
sending (y,w) to w(0), and that the latter map is a Hurewicz fibration. In
this way we have replaced the original map Y -p X by the fibration Pf -- X.
The fibre Ff of the map Pf --> X is called the homotopy fibre of f, and
consists of ordered pairs (y, w) as above with w(1) = f (y) and w(0) = xo; in
other words, the pullback

Ff -PX

Y - X.

1.7. Paracompact spaces

In the next chapter, we shall be discussing a particular class of fibre
bundles, called principal G-bundles, where G is a topological group. We shall
classify principal G-bundles over a paracompact base space. In preparation
for this, we include here a brief discussion of paracompact spaces.
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DEFINITION 1.7.1. Suppose {U,,,} is an open cover of a space X. A (lo-
cally finite) partition of unity subordinate to {Ua} consists of functions
fa : X -p R such that

/(i)
fa(x) > 0 for all a and x.

(ii) fa(x) = 0 if x U.
(iii) For each x E X, {a I fa(x) 0} is a finite set.
(iv) For each x E X, Ea f,, (x) = 1.
If {Ua} and {Va} are two open covers of X, we say {Ua} is a refinement

of {Vjj} if each U. is contained in some V.
An open cover {Ua} is said to be locally finite if every point has a

neighbourhood which intersects only a finite number of the Ua non-trivially.
A Hausdorff space X is paracompact if every open cover has a locally

finite refinement.

EXAMPLE. It is shown in Lundell and Weingram [168, p. 54-55] that
every CW-complex is paracompact.

The main facts we shall need about paracompact spaces are contained in
the following two theorems.

THEOREM 1.7.2. A Hausdorff space X is paracompact if and only if there
is a partition of unity subordinate to any given open cover of X.

PROOF. This is proved in Appendix 1 of Lundell and Weingram [168].
In fact they use the above property as the definition of a paracompact space,
and show that it is equivalent to the definition given above.

THEOREM 1.7.3. Suppose X is a paracompact space and {Ua} is an open
cover of X. Then there is a countable open cover {Wj} of X such that each
Wj is a disjoint union of open sets, each of which is contained in some Ua.

If each x E X is in at most n of the Ua then we may choose a finite open
cover {Wj, 1 < j < n} with the above property.

PROOF. Let { fa} be a partition of unity subordinate to {Ua}. For each
x E X, let S(x) be the set of indices a such that fa(x) # 0 (so that S(x) is
finite for all x E X). If S is a subset of the set of indices a, let

W(S)={xEXI f(x)> fa(x)for all aES,/3 S}.

It is clear that W(S) is open in X, and that if S S', S' g S then W(S) f1
W(S') = 0. Thus if we let

Wj = U W(S(x))
IS(x)I=i

then Wj is a disjoint union of sets W(S(x)), and each W(S(x)) C_ Ua when-
ever a E S(x).

Under the last hypothesis, Wj = 0 for j > n.

COROLLARY 1.7.4. Suppose p : E --+ B is a fibre bundle with paracompact
base space B. Then there is a countable open cover {Uj} of B such that
p : p-1(U) -p Uj is a product bundle for each Uj.



1.8. SIMPLICIAL SETS 23

1.8. Simplicial sets

In this book, I have tried wherever possible to avoid the language of
simplicial sets, in order to make the discussion as accessible as possible to
a wide audience. However, at times they are indispensable; and at times
discussions are greatly clarified when described in this language. This will
be especially true when we discuss cyclic homology in Section 2.12.

The idea of the theory of simplicial sets is that homotopy theory really
should not depend on properties of point set topology, and ought to admit
an algebraic, or at least combinatorial description. The appropriate com-
binatorial framework was first formulated by Eilenberg and Zilber [99] and
developed by D. M. Kan [143, 145]; other good references are Bousfield and
Kan [50], May [180], Lamotke [163] and Section VIII.5 of Mac Lane [170].
We shall content ourselves with a brief summary of the salient features of the
theory, and the reader is referred to these references for further details.

Let L be the category whose objects are the finite totally ordered sets,
and whose arrows are the monotonic functions. A simplicial object X in a
category C is a contravariant functor L -+ C. A simplicial set is a simplicial
object in the category of sets. If X is a simplicial object, we write Xn for
the image of 10,... , n} in C (the "set of n-simplices"), di : Xn - X,_1
(0 < i < n) for the image of the ith "face map"

{0,...,n-1}- {0,...,n}
j if j <ijam' j+1 ifj>i

and si : Xn -+ Xn+1 (0 < i < n) for the image of the ith "degeneracy map"

{0,... ,n+1} - {0,... ,n}
jH j ifj<i

t j-1 ifj<i
These maps satisfy the relations

didj =dj-1di i < j
disj =sj_1di i < j
disj =1 i = j or j + 1
disj =sjdi_1 i > j + 1
sisj =sj+lsi < j

and all maps and relations coming from follow from these. So giving a
simplicial object X in C is the same as giving objects Xn in C, 0 < n < oo,
and maps di : Xn -j Xn_1 and si : Xn -* Xn+1 satisfying the above relations.

A simplicial map f : X -+ Y between simplicial objects is a natural
transformation of functors; this amounts to giving maps fn : Xn Yn

satisfying fn_1di = di fn and fn+lsi = sifn for all 0 < i < n. Thus simplicial
objects in a category C form a category Simp C.
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If X is a simplicial set, an n-simplex x E Xn is said to be degenerate if
x = siy for some y E Xn_1 and some i. The remaining simplices are said to
be non-degenerate. Note that because of the above relations, the maps si
are injective, so that there are in general lots of degenerate simplices.

The relationship with topological simplices is as follows. We denote by
An the standard n-simplex

Dn={(xo,...,x,,)E)<$n'+1IExi=1andeach xi>0}.

The maps d2 pn-1 --+ A' and si : On+1 _, An are defined by
id (xp, ... , xn-1) =- (x0, ... ixiiOixi+1i ... ) xn-1)

Si (xp, ... , xn+1) = (x0, ... , xi + xi+1 .... )xn+1)

These satisfy the above relations given for the di and si, but with the order
of composition reversed. If X is a simplicial set, we define its topological
realisation XI to be the quotient of

U Xn x On
n>0

by the equivalence relation given by identifying (dix, y) with (x, diy) and
(six, y) with (x, siy). This gives a CW-complex (not in general a simplicial
complex since faces of a simplex may get identified) with one n-cell for each
non-degenerate n-simplex in X. The topological standard simplex itself is
the topological realisation of the simplicial set 0[n] whose r-simplices are the
sequences of integers 0 < ao < . . . < ar < n with

di(ao,... , a,) = (ao.... , ai-1, ai+1.... , ar)

Si ap,... ,ar = (ap,... I ail ail ... ,ar .

The maps di and s' correspond to obvious maps di : 0[n - 1] 0[n] and
si : A[n + 1] - o[n]. There is also the obvious corresponding notion of
the topological realisation of a map of simplicial sets, so that topological
realisation is a functor from simplicial sets to CW-complexes.

If Y is a topological space, then the singular simplices on Y form a
simplicial set Sing(Y) with Sing(Y)n = Map(On, Y) and with maps di and
si induced by the maps di and si. There is an obvious adjunction between
topological realisation and singular simplices

nat
Map(IXI, Y) = Homsimpset(X, Sing(Y)).

If X and Y are simplicial sets then X x Y is the simplicial set with
(X X Y)n = Xn x Yn with the obvious face and degeneracy maps. This
definition takes a bit of getting used to, because a product of degenerate
simplices may be non-degenerate. This is related to the topological product
by

IX X YJ = IXI X Y1,
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where the product on the right is taken in the category of compactly gener-
ated spaces (the usual topology of the product is wrong for infinite dimen-
sional spaces). For example, taking X = Y = 0[1] (the "simplicial unit
interval"), X x Y has four zero-simplices (0, 0), (0,1), (1, 0), (1, 1), five non-
degenerate one-simplices (00, 01), (01, 00), (01, 01), (01, 11) and (11, 01), and
two non-degenerate two-simplices (001, 011) and (011, 001). Thus IX x YJ is
a unit square, triangulated by cutting into two triangles using the diagonal.
A proof of the fact that products commute with topological realisation can
be found in Chapter III of May [180].

The (reduced) suspension SX of a pointed simplicial set (X, xo) is the
simplicial set with one zero-simplex *, and whose n-simplices for n > 0 are
the pairs (i, x), i > 1, x E Xn_i, modulo the equivalence relation (i, soxo)
so+Z*. The face and degeneracy maps are determined by the relations

do(1 x) = 0n-1 *

di+1(1,x) = (1, dix)

so(i, x) = (i + 1, x)

si+1(1,x) = (L six).

It is easy to check that this is related to the usual reduced suspension (Sec-
tion 1.2) by ISX = SIX 1.

The simplicial version of the space of maps from one space to another goes
as follows. If X and Y are simplicial sets, then Hom(X, Y) is the simplicial
set in which an n-simplex is a simplicial map f : X x O[n] -> Y, with
face and degeneracy maps given by composition di(f) = f o (idx x di) and
si(f) = f o (idx x si). The realisation of an n-simplex f : X x 0[n] -> Y
gives a map XI X An - I YI and hence a map On - Map(IXI, IYJ). Putting
these together gives a map

IHom(X,Y)I - Map(IXI, YD)

which is a homotopy equivalence.

The notion of a fibration in SimpSet is similar to that of a Serre fi-
bration in the topological category. Let 0[n, i] be the simplicial subset of
0[n] generated by all except the ith face; in other words, if a is the unique
non-degenerate n-simplex in A[n] then A[n, i] is generated by dia, ... , di_1o,
di+ia, ... , dna. Thus the topological realisation On>i of O[n, i] is the subset
of On consisting of those (xo, ... , xn) such that xj = 0 for some j i. One
can show that a map of topological spaces is a Serre fibration if and only if
it has the lifting property with respect to the pair (On On'i) So we define a
map E -p B of simplicial sets to be a Kan fibration if the diagonal arrow
can always be filled in, as in the following diagram:

A[n,i]- -E

A[n]>B
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A number of remarks need to be made at this point. First of all, in contrast
to the situation in topology, if we denote by * the simplicial set with one n-
simplex for each n (so that the topological realisation of * is a single point),
given a simplicial set X, the (unique) map X - * is not necessarily a Kan
fibration. A simplicial set is called a Kan complex if X - * is a fibration.
However, if X is (the underlying simplicial set of) a simplicial group, then
X is necessarily a Kan complex (see for example May [180], Theorem 17.1).
If E -f B is a Serre fibration of topological spaces, then Sing(E) -+ Sing(B)
is a Kan fibration, as can easily be seen using the adjunction between singu-
lar simplices and topological realisation. Thus for any topological space Y,
Sing(Y) is a Kan complex. In particular, the functor X H Sing(IXI) provides
a canonical way of turning simplicial sets into Kan complexes. There is also
a combinatorial construction of such a functor X H Ex°° (X) constructed by
Kan [144].

If f, f : X -4Y are simplicial maps from one simplicial set to another,
then a homotopy from f to f' is a simplicial map F : X x A[1] -i Y with the
property that Fo (idX x do) = f and Fo (idX x d1) = f'. As long as Y is a Kan
complex, homotopy is an equivalence relation on maps from X to Y. The
topological realisation of a homotopy between simplicial maps is a homotopy
between maps of CW-complexes. We write [X; Y] for the homotopy classes
of maps from X to Y when Y is a Kan complex. There are also obvious
notions of homotopy classes of pointed maps [X, xo; Y, yo], where x0 and yo
are zero-simplices, and of maps between pairs [X, A, x0; Y, B, yo].

THEOREM 1.8.1. The adjunction between the singular simplices functor
and the topological realisation functor passes down to an equivalence of cate-
gories between CW-complexes and homotopy classes of maps, and Kan com-
plexes and homotopy classes of simplicial maps.

PROOF. See May [180] Chapter III §16, or Bousfield and Kan [50] Chap-
ter VIII §4.

This theorem says that we can do homotopy theory in the category of
simplicial sets, without reference to topological spaces. For example, we give
the simplicial definition of homotopy groups.

The simplicial n-sphere S[n] is the unique simplicial set with one non-
degenerate zero-simplex *, one non-degenerate n-simplex, and no other non-
degenerate simplices. Thus S[n]j = Sn (the n-sphere is obtained from An
by identifying the boundary to a point). So if X is a Kan complex, we
define 7rn(X, xo) = [S[n], *; X, xo]. Now a map from (S[n], *) to (X, xo)
consists of an n-simplex in X with the property that each face map gives the
fully degenerate (n - 1)-simplex s0'-1(x0). Therefore irn(X,xO) consists of
equivalence classes of certain n-simplices in X under an equivalence relation
which the reader is invited to write down explicitly in terms of the existence
of an (n + 1)-simplex with certain properties.
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Finally, we discuss the homology of a simplicial set with coefficients in
a commutative ring R. If X is a simplicial set, regarded as a contravari-
ant functor - Set, then we may compose with the free module functor
Set -> RMod to get a simplicial R-module RX. The chain complex of a
simplicial R-module M is the chain complex of R-modules with MM,, in de-
gree n and boundary map On = _i of -1)idz : M,, -p M,,,_1. Note that
the subcomplex of degenerate simplices is contractible, since the degenera-
cies can be interpreted as contracting homotopies (see Mac Lane [170]), so
one may as well only use the non-degenerate simplices in forming this chain
complex. It is easy to see that this reduced complex is just the complex of
cellular chains on IXI regarded as a CW-complex, so we use the notation
C*(X; R). The homology groups H,, (X; R) are defined to be the homology
groups of C*(X; R), and the cohomology groups H' (X; R) are defined to
be the cohomology groups of C*(X; R) = HomR(C*(X; R), R). If Y is a
topological space, then the above construction on Sing(Y) yields the usual
singular homology groups H,,,(Y; R).

The Eilenberg-Zilber Theorem says that there is a natural chain
homotopy equivalence

C*(X;R)®C*(Y;R) -+C*(X xY;R).
given as follows. If p + q = n and x E Xp, y E Yp, then

X ® y * svlx, sltn ... silly).
(t,v)

Here, the sum runs over the Eilenberg-Mac Lane (p, q)-shuffles (µ, v) of
n. Namely, p = (µ1l ... , µp) and v = (v1, ... , vq) with µ1 < < µp and
v1 < < vq, in such a way that 1P1.... , µp, v1, ... , vq} i, a permutation
of {1, ... , n}, and the sign of the permutation is e(µ, v). For further details,
see Mac Lane [170], Section VIII.8.

EXERCISE. If C is a category, the nerve of C is the simplicial set NC
whose n-simplices are the chains of n consecutive maps -+ + -+
in C. Write down the face and degeneracy maps, and check that this is a
simplicial set. The classifying space BC of C is the topological realisation
of the nerve INC

If X is a CW-complex, let C(X) be the category formed from the partially
ordered set of singular simplices on X. Show that BC(X) is the "barycentric
subdivision" of ISing(X)I (cf. Section 6.1), and hence using Theorem 1.8.1
that there is a homotopy equivalence between X and BC(X). Thus every
CW-complex is homotopy equivalent to the classifying space of a category.

1.9. The Milnor exact sequence

The n-skeleton of a simplicial set is the simplicial subset generated by
the i-simplices for i < n. When studying homotopy classes of maps X -+ Y
from one simplicial set to another, it is often easy to see what is going on
on the n-skeleton of X for each n, and one would like to pass to the limit.



28 1. BACKGROUND FROM ALGEBRAIC TOPOLOGY

However, it is not true in general that if Xo < X1 < is a sequence of
inclusions with X = U X,,, then [X; Y] = lim[X,,; Y]. There is also a lime

term, which we now describe. In Chapter 4 of Volume I, we described lime
for an inverse system of abelian groups; we now need this notion for inverse
systems of groups in general. If

...-G2- -2 - G11,Go

are groups and homomorphisms, then the group fl G,,, acts on the set fl G,,,
via

(90,91.... )(XO, x1, ...) = (9oxoa1(901, 91x1a2(92)-1, ... )
and limlGn is the quotient of the set fl G,,, by the equivalence relation defined
by this action. It is only a pointed set, and not a group in general, but if the
G,,, are abelian then limlGn is an abelian group. An exact sequence

{1n} - {G;,} - {G.} - {Gn} -* {1n}
of inverse systems of groups gives rise to a six term exact sequence of groups
and pointed sets

1 lime' -> limGn - limG" limlGn limlGn - limlGn -; 1.

THEOREM 1.9.1 (Milnor; Bousfield-Kan [50] Chapter IX §3).
Suppose that Y is a Kan complex and X0 < X1 < is a sequence of
inclusions of simplicial sets with union X. Then there is an exact sequence
of pointed sets

1 -# lim1 [SXn; Y] -> [X; Y] -+ lim[Xn; Y] -# 1 .



CHAPTER 2

Cohomology of groups

2.1. Overview of group cohomology

A good introduction to the history of the cohomology of groups can be
found in Mac Lane [171]. He traces the history back to the works of Hurewicz
(1936) on aspherical spaces and Hopf (1942) on the relationship between the
fundamental group and the second homology group of a space. We shall not
dwell here on the historical development, but refer the reader to Mac Lane's
article for further information and comments.

The purpose of this chapter is to give a survey of group cohomology and
how it is connected to various other parts of mathematics, and in particular to
topological and algebraic K-theory. In the first few sections, where we provide
several definitions of group cohomology and show how they are related, we
give fairly complete proofs. Later on, we lapse into description and give
enough references so that the interested reader may chase up the proofs (we
trust that the reader will also excuse some forward references to Chapter 3
on spectral sequences during the later sections of this chapter). We hope
that this romp through large chunks of mathematics will be taken as a joy
ride, and not as an indigestible pill.

The first approach to group cohomology, which we have already examined
in some detail in Volume I, is the algebraic approach. Recall from Section 2.4
of Volume I that if A is an augmented algebra over a commutative ring of
coefficients R, then we define homology and cohomology groups

H,,, (A, R) = Torn (R, R), H'(A, R) = Ext'(R, R).

More generally, if M is a right A-module, we define

H, (A, M) = TorA(M, R)

while if M is a left A-module we define

Hn(A, M) = Extn(R, M).

These are both covariant functors in M, and from Section 2.5 of Volume I
we have long exact sequences

- Hn(A, M') - Hn(A, M) , Hn(A, M") -# Hn-1(A, M') .. .

HT (A, M') - Hn(A, M) - Hn(A, M") - Hn+1(A M') .. .

29
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associated to a short exact sequence of modules (right in the first case and
left in the second)

0-+M'-- M-*M"-0.
In the case where A = RG, the group algebra of G over R, we write

H,, (G, M) and Hn(G, M) for H,,,(RG, M) and Hn(RG, M) respectively. Of
course, by the comments in Section 3.1 of Volume I, we may regard right
RG-modules as left RG-modules via gm = mg-1 and vice-versa.

Recall also from Section 2.6 of Volume I that Yoneda composition defines
a product structure on cohomology

Hm(G, R) x Hn(G, R) - Hm+n(G, R)

ExtRG(R, R) X ExtRG(R, R) ExtRGn(R, R).

We saw in Section 3.1 of Volume I that in the case of a group algebra,
this product is graded commutative in the sense that if a E Hm(G, R) and
b E Hn(G, R) then ab = (-1)mnba. The reader is warned that the same
is not true for more general augmented algebras, even for augmented sym-
metric algebras. It is also not true that the ring ExtRG(M,M) is graded
commutative for an arbitrary (even simple) RG-module M.

It is often convenient for theoretical purposes, although seldom for prac-
tical computation, to use a standard projective resolution of R as an RG-
module. In Section 3.3 of Volume I, we introduced the standard resolution
or bar resolution and in Section 3.4 of Volume I we used it to interpret low
degree cohomology in terms of group extensions.

The second approach to cohomology we shall examine in Section 2.2 is
that of Eilenberg-Mac Lane spaces. If G is a group, then there is a CW-
complex K(G, 1) whose fundamental group is G and whose higher homotopy
vanishes. This space is unique up to homotopy equivalence, and is charac-
terised by the contractibility of its universal cover. Our second definition of
group cohomology is

H,, (G, R) = Hn(K(G,1); R), H' (G, R) = Hn(K(G,1); R)

for R a commutative ring of coefficients. We shall show that this agrees with
the algebraic definition by regarding the cellular chains of the universal cover
of K(G, 1) as a projective resolution of R as an RG-module.

The third definition, which we shall examine in Section 2.4, comes via the
theory of principal G-bundles. Roughly speaking, a principal G-bundle is a
fibre bundle where each fibre is a copy of the group G. This definition makes
sense for an arbitrary topological group G, and it turns out that the functor
PrincG(X) assigning to a CW-complex X the set of principal G-bundles over
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X is a representable contravariant functor. In other words, there is a CW-
complex written BG with the property that there is a natural isomorphism

nat
[X; BG] = PrincG(X).

This space comes equipped with a universal principal G-bundle, written G :
EG - BG, with the property that the above correspondence is given by

[f] H f*(SG)-

The universal bundle is unique up to homotopy, and we give Milnor's con-
struction to provide a concrete model of this space. For Milnor's model, it
turns out that EG is contractible, and so if G has the discrete topology then
BG is an Eilenberg-Mac Lane space K(G,1). Thus if we define

H,(G, R) = H,,,(BG; R), Hn(G, R) = HT(BG; R)

then this definition will agree with our previous definitions in case G is dis-
crete. In some sense, Milnor's model for EG corresponds to the bar resolution
in the algebraic approach.

In case G is the unitary group U(n) (or the orthogonal group 0(n)), we
shall see that principal G-bundles correspond naturally to complex (or real)
vector bundles, and in this way we shall see that the Grassmannians Grn(C)
and Grn(R) are models for BU(n) and BO(n).

One of the benefits of the topological approach is that we have a nat-
ural definition of characteristic classes of representations. Namely if M is
a CG-module (resp. 1[8G-module) then EG xG M is a vector bundle over
BG and hence corresponds to a map from BG to BU(n) (resp. BO(n)).
Thus pulling back cohomology classes of BU(n) (resp. BO(n)) gives natu-
rally defined Chern classes (resp. Stiefel-Whitney classes) of representations.
In Chapter 3, we shall see that these characteristic classes are related to
the Atiyah spectral sequence, which is a device for comparing the ordinary
representation ring with the cohomology ring.

It is also worth knowing about the Kan-Thurston Theorem [146], which
we now state without proof. Roughly speaking, the Kan-Thurston theorem
says that every topological space is homologically the same as some group
(usually infinitely generated, even if the space has only finitely many cells).
More precisely, given any path connected space X with base point, there
exists an Eilenberg-Mac Lane space K(7r,1) and a map K(7r, 1) - X which
induces an isomorphism on (singular) homology and cohomology with any
local coefficients. In fact, the space X may be recovered up to (weak) ho-
motopy from the group 7r and the kernel of the map it - 71(X), which is a
perfect normal subgroup of it. Namely, there is a construction due to Quillen,
called the plus construction, which we describe in Section 2.10, which kills
a perfect normal subgroup of 7r1 of a space without affecting the homology
or cohomology. The map K(7r,1) -+ X gives rise to a map K(7r,1)+ -* X
which is a weak homotopy equivalence.
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It follows from the Kan-Thurston theorem that any operations one can
define on the cohomology of groups, such as for example the Steenrod opera-
tions discussed in Chapter 4, are automatically operations on the cohomology
of all topological spaces. Of course, Steenrod operations were first defined
for spaces.

2.2. Eilenberg-Mac Lane spaces

DEFINITION 2.2.1. A space (X,xo) is of type (7r, n) if ir,,,(X, xo) = it,
and iri(X, xo) = 0 for i n. If X has the homotopy type of a CW-complex
then it is an Eilenberg-Mac Lane space K(ir, n).

REMARK. By Theorem 1.5.8, a CW-complex X is a K(7r,1) if and only
if irl(X, xo) = it and the universal cover of X is contractible.

EXAMPLES. Take X = RP°°, the union of the real projective spaces
RPn C RPn+I C ... with the weak topology. The sphere is a 2-fold cover
of RPn, and so S°° is a 2-fold cover of RP°°. We claim that 7ri(S°°) = 0 for
all i, so that S°° is contractible. This is because any map from an i-sphere
to S°° has image lying in some finite sphere Sn, by compactness. Taking n
greater than i, we see that the map is homotopic to zero already in Sn. It
follows that RP' is a K(Z/2, 1).

In a similar way, we see from the long exact homotopy sequence of the
fibration S1 -> S2n+l _ CPn that 7r2(CPn, xo) = Z, and 7ri(CPn, xo) = 0
for i = 1 and 2 < i < n. Thus 72(CP°°,xo) = Z and 7ri(CP°°,xo) = 0 for
i 0 2, so that CP°O is a K(Z, 2).

Another easy example is that S' is a K(Z, 1).

THEOREM 2.2.2. Given n > 1 and it a group, with it abelian if n > 2,
then there exists an Eilenberg-Mac Lane space K(ir, n).

PROOF. We start with the case n = 1. Choose a free presentation

1--+ R-F-->7r-+1

with F free and R a normal subgroup of F. We construct a CW-complex
X as follows. We take as the 1-skeleton X1 of X a wedge sum of copies
of the circle S«, indexed over generators a of F as a free group. Thus we
have 7ri (X1, xo) = F. Now choose elements 3 E R generating R as a normal
subgroup of F. Each element ,3 corresponds to an element of 7r, (X', x0) and
is hence represented by a map

: (S1, so) (X 1, x0).

We take for the 2 skeleton of X

X2 X1 ua U(aa),

the space formed by attaching 2-cells to X1, using the /3 as attaching maps.
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We have 7r1(X2,X1,xo) = 0, and so the homotopy exact sequence is

...-x2(X2. X1,SO)-7r,(X1,So) _x1(X2,SO) _ 0.
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F
For each generator 0 of R there is an obvious corresponding element in the
group 7r2(X2,X1,xo), which goes to Q E 7r1(X1,xo). Thus the kernel of
7r, (XI, SO) -> 7r1(X2, SO) contains R. To show that it is exactly R, we notice
that the covering X 1 of X1 corresponding to the subgroup R of F (as in
Section 1.6) has 7r1(0, xo) = R, and the fibre of X 1 -- X1 is F/R. Thus
for each 2-cell of X2 and each element of F/R we attach a 2-cell to X 1
in the obvious way, we obtain a space X2 covering X2, with fibre FIR. The
commutative diagram

R 7r1(X1, xo) ' 7r1(X2, 50) ' 0

F 7r1(X1,xo) -*.7r1(X2,xo) - 0

If

FIR

now shows that 7r1(X2, xo) = FIR and 7ri (X2, xo) = 0.
We now kill the higher homotopy groups by induction. Suppose we have

constructed the m-skeleton X' with
= {7r,(Xm

,xo)
7r
0

r=1
1<r<m.

We choose generators !y for 7r,..(Xm, xO) and representatives

'Y: (Sm,so) - (Xm,xo)

and form
Xm+1 = Xm U7 _ I I Ormti+1

by using the =y as attaching maps. We have

7rm+1(Xm+1, Xm, xo) _ ®Zry,
Y

a free abelian group on generators corresponding to the elements 'y. The
boundary map

7fm+1(Xm+1,Xm,xo)
a

- 4 7Gm(Xm,SO)

sends the generator of Z to ry and is hence surjective, so that 7rm(Xm+1, xo) _
0. The lower homotopy groups are unaltered, and so we have constructed
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Xm+1. We now set X Xm with the weak topology, so that X is a
K(7r,1).

The construction of a K(7r, n) for n > 2 is the same only easier. Begin
with a presentation

1- R-->F-7-1
of it as an abelian group, so that F is free abelian and R < F. Choose
generators a for F as a free abelian group and take as the n-skeleton Xn
a wedge sum of copies of a sphere Sa indexed over the generators a. Then
7r(Xn,xo) = 0 for i < n and 7rn(Xn) = F. Choose generators Q for R and
attach (n + 1)-cells corresponding to the generators 0. Kill higher homotopy
exactly as before.

REMARK. If it is abelian then the set of homotopy classes of maps from
X to K(7r,n)] is in natural bijection with Hn(X;7r) via the map

[X; K(7r,n)] -i Hn(X;7r)

f f*(in)

where in E Hn(K(7r, n); 7r) = Hom(Hn(K(7r, n)), 7r) corresponds to the in-
verse of the Hurewicz homomorphism

it = 7rn(K(7r, n), xo) -* Hn(K(7r, n))

If n = 1 and it is not necessarily abelian, then [X; K(7r,1)] is in natural
bijection with Hom(7ri (X, xo), 7r) via the map f - f*. These statements are
proved by obstruction theory, and may be found for example in Mosher and
Tangora [195].

In either case it follows that K(7r, n) is unique up to homotopy, since
if X and Y are both K(7r, n)'s, then there are maps X -+ Y and Y -> X
corresponding to the isomorphism 7rn(X) = 7rn(Y)). The composite in either
direction induces the identity map on 7rn and is hence homotopic to it by again
applying the bijection. It also follows that [K(7r, n); K(7r, n)] = Hom(7r, 7r').

The above statements may be phrased by saying that Hn(-; 7r) is a repre-
sentable functor (see Section 2.1 of Volume I) represented by K(7r, n). Thus
for example Yoneda's lemma shows that the natural transformations

Hn( ir) Hm(-;7f )
are in one-one correspondence with homotopy classes of maps

[K(7r, n); K(7(, m)]

or equivalently with elements of

Hm(K(7r, n); 7r').

In particular the Hurewicz theorem shows that there can be no non-zero
natural transformations if m < n, and if m = n the natural transformations
are in one-one correspondence with Hom(7r, 7r'). For m > n the natural trans-
formations can be quite interesting. For example if it = Z/p then there are
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the Steenrod operations, which we shall discuss from a much more algebraic
point of view in Chapter 4.

THEOREM 2.2.3. (i) H,, (G, R) = Hn,(K(G,1); R)
(ii) HT(G, R) Hn(K(G,1); R).

PROOF. Let X be a K(G, 1) which is a CW-complex, and let k be its
universal cover, so that X is contractible (see the remark after the definition).
G acts freely on X permuting the cells. So the cellular chains C,, (X; R) on X
form an exact sequence of free RG-modules, and the quotient by the G-action
is C. (X; R). Together with the augmentation Co(X; R) -p R - 0 we obtain
a free resolution of R as an RG-module.

We have

CZ(X;R)®RGR=CZ(X;R)

and so using this resolution to calculate Tor, we have

Hi (G, R) = TorRG(R, R) = Hi (X; R).

Similarly

HomRG(CC(X; R), R) = HomR(Ci (X; R), R) = C't(X; R)

and so

R) = ExtRG(R, R) = Ht(X; R). El

EXERCISE. If X is a K(ir, n), show that the loop space QX is a K(7r, n-1).

2.3. Principal G-bundles

DEFINITION 2.3.1. A topological group G is a group which is simulta-
neously a Hausdorff topological space, in such a way that the multiplication
map G x G - G and the inverse map G -> G are continuous.

Examples of topological groups are the general linear group GLn(R),
the unitary group U(n), the orthogonal group 0(n), the group Diff+(M)
of orientation preserving self-diffeomorphisms of a manifold M (with the
compact-open topology), any group with the discrete topology, and so on.

DEFINITION 2.3.2. A (locally trivial) principal G-bundle is a fibre
bundle p : E - B with fibre homeomorphic to G, and a right G-action E x
G -p E such that there exists an open cover {Ua} of B and homeomorphisms

Ua x G p-I(UU)
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EXAMPLES. (i) The covering Sn - RP' discussed in the last section is
a principal Z/2-bundle.

(ii) According to a theorem of Chevalley, if G is a Lie group and H is a
closed subgroup, then G -* G/H is a principal H-bundle.

(iii) Let V'(JRm) denote the Stiefel variety; namely the set whose elements
are ordered n-tuples of orthonormal vectors in W'1 (these are called n-frames
in Rm), topologised as a subset of (R'')n. Let Gn(R') denote the Grassmann
variety; namely the set whose elements are n-dimensional subspaces of R',
topologised as a subset of the projective space corresponding to An(Rm). It
is not hard to check that the natural map Vn(Rm) -> Gn(Rm) rssociating to
each n-frame its linear span, is a fibre bundle. There is a right action of the
orthogonal group 0(n) on Vn(Rm), namely an n x n orthogonal matrix tells
you how to go from one n-frame in Rm to another, by linear substitutions.
The orbits of 0(n) are the fibres of the map Vn(Rm) - Gn(Rm), making it
a principal 0(n)-bundle.

l

Similarly, we write Vn(Cm) - Gn(Cm) for the principal U(n)-bundle
formed by performing the same construction with orthonormal n-frames in
(Cm

There is an inclusion Vn(IRm) y V'(Rm+l) given by the inclusion Rm
Rm+I and we write V'(R°O) for the union of the Vn(Rm), with the weak
topology with respect to the union. We construct G' (R°O) in a similar way,
so that Vn(R°O) - Gn(R°°) is again a principal 0(n)-bundle.

DEFINITION 2.3.3. If = (p: E - B) is a principal G-bundle and F is
a left G-space (i.e., G acts on F in such a way that the action is given by a
continuous map G x F -> F), we form a bundle l;[F] as follows. The total
space of t;[F] is E XG F = (E x F)/ -, where - is the equivalence relation
given by (xg, y) - (x, gy) for all x E E, y E F, g E G. The base space is
again B, and the map pF : E xG F - B given by pF(x, y) = p(x) makes [F]
a fibre bundle with fibre F. We say t; [F] is a bundle with structure group
G and fibre F.

Thus for example if G = GLT(C) (resp. GLn(R)) and F = Cn (resp.
Rn) then [F] is a fibre bundle whose fibres are complex (resp. real) vector
spaces and where the maps 0a : p-'(U,,) - U,, x F are linear on each fibre.
Such a fibre bundle is called a rank n vector bundle. Conversely, given a
vector bundle p : E -+ B with fibre F = Cn (resp. Rn), we may recover
as follows. We may form in a canonical way a vector bundle whose fibres
are Hom(F, F) = Matn(C) (resp. Matn(R)). The subbundle whose fibres
are the isomorphisms from F to F is the principal GLn(C)-bundle (resp.
GLn(IR)-bundle) . Thus there is a one-one correspondence between rank
n complex (resp. real) vector bundles over B and principal GLn(C)-bundles
(resp. GLn(R)-bundles) over B.

DEFINITION 2.3.4. If f : B' -* B is a map of base spaces and = (p :
E -+ B) is a fibre bundle over B, we define f *(l;) to be the pullback bundle
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over B' with total space

E' = J (x, y) E B' x E I f (x) = p(x)}

and with p' : E' -+ B' given by p'(x, y) = X.

It is easy to see that is a fibre bundle with the same fibre as . If
is a principal G-bundle then so is

EXERCISES. 1. If E - B and E' -> B are n and m dimensional vector
bundles, show that the pullback

Ell E'
I IE -B

constructs an (n + m)-dimensional vector bundle E" -* B, called the Whit-
ney sum of the two bundles.

2. Tensor products of vector bundles are harder to define. We begin with
product bundles. If V and W are vector spaces then the tensor product of the
bundles B x V and B x W is the bundle B x (V ®W). Using the fact that the
map Hom(V,V')®Hom(W,W') - Hom(V®W,V'®W') is continuous, show
that if B x V - B x V' and B x W -p B x W' are maps of vector bundles over
B then we obtain a map of vector bundles B x (V (D W) - B x (V(D W').
Deduce that the topology on B x (V ® W) does not depend on the choice of
product structure. Now define tensor products of bundles E 0 E' -> B using
an open cover on which both bundles are products.

3. In a similar way, if E - B and E' - B are vector bundles of di-
mension m and n, construct a vector bundle Hom(E, E') - B of dimension
mn. Construct exterior power bundles A'(E) -f B and symmetric powers
S'(E) -p B and show that E ®E = A2(E) ®S2(E).

2.4. Classifying spaces

We now describe the classification of principal G-bundles over a para-
compact base space. Fuller details may be found in Husemoller [137].

PROPOSITION 2.4.1. If B' is paracompact, f, g : B' -- B are homotopic,
and is a principal G-bundle over B then f * (l) = g* as principal G-
bundles over B.

PROOF. Let p : B' x I - B' x I be defined by p(x, t) = (x, 1). We claim
that given any bundle (E' -+ B' x I), there is a map B : E' - E' such
that the diagram

E'
0

' E'

I P II,
B'xI-°-B'xI
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commutes, and gives a bundle isomorphism ' = If h : B' x I -> B is
a homotopy from f to g, then applying this claim with proves the
proposition.

To prove the claim, we argue as follows. Since I is compact we may
choose an open cover {Ua} of B' so that the restriction of t' to ea..h Ua x I
is a product bundle. Since B' is paracompact, we may assume that IN
is locally finite. Choose a partition of unity f f.} subordinate to {U,,}. Set
f.' (x) = fa(x)/maxp f,3 (x), so that the equation >a f,, (x) = 1 is replaced
by maxa f,, (x) = 1. Choose isomorphisms

0a:Ua xI xG-jp-1(Ua xI).
For each a, define maps Ba : E' - E', pa B' x I -> B' x I fitting into a
commutative square as above, by the formulae

Ba(Oa(xl t, g)) = 0a(x, max(f(x), t), g)
p. (x, t) = (x, max(fa(x), t))

inside Ua, and the identity outside. Since {Ua} is locally finite, if we totally
order the a's, then the infinite composites of these maps have only finitely
many non-identity maps in a neighbourhood of each point. So the infinite
composites make sense, and give the required maps B and p.

COROLLARY 2.4.2. If B is paracompact and contractible then every prin-
cipal G-bundle over B is isomorphic to the product bundle B x G.

DEFINITION 2.4.3. A universal G-bundle G is a principal G-bundle
EG -* BG such that for all paracompact spaces B the map

[B; BG] -> PrincG(B)

f f*(G)
from homotopy classes of maps B -+ BG to principal G-bundles over B is
a bijection.

LEMMA 2.4.4. If G = (E -> B) and G = (E' - B') are universal
G-bundles with B and B' paracompact then there is a homotopy equivalence
f : B -* B' with G = In particular E is homotopy equivalent to E'
by a map commuting with the G-action.

PROOF. Let f : B -p B' correspond to G under the bijection [B; B'] -+
PrincG(B), and f' : B' - B correspond to t;G under the bijection [B'; B]
PrincG(B'). Then f o f -_ idB and f o f idB.

To prove existence of a classifying space, we use Milnor's construction.

DEFINITION 2.4.5. If X and Y are topological spaces then the join X * Y
is the quotient of the product space X x I x Y by the equivalence relation

(x, O) y) ^ (x', O, y) d x, x E X, y E Y
dxEX, y,y'EY.
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We now define EG to be the infinite join G * G * . Thus EG consists
of formal elements

(t191,t292,...)

with ti c [0, 1], ti = 0 for all but finitely many i, and j ti = 1, modulo the
equivalence relation given by

(t191,t292,...) - (t191,t292,...)

provided gi = g' whenever ti 0. In case G is a CW-complex, we may give
the infinite join the weak topology with respect to the union of the finite
joins, so that it is again a CW-complex, and hence paracompact. The free
right G-action on EG is given by

(t191, t292.... )9 = (t1919,t2929....)

The base space BG is simply the quotient space BG = EG/G. It is easy to
check that with the above definitions G = (PG : EG -4 BG) is a (locally
trivial) principal G-bundle.

REMARK. All the topological groups we are interested in are CW-com-
plexes. If the group G is not a CW-complex, then the weak topology on
EG is not necessarily the right one, as it is not clear that the action of G
is continuous. One needs to use the strong topology, namely use as few
open sets as possible so that the coordinate functions ti : EG - [0, 1] and gi :
t1 (0,1] -* G are continuous. Since BG is no longer necessarily paracompact,
one is forced to discuss numerable bundles over an arbitrary base space, since
otherwise one loses the uniqueness argument of Lemma 2.4.4. One also loses
local triviality of the bundle (see Segal [229] for a discussion of this point).
In Husemoller [137], you will find the theory developed using numerable
bundles, and without using the local triviality condition.

THEOREM 2.4.6 (Milnor [187]). The above bundle G = (PG : EG -*
BG) is a universal G-bundle.

PROOF. If = (p : E - B) is a principal G-bundle over a paracompact
base space B, then by Corollary 1.7.4, we may choose a countable open cover
{Ui} such that the restriction to each Uj is a product bundle. Choose a
partition of unity { fi} subordinate to {Uj}. Choose isomorphisms

Oj :p 1(Uj)-- Uj xG

and denote by qj : Uj x G -f G the second projection. Define a map f : E -
EG via

f(x) = (f1(p(x))q1(o1(x)),f2(p(x))g2(-02(x)),...).
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Then f commutes with the G-action, and so we get a map f : B - BG. The
square

E-LEG
PI IPC

B-BG
is a pullback square, and so = f*(G).

Next, we must show that if f, f' : B -> BG are maps with f *
then f ^_- f'. Define inclusions

EG-°ad> EG

(t191,t292,...) H (t191,0,t292,0,...)

and

EG ieven ` EG

(t191,t292,...) H (0,t191,0,t292,0,...).

The inclusion Todd is homotopic to the identity map via the G-map

t.iodd + (1 - t).idEG : EG x I -> EG

and similarly for ieven Thus we may pass down to maps Todd) ieven : BG
BG homotopic to the identity map.

Let t; = f *(l;G) = (f')*(T G). Then we have maps a, 0: EG and
lying over f 0 ioda and f' 0 ieven respectively. Then the map

ry:E(l;)xI-EG
(x, t) ta(x) + (1 - t),3(x)

lies over a homotopy h from f °ioda to f' 0 ieven

E(l;) x 17 EG

Ih
BxI ' BG

So we have f f-- f 0 ioda ^' f ° 4,n f'.
LEMMA 2.4.7. The total space EG of Milnor's construction is weakly con-

tractible. In particular, if G has the homotopy type of a CW-complex then
EG is contractible.

PROOF. If f : Sn -EG = G * G * . . . then since S' is compact, the
image is contained in some finite join G * . . . * G (r times). But G * . . . * G
(r+ 1 times) contains the cone G * . . . * G * (idG), which is contractible. Hence
f is homotopic to a constant map in G * . . . * G (r + 1 times). The result now
follows from Whitehead's Theorem 1.5.8.
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THEOREM 2.4.8. If G has the homotopy type of a CW-complex then a
principal G-bundle t; (over a base space B(t;) having the homotopy type of a
CW-complex) is universal if and only if the total space E(1;) is contractible.

PROOF. If is universal then by Lemma 2.4.4 is homotopy equiv-
alent to Milnor's EG, and is hence contractible. Conversely, if E(t;) is con-
tractible then we have a diagram

E(t;) . E(t;) x EG - EG

B(t;) E (E(t;) x EG)/G , BG.

The horizontal arrows are fibrations with contractible fibres, so the long exact
homotopy sequence (Theorem 1.6.6) shows that they are weak homotopy
equivalences, and hence homotopy equivalences by Theorem 1.5.8. Hence
is universal.

EXERCISES. (i) If G = Z/2 then G * .. * G (r times) is homeomorphic to
the (r - 1)-sphere Sr-1 with G acting as the map taking each point to the
antipodal point. Thus we have EG = S°° and BG = RP'.

(ii) Similarly if G = S1 = {z E C I Jzj = 1} is the circle group then
G * . . . * G (r times) is the unit sphere S2r-1 in Cr with G acting by scalar
multiplication. Thus we have EG = S°° and BG = CP°° = K(Z, 2).

(iii) If G is the orthogonal group 0(n) then we claim that the principal
0(n)-bundle V'(l18°°) -+ Gn(IR°O) is universal. Since Gn(R°°) and V'(W°)
are CW-complexes, by the theorem it suffices to prove that V'(118°°) is weakly
contractible. If f : Sr , Vn(R°°) then the image of f lies in some V'(Rm).
But Vn(1[8n+m) contains the cone on Vn(Rm), and so f is homotopic to a
constant map inside Vn(ll8n+m). We thus write BO(n) for the space Gn(R°°)

and EO(n) for the space V'([8°0).
If in the definition of the Stiefel variety V'(R°°) we replace the orthogonal

n-frames by all (linearly independent) n-frames, we still find that we have
a contractible space Vn(R°°), by the same argument, and hence Vn(R°°) ->
Gn(R°O) is a universal GLn(R)-bundle. So we have BGLn(R) = Gn(R°°) _
BO(n).

Now recall that there is a one-one correspondence between principal
GLn(II8)-bundles over B and rank n vector bundles over B (see Section 2.3),
given by H 1;[R']. If we apply this to the bundle Vn(R°°) --* Gn(R°°),
we obtain a canonical rank n vector bundle over Gn(R°O) whose total space
(Vn(IR°°) x II8n)/GLn(II8) = (Vn(R°O) x Rn)/O(n) has as its points the or-
dered pairs consisting of an n-dimensional subspace of R°° and a point in
it. We write G'(R°°) - Gn(1[8°O) for this canonical bundle. We have thus
proved the following:

THEOREM 2.4.9. There is a natural one-one correspondence between rank
n real vector bundles over a paracompact base space B and homotopy classes
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of maps f : B , Gn(ll8°°). The vector bundle corresponding to f is given by
pulling back the canonical bundle

On(R-) , Gn(118°°).

In exactly the same way, the space Vn((C°O) is also contractible, so that
Vn(C°°) -> Gn(C°°) is a universal bundle for the unitary group U(n). The
space V'((C°O) is again contractible. We thus write BU(n) = BGLn(C) for
the space Gn(C°°) and EU(n) for the space Vn((C°°). We write On(Coo) for
the total space

(Vn(CO°) X Cn)/GLn((C) = (Vn(C°°) X C')/U(n)

of the canonical rank n vector bundle over Gn(C°°), whose points are ordered
pairs consisting of an n-dimensional subspace of C°° and a point in it. The
corresponding theorem is as follows.

THEOREM 2.4.10. There is a natural one-one correspondence between
rank n complex vector bundles over a paracompact base space B and ho-
motopy classes of maps f : B - Gn(C°°). The vector bundle corresponding
to f is given by pulling back the canonical bundle

Gn((C-) , Gn((C-).

We now return to the general situation.

THEOREM 2.4.11. (i) There is a homotopy equivalence QBG ^ G.
(ii) iri(BG) = 7ri-1(G).
(iii) If G is discrete then Milnor's BG is an Eilenberg-Mac Lane space

K(G, 1) with universal cover EG.

PROOF. (i) We form a pullback diagram

X > EG

PBG - BG
where PBG -> BG is the path fibration on BG, see the exercise in Sec-
tion 1.6. We thus have a diagram of fibrations

G G

I1BG -X -BEG

QBG - PBG -- BG
and since PBG and EG are contractible we have

GxPBG^_G.
(ii) This follows from the long exact sequence of the fibration EG - BG.
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(iii) This follows from the fact that EG is contractible and 7ri (BG) = G,
by the remark after the definition of Eilenberg-Mac Lane space.

It follows from the above theorem that cohomology of the classifying
space H'(BG; R) is a generalisation to arbitrary topological groups of group
cohomology H' (G, R) of discrete groups. In the discrete case, there is an ob-
vious CW decomposition of Milnor's EG for which the cellular chains form
the standard (bar) resolution of the trivial RG-module R. Thus for a topo-
logical group Milnor's EG may be thought of as a sort of continuous bar
resolution.

THEOREM 2.4.12. (i) If N is a closed normal subgroup of G, then there
is a fibration BG - B(GIN) with fibre BN.

(ii) If H is a closed subgroup of G there is a fibration BH -f BG with
fibre the coset space G/H.

PROOF. (i) Let E(GIN) and EG be contractible spaces on which GIN
and G act freely. Then N also acts freely on EG, and we may take for BN
the quotient space (EG)/N. Thus GIN acts on BN and we may take for
BG the space (E(G/N) x EG)/G = (E(G/N) x BN)/(G/N). There is then
an obvious fibration BG -# B(GIN) = E(G/N)/(G/N) given by the first
projection, and the fibre is BN.

(ii) Let EG be a contractible space on which G acts freely. Then H also
acts freely on EG and so we take BG = (EG)/G, BH = (EG)/H. The fibre
of the obvious map BH -> BG is the coset space G/H.

More generally, if p : G -* G' is any group homomorphism, we may take
for BG the quotient space (EG x EG')/G, where G acts on EG' through p,
and for BG' the quotient space EG'/G'. Then we write Bp for the obvious
map from BG to BG'.

EXERCISES. 1. Show that every real vector bundle on a paracompact
space may be given an orthogonal inner product, and that every complex
vector bundle on a paracompact space may be given a unitary inner product.

2. Using Yoneda's lemma, show that there is a map BU(n) x BU(m) -
BU(n+m) (or BO(n) x BO(m) , BO(n+m) in the real case) correspond-
ing to the Whitney sum of vector bundles, and a map BU(n) x BU(m) -
BU(nm) (resp. BO(n) x BO(m) -+ BO(nm)) corresponding to tensor prod-
uct of vector bundles.

3. If G is a (discrete) group, define the Cayley category of G to be the
category C(G) whose objects are the elements of G, and whose arrows are the
left multiplications by elements of G, so that there is a unique arrow between
each pair of objects. G acts on C(G) by right multiplication (which commutes
with left multiplication). Show that the nerve NC(G) of this category (see
the exercise at the end of Section 1.8) is a simplicial set whose topological
realisation is Milnor's model of EG.
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If we regard the group G as a category with one object, in which every
arrow is an isomorphism, show that NG = NC(G)/G so that BG = INGI is
Milnor's model of the classifying space BG.

Define the notion of a topological category (with the topology on the
arrows, not the objects) and show that its nerve is a simplicial (topological)
space. Define the topological realisation of a simplicial space. Show that if
G is a topological group regarded as a topological category with one object,
then the topological realisation of its nerve is Milnor's model for BG.

For further remarks on these points, see Segal [229].

2.5. K-theory

In the last section, we saw that there is a natural one-one correspondence
between complex vector bundles of dimension n over a paracompact space
B and homotopy classes of maps from B to BU(n) = Gn(C°°). Now the
obvious maps Gn(Cm) Gn+l(Cm+i) give us a map BU(n) --+ BU(n+ 1),
which corresponds to adding a trivial one dimensional summand to an n
dimensional vector bundle to give an (n + 1) dimensional bundle. We set
BU = Un>I BU(n) via the above maps, with the weak topology with respect
to the union. Thus a homotopy class of maps from B to BU corresponds to
an equivalence class of vector bundles, where two vector bundles are regarded
as equivalent if they can be made equal by adding trivial bundles on both
sides.

If we restrict to the case where B is compact, then given any vector
bundle over B, the corresponding map B -> Gn(C°°) has image lying in
some Gn((Cm). So there is some (n - m) dimensional vector bundle the
addition of which forms an m dimensional trivial bundle.

DEFINITION 2.5.1. If B is a compact space, we write K(B) for the ad-
ditive group whose generators [E] correspond to the complex vector bundles
E -+ B, and whose relators say that [E] + [E'] = [E"] whenever E" - B is
the Whitney sum of E -> B and E' -* B.

Note that in K(B), a typical element is of the form [EI] - [E2], and that
[EI] - [E2] is equal to [E3] - [E4] if and only if for some E5 the Whitney sums
El G E4 ® E5 and E2 ®E3 ® E5 are isomorphic. By the above remarks, we
may always assume E2, E4 and E5 are trivial bundles.

PROPOSITION 2.5.2. If B is a compact space, then K(B) = [B; BU x Z].

PROOF. Since both sides are additive on connected components, we may
assume that B is connected. Thus a map B -> BU x Z corresponds to a
map B -p BU and an integer, which we think of as giving the dimension.
The map B --> BU has image lying in some BU(n), and hence corresponds
to some vector bundle E --> B of dimension n. We add or subtract a suitable
trivial bundle to make the dimension correspond to the image of B -+ 7L,
and hence obtain an element of K(B). It is easy to check that the element
of K(B) obtained in this way is well defined. There is an obvious map the
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other way, from K(B) to [B; BU x Z], taking a generator [E] of dimension n
to the map given by B -> BU(n) ---+ BU and the constant map B - Z with
image n.

If f : B' - B is a map of compact spaces, the pullback of vector bundles
gives a map f* : K(B) -> K(B'). If B has a basepoint x, then the maps
{x} y B -* {x} gives us maps Z = K({x}) - K(B) - K({x}) = Z, whose
composite is the identity. Thus if we write K(B) for the kernel of K(B) - Z
then K(B) = K(B) ® Z. Note that every element of k(B) is represented by
an actual vector bundle.

The tensor product of vector bundles induces a multiplication which
makes K(B) (or KO(B)) into a commutative ring. K(B) is a ring with-
out unit, and the canonical process of adjoining a unit yields K(B).

Using the action of a cyclic group of order n on the tensor nth power
of a vector bundle, one may copy the construction described in Section 5.9
of Volume I to obtain operations l,n on K(B) or K(B). Exactly the same
proof as given in Proposition

5.9.14

of Volume I shows that these On /,n are ring
homomorphisms from K(B) or k(B) to itself. In this context, the operations
on are called the Adams operations.W

We think of k(B) as the zeroth part of a (reduced) generalised co-
homology theory as follows. A (reduced) generalised cohomology the-
ory consists of contravariant functors hn, n E Z, and natural isomorphisms
hn - hn+1S (S denotes suspension) from a suitable category of spaces and
maps to abelian groups, satisfying the usual Eilenberg-Steenrod axioms for
(reduced) cohomology, except the axiom giving the value on a point. These
axioms are the homotopy axiom: each hn takes homotopic maps to the
same map; and the exactness axiom: if f : X -> Y is a map with mapping
cone Cf, then the sequence

hn(Cf) , hn(Y) , hn(X)

is exact. Note that the mapping cone of the inclusion Y - Cf is homotopy
equivalent to the suspension SX, so that this implies we have a long exact
sequence

...,hn-1(X)=stn(SX),hn(Cf)-'hn(Y)->hn(X),...

Note also that corresponding to a reduced generalised cohomology theory,
there is a corresponding unreduced theory hn(X) = hn(X Li (point)) and
relative theory hn(X,Y) = hn(CZ), where CZ is the mapping cone of the
inclusion i : Y -* X of a subspace. This relative theory satisfies the excision
axiom: if Z is a subspace of Y whose closure is in the interior of Y, then the
mapping cone of the inclusion Y\Z - X \Z is homotopy equivalent to C2 f and
so hn(X \ Z,Y \ Z) - hn(X,Y) is an isomorphism. For further information
about generalised cohomology theories, see Switzer [258], Chapter 7. Other
examples include cobordism and stable cohomotopy.
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LEMMA 2.5.3. If B' is a closed subspace of a compact space B, then the
sequence

K(B/B') -# K(B) - K(B')
is exact.

PROOF. The composite map is clearly zero. Conversely, every element
of k(B) is represented by an actual vector bundle. If E -> B is a vector
bundle whose restriction to B' represents the zero element of K(B'), then
after adding a suitable trivial bundle we may assume that the restriction
to B' is trivial. A given trivialisation enables us to form a vector bundle
over B/B' whose pullback to B is the required bundle. (But be warned that
different trivialisations may give rise to different elements of K(B/B'), so
the first map in this sequence is not necessarily injective).

So to make k(B) into part of a generalised cohomology theory, for n > 0
we set

K-n(B) = K(SnB), K-n(B) = K-n(B U (point)).
In a similar way, if we work with real instead of complex vector bundles,
we write BO for Un>, BO(n), and KO(B), KO(B), KO-n(B), KO(B)
for the corresponding functors. Thus for example the analogue of Proposi-
tion 2.5.2 is the statement that if B is compact then KO(B) = [B; BO x Z].

THEOREM 2.5.4 (Bott periodicity theorem [46]).
We have natural isomorphisms

K-n-2(B) = K-n(B), KO-n-8(B) = KO-n(B).
PROOF. It is beyond the scope of this book to include a proof of the Bott

periodicity theorem. There are now several good references available for the
complex case. For example, see Atiyah [19], Husemoller [137], Milnor [191]
or Switzer [258]. These last two references also contain a proof for the real
case. Note that it is an easy exercise using the adjunction between S and S2
(see the exercise in Section 1.2) and Proposition 2.5.2, to show that the Bott
periodicity theorem is equivalent to the statements

Q2 BU -- BU x Z, S18BO -- BO x Z.

In fact these homotopy equivalences are part of a larger pattern:

QBUU S2UBU xZ
IBO O 12O 0/UxZ/2
S2(O/U) ^U/Sp 1(U/Sp) -- BSp x Z
1BSp -- Sp S2Sp -- Sp/U

Q(Sp/U) ^ U/0 s2(U/O) 2 BO x Z

where U, 0 and Sp are the infinite unitary, orthogonal and symplectic groups,
regarded as embedded in each other via the obvious maps, which double
dimension where necessary.
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The Bott periodicity theorem allows us to define the functors Ktm and
KO"` for all n E Z. The following table shows the values of these functors on
a single point, as can easily be seen from the above homotopy equivalences.

n (mod 2) 0 1

K n(point) = K(STh) z 0

n (mod 8) 0 1 2 3 4 5 6 7

KO -'(point) = KO(S"') Z Z/2 Z/2 0 z 0 0 0

The point here is really that to give a generalised cohomology theory h*, it
suffices to define hn for n (sufficiently) positive, since the isomorphisms hn

extend the definition in the negative direction. It is the periodicity
which allows us to make the definition of Kn and KOn for n positive.

We next describe Atiyah's calculation [18] of the K-theory of BG for G
a finite group (or more generally, Atiyah and Segal [21], for G a compact Lie
group). Suppose M is a finite dimensional (real or complex) representation
of G. Then we may form the space

EGxGM=(EGxM)/G
where G acts on EG on the right and on M on the left. There is an obvious
map

EG xG M - EG xG (point) = BG

with fibre M, and making EG xG M into a (real or complex) vector bundle
over BG. The idea is that these vector bundles are sufficient to determine
the K-theory of BG. In practice, there are a few technical difficulties, which
we now describe.

The first problem is that we have only defined K(B) for a compact space
B. However, Proposition 2.5.2 gives us a way to extend this definition to all
paracompact spaces, and in particular to all CW-complexes. We define

K(B)_[B;BUxZ].
In general, if Bn is the n-skeleton of B, it is not true that K(B) = lira K(Bt),

but we have the Milnor exact sequence (Theorem 1.9.1)

0 -p lim1K 1(B"`) -> K(B) -> limK(Bt) --+ 0

It turns out that for B the classifying space of a finite (or compact Lie) group,
the lime term vanishes, so that an element of K(BG) can be thought of as
being given by a consistent family of elements of K-theory of the skeleta. Note
also that for B non-compact, the Grothendieck group of vector bundles, as
defined in Definition 2.5.1, need not coincide with either K(B) or lim K(BT`).
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But a vector bundle on B does give rise to an element of K(B), so we have
by the above construction a natural map

R(CG) - K(BG)
where R(CG) is the Grothendieck ring of finite dimensional complex repre-
sentations, as in Section 5.2 of Volume I.

THEOREM 2.5.5 (Atiyah Completion Theorem). Let IG be the kernel of
the augmentation map R(CG) -> Z sending a representation to its dimen-
sion, and denote by R(CG)^ the completion

R(CG)^ = limR(CG)/IG.

Then the above map R(CG) -> K(BG) induces an isomorphism

R(CG)A = K(BG).

Moreover, K1(BG) = 0.

PROOF. There are two proofs available for this theorem. Atiyah's original
proof [18] for finite groups involves starting with cyclic groups, going up to
solvable groups by induction, and then treating the arbitrary finite group
using the Brauer induction theorem. Atiyah and Segal [21] produced a more
conceptual proof for all compact Lie groups. Their proof starts with the circle
group S1, then with the general torus (S1)'. The next step, involving the
theory of elliptic operators, reduces the unitary group U(n) to its maximal
torus. The final step reduces an arbitrary compact Lie group to the unitary
group by means of a faithful unitary representation.

2.6. Characteristic classes

In this section we introduce cohomology classes associated to vector bun-
dles. Real and complex representations of a group G give rise to vector
bundles over BG in a natural way, and so we obtain cohomology classes
associated to representations.

We start by describing the cohomology of BGL,,,(C) = BU(n) = Gn(C°°).
If n = 1 we have U(1) = S1 and BU(1) = BS1 = CP°°. It is not hard to
calculate that H* (CP°°; Z) is a polynomial ring Z[x] on a generator x in de-
gree two. A choice of sign for x corresponds to a choice of orientation for the
sphere S2 = Cpl C_ CP°°. We choose the sign to correspond to the natural
orientation coming from the complex structure.

For a general n, we have an inclusion (S')n C_ U(n) as the diagonal
matrices, and hence a map 4 : (CP°O)n -f BU(n). This induces a map on
cohomology rings

ca* : H*(BU(n); Z) H*((CP°°)n; Z).

The right hand side is a polynomial ring in generators x1, ... , xn of degree
two. Since (S')n is contained in the group of monomial matrices in U(n),
the image of 0* lies in the invariants of the symmetric group En permuting
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the n copies of CP°°, namely in the subring Z[QI, ... , Un1 C Z[x1 i ... , X']
generated by the elementary symmetric functions oi(x1i ... , x,,,) of degree 2i.

It turns out that 0* is injective, and its image exactly equals Z[al,... , On].
For a proof, see Husemoller [137], Section 18.3 or Milnor and Stasheff [192],
Section 14.3. We define ci E H2z(BU(n); Z) to be the preimage of the element
o,i E H2i((CP°O)' ; Z) under 0*, so that

H*(BU(n); Z) = Z[ci,... , cn].

Now if t; is a complex vector bundle over a paracompact base space B, with
classifying map f : B - G'(C°°) = BU(n) (see Theorem 2.4.10), we define
the Chern classes of to be

f*(ci) E H2i(B; Z)

for 1 < i < n, and 0 if i > n. The total Chern class of is defined
to be the inhomogeneous element

cO=1+ciO+...+cnOEH*(B;Z).
PROPOSITION 2.6.1. Chern classes of complex vector bundles over para-

compact base spaces are characterised by the following properties:
(i) (Naturality) If p : B' - B is a map of base spaces and l; is a vector

bundle over B, then cj(p*(e))t) = p* (ci H" (B'; Z).
(ii) c(S1 ® 2) =
(iii) If ry is the canonical bundle over G1(C°°) = CP°O then c1(y) is the

canonical generator (called x above) for H2(CP°°; Z).

PROOF. Properties (i) and (iii) are clear from the definition. Property (ii)
follows from the observation that 1 + cl + + cn E H* (BU(n); Z) has image
fZ 1(1+xi) in H*((CP°°)n;Z) and this expression is clearly multiplicative
over sums of bundles.

To show that these properties characterise the Chern classes, we argue
as follows. If c' are classes satisfying (i), (ii) and (iii), then by property (iii)
c? agrees with ci for the canonical bundle on CP°°. Hence by properties (i)
and (ii), ci' agrees with ci for the sum of the canonical bundles on (CP°O)' .
Applying property (i) to the map : (CP°O)' - BU(n), we see that ci agrees
with ci for the canonical bundle on BU(n). Now by applying property (i) to
the classifying map, it follows that ci' agrees with ci for an arbitrary bundle
over a paracompact base space.

Now suppose G is a topological group having the homotopy type of a CW-
complex (for example a discrete group), and suppose M is a finite dimensional
complex representation of G. Then EG X G M is a complex vector bundle
over BG, and we may define Chern classes ci(M) E H22(G, Z) to be the
Chern classes of this vector bundle. The representation M is given by a
group homomorphism p : G - U(n), and hence gives rise to a map Bp :
BG --> BU(n). The canonical bundle over BU(n) may be thought of as
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being obtained by the above construction from the canonical n dimensional
representation of U(n), and so by naturality we have

ci(M) = (BP)*(ci) E H2i(G,Z).
The corresponding theory for real vector bundles and real representations

goes as follows. We have BO(1) = B(Z/2) = RP', and H*(RP';Z/2)
is a polynomial ring Z/2[x] on a generator x in degree one. We have an
inclusion (7L/2)n = 0(1) C_ 0(n) as the diagonal matrices, and hence a map
0: (TRP°°)n'-* BO(n). The induced map on cohomology

0* : H*(BO(n); Z/2) -> H*((RP°°)n; Z/2) = Z/2[x1i... , xn]

is injective, and again the image is the subring

Z/2[al, ... , On] C Z/2[x1 i ... , xn]

generated by the elementary polynomials Ui(x1, ... , xn) of degree i. See
for example Husemoller [137], Section 18.5 or Milnor and Stasheff [192],
Section 7. We define wi E Hi(BO(n); Z/2) to be the preimage of o'i E
H'((RP°°)n; Z/2) under 0*, so that

H* (BO(n); Z/2) = Z/2[wl,... , wn].

Now if e is a real vector bundle over a paracompact base space B, with
classifying map f : B -+ Gn(R°O) = BO(n) (see Theorem 2.4.9), we define
the Stiefel-Whitney classes of to be

wi(g) = f*(wi) E H2(B;Z/2)
for 1 < i < n, and wi(e) = 0 if i > n. The total Stiefel-Whitney class of

is defined to be

w() = 1 + w1 (t) + + wn(e) E H* (B; 7z/2).

PROPOSITION 2.6.2. The Stiefel-Whitney classes of complex vector bun-
dles over paracompact base spaces are characterised by the following proper-
ties:

(i) (Naturality) If p : B' - B is a map of base spaces and l; is a vector
bundle over B, then E Hi(B'; Z/2).

(ii) w(S1 +S 2) =
(iii) If -y is the canonical bundle over G1(l[8°°) = RP°° then wi ('y) is the

canonical generator (called x above) for H1 (RP-; Z/2).

PROOF. The proof exactly parallels the proof in the complex case.

If G is a topological group having the homotopy type of a CW-complex,
and M is a finite dimensional real representation of G, then EG xG M is a
real vector bundle over BG, and we define Stiefel-Whitney classes wi(M) E
Hi(G,7Z/2) to be the Stiefel-Whitney classes of this vector bundle. If the
representation M is given by a group homomorphism p : G -+ 0(n), then
just as before we have

wi(M) = (BP)*(wi) E H'(G, Z/2).
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2.7. Transfer

In this section, we see that the transfer map TFH,G which we investigated
in Section 3.6 of Volume I for ordinary cohomology has an analogue for any
generalised cohomology theory. The reader should be warned that unlike
in ordinary cohomology (Proposition 3.6.17 of Volume I), in general resG,H
followed by TrH,G is not multiplication by IG : H1.

Generalised cohomology theories are stable under suspension in the sense
that hr(X) = hT+1(SX), and in the next section, we interpret the transfer as
a "stable map" from BH to BG. We shall discuss (without proof) the Segal
conjecture, which is essentially the statement that all stable maps between
classifying spaces are generated by the transfers and the group homomor-
phisms.

For any covering map p : X - B of CW-complexes with finite fibres of
size n, and any generalised cohomology theory h*, we define a transfer map
p! : h*(X) h*(B). In case H is a subgroup of a group G of finite index, we
saw in Theorem 2.4.12 that there is a covering map BH -+ BG with fibres
G/H. In this case, and taking h* to be ordinary cohomology theory H*, we
obtain the transfer map TrH,G which we defined in Section 3.6 of Volume I.

We define the map p! in two stages. First we define a pretransfer map

PR :B->EEnxE"Xn
as follows. We set

X = {(xi, ... , xn,) E X' I {xi, ... , x} is a fibre of p}.

There is an obvious covering map X -+ B with fibres of size n!, and a free
action of E, so that X - B is the principal En-bundle corresponding to
X -p B. It follows that there is a classifying map B -+ BE,,, so that X -j B
is the pullback

X , EEn

B ' BEn.

The maps X y X' and X -p EEn give a map X - EEn x X' and hence,
by quotienting out the action of En on both sides, a map B -- EEn >< Xn
which is the required pretransfer map.

The second stage of the construction of p! is the Dyer-Lashof map. The
representability theorem for cohomology theories (see for example Switzer
[258], Chapter 9) says that for CW-complexes X, h'(X) = [X; Kr] where
Kr are CW-complexes with homotopy equivalences Kr -- QKr+i. In fact,
we shall not need to have recourse to this theorem in this book, since we
give explicit spaces Kr every time we introduce a generalised cohomology
theory. For example if hr(X) = Hr(X; ir) then Kr = K(ir, r). Note also that
conversely, given such spaces Kr, the definition hr(X) = [X; Kr] defines a
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reduced generalised cohomology theory. The corresponding unreduced theory
is h'(X) = [X+; Kr]. The Dyer-Lashof map is a certain map

DL :EEnxE.a(Kr)n "Kr

built using the fact that Kr is homotopic to the k-fold loop space on Kr+k
for all k. Now if a E hr (X) is represented by a map a : X+ --> Kr, then the
transfer p! (a) E h' (B) is represented by the composite map

PTr 1 DLB+ (EE, XEn XT)+ EEn XEn (Kr)n S Kr.

It remains to define the Dyer-Lashof map DL [98]. To define this, we
use a specific model for EE, called the space of little cubes. Boardman
and Vogt [43] define the space Ck(n) of little cubes as follows. Let Ik be an
k dimensional cube, and identify the sphere Sk with Ik/Ik. Then Ck(n) is
the space of maps

n

Sk VSk
j=1

having the property that there are n disjoint subcubes I of the form [ali b1] x
x [ak, bk] inside the left hand copy of Sk, such that I is mapped by the

linear map

(x1, xk) h
xl - al xk - ak... ,

(bi - a1 bk - ak

to the jth sphere on the right, and points outside these subcubes are sent to
the basepoint. We topologise Ck(n) as a subspace of the space of maps. The
group En acts freely by permuting the n little cubes I .

LEMMA 2.7.1. Ck(n) is (k - 2)-connected.

PROOF. There is an obvious fibration Ck(n) -+ Ck(n - 1) whose fibre is
the space of subcubes In C Ik \ I. Replacing such a subcube by its
centre is a homotopy equivalence of this space with Ik \ I , and this
space is homotopy equivalent to Ik with (n - 1) points removed. So this fibre
is (k - 2)-connected, and the lemma follows by induction on n using the long
exact sequence of homotopy groups of a fibration (Theorem 1.6.6).

Now there are obvious inclusions Ck(n) y Ck+l(n), and we define
00

C(n) = U Ck(n)
k=1

with the weak topology with respect to the union.

PROPOSITION 2.7.2. C(n) is a contractible CW-complex on which En acts
freely.
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PROOF. Since C(n) was given the weak topology with respect to the
union, it is a CW-complex. By the lemma, we have 7ri(C(n)) = 0 for all
i > 0, and so by Theorem 1.5.8, C(n) is contractible.

It follows that we may use C(n) as our model for EE, and C(n)/En =
BEn.

Now suppose Kr _- S2kKr+k = Map* (Sk, so; Kr+k, xo) as above. Then
composition of maps gives a well defined map

Ck(n) XE,,. (QkKr+k)n --, QkKr+k

and hence a map

Ck(n)
XE, (Kr)n _ Kr

well defined up to homotopy. Passing to the limit, this gives a map

EE,, x En (Kr)n
DL Kr

well defined up to homotopy, and this is the Dyer-Lashof map.

This completes the description of the transfer for finite coverings. In
fact, there is a generalisation due to Becker and Gottlieb [26], for bundles
with compact fibre and structure group a compact Lie group. We now de-
scribe a version of their construction, modified to look as much like the above
discussion as possible.

Let G be a compact Lie group and F a compact smooth manifold on which
G acts smoothly and faithfully. Let = (p: E -4 B) be a principal G-bundle
and [F] = (PF : X = E XG F -> B) the associated bundle with structure
group G and fibre F (see Definition 2.3.3). According to Definition 2.4.3
(and Theorem 2.4.6) there is a map f : B -> BG with f * so that
we have a pullback square

E- - EG

I P f I
B - BG.

Also, the obvious map E x F -* X gives us a map

E -# Map(F, X) = Map. (F+, X),

where F+ denotes F with disjoint basepoint. These maps give us a map
E -# EG x Map,, (F+, X), and hence by quotienting out the action of G on
both sides, a map

PTr:B-*EGxGMap*(F+,X)

which is the appropriate pretransfer map for this situation.
As before, to define the Dyer-Lashof map

DL : EG xG Map,, (F+, Kr) Kr
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we need a specific model for EG. By a theorem of Mostow [196], we may
choose a fixed smooth embedding i : F -4 V = Rm of F into a finite di-
mensional real orthogonal representation V of G, so that the G-action of F
is compatible with the inclusion. We use as our model for EG the set of
embeddings of F in R°° of the form

F-+V=Rm-->R'
where this last map is an injective linear map. In other words, we have
embedded G in a real orthogonal group 0(m) and used the Grassmannian
model for EO(m) as our model for EG. In particular it is clear that this EG
is a contractible space on which G acts freely.

Now choose e > 0 small enough so that in an e-neighbourhood of F in
V, every point has a unique closest point in F, so that this neighbourhood is
locally a product of F and a small ball. Such an e exists because F is compact,
and the resulting neighbourhood is called a tubular neighbourhood of F
in V.

Any element ry E EG can be regarded as a map F -4 Rk C_ R°° for k large
enough, where Rk is the span of the first k coordinates in R°°. We denote
by FE the corresponding tubular neighbourhood of F in Rk. Denote by Dk
an (abstract) open ball of real dimension k and diameter e. Then there is a
map

Sk___ (FxDk)U{oo}=F+ASk

defined as follows. We regard the left hand Sk as Rk U {oo}. Then ' sends
oo, together with all points in Rk not in FF, to oo. It sends a point in FE
to the pair consisting of the closest point in F and the displacement vector
(expressing the displacement from this closest point) in Dk.

Now suppose Kr ^_ 1 Kr+k. Then we have

Map. (F+, Kr) = Map. (F+ A Sk, Kr+k)

The map sending a pair of elements y E EG and 3 E Map. (F+, K,) to the
composite ,3 o ry E Map*(Sk, Kr+k) = Kr gives us a map

DL:EGxGMap. (F+,Kr)-" Kr,

and this is the Dyer-Lashof map.
Just as before, if a E hr(X) is represented by & : X+ --> Kr, then the

transfer (pFMa) E hr(B) (or just Tr(a)) is represented by the composite
map

B+ Ply,
(EG xG Map. (F-1, X))+ 1 EG XG Map. (F+, Kr) -DL Kr.

Note that if F y V' is another embedding as in Mostow's theorem, then
there is a one parameter family of embeddings F -+ V ® V', and so the
corresponding Dyer-Lashof maps are homotopic.
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It is clear from the construction of the transfer that it is natural, in the
sense that if

X' X

B'--B
is a pullback of fibrations with fibre F and structure group G, then for
a c h"' (X) we have

Trp*(a) = A*Tr(a) E h' (B').

LEMMA 2.7.3. Suppose ' 5: Sk -> F+ A Sk represents ry E EG as above,
and denote by it the second projection F+ A Sk Sk. Then the compos-
ite it o ry Sk ---> Sk has degree equal to the Euler characteristic X(F) _

E.i>o(-1)i dim Hi(F).

PROOF. We first remark that this is clear for the original case where F
was a finite set of size n = X(F), since each component of the map Sk -->
V 1 Sk has degree one and we are just adding.

We shall make the general case look like the finite case by using a little
elementary Morse theory. If you read Milnor [191] up to the end of p. 36,
you will know enough Morse theory to understand this proof.

Choose a Morse function 0 : F -> R; i.e., a smooth function with isolated
critical points. Morse theory says that F is homotopy equivalent to a CW-
complex with one d-cell for each critical point on index d. Since F is compact,
there are only finitely many critical points. By scaling up the Morse function
if necessary, we may assume that the neighbourhoods (grad of < e (e as
above) of the critical points are disjoint open balls in F.

Now the map 7ro= is really just the displacement map Sk -* Dk U{oo} _
Sk. This displacement map is perpendicular to grad o at the closest point
on F, and so we can just add these to give a map it o y + grad 0, which
we regard as a map from Sk to DE U {oo}. It is homotopic to it o ' by the
homotopy it o y + t grad 0 (0 < t < 1), and therefore has the same degree.
But now it o ry + grad ¢ sends everything to {oo} except for non-overlapping
spherical neighbourhoods of the critical points. The degree of the map on
this spherical neighbourhood is (-1)d if the index is d (Milnor [191], bottom
of p. 36). So the total degree of the map Sk Sk is the sum over the cells
in the CW-decomposition of F of (-1) to the power of the dimension of the
cell; this is the Euler characteristic X(F).

PROPOSITION 2.7.4. The restriction map followed by the transfer

H*(B) PF, H*(X) - H*(B)

is equal to multiplication by X(F).
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PROOF. By the lemma, if F -> * is a trivial bundle with fibre F over a
point, then the transfer of the identity element in H°(F) is X(F) times the
identity in H°(*).

Without loss of generality, we may suppose B is connected. Using natu-
rality of the transfer on the square

F - X
JPF

*-B
we see that the transfer of the identity element in H°(X) is X(F) times the
identity element in H°(B). Now using naturality of the transfer on the square

(PF,l)X BxX
IPF

I1XPFBBxB

for a E H*(B) we have

Trp* (a) = Tr (PF,1)*(a x 1) = 0*Tr(a x 1) = 0*(a x X(F)) = X(F).a.

2.8. Stable cohomotopy and the Segal conjecture

In Theorem 2.5.5, we described the K-theory of a classifying space of
a finite group as the completion of the representation ring with respect to
the augmentation ideal. In this section, we describe another generalised
cohomology theory, namely stable cohomotopy 7rs. Graeme Segal conjectured
that this theory evaluated on BG should bear exactly the same relation to
the Burnside ring as K*(BG) does to the representation ring; namely, it
should equal the completion of the Burnside ring at the augmentation ideal.
This conjecture was proved by G. Carlsson [77].

To explain stable cohomotopy, we first explain the notion of stable maps.
If X and Y are finite dimensional pointed CW-complexes, then a map from
X to Y gives rise to a map between the suspensions SX - SY in an obvious
way. This gives us a well defined map

[X;Y] -> [SX;SY]

and we define stable maps (i.e., stabilised with respect to suspension) from
X to Y to be

{X; Y} = lim[SmX; S't'Y].
in

Note that if a,,3 : Sm'X -> St'Y then we can define the sum S(a) + S(/3) :
S-+1X --> S-+1Y by dividing the suspension coordinate into two halves.
Thus {X; Y} has the structure of an abelian group, and {X; X } has the
structure of a ring, with multiplication given by composition.



2.8. STABLE COHOMOTOPY AND THE SEGAL CONJECTURE 57

Now recall from Section 1.2 that

so that

[SmX; SmY] = [X;1 mSmY]

{X, Y} = hm[X; 52t SmY] = [X; lim SltmSmY]
m m

where again the maps S2mSmY = Map*(Sm, Sm'Y) -. S m+1Sm+lY are given
by suspension as above. The fact that we may pass the limit sign through
the brackets depends on the fact that X is a finite dimensional complex, and
for a general CW-complex X the second expression is better behaved and so
we define in general

{X; Y} = [X; S2°°S°°Y]

where S2°°S°° denotes 1imQ'Sm. Composition of maps gives in an obvious

way a map
m

{Y; Z} X {X; Y} --> {X; Z}.

We can now define the stable homotopy 7r* and stable cohomotopy
7r* of a space via

7rr(X) = {Sr; X+}, 7rs (X) = {X+; Sr} = [X+; 1m 1 mSr+m].
m

where X+ denotes X with a disjoint basepoint.
Stable cohomotopy is a generalised cohomology theory. Note that the

exactness axiom fails if we use ordinary cohomotopy [X; Sr] instead of sta-
bilising with respect to suspension. Also note that the space lim SlmSr+m

m
makes sense for r negative as well as positive. More generally, for any space
Y, the functors

hr : X H {X; S'Y}

form a generalised cohomology theory. Note that it is easy to see that
cocSo°(SrY) = Q(S2oosoo(Sr+ly)).

Now the transfer map (Section 2.7) gives us some elements of 7r°(BG),
for G a finite group. Namely, if H is a subgroup of G, then there is a finite
covering map BH --- BG. Regarding {-; BH+} as a generalised cohomology
theory, we have a transfer map

{BH+; BH+} - {BG+; BH+}.

The image of the identity element under this map is a stable map from BG+
to BH+ (i.e., a map TrH,G : BG+ -> S2°OS°°BH+) which is also called the
transfer. Composing with the element of {BH+; S°} given by identifying
BH to a point, we obtain an element of 7r°(BG) corresponding to H. This
element only depends on the conjugacy class of H as a subgroup of G, and
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so this way we obtain a map from the Burnside ring b(G) (see Section 5.4 of
Volume I) to stable cohomotopy

b(G) -- 7r°(BG).

The Segal conjecture says that the above map induces an isomorphism be-
tween the completion b(G)^ and it (BG). The completion is taken with
respect to the kernel IG of the augmentation map b(G) - Z sending a per-
mutation representation to the number of points being permuted,

b(G)" = limb(G)/I3.
n

As in the case of K-theory (Theorem 2.5.5), the Segal conjecture also
contains information about 7rs (BG) for n 0. In case G = 1, the groups
.7rs (point) = 7r'-n(point) are the stable homotopy groups of spheres for n
negative (the calculation of which is still an open problem), and zero for n
positive. In general, Segal's conjecture includes the statement that Try (BG) _
0 for n positive. There is no trivial reason why this should be true, as there
is (Hurewicz theorem) in case G = 1.

THEOREM 2.8.1 (Segal conjecture; Carlsson). The transfer maps descri-
bed above induce an isomorphism

b(G)^ - nr°(BG).

Furthermore, for n > 0, ir9 (BG) = 0.

PROOF. The proof depends on developing an equivariant version of stable
cohomotopy theory, and is beyond the scope of this book. For details see
Carlsson [77].

It has been pointed out by Adams [2] (this is developed in detail in Lewis,
May and McClure [166]) that as a consequence of the Segal conjecture, one
knows all the stable maps between BG' and BG for finite groups G' and G.
If H' is a subgroup of G' and 0 : H' -> G is a group homomorphism, then
the composite of BO E {BH+; BG+} and TrH',G E {BG+; BH+} gives us
an element of {BG+; BG+} which we write as (H,,O.

If (H"'k E {BG+; BG+} and (H"",y E {BG+; BG' } are such maps, then
we can calculate the composite (H,,0 o (H,,,0, E {BG+; BG+} by using the
Mackey decomposition theorem as follows. Factor ¢' : H" -> G' as a sur-
jection H" -> K' followed by an inclusion i' : K' --* G. Then the Mackey
formula enables us to express the composite of the stable maps

BK' B- BG' - BH'
as a sum of stable maps

BK' B(K' n -H)
c

1 B(--'K' n H') B(zl)' BH'
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where x runs over a set of double coset representatives K'\G'IH' and ex-,
denotes conjugation by x-1. Then the composite

BH" B BK' - B(K' fl xH')
is equal to the composite

BH" - B((0')-1(K' n xH')) B(K' n xH),

and so we have expressed the composite as a sum of basis elements of the
given kind

SH',O o SH",O' = S(,6')-1(K'nxH'),0oi'ocx_1ogr.

xEK'\G'/H'

This formula for the composite is illustrated in the following diagram:

B((0')-1(K' n xH'))

T
BH"

ITt
BG"

B(i'ocx_1)
B

B(i')
BG' BG

Denote by b(G', G) the free abelian group whose basis elements are la-
belled (H,,0, one for each conjugacy class of pairs (H', 0), where H' is a
subgroup of G' and ¢ : H' -> G. Then the above formula for multiplying
basis elements gives a bilinear map

b(G', G) x b(G", G') -> b(G", G).

This makes b(G, G) into a ring, which may be thought of as a non-commu-
tative analogue of the Burnside ring b(G). This multiplication also makes
b(G', G) into a b(G, G)-b(G', G')-bimodule. We have a map

b(G', G) ---> {BG+; BG+}

sending the basis element to the corresponding stable map. We wish to
state that this is an isomorphism after completing b(G', G) with respect to a
suitable filtration.

Before describing this completion, we give another interpretation of
b(G', G) and the above map. Namely, b(G', G) is the abelian group with
generators the finite G' x G-sets which are free on restriction to G (i.e., to
1 x G); and relations [X] + [Y] = [XUY]. The basis element (H,,0 described
above corresponds to the transitive permutation representation of G' x G on
the cosets of

B(O')

AH',O = {(h', ¢(h')), h' E H'} c G' x G.

Clearly every finite G-free G' x G-set can be written as a disjoint union of
such transitive G' x G-sets in an essentially unique way.
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If X is a finite G-free G' x G-set, then the corresponding stable map
from BG+ to BG+ can be described as follows. The space EG' XG, X ad-
mits a free G-action, and so the covering map EG' XG, X --> EG' XG, X/G
is a principal G-bundle. Thus (Theorem 2.4.6) there is a corresponding
map EG' XG' X/G -+ BG, well defined up to homotopy. The stable map
from BG+ to BG+ corresponding to X is the transfer for the finite covering
EG' XG' X/G -> BG' (and send the disjoint basepoint in BG' to the disjoint
basepoint in (EG' xG, X/G)+) followed by the above map (EG' xG, X/G)+ -
BG+.

We make b(G', G) into a b(G')-module as follows. If X is a finite G-free
G' x G-set and Y is a finite G'-set, then Y x X is a G' x G' x G-set, and we
restrict to the diagonal copy of G' x G to get a finite G-free G' x G-set. We
write b(G', G)^ for the completion of b(G', G) at the augmentation ideal IG,
of b(G'); namely

b(G', G)^ = lim b(G', G)/IG,.b(G', G).n
THEOREM 2.8.2 (Lewis, May, McClure [166]). The map

b(G', G) -* {BG+; BG+}

described above induces an isomorphism between b(G', G)^ and {BG+; BG+}.

Finally, we point out that as a consequence of this theorem, stable split-
tings of BG+ as a wedge sum correspond to decompositions of the identity
in b(G, G)^ as a sum of primitive orthogonal idempotents. This subject is
pursued further in Martino and Priddy [175] and Benson and Feshbach [40].

2.9. Cohomology of general linear groups

In this section we describe Quillen's calculation [212] of the cohomology
of general linear groups over a finite field, and in the next section we describe
how this led to Quillen's definition of the algebraic K-groups of a ring (this
particular case calculates the algebraic K-groups of a finite field). In fact,
it is possible to calculate the cohomology of these general linear groups en-
tirely algebraically (Kroll [158]), but this hides the most striking features of
Quillen's calculation.

The idea of Quillen's calculation is to think of the Adams operation Z/Jq,
where q is a power of a prime p, as a map from BU to itself, take its "homo-
topy fixed points" Foq, and to show that there is a map BGLn,(1Fq) -> FVb'
giving interesting cohomology classes by pulling back, and in the limit induc-
ing a cohomology equivalence BGL(IFq) -* FV)q, where GL(Fq) is the union
of the GLn(Fq) embedded in each other using the top left hand corner. The
details are as follows.

The first problem is to represent 'q as a map from BU to itself. According
to Section 2.5, for B compact, Y'q is a natural transformation on K(B).
We would like to apply Yoneda's lemma (2.1.4 of Volume I), and say that



2.9. COHOMOLOGY OF GENERAL LINEAR GROUPS 61

because k(B) is representable as [B; BU], the natural transformation Wq is
representable by a map BU -+ BU. The problem is that BU is not compact.
However, it has a CW decomposition BU = UXm with only cells in even
dimension (this follows from the row echelon form for matrices-see Milnor
and Stasheff [192], Section 6). One can show inductively (using the Bott
periodicity theorem) that on a finite CW-complex which only has cells in
even dimension, the functor K-1 vanishes, and so the Milnor exact sequence
(see Theorem 1.9.1)

0 -4 lim1K-1(Xm) -+ K(BU) - limK(Xm) -+ 0

reduces to K(BU) = limK(Xm). Thus the operations Wq are defined on
K(BU) and are hence represented by maps b1 : BU -+ BU.

We now describe the process of taking homotopy fixed points. This is
similar to the process of taking the homotopy fibre of a map, as described in
Section 1.6. If 0 : X -+ X is a self-map of a space, then the fixed points
of 0 are obtained by taking the pullback

X0 - X

1 (1,0)
1o

X- >XxX
where A is the diagonal map. The homotopy fixed points Xhl' are ob-
tained by replacing A by a fibration. Namely, if we denote by 0 : XI -
X x X the map taking a path to its endpoints, then 0 is a fibration and it
is homotopy equivalent to 0 (in other words, the inclusion of X into X, as
the constant maps is a homotopy equivalence which when composed with
gives A). So we define the homotopy fixed points of 0 to be the pullback

XhO XI

D

X-(10)_XXX

The vertical maps in this diagram are fibrations with fibre SlX. Note that
there is an obvious map XO -+ Xh'k.

Now suppose that X has a basepoint xo and comes with an additive
structure; namely an addition map X x X - X which is associative and
commutative up to homotopy, and a map X -> X which acts as an additive
inverse up to homotopy. BU is an example of such a space, in which the
addition is given by the limit of the Whitney sum maps GT(C°°) x G' (C') -#
Gn+m(COO) and negation is given by the obvious maps Gn(Cm) -+ Gm-n(Cm)
(see the remarks in the second paragraph of Section 2.5). Putting these
addition and inverse maps together, we get a subtraction map d : X -+ X.



62 2. COHOMOLOGY OF GROUPS

Denoting by PX the (contractible) path space Map,, ((I, 0), (X, xo)), we
can extend the above pullback diagram to a diagram

XhO>XI-SPX
1 (1,0) dX >XXX >X

Here, the map XI -+ PX sends a path t --> w(t) to the path t F-->

d(w(t),w(0)) obtained by shifting the starting point to the origin. The map
PX --> X is the map sending a path w to its endpoint w(1). It follows that
Xhm is exactly the homotopy fibre of the map 1 - 0 = d o (1, 0).

We give XhO an additive structure as follows. Denoting by P1_O the
space of ordered pairs (x, w) consisting of a point x in X and an unbased
map w : I -+ X with w(1) = d(x, fi(x)) as in Section 1.6, we know that P1_,5
is homotopy equivalent to X, and Xh(P is the fibre of the map Pl_(k - X
taking (x,w) to w(1) = d(x,O(x)). The addition map on X gives us maps

P1-0 X P1-'k -- P1-0

XxX -X

and hence a map X hO x X hO , X hO. Similarly the inverse map X - X
gives us an inverse map XhO -p XhO. It is easy to check that these maps give
an additive structure on Xhl in the sense described above.

LEMMA 2.9.1. If X has an additive structure in the sense described above,
and Y is a space with the property that every map Y -* QX is homotopic to
the constant map, then [Y; Xhk] = [Y; X]0, where the latter denotes the fixed
points of composition with 0 on [Y; X].

PROOF. A map from Y to XhO can be thought of as a map f : Y -* X
and a homotopy from f to 0 o f. So composition with X hO -p X gives
a surjective map [Y; XhO] - [Y; X]0. Both X and XhO have an additive
structure, which induce abelian group structures on these sets of homotopy
classes. It is easy to check that the above map is a homomorphism of abelian
groups. If f : Y -+ XhO is in the kernel of this homomorphism, then by the
homotopy lifting property for the fibration XhO -> X, f is homotopic to a
map whose image lies in the fibre S1X of this fibration.

YXO-.-XhO

YxI-X
Since every map Y -> S1X is homotopic to the constant map by hypothesis,
the lemma is proved.
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We wish to apply the above lemma in the situation where X is BU and
¢ is 4jq. Following Quillen, we write FV)q for the homotopy fixed point set in
this case, namely the homotopy fibre of 1 - 0q : BU -+ BU.

By Theorem 2.4.11, S1BU is homotopy equivalent to the infinite unitary
group U, namely the union of the finite unitary groups embedded in each
other using the top left hand corner.

If G is a finite group, then we saw in Section 2.5 that there is a natural
map from the representation ring to K-theory given by using a representation
to form a vector bundle. We compose this with the projection down to
reduced K-theory:

R(CG) - K°(BG) = [BG; BU x Z]

I
K°(BG) = [BG; BU]

This map clearly commutes with the operations 2bq, which are defined on both
sides, see Section 2.5, and Section 5.9 of Volume I, so that we have a well de-
fined map R(CG)*" -> [BG; BU]Oq. The Atiyah Completion Theorem 2.5.5
says that the above map induces an isomorphism R(CG)^ = K°(BG), where
R(CG)^ is the completion of R(CG) at the augmentation ideal IG. So we
also have an isomorphism IG = K°(BG). Moreover, this theorem also states
that [BG; S1BU] = [BG; U] = KI(BG) = 0. So we are able to apply the
above lemma to see that

[BG; Fbq] = [BG; BUh0°] = [BG; BU]V9.

It follows that there is a well defined map

R((CG)V° -# [BG; Foq].

Now recall from Section 5.9 of Volume I that the Brauer lift gives an
isomorphism

R(CG)V" = R(IFgG)

so that we have a well defined map

R(FgG) -> [BG; Foq].

So given any finitely generated FqG-module, we obtain a map, well defined
up to homotopy, from BG to F. Pulling back elements of cohomology of
FViq through this map, we obtain elements of the cohomology of G, which
can be thought of as characteristic classes for modular representations.

We now calculate the homotopy and cohomology of Foq. The homotopy
is easy, so we begin with that. Regarding F'q as the homotopy fibre of
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1 - 7bq : BU --> BU, we obtain a long exact sequence of homotopy groups

7rj(BU) 19 7rj(BU) - 7rj-1(F'09)

7r7-1(BU)
1-Oe

7rj-1(BU)

Now for r > 0 we saw in Section 2.5 that 7rj (BU) = [Si;BU] = K(Si) is
isomorphic to Z if j is even and is zero if j is odd. An explicit calculation
on S2 shows that Oq acts as multiplication by q on K(S2) = Z and hence as
multiplication by qj on K(S2j ) by Bott periodicity. Thus we have

7r29-1 (F'4'9) = Z/(g2i - 1), 7r2j(Fo9) = 0.

It follows that there is no p-torsion in 7r* (Foq), and so by the p-local version of
the Hurewicz Theorem 1.3.6, Hi(F7liq; ]FP) = 0 for i > 0. Similarly, applying
this theorem in characteristic zero, we see that HH(Fzbq; Q) = 0 for i > 0.
Note also that if we examine the above sequence as a long exact sequence
of modules for 7r1(F70), and we use the fact that 7r1(BU) = 0, we see that
7r1(Fz/.,) acts trivially on 7rn,(F0q) for all n, so that Foq is a simple space.

We now describe the calculation of the cohomology of Fzli' with coeffi-
cients in F1, where l is any prime other than p. One applies the Eilenberg-
Moore spectral sequence to the pullback square

Foq - BUI

I (1 V)9)
I A

BU - BU x BU

obtained by regarding F7b1 as a homotopy fixed point set. Look at Section 3.7
for a brief discussion of the Eilenberg-Moore spectral sequence. In this case,
the E2 term is

E2* = Tor" (BUXBU)(H*(BU), H*(BU'))

and the spectral sequence converges to H*(FO") (all cohomology with ]Fl
coefficients). As a module over

H*(BU x BU) =Fj[ci,c2,... ci,c'2,.]

via the above maps, we have

H*(BUI) = H*(BU x BU)/(c' - ci, c2 - c2",...)

H*(BU) = H*(BU x BU)/(gci - c'1', g2c'2 - c2, ... )

Hence

H* (BU) ®H*(BUxBU) H*(BUI) = 1Fj[cl, c2, ... ]/((q -1)cl, (q2 -1)c2, ... )

= Fl[cr,c2r.... 1

where r is the multiplicative order of q modulo 1, and car has degree 2jr.
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The standard techniques for calculating Tor over a polynomial ring shows
that the E2 page is a tensor product of a polynomial and an exterior algebra

... )
F'2** = Fl e, C2,, ... ®A er, e2,,

where the car E E2'2jr and ejr E E2 1'2jT. Since this is a second quad-
rant spectral sequence and the differentials take these generators into the
first quadrant, we have E2 = E,,,. It follows that the additive structure of
H*(F q;1F1) is the same as E2*, and the multiplicative structure is the same
with the exception that instead of ear = 0 we only know that ear is in the
subring generated by Cr, c2r, ... .

WARNING. You may be inclined to guess from the above calculation that

H* (FO"; Z) = Z[cl, C2.... ]/((q - 1)cl, (q2 - 1)C2.... ).

This is easily seen to be false, by noticing that if this were the case, then
H* (F,q; Z) would be concentrated in even degrees, so that the long exact
sequence

... -, Hi-I(Foq; Fl) - H'(FV)q; Z) mil, HZ(FOI; Z) - HZ(Foq; Fl) ...
coming from the short exact sequence of coefficients

0- Z -Z-' F1 -'0
would reduce to
0 , H2i-1(Foq; ]Fi) , H2i (F'q; Z) xl, H2i (F,)q; Z) -k H2i (Foq; ]Fl) -- +0.

However, we have seen that H2*(F0q;IFi) contains even products of the
ear's, which are not in the image of reduction modulo 1. For further in-
formation on the integral cohomology of F0q, see Huebschmann [130] and
Jeandupeux [139].

We now complete the determination of the multiplicative structure of
the ring H*(Foq;Fj) at the same time as calculating H*(GLn(Fq),Fi), as
follows. The canonical modular representation of dimension n of GLn(Fq)
over Fq gives, via the Brauer lift as above, a map

BGLn(Fq) - Foq
well defined up to homotopy. We shall see that the characteristic classes car,
ejr defined by this map generate H*(GLn(IFq),Fj). We do this by restricting
to a suitable abelian subgroup.

Let C denote a cyclic group of order q' - 1, so that C has an irreducible
representation of dimension r over F. (via the isomorphism C = F. 'r). Thus
the direct product C'' of m copies of C has a faithful representation of
dimension mr over Fq, and hence we have an embedding Ctm GLn(Fq).

LEMMA 2.9.2. The restriction map

H* (GLn (Fq ), Fl) ' H. (C-, Fl )
is injective.
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PROOF. We first treat the case where 1 is odd. In this case, we factorise
the embedding of Ctm in GLn(]Fq) as

C' y Em 1 GLr(Fq) '# GLn(]Fq).

Using the fact that l is odd, one finds that the index in GLn(]Fq) of this
intermediate group is coprime to 1, so that by Corollary 3.6.18 of Volume I,
the restriction map in mod 1 cohomology is injective. Now a theorem of
Nakaoka [202] (see also the exercise at the end of Section 4.1) says that the
cohomology of a wreath product E, ,, ?A is detected on A' and E.. x A. Since
the Sylow 1-subgroups of En,, are iterated wreath products of cyclic groups of
order 1, it follows that the cohomology of GLn(Fq) is detected on 1-subgroups
of exponent dividing qr - 1. These are all conjugate to subgroups of C', and
so we are done.

If l = 2 (so that r = 1 and m = n), the index of this wreath product is
not odd, so one uses the subgroup E[n/2] i GL2(Fq) x (JFx )n-2[n/2] of odd
index. A separate calculation is needed to check that the mod 2 cohomology
of GL2(1Fq) is detected on abelian 2-subgroups of exponent dividing q-1.

The calculation is now completed as follows. We have maps

B(C'm') . BGLn(lFq) -> Foq

giving rise to maps in cohomology

H*(Fzyq;lf'l) ---> H*(GLn(F'q),1F1) H*(Cm Fi).

Now the normaliser of C in GLr(IFq) contains a cyclic group of order r acting
on C by sending an element to its qth power. Thus the image of the restriction
in cohomology from GLn(]Fq) to C' lies in the invariants of E,n, 2 Z/r, and so
we have

H*(F ,q; Fl) - H*(GLn(I'q),I'l) - ((&T H*(C,IF1)Z/r)E-.

We have seen in Lemma 2.9.2 that the second of these maps is injective. So
if we can prove that the composite is surjective, it will follow that the second
map is an isomorphism. An explicit calculation with the cohomology of C
(cf. Section 3.5 of Volume I) shows that the characteristic classes c.,. and er of
the r dimensional representation of C over Fq are non-zero. One then needs
formulae for the characteristic classes of a direct sum of representations; this
amounts to calculating the maps in cohomology determined by the additive
structure on F?Pq, which can be calculated from the corresponding formulae
for BU. Using these formulae it turns out that the characteristic classes
cr, c2r, ... , cmr and er, e2r, ... , emr of the n dimensional representation of
Cm over Fq generate the invariants of En 17Z/r on the cohomology of Cm,
so that the composite map is surjective, and hence the second map is an
isomorphism. It also follows that we may evaluate the squares of the ear
with j < m by restricting to C'.

Now if 1 is odd then H*(C,F1) has a polynomial generator in degree two
and a generator in degree one squaring to zero (see Section 3.5 of Volume I).
If l = 2 then r = 1 and m = n, so that C has order q - 1. In this case, if
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q - 1 mod 4 then C has order divisible by 4, and H*(C, Fl) has the same
structure as above. If q - 3 mod 4 then C is a direct product of a cyclic
group of order two and a cyclic group of odd order, and so H*(C,IF1) is a
polynomial ring on a single generator in degree one. Quillen calls the case l
odd or l = 2 and q - 1 mod 4 the typical case, and the case l = 2 and q - 3
mod 4 the exceptional case.

Restriction to C' shows that the classes ejr square to zero in the typical
case, while in the exceptional case we have ejr = F-aT o CaC2jr-1-a

We summarise all this as follows.

THEOREM 2.9.3 (Quillen [212]). Let q be a prime power, and suppose
1 is a prime not dividing q. Let r be the multiplicative order of q modulo
1 . Then H*(F%q; IF1) is generated by classes cjr and ejr, j = 1, 2, ... , with
deg(cjr) = 2jr and deg(ejr) = 2jr - 1, subject to relations

1 0 (typical case)
e2 - jr
jr CaC2jr-1-a (exceptional case)

a=0

where the typical case is 1 odd or l = 2, q - 1 mod 4, and the exceptional
case is l = 2, q - 3 mod 4.

Let n = mr + e with 0 < e < r. Let C be a cyclic group of order qr - 1.
Then we have restriction maps

H*(Fo(; IF1) -+ H*(GLn(Fq), F1) (®m H*(G, Fi)7Zir)Em.

The first of these maps is surjective and the second is an isomorphism. The
ring H*(GLn(IFq),IF1) is generated by the classes cjr and ejr, 1 < j < m
subject to the same relations as above.

Now embed GLn(IFq) in GLn+i(IFq) as the matrices which agree with the
identity on the last row and column. Then the natural (n + 1) dimensional
module for GLn+1(1Fq) restricts to the direct sum of the natural n dimensional
module for GLn(Fq) and a one dimensional trivial module. So if we compose
the Brauer lift map BGLn+i(IFq) . Fzb1 with BGLn(Fq) -> BGLn+l(IFq),
we obtain the Brauer lift map BGLn(Fq) -+ Fl/iq. So letting GL(IFq) be the
union of the GLn(IFq) with these inclusions, there is a map BGL(Fq) - Foq
well defined up to homotopy. The above theorem implies that this map is
a mod 1 cohomology isomorphism for all primes 1 not equal to p. Moreover,
Quillen shows in [212] Section 11 that the mod p cohomology of BGLn(Fq)
vanishes in positive degrees at most d(p - 1), where d is defined by q = pd
We also saw that Hi(F,q; IFp) = 0 = Hi(Foq; Q) for i > 0, so the map
is a cohomology equivalence at all primes. Since the cohomology groups
are finitely generated abelian groups, it is easy to see that this implies
that H*(F1q;Z) -* H*(BGL(IFq);Z) is an isomorphism, and hence also
H*(BGL(IFq)) -+ H*(Foq) is an isomorphism. However, BGL(IFq) -f Fzb' is
not a homotopy equivalence, since the spaces have very different fundamental
groups. In the next section, we shall describe the Quillen "plus" construction,
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which changes the fundamental group of a space without changing its homol-
ogy, and we shall see that the above map induces a homotopy equivalence
BGL(]Fq)+ FV)q.

REMARK. Similar computations may be performed with the other groups
of Lie type. For details see Fiedorowicz and Priddy [110] and Kleiner-
man [152].

2.10. The plus construction and algebraic K-theory

In the last section we saw that there is a map BGL(Fq) --- FV)q which
induces an isomorphism in integral homology. We now introduce the Quillen
"plus" construction, which turns homology equivalences into homotopy equiv-
alences, and use this to define the algebraic K-theory of a ring. The homotopy
equivalence BGL(Fq)+ -> Fzbq calculates the algebraic K-theory of finite
fields.

THEOREM 2.10.1 (Quillen). Let (X,xo) be a CW-complex. Let 7r be a
perfect normal subgroup (i.e., equal to its commutator subgroup) of 7r1(X, xo).
Then there is an inclusion i : X y X+ with the following properties:

(i) (X+, X) is a relative CW-complex of dimension at most 3.
(ii) i. : ir1(X, xo) - 7rl (X+, xo) is an epimorphism with kernel it.
(iii) Let X+ be a covering space of X+, and X be the corresponding cover

of X with fundamental group 7r1(±, xo) = i* 1ir1(X+, xo), so that i lifts to a
map i : X -+ X+. Then i,, : H,,,(X) -+ Hn(X+) is an isomorphism for all
n>0.

(iv) If f : (X, xo) -> (Z, zo) is a map of spaces with it in the kernel of
f* : 7r1(X, xo) - irl (Z, zo), then there is a map f' : (X+,xo) - (Z,zo) with
f' o i ^ f. If f enjoys properties (ii) and (iii) above of the inclusion i (but
f is not necessarily an inclusion), then f' is a homotopy equivalence. In
particular, X+ is uniquely determined up to homotopy.

PROOF. The idea of the proof is to attach 2-cells to kill it, and then
attach 3-cells to make sure the homology is unaffected, which of course by
the Hurewicz theorem requires that it is perfect. The details are as follows.
Choose a collection of commutators [yj, zj] of elements of it, generating it as
a normal subgroup of 1r1 (X, xo). Choose maps yj, zj (S1, so) - (X, xo),
j E J, representing these generators. Set ))j = yj * zj * y 1

* zj-1, and let Y

be the space

Y=XUaj Uv2i
jEJ

obtained by attaching 2-cells o to X using the attaching maps A.. Thus we
have 71(Y,yo) - iti(X,xo)/ir.

Let denote the quotient of the cello obtained by identifying the
parts of the boundary corresponding to yj and y371 in opposite directions, so
that the characteristic map 01j -p Y factors through 5T?, and Q is an open



2.10. THE PLUS CONSTRUCTION AND ALGEBRAIC K-THEORY 69

cylinder with ends corresponding to zj and zi 1. Since zj can be expressed
as a product of the commutators generating 7r, the path zj is null homotopic
in Y, and so the map Qj ? -p Y extends to a map from the 2-sphere (= closed
cylinder) obtained by capping off the ends of Q . This can then be used as
the attaching map pj : (S2, so) (Y, xo) for a 3-cell , and we set

X+ Y UN,s U Qj .
jEJ

Note that the attaching maps Aj and pj can be chosen to have their images
lying in the 1-skeleton of X, resp. 2-skeleton of Y, so that X+ is a CW-
complex.

We now check properties (i)-(iv) above. Property (i) is clear from the
construction. Property (ii) follows from the fact that

7r2(X+,Y,xo) = iri(X+,Y,xo) = 0

so that 7r, (X+, xo) = 71 (Y, xo) = 71 (X, xo)/ r.
To prove property (iii), suppose X+ is a cover of X+ corresponding to

a subgroup G/ir < ir1(X, xo)/7r, and X is the cover of X corresponding to
G < iri (X, xo). Then we have a corresponding cover k of Y with

U 2Y = X UO9(a9) j,9
jEJ

9E7r1(X,xo)/G

where the Og are the covering translations corresponding to coset represen-
tatives g of G in 7ri (X, x0). Similarly

X+ Y U09(µi) U 01,9'
jEJ

9E7r1(X,xo)/G

Thus the complex of cellular chains C. (X+, X) is just

0-- F F--* 0--- 0,

where F is the free Z-module on the cells of g, respectively cr 9. The boundary
1 j,

map is the map taking o g to v g, and so H*(X+, X) = 0, which implies
property (iii).

Finally, if f : (X, xo) -+ (Z, zo) is a map of spaces with the property that
it is in the kernel of f* : 7ri(X,xo) -* 7r1(Z,zo), then we form the pushout
(Z+, zo) of f and i

(X, x0)C (X+, xo)
If

I f+

(Z, zo)C 2 . (Z+, zo).

This is the same as the space obtained from (Z, zo) by attaching 2-cells and
3-cells by the above recipe using the null homotopic paths f o yj, f o zj
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(S', so) -> (Z, zo). Thus by (ii), the inclusion i' induces an isomorphism
71 (Z, zo) -> 7r1 (Z+, zo) and hence lifts to an inclusion of universal covers
i' : Z -+ Z. By (iii), this is a homology isomorphism of spaces with trivial
fundamental group, and hence by Whitehead's Theorem 1.4.3, it induces an
isomorphism on homotopy groups. So for n > 1,

it (Z, z0) = in(2, zO) = rn(Z+, z0) = lrn(Z+, z0)

So we can now apply Whitehead's Theorem 1.5.8 to deduce that the inclusion
i' : (Z, zo) - (Z+, zo) is a homotopy equivalence. Let a : (Z+, zo) -p (Z, zo)
be a homotopy inverse for V. Then we can take for f' the map a o f+, so
that

f'oi=ao f+oi=aoi'o f _f.
If f enjoys properties (ii) and (iii) then f', : 7ri (X+, xo) -+ ir1(Z, zo) is

an isomorphism, and so f' lifts to a map f' : (X+, x0) -> (Z, zo) of universal
covers, which is a homology isomorphism and hence an isomorphism on ho-
motopy groups by Theorem 1.4.3. So f' is also an isomorphism on homotopy
groups, and hence a homotopy equivalence by Theorem 1.5.8.

If A is a ring, let GL(A) be the union of the groups GLT(A) under the
obvious inclusions GL,, (A) -+ GLn+i (A), and regarded as a discrete group.
Let E(A) denote the subgroup generated by the elementary matrices,
namely the matrices which differ from the identity matrix in a single off-
diagonal entry. The identities

CABA0IB-1 0)
- (0 A-') (0 B 1)

((BA)
1 BA

A A
(0 A

I)
= (0 I) (-A 1 0)

(10

i)
(0 -

0 )

(I 0) - (I II)
(10

I) (I OI)

show that every commutator in GLn(A) is a product of elementary matrices
in GL2n(A), so that E(A) is the commutator subgroup of GL(A) and is
perfect.

DEFINITION 2.10.2. The (Quillen) algebraic K groups of a ring A are
defined as

Ki(A) _ iri(BGL(A)+) (i > 1).

Here, the plus construction is with respect to the commutator subgroup E(A)
of the fundamental group ir1(BGL(A)) = GL(A). Note that since GL(A) is
a discrete group, BGL(A) is the same thing as the Eilenberg-Mac Lane space
K(GL(A), 1).

(The group K0(A) is defined as the Grothendieck group of finitely gener-
ated projective A-modules, as usual; see Section 5.1 of Volume I).
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THEOREM 2.10.3. The map BGL(lFq) -p Fo defined in the last section
induces a homotopy equivalence BGL(Fq)+ ^_ Fzbq, where the plus construc-
tion is applied to the perfect normal subgroup E(TFq) of elementary matrices.
We have

K2j-1(lFq) = Z/(g2'1 - 1), K2j(lFq) = 0.

PROOF. We saw at the end of the last section that BGL(]Fq) -p F%q
is a homology isomorphism. Now 7r1(BGL(Fq)) = GL(Fq), and 7r1(Fz/>q) =
Z/(q - 1). Since the map is a homology isomorphism, the kernel of the
map on 7r1 is E(lFq), the kernel of the determinant map. It follows from
Theorem 2.10.1 (iv) that this map extends to a map BGL(Fq)+ -+ F7/)q
which is a homology isomorphism. Since both BGL(Fq)+ and Foq are simple
spaces, we may apply Whitehead's Theorems 1.4.3 and 1.5.8 to deduce that
this map is a homotopy equivalence. Thus Ki(Fq) = 7ri(FZI, ), which was
calculated in Section 2.9.

The groups K1(A) and K2(A) have explicit algebraic interpretations as
follows.

PROPOSITION 2.10.4. (i) K1(A) = GL(A)/E(A)
(ii) K2(A) = H2(E(A), 9L).

PROOF. (i) This follows directly from the definition

K1(A) = 7r1(BGL(A)+)

since the purpose of the plus construction on BGL(A) was to kill the perfect
subgroup E(A) of 7r1(BGL(A)) = GL(A).

(ii) Let F be the homotopy fibre (see the exercise at the end of Section 1.6)
of the map BGL(A) -> BGL(A)+. Thus we have a long exact sequence of
homotopy groups (Proposition 1.2.7)

-7r2(BGL(A)) - 7r2(BGL(A)+) GL(A) GL(A)/E(A)

0

7r1 (F) -,7r1(BGL(A)) -7r1(BGL(A)+) -- 0

and so we have a central extension

0 - 7r2(BGL(A)+) - 7r1(F) - E(A) -* 0.

We have a map F - B7r1(F) inducing an isomorphism on 7r1. Turn it
into a fibration with fibre P. The five term exact sequence of this fibration
(see Proposition 3.2.11 and Section 3.3) is

H2(F) -- H2(B7r1(F)) - H, (P) -- Hi(F) -- H1(B7r1(F)) -- 0

0I 0
11

0 0
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and hence H2 (7r1(F), Z) = 0. The five term exact sequence of the above
central extension (see Section 3.5) is

H2(iri(F),Z) -- Hz(E(A),7Z) -- Hi(ir2(BGL(A)+),Z) - HI(71(F),Z) Hi(E(A),z)

11

0
ir2(BGL(A)+) Hi(F;Z) =0

and hence K2(A) =ir2(BGL(A)+) = H2(E(A),Z).

REMARK. In Quillen [214], another definition is given for Ki(A). Namely,
one forms a category Q(AProj) whose objects are finitely generated projec-
tive A-modules, and where an arrow from P to Q is an isomorphism class of
diagrams of the form

P -P' -Q
where P' is another finitely generated projective A-module, j is an epimor-
phism and i is a monomorphism. Two such diagrams are thought of as
isomorphic if there is an isomorphism which is the identity on P and Q.
Arrows are composed by pulling back

P"

Q

so that P" is the submodule of P T Q' consisting of elements (x, y) where
x and y have the same image in Q. We now form the classifying space
BQ(AProj) of this category (see the exercise in Section 1.8), and set

Ki(A) = 7ri+l(BQ(AProj), 0), i > 0

where 0 denotes the zero module in Q(AProj), thought of as a basepoint for
BQ(AProj).

In Grayson [116], one can find Quillen's proof that there is a homotopy
equivalence

QBQ(AProj) _- Ko(A) x BGL(A)+

so that

7ri+1(BQ(AProj)) - iri(BGL(A)+)

for i > 1, and hence this definition agrees with the previous one.
It is proved in Wagoner [275] that if we let µ(A) be the ring of infinite

matrices (Aid), 1 < i, j < oo with only a finite number of non-zero entries in
each row and column, modulo the ideal consisting of those matrices with at
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most finitely many non-zero entries (this should be thought of as a sort of
algebraic suspension of the ring A), then

Sl(BGL(p(A))+) -_ Ko(A) x BGL(A)+.

It follows that Ko(A) x BGL(A)+ is an n-fold loop space in a canonical way
for every value of n > 0.

2.11. Hochschild homology

Algebraic K-theory of even quite well understood rings is extraordinarily
difficult to calculate. For example, one only knows the first few algebraic
K-groups of Z. It is therefore useful to have maps to theories which are
easier to calculate. In this section, we introduce Hochschild homology of a
ring, and define the Dennis trace map from algebraic K-theory to Hochschild
homology. In a later section, we introduce a variant of this theory, called
cyclic homology, which admits a natural map to Hochschild homology. We
shall see that there is a map called the Chern map from algebraic K-theory
to cyclic homology, whose composite with the map to Hochschild homology
is the Dennis trace map.

Throughout this section, R is a commutative ring of coefficients and A
is an R-algebra which is projective as an R-module. We first introduce the
acyclic Hochschild complex, which is a resolution for the regular representa-
tion of A as a A-bimodule (i.e., as a A (DR A°p-module), and then use it to
calculate Tor and Ext of A with a A-bimodule A. The case A = A gives the
Hochschild homology and cohomology of the ring A.

The acyclic Hochschild complex is defined as follows. We write Sn(A) for
the left A ®R A°p-module

A OR ... OR A (n > -1)
n+2 copies

where A 0 A°p acts via ®
The differential b' : Sn(A) -+ Sn_1(A) is defined via

n
bn(Ao®...®An+1)=E(-1)'Ao®...®AiAi+1®...®An+i

i=0

It is easy to check that bn_1 o b.'n = 0, so that S*(A) is a chain complex.
The map sn : Sn_1(A) -s Sn(A) given by

sn(Ao 0 ... 0 An) =Ao®...0An ®1
satisfies bn+1 ° sn+1 - sn o bn = id so that (-1)nsn is a chain contraction of
S*(A) (see Section 2.3 of Volume I). It follows that S*(A) is exact.

Writing Sn(A) for

A®R...®RA (n>0)
n copies
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we have an isomorphism

Sn(A) _ (A ®A°P) ®Sn(A)

Ao0...0A.+l H (A0(9 An+1)®(A1®...®A.)

as A®A°P-modules, so that since S,(A) is R-projective, Sn(A) is a projective
A ® A°P-module. It follows that S*(A) is a projective resolution of A as a
A 0 A°P-module. It is called the acyclic Hochschild complex.

If A is a A-bimodule, we regard it as a right A 0 A°P-module via a(µ 0
ry*) = -yap. We then define the Hochschild homology Hn(A, A) to be the
homology of the Hochschild complex

(S. (A, A), bn) = (A ®A®A°P S.(A),1® b'n).

We have

S. (A, A) = A ®A®A°P S. (A) = A ®A®A°P (A ® A°P) ® R Sn(A)

A ®R Sn(A)

and it is easy to check that the boundary map is given in terms of this by

bn(a®A1®...®An)=aA1®...®An+

n-1
(-1)ia ®, ®... 0 AiAi+1 ®... ® An + (-1)nAna ® Al ®... ® An-i
i=1

Since S* (A) is a projective resolution of A as a A ® A°P-module, it follows
from Section 1.13 of Volume I that

Hn(A, A) = Torn®A°P (A, A).

Similarly we define the Hochschild cohomology Hn(A, A) to be the
cohomology of the cochain complex

Sn(A, A) = HomA®A°P (Sn(A), A)

HomA®A°P (A ® A°P ®Sn(A), A) = HomR(Sn(A), A)

with coboundary

(bnf)(Ai,... ,An+l) _ Alf(A2,... ,An+1)+
n

E(-1)Zf (,, ... AiAi+l) ... , An+l) + (-1)n+lf(A1,...
, An)An+l

i=1

Again using the fact that Sn(A) is a projective resolution of A as a A®A°P-
module, we deduce that

Hn(A, A) = ExtA®A°P (A, A).

We may compare this with our previous definitions of homology and
cohomology as follows. If A is an augmented algebra over R, and M is a
right A-module, then we may regard M as a A-bimodule by making A act
trivially on the left via the augmentation. In this case, since (A(D A°P)®SS(A)
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is a projective resolution of A as a left (A ® A°p)-module, it follows that
A OR S,, (A) is a projective resolution of R as a left A-module. So

H,,(A, M) - TorAOA°P (M, A) - TorA (M, R)

agrees with our previous algebraic definition of Hn(A, M) (Section 2.1, and
Section 1.13 of Volume I).

Similarly if M is a left A-module regarded as a A-bimodule with trivial
right action then

HomA®A-(Sn(A), M) - HomA(A ®Sn(A), M)

and so

Hn(A, M) = Extn®AOP(A, M) - ExtA(R, M)

agrees with our previous definition of Hn(A, M).
The advantage of the Hochschild approach is that it provides homology

and cohomology groups for an algebra without augmentation. For example,
we could use this definition for a block of a group algebra. The "natu-
ral coefficients" to use for the Hochschild homology of a (not necessarily
augmented) algebra A are the A-bimodule A itself, giving homology groups
HHn(A) = Hn(A, A). For Hochschild cohomology, we use the A-bimodule
A* = HomR(A, R) to obtain cohomology groups HHT(A) = HT(A, A). It
is not hard to see that the Hochschild (co)homology of a direct sum of al-
gebras, with these natural coefficients, is the direct sum of the Hochschild
(co)homology of the summands.

THEOREM 2.11.1. Suppose that APr and rQA are bimodules inducing a
Morita equivalence between A and F (see Section 2.2 of Volume I). Then for
any A-bimodule M we have

HH(A, M) - Hn(Q ®A M ®A P), Hn(A, M) - Hn(Q ®A M ®A P).

In particular, HHn(A) = HHn(F) and HHn(A) - HHn(F).

PROOF. We have adjunctions

HomA(P Or -, -) - Homr(-, Q ®A -),
HomA(-, P Or -) - Homr(Q ®A -, -)

and hence by dimension shifting we have
Or, -, -) - Extr(-, Q ®A -),

ExtA(-, P Or -) = Extr(Q ®A -, -)
Hence we have

Hn (A, M) Extn®A- (A, M) = ExtA®AOP (P OF Q, M)

Extr®AOP (Q, Q ®A M) = Extr®rop (F, Q OA M ®A P)

Hn(F,Q®AM®AP).

The dual proof works in homology. 11
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THEOREM 2.11.2. The additive structures of the Hochschild homology
and cohomology of a group algebra RG are given by

(i) HHT(RG) = ®HH(CG(g), R)
gEGG

(ii) HHn(RG) ^_' Hn(CG(g), R).
gEGG

PROOF. We shall prove (ii); the argument for (i) is dual. We have

HHn(RG) = ExtRG®RGop(RG, RG*).

Now RG°P = RG (via g H g-1, Section 3.1 of Volume I) and RG ® RG
R(G x G). The R(G x G)-module structure on RG is given by the two-sided
action

(91,92) : 9 - 91992
1,

and so it is just the permutation module RA(G) TGxG on the cosets of the
diagonal

0(G)={(g,g) I gEG}CGxG.
Similarly, RG* is the coinduced module RGA(G) ¶-GxG (cf. Section 2.8 of Vol-
ume I). So by the Eckmann-Shapiro Lemma (see Corollary 2.8.4 of Volume I)
we have

HHn(RG) ExtR(Gxc)(RA(G)TGxG RA(G)1) >G)

ExtRA(G)(RA(G),RA(G), GxGlA(G))

By the Mackey Decomposition Theorem (3.3.4 of Volume I, or rather the
appropriate analogue for not necessarily finite groups),

RA(G)ftGxGlA(G)-
11

gEGG

and so by another application of the Eckmann-Shapiro Lemma we obtain

HHn(RG) = II ExtRG(R, RCG(g) ftG)
gEGG

H ExtRGG(g) (R, R) II Hn(CG (g), R). El

9EGG gEGG

The multiplicative structure of HHn(RG) given by Yoneda composition
is described in terms of the above additive decomposition in Section 2.2 of
Volume I.

We now describe the Dennis trace map from algebraic K-theory to Hochs-
child homology. It is the composite of the following maps. The Hurewicz map
goes from Kn(A) = irn(BGL(A)+) to

HT(BGL(A)+) = Hn(BGL(A)) = Hn(GL(A),7L).
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By Theorem 2.11.2, HH,,(GL(A),Z) sits as a summand of HH,,,(ZGL(A)),
corresponding to the centraliser of the identity element. The Dennis trace
map is the composite

Kn(A) Hurewicz, HH(GL(A), Z) - HHH,,(ZGL(A)) - HHT(A).

The map

HH,,,(7GGL(A)) = lim HHn,(ZGLr(A)) -,' HH,,,(A)
r

is defined as follows. The obvious maps ZGLr(A) -4 Mat, (A) induce a
diagram

HH,, (ZGLr (A)) HH,, (Matr (A)) HH,, (A)

HHn(ZGLr+1(A)) - HHn(Matr+1(A)) = HHT(A)

and then we pass to the limit. The isomorphism HHn(Matr(A)) = HHn(A)
comes from Theorem 2.11.1, since Matr(A) is Morita equivalent to A via the
matrix trace (cf. Section 2.2 of Volume I).

The inclusion of GLr (A) into GLr+1 (A) is defined by

AA O)
0 1

while the inclusion of Matr(A) into Matr+1(A) is defined by

4H (0 0

It follows that the above diagram commutes modulo the image of HHH(Z) -*
HHn(A), which is zero for n > 0.

2.12. Free loops on BG

In the last section we saw that the Hochschild (co)homology of a group
algebra is the direct sum over conjugacy classes of ordinary (co)homology of
the centralisers of elements of G. In this section, we interpret this in terms
of the free loop space LBG.

For any space X, we define the free loop space LX to be the space of all
(unbased) maps S' -> X, with the usual (compact-open) topology.

LEMMA 2.12.1. Let the group G act on the set G by conjugation, and on
EG in the usual way. Denote by EG xG G the quotient space (EG x G)/G.
Then there is a natural map

p: LBG ->EGXGG

which is a homotopy equivalence.
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PROOF. Let Y denote the space consisting of maps from the unit interval
I to EG with the property that the images of the two endpoints 0 and 1 are in
the same G-orbit. Thus G acts freely on Y, and the quotient is Y/G = LBG.

We have a map p : Y -p EG x G given by taking a map f : I - EG to
(f (0), g), where g is the unique element of G with f (0)g = f (1). This map p
is a fibration, and since EG is contractible, it is easy to see that the fibres of
p are contractible. Moreover, p commutes with the G-action, and so passes
to a map

p:Y/G= LBG -# EGxGG.
Since p induces a bijection on G-orbits of connected components, p induces
a bijection on connected components. Examining the square

Y °' EG x G

I, I

Y/G EG X G G,

on each G-orbit of connected components of Y, p and the vertical maps
induce isomorphisms on homotopy groups, and hence so does p. So p is a
homotopy equivalence by Whitehead's Theorem 1.5.8.

PROPOSITION 2.12.2. Hochschild (co)homology of RG is the same as or-
dinary (co)homology of LBG with coefficients in R.

PROOF. It follows from the above lemma that

H*(LBG; R) = H.(EG xG G; R)

= H*(U BCG(9); R) H.(CG(9), R)
gEGG gEGG

so that by Theorem 2.11.2, this is the same as Hochschild homology of RG.
The same argument holds in cohomology.

There is another approach, using simplicial sets, which does not go via
the decomposition as a sum over centralisers, and which we now describe.

We regard the acyclic Hochschild complex S,,(RG) of RG as the chain
complex of the simplicial R-module associated (in the manner described at
the end of Section 1.8) to the simplicial set SG whose n-simplices are symbols
9o ® ® 9n+1 and with faces and degeneracies

di (go 0 ... 0 gn+1) = go ® .. 0 9i9i+1 0 ... 0 9n+1

9n+1

We let G act by conjugation on SG

9(90(9 91®. ®9n+1)=990®91® ®9n+19-1
and SG/G is a simplicial set whose corresponding chain complex of R-
modules is the Hochschild complex for RG with coefficients in RG. We
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write go ® . . . ® gn for the n-simplex in SG/G corresponding to the G-orbit
of go 0 . 0 gn ®1 in SG. Thus the face and degeneracy maps for SG/G are
given by

di(go®9n)=go®...®9igi+1®".®gn 0<i<n-1
dn(9o0 "'0 9n)=9ngO0...09n-1
si(9o®"'®9n)=go ®"'®9i®1®9i+1®"'®9n 0<i<n.
PROPOSITION 2.12.3. As simplicial sets, we have

Hom(S[1], NG) = SG/G

where NG is the nerve of G regarded as a category with one object (so that
INGI = BG), and S[1] is the simplicial circle.

PROOF. Denote by X the simplicial set of maps f : 0[1] -p NC(G), the
nerve of the Cayley category of G (see Exercise 3 in Section 2.4) with the
property that f (0) and f (1) are in the same G-orbit. Thus an n-simplex in
X is a simplicial map 0[1] x 0[n] -* NC(G) with endpoint conditions which
we discuss below, and X/G is the simplicial set Hom(S[1], NG). We shall
show that X is isomorphic to SG as a simplicial set with G-action.

Denote by a and r the unique non-degenerate simplices of dimensions 1
and n in 0[1] and 0[n], and denote by sic the simplex (so)i(s1)n-i-1a of

0[1], which is only non-degenerate in the ith direction. Then 0[1] x A[n] has
exactly n + 1 non-degenerate (n + 1)-simplices (siU, sir), 0 < i < n, and a
simplicial map f : 0[1] x A[n] -> NC(G) is determined by its value on these
simplices. Since di(sic, sir) = di(.i_1a, si-lT), the images of these simplices
are related by

dif (sio, sir) = dif (si-lc, si-1r)
Moreover, the condition that f (0) and f (1) are in the same G-orbit reduces
to the simplicial condition that do f (goo, so-r) and do+l f (SnU, SnT) are in the
same G-orbit.

We choose the notation so that do+l f (snu, SnT) is the n-simplex

in NC(G) (in bar notation, Section 3.3 of Volume I, this is go[gil "' 19n])-
Thus f (SnQ, SnT) is some (n + 1)-simplex of the form

go-9091 92...
'

for some value of an+1 in G. Since do f (SnU, SnT) = do f (Sn-lo, sn-1T), we
see that f (Sn-1U, sn-1T) is some simplex of the form

91 92 9n-190 - gogi " ' `90 9o ... gn-1 ---I an - an+1
for some value of an. Continuing this way, we see that for suitable values of
ai, 1 < i < n + 1, f (sia, sir) is a simplex of the form

go 9i, 9091
92 "' 9z. go...9i -* ai+1 an+1
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In particular, dof (foa, SOT) is of the form

and is in the G-orbit of

al - ... - an+1

go 9i, 9091
92.

For the sake of symmetry, we choose the notation so that gn+l = an+1 and
hence ai = 9n+19n 1 ... 9i 1 Thus do+1 f (sno, snT) =90 .. gn+l f (900', SOT).

We have thus shown that every n-simplex in X is a simplicial map f
0[1] x 0[n] -> NC(G) where f (sio, sir) is the (n + 1)-simplex

_1 _1 _1 _1
91 92 9i 9i 90 ____ 9i+1 -1 9i}1. -1

go --1 9091 4 - go ... 9i 9n+1 ... 9i+1 9n+1

and it is easy to check that a map of this form does indeed define an n-simplex
in X. The correspondence which associates the n-simplex go ® 0 9n+1 in
SG to the above n-simplex is easily seen to respect the face and degeneracy
maps and the G-action, and hence gives an isomorphism of simplicial sets
between Hom(S[1], NG) and SG/G.

2.13. Cyclic homology

Cyclic homology was first introduced by Connes [83], and independently
by Tsygan [272] who called it "additive K-theory." These authors worked
with algebras in characteristic zero, and used the quotient of the Hochschild
complex by the actions of cyclic groups. Loday and Quillen [167] noticed
that Tsygan's proof of the long exact sequence connecting cyclic homology
and Hochschild homology could be expressed in terms of a certain double
complex, which provides the appropriate definition of cyclic homology over an
arbitrary commutative ring of coefficients. We advise the reader not already
familiar with double complexes to read Section 3.4 on the spectral sequence
of a double complex before continuing with this section.

Recall from Section 2.11 that in the Hochschild complex for computing
the Hochschild homology groups HH* (A) = H* (A, A), the elements of degree
n are A OR Sn(A) = A®('+1), with differential

n-1

b(Ao®...®An) _E(-1)Zao®...®AiAi+1®...®An
i=0

+ (-1)n)`nAo ®... ®An-1

We also reindex the acyclic Hochschild complex so that Sn_1(A) = A®(n+l)
sits in degree n (rather than n - 1), with differential

n-1

bl(Ao®...®An)_E(-1)ZAo®...®AiAi+1®...&An.
i=O

We have an action of (tn (tn)n+1 = 1) = Z/(n + 1) on A®(n+l) given by
tn(Ao®...®An) =An®AO®...®An-1
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Let N be the sum of the distinct powers of (-1)nt,,,,
n

N = J:((-1)ntn)'.
j=0

and let e = 1 - (-1)'t,. One can easily check that Ne = eN = 0, and N
and e are related to the differentials b and b' via the formulae

be=eb', b'N = Nb.

From the first of these formulae, one sees that b takes elements in the
image of e to elements in the image of e, so that b passes down to a differential
on the quotient by the action of (-1)'tn

b : A®(n+1) - AO(n) ,

where A®(n+l) is defined to be A®(n+1)/Im(e). If the coefficient ring R is
a field of characteristic zero, we define the cyclic homology of A to be the
homology of this chain complex

Ker(b : A®(n) - A®(n-i))

HCn(A) _ ®(n+1) ®(n)Im(b : AE - A' )

PROPOSITION 2.13.1. There is a long exact sequence (the Connes se-
quence)

... - HHn(A) I HCn(A) ' HCn-2(A) HHn_1(A) L HCn_1(A) ...

PROOF. We write down the following double complex.

V

Ib

V

-b' b

A®3 E E A®3 E N A®3 E ...b-b' Ib
A"IVV®2 E E A02 E N AVV®2 E E

nb
n-b' N b` E

.. .E

The columns are alternate copies of the Hochschild complex and the acyclic
Hochschild complex. The signs on the acyclic Hochschild complex have been
negated so that the squares anticommute (by the above formulae relating e,
N, b and b'), in accordance with the definition of a double complex (Sec-
tion 3.4).

The nth row of the above double complex is the complex described in
Section 3.5 of Volume I for calculating H*(Z/(n + 1), A®(n+l)). Since A is
an algebra over a field of characteristic zero, this vanishes in degrees greater
than zero, and in degree zero it just gives A®("+1). So if we look at the
spectral sequence obtained by doing the horizontal differential first in the
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above double complex (i.e., the spectral sequence of the transpose of this
double complex; see Section 3.4), we see that the El term

EPq = Hq(Z/(p + 1), A®(p+1))

vanishes for q > 0 and is the complex for calculating HC* (A) for q = 0. So
this spectral sequence shows that HC*(A) is isomorphic to the homology of
the total complex CC,, (A) of the above double complex.

Now the total complex X. of the first two columns of the above dou-
ble complex has the Hochschild complex as a subcomplex, and the acyclic
Hochschild complex as the quotient. The long exact sequence of homology
for this short exact sequence of complexes shows that the homology of X* is
just HH*(A).

The complex X* is a subcomplex of CC. (A), and the quotient is just the
same complex with a shift, CC*(A)[-2], so we have a short exact sequence
of complexes

0 -* X. -* CC. (A) -# CC.(A)[-2] --+ 0.

Taking homology, we obtain the required long exact sequence.

If A is defined over a more general coefficient ring R, then the homology
of the cyclic groups fails to vanish in the above proof. So we define the cyclic
chains CC. to be the total complex of the double complex appearing in the
above proof, and the cyclic homology HC* (A) to be the homology of this
chain complex. With this new definition, the rest of the above proof works,
and shows that for a general A we still have the long exact sequence of the
above proposition.

THEOREM 2.13.2. A Morita equivalence between R-algebras A and t gives
rise to an isomorphism HCn(A) = HCn(I') for all n > 0.

PROOF. (McCarthy [182]; see also Kassel [150]) The idea here is to show
that the isomorphism in Hochschild homology described in Theorem 2.11.1
comes from a chain equivalence of Hochschild complexes which commutes
with the operations to and b', so that the result follows from the long exact
Connes sequence by induction on n. The details are as follows.

Suppose that APF and FQA are bimodules and ¢ : P Or Q -p A and
V% : Q®AP - 1' are surjective bimodule homomorphisms as in Definition 2.2.2
of Volume I, satisfying the identities xO(y ® z) = O(x 0 y)z and yq(z ® w) =
b(y ® z)w for x and z in P and y and w in Q. Choose elements pi and qi,
1 < i < s, with O(Ei=1 pi 0 qi) = 1 E A, and elements p and q', 1 <_ j < t
with V (Ej'-1 q 0 p3'.) = 1 E F. We define chain maps on the Hochschild
complex

an : A®(n+1) I'®(n+l)

(so, ... , An) E a (b(gio ® Aopi1), b(gil 0 Aipi2), ... , b(qin ® Anpio))
(io, ,in)
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where the sum is over all sequences (io, ... , in) of integers between 0 and s
inclusive, and

an : r®(n+l) -p A®(n+1)

('Y0.... ..Yn) F-' (O(pja 0 -rogjl),0(pj, ®-ylgj2),... (P( 'n ®'Yngjo))

00--i-)
where the sum is over all sequences (jo, ... , in) of integers between 0 and t
inclusive.

Using the identities satisfied by 0 and 0, we see that

anoan:(Ao,...,) )F-

(O(pjo ®gio).oO(pil 0 qj',),... ,W(pjn 0 gin)An0(pio 0 qj'0))
(io.. ,in)
(jo. >jn)

We define hn : A®(n+l) -, A®(n+2) via

n

hn(Ao,... An) = E(-1)m E (AoO(pio®gjo),O(pjo(Dgio)AlO(pi®qj'l),
m=O (io.....in)

(Jo....,jn)

W(pj,n-i (D gi,n_1)Amq(pi,n (D qj ) 0(pj a ®gi n) Am+1 ... ,fin).

Since E =1 Et =1 q(pi,. 0 qj,,)O(pj ® qi,) = 1, it is easy to verify that

/3noan-1=bohn+hn-lob
so that h is a chain homotopy from 3 o a to the identity. Reversing the roles
of A and F, we see that a o /3 is also homotopic to the identity.

Since a and 0 commute with the Hochschild boundary b, they induce
an isomorphism on Hochschild homology by Proposition 2.3.5 of Volume I.
Moreover, a and /3 commute with the operations tn and b', and hence give
rise to maps between CC,, (A) and CC* (P). So we have a map of long exact
Connes sequences

HC.-,(A) HHn(A) HCn(A) HC.-2(A) B HHn-1(A)

a.I a* 1= a. a* 1= a,I=

HCn-1(r) HHn(I') HCn(I') - HC.-2(F) - HHn-1(r) .. .

Now arguing by induction on n, we see that a* : HCn(A) -> HCn(I') is an
isomorphism for all n > 0.

Since every other column of the double complex defining CC*(A) is con-
tractible, with contracting homotopy (-1)nsn, we can simplify this complex
as follows. We set

B = (-1)T''EsnN : A®(n+l) A®(n+2)
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(which can be seen to correspond to the map B in Proposition 2.13.1), and
we write B,k(A) for the total complex of the following double complex.

V

Ib

`V

Ib Ib

A`®3-A®2-A
Ib

Ib

A02 E B A

Ib

A

There is an injective map of complexes B,k (A) -* CC* (A) given by sending an
element x in degree (i, j) to the sum of x in degree (2i, j - i) and (-1)nsnNx
in degree (2i, j - i - 1). The quotient complex has a filtration in which the
filtered quotients are copies of the acyclic Hochschild complex, and is hence
acyclic. So the long exact sequence in homology shows that B. (A) - CC,, (A)
is a homology equivalence, and hence the cyclic homology of A is equal to
the homology of B*(A).

Denote by R[B] the algebra over the coefficient ring R with one generator
B satisfying B2 = 0. Then the complex

R over R[B], and the above double complex can be thought
of as the tensor product over R[B] of this complex and the Hochschild com-
plex S*(A,A). We thus have the following.

PROPOSITION 2.13.3. HC*(A) = Tor* (R, S* (A, A)).

Finally, we may simplify the complex B* (A) further by replacing the
Hochschild complex by its normalisation. Namely, we quotient by the sub-
complex of degenerate elements (which is contractible) so that we replace
A®(n+l) by A®'n ® A, where A is the quotient A/R of A by the multiples of
the identity element. Thus B* (A) is chain homotopy equivalent to the total
complex B(A) of the following double complex.

Ib

W

Ib Ib

A®2®A-A ®A B A
VV

Ib IbA®
AFB A

Ib

A
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One has to check that the operator B is well defined on the reduced complex;
this is routine.

Cyclic cohomology HC* (A) is defined dually. Namely, the Hochschild
complex for computing HH*(A) = H*(A,A*) is given by

Sn(A, A*) = HomR(S,,,(A), A*) = HomR(A®(n+1) R) = (A®(n+1))*.

Thus to acts on S'(A,A*), and we can form a double complex

Tb I-b' Tb

(A®3)* --- >- (A®3)* N . (A®3l)*

Tb

t -b' l lb
(A®2)* (A®2)*

N (A®2)* _ .. .

A*b n* b N nb_ E_ ...
whose total complex is CC*(A) = HomR(CC*(A),R). We define the cyclic
cohomology HC* (A) to be the cohomology of this complex. Just as with
cyclic homology, there is a long exact Connes sequence

HC7e-1(A) L HHn-1(A) B HC" 2(A) - HC-(A) L HHn(A)

and an isomorphism

HC* (A) = ExtR[B] (R, S* (A, A*)).

2.14. Cyclic sets

In order to calculate the cyclic homology of a group ring, we need to
introduce Connes' notion of a cyclic object in a category. This is a variant
of the concept of a simplicial object (Section 1.8), and cyclic sets bear the
same relation to topological spaces with an action of the circle group S' that
simplicial sets do to topological spaces (Dwyer, Hopkins and Kan [97]).

We shall show that the cyclic homology of a group ring RG is the same
as the ordinary homology of ES' x sl LBG, where S1 acts on the free loop
space LBG by rotating the loops. Just as in the case of Hochschild homology,
this admits a decomposition as a sum over conjugacy classes of elements,
which we investigate in the next section. Instead of the classifying space
of the centraliser of the corresponding element, one uses a sort of extended
centraliser obtained by gluing in a copy of the circle or the real line, depending
on whether the element has finite or infinite order. Our approach is close to
that of Burghelea and Fiedorowicz [56] and Burghelea [54], but see also
Goodwillie [115] and Jones [142].

Let A be the category whose objects are the finite cyclically ordered sets,
and whose arrows are the functions preserving the cyclic ordering. More
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precisely (Connes [84]), an object in A consists of a finite set together with an
injection into S1, and an arrow in A from one such object to another consists
of a homotopy class of monotonic (but not necessarily strictly monotonic)
continuous maps Si -+ Sl of degree one such that the image of the first
finite set is contained in the second. In particular, there are n arrows from
a cyclically ordered set of size n to one of size one. A cyclic object X in
a category C is a contravariant functor A -> C. A cyclic set is a cyclic
object in the category of sets. If X is a cyclic object, we write Xn for
the image of the cyclically ordered set 10,... , n} (with the cyclic ordering
0 < 1 < ... < n < 0) in C. The face and degeneracy maps di : Xn -* Xn_1
(0 < i < n) and degeneracy maps si : Xn --+ Xn+1 (0 < i < n) are defined in
exactly the same way as for a simplicial object, but we also have a new map
to : Xn -> Xn which is the image of the map

{0,...,n}- {0,...,n}
jHj-1 (modn+1).

These maps satisfy the relations given in Section 1.8 for the sj and dj, to-
gether with the following relations between these and the tn:

ditn = to-ldi-1 Sitn = to+lsi-1 1 < i < n

dotn = do
(tn)n+1 = 1

2SOtn = to+lsn

All maps and relations coming from A follow from these. So giving a cyclic
object X in C is the same as giving objects Xn in C, 0 < n < oo, and
maps di : Xn -* Xn_i, si : Xn -+ Xn+i and to : Xn - Xn satisfying these
relations.

A cyclic map f : X -> Y between cyclic objects is a natural transfor-
mation of functors; this amounts to giving maps fn : Xn -> Yn satisfying
fn-ldi = dif, fn+lsi = sifn and fntn = to fn for all 0 < i < n. Thus cyclic
objects in a category C form a category Cycl C.

There is an obvious functor A - A taking a totally ordered finite set to
the corresponding cyclically ordered set, and regarding a monotonic function
as a function preserving the cyclic ordering. By composing with this functor,
a cyclic object gives rise to a simplicial object, and so we have an obvious
forgetful functor Cycl C -* Simp C.

EXAMPLES. 1. The simplicial set SG/G corresponding to the Hochschild
complex (see Section 2.12) has the structure of a cyclic set with

More generally, the Hochschild complex of a ring A (see Section 2.11) is a
cyclic R-module with

to(AO(D Al ®...0An)=An ®AO®...®An_1.

2. Let S[1] be the simplicial circle; namely the simplicial set with one
non-degenerate zero-simplex *, one non-degenerate 1-simplex o,, and no other



2.14. CYCLIC SETS 87

non-degenerate simplices. If X is a simplicial set, then the simplicial set
Hom(S[1], X) is a cyclic set as follows. Writing (siv, 8iT), 0 < i < n, for
the n + 1 non-degenerate (n + 1)-simplices in S[1] x 0[n] as in the proof of
Proposition 2.12.3, we let to act via

tnf (siQ, siT) = f (si+1Q, Si+1T),

where the subscript i+1 is to be read modulo n+1. With these structures of
cyclic sets, it is straightforward (but tedious!) to check that the isomorphism
given in Proposition 2.12.3 is an isomorphism of cyclic sets.

3. If Y is a topological space with a continuous action of the circle group
S1 = {e2"Z°, 0 < 0 < 1}, we give the singular simplicial set on Y the structure
of a cyclic set as follows. If f : On -> Y is a singular n-simplex, then we set

tnf(x0>... , xn) = e2,rixaf(xn,x0,... ,xn-1)

It is easy to check that this definition satisfies the appropriate relations. Thus
Sing(-) is a functor from spaces with S1-action to cyclic sets.

4. The forgetful functor Cycl C - Simp C described above has a left
adjoint, which assigns to each simplicial object X the free cyclic object S[1] [>a
X whose n-simplices are pairs (tn, x), 0 < j < n, x E Xn with cyclic structure
given by

Cti(tn, x) = (tn-1, di-jx) i - > 0
Cti(tn, x) = (tin-1+ di-j+n+lx)

Ctn(tnn, x) = (t0n 1+ dox

i - j < 0

si(tn, x) = (tn+1, si-jx) i - > 0
1

si(tn, x) = Wn+1 Si-j+n+lx) 2 - j < 0

t;tn, x) = (tom 3, x) i + j < n
tn(tn, x) = (tin+

1, x) i +i > n.

In particular, S[1] = S[1] xi * is a cyclic set.
The underlying simplicial set of S[1] m X is not in general isomorphic to

S[1] x X, but their topological realisations are homeomorphic via the map

////

S[1] m X1 --> /S[1] X /X1

((tn, x), /(x0, ... , xn)) H ((*, x), (x0i ... , xn))

((tn, x), (x0, ... , xn)) H x)) (xn-j+1, ... , xn, x0, ... , xn-j))
1<j<n.

Thus for example IS[1] m S[1] I is the triangulation in which the torus
is cut into two triangles using the trailing diagonal instead of the leading
diagonal in IS[1] x S[1]I.
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If X is a cyclic set, then there is an evaluation map

(tn, x) H tnx

which gives rise to a map of topological realisations S' x IX1 --+ 1X1. In case
X = S[1], this map S1 x S1 --4S' is the multiplication map which makes S1
a group. Note that with the normal triangulation of Si x S' coming from the
simplicial product, multiplication does not correspond to a simplicial map.

Now there is an obvious identification between (S[1] m S[1]) to X and
S[1] is (S[1] xi X) whose topological realisation shows that the above map
S1 x X1 ---+ 1X1 gives an action of the group S1 on lX1. It follows that
topological realisation is a functor from cyclic sets to spaces with S1-action.

It is not hard to check that the functors we have just described are adjoint
functors between topological spaces with Sl-action and cyclic sets

nat
Homcyc,set(X,Sing(Y)).

WARNING. Let X be a simplicial set. While the map

IHom(S[1], X) I -f Map(S', X) = LX

is a homotopy equivalence and commutes with the Sl-action, it does not
necessarily have a homotopy inverse as a map of spaces with S'-action. For
a discussion related to this point, see Section 6.4.

We now define the cyclic homology HC* (X; R) of a cyclic set X. We
write down the following double complex:

b I- b' Ib

RX2 RX2 E N RX2 E e

b I-b' Ib

RX1 - RX1 N RX1

b I-b' Ib

RXo E E
RXo N RXo E E

Here, RXn denotes the free R-module on X, with
n n n-1

e = 1 - (-1)ntn, N = E((-1)ntn)j, b = E(-1)Zdi, b' _ E(-1)Zdi.
j=0 i=0 i=0

Just as in Section 2.13, we have be = Eb' and b'N = Nb, so that this is a double
complex. We write CC. (X; R) for the total complex of the above double
complex, and HC, (X; R) for its homology. Since H. (X; R) is the homology
of the first column, and the second column is contractible with contracting
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homotopy (-1)ns,,,, we obtain by the same argument as in Section 2.13 a
long exact sequence

-> H,,,(X; R) L HC,,,(X; R) - HC,,,-2(X; R) B' Hn-1(X; R) ...
Again we set

B = (-1)'EsnN : A®(n+1) A®(n+2)

and we write B*(X; R) for the total complex of the following double complex

I b
Jb Ib

RX2 RX1 - B
RXo

b

RX1 B RX0

I b

RXo

so that we have a homology equivalence B*(X; R) -> CC*(X; R). Again, we
can replace B*(X; R) by the reduced version B(X; R) if we wish.

Similarly, starting with the dual complex

CC* (X; R) = HomR(CC*(X; R), R)

we obtain the cyclic cohomology HC*(X; R).

PROPOSITION 2.14.1. If X is a cyclic set, then there are natural isomor-
phisms

(i) HC*(X; R) = TorR[B1(R,C*(X; R)) = H*(ES' xs, I XI; R).
(ii) HC*(X; R) = ExtR[B](R, C*(X; R)) = H*(ES1 xsl JXJ; R).

PROOF. We only prove (i), since (ii) is dual. The first isomorphism fol-
lows just as in Section 2.13 from the fact that the double complex defining
B*(X; R) can be thought of as the tensor product over R[B] of the complex

R[B] , R[B] -+ R[B]

and the reduced Hochschild complex C*(X; R).
For the second isomorphism, we argue as follows (cf. Section 3.11). Given

any topological group G whose underlying topological space is a CW-complex,
EG is also a CW-complex. If G acts on a CW-complex Y in such a way that
G x Y -+ Y is a cellular map, then C* (Y; R) is a module over the algebra
C* (G; R) and C* (EG x Y; R) is a free resolution of C* (Y; R). We have

C*(EG xG Y; R) = R ®C*(G;R) C*(EG x Y; R)

and so
C

*
(G' R) (R, C* (Y; R)) .H* (EG x G Y; R) = Tor*
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We use this in case G = Si to deduce that

H*(ES' XSI I X 1; R) = Tor*,(s111;R)(R,C*(X; R))

So it remains to identify the action of C*(S[1]; R) on C* (X; R) with the action
of R[B]. Namely, using the Eilenberg-Zilber map (see Section 1.8) we have

C*(S[1]; R) ®C*(X; R) _->C*(S[1] x X; R) -f C*(X; R)
n n

or ®x E(-1)in(8ia six) H
i=0 i=0

Since we are using the reduced Hochschild complex, it is easy to check that
the latter is the formula for B(x) in C* (X; R).

COROLLARY 2.14.2. (i) HC*(RG) = H*(ES' xS, LBG; R).
(ii) HC*(RG) = H*(ES1 xS, LBG; R).

PROOF. Again we only prove (i), since (ii) is dual. We remarked in
the discussion of Example 2 above that the isomorphism Hom(S[1], NG) =
SG/G of Proposition 2.12.3 is an isomorphism of cyclic sets. Thus the cyclic
homology of RG, which is the cyclic homology of the cyclic set SG/G, is
equal to the cyclic homology of Hom(S[1], NG). By the above proposition,
this is equal to

H*(ES' xSi IHom(S[1],NG)I;R) = H*(ES' xS LBG).

2.15. Extended centralisers

In the last section, we saw that

HC*(RG) = H*(ES' xS1 LBG; R).

In this section, we decompose the latter as a direct sum over conjugacy classes
of ordinary group cohomology of extended centralisers. Dually in cohomology
we obtain a direct product decomposition.

DEFINITION 2.15.1. Suppose g is an element of a (discrete) group G. The
extended centraliser CG(g) is the topological group defined by the pushout
diagram

1 - 9

Z CG(g)

R CG (9)

In other words, CG(g) = (R x CG(g))/ " where - is the equivalence relation
given by (A, gx) - (A + 1, x).

Thus CG(g)/CG(g) = R/Z = S1, and so by Theorem 2.4.12 (ii) there is
a fibration BCG(g) --+ BOG(g) with fibre S1.
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THEOREM 2.15.2. ES' XS1 LBG = U BCG(g).
gEGG

PROOF. As in the proof of Lemma 2.12.1, we let Y denote the space of
maps I -4 EG such that the images of the two endpoints 0 and 1 are in the
same G-orbit. Recall that G acts freely on Y with quotient Y/G = LBG.

We can write Y as a disjoint union over elements g E G of spaces Yg,
where Yg is the subspace consisting of maps f : I -+ EG with f (0)g = f (1).
The action of an element h E G takes Y. to Yh-igh, and so LBG = Y/G is a
disjoint union over conjugacy classes of g E G of the spaces Yg/CG(g). Each
Yg is contractible, and CG(g) acts freely on it.

Given a map f : I -* EG in Yg, we can extend to a map f : J -> EG
as follows. If A E R is equal ton + t with n E Z and 0 < t < 1, we set
f (a) = f (t)gT. It is easily seen that this definition "matches up" at the
integers to give a continuous map.

The action of S1 on LBG preserves the connected components Yg/CG(g),
and lifts to an action of JR on Yg, given by (A. f)(µ) = f (A + p) for A, µ E R.
Thus R x CG(g) acts on ES1 x Yg, by letting R act on ES1 via the map
J -> R/7G = S1 and on Yg as above, and CG(g) act trivially on ES' and
freely on Yg as above. Now 1 E R acts in the same way as g E CG(g), so
that this passes down to an action of CG(g) on ES1 x Yg, which can be seen
to be free. Thus we can use ES1 x Yg as our model for ECG(g), so that the
quotient is

ES' xS, (Yg/CG(g)) = (ES1 x Yg)/CG(g) = BCG(g).

COROLLARY 2.15.3. (i) HC*(RG) _ ® H*(BOG (g);R).
gEGG

(ii) HC*(RG) = fl H*(BCG(g); R).
gEGG

PROOF. This follows from Corollary 2.14.2 and the above theorem.

We can now define the Chern map Ch,,,,,, : & (A) --.. HC,,,+2r(A) (r > 0)
of Connes and Karoubi [147, 148, 149]. Recall that we defined the Dennis
trace map at the end of Section 2.11 as a composite of maps, one of which
was the map

H,,,(GL(A), Z) -> HH,,,(ZGL(A))

which embeds the left hand side as the summand of the right hand side cor-
responding to the identity element in the decomposition of Theorem 2.11.2.
Now according to the above discussion, the summand of HC,,(ZGL(A)) cor-
responding to the centraliser of the identity element is

H,,(S1 x GL(A), 7L) = H,,(GL(A), Z) ®H,,,-2(GL(A), Z) ®.. .
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(Recall that H,, (S', Z) = Hn(CP°O; Z) is isomorphic to 7L for n even and is
zero for n odd). Thus there is an obvious map

Hn,(GL(A), Z) -j HCn,+2r(ZGL(A))

for each value of r > 0 (related by composition with the S operator in the
long exact Connes sequence). The Chern map Chn,r is defined to be the
composite

K. (A) Hurewicz) Hn(GL(A), Z) HCn+2r(ZGL(A)) -.' HCn+2r(A)

The map HCn+2r(7LGL(A)) -' HCn+2r(A) is defined in a manner analogous
to the map in Hochschild homology described at the end of Section 2.11.



CHAPTER 3

Spectral sequences

3.1. Introduction to spectral sequences
A spectral sequence is a fairly complicated algebraic gadget for making

calculations in homological algebra. In this chapter, we shall introduce the
machinery of spectral sequences, and show how to apply them in a number of
different situations. The most important spectral sequence for us will be the
Lyndon-Hochschild-Serre spectral sequence associated to a group extension.
The reader who wishes to avoid topology can read the sections on the spectral
sequence of a filtered complex, a double complex and a group extension for
an account of this spectral sequence. As always, we shall only give a sketchy
account of the topological aspects of the material anyway, and make the
algebraic aspects as self-contained as possible.

This introduction is designed for the orientation of the reader, and is not
necessary for the logical structure of what follows.

Here is a guide to the interconnections between the various topics intro-
duced in this chapter.

Hurewicz fibration
fibre bundle

group extension
composite functor
pullback of fibrations
(Eilenberg-Moore)

- Serre fibration

}
-> double complex

> filtered complex
1

exact couple
I

spectral sequence

Thus we shall be interested in the following spectral sequences. R will
always denote a commutative ring of coefficients.

(i) If F - E -* B is a Serre fibration then there are spectral sequences
in cohomology and homology,

HP(B; Hq(F; R)) Hp+q(E; R), Hp(B; Hq(F; R)) = Hp+q(E;R).

This notation is meant to suggest that the left-hand side is the initial data for
the calculation and the right-hand side is what we wish to calculate. There
are certain "differentials" and "extension problems" involved in going from
the left to the right, and this makes up the inner workings of the spectral
sequence, of which more later.

93
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In fact there is a technical difficulty here. The group 7r1(B) acts in a
natural way on H* (F; R), and if the action is not trivial, we should really
regard H*(F; R) as a local system of coefficients H* (F; R) on B, and the
spectral sequence takes the form

HP (B; V1 (F; R)) Hp+q(E; R)

(and similarly in homology). We shall simplify the exposition by making the
assumption that 7r,(B) acts trivially on H* (F; R).

If one wishes to develop the spectral sequence of a group extension topo-
logically, one has to treat these more general local systems, unless the normal
subgroup is central. Thus we shall be content to set up the spectral sequence
of a group extension algebraically. This is our next topic.

(ii) If N is a normal subgroup of a (not necessarily finite) group G then
the fibration BN -+ BG -> B(G/N) gives rise to spectral sequences

HP(G/N, Hq(N, R)) Hp+q(G, R), Hp(G/N, Hq(N, R)) Hp+q(G, R).

More generally, if M is an RG-module (not necessarily trivial!) then
there are spectral sequences

HP(G/N, Hq(N, M)) Hp+q(G, M), Hp (GIN, Hq(N, M)) Hp+q(G, M).

The latter is known as the Lyndon-Hochschild-Serre spectral sequence of
the group extension. We set up these spectral sequences algebraically, using
the theory of double complexes, and concentrate on the case of cohomology.
This is because in cohomology the spectral sequence H* (GIN, H* (N, R)) has
a ring structure over which the spectral sequence H* (GIN, H* (N, M)) is a
module.

(iii) We shall give a brief sketch of the Eilenberg-Moore spectral sequence

Tor",!B,Ri(H*(B'; R), H* (E; R)) H* (E'; R)

associated to a pullback of fibrations

F - E'- B'

F -E -B

in which 7rl (B) acts trivially on H* (F; R).
In the case where B' consists of just the basepoint of B, we have E' = F,

and so the spectral sequence takes the form

Tor" (B,R) (R, H* (E; R)) H* (F; R)

so that it computes the cohomology of the fibre from that of the base space
and total space.

One situation of interest in which we can apply this spectral sequence is
the case of the fibration

K(G, 1) , K(G/Z, 1) -+ K(Z, 2)
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of Eilenberg-Mac Lane spaces, where Z is a central subgroup of G. Dave
Rusin [226] has used this to calculate the mod 2 cohomology of all groups of
order 32 (there are 51 of them!). The point is that there are fewer non-zero
differentials (and very often none at all) than in the Lyndon-Hochschild-
Serre spectral sequence associated to the same group extension.

(iv) Using the Bott periodicity theorem in K-theory, one can obtain a
spectral sequence

H* (G, Z) R(G)"

due to Atiyah, going from the integral cohomology ring to the completion of
the ordinary character ring at the augmentation ideal. Again, we shall only
sketch the construction of this spectral sequence.

We now explain in a little more detail how spectral sequences arise.
(1) Given a CW-complex X and a sequence of subcomplexes

XocXi9...cX=UXi
we get a long exact sequence for each adjacent pair

Hn(Xp-1; R) -> HT(Xp; R) -> H'(XP, Xp-1; R)

Hn+1 )

Hn(Xp-1; R) -* Hn(Xp; R) -> H...(Xp, Xp-1; R)
- Hn_1(Xp_1; R) - .. .

which interlock in a way we shall examine more closely later. What we wish
to do is to assemble all this data in a sensible fashion and use it to calculate
H*(X; R).

(2) We did not really need a CW-complex in order to carry this out.
All we needed was a (co)chain complex X (which might be the (co)chains
on a CW-complex, or might arise from projective resolutions of modules, or
anything else), and a sequence of subcomplexes

X=F°XDF1XD...DnFiX={0}.

(3) If p : E -+ B is a Serre fibration of CW-complexes, we take as our
subcomplexes of E the preimages of the skeletal filtration of B.

P 1(Bo) S p1(B1) S ... 9E=up-1 (B').

By taking (co)chains we have filtrations as above:

FiX = Ker(C*(E) -> C*(p-i(Bz-1))), FiX = C*(p-1(B'))
In this case it turns out that under suitable hypotheses, the initial data for
the spectral sequence amounts to knowing H*(B;H*(F;R)), and so we can
use this to calculate H*(E; R).



96 3. SPECTRAL SEQUENCES

Before we set up spectral sequences in detail, we now try to give some of
the flavour of what a spectral sequence looks like. You are not expected to
understand yet where all the information is coming from.

The initial data usually comes as a doubly indexed set of abelian groups
(or R-modules). This is written as E2" in cohomology or Epq in homology
(the reason for the 2 will only become apparent when we come to study the
spectral sequence of a double complex). For example for a group extension
we have

E2q = Hr(G/N, Hq(N, R)), Ep2q = Hp (GIN, Hq(N, R)).

These are examples of first quadrant spectral sequences, where E2q (resp.
E2) is zero whenever p < 0 or q < 0.

The next piece of data is that there is a naturally defined differential
d2 E2q -y E2 +2,q-1 satisfying d2 o d2 = 0. This information is usually
depicted diagrammatically as follows.

q

p

Thus we may form the homology of this complex

Ker(d2 : E2q , E2+2,q-1)

Epq = H Epq3 ( 2 ,d2) =
Im(d2 : E2-2,q+1 EP2q)

On E3q there is a naturally defined differential d3 E3q E3 +3,q-2

satisfying d3 o d3 = 0 as in the following diagram, and we define E4q =
H(E3q, d3), and continue in this way.

q

p
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Now for a given p and q, for n large enough (e.g. n > max(p, q + 1)) we
have

d : Epq _, Ep+n,q-n+l = 0 d : 0 = E'p-n,q+n-1 EPq
n n n n- n n

and so En+1 = E. Thus we may define En to be the common value of Enq
for n large. If the spectral sequence is not first quadrant, there are slightly
more delicate convergence problems, but the reader should not worry about
that at this stage.

The way E,1,1, is related to what we are trying to calculate is as follows.
There is a filtration

HP+q(G R) = FoHp+q(G R) D F1Hp+q(G, R) D
D Fp+q+lHp+q (G,R) = 0

such that

FPHp+q(G R)/FP+1HP+q(G, R) - EPq.

In other words, the group Hn(G, R) has a filtration in which the quotients
are the groups going down a trailing diagonal p + q = n of the E,, term of
the spectral sequence.

Similarly in homology we have

do : EPq -> EP-n,q+n-1, d o o do = 0,

E, n+1 = Ker(dn : E,q -' EP n,q+n_1)
pq Im(dn : EP+n,q-n+l -4 EEq)

and a filtration

0 = F-iHp+q(G, R) C FoHp+q(G, R) C ... C Fp+qHp+q(G, R) = Hp+q(G, R)

such that

FpHp+q(G, R)/Fp-1Hp+q(G, R) - EP-q.

Here is a picture of EPq.
q

p

(resp. EA) as the nth page of the spectral sequence.We refer to Enq
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3.2. The spectral sequence of a filtered chain complex

We shall work in this section with the cohomology spectral sequence,
and then indicate what changes are necessary to obtain the homology spec-
tral sequence. The ideas are the same in both cases, but the indexing is
different. In some sense, homology is indexed as though it were negative
degree cohomology.

Suppose

X=F°XDF1XD...DnF'X={0}.
is a filtration of a cochain complex (i.e., a decreasing sequence of subcom-
plexes). Then the long exact sequences

Hn(FP+1X) - H-(FPX) - H"`(FPX FP+1X)1 l
H,n,+l(FP+1X)

can be fitted together as in the following diagram, where the sequences go
alternately down one and to the right two places.

k1
->_ Hri-1(FP+1X) I Hi-1(Fp}1X Fp}2X)-- H (Fp+2X) I H"(FP+2X FP+3X),

¢1

Hii-1(FPX) 7- Hn-1(FPX FP+1X)
k H' (FP+1X) -- H'n(FP+1X F,P+2X) --

I
I21

1 - Hn(FPX FP+1X)H 1(FP-1X) - H' -1(FP-1X,FPX) -

To keep control of all the data here, we set
Elq = Hp+q(FpX FP+1X), D1Pq = HP+q(FPX)

as doubly indexed sets of abelian groups (or R-modules, if X is a cochain
complex of R-modules). The exact sequences become

D** D**1 1

kl \ ( i1
E**1

where

deg(ii) = (-1, 1) Ker(il) = Im(ki)
deg(ji) = (0,0) Ker(ji) = Im(ii)
deg(ki) = (1,0) Ker(ki) = Im(j1).
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DEFINITION 3.2.1 (Massey). An exact couple is an exact triangle of
the form

D - D Ker(i) = Im(k)
k\/j Ker(j)=Im(i)

E Ker(k) = Im(j).

Every time we have an exact couple as above, we obtain a spectral se-
quence as follows. Since k o j = 0, we have (j o k) 2 = 0. Thus setting d = j o k,
we may take homology " with respect to d,

J (E, d) = Ker(d)/Im(d).

This gives rise to the notion of a derived couple.

DEFINITION 3.2.2. If

DAD
k\ / j

E

is an exact couple, then the derived couple

DD'
k' \ / y

E'

is given by setting

D' = Im(i) C D
E' = H(E, d) as a subquotient of E

2 = i1D'
j'(i(x)) = j(x) + Im(d) E Ker(d)/Im(d)

k'(z + Im(d)) = k(z)

It is an easy diagram chase to check that the above maps are well defined,
and that the derived couple of an exact couple is again an exact couple.

DEFINITION 3.2.3. We define the exact couple

Dn, D,,,

k. \ / j.
E.

to be the (n - 1)st derived couple of the exact couple

D1-4D1
kl \ / ji

E1

The sequence (El, d1), (E2, d2), ... is called the spectral sequence of the
original exact couple.
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We now keep track of the double grading. We have

deg(in) = deg(in_1)
deg(jn) = deg(jn_1) - deg(in-i)
deg(kn) = deg(kn-1)

deg(dn) = deg(jn) + deg(kn)

and hence

deg(in) = (-1, 1)
deg(jn) = (n - 1, -n + 1)
deg(kn) = (1,0)
deg(dn) = (n, -n + 1).

Thus for example (E2, d2) and (E3, d3) appear as in the pictures on page 96.
For most of the filtered complexes we are interested in, it will turn out

that E2' = 0 for q < 0 (and also of course for p < 0) so that we shall proceed
for the rest of this section under this assumption. This will enable us to avoid
a detailed discussion of convergence problems.

Each Dnq is contained inside DPq, and we write Doc for nn Since
each Enq is a subquotient of En41, we may find subgroups Z2q = Ker(dl)
and B2q = Im(dl) of E1 such that E2q =4 q/B2q. We then have subgroups
Z3q and B3q of Epq with Z3q/B2q = Ker(d2), B3q/B2q = Im(d2) and E3q =
(Z3q/B2q)/(B3q/B2q) Z3q/B3q. Continuing this way and setting Zpq =
E' and BPq = 0, we have subgroups

such that Enq = Znq/Bnq. We now set

Zo1'go = n Znq, Boo = U Bnq, Eoo = Zoo /Boo
n n

Now we have a canonical filtration of the cohomology of X

FiPHp+q(X) = Im(Hp+q(F'X) - Hp+q(X))

Our next goal is to prove that

FpHp+q(X)/Fp+1Hp+q(X) E.

PROPOSITION 3.2.4.

(i) Znq = Im(Hp+q(F'X Fip+nX) - Hp+q(FPX Fp+1X))

= Ker(Hp+q(F"X FP+1X) a., Hp+q+l(Fp+1X Fp+nX))

(ii) Bnq = Im(Hp+q 1(Fp-n+1X FPX) - Hp+q(FPX Fp+1X))

= Ker(Hp+q(FPX Fp+1X) - Hp+q(Fp-n+1X Fp+1X))
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PROOF. (i) The following diagram represents a part of the diagram on
page 98.

HP+q+1(Fp+nX)

I il
IHP+q+I(FP+n-lx

, i1

Wit
Hp+q+l (FP+2X)

y
Hp+q(FPX Fp+1X) ki

Hp+q+l(FP+1X)

a>

d, _ 1

HP+q+1(Fp+1X Fp+nX)

Referring to this diagram, we have x E Znq if and only if dl (x) = 0,
d2(x) = 0, ... , do-1(x) = 0. This happens if and only if kl(x) E Im((i1)n-1)

namely if and only if

ki(x) E Ker(HP+q+'(Fp+1X) -' Hp+q+l(FP+1X Fp+nX))

This in turn is true if and only if

x E Ker(Hp+q(FPX Fp+1X) Hp+q+l(Fp+1X Fp+nX))

= Im(HP+q(FPX Fp+nX) - HP+q(FPX FP+1X))

(ii) Referring to the following diagram

HP--q-1 (Fp -n+1 X, FpX )

Hp+q (FPX) "HP+q (FPX Fp+1 X)

it
Hp+q (Fp-n+3X)

P+q-1 p n+1 n+2 p+q P-n+2H (F X FP- X)
1

H (F X)

i1

Hp+q(Fp-n+1X)

J Hp+q+l(Fp+n-lX Fp+nX)
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we have x Bnq if and only if x = j1(y) with (i1)n-2(y) E Im(k1), i.e., with
(i1)n-1(y) = 0, or equivalently withl

y E Im(HP+q-1(Fp-n+1X,F1X) - Hp+4(F'X))
This happens if and only if x E Im(8,k).

LEMMA 3.2.5. If we have a commutative diagram of abelian groups

D

/ h \

A-B C
with the bottom row exact, then g induces an isomorphism

g : Im(h)/Im(f) -+ Im(k).

PROOF. By the first isomorphism theorem

Im(f) Ke
(() - Im(gh) = Im(k)

THEOREM 3.2.6. EEq is isomorphic to the image of
Hp+q(FPX Fp+nX) - HP+q(FP-n+1X FP+1X)

PROOF. We apply Lemma 3.2.5 to the diagram

Hp+q(FPX Fp+nX)

Hp+q-1(Fp-n+1X FPX) - Hp+q(FPX Fp+1X) - Hp+q(FP-n+1X Fp+1).

COROLLARY 3.2.7. EIZ = Im(Hp+q(FPX) , Hp+q(X, Fp+1X)).

DEFINITION 3.2.8. We set FpHp+q(X) = Im(Hp+q(FpX) - Hp+q(X)).

THEOREM 3.2.9. FpHp+q(X)/FP+1 Hp+q(X) Esq.

PROOF. We apply Lemma 3.2.5 to the diagram

Hp+q (FPX)

Hp+q(Fp+1X) - Hp+q(X) -- Hp+q(X FP+'X)).

We may regard this theorem as saying that whenever we set up a spectral
sequence using a filtered complex, we know what it converges to; namely
the cohomology of the original complex. The problem is to understand the
initial data given by the E2 term. In the next section we shall give a sketchy
account of the E2 term in the case of the spectral sequence of a fibration. In
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the following section, we shall see that the problem of understanding the E2
term is substantially simplified if we start off with a double complex rather
than a filtered complex.

We now discuss edge homomorphisms and transgressions. Setting q = 0,
we see that each EP0 is a quotient of E2°, and E° is contained in HP(X).
Thus we have homomorphisms

...-»EP0 HPN.

The composite homomorphism E2° -+ HP(X) is called the horizontal edge
homomorphism.

The vertical edge homomorphism Hq(X) EE' is the composite
map

H'7(X)--»E y...yE34_,E2
.

Following through the isomorphisms used to prove Theorem 3.2.9, it is easy
to see that this is just the composite of the obvious maps

H9(X) H9(X, F2X) -+ Im(Hq(X, F2X) --+ Hq(X, F1X)) = E29

The transgression is the differential d",, :
E°'"-1 -+ E,',°. In case n = 2,

this gives rise to the five term sequence involving the transgression and
edge homomorphisms

0-+E2°-+H1(X)-E21 -E2°-+H2(X).

This is obtained by splicing together the sequences

0-*E2°=E1 ,H1(X)-E011-000

0->E0001

and

0,E 20 H2(X).00

Thus we have the following.

PROPOSITION 3.2.10. In the spectral sequence of a filtered cochain com-
plex, there is a five term exact sequence

d2 E2°-H2(X).

We now discuss the dual setup in homology. If we start off with a filtered
chain complex

F°XCF1Xc...cX=UFFX,
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then we have an exact couple and spectral sequence
E1

pq = Ilp+q(FpX> Fp 1X)

Dp1q = Hp+q(FpX)

Epq = H(Epq 1, d) deg(d) = (-n, n - 1)

Epq - FpHp+q(X)/F'p-1Hp+q(X)

where

FpHp+q(X) = Im(Hp+q(FpX) - Hp+q(X))

The edge homomorphisms are Hp(X) - E and Eoq Hq(X), the
transgression is d" : Eon"_ 1 - Eno. The five term sequence is as follows.

PROPOSITION 3.2.11. In the spectral sequence of a filtered chain complex,
there is a five term exact sequence

H2(X)-* E2 20 d2+ E021 e' H1 (X) eE20__ 0.

3.3. The spectral sequence of a fibration

In this section we give a sketchy derivation of the spectral sequence of
a fibration. Again, we shall work in cohomology rather than homology, and
leave the reader to dualise.

Suppose p : E --+ B is a Serre fibration with B a CW-complex, and fibre
F = p 1(bo) where bo is the basepoint of B. For the purpose of exposition,
we shall assume that ir1(B) acts trivially on H*(F) (see Proposition 1.6.7),
and then make comments on what to do in the general situation.

Let

B°CB1C...CB
be the skeletal filtration of B, and let Ei = p -'(B') be the corresponding
filtration of E. We examine the spectral sequence arising from this filtration.

According to the definitions, we have Elq = HP+q(EP, EP-1). Now for
each p ,-cell up of B, we choose a simplex A. contained in the interior of oa,
and by excision we have

Hp+q(Ep Ep-1) - ®Hp+q(p-1(Da),p-1(Da))
a

We choose a path w : I - B with w(0) = bo and w(1) E Aa, and let DaVI be
the space obtained by identifying 1 E I with w(1) E Da. Then the diagram

OxF -E
-71

(DaVI)xF->B
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and Proposition 1.6.7 show that we may find a map Da x F - E which is a
homotopy equivalence on each fibre over A, and hence

Hp+q (p 1(A.),p-1(Da)) - Hp+q(Da, x F,Da x F) = Hq(F)

(by the Kiinneth theorem). Under the assumption that irl(B) acts trivially
on H*(F), this isomorphism is independent of choice of w, and so we have a
canonical isomorphism

Elq = Hp+q(EP EP-1) = Hom(Hp(BP, BP-1), Hq(F)) - CP(B; Hq(F))
where CP(B; A) denotes the cellular cochains on B with coefficients in an
abelian group A, namely Hom(CP(B), A).

REMARK. If 7r1(B) has non-trivial action on H*(F), then we must regard
the cohomologies of the fibres as a "local system" 1-l*(F) of coefficients on
B (cf. the discussion of local coefficient systems investigated in Chapter 13)
and we obtain

HP+q(EP, EP-1) - CP(B; 7-Lq(F)),

cellular cochains on B with coefficients in this local system.

Now to compute E2' we must see what dl does. We follow it through
the above isomorphisms as in the following diagram:

q di
Ep+l,qEp1

I- I-
HP+q(Ep Ep-1) Hp+q+1(Ep+1 Ep)

Hom(Hp(BP, BP-1), Hq(F)) Hom(Hp+l(BP+1 BP), Hq(F))

CP(B; Hq(F))

Thus we have

s
CP+1(B; Hq(F))

E2q - HP (B; Hq(F)).

REMARKS. (i) Introducing a coefficient ring R does not alter the argu-
ments at all, and so we have a spectral sequence

HP(B; Hq(F; R)) HP+q(E; R).

(ii) All the arguments work dually in homology to give a spectral sequence

Hp (B; Hq(F; R)) Hp+q(E; R).
(iii) If 7rl(B) acts non-trivially on H*(F; R) and H*(F; R) we have to

write the above spectral sequences as

HP(B; Hq(F; R)) = Hp+q(E; R), Hp(B; Hq(F; R)) Hp+q(E; R).



106 3. SPECTRAL SEQUENCES

(iv) We saw in Theorem 2.4.12 that a normal subgroup N of a group G
gives rise to a fibration BG - B(G/N) with fibre BN, and hence we have
spectral sequences

HP(G/N, Hq(N, R)) HP+q(G, R), Hp(G/N, Hq(N, R)) Hp+q(G, R).

We shall develop this spectral sequence algebraically in Section 3.5.

3.4. The spectral sequence of a double complex

In this section we set up the spectral sequence of a double complex. We
shall work in cohomology rather than homology, and again the theory works
equally well in either. We shall see that the E2 term is easier to understand
in this case than in the case of a filtered complex.

DEFINITION 3.4.1. A double complex is a collection of abelian groups
(or modules, etc.) and maps arranged as in the following diagram:

tdo Tdo
1co

E002 - dl' Eo2 d'' E022

T do I do I

do

l dl __ 'E0 E0 d Eol
Tdo

Ido
Tdo

E000
dl

- E010
dl

E020

such that the following conditions are satisfied:
(i) Each row satisfies dl o dl = 0.
(ii) Each column satisfies d0 o d0 = 0.
(iii) d0od1+dlodo=0.
The total complex of a double complex, X' = Tot(E) is given by

x'= ®Ea

with differential
i+j=n

d = d0 + d1 : X'a -p Xn+1

Note that the above conditions imply that d o d = 0.

Given a double complex E, its total complex is filtered as follows.

Dopq = F,+PXP+q = ® EO
i+j=p+q

i>p

Thus
FPXP+q/FP+1XP+q - Eoq
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and so each layer in the filtration should be thought of as a single column
of the double complex. The differential on this quotient is just do : Eoq -+
Eoq+l since d1 maps into a lower layer. So we have

Eiq = H(Eoq, do), Die = H(Eoq ®Eo+1,q-1 ®...
, do + d1)

Now we have two things called dl, and so we had better check that their
meanings are related in some obvious way. Until we have done so, we shall
refer to the horizontal differential in the double complex as dl, and to j1 o k1
as "di".

If x E E.' with do(x) = 0, so that x represents a class [x] E Eiq, then
we compute kl [x] as follows. Recall that k1 is defined as the boundary ho-
momorphism associated to the short exact sequence of chain complexes

0 -p FP+1X - FPX - FPX/FP+1X --+ 0

0 0

I I
E, o- 1

® '
do+dl EP+1q

0 0

Eo - ® 0 o
I1,q-1

® 0...dog E,q+1 ® 0P+1,40 s....
E. P do Eo, +1

0 0

W W

0 0

Since do(x) = 0 we have (do + d1)(x,0,...) _ (0, di (x), 0.... ), and so by

the definition of the boundary homomorphism (switchback map) we have
k1 [x] = [(d1(x), 0, ... )]. Hence

"d,"[x]
= jik1[x] = [dl(x)],

and so from now on we omit the inverted commas. Thus we have
Ezq = HP(Hq(E0, do), d1)

where the d1 is the map induced by the d1 of the double complex.
We summarise this in the following theorem:

THEOREM 3.4.2. Given a double complex (Eoq, do, d1) there is a spectral
sequence with

Eiq = H(Eoq, do)
E2q = HP(Hq(E0, do), dl)

FPHP+q (Tot (Eo) ) /FP+1 HP+q (Tot (Eo))
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The shorthand for this theorem is

HP(Hq(Eo, do), di) HP+q(Tot (Eo), do + di).

It may now be seen that (Eo, do) and (El, d1) are natural precursors of
the remaining pages (E., dv), n > 2, and do and d1 have the "right" degrees.

The vertical edge homomorphism for the spectral sequence of a double
complex may be described as follows. There is a restriction map

Hq(Tot (Eo)) -> Hq(Eoo*, do)

whose image lies in the kernel of dl, and hence this defines a map

Hq(Tot(Eo)) - E2q,

which is just the edge homomorphism.

REMARK. By reversing the roles of p and q in the double complex (and
multiplying all the maps by the appropriate signs) we see that there are
actually two distinct spectral sequences associated to a double complex, and
both converging to H*(Tot(Eo)). These are sometimes written IE and
IIEnq. It is often useful to compare these two spectral sequences, especially
in case one has E2 = E... and the other does not. See for example the
Kiinneth spectral sequence in Section 3.6.

As an example of the spectral sequence of a double complex, we have
the hypercohomology spectral sequence. Recall from Section 2.7 of
Volume I that hypercohomology is just Ext for chain complexes.

PROPOSITION 3.4.3. Suppose that C and D are chain complexes of A-
modules, with C bounded below and D bounded above. Then there are spectral
sequences

Extp(Hq(C), D) Ext q(C, D), ExtP(C, H_q(D)) Extp q(C, D).

PROOF. If P is a projective resolution of C, and I is an injective reso-
lution of D, then these are the spectral sequences coming from the double
complexes HomA(C, I) and HomA(P, D).

As an example of the homology spectral sequence of a double complex, we
prove the following, which should be compared with the Kiinneth Theorem
(Section 2.7 of Volume I).

PROPOSITION 3.4.4. Suppose C and D are chain complexes of right, resp.
left A-modules, concentrated in non-negative degrees, such that C consists of
projective A-modules and D is exact in positive degrees. Then H*(C®AD)
H*(C) ®A H0(D). In particular, if C is also exact in positive degrees, then
so is C ®A D, and Ho(C ®A D) = Ho(C) ®A Ho(D).

PROOF. Consider the spectral sequence of the double complex C ®A D.
Since C consists of projective modules and D is exact in positive degrees, the
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columns of C ®A D are exact. So El = 0 for q > 0, and hence E1 = E°P
So we have

Hp(C ®A D) = EP-0 = E = HP(C) ®A Ho (D). El

3.5. The spectral sequence of a group extension
Suppose N is a normal subgroup of G and M is an RG-module. Our

goal in this section is to construct the Lyndon-Hochschild-Serre spectral
sequences

Hp(G/N, Hq(N, M)) Hp+q(G, M), HP(G/N, Hq(N, M)) HP+q(G, M)

and we shall concentrate on the latter. The former is treated dually.
We take a projective resolution of R as an R(G/N)-module

...API a'.Po4904 R -0
and as an RG-module

at
Q1Qo-°>R->0.

We form the double complex

Eoq = HomR(G/N)(Pp, HOmRN (Qq, M)).

Note that HomRN(Qq, M) admits a G-action whose restriction to N is trivial,
so that we may regard it as an R(G/N)-module. The differentials in this
double complex are given by taking do to be (-1)P times the differential
induced by 8'q and dl to be the differential induced by 8p. The signs ensure
that do o d1 = -d1 o do.

By Theorem 3.4.2 we have a spectral sequence with

Elq = HomR(G/N) (Pp, Hq(N, M))

Ezq = HP(G/N, Hq(N, M)).

REMARK. The above double complex is the algebraic analogue of the con-
struction of the fibration BG --+ B(GIN) with fibre BN, given in Theo-
rem 2.4.12, using the space E(G/N) x EG.

It remains to identify EPq.

LEMMA 3.5.1.

HomR(G/N)(Pp, HomRN(Qq, M)) = HomRG(PP OR Qq, M)

(In the right hand side of this formula, Pp is regarded as an RG-module with
N acting trivially).

PROOF. We define maps

0: HomR(G/N) (Pp, HOn1RN(Qq, M)) -* HomRG(P® ® Qq, M)

0(f)(x ® y) = f(x)(y)
HomRG(Pp 0 Qq, M) - HomR(G/N)(Pp, HomRN(Qq, M))

0(a)(x)(y) = a(x 0 y).
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It is easy to check that these maps are well defined and inverses to each
other.

Now by Corollary 2.7.3 of Volume I, the total complex of P ® Q is exact,
and is hence a projective resolution of R by RG-modules. So by the above
lemma we have

H*(Tot(Eo), do + di) = H*(HomRG(Tot (P 0 Q), M), 8 + 8') = H*(G, M).

Thus the spectral sequence of Theorem 3.4.2 becomes

Hp(G/N, Hq(N, M)) Hp+q(G, M).

In exactly the same way, if M1 is an R(G/N)-module (which we also
regard as an RG-module with N acting trivially) and M2 and M3 are RG-
modules, we let P be a resolution of M1 as an R(G/N)-module and Q be a
resolution of M2 as an RG-module. We obtain a spectral sequence

ExtR(G/N)(M1, ExtRN(M2, M3)) = ExtRG (Ml OR M2, M3)

EXERCISE. Show that in the spectral sequence

H*(G/N, H* (N, M)) H* (G, M)

the horizontal edge homomorphism

H*(G/N, MN) H* (G, M)

is the composite of the inflation

infG,N : H*(G/N, MN) , H*(G, MN)

with the map H*(G, MN) , H* (G, M) induced by the inclusion. This
composite is also called the inflation map.

Show that the vertical edge homomorphism

H*(G, M) H*(N, M)G/N

is the restriction map resG,N.
Thus the five term sequence associated to this spectral sequence (Propo-

sition 3.2.10) is

0 -* H1(G/N, MN) H1(G, M) - Hl (N, M)G/N

H2(G/N MN) in'f
H2(G, M).

This is called the inflation-restriction sequence.

Dually, we have a homology spectral sequence

Hp (GIN, Hq(N, M)) Hp+q(G, M)

and a five term sequence (Proposition 3.2.11) is

H2 (G, M) - H2(G/N, MN) -+ H1(N, M)G/N
-> H1(G, M) - Hl (G/N, MN) - 0.
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Here, MG denotes the quotient of M given by identifying m with gm for all
mEMandgEG.

3.6. The Kiinneth spectral sequence

DEFINITION 3.6.1. A double complex Ppq is called a proper projective
resolution of the chain complex D if for each value of q the sequences

...--+ P2,q-'P1,qP0,q--+ Dq
Zq(P2,*) --> Zq(P1,*) Zq(Po,*) - Zq(D*) 0

Hq(P2,*) - Hq(Pi,*)

are projective resolutions.

Hq(Po,*) -> Hq(D*) 0

LEMMA 3.6.2. Every chain complex has a proper projective resolution.

PROOF. Choose projective resolutions of Bq(D*) and Hq(D*) and apply
the horseshoe lemma to the short exact sequences

0-->Bq(D*)->Zq(D*) _+Hq(D*).'0
0-+Zq(D*)->Dq--- Bq+l(D*)--- 0

to obtain appropriate projective resolutions Ppq of the Dq and maps between
them. As usual, it is necessary to negate the maps on every other column to
make P** a double complex.

THEOREM 3.6.3. Suppose C and D are chain complexes of right, resp.
left A-modules and suppose the CC,, are flat. Then there is a spectral sequence

Epq = ®Torr (H,, (C), Ht (D)) =* Hp+q (C OA D).
s+t=q

If C and D are cochain complexes then there is a spectral sequence with

E2q = ® TorAp(HS(C), Ht(D))
s+t=q

This is a "second quadrant spectral sequence" (i.e. p < 0 and q > 0) so there
are convergence problems, but when the spectral sequence does converge, it
does so to Hp+q(C ®A D).

PROOF. Form a proper projective resolution Ppq of D, and tensor with
C in the vertical direction:

(C®AP)pq= Cs®APpt.
s+t=q

Examine the two spectral sequences associated to this double complex. If
we do the vertical differential first, each column is C* ®A P. Since Z(Pp*)
and H(Pp*) are projective (since Ppq is a proper projective resolution of D),
Corollary 2.7.2 to the Kiinneth theorem (Volume I) implies that

EPq = Hq(C* (9 Pp.) H,, (C.) 0 Ht (Pp.).
s+t=q
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Since

... -; Ht(P2*) -> Ht(Pi*) -> Ht(Po*) - Ht(D*) - 0

is a projective resolution, the homology of this complex with respect to the
horizontal differential d1 is

EPq = ® Torp(HS(C*),Ht(D*))
s+t=q

On the other hand, if we do the horizontal differential first, we obtain a
spectral sequence in which El consists of just the zeroth column, since the
Cn are flat so that the rows remain exact. The zeroth column is Tot(C 0 D)
and so E2 = E°° = H.(Tot (C 0 D)). Thus the first spectral sequence also
converges to the same answer.

The case of cochain complexes is similar, with the stated proviso.

3.7. The Eilenberg-Moore spectral sequence

In this section, we give an extremely condensed account of the Eilenberg-
Moore spectral sequence. For more detailed accounts, see for example Smith
[238, 239] or McCleary [183]. We shall not make much use of this spectral
sequence in the rest of this book, but as we already pointed out in the intro-
ductory section of this chapter, it can be used as an effective computational
device for computing the cohomology of central extensions.

Suppose we are given a pullback diagram of fibrations of CW-complexes

E' E

I,

and assume for simplicity that 7f1 (B) = 0 and that we are working over a
field of coefficients. The complex of singular cochains A* (B) has a struc-
ture of a graded algebra (multiplication corresponding to cup product, which
is associative but not commutative) with a differential d satisfying d(ab) =
d(a)b+(-1)deg(a)ad(b). Such an object is called a differential graded alge-
bra or DGA. There is also an obvious notion of differential graded modules
over a DGA, and we have a diagram of DG modules over A* (B) as follows.

A*(E') E A*(E)

A* (B') E- A*(B)

As in Definition 3.6.1, DG modules admit proper projective resolutions,
and it turns out that if Q** --> A* (B') is a proper projective resolution, there
is a natural map

Tot(Q**) ®o*(B) A*(E) -> A*(E')
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inducing an isomorphism in cohomology

Tot(Toro*(B)(A*(B'), A*(E))) _-- H*(E).

Here, Tor** is defined as follows. If M* and N* are right, resp. left DG mod-
ules over a DG algebra IF, and P** M* is a proper projective resolution,
we define

Torr*(M*, N*) = H* (P** Or M*)

with respect to the total differential (do + d1) ® 1 + (-1)1111 ® dM. The
two gradings on Tor are as follows. The first grading is the homological
grading, and the second is the internal grading coming from the grading on
the modules.

Regarding P** Or M* as a double complex
(P** Or M*)Pq = ® Pps or Mt

s+t=q

we obtain a spectral sequence

E2* =TorH(r)(H(M*), H(N*)) Tot(Torr*(M*, N*)).

Applying this to the above isomorphism, we obtain the Eilenberg-Moore
spectral sequence

TorH* (B)(H*(B'), H* (E)) H* (E').

As in the case of the Kiinneth spectral sequence for cochain complexes, this
is a second quadrant spectral sequence. In fact, L. Smith has shown that
the Eilenberg-Moore spectral sequence can be viewed as a kind of Kiinneth
spectral sequence.

Given a central extension 1 - Z -+ G -> G/Z - 1, the corresponding
element of H2 (G/Z, Z) (see Section 3.7 of Volume I) corresponds to a map
K(G/Z, 1) -* K(Z, 2) (see Section 2.2). If we turn this into a fibration (end
of Section 1.6), then the long exact sequence in homotopy (Theorem 1.6.6)
shows that the fibre is a K(G, 1), so we have a fibration

K(G,1) -* K(G/Z, 1) -> K(Z, 2),

and hence an Eilenberg-Moore spectral sequence

H*(G).

It is most practical to compute this in case Z = 7Z/2. Now the spectral
sequence (Section 3.3) of the path fibration (end of Section 1.6)

K(Z, 1) = S1K(Z, 2) -* PK(Z, 2) - K(Z, 2)

converges to zero in degrees other than zero. Following this through, we see
that

H*(K(Z/2, 2);1F2) =F2 [UO, u1, ... ],

a polynomial ring in infinitely many variables ui of degree 2' + 1. To cal-
culate Tor, one uses a Koszul complex (see for example Serre [233], Section
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IV A, or Mac Lane [170], Section VII.2). See also Section 4.8 for the role
of the Steenrod operations, and Rusin [226] for explicit calculations in this
situation.

3.8. The Atiyah spectral sequence
The Atiyah spectral sequence [18] is a spectral sequence going from the

cohomology of a finite group to its representation theory. It was obtained as a
particular example of the Atiyah-Hirzebruch spectral sequence, by using the
Bott Periodicity Theorem 2.5.4 and the Atiyah Completion Theorem 2.5.5.

The Atiyah-Hirzebruch spectral sequence is a method of computing the
value of an (unreduced) generalised cohomology theory h* on a space, starting
with the ordinary cohomology of the space and the values of h* on a point.
More generally, given any Serre fibration p : E -> B with B a CW-complex,
and fibre F = p 1(bo), we have an Atiyah-Hirzebruch spectral sequence

H1(B; hq(F)) hP+q(E).

The special case E = B gives us

HP (B; hq(point)) = hP+q(B).

Just as in the spectral sequence of a fibration (Section 3.3), we should
either stipulate that irl(B) acts trivially on h*(F), which certainly happens
in case F is a point, or regard h* (F) as a local system of coefficients on B.

The derivation of the Atiyah-Hirzebruch spectral sequence is identical
to the derivation of the spectral sequence of a fibration. Thus for example
Epq = CP(B; hq(F)), and d1 is described in exactly the same way as before.

The Atiyah spectral sequence is the particular case of the Atiyah-Hirze-
bruch spectral sequence in which B = E = BG and h* is K-theory. By
Theorem 2.5.5, KT(BG) = a(CG)^ for n even and zero for n odd. The Bott
Periodicity Theorem 2.5.4 shows that K*(point) = Z for n even and zero for
n odd. So the spectral sequence

H*(BG; K*(point)) K*(BG)

is a first and fourth quadrant spectral sequence with periodicity two in the
vertical direction, and with alternate rows H* (G, Z) and zero. Since every
other row is zero, the even differentials den are also zero. It is customary to
get rid of the vertical repetition, and to consider the spectral sequence to sit
along a single line

H*(G,Z) r a(CG)"

with differentials d3, d5, etc. increasing cohomological degree by 3, 5, etc.

EXERCISE. Investigate the Atiyah spectral sequence for some small finite
groups; for example, cyclic groups, the symmetric group of degree three, the
dihedral and quaternion groups of order eight.
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3.9. Products in spectral sequences
We shall show in this section how product structures on double complexes

or filtered complexes give rise to products in the entire spectral sequence in
a useful way. For an alternative approach to products using exact couples,
see Massey [178]. The theory of products in exact couples is not quite as
straightforward as one might hope.

DEFINITION 3.9.1. A pairing of double complexes E0 x 'E0 - "E0 con-
sists of maps

E, pq ®Epl qt ,Ep+p',q+q'
0 0 0

x®y'-->xy
satisfying the identities

do(xy) = do(x)y + (-1)1+gxdo(y)
di (xy) = dl(x)y+ (-1)p+gxdl(y)

A double complex with ring structure is a double complex E0 to-
gether with an associative pairing E0 x E0 -; Eo. A module over a double
complex with ring structure E0 is a double complex'E0 together with a pairing
E0 x'E0 --+ 'E0 satisfying the usual associative law for the action of a ring on
a module.

For example, in the case of the spectral sequence of a group extension,
suppose Ml, M1' are R(G/N)-modules with projective resolutions P, P',
suppose M2, M2 are RG-modules with projective resolutions Q, Q', and
suppose M3, M3 are also RG-modules. Setting

Eoq = HomR(G/N) (Pp, HomRN(Qq, M3))

'Eoq = HomR(G/N) (PI, HomRN(Qq, M3))
"Eopq = HomR(GIN) ((P ® P')p,HomRN((Q 0 Q')q, M3 ® M3))

there are cup product maps, as in Section 3.2 of Volume I, giving a pairing
Eo x 'Eo -f "Eo.

If Ml = M2 = M3 = R then E0 is a double complex with ring structure.
If M1' = M2 = R and M3 = M is arbitrary then 'E0 is a module over E0. We
shall see that this gives the entire spectral sequence

HP(G/N, Hq(N, R)) = Hp+q(G, R)

a ring structure over which the spectral sequence
Hp(G/N, Hq(N, M)) Hp+q(G, M)

is a module.
We now pass from the double complex to the associated filtered complex.

Recall that

FpTot(Eo)p+q = ® Eo
i+j=p+q

i>p
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Thus a pairing E0 x 'E0 -j "Eo gives rise to a pairing

Tot(Eo)p+q ® Tot ('Eo)P +q --+ Tot("E0)p+P'+q+q'

satisfying the identity
d(xy) = d(x)y + (_1)deg(x)xd(y)

and with the property that the image under this map of the tensor product of
subcomplexes lies in FP+P'Tot("Eo)p+p'+q+q'.

DEFINITION 3.9.2. A pairing of filtered cochain complexes X x'X - "X
consists of maps

Xm ®'X n "Xm+n

x®y'-'xy
satisfying the identity

d(xy) = d(x)y + (_1)deg(x)xd(y)

and with the property that the image under this map of FPX 0 FP''X lies in
FP+P' 'X .

Such a pairing induces maps
HP+q(FPX) x HP'+q' (FP''X) y HP+P'+q+q' (FP+P' "X

)

HP+q (FPX, FP+nX) X HP'+q' (FP''X
, FP'+n 'X )
Hp+p'+q+q' (FP+P' "X, FP+P'+n "X)

and hence in particular with n = 1,
DPq X 'Dp'q' "DP+p',q+q'

1 1 1

EPq x'Ep'q' , i/Ep+p',q+q'.
1 1 1

The maps
HP+q(FPX FP+nX) -4 HP+q(FPX FP+1X) - HP+q(FP-n+1X FP+1X)

take products to products, and so by Proposition 3.2.4, the image of Zn x'Zn
under this product map lies in "Zn, and the images of Zn x 'Bn and B" x 'Z,,
lie in "Bn. It follows that there are products

EPq X 'EP'9' IfEP+p',q+q"
n n n

satisfying the identity

dn(xy) = dn(x)y + (_1)p+gxdn(y),
and with the property that the product on En+1 is induced by the product
on En according to the formula

[x] [y] = [xy]
This then induces a product on E,,, in the obvious way. It also follows from
the above that the isomorphism given in Theorem 3.2.6 preserves products.
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Since the relevant maps in Theorem 3.2.9 take products to products, it also
follows that the isomorphism given in this theorem preserves products. We
summarise the situation in the following theorem.

THEOREM 3.9.3. A pairing E0 x'E0 -* "E0 of double complexes gives rise
to a pairing X x 'X -* "X of filtered cochain complexes. Such a pairing in
turn gives rise to pairings

Epq X 'Ep'q' -* FF p+p',q+q'
n n n

satisfying dn(xy) = dn(x)y + (-1)p+gxdn(y) and [x][y] _ [xy] in En+1 In
the limit this induces a pairing

Egg X 'EP'q' , "Ep+p',q+q'
00 00

in such a way that the isomorphisms
E'q - FPHP+q(X)/F,P+1HP+q(X)

given in Theorem 3.2.9 preserve products.

Notice that we may only deduce the product structure on H* (X) modulo
terms lower down in the filtration. It may be quite hard to deduce the exact
product structure on H* (X) from this information.

3.10. Equivariant cohomology and finite generation

In this book, we give two different proofs of finite generation of cohomol-
ogy of a finite group. The first proof, due to Venkov [273, 274] (see also
Quillen [209]) is topological, and occupies this section. The second proof,
due to Evens [101], is algebraic, and is given in Section 4.2. In each case, we
prove the theorem natural to the theory. In the case of Venkov's proof, the
setting is equivariant cohomology.

Given any topological group G of the homotopy type of a CW complex,
and a G-space X, we may define the equivariant cohomology of G with
coefficients in X to be

HG(X; R) = H*(EG xG X; R).

If : G --+ G' is a homomorphism and f : X -* X' is a compatible map (i.e.,
f (gx) = 0(g) f (x)) we have a square which commutes up to homotopy

(EGxEG')XGX EG'XGX

EGxGX.. >EG'xG,X'
The fibres of the left-hand and top map are contractible by Lemma 2.4.7, so
by Theorem 1.5.8 they are homotopy equivalences. This allows us to fill in
the dotted arrow at the bottom uniquely up to homotopy.

In particular, if we take G = G' and X = X', this shows that the dotted
arrow is a homotopy equivalence, so that HG(X; R) is independent of the
choice of EG.
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In fact this is the topological analogue of hypercohomology, introduced in
Section 2.7 of Volume I. Namely, if G is discrete, let 0*(X; R) be the complex
of singular chains on X. Then 0*(EG x X; R) is a projective resolution of
0*(X; R) as a complex of RG-modules, and so

H*(EG xG X; R) = H*(HomR(0*(EG xG X; R), R))
= H*(HomRG(A*(EG x X;R),R))

= ExtRG(0*(X; R), R)
Since there is a fibration EG XG X - EG xG (point) = BG with fibre

X, we have a spectral sequence

HP(BG;H9(X)) = HG 9(X)

The space EG xG X is known as the Borel construction on X, and so this
spectral sequence is called the spectral sequence of the Borel construction,
or the spectral sequence of equivariant cohomology.

THEOREM 3.10.1. Suppose G is a finite group (or more generally a com-
pact Lie group), R is a commutative Noetherian ring of coefficients, and
G -4 U(n) is an embedding of G into a complex unitary group. If X is a
G-space with the property that H*(X; R) is a finitely generated R-module,
then HG(X; R) is a finitely generated module over H*(BU; R).

PROOF. It follows from the hypothesis that Hn(X; R) = 0 for n large.
We have a fibration U(n) xG X -+ U(n)/G with fibre X, which gives rise to
a spectral sequence

H*(U(n)/G; H* (X; R)) H*(U(n) xG X; R).

Now U(n)/G is a finite CW-complex, and so the E2 term of the above spectral
sequence is a finitely generated R-module. Since E,,, is a subquotient of E2,
this is also a finitely generated R-module. It follows that H* (U(n) xG X; R)
has a finite filtration by finitely generated R-modules, and is hence finitely
generated.

Since EU(n) XU(n) (U(n) xG X) = EU(n) xG X and EU(n) is a con-
tractible space on which G acts freely, we have

HU(n) (U(n) xG X; R) = HG(X; R).

We thus have a map of spectral sequences

H*(BU(n); H*(point; R)) H*(BU(n); R)

H*(BU(n); H*(U(n) xG X; R)) HG(X; R)

which makes the lower spectral sequence into a spectral sequence of modules
over the ring H*(BU(n); R). Now we described the latter in Section 2.6. We
have

H*(BU(n); R) = R[ci,... , cn]
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with deg(cj) = 2i. The space BU(n) is simply connected, and so

H*(BU(n); H*(U(n) XG X; R)) = H*(U(n) XG X; R)[c1i... , c,1.]

is a finitely generated module over the Noetherian ring H*(BU(n); R) by the
Hilbert basis theorem, and so the E2 page of the lower spectral sequence in
the above diagram is a finitely generated H*(BU(n); R)-module. It follows
that the E,,, page is also a finitely generated module, and hence HG(X; R)
has a finite filtration by finitely generated H* (BU(n); R)-module and is hence
finitely generated.

COROLLARY 3.10.2. If G is finite (or compact Lie) and R is Noetherian,
the ring H*(G; R) is finitely generated as a module over the subring generated
by the Chern classes of any faithful complex representation. In particular, it
is a finitely generated graded commutative R-algebra.

PROOF. This is the case where X is a point in the above theorem.





CHAPTER 4

The Evens norm map and the Steenrod algebra

4.1. The Evens norm map
We now define the Evens norm map

riormH G : EXLRH(Ml, M2) -> EXtnr (Mle, M2e)

(with a slight twist in case r is odd, to be explained later), where H < G and
n = IG : HI. This bears the same relation to transfer that tensor induction
does to induction.

Recall from Section 3.15 of Volume I that if M is an RH-module then
M®n is an R(En 1 H)-module, which restricts via i : G - En? H to the tensor
induced module MfG. Similarly if C is a chain complex of RH-modules then
C OR C is a chain complex of R(H x H)-modules, and so on. Since tensor
product is graded commutative, we must be careful about signs in order to
make Con into a chain complex of R(En 1 H)-modules. The action of En 1 H
on Con is given as follows:

(ir; hl, ... , hn)(xl ®... 0 xn) = (_1)' h,_1(l)x_1(l) ®... 0 h,-1(n)X--1(n)

where

v = deg(xj)deg(xk).

j<k

,,(j)>ir(k)

In other words, we write it as a product of standard transpositions (j, j + 1),
and for each one we multiply by a sign of (- 1)deg(x,)deg(xj+1)

By restricting to G via i : G y En 1 H, we obtain a chain complex
C6G = i*(C®n) of RG-modules. If C is exact and the Cr are projective as
R-modules then Proposition 3.4.4 shows that Con and C6G are also exact.

Now if a : Cr -* M is a map of RH-modules, then in order to make
a®n : (Cr)®n -* M®n a map of R(En 1 H)-modules, we need to be a little
careful with the signs. If r is even, there is no problem, but if r is odd we
must make odd permutations in En act with a minus sign. We define R(r)
to be the R(En 1 H)-module R on which H x x H acts trivially, and En
acts trivially if r is even, and via the sign representation if r is odd. Thus
a®n is really a map from (Cr)®n to M®n ® R(r). We define 1 1 a to be the
composite map

1 1 a : (C®n)nr -> (Cr)®n , M®n ® R(r)

121
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as a map of R(En 1 H)-modules, and hence a map of RG-modules

1 2a : (C,bG)nr - MSG®R(r).

We have
n

S(1 t a) _ (-1)(j 1)ra®( 1) ®Sa ®a®(n-j)

j=1

so that if&a=0 then 6(1la)=0.
If Q is a projective resolution of M1 over RH then Q®n is an exact

sequence of not necessarily projective modules for R(En 1 H), resolving M®n.
If P is a projective resolution of M®n (for example we could take P to be
the tensor product of a projective resolution of R for REn with Q®n) then
by the remark after Theorem 2.4.2 of Volume I, there is a map of chain
complexes 0: P -* Q®n lifting the identity map on M®n, and any two such
maps are chain homotopic. Thus if E ExtRH(M1, M2) is represented by a
cocycle : Qr -+ M2 then (1 1 o ¢ is also a cocycle. We must check that
the cohomology class it defines is independent of the choice of Q and of the
representative cocycle .

LEMMA 4.1.1. Suppose C is a chain complex of RH-modules, and f,
g : Q -> C are homotopic chain maps. Then

fIn . 0, g®n 0 0: P _ Con

are homotopic chain maps of R(En 1 H)-modules.

PROOF. Denote by I the chain complex of R-modules with Io = R ® R
with basis a and b, Il = R with basis c and 8c = a - b, and In = 0 for
n # 0, 1 (in other words, I is the cellular chain complex of the unit interval).
Then a homotopy from f to g is really just a map of chain complexes of
RH-modules h : I ® Q - C with h(a ® q) = f (q) and h(b ® q) = g(q) (so
that h(c ® q) = h(q) satisfies f - g = 8 o h + h o 8). If we can construct a
chain map of R(En 1 H)-modules

Vi:I®P->Ion ®Q®n

with 0(a 0 p) = On 0 q(p) and 0(b 0 p) = bon 0 (p), then the composite

I ®P J), Ion ®Q®n C, (I ®Q)®n
h 1n Con

q5.will be a homotopy from f ®n 0 0 to g®n 0
We construct the map 0 by induction on degree. Note that 0 is already

defined on Io 0 P by the given conditions. If 0 has been constructed up
to degree r, then we construct Or+1 by filling in the left-hand end of the
following diagram with a vertical arrow, using the fact that P consists of
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projective modules and a o 0, o a = 0.

I1 ®Pr a (lop) - -------- a
--->- (10 p)(,-l)

8 8(Ion ® Q®n)r(Ion ® Q®n)r+1 , (Ion ® Q®n)r-1

The resulting map b is clearly a chain map with the desired properties.

By taking C to be the module M2 concentrated in degree r, we see that
(1 o 0 is independent of the choice of cocycle S representing C. By taking
C = Q' to be another resolution of M1, we see that the definition is inde-
pendent of the choice of resolution. So we obtain a well defined cohomology
class

12 ( E ExtR(En?H) (M®n, M®n ® R(r) )

We define the Evens norm mapvia

normH i*(1 2 () E ExtRG(Mie, M2e ®R(r))

Note that if r is odd, the exact sign of this norm depends on the order chosen
for the coset representatives.

If we tensor induce the trivial module R we obtain R6G = R and so this
also defines a map

normH,G : Hr(H, M) -> Hnr(G, M6G ®R(r)).

In particular for r even we have a map

normH,G : Hr(H,R) -* Hnr(G,R).

The following properties of the Evens norm map are direct consequences
of the corresponding properties of tensor induction given in Proposition 3.15.1
of Volume I, with suitable attention paid to the signs.

PROPOSITION 4.1.2. Suppose H < G with IG : HI = n.
(i) If C E ExtRH(M1i M2) and C' E ExtRH(M3i M4) then

normH,G(C.(') _ (-1)
®R(r+s))E ExtRG+s)((Ml ® (M2 ®M4)6®

(ii) If H' < H and c E ExtRH, (M1, M2) then

normH,GnormH',H(() = normH',G(c)

(where the coset representatives of H' in G have been chosen in the order
coming from the choices of coset representatives of H' in H and H in G).

(iii) If (, c' E ExtRH(M1i M2) then

normH,G(( + ') = normH,G(O + normH,G(()

+ a sum of transfers from proper subgroups K containing the intersection of
the conjugates of H.

101 1V5r-1
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(iv) If H' < H and E ExtRH,(M1, M2) then normH,GtrH',H(() is a sum
of transfers from subgroups K containing the intersection of the conjugates
of H', and with K f1 H < H'.

(v) (Mackey formula) If K, H < G and ( E ExtRK(M1, M2) then

resG,HnormK,G(() = rl normHn9K,HresgK,Hn9K(gC)
H\G/K

(vi) If N is a normal subgroup of G contained in H, and M1 and M2 are
RH-modules on which N acts trivially, then for ( E ExtR(H/n) (Ml, M2) we
have

infG/N,GnormH/N,G/N(c) = normH,GinfH/N,H(c)

REMARK. Graeme Segal [230] has constructed a generalised cohomology
theory whose degree zero part (additively) is the multiplicative group of for-
mal series {a2Z}, a2i E H2z(X; R) and ao invertible. The transfer map (see
Section 2.7) in this theory gives the Evens norm map

normH,G : H'r(BH; R) - H" (BG; R)

for r even. Fulton and MacPherson [113] give a direct description of the
norm map for finite coverings of topological spaces, and describe the Chern
classes of an induced representation (or more generally a direct image bundle)
in terms of this construction.

THEOREM 4.1.3. If p divides I GI and p is not invertible in R then for
some r > 0, Hr'(G, R) 0. Moreover, if g # 1 is an element of order p
in G, such an element can be chosen to restrict to a non-zero element of
Hr((g), R).

PROOF. Let g 1 be an element of G of order p, and let H = NG(g). By
Corollary 3.5.4 of Volume I, there is a non-nilpotent element a c H2((g), R).
For x E H, conjugation by x sends a to Au for some A with AP-1 = 1 (since
the action of conjugation by x on (g) has order dividing p - 1). Thus, letting
a = uP-1, a is an H-invariant non-nilpotent element of H2(p-1) ((g), R). Let
ING((g)) : (g) I = pah with p not dividing h, and set

z = norm(g),G(1 + a).

Then the Mackey formula 4.1.2 (v) shows that

resG,(g)(z) = (1+a)Pah = (1+apa)h

= 1 + haft + terms of higher degree.

Thus z has a non-zero homogeneous part in degree 2(p - 1)pa. El

EXAMPLE. Let G = Z/p x Z/p with p odd, and H = 1 x Z/p C G. Then
by Section 3.5 of Volume I, H*(G,FP) has generators yl and y2 in degree
one with y1 = y2 = 0, and generators xl and x2 in degree two. H*(H,lFP)
is generated by y2 and X2, which are the restrictions of the elements of the
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same name in H* (G, IFp), while yl and xl restrict to zero. We shall calculate
normH,G(y2) and normH,G(x2). We first deal with the latter.

Since

resG,HnormH,G(x2) = x2

and normH,G(x2) is invariant under automorphisms of the first copy of 7L/p,
we have

normH,G(x2) = x2 + A4-1x2 + µ4 2yix2y2

for some values of the scalars A and M. The norm of x2 is also invariant
under the automorphism of Z/p x Z/p which fixes the second generator and
sends the first to its product with the second. This automorphism sends Y2
to y1 + Y2, x2 to x1 + X2, and fixes yl and x1. Thus we have

normH,G(x2) = (x1 + X2)p + A4-1(x1 + X2)+ µx1-2y1(x1 + x2)(y1 + y2)

Equating this with the previous expression we find that A = -1 and µ = 0,
so that

normH,G(x2) = x2 - x1 1x2.

Thus by multiplicativity of the norm we have

normH,G(x2) = (x2 - 4 1 X2)T.

Applying the same reasoning to Y2, we see that normH,G(y2) is of the
form

µxlp-3)/2y1x2

Note that since Y2 has odd degree, the action of the automorphisms of Z/p on
cohomology has to be tensored with the sign representation. The invariants
of this action are discussed in Section 3.6 of Volume I.

Again applying the automorphism fixing the first generator and sending
the second to its product with the first, we see that A = -µ. However, this
reasoning does not allow us to evaluate A explicitly. Of course, the sign of A
depends on which ordering is chosen for the cosets of H in G, as is always
true in odd degree. We shall see in Section 4.5 that for a suitable choice of
this order we have A so that

normH,G(y2) = x1)_3)/2(xly2 - ylx2)/(2)!
We summarise the results of this calculation for future reference. The

corresponding result for p = 2 is easy to check by the same method.

PROPOSITION 4.1.4. Let G = Z/p x Z/p with p odd, and H = 1 x 7L/p <
G. Then using the above notation for elements of H*(H,!Fp) and H*(G,1Fp)
we have

(i) normH,G(x2) = x2 - xl-1x2

(ii) normH,G(y2) _ Axip-3)/2(xly2 - y1x2),
where A is a multiplicative constant which will be seen in Section 4.5 to be
1/(p21)!.
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If G = Z/2 x Z/2 and H = 1 x Z/2 < G then H*(G,1F2) is generated by
elements y1 and y2 of degree one. If H is the subgroup corresponding to the
element y1i then writing y2 for the restriction of y2 to H we have

normH,G(y2) = y2 + y02

EXERCISE. (Nakaoka's Theorem [202], see also Quillen [213] §3) Suppose
that R = k is a field, and G C En, and H are finite groups with wreath
product G 1 H. If P is a minimal resolution of k as a kG-module and Q
is a minimal resolution of k as a kH-module, show that Q®n is a minimal
projective resolution of k as a k(H')-module. Show that if we use p ® Q®n
as a resolution for G 1 H, then the differential on

Homk(G?H)(P 0 Q®n, k) = HomkG(P, Homkx(Q, k)®n)

comes entirely from the differential on P. Deduce that the cohomology of
G? H is given by

H- (G 1 H, k) = H- (G, H- (H-, k)).

In other words, in the Lyndon-Hochschild-Serre spectral sequence for the
normal subgroup H', converging to H* (G 1 H, k), all the differentials from
the E2 page onwards are zero, and the filtered graded ring H*(G 1 H, k) is
isomorphic to its associated double graded ring EZ. Use this to give another
proof of Lemma 4.1.1 in case R = k.

4.2. Finite generation of cohomology

In this section we present Evens' proof [101] that the cohomology ring
of a finite group over a Noetherian ring is finitely generated. For Venkov's
topological proof see Section 3.10.

THEOREM 4.2.1 (Evens). If G is a finite group and M is an RG-module
which is Noetherian as a module for R then H*(G, M) is Noetherian as a
module forH*(G,R).

COROLLARY 4.2.2. If R is a Noetherian ring then H* (G, R) is finitely
generated by homogeneous elements, as a ring over R.

WARNING. If R is not Noetherian then H* (G, R) is not necessarily finitely
generated over R. For example if G = Z/p and R = Z ® (Z/p)°° (with
multiplication given by (a, b).(c, d) = (ac, cb + ad)) then there are infinitely
many new generators in degree one.

The corollary follows from the theorem (with M = R) by applying the
following lemma.

LEMMA 4.2.3. If H = ®n>° Hn is a graded ring and H is Noetherian
(as a ring), then H° is Noetherian and H is finitely generated over H° by
homogeneous elements.
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PROOF. Since there is a surjective map H -H H°, H° is Noetherian. Let
H+ = ®n>0 Hn. This is an ideal in H, and is hence finitely generated. Each
generator is a finite sum of homogeneous elements, and so H+ is generated
as an ideal by homogeneous elements a1, ... , an, say. Then H is generated
as a ring over H° by 1, al, ... , an.

To prove the theorem, we first reduce to the Sylow p-subgroups of G, and
then we proceed by induction on the order of the p-group, using the spectral
sequence coming from a central element of order p. The crux of the proof
is the fact that this spectral sequence stops at some finite page, and this
involves the use of the Evens norm map.

REDUCTION TO SYLOW p-SUBGROUPS. By Proposition 3.7.10 of Vol-
ume I, for any a of positive degree in H*(G, M) we have IGI.a = 0. Thus if
we set

H+(G, M) _ ®Hn(G, M)
n>O

then we have

H+ (G, M) = ® H+ (G, M) (P)

PI IG1

where H+ (G, M) (p) denotes the elements in H+ (G, M) annihilated by I GI p.
Again using Proposition 3.7.10 of Volume I, we see that if P is a Sylow
p-subgroup of G then

is injective, and

where

resG, p : H* (G, M) (p) * H* (P, M)

H*(P,M) = H*(G,M)(p) ®T(M)

T(M) = Ker(trp,G : H* (P, M) --> H* (G, M)).

Thus we need to show that if H*(G, M)(p) ®T(M) is Noetherian as a module
over H*(G,R)(p) ®T(R) then H*(G,M)(p) is Noetherian as a module over
H*(G, R)(p).

Now by Lemma 3.7.9 (ii) of Volume I, we have

trp,G(13).a = trp,G(/3.resG,p(a))

so that

T(R).H+(G, M) (P) C T(M).

We also have

H+ (G, M) (p) C H+ (G, M) (p).
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Thus if A is an H+(G, R) (p)-submodule of H+ (G, M) (p) then

H+ (P, R).A = (H+ (G, R) (p) +T(R)).A

= H+ (G, R) (p).A + T(R).A C H+ (G, M) (p) +T(M).

It follows that if A is a proper submodule of A' then H+(P, R).A is a proper
submodule of H+ (P, R).A', and so infinite ascending chains in H+ (G, M) (p)
give rise to infinite ascending chains in H+(P, M).

THE CASE G = P IS A p-GROUP. We proceed by induction on the
order of P. If P = 1 the theorem is trivial. If P > 1, then let Z be a
cyclic subgroup of order p in Z(P), and examine the spectral sequence of the
central extension 1 -* Z -+ P -+ P/Z - 1. Set

E2(R) = H*(P/Z, H*(Z, R)), E2(M) = H*(P/Z, H*(Z, M)).

Then E2(R) has a ring structure over which E2(M) is a module (see Sec-
tion 3.9).

Now recall that the vertical edge homomorphism is just the restriction
map, so that the following diagram commutes:

H*(P, R)
resp z

H°(P, H*(Z, R)) = H*(Z, R)

EE**(R)I E20* (R)

Let a E H2(Z, R) be the element described in Corollary 3.5.4 of Volume I,
with the property that cup product with a induces an isomorphism

Hr(Z -) - H'r+2(Z -)
for all r and for all coefficients. Then setting n = IP : Z1, we have

an = respznormZ p(a)

so that the element = an is an element of degree 2n in Im(resp,z), i.e., in
E2 n(R).

Set

so that

E2, (M) _ ® EEq(M)
O<q<2n-1

E2(M) =
N>O

Since each H" (Z, M) is a subquotient of M (Corollary 3.5.2 of Volume I),
it is Noetherian over R, and so by the inductive hypothesis each E2*q(M) =

H*(P/Z, Hq(Z, M)) is Noetherian over E2°(R) = H*(P/Z, R). Thus E2' (M)
is Noetherian over E2*°(R). It now follows from the Hilbert basis theorem
that E2(M) is Noetherian over E2°(R)[].
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Now recall that
El(M) = Zi(M) D Z2(M) D ... D B2(M) 2 B1(M) = 0

with E2(M) = Z2(M)/B2(M). The product rule (Theorem 3.9.3) shows
that each Zr(M) and each Br(M) is a submodule of E2(M) as an EZ°(R)[l ]-
module (note that if each Zr(M) and Br(M) were an E2(R)-module the
proof would be easier to word, but it seems that there is no reason why this
should be the case). Since EC(M) = Z,,(M)/BE(M) is a subquotient of
E2(M), it is a Noetherian Now there is a surjective ring
homomorphism

whose kernel acts trivially on EC(M). Thus EC(M) is Noetherian as an
E 0(R)[t;]-module, and hence Noetherian as an EA(R)-module.

Now H*(P, M) has a filtration whose filtered quotients are
EIZ(M) - FPHP+e(p M)/Fr+1Hr+e(p,M),

so we need to "unfilter" this statement. Suppose Al C A2 C C H*(P, M)
is an infinite ascending chain of submodules for the action of H*(P, R). Let
FPAi = Ai fl FPH* (P, M) and

Bi = ® FPAi/FP+1Ai C E.(M)
P>0

If x is an element of Ai+i not in Ai, then for some p, x E FPAi+1 but
x ¢ FP+lAi+i+FPAi and sox+FP+'Ai+l is not in the image of the inclusion

FPAi/FP+1Ai y FPAi+1/FP+lAi+1

Thus Bi+1 properly contains Bi and so we have an infinite ascending chain
of EA(R)-submodules of EC(M). We know that this is impossible, and so
this completes the proof of Theorem 4.2.1.

COROLLARY 4.2.4. If G is finite and M and N are RG-modules such that
HomR(M, N) is a Noetherian R-module, then ExtRG(M, N) is Noetherian
as a module over the ring H* (G, R) via cup product, and also as a module
over the ring ExtRG(M, M) by Yoneda composition. If HomR(M, M) is a
Noetherian R-module then the ring ExtRG(M, M) is Noetherian as a module
over its centre ZExtRG(M, M).

PROOF. We have

H*(G, HomR(M, N)) = ExtRG(M, N)

(see Proposition 3.1.8 of Volume I), so that by Theorem 4.2.1, ExtRG(M, N) is
Noetherian as a module over H* (G, R). According to Section 3.2 of Volume I,
the cup product action of H*(G, R) on ExtRG(M, N) factors as the map

H*(G, R) = ExtRG(R, R) -L ExtRG(M, M)

followed by Yoneda composition. Therefore ExtRG(M, N) is Noetherian as a
module over ExtRG(M, M). Finally, the image of even degree elements under
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the above map lie in the centre of ExtRG(M, M) by Section 3.2 of Volume I,
and so ExtRG(M, M) is Noetherian as a module over its centre. El

COROLLARY 4.2.5. If H is a subgroup of a finite group G and R is a Noe-
therian ring, then H*(H, R) is finitely generated as a module over H*(G, R)
(via the restriction map).

PROOF. The Eckmann-Shapiro isomorphism (see Corollary 3.3.2 of Vol-
ume I)

H*(H,R) = H*(G,RHTG)

is an isomorphism of modules over H* (G, R). Since RH TG is a Noetherian
R-module, the result follows directly from Theorem 4.2.1.

Note that Evens' Theorem applies just as well to hypercohomology (see
Section 2.7 of Volume I) of chain complexes of RG-modules. In this context,
a chain complex of RG-modules is thought of as Noetherian as an R-module
if it is non-zero in only finitely many degrees, and each non-zero module is
Noetherian.

THEOREM 4.2.6. Suppose that C and D are chain complexes of RG-mod-
ules. If the complex HomR(C, D) is a Noetherian R-module (and in partic-
ular non-zero in only finitely many degrees) then ExtRG(C, D) is Noether-
ian as a module over H* (G, R) via cup product, and also as a module over
ExtRG(C, C) by Yoneda decomposition.

PROOF. The proof is exactly the same as the proof in the module case.
Namely, the Lyndon-Hochschild-Serre spectral sequence works just as well
for hypercohomology as for cohomology, and we have

H*(G, HomR(C, D)) = ExtRG(C, D).

COROLLARY 4.2.7. Suppose that R is a Noetherian ring with the property
that for each prime p dividing IGJ, either p is invertible in R or R/pR is
Artinian. If C is a finite chain complex of finitely generated RG-modules with
ExtRG(C, C) = 0 for all n sufficiently large, then C has a finite projective
resolution.

PROOF. If D is another finite chain complex of finitely generated RG-
modules, then HomR(C, D) is also a finite chain complex of finitely gener-
ated RG-modules, and so by the above theorem ExtRG(C, D) is Noetherian
as a module over the ring ExtRG(C, C). Since ExtRG(C, C) = 0 for all n
sufficiently large, we deduce the same of ExtRG(C, D).

Now for each p dividing JGk, (R/pR)G is Artinian, and hence has only
finitely many simple modules. So we may choose no such that for all n > no,
all p dividing IGI, and all simple (R/pR)G-modules S, ExtRC(C, S) = 0.
We claim that for all n > no and all finitely generated RG-modules M,
ExtRG(C, M) = 0. For suppose ExtRG(C, M) 0. By Proposition 3.6.17
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of Volume I, multiplication by IGI annihilates ExtRG(C, M). The long exact
sequences in Ext coming from the short exact sequences of modules

0-+JGI.M->M-4 M/IGJ.M->0
and

0->Ker(IGI on M)-#M, IGI.M-*0
give

I
ExtRG(C, Ker(IGI on M))

I
ExtRG(C, M)

ExtRG(C, IGI.M) , ExtRG(C, M) -> ExtRG(C, M/I GI M) .. .

If

and so either ExtRG(C, Ker(IGI on M)) or ExtRG(C, M/IGI.M) is non-zero.
Thus we may assume that multiplication by IGI on M is zero. Using the long
exact sequences coming from multiplication by the primes dividing IGI in the
same way, we may assume that multiplication by p on M is zero for some p
dividing IGI. But now since (R/pR)G is Artinian, this implies that M has
finite composition length and so again using the long exact sequences coming
from a composition series, we see that we may assume that M is simple. But
we have chosen n so that ExtRG(C, M) is zero in this case.

Now let P be a projective resolution of C, bounded below, in which each
Pn is a finitely generated RG-module. Choose no as above, and so that also
Cn = 0 for n > no. Then for n > no,

Pn-Pn-1
is exact. Let M = Im(Pn -* Pn_1). Then

HomRG(Pn-1, M) -* HomRG(Pf, M) -* HomRG(Pf+1, M) -> .. .

is exact, since ExtRG(C, M) = 0. The natural homomorphism P,, -> M goes
to zero in HomRG(Pn+l, M), and so it is a composite Pn -> Pn-1 -> M. It
follows that M is a summand of Pn-1i so that

0-+ Pn-1/M-+Pn-2->... -0

is a finite projective resolution of C.
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EXERCISE. Let 1 -> Z --4P - P/Z - 1 be a central extension with P
a p-group and Z cyclic of order p, and set n = IP : Z1. Let a be a non-zero
element of H2(Z IFp) = EZ'2 in the spectral sequence

H*(PIZ, H* (Z, lp)) H*(P, lp)
Show that on is a non zero-divisor on every page E,** of this spectral sequence,
on which the differential vanishes. Deduce that normz,p(o,) is a non zero-
divisor in H*(P,IFp).

If G is a finite group, show that the depth of H* (G, F,) (see Defini-
tion 5.4.9) is at least the p-rank of the centre of a Sylow p-subgroup of G
(Duflot [95]).

4.3. The Bockstein homomorphism

DEFINITION 4.3.1. The Bockstein homomorphism

,3: Hr (G, IFp) -+ H'r+1(G, Fp)

is the connecting homomorphism in the long exact sequence associated to the
short exact sequence

0-FP --,Z/p2--FP -#0
of coefficients.

Similarly,

,3 : Hr (G,1Fp) -* Hr+1(G Z)

is the connecting homomorphism associated to the short exact sequence

0-*Z-#Z1-#IFp->0
of coefficients.

LEMMA 4.3.2. /32 = 0 : Hr(G, IFp) Hr+2(G,1Fp).

PROOF. We have 3 = ir* o ,(3, and /3 o 7r* = 0 since these are two adjacent
maps in the long exact sequence.

EXAMPLE. Let G = Z/p, the cyclic group of order p. Then Hr(G, Z) is
isomorphic to Z/p for r even and zero for r odd (Section 3.5 of Volume I).
Thus by the long exact sequence,

/3 : Hr (G, IFp) -> Hr+1(G Z)

is an isomorphism for r odd and zero for r even, and hence also

,3: Hr (G, IFp) -# H'+1 (G, Fp)

is an isomorphism for r odd and zero for r even.

It is worthwhile making explicit what the Bockstein of a degree one ele-
ment of cohomology looks like, since we shall be dealing with these a lot in
the next chapter. Since H1 (G, IFp) Hom(G, IFp ), an element x in degree one
cohomology is always the inflation of an element x E H1 (G/H, IFp), where H
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is the kernel of the corresponding homomorphism 0 : G -> Fp+. We thus have
an isomorphism G/H -* FP+ corresponding to x. Now G/H is cyclic of
order p, and so 6(x) E H2(G/H ]Fp) = ExtFp(G/H)(FP,FP) is represented by
the exact sequence

0 , FP - Fp(GIH) - Fp(GIH) -* -+ 0

(cf. Corollary 3.5.4 of Volume I). In this sequence, the first map is given
by taking 1 E Fp to the sum of the group elements in G/H. The second
map takes 1 E Fp(GIH) to 1 - -1(1) E Fp(G/H), and the third map takes
1 E Fp(GIH) to 1 E Fp. Inflating to G, we see that /3(x) is represented by
the sequence

0 - Fp - (FP)H 1G_ (Fp)H 1G, FP -, 0. (*)

If k is a field of characteristic p, then

H*(G, k) = k ®][ip H*(G, Fp)

and we regard H* (G, Fp) as embedded in H* (G, k) via this isomorphism. If
M is a kG-module, then we have a natural map

H*(G, k) = Ext*G(k, k) -> Ext*kG(M, M)

given by tensoring exact sequences with M. If ( E H* (G, k), we write (M for
the image of ( under this map. Tensoring the above sequence (*) with M,
we obtain a sequence

,3(x)M: 0-*M->M1HTG_ M1HTG*M-0.
Finally, we remark that the above situation is symmetric. Namely, letting

M' be the cokernel of q, or equivalently the kernel of rl' (namely I1G/H(k) ®
M = S2G//H(k) ® M), we have an exact sequence

0-M'-M1H1G- *M1H1G__+ M'-0.

Since this sequence is obtained by tensoring M with the sequence

0 -> QG/H(k) -> k(G/H) --> k(G/H) - QG/H(k) -> 0,

which represents /3(x)OG1H(k), it is easy to see that the above sequence rep-
resents the element

la(x)M, E ExtkG(M',M')
Over a field k containing Fp, we could extend the Bockstein map to a

linear map 0 : Hn(G, k) - Hn+1(G, k), but this turns out not to be a
good thing to do. Instead, we extend semilinearly via the Frobenius map.
Namely, any element of Hn(G, k) can be written as EiAixi with Ai E k and
xi E Hn(G, FP). We then set

,3(1: Aixi) = AP0(xi)
i i

We shall only use this for degree one elements, where it may be justified by
viewing the Bockstein /Q(x) as a p-fold Massey product (x, x,... , x) (or just
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as the cup square for p = 2). In Section 5.8 we shall see another related
justification: this version of the Bockstein map commutes with restriction to
shifted subgroups of an elementary abelian p-group.1

THE BOCKSTEIN SPECTRAL SEQUENCE. The Bockstein sp ctral se-
quence is the spectral sequence associated to the exact couple

H*(G,Z) P H* (G, 7L)

H* (G, Fp)

The differential d1 = ir* o,3 = 0 is the Bockstein homomorphism. The higher
differentials in this spectral sequence are the "higher Bocksteins" d,,, = 3,,.
The map 0,, is defined on the image of H'(G,7Z/pn) -* H'(G, Z/p), and is
given as follows. For such an element, the image of the connecting map

l3n : Hr (G, Fp) -f Hr+1(G, Z/pn)

associated to the short exact sequence of coefficients

0-pZ/p"`- Z/pn+l -*F1,-0
lies in the image of the map

Hr+l (G Fp)
Hr+l (G, Z/pn)

given by the inclusion of Fl, as the elements of additive order p in Z/pn,
and so we pull back to an element of Hr+1 (G, Fp). It is only well defined
modulo the image of /3n_1. Thus the stage at which an element vanishes in
this spectral sequence tells us the order of the p-torsion associated to this
element. In particular the spectral sequence converges to

[H* (G, Z)/(p-torsion)] ®z Fp.

Of course, for a finite group this is zero except in degree zero.
The Bockstein spectral sequence should therefore be regarded as a tool

for comparing integral and mod p cohomology.

MULTIPLICATIVE PROPERTIES.

LEMMA 4.3.3. The Bockstein of a cup product is given by

i3(xy) = ,3(x)y + (_1)deg(x)x13(y)

PROOF. Let P be a projective resolution of Z as a 7LG-module, and let
0 : P - P ® P be a diagonal approximation (see Section 3.2 of Volume I).
Suppose x, y E H* (G, Fp) are represented by cocycles x, y : P -> Fp. Choose
cochains Z;, i : P -p Z/p2 whose reductions modulo p are x, y, so that

'It is very easy to make mistakes in the discussion of the Bockstein map over fields
larger than IF,,. In the first edition of this book, the Frobenius twist was omitted, resulting
in problems for Section 5.8.
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Sl; = p.,3(x) and Srl = p.)3(y). We chase xy = (x ®y) o A explicitly through
the connecting homomorphism

HomzG(Pr, Z/p2) HomZG(Pr, ]Fp)

r
HomzG(Pr+1, Fp) - HomzG(Pr+l, Z/p2)

We have

S( ®rI) o _ (6l; ®rJ + (_1)deg(x) 0 0

_ (p /(x) ®r/ + (_ 1)deg(x) t ®p/3(y)) o A

_ (,3(x) O p? + (_1)deg(x)p ® Q(y)) 0 0

= p((3 ) + (-1)deg(x)(x ))

and hence

13(xy) = a(x)y + (-1)deg(x)xI (y).

What we would like to say next is that the Bockstein of a norm is a
transfer. However, there is a slight technical difficulty here for elements in
odd degree. Namely, the norm map goes from Hr(H,IFp) to Hnr(G,F(r)),
where F(r) is lFp for r even and the sign representation for the action of G on
the cosets of H for r odd. So what we really need to consider is the twisted
Bockstein homomorphism

0 : H4 ((" ]F(r)) - Hq+1(G,1F(r) )
P p

associated to the exact sequence of coefficients

0 , F(r) - (7L/p2)(r) , IF(r) , 0.

Note that in case p = 2 this is a map on cohomology with trivial coefficients,
which does not necessarily agree with the usual Bockstein.

LEMMA 4.3.4. Suppose x E Hr (H, lFp). Then the twisted Bockstein

0(1 t x) E Hnr+l (En t H, F(r))

is given by the formula

(1 1 x) = TrHx(En_12H),En2H(/3(x) ® (1 l x)).

PROOF. Let P be a projective resolution of Z as a 7LG-module. Then x
is represented by a cocycle i : Pr -> F. Choose a cochain t; : Pr -* Z/p2
whose reduction modulo p is x. Then 11 x is represented by the cocycle

1 2 x : (P®n)nr " (Pr)®T _ l'p

which lifts to

1 l : (P®n)nr -4 Z/p2.
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We have
n-1

6(1 7) _ T'(-1)jr®j ® ®®(n-j-1)

j=0
n-1 _

= 7 E(-1)jr®J
j=0

This expression differs from

W (F(x)

by a coboundary. This completes the proof of the formula.

PROPOSITION 4.3.5. If IG : HI = n and x E Hr(H,1Fp) then

normH,G (x) E Hnr+1(G F(pr) )

is a transfer from H.

PROOF. This follows from the lemma, since by the Mackey formula, the
restriction to G of a transfer from H x En_1 2 H to En t H is a transfer from
Gn(HxEn-1lH)=H to G.

4.4. Steenrod operations

In this section we investigate the operations Sq2 (p = 2) and Pz (p odd) in
group cohomology. This is a special case of a more general construction on co-
homology of topological spaces. In a sense, the Kan-Thurston theorem [146]
says that it is no loss of generality only to consider group cohomology, but
the price we have to pay for our lack of generality is that some of the proofs
are harder, in particular the proofs that the zeroth Steenrod operation is the
identity and that the negative Steenrod operations are zero. The standard
reference for Steenrod operations in topology is Steenrod and Epstein [253].

The idea of the construction is as follows. As indicated in Section 3.2 of
Volume I, the diagonal approximation on a resolution may be chosen to be
strictly co-associative, but only cocommutative up to homotopy. This lack of
strict cocommutativity means that when we norm a restriction we do not end
up with a power of what we started with (while the transfer of a restriction
is a multiple of what we started with). Thus the norm from G to Z/p x G
should be an interesting operation, even though the transfer is not.

Now by the Kiinneth Theorem (3.5.6 of Volume I),

Hr(Z/p x G,Fp) = ®Hi(Z/p,Fp) ®Hr-J(G,Ep),

and from Section 3.5 of Volume I, we know that each Hi (Z/p, Fp) is one
dimensional over F. We choose a basis vector aj E Hi (Z/p, Fp) in the
following manner. The element a1 is chosen arbitrarily, we set a2 = -/3(a1),
a2j = (a2)j and a2j+1 = a1(a2)j, so that /3(a2j-1) = -a2j and /3(a2j) = 0.
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DEFINITION 4.4.1. We define operations

Dj : Hr(G,1Fp) -> HP'-j

(G, Fp)

as follows. If x E Hr (G,1Fp), set

normG,z/pxG(x) = E aj ® Dj (x)

E HPr (Z/p x G) _ H'(Z/p,Fp) ®Hp"'-j (G Fp)

REMARK. Since the transfer from G to Z/p x G is zero (every element is a
restriction, so its transfer is given by multiplying by p, by Proposition 3.6.17
of Volume I) it follows from Proposition 4.1.2 (iii) that the norm from G to
Z/p x G is additive. So the .D are also additive maps.

Note that for r odd, the exact sign of Dj(x) depends on the order we
choose for the cosets of G in Z/p x G. We have a particular choice in mind,
which we discuss at the end of Section 4.5.

DEFINITION 4.4.2. If p = 2 and x E H'(G, IF2), we define

Sgt(x) = Dr-i(x) E Hr+i(G IF2)

For p odd, it turns out that most of the Dj are either the zero map, or
obtainable from others by composing with the Bockstein homomorphism, as
will be seen in the next section. We therefore make the following definition:

DEFINITION 4.4.3. If p is odd and x E H'(G,1Fp), we define

Pi(x) = (_1)i+mr(r+1)/2(m!)-rD(p-1)(r-2i)(x)
E

H"'+2(p-1)i(G,IFp)

where m = (p - 1)/2.

REMARK. The choice of the constant multiplier of (-1)i+mr(r+1)/2(m!)-r

ensures that P° = 1, as we shall see in the next section.
Note that m! is a fourth root of unity modulo p. Namely, by Wilson's

theorem,

(m!).(-1)m(m!) _ (p - 1)! _ -1 (mod p)

so that
(m!)2 = (_1)m+1 = - (p-i) (mod p)

(the expression on the right hand side is the Legendre symbol).

The principal properties of the Steenrod operations are listed in the fol-
lowing two theorems, whose proofs will occupy the next two sections.

THEOREM 4.4.4 (p = 2). The Steenrod operations
Sq2 : Hr(G,F2) - Hr+2(G,F2)

satisfy the following axioms:
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(i) Sq' is an additive map and a natural transformation of functors on
the category of groups.

(ii) Sq0 = 1.
(iii) If deg(x) = r then Sq'(x) = x2.
(iv) If deg(x) < r then Sq'(x) = 0.
(v) (Cartan formula)

Sq'(xy) _ Sgz(x)Sgj(y)
i+j=k

(vi) Sq1 = Q : H'(G, IF2) - H''+1(G IN
(vii) (Adem relations) If 0 < a < 2b then

[

(b_1_3)Sqa+b_iSqiSq'Sgb = .a2j
THEOREM 4.4.5 (p odd). The Steenrod operations

P' : Hr(G,1Fp) , Hr'+2(p-1)i.(G ]Fr)

satisfy the following axioms:
(i) Pi is an additive map and a natural transformation of functors on the

category of groups.
(ii) PO = 1.
(iii) If deg(x) = 2r then Pr'(x) = xp.
(iv) If deg(x) < 2r then P''(x) = 0.
(v) (Cartan formula)

pk(xy) PZ(x)P'(y)
i+j=k

(vi) (Adem relations) If a < pb then

[a/p1papb=E(_1)a+j (p-1)(b-.7)-1 pa+b-jpj
j=0

a p.

If a < b then

[a/p]
pa/j pb = (-1)a+j (p - 1)(b - j) opa+b-jpj1: a - pjj=0

[(a-1)/p[+ Y (_1)a+j-1 ((p - 1)(b - j) - 11 pa+b-j,6Pj.

4.5. Proof of the properties
In this section we shall prove most of Theorems 4.4.4 and 4.4.5 in parallel.

The main differences between the two cases come from the difference in the
multiplicative structure of cohomology of cyclic groups (Proposition 3.5.5 of
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Volume I) and symmetric groups of degree p (example at end of Section 3.7
of Volume I).

Our approach is essentially the same as in Steenrod and Epstein [253],
with minor modifications. For the benefit of the reader who wishes to com-
pare, we shall indicate the parallel results in [253].

Property (i) of the Steenrod operations follows from the remark following
the definition of the maps Dj, together with the following lemma.

LEMMA 4.5.1 (cf. [253] VII.3.3). The maps Dj, and hence also Sq2 and
Pi, are natural transformations of functors on the category of groups.

PROOF. If 0 : G -* G' is a group homomorphism, then the following
diagram commutes.

H*(G', Fp) It H*(Ep I G', Fp) Tee H*(Z/p X G', F'p)

10*
1 110

1(idxO)*

H*(G,Fp)
1z

,' H*(Epi G,Fp) Tes> H*(Z/px G,lFp)

The composite of each of the horizontal rows is the norm map.

Property (iv) of the Steenrod operations follows from the fact that Dj = 0
for j < 0, while property (iii) follows from the next lemma.

LEMMA 4.5.2 (cf. [253] VII.3.4). Do(x) = xp.

PROOF. We have

Do(x) = rest/pxG,GnormG,Z/PXG(x) = XP

by the Mackey Formula 4.1.2 (v).

For p odd, we appear not to have used all the Dj in our definition of the
Steenrod operations. However, the following two lemmas show that the only
non-zero maps Dj are multiples of the Pi or ,3P' for some i.

LEMMA 4.5.3 (cf. [253] VII.3.5). For p odd and x E Hr'(G,1Fp),
(i) if r is even then Dj(x) =0 unless j = 2k(p - 1) or j = 2k(p - 1) - 1

for some k; and
(ii) if r is odd then Dj (x) = 0 unless j = (2k + 1) (p - 1) or j = (2k +

1)(p - 1) - 1 for some k.

PROOF. The map

normG,Z/pxG : Hr (G, Fp) -> Hr (Z/p x G, Fp)
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may be factored as follows

Hr(G,1Fp)

I
Hp''(Ep2G,FT )

res

Hpr(Ep x G,F(r)
)

res - Hpr(Zip x G,1Fp)

®j Hj (Ep,1F 7') ® Hpr-j (G,1Fp) > ®j Hi (Z/p,1Fp) ® Hp7'-j (G 1Fp).

Now by the example at the end of Section 3.6 of Volume I, the map

resEp,z/p : Hi (Ep, IPr)) - Hi (Z/p, IFp)

is injective, and its image has a basis consisting of the aj where
(i) j = 2k(p - 1) or 2k(p - 1) - 1 for some k if r is even, and
(ii) j = (2k + 1) (p - 1) or (2k + l)(p - 1) - 1 for some k if r is odd.
Thus Dj (x) = 0 unless j has one of these values.

The following lemma shows that for p = 2, Sg2i+1 = /Sg2i, so that in
particular property (vi) follows from property (ii).

LEMMA 4.5.4 (cf. [253] VII.4.6 and errata). We have /3 o Do = 0, /3 o
D2j = D2,-I, and /3 o D2j-1 = 0.

PROOF. We apply Lemma 4.3.4, and notice that
(i) when p = 2, /3 and /3 agree on H* (Z/2,1F2) and hence on H* (Z/2 x G,1F2 ),
and
(ii) when p is odd, Z/p consists of even permutations, so that /3 = /3 on
H* (Z/p x G, gyp)

Since the transfer map from G to Z/p x G is zero, it now follows that

/3normG,z/pxG(x) = 0.

Since by definition

normG,z/pxG(x) _ aj ® Dj (x),

by Lemma 4.3.3 we have

E((-1)jaj ® /3Dj(x) +/3(aj) ® Dj(x)) = 0.
j

The result now follows by comparing coefficients of aj, since /3(a2j_1) = -a2j
and /3(a23) = 0.

The Cartan formula (property (v) of the Steenrod operations) follows
from the next lemma, together with Lemma 4.5.3 in case p is odd. It is an
easy exercise to show that the signs work out right.
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LEMMA 4.5.5 (cf. [253] VII.4.7).
(i) If p = 2 then

Dk(xy) = E Di(x)Dj(y).
i+j=k

(ii) If p is odd then

D2k(xy) = (-1)P(2 i) deg(x)deg(y)
E D2i(x)D2j(y)

i+j=k

PROOF. By the multiplicativity of norm (Proposition 4.1.2 (i)) we have

E ak ® Dk(xy) = normG,Z/pxG(xy)
k

_ (-1)PP21 deg(x)deg(y)normG,Z/pxG(x)normG,Z/pxG(y)

_ (-1) '(P2
1) deg(x) deg(y) ai ®Di (x)) (1: aj ®Dj (y))

j
(i) If p = 2 then aiaj = ai+j and the formula follows by comparing coefficients
of ak.
(ii) If p is odd then aiaj = ai+j when either i or j is even, while aiaj = 0 if i
and j are odd. So the formula follows by comparing coefficients of a2k.

It is somewhat more subtle to show that Sq° (resp. P°) is the identity
operation, and that Sqn = 0 (resp. Pn = 0) for n negative. This is really
because Steenrod operations are defined more generally than for group al-
gebras, for example they are defined for cocommutative Hopf algebras, Lie
algebras, and so on, and in general these properties do not hold. So we need
to make particular use of the fact that we are working with groups. There
are (at least) two possible approaches here. One approach is to use the fact
that group cohomology may be defined as cohomology of Eilenberg-Mac Lane
spaces, and Steenrod operations are defined for all topological spaces. The
required properties are true in this context, as is explained at the end of Sec-
tion 2.2. For further details see Steenrod and Epstein [253]. The approach
we shall use is to construct specific chain maps for the standard resolution,
and use these to check the required properties.

We recall that if T is a projective resolution of IFp as an 1Fp(Z/p)-modules,
and C(G) denotes the standard resolution of Fp as an FpG-module (see Sec-
tion 3.4 of Volume I) then the norm map normG,Z/pxG may be computed
using a map of complexes of Z/p x G-modules

0:T0 C(G)C(G)®p
lifting the identity map on 1Fp. Namely if : Cr(G) -* Fp is an r-cocycle repre-
senting ( E Hr(G,1Fp) then the composite of z/i with 12 (C(G)®p)p,. - F(pr)

is a pr-cocycle on Z/p x G representing normG,Z/pxG(c) We shall construct
an explicit map and use it to calculate Sq° and Sq-n (resp. P° and P-').
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We first deal with the case p = 2, because this is easier than the odd case.
In this case we take T to be the resolution given in Section 3.5 of Volume I
consisting of one copy of F2(Z/2) in each degree j, with generator a j. We
then take the map 0 given by

(an ®(x0, ... , xr)) = E (x0, X1.... , xi1, xi2, xi2+1, ... ,

0<i
l
<... <i,+l <r

xi3, xi4, ... , xr) ®(xil , xi1+1, ... ,xi2, xi3, ... , xi4, xi5) ... , xin+1 )

if n is even, and

4'(an 0 (xo,... , xr)) = E (x0, X1.... , xil, xi2, xi2+1, ... ,

0 <il <. . . <in+1 <r

xi3, x84) ... , xin+l) ® (xi1, xi1+1, ... ) xi2 f xi3, ... , xi4, xi5, ... , xr)

if n is odd. Note that for n = 0 this is the Alexander-Whitney map, which
confirms that /'for deg(() = r we have Sgr(S) = (2. For n = r we have

w (ar ® (x0, ... , xr)) _ (x0, ... , xr) ® (x°, ... , xr)
so that Sq°(() _ . For n > r we have

Y)(a®®(x°i ... , xr)) = 0
so that the Sqi with i negative give the zero operation.

For general p we must make a more complicated construction which gen-
eralises the above construction for p = 2. We construct an exact sequence X
of free modules for Fp(7Z/p) as follows. In degree n, the basis elements are
sequences (A1, ... , Ap+n) such that each Ai E 11.... A, Xi Ai+1 i and each
j E 11,... , p} appears as some )1i. The generator of Z/p acts via

(Al,... , Ap+n) ~' (Al + 1,... , Ap+n + 1),

where the addition is taken modulo p. The differential in this complex is
given by

p+n
d(A1i ... , Ap+n) - 57 (-1)x(A1, ... A-1A+1, ... , Ap+n),

i=1

where such a sequence is to be thought of as the zero element if it does not
satisfy the required properties. The map

_ (1,A1,... ,A +n) if Ai j4l
0 if Al = 1

satisfies d o h + h o d = 1, so that it is a homotopy from the identity map to
the zero map (see Section 2.3 of Volume I). Thus X is an exact sequence of
free Fp(Z/p)-modules. Its homology in degree one is (p - 1)! copies of the
trivial module.

Let T be the resolution of Fp as an Fp(Z/p)-module described in Sec-
tion 3.5 of Volume I, consisting of one copy of lFp(Z/p) in each degree j.
Then the map To -+ X0 sending the generator to the sequence (1,...,p)
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extends to a chain map 0 : T -> X, unique up to chain homotopy. So for
example ¢ can be chosen to take the generator in degree one to (1, ... , p, 1),
but in higher degrees it is rather hard to write down an explicit chain map,
except in the case p = 2. In this case X has two basis elements in each
degree, and ¢ is an isomorphism.

We now construct a canonical map

:X®C(G)C(G)®P
(A1, ... , An+p) ®(xo, ... , xr) (-1)aul ®... ®up

0=io<i1<...<i, =r

where uj is defined as follows. If Ak1, Ak2, ... are the Ak which are equal to
j, then

uj = (xjk1-1, Xik1_1+1,... , Xikl ,xik2_1, ... , x42,...).

The sign a is defined as follows. Each sequence (xik_1,... ,xik) represents
an element in degree ik - ik_1. Take the permutation which takes these
sequences making up ul ® . . . ® up and puts them in their natural order,
express it as a product of transpositions, and for each transposition multiply
by minus one to the power of the product of the degrees.

The above sum should only be taken over those sequences satisfying
iki_1 < ik,_1, which is the same as saying that each uj has no repeated
index.

Thus for example if p = 3, n = 2 and (Al,... , An+p) = (3, 1, 3,1, 2) then

d(3,1,3,1,2) _ (1, 3,1, 2) - (3,1,3,2).

If r = 2, the only permitted sequence of i's is io = 0, i1 = 0, i2 = 1, i3 = 2,
i4 = 2, i5 = 2. The corresponding term is (xo, x1, x2) 0 (x2) 0 (x0, x1, x2).
The corresponding permutation sends (xo,xl), (X2), (x2), (x0), (X1, X2) to
(xo), (x0, xl), (x1, x2), (x2), (x2), so no pair of elements of odd degree has
been swapped and the sign is plus.

A straightforward but tedious combinatorial argument shows that is a
chain map of modules for Z/p x G (even over the integers), and hence the
map

T ®C(G) , C(G)®P
t(9 x- 1;(q(t)®x)

is a chain map of modules for Z/p x G which may be used to compute the
norm. Again for n = 0 this is the iterated Alexander-Whitney map (because
of the choice of 0o), which confirms that for deg(() = r we have Pr(() = (P.

If r > pr - n then there are no available sequences of i's and so

((A1, ... , An+p) ®(x0, ... , xr)) = 0.

It follows that Dn(() = 0 for an element C of degree r with n > (p - 1)r, and
so Pi = 0 for i negative.
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Similarly if r = pr - n, every possibility for the i's gives (x0, ... , xr)®p,
and so for every sequence of Ai's, 1;((A1i ... , An+p) ® (x0, ... , xr)) is either
zero or +(x0i... , x,.)®p. It follows that for some constant Br depending only
on p and r, we have

D(p-1)r(0 =
for ( an element of degree r, so that P° is some multiple of the identity map.

To evaluate 9r, it suffices to work with any particular group G. If we
choose for G a cyclic group of order p, then the calculation at the end of
Section 4.1 shows that 02r = (-1)r, while B2r+1 = (-1)r91. Since for an
element of odd degree the exact sign of the norm depends on the order chosen
for the coset representatives of G in Z/p x G, we are free to choose the sign of
91 as we wish, once and for all. We calculate 91 up to sign as follows. Choose
for G an elementary abelian group of order p2, so that there are two elements
of cohomology in degree one whose product is non-zero. Applying the formula
for the norm of a product to these elements, we see that (-1)p(p-1)/292 =
62 = -1. Since (2)!2 = -(-1)(p-1)/2 we may take 91 = ( )!.

With these values of 9r it is now easy to check that P° is the identity
map. It only remains to prove the Adem relations, and this we do in the next
section.

4.6. Adem relations
The Adem relations essentially correspond to the fact that the following

square commutes.

H*(G,Fp)
norm _ H*(1 x Z/p x G,Fp)

1-.r- lnorm

H* (Z/p x 1 x G, Fp) norm_ H* (Z/p x Z/p x G, F p)

So we first prove a symmetric form of the Adem relations, due to Bullett
and Macdonald [53], which goes as follows. For p = 2 we denote by Sqt the
formal power series Ei>0 t'Sgi, where t is an indeterminate. For p odd we
denote by P(t) the formal power series a>° tiPi.

THEOREM 4.6.1. (i) For p = 2 we have

Sgt2+StSg82 = SgS2+StSgt2.

(ii) For p odd the formal power series

P(tp + stp-1 + - - - + sp-1t).P(sp)

and

s.[/3, P(tp + stp-1 + ... + sp-1t)].P(sp)

are symmetric in s and t, where [/3, P] _ /3P - P/3.
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We shall treat the cases p = 2 and p odd separately. Although most
of the proof is exactly parallel, it helps to understand the case p = 2 first
because there are fewer technical complications.

CASE (1) : p = 2. Let H*(Z/2 x Z/2,1F2) = 1F2[x1,x2] with deg(xi) _
deg(x2) = 1. If (E H'(G, IF2) then

norm, X Z/2 x G,7G/2 x76/2 x GnormG, l x Z/2 x G norm( x_kSql (()
)

k

rr_ norm(x2)r'-knormSgk(() _ E(x1x2 +x2 )r kxl+k 7SqjSgk(S)
k j,k

= xlx2(xl + x2)T E(x2 + xl
j,k

= xlx2(xl + x2)TSgxi 1Sq(xz+x11x2) 1lS)

We make the substitution xi 1 = t(s + t), x21 = s(s + t) so that (x2 +
xi x2)-1 = s2 to deduce that Sgt2+3tSg52 is symmetric in s and t. This
proves part (i) of Theorem 4.6.1.

We now put s = 1 (no information is lost by this substitution since the
relation is homogeneous) to obtain

Sgt2+tSg1 = Sqt+lSgt2

Separating out terms which increase cohomological degree by n, we have

(t2 + t)aSgaSgb = T (t + 1)n-it2j Sgn-'Sq'.
a+b=n j

Thus SqaSqb is equal to the residue at t2 + t = 0 (or in particular at t = 0)
of

(E(t + 1)a+b-jt2isga+b-jSg7 d(t2 + t) /(t2 + t)a+l

j
_ Dt + 1)b-j-lt2j-a-lSga+b-jSgj dt,

j
namely the coefficient of t-1 in

E(t + 1)b-j-lt2j-a-1 Sga+b-jSqj

which is

(b_l_i)Sqa+b_iSqi

This completes the proof of the Adem relations for p = 2.
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CASE (ii) : p ODD. Let H*(Z/p x Z/p,1Fp) have generators yl and y2 in
degree one and xl = -/3(yi), x2 = -,3(y2) in degree two. If ( E Hr(G,1Fp)
then P'(() E Hr+2i(p-1) (G,1Fp), and

normG,1xZ/pxG(0

_ (-1)mr(r+l)/2(m!)r j:(-1)2[x2 m(r-2i)pj(() + x2 (r-2i)-ly2/3P(0]

where m = (p - 1)/2 as usual. We have

norm, xZ/p,z/pxZ/p(x2) = 4 - 4-1x2

norm,xz/p,Z/pxZ/p(y2) _ (m!)-1x(lp-3)/2(x1y2 - y1x2)

(see the example at the end of Section 4.1 and the discussion of the constants
0r at the end of the last section), and so

norm,xZ/pxG,Z/pxZ/pxGnormG,1 xZ/pxG(O _
(_1)mr(r+1)/2 (mf)r [norm(x2)m(r-2i) (-1)mr(r+l)/2(m!)r+2i(p-1)

jji,jj

{xi (r+2i(p-1)-2j) pjpi(() + xi
1)m(r+1) norm(x2)m(r-2¢)-ino/r-m(y2) (-1)m(r+1)(r+2)/2

{xi (r+2i(p-1)+1-2j) +xi'(r+2i(p-1)+1-2j)-lylap'/3P2(m

i

)-2mi_ (-1)(m+1)rx1 rx2r(x2-1 - xi-1)mr (-1)i+j{(4xi-p - x2
,jj

xi2mj pj pi(() + (4x1-p - x2)-2mixi 2mj-ly1/3p3Pi(()

+ (4xi p - x2) 2mi lxi 2mj 1(x1y2 - y1x2)P3iPi(0
+ (x2xi-p - x2)-2mi-l x1

2mj-1
y2yi/3P3,3Pi(()}.

The terms in the above expression not involving yi or Y2 show that the
expression

(a) E(_1)i+j(4x11-p - x2)-2mixi 2mj pj pi

ij l

is symmetric in xi and x2.
Similarly if we multiply the coefficient of yi by xi, multiply the coefficient

of y2 by x2 and add, the resulting expression
(b) - E(x2x11-p - x2)-2mix1 2m(j-i)(QP3pi - POP)

%,7

is symmetric in xl and x2.
We now make the substitution

xi 1 = (-t)1/(p-1)(S - t), x2 1 = (-S)1/(p-1)(t - S)



4.6. ADEM RELATIONS 147

so that
xi 2m = -t(S - t)2m = -(tP + StP-1 +... + sP-lt)

and

1-P - x2)-2m = -SP.

Making this substitution in (a) we see that

sP2(tP+stP-1+...+sP-1t)jpjpi

i, j

is symmetric in s and t. Making the same substitution in (b) and then
multiplying by st(SP-1 + SP-2t + . . + tP-1), we see that

E s*+'(t9 + stP-1 + ... + sP-1t)j[/3, PP]Pi

i,j

is symmetric in s and t. This completes the proof of part (ii) of Theorem 4.6.1.
We now put s = 1 and write u for (tP-1 + tP-2 +... + 1) _ (1 - t)P-1 to

obtain

P(tu)P(1) = P(u)P(tP)
[0, P(tu)]P(1) = t[a, P(u)]P(tP),

so that

P(tu),3P(1) = ((1 - t),3P(u) + tP(u)0)P(tP).

Separating out terms increasing cohomological degree by 2n(p- 1) in the first
case and 2n(p - 1) + 1 in the second, we have

E (tu)apapb = un-jtpj pn-j pj

a+b=n j
E (tu)apa,QPb = un-jtpj((1 - t),3Pn-j pj +tPn-j/3pj).

a+b=n j

Thus papb (resp. Pa f3Pb) is equal to the residue at t = 0 of the right-
hand side of the first (resp. second) equation multiplied by

d(tu) _ (1 - t)P-2 dt
(tu)a+l (tu)a+l

Hence papb is equal to the coefficient of t-1 in

E(1 - t)(P-1)(b-j)-1tPj-a-1 pa+b-j pj

j
while paj3pb is equal to the coefficient of t-1 in

E(1 - t)(P-1)(b-j)-1tPj-a-1((1 - t),QPa+b-jPj + tpa+b-japj)

j
This completes the proof of the Adem relations for p odd.
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4.7. Serre's theorem on products of Bocksteins

In this section we shall prove a theorem of Serre, which states that if G is
a p-group which is not elementary abelian, then there exist non-zero elements
x1 i ... , xn E H1(G,1Fr), for some n, such that the product of the Bocksteins
is zero

.i3(xn) = 0.

Of course, if G is elementary abelian, the Bocksteins of degree one elements
form a polynomial subring of H* (G, Fp) (Section 3.5 of Volume I) and so no
such relation exists.

Serre's original proof [232] used Steenrod operations and Hilbert's Null-
stellensatz, and in particular gave no bound on n. Later, Kroll [159] gave a
proof using Chern classes of complex representations, which showed that it
suffices to take each non-zero element of H1 (G, Fp) once only in the above
relation. Serre, not to be outdone, then showed in [234] how to modify his
original proof to show that it suffices to take one non-zero element from each
one dimensional subspace of Hl (G,1Fp). Okuyama and Sasaki [204] gave a
proof which uses Evens' norm map instead of the Steenrod operations, and
the proof we shall give is a modification by Evens of their proof, which gives
a slight improvement on Serre's bound. This proof proceeds by induction,
starting with the case of a group of order p3.

LEMMA 4.7.1. If IGI = p3 and 14)(G)I = p then there are non-zero ele-
ments x1, ... , xp+1 of H1(G, ]Fp), such that

i3(xp+l) = 0.

PROOF. If G has a cyclic maximal subgroup H of order p2, then there
is a non-zero element y E H1(H,1Fp) with 3(y) = 0. The element y is the
inflation of an element y E Hl (H/(D (H), IFp), and so by Proposition 4.1.2 (vi)
and Proposition 4.1.4 we have

0 = normH,G(,3(y)) = infG/ (G),GnormH/ (H),Gl4.(G)(/3(y))

= infG/4)(G),G(/3(112)1' - 0(y1)p-1/3(y2)) = /3(y2)p -,3(Y1)P_1,3(Y2)
p-1

= l j(a(y2 +.Xy1)).
A=O

Here, yl and y2 are suitably chosen generators for H1(G, Fp), which are
inflations of generators 111 and 112 of H1(G/4i(G), JFp).

If on the other hand G has no elements of order p2, then G is generated
by elements g and h of order p. Their commutator z = [g, h] is central and of
order p. Let H be the subgroup generated by h and z, so that H is elementary
abelian of order p2. Then H* (H,1Fp) has generators 111 and 112 in degree one,
and xl =/3(11l), x2 = /3(112) in degree two, with yl = 112 = 0 if p is odd, and
yi = x1i 112 = x2 if p = 2. We choose the notation so that conjugation by g
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fixes x2 and sends x1 to x1 + x2. So by Proposition 4.1.2 we have

normH G (xl) = normH,G (xl + X2)

= normH,G(xl) + normH,G(x2) - TrH,G(a)

for some a E H2P(H,1Fp), and hence

normH,G(x2) = TrH,G(a)

Choose generators ul, u2 in degree one and vl = i3011), v2 = /3(42) in
degree two for H*(G/4?(G),1Fp), and write uli U2, v1, v2 for their inflations in
H*(G,1Fr). Choose the notation so that resG,H(ul) = 0 and resG,H(u2) = y2
Then we have resG,H(vl) = 0 and resG,H(v2) = x2, and so by Proposi-
tion 4.1.2 and Proposition 4.1.4 we have

0 = TrH,G(resG,H(v1).a) = v1.TrH,G(a) = vl.normH,G(x2)

=
P-1

= infG/D(G),G(v1.(v2 - v1-1v2)) = vl(v2 -
vl-l

v2) = O(Ul) j J3(u2 + Au1).

A=O

LEMMA 4.7.2. If E is an elementary abelian p-group and E' < E, then
for any x E H1(E',1Fr), normE',E/.3(x) is a product of IE : E'l Bocksteins of
elements of Hl (E,1Fp).

PROOF. By transitivity and multiplicativity of the norm (Proposition
4.1.2), we may assume E' is maximal in E. Then x is the inflation to E' of
some element x E Hl (E'/N,1Fp), for some maximal subgroup N of E. So by
Proposition 4.1.2 (vi), it suffices to prove the lemma with N = 1, namely in
the case IE'l = p, I E I = p2. This case is dealt with in Proposition 4.1.4.

REMARK. In fact it is easy to see from the above argument (or by sym-
metry) that normE ,E,3(x) is exactly the product of the Bocksteins of those
elements whose restriction is x.

THEOREM 4.7.3 (Serre, ... ). If G is a p-group which is not elementary
abelian, then there exist non-zero elements

x1i ... , xn E H1(G,1Fp),

with n < ((p + 1)/p2)1 G :,(G)1, such that

O(xn) = 0.

PROOF. If G is not elementary abelian, then 4i(G) # 1, and so 4t(G) has
a maximal subgroup N of index p, normal in G. If there is such a relation
in GIN, then it inflates to such a relation in G, so without loss of generality
N = 1, and 4?(G) = 7L/p.
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If G/4)(G) is cyclic, then G is cyclic and /3(x) = 0 for any x E H'(G, IFr).
The result follows since 1 G ((p + 1)/p2).p. Otherwise, G contains a sub-
group H of order p3, containing P(G), and such that 4)(H) = 4b(G). By
Lemma 4.7.1, we can find elements x1, ... , xp+1 E H1(H, IFp) such that

0

in H*(H, IFp). Each xi is the inflation from H/4(G) of an element xi, and so
by Proposition 4.1.2 we have

0 = normH,G(,(3(x1).....,(3(xp+1))

= normH,GinfH/,(G),H (/3(x1.....13(xp+1) )

= infG/ (G),GnormH/ (G),G/,P(G)(j3(x,.....,Q(xp+1))

= infG/ (G),G(norm/(x1).....norm,(3(.tp+1)).

Now by Lemma 4.7.2, each normH/,b(G),G/,(G)/3(xi) is a product of degree one
elements of H*(G/4b (G),IFp), and so the inflation is a product of Bocksteins
of degree one elements of H*(G, IFp). The number of Bocksteins involved in
this expression is

(p+ 1).IG/,b(G) : Hl4(G)I = (p+ 1/p2).IG : oD(G)I.

REMARK. The above proof easily shows that the elements xi produced
are in distinct one dimensional subspaces of H1 (G, IFp), although we have not
taken the trouble to keep track of this in the argument.

4.8. Steenrod operations and spectral sequences

When calculating cohomology of groups, one often ends up applying spec-
tral sequence techniques, and needing methods for determining the differen-
tials. One such method involves the fact that the Steenrod operations com-
mute with the transgressions. See Section 5.5 for an example of an application
of this.

THEOREM 4.8.1. In the Lyndon-Hochschild-Serre spectral sequence

H*(GIN,H*(N,IFp)) H*(G,Ep),

suppose that x E EO,n-1 with dn(x) = y in En'°, and ¢ is a Steenrod operation
of degree r. Then O(x) survives to E°+,, +T-1 and do+r(O(x)) = 0(y) in

En+r,O

n+r

PROOF. This theorem is proved in the context of Steenrod operations in
the cohomology of topological spaces in Serre [231], Section 11.9 c. Namely,
if F -+ E -> B is a fibration, then in the spectral sequence

H*(B;H*(F;IFp)) H*(E;IFp)

the transgression do : E°'n-1 -> E, '0 has the following description. If x E
Hn-1 (F; IFp) survives to give an element of E°'n-1, then it is the image of an
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element x under the boundary homomorphism

8 : H' (E, F;1Fp) -* H'-'(F; 1Fp)

All such choices of x have the same image ir.(x) under the projection map

7r* : H' (E, F;1Fp) ' H' (B;1Fp)

The element 7r*(x) survives to E,,'0, and is equal to dn,(x). Since the Steenrod
operations commute with both S and 7r*, the theorem follows.

To prove the theorem in the cohomology of groups, one can simply notice
that this is a special case of the spectral sequence of a fibration (Remark (iv)
at the end of Section 3.3). Alternatively, to provide an algebraic proof, one
must introduce the relative version of group cohomology corresponding to
H* (E, F;1Fp). This is not the same as the relative cohomology introduced in
Section 3.9 of Volume I, and has less interesting algebraic properties, but it is
not hard to describe algebraically. One then introduces Steenrod operations
into this relative theory in the same way as in Section 4.4, and the proof
carries over verbatim.

If p is odd, there is also an internal differential which may be calculated
in a similar way. Namely, if x E E2 +1 with den+1(x) = y in E2,n+1'0+
then since den,+i is a derivation we have den+i(x3 ) = jx3 -1y. In particular,
den+i(xp) = pxp-ly = 0, and the above theorem states that xp = P(x)
survives to E2 p+l and d2np+i(xp) = Pn(y) in E2np+1'0. Kudo's transgression
theorem [161] states that the element xp-ly, which failed to get hit by den+1,
also survives to E2n+1,1)+1 ) (draw a picture), and2n(p-)+1

d2n(p-1)+1(xp-1y) = -/3Pn(y) E E2n(p l)+1

Further information about how Steenrod operations fit into spectral se-
quences can be found in Araki [15, 16], Sawka [227], Singer [236, 237],
among others.

Turning now to the Eilenberg-Moore spectral sequence, we recall from
Section 3.7 that given a central extension 1 - Z -> G - G/Z --> 1, there is
a spectral sequence

Tor",(K(Z,2))(H*(point), H*(G/Z)) H*(G).

In case Z = Z/2, we have

H* (K (Z/2, 2),1F2) = F2 [uo, U1.... ],

a polynomial ring in variables ui of degree 2' + 1. We have Sg22ui = ui+1,
and the ring homomorphism

F,2 [uo, U1.... ] -* H* (G/Z,1F2)

sends uo to the element ( of H2(G,1F2) classifying the central extension (Sec-
tion 3.7 of Volume I) and

ui i-- Sq2: 1 Sq2: 2 ... Sql(.
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Thus in the E2 page of the Eilenberg-Moore spectral sequence, all the dif-
ferentials determined by the transgressions in the Lyndon-Hochschild-Serre
spectral sequence have already happened. So one expects the Eilenberg-
Moore spectral sequence to converge much more rapidly than the Lyndon-
Hochschild-Serre spectral sequence. For an example, see the exercise at the
end of Section 5.5.



CHAPTER 5

Varieties for modules and multiple complexes

5.1. Overview and historical background

All groups considered in this chapter will be finite. Recall from the last
chapter (Section 4.2) that if R is a Noetherian ring then H*(G, R) is finitely
generated as a ring over R. It is also graded commutative (Section 3.2 of
Volume I) in the sense that

xy = (- 1)deg(x)deg(y)yx.

In particular, if R = k is a field of characteristic p, then
(i) for p = 2, H*(G, k) is commutative;
(ii) for p odd, the subring He°(G, k) generated by elements of even degree

is commutative, while elements of odd degree square to zero.
Thus we define

H' (G, k) _ Hev(G, k) if p is odd

so that H' (G, k) is a finitely generated commutative graded ring over k. For
any finitely generated commutative ring over k, the maximal ideals form the
points of an affine algebraic variety. We denote by VG he variety correspond-
ing to H'(G,k). Quillen [209, 210] (1971) investigated the variety VG and
showed that it is stratified by pieces coming from the elementary abelian sub-
groups of G. In particular, he showed that the dimension of VG (i.e., the Krull
dimension of H' (G, k)) is equal to the maximal rank rl,(G) of an elementary
abelian p-subgroup of G, as was conjectured by Atiyah (unpublished) and
independently by Swan [257].

Five years later, Chouinard [81] (1976) proved that a kG-module M is
projective if and only if the restriction M IE is projective for every elementary
abelian subgroup E of G.

Another five years passed before Alperin and Evens [11] (1981) found
a common generalisation of these theorems. They defined the complexity
cG(M) of a finitely generated kG-module M to be the rate of growth of a
minimal resolution of M. More precisely, if

... -` P2 -' P1 ' Po . M -* 0

is the minimal resolution, then cG(M) is defined to be the least integer s
such that there is a constant ic > 0 with

dimk Pn < ,c.ns-1 for n > 0.
153
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Thus for example a module M has complexity zero if and only if its mini-
mal resolution stops at some finite stage. Since projective modules are also
injective (Proposition 3.1.2 of Volume I), this means that M is projective.
Similarly, M has complexity one if and only if the modules in the minimal
resolution have bounded dimension. We shall see in Section 5.10 that this
happens if and only if the minimal resolution repeats with finite period (we
then say that M is periodic).

Alperin and Evens proved that the complexity of a module M is equal
to the maximal complexity of M jE as E ranges over the elementary abelian
p-subgroups of G. The case of complexity zero is Chouinard's theorem, while
the case M = k, the trivial module, is Quillen's theorem on the dimension of
VG, after a little re-interpretation.

Meanwhile, Carlson [65, 69] had been investigating certain varieties as-
sociated to a module M. The cohomological variety VG(M) is defined to be
the subvariety of VG defined by the ideal in H'(G, k) = ExtkG(k, k) of ele-
ments annihilating Extk*G(M, M). The rank variety VE(M) is only defined
for an elementary abelian group E, and its definition does not involve coho-
mology. Carlson showed that VE(M) and VE(M) both have dimension equal
to the complexity of M. He conjectured that these varieties were equal, and
showed how this would imply that VG(M) is well behaved for tensor products
and restrictions of modules. Avrunin and Scott [24] proved Carlson's conjec-
ture, and deduced that VG(M) is stratified by pieces coming from elementary
abelian subgroups of G, in analogy with Quillen's theorem.

Our presentation will differ considerably from this historical order, and
benefits from later simplifications by Carlson, Evens and others. The follow-
ing portmanteau theorem gives some of the main properties of the varieties
VG(M).

THEOREM 5.1.1. (i) If M is a finitely generated kG-module, then the di-
mension of VG(M) is equal to the complexity cG(M). In particular VG(M) _
{0} if and only if M is projective.

(ii) VG(Ml ® M2) = VG(Ml) U VG(M2)
(iii) VG(M1 ® M2) = VG(Ml) n VG(M2).
(iv) VG(M) = VG(M*) = VG(Q(M)) = VG(1-1(M))
(v) Denote by rest H : VH ---> VG the map induced by resG,H H' (G, k) ->

H(H, k). Then VH(M) _ (restt H)-1VG(M).

(vi) VG(M) = U restt EVE(M).
E<G

elemab

(vii) If 0 (E ExtkG(k, k) is represented by a map : Q' k --+ k (n even
if p is odd) with kernel LS then VG(L() = VG(() is the hypersurface in VG
determined by C.

(viii) If VG(M) = V1 U V2 with V1 fl V2 = {0} then M = M1 ® M2 with
VG(M1) = V1 and VG(M2) = V2.

The proofs may be found in Sections 5.7, 5.9 and 5.11.
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5.2. Restriction to elementary abelian subgroups

In this section, we show that an element of ExtkG(M, M) is nilpotent if
and only if its restriction to every elementary abelian subgroup is nilpotent.

In the case where M is the trivial module, this theorem is due to Quillen
[209, 210], see also Quillen and Venkov [218]. In the general case it is due
to Carlson [66]. The proof uses Serre's Theorem 4.7.3 together with the
following theorem. This theorem is due to Quillen and Venkov [218] in case
M is the trivial module and Alperin and Evens [11] in the general case. The
proof we give is due to Kroll [156].

THEOREM 5.2.1 (Quillen, Venkov, ... ). Suppose k is a field of charac-
teristic p, M is a kG-module and H is a normal subgroup of index p in G. If

is an element of positive degree in ExtkG(M, M) with resG,H(() = 0, then
(2 =,3(X).(,

for some (' E ExtkG(M, M), where x is the inflation to G of a non-zero
element x E H1(G/H,IFp).

PROOF. We have short exact sequences

o- M -!?+ MIHIG_*M'->0

where rl and r7' are the natural maps described in Section 2.8 of Volume I,
and M' = coker(77) = Ker(,7') is the tensor product of M with QGIH(k)
regarded as a kG-module of dimension p - 1 with H in the kernel. Denote
by p c Extk'G(M', M) and p' E Ext)G(M, M') the elements corresponding to
these sequences.

Recall from Section 2.8 of Volume I that the composite

ExtkG(M,M) ' ExtkG(M,MIHTG) ExtkH(MIH,MlH)

of ii, with the Eckmann-Shapiro isomorphism is equal to resG,H, as also is
the composite

ExtkG(M, M) (n) Y ExtkG(M IHTG, M) - + ExtkH(M IH, M lx)

So the condition resG,H(() = 0 implies that r7*(() = 0 and (r7')*(() = 0.
The above short exact sequences give rise to long exact sequences

- Extn-1(M, M') -* ExtkG(M, M) - Extkc(M, MIHIG) ->

->ExtkG1(M',M)->Ext' (M, M) 2 ExtkG(MIHTG,M)

whose connecting homomorphisms are given by Yoneda composition with
p, resp. p'. So the conditions i7*(() = 0 and (r7/)*(() = 0 imply that
there are elements (o E Extn-1 (M, M') and (o E Extn-1(M',M) such that

= p o (o = (o o p'. Now by the discussion following Lemma 4.3.2, the element
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p' o p E ExtkG(M', M') is equal to the element 13(x)M' obtained by tensor-
ing M' with the exact sequence representing /3(x). Since Yoneda product
with ,l3(x)M' equals cup product with ,13(x), and hence commutes with other
Yoneda compositions (see Section 3.2 of Volume I) we have

(2=50(=(0.P 0 p0 (0=(0o,3(x)M'o(0

THEOREM 5.2.2 (Quillen, Carlson). Suppose k is a field of characteristic
p, and M is a kG-module. Then an element ( E ExtkG(M, M) of positive
degree is nilpotent (under Yoneda product) if and only if resG,E(t;) is nilpotent
for all elementary abelian subgroups E of G.

PROOF. Since restriction from G to a Sylow p-subgroup is injective on
ExtkG(M, M) (Corollary 3.6.18 of Volume I), without loss of generality G is
a p-group. We may suppose that G is not elementary abelian, so that by
Serre's Theorem 4.7.3 we may choose elements xl,... , x,, E Hl (G, ]Fp) with

Nxl)...../3(xn) = 0.
Working by induction, we may assume that for each maximal subgroup H of
G, resG,H(0 is nilpotent. Denoting by Hi the maximal subgroup correspond-
ing to xi, we suppose that resG,Hi((") = 0. Thus by the Quillen-Venkov
Theorem 5.2.1, we have

(2r, =
So letting r = 2 Ei ri, we have

R /R/rr = /2r1 0 ... p rS2r, = (/3(x1).r(1) 0... 0 1N(xn).rSn)

( = 0 ... o (n) = 0.

We have used here the fact that cup product with 3(xi) commutes with
Yoneda products (Corollary 3.2.2 of Volume I).

Using the finite generation of cohomology, we may now deduce Chouin-
ard's Theorem.

LEMMA 5.2.3. Suppose k is a field of characteristic p an M is a finitely
generated kG-module. Then the following are equivalent:

(i) M is projective.
(ii) M) = 0 for all n > 0.
(iii) Ext'G(M, M) = 0 for all n large enough.
(iv) Every element of ExtkG(M, M) of positive degree is nilpotent.

PROOF. Since ExtkG(M, M) is finitely generated as a module over its
centre (Corollary 4.2.4), (iii) is equivalent to (iv). It is clear that (i) = (ii)

(iii), so we shall prove that (iii) (i).
Now by Corollary 4.2.4, if N is another finitely generated kG-module,

then ExtkG(M, N) is finitely generated as a module over ExtkG(M, M). So
if we have ExtkG(M, M) = 0 for all n large enough, then the same is true of
Extra (M, N) for any finitely generated module N. In particular, taking N
to be a simple module S, this shows that the projective cover of S appears
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only finitely often in the minimal projective resolution of M. Since there are
only finitely many simple modules, this means that the minimal projective
resolution of M stops. By Corollary 3.6.5 of Volume I, this forces M to be
projective.

THEOREM 5.2.4 (Chouinard). A finitely generated kG-module M is pro-
jective if and only if M i.E is projective for every elementary abelian subgroup
E of G.

PROOF. If M is projective, it is clear that M J.E is projective. Conversely,
if M J.E is projective for every elementary abelian subgroup E of G, then
ExtnE(M, M) = 0 for every E and n > 0. Thus by Theorem 5.2.2, every
element of ExtkG(M, M) of positive degree is nilpotent, and so by the lemma
M is projective.

5.3. Poincare series and complexity

Let V be a graded vector space of finite type over k. In other words,

V = ® Vr
r>0

with each Vr a finite dimensional vector space over k. We define the Poincare
series of V to be

p(V, t) = tr dimk Vr
r>0

as a formal power series in the indeterminate t. Thus for example if V =
k[x1i ... , x,.] is a polynomial ring in generators xi of degree one, then Vr is
the rth symmetric power of the n dimensional vector space V1, and so

p(V, t) = 1+nt+n(n+1)t2/2+ = 1/(1-t)'.
As another example, if V = k{x1i X2} is the free ring on two non-commuting
generators x1 and x2 of degree one, then

p(V,t) = 1 + 2t + 4t2 + 8t3 + = 1/(1 - 2t).

The following proposition shows that if V is a finitely generated graded
module over a finitely generated commutative graded ring of finite type, then
p(V, t) is a rational function of t whose poles are at roots of unity.

PROPOSITION 5.3.1 (Hilbert, Serre). (see Atiyah-Macdonald [20], The-
orem 11.1) Suppose that A is a commutative graded ring of finite type over
k, finitely generated over A0 by homogeneous elements x1i ... , xs in degrees
k1i ... , ks. Suppose V is a finitely generated graded A-module (i.e., we have
Ai.Aj C Ai+j and Ai.Vj C V+j). Then the Poincare series p(V, t) is of the
form

f(t)/jj(I-tkj)

j=1

where f (t) is a polynomial in t with integer coefficients.
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PROOF. We work by induction on s. If s = 0 then p(V, t) is a polyno-
mial, so suppose s > 0. Denoting by K and L the kernel and cokernel of
multiplication by x, we have an exact sequence

0 -> Kr - Vr -'+ Vr+ks - Lr+ks . 0.

Now K and L are finitely generated graded modules for Ao[xl,... , xs_111
and so by induction their Poincare series have the given form. We have from
the above exact sequence

tks p(K, t) - tksp(V, t) + p(V, t) - p(L, t) + g(t) = 0

where g(t) is a polynomial of degree less than ks with integer coefficients.
Thus

p(V, t) = (p(L, t) - tksp(K, t) - g(t))/(1- tks)
has the given form.

REMARK. It doesn't matter for the proof of the above proposition whether
the ring A is strictly commutative or only commutative in the graded sense
xy = (-1)deg(x)deg(y)yx. Of course, in the latter case A is finitely generated
as a module over the subring A` of elements of even degree, and so we may
always work with AeV if it makes us feel more comfortable. This will become
a real issue when we come to study varieties, since most algebraic geometry
texts are written for strictly commutative rings. The proofs usually carry
over verbatim to the graded commutative case, but it is often not worth the
trouble of saying so.

The following proposition shows that the rate of growth of the dimensions
in a graded module is determined by the order of the pole of the Poincare
series at t = 1.

PROPOSITION 5.3.2. Suppose

p(t) = f (t) / fJ(1 - tki) = E arty
j=1 r>o

where f (t) is a polynomial with integer coefficients and the or are non-
negative integers. Let -y be the order of the pole of p(t) at t = 1. Then

(i) there exists a constant n > 0 such that an < r,.n'y-1 for n > 0, but
(ii) if ry > 1, there does not exist a constant ic > 0 such that an < Ic.n7-2

for n > 0.

PROOF. The hypothesis and conclusion remain unaltered if we replace
p(t) by p(t).(1+t+ +tkj-1), and so without loss of generality each kj = 1.
So we may suppose p(t) = f (t)/(1 - t)Y with f (1) 0. Suppose f (t) _

We have

/n { y-1 ry-2 n+y-m-1\an=ao1 y-1 I+a1\ 'y-1 /+... I a,,,l ,Y-1
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The condition f (1) # 0 implies that ao + + a0, so this expression is
a polynomial of degree exactly y - 1 in n.

DEFINITION 5.3.3. Suppose V is a graded vector space of finite type whose
Poincare series p(V, t) has the form f (t)/ f j=1(1- t'i) where f (t) is a poly-
nomial with integer coefficients. Then we write -y(V) for the order of the pole
of p(V, t) at t = 1. By the proposition, this measures the polynomial rate of
growth of the Vr, so we call it the growth of V.

If V is a finitely generated graded module over a commutative graded
ring A, finitely generated and of finite type over k, then Proposition 5.3.1
shows that y(V) is well defined. Clearly if 0 - V" -+ V' -> V -> 0 is a short
exact sequence of finitely generated graded A-modules then y(V') is equal
to the maximum of -y(V) and y(V"). In particular, any finitely generated
graded module V is a quotient of a direct sum of finitely many copies of A
by a graded ideal, and so we have y(V) < y(A).

Now suppose M is a finitely generated kG-module with minimal resolu-
tion

` P2-*P1-Po-M-0.
Then the multiplicity of the projective cover PS of a simple kG-module S as
a summand of Pr is equal to

dimk HomkG(Pr, S) / dimk EndkG(S).

Since the resolution is minimal, every homomorphism Pr -> S is a cocycle,
and every coboundary is zero, so that

HomkG(Pr, S) = Ext'kG(M, S).

Thus we have

dimk Pr = dimk PS. dimk Ext'kG(M, S)/ dimk EndkG(S).
S simple

Since Extk*G(M, S) is a finitely generated graded module over the finitely
generated graded commutative ring H*(G, k) = Extk*G(k, k), it follows from
Proposition 5.3.1 that the Poincare series p(Extk*G(M, S), t) is of the form
f (t)/ f8=1(1 - tki), where f (t) is a polynomial with integer coefficients and
the kj are the degrees of generators of H*(G, k). Thus by the above formula
for the dimension of Pr, the graded vector space P. also has a Poincare series
of this form.

DEFINITION 5.3.4. The complexity cG(M) of a finitely generated kG-
module M is the growth ly(P*) of the minimal resolution P* of M.

Now if N is another finitely generated kG-module, then ExtrG(M, N)
is a subquotient of HomkG(Pr, N), and this is a subspace of Homk(Pr, N).
Thus

dimk Ext'kG(M, N) < dimk Pr. dimk N
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and so

y(ExtkG(M, N)) _< -Y (P-) = CG (M)

PROPOSITION 5.3.5. We have

CG (M) = y(ExtkG(M, M)) = ry(ZExtkG(M M)) = Max -y(Ext*kG(M, S)).
S simple

PROOF. Since ExtkG(M, M) is finitely generated as a graded module over
its centre ZExtkG(M, M) (Corollary 4.2.4), we have

-y(ExtkG(M, M)) = -y(ZExt*G(M, M)).

If S is a simple kG-module, then Extk*G(M, S) is finitely generated as a
module over ExtkG(M, M), and so we have

max y(Extk*G(M, S)) <'y(Extk*G(M, M)) < -y(P*) - CG(M)
S simple

max -y(ExtkG(M, S))
S simple

by our formula for dimk Pr.

LEMMA 5.3.6. Suppose A is a finitely generated commutative graded ring
of finite type over k. Then the nilpotent elements in A form an ideal J with
Jn = 0 for some n. We have y(A) = y(A/J).

PROOF. Since A is Noetherian, J is finitely generated by nilpotent ele-
ments xi. If xi = 0 then Jn = 0 with n = 2 n2.

Now each Jk/Jk+1 is a finitely generated module for A/J, and so

'Y(A/J) ?'Y(Jk/Jk+1)

Hence ry(A/J) = y(A/J2) = ... = -y (A). El

THEOREM 5.3.7 (Alperin, Evens [11]). The complexity cG(M) is equal to
the maximum complexity cE(M) of the restriction of M to an elementary
abelian subgroup E < G.

PROOF. By Proposition 5.3.5 and Lemma 5.3.6 we have

CG(M) = y(ExtkG(M, M)) = y(ZExtk*G(M, M)) = -y(ZExtkG(M, M)/J).

Now by Theorem 5.2.2 the map

ZExtkG(M, M)/J -p ®ZExtk*E(M, M)/J
E<G

elemab

is injective, and so

cG(M) ^y((@ ZExtk*E(M, M)/J)
E<G

elemab

= max y(ZExtk*E(M, M)/J) = max cE(M).
E<G E<G

elemab elemab

Conversely, it is clear that cE(M) < cG(M) for any such E.
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We now define the Krull dimension of a finitely generated commutative
graded ring A of finite type over k to be its rate of growth -y(A) as a graded
vector space. We shall give other equivalent (but more general) definitions
in Section 5.4; the definition we have given is designed to make the following
theorem a direct corollary of the Alperin-Evens Theorem (of course, it came
historically earlier).

THEOREM 5.3.8 (Quillen [209, 210]). The Krull dimension of H'(G,k)
is equal to the p-rank rr(G) (i.e., the maximal rank of an elementary abelian
p-subgroup of G).

PROOF. The Krull dimension of H' (G, k) = Extk*G(k, k) is equal to CG(k),
by Proposition 5.3.5. By the Alperin-Evens Theorem, this is equal to the
maximal value of CE(k) as E ranges over the elementary abelian p-subgroups
of G. If E is an elementary abelian group of order p', then the Poincare
series of H*(E, k) is 1/(1 - t)n (see Section 3.5 of Volume I) and so CE(k) _
ly(H*(E, k)) = n.

EXERCISE. Let E be an elementary abelian p-group of order pr, and let
k be a field of characteristic p. Denote by A the algebra kE/J2(kE) of
dimension r + 1. Show that

H* (A, k) = Ext- (k, k) k{xl,... , x,.},

the free ring on non-commuting generators x1, ... , X. of degree one, so that

p(H* (A, k), t) = 1/(1 - rt).

5.4. Varieties and commutative algebra

In preparation for the theory of varieties for modules, we include here a
brief summary of the commutative algebra and algebraic geometry we shall
need.

Suppose A is a commutative ring, finitely generated over an algebraically
closed field k. Then A has the form k[xl,... , xn]IIA for some ideal IA in
a polynomial ring k[xl,... , xn]. We wish to investigate the prime ideals of
A. In order to do this, we should try to understand the prime ideals in
k[xl,... , xn], and then see which ones contain IA.

We start by describing the maximal ideals. We regard k[x1, ... , xn] as
the polynomial functions on an n-dimensional space An(k). This is really an
affine space rather than a vector space, since if (Al, ... , An) is a point in this
space, we can just as well regard k[xl,... , xn] as k[x1 - A,.... , xn - An];
from this new point of view, this point becomes the origin.

Each point (A1, ... , An) E An (k) determines a ring homomorphism

k[xl,... , xn] -> k``

xi '--; ^i,

namely evaluation of the polynomial function at the point. The kernel is a
maximal ideal in k[xl,... , xn]. Since polynomial functions separate points
in An(k), distinct points give rise to distinct maximal ideals.
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LEMMA 5.4.1 (Weak Nullstellensatz). Every maximal ideal in the poly-
nomial ring k[x1i... , xn] is determined by a point (Ai, ... , An) in An(k) in
the above way.

PROOF. We shall prove by induction on n, that even if k is not alge-
braically closed, if M is a maximal ideal in k[x1,... , xn] then in the field
K = k[x1,...,xn]/M the xi are algebraic over k. In the algebraically closed
case, this forces the xi to be in k, proving the lemma.

Since k[x1] is not a field (x1 has no inverse), the statement is clear for
n = 1. If n > 1 and (say) x1 is transcendental over k, then k(x1) is a sub-
field of K, and by induction x2, ... , xn are algebraic over k(x1). So there
exists a polynomial p(x1) such that p(x1)x2i...,p(xl)xn are integral over
k[x1]. So given any element f (x1i... , xn) E K, for some r > 0 the element
p(x1)r f (xl,... , xn) is integral over k[x1]. Since k[x1] is integrally closed in
k(xi), this means that if f (xii ... , xn) E k(x1) then p(x1)r f (x1i... , xn) E
k[x1], so that f (x1i ... , xn) has the form q(x1)/p(x1)r. But p(x1) is inde-
pendent of the element of k(x1) chosen, which is absurd because there are
infinitely many irreducible polynomials in k[xi].

The above lemma is a special case of the following theorem.

THEOREM 5.4.2 (Hilbert's Nullstellensatz). If I is an ideal in the poly-
nomial ring k[x1i ... , xn], we set

V(I) = {v E AT(k) I f (v) = 0 V f c I}.

If f E k[x1i... , xn] with f (v) = 0 for all v E V(I), then for some r > 0 we
have Jr E I.

PROOF. Suppose I = (f 1i ... if,,), and suppose f (v) = 0 for all v E
I. Let t be a new indeterminate. Then the polynomials fl,... , f3, 1 - f.t
have no common zero in An+1(k). So by the weak Nullstellensatz the ideal
they generate is not contained in any maximal ideal, so it is the whole ring
k[x1i... , xn, t]. So there are polynomials g1i... , gs, g E k[x1,... , xn, t] with

fi.gl + ... + (1 - f.t)g = 1.

Substituting t = 11f and clearing denominators, we obtain polynomials
h1i ... , hs in k[x1,... , xn] with

fl.hl + ... + fr,

as required.

The effect this has is the following. If I is an ideal in k[x1,... , xn], we
define the radical of I to be

= If E k[x1i... , xn] I for some r > 0, f' E I}.

A radical ideal is one with I = v/_L Certainly V(I) = V(v/I-), and Hilbert's
Nullstellensatz says that f E if and only if f (v) = 0 for all v E V (VI).
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COROLLARY 5.4.3. There is a one-one inclusion reversing correspon-
dence between sets in An(k) of the form V(I) for some I (simultaneous sets
of zeroes of some polynomials), and radical ideals I =

The sets V(I) form the closed sets of a topology on An (k) called the
Zariski topology. This is because

V(Il.I2) = V(Ii) U V(I2), V o7.Ia) = n v(Ia)
a a

so that a finite union arbitrary intersection of closed sets is closed. Note
that this topology is very badly separated. For example, every non-empty
open set is dense, so that in particular the space is not Hausdorff.

A closed set V in the Zariski topology is said to be irreducible if when-
ever we write V = V1 U V2 as a union of two closed sets then either V = V1
or V = V2. This is equivalent to the corresponding ideal being prime. Since
k[xl,... , xn] is Noetherian, every closed set is a finite union of irreducible
closed sets.

Now we go back to the situation of a general commutative ring A, finitely
generated over k. If we write A = k[xl,... , xn]/IA, then the maximal ideals
in A are in one-one correspondence with the maximal ideals in k[xl, ... , xn]
containing IA, and hence with the points of V(IA). We thus write

max(A) = V(IA) C AT(k)

for the set of maximal ideals of A. It inherits the Zariski topology from A' (k).
Namely, radical ideals in A correspond to radical ideals in k[xl, ... , xn] con-
taining IA, and hence to closed subsets of V (IA). We thus make the following
definition.

DEFINITION 5.4.4. Suppose that A is a commutative ring, finitely gener-
ated over an algebraically closed field k. Denote by max(A) the set of maximal
ideals of A. If I is an ideal in A, we set V(I) C_ max(A) to be the set of max-
imal ideals containing I. The Zariski topology on max(A) is the topology
whose closed sets are of the form V(I), for some ideal I. The set max(A)
with this topology is called the maximal ideal spectrum of A. An object
of this form is called an affine variety.

Giving a presentation A = k[xl,... , x.]/IA corresponds to giving an
embedding of the "abstract" affine variety max(A) as a closed set in An(k).

We regard elements a E A as "polynomial functions" on max(A) as fol-
lows. If a E max(A) corresponds to a ring homomorphism 0a : A ---> k, we
set a(a) = qa(a). Hilbert's Nullstellensatz tells us that the elements giving
the zero function are precisely the nilpotent elements in A.

If ¢ : A -* B is a homomorphism of commutative rings (both finitely
generated over k), then we have a map of affine varieties

0* : max(B) -* max(A)
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given as follows. If a E max(B) corresponds to B -i k then 0*(a) E
max(A) corresponds to 0a o 0 : A k.

REMARK. For more general commutative rings (not necessarily finitely
generated over an algebraically closed field), it is not true that the inverse
image of a maximal ideal under a ring homomorphism is again a maximal
ideal. However, the inverse image of a prime ideal is always prime, and so we
define spec(A) to be the set of prime ideals of A. If I is an ideal in A, then
V(I) is the set of prime ideals containing I. These form the closed sets of
the Zariski topology on spec(A). The set spec(A) with this topology is called
the prime ideal spectrum of A. Notice that max(A) can be recovered as
the set of closed points in spec(A). The remaining points should be thought
of as "generic points" of irreducible subvarieties of max(A).

Since all the rings we wish to consider are finitely generated over alge-
braically closed fields, we shall always use max(A) rather than spec(A).

GRADED RINGS AND PROJECTIVE VARIETIES. Now suppose A is a finitely
generated commutative graded ring of finite type over an algebraically closed
field k,

A = ®A,
r>0

with each Ar finite dimensional over k. Then A0 is a finite dimensional
commutative k-algebra, and hence is a finite sum of local rings whose residue
field is k. The corresponding idempotents split A as a direct sum of graded
rings, so we may as well suppose A0 is a local ring. Since nilpotent elements
do not affect the maximal (or prime) ideal spectrum, we may thus assume
A0 = k. Thus A = k[xi i ... , xn,]/IA, where say deg(xi) = ni > 0 and IA is a
homogeneous ideal; namely if a = F_ aj E IA with deg(as) = j then each
aj E IA. Note that k[x1,... , x,,,]/I inherits a grading from k[x1,... , x,,,] if
and only if I is homogeneous.

Thus A has a distinguished maximal ideal A+, consisting of the elements
of positive degree in A. We regard this as the origin in max(A). If A E k
is a scalar, we define "dilation by A" as an operation on max(A) as follows.
We have a ring homomorphism ma : A -> A which multiplies an element of
degree r by A'. The map ma : max(A) --> max(A) is dilation by A. If a is
not the origin, then the set of dilations Aa of a, A E k, forms a subvariety
which should be thought of as the line through the origin, containing a. The
corresponding ideal in A is the largest homogeneous ideal contained in the
maximal ideal a.

EXERCISE. Show that an ideal I of A is homogeneous if and only if the
dilation by A of an element of I is in I for all A E k.

If we regard max(A) as a closed subset of An(k) via the presentation

A= k[x1i... , xT,]/IA



5.4. VARIETIES AND COMMUTATIVE ALGEBRA 165

with IA homogeneous as above, then max(A) is a union of lines through the
origin in A'(k), i.e., a "homogeneous" closed set. So if A is a graded ring as
above, we say max(A) is a homogeneous affine variety.

In this situation, it is sometimes better to think in terms of projective
varieties. The points in proj(A) are the lines through the origin in max(A);
namely the maximal homogeneous ideals of A (properly contained in A+).
If I is a homogeneous ideal in A, we write V(I) for the subset of proj(A)
consisting of the maximal homogeneous ideals containing I. These form the
closed sets of the Zariski topology on proj(A). A set of the form proj(A)
with this topology is called a projective variety. The projective vari-
ety proj k[x1, ... , xn] is written lP 1(k) and is called (n - 1)-dimensional
projective space. There are obvious maps max(A) \ {0} -» proj(A) and
AT(k) \ {0} -» ]P `1(k) making the following diagram commute.

max(A) \ {0} = V(IA) \ {0} c An (k) \ {0}

proj(A) = V(IA) c P--1(k).

The most general sort of variety we shall consider is a quasiprojective
variety, namely an open subset of a projective variety, with the inherited
topology. For example, An-1 (k) is the open subset of l(nn-1(k) complementing
the closed set xn = 0. Thus every affine variety is also a quasiprojective
variety, as also is every projective variety.

One can think of quasiprojective varieties, and also of open subsets in
affine varieties, in terms of localisation. If I is an ideal in A, then the set S of
elements which are not zero divisors modulo I is closed under multiplication.
So we can form the localisation A[S-1] whose elements are formal quotients
a/s (a c A, s c S) with a/s = a'/s' if and only if for some s" E S we have
s"(s'a - sa') = 0. The maximal ideals of A[S-1] correspond to the maximal
ideals of A not containing I, and so

max(A[S-1]) = max(A) \ V(I).

Similarly if A is graded and I is homogeneous, then A[S-1] is graded (in
positive and negative degrees), and letting proj(A[S-1]) be the spectrum of
homogeneous ideals we have

proj (A[S-1]) = proj(A) \ 17(I).

Note that proj(A[S-1]) is a quasiprojective, not a projective variety.

DIMENSION. There are many different concepts of dimensions of rings; for
an extensive discussion of this topic see McConnell and Robson [184], Part
II. In the case of a finitely generated commutative ring over a field, all these
definitions agree. The following lemma is the starting point of our discussion
of dimension.
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LEMMA 5.4.5 (Noether Normalisation Lemma). Suppose that k is a field
and A is a finitely generated commutative algebra over k. Then there exist
elements yl,... , yn E A generating a polynomial subalgebra k[yl,... , yn] C A
over which A is finitely generated as a module.

If A is graded then yl, ... , yn may be chosen to be homogeneous elements.

PROOF. See Matsumura [179] (14G).

The integer n in the above lemma is called the dimension of A. If A is
an integral domain, this is the same as the transcendence degree of the field
of fractions of A as an extension of k.

If A. is a finitely generated graded ring of finite type over k then yl, ... , yn
may be chosen to be homogeneous of positive degree, so that the rate of
growth is

-y (A.) _ 'Y(k[yl, ... , yn]) = n.

Thus the above definition of dimension agrees with the definition of Krull
dimension given in the last section.

The usual definition of the Krull dimension of a ring is as follows. If there
is a chain of prime ideals of length n

PO P1 9 D Pn

in A but none of length n + 1, then the Krull dimension of A is n. If there are
arbitrarily long chains of prime ideals, A has infinite Krull dimension. In case
A is a finitely generated commutative ring over a field k, the Krull dimension
is equal to the dimension as defined above. This is proved in Matsumura [179]
Chapter 5 §14. In summary, we have the following theorem:

THEOREM 5.4.6. If A is a finitely generated commutative ring over a field
k, then the Krull dimension dim(A) (defined in terms of chains of prime
ideals) is equal to the integer n given in the Noether normalisation lemma.
We also have the following:

(i) If A is an integral domain then dim(A) is equal to the transcendence
degree of the field of fractions of A.

(ii) If A. is a finitely generated commutative graded ring of finite type
over k then dim(A*) = -y(A*).

FINITE MAPS. Suppose cp : A -p B is a map of finitely generated com-
mutative algebras over k. We say

0* : max(B) -> max(A)

is a finite map if B is finitely generated as a module over the image of 0 (or
equivalently B is integral over the image of 0). If 0* is finite, then every point
in max(A) has only finitely many inverse images in max(B). To see this, let
B = k[xl,... , xn]/IB so that max(B) C_ A'(k). Then each xj satisfies an
equation of the form xT + 0(a n_1)xT-1 + + 0(ao) = 0 with az E A. So
on the pre-image of a point in max(A), the coordinate xj can take on only
finitely many values.
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We say 0* is a dominant map if the kernel of 0 is a nilpotent ideal in
A. In general a dominant map of varieties is not necessarily surjective, but
its image is a dense open subset. However, a finite dominant map is always
surjective because of the following theorem:

THEOREM 5.4.7. Let A C B be commutative rings with B integral over
A, and let p be a prime ideal of A. Then there exists a prime ideal p' of B
such that p' fl A = p.

PROOF. See Atiyah and Macdonald [20] Theorem 5.10.

Thus, for example, we can view the Noether Normalisation Lemma as
saying that any affine variety of dimension n can be expressed as a finite
branched cover of A'(k), and any projective variety of dimension n - 1 can
be expressed as a finite branched cover of pn-1(k)

Suppose A C_ B are finitely generated commutative algebras over a field
k of characteristic p, and suppose there exists some power pa of p such that
the path power of any element of B lies in A. Writing BI P'] for the subring
consisting of path powers of elements of B, the inclusions B1'1 C A C_ B give
rise to finite dominant maps

max(B) -- max(A) -> max(BIP"]).

The composite of these surjective maps is equal to the Frobenius morphism
on max(B), which at the level of the Zariski topology is a homeomorphism.
It follows that the map

max(B) - max(A)
is also a homeomorphism in the Zariski topology. Such a map is called an
inseparable isogeny or an F-isomorphism.

Finally, we discuss finite group actions on varieties.

PROPOSITION 5.4.8 (Hilbert-Noether). Suppose a finite group G acts as
automorphisms on a finitely generated commutative k-algebra A. Then the
fixed point subalgebra AG is a finitely generated k-algebra over which A is
integral. The variety max(AG) is the quotient of max(A) by the action of G.

PROOF. If a is an element of A, then a satisfies the monic equation
j71 j9EG(x - g(a)) = 0 with coefficients in AG. This proves that A is integral
over AG. Let B be the subalgebra of AG generated by the coefficients of the
monic polynomials satisfied by a finite set of k-algebra generators of A. Then
B is a finitely generated commutative k-algebra, and hence Noetherian. So
A is a finitely generated B-module, and hence so is AG. Thus AG is a finitely
generated k-algebra.

Now the map of varieties

max(A) - max(AG)

is a finite dominant map, and hence surjective. If M and M' are maximal
ideals in A which are not G-conjugate, then there exists an element a E A
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with a E M but a' g(M') for all g e G. So fJgeG g(a) is an element of
AG lying in M but not in M'. It follows that the preimage in max(AG) is a
single G-orbit of points in max(A).

COHEN-MACAULAY RINGS. We end this section with a brief review of
Cohen-Macaulay rings and modules. For further details, see Zariski and
Samuel [286], Appendix 6, Matsumura [179] Chapter 6, and Serre [233],
Chapter 4.

DEFINITION 5.4.9. Suppose that A = ®,,>o An is a finitely generated gra-
ded (anti-) commutative k-algebra, and M = ®no Mn is a finitely generated
graded A-module. A sequence (1, ... , Sr of homogeneous elements of degree
nl,... nr in A is said to be a regular sequence for M if for each i =
1 ... , r the map

Mn/Mn n (i-1)M --* Mn+ni/Mn+ni n (S1, ... , (i-1)M
induced by multiplication by (i is injective. Note that we are not asking that
Mn/Mn n (c1i ... , (2_1)M be non-zero.

The depth of M is the length of the longest regular sequence. M is said
to be Cohen-Macaulay if its depth is equal to its Krull dimension. The
ring A is said to be Cohen-Macaulay if it is Cohen-Macaulay as a module
over itself. This is equivalent to the condition that there is a polynomial
subring k[S1, ... , Sr] C A generated by homogeneous elements (j, such that A
is a finitely generated free module over k[(1, ... , Sr]

The following theorem is proved in Serre [233], p. IV-20, Theorem 2; see
also Stanley [251], Proposition 3.1. Actually the proof given in Serre [233]
is for strictly commutative rings, but the proof carries over verbatim to the
graded commutative case.

THEOREM 5.4.10. Suppose that A is a finitely generated graded commu-
tative k-algebra. Then the following are equivalent.

(i) There exists a polynomial subring k[(,,... , (r] C A generated by ho-
mogeneous elements ci, such that A is a finitely generated free module over
k[(1,... ,(r]-

(ii) For every polynomial subring C A generated by ho-
mogeneous elements ci, such that A is finitely generated as a module over
k[(1i ... , br] (i.e., is a homogeneous set of parameters for A), A is
a free module.

One can recognise regular sequences in polynomial rings using the follow-
ing theorem.

THEOREM 5.4.11 (Macaulay). Suppose I = ([ 1i ... r) is an ideal in a
polynomial ring A = k[xl,... , xn]. Then (1,... is a regular sequence for
A if and only if the Krull dimension of A/I is equal to n - r.

PROOF. See Zariski and Samuel [286], Appendix 6, Theorem 2.
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EXERCISE. Show that if A and B are commutative rings, finitely gener-
ated over an algebraically closed field k, then

max(A ®k B) = max(A) x max(B).

5.5. Example: extraspecial 2-groups

Quillen [211] calculated the mod 2 cohomology of extraspecial 2-groups.
We shall give a simplified version of his computation [36], as an example of
how to apply the commutative algebra discussed in the last section to the
calculation of cohomology rings. This is also a good example to keep in mind
when reading about the Quillen stratification in the next section.

We are interested in examining the Lyndon-Hochschild-Serre spectral
sequence of a central extension

with N cyclic of order two and E an elementary abelian 2-group of order
2'. Strictly speaking, for G to be extraspecial one requires N = Z(G) in
the above situation. However, we shall abuse terminology by using the term
extraspecial even when this condition does not hold.

We start with some preliminaries on quadratic forms. Recall that a qua-
dratic form on a vector space k of characteristic two is a map q : V -+ k with
the property that

q(x + y) = q(x) + q(y) + b(x, y)

with b: V x V-* k a symmetric bilinear form. A linear subspace W of V is
said to be isotropic if q(w) = 0 for all w E W. If k' is an extension field of
k, we extend q to a quadratic form on V& V, also denoted q by abuse of
notation, by setting

q(j: A xi) = A q(xi) + .iAjb(xi, xj).
i i i<j

LEMMA 5.5.1. Suppose that k is a perfect field of characteristic 2. Let q
be a quadratic form defined on a vector space E over ]F2. Let V = k OF, E,
and denote by F : V -> V the Frobenius morphism, corresponding to squaring
elements of k.

Let h be the codimension in E of a maximal isotropic subspace E. If v is
a vector in V with the property that the linear span of v, F(v),... , Fr-1(v)
is isotropic, with r > h, then the linear span of v, F(v),... , F'(v) is also
isotropic.

PROOF. Let W = k O 2 E', so that W is a maximal F-stable isotropic
subspace of V. Since r > h, there is a linear relation of the form

w + lt8Fs(v) + µs+1Fs+1(v) + ... + MtFt(v) = 0

with w E W, 0 < s < t < r and ,its, µt non-zero. Since k is perfect, F is
invertible and so without loss of generality s = 0. Then by applying Fr-t
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and adding if necessary, we obtain such a relation with t = r. Applying q(-)
and b(w, -) to the above relation, we obtain

b(w, µov + . + lLrFr(v)) + q(µov + ... + µrFr(v)) = 0

b(w, tcov + ... + µrF'(v)) = 0.

Subtracting and using the fact that q(F2(v)) = 0 and b(F1(v),F3(v)) = 0 for
li - jJ < r, we obtain

holtrb(v, F'(v)) = 0.

Since po and µr are non-zero, we deduce that b(v, F'(v)) = 0, which com-
pletes the proof of the lemma.

Now, keeping the notation of the lemma, assume that k is algebraically
closed, and denote by k[V] the coordinate ring of V; namely the ring of
polynomial functions on V. Thus F can be thought of as the k-linear ring
homomorphism on k[V] sending each element of E in degree one to its square
in degree two. So for example we can regard q(v) as an element of k[V] given
by a degree two polynomial, and b(v, F'(v)) as an element of k[V] given by
a polynomial of degree 22 + 1.

PROPOSITION 5.5.2. The sequence

q(v), b(v, F(v)), b(v, F2 (v)), ... , b(v, Fh-1(v))

is a regular sequence in k[V]; and b(v, F"(v)) is in the radical of the ideal
they generate, for r >_ h. The variety defined by this ideal is the union of
the F-stable isotropic subspaces of V; namely the union over the isotropic
subspaces E' < E of k ®F2 E'.

PROOF. For r = 0 set Jr = {0}, and for 1 < r < oo we denote by Jr
the ideal in k[V] generated by the sequence of elements q(v), b(v, F(v)), ... ,
b(v,Fr-1(v)). Since

r-1 r-1

qAiF'(v)) _ A q(v)2' + AiAjb(v, Fj-'(v))2z,
i=1 i=1 1<i<j<r-1

it follows that a vector v E V lies in the subvariety V(Jr) if and only if the
linear span of v, F(v),... , Fr-1(v) is isotropic. So by the lemma, we have

V(Jh) = V(Jh+l) = ... = V(JJ),
so that the new generators are in the radical of the ideal generated by the
previous ones by Hilbert's Nullstellensatz (Theorem 5.4.2). Now V(J,,,) is
just the union of the F-stable isotropic subspaces of V. Some elementary
linear algebra shows that an isotropic subspace of V is F-stable if and only if
it is of the form k ®F2 E' for some isotropic subspace E' < E. So V(J,,,) is a
subvariety of codimension h in V. Since Jh is generated by exactly h elements,
it follows that these elements form a regular sequence (see Theorem 5.4.11).
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Now returning to the above central extension

1-N-G-E-1,
if we write elements of N and E additively, we can identify N with IF2 and
E with a vector space over IF2. We define a quadratic form q : E - N by
taking q(x) to be the square of a preimage x of x in G. Since commutators
are central and self-inverse, we have

x2y(y-lx-lyx)y =
so the associated symmetric bilinear form b : E x E --> N is given by the
commutator map on preimages in G.

We have H* (E, F2) = IF2 [x1i ... , x] with deg(xi) = 1. Let k be an
algebraically closed field of characteristic two, and let V = k ®F2 E, a vector
space of dimension n over k. Then H*(E,k) = k[xl,... , xn] = k[V], the
coordinate ring of V regarded as an affine variety over k. The element of
H2(E, F2) classifying the above central extension is q(v). This is regarded
as a polynomial function on V of degree two as follows. Let e1, ... , en be a
basis of E over F2. Then if v = E 1 xiei, we have

n n

q(v) = q(j: xiei) = q(ei)xa + b(ei,ej)xixj

i=1 i=1 1<i<j<n

Thus the q(ei) and b(ei, ej) are the coefficients of q(v) as a quadratic poly-
nomial in k[V] with coefficients in F2.

Recall that the Frobenius map F on k[V] is defined to be the k-linear
ring homomorphism sending xi to x?. Thus we have (see Section 4.4)

Sq1 q(v) = b(ei, ej)(xixj + xjx?) = b(v, F(v)),
1<i<j<n

as a polynomial of degree three in k[V]. Similarly for r > 1 we have

5g2'
1Sg2r-2 ... Sq1 q(v) _ b(ei, +xjxi = b(v, Fr'(v)).

1<i<j<n

THEOREM 5.5.3 (Quillen [208]). Let G be as above. Then

H*(G, F'2) = F2[xi, ... , xn]/(q(v), b(v, F(v)),... , b(v, F'c-1(v))) ®F2[C].

Here, x1i ... , xn are degree one elements inflated from H*(E, F2). The inte-
ger h is the codimension in V of a maximal F-stable isotropic subspace; in
other words, 2h is the index in G of a maximal elementary abelian subgroup.
The element ( is any element of degree 2h which restricts non-trivially to
H*(N, F2).

The elements b(v, Fj (v)), for j > h, are in the ideal generated by the
regular sequence q(v), b(v, F(v)),... , b(v, Fh-I(v)).

PROOF. We examine the Lyndon-Hochschild-Serre spectral sequence

H* (E, H*(N,F2)) H* (G, ]F2)
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The E2 page of this spectral sequence is

H* (E, F2) ® H* (N, F2) = 1F2 [xl, ... , xn] ® F2 [z]

with x1i... , x,,, E E2'° and z E E2'1. Since q(v) E H2(E, F2) is the element
corresponding to the central extension, we have d2(z) = q(v) E EE'0. Since
Steenrod operations commute with transgressions (Section 4.8), we have, for
r > 1,

d2r+1(z2r) =
d2r+1(Sg2T 1

Sg2r
2

... Sg1(z))

= Sg2r-ISg2r-2 ... Sq1 q(v) = b(v, Fr(v)).

Now by Proposition 5.5.2, the elements q(v), b(v, F(v)), ... , b(v, Fh-1(v))
form a regular sequence in H*(E,F2), and so by induction on r we have,
forI<r<hand2r-1+l<j<2r+1,

Ej* = F2[xl, ... , x,,,]/(q(v), b(v, F(v)),... , b(v, Fr-1(v))) ®F2[z2r]

To complete the calculation, it suffices to show that the element z2h E E°
'2h

is a universal cycle. Let H be a maximal elementary abelian subgroup of G,
of index 2h. Then z is a restriction of an element z E H1 (H,F2). One then
easily checks using the Mackey formula for Evens' norm map (Section 4.1),
that normH,G(z) is an element of H*(G, F2) restricting to

z2h

c- H*(N, F2).
Thus

z2h

is a universal cycle. In particular, for j > h, d2;+1(z2) = 0, and so
b(v, Fi(v)) is in the ideal generated by q(v), b(v, F(v)),... , b(v, Fh-I(v)).

EXERCISES. 1. Let G be as above. Show that the E2 page of the
Eilenberg-Moore spectral sequence (see Sections 3.7 and 4.8) converging to
H*(G,F2) is equal to the E,,, page, and has

F2[x1, ... , xn]/(q(v), b(v, F(v)),... , b(v, Fh-1(v)))

on the vertical axis.
2. (Avrunin and Carlson) Let G be the nilpotent 2-group of class two and

order 22, generated by elements g1i... , g,,, subject to the relations g4 = 1,
[gi, gi+1] = 9+1, and [gi, gj] = 1 if j > i+2. Let N be the central subgroup of
order 2' generated by gi, ... ,

g,2, and let E = GIN. Show that the Lyndon-
Hochschild-Serre spectral sequence for the central extension 1 --> N -> G -*
E -* 1 satisfies E3 = E,,. Show that there is an element x of H1 (G, FP) with
xn 0 but xn+1 = 0.

5.6. The Quillen stratification

The basic object of study here is the maximal ideal spectrum

VG = max H' (G, k).

Here, H'(G, k) denotes H*(G, k) if char(k) = 2, and the subring He°(G, k) of
elements of even degree if char(k) 2 (in this case, elements of odd degree
square to zero). Thus H' (G, k) is a commutative graded ring, and so VG is
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a homogeneous affine variety. We denote by VG the projective variety of one
smaller dimension

VG = proj H' (G, k).

If H is a subgroup of G then we have a restriction map

resG,H : H' (G, k) , H' (H, k),

and hence a corresponding map of varieties restt H : VH --+ VG.

PROPOSITION 5.6.1. We have

VG = U rest EVE.
E<G

elemab

PROOF. By Theorem 5.2.2, an element of H' (G, k) = Extk'G(k, k) is
nilpotent if and only if it is nilpotent on restriction to every elementary
abelian subgroup E < G. Thus the map

® resG,E : H' (G, k) - ® H' (E, k)

has nilpotent kernel. Also, by Corollary 4.2.5, the right-hand side is finitely
generated as a module over the image. Thus

U resG E : UVE -> VG

is a finite dominant map, so that by Theorem 5.4.7 it is surjective.

The Quillen Stratification Theorem [209, 210] is a refinement of the
above proposition, giving a decomposition of VG into disjoint pieces corre-
sponding to the conjugacy classes of elementary abelian subgroups of G.

Recall from Section 3.5 of Volume I that if E is an elementary abelian
p-group of rank n, then

H* (E, k) = k[xl,... , xn]

with deg(xi) = 1 if p = 2, while

H*(E, k) = A(xl,... , xn) ®k[y1, ... , yn]

with deg(xi) = 1, deg(yi) = 2 and ,Q(xi) = yi if p is odd. In either case, we
see that VE is a k-vector space of dimension equal to the p-rank of E. We
define

VE = VE U resE E'VE.
E'<E

Thus VE is VE with the hyperplanes defined over 1Fp removed. Let

0E = II f3(() E H' (E, k)
O0(EH1(E,1Fp)

Then since the subvariety of VE defined by /3(() is resE E,VE', where E' is the
maximal subgroup corresponding to C, the subvariety defined by the above
element OE is UE'<E rest E'VE'. So the points of VE correspond to maximal
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ideals of H' (E, k) not containing UE, and hence to the maximal ideals of
H'(E,k)[aEl]. So we have

VE = maxH'(E, k)[QE1]

We define VG,E = rest EVE C_ VG, and VG E = resc,EVE.
The following lemma produces enough elements of cohomology to describe

the structures of these varieties.

LEMMA 5.6.2. If E is an elementary abelian p-subgroup of G with
ING(E) : El = pah and (p, h) = 1 then the following hold:

(i) If y E H'(E,k) is invariant under the action of NG(E) then there
exists an element y' E H' (G, k) with

resG,E(y) =

(ii) There exists an element pE E H'(G, k) such that resG,E(PE) = (aE)pa,
and such that if E is not contained in any conjugate of an elementary abelian
p-subgroup E' < G then resG,E'(PE) = 0.

PROOF. (i) Without loss of generality y is homogeneous. Let

z = normE G(1 +

Then the Mackey formula 4.1.2 (v) shows that

reSG E(z) = (1 + aE.y)pah = (1 +

1 + h(aE.y)pa + terms of higher degree.

So we take for y' the homogeneous part of z of degree pa. deg(aE.y), divided
by h.

(ii) We take y = 1 in part (i), and write PE for the element y' obtained
in this case. Since resE,F(aE) = 0 for all proper subgroups F of E, the
Mackey formula 4.1.2 (v) shows that resG,E'(PE) = 0 unless E is conjugate
to a subgroup of E'.

THEOREM 5.6.3 (Quillen Stratification [209, 210]). The variety VG is
the disjoint union of locally closed subvarieties VG E, one for each conjugacy
class of elementary abelian subgroups E < G. Let WG(E) = NG(E)/CG(E).
Then WG(E) acts on VE and VE, and resG E induces an inseparable isogeny

VE /WG (E) -+ VGE

(see the end of Section 5.4).

PROOF. By the lemma we have

{(H'(E,k)[O'E1])WG(E)}[pa] C resG,EH.(C,k)[PEr] C (H'(E,k)[0, El])Wc(E)

and so we have an inseparable isogeny

max(H' (E, k) [aEl] )WG(E) _, max reSG EH. (G, k) [pEr].
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By Proposition 5.4.8 the left-hand side is the quotient of VE by the action
of WG(E), while the right-hand side is VG E. Thus we have an inseparable
isogeny

VE/WG(E)-V V.
If E is not conjugate to a subgroup of E' then by part (ii) of the lemma we
have resG,E' (PE) = 0, and so PE is a function which is everywhere non-zero
on VG E but everywhere zero on VG E,. It follows that the VG E are disjoint.
Since VG is the union of the rest EVE by Proposition 5.6.1, it is the union of
the VG E.

A more succinct way to write the Quillen stratification theorem is as
follows. We form a category CG whose objects are the elementary abelian
subgroups of G, and where a morphism from E to E' consists of an element
g E G such that gEg-1 C_ E'. Then E H VE is a covariant functor on CG,
and so it makes sense to talk of the limit lim VE. This is the maximal ideal

E
spectrum of lim H' (E, k).

E
COROLLARY 5.6.4. The natural map

lim VE - VG
E

is an inseparable isogeny. Equivalently, the natural map

qG : H' (G, k) - lim H' (E, k)
E

is a finite map, whose kernel is nilpotent, and with the property that there is
some power pa of p such that the path power of any element in the right hand
side lies in the image of qG.

REMARK. It is an interesting question to ask when the map qG is an
isomorphism of rings. Gunawardena, Lannes and Zarati [121] have shown
that one can tell whether qG is an isomorphism just by looking at H'(G, k)
as a module over the Steenrod algebra. Using this, they have shown that
for p = 2 and G a symmetric group Sn, the map qG is an isomorphism.
This is false for p odd, but it seems that the reason is in some sense that the
definition of H' (G, k) is wrong for p odd. A better definition would be to take
the subring consisting of all elements which are annihilated by all elements of
the Steenrod algebra involving the Bockstein operation. For example, with
this definition, we have H' (G1 x G2i k) = H' (G1, k) ®H' (G2, k), so that if E
is elementary abelian then H'(E, k) is just the polynomial subring, and the
exterior part disappears. It is still an open question as to whether, with this
definition, the map qG is an isomorphism for G = S,,, and p odd.

EXERCISE. Show that in Theorem 5.6.3, the action of WG(E) on VE is
free. (Hint: show that if 1 w E WG(E) then the 1-eigenspace of w on VE
is contained in resE E, (VE') for some E' G E)
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5.7. Varieties for modules

If M is a kG-module, we associate to M a subvariety VG(M) of VG as
follows. There is a natural map

(DM : H'(G, k) = Extk'G(k, k) -®M, Ext*G(M, M)

whose image is central, by Corollary 3.2.2 of Volume I. We denote the kernel
of this map by IG(M). This is a homogeneous ideal in H'(G, k), and therefore
determines a closed homogeneous subvariety VG(M) = maxH'(G, k)/IG(M)
of VG. The corresponding projective variety is denoted by VG(M) C VG.

If M' is another kG-module, we write IG(M', M) for the annihilator in
the ring ExtkG(k, k) of the module Extk*G(M', M), with the cup product
action. We write VG(M', M) for the closed homogeneous subvariety of VG
defined by this ideal, so that in particular VG(M) = VG(M, M). Since this
cup product action factors as 4)M followed by Yoneda composition, or as (PM,
followed by Yoneda composition (Proposition 3.2.1 of Volume I), we have

IG(M, M) 2 IG(M') + IG(M)

VG(M', M) c VG(M') n VG(M).

If 0 -* M' - M" -* M"' --> 0 is a short exact sequence of kG-modules,
then the long exact Ext sequence (Section 2.5 of Volume I) shows that

IG(M" M) _D IG(M', M).IG(M"M)
VG(M" M) c VG W, M) U VG(M"M).

Combining these statements, we obtain the following:

PROPOSITION 5.7.1. If M is a finitely generated kG-module then

VG(M) = U VG(S, M),
S

where S runs over the simple kG-modules, or over the composition factors of
M. In particular, if G is a p-group then VG(M) = VG(k, M), the subvariety
of VG defined by the annihilator of H* (G, M).

PROOF. The containment of the right-hand side in the left-hand side
follows from the first of the above inequalities, while the reverse containment
follows from the second.

REMARK. If M is a finitely generated kG-module, then by Corollary 4.2.4,
the ring Extk*G(M, M) is finitely generated as a module over the image of M.
Thus if we set

VG(M) = max ZExtk*G(M, M),

the maximal ideal spectrum of the centre of Ext*kG(M, M), then by Theo-
rem 5.4.7 the map

'DM: VG(M) --> VG(M)

is a finite surjective map.
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In some sense, we should not have to stop at the centre. Since the ring
Extk*G(M, M) is finitely generated as a module over its centre, it is an affine
polynomial identity (P.I.) algebra, see McConnell and Robson [184], Chap-
ter 13, Corollary 1.13. There is a well developed theory of maximal ideal
spectra for such rings, see for example Procesi's book [207].

We begin with some properties of the varieties VG(M) which are easy
consequences of our previous discussions.

PROPOSITION 5.7.2. If M is a finitely generated kG-module then the di-
mension of VG(M) is equal to the complexity cG(M). In particular VG(M) _
{0} if and only if M is projective.

PROOF. Since Extk*G(M, M) is finitely generated as a module over the
ring H' (G, k) (Corollary 4.2.4), we have by Proposition 5.3.5 and Theo-
rem 5.4.6

CG(M) = ry(Ext*kG(M, M)) ='Y(H*(G, k)/IG(M)) = dim VG(M).

PROPOSITION 5.7.3. We have

VG(M) = VG(M*) = VG(1(M)) = VG(52-1(M))

PROOF. This follows from the isomorphisms

ExtkG(M, M) = Ext*kG(M*, M*) = Ext*G(Il(M), QM)k

Ext*G(Q71(M)' Q_I(M))

as modules for ExtkG(k, k).

PROPOSITION 5.7.4. We have

VG(M) = U resG EVE(M).
E<G

elemab

PROOF. According to Theorem 5.2.2, an element of Extk*G(M, M) is
nilpotent if and only if it is nilpotent on restriction to every elementary
abelian subgroup E < G. Applying this to elements in the image of Dm, we
have

IG(M) _ resGE IE(M)-
E<G

elemab

The subvariety of VG determined by resG E IE(M) is the same as the sub-
variety defined by resGEIE(M), namely resG EVE(M). El

PROPOSITION 5.7.5. We have

VG(M1 ® M2) = VG(MI) U VG(M2)
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PROOF. Tensoring with M1 ® M2 factors as follows:

Ext'kG (k, k) (®M''®
ExtkG (M1, M1) (D ExtkG(M2, M2)

ExtkG(MM ® M2, M1 ® M2)

and so

IG(M1 ® M2) = IG(M1) n IG(M2)

VG(Ml ® M2) = VG(M1) U VG (M2) El

Next, we develop a version of the Quillen stratification theorem for the
varieties VG(M), due to Avrunin and Scott [24]. We begin with a technical
lemma.

LEMMA 5.7.6. Suppose H is a normal subgroup of index p in G, and x is
the inflation to G of a non-zero element x E H1 (G/H,1Fp). If ( E H* (G, k)
with resG,H(() E IH(M), then some power of ( lies in the ideal generated by
IG(M) and the Bockstein ,3(x).

PROOF. If resG,H(O E IH(M) then resG,H((M) = 0, and so by Theo-
rem 5.2.1, (M = /3(x).l; for some 1; E Ext*G(M, M). Now by Corollary 4.2.4
ExtkG(M, M) is finitely generated as a module over ExtkG(k, k), and so
satisfies some monicttpolynomial of the form

Sn + (ao)M = 0

with the ai E Extk'G(k, k). Multiplying this equation by ,3(x)n, we obtain

(M + (an-1)M,9(x)(M-2 +... + (ao)M,3(x)n = 0.

Thus the element
(2n

+ an-1O(x)S2n-2 +... + aoO(x)n

is in IG(M).

PROPOSITION 5.7.7. If E' < E are elementary abelian p-groups and M
is a kE-module, then regarding VE' as embedded in VE via resE E,, we have

VE' (M) = VE' n VE (M).

PROOF. Arguing by induction, we may suppose that IE : El = p. If
E H'(E,k) lies in IE(M) then resE,E'(0 lies in IE'(M). Conversely, if

resE,E' (() lies in IE' (M) then by the lemma, some power of S lies in the ideal
generated by ,l3(x) and IE(M), where x is the inflation to E of a non-zero
element of H1(E/E', k). So we have

resE E,IE'(M) = (Ker(resE,E'), IE(M)).

Taking varieties, we obtain the required equality.
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We now define

VE (M) = VE n VE(M)

VG,E(M) = reSG,EVE(M) C VG(M)

VG,E(M) = rest EVE(M)

THEOREM 5.7.8 (Avrunin and Scott [24]). Suppose M is a finitely gen-
erated kG-module. Then the variety VG(M) is the disjoint union of locally
closed subvarieties VG E(M), one for each conjugacy class of elementary
abelian subgroups E < G. The group WG(E) acts on VE(M) and VE(M),
and rest E induces an inseparable isogeny

VE(M)IWG(E) VG,E(M)'

PROOF. It follows from the above proposition that

VE(M) = VE(M) \ U resE E,VE'(M)
E' <E

so that VE(M) is the disjoint union over E' < E of locally closed subvarieties
VE, (M). It now follows from Proposition 5.7.4 that

VG(M) = U resGEVE(M)'
EGG

elemab

It follows from Theorem 5.6.3 that the subvarieties VG E(M) = resE EVE(M)
are disjoint and that resE E induces an inseparable isogeny

VE(M)/WG(E) -> VG,E(M).

COROLLARY 5.7.9. If H is a subgroup of G and M is a kG-module then

VH(M) = (resGH) 'VG(M)-

PROOF. Clearly resGHVH(M) C_ UG(M). Conversely, by the theorem,
the diagram

VE(M)/WH(E) -VE (M)/WG(E)

+ I- resG H + I-
H,E(M)VVG,E(M)

shows that VH E(M) = (resG H)-1VG E(M).

PROPOSITION 5.7.10. There is a natural isomorphism VG1xG2 = VG1 X
VG2. If M1 is a kG1-module and M2 is a kG2-module then the image of
VG1xG2(M1 (9 M2) under this isomorphism is VG1(M1) x VG2(M2).

PROOF. This follows directly from the Kiinneth Theorem (3.5.6 of Vol-
ume I; the Tor term there is zero, as we are working over a field).
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THEOREM 5.7.11. If M1 and M2 are kG-modules then

VG (Ml ® M2) = VG(M1) n VG(M2)

PROOF. The interior tensor product Ml ® M2 as a kG-module is the
restriction from G x G to the diagonal G = 0(G) of the exterior product
Ml ®M2 as a k(G x G)-module. So by Proposition 5.7.10 and Corollary 5.7.9
we have

VG(M1 ® M2) = (resGxG,A(G))-1VGxG(M1 0 M2)

= (resGxG,A(G))-1VG(M1) x VG(M2) = VG(Ml) n VG(M2)

(Note that in general if X and Y are two subsets of a set Z then the inverse
image of X x Y under the diagonal map Z = 0(Z) -j Z x Z is equal to
X n Y).

COROLLARY 5.7.12. If VG(M1)f1VG(M2) = {0} then ExtkG(Ml, M2) = 0
for all n > 0.

PROOF. By Proposition 5.7.3 and Theorem 5.7.11 we have VG(MM 0
M2) = {0}, and hence by Proposition 5.7.2 M1 0 M2 is projective. Hence

Extnc(Ml, M2) = ExtkG(k, M1 (D M2) = 0.

5.8. Rank varieties

In this section, we give an alternative description of VE(M) in case E
is elementary abelian. This is Jon Carlson's notion [69] of the rank variety
VE(M). Carlson conjectured that VE(M) = VE(M). He proved the inclu-
sion of the rank variety in the cohomology variety and the equality of the
dimensions. Carlson's conjecture was proved by Avrunin and Scott [24].

W e start with a discussion of shifted subgroups. Let E =---01, , g.)
be an elementary abelian p-group of rank r (order pr), and let k be an
algebraically closed field of characteristic p. Then the linear subspace VE
of J = J(kE) spanned by gi - 1,... , gr - 1 has dimension r, and maps
isomorphically onto J/J2.

If

00v=Ai(gl-1)+...+Ar(gr-1)

is any element of VE, then vP = 0, and so 1+v is a unit in kE with (1+v)P = 1.
If v 1 , , yr form a basis for VE, say v2 ) ij (gj - 1) with (.XZj) a non-
singular matrix, then there is an induced automorphism of kE given by

r

gi ->l+EAij(gj-1).
j=1
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If (µ2j) is the inverse matrix, then the inverse of this automorphism is given
by

r

g2+Eµjj(gj-1).
j=1

It follows that given linearly independent elements v1, ... , vs of VE, the sub-
group

E'=(1+v1i...,1+vs)C(kE)"
has the property that its group algebra kE' is a subalgebra of kE over which
kE is free as a module. A subgroup E' C_ (kE) X obtained in this way is
called a shifted subgroup of E. Thus for example a cyclic shifted subgroup
is one generated by an element g = 1 + v E kE of order p, where 0 v E V.
Any shifted subgroup can be extended to a maximal shifted subgroup, which
has the same rank r as E. It should be noted that the inclusion kE' -+ kE
of the group algebra of a shifted subgroup is not in general a homomorphism
of Hopf algebras. So we need to be careful when restricting tensor products,
or cup products in cohomology.

DEFINITION 5.8.1. If M is a finitely generated kE-module, we define the
rank variety of M to be

VE(M) = {0} U {v E V I M 4(1+v) is not free}.

LEMMA 5.8.2. There is a natural isomorphism VE = V0E'

PROOF. According to Proposition 2.4.3 of Volume I, we have a natural
isomorphism

ExtkE(k, k) = Homk(VE, k).

Now the structure of ExtkE(k, k) is given in Section 3.5 of Volume I. If p = 2
then ExtkE(k, k) is a polynomial algebra generated by ExtkE(k, k), and the
non-zero elements of ExtkE(k, k) are precisely the linear maps from VE _
max ExtkE(k, k) to k. So VE is the dual vector space of Extk1E(k, k) and is
hence isomorphic to VE. If p > 2 then we have the Bockstein map

,3: ExtkE(k, k) - ExtkE(k, k).

Modulo nilpotent elements, ExtkE(k, k) is a polynomial algebra on the image
of 3, and we now use the same argument as before.

REMARK. For p = 2 the isomorphism of Lemma 5.8.2 is an isomorphism
of varieties. For p > 2, it is semilinear via the Frobenius morphism (see
Section 4.3) so that while it is a bijection, it is not invertible as a map of
varieties.

In terms of lines through the origin, the above isomorphism may be de-
scribed as follows. A line through the origin in VE is represented by a cyclic
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shifted subgroup T = (1 + v). The kernel of resE,T is a maximal graded ideal
JA4T < ExtkE(k, k) and hence corresponds to a line through the origin in VE.

To see this, we need to verify that the Bockstein map commutes with
restriction to a cyclic shifted subgroup. There are a number of ways of doing
this, but we have chosen to follow Carlson [69] because it is explicit and
convincing. We assume that p is odd for this purpose, because for p = 2
the Bockstein map is just the cup square, and anyway the isomorphism of
Lemma 5.8.2 does not involve the Bockstein in this case.

We use the explicit resolution for k as a kE-module which begins

0.Q2k->Pi --
6* Po->k.0

where P0 = kE and P1 is the free kE-module with free basis 1'1, ... The
differential 6 : Pl - Po is given by 6(ryi) = gi - 1 (1 < i < r). The kernel
S22k of 6 is generated by elements

bi=(gi-1)P-1yi 1 < i < r
eij-(gi-1)ryj -(gj -1)ryi 1<i<j<r.

The bi correspond to the Bocksteins of the degree one elements, while the cij
correspond to products of degree one elements. Let

054 v=Ai(gl-1)+..+Ar(gr-1)

be an element of VE, so that T = (1 + v) is a cyclic shifted subgroup. Then
we have a diagram

0 _k kT
v T k '0

0 -S22kP1P0 k-O
where the middle map in the top row is given by multiplication by v, the
vertical map kT -+ Po is the inclusion, and the vertical map kT - P1 sends
the identity element to _i=1Ai7i. It is easily checked that this commutes.
The inclusion of k into kT on the top row sends the identity element to vP-1,
whose image in P1 is equal to

r r

L

Ai yiJ[Ai(i_i)]

The fact that the diagram commutes means that this lies in 5l2k, and we
claim that modulo Rad(I 2k) we have

r llP- 1 r r r

Ai(gi - 1)
I I

Ai7il = AP(gi - 1)P- 17i = `APbi.
z-1 x-1 i=1 i/Ji

This formula confirms that the version of the Bockstein defined by extending
semilinearly from FP to k via the Frobenius map (see Section 4.3) commutes
with restriction to cyclic shifted subgroups. To prove the formula, we argue
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by induction on the rank. It is clearly true if r = 1. For r > 1, we expand
the left hand side out as

fr-1
LAi(gi - 1) + Ar(gr -

1)]P-1 [i+rr].
a-1 x-1

Taking the first term from each bracket gives

r-1

Ap(gi - 1)p-1,},i

i=1

by the inductive hypothesis. Using the fact that (Pj 1) . (-1)j (mod p), the
remaining terms give

p-2 r-1 li r-1
11(-W

CE
Ai(gi -

1)/
(Ar(gr - 1))p 1j

[E Ai7'aj=0 i=1 x 1

p-1 r-1 7

+ [(_i)i E Ai(gi - 1)) (Ar(gr - 1))P-1-j
Ar-y,.

j=0 i=1

Using the fact that

r-1
('Ai(i_Ar(gr 1) A Y) - 1) Ar7'r

i-1 i=1

r-1

Ai.r[(.\r-1)7'i-(Ai-1)7,.] E Q2 k,

i=1

we see that modulo Rad(12k), the term in the first sum indexed by j cancels
with the term in the second sum indexed by j + 1. We are left with the term
with j = 0 in the second sum, namely AT'(gr - 1)P-lryr, as required.

We shall see later in this section that under the identification of Lemma
5.8.2, the subvariety VE(M) is identified with VE(M). For now, let us indicate
why VE(M) is a closed homogeneous subvariety of VE. We may test whether
M J.(I+v) is free as follows. By Jordan canonical form, the rank of the matrix
representing the action of v on M is always at most (p - 1) dimk(M)/p,
with equality if and only if M 1(1+v) is free. Thus VE(M) is defined by
the vanishing of certain minors in the matrix representation, and these are
homogeneous equations in the variables A1, ... , Ar. We illustrate this with
an example.

CARLSON'S FAVOURITE EXAMPLE. Let E = (gl, g2, g3) be an elementary
abelian group of order 8 and char k = 2. For each triple of parameters
(a, b, c) E k3, we have a kE-module Ma,b,c given in terms of matrices as
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follows.

1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0
gl H

1 0 1 0
921---+

a 0 1 0 9 3`
)0c10

0 1 0 1 0 b 0 1 1 0 0 1

Then g1 - 1, 92 - 1 and g3 - 1 form a basis for VE, and the element

v=A1(g1-1)+)2(g2-1)+A3(g3-1)
is represented by the matrix

0 0 0 0

0 0 0 0

Al +A2a A3c 0 0

)3 Al+X2b 0 0

Thus the restriction of Ma,b,c to (1 + v) is free if and only if the rank of this
matrix is two, namely if and only if

Al + A2a A3C
0.

.X3 Al + \2b

It follows that VE(Ma,b,c) is given by the homogeneous quadratic equation in
A3(k)

(X1 + aX2) (Xi + bX2) = CX3.

The main obstruction to proving the equality of the varieties VE(M) and
VE(M) is that if E' is a shifted subgroup of E then the following diagram
does not necessarily commute.

ExtkE(k, k) ®Nr ExtkE(M, M)

I resE Ei resE,Et

ExtkE, (k, k) ExtkE, (M, M)

The problem is that tensoring with M involves the Hopf algebra structure of
kE, and therefore the definition of the map is changed by moving the group
basis.

EXAMPLE. (Carlson [69]) Let E be the Klein four group and let M = VV,'
be the indecomposable module of dimension 2n parametrized by a E P1(k)
as described in Section 4.3 of Volume I. Let Ca be the corresponding element
in degree one cohomology, and let Ea be the corresponding cyclic shifted
subgroup. Then for n = 1 and a not equal to 0, 1 or oo, resE,E. (Ca®IdM) 0 0
even though resE,E,((a) = 0.

REMARK. Niwasaki [203] has shown that the above diagram almost com-
mutes, in the sense that it commutes on the subring of ExtkE(k, k) generated
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by the Bocksteins of degree one elements. He has based an alternative proof
of Theorem 5.8.3 on this observation.

Although it is true that the action of Extk'E(k, k) on Ext*kE(k, M) by
Yoneda composition commutes with restriction to shifted subgroups, the fol-
lowing example shows that we cannot get around the problem just by arguing
directly with Extk*E(k, M) instead of Extk*E(M, M).1

EXAMPLE. Let k be a field of characteristic two, and let

E = (91,92,93) - (Z/2)3.

Let M be the four dimensional kE-module given in terms of matrices by

1 0 0 0 1 0 0 0 1 0 0 0

1 1 0 0 0 1 0 0 0 1 0 0
92 930 0 1 0 1 0 1 0 0 0 1 0

0 0 1 1 0 1 0 1 1 0 0 1

Then M is periodic with period one, so each ExtkE(k, M) is isomorphic
to HomkE(k, M), and is one dimensional, given by the map : k ---+ M
corresponding to the last basis element. This map does not factor through a
projective module, even though its restriction to every cyclic shifted subgroup
does.

THEOREM 5.8.3 (Avrunin, Scott [24]). Under the isomorphism VE = VE
given in Lemma 5.8.2, the subvariety VE(M) corresponds to VE(M).

PROOF. By Proposition 5.7.1, VE(M) is equal to the variety determined
by the annihilator IE(k, M) in H' (E, k) of H* (E, M). The action can be
considered as coming from Yoneda composition, so it in no way depends
on the Hopf algebra structure of kE. So we can replace E by a shifted
subgroup E' of maximal rank so that kE = W without changing VE(M) or
VE(M). Furthermore, the above discussion of the Bockstein map shows that
the isomorphism between VE and VE described in Lemma 5.8.2 is not affected
by this replacement. So for 0 v E VE, we can extend T = (1+v) to a cyclic
shifted subgroup E' of maximal rank in kE. Then by Proposition 5.7.7,

VT(M) = VT n VE-(M) = VT n VE(M).

So M 1(1+v) is not free if and only if VT(M) {0}, namely if and only if
VT c YEW)- El

The following corollary was proved directly by Dade [87], and another
direct proof may be found in Carlson [69].

COROLLARY 5.8.4. A kE-module M is free if and only if M IT is free
for each cyclic shifted subgroup T of E.

'As was erroniously attempted in the first edition of this book!
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PROOF. If M is free then certainly M IT is free. Conversely, if M IT is
free for each cyclic shifted subgroup T of E, then VE(M) = {0}. So by the
Avrunin-Scott theorem VE(M) = {0} and hence by Proposition 5.7.2 M is
projective, which for a p-group is the same as free.

COROLLARY 5.8.5. If p does not divide dim(M) then VG(M) = VG.

PROOF. This follows from Proposition 5.7.4 and Theorem 5.8.3, since if
p does not divide dim(M), the restriction of M to a cyclic shifted subgroup
of an elementary abelian subgroup of G is never free.

This corollary also follows immediately from Theorem 3.1.9 of Volume I;
namely if p does not divide dim(M) then VG(M) 9 VG(M ®M*) VG(k) =
VG.

5.9. The modules L(

If 0 ¢ (E Hn(G, k) = Ext'G(k, k) = HomkG(Qnk, k) then ( corresponds
to a surjective map : S2nk -* k. We write LC for the kernel of . If
( = 0 E Hn(G, k), then we define LC = S2nk ® Stk. The reason for this
definition is as follows. If H is a subgroup of G, then by Schanuel's Lemma,
1.5.3 of Volume I, we have SlG(k)1H= In (k) ® P with P a projective kH-
module. As long as resG,H(() is still non-zero, we have

0 0

0

P P

I

I

C1H k- > 0

i res-H(C)
0 LresG,H(C) 1l k k 0

so that since P is also injective (Proposition 3.1.2 of Volume I) it follows that

LC 1H- LresG,H(C) ® (projective).

If, however, 0, then S1H has Ilk in its kernel and so

LC 1H- Slnk ® Ilk ® (projective).

The importance of the modules LC is that the variety VG(L() may be
explicitly computed.

PROPOSITION 5.9.1 (Carlson [70]). The variety VG(L() is the hypersnr-
face VG(() in VG determined by ( (in other words, the set of maximal ideals
containing ().
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PROOF. By Theorem 5.7.8 and the above discussion, it suffices to prove
the proposition for G = E elementary abelian. By Theorem 5.8.3 it suffices
to prove that VE(LC) = VE((). In other words, we must show that if 0 0
u E J(kE)/J2(kE) and x = 1 + u, then LS .(x) is projective if and only if
resG,(X)(0) 0 0.

If p is odd and n = is odd, then (2 = 0 so that VE(() = VE,
while dim Lc = dim S2nk - 1 is congruent to -2 modulo p, so that L J,(x)
is never projective. So we may assume that if p is odd then n is even.
Thus SI (k) lax>= k ® P with P projective. If resG,(x) (0 = 0 then the map

.1. < ): k ® P - k has the first summand in its kernel and so L( t (x) =
k ®1lk (D (projective). If (0 0 then the map c f (x): k ®P --4 k splits
and so L(1(x) = P.

COROLLARY 5.9.2. Every closed homogeneous subvariety of VG is of the
form VG(M) for some finitely generated kG-module M.

PROOF. If V is a closed homogeneous subvariety of VG then the cor-
responding ideal I (V) C H " (G, k) is generated by homogeneous elements
ci, ... , Ss. Let M = L(1 ® ®L(s . Then by Theorem 5.7.11 and Proposi-
tion 5.9.1 we have

VG(M) = VG(LC1 ® ... ® LCs) = VG(L(1) n ... n VG(L(S)
= VG((,) n ... n VG ((s) = (s) = V.

REMARK. In order to express V as VG ((1) n . . . n VG ((S) it is only necessary
for some power of every element of I (V) to be in the ideal generated by
6, ... , (s

LEMMA 5.9.3. If b1 E Hr(G, k) and C2 E HS(G, k) then there is a short
exact sequence

0 -> 1'LC2 LC1C2 ® (projective) LC1 - 0.

PROOF. We tensor the sequence 0 LC2 1 k -+ k --+ 0 with 1lrk to
obtain a sequence

0 QrL(2 ® (projective) , Slr+sk ® (projective) Q SZrk -+ 0.
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Since (152 = 1 o 1 (c) (cf. Section 2.6 of Volume I) we have a diagram

i
0

0 Q'LC2 ® (projective) ; LCISZ ® (projective) LEI -- 0

cv (S2)0 , SZrLC2 ® (projective) - Qr+sk ® (projective) -- LSI -- 0

k k

0 0

The lemma now follows from the fact that projective modules are injective
(Proposition 3.1.2 of Volume I).

The following lemma gives us another way of viewing the modules L.

LEMMA 5.9.4. Under the isomorphism

H' (G, k) = HomkG(S2nk, k) = ExtkG(Qn-1k, k)

an element c E Hn(G, k) corresponds to an extension of the form

0, k,5Z-'L(,Qn-1k,0.

PROOF. Lec Pn_1 be the (n - 1)st projective module in the minimal
resolution of k as a kG-module, so that Q' k is a submodule of Pn_1. Then
the lemma follows by applying the Snake Lemma, 2.3.9 of Volume I, to the
diagram

0 - L(_Slnk k- 0

1 If If

0 - P.-1 - Pn-1--0--0
(cf. Exercise (v) at the end of Section 2.6 of Volume I).

PROPOSITION 5.9.5. Suppose M is a finitely generated kG-module. Then
an element ( E Hn(G, k) is sent to zero under the map

H*(G, k) = ExtkG(k, k) ExtkG(M, M)

if and only if

Q-'LC ® M -- M ®Sln-1M ® (projective).
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PROOF. By the lemma, the image of ( under the map

ExtkG(k, k) ExtkG(M, M)

y y

Ext/G(Qn-1k, k) om Extk'G(Qn-1M, M)

is represented by the sequence

O-M- 1LC®M- Q'-1k ®M-+0.

This image is zero if and only if this sequence splits, which by Lemma 2.6.2
of Volume I happens if and only if

St-1L( ® M = M ® (Stn-1k ® M).

The proposition now follows from the fact that
SZn-1k ® M = Stn-1M ® (projective).

REMARK. Note that c E Hn(G, k) is sent to zero under the map

H*(G, k) = ExtkG(k, k) -+ Ext4G(M, M)

if and only if cup product with ( is identically zero on ExtkG(M, M). So if
this happens, we say that c annihilates ExtkG(M, M).

If ( E HT(G, k) vanishes on VG(M), then by the definition of VG(M),
some power of ( annihilates ExtkG(M, M). In particular, it follows from
Proposition 5.9.1 that some power of ( annihilates ExtkG(L(, L(). The fol-
lowing proposition gives us sharper information.

PROPOSITION 5.9.6. If ( E H'(G, k) then
(i) S2 annihilates ExtkG(LS, Lo).
(ii) If the characteristic of the field k is odd and n is even then annihi-

lates ExtkG(L(, LO.

PROOF. (i) Since ExtkG(Slnk, LS) = ExtkGT (k, the short exact se-
quence

O--+ L(--+ Slnk-(+ k

gives rise to a long exact sequence

ExtkG(k, LO £ ExtkGr(k, L() - ExtkG(L(, L() -> ExtkGl(k, LS)

ExtkGr+1(k LC) ...

and hence to a short exact sequence

0 -> Ext,+r'(k, L() /Im(() -4 ExtkG(LC, L()

Ker(( on Extr+1(k, L()) -> 0.

Since ( annihilates the left and right terms, (2 annihilates the middle.
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(ii) If C is a chain complex of kG-modules and T = (a 1 a2 = 1) is a
cyclic group of order two then T acts on C ® C via

0(x ®y) = (-1)deg(x)deg(y)y ®x.

If the characteristic of k is odd, then C®C decomposes into eigenspaces of T,
which are again chain complexes of kG-modules. We define the symmetric
square S2(C) to be the +1 eigenspace of this action, and exterior square
A2(C) to be the -1 eigenspace. Taking eigenspaces on both sides of the
Kiinneth formula

H(C 0 C) = H(C) ® H(C)
we obtain

H(S2(C)) = S2(H(C)), H(A2(C)) =A 2(H(C))
Taking the exterior square of the complex

C: 0-4Lc -->crk-+0
(whose homology is k in degree zero) we obtain the complex

A2(C) : 0 ' S2(Lo) - Slnk ®L( -* A2(Slnk) -- 0
which is exact since the homology of C ® C is k in degree zero, and is hence
entirely in S2(C). (Note that the left-hand module in A2(C) is S2 (Lc), since
L( is in degree one so that or acts via x 0 y H -y ®x.)

Now

A2(Slnk) ® S2(1l'nk) - Q2nk ® (projective).

Since n is even and p is odd, d = dim Slnk - 1 mod p, so that dim A2(Slnk) _
d(d- 1)/2 - 0 mod p and dimS2(Qnk) = d(d+ 1)/2 - 1 mod p. Since projec-
tive modules have dimension divisible by p and Sl2nk is indecomposable, the
Krull-Schmidt theorem implies that we have S2(Qnk) = 92nk® (projective),
and A2(Slnk) is projective. Thus the above exact sequence A2(C) shows that

S2(L() ® (projective) = Sink 0 L(= Sln(Lo) ® (projective)

and hence

S2(L() = Q'(L() ® (projective).

Similarly, if we take the symmetric square of the complex

C': 0- k-k-+0
(whose homology is L( in degree one) we obtain a complex

S2(C') : 0 -+ A2(Slnk) -> Slnk k --> 0

whose homology is A2(L() in degree two, and hence an exact sequence

0 -p A2(LS) - A2(Slnk) -> L -* 0.

Again using the fact that A2(Slnk) is projective, we see that

A2(Lo) = Q(L0) ® (projective).
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Putting these together, we have

L( ® L( = A2(Lo) ® S2 (L() = 52(L0 ®Stn(LO ® (projective)

so that

1r-1(Lc) ® L(- LS ®S2n-1(LC ® (projective),

and hence by Proposition 5.9.5, ( annihilates ExtkG(L(, L().

REMARK. Let G = (x, y I x8 = y2 = yxyx-3 = 1) be the semidihedral
group of order 16, and k be a field of characteristic two. Let (be the element
of H1 (G, k) corresponding to the quaternion subgroup (x2, xy) of order 8.
Then for every n > 1, (' does not annihilate ExtkG(L , L(-).

EXERCISE. [32] Suppose that G = Z/p x Z/p with p odd, and 0 0 S E
H2(G,Fp) is in the image of the Bockstein map. Show that LS - S22(L().

Show that there is a subgroup H = Z/p and a map L( -> ]Fp which
splits on restriction to H. Show that there is no such map S2(Lc) -* Fp, and
therefore L V- S2(Lo.

Use Propositions 5.9.5 and 5.9.6 to show that L( ® L( LS 0 l(LO.
Deduce that the element [L(] - [Sl(LS)] of the representation ring a(G) is a
non-zero nilpotent element (cf. Section 5.8 of Volume I).

5.10. Periodic modules

DEFINITION 5.10.1. A kG-module M is periodic if Q'M = M for some
value of n. The minimal value of n for which this is true is called the period
of M.

PROPOSITION 5.10.2 (Carlson [61]). Suppose M is a finitely generated
indecomposable periodic kG-module of period n, with k algebraically closed.
Then the nilpotent elements in ExtkG(M, M) form an ideal, and the ring
ExtkG(M, M) is a direct sum of this ideal and a polynomial subring k[x] in
one variable x of degree n.

PROOF. Since M is indecomposable, EndkG(M) is a local ring, so that
modulo its radical it is isomorphic to k. Let x E Ext'kG(M, M) correspond
to an isomorphism x : S2nM -> M. If ( E ExtkG(M, M) is any element of
positive degree represented by a map ( S2''M - M, then (n : Q"M -+ M
is either an isomorphism or nilpotent. If it is an isomorphism then it differs
from a multiple of x' by a nilpotent element.

COROLLARY 5.10.3. If M is a finitely generated indecomposable periodic
kG-module and k is algebraically closed, then VG(M) is a single line through
the origin in VG.

PROOF. It follows from the proposition that VG(M) is an affine line
A1(k). Since VG(M) is a finite cover of VG(M), the latter is also a single
line through the origin.

Conversely, we have the following:
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THEOREM 5.10.4 (Eisenbud [100]). If M is a finitely generated kG-mod-
ule of complexity one, then M is a direct sum of periodic modules and pro-
jective modules.

PROOF. (Carlson [69]) By Proposition 5.7.2, if M has complexity one
then VG(M) is a finite union of lines through the origin in VG. So we may
choose a homogeneous element ( E HT(G, k) such that VG(() nVG(M) = {0}.
Tensor the sequence

0--+ Lc Q'k-k-0
with M to obtain a sequence

0-- Lc®MS2'k®M->M->0.
By Proposition 5.9.1 and Theorem 5.7.11 we have

VG(L( ® M) = VG(LC) n VG(M) = VG(C) n VG(M) = {0}
and so by Proposition 5.7.2, L( 0 M is projective, and hence also injective
(Proposition 3.1.2 of Volume I). Since 52'k ® M = SZ'M ® (projective), we
have

M = 52"M ® (projective).

DEFINITION 5.10.5. If M is periodic, an element E H'(G, k) with
VG(C) n VG(M) = {0} is said to generate the periodicity of M.

The proof of the above theorem shows that if (E HT (G, k) generates the
periodicity of a periodic module M then the period of M divides n.

COROLLARY 5.10.6. If H*(G, k) is finitely generated as a module over a
subring generated by elements xl,... , xs in degrees nl,... , n,s and M is an
indecomposable finitely generated periodic kG-module, then the period of M
divides one of the ni.

PROOF. The condition on the xi ensures that the intersection of the
hyperplanes they define is the origin. Now VG(M) is a single line through
the origin by Corollary 5.10.3, so one of the xi generates the periodicity of
M.

COROLLARY 5.10.7. If M is an indecomposable finitely generated periodic
kE-module with E elementary abelian, then M has period one or two. If k
has characteristic two, then M has period one.

PROOF. This follows from the structure of H*(E, k) given in Corol-
lary 3.5.7 of Volume I.

5.11. Andrews' theorem

In the last section, we described a method for obtaining upper bounds
on the period of a periodic kG-module. In general, it is much harder to get
lower bounds. However, a method of Andrews [14], which we now describe,
enables us to determine the exact period of a periodic inflated module, in
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terms of its variety as a module for the quotient. We begin with a technical
lemma.

LEMMA 5.11.1. Suppose N is a normal p-subgroup of G, and M is a kG-
module. Denote by N the sum >gEN g of the elements of N, as an element
of the group algebra kN C_ kG. Then M has a non-zero projective summand
as a kG-module if and only if NM has a non-zero projective summand as a
k(G/N)-module.

PROOF. If M has a non-zero projective summand P as a kG-module
then NP is a non-zero projective summand of NM as a k(G/N)-module.
Conversely, suppose that NM has a non-zero projective summand Q as a
k(G/N)-module. Denote by it the projection of NM onto Q, and write it
as a transfer 7r = Trl G/N(a) = TrN,G(a), a E Endk(NM). Since N is
normal in G, the transfer map Tr1,N maps elements of Endk(M) to elements
preserving the submodule NM, and gives a surjective map from Endk(M)
onto Endk(NM). So there is an element 13 E Endk(M) with the property
that Tr1,N(,3) acts as a on NM. Thus Tr1,G(/3) acts as it on NM, and so
Tr1,G(,3) is a non-nilpotent kG-module endomorphism of M. So we may
choose 0 E EndkG(M) in such a way that 0 o `Irl,G(/3) is a projection onto a
kG-module summand of M. Since 0 o Tr1,G (Q) = Tr1,G (0 o a), this summand
is projective.

Now suppose we have a group extension

1-+N-+ G-G-1
with N cyclic of order p. Let e = 1 if p = 2 and E = 2 if p is odd. If M is
a kG-module, regarded as a kG-module by inflation, then M IN is a module
with trivial action, and so M IN is periodic with period E. So if M is periodic
as a kG-module, then its period is certainly divisible by E.

Let N denote the sum >gEN g of the elements of N, as an element of
the group algebra kN. Then for any r > 0, NSZG (k) is a kG-module with N
acting trivially, so we may regard it as a kG-module. We set

Vr = VG(NS2G (k)) C VG.

THEOREM 5.11.2 (Andrews). If M is a kG-module regarded as a kG-
module by inflation, then the following are equivalent:

(i) dimk SlG(M) = dimk M
(ii) NS2G (M) = 0
(iii) NSlG(k) ® M is a projective kG-module
(iv) S2G (M) - M
(v) VG(NSlj(k) ® M) = {0}
(vi) Vr n VG(M) = {0}.

PROOF. By Schanuel's lemma we have

QG (M).N= QG (M J.N) ®Q - M.N ®Q
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where Q is a projective kN-module with Nc (M) = NQ = QN. Since N is
a p-group, Q = 0 if and only if QN = 0, and so (i) is equivalent to (ii).

Since S2G (M) has no projective summands as a kG-module, the lemma
implies that N1l (M) has no projective summands as a kG-module. Apply-
ing N to the isomorphism

StG (k) ® M = 1 (M) (projective kG-module)

we obtain

NS2G(k) ® M c_-1 NSlj(M) ® (projective kG-module)

and so (ii) is equivalent to (iii).
Tensoring the short exact sequence

0 - NS2G (k) S2G (k)" - k - 0
with M, we see that if (iii) holds then

Q"(k)N ® M - M ® (projective kG-module).

Since (iii) also implies that Q = 0 so that N acts trivially on SZG(M), we
have

QG(k)"' ® M = (SlG(k) ® M)1` = S2G (M) ® (projective kG-module)

and hence (iii) implies (iv). It is easy to see that (iv) implies (i).
The equivalence of (iii) and (v) and the equivalence of (v) and (vi) are

given by Proposition 5.7.2 and Theorem 5.7.11 respectively.

The varieties Vr are completely determined in [37].

5.12. The variety of an indecomposable kG-module is connected

This section is devoted to a generalisation of Corollary 5.10.3 to arbitrary
(not necessarily periodic) finitely generated modules.

THEOREM 5.12.1 (Carlson [70]). If M is a finitely generated kG-module
and VG(M) = V1 U V2 with V1 fl V2 = {0} then M - M1®M2 with VG(M1) _
V1 and VG(M2) = V2.

PROOF. We prove this theorem by induction on dim V1 + dim V2. The
case where either V1 or V2 is {0} is clear, so we shall assume both are non-
zero. Thus we may choose homogeneous elements (1 of degree r and ('2 of
degree s such that V1 C VG ((1), dim(V2 f1 VG ((I)) = dim V2 - 1, V2 C VG ((2)
and dim(V1 f1 VG((2)) = dim V1 - 1. Since VG(C1(2) = VG(c1) U VG((2)
V1 U V2 = VG(M), some power of (1(2 lies in IG(M). So by replacing Sl
and (2 by suitable powers if necessary we may assume that (1(2 annihilates
Extk*G(M, M). Thus by Proposition 5.9.5 we have

LS1S2 0 M - QM ®SZT+sM ® (projective).

Also, by Lemma 5.9.3 there is a short exact sequence

0 -+ S2rL(2 -> L(1(2 ® (projective) -p L(1 0
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so that tensoring with M we obtain a sequence of the form

0 rL(2 ® M -: cr+sM ®S2M ® (projective) -+ L(, 0 M : 0.

By Proposition 5.7.3, Proposition 5.9.1 and Theorem 5.7.11, VG(S2rL(2 ®
M) = VG((2)nVG(M) = (V1nVG((2))UV2i so that by the inductive hypothesis
SZrLS2®M = N1 ®N2 with VG(Nl) = V1nVG((2) and VG(N2) = V2. Similarly
VG(LS, ®M) = VG((,) nVG(M) = V1 U (V2 n VG((1)) so that by the inductive
hypothesis LS, ®M = NN 2 with VG (N,') = V1 and VG (N2) = V2nVG((I).

Since VG (N,') nVG(r = Vi n V2 = {0}, it follows from Corollary 5.7.12
that we have Ext),G(Nl 0. Similarly VG(N2) nVG(Nl) c V1 n V2 = {0}
so that we have Ext)CG (N2, Ni) = 0. It is easy to see that this forces the
above sequence to decompose as a direct sum of two sequence of the form
0-3N1-4 N1 -->N1' -0and0-+ N2, N2,N2',0with VG(Nl)CVl
and VG(N2') C V2. By the Krull-Schmidt theorem and the invariance of
varieties under Q, the decomposition

cr+sM (D QM ® (projective) = N1" ® N2

forces M to decompose as M1 ® M2 with VG(Ml) C V1 and VG(M2) C V2.
Since VG(M) = V1 U V2 this forces VG(M1) = V1 and VG(M2) = V2.

COROLLARY 5.12.2. If M is a finitely generated indecomposable kG-mod-
ule, then the projective variety VG(M) is connected in the Zariski topology.

0

5.13. Example: dihedral 2-groups

In this section, we go through the example of the dihedral 2-groups in
detail. Recall that the classification of the indecomposable modules was
described in Section 4.11 of Volume I. We shall continue with the notation
introduced there, so that

G=D4q=(x,yl x2=y2=1,(xy)q=(yx)q)
(q a power of two). The kG-modules are given by:

(i) The modules M(C) of the first kind corresponding to words C which
alternate in a+l and b}1 and which do not contain (ab)q, (ba)q or their
inverses.

(ii) The modules M(C, 0) of the second kind corresponding to words C
which are not non-trivial powers, and no power of which contains (ab)9, (ba)q
or their inverses.

(iii) The projective indecomposable module M((ab)q(ba)-q, idk) of the
second kind.

We shall assume that k is algebraically closed, so that we may apply the
theory of varieties for modules.

We first deal with the case q = 1, since this is quite different from q > 1,
and a lot easier. In this case, we have H*(G, k) = k[xl,x2] with deg(xi) =
deg(x2) = 1 so that VG = A2(k) and VG = 1P1(k). The indecomposable
modules in this case (cf. Section 4.3 of Volume I) are the modules Q '(k)
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for n E Z, for which we have VG(S2'(k)) = VG by Proposition 5.7.3, and
the modules L(m for m > 1 and 0 C E H1 (G, k), for which we have
VG(L(m) = VG((m) = VG(() by Proposition 5.9.1. Note that VG(() is the
point in P1 (k) parametrising the module, as in the remark after Theorem 4.3.3
of Volume I.

In case q > 1, we may find H*(G, k) by repeated application of the
spectral sequence of a central extension, and we find that

H* (G, k) = k[xi, x2, z]/(xlx2)

with deg(xl) = deg(x2) = 1 and deg(z) = 2. We choose the la'>elling in such
a way that the generator x1 corresponds to the subgroup (xyx,y) of index
two, while x2 corresponds to (x, yxy). Thus

VG = proj k[xi, x2, z]/(x1x2) = Pa U Pb

where Pa and Pbl are projective lines over k intersecting in the common point
at infinity Pa fl Pb = {ooa = 00 = 00b}. We choose the notation so that
Pa = proj k[xi, z] and P1 = proj k[x2, z], and so that Axi +µx2 +z = 0 is the
equation of the pair of points {Aa, µb} C (Pa U P6) \ {oo}.

THEOREM 5.13.1. The varieties for the kG-modules, G = D4q, q > 1,
are given as follows:

(i) VG(M(C)) = Pa U Plb if C - af1 ... bfl

Pbl if C- af1...af1 but

C 96 (ab)q-1a(b-1(ab)q-1a)r, r > 0

Pa if C - b±1...b-1 but
C ,fit (ba)9-1b(a-1(ba)9-1b)r, r > 0

{0b} if C - (ab)q-la(b-1(ab)9-1a)r, r > 0

{0a} if C - (ba)q-lb(a-1(ba)9-lb)r, r > 0

(ii) VG(M(C,
0

{oo} unless C - a-lb(ab)9-1,

b-la(ba)q-1 or (ab)9(ba)-q

{Aa} if C - a-lb(ab)q-1

{Ab} if C - b-la(ba)q-1

(iii) VG(M((ab)9(ba)-9, idk) = 0.

PROOF. (i) The first case follows from Corollary 5.8.5. For the remain-
ing cases, we need to calculate the dimension of VG(M(C)) (which is of
course one greater than the dimension of VG(M(C))). By Proposition 5.7.2,
dimVG(M(C)) = 1 if and only if M(C) has complexity one, which by The-
orem 5.10.4 happens if and only if M(C) is periodic. In this case, by Corol-
lary 5.10.3, VG(M(C)) is a single point in VG, and by Corollary 5.10.6, M(C)
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has period two. Recall from Section 4.17 of Volume I that S22M(C)
M(LqRqC), and that C - LqRqC if and only if C - (Rq)r(ab)q-la =
(ab)q-la(b-1(ab)q-la)r or C - (Rq)r(ba)q-lb = (ba)q-lb(a-1(ba)q-lb)r for
some r > 0.

Now if C - aft ... aft then it follows from the explicit description of the
actions of x and y that M(C) J(x) is free, while M(C) J(y) is not free. Thus
VG(M(C)) does not contain Oa but does contain Ob. By Theorem 5.12.1,
VG(M(C)) is connected, so if M(C) is periodic then VG(M(C)) = {Ob} and
if M(C) is not periodic then VG(M(C)) = P1. Similarly for C - b±1... b±l,
if M(C) is periodic then VG(M(C)) = {0a} and if M(C) is not periodic then
VG(M(C)) = lPa.

(ii) According to Section 4.17 of Volume I, these modules M(C, 0) are all
periodic, so that by Corollary 5.10.3, VG(M(C, 0)) is a single point in VG. If
VG(M(C, 0)) yl {oo} then either VG(M(C, 0))nlP = 0 or VG(M(C, 0))nlP =
0.

If VG(M(C, q)) n P1a = 0 then by Corollary 5.7.9 we have VG(M(C, O)) _
0, where H is the subgroup (xyx, y) of index two in G. Thus by Pro-
position 5.7.2, M(C, q5) 1H is projective, and so the rank of the matrix
H = EheH h (which is a generator for Soc(kH)) on M(C, 0) is equal to
dimk M(C, O)/IHJ. Setting X = 1+x and Y = 1 + y in kG, so that
X2 = Y2 = 0, we have (cf. Lemma 4.11.1 of Volume I)

H = ((1+xyx)(1+y))q/2 = (Y+XY+YX +XYX)Y)q/2
= (YXY + XYXY)q/2 = (YX )q-1Y + (XY)q.

Since M(C, 0) is a non-projective indecomposable kG-module,

G=Eg=(XY)q
gEG

acts as zero on M(C,O), and so H acts in the same way as (YX)q-1Y.
Looking at the way in which X and Y act on M(C, 0) (Section 4.11 of
Volume I), we see that the only way (YX)q-lY can act with rank equal to
dimk M(C, q)/2q is to have C - (a-1b(ab)q-1)r for some r > 1 (recall that
(ba)q must not appear in any power of C). Since C is not allowed to be a
power of a word of smaller length, we have r = 1, and C - a-1b(ab)q-l.

Similarly, if VG(M(C, 0)) n P11 = 0 then C - b-1a(ba)q-1.
To complete the proof, we must determine the varieties

VG(M(a-1b(ab)q-1, 0)) and VG(M(b-1a(ba)q-1, 0)).

Let c _ (Ax2 + µx2 + z)r E H2r(G, k). We claim that

))M(b_1a(ba)_1,L = M(a-1b(ab)q-1, . 1

µ
1

A 1 0 µ 1 0

.

0 a 0

where the matrices on the right-hand side are r x r matrices. Given this
claim, it follows from Proposition 5.9.1 that the variety of this direct sum is
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{Aa, µb}, so that by applying Proposition 5.7.5 and comparing for different
values of A and p. we see that the second and third cases of part (ii) are
proved.

To prove the claim, we argue as follows. We have

cl2r(k) =
M((b-ta(ba)q-1)-r(a-1b(ab)q-1)r),

a module of dimension 4qr + 1. According to the schema described in Sec-
tion 4.11 of Volume I, we have an ordered basis zo,... , Z4qr of S2 2r (k) corre-

sponding to this word. With respect to this basis, the element x2(r-s)zs c
1

H2r(G, k) = HomkG(12r(k), k) corresponds to the homomorphism sending
z to 1 and all other zx to zero, while x2(r-s)zs E H2r(G k) corre-2q(2r-s) 2

spends to the homomorphism sending Z2qs to 1 and all other zi to zero. We
shall show that

A 1 0

L( n (Z2,,, ... , Z4qr) = M(a-ib(ab)q-1

A 1

0 A

0

L( n (zo,... , z2gr) = M(b-la(ba)q-1.. )).
1

0 µ

We concentrate on the first of these isomorphism, as the second follows by
symmetry. Let

V0 = LS n (z2gr, z2q(r+i), ... ) z4gr)

V = (z2gr+i, z2q(r+1)+i, ... , z2q(2r-1)+i) 1<i<2q-1.
and take as basis for Vo the preimages of z2q(r+i), ... , z4gr under the projec-
tion onto these basis vectors of 92r (k). In terms of these bases, we see that
L( n (z2gr, ... , z4gr) has been given as the schema for M(a-lb(ab)q-l, 0) as
described in Section 4.11 of Volume I, where

(rA l2)A
2 ... Ar

1 0 ... 0= 0 1 ... 0

0 0 ... 1 0J

Some elementary linear algebra shows that this matrix is conjugate to the
fA1 0

matrix . Thus we have produced two submodules of L( of theai
0 A

appropriate isomorphism types, which intersect in {0} and span L(. This
completes the identification of L.

(iii) This follows from Proposition 5.7.2, since M((ab)q(ba)-q, idk) is pro-
jective.
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5.14. Multiple complexes

The main theorem of this section is a generalisation of Theorem 5.10.4
to arbitrary (not necessarily periodic) finitely generated modules. Namely,
we shall show that in a suitable sense, a module of complexity c possesses a
c-fold periodic projective resolution. The hard part of the proof is involved
in checking that certain modules are projective. We shall give two proofs
of this, one involving the machinery of varieties and the other using a hy-
percohomology argument. The latter is more opaque, but works in greater
generality.

We begin by recalling from Section 2.6 of Volume I the basic construction
we shall be using. Suppose ( E H'(G, R) = ExtRG(R, R). We choose a
cocycle : S2nR ->
projective resolution

we may assume c is
pushout diagram

R representing C, where 1'R is the nth kernel in a
P of R as an RG-module. By making P large enough,
surjective. We denote its kernel by L(, and form the

0 11 R - Pn-1 Pn-2 ... Po R 0

if0-R ' P.-11L( -- Pn-2-- ... APO - R-0.

The bottom row of this diagram is an n-fold extension representing the ele-
ment ( E ExtRG(R, R). We denote by CC the chain complex

0-Pn-11LC-

O

formed by truncating the bottom row of this diagram. Thus we have

R ifi=0,n-1
HZ(CS) 0 otherwise.

We write for the generator of degree n -1, and 1 for the generator of degree
zero.

The complex CC should be thought of as a sort of algebraic analogue of
a sphere with G-action, with ( being the transgression of the fundamental
class of the sphere.

We also write C(°°) for the chain complex

...SPI.PO .Pn_1/L(-Pn-2-4...-4P1`PO--+ 0
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obtained by splicing together infinitely many copies of CC in positive degree.
It is an exact complex except in degree zero, where the homology is R.

DEFINITION 5.14.1. We say that homogeneous elements Cl, ... , (, of the
ring H' (G, k) cover the variety of a finitely generated kG-module M of
complexity c if

CG ((1) n ... n VG(c,) n VG(M) = {0}.

Note that by Proposition 5.7.2, dim VG(M) = c, so that by the Noether
Normalisation Lemma 5.4.5 there exist homogeneous elements gen-
erating a polynomial subalgebra

k[(1,... ,((] C H'(G,k)/IG(M)
over which H'(G,k)/IG(M) is finitely generated as a module. Thus the
corresponding map VG(M) AC(k) is finite, so that the preimage of the
origin is a finite set. But this map is also homogeneous, and so the preimage
of the origin is the origin. Therefore for such a choice of (1, ... , we have

VG((,) n ... n VG((C) n VG(M) = {0}.

THEOREM 5.14.2. [34] Suppose (1,... , (, cover the variety of a finitely
generated kG-module M of complexity c. Then the complex

CC'

is a finite complex of projective kG-modules. The complex
C(°°) ®... ®C(°°) ® M

is a projective resolution of M of growth c.

PROOF. All the modules in CC, are projective except possibly the module
Pn,_1/LSD. Since the tensor product of any module with a projective module
is projective, it remains to examine the module

Pni-1/LC1 ®... ® Pnc_1/LC, 0 M.

By Proposition 5.7.3, Theorem 5.7.11 and Proposition 5.9.1, the variety of
this module is

VG((1) n ... n VG(SC) n VG(M)

which is {0} by the choice of It thus follows from Proposition 5.7.2
that this module is also projective.

It now follows by Proposition 3.4.4 that C(°°) ® ®C(O°) ® M is a
projective resolution of M. Since each C(°°) is a periodic complex, the rate
of growth of the tensor product is exactly c.

REMARK. The above theorem shows that a finitely generated module al-
ways has a projective resolution which may be expressed as a tensor product
of periodic complexes, and of the same polynomial rate of growth as the
minimal resolution. However, in general the minimal resolution may not be
written as a tensor product in this way. But it appears in all the examples
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calculated that the minimal resolution of a module of complexity c can al-
ways be written as the total complex of a c-fold complex in which the rows,
columns, etc. are all eventually periodic. For example, if G = GL3(F2) and
char(k) = 2, then there are three simple modules in the principal block,
namely the trivial module k, the natural three dimensional simple module
M and its dual N. The minimal resolution of the trivial module is the total
complex of a double complex of the form given as follows.

PkE-PNE PME PkE PNE ...

PNE PM- Pk-PN-PME ...

PME PkE PN - PME PkE .

PkE PNE PMPNE-...

As another example, if G is the alternating group A6 and char(k) = 3,
then there are four simple modules in the principal block, namely the trivial
module k, two distinct three dimensional modules L and M, and a four
dimensional module N. The minimal resolution of the trivial module is the
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total complex of a double complex of the form given as follows.

1 1 J.

PM-PN-Pk` Pk`
1 1 1 1

PNF-PN4Pk4Pk4
1 1 1 1 1 1

PM- Pk 4-Pk`PN4PN4Pk` Pk
1 1 1 1 1 1 1

PN- Pk `Pk4PN4PN4Pk4Pk4
1 1 1 1 1 1 1 1 1

Pk PN 4PN4 Pk 4 Pk PN4PN4 Pk 4 Pk 4-
1 1 1 1 1 1 1 1 1

Pk F- PN E-PN F- Pk F- Pk PN PN Pk E- Pk 4-

1 1 1 1 1 1 1 1 1

PM E- PN Pk 4- Pk PN PN Pk F- Pk PN PN
1 I I I 1 1 1 1 1 1

PN - PN Pk Pk PN PN Pk Pk PN - PL
I 1 1 1 1 1 1 1

PMT Pk - Pk PN `PN` Pk Pk PN` PL
1 1 1 1 1

PN 4 Pk Pk 4 PN 4- PL

1 1 1
Pk E--PNE-PL

We now give an alternative proof of the above theorem using hypercoho-
mology. This proof works in greater generality, and so we must first generalise
the appropriate definitions.

DEFINITION 5.14.3. Suppose R is Noetherian and M is a finitely gener-
ated RG-module. We say that homogeneous elements (1,... , (, of H* (G, R)
cover the variety of M if the images of .1, ... , (c under the map

H*(G, R) = ExtRG(R, R) ExtRG(M, M)

generate a subring over which ExtRG(M, M) is finitely generated as a module.

REMARKS. In case R = k is a field, this agrees with the previous defini-
tion of covering the variety of M. By Corollary 4.2.4 to Evens' theorem, a set
of homogeneous elements covering the variety of M always exists. We shall
see below that under some moderately weak hypotheses, M has a projec-
tive resolution which is a tensor product of c periodic complexes, and which
therefore has growth exactly c. Thus a minimal such c may be thQught of as
the complexity of M. Note that in this generality there is no unique minimal
resolution, so that our previous definition over a field does not work.

We begin with a lemma. Recall from Proposition 3.4.3 that if D is a chain
complex of RG-modules, bounded above, then we have a hypercohomology
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spectral sequence

ExtRG(Hq(CC), D) ExtRG (CC, D).

Since Hq(C() is only non-zero for q = n -1 (n = deg(()) and q = 0, the only
possible non-zero differential in the above spectral sequence is dn.

LEMMA 5.14.4. Suppose D is a chain complex of RG-modules, bounded
above. In the two row spectral sequence

E2q(() = ExtRG(Hq(CC), D) = ExtRG (CC, D)

the differential do is given by

dn(a.() = a. I E En+n,O(c) = HP+n(G, D).

PROOF. We first remark that since Hq(C() = R if q = 0 or n - 1 and is
zero elsewhere, we have

E2q(() - f
HP(G,D) if q = 0 or n - 1
0 otherwise.

The differential do may be obtained as follows. We have a short exact
sequence of chain complexes

0-4CC -+C(-i-C( [n]-0.
If P is a projective resolution of R as an RG-module, we have a short exact
sequence

0-#P0 CC-#P®C(00) -+ P®CS°°l[n]-#0
and hence a short exact sequence of cochain complexes

0 -4 HomRG(P ® C(°°), D) [-n] -+ HomRG(P 0 C(°°), D)

-4 HomRG(P ®CC, D) -# 0.

Now P 0 Cr) is again a projective resolution of R as an RG-module, so the
long exact sequence in cohomology of this short exact sequence of cochain
complexes is

-# ExtRG (CC, D) -j Hr-n(G, D) dom. Hr(G, D) -> ExtRG(CC, D)

This is the long exact sequence associated to the above two-row spectral
sequence, and so the marked homomorphism is dn.

To identify this map as multiplication by c, we argue as follows. In
general, multiplication by c may be thought of in the following way. A
cocycle representing the element ( lifts to a map of projective resolutions
P -> P[n]. If a E Hr-n(G, D) is represented by a chain map P -* D[r - n]
then the product a.( is represented by shifting and composing

P -> P[n] D[r].

So all we need check is that the map of resolutions

P®C(-),P®C(-)[n]
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given above represents the element in cohomology. But this follows from
the diagram

(P (D C(-))n
-- (P (D

C(-))n-1 ... (P (9 C(-))o , R , 0

I

(P ®
C(-)
( )o

0 _R _Pn_1/LC P0 'R
since the bottom row is an exact sequence representing (.

If (1 i ... , ( E H* (G, R) are homogeneous elements, then Corollary 2.7.2
of the Kiinneth Theorem in Volume I shows that H * (®i 1 C(i) has a basis
consisting of elements of the form x1® ®x, where each xi is equal to either
1 or bi. We also write Si for the element 1® ®1 of H. (®i=1 CC,).

THEOREM 5.14.5. [35] Suppose R is a Noetherian ring with the property
that for each prime p dividing GI, either p is invertible in R or R/pR is
Artinian, and M is an RG-lattice (i. e., a finitely generated RG-module which
is projective as an R-module). If S1, ... H*(G, R) cover the variety of
M, then the complex

CC1®...®CC®M
is a finite complex of projective RG-modules. The complex

C(°°) ®...®C(°°)®M

is a projective resolution of M.

PROOF. As in the proof of Theorem 5.14.2, it suffices to show that the
module

Pn1-1/LC1 ®... ® Pne-1/LCc ® M

is projective. We first show that it is sufficient to prove that C ® M has a
finite projective resolution, where C = CC, ® ® CC,. For if P - C ® M
is a finite projective resolution, then by enlarging P if necessary, we may
assume this map is surjective. The kernel is therefore a finite exact sequence
of modules, all except possibly one of which is projective. Moreover, as R-
modules, all the modules involved are projective, and so by Corollary 3.6.5 of
Volume I, Pnl-1/LC1 ® ® Pn,_1/LC, ® M is projective as an RG-module.

By Corollary 4.2.7, in order to prove that C 0 M has a finite projec-
tive resolution, it suffices to prove that ExtRG(C 0 M, C ® M) = 0 for all
sufficiently large n. We start by showing that ExtRG(C (D M, M) = 0 for
all sufficiently large n. Since M is an RG-lattice, ExtRG(C ®M, M)
ExtRG(C, HomR(M, M)), so we have a spectral sequence

E2q = ExtRG(Hq(C), HomR(M, M)) = ExtRG (C ® M, M).
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The map C -+ CC, given by the augmentation CSC -* R for j 0 i gives rise
to a map of spectral sequences to the above spectral sequence from

E2q((i) = ExtRG(Hq(C(ti), HomR(M, M)) = ExtRG(C(i ® M, M).

The latter spectral sequence was examined in the lemma, where it was shown
that the differential d,,,, is given by a.(2. It follows that the same
formula holds in the original spectral sequence E.

Now EE* is finitely generated as a module over E2* (which is a free
R-module dual to H*(C)). Since the differentials are E20-module homomor-
phisms, it follows that E is also finitely generated as a module over E2*°.
But the elements (1, ... , (c in the kernel of E2*° --> E° act as zero on
and so E** is finitely generated as a module over

E°/((1,... , (c) = ExtRG(M, M)/((1, ... , )
Since ExtRG(M, M) is finitely generated as a module over the subring gener-
ated by the images of (1,... , (,, the quotient by the images of multiplication
by these elements is a finitely generated R-module. It follows that E is a
finitely generated R-module, and hence so is ExtRG(C ® M, M).

Finally, the spectral sequence

ExtRG(C0M,H_q(C)®M) ExtRG(C0M,C®M)

has as its E2 term a finite number of non-zero rows, each isomorphic to
ExtRG(C ® M, M). So the E2 term is a finitely generated R-module, and
hence so are the E,, term and ExtRG(C (D M, C 0 M). El

COROLLARY 5.14.6. Suppose H*(G, Z) are homogeneous el-
ements generating a subring over which H* (G, Z) is finitely generated as a
module. Then for any (commutative) coefficient ring R, C = R ®z CC, ®

® C(, is a finite complex of projective RG-modules with H°(C) = R, and
HZ(C) is a direct sum of copies of R for all i.

REMARK. The existence of a finite complex C of projective RG-modules
with Hi(C) a direct sum of copies of R for all i, as in the theorem, can also
be proved topologically as follows. A faithful complex representation of G
gives rise to an embedding into a compact unitary group G -+ U(n). If we
choose a cellular division of U(n) such that the image of a cell under the
action of G is always a cell, then the complex of cellular chains with values
in R is a chain complex of free RG-modules. Since U(n) is connected, every
element of G acts in a way which may be deformed to the identity, and hence
trivially on homology.

5.15. Gaps in group cohomology

In this and the next section, we give some examples of theorems which
may be proved using the theory of multiple complexes developed in the last
section.
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Our first theorem is best stated and proved in terms of Tate cohomology,
so we begin with a quick review of this subject.

Let G be a finite group and R be a commutative ring of coefficients. If

... -` P2 -` P1 ` PO
is a projective resolution of R as an RG-module then

HomR(Po, R) - HomR(Pl, R) -# HomR(P2, R) - .. .

is an exact sequence of modules which are injective relative to the trivial sub-
group, or equivalently projective (see Proposition 3.6.4 of Volume I). Splicing
these sequences together, we obtain a doubly infinite sequence

p±: ...-- P2->P1-->P°` P_1- P_2-+ ...
where P_,,,_1 = HomR(P,,,, R). This is called a complete resolution of R.
The cohomology groups of the complex HomRG(P±,M) are the Tate coho-
mology groups k* (G, M). Thus for n > 0 we have H* (G, M) = H* (G, M).
Since HomRG(P_n_1i M) - P®®RG M, for n > 0 we have H-n-1(G, M)
Hn(G, M). The group H° (G, M) is the quotient of H°(G, M) = MG by
the image of Trl,G. In the notation of Definition 3.6.2 of Volume I we have
H°(G, M) = MG,1. The group fl-1 (G, M) is the dually defined submodule
of Ho(G, M) = R ®RG M = M/[G, M].

It is easy to see that a short exact sequence of RG-modules 0 -* Mo ->
M1 - M2 -+ 0 gives rise to a doubly infinite long exact sequence in Tate
cohomology extending the usual long exact sequence (Proposition 2.5.3 (ii)
of Volume I) in ordinary cohomology.

THEOREM 5.15.1. Suppose G is a finite group and R is a commutative
ring of coefficients. Let C be the finite complex of projective RG-modules
described in Corollary 5.14.6 (or Theorem 5.14.5 with M = R). Then there
is a spectral sequence whose E2 term is given by

Ezq = HomR(HQ(C), k (G, M)),

and which converges to zero.
There is also a spectral sequence whose E2 term is given by

E2' = HomR(Hq(C), HP (G, M)),

and which converges to H*(HOmRG(C, M)).

PROOF. Let P± be a complete resolution of R as an RG-module, and let
Eo' be the double complex HomRG(P f ® C, M), with horizontal differential
dl coming from Pt and vertical differential do coming from C. If we look
at the spectral sequence in which dl is performed first, we see that since C2
is projective, each row is a split exact sequence of projectives, and so El is
zero. Thus the cohomology of the total complex is zero, and so the spectral
sequence in which do is performed first also converges to zero. In the latter
spectral sequence we have

EP1q -- HOmRG(P± 0 Hq(C), M) = HomR(Hq(C), HomRG(P±, M))
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since HQ(C) is a direct sum of copies of R with trivial G-action. Now the
horizontal differential is the one induced by the boundary map on P+, and
so E2 is as given.

If instead of a complete resolution P± we use a projective resolution P
of R as an RG-module, then the spectral sequence in which d1 is performed
first has E1 = HomRG(C, M) concentrated along the vertical axis and E2 =
E,,, = H*(HomRG(C, M)). The spectral sequence in which d° is performed
first has

E1 = HomR(Hq(C), HomRG(P, M))

and E2 as given.

THEOREM 5.15.2. [38] Given a finite group G, there exists a positive inte-
ger r such that for any commutative ring R of coefficients and any RG-module
M, if Hn(G, M) = 0 for r + 1 consecutive values of n, then H7(G, M) = 0
for all n, positive and negative.

PROOF. We first prove this in the case where M is projective as an R-
module. Let C be the finite complex of projective RG-modules described in
Corollary 5.14.6, and let r be its length, so that C has the form

O--+ cr--+ ...-- C1-- Co--+ 0.

Then Hr(C) = Ho(C) = R, and so the top and bottom rows of the spectral
sequence described in the above theorem have the form

E2r = E2° - Hn(G, M).

Suppose that H7(G, M) is not always zero, but is zero for r + 1 consec-
utive values of n, say m, m + 1,... , m + r, with either ft'-' (G, M) or
Ham.+r+1(G, M) non-zero. Thus either E2-I,r 0 or EZ+r+I,o 0. How-
ever, E24 = 0 for m < p < m + r. The differential dk on the Ek page takes
E to EkP+k,q-k-1 and dk = 0 for k > r + 1. So whichever of EZ _I'r or
E2 "'+r 1,° is non-zero, this group can never be killed at any stage in the spec-
tral sequence. This contradicts the fact that the spectral sequence converges
to zero.

We now deal with the general case where M is not necessarily projective
as an R-module. In this case, we first remark that since Hn(G, M) does
not change when the coefficient ring R is replaced by Z (cf. the remark after
Definition 2.4.4 in Volume I), we may as well assume R is Z. Note at this
stage that we have not assumed that M is finitely generated. Now if

0-*M'-F-M-0
is a short exact sequence with F a free ZG-module, then M' is Z-free. Since
Hn(G, F) = 0, we have Hr' (G, M) = Hn+1(G, M') and so the theorem for
M follows from the theorem for M'.
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5.16. Isomorphisms in group cohomology

As an application of the theorem of the last section, we present a modified
version due to Serge Bouc (private communication) of an algebraic proof by
Benson and Evens [39] that if a homomorphism of finite groups induces an
isomorphism in integral cohomology then it is a group isomorphism. This was
first proved by Evens (unpublished, but announced in [101]) by embedding
G into a compact unitary group as in the remark after Corollary 5.14.6;
Jackowski [356] independently found a similar proof. A related but much
harder theorem of Mislin [194] gives a group theoretic characterisation of
the homomorphisms of finite groups which induce an isomorphism in mod p
cohomology.

THEOREM 5.16.1. Let 0 : G' -+ G be a homomorphism of finite groups.
If

¢* : H* (G, 7G) -> H* (G', 7G)

is an isomorphism, then 0 is an isomorphism.

PROOF. We begin by proving that if 0 is surjective, with kernel N, and
0* is an epimorphism, then 0 is an isomorphism. In this case, 5* is the
inflation map, which is the horizontal edge homomorphism for the Lyndon-
Hochschild-Serre spectral sequence for the extension

1- N
If this is an epimorphism, it follows that the E,,, page of this spectral sequence
is concentrated along the horizontal axis, and so the vertical edge homomor-
phism is zero in positive degrees. Thus the restriction map from H* (G', 7L)
to H* (N, Z) is zero in positive degrees. Theorem 4.1.3 shows that if g 0 1
is an element of N then the restriction map from H*(G',Z) to H*((g),Z) is
non-zero in some positive degree, so it follows from this that N = 1, and 0
is an isomorphism.

Since a general homomorphism can be factored as the composite of a
surjective and an injective group homomorphism, it follows from what we
have just proved, that 0 is injective. So we regard G' as a subgroup of G via
0. Consider the map Z - ZG' TG given by sending 1 to EEG/GI g ®1. Write

M for the cokernel, so that we have a short exact sequence of ZG-modules

0-+ Z-ZG,TG-,M__+ 0.

According to the exercise at the end of Section 2.8 of Volume I, the corre-
sponding map in cohomology

H*(G, Z) -* H*(G,7LG,1G) = H*(G, Z)

is the restriction map. So the long exact sequence in cohomology (Propo-
sition 2.5.3(ii) of Volume I) shows that H'(G, M) = 0 for all n > 0. It
now follows from Theorem 5.15.2 that Hn(G, M) = 0 for all n E Z, so that
Hn(G, Z) = H' (G', Z) for all n c Z. But H°(G, Z) = Z/IGI, so Cl I= IG'I
and 0 is an isomorphism.
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5.17. Poincare duality

In this section, taken from [35], we show that if k is a field, and H*(G, k)
is finitely generated as a module over the subring generated by homogeneous
elements (1, ... , Sr (so that these elements cover the variety of the trivial
module) then the complex of projective modules ®i-1 CC, described in The-
orem 5.14.2 (with M = k) is homotopy equivalent to its dual, suitably shifted
in degree. We begin with a general lemma about homotopy equivalences.

LEMMA 5.17.1. Suppose C and D are finite chain complexes of finitely
generated projective kG-modules, and f : C - D is a chain map. Then the
following are equivalent.

(i) f induces an isomorphism in homology f* : H*(C) --> H*(D).
(ii) f is a homotopy equivalence.
(iii) There exist decompositions C = C'EP', D = V (D Q', where P' and

Q' are exact sequences of projective modules, and the restriction of f to C'
is an isomorphism f : C' _+ V.

PROOF. It is clear that (iii) = (ii) (i), so we shall prove that (i)
(iii). Suppose f : C D induces an isomorphism in homology. By adding
an exact sequence of projective modules Q to C we may make f surjective,
and still a homology isomorphism. Denote by P the kernel of f : C ® Q -- D.
The long exact sequence in homology shows that P is an exact sequence of
projectives. Since projective kG-modules are also injective, the sequence

OAP-->C®Q-- D-40

splits, and so C ® Q = D G P. The result now follows from the Krull-Schmidt
theorem for finite chain complexes of finitely generated kG-modules.

Now if c E HT (G, k) is represented by a cocycle : S2nk - k, we may
dualise to obtain a map * : k - S2-'k. Applying SZn to this map, we obtain
a map Sink - k. The relationship between this map and the original
map S is given in the following proposition.

PROPOSITION 5.17.2. If ( E Hn(G, k) then

(_1)n(n}1)/2j

There is a map of chain complexes

0- PO - 0

0 - PO >P1 (Pn-1/L()*,0
inducing an isomorphism on homology.
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PROOF. We build a commutative diagram

0- > k -k 0

*®1 *®1 I *®1 I *

0-52-nk0Qnk->S2 nk®Po-Q-nk-0

7

0 _ k Po - Pn_1

In this diagram, the bottom set of vertical arrows has been filled in using
the fact that both rows are exact sequences of projective modules, except at
the ends, and -y is obtained by restricting the previous map. Now modulo
maps which factor through a projective module, there is only one dimension
of maps from Q-nk®Slnk to k. It follows that -y is some multiple An.ev of the
evaluation map (regarding Q-'k as the dual of Qnk). Now the composite of
the left-hand vertical maps in the above diagram is Qn((*), and so we have

An.ev o ®1) =
(There are no maps from S2nk to k which factor through a projective module).

It remains to determine the constants )fin. It is clear that An only depends
on n, and not on G or (. Since the map H .fin.( is an anti-automorphism
of H* (G, k) (duality reverses Ytoneda composition) we have

A.S.AnrS = Am.+n(-S,

so that

AmAn = (-1)mnAm+n.

It thus remains to determine .A1. Since the transpose inverse of the matrix
(o i) is (1 ° ), we see that A, = -1, and so by induction An = (-1)n(n+l)/2

Now the left-hand map, yo(c*®1) = (-1)n(n+1)/2 in the above diagram
has kernel L(, while the right-hand map t;* has cokernel LS, and so by passing
to the appropriate quotient on the top row and subcomplex on the bottom
row, we obtain a map of complexes

0-k-Pn-11L(-'Pn-2 k 0

(_1)n(n-1)/2I

0--k , Po-" P1'..."P,a-2-(Prl-11LC)*-k-0
and hence the required homology equivalence.

THEOREM 5.17.3. Suppose that H* (G, k) is finitely generated as a module
over the subring generated by (1, ... , (r in degrees n1i ... , nr with each ni >
2. Then the complex

r
/r

C = ®ryci
i=1
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is a direct sum of a complex C' satisfying Poincare duality in formal dimen-
sion s = E'=, (ni - 1),

Homk(C',k)[s] = C'

and an exact complex P' of projective modules.

PROOF. By the proposition, we have homology equivalences

Homk(C(;, k) [n2 - 1] -> CC,.

Putting these together, we obtain a homology equivalence

Homk (C, k) [s] = C

By Theorem 5.14.2, C is a finite complex of projective modules, and so the
theorem now follows by applying Lemma 5.17.1.

COROLLARY 5.17.4. If C and s are as in the theorem, then the Poincare
series f (t) = Ei=0 t2 dimk HomkG(C2, k) satisfies the functional equation
tsf (1/t) = f (t).

5.18. Cohen-Macaulay cohomology rings

Recall from Section 5.4 that a finitely generated graded k-algebra is
Cohen-Macaulay if there is a polynomial subring over which it is finitely
generated and free as a module.

If E is an elementary abelian p-group then H* (E, k) is Cohen-Macaulay.
Quillen's calculations (see Section 2.9) show that the cohomology rings of gen-
eral linear groups at primes other than the natural one are Cohen-Macaulay,
and his work on extraspecial 2-groups (see Section 5.5) shows that these also
have Cohen-Macaulay cohomology rings. If G is a semidihedral 2-group then
H*(G, k) is not Cohen-Macaulay, see Evens and Priddy [109]. Also, if G is
a split metacyclic p-group with p odd, then usually H*(G, k) is not Cohen-
Macaulay, see Diethelm [91]. Note that if G has maximal elementary abelian
p-subgroups of different ranks, then by Quillen's Stratification Theorem 5.6.3
the variety is not equidimensional and so H*(G, k) is not Cohen-Macaulay.

In this section, we shall use the Poincare duality of the last section to
show that the Poincare series satisfies a certain functional equation in the
Cohen-Macaulay case.

THEOREM 5.18.1. [35] Suppose G is a finite group and k is a field of
characteristic p. If H* (G, k) is Cohen-Macaulay, then the Poincare series

p(t) = E t' dimk H'(G, k)
r>O

is a rational function of t satisfying the functional equation

p(1/t) = (-t)rP(G)p(t),
where rp(G) is the p-rank of G.
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PROOF. The fact that p(t) is a rational function of t follows from the
Proposition 5.3.1.

Let (1i ... , Sr be elements of degrees nl, ... , n, (with each ni > 2) gen-
erate a polynomial subring over which H*(G, k) is a finitely generated free
module. Thus by Theorem 5.3.8 we have r = r7,(G). Let C be the complex
described in Theorem 5.14.5 (with M = k). According to Theorem 5.15.1,
there is a spectral sequence whose E2 term is given by

EP = Homk(Hq(C), HP (G, k)) = H* (G, k)

where A*((I, ... , br) is an exterior algebra on generators Si in degree ni - 1,
and converging to H*(HomkG(C, k)).

Arguing as in the proof of Theorem 5.14.5, for each (i we have a homo-
morphism of spectral sequences

E2q((i) = Homk(Hq(CCz), HP(G, k)) . E.
By Lemma 5.14.4 we have d,(a.(i) = a.(i. Since the Si form a regular se-
quence in H* (G, k), one can check that this determines all the differentials
(see the remarks below), and the E,,, page is H*(G, k)/((1, ... , r) concen-
trated along the bottom row. We thus have

H*(G, k)l ((i, ... , (r) = H*(HomkG(C, k)).
Thus if f (t) is the Poincare series of H*(HomkG(C, k)), we have

r

p(t) = f(t)/fl(1 - tni
i=1

Since by Corollary 5.17.4 f (t) satisfies is f (1/t) = f (t), where s = 2 (ni -
1), we have

r r

p(1/t) = f(1/t)1 fl(i - t-ni) = t-sf(t).
fltni/(tn -1) = (-t)rp(t).

i=1 i=1

REMARKS. Strictly speaking, in the above proof, we have assumed that
the spectral sequence has a multiplicative structure, and we have not shown
this to be the case. One can get round this by using more homomorphisms
of spectral sequences, see Section 9 of [35] for further details.

Alternatively, one can try to impose a multiplicative structure. For this
purpose, one really needs a comultiplication on C. In Carlson [75], it is shown
that as long as ( annihilates ExtkG(LC, LC) (cf. Propositions 5.9.5 and 5.9.6;
in particular this always happens if p is odd), and as long as we use the
dual Homk(CCi,k)[ni - 1] instead of CC, (which we may do with impunity
according to the last section), there is a comultiplication on each C( with
the desired properties. For p = 2 the situation is less clear.

Even if H*(G, k) is not Cohen-Macaulay, the spectral sequence described
in the above theorem still gives very strong restrictions on the possible shape
of H*(G, k). In [35], all the differentials in this spectral sequence are de-
scribed in terms of matric Massey products (see also [31]).
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Many theorems in the cohomology of finite groups generalise in an obvious
way to compact Lie groups. The following corollary is, of course, false in
general for compact Lie groups.

COROLLARY 5.18.2. Suppose G is a finite group and k is a field of char-
acteristic p. If H* (G, k) is a polynomial ring, then p = 2, the generators are
in degree one, and G/02' (G) is an elementary abelian 2-group.

PROOF. Since a polynomial ring is Cohen-Macaulay, the functional equa-
tion of the theorem must be satisfied. This can only happen if the generators
are in degree one. It follows that p = 2, since otherwise degree one elements
square to zero.

Since H1(G, k) = Hom(G, k), it follows that G has an elementary abelian
quotient G/N with the property that the map G -> GIN induces an iso-
morphism H*(G/N, k) -+ H*(G, k). Since this is the horizontal edge homo-
morphism for the Lyndon-Hochschild-Serre spectral sequence of the group
extension, we deduce that the vertical edge homomorphism, namely restric-
tion from H* (G, k) to H* (N, k) is zero in positive degrees. By Theorem 4.1.3,
this implies that N has no elements of order two, so that N = 02'(G).

RECENT PROGRESS: Since the first edition of this book was published,
the theory of varieties for modules has been extended to infinitely generated
modules for finite groups [310, 311] using Rickard's theory of idempotent
modules in the stable category [394]. The main difference from the finitely
generated case is that instead of a single subvariety, a module has associated
to it a collection of subvarieties of VG. This rests on a version of Dade's lemma
for infinitely generated modules in [311] in which one has to restrict not just
to cyclic shifted subgroups defined over the original field, but also to "generic"
cyclic shifted subgroups defined over the function fields of subvarieties.

This work has had a number of applications. It was used in [312] to
classify the thick subcategories of the stable category of finitely generated
modules for a p-group. In [305] it was used to prove most of the conjectures
made in [38] on the vanishing of cohomology, although it has later been shown
by Carlson (see section 13 of [328]) that this can be proved without appealing
to infinitely generated modules. In [307, 308] the theory of varieties of
modules is extended to a large class of infinite groups. The point here is that
even if a module starts off finitely generated, if we restrict to a subgroup of
infinite index it need not end up that way.

The nucleus is defined to be the subvariety YG of VG given by the union
of the images of the restriction maps restt H : VH - VG as H runs over
the subgroups of G whose centraliser is not p-nilpotent. This concept was
introduced in [38], and its importance has become more apparent in [305]
where it is seen to control the modules in the principal block having no
cohomology, and in [312] where it plays a role in the classification of thick
subcategories of the stable category of finitely generated modules.





CHAPTER 6

Group actions and the Steinberg module

The material in this Chapter is based on a lecture given by Peter Webb
at the 1986 Arcata conference on Representation Theory of Finite Groups. I
would like to thank him for supplying me with an early copy of the published
version of this talk [2821-

6.1. G-simplicial complexes

We shall be interested in group actions on topological spaces. Since we
shall be interested in homotopical properties of group actions, and every
topological space has the same weak homotopy type as its simplicial complex
of singular chains, it is no real restriction to limit our attention to simplicial
complexes with G acting simplicially, i.e., in such a way that the image of a
simplex under a group element is always a simplex. Mostly our attention will
be focused on the action of G on various finite simplicial complexes arising
in a natural way from the subgroup structure of G. We shall be interested in
representation theoretic invariants of these actions, and we shall concentrate
on a definition for an arbitrary finite group of a generalised Steinberg module,
which will be a virtual projective module which agrees for a Chevalley group
(up to sign) with the usual Steinberg module.

DEFINITION 6.1.1. Suppose G acts simplicially on a simplicial complex
A. We say that A is a G-simplicial complex if whenever an element of G
stabilises a simplex of A setwise, then it stabilises it pointwise.

Note that if the action does not satisfy this last condition, we can take a
barycentric subdivision and then it will.

We'll define barycentric subdivision formally below, but informally you should
think of it as being obtained inductively from the original simplicial complex
by inserting a new vertex in the middle of each simplex, and joining it to the
previously subdivided simplices. In particular, the underlying topological
space is unchanged by this process.

215
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If A is a G-simplicial complex, and k is a commutative ring of coefficients
(we are mostly interested in the case where k is a field), we obtain a chain
complex as follows. First we need to say a word or two about orientations.

DEFINITION 6.1.2. An oriented simplex is a simplex together with a
total ordering on the set of vertices, where two orderings are regarded as giving
the same orientation if and only if they differ by an even permutation. The
opposite orientation of a simplex is obtained from the given orientation
by applying an odd permutation.

DEFINITION 6.1.3. We define the nth chain group of A,

Cn(A) = Cn(A;k)

to be the k-module with the oriented simplices as generators, and relators
saying that each oriented simplex is equal to minus the same simplex with the
opposite orientation.

It follows from the fact that the setwise stabiliser of a simplex stabilises it
pointwise, that Cn(A) is a permutation module. Although the permutation
basis depends on a choice of orientations consistent over G-orbits, the iso-
morphism type of the permutation representation is well defined, and gives
us a well defined element cn(A) of the Burnside ring b(G) (see Chapter 5 of
Volume I).

BOUNDARY MAPS AND HOMOLOGY. We define boundary maps

8n : C.(A) - Cn-1(0)

as follows. If (x0, ... , xn) is an oriented simplex, we define
n

8(x0i ... , xn) = 1:(-1)i(x0, ... , xi-1, xi+11 ... )xn).
i=0

It is easy to check that On o 8n+1 = 0, and that the boundary maps are
kG-module homomorphisms, and Cn(A) is a chain complex of kG-modules.
Thus the homology groups

Hn(A) = H0(A; k) = Ker(an)/Im(8n+1)

are also kG-modules.
It is also often convenient to work with reduced homology.

DEFINITION 6.1.4. The augmented chain complex of A is the chain
complex with an extra copy of k inserted in degree -1, where the boundary
homomorphism

80 =e:Co(A;k)-*k

is taken to be the augmentation map sending each zero-simplex to the
identity element of k.
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The reduced homology groups fl,, (A; k) are defined to be the homol-
ogy groups of the augmented chain complex, namely

Hn(A;
k) = H,, (A; k) n 0

Ker(Ho(A; k) k) n = 0

6.2. G-posets

DEFINITION 6.2.1. A G-poset is a partially ordered set together with a
G-action which preserves the partial order (i.e., a < b implies ga < gb).

If X is a G-poset, then we form a G-simplicial complex IXJ, called the
simplicial realisation of X, as follows. The n-simplices are the totally
ordered subsets

xo < x1 < .. < xn.

This can be viewed as the topological realisation of a simplicial set (see
Section 1.8) in which there are also degenerate simplices where equalities are
allowed:

xo < x1 < ... < xn.

The face and degeneracy maps are given by omitting and repeating elements
in the obvious way.

The boundary of such a simplex is
n

j:(-1)i(x0 <... <xi_1 <xi+1 <... <xn).
i=0

Conversely, given a G-simplicial complex A, we form a G-poset S(A)
whose elements are the simplices of A, and where a < b if and only if the
vertices of the simplex a are a subset of the vertices of b.

Any invariant defined for simplicial complexes or G-simplicial complexes
is defined for posets or G-posets by passing to the simplicial realisation. So
for example we define H,, (X; k) = H,, (I X1,k) and 7rn(X,xo) = 7rn(IX1,xo)

DEFINITION 6.2.2. The barycentric subdivision sd(A) is defined as
the simplicial realisation of the poset of simplices, S(A)J.

EXERCISE. Show that the underlying topological space of sd(A) is home-
omorphic to that of A by a homeomorphism which preserves the G-action.

EXAMPLES. The following are examples of G-posets defined using the
subgroup structure of G.

1. Sp(G) = {non-trivial p-subgroups of G}
2. Ap(G) = {non-trivial elementary abelian p-subgroups of G}
3. 81,(G) = {non-trivial p-subgroups P of G satisfying P = Op(NG(P))}
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We demand that the subgroups be non-trivial, since otherwise the cor-
responding simplicial complex would be a cone, and hence contractible (see
the next section but one for further details). In fact, these complexes turn
out to be homotopy equivalent in a way which preserves the G-action, as we
shall see in the next few sections.

We discuss coverings of posets (cf. Definition 1.6.12) via invertible local
coefficient systems (or invertible systems for short). This is a special case
of the concept of a local coefficient system, discussed in detail in the next
chapter.

DEFINITION 6.2.3. An invertible system of sets (abelian groups, etc.)
F on a poset X is a functor from X, regarded as a category, to the category
of sets (abelian groups, etc.) with the property that every map F(x) , F(x')
associated to an inequality x < x' is an isomorphism. Invertible systems on
X form a category, in which the morphisms are the natural transformations.

Given an invertible system of sets F on X, we obtain a poset X whose
elements are pairs (x, u) with x E X, u E F(x), and with (x, u) < (x', u') if
and only if x < x', and u' is the image of u under the map F(x) - .F(x')
corresponding to this inequality. There is an obvious map of posets X -+ X
whose simplicial realisation is a covering map IXI - X1.

Conversely, given a covering space E -> I X I, we obtain an invertible
system F by setting F(x) equal to the inverse image in E of the point in IXI
corresponding to x.

It is easy to check that the above describes an equivalence of categories
between covering spaces of IXI and invertible systems on X. In particular,
if X is simply connected (i.e., X is connected and irl(X,xo) = {1}), then
every invertible system is isomorphic to a constant functor with values in
some set. By the same token, there is an invertible system T on X such
that the corresponding poset X is the universal cover of the poset X. By
Theorem 1.6.13, for this F we have F(x) = irl (X, x).

6.3. The Lefschetz Invariant

Suppose 0 is a finite G-simplicial complex. We wish to associate to 0
various representation theoretic invariants, and hence get information about
representations out of information about group actions, and vice-versa.

First we investigate what happens in characteristic zero.

PROPOSITION 6.3.1. Suppose k is a field of characteristic zero. Then we
have

(-1)''Hi(A, k) _ (-1)'Ci(A, k)
i i

as elements of the representation ring a(G) (see Chapter 5 of Volume I).
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PROOF. Since we are in characteristic zero, all sequences of G-modules
split. The chain complex

... -> k)
an+'

C. (A, k) ate. C,,._i(0, k) .. .

gives us short exact sequences

0 -+ Im(an,+1) -* Ker(a,,,) k) -40
o - Ker(a,,,) - C,,,(0, k) - Im(ams) -* 0.

So in a(G) we have

H,,(A, k) = Ker(an,) - Im(an,+1), C,,,(0, k) = Ker(an,) + Im(a,,,),

and these expressions clearly have the same alternating sum.

In particular the Euler characteristic

x(0) = 1: (-1)i dimCi(A, k)

only depends on the homology of 0, and is hence a homotopy invariant.
The reduced Euler characteristic is the corresponding concept for the
augmented chain complex, namely X(0) = x(o) - 1.

If the characteristic of k divides the order of G, the above proposition is
no longer true, but we can still make the following definition.

DEFINITION 6.3.2. The Lefschetz module LG(A, k) is defined to be the
virtual module

LG(0, k) = J:(-1)2Ci(0, k) E a(G).
i

The reduced Lefschetz module is
iG(o k) _ , (-1)ici(A, k) = LG(A, k) - 1 E a(G).

i

EXAMPLE. If char k = p, we call LG(SS(G), k) the generalised Stein-
berg module for G at the prime p. We shall see later that it is a virtual
projective module (i.e., it lies in a(G, 1), the linear span of the projective
modules in a(G)). In the case where G is a Chevalley group in characteristic
p, it turns out to be equal to plus or minus the usual Steinberg module. We
shall have more to say about this later.

The Lefschetz module has a precursor in the Burnside ring b(G) (see
Chapter 5 of Volume I), namely the Lefschetz invariant, defined as follows.
Let c,,,(0) denote the set of n-simplices in 0, regarded as a permutation
representation of G, and hence as an element of b(G).

DEFINITION 6.3.3. The Lefschetz invariant of 0 is defined to be

AG(0) = T(-1)ici(A) E b(G).

The reduced Lefschetz invariant of 0 is AG(A) = AG(A) - 1.
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Under the natural map b(G) -> a(kG) we have AG(0) H LG(0, k).
Recall from Section 5.4 of Volume I that we have a natural inclusion

b(G) , ® Z
H<GG

X H IXHI.

In particular

AG(0) H x(zH)

the Euler characteristic of the fixed point set OH. So knowing AG(A) is
equivalent to knowing x(AH) for all H < G.

EXERCISES. 1. Show that Ei(-1)iHi(A, k) and Ei(-1)iCi(A, k) have
the same Brauer character, or equivalently the same image in the Grothen-
dieck ring of kG-modules.

2. Show that if 0 and A' are finite G-simplicial complexes, then
(1) AG(AUO') = AG(z) + AG(A'),
(ii) AG(0 X A) = AG(0).AG(,A').

6.4. Equivariant homotopy

DEFINITION 6.4.1. Suppose that X and Y are G-simplicial complexes.
We say f : X - Y is a G-map if f (gx) = g f (x) for all x c X and g c G.
If f, f' : X --+ Y are G-maps, we say f and f are G-homotopic (written
f -G f') if there is a G-map F : X x I -+ Y (where I is the unit interval
[0, 1] with trivial G-action) such that F(x, 0) = f (x) and F(x, 1) = f'(x).

We say X and Y are G-homotopy equivalent (written X -G Y) if
there are G-maps f : X --+ Y and f : Y --+ X such that the composites are
G-homotopic to the identity maps f o f ""G idy and f' o f "G idx.

Clearly, if X '='G Y then XH - yH for all subgroups H < G. It is a
remarkable fact that the converse is also true.

THEOREM 6.4.2. Suppose that X and Y are two G-simplicial complexes
and f : X --+ Y is a G-map with the property that for all subgroups H < G,
f restricts to an ordinary homotopy equivalence fH : XH - YH. Then f is
a G-homotopy equivalence.

PROOF. In fact this statement is true for a much wider class of spaces and
maps. See for example Tammo tom Dieck's book [89, Proposition 8.2.4 and
Remark 8.2.5] and also James and Segal [138]. We shall prove the theorem
in the context of G-CW-complexes, where G is supposed to act cellularly
and f is a cellular map. The proof is modelled on the proof of Whitehead's
Theorem 1.5.8 but with G-action incorporated. Let Mf denote the mapping
cylinder of f. For each subgroup H of G, we have a long exact sequence

M-> ,XH 7fn(XH) -> 7rn(YH) 7fn(Mf ,XH) - ..
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and so since f ,,H is an isomorphism, we deduce that we have 7r,,,(Mf , XH) = 0
for all subgroups H of G and all n > 0.

Now suppose (K, L) is a relative G-CW-complex and g : (K, L) ->
(M f, X) is a cellular G-map. By induction on skeleta, the restriction of
g to the n-skeleton of (K, L) is G-homotopic relative to L to a cellular G-
map sending K() into X. Namely, once the (n - 1)-skeleton is in, for each
orbit of G on the cells, say G/Hx (cell), we choose a representative cell in
this orbit, with stabiliser H. Since irn(Mf , XH) = 0, there is no obstruction
to moving it (non-equivariantly) into X, and then we use the G-action to see
how to move the rest of the orbit. We may fit these G-homotopies together
by doing the first skeleton in the interval [0, 2], the second in [2, 4], and so
on, to show that g is G-homotopic relative to L to a G-map sending K into
X.

Applying the above statement to the identity map from (Mf, X) to itself,
we see that the inclusion X C Mf is a G-homotopy equivalence, and hence
so is f.

REMARK. It is not true that if the restrictions of two maps f, f' : X -> Y
to fixed point sets of H are homotopic as maps from X H to yH for all
subgroups H < G then f --G f'.

PROPOSITION 6.4.3. Suppose that X and Y are two finite G-simplicial
complexes. Then we have (i) #. (ii) =:;> (iii) = (iv) (v) in the following list
of statements:

(i) X -G Y
(ii) XH - yH for all H < G
(iii) x(XH) = X(YH) for all H < G
(iv) AG(X) = AG(Y) E b(G)
(v) LG(X) = LG(Y) E a(kG).

PROOF. This is clear from the definitions and the above theorem.

We shall be applying this to several G-simplicial complexes arising from
the subgroup structure of G, and we shall mostly be interested in properties
of the corresponding Lefschetz modules.

Now recall that Conlon's Induction Theorem (5.6.8 of Volume I) implies
that two elements of b(G) have the same image in a(kG) if their restrictions
to all p-hypo-elementary subgroups (i.e., subgroups H with H/OP(H) cyclic)
are equal. So by the same chain of reasoning as above, we have the following.

PROPOSITION 6.4.4. Suppose k is a field of characteristic p. Suppose X
and Y are two G-simplicial complexes such that for all p-hypo-elementary
subgroups H < G, we have x(XH) = X(YH). Then LG(X, k) = LG(Y, k) E
a(kG).

We now turn to the equivariant homotopy theory of G-posets. If X and
Y are G-posets then we have equivariant homeomorphisms

IX°pI = 1XI, IX X Y1 = lXI x FYI.
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Here, the product on the right is taken in the category of compactly generated
spaces, as in the remark after Definition 1.5.3. This statement can be seen by
going through simplicial sets, where the behaviour with respect to products
is clearer, and then using the fact that topological realisation commutes with
products for simplicial sets (see Section 1.8).

If f : X -p Y is a G-map of G-posets (i.e., order preserving G-map of the
underlying sets) then f induces a map If I : IXI - iYI. If two maps of posets
(resp. G-posets) f, f' : X -* Y induce homotopic (resp. G-homotopic) maps
of simplicial complexes, then we say that f and f' are homotopic, (resp.
G-homotopic) and write f f-- f' (resp. f --G f'). We say that a poset X is
contractible if IXI is contractible.

LEMMA 6.4.5. If f, f' : X -> Y are maps of posets such that for all
x E X, f (x) < f'(x), then f -- f'.

PROOF. Denote by (0 < 1) the poset with two elements and one inequal-
ity. Then f and f' define a map of posets

F : (0<1)xX-Y
(0, x) t' f (x)

(1,x) f'(x)
Since I(0 < 1)I is the unit interval, I F I is a homotopy from I f I to I f, 1.

DEFINITION 6.4.6. We say a poset X is conically contractible if there
exists a map of posets f : X - X and an element x0 E X such that for all
xEX,x<f(x)>xo.

By the above lemma, if X is conically contractible, then it is contractible.

EXAMPLE. If a simplicial complex 0 is a cone, with vertex xo, then
S(s) is conically contractible, since we may take for f the map sending each
simplex to the simplex obtained by adjoining x0 if it is not already a vertex.

6.5. Quillen's lemma

Our main tool for proving that complexes are homotopy equivalent is a
lemma of Quillen, which we now discuss.

DEFINITION 6.5.1. If f : X -> Y is a map of posets and y E Y, we define

f/y={xEXI f(x)<y}CX
y\f ={xEX I f(x)>y}CX

LEMMA 6.5.2 (Quillen). Suppose that f : X -> Y is a map of posets with
the property that f /y (resp. y\ f) is contractible for all y E Y. Then the
corresponding map If I of simplicial complexes is a homotopy equivalence.



6.5. QUILLEN'S LEMMA 223

PROOF. We shall describe the proof given in Quillen [217], Section 7.
Another proof may be found in Quillen [214], Theorem A.

It suffices to prove that f* : 7ri (X, xo) - irl (Y, f (xo)) is an isomorphism,
so that f lifts to a map of universal covers f : X -> Y, and that

f* : H*(X) - H*(Y)

is an isomorphism. For then by the Whitehead Theorems 1.4.3 and 1.5.8, f is
a homotopy equivalence. Then by Theorem 6.4.2, f is a iri(X, xo)-homotopy
equivalence and so f is a homotopy equivalence.

To show that f* : 7rl (X, xo) - 7rl (Y, f (xo)) is an isomorphism, by The-
orem 1.6.3 and the discussion following Definition 6.2.3, it suffices to show
that f induces an equivalence of categories between invertible systems on
X and Y. If F is an invertible system on Y, then the pullback f *F is the
invertible system on X defined by f *.F(x) = ):'(f (x)). If x < x' then the
map f *.F(x) -> f *F(x') is the map F(f (x)) -* .F'(f (x')) associated to the
inequality f (x) < f (x').

Conversely, if F' is an invertible system on X, then we define an invertible
system on Y as follows. Given y E Y, the poset f /y is contractible, and
hence simply connected. So F' is isomorphic to a constant functor on f /y,
and so one can identify the set associated to each point in f /y with the set
lim F(x). We set
xEf/y

f!-F(Y) = 1im .17(x).
xEf/y

It is easy to check that f * and f! give an equivalence of categories.
Now the morphism f : X - Y satisfies the same hypothesis as f, so

we now assume X and Y are simply connected, and we must show that
f* : H* (X) - H, (Y) is an isomorphism. We do this by examining the
spectral sequence of the double complex (see Section 3.4) E°* defined as
follows. We let Ep°q be the vector space over k whose basis consists of pairs
of chains of inequalities, (yo < . . . < yp) in Y and (xo < . . . < xq) in f /yo.
The horizontal differential dl is given by the boundary map (see Section 6.1)
on (yo < < yp) and the identity map on (xo < . . . < Xq). The vertical
differential do is given by the identity map on (yo < . . . < yp) and the
boundary map on (xo < . . . < xq), multiplied by (-1)p to make the squares
anticommute rather than commute.

With respect to the horizontal differential, this double complex has, for
each chain (xo < . . < xq) in X, the chain complex of the subposet of Y
consisting of those y with y > f (xq). This poset has a minimal element,
and is hence contractible. So if we do the horizontal differential first, we get
El = C* (X) concentrated on the vertical axis, and E°° = E2 = H* (X).
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On the other hand, if we do the vertical differential first, since f /y is
contractible for each y E Y, we have El = C.(Y) concentrated on the hori-
zontal axis, and E°° = E2 = H.(Y). One can verify that the horizontal edge
homomorphism is f.: H. (X) -+ H. (Y), which is hence an isomorphism.

The proof with y\ f contractible is given by replacing X and Y by the
opposite posets.

EXAMPLE. If X is a G-poset, we can make a simplicial complex 0(X) by
allowing chains of not necessarily strict inequalities

XO < X1 < < X..

This poset is in general much larger than 1XI, and is usually infinite even
when X is finite. However, the inclusion

S(IXI) S(A(X))
is a G-homotopy equivalence since for each subgroup H < G a non-strict
H-invariant chain has a unique maximal strict subchain, so that the strict
subchains of such a chain form a conically contractible poset.

CONJECTURE (WEBB). The quotient complex Sp/G is contractible.

(Warning: one might be tempted to think this follows immediately from
Sylow's theorems, but the point is that SP needs to be barycentrically sub-
divided before the quotient may be thought of as a simplicial complex.)

EXERCISES. Prove the following.
(i) The inclusion of a G-poset X into its barycentric subdivision S(I X I) is

a G-homotopy equivalence. Of course, Quillen's lemma is not by any means
the most elementary way of proving this!

(ii) The inclusion of a G-poset X into the G-poset of open subsets of IX I
is a G-homotopy equivalence. Thus in particular the homology groups of a
G-simplicial complex are "G-topological" invariants.

6.6. Equivalences of subgroup complexes

QUILLEN'S EQUIVALENCE Ap(G) ^_ Sp(G). Recall that we denote by
Sp(G) the poset of non-trivial p-subgroups of G, and by Ap(G) the poset of
non-trivial elementary abelian p-subgroups of G.

THEOREM 6.6.1 (Quillen, Thevenaz). The inclusion of Ap(G) in Sp(G)
is a G-homotopy equivalence.

PROOF. Let i : Ap(G) -4 Sp(G) be the inclusion. By Theorem 6.4.2
and Quillen's Lemma 6.5.2 it suffices to show that for each subgroup H < G
and for each non-trivial p-subgroup P < G normalised by H, the poset
(i/P)H = Ap(P)H is contractible.

Denote by P0 = 111Z(P) the subgroup of the centre of P generated by
elements of order p, so that Po is a non-trivial central elementary abelian
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p-subgroup of P, also normalised by H. Then for any non-trivial elementary
abelian subgroup A < P normalised by H, we have

A<(A,Po)>P0.
Since (A, Po) is elementary abelian, this means that Ap(P)H is conically
contractible.

COMMENT. The homotopy equivalence Ap(G) Sp(G) is due to Quillen
[217]. Thevenaz [263] showed that the homotopy equivalence is in fact G-
equivariant.

Quillen conjectured that Sp(G) is contractible if and only if Op(G) $ 1.
The "if" is clear since if Op(G) 1, then Sp(G) is conically contractible via

P < POp(G) > Op(G).

He also proved his conjecture in the case where G is solvable. It should be
remarked that if Sp(G) is G-contractible then Op(G) 1, since in particular
G has to have a fixed point on Sp(G).

Bouc'S EQUIVALENCE Bp(G) _- Sp(G). Recall that we denote by Bp(G)
the poset of non-trivial p-subgroups which are equal to the Op of their nor-
maliser.

Bouc's observation is that if P E Sp(G)H, P Bp(G)H, then

{Q E Sp(G)H I Q > P}

is contractible, since

Q > NQ(P) < NQ(P)OpNG(P) > OpNG(P).

To make use of this, we introduce the following notation:

DEFINITION 6.6.2. If X is a poset and x, y E X, we set

[x,y]X={zeXIx<z<y}
(x) y)X={zEX I x<z<y}

etc. In particular,

[x,-)X={zEX I x<z}
(x,-)X={zEE X Ix<z}

If B C X, we set

ex(B) _ {x E X I (-,x]X fl B is contractible}
fx(B) = {x E X I [x, -)x fl B is contractible}

LEMMA 6.6.3. If B C Y C_ ex(B) (resp. B C_ Y C fx(B)) then these
inclusions are homotopy equivalences. In particular, if ex(B) = X then
Y^_X.

PROOF. Apply Quillen's Lemma 6.5.2 to the inclusions B '- Y and
B - ex (B).
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DEFINITION 6.6.4. Let

X* = {x E X I (x, -)x is not contractible}
X. = {x E X I (-, x)x is not contractible}

A poset X has bounded height if there is an upper bound for the length
of a chain

xo < x1 < ... < xn.

This is the same as saying that the simplicial realisation of X is a finite
dimensional complex.

PROPOSITION 6.6.5 (Bouc). Suppose that X has bounded height. If B
is a subset of X containing X* (resp. containing X*) then the inclusions
X* C B C X (resp. X. C B C X) are homotopy equivalences.

PROOF. It suffices to treat the inclusion X* C B, since X * C X is a
special case of this. Denote by i the inclusion X* '- B. We claim that for
b E B, the poset b\i = [b, -)X* is contractible, whereupon the proposition
follows by applying Quillen's Lemma 6.5.2.

We prove this claim by induction on the height of X. If b E X*, the
claim is clear, since [b, -)x* has a unique minimal element, and is therefore
conically contractible. Otherwise, we have [b, -)X* = (b, -)X*. What we
know from the definition of X* is that (b, -)x is contractible, so we need to
show that the inclusion (b, -)x '- (b, -)x* is a homotopy equivalence. But
this is a case of the proposition of strictly smaller height, and therefore the
proposition is proved by induction.

We can now apply this proposition together with the observation made
earlier to deduce Bouc's theorem.

THEOREM 6.6.6 (Bouc, Thevenaz). The inclusion of Bp(G) in Sp(G) is
a G-homotopy equivalence.

PROOF. This follows by applying Theorem 6.4.2 and the above proposi-
tion, since we have Sp(G)H D (Sp(G)H)*.

COMMENT. The statement that Bp(G) _- Sp(G) is due to Bouc [49], and
Thevenaz showed that the homotopy equivalence is in fact a G-homotopy
equivalence.

EXERCISE. Let Zp(G) be the poset of non-trivial elementary abelian p-
subgroups A < G such that A = I11OpZCG(A). Prove that the inclusion is
a homotopy equivalence Zp(G) ^G Sp(G).

6.7. The generalised Steinberg module

DEFINITION 6.7.1. We define the generalised Steinberg module for
a finite group G at a prime p to be

Stp(G) = LG(ISp(G)I) E a(G).
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REMARKS. Since Sp(G) ^G Ap(G) --G l3p(G), we could have used any of
these complexes in the above definition.

We shall see in the next section what this has to do with the classical
definition of Steinberg module for a Chevalley group.

THEOREM 6.7.2 (Quillen, Webb). The generalised Steinberg module is a
virtual projective module

Stp(G) E a(G, 1).

PROOF. Since Stpft , -!early lies in a(G), it suffices to show that it lies
in A(G, 1) = C ®z a(G, ,. Recall from Section 5.6 of Volume I that we have
a commutative diagram

B(G) ® C
H<aG

0 11\

A(G, Triv) s ® C
ccl's of

pairs (H,g)

with H p-hypo-elementary and g an element of H/Op(H). Under the top
map, AG(A) goes to the element whose Hth coordinate is x(AH). Under
the bottom map, the ideal A(G, 1) corresponds to those (H, b) for which
Op(H) = 1. Thus the theorem follows from the following lemma.

LEMMA 6.7.3. Suppose that H is a p-hypo-elementary subgroup of G with
Op(H) # 1. Then Sp(G)H is conically contractible, and in particular the
reduced Euler characteristic x(Sp(G)H) = 0.

PROOF. If P E Sp(G)H then P < POp(H) > Op(H).

COMMENT. The fact that the character of Stp(G) is the character of a
virtual projective module is due to Quillen [217]. The statement that this
alternating sum is virtual projective in the representation ring a(G) is due
to Webb.

COROLLARY 6.7.4 (Ken Brown's theorem). The Euler characteristic

x(Sp(G)) - 1 (mod GIp)

PROOF. The dimension of any projective module is divisible by JGIp since
on restriction to a Sylow p-subgroup it must be free. But the dimension of
Stp(G) is x(Sp(G)) - 1.

REMARK. This statement may be thought of as analogous to the state-
ment that the number of Sylow p-subgroups is congruent to 1 mod p. In fact,
Thevenaz has proved a relative version of Ken Brown's theorem of which these
two statements are the extreme examples.

EXAMPLE. It is not true that all the HZ(Sp(G), k) are necessarily pro-
jective. The following is an unpublished example of Alperin. Let H be a
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semidirect product of Z/q by Z/p, where pl(q - 1) and the action is non-
trivial. Let G be the wreath product of H with Z/p, so that JGI = pP+IqP.

Then every elementary abelian subgroup of G of order bigger than p2 is
contained in the normal subgroup HP. So as long as p > 3, the pth homology

Hp(ss(G), k) = Hp(.P(G), k) = HP(AP(HP), k)

has dimension pP. Since the dimension of a projective module is divisible by
pP+l, this module is not projective.

6.8. Chevalley groups: a crash course

In the case where G is a Chevalley group in characteristic p, we wish to
compare Stp(G) with the usual definition via the Tits building. We begin
with a quick review of Chevalley groups, and we shall illustrate with the
example of GLn,(Fq).

LINEAR ALGEBRAIC GROUPS. In Section 5.4, we gave a quick review of
varieties and commutative algebra. We briefly recall the definition, and then
define linear algebraic groups.

DEFINITION 6.8.1. An affine variety is a set of points in an affine space,
given by the simultaneous vanishing of a set of polynomials. A linear alge-
braic group over an algebraically closed field k of characteristic p is an affine
variety V together with a compatible group structure. This means that the
multiplication map V x V -> V and the inverse map V --> V are morphisms
of varieties (i.e., the coordinates of the map are given by polynomials).

For example, SLn(k) can be regarded as the set of zeroes of the deter-
minant function minus one. The group GLn(k) can be viewed as a linear
algebraic group by taking coordinates x11, ... , xnn, y, and using the polyno-
mial equation y det (xzj) = 1. It turns out that every linear algebraic group
is isomorphic to a closed subgroup of GLn(k) for some n.

Other examples of linear algebraic groups are the orthogonal groups
On(k), the special orthogonal groups SOn(k), the symplectic groups Sp2n(k),
and the unitriangular groups Unin(k) consisting of all n x n upper triangular
matrices with ones on the diagonal.

A good background reference for the theory of linear algebraic groups is
Humphreys [134].

DEFINITION 6.8.2. A linear algebraic group is called connected if it is
connected in the Zariski topology (in other words, the underlying variety can-
not be written as a disjoint union of two proper subvarieties each defined by
the vanishing of some polynomials). It is called unipotent if it is isomor-
phic to a subgroup of Unin(k) for some value of n. It is called reductive if
it has no non-trivial normal closed connected unipotent subgroups. Thus all
the examples given above, with the exception of Unin(k) are reductive linear
algebraic groups. Of these, On(k) is not connected, but the rest are.
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An algebraic group is defined' over ko < k if the equations defining
it as a variety and the equations giving the multiplication and inversion can
be written with coefficients in ko. For example, GLn(k) is defined over the
ground field FT,.

CLASSIFICATION. The classification of reductive linear algebraic groups
depends on the notion of a root system. A torus is a linear algebraic group
isomorphic to a direct product of copies of the multiplicative group of the
field. For example, the group of diagonal matrices of a given size is a torus.
It turns out that in a reductive group G, the maximal subgroups isomorphic
to a torus (the maximal tori) are all conjugate. The Lie rank of G is the
dimension of a maximal torus. Now, the characters (i.e., one-dimensional
representations) of a torus T form a free abelian group x(T) under tensor
product, whose rank is equal to the dimension of the torus. Inside X(T), the
root system of G is the set of non-zero characters of T occurring in the
restriction to T of the action of G by (the derivative of) conjugation on its
Lie algebra (i.e., the tangent space at the identity element).

For example, if G = GL0(k) then T can be taken to be the subgroup
of diagonal matrices (commuting diagonalisable matrices are simultaneously
diagonalisable), and the characters of T correspond to sequences rl,... , rn
of integers, the corresponding character of T being given by

r, rndiag(xl,... , xn) H xl ... xn .
The Lie algebra of G is the Lie algebra gln(k) of all n x n matrices. The
eigenspaces of T with non-zero eigenvalues, in its conjugation action on
gln(k), are the matrices with a non-zero entry in only one (given) position,
off the diagonal. If this entry is in the (ij)th place, then the corresponding
character is the one with ri = +1, rj = -1, and all other rk = 0. These
roots lie in the hyperplane E ri = 0 of X(T).

It turns out that the root system of a connected reductive group deter-
mines the isomorphism type of the group modulo its largest normal abelian
subgroup. The root system is an (abstract) root system in the sense of
Humphreys [133, Chapter 3] where it is also explained how to classify root
systems. Every root system is a direct sum of indecomposable root systems,
and the indecomposable root systems are classified by their Dynkin dia-
gram. A list of the Dynkin diagrams is given in the above reference on
p. 58, or in Chapter 4 of Volume I. Their names are Al, 1 > 1; B1, 1 > 2; C1,
1 > 3; D1, 1 > 4; E6, E7, E8, F4 and G2. The subscript refers to the (Lie)
rank.

For example, the root system described above for GL,,(k) is an indecom-
posable root system of type An- 1. The root system for SO2n+1(k) is of type
Bn, for Sp2n(k) it is of type Cn, and for SO2n(k) it is of type Dn. The
remaining Dynkin diagrams correspond to the so-called "exceptional types"
of connected reductive group.

'Actually, if ko is not perfect, the situation is more subtle, but that need not concern
us here as we are primarily interested in the case where ko is finite.
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THE FROBENIUS MORPHISM. If a linear algebraic group G is defined over
the finite field of q = pe elements, then the Frobenius morphism F with
respect to this finite field is the morphism of algebraic groups given by raising
the coordinates to the qth power. If G is connected and reductive then the
Chevalley group G(Fq) is defined to be the group GF of fixed points of F
on G. Note that there are also Chevalley groups over infinite fields or rings,
defined in a related fashion. We shall not be concerned with these here.

For example, if G = GL,, (k), then GF = GLn,(lFq), since F acts by raising
the matrix entries to the qth power, and Fq is exactly the set of solutions of
the equation x9 = X.

PARABOLIC SUBGROUPS. If H is a closed subgroup of a linear algebraic
group G, then there is a theorem of Chevalley (see Humphreys [134, p. 80])
which says that there is a finite dimensional representation of G with the
property that H is exactly the stabiliser of some one-dimensional subspace.
Taking the orbit of the corresponding point in projective space gives the coset
space G/H the structure of a quasiprojective variety.

DEFINITION 6.8.3. A parabolic subgroup of a reductive group G is a
proper subgroup P with the property that the orbit space G/P is a projective
variety.

A Borel subgroup B of G is a maximal connected solvable closed sub-
group-

It turns out that a subgroup is parabolic if and only if it contains a Borel
subgroup, and that the Borel subgroups are all conjugate. The parabolic
subgroups containing a given Borel subgroup are in one-one correspondence
with the proper subsets of the set of vertices of the Dynkin diagram. If
G is defined over Fq then there is always an F-stable Borel subgroup, and
the parabolic subgroups containing it are also F-stable. If P is an F-stable
parabolic then we call pF a parabolic subgroup of GF.

For example, in the case G = GLn,(k), the Borel subgroups are the con-
jugates of the group of upper triangular matrices, i.e., the stabilisers of com-
plete flags. A flag in the vector space V on which G acts is a chain of proper
subspaces

0<Vi<...<Vs<V.
A flag is complete if there is one subspace of each possible dimension. The
parabolic subgroups containing a given Borel subgroup are the stabilisers of
subflags of the corresponding complete flag. Thus with respect to a suitable
basis the parabolics look something like this:

In the case of Sp2n(k) and SO,, (k) the corresponding concepts are the flags of
isotropic subspaces. In the case of SO2n,(k), the fact that there are two types
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of maximal isotropic subspaces is reflected in the fact that the Dn diagram
has a bifurcation at one end.

The unipotent radical of a parabolic subgroup is the largest normal
unipotent subgroup. In the above example, the unipotent radical has the
form:

I * *

0 I *

0 0 I

If P is F-stable, then so is its unipotent radical U, and we call OF the
unipotent radical of PF. In fact these are related by OF = Q,(PF).

THE POSET 8p(G).

THEOREM 6.8.4 (Borel, Tits). If GF is a Chevalley group then a p-sub-
group U is equal to OpNGF(U) if and only if NGF (U) is parabolic and U is
its unipotent radical.

PROOF. This was first proved in A. Borel and J. Tits [45]. A simpler
proof (but one which only applies to the finite Chevalley groups, which is no
inconvenience to us here!) may be found in N. Burgogne and C. William-
son [57]. We shall give a proof for the particular case where GF = GL,,,(Fq).
Suppose U is a p-subgroup of GF. Denote by V1 the fixed space of U (which
is automatically non-trivial since we are in characteristic p), and inductively
define V to be the subspace containing li_1 with the property that V /V _1
is the fixed space of U on V/V_1. It is clear by induction that V is U-
invariant, so that the definition makes sense at the next stage. Now let H
denote the set of all elements of GF which stabilise the Vi and act trivially
on the Vi/Vi-1. Then H is a p-group (since it is contained in Unin,(1Fq)
with respect to a suitable basis) and it contains U and is normalised by
N = NGF (U) since it is defined in an invariant way in terms of U. If U # H
then U < NH(U) < Op(N). Thus U = H is the unipotent radical of the
parabolic subgroup N corresponding to the flag 0 < V1 < . . . < Vs < V.

Thus the poset 8 (G") is the opposite poset to the poset of parabolic
subgroups ordered by inclusion.

THE TITS BUILDING. The Tits building of a Chevalley group GF is
defined to be the simplicial complex whose simplices are indexed by the par-
abolic subgroups of GF, and where the inclusion relation between simplices
is the opposite of the inclusion relation between parabolic subgroups. Thus
the vertices (0-simplices) correspond to the maximal parabolics, the edges (1-
simplices) to "sub-maximal" parabolics, and so on. The simplices of maximal
dimension have dimension (r - 1), where r is the Lie rank, and correspond to
the Borel subgroups. Every simplex is contained in one of maximal dimen-
sion. It is clear that B (GF) is the poset of simplices of the Tits building,
and so IBp(GF)j is the barycentric subdivision of the Tits building, and is
hence homeomorphic to it.
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For example, in the case GF = GL.m,(Fq), the parabolic subgroups corre-
spond to the chains of proper subspaces (i.e., subspaces which are non-zero
and not equal to the whole space) of the space VF over F. on which GF acts,
and so the Tits building is the simplicial realisation of the poset Subsp(VF)
of proper subspaces of VF. Similarly in the symplectic and orthogonal cases,
but with proper subspaces replaced by proper isotropic subspaces. In general,
it is possible to realise the building as the simplicial realisation of a poset,
but this involves making a choice of an orientation for each of the edges of
the Dynkin diagram.

THEOREM 6.8.5 (Solomon [248], Tits). The Tits building of GF is ho-
motopy equivalent to a bouquet of spheres of the same dimension (i.e., take
some spheres, and identify a point in each sphere, to give a single base-point,
like a bunch of balloons; this construction is called the wedge product).
The dimension of the spheres is (r - 1), and the number of spheres is q to
the power of half the number of roots in the corresponding root system.

PROOF. We shall give Quillen's proof [215] of this fact, in the case where
GF = GLm,(Fq). The proof goes by induction on n. For n = 2 the building
is clearly a collection of disjoint points, which is a bouquet of 0-spheres (a
0-sphere is just two disjoint points), so suppose n > 3. Choose a line (one-
dimensional subspace) L in VF, and denote by 1-l the set of hyperplanes
complementary to L.

We claim that the poset Y = Subsp(VF) \9-l is contractible. To show this,
consider the quotient map q : Y -+ S` bsp(VF/L), where Subsp denotes the

poset of all proper subspaces, together with the zero subspace. This poset
has a unique minimal element, and is hence contractible. Thus by Quillen's
Lemma 6.5.2, it suffices to show that q/W is contractible for each element W
of Subsp(VF/L). But this is clear, since this sub-poset has a unique maximal

element, namely the preimage in VF of W.
It follows that the building is homotopy equivalent to the complex ob-

tained by contracting the subcomplex corresponding to Y down to a point.
The latter complex may be described as follows. For H E 11, let Link(H)
denote the subcomplex of the building consisting of those simplices not con-
taining H, but which are contained in simplices containing H. Then the
contracted complex is the wedge product of the unreduced suspensions of
the complexes Link(H) (the unreduced suspension of a space is formed by
taking a direct product with the unit interval, and identifying each end of the
resulting "cylinder" to a point). But Link(H) is just the complex of proper
subspaces of H.

The number and dimension of the spheres is easy to calculate from this
argument.

REMARKS. (i) With a bit of work, this proof may be made to generalise
to the remaining classes of Chevalley groups. It simply needs to be expressed
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in the language of parabolic subgroups. This is left as a (difficult) exercise
for the interested reader.

(ii) Of course, there is nothing special about the finiteness of the field for
this argument. In fact it even works for non-commutative division rings.

THE STEINBERG MODULE. It follows from the above theorem that the
building has only one non-trivial reduced homology group, and this occurs
in degree (r - 1). This reduced homology group is what is usually referred
to as the Steinberg module of a Chevalley group. The preceding discussion
makes it clear that it differs from our definition of Stp(GF) only by a sign

(-1)r-1.

REMARK. It has been shown by Lusztig that the ideal of virtual projective
modules in the representation ring of a Chevalley group is the principal ideal
generated by the Steinberg module. Note, however, that for a general group,
this ideal is not necessarily principal.

6.9. Steinberg module inversion and Alperin's conjecture

We defined the generalised Steinberg module in terms of an alternating
sum of permutation modules. In this section, we develop an inversion formula
by the means of which we can invert this relationship and express the trivial
module as a sum of modules induced from generalised Steinberg modules.

PROPOSITION 6.9.1 (Bouc, Thevenaz). If X is a /finite G-poset, then

AG(X) = - indStabc(x),GAStabG(x)((x,-)X)
xEX/G

PROOF. We sort the simplices xo < < x,, of I X I into clumps according
to the G-orbit of xo. The contribution to AG(X) from such a clump will
be given as follows. Choose an element x in the orbit. Then we get the
contribution from those simplices xo < < x,,, with xo = x, regarded as
an element of the Burnside ring b(StabG(x)), and then induced up to G. It
is easy to see that this part of the chain complex of X is isomorphic to the
chain complex of (x, -) but with the dimension increased by one. The shift
of dimension accounts for the sign change.

We now wish to apply this to the complex Sp(G) U {1} of all p-subgroups
of G. If P is a p-subgroup of G, then StabG(P) = NG(P), and the complex
(P, -) is identified by the following proposition.

PROPOSITION 6.9.2 (Quillen, Webb). If P is a p-subgroup of G, then
there is a NG(P)-homotopy equivalence

(p -) ^NG(P) SP(NG(P)/P)

where the right-hand side is regarded as a NG(P)-module via the quotient
map NG(P) - NG(P)/P.
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In particular,

ANG(P) ((P, -)) = ANG(P) (Sp(NG(P)l P))

LNN(P)((P,-)) = infNG(P)/P,NG(P)(Stp(NG(P)lP))

in b(G) and a(kG) respectively.

PROOF. By Theorem 6.4.2, we only need show that
(P, _)H Sp(NG(P)lP)H

for all H < NG(P). Let

i : Sp(NG(P)lP)H' (P _)H

denote the inclusion and

r : (P, _)H -> Sp(NG(P)l P)H
Q I--.. NQ(P)/P.

Then it is easy to check that r o i = id while i o r(Q) < Q, so that i and r
are homotopy inverses.

COMMENT. The homotopy equivalence is due to Quillen, and the fact
that the homotopy equivalence is equivariant is due to Webb.

Putting these together, we obtain the following theorem.

THEOREM 6.9.3. In the Burnside ring b(G), we have the identity

1 = - E indNG(P),GANG(P)(Sp(NG(P)/P))
ccls of

p-subgroups
1<P<G

and in the representation ring a(kG), the corresponding identity is the Stein-
berg module inversion formula

1 = - E indNG(P),GinfNG(P)IP,NG(P)Stp(NG(P)/P)
ccls of

p-subgroups
1<P<G

REMARKS. (i) If P OpNG(P) then Sp(NG(P)/P) is contractible, and
so we have Stp(NG(P)/P) = 0. Thus the Steinberg module inversion formula
only has contributions from subgroups P = OpNG(P).

(ii) We used Conlon's induction theorem to show that Stp(G) is a virtual
projective. Conversely the above formula shows that these statements are
equivalent, since in A(G), any virtual projective can be expressed as a C-
linear combination of modules induced from cyclic p'-subgroups.

LENGTH FUNCTIONS. For the rest of this section, we assume k is alge-
braically closed.

DEFINITION 6.9.4. A length function on finite groups is an integer val-
ued function on isomorphism classes of finite groups.
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The following are the length functions we shall be interested in:

l(G) = number of isomorphism classes of irreducible kG-modules

= number of conjugacy classes of p'-elements

fo(G) = number of isomorphism classes of projective irreducibles

("blocks of defect zero").

If a is a length function, then a gives rise to a linear map, also denoted
by a, defined as follows.

a:b(G)-7Z
(G/H) H a(H).

PROPOSITION 6.9.5. Suppose that a and 0 are length functions, and that
a satisfies a(G) = a(G/Op(G)). Then the following are equivalent:

(i) a(G) = 3(NG(P)/P)
ccls of

p-subgroups
1<P<G

(ii) ,3(G) = -a(A(Sp(G))).

PROOF. Apply a to the`Steinberg module inversion formula to obtain

a(G) = - L, a(ANG(P)(Sp(NG(P)/P)))
ccls of

p-subgroups
1<P<G

Substituting (ii) in this yields (i), while substituting (i), and (ii) for all strictly
smaller groups (by induction) yields (ii).

ALPERIN'S CONJECTURE. Alperin has conjectured that for all finite
groups G,

l(G) = E fo(NG(P)/P)
ccls of

p-subgroups
1<P<G

where l(G) and fo(G) are as above. If you know about Green correspondence,
the mnemonic for this statement is "the number of simple modules is equal
to the number of simple Green correspondents". Geoff Robinson's reformu-
lation of this conjecture is obtained by applying the above proposition. This
reformulation states that

fo(G) = -l(AG(Sp(G))).
The treatment of this reformulation using length functions is due to Webb.

RECENT PROGRESS: Since the first edition of this book was published,
Peter Symonds [404] had proved the conjecture of Webb appearing in Sec-
tion 6.5. A lot of work has been done on Alperin's conjecture, but it still
appears to be elusive.





CHAPTER 7

Local coefficients on subgroup complexes

7.1. Local coefficients

In this Chapter we present a version of the theory of Mark Ronan and
Steve Smith [222, 223, 224, 241] in which representation theoretic informa-
tion about a group is obtained in a natural way from constructions involving
local coefficients on G-simplicial complexes. The results are most compre-
hensible for the case where G is a Chevalley group over a field of the same
characteristic, mostly because of a theorem of Steve Smith on irreducibility
of fixed point sets. Note that in some of their papers, Ronan and Smith use
the word sheaf or presheaf to describe what we refer to as a local coeffi-
cient system. We refrain from using the word sheaf because the usual gluing
condition for sheaves plays no role. I hope this does not cause too much
confusion.

All the material of this Chapter is due to Ronan and Smith unless other-
wise explicitly stated; any reformulation that has occurred, and all mistakes
that have crept in, are my responsibility.

DEFINITION 7.1.1. A G-equivariant local coefficient system (or just
an equivariant coefficient system) F of vector spaces (abelian groups, sets,
etc.) on a G-poset X assigns to each x E X a vector space (abelian group,
set, etc.), to each inequality x < y a restriction map

resy,X :J7(y) -p F(x)

satisfying
(i) resx,x = id :.77(x) - .77(x)

(ii) If x < y < z then resy,X o res,z,y = res,z,x

and for each g E G, x E X a map g* :.F(x) -+ F(gx) in such a way that
these maps constitute a group action. In other words, g,,h* = (gh)* :.F'(x) -
.F(ghx), and 1* = id :.F'(x) -> F(x).

If you like, F is an "equivariant functor" on X considered as a "G-
category". Note that the G-action makes F(x) into a representation of
StabG(x).

DEFINITION 7.1.2. A G-equivariant local coefficient system on a G-
simplicial complex A is the same as an equivariant local coefficient system
on the poset of simplices S(L). In other words, to each simplex or we assign

237
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a vector space .F(a), and to each inclusion T C or a restriction map ,P(Q) -->
F(r) (satisfying transitivity etc. as before) together with a G-action.

Conversely, given an equivariant coefficient system on a G-poset X, we
obtain an equivariant coefficient system on JX via

(xo < ... < xn) F-+ (X,,,)

with the obvious restriction maps and G-action. Thus on the barycentric sub-
division of a G-complex, we assign to each simplex the value on the smallest
simplex of the original complex which contains it (thinking of the simpli-
cial complex and its barycentric subdivision as having the same underlying
topological space via the natural homeomorphism).

EXAMPLE. If M is a kG-module and X is any G-poset or G-simplicial
complex, then we have the constant coefficient system nm which assigns
M to each element (resp. simplex), and where all the restriction maps are
the identity. The G-action is the same as it is on M.

The coefficient systems we shall be most interested in are the fixed point
coefficient systems of kG-modules. If M is a kG-module, then the fixed
point coefficient system FM on the G-poset Bp(G) (or any other G-poset of
subgroups of G; see Section 6.2) is defined by

.PM(P) = MP,

the space of fixed points of the p-subgroup P on M. The G-action is given
via the G-action on M, and the restriction maps are inclusions. Note that if
m E MP then gm E gPg-I.

REMARK. If G is a Chevalley group, Bp(G) is the building of G, and
then this is the fixed point sheaf in the sense of Ronan and Smith (see for
example [223, 224]).

DEFINITION 7.1.3. A morphism F -> G of G-equivariant coefficient
systems over X consists of maps of vector spaces F(x) -> G(x), for each
element (resp. simplex) x of X, in such a way that the following diagram
commutes whenever x < y

F(y) -.. 0(y)

I I

fi(x) - 0(x)
and also commuting with the G-action. We write HomX,G(F, 9) for the
vector space of morphisms from .P to 0.

The coefficient system F is a sub-coefficient system of 0 if F(x) C
0(x) for all x. The quotient coefficient system is (F/0)(x) = .F'(x)/0(x).

There are also obvious notions of direct sum, exact sequence, inde-
composability, etc.



7.2. CONSTRUCTIONS ON COEFFICIENT SYSTEMS 239

EXAMPLES. (i) The fixed point coefficient system FM is a sub-coefficient
system of the constant coefficient system /CM, and so we may form the quo-
tient coefficient system ACM/FM.

(ii) Let G = GL3(]F2), the group of three by three matrices over F2. The
permutation representation on the seven points of the projective plane over
F2 decomposes as a direct sum of a trivial one dimensional module and an
indecomposable module X of dimension six. The module X is a non-split
extension

0-+V-*X-+V*-+0
where V is the natural three dimensional module and V* is its dual. It
happens that taking the fixed point space of any non-trivial p-subgroup in
the above sequence yields a split short exact sequence of modules for the
normaliser. However, the splittings cannot be done in a way consistent with
the restriction maps, and so the short exact sequence of fixed point coefficient
systems is not split. In general, for a short exact sequence of modules, we
only get a long exact sequence of fixed point coefficient systems, since taking
fixed points is left exact but not right exact.

DEFINITION 7.1.4. A coefficient system.F is non-degenerate if.fi(x)
0 for all x.

For example, the fixed point coefficient systems discussed above are non-
degenerate, since a p-group always has a fixed point on any module in char-
acteristic p.

7.2. Constructions on coefficient systems

Suppose F is a G-equivariant coefficient system on a G-poset or G-
simplicial complex X.

DEFINITION 7.2.1. The inverse limit (or projective limit) of .F, writ-
ten lima', is a vector space V together with maps V -* F(x) for each x E X,
commuting with restriction maps, and universal with respect to this property.
Universal in this context means that given another W and maps as above,
there is a unique map of vector spaces W -* V whose composite with each
given map V -# F(X) is the given map W -> F(x).

Dually, the direct limit (also known as the inductive limit or colimit
of F), written lima, is a vector space V together with maps .F(x) -+ V for
each x E X, commuting with restriction maps, and universal with respect to
this property. This time, universal means that given another W and maps as
above, there is a unique map of vector spaces V -> W whose composite with
each given map F(X) - V is the given map ,F(x) - W.

We shall also write H° for lim and Ho for lim, for reasons which I hope
will become apparent.

The usual methods may be used to show that these concepts exist and are
unique up to canonical isomorphism. It is helpful to have a concrete model
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for these concepts. The space lim Y may be constructed as the subspace
of 11xEX T(x) consisting of elements whose coordinates are related by the
restriction maps whenever the corresponding elements of the poset (resp.
simplices) are comparable.

Dually, the space lima' may be constructed as the quotient of ®xEX .F (x)

by the subspace generated by elements with all except two coordinates zero,
and the remaining two related by a restriction map.

It is not hard to prove the above universal properties from these con-
structions. This is left as a (boring) exercise for the reader. Note that the
universal properties ensure that the spaces lima' and lima' come equipped
with a G-action, so that they are kG-modules.

EXAMPLES. If X is the poset with trivial group action

(where an arrow denotes an inequality in which the head of the arrow is less
than the tail) then lima' is the same as the pushout of the vector spaces at
the vertices. Dually, if X is the poset with trivial group action

then lima' is the same as the pullback of the vector spaces at the vertices.

EXERCISE. If 0 -p F - g -p G/.F --+ 0 is a short exact sequence of
coefficient systems, show that

(i) 0 H°.F -f Hog -+ HO(91Y) and
(ii) HoY -+ Hog - H°(g/.F) -+ 0

are exact (in other words, lim is left exact while lim is right exact; the side of

the exactness can be remembered by the direction in which the arrow points).
If f : X - Y is a map of G-posets, there are various ways of passing

from a G-equivariant coefficient system on X to a G-equivariant coefficient
system on Y and vice-versa.

DEFINITION 7.2.2. If F is a coefficient system on X and 9 is a coefficient
system on Y, we define

(i) f -1c(x) = 9(f(x)). For example, if i : X '-+ Y is an inclusion, then
i-1g is the restriction of g to X.

(ii) f*.F(y) = lim .F(x) (so that in particular f, is left exact). The
xEy\f

notations y\ f and f /y is explained in Section 6.5.
(iii) fi.F(y) = lim F(x) (so that in particular f! is right exact).

xEf/y
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LEMMA 7.2.3. If f : X - Y is a map of G-posets, then there are natural
isomorphisms

(i) Homx,G(-F, f 1G) = HomYG(f! F, G)
(ii) Homx,G(f-19,.F)HomYG(GG,f*F)

PROOF. (i) Giving a map F f -19 is the same as giving a consistent
set of maps .F(x) -+ 9(f(x)) for all x E X. By the universal property of
direct limits, this is the same as giving a consistent set of maps

lim .F(x) - 9(y),
xEf/y

i.e., a map f!.F - G. Note that if y = f (xo) then

lim .F(x) _ .F(xo)
xEf/y

The proof of (ii) is dual.

Note that in particular if we take.F = f -1Q in the above lemma, the maps
corresponding to the identity map under the above natural isomorphisms are
naturally defined maps f! f -1G -G and G - f. f -19.

EXAMPLE: FROBENIUS RECIPROCITY. If we take Y to be the poset
consisting of a single point in the above lemma, we obtain the following. G-
equivariant coefficient systems on (pt) are the same thing as kG-modules. If
we denote by f the unique map from X to (pt), then f 1(Mi7,ti) = ICM, the
constant coefficient system on X with values in M.

PROPOSITION 7.2.4. If T is a G-equivariant coefficient system on X, and
M is a kG-module, then there are natural isomorphisms

(i) Homx,G(.F, rm) = HomYG(Ho(F), M)
(ii) Homx,G(rm,.F) = HOMYG (M, Ho (J7)). El

Taking F = TM we obtain a natural map Ho(.FM) -f M, corresponding
to the inclusion FM y KM. We shall be investigating this map in the section
after next.

DEFINITION 7.2.5. If i : X ' Y is an inclusion and.F is a G-equivariant
coefficient system on X, then ii.F is the universal extension of .F to Y.

The reason for making this definition is the following characterisation.

PROPOSITION 7.2.6. Let i : X y Y be an inclusion, and G a coefficient
system on Y. Then the following are equivalent.

(i) The natural map i,i-1G --> G is surjective.
(ii) For each y E Y, y X, G(y) is generated by the resx,yc(x) for x > y,

XEX.
In case these equivalent conditions hold, we say that G is generated by

its restriction to X. Thus the universal extension ii.F has the property that
whenever the restriction of G to X is isomorphic to F, and G is generated by
this restriction, then 9 is a quotient of ii.F.
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7.3. Chain complexes and homology of coefficient systems

A coefficient system F on a G-simplicial complex A gives rise to a chain
complex as follows (cf. Section 6.1):

DEFINITION 7.3.1. We define the nth chain group of A with coefficients
in F, Cn(0; F) to be the k-module generated by the ,F(o,) as a ranges over
the oriented n-simplices of A, with relators saying that each element of F(a)
is equal to minus the corresponding element of .F'(a°P), where Q°P denotes the
same simplex with the opposite orientation.

The vector space Cn(A; F) inherits a G-module structure from the action
of G on T.

Just as the chain groups Cn(A; k) of Section 6.1 are permutation modules,
the modules Cn(A;.F) are sums of modules induced from stabilisers of n-
simplices. The case of Cn(A; k) is simply the special case of the constant
system with coefficients in the trivial kG-module k.

The boundary map

6n:Cn(A;-F)-Gn-1(0;F)
is defined analogously to the case of trivial coefficients, but using the alter-
nating sum of the restriction maps to faces of a simplex. If u E F(a) with
0 '=( X 0 ,--- , xn) then

n

0(u) _ E(-1)Zreso,Qi (u)
i=0

where vi = (x0, ... , xi-1, xi+1 ... , xn).
It is again easy to check that Sn o bn+l = 0, and that the boundary maps

are kG-module homomorphisms, so that the homology groups

Hn(A;F) = Ker(0n)/Im(0 +i)
are also kG-modules.

EXERCISE. Show that Ho (A; F) is the same as the kG-module Ho(F)
introduced in the last section. For this reason, we may use the notation
Hi (F) for H(; F) without ambiguity.

EXAMPLES. (i) (Solomon, Tits) If A = l8p(G)I with G a Chevalley group
in characteristic p, then

M i=0
Hi(IM) = M ®St i = rank(G) - 1

0 otherwise.

(ii) (Lusztig [169]) If G = SLn(Fq) and M is the natural n-dimensional
module, then

_ M i=0
H2(YM) 0 otherwise.

(iii) If G = Sp4(IFq) and M is the natural 4-dimensional module, then



7.4. SYMPLECTIC AND ORTHOGONAL GROUPS 243

(a) if p # 2 then Ho(FM) = M;
(b) whereas if p = 2 then dim Ho(J'M) = 5, and there is a non-split short

exact sequence

0-+k-+ Ho(FM)-M-+0.
In fact Ho(FM) is the natural orthogonal module for Sp4(Fq) = O5(Fq)

in this latter case. We shall have more to say about this example in the next
section.

LONG EXACT SEQUENCES. Recall from Section 2.3 of Volume I that a
short exact sequence of chain complexes 0 -+ C' -p C -* C" -> 0 gives rise
to a long exact sequence of homology groups

- HH(C') --> Hi(C) - HZ(C") - HZ 1(C') -
...- Ho(C)-+Ho(C")-+0.

Thus if 0 - F 9 --> 9/F -j 0 is a short exact sequence of coefficient
systems, then there is a long exact sequence of homology groups

...-,HZ(F)-pHZ(g)-*HZ(g/F)-+HZ_1(F)-->....

If you know about left derived functors, you will recognise that this is
saying that the HZ are the left derived functors of lim. In a similar way, one

can construct right derived functors H2 of lim using the Cech approach to
cohomology, via the covering given by the simplices. We shall not be using
H' in this context.

EXAMPLE. From the short exact sequence

0-#.FM-,KM -,KM/FM-*0
we obtain a long exact sequence which ends with

... -# Ho(FM) -# HO(nm) -* HO(iMIFM) -a 0.

Since HO(icM) = M, this says that the natural map Ho(.FM) - M is surjec-
tive if and only if Ho(IM/FM) = 0. Under these conditions we say that M
is generated by fixed points. This is always the case, for example, if M
is irreducible.

7.4. Symplectic and orthogonal groups

In this section we examine some examples, and attempt to convince the
reader that the information contained in the module Ho(.FM) is just the infor-
mation recoverable from local information about the structure of M. This
idea will be made more formal in the ensuing sections. It should also become
apparent that finding Ho(F) for a coefficient system F is equivalent to the
embedding problem: given an abstract incidence structure of points, lines,
planes etc. defined by the subgroup structure of the group, when is there a
projective space in which they embed? From this point of view, the statement
that the natural module M for GL,,,(k) is equal to Ho(FM) says that we can
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recover projective space from the incidence structure of its points and lines.
This can be thought of as a weak form of the fundamental theorem of pro-
jective geometry. Our first example shows that the corresponding theorem
for symplectic geometry is only true in odd characteristic; in characteristic
two, we end up constructing an orthogonal space of one larger dimension.

THE SYMPLECTIC AND ODD DIMENSIONAL ORTHOGONAL GROUPS. We
now examine the 2n-dimensional natural module M for the symplectic group
SP2n(lq) As mentioned in the section on Chevalley groups (Section 6.8),
this is the group associated to the Bn Dynkin diagram over the field Fq.

Recall that an isotropic subspace of a symplectic space is a subspace
on which the symplectic form vanishes identically. The parabolic subgroups
of the symplectic group are just the stabilisers of flags of isotropic subspaces
(isotropic flags). Thus the Borel subgroups are the stabilisers of complete
isotropic flags 0 < V1 < ... < Vn with dim([ i) = i. The maximal parabolics
(which are as usual labelled by the vertices of the Dynkin diagram) corre-
spond to isotropic subspaces according to the following diagram.

isotropic n- n-1- n-2- 2- 1-
space space space space space

Thus the building of G has as vertices the isotropic subspaces, as edges
the isotropic flags of length 2, etc. up to (n-1)-simplices corresponding to the
complete isotropic flags. In other words, this is just the simplicial realisation
of the poset of non-zero isotropic subspaces of the symplectic space M.

The coefficient system TM assigns to each simplex the smallest sub-
space in the corresponding flag, since this is the fixed space of the Op of
the corresponding parabolic subspace. Thus this coefficient system is the one
obtained by the usual process from the coefficient system on the poset of
non-zero isotropic subspaces which assigns to each element of the poset the
corresponding isotropic subspace. We call this the tautological coefficient
system. So TM is the simplicial realisation of the tautological coefficient
system.

What is Ho(FM)? Since two isotropic 1-spaces are contained in an
isotropic subspace if and only if they are contained in an isotropic 2-space, the
general construction of limits shows that H0(.FM) is the quotient of the direct
sum of all the isotropic 1-spaces by the relators coming from the isotropic 2-
spaces. If v is an isotropic vector in M, we shall write b for the corresponding
element of the corresponding 1-space in Ho(FM). In these terms, Ho(IM)
is generated by the v for isotropic points v E M subject to the relations
v = iu + x whenever v = w + x and v, w and x lie in an isotropic 2-space.
The surjection Ho(J'M) - M takes v to v.

THEOREM 7.4.1. (i) If k has odd characteristic then Ho(.rM) = M.
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(ii) If k has characteristic two then there is a short exact sequence

0-fk-+Ho(FM)-'M->0.
PROOF. (i) Choose isotropic subspaces X = (xl,... , x,,,) and Y = (yi,

of dimension n with (xi, yj) = Sij. Then X and Y are n-dimensional
isotropic subspaces of HO(.TM), and we must show that each z E Ho(FM)
is in the linear span of X and Y. Let z = x + y with x E X and y E Y.
If (x, y) = 0, we are done, so assume (x, y) = a 0 0. Choose x' E X with
(x', y) = 0. Since k has odd characteristic, we may define

x0 =
2

(x + x') x = x0 + xo

xo =
2

(x - x') x = x0 - xo

Choose yo with (xo, yo) = 0 and (x'0, yo) = a/2, and let yo = y - yo. Then

(xo + yo, x0 + yo) = (xo,yo) + (yo, x0) = a/2 - a/2 = 0

and

z = (xo + yo) + (xo + yo)

so that

(z) C ((xo + yo), (xo + yo)) c (xo, yo, xo, yo)-

(ii) In order to understand the situation in characteristic two, it is nec-
essary to say something about orthogonal forms in characteristic two. An
orthogonal form in characteristic two consists of the following data. First of
all we are given a symmetric bilinear form b(x, y) = b(y, x). Then we are also
given a quadratic form q(x) which is a map satisfying

q(x + y) = q(x) + q(y) + b(x,y)

In particular this implies that b(x, x) = 0, so that b(x, y) is a symplectic form.
In odd dimension, this symplectic form necessarily has a non-zero radical,
and this radical is invariant under the action of the orthogonal group. If the
orthogonal form is non-degenerate, the radical can only have one dimension,
since the quadratic form is (semi)linear on this radical. The quotient of
the (2n + 1)-dimensional orthogonal space by the radical of the symplectic
form is thus a non-degenerate (2n)-dimensional symplectic space. Given a
(necessarily isotropic) vector in the symplectic space, among its preimages is
exactly one isotropic vector in the orthogonal space. Thus there is a surjective
map from HO(FM) onto an orthogonal space of one larger dimension. Case
(ii) of the theorem will therefore follow from the next theorem, which is
independent of characteristic.

THEOREM 7.4.2. Let V be a non-degenerate orthogonal (2n + 1)-dimen-
sional space (n > 1), and let Fv be the tautological coefficient system on
the poset of non-trivial isotropic subspaces of V. Then the natural map
Ho(.F'v) V is an isomorphism.
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PROOF. Choose a basis xi, ... Xn, Yi, ... yn, t with X = (xl,... , xn)
and Y = (yl, ... , yn) isotropic, (xi, yj) = bi.7 and q(t) = 0.

7

7

0

(EXERCISE: Show this is always possible; you'll need to use the finiteness of
the field.)

We must show that Ho(.F'v) = X + Y + (G); i.e., if x + y + At is singular
then (x + y At) E X + Y + (t) .

CASE 1. If A = 0 then x + y is singular and so (x y) = x +
CASE 2. If A 0 then choose a singular 2-space S D (x + y + At). By

dimension counting, Sn (X (D Y) is one dimensional, so let it be generated by
the isotropic vector s. By case 1, s E X+Y. By a similar dimension count, z1
is a (2n)-dimensional subspace intersecting S in a one dimensional isotropic
subspace. This 1-space, together with z, generate an isotropic 2-space which
intersects X + Y in an isotropic 1-space. Thus z1 n S c X + Y + (t), and
hence also (x + y + At) C X + Y + (t).

COROLLARY 7.4.3. Sp2n(Fq) = 02n+1(Fq) for q a power of 2.

PROOF. The above theorem shows that there is an action of Sp2n(]Fq)
on the (2n + 1)-dimensional orthogonal space Ho(.FM), so that the natural
map 02n+1(JFq) -- Sp2n(Fq) is surjective. On the other hand, if an orthogonal
matrix acts trivially on the symplectic quotient space, then it fixes the unique
isotropic lift of each vector in this symplectic space. But these lifts generate
the orthogonal space.

COMMENT. Ronan and Smith [223] have proved more generally that for
any minimum weight module (i.e., one in which there is only one orbit of
weights under the action of the Weyl group) except for the natural module
for Sp2n(Fq) in characteristic two, one has HO(J7M) = M. This condition
includes the natural modules for the symplectic and orthogonal groups, as
well as the spin modules for the orthogonal groups, the exterior powers of
the natural module for the linear groups, the 27-dimensional module for type
E6 and the 56-dimensional module for type E7.

7.5. Smith's theorem and universal coefficient systems

Much of the representation theory of Chevalley groups in their own char-
acteristic can be understood in terms of the representation theory of the cor-
responding algebraic group. The interested reader should consult the work
of R. Steinberg, J. C. Jantzen, J. E. Humphreys and H. H. Andersen, among
others. We shall instead try to see what information we can get out of the
approach using local coefficient systems, following Ronan and Smith. The
basic input for this theory is the following theorem.

Let k be an algebraically closed field of characteristic p.
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THEOREM 7.5.1 (Smith [240]). Suppose G is a Chevalley group in char-
acteristic p, H a parabolic subgroup and M an irreducible kG-module. Then
the fixed point space MOP(H) is an irreducible k(H/OP(H))-module. If M 54
N are non-isomorphic irreducible kG-modules then there exists a minimal
parabolic subgroup H with MOP(H) NoP(H)

PROOF. It would take us too far afield to give the proof of this theorem.
The proof is very short, but uses the theory of weight spaces for modules for
a Chevalley group, see S. D. Smith [240]. An alternative proof may be found
in M. Cabanes [58].

EXAMPLES. (i) Let B be a Borel subgroup (which is the same as a Sylow
p-normaliser). Then B/OP(B) is an abelian p'-group, and so its irreducible
modules are one dimensional. So for any irreducible kG-module, the fixed
points of a Sylow p-subgroup are one dimensional.

(ii) If q = 2 then a Borel subgroup is the same as a Sylow 2-subgroup,
and the minimal parabolics H D B have

H/02(H) = SL2(2) = S3,

the symmetric group of degree three, and so the simple modules for H/02 (H)
have dimensions one and two. Thus associated to each irreducible module
is an assignment of ones and twos to the vertices of the Dynkin diagram,
and by Smith's theorem this assignment completely determines the module.
It turns out that every possible assignment occurs, and so there are exactly
2' isomorphism classes of irreducible modules, where r is the Lie rank. The
Steinberg module is the one corresponding to putting a 2 on each vertex.

More generally for any value of q, if H is a minimal parabolic then there
is a natural map SL2(Fq) - H/OP(H) whose kernel is central and whose
cokernel is an abelian group which acts on the image via diagonal matrices.
For SL2(p) there are p simple modules, namely the symmetric powers of the
natural 2 dimensional module with dimensions 1 up to p. Steinberg's tensor
product theorem gives the irreducible modules for SL2(lFq) when q = pe
in terms of these. It turns out that if two modules have isomorphic fixed
points when pulled back to each of these SL2(lFq)'s then they are related
by tensoring with a one dimensional representation. A Chevalley group is
of universal type if every configuration of pulled back fixed points occurs
for some irreducible kG-module. In this case the number of isomorphism
classes of irreducible modules is IG : G'I.g'. For any Chevalley group the
universal p'-central extension is a Chevalley group of universal type. Thus
for example SLn,(Fq) is of universal type and has qn-1 isomorphism classes
of irreducible modules. PGLn(lFq) is not of universal type, but its universal
p'-central extension GLn(lFq) is; it has (q - 1)qn-1 irreducibles. Proofs of
all these remarks are outside the scope of this book, but the remarks are
included for the orientation of the reader.

COMMENT. Smith's theorem is far from being true for a non-Chevalley
group. For example for the alternating group A7 in characteristic two, there
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is a 20 dimensional simple module. The fixed points of a Sylow 2-subgroup
(which has order eight) are therefore more than one dimensional, whereas the
Sylow 2-subgroup is self normalising. The sporadic group J4 looks more like
a Chevalley group in characteristic two, but the 112 dimensional irreducible
module has fixed points 1®5 under the action of the maximal 2-local subgroup
210L5(2).

COROLLARY 7.5.2. Suppose M is an irreducible kG-module as above.
Then the fixed point coefficient system FM on the building 0(G) has the
property that FM(a) is irreducible for each simplex a.

LEMMA 7.5.3. If M and N are irreducible kG-modules for G a Chevalley
group, then

Homp,G(,FM,TN) = HomkG(M, N)

where 0 denotes the building of G.

PROOF. Suppose we are given a homomorphism from FM to TN. By
Smith's theorem, at each simplex the homomorphism is a homomorphism
of irreducible modules. By Schur's lemma it is therefore determined up to
multiplication by a scalar. By compatibility with the restriction maps and
conjugations, any one scalar determines the rest (since 0/G is connected). If
M 91- N then there is some simplex on which the values are not isomorphic,
so in this case the scalar has to be zero. If M = N then of course any scalar
can happen.

PROPOSITION 7.5.4. If M is an irreducible kG-module for G a Chevalley
group, then HO(.FM) has a unique maximal submodule, and the quotient is
naturally isomorphic to M.

PROOF. Suppose N is a simple kG-module. Then

HomkG(Ho(FM), N) = Homo,G(FM, kN)

= HomA,G(-FM, -FN) = HomkG(M, N). El

COMMENT. The module HO(FM) should not be confused with the Weyl
module WM which also has a unique maximal submodule, which again has
quotient isomorphic to M. In fact, both of these modules are quotients of a
universal coefficient system constructed as follows.

Let 6(1)(G) be the subset of Bp(G) consisting of the Sylow p-subgroups
together with the maximal points lying below them; these correspond to
the simplices of the building associated to the Borel and minimal parabolic
subgroups, i.e., the simplices of dimension r and r - 1. Denote by

iG : BP(G)

the inclusion.

DEFINITION 7.5.5. The coefficient system UM = (iG)!iG1JCM is the uni-
versal coefficient system associated to the irreducible kG-module M.
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PROPOSITION 7.5.6. The module HO(UM) has a unique maximal submod-
ule, and the quotient is isomorphic to M. If N is a kG-module such that for
a minimal parabolic subgroup H, NOp(H) - MOp(H) and N is generated by
these fixed points, then N is a quotient of HO(UM) (this is true in particular
if N is the Weyl module WM).

PROOF. Just as in the last proposition, we have

HomkG(Ho(UM), N) = HOmp,G(UM, KN) = Homp,G((iG)!iGI-FM, NN)

Homp,G(iGI.FM, iGIIIN) = Hom .,G(iG'.Fitit, ZG1FN)

HomkG(M, N).

AN ALGORITHM FOR CONSTRUCTING THE IRREDUCIBLE MODULES. If
M is an irreducible kG-module, we write M for Ho(.FM) and J(M) for the
unique maximal submodule of M.

LEMMA 7.5.7. If N is a quotient of M then there is a canonical splitting
FNTM ED FJ(N)

PROOF. We have maps

M=Ho(FM)-'N,M
whose composite is the natural map Ho(.FM) -i M, and hence associated
maps

-FM . FN - -FM
whose composite is the identity. The kernel of the second of these maps is
just FJ(N).

Ronan and Smith had the following idea for turning this into an induc-
tive construction of the irreducible modules. The coefficient system .FM can
be constructed entirely from a knowledge of the representation theory of
H/Op(H) for H parabolic. These groups are Chevalley groups of strictly
smaller rank, and so we may assume their representation theory is known.
This means we can construct M. By the above lemma, we have

TM = FM ® FJ(M).

So the next step is to find the complementary coefficient system The
image of the natural map

Ho(FJ(M)) - M

has non-zero image contained in J(M). Quotienting by this image gives us
a closer approximation to M, and we may use it to replace k in the above
construction and start again. In a finite number of steps (often just one!)
this process must terminate.

It is not quite clear from this description that this is really a practical
process for calculation. In their paper [223], Ronan and Smith describe in
detail how to turn this into an effective algorithm for calculation.
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representation, 218

Ronan-Smith, 237
root system, 229

S(O), 217
S[1] ra X, 87
S[n], 26
S', 2
S_n(A), 73
Sn(A), 73
S,(G), 217
Si, , 23

sd(A), 217
Segal conjecture, 56
self-reference, 277
semidihedral group, 191, 211
sequence

Connes, 81
five term, 103
inflation-restriction, 110
regular, 168
spectral, 93, 99

series, Poincare, 157

Serre

's theorem, 148
fibration, 16, 93

set
cyclic, 86

INDEX

simplicial, 23
SG, 78
sheaf, 237
shifted subgroup, 181
shuffle, Eilenberg-Mac Lane, 27
aE, 173
Simp C, 23
simple space, 7
simplex

degenerate, 24

non-degenerate, 24

oriented, 216

singular, 24
simplicial

n-sphere, 26
complex, 13, 215
group, 26
map, 23
object, 23
realisation, 217
set, 23

simply connected, 3
Sing(Y), 24, 87
singular

cohomology, 9
homology, 9
simplices, 24

skeleton, 13, 27
SL21Fq), 247
SLn(1Fq), 242
SLn(k), 228
smash, 2
Smith's theorem, 246
SOn(k), 228
Solomon-Tits theorem, 232
Sp4(1Fq), 242, 243
Sp2n(1Fq), 244, 246
Sp2n(k), 228
space

affine, 161
base, 16
classifying, 27
covering, 20
Eilenberg-Mac Lane, 32
Hausdorff, 12, 35
loop, 8
paracompact, 21
projective, 165
simple, 7
total, 16

spec(A), 164
special
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SL2(lFq), 247
SL, (k), 228

orthogonal group SO, (k), 228
spectral sequence, 93, 99

Atiyah, 114
Atiyah-Hirzebruch, 114
Bockstein, 134
Eilenberg-Moore, 64, 93, 112
for an extraspecial 2-group, 169
hypercohomology, 108, 202
Kiinneth, 111
Lyndon-Hochschild-Serre, 93
of a double complex, 106
of a fibration, 104
of a filtered complex, 98
of a group extension, 109
of the Borel construction, 118
products in, 115
Steenrod operations in, 150, 171
transgression in, 103

spectrum
maximal ideal, 163
prime ideal, 164

spheres, bouquet of, 232
sporadic group J4, 248
Sqi, 137
square

exterior, 190
Steenrod, 136
symmetric, 190

, vi
St5(G), 226
stable

cohomotopy, 56
homotopy, 57
map, 56

standard resolution, 30
Steenrod operations, 136

in spectral sequences, 150, 171
Steinberg module, 219, 233

generalised, 226
inversion, 233

Steinberg's tensor product theorem, 247
Stiefel

-Whitney class, 50

variety, 36

stratification, Quillen, 172
for modules, 179

strong
deformation retract, 16
topology, 39

structure group, 36
sub-coefficient system, 238

INDEX

subdivision, barycentric, 27, 215, 217
subgroup

Borel, 230
complex, 217, 237
parabolic, 230
shifted, 181

Subsp(VF'), 232
subspace, isotropic, 169, 244
EH9K' vi
sum, Whitney, 37
suspension, 8, 25

unreduced, 232
symmetric

bilinear form, 169, 245
group

S3,247
S,,, 175

power, 157, 247
square, 190

symplectic group, 243
Sp4(lFq), 243
SP2m(lFq), 246
Sp2, (k), 228

system
invertible, 218

root, 229

Tate cohomology, 206
tautological coefficient system, 244
tensor product

of commutative rings, 169
of vector bundles, 37
theorem, Steinberg's, 247

theorem
Alperin-Evens, 160
Andrews', 192
Atiyah completion, 48
Avrunin-Scott, 179
Bott periodicity, 46
Brown's, 227
Carlson's connectedness, 194
cellular approximation, 15
Chouinard's, 157
Conlon's induction, 221, 234
Duflot's, 132
Eilenberg-Zilber, 27
Eisenbud's, 192
homotopy addition, 10
Kan-Thurston, 31
Kudo transgression, 151
Macaulay's, 168
Nakaoka's, 126
Quillen



's Krull dimension, 161
-Venkov, 155
stratification, 174
stratification for modules, 179

Serre's, 148
Smith's, 246
Solomon-Tits, 232
Steinberg's tensor product, 247
Whitehead, 15

Tits building, 231
topological

group, 35
realisation, 24

topology
strong, 39
weak, 12
Zariski, 163

torus, 229
total

Chern class, 49
complex, 106
space, 16
Stiefel-Whitney class, 50

trace map, Dennis, 76, 91
transcendence degree, 166

transfer, 51

as stable map, 57
Becker-Gottlieb, 53

transgression, 103, 150
theorem, Kudo, 151

tubular neighbourhood, 54
twisted Bockstein, 135
type

exceptional, 229
finite, 13
universal, 247

typical case, 67

U(n), 36, 42
Unin(k), 228
unipotent

group, 228
radical, 231

unitary group, 35, 36
unitriangular group, 228
unity, partition of, 22
universal

bundle, 38
coefficient system, 248
cover, 20, 218
extension, 241
local system, 246
type, 247

INDEX

unreduced suspension, 232

V(I), 162
VE(M), 181
Vn(R-), Vn(Cm), 36

VE, 173
VE (M), VG,E(M), V, E(M),179
VG, 153, 172
VG(M), 154
VG,E, V, "E, 174
V(I), 165
VG, 173
Vn(C°°), 42
Vn(R00), 41
variety

affine, 163, 228
covering the, 200
Grassmann, 36
group action on, 167
homogeneous affine, 165
projective, 165
quasiprojective, 165
rank, 154, 181
Stiefel, 36

vector bundle, 36
tensor product of, 37

vertical edge homomorphism, 103
virtual projective, 219

WG(E), 174
weak

homotopy equivalence, 15
Nullstellensatz, 162
topology, 12

weakly contractible, 15
Webb's conjecture, 224
wedge, 2, 232
Weyl module, 248
Whitehead theorems, 11, 15
Whitney sum, 37
wreath product, vi

[X;Y], 2
IXJ, 24, 217

y\f, 222
Yoneda composition, 30

Z,(G), 226
Zariski topology, 163
(H',m, 58
Z(G), vi
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