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1. Introduction

This booklet presents the main concepts, theorems, and techniques of single-variable
calculus. It differs from a typical undergraduate real analysis text in that (1) it focuses
purely on calculus, not on developing topology and analysis for their own sake; (2) it’s
short.

Notation and terminology. The reader must be comfortable with functions, not just
numbers, as objects of study. I use the notation = — 22 for the function that takes x to
x?; thus (z — x2)(3) = 9. In general f = (¢t — f(t)) for any function f.

An open ball around ¢ means an interval Ball(c,h) = {x : |z — ¢| < h} for some positive
real number h. The intersection of two open balls around c is another open ball around
c.

If S is a set, and f(x) is defined for all z € S, then f(S) is defined as {f(z) : € S}.

Part I. Continuity

2. Continuous functions

Definition 2.1. Let f be a function defined at c. Then f is continuous at c if, for
any open ball F' around f(c), there is an open ball B around ¢ such that f(B) C F.

In other words, if f is continuous at ¢, and F' is an open ball around f(c), then there is
some h > 0 such that f(z) € F for all z with |z —¢| < h.

Example: The function & — 3x is continuous—i.e., continuous at ¢ for every c. Indeed,
Ball(3c, €) contains (x — 3z)(Ball(c, €/3)), because |x — ¢| < €/3 implies |3z — 3¢| < e.

Another example: If f(x) = 3 for z < 2 and f(x) =5 for > 2, then f is not continuous
at 2. Indeed, consider the open ball F = Ball(5,1). If B is any open ball around 2, then
B contains numbers smaller than 2, so 3 € f(B); thus f(B) is not contained in F.

Theorem 2.2. Let f and g be functions continuous at c. Assume that f(x) = g(x) for
all x # ¢ such that f(x) and g(x) are both defined. Then f(c) = g(c).

Proof. I will show that |f(c) — g(c)| < 2¢ for any ¢ > 0. Write F = Ball(f(c),¢) and
G = Ball(g(c), €). By continuity of f and g, there are balls A and B around c such that
f(A) C Fand g(B) C G. Find a point z # ¢ contained in both A and B. By construction
f(z) € Fand f(x) = g(z) € G, so [f(c) —g(c)| < [f(@) — f()| + |f(2) — g(c)| < 2¢ as

claimed. ]



3. Continuity of sums, products, and compositions

Theorem 3.1. Let f and g be functions continuous at c. Define h = f +g. Then h is
continuous at c.

Proof. Given a ball H = Ball(h(c), €), consider the balls F' = Ball(f(c),€¢/2) and G =
Ball(g(c),€/2). By continuity of f and g, there are open balls A and B around c such
that f(A) C F and g(B) C G. Define D = AN B; D is an open ball around c. If z € D
then f(x) € F and g(x) € G so h(z) = f(x) + g(z) € H. Thus h(D) C H. O

Theorem 3.2. Let f and g be functions continuous at c. Define h = fg. Then h is
continuous at c.

Proof. Define L = f(¢) and M = g¢g(c), so that LM = h(c). Given an open ball
H = Ball(LM,e¢), I will find an open ball D around ¢ so that h(D) C H.

If L = M = 0, take the intersection of open balls where |f(z)| < € and |g(x)| < 1. Then
|h(z)| < e.

If L =0 and M # 0, take the intersection of open balls where |f(z)| < €/(2|M|) and
lg(z) — M| < |M|. Then |g(z)| < 2|M| so |h(z)| < e. Similarly if L # 0 and M = 0.

If L # 0 and M # 0, take the intersection of open balls where |f(x) — L| < €¢/(4|M]),
|9(z) — M| < €/(2|L[), and |g(x) — M| < |[M|. Then |g(z)| < 2|M]| so [h(z) — LM]| =
l9(x)(f(z) = L) + L(g(x) = M)| < 2[M|(/(4|M])) + L[ (¢/(2|L])) = e. m

Theorem 3.3. Let g be a function continuous at c. Let f be a function continuous at
g(c). Define h = (z — f(g(z))). Then h is continuous at c.

For example, © — cos2x is continuous, since x — 2z and y + cosy are continuous,

Proof. Let F be an open ball around h(c) = f(g(c)). By continuity of f, there is some
open ball G around g(c) with f(G) C F. By continuity of g, there is some open ball B
around ¢ with g(B) C G. Finally h(B) = f(g9(B)) C f(G) C F. O

4. Continuity of simple functions

Theorem 4.1. x — b is continuous at ¢, for any b and c.

Proof. Ball(b, h) contains (z +— b)(D) for any open ball D. O

Theorem 4.2. x — x is continuous at c, for any c.

Proof. Ball(c, h) contains (x — x)(Ball(c, h)). O

2 3

By Theorems 3.2 and 4.2, x — z“ is continuous; x — z° is continuous; in general
x +— x™ is continuous for any positive integer n. Thus, by Theorems 3.1, 3.2, and 4.1,
any polynomial function x — ¢y + c;z + -+ + ¢, 2™ is continuous.
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The function # — 1/x is continuous at ¢ for ¢ # 0. (It’s not even defined at 0, so it
can’t be continuous there.) By Theorem 3.3, x — 1/f(z) is continuous whenever f is
continuous and nonzero. For example, x — x" is continuous except at 0 when n is a
negative integer.

Part II. Derivatives

5. Differentiable functions

Definition 5.1. Let f be a function defined at c. Then f is differentiable at c if there
is a function fi, continuous at ¢, such that f = (x — f(c) + (z — ¢) f1(x)).

Definition 5.2. Let f be a function defined at c. Then f has derivative d at c if there
is a function f1, continuous at ¢, such that f = (z — f(c)+ (z —c¢)f1(z)) and fi(c) = d.

By Theorem 2.2, there is at most one continuous function f; satisfying fi(z) = (f(x) —
f(e))/(x —¢) for all  # ¢, so f has at most one derivative at ¢, called the derivative
of f at c¢. The derivative of f at ¢ is written f’(c¢). The derivative of f, written f’, is
the function ¢ — f’(c).

For example, consider the function f = (z — x?). Here f(z) = f(3) + (z — 3) f1(x) with
fi = (x — =+ 3). The function f; is continuous at 3, so f is differentiable at 3; its
derivative at 3 is f1(3) = 6. In general f'(c) = 2c.

Theorem 5.3. Let f be a function. If f is differentiable at c then f is continuous at c.

Proof. By definition of differentiability, there is a function f;, continuous at ¢, with
f=(x— f(c)+ (z —c¢)fi(x)). Apply Theorems 3.1, 3.2, 4.1, and 4.2. O

6. Derivatives of sums, products, and compositions

Theorem 6.1. Let f and g be functions. Define h = f+g. If f and g are differentiable
at ¢ then h is differentiable at c. Furthermore h'(c) = f'(¢) + ¢'(c).

In short (f + g)' = f' + ¢’ if the right side is defined. This is the sum rule.

Proof. Say f(z) = f(c) + (x — ¢)fi(z) and g(x) = g(c¢) + (z — ¢)g1(z) with f; and
g1 continuous at c. Define h; = f1 + g1; then hy is continuous at ¢ by Theorem 3.1,
and h(z) = h(c) + (x — ¢)hi(x), so h is differentiable at c¢. Finally h'(c) = hi(c) =
fi(e) + g1(¢) = f'(c) + g'(¢). L

Theorem 6.2. Let f and g be functions. Define h = fg. If f and g are differentiable
at ¢ then h is differentiable at c. Furthermore h/'(c) = f'(¢)g(c) + f(c)g'(c).

In short (fg) = f'g+ fg’ if the right side is defined. This is the product rule.
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Proof. Say f(xz) = f(¢) + (x — ¢) fi(x) and g(z) = g(c) + (z — ¢)g1(z) with f; and ¢;
continuous at ¢. Then h(z) = h(c) + (z — ¢)hi(z) where hy(z) = fi(z)g(z) + f(c)g1(z).
This function h; is continuous at ¢ by Theorems 3.1, 3.2, 4.1, and 5.3, so h is differentiable
at ¢, with derivative hy(c) = fi(c)g(c) + f(c)g1(c) = f'(c)g(c) + f(c)g'(c). [

Theorem 6.3. Let f and g be functions. Define h = (x — f(g(x))). If g is differentiable
at ¢, and f is differentiable at g(c), then h is differentiable at c. Furthermore h'(c) =

f'(g(e))g'(¢).
In short (f og) = (f' og)g’ if the right side is defined. This is the chain rule.

Proof. Write b = g(c). Say f(z) = f(b)+(x—b)fi(x) and g(x) = b+(x—c)g1(z) with f,
continuous at b and g; continuous at ¢. Now h(z) = f(g(z)) = f(b)+(g(x)—b) f1(g(z)) =

f(b)+(z—c)gr(z) f1(g(x)). Thus h(z) = h(c)+(z—c)hi(x) where hi(z) = g1(z) f1(g()).
Finally h; is continuous at ¢ by Theorems 3.3, 3.2, and 5.3, so h is differentiable at c,

with derivative hi(c) = g1(c)fi(g(c)) = ¢'(¢)f' (g(c)). O

7. Derivatives of simple functions
A constant function, such as z — 17, has derivative ¢ — 0, since 17 = 17 + (z — ¢)0.
The identity function z — z has derivative ¢ — 1, since z = ¢ + (x — ¢)1.

In general, for any positive integer n, the function = — =™ has derivative ¢ — nc* !,

since 2" =" + (z —c)(z" L + a2 4+ - 4 7).

The function z — 1/z, defined for nonzero inputs, has derivative ¢ — —1/c?. Indeed,
1/x =1/c+ (z — ¢)(=1/cx), and & — —1/cz is continuous at ¢ with value —1/c%.

Now the chain rule, with f = (x ~ 1/z), states that 1/g has derivative —g’/g? at any
point ¢ where g(c) # 0. In particular, for any negative integer n, x — =™ has derivative
crs nc” L

Finally, the product rule implies that h/g has derivative (gh’ — hg')/g? at any point c
where g(c) # 0; this is the quotient rule.

Part III. Completeness and its consequences

8. Completeness of the real numbers

Definition 8.1. Let S be a set of real numbers. A real number c is an upper bound
for Sifx <c forallze§.

For example, any number ¢ > 7 is an upper bound for the set {3,3.1,3.14,3.141,...}.
The smallest upper bound is 7.

The real numbers are complete: if S is a nonempty set, and there is an upper bound
for S, then there is a smallest upper bound for S. The smallest upper bound is unique;
it is called the supremum of S, written sup S.
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9. The intermediate-value theorem

Theorem 9.1. Let f be a continuous real-valued function. Let y be a real number. Let
b < ¢ be real numbers with f(b) <y < f(c). Then f(x) =1y for some x € [b,¢].

Here [b,c] means {z : b < x < c}. For example, if f(3) = —5 and f(4) = 7, and f is
continuous, then f must have a root between 3 and 4.

Proof. Define S = {z € [b,c] : f(z) < y}. S is nonempty, because it contains b, and it
has an upper bound, namely ¢, so it has a smallest upper bound, say wu.

Suppose f(u) > y. By continuity, there is an open ball D around u such that f(z) >y
for x € D. Pick any t € D with t < u. If z € [t,u] then x € D so f(z) >ysox ¢ S.
Thus t is an upper bound for S—but « is the smallest upper bound. Contradiction.

Suppose f(u) < y. Then u # ¢ so u < ¢. By continuity, there is an open ball D around
u such that f(xz) < y for x € D. Pick any z € D with u < x < ¢; then f(z) < y. But
x ¢ S since u is an upper bound for S; so f(z) > y. Contradiction. O

10. The maximum-value theorem

Theorem 10.1. Let f be a continuous real-valued function. Let b < ¢ be real numbers.
Then there is an upper bound for f([b,c]).

Proof. Let S be the set of z € [b, ¢| such that f([b, z]) is bounded—i.e., has an upper
bound. S is nonempty, because it contains b. Define u = sup S.

By continuity, there is an open ball D around u such that f(D) C Ball(f(u),1). Select
t € D with t < wu; then ¢ is not an upper bound for S, so there is some z € S with
t <x <wu. Now f([b,z]) and f([z,u]) C f(D) are bounded, so f([b,u]) is bounded.

Suppose u < ¢. Select v € D with u < v < ¢. Then f([u,v]) is bounded, so v € S.
Contradiction. Hence u = ¢, and f([b,c]) = f([b, u]) is bounded. O

Theorem 10.2. Let f be a continuous real-valued function. Let b < ¢ be real numbers.
Then there is some u € [b,c| such that, for all z € [b,c|, f(u) > f(z).

This is the maximum-value theorem: a continuous function on a closed interval
achieves a maximum. The same is not true for open intervals: consider 1/z for 0 < = < 1.

Proof. By Theorem 10.1, there is an upper bound for f([b, c|). Define M = sup f([b, c]).
Let S be the set of = € [b, ¢| such that sup f([x,c]) = M. Then b € S. Define u = sup S.

Suppose f(u) < M. By continuity there is an open ball D around u such that f(D) C
Ball(f(u), (M — f(u))/2); then sup f(D) < M. Select t € D with t < u; then ¢ is not an
upper bound for S, so there is some z € S with ¢ < z < w. Then sup f([z,c]) = M, but
sup f([z,u]) < M, so u < c¢. Select v € D with u < v < ¢. Then sup f([z,v]) < M, so
sup f([v,¢c]) = M, so v € S. Contradiction. Hence f(u) = M = sup f([b, c]). O
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Theorem 10.3. Let f be a continuous real-valued function. Let b < ¢ be real numbers.
Then there is some u € [b, c| such that, for all z € [b,c|, f(u) < f(x).

Proof. Apply Theorem 10.2 to —f. U

Part IV. The mean-value theorem

11. Fermat’s principle

Theorem 11.1. Let f be a real-valued function differentiable at t. Assume that f(t) >
f(z) for all z in an open ball B around t. Then f'(t) = 0.

Proof. By assumption f(z) = f(t) + (x — t) fi(x) where f; is continuous at t. Suppose
fi(t) > 0. Then fy(x) > 0 for all z in an open ball D around ¢. Pick z > t in both B
and D; then f(t) > f(z) = f(t) + (x — t)fi(z) > f(t). Contradiction. Thus f;(¢) < 0.
Similarly f1(¢) > 0. Hence f'(t) = fi(t) = 0. O

Theorem 11.2. Let f be a real-valued function differentiable at t. Assume that f(t) <
f(x) for all  in an open ball B around t. Then f'(t) = 0.

Proof. Apply Theorem 11.1 to —f. O

12. Rolle’s theorem

Theorem 12.1. Let f be a differentiable real-valued function. Let b < c be real numbers.
If f(b) = f(c) then there is some x with b < x < ¢ such that f'(z) = 0.

Proof. By Theorem 10.2, there is some t € [b, ¢] such that f’s maximum value on [b, c|
is achieved at ¢t. If f(t) > f(b) then t # b and t # ¢, so there is an open ball B around ¢
such that B C [b,c]. By Theorem 11.1, f'(t) = 0.

Similarly, by Theorem 10.3, there is some u € [b, ¢|] such that f achieves its minimum at
w. If f(u) < f(b) then f'(u) = 0 as above.

The only remaining case is that f(¢t) < f(b) and f(u) > f(b). Then f(b) is both the
maximum and the minimum value of f on [b,¢|; i.e., f is constant on [b,c|. Hence
f'(z) =0 for any x between b and c. O

13. The mean-value theorem

Theorem 13.1. Let f be a differentiable real-valued function. Let b < c be real numbers.
Then there is some x with b < x < ¢ such that f(c) — f(b) = f'(x)(c —b).
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This is the mean-value theorem. The terminology “mean value” comes from the fun-
damental theorem of calculus, which can be interpreted as saying that (f(c)—f(b))/(c—b)
is the average (“mean”) value of f'(z) for = € [b,c]. See Theorem 16.1.

Proof. Define g(z) = (¢ — b)f(xz) — (x — b)(f(c) — f(b)). Then g is differentiable, and

g(b) = (c=b)f(b) = (c=b)f(c) = (c=b)(f(c) = f(b)) = g(¢). By Theorem 12.1, g'(z) = 0
for some = between b and ¢. But ¢'(x) = (¢ —b) f'(z) — (f(c) — f(b)). O

Theorem 13.2. Let f be a differentiable real-valued function. If f'(x) = 0 for all x
then f is constant.

More generally, two functions with the same derivative must differ by a constant.

Proof. Pick any real numbers b < ¢. By Theorem 13.1, there is some x such that

fle) = f(b) = f'(z)(c = b) = 0, 50 f(c) = f(b). D

Part V. Integration

14. Tagged divisions and gauges

Definition 14.1. Let b < ¢ be real numbers. Let xg,x1,...,x, and t1,...,t, be real
numbers. Then xg,t1,21,...,tn, Ty is a tagged division of [b,¢| if b=12¢ <t; <z <
to<---<wp1<t, <z, =C.

The idea is that [b,c| is divided into the intervals [zq,z1], [z1,Z2], ..., [Tn-1,2n]; In
each interval [xy_1,zk] there is a tag tx. For example, consider the tagged division
0,1,4,5,6,6,7 of [0,7]; here the intervals are [0,4], [4,6],[6,7], with tags 1,5,6 respec-
tively.

Definition 14.2. Let b < ¢ be real numbers. A gauge on [b, ] is a function assigning
to each point t € [b,c] an open interval containing t.
For example, given € > 0, the function ¢ — Ball(t, €) is a gauge on any interval.

Definition 14.3. Let b < c be real numbers. Let G be a gauge on [b,c|. A tagged division
Toy 1, X1y .- b, Ty Of [b,c] is inside G if [xg_1,xx] C G(t) for every k.

Theorem 14.4. Let b < ¢ be real numbers. Let G be a gauge on [b,c|. Then there is a
tagged division of [b, c| inside G.

Proof. Let S be the set of z € [b, ¢] such that there is a tagged division of [b, | inside
G. S is nonempty: b,b,b is a tagged division of [b,b] inside G, so b € S. Also, c is an
upper bound for S. Thus there is a smallest upper bound for S, say y.

Select v € G(y) such that v < y. Then v is not an upper bound for S, so there is some
z > v with z € S. Let xg,t1,21,...,t,, T, be a tagged division of [b, z] inside G.
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Suppose y < c. Pick z € G(y) with y < z < ¢. Then [z,, 2] = [z,2] C [v,2] C G(y), so
Zo,t1,T1, -y tn, Tn, Y,z is a tagged division of [b, z| inside G. Thus z € S; but z > vy,
and y is an upper bound for S. Contradiction.

Thus y = c. Finally xg,t1,21,...,tn, Tn, Y,y is a tagged division of [b, ¢] inside G. O

15. The definite integral

Definition 15.1. Let b < ¢ be real numbers. Let xg,t1,21,...,tn,x, be a tagged di-
vision of [b,c|. Let f be a function defined on [b,c|]. The Riemann sum for f on

$0,t1, L1y... 7tn7 Ln 18 ($1 - wO)f(tl) +---+ (wn - -,Enfl)f(tn)'
For example, the Riemann sum for f on 0,1,4,5,6,6,7 is (4—0)f(1)+ (6 —4)f(5)+ (7 —
6)f(6). This may be visualized as the sum of areas of three rectangles: one stretching

from 0 to 4 horizontally with height f(1), another from 4 to 6 with height f(5), and
another from 6 to 7 with height f(6).

Definition 15.2. Let b < ¢ be real numbers. Let f be a function defined on [b,c|]. Let I
be a number. Then f has integral I on [b, c| if, for every open ball E around I, there is
a gauge G on |b,c| such that E contains the Riemann sum for f on any tagged division

of [b, c] inside G.
Theorem 15.3. Let b < ¢ be real numbers. Let f be a function. If f has integral I on
[b,c|] and f has integral J on [b,c| then I = J.

Thus there is at most one number I such that f has integral I on [b,c|. If this number
exists, it is called the integral of f from b to ¢, written fbc f-

Proof. I will show that [ — J| < 2¢ for any € > 0.

By definition of integral, there is a gauge G on [b,c| such that Ball(,€) contains the
Riemann sum for f on any tagged division of [b, ¢] inside G.

Similarly, there is a gauge H on [b, ¢| such that Ball(.J,€) contains the Riemann sum for
f on any tagged division of [b, ¢| inside G.

Define F'(t) as the intersection of G(t) and H(t). Then F' is a gauge on [b, ¢|]. By Theorem
14.4, there is a tagged division xy, ..., z, of [b,c| inside F.

Let R be the Riemann sum for f on xg,...,z,. Observe that x,...,z, is inside both G
and H, so R € Ball(1,¢) and R € Ball(J,¢). Hence |[I — J| < |I —R|+|R—J| <2. O
16. The fundamental theorem of calculus

Theorem 16.1. Let f be a differentiable function. Let b < ¢ be real numbers. Then
fle) = f) = [, f



Proof. Pick ¢ > 0. I will construct a gauge G such that Ball(f(c) — f(b),e(c — b+ 1))
contains the Riemann sum for f’ on any tagged division of [b, ¢ inside G.

Fix t € [b,¢|]. Since f is differentiable at ¢, there is a function f, continuous at ¢,
such that f(x) = f(t) + (z — t) f1(z). By definition of continuity, fi(z) is within e of
fi(t) = f'(¢t) for all z in some open ball around ¢. Define G(t) as the union of all such
balls. Then G is a gauge on [b, ¢|.

Observe that if z,y € G(t), with z < ¢t < y, then (y — z)f'(t) is within e(y — z) of
f(y)— f(z). Indeed, |f1(z) — f'(t)| < € by definition of G, and f(z)— f(t) = (z—1t) f1(z),

[f(x) = f(t) = (= =) f'())| = (2 = ) (fu(z) = f/ (&) < ez —1].

Similarly |f(y) — f(t) — (y — O ()] < ely—t. Thus |f(y) - f(z) — (y - 2)f'(t)] <
(ly —tl+ ]z —t]); and [y —t[ + |z — ¢ =y — =.
Finally, say zg,t1,21,...,t,, Z, is a tagged division of [b, ¢] inside G. Then xy_1,z) €
G(tg), with zp_1 <t < zg, so (vx—xp_1)f' (tr) is within e(xy —zp_1) of f(zr)—f(Tr_1)
as above. Thus the Riemann sum for f’ on zq,t1,x1,...,t,, T, is within

D elmn —aro1) = e(@n — o) =€(c—b) < elc—b+1)

1<k<n
of
Y (flar) = flze-1) = f(2n) = f(z0) = f(c) — £ (D)

1<k<n

as claimed. m

17. Integration rules

Theorem 17.1. Let f be a function. Let b < c be real numbers. If fbcf =1 then af
has integral aI on [b,c| for any real number a.

In short [, af =a [, f if the right side is defined.

Proof. Pick € > 0. Since [, f = I, there is a gauge G on [b,c| such that Ball(Z,€)
contains the Riemann sum for f on any tagged division of [b, ¢] inside G. The Riemann
sum for af is exactly a times the Riemann sum for f, so it is inside Ball(al, |a|€) for

a # 0 or Ball(0,€) for a = 0. O
Theorem 17.2. Let f and g be functions. Let b < ¢ be real numbers. If fbcf =1 and
fbcg = J then f + g has integral I + J on [b,c|.

In short [, (f+g) = [, f+ [, g if the right side is defined.

Proof. Pick e > 0. There is a gauge F' on [b, ¢] such that Ball(I, €) contains the Riemann
sum for f on any tagged division of [b, ¢] inside F'; and there is a gauge G on [b, ¢| such
that Ball(J, €) contains the Riemann sum for g on any tagged division of [b, ¢| inside G.
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Define H(t) = F(t) N G(t). Then H is a gauge on [b, c|. If zy,...,z, is a tagged division

of [b, c|] inside H, then z,...,z, is also inside both F' and G, so the Riemann sums for
f and g on zg,...,x, are within € of I and J respectively; thus the Riemann sum for
f+gonxg,...,z, is within 2¢ of I + J. U

Theorem 17.3. Let f be a function. Let a < b < ¢ be real numbers. If f: f=1and
fbc f =J then f has integral I + J on [a,c].

In short [ f = [0 f + [ f if the right side is defined.

Proof. Pick e > 0. There is a gauge G on [a, b] such that Ball(7, €) contains the Riemann
sum for f on any tagged division of [a, b] inside G; there is a gauge H on [b, ¢| such that
Ball(J, €) contains the Riemann sum for f on any tagged division of [b, ¢] inside H.

I define a new gauge as follows. For ¢t < b define F(t) = {x € G(t) : @ <b}. Fort =b
define F'(t) = G(t) N H(t). For ¢t > b define F'(t) = {x € H(t) : « > b}.

Say zo,...,Z, is a tagged division of [a,c| inside F. Then b € [zp_1,x;] C F(t) for
some k; by construction of F', t; must equal b. Now zg,t1,21,...,2Tk_1,tk,b is a tagged
division of [a,b] inside F', hence inside G. Thus the Riemann sum (1 — z)f(to) +

-+ (b —xk_1)f(tg) is within € of I. Similarly the Riemann sum (xx — b)f(tx) + - +
(p, — Tp—1)f(tn) is within € of J. Add: the Riemann sum (z; — o) f(to) + --- + (xx —
zp—1f(tx) + -+ (zn — Tp-1)f(t,) is within 2¢ of I + J. O

Theorem 17.4. Let f be a function. Let b < ¢ be real numbers. If f is nonnegative on
b, c|] and fbc f =1 then I is nonnegative.

Proof. Pick ¢ > 0. Select an appropriate gauge G. By Theorem 14.4, there is an
appropriate tagged division of [b, c|. The corresponding Riemann sum is nonnegative, so
I> —e. O

Part VI. Limits

18. Convergence and limits

Definition 18.1. Let f be a function. Then f converges to L at c if the function

:Br—>{L ifc=c
flx) ifz#c

18 continuous at c.
Equivalent terminology: f(z) converges to L as x approaches c.

By Theorem 2.2, there is at most one number L such that f converges to L at c. If this
number exists, it is called the limit of f at ¢, or the limit of f(z) as = approaches
¢, written lim,_,. f(x). Note that f is continuous if and only if lim,_,. f(x) = f(c).
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Example: cos(1/z) does not converge to 0 as « approaches 0.

19. Limits of sums, products, and compositions

Theorem 19.1. Let f and g be functions. If lim, . f(z) = L and lim,_,.g(z) = M
then f(x) + g(x) converges to L + M as x approaches c.

In short lim,_,.(f(z) + g(z)) = lim;_,. f(x) + lim,_,. g(x) if the right side is defined.

Proof. Replace f(c¢) by L and g(c) by M to obtain new functions a and b. Then a and
b are continuous, so a + b is continuous by Theorem 3.1. O

Theorem 19.2. Let f and g be functions. If lim,_,. f(z) = L and lim,_,.g(z) = M
then f(z)g(z) converges to LM as x approaches c.

Proof. Theorem 3.2. |

Theorem 19.3. Let f and g be functions. If lim,_,.g(x) = L, and f is continuous at
L, then f(g(x)) converges to f(L) as x approaches c.

In short lim, . f(g(z)) = f(lim,_. g(x)) if the right side is defined, provided that f is
continuous.

Proof. Theorem 3.3. 0]

20. L’Hopital’s rule

Theorem 20.1. Let f and g be real-valued functions differentiable at c. If f(c) = g(c) =
0, and ¢'(c) # 0, then f(x)/g(x) converges to f'(c)/g'(c) as x approaches c.

For example, lim,_,o(z/sinz) = 1/1 = 1, since sin’ = cos and cos0 = 1 # 0.

Proof. By assumption f(z) = f(¢)+ (z —¢) fi(z) = (x — ¢) f1(x) where f; is continuous
at c. Similarly g(z) = (x — ¢)g1(z) where g; is continuous at c¢. By assumption g;(c) =
g'(¢) # 0, so the function = — fi(x)/g1(x) is continuous at ¢, with value fi(c)/g1(c).

Finally f(x)/g(z) = fi1(z)/g1(x) for z # c. O

Theorem 20.2. Let f and g be differentiable real-valued functions. If f(c) = g(c) =0,
and lim,_,.(f'(z)/g'(x)) = L, then f(xz)/g(x) converges to L as x approaches c.

Proof. Fix a ball E around L. There is a ball D around c¢ such that f'(z)/¢'(z) € E
for all z € D with = # c. In particular, ¢’(z) is nonzero for x € D. By Theorem 12.1,
g(y) is nonzero for y € D.

I will show that f(y)/g(y) € E for all y € D with y # ¢. Thus f(y)/g(y) converges to L
as y approaches c.
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Given y € D, y # c¢, consider the function h = (z — f(x)g(y) — f(y)g(z)). Notice that
h is differentiable, with h'(z) = f'(x)g(y) — f(y)g'(x).

Now h(c) = f(c)g(y) = f(y)g(c) = 0, and h(y) = f(y)g(y) — f(y)9(y) = 0, so there is
some z between ¢ and y with A/(z) = 0 by Theorem 12.1. Thus f'(z)g(y) = f(y)¢'(x).

Both ¢'(z) and g(y) are nonzero, so f(y)/g(y) = f'(z)/d'(z) € E. O

Theorem 20.2 may be used repeatedly. For example:

. 1—cosx . sinz . COSX 1
lim ——— = lim = lim =
z—0 322 x—0 X z—0 2

o |

99. Expository notes

Common practice in calculus books is to define continuity using limits. I define limits
using continuity; continuity is a simpler concept.

“An open ball around ¢” is substantially easier to read than “for some h > 0, the set of
x such that |z —¢| < h.”

I use Carathéodory’s definition of the derivative of f. The point is to give a name to
the function = — (f(x) — f(c))/(x — ¢). I learned about this from an article by Stephen
Kuhn in the Monthly. It’s also used in the second edition of Apostol’s text.

My proof of Theorem 6.2 uses the formula h;(z) = f1(x)g(z)+ f(c)g1(x), which is shorter
than the (more obvious) formula hy(x) = fi(z)g(c) + f(c)g1(z) + (x — ¢) fr(z)g1(z). T
was reminded of this simplification by a letter in the Monthly from Giinter Pickert.

The Heine-Borel theorem follows immediately from Theorem 14.4. See Botsko’s 1987
Monthly article for this approach to all the basic completeness theorems. Thanks to Joe
Buhler for the reference.

I follow the Kurzweil-Henstock approach to integration. The resulting integral is more
general than the Lebesgue integral; it is equivalent to the integrals constructed by Denjoy
and Perron. There is no need for any technical conditions in the fundamental theorem
of calculus, Theorem 16.1; every derivative is integrable. I learned about this from
advertisements by Robert G. Bartle in the Bulletin and the Monthly.
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