Calculus for mathematicians

D. J. Bernstein, University of Illinois at Chicago, djb@pobox.com 19970403, draft 5

1. Introduction

This booklet presents the main concepts, theorems, and techniques of single-variable calculus. It differs from a typical undergraduate real analysis text in that (1) it focuses purely on calculus, not on developing topology and analysis for their own sake; (2) it's short.

Notation and terminology. The reader must be comfortable with *functions*, not just numbers, as objects of study. I use the notation $x \mapsto x^2$ for the function that takes x to x^2 ; thus $(x \mapsto x^2)(3) = 9$. In general $f = (t \mapsto f(t))$ for any function f.

An **open ball around** c means an interval $Ball(c,h) = \{x : |x-c| < h\}$ for some positive real number h. The intersection of two open balls around c is another open ball around c.

If S is a set, and f(x) is defined for all $x \in S$, then f(S) is defined as $\{f(x) : x \in S\}$.

Part I. Continuity

2. Continuous functions

Definition 2.1. Let f be a function defined at c. Then f is **continuous at** c if, for any open ball F around f(c), there is an open ball B around c such that $f(B) \subseteq F$.

In other words, if f is continuous at c, and F is an open ball around f(c), then there is some h > 0 such that $f(x) \in F$ for all x with |x - c| < h.

Example: The function $x \mapsto 3x$ is continuous—i.e., continuous at c for every c. Indeed, $\text{Ball}(3c, \epsilon)$ contains $(x \mapsto 3x)(\text{Ball}(c, \epsilon/3))$, because $|x - c| < \epsilon/3$ implies $|3x - 3c| < \epsilon$.

Another example: If f(x) = 3 for x < 2 and f(x) = 5 for $x \ge 2$, then f is not continuous at 2. Indeed, consider the open ball F = Ball(5,1). If B is any open ball around 2, then B contains numbers smaller than 2, so $3 \in f(B)$; thus f(B) is not contained in F.

Theorem 2.2. Let f and g be functions continuous at c. Assume that f(x) = g(x) for all $x \neq c$ such that f(x) and g(x) are both defined. Then f(c) = g(c).

Proof. I will show that $|f(c) - g(c)| < 2\epsilon$ for any $\epsilon > 0$. Write $F = \text{Ball}(f(c), \epsilon)$ and $G = \text{Ball}(g(c), \epsilon)$. By continuity of f and g, there are balls A and B around c such that $f(A) \subseteq F$ and $g(B) \subseteq G$. Find a point $x \neq c$ contained in both A and B. By construction $f(x) \in F$ and $f(x) = g(x) \in G$, so $|f(c) - g(c)| \leq |f(x) - f(c)| + |f(x) - g(c)| < 2\epsilon$ as claimed.

3. Continuity of sums, products, and compositions

Theorem 3.1. Let f and g be functions continuous at c. Define h = f + g. Then h is continuous at c.

Proof. Given a ball $H = \operatorname{Ball}(h(c), \epsilon)$, consider the balls $F = \operatorname{Ball}(f(c), \epsilon/2)$ and $G = \operatorname{Ball}(g(c), \epsilon/2)$. By continuity of f and g, there are open balls A and B around c such that $f(A) \subseteq F$ and $g(B) \subseteq G$. Define $D = A \cap B$; D is an open ball around c. If $x \in D$ then $f(x) \in F$ and $g(x) \in G$ so $h(x) = f(x) + g(x) \in H$. Thus $h(D) \subseteq H$.

Theorem 3.2. Let f and g be functions continuous at c. Define h = fg. Then h is continuous at c.

Proof. Define L = f(c) and M = g(c), so that LM = h(c). Given an open ball $H = \text{Ball}(LM, \epsilon)$, I will find an open ball D around c so that $h(D) \subseteq H$.

If L = M = 0, take the intersection of open balls where $|f(x)| < \epsilon$ and |g(x)| < 1. Then $|h(x)| < \epsilon$.

If L=0 and $M\neq 0$, take the intersection of open balls where $|f(x)|<\epsilon/(2|M|)$ and |g(x)-M|<|M|. Then |g(x)|<2|M| so $|h(x)|<\epsilon$. Similarly if $L\neq 0$ and M=0.

If $L \neq 0$ and $M \neq 0$, take the intersection of open balls where $|f(x) - L| < \epsilon/(4|M|)$, $|g(x) - M| < \epsilon/(2|L|)$, and |g(x) - M| < |M|. Then |g(x)| < 2|M| so $|h(x) - LM| = |g(x)(f(x) - L) + L(g(x) - M)| < 2|M|(\epsilon/(4|M|)) + |L|(\epsilon/(2|L|)) = \epsilon$.

Theorem 3.3. Let g be a function continuous at c. Let f be a function continuous at g(c). Define $h = (x \mapsto f(g(x)))$. Then h is continuous at c.

For example, $x \mapsto \cos 2x$ is continuous, since $x \mapsto 2x$ and $y \mapsto \cos y$ are continuous,

Proof. Let F be an open ball around h(c) = f(g(c)). By continuity of f, there is some open ball G around g(c) with $f(G) \subseteq F$. By continuity of g, there is some open ball G around G with G by G around G with G continuity of G continuity of G there is some open ball G around G with G continuity of G continuity of G there is some open ball G around G with G continuity of G con

4. Continuity of simple functions

Theorem 4.1. $x \mapsto b$ is continuous at c, for any b and c.

Proof. Ball(b,h) contains $(x \mapsto b)(D)$ for any open ball D.

Theorem 4.2. $x \mapsto x$ is continuous at c, for any c.

Proof. Ball(c, h) contains $(x \mapsto x)(\text{Ball}(c, h))$.

By Theorems 3.2 and 4.2, $x \mapsto x^2$ is continuous; $x \mapsto x^3$ is continuous; in general $x \mapsto x^n$ is continuous for any positive integer n. Thus, by Theorems 3.1, 3.2, and 4.1, any polynomial function $x \mapsto c_0 + c_1 x + \cdots + c_n x^n$ is continuous.

The function $x \mapsto 1/x$ is continuous at c for $c \neq 0$. (It's not even defined at 0, so it can't be continuous there.) By Theorem 3.3, $x \mapsto 1/f(x)$ is continuous whenever f is continuous and nonzero. For example, $x \mapsto x^n$ is continuous except at 0 when n is a negative integer.

Part II. Derivatives

5. Differentiable functions

Definition 5.1. Let f be a function defined at c. Then f is differentiable at c if there is a function f_1 , continuous at c, such that $f = (x \mapsto f(c) + (x - c)f_1(x))$.

Definition 5.2. Let f be a function defined at c. Then f has derivative d at c if there is a function f_1 , continuous at c, such that $f = (x \mapsto f(c) + (x - c)f_1(x))$ and $f_1(c) = d$.

By Theorem 2.2, there is at most one continuous function f_1 satisfying $f_1(x) = (f(x) - f(c))/(x-c)$ for all $x \neq c$, so f has at most one derivative at c, called **the derivative** of f at c. The derivative of f at c is written f'(c). The derivative of f, written f', is the function $c \mapsto f'(c)$.

For example, consider the function $f = (x \mapsto x^2)$. Here $f(x) = f(3) + (x - 3)f_1(x)$ with $f_1 = (x \mapsto x + 3)$. The function f_1 is continuous at 3, so f is differentiable at 3; its derivative at 3 is $f_1(3) = 6$. In general f'(c) = 2c.

Theorem 5.3. Let f be a function. If f is differentiable at c then f is continuous at c.

Proof. By definition of differentiability, there is a function f_1 , continuous at c, with $f = (x \mapsto f(c) + (x - c)f_1(x))$. Apply Theorems 3.1, 3.2, 4.1, and 4.2.

6. Derivatives of sums, products, and compositions

Theorem 6.1. Let f and g be functions. Define h = f + g. If f and g are differentiable at c then h is differentiable at c. Furthermore h'(c) = f'(c) + g'(c).

In short (f+g)'=f'+g' if the right side is defined. This is the **sum rule**.

Proof. Say $f(x) = f(c) + (x - c)f_1(x)$ and $g(x) = g(c) + (x - c)g_1(x)$ with f_1 and g_1 continuous at c. Define $h_1 = f_1 + g_1$; then h_1 is continuous at c by Theorem 3.1, and $h(x) = h(c) + (x - c)h_1(x)$, so h is differentiable at c. Finally $h'(c) = h_1(c) = f_1(c) + g_1(c) = f'(c) + g'(c)$.

Theorem 6.2. Let f and g be functions. Define h = fg. If f and g are differentiable at c then h is differentiable at c. Furthermore h'(c) = f'(c)g(c) + f(c)g'(c).

In short (fg)' = f'g + fg' if the right side is defined. This is the **product rule**.

Proof. Say $f(x) = f(c) + (x - c)f_1(x)$ and $g(x) = g(c) + (x - c)g_1(x)$ with f_1 and g_1 continuous at c. Then $h(x) = h(c) + (x - c)h_1(x)$ where $h_1(x) = f_1(x)g(x) + f(c)g_1(x)$. This function h_1 is continuous at c by Theorems 3.1, 3.2, 4.1, and 5.3, so h is differentiable at c, with derivative $h_1(c) = f_1(c)g(c) + f(c)g_1(c) = f'(c)g(c) + f(c)g'(c)$.

Theorem 6.3. Let f and g be functions. Define $h = (x \mapsto f(g(x)))$. If g is differentiable at c, and f is differentiable at g(c), then h is differentiable at c. Furthermore h'(c) = f'(g(c))g'(c).

In short $(f \circ g)' = (f' \circ g)g'$ if the right side is defined. This is the **chain rule**.

Proof. Write b = g(c). Say $f(x) = f(b) + (x-b)f_1(x)$ and $g(x) = b + (x-c)g_1(x)$ with f_1 continuous at b and g_1 continuous at c. Now $h(x) = f(g(x)) = f(b) + (g(x)-b)f_1(g(x)) = f(b) + (x-c)g_1(x)f_1(g(x))$. Thus $h(x) = h(c) + (x-c)h_1(x)$ where $h_1(x) = g_1(x)f_1(g(x))$. Finally h_1 is continuous at c by Theorems 3.3, 3.2, and 5.3, so h is differentiable at c, with derivative $h_1(c) = g_1(c)f_1(g(c)) = g'(c)f'(g(c))$.

7. Derivatives of simple functions

A constant function, such as $x \mapsto 17$, has derivative $c \mapsto 0$, since 17 = 17 + (x - c)0.

The identity function $x \mapsto x$ has derivative $c \mapsto 1$, since x = c + (x - c)1.

In general, for any positive integer n, the function $x \mapsto x^n$ has derivative $c \mapsto nc^{n-1}$, since $x^n = c^n + (x - c)(x^{n-1} + cx^{n-2} + \cdots + c^{n-1})$.

The function $x \mapsto 1/x$, defined for nonzero inputs, has derivative $c \mapsto -1/c^2$. Indeed, 1/x = 1/c + (x-c)(-1/cx), and $x \mapsto -1/cx$ is continuous at c with value $-1/c^2$.

Now the chain rule, with $f=(x\mapsto 1/x)$, states that 1/g has derivative $-g'/g^2$ at any point c where $g(c)\neq 0$. In particular, for any negative integer $n, x\mapsto x^n$ has derivative $c\mapsto nc^{n-1}$.

Finally, the product rule implies that h/g has derivative $(gh' - hg')/g^2$ at any point c where $g(c) \neq 0$; this is the **quotient rule**.

Part III. Completeness and its consequences

8. Completeness of the real numbers

Definition 8.1. Let S be a set of real numbers. A real number c is an **upper bound** for S if $x \le c$ for all $x \in S$.

For example, any number $c \ge \pi$ is an upper bound for the set $\{3, 3.1, 3.14, 3.141, \ldots\}$. The smallest upper bound is π .

The real numbers are **complete**: if S is a nonempty set, and there is an upper bound for S, then there is a smallest upper bound for S. The smallest upper bound is unique; it is called the **supremum of** S, written sup S.

9. The intermediate-value theorem

Theorem 9.1. Let f be a continuous real-valued function. Let y be a real number. Let $b \le c$ be real numbers with $f(b) \le y \le f(c)$. Then f(x) = y for some $x \in [b, c]$.

Here [b,c] means $\{x:b\leq x\leq c\}$. For example, if f(3)=-5 and f(4)=7, and f is continuous, then f must have a root between 3 and 4.

Proof. Define $S = \{x \in [b, c] : f(x) \le y\}$. S is nonempty, because it contains b, and it has an upper bound, namely c, so it has a smallest upper bound, say u.

Suppose f(u) > y. By continuity, there is an open ball D around u such that f(x) > y for $x \in D$. Pick any $t \in D$ with t < u. If $x \in [t, u]$ then $x \in D$ so f(x) > y so $x \notin S$. Thus t is an upper bound for S—but u is the smallest upper bound. Contradiction.

Suppose f(u) < y. Then $u \neq c$ so u < c. By continuity, there is an open ball D around u such that f(x) < y for $x \in D$. Pick any $x \in D$ with u < x < c; then f(x) < y. But $x \notin S$ since u is an upper bound for S; so f(x) > y. Contradiction.

10. The maximum-value theorem

Theorem 10.1. Let f be a continuous real-valued function. Let $b \le c$ be real numbers. Then there is an upper bound for f([b,c]).

Proof. Let S be the set of $x \in [b, c]$ such that f([b, x]) is bounded—i.e., has an upper bound. S is nonempty, because it contains b. Define $u = \sup S$.

By continuity, there is an open ball D around u such that $f(D) \subseteq \operatorname{Ball}(f(u), 1)$. Select $t \in D$ with t < u; then t is not an upper bound for S, so there is some $x \in S$ with $t < x \le u$. Now f([b, x]) and $f([x, u]) \subseteq f(D)$ are bounded, so f([b, u]) is bounded.

Suppose u < c. Select $v \in D$ with u < v < c. Then f([u, v]) is bounded, so $v \in S$. Contradiction. Hence u = c, and f([b, c]) = f([b, u]) is bounded.

Theorem 10.2. Let f be a continuous real-valued function. Let $b \le c$ be real numbers. Then there is some $u \in [b, c]$ such that, for all $z \in [b, c]$, $f(u) \ge f(z)$.

This is the **maximum-value theorem**: a continuous function on a closed interval achieves a maximum. The same is not true for open intervals: consider 1/x for 0 < x < 1.

Proof. By Theorem 10.1, there is an upper bound for f([b,c]). Define $M = \sup f([b,c])$.

Let S be the set of $x \in [b, c]$ such that $\sup f([x, c]) = M$. Then $b \in S$. Define $u = \sup S$.

Suppose f(u) < M. By continuity there is an open ball D around u such that $f(D) \subseteq \text{Ball}(f(u), (M - f(u))/2)$; then $\sup f(D) < M$. Select $t \in D$ with t < u; then t is not an upper bound for S, so there is some $x \in S$ with $t < x \le u$. Then $\sup f([x, c]) = M$, but $\sup f([x, u]) < M$, so u < c. Select $v \in D$ with u < v < c. Then $\sup f([x, v]) < M$, so $\sup f([v, c]) = M$, so $v \in S$. Contradiction. Hence $f(u) = M = \sup f([b, c])$.

Theorem 10.3. Let f be a continuous real-valued function. Let $b \le c$ be real numbers. Then there is some $u \in [b, c]$ such that, for all $x \in [b, c]$, $f(u) \le f(x)$.

Proof. Apply Theorem 10.2 to -f.

Part IV. The mean-value theorem

11. Fermat's principle

Theorem 11.1. Let f be a real-valued function differentiable at t. Assume that $f(t) \ge f(x)$ for all x in an open ball B around t. Then f'(t) = 0.

Proof. By assumption $f(x) = f(t) + (x - t)f_1(x)$ where f_1 is continuous at t. Suppose $f_1(t) > 0$. Then $f_1(x) > 0$ for all x in an open ball D around t. Pick x > t in both B and D; then $f(t) \ge f(x) = f(t) + (x - t)f_1(x) > f(t)$. Contradiction. Thus $f_1(t) \le 0$. Similarly $f_1(t) \ge 0$. Hence $f'(t) = f_1(t) = 0$.

Theorem 11.2. Let f be a real-valued function differentiable at t. Assume that $f(t) \le f(x)$ for all x in an open ball B around t. Then f'(t) = 0.

Proof. Apply Theorem 11.1 to -f.

12. Rolle's theorem

Theorem 12.1. Let f be a differentiable real-valued function. Let b < c be real numbers. If f(b) = f(c) then there is some x with b < x < c such that f'(x) = 0.

Proof. By Theorem 10.2, there is some $t \in [b, c]$ such that f's maximum value on [b, c] is achieved at t. If f(t) > f(b) then $t \neq b$ and $t \neq c$, so there is an open ball B around t such that $B \subseteq [b, c]$. By Theorem 11.1, f'(t) = 0.

Similarly, by Theorem 10.3, there is some $u \in [b, c]$ such that f achieves its minimum at u. If f(u) < f(b) then f'(u) = 0 as above.

The only remaining case is that $f(t) \leq f(b)$ and $f(u) \geq f(b)$. Then f(b) is both the maximum and the minimum value of f on [b,c]; i.e., f is constant on [b,c]. Hence f'(x) = 0 for any x between b and c.

13. The mean-value theorem

Theorem 13.1. Let f be a differentiable real-valued function. Let b < c be real numbers. Then there is some x with b < x < c such that f(c) - f(b) = f'(x)(c - b).

This is the **mean-value theorem**. The terminology "mean value" comes from the fundamental theorem of calculus, which can be interpreted as saying that (f(c)-f(b))/(c-b) is the average ("mean") value of f'(x) for $x \in [b, c]$. See Theorem 16.1.

Proof. Define g(x) = (c-b)f(x) - (x-b)(f(c)-f(b)). Then g is differentiable, and g(b) = (c-b)f(b) = (c-b)f(c) - (c-b)(f(c)-f(b)) = g(c). By Theorem 12.1, g'(x) = 0 for some x between b and c. But g'(x) = (c-b)f'(x) - (f(c)-f(b)).

Theorem 13.2. Let f be a differentiable real-valued function. If f'(x) = 0 for all x then f is constant.

More generally, two functions with the same derivative must differ by a constant.

Proof. Pick any real numbers b < c. By Theorem 13.1, there is some x such that f(c) - f(b) = f'(x)(c - b) = 0, so f(c) = f(b).

Part V. Integration

14. Tagged divisions and gauges

Definition 14.1. Let $b \leq c$ be real numbers. Let x_0, x_1, \ldots, x_n and t_1, \ldots, t_n be real numbers. Then $x_0, t_1, x_1, \ldots, t_n, x_n$ is a **tagged division of** [b, c] if $b = x_0 \leq t_1 \leq x_1 \leq t_2 \leq \cdots \leq x_{n-1} \leq t_n \leq x_n = c$.

The idea is that [b, c] is divided into the intervals $[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n]$; in each interval $[x_{k-1}, x_k]$ there is a tag t_k . For example, consider the tagged division 0, 1, 4, 5, 6, 6, 7 of [0, 7]; here the intervals are [0, 4], [4, 6], [6, 7], with tags 1, 5, 6 respectively.

Definition 14.2. Let $b \le c$ be real numbers. A gauge on [b, c] is a function assigning to each point $t \in [b, c]$ an open interval containing t.

For example, given $\epsilon > 0$, the function $t \mapsto \text{Ball}(t, \epsilon)$ is a gauge on any interval.

Definition 14.3. Let $b \le c$ be real numbers. Let G be a gauge on [b, c]. A tagged division $x_0, t_1, x_1, \ldots, t_n, x_n$ of [b, c] is **inside** G if $[x_{k-1}, x_k] \subset G(t_k)$ for every k.

Theorem 14.4. Let $b \le c$ be real numbers. Let G be a gauge on [b, c]. Then there is a tagged division of [b, c] inside G.

Proof. Let S be the set of $x \in [b, c]$ such that there is a tagged division of [b, x] inside G. S is nonempty: b, b, b is a tagged division of [b, b] inside G, so $b \in S$. Also, c is an upper bound for S. Thus there is a smallest upper bound for S, say y.

Select $v \in G(y)$ such that v < y. Then v is not an upper bound for S, so there is some x > v with $x \in S$. Let $x_0, t_1, x_1, \ldots, t_n, x_n$ be a tagged division of [b, x] inside G.

Suppose y < c. Pick $z \in G(y)$ with $y < z \le c$. Then $[x_n, z] = [x, z] \subset [v, z] \subset G(y)$, so $x_0, t_1, x_1, \ldots, t_n, x_n, y, z$ is a tagged division of [b, z] inside G. Thus $z \in S$; but z > y, and y is an upper bound for S. Contradiction.

Thus y = c. Finally $x_0, t_1, x_1, \ldots, t_n, x_n, y, y$ is a tagged division of [b, c] inside G.

15. The definite integral

Definition 15.1. Let $b \leq c$ be real numbers. Let $x_0, t_1, x_1, \ldots, t_n, x_n$ be a tagged division of [b, c]. Let f be a function defined on [b, c]. The **Riemann sum for** f on $x_0, t_1, x_1, \ldots, t_n, x_n$ is $(x_1 - x_0)f(t_1) + \cdots + (x_n - x_{n-1})f(t_n)$.

For example, the Riemann sum for f on 0, 1, 4, 5, 6, 6, 7 is (4-0)f(1) + (6-4)f(5) + (7-6)f(6). This may be visualized as the sum of areas of three rectangles: one stretching from 0 to 4 horizontally with height f(1), another from 4 to 6 with height f(5), and another from 6 to 7 with height f(6).

Definition 15.2. Let $b \le c$ be real numbers. Let f be a function defined on [b,c]. Let I be a number. Then f has integral I on [b,c] if, for every open ball E around I, there is a gauge G on [b,c] such that E contains the Riemann sum for f on any tagged division of [b,c] inside G.

Theorem 15.3. Let $b \le c$ be real numbers. Let f be a function. If f has integral I on [b, c] and f has integral J on [b, c] then I = J.

Thus there is at most one number I such that f has integral I on [b, c]. If this number exists, it is called the **integral of** f **from** b **to** c, written $\int_{b}^{c} f$.

Proof. I will show that $|I - J| < 2\epsilon$ for any $\epsilon > 0$.

By definition of integral, there is a gauge G on [b,c] such that $Ball(I,\epsilon)$ contains the Riemann sum for f on any tagged division of [b,c] inside G.

Similarly, there is a gauge H on [b,c] such that $Ball(J,\epsilon)$ contains the Riemann sum for f on any tagged division of [b,c] inside G.

Define F(t) as the intersection of G(t) and H(t). Then F is a gauge on [b, c]. By Theorem 14.4, there is a tagged division x_0, \ldots, x_n of [b, c] inside F.

Let R be the Riemann sum for f on x_0, \ldots, x_n . Observe that x_0, \ldots, x_n is inside both G and H, so $R \in \text{Ball}(I, \epsilon)$ and $R \in \text{Ball}(J, \epsilon)$. Hence $|I - J| \leq |I - R| + |R - J| < 2\epsilon$. \square

16. The fundamental theorem of calculus

Theorem 16.1. Let f be a differentiable function. Let $b \le c$ be real numbers. Then $f(c) - f(b) = \int_b^c f'$.

Proof. Pick $\epsilon > 0$. I will construct a gauge G such that Ball $(f(c) - f(b), \epsilon(c - b + 1))$ contains the Riemann sum for f' on any tagged division of [b, c] inside G.

Fix $t \in [b, c]$. Since f is differentiable at t, there is a function f_1 , continuous at t, such that $f(x) = f(t) + (x - t)f_1(x)$. By definition of continuity, $f_1(x)$ is within ϵ of $f_1(t) = f'(t)$ for all x in some open ball around t. Define G(t) as the union of all such balls. Then G is a gauge on [b, c].

Observe that if $x, y \in G(t)$, with $x \leq t \leq y$, then (y - x)f'(t) is within $\epsilon(y - x)$ of f(y) - f(x). Indeed, $|f_1(x) - f'(t)| < \epsilon$ by definition of G, and $f(x) - f(t) = (x - t)f_1(x)$, so

$$|f(x) - f(t) - (x - t)f'(t)| = |(x - t)(f_1(x) - f'(t))| \le \epsilon |x - t|.$$

Similarly $|f(y) - f(t) - (y - t)f'(t)| \le \epsilon |y - t|$. Thus $|f(y) - f(x) - (y - x)f'(t)| \le \epsilon (|y - t| + |x - t|)$; and |y - t| + |x - t| = y - x.

Finally, say $x_0, t_1, x_1, \ldots, t_n, x_n$ is a tagged division of [b, c] inside G. Then $x_{k-1}, x_k \in G(t_k)$, with $x_{k-1} \leq t_k \leq x_k$, so $(x_k - x_{k-1}) f'(t_k)$ is within $\epsilon(x_k - x_{k-1})$ of $f(x_k) - f(x_{k-1})$ as above. Thus the Riemann sum for f' on $x_0, t_1, x_1, \ldots, t_n, x_n$ is within

$$\sum_{1 \le k \le n} \epsilon(x_k - x_{k-1}) = \epsilon(x_n - x_0) = \epsilon(c - b) < \epsilon(c - b + 1)$$

of

$$\sum_{1 \le k \le n} (f(x_k) - f(x_{k-1})) = f(x_n) - f(x_0) = f(c) - f(b)$$

as claimed.

17. Integration rules

Theorem 17.1. Let f be a function. Let $b \leq c$ be real numbers. If $\int_b^c f = I$ then af has integral aI on [b,c] for any real number a.

In short $\int_b^c af = a \int_b^c f$ if the right side is defined.

Proof. Pick $\epsilon > 0$. Since $\int_b^c f = I$, there is a gauge G on [b,c] such that $\operatorname{Ball}(I,\epsilon)$ contains the Riemann sum for f on any tagged division of [b,c] inside G. The Riemann sum for af is exactly a times the Riemann sum for f, so it is inside $\operatorname{Ball}(aI,|a|\epsilon)$ for $a \neq 0$ or $\operatorname{Ball}(0,\epsilon)$ for a=0.

Theorem 17.2. Let f and g be functions. Let $b \leq c$ be real numbers. If $\int_b^c f = I$ and $\int_b^c g = J$ then f + g has integral I + J on [b, c].

In short $\int_{b}^{c} (f+g) = \int_{b}^{c} f + \int_{b}^{c} g$ if the right side is defined.

Proof. Pick $\epsilon > 0$. There is a gauge F on [b, c] such that $Ball(I, \epsilon)$ contains the Riemann sum for f on any tagged division of [b, c] inside F; and there is a gauge G on [b, c] such that $Ball(J, \epsilon)$ contains the Riemann sum for g on any tagged division of [b, c] inside G.

Define $H(t) = F(t) \cap G(t)$. Then H is a gauge on [b, c]. If x_0, \ldots, x_n is a tagged division of [b, c] inside H, then x_0, \ldots, x_n is also inside both F and G, so the Riemann sums for f and g on x_0, \ldots, x_n are within ϵ of I and J respectively; thus the Riemann sum for f + g on x_0, \ldots, x_n is within 2ϵ of I + J.

Theorem 17.3. Let f be a function. Let $a \leq b \leq c$ be real numbers. If $\int_a^b f = I$ and $\int_b^c f = J$ then f has integral I + J on [a, c].

In short $\int_a^c f = \int_a^b f + \int_b^c f$ if the right side is defined.

Proof. Pick $\epsilon > 0$. There is a gauge G on [a, b] such that $Ball(I, \epsilon)$ contains the Riemann sum for f on any tagged division of [a, b] inside G; there is a gauge H on [b, c] such that $Ball(J, \epsilon)$ contains the Riemann sum for f on any tagged division of [b, c] inside H.

I define a new gauge as follows. For t < b define $F(t) = \{x \in G(t) : x < b\}$. For t = b define $F(t) = G(t) \cap H(t)$. For t > b define $F(t) = \{x \in H(t) : x > b\}$.

Say x_0, \ldots, x_n is a tagged division of [a,c] inside F. Then $b \in [x_{k-1},x_k] \subset F(t_k)$ for some k; by construction of F, t_k must equal b. Now $x_0,t_1,x_1,\ldots,x_{k-1},t_k,b$ is a tagged division of [a,b] inside F, hence inside G. Thus the Riemann sum $(x_1-x_0)f(t_0)+\cdots+(b-x_{k-1})f(t_k)$ is within ϵ of I. Similarly the Riemann sum $(x_k-b)f(t_k)+\cdots+(x_n-x_{n-1})f(t_n)$ is within ϵ of I. Add: the Riemann sum $(x_1-x_0)f(t_0)+\cdots+(x_k-x_{k-1})f(t_k)+\cdots+(x_n-x_{n-1})f(t_n)$ is within 2ϵ of I+J.

Theorem 17.4. Let f be a function. Let $b \le c$ be real numbers. If f is nonnegative on [b,c] and $\int_b^c f = I$ then I is nonnegative.

Proof. Pick $\epsilon > 0$. Select an appropriate gauge G. By Theorem 14.4, there is an appropriate tagged division of [b,c]. The corresponding Riemann sum is nonnegative, so $I \geq -\epsilon$.

Part VI. Limits

18. Convergence and limits

Definition 18.1. Let f be a function. Then f converges to L at c if the function

$$x \mapsto \begin{cases} L & \text{if } x = c \\ f(x) & \text{if } x \neq c \end{cases}$$

is continuous at c.

Equivalent terminology: f(x) converges to L as x approaches c.

By Theorem 2.2, there is at most one number L such that f converges to L at c. If this number exists, it is called **the limit of** f **at** c, or **the limit of** f(x) **as** x **approaches** c, written $\lim_{x\to c} f(x)$. Note that f is continuous if and only if $\lim_{x\to c} f(x) = f(c)$.

Example: $\cos(1/x)$ does not converge to 0 as x approaches 0.

19. Limits of sums, products, and compositions

Theorem 19.1. Let f and g be functions. If $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$ then f(x) + g(x) converges to L + M as x approaches c.

In short $\lim_{x\to c} (f(x)+g(x)) = \lim_{x\to c} f(x) + \lim_{x\to c} g(x)$ if the right side is defined.

Proof. Replace f(c) by L and g(c) by M to obtain new functions a and b. Then a and b are continuous, so a+b is continuous by Theorem 3.1.

Theorem 19.2. Let f and g be functions. If $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$ then f(x)g(x) converges to LM as x approaches c.

Proof. Theorem 3.2.

Theorem 19.3. Let f and g be functions. If $\lim_{x\to c} g(x) = L$, and f is continuous at L, then f(g(x)) converges to f(L) as x approaches c.

In short $\lim_{x\to c} f(g(x)) = f(\lim_{x\to c} g(x))$ if the right side is defined, provided that f is continuous.

Proof. Theorem 3.3.

20. L'Hôpital's rule

Theorem 20.1. Let f and g be real-valued functions differentiable at c. If f(c) = g(c) = 0, and $g'(c) \neq 0$, then f(x)/g(x) converges to f'(c)/g'(c) as x approaches c.

For example, $\lim_{x\to 0} (x/\sin x) = 1/1 = 1$, since $\sin' = \cos$ and $\cos 0 = 1 \neq 0$.

Proof. By assumption $f(x) = f(c) + (x - c)f_1(x) = (x - c)f_1(x)$ where f_1 is continuous at c. Similarly $g(x) = (x - c)g_1(x)$ where g_1 is continuous at c. By assumption $g_1(c) = g'(c) \neq 0$, so the function $x \mapsto f_1(x)/g_1(x)$ is continuous at c, with value $f_1(c)/g_1(c)$. Finally $f(x)/g(x) = f_1(x)/g_1(x)$ for $x \neq c$.

Theorem 20.2. Let f and g be differentiable real-valued functions. If f(c) = g(c) = 0, and $\lim_{x\to c} (f'(x)/g'(x)) = L$, then f(x)/g(x) converges to L as x approaches c.

Proof. Fix a ball E around L. There is a ball D around c such that $f'(x)/g'(x) \in E$ for all $x \in D$ with $x \neq c$. In particular, g'(x) is nonzero for $x \in D$. By Theorem 12.1, g(y) is nonzero for $y \in D$.

I will show that $f(y)/g(y) \in E$ for all $y \in D$ with $y \neq c$. Thus f(y)/g(y) converges to L as y approaches c.

Given $y \in D$, $y \neq c$, consider the function $h = (x \mapsto f(x)g(y) - f(y)g(x))$. Notice that h is differentiable, with h'(x) = f'(x)g(y) - f(y)g'(x).

Now h(c) = f(c)g(y) - f(y)g(c) = 0, and h(y) = f(y)g(y) - f(y)g(y) = 0, so there is some x between c and y with h'(x) = 0 by Theorem 12.1. Thus f'(x)g(y) = f(y)g'(x). Both g'(x) and g(y) are nonzero, so $f(y)/g(y) = f'(x)/g'(x) \in E$.

Theorem 20.2 may be used repeatedly. For example:

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin x}{2x} = \lim_{x \to 0} \frac{\cos x}{2} = \frac{1}{2}.$$

99. Expository notes

Common practice in calculus books is to define continuity using limits. I define limits using continuity; continuity is a simpler concept.

"An open ball around c" is substantially easier to read than "for some h > 0, the set of x such that |x - c| < h."

I use Carathéodory's definition of the derivative of f. The point is to give a name to the function $x \mapsto (f(x) - f(c))/(x - c)$. I learned about this from an article by Stephen Kuhn in the *Monthly*. It's also used in the second edition of Apostol's text.

My proof of Theorem 6.2 uses the formula $h_1(x) = f_1(x)g(x) + f(c)g_1(x)$, which is shorter than the (more obvious) formula $h_1(x) = f_1(x)g(c) + f(c)g_1(x) + (x-c)f_1(x)g_1(x)$. I was reminded of this simplification by a letter in the *Monthly* from Günter Pickert.

The Heine-Borel theorem follows immediately from Theorem 14.4. See Botsko's 1987 *Monthly* article for this approach to all the basic completeness theorems. Thanks to Joe Buhler for the reference.

I follow the Kurzweil-Henstock approach to integration. The resulting integral is *more* general than the Lebesgue integral; it is equivalent to the integrals constructed by Denjoy and Perron. There is no need for any technical conditions in the fundamental theorem of calculus, Theorem 16.1; every derivative is integrable. I learned about this from advertisements by Robert G. Bartle in the *Bulletin* and the *Monthly*.