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1. Introduction

1.1. About this thesis. This is an expository thesis, primarily about Lie group geometry

from a mathematical perspective, the thrust of which is motivated by applications in physics.

I outline the general theory of Lie groups, providing several geometric arguments and proofs.

The unitary group is the main example. Strings in one dimension make a surprise appearance

in the large-n limit.

Many thanks to my thesis advisor, Prof. Antal Jevicki, for helping me through all the

physics, of which this thesis only scratches the surface. Also thanks to Prof. Alan Landman

and Prof. Bruno Harris for helping me to connect the math and physics.

1.2. Overview. Lie groups have rigid geometry. In particular, for simple, compact Lie

groups, there is a distinguished metric. This metric induces both a measure and a Laplacian.

The measure allows one to introduce the Hilbert space of wavefunctions. The study of this

function space is nothing but non-relativistic quantum mechanics: the Laplacian defines the

energy of these wavefunctions, determining how they evolve in time.

Metric

(Free Lagrangian,

defines physical system)

↙ ↘
Measure Laplacian

(defines Hilbert (Free Hamiltonian,

space) defines dynamics)

The standard physics story is as follows: the position of a particle on a Lie group is given

by a group element (typically a matrix). The motion of this particle is determined by

the Lagrangian, which is taken to be the metric. The action along a path γ is then

L = 1
2
m
∫

‖γ̇(t)‖2 dt, and the classical trajectories are geodesics. When we apply canon-

ical quantization, we get the Hamiltonian H = − ~
2

2m
∇2.

We will focus on the Lie group Un defined by

Un :=
{

U ∈Mn×n(C)|U †U = 1
}

.
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Every unitary matrix is conjugate to a diagonal matrix of the form
















eiφ1

eiφ2

. . .

eiφn

















.

The set of all possible angles (φ1, . . . , φn) defines an n-torus.

Rather than consider general functions on Un, it will be useful to restrict our attention

to class functions, i.e., functions that are constant on conjugacy classes. These are precisely

the functions that are invariant under conjugation. Such functions are determined by their

restriction to the n-torus. Moreover, since conjugation in Un can permute the order of the

diagonal entries, class functions are symmetric functions of the φi. A symmetric function on

the n-torus may be interpreted as a wavefunction of n bosons. Thus we have the following

correspondence:

Conjugation-invariant functions on Un

⇐⇒ Symmetric functions on the n-torus

⇐⇒ Wavefunctions of n bosons on a circle.

We will also show a correspondence between bosons and fermions known as the “boson-

fermion correspondence”:

n-particle bosonic QM on the circle ⇐⇒ n-particle fermionic QM on the circle.

This correspondence becomes even more interesting when we take the large-n limit. We may

consider a nested sequence of unitary groups

U1 ⊂ U2 ⊂ · · · ⊂ U∞,

where U∞ := ∪Uk. In this limit, we get quantum field theories. The boson-fermion corre-

spondence then reads:

Bosonic quantum field on the circle ⇐⇒ Fermionic quantum field on the circle.
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The bosonic quantum field theory may be interpreted as either a theory of strings winding

around a circle, or as a quantum field theory over a curved AdS2 spacetime. This thesis

explores the string interpretation.

The fermionic quantum field theory is a non-relativistic, free field theory on the circle.

This correspondence of field theories is the simplest example of the conjectured AdS/CFT

correspondence, where a quantum field theory on AdS spacetime corresponds to a conformal

field theory.

2. Elementary theory of Lie groups

2.1. Lie groups and Lie algebras. A Lie group G is a group with a real manifold structure

such that the group multiplication (g, h) 7→ gh and the inverse map g 7→ g−1 are smooth

with respect to this structure. Typical examples include matrix groups, such as GLn(R),

SOn, and SUn.

A Lie algebra g is a real or complex vector space with a multiplication called a Lie bracket

[·, ·] : g × g → g, which is bilinear, antisymmetric, and satisfies the Jacobi identity

0 = [[X, Y ], Z] − [[X,Z], Y ] + [[Y, Z], X].

Lie groups give rise to Lie algebras in the following way. Let G be a Lie group, and let g

denote the real vector space of right-invariant vector fields on G. If I denotes the identity

element of G, then as vector spaces, TIG ∼= g since a right-invariant vector field is determined

by its value at a point. Thus, dimG = dim g. The Lie bracket is then the Lie bracket of

vector fields.

One equivalent definition of the Lie bracket is the infinitesimal commutator of the flows.

Thus, if A,B ∈ TIG, then the Lie bracket [A,B] is defined so that to second order in A and

B,

e[A,B] := eAeBe−Ae−B.

(The exponential map is defined as the flow from the origin along the right-invariant vector

field.) In the case of matrix groups, we may do a power series expansion to obtain

e[A,B] = eAB−BA.

Thus the Lie bracket simply corresponds to the matrix commutator in TIG.
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One may show that if G1 and G2 are two connected Lie groups with isomorphic Lie

algebras, then G1 and G2 have isomorphic universal covers. Therefore, G1 and G2 are locally

isomorphic, and all the local information about a connected Lie group G is encoded in its

Lie algebra g.

Lie groups are typically used to describe a symmetry of a system. For example, consider

a bound particle in a spherically symmetric potential with Hamiltonian H = − ~
2

2m
∇ +

U(x). Let H denote the Hilbert space of wavefunctions. This space has an energy spectrum

decomposition into finite dimensional subspaces

H = ⊕HE

such that for ψ ∈ HE, Hψ = Eψ. Now we have an SO3 action on H by rotations of

the wavefunctions. Furthermore, since H is rotationally symmetric, this action commutes

with H since for any ψ ∈ V and r ∈ SO3, Hrψ = rHψ. Thus, if Hψ = Eψ, then

Hrψ = rHψ = Erψ, so the action preserves the energy spectrum, and we have an action of

SO3 on each HE. Such an action of a group on a vector space is called a representation. A

group representation of a group G on a vector space V is defined as a group homomorphism

ρ : G → GL(V ). The rich structure of representations imposes constraints on the structure

of the solutions.

Since Lie groups tend to be complicated nonlinear objects, it is advantageous to express

everything in terms of Lie algebras, which have a simple linear structure. For representations

we have the following procedure. Let I ∈ G denote the identity. The derivative of a

representation ρ : G→ GL(V ) induces a vector space map dρI : TIG → End(V ). It follows

that dρI([A,B]) = dρI(A)dρI(B)−dρI(B)dρI(A). Any such map R : g → End(V ) satisfying

this commutator relation is called a Lie algebra representation.

A Lie group representation ρ : G → GL(V ) gives V the structure of a left module over

the group algebra of G. This is nothing but a fancy way of saying that we can write an

expression such as ρ(A)[v] + 2ρ(B)[v] + 3v in shorthand as (A+ 2B + 3I)v. Similarly, a Lie

algebra representation R : g → End(V ) gives V the structure of a left g-module. In fact,

it will be useful to think of V as a left module over a large ring that “includes G and its

derivatives.” For example, if γ : (0, 1) → G is a smooth path, we can left-multiply not only
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by γ(t) for any time t, but also by

γ̇(t) := lim
u→t

γ(t) − γ(u)

t− u
.

In this case, γ(t)−1γ̇(t) ∈ g, so γ̇ = γ(t) (γ(t)−1γ̇(t)) ∈ Gg. To go to higher derivatives

γ̈(t) :=
d

dt
γ̇(t),

we rewrite γ̇(t) = γ(t)g(t), where g(t) := γ(t)−1γ̇(t) ∈ g. Thus

γ̈ = γ̇g + γġ = γ(g2 + ġ).

Now ġ(t) ∈ g since g is a vector space. Thus, γ̈(t) ∈ G(g2 ⊕ g), where g2 denotes a two-fold

tensor product. Similarly,

...
γ (t) = γ̇(g2 + ġ) + γ(gġ + ġg + g̈) = γ(g3 + 2gġ + ġg + g̈),

so
...
γ (t) ∈ G(g3⊕g2⊕g). The pattern continues, and to encompass all the derivatives, we are

naturally led to the universal enveloping algebra U(g) := 1 ⊕ g ⊕ g2 ⊕ · · · . This is formally

defined as the free algebra over g modulo the relation ab − ba = [a, b]. Thus, a Lie group

representation on a vector space V makes V a left G · U(g)-module.

2.2. The adjoint representation. Each Lie group carries a special canonical represen-

tation called the adjoint representation, defined as follows. A Lie group acts on itself

by inner automorphisms. This left action is given by the map G → Aut(G) defined by

h 7→ (g 7→ hgh−1), or equivalently by the rule h · g := hgh−1. We see immediately that

the identity I is a fixed point of this action. Let σh denote the map g 7→ hgh−1. Then

(dσh)I : TIG → TIG, so (dσh)I ∈ GL(g). The map h 7→ (dσh)I is easily verified to be a

group representation G→ GL(g), which one takes as the definition of the adjoint represen-

tation Ad : G→ GL(g). We have the associated Lie algebra representation ad : g → End(g),

which is also called the adjoint representation. One verifies that adA ∈ End(g) is given by

the linear map [A, ·]. More precisely, adA(B) = [A,B]. The representation relation

ad[A,B] = adA ◦ adB − adB ◦ adA

is nothing but the Jacobi identity in disguise.
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2.3. The smooth function representation. Another important canonical representation

of a Lie group is the infinite-dimensional representation ρC∞on the space of smooth functions

C∞(G). The Lie group representation is given by ρC∞(g) · f(x) = f(gx). We will determine

the corresponding Lie algebra representation after introducing some terminology.

Let lg and rg respectively denote left and right multiplication by g, i.e., lg(h) = gh and

rg(h) = hg. A left-invariant vector field V is a vector field such that dlg(V ) = V . Similarly,

a right-invariant vector field satisfies drg(V ) = V . A left or right invariant vector field V

is determined by its value at the identity V |I since at any point g ∈ G, V |g is respectively

dlg(V |I) or drg(V |I).
If A ∈ g, then we define γA(t) := etA, so γ̇A(0) = A. The corresponding Lie algebra

representation is then given by

dρI(A) · f(x) = dρI(γ̇A(0)) · f(x) =
d

dt

∣

∣

∣

∣

t=0

f(etAx).

This is nothing but the right-invariant vector field corresponding to A acting on f by partial

differentiation:

rx(γ) = etAx =⇒ drx(A) =
d

dt

∣

∣

∣

∣

t=0

etAx,

so

drx(A) · f =
d

dt

∣

∣

∣

∣

t=0

f
(

etAx
)

.

For A ∈ g, we introduce the notation ∂A for the right-invariant vector field corresponding to

A. Thus, dρI(A) = ∂A, and

∂A · f(x) =
d

dt

∣

∣

∣

∣

t=0

f(etAx).

2.4. The Killing form. We want to be able to do geometry on our Lie group, so we search

for suitable metrics on G. The natural condition to impose is invariance. Suppose we have

a metric form 〈·, ·〉I defined on TIG, that is bilinear and symmetric. For left invariance, we

demand
〈

(dlg)I (v), (dlg)I (w)
〉

g
= 〈v, w〉I ,

and similarly for right invariance,

〈

(drg)I (v), (drg)I (w)
〉

g
= 〈v, w〉e .
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Note that by invariance, the metric form 〈·, ·〉 := 〈·, ·〉I on g determines the metric form on

all of G.

If left and right invariance are to simultaneously hold, we must have

〈v, w〉 =
〈

(drg)
−1
I ◦ (dlg)I (v), (drg)

−1
I ◦ (dlg)I (w)

〉

= 〈dσg(v), dσg(w)〉 ,

where once again σg denotes conjugation by g. If g = etA for A ∈ g, then

0 =
d

dt

∣

∣

∣

∣

t=0

〈dσetA(v), dσetA(w)〉

=

〈

d

dt

∣

∣

∣

∣

t=0

dσetA(v), w

〉

+

〈

v,
d

dt

∣

∣

∣

∣

t=0

dσetA(w)

〉

= 〈adAv, w〉 + 〈v, adAw〉 .

Thus, the invariance requirement on g is

0 = 〈[A, V ],W 〉 + 〈V, [A,W ]〉 .

Suppose α(X, Y ) is an invariant symmetric bilinear form. First consider the situation in

which α is degenerate, i.e., there is some N ∈ g− {0} such that for all X ∈ g, α(N,X) = 0.

Then by invariance, for any Y ∈ g, α([N, Y ], X) = α(N, [Y,X]) = 0 for all X. Thus we see

that {N ∈ g : α(N,X) = 0 for all X ∈ g} forms a linear subspace i of g such that [g, i] ⊂ i.

Such a subspace is called an ideal. An ideal not equal to {0} or g is called a proper ideal.

A Lie algebra representation g on V is called irreducible if it has no proper subspaces V0

such that gV0 ⊂ V0. A Lie algebra is called simple if the adjoint representation is irreducible.

(For technical reasons, we separately designate that the one-dimensional Lie algebra is not

simple.) Equivalently, a Lie algebra is called simple if it has no proper ideals and is not

abelian. Therefore, for a simple Lie algebra g, {N ∈ g : α(N,X) = 0 for all X ∈ g} is either

{0} or g.

Simple Lie algebras have the fabulous property that any invariant symmetric bilinear form

on g is either zero or nondegenerate. As a consequence, any such form is uniquely defined up

to a scalar. To see why, suppose that α and β are linearly independent symmetric bilinear

forms over a simple Lie algebra g. Then det(α− λβ) is a nonconstant polynomial in λ, and

so by the fundamental theorem of algebra, there is a λ0 ∈ C such that det(α − λ0β) = 0.
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Thus α − λ0β is degenerate, and since g is assumed simple, α − λ0β = 0. This contradicts

the linear independence of α and β. Thus, up to a scalar multiple, there can be at most one

symmetric bilinear form on a simple Lie algebra g.

Define on g a bilinear form κ(X, Y ) := Tr (adX ◦ adY ). By cyclic invariance of trace, κ is

symmetric. To see that κ is invariant, we compute

κ([X, Y ], Z) = Tr
(

ad[X,Y ] ◦ adZ

)

= Tr (adX ◦ adY ◦ adZ − adY ◦ adX ◦ adZ)

= Tr (adX ◦ adY ◦ adZ − adX ◦ adZ ◦ adY )

= Tr
(

adX ◦ ad[Y,Z]

)

= κ(X, [Y, Z]).

This form κ is called the Killing form, and it can be shown to be nonzero. Therefore, up

to a scalar multiple, the Killing form is the unique invariant symmetric bilinear form.

Now for any representation of g on V we can define

κ̃(X, Y ) = Tr(v 7→ XY v).

This is also an invariant symmetric bilinear form, and therefore κ̃ is proportional to κ.

Suppose G ⊂ GLn(R) is a matrix group with a simple Lie algebra g. Then we have the

standard representation of g on Rn in which we identify g as a subspace in Mn×n(R), the

space of n× n matrices. Now if X, Y ∈ g, then

κ̃(X, Y ) = Tr(XY ).

Now suppose M ∈ G is a matrix. Then the tangent space is TMG ∼= dlM(TIG) = Mg.

Similarly, g ∼= M−1 · (TMG). Furthermore, for X, Y ∈ TMG invariance implies

κ̃(X, Y ) = κ̃(dlM−1X, dlM−1Y ) = Tr
(

M−1XM−1Y
)

= Tr
(

XM−1YM−1
)

.

In particular, the line element (dM)2 is given by κ(M−1Ṁ,M−1Ṁ) ∝ Tr

(

(

M−1Ṁ
)2
)

.
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As an example, in the case that G is a subgroup of the orthogonal group, M TM = 1 =⇒
MT Ṁ = −ṀTM . Using M−1 = MT and cyclic invariance of trace, we get

κ(M−1Ṁ,M−1Ṁ) ∝ Tr(MT ṀMT Ṁ) = −Tr(ṀTMMT Ṁ) = −Tr(ṀT Ṁ).

We recognize Tr(ṀT Ṁ) as the standard metric on Mn×n(R). Therefore, for subgroups of

the orthogonal group, the invariant metric on G is the restriction of the Euclidean metric on

Mn×n(R) to G!

We can take this a step further and realize Un as a subgroup of O2n and deduce that

κ(Ṁ, Ṁ) ∝ Tr(Ṁ †Ṁ).

2.5. Cartan-Weyl basis. Let g denote a finite dimensional Lie algebra. It will be helpful

to work over an algebraically closed field, so we complexify g by considering g ⊗R C. It is

important to note that different algebras may have the same complexification. For example,

(slnR) ⊗R C ∼= sun ⊗R C. The relationship between these two algebras become more clear

if one considers the Lie group SLn(C). This is a complex manifold since it is given by the

holomorphic constraint det = 1. Thus the Lie algebra has a natural complex structure. The

groups SLn(R) and SUn occur as real submanifolds, and one may verify that (slnR)⊗R C ∼=
sun ⊗R C ∼= slnC. In the next section, we will study this phenomenon in more detail for the

case sl2C.

When we complexify a real Lie algebra g, it will be useful to have a concept of complex

conjugation on g⊗ C. There is potential for confusion since X ∈ g could represent a matrix

with complex entries, but as an abstract vector in g, the complex structure of such a matrix

representation is invisible. Thus the desirable notion of complex conjugation σ for X ⊗ z is

σ(X ⊗ z) := X ⊗ z̄. Therefore, the real subalgebra of g ⊗ C is the subspace fixed by σ.

We now consider a Cartan subalgebra, which is defined to be a maximal abelian subalgebra.

One can show that all Cartan subalgebras are conjugate, and that we can find a Cartan

subalgebra h ⊂ g such that h ⊗ C is a Cartan subalgebra of g ⊗ C. Typically in matrix

groups, one uses the maximal subalgebra of diagonal matrices. Given some fixed choice of a

Cartan subalgebra h ⊂ g ⊗ C, we have an eigenspace decomposition

g ⊗ C ∼=
⊕

α∈h∗

gα,
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such that for H ∈ h and Eα ∈ gα, adH(Eα) = α(H)Eα. Note that h ⊗ C = g0. The α 6= 0

such that gα 6= {0} are called root vectors, and are denoted Φ.

The operators adEα act as shifting operators on the eigenspace decomposition. More

precisely, suppose Eα ∈ gα and Eβ ∈ gβ. Then for H ∈ h,

adH

(

adEα(Eβ)
)

= [H, [Eα, Eβ]]

= [[H,Eα], Eβ] + [Eα, [H,Eβ]]

= α(H)[Eα, Eβ] + β(H)[Eα, Eβ]

= (α + β)(H) · adEα(Eβ).

Therefore, adEα : gβ → gα+β. This has implications for the Killing form. Since adEα ◦ adEβ :

gγ → gγ+(α+β), the map adEα ◦ adEβ is traceless unless α + β = 0. Thus, if α + β 6= 0,

gα ⊥ gβ. In particular, gα ⊥ gα for α 6= 0, so the Eα are null with respect to κ.

Cartan subalgebras are most useful for analyzing simple Lie algebras. From sl2(C) theory,

one may show that for any simple Lie algebra g ⊗ C, root vectors occur in isolated pairs:

Cα∩Φ = ±α, and that each gα is one-dimensional. Thus we may choose a basis of the form

{H i ∈ h} ∪ {Eα : α ∈ Φ}, and this is called a Cartan-Weyl basis. Moreover, for any α ∈ Φ,

E±α generates a sl2C subalgebra.

For each pair of roots ±α there is a method for designating one positive and the other

negative. We denote the set of positive roots Φ+, and we have the disjoint union Φ = Φ+qΦ−.

2.6. The geometry of sl2C and su2. We saw in the previous section that sln ⊗R C ∼=
sun ⊗R C ∼= sln(C). Thus sln(C) contains non-isomorphic real subalgebras.

In the case sl2(C) we have three generators:

E− :=





0 0

1 0



 , H :=





1 0

0 −1



 , E+ :=





0 1

0 0



 .

The commutation relations are

[H,E−] = −2E− [H,E+] = 2E+ [E−, E+] = −H.
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Rewriting these relations in the ordered basis (E−, H, E+), we have the following adjoint

representation:

adE− :=











0 2 0

0 0 −1

0 0 0











, adH :=











−2 0 0

0 0 0

0 0 2











, adE+ :=











0 0 0

1 0 0

0 −2 0











.

We explicitly compute the Killing form as the matrix

κ =











0 0 4

0 8 0

4 0 0











.

Alternatively, upon noting that 〈H,H〉 = 8 while TrH2 = 2, we find the proportionality

factor κ/κ̃ = 4, where κ̃ is associated to the standard representation on C2 by κ̃(A,B) =

Tr(AB). (Note that it’s not Tr(A†B) since sl2C is not unitary.) Therefore, κ(A,B) =

4Tr(AB), so we may also compute the matrix of κ via 2 × 2 matrices.

The real subalgebra generated by E−, H, and E+ is sl2R. The Killing form is indefinite

since we have the null vectors E− and E+. The eigenvalues (−2, 0, 2) of H are all real.

In contrast, consider the real su2 subalgebra generated by

A :=
2−3/2

i





0 i

−i 0



 , H̃ :=
2−3/2

i





1 0

0 −1



 , B :=
2−3/2

i





0 1

1 0



 .

The commutation relations are

[H̃, A] =
B√
2
, [H̃, B] = − A√

2
, [A,B] =

H√
2
.

The adjoint representation in the basis (A, H̃, B) is

adA :=
1√
2











0 0 0

0 0 1

0 −1 0











, adH̃ :=
1√
2











0 0 −1

0 0 0

1 0 0











, adB :=
1√
2











0 1 0

−1 0 0

0 0 0











.
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The Killing form for this subalgebra is negative-definite:

κ =











−1 0 0

0 −1 0

0 0 −1











,

and the eigenvalues (−i, 0, i) of H̃ are purely imaginary. We will see that purely imaginary

eigenvalues in h and a negative-definite Killing form are properties of compact Lie groups.

3. The geometry of compact Lie groups

3.1. Case study: the unitary group. We begin our analysis of Un by finding “radial”and

“angular” coordinates for Un that decouple. This will lead to a biinvariant measure known

as the Haar measure. We will then be able to compute the Laplacian. (The term “radial”

coordinates is slightly misleading since they are actually angles on the maximal n-torus.)

The Killing form associated to the standard representation of U is

κ̃(U1, U2) = Tr(U †
1U2).

The associated Lagrangian is

L =
1

2
κ̃(U̇ , U̇) =

1

2
Tr(U̇ †U̇).

The nondegenerate invariant symmetric bilinear form κ̃ is not necessarily unique. The Lie

algebra un of Un is the space of anti-Hermitian matrices. (Physicists traditionally consider

the space 1
i
un of Hermitian matrices. If H is Hermitian, then iH ∈ un.) Now un is not simple

since the diagonal matrix iI generates an ideal iRI ⊂ un since [un, iRI] = 0 ⊂ iRI. We will

proceed as normal but return to this issue later.

We may diagonalize U as V DV † for unitary U . Then

U̇ = V̇ DV † + V ḊV † + V DV̇ †,

U̇ † = V̇ D†V † + V Ḋ†V † + V D†V̇ †.
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The line element, a.k.a. the free Laplacian, may be evaluated using V †V = D†D = 1,

V̇ †V = −V †V̇ , cyclic invariance of trace, and commutativity of diagonal matrices, to obtain

L =
1

2
Tr(U̇ †U̇) =

1

2
Tr(Ḋ†Ḋ) + Tr(Ẇ 2) − Tr(ẆD†ẆD),

where Ẇ := 1
i
V †V̇ is a Hermitian matrix. The matrix Ẇ may be interpreted as 1

i
dlV −1 V̇ ∈

1
i
g, where the vector V̇ is being pulled back by left multiplication by V −1 to the Lie algebra.

Thus we have decomposed the velocity U̇ into “radial” velocity Ḋ and “angular” velocity Ẇ .

Since U is unitary, we have Djk = δjke
iφj . We compute

Tr(Ẇ 2) − Tr(ẆD†ẆD) = ẆjkẆklδjl − Ẇjkδkle
−iφkẆlmδmne

iφmδnj

= ẆjkẆkj − Ẇjke
−iφkẆkje

iφj

=
∣

∣

∣
Ẇjk

∣

∣

∣

2

(1 − ei(φk−φj))

= 2
∑

j<k

∣

∣

∣
Ẇjk

∣

∣

∣

2

(2 − ei(φk−φj) − ei(φj−φk))

= 4
∑

j<k

∣

∣

∣Ẇjk

∣

∣

∣

2

sin2 φj − φk

2
.

Therefore,

L =
1

2

∑

j

φ̇2
j + 4

∑

j>k

(

Ẇ<
jk

2
+ Ẇ=

jk

2)

sin2 φj − φk

2
,

where Ẇ<
jk and Ẇ=

jk are the independent real and imaginary components of Ẇjk. We have

succeeded in diagonalizing the metric. Writing the Lagrangian in metric form, we have

(ds)2 = 2L = (dφj)
2 + 8

∑

j>k

(

(

dW<
jk

)2
+
(

dW=
jk

)2
)

sin2 φj − φk

2
.
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This corresponds to a metric of the form

g =



















































1

1
. . .

1

8 sin2 φ2−φ1

2

8 sin2 φ2−φ1

2

8 sin2 φ3−φ1

2

. . .

8 sin2 φn−φn−1

2

8 sin2 φn−φn−1

2



















































.

Now we compute the invariant measure dµ.

8
n(n−1)

2 dµ :=
√

det g = 8
n(n−1)

2

(

∏

j>k

sin2 φj − φk

2

)

dφ1 ∧ · · · ∧ dφn ∧ dW<
2 1 ∧ · · · ∧ dW=

n n−1.

The maximal torus is defined as Tn :=





























eiφ1

. . .

eiφn





























∼= Rn/2πZn. In particular,

for any function of the “radial” coordinates φ and independent of the “angular” coordinates,

∫

f(φ) dµ =

∫

f(φ)

(

∏

j>k

sin2 φj − φk

2

)

dφ1 ∧ · · · ∧ dφn.

Thus the invariant measure of the maximal torus differs from the standard measure on the

maximal torus by the Jacobian ∆2, where

∆ := ±
∏

j>k

sin
φj − φk

2
.

The symbol ∆ is not to be confused with the Laplacian, which we will denote ∇2. We note

that ∆ is a two-valued function, but it may be lifted to a smooth single-valued function on

the 2n-sheeted cover Rn/4πZn.
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The free Hamiltonian is the negative of the Laplacian which, for a metric gij, is given by

H = −∇2 = − 1√
det g

∂

∂xi

√

det ggij ∂

∂xj
.

Substituting the group metric, we find

H = −
∑

i

1

∆2

∂

∂φi

∆2 ∂

∂φi

− 1

8

∑

j,k

csc2 φj − φk

2

(

∂2

(

∂W<
jk

)2 +
∂2

(

∂W=
jk

)2

)

.

We will be concerned with only the “radial” component of H, so we restrict to functions

dependent only on the φi by setting ∂
∂W<

jk

= ∂
∂W=

jk

= 0 to obtain

HTn := −
∑

i

1

∆2

∂

∂φi
∆2 ∂

∂φi
= −

∑

i

1

∆

∂2

∂φ2
i

∆ +
∑

i

1

∆

∂2∆

∂φ2
i

.

3.2. General theory of compact simple groups. If g is a simple Lie algebra, let {H i ∈ h}∪
{Eα : α ∈ Φ} be a Cartan-Weyl basis. Since g is simple, the roots occur in pairs and we have

the decomposition

g ⊗ C = h ⊕
(

⊕

α∈Φ+

CEα ⊕ CE−α

)

.

Two examples that are helpful to keep in mind are un or sun. We have the root vectors,

which are matrices indexed by 1 ≤ j 6= k ≤ n given by Ejk = iδjk. The corresponding roots

αjk are then αjk(φ) = i(φj − φk).

If we restrict κ to h, we discover that κ(H i, Hj) = Tr(X 7→ [H i, [Hj, X]]). Computing

this trace in the Cartan-Weyl basis, we see that X = Hk contributes nothing, but X = Eα

contributes α(H i)α(Hj). Thus κ(H i, Hj) =
∑

α∈Φ α(H i)α(Hj).

In the case of sun, the restriction of κ to h is negative-definite: ‖φiH
i‖2

= −∑j>k(φj−φk)
2.

However, if we evaluate κ on un, which is not simple, we see that κ is degenerate: 〈
∑

iH
i, h〉 =

0. This is a consequence of un not being simple. We may recover our previous analysis of

un by noting that −∑j>k(φj − φk)
2 − (φ1 + · · · + φn)

2 = −n∑φ2
j . Since (φ1 + · · · + φn)2

vanishes on sun, we can augment κ to be negative-definite on the Cartan subalgebra of un

by including this term.

Another way to think of un is as an extension of sun. Note that by factoring out the

determinant, we may write Un = SUn × U1. Thus un = sun ⊕ u1, where u1 is just the
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1-dimensional Lie algebra. The vector space of symmetric invariant forms on un is therefore

two-dimensional, spanned by κ on sun and by (dφ1 + · · ·+ dφn)
2 on u1.

We now return to the general situation, in which we assume that g is simple. To determine

the Killing form on the remainder of the Cartan-Weyl basis, the shifting property of adEα

gives 〈Eα, h〉 = 0 and
〈

Eα, Eβ
〉

= δβ,−α 〈Eα, E−α〉. Thus the metric decomposes orthogonally

between h and each pair of opposite roots.

We will now examine the consequences of compactness. Let G be a compact simple Lie

group with real Lie algebra g. As with any paracompact manifold, we may construct a (not

necessarily invariant) positive-definite metric on G via partitions of unity. Now since G is

compact, we may average this metric over the group to get an invariant positive-definite

metric κ̃.

With respect to κ̃, for any B ∈ g we have (adB)T = −adB since

κ̃(A, adBC) = κ̃(A, [B,C]) = κ̃([A,B], C) = κ̃(−adBA,C).

Since adB is skew-adjoint with respect to the positive-definite inner product κ̃, it follows

that the eigenvalues of adB are purely imaginary. For any B, let iφ1, . . . , iφn denote the

eigenvalues of adB. If B 6= 0, then adB 6= 0, so there exists some φj 6= 0. We then evaluate

the Killing form κ(B,B) = Tr(adB ◦ adB) =
∑

j(iφj)
2 = −

∑

j φ
2
j < 0. This proves that the

Killing form κ is negative-definite. Thus we may choose H i such that 〈H i, Hj〉 = −δij.
We can deduce even more from compactness. Suppose α ∈ Φ. Then for any H ∈ h, α(H)

is an eigenvalue of adH on the eigenvector Eα. Since the eigenvalues are purely imaginary,

it follows that ᾱ = −α.

Although Eα ∈ g ⊗ C, unfortunately Eα /∈ g because Eα is not fixed under conjugation.

Applying σ to the expression [H,Eα] = α(H)Eα, we get [H, σ(Eα)] = −α(H)σ(Eα), so

σ(Eα) ∈ g−α. Without loss of generality, we may renormalize the Eα so that σ(Eα) = E−α.

Since Hα := i√
2
[E−α, Eα] is fixed by σ, Hα ∈ g. Moreover, since Hα ∈ h ⊗ C, it follows

that Hα ∈ h. We may completely determine the E±α (up to sign) by renormalizing such

that both σ(Eα) = E−α and

‖Hα‖2 = −1.

(Since κ is negative-definite on h, we could have normalized Hα to any negative number.)

Thus −1 = (α(Hα))2 + (−α(Hα))2 , so α(Hα) = ± i√
2
. By possibly sending Hα 7→ −Hα,
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we may assume α(Hα) = i√
2
. Therefore, [Hα, Eα] = i√

2
Eα and [Hα, E−α] = − i√

2
E−α. By

definition of Hα, [E−α, Eα] = −i
√

2Hα. Setting Aα = 1
2
(Eα + E−α) and Bα = i

2
(Eα−E−α),

we find [Hα, Aα] = 1√
2
Bα, [Hα, Bα] = − 1√

2
Aα, and [Aα, Aβ] = 1√

2
Hα. These are the

generators of su2 from section 2.6. Note that σ preserves Aα and Bα, and therefore Aα

and Bα belong to g. (For more details on compact groups, see Fulton+Harris §26.1.)

In summary, for a compact simple group we can choose a Cartan-Weyl basis so that

〈

H i, Hj
〉

= −δij ,
〈

H i, Eα
〉

= 0,
〈

Eα, Eβ
〉

= −2δα,−β.

For each α ∈ Φ+ we define

Aα =
1

2

(

Eα + E−α
)

and Bα =
i

2

(

Eα − E−α
)

,

which gives a negative-definite orthonormal set

{

Hj
}

∪
⋃

α∈Φ+

{Aα, Bα} .

3.3. The metric of a compact simple Lie group. We now wish to study the geometry

not just at the identity, but at an arbitrary point X of G. Let Ẋ be a tangent vector at X.

Then
〈

Ẋ, Ẋ
〉

X
=
〈

X−1Ẋ,X−1Ẋ
〉

.

If the eigenvalues of X are distinct, then X may be brought into the diagonal form X =

V DV −1. Since D is diagonal, D = eφjHj

for some parameters φj. Suppose we set V = eγαEα

.

We will show that the φj and γα form local coordinates when the eigenvalues of X are

distinct.

For D and V to be legitimate elements of G we need to make sure that φjH
j and γαE

α are

in g and not just in g⊗C, or equivalently that they are fixed by conjugation σ. By definition

of the Cartan-Weyl basis, H j ∈ g so the first condition is φjH
j = σ(φjH

j) = φjH
j. Thus

φj must be real. The second condition is γαE
α = σ(γαE

α) = γαE
−α = γ−αE

α. Therefore,

γα = γ−α.

Using the relation X = V DV −1 we compute

X−1Ẋ = −V D−1V −1V̇ DV −1 + V D−1ḊV −1 + V̇ V −1.
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We evaluate
〈

X−1Ẋ,X−1Ẋ
〉

as the sum of six terms:

〈

−V D−1V −1V̇ DV −1,−V D−1V −1V̇ DV −1
〉

=
〈

V −1V̇ , V −1V̇
〉

.
〈

V D−1ḊV −1, V D−1ḊV −1
〉

=
〈

D−1Ḋ,D−1Ḋ
〉

.
〈

V̇ V −1, V̇ V −1
〉

=
〈

V −1V̇ , V −1V̇
〉

.

2
〈

−V D−1V −1V̇ DV −1, V D−1ḊV −1
〉

= −2
〈

V −1V̇ , ḊD−1
〉

.

2
〈

−V D−1V −1V̇ DV −1, V̇ V −1
〉

= −2
〈

V −1V̇ , DV −1V̇ D−1
〉

.

2
〈

V D−1ḊV −1, V̇ V −1
〉

= 2
〈

V −1V̇ , ḊD−1
〉

.

Adding these up, we get

〈

X−1Ẋ,X−1Ẋ
〉

=
〈

D−1Ḋ,D−1Ḋ
〉

+ 2
〈

V −1V̇ , V −1V̇ −DV −1V̇ D−1
〉

.

We now set D = eφjHj

, and Ẇ := V −1V̇ which is the pullback dlV −1(V̇ ) ∈ g. We then find

〈

X−1Ẋ,X−1Ẋ
〉

=
〈

φ̇jH
j, φ̇jH

j
〉

+ 2
〈

Ẇ , Ẇ −DẆD−1
〉

= −φ̇2
j + 2

〈

Ẇ , Ẇ −DẆD−1
〉

.

To compute DẆD−1 we will use the following result.

Lemma. For A,B ∈ g, eABe−A =
(

eadA
)

(B).

Proof. Let F (t) = etABe−tA. Then dF
dt

= AF (t) − F (t)A = adAF (t). Now adA is a constant

linear operator on the space of matrices, so this differential equation is solved by F (t) =
(

etadA
)

(F (0)), and so F (1) =
(

eadA
)

(B). �

If we write Ẇ = ẆkH
k + ẆαE

α, then applying this lemma we find that

DẆD−1 =
(

e
ad

φjHj

)

(Ẇ )

= Ẇk

(

e
ad

φjHj

)

(Hk) + Ẇα

(

e
ad

φjHj

)

(Eα).
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Since the Hj commute,

(

e
ad

φjHj

)

(Hk) = (1 + adφjHj +
1

2
adφjHj ◦ adφjHj + · · · )(Hk)

= (1 + 0 + 0 + · · · )(Hk)

= Hk.

Now we compute

(

e
ad

φjHj

)

(Eα) = (1 + adφjHj +
1

2
adφjHj ◦ adφjHj + · · · )(Eα)

= (1 + α(φjH
j) +

1

2

(

α(φjH
j)
)2

+ · · · )Eα

= eα(φjHj)Eα.

We conclude that DẆD−1 = ẆkH
k + Ẇαe

α(φjHj)Eα, and so Ẇ − DẆD−1 = Ẇα(1 −
eα(φjHj))Eα. Now we compute

〈

Ẇ , Ẇ −DẆD−1
〉

=
∑

α,β∈Φ

〈

ẆβE
β, Ẇα

(

1 − eα(φjHj)
)

Eα
〉

= −2
∑

α∈Φ

Ẇ−αẆα

(

1 − eα(φjHj)
)

= −2
∑

α∈Φ+

∣

∣

∣
Ẇα

∣

∣

∣

2 (

2 − eα(φjHj) − e−α(φjHj)
)

= −8
∑

α∈Φ+

(

(

Ẇ<
α

)2

+
(

Ẇ=
α

)2
)

sin2

(

α(φjH
j)

2i

)

.

For each α ∈ Φ+, recall Aα := 1
2
(Eα + E−α) and Bα := i

2
(Eα − E−α) are orthonormal.

Thus
(

Ẇ<
α

)2

+
(

Ẇ=
α

)2

=
∥

∥

∥
Ẇ<

α A
α
∥

∥

∥

2

+
∥

∥

∥
Ẇ=

α B
α
∥

∥

∥
, and we think of and Ẇ<

α and Ẇ=
α as the

respective components of Ȧα and Ḃα.

Thus we have shown that if X = V eφjHj

V −1, and Ẇ = V −1V̇ , then

〈

Ẋ, Ẋ
〉

X
= −

∑

j

φ̇2
j − 8

∑

α∈Φ+

(

(

Ẇ<
α

)2

+
(

Ẇ=
α

)2
)

sin2

(

∑

j

φj
α(Hj)

2i

)

,

or equivalently in differential notation,

(

dẊ
)2

= −
∑

j

(

dHj
)2 − 8

∑

α∈Φ+

(

(dAα)2 + (dBα)2) sin2

(

∑

j

φj
α(Hj)

2i

)

.
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Therefore, we have succeeded in diagonalizing the Killing form:

κ =















































−1

−1
. . .

−1

8 sin2
(

α1(φjHj)

2i

)

8 sin2
(

α1(φjHj)

2i

)

8 sin2
(

α2(φjHj)

2i

)

8 sin2
(

α2(φjHj)

2i

)

. . .















































.

If we denote the radial coordinates on the torus as φ :=
∑

φjH
j, and dφ = dφ1 ∧ · · · ∧ dφr,

then the invariant measure on the torus is given by

dµ := (const) ·
√

det(−κ)dφ =

(

∏

α∈Φ+

sin2 α(φ)

2i

)

dφ.

Denote ∆ :=
∏

α∈Φ+ sin α(φ)
2i

. The Laplacian on the torus is

∇2 =
1

√

det(−κ)
∂

∂xi

√

det(−κ)
(

−κij
) ∂

∂xj

=
1

∆2

∂

∂φi
∆2 ∂

∂φi

=
∑

i

1

∆

∂2

∂φ2
i

∆ − 1

∆

∑

i

∂2∆

∂φ2
i

.

In the case of un or sun, we have roots αjk defined as αjk(φ) = i(φj − φk), and conjugation

gives σ(αjk) = αkj. We may take as positive roots αjk with j > k.

3.4. The curvature of a Lie group. Recall that any element X in the Lie algebra g

corresponds to a right-invariant vector field. Suppose {ei} ∈ g is a negative-definite or-

thonormal basis, and let ∂ei
denote the corresponding right-invariant vector fields. Then ∂ei

is orthonormal at each point, and the ∂ei
act on C∞(G) by partial differentiation along the

ei direction.
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By invariance, we know that each ∂ei
is a Killing field. Hence the integral curves of the

∂ei
are geodesics. It follows that for the connection, ∇∂ei

∂ei
= 0 (Here ∇ is the connection,

not the gradient!). More generally, ∇XX = 0 for any right-invariant vector field X. In

particular, for any right-invariant vector fields X, Y and Z,

0 = ∇X+Y (X + Y ) = ∇XY + ∇YX = 2∇XY + [Y,X].

Therefore,

∇YX =
1

2
[X, Y ].

Curvature is then

R(X, Y )Z = ∇X∇YZ −∇Y ∇XZ −∇[X,Y ]Z = −1

4
[[X, Y ], Z].

Ricci curvature is

Ric(X, Y ) = −1

4

∑

i

〈[[∂ei
, X], Y ], ∂ei

〉 = −1

4
Tr(adY ◦ adX) = −1

4
κ.

Thus, a compact simple Lie group is an Einstein manifold of positive curvature, since κ is

negative-definite.

3.5. The Laplacian as a Casimir operator. It will be useful to have an expression for

the Laplacian ∇2 in terms of the negative-definite orthonormal right-invariant vector fields

∂ei
. We will almost use the standard formula

∇2f

?

= gij

(

∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk

)

,

however, the the Laplacian for a positive-definite metric will differ by a sign from the Lapla-

cian for a negative-definite metric. The standard notion of Laplacian on a compact surface

is with respect to the positive-definite metric, so we will adjust our definition by a sign:

∇2f = −gij

(

∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk

)

.
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In the normal coordinates induced by the ∂ei
at a point p, we have gij(p) = −δij. Since

∇∂ei
∂ei

= 0 we have Γk
ii(p) = 0, so

(

∇2f
)

(p) =
∑

i

∂2f

∂x2
i

(p).

Thus

∇2f =
∑

i

∂ei
(∂ei

(f)) =

(

∑

i

∂2
i

)

f.

We may realize the Laplacian as an element of the universal enveloping algebra U(g) as

follows. Define C2 :=
∑

i e
2
i . Then for any Lie algebra representation R, we have R(C2) =

∑

iR(ei)
2. In particular, for the representation RC∞ of g on C∞(G) we have

RC∞(C2) =
∑

i

RC∞(ei)
2 =

∑

i

∂2
ei

= ∇2.

One nice property of C2 is that it is independent of the choice of of orthonormal basis {ei}.
Suppose {ẽi} is another orthonormal basis. Then by completeness of the ẽi basis,

ei =
∑

j

−〈ei, ẽj〉 ẽj.

Thus,

C2 =
∑

i

e2i =
∑

i,j,k

〈ei, ẽj〉 ẽj 〈ei, ẽk〉 ẽk =
∑

i,j,k

ẽj 〈ei 〈ei, ẽj〉 , ẽk〉 ẽk = −
∑

j,k

ẽj 〈ẽj, ẽk〉 ẽk =
∑

i

ẽ2i .

Hence, for any simple Lie algebra, we may refer to the unique element C2 without reference

to a basis.

Another important property of C2 is that [C2, X] = 0 for all X ∈ g. To prove this, we use

the identity [AB,C] = A[B,C] + [A,C]B to get

[C2, X] =
∑

i

[e2i , X] =
∑

i

(ei[ei, X] + [ei, X]ei) .

Using the completeness of the ei basis,

[ei, X] = −
∑

j

〈[ei, X], ej〉 ej.
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Thus,

∑

i

ei[ei, X] = −
∑

i,j

ei 〈[ei, X], ej〉 ej = −
∑

i,j

ei 〈ei, [X, ej]〉 ej =
∑

j

[X, ej]ej = −
∑

i

[ei, X]ei,

so

[C2, X] =
∑

i

ei[ei, X] +
∑

i

[ei, X]ei = 0.

As a corollary, for any right-invariant vector field ∂V , we have

∂V

(

∇2f
)

= ∇2 (∂V f) .

4. The quantum mechanics of Un

4.1. Eigenfunctions of the Laplacian. Recall the U(N) Laplacian

HTn := −
∑

i

1

∆2

∂

∂φi
∆2 ∂

∂φi
= −

∑

i

1

∆

∂2

∂φ2
i

∆ +
∑

i

1

∆

∂2∆

∂φ2
i

.

We will recognize the term
∑

i
1
∆

∂2∆
∂φ2

i

as an eigenvalue of the Laplacian. Indeed, we have the

Slater determinant expression ∆ = ±2
n(1−n)

2

[

e−i n−1
2

φ, e−i n−3
2 , . . . , ei n−1

2
φ
]

AS
, which may be

verified with the Vandermonde determinant formula:

[

e−i n−1
2

φ, e−i n−3
2 , . . . , ei n−1

2
φ
]

AS
= e−i n−1

2

P

φj
[

1, eiφ, . . . , ei(n−1)φ
]

AS

= e−i n−1
2

P

φj

∏

1≤j<k≤n

(

eiφk − eiφj
)

=
∏

1≤j<k≤n

e
−φj−φk

2

(

eiφk − eiφj
)

= 2
n(n−1)

2

∏

1≤j<k≤n

sin
φk − φj

2
.

Since the Slater determinant is antisymmetric, we have verified that ∆ is the wavefunction

of n fermions on a circle. For example, if n = 5 we have
[

e−2iφ, e−iφ, 1, eiφ, e2iφ
]

AS
, which we

recognize as the ground state. In the case n is even, ∆ is a fermionic wavefunction on the

double-cover of the circle. For example when n = 2, ∆ =
[

e−
1
2
iφ, e

1
2
iφ
]

AS
= 2 sin φ2−φ1

2
. The

double-cover is necessary since the expression involves half-angles. We won’t worry about

this minor pathology, and will assume n is odd to avoid this.
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The energy of fermions is simply the sum of the energy of each particle. If a particle has

momentum k, its wavefunction is eikφ and its energy is k2, so

−
∑

i

1

∆

∂2∆

∂φ2
i

=

n−1
2
∑

k=−n−1
2

k2 =
n3 − n

12
.

Therefore,

H = −
∑

i

1

∆

∂2

∂φ2
i

∆ − n3 − n

12
.

We recognize n3−n
12

as a normalization factor so that if χ is a constant wavefunction, Hχ = 0.

We will now look for eigenfunctions χ of the Laplacian. Since we are interested in class

functions, we will now stipulate that wavefunctions χ are not just arbitrary functions of the

φi, but symmetric functions of the φi, i.e. χ = χ(φ1, . . . , φn) = χ(φπ(1), . . . , φπ(n)) for any

permutation π. Thus χ represents n bosons on a circle.

On the L2 Hilbert space of wavefunctions, we have the inner product with respect to the

invariant measure

〈χ1|χ2〉B =

∫

χ∗
1χ2 dµ =

∫

χ∗
1χ2 ∆2 dφn =

∫

(∆χ1)
∗ (∆χ2) dφ

n.

This suggests the substitution ψ := ∆χ to get

〈ψ1|ψ2〉F :=

∫

ψ∗
1ψ2 dφ

n = 〈ψ1|ψ2〉B

I claim that the map F (χ) := ∆χ is a unitary isomorphism of Hilbert spaces F : L2
Sym(Tn, dµ) −→

L2
AS(Tn, dφn), where L2

Sym denotes symmetric functions, and L2
AS denotes antisymmetric

functions. We have already shown that F preserves the inner product, so it remains to prove

that F is surjective. It suffices to show that the image of F is dense in L2
AS(Tn, dφn), since

then F−1 then extends continuously from ImF to all of L2
AS(Tn, dφn).

Finite Fourier series are dense in L2(Tn, dφn). The subspace of finite Fourier series is simply

the ring C[α1, α
−1
1 , . . . , αn, α

−1
n ], where αj := eiφj . The orthogonal projection L2(Tn, dφn) −→

L2
AS(Tn, dφn) corresponds to antisymmetrization of polynomials in C[α1, α

−1
1 , . . . , αn, α

−1
n ].

Thus, the subspace of antisymmetric polynomials in C[α1, α
−1
1 , . . . , αn, α

−1
n ] is dense in L2

AS(Tn, dφn).
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But all antisymmetric polynomials p(α) are divisible by ∆, since ∆ is essentially the Vander-

monde determinant. Thus p(α)/∆ is a symmetric polynomial in L2
Sym(Tn, dφn) ⊂ L2

Sym(Tn, dµ),

so p(α) = F (p(α)/∆). Thus the image is dense, and F is an isomorphism of Hilbert spaces.

Therefore, multiplication by ∆ amounts to a change of basis from bosons to fermions. We

may compute the action of H on fermions:

〈

χ1|HTn +
n3 − n

12
|χ2

〉

I

= −
∫

χ∗
1

∆

∑

i

∂2

∂φi

∆χ2 ∆2 dφn

= −
∫

ψ∗
1

∑

i

∂2

∂φi
ψ2 dφ

n

=

〈

ψ1| −
∑

i

∂2

∂φi

|ψ2

〉

F

.

We have discovered that the fermions are free particles!

If k1, . . . , kn are distinct integers representing momenta, We note that the energy of
[

αk1, . . . , αkn
]

AS
=
[

eik1φ, . . . , eiknφ
]

AS
is given by HTn

[

eik1φ, . . . , eiknφ
]

AS
=
∑

j k
2
j − n3−n

12
.

Furthermore, the
[

αk1 , . . . , αkn
]

AS
are orthogonal and complete. Thus we have solved the

eigenfunction problem by switching to fermions.

4.2. Weyl character formula. We have shown that an orthonormal fermionic basis for

the eigenfunctions of the Laplacian is given by
[

αk1, . . . , αkn
]

AS
, where k1, . . . , kn are distinct

integers. We wish to find the corresponding bosonic wavefunctions. These are given by

F−1
([

αk1 , . . . , αkn
]

AS

)

∝=

[

eik1φ, . . . , eiknφ
]

AS
[

e−i n−1
2

φ, e−i n−3
2

φ, . . . , e−i n−1
2

φ
]

AS

.

This is nothing but the Weyl character formula.

We will now show that for any simple Lie group, characters of irreducible representations

are eigenfunctions of the Laplacian. Suppose we have an irreducible Lie group representation

ρ : G → Aut(V ) for some complex vector space V . Then we have the corresponding action

U(g) → End(V ). Since [C2, X] = 0 for all X ∈ g, each C2-eigenspace of V will be g-invariant.

Since V is complex, there is some nonempty C2-eigenspace which, by irreducibility, must be

all of V . Therefore, C2 acts as a constant on the representation.
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Under a choice of a negative-definite orthonormal basis {vi} for V , ρ(g) is a matrix

g · vi = ρij(g)vj,

and thus

ρij(g) = −〈g · vi, vj〉 .

Our representation ρ induces a G-action on ρij given by

h · ρij(g) := −〈h · (g · vi), vj〉 = −〈(hg) · vi, vj〉 = ρij(hg)vj.

We recognize this action as the smooth function representation. Hence for X ∈ g, the

corresponding g-action is

X · ρij = ∂Xρij,

and therefore,

C2 · ρij = ∇2ρij.

Now suppose C2v = λv for all v ∈ V . Then

C2 · ρij(g) := −〈C2 · (g · vi), vj〉 = −〈ρij(g) C2 · vj, vj〉 = λρij(g).

Thus,

−∇2ρij = C2 · ρij = λρij,

so ρij is an eigenfunction of ∇2 with eigenvalue −λ. In particular, the character Trρ(G) =
∑

i ρii is an eigenfunction of ∇2 with eigenvalue −λ.

4.3. Geometry of End(V ). A nice property of un is that un ⊗ C = gln(C) ∼= End(Cn).

Since Aut(Cn) ⊂ End(Cn), we will actually be able to express information about the group

representation of Un in terms of the algebra un! To proceed with such computations, we will

need some lemmas about End(V ), where V is an n-dimensional complex vector space.

It’s well-known that there is no canonical inner product on an abstract complex vector

space V . This is not so for End(V ). We generalize the notion of the Killing form to define a

bilinear inner product on End(V ) by 〈X, Y 〉 := Tr(XY ). Note that this is not sesquilinear,

so 〈X,X〉 need not even be real. We will prove the identity that if eα is a positive-definite
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orthonormal basis of End(V ), then

∑

α

eαXeα = Tr(X)I.

It will actually be easier to prove a slightly more general theorem. Suppose that s1, . . . , sn2

is a basis of End(V ), and t1, . . . , tn2 is a dual basis, so that 〈si, tj〉 = δij. We will show that

n2
∑

α=1

sαXtα = Tr(X)I.

First we will show that this expression is independent of the choice of dual bases {sα}
and {tα}. Let s denote the matrix (s1, . . . , sm)T , and let t denote (t1, . . . , tm)T . We can now

rewrite the desired formula as

sTXt = Tr(X)I.

Now consider the matrix of endomorphisms

sT t =











s1t1 · · · smt1
...

. . .
...

s1tm · · · smtm











.

For a matrix M of endomorphisms, define the matrix trace 〈M〉 to be the trace of each entry.

Thus, by definition of a dual basis,
〈

sT t
〉

is the n2 × n2 identity matrix IEnd.

Now suppose that s̃ and t̃ are another pair of dual bases of A. Then there are m × m

matrices S and T such that s̃ = Ss and t̃ = T t. Therefore, IEnd =
〈

s̃T t̃
〉

=
〈

sTSTT t
〉

, so
〈

sTSTT t
〉

=
〈

sT IEndt
〉

. By the completeness of the si and ti, S
TT = IEnd. Now we compute

s̃TX t̃ = sTSTXT t = sTSTTXt = sTXt.

We used the fact that XT = TX, since T is a matrix of scalars, which commutes with the

endomorphism X. Thus the expression

sTXt

is independent of the choice of dual bases.
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Now let E(ab) denote the matrix E
(ab)
ij = δaiδbj. Then E(ab) is dual to E(ba). Thus,

sTXt =
∑

a,b

E(ab)XE(ba) =
∑

a,b,c,d

E(ab)XcdE
(cd)E(ba) =

∑

a,b,c,d

XcdδbcE
(ad)E(ba)

=
∑

a,b,c,d

XcdδbcδbdE
(aa) =

∑

a,b,c

XcbδbcE
(aa) =

∑

a,b

XbbE
(aa) = Tr(X)I.

In particular, for a positive-definite self-dual basis {eα},
∑

α

eαXeα = Tr(X)I.

For a negative-definite orthonormal basis,

∑

α

eαXeα = −Tr(X)I.

4.4. “Collective”variables and string theory. We have deduced that the Weyl character

formula gives a basis for the eigenfunctions of the Hamiltonian on Un. Our expression for

the Hamiltonian is unsatisfying since it contains the antisymmetric factor ∆, while the

wavefunctions are symmetric. We will now give a symmetric expression for the Hamiltonian,

which we will connect with string theory.

A convenient spanning set for symmetric functions on Tn will be the “power sums,” or

“collective” variables

Wk := eikφ1 + · · ·+ eikφn = αk
1 + · · ·+ αk

n = Tr(Uk).

To span all symmetric functions, one must take sums and products of the Wk. For finite n

the Wk’s are dependent. For example, when n = 2,

W 3
1 − 3W1W2 + 2W3 = (α1 + α2)

3 − 3(α1 + α2)(α
2
1 + α2

2) + 2(α3
1 + α3

2) = 0.

However, as n→ ∞, the Wi become independent. For instance when n = 3,

W 3
1 − 3W1W2 + 2W3 = 6α1α2α3.

To write the Hamiltonian in terms of this basis, we will use the expression H = −∇2 =

−∑i (∂eα)2, where eα is a negative-definite orthonormal basis of g. We then use the chain

rule to write the Hamiltonian in terms of the Wk.
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The chain rule ∂f
∂xi

=
∂yj

∂xi

∂f
∂yj

can be written in operator form as

∂

∂x
=

[

∂

∂x
,y

]

∂

∂y
.

To derive the new Laplacian, I will give an overview in invariant notation before writing out

the expression with indices.

∇2 = ∇ · ∇ = ∇ · [∇,W ]∂W

= [∇, [∇,W ]]∂W + [∇,W ]∇ · ∂W

= [∇, [∇,W ]]∂W + [∇,W ][∇,W ]∂2
W .

In tensor notation,

∑

α

(∂eα)2 =
∑

α,r

∂eα [∂eα
,Wr]

∂

∂Wr

=
∑

α,r

[∂eα
, [∂eα

,Wr]]
∂

∂Wr
+
∑

α,r,s

[∂eα
,Wr][∂eα

,Ws]
∂2

∂Wr∂Ws
.

By right invariance, ∂eα acts on the coordinate functions Uij by [∂eα , Uik] = eα
ijUjk. Thus

∂eα = eα
ijUjk

∂

∂Uik
,

so [∂α, U ] = eαU. It follows that

[∂α,Wk] = [∂α,Tr(Uk)]

= Tr([∂α, Uk])

= Tr(eαUk + UeαUk−1 + · · ·+ Uk−1eαU)

= kTr(eαUk).

Note that [∂α, eα] = 0 since eα is constant over U . Now we have

∑

α

[∂α,Wr][∂
α,Ws] = rsTr(eαU r)Tr(eαU s).

Recall that since un ⊗ C = Mn×n(C), a negative-definite orthonormal basis {eα} ⊂ g is a

negative-definite orthonormal basis for End(Cn) when taken with complex coefficients. Thus,

for any A ∈ Mn×n(C), we have the completeness relation A =
∑

i −〈A, eα〉 eα, where the
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coefficients −〈A, eα〉 are allowed to be complex. Thus, for any matrices A,B ∈Mn×n(C),

Tr(AB) = 〈A,B〉 =
∑

α,β

〈

〈A, eα〉 eα,
〈

B, eβ
〉

eβ
〉

= −
∑

i

〈A, eα〉 〈B, eα〉 = −
∑

α

Tr(eαA)Tr(eαB).

Therefore,

∑

α

[∂α,Wr][∂
α,Ws] = rsTr(eαU r)Tr(eαU s) = −rsTr(U r+s) = −rsWr+s.

For the factor [∂eα
, [∂eα

,Wr]], we compute

∑

α

[∂α, [∂α,Wr]] = r
∑

α

[∂α,Tr(eαU r)]

= r
∑

α

Tr([∂α, eαU r])

= |r|
∑

α

Tr(eαeαU r + eαUeαU r−1 + · · · + eαU r−1eαU).

Now we invoke our identity from Section 4.3:

∑

α

eαXeα = −Tr(X)I.

It follows that
∑

α

eαUaeαU b = −Tr(Ua)U b.

Taking the trace, we obtain

∑

α

Tr(eαUaeαU b) = −Tr(Ua)Tr(U b).
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Therefore,

∑

α

[∂α, [∂α,Wr]] = |r|
∑

α

Tr(eαeαU r + eαUeαU r−1 + · · · + eαU r−1eαU)

= − |r|
(

Tr(I)Tr(U r) + Tr(U)Tr(U r−1) + · · ·Tr(U r−1)Tr(U)
)

= − |r|
r−1
∑

m=0

Tr(Um)Tr(U r−m)

= − |r|
r−1
∑

m=0

WmWr−m.

Putting this all together, we get

H = −
∑

α,r

[∂eα
, [∂eα

,Wr]]
∂

∂Wr
−
∑

α,r,s

[∂eα
,Wr][∂eα

,Ws]
∂2

∂Wr∂Ws

=
∞
∑

r=−∞

r−1
∑

m=0

|r|WmWr−m
∂

∂Wr

+
∞
∑

r,s=−∞
rsWr+s

∂2

∂Wr∂Ws

.

We see that the Hamiltonian consists of two types of terms: splitting terms and joining

terms. The first term acts on Wr by splitting it into the superposition
∑r−1

m=0 |r|WmWr−m.

The second term acts on WrWs by joining it into rsWr+s. Loosely speaking, a monomial

Wi1Wi2 · · ·Wik represents a state consisting of k strings. Each string has a winding number

ik. The strings can split and join, but the total winding degree i1 + · · · + ik is conserved.

At this point, it is beneficial to make the assumption that each winding number is non-

negative, i.e., there are no factors involving Tr(U−k) = Tr(U †k). The resulting system is

qualitatively the same, but far less cumbersome. Dropping the negative winding numbers

from the Hamiltonian, we get

H =
∞
∑

r=1

r−1
∑

m=0

rWmWr−m
∂

∂Wr

+
∞
∑

r,s=1

rsWr+s
∂2

∂Wr∂Ws

= n

∞
∑

k=1

kWk
∂

∂Wk
+

∞
∑

r=1

r−1
∑

m=1

rWmWr−m
∂

∂Wr
+

∞
∑

r,s=1

rsWr+s
∂2

∂Wr∂Ws

=: H0 +HS +HJ .

We recognize the H0 term as a standard kinetic term, and HS and HJ are respectively

splitting and joining terms.
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We change to creation-annihilation operators by

Wn →
√
na†n,

∂

∂Wn
→ 1√

n
an

to get

H0 = n

∞
∑

k=1

ka†kak,

HS =

∞
∑

r=1

r−1
∑

m=1

√

rm(r −m)a†ma
†
r−mar =

∞
∑

i,j=1

√

ij(i + j)a†ia
†
jai+j,

HJ =

∞
∑

i,j=1

√

ij(i+ j)a†i+jaiaj.

We have the Fock space representation with states generated by

a†i1a
†
i2
· · ·a†ik |0〉 .

The eigenstates will be superpositions of these states that are at equilibrium with respect to

the joining and splitting interaction.

4.5. Schur polynomials. An explicit way to construct these eigenstates is through Schur

polynomials. First consider

Qi :=
[αi+n−1, αn−2, αn−3, . . . , α0]AS

[αn−1, αn−2, αn−3, . . . , α0]AS

.

For n = 3, we have

Q0 = 1,

Q1 = α1 + α2 + α3,

Q2 =
1

2

(

(α1 + α2 + α3)
2 + (α2

1 + α2
2 + α2

3)
)

,

Q3 =
1

6

(

(α1 + α2 + α3)
3 + 3(α1 + α2 + α3)(α

2
1 + α2

2 + α2
3) + 2(α3

1 + α3
2 + α3

3)
)

,

...

This motivates the definition of

Wi := αi
1 + · · ·+ αi

n,
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so that

Q0 = 1,

Q1 = W1,

Q2 =
1

2

(

W 2
1 +W2

)

,

Q3 =
1

6

(

W 3
1 + 3W1W2 + 2W3

)

,

...

If n is taken to be arbitrarily large, then the expression of Qi in terms of Wi are uniquely

determined. Now consider the generating function

exp

(

n
∑

i=0

φik
i

)

=
∞
∑

i=0

kiSi(φ1, . . . , φn)

= k0(1)

+ k1(φ1)

+ k2 1

2

(

φ2
1 + 2φ2

)

+ k3 1

6

(

φ3
1 + 6φ1φ2 + 6φ3

)

...

The Si are called the Schur polynomials. Making the substitution φi 7→ 1
i
Wi, we see that

the Schur polynomials coincide with the Qi.

For a general partition λ = (λ1, λ2, . . . λk), λ1 ≥ λ2 ≥ . . . ≥ λk > 0, we may compute

Qλ :=

[

αλ1+n−1, αλ2+n−2, αλ3+n−3, . . . , α0
]

AS

[αn−1, αn−2, αn−3, . . . , α0]AS

by means of the formula

Sλ :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Sλ1 Sλ1+1 Sλ1+2 · · ·
Sλ2−1 Sλ2 Sλ2+1 · · ·
Sλ3−2 Sλ3−1 Sλ3 · · ·

...
...

...
. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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For example,

S{2,1} =

∣

∣

∣

∣

∣

∣

S2 S3

S0 S1

∣

∣

∣

∣

∣

∣

=
φ3

1

3
− =

1

3

(

W 3
1 −W3

)

.

The corresponding eigenstate is
(

(

a†1

)3

− a†3

)

|0〉 .
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