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Preface

Geometry is a classical core part of mathematics which, with its birth, marked
the beginning of the mathematical sciences. Thus, not surprisingly, geometry
has played a key role in many important developments of mathematics in the
past, as well as in present times. While focusing on modern mathematics, one
has to emphasize the increasing role of discrete mathematics, or equivalently,
the broad movement to establish discrete analogues of major components of
mathematics. In this way, the works of a number of outstanding mathemati-
cians including H.S. M. Coxeter (Canada), C. A. Rogers (United Kingdom),
and L. Fejes-Tóth (Hungary) led to the new and fast developing field called
discrete geometry. One can briefly describe this branch of geometry as the
study of discrete arrangements of geometric objects in Euclidean, as well as
in non-Euclidean spaces. This, as a classical core part, also includes the theory
of polytopes and tilings in addition to the theory of packing and covering. Dis-
crete geometry is driven by problems often featuring a very clear visual and
applied character. The solutions use a variety of methods of modern mathe-
matics, including convex and combinatorial geometry, coding theory, calculus
of variations, differential geometry, group theory, and topology, as well as
geometric analysis and number theory.

The present book is centered around topics such as sphere packings, pack-
ings by translates of convex bodies, coverings by homothetic bodies, illumina-
tion and related topics, coverings by planks and cylinders, monotonicity of the
volume of finite arrangements of spheres, and ball-polyhedra. The first part
of the book gives an overview of the most relevant state-of-the-art research
problems, including the problem of finding densest sphere packings, estimat-
ing the (surface) volume of Voronoi cells in sphere packings, studying the
Boltyanski–Hadwiger conjecture, the affine invariant version of Tarski’s plank
problem, and the Kneser–Poulsen conjecture, just to mention a few classical
ones. The second part of the book is a collection of selected proofs that have
been discovered in the last ten years, and have not yet appeared in any book
or monograph. I have made definite efforts to structure those proofs such that
they are presentable within a normal lecture (resp., seminar). The majority
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of the proofs presented in the second part of the book have been developed
by the author, or were results of the author’s joint work with a number of
colleagues. It is a particular pleasure for me to acknowledge my long-lasting
collaboration with Bob Connelly (Cornell University, USA) and my brother
András Bezdek (Auburn University, USA and Rényi Institute, Hungary).

This book is aimed at advanced undergraduate and early graduate stu-
dents, as well as interested researchers. In addition to leading the reader to
the frontiers of geometric research, my work gives a short introduction to the
classical cores of discrete geometry. The forty-some research problems listed
are intended to encourage further research. The following three books on re-
lated topics might provide good supplemental material: J. Matousek, Lectures
on Discrete Geometry, Springer, 2002; Ch. Zong, The Cube: A Window to
Convex and Discrete Geometry, Cambridge Univ. Press., 2006 and P. Gruber,
Convex and Discrete Geometry, Springer, 2007.

The idea of writing this book came to me while I was preparing my lecture
at the COE Workshop on Sphere Packings at Kyushu University (Fukuoka,
Japan) in November 2004. The final version of the manuscript was prepared
during my visit to Eötvös University (Budapest, Hungary) in the summer of
2009 and in the fall of 2009, while on research leave from the University of
Calgary.

The present book is based on the material of some graduate-level courses
and research seminar lectures I gave between 2005-2009 at the Department
of Mathematics and Statistics of the University of Calgary. I am very much
indebted to all my students and colleagues who attended my lectures and
actively participated in the discussions. It gave me great satisfaction that
those lectures motivated a good deal of further research, and, in fact, some of
the results in this book were obtained by the participants during and after my
lectures. My gratitude is due to my colleagues T. Bisztriczky, Richard Guy,
Ferenc Fodor, Joseph Ling, Deborah Oliveros-Braniff, Jonathan Schaer, Dihn
Thi, Csaba D. Tóth, Yuriy Zinchenko at the University of Calgary, and K.
Böröczky, B. Csikós, A. Heppes, Gy. Kiss at Eötvös University and my former
graduate students Zsolt Lángi, Wesley Maciejewski, Márton Naszódi, Bouchra
Mika Sabbagh, Peter Papez, Máté Salát at the University of Calgary. Also, I
want to thank the contributions of my three sons, Dániel, Máté, and Márk to
some of the topics in this book. Last but not least I wish to thank my wife,
Éva, whose strong support and encouragement helped me a great deal during
the long hours of writing.

January 2010, Calgary Károly Bezdek, Canada Research Chair
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Part I

Classical Topics Revisited





1

Sphere Packings

1.1 Kissing Numbers of Spheres

The main problem in this section is fondly known as the kissing number
problem. The kissing number τd is the maximum number of nonoverlapping
d-dimensional balls of equal size that can touch a congruent one in the d-

d

subject of a famous discussion between Isaac Newton and David Gregory in
1694. So, it is not surprising that the literature on the kissing number problem
is an extensive one. Perhaps the best source of information on this problem

τ2 = 6 is trivial. However, determining the value of τ3 is not a trivial issue.
Actually the first complete and correct proof of τ3 = 12 was given by Schütte
and van der Waerden [229] in 1953. The often-cited proof of Leech [189], which
is impressively short, contrary to the common belief does contain some gaps.
It can be completed though; see, for example, [192] as well as the more recent
paper [193]. Further recent proofs can be found in [92], [8], and in [205]. (For
additional information on all this see the very visual paper [100].) Thus, we
have the following theorem.

Theorem 1.1.1 τ3 = 12.

Following the chronological ordering, here are the major inputs on the
kissing numbers of Euclidean balls of dimension larger than 3. Coxeter [111]

d
2dTd−1(2α)
(d+1)!ωd+1

is the Schläfli function with Td−1(2α) standing

for the spherical volume of a regular spherical (d− 1)-dimensional simplex of
dihedral angle 2α and with ωd+1 denoting the volume of a (d+1)-dimensional
unit ball in Ed+1.

Theorem 1.1.2 τd ≤ 2Fd−1(β)
Fd(β)

, where β := 1
2arcsec(d).

© Springer Science+Business Media, LLC 2010 

where F (α) :=

conjectured and Böröczky [89] proved the theorem stated as Theorem 1.1.2,

3

description of the present status of this problem.

dimensional Euclidean space E . In three dimensions this question was the

K. Bezdek, Classical Topics in Discrete Geometry, CMS Books in Mathematics,

is the book [108] by Conway and Sloane. In what follows we give a short

DOI 10.1007/978-1-4419-0600-7_1,  



4 1 Sphere Packings

It was a breakthrough when Delsarte’s linear programming method (for
details see, for example, [214]) was applied to the kissing number problem
and also, when Kabatiansky and Levenshtein [173] succeeded in improving
the upper bound of the previous theorem for large d as follows. The lower
bound mentioned below was found by Wyner [248] several years earlier.

Theorem 1.1.3 20.2075d(1+o(1)) ≤ τd ≤ 20.401d(1+o(1)).

Unfortunately, the gap between the lower and upper bounds is exponential.
Still, Levenshtein [190] and Odlyzko and Sloane [211], independently of each
other, were able to prove the following exact values for τd.

Theorem 1.1.4 τ8 = 240 and τ24 = 196560.

In addition, Bannai and Sloane [19] proved the following uniqueness result.

Theorem 1.1.5 There is a unique way (up to isometry) of arranging 240
(resp., 196560) non-overlapping unit spheres in 8-dimensional (resp., 24-
dimensional) Euclidean space such that they touch another unit sphere.

More recently Musin [203], [204] extending Delsarte’s method found the
kissing number of 4-dimensional Euclidean balls. Thus, we have

Theorem 1.1.6 τ4 = 24.

The following is generally believed to be true, but so far no one has been
able to prove it.

Conjecture 1.1.7 There is a unique way (up to isometry) of arranging 24
non-overlapping unit spheres in 4-dimensional Euclidean space such that they
touch another unit sphere.

It was mentioned by the author in [62] that basic rigidity techniques (such
as the ones discussed in [222]) imply the following theorem that one can view
as the local version of Conjecture 1.1.7. (As a next step towards a proof of
Conjecture 1.1.7, it would be helpful to find a proper explicit value for ε in
the statement below.)

Theorem 1.1.8 Take a unit ball B of E4 touched by 24 other (non-over-
lapping) unit balls B1,B2, . . . ,B24 with centers c1, c2, . . . , c24 such that the
centers c1, c2, . . . , c24 form the vertices of a regular 24-cell {3, 4, 3} in E4.
Then there exists an ε > 0 with the following property: if the non-overlap-
ping unit balls B′1,B

′
2, . . . ,B

′
24 with centers c′1, c

′
2, . . . , c

′
24 are chosen such

that B′1,B
′
2, . . . ,B

′
24 are all tangent to B in E4 and for each i, 1 ≤ i ≤ 24 the

Euclidean distance between ci and c′i is at most ε, then c′1, c
′
2, . . . , c

′
24 form

the vertices of a regular 24-cell {3, 4, 3} in E4.
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For the best known upper bounds on the kissing number for dimensions up
to 24 (based on semidefinite programming) we refer the interested reader to
[9] and [198]. Also, we note that there is a long list of highest kissing numbers
presently known in dimensions from 32 to 128 and published in [210]. Last but
not least the paper [123] of Edel, Rains, and Sloane describes some elementary
and amazingly efficient constructions.

1.2 One-Sided Kissing Numbers of Spheres

The one-sided kissing number B(d) of a d-dimensional ball say, B in Ed is the
largest number of non-overlapping translates of B that touch B and that all lie
in a closed supporting halfspace of B. The term “one-sided kissing number”
was proposed by the author in [62] and the notation B(d) was introduced
by Musin in [206]. It is obvious that the one-sided kissing number of any
circular disk in E2 is 4; that is, B(2) = 4. However, the 3-dimensional analogue
statement is harder to come up with. Actually, this problem was raised by L.
Fejes Tóth and H. Sachs in [139]. As it turns out, the one-sided kissing number
of a 3-dimensional Euclidean ball is 9. This was first proved in [130] (see also
[225] and [31] for other proofs).

Theorem 1.2.1 The one-sided kissing number of the 3-dimensional Eu-
clidean ball is 9; that is, B(3) = 9.

In fact, we know a bit more; namely, it is proved in [178] that in the case of
the 3-dimensional Euclidean ball the maximal one-sided kissing arrangement is
unique up to isometry. As we have mentioned before, Musin [204] has recently
published a proof of the long-standing conjecture that the kissing number
of the 4-dimensional Euclidean ball is 24. Based on that he [206] has given
a proof of the following related statement that has been conjectured by the
author [62].

Theorem 1.2.2 The one-sided kissing number of the 4-dimensional Eu-
clidean ball is 18; that is, B(4) = 18.

Very recently, using semidefinite programming, Bachoc and Vallentin [10]
were able to prove the following theorem.

Theorem 1.2.3 The one-sided kissing number of the 8-dimensional Eu-
clidean ball is 183; that is, B(8) = 183.

We close this section with the relevant challenging conjectures of Musin
[206] (see also [21]).

Conjecture 1.2.4 B(5) = 32 and B(24) = 144855.
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1.3 On the Contact Numbers of Finite Sphere Packings

Let B be a ball in Ed. Then the contact graph of an arbitrary finite packing
by non-overlapping translates of B in Ed is the (simple) graph whose vertices
correspond to the packing elements and whose two vertices are connected by
an edge if and only if the corresponding two packing elements touch each other.
One of the most basic questions on contact graphs is to find the maximum
number of edges that a contact graph of n non-overlapping translates of the
given Euclidean ball B can have in Ed. Harborth [166] proved the following
remarkable result on the contact graphs of congruent circular disk packings
in E2.

Theorem 1.3.1 The maximum number of touching pairs in a packing of n
congruent circular disks in E2 is precisely

b3n−
√

12n− 3c.

The analogue question in the hyperbolic plane has been studied by Bowen
in [86]. We prefer to quote his result in the following geometric way.

Theorem 1.3.2 Consider circle packings in the hyperbolic plane, by finitely
many congruent circles, which maximize the number of touching pairs for the
given number of congruent circles. Then such a packing must have all of its
centers located on the vertices of a triangulation of the hyperbolic plane by
congruent equilateral triangles, provided the diameter D of the circles is such
that an equilateral triangle in the hyperbolic plane of side length D has each
of its angles equal to 2π

N for some N > 6.

It is not hard to see that one can extend the above result to S2 exactly
in the way as the above phrasing suggests. However, we get a more general
approach if we do the following. Take n non-overlapping unit diameter balls
in a convex position in E3; that is, assume there exists a 3-dimensional con-
vex polyhedron whose vertices are center points. Moreover, each center point
belongs to the boundary of that convex polyhedron, where n ≥ 4 is a given
integer. Obviously, the shortest distance among the center points is at least
one. Then count the unit distances showing up between pairs of center points
but count only those pairs that generate a unit line segment on the boundary
of the given 3-dimensional convex polyhedron. Finally, maximize this number
for the given n and label this maximum by c(n). In the following statement of
D. Bezdek [36] the convex polyhedra entering are called “generalized deltahe-
dra” (or in short, “g-deltahedra”) (see also [37]) mainly because that family
of convex polyhedra includes all “deltahedra” classified quite some time ago
by Freudenthal and van der Waerden in [144].

Theorem 1.3.3 c(n) ≤ 3n− 6, where equality is attained for infinitely many
n namely, for those for which there exists a 3-dimensional convex polyhedron
each face of which is an edge-to-edge union of some regular triangles of side
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length one such that the total number of generating regular triangles on the
boundary of the convex polyhedron is precisely 2n − 4 with a total number of
3n− 6 sides of length one and with a total number of n vertices.

Theorem 1.3.3 proposes to find a proper classification for g-deltahedra, a
question that is still open. Some partial results on that can be found in the
recent paper [37] of D. Bezdek, the main result of which states that the regular
icosahedron has the smallest isoperimetric quotient among all g-deltahedra.
For the sake of completeness we mention that this result supports the still
open Icosahedral Conjecture of Steiner (1841), according to which among all
convex polyhedra isomorphic to an icosahedron (i.e. having the same face
structure as an icosahedron) the regular icosahedron has the smallest isoperi-
metric quotient. Another interesting result on g-deltahedra was obtained by
D. Bezdek in [36]. It claims that every g-deltahedron has an edge unfolding.
This is part of the general problem, raised by Shephard (1975) and motivated
also by some drawings of Dürer (1525), of whether every convex polyhedron
has an edge unfolding, that is can be cut along some of its edges and then
folded into a single planar polygon without overlap. For more details on this
we refer the interested reader to the lavishly illustrated book [121] of Demaine
and O’Rourke.

Now, we are ready to phrase the Contact Number Problem of finite con-
gruent sphere packings in E3. For a given positive integer n ≥ 2 find the
largest number C(n) of touching pairs in a packing of n congruent balls in
E3. One can regard this problem as a combinatorial relative of the Kepler
conjecture on the densest unit sphere packings in E3. It is easy to see that
C(2) = 1, C(3) = 3, C(4) = 6, C(5) = 9, C(6) = 12, C(7) = 15, C(8) = 18 and
C(9) = 21. So, it is natural to continue with the following question.

Problem 1.3.4 Prove or disprove that C(10) = 24, C(11) = 28, C(12) = 32
and C(13) = 36. In general, prove or disprove that C(n) can be achieved in
a packing of n unit balls in E3 consisting of parallel layers of unit balls each
being a subset of the densest infinite hexagonal layer of unit balls.

For a general n it seems challenging enough to search for good (lower and)
upper bounds for C(n). In connection with this problem, the author [62] has
proved the following estimate.

Theorem 1.3.5 C(n) < 6n− 0.59n
2
3 for all n ≥ 2.

1.4 Lower Bounds for the (Surface) Volume of Voronoi
Cells in Sphere Packings

Recall that a family of non-overlapping 3-dimensional balls of radii 1 in Eu-
clidean 3-space, E3 is called a unit ball packing in E3. The density of the pack-
ing is the proportion of space covered by these unit balls. The sphere packing



8 1 Sphere Packings

problem asks for the densest packing of unit balls in E3. The conjecture that
the density of any unit ball packing in E3 is at most π√

18
= 0.74078 . . . is

often attributed to Kepler’s statement of 1611. The problem of proving the
Kepler conjecture appears as part of Hilbert’s 18th problem [168]. Using an
ingenious argument which works in any dimension, Rogers [218] obtained the
upper bound 0.77963 . . . for the density of unit ball packings in E3. This bound
has been improved by Lindsey [191], and Muder [201], [202] to 0.773055 . . . .
Hsiang [170], [171] proposed an elaborate line of attack (along the ideas of L.
Fejes Tóth suggested 40 years earlier), but his claim that he settled Kepler’s
conjecture seems exaggerated. However, so far no one has found any gap in
the approach of Hales [156], [157], [158], [159], [160], [161], [162], [141], [163]
although no one has been able to fully verify it either. This is not too surpris-
ing, given that the detailed argument is described in several papers and relies
on long computer-aided calculations of more than 5000 subproblems. Thus,
after several years of extremely hard work, Hales with the help of Ferguson
[141] has been able to finish his complex project and they were able to come
up with the most detailed and complete-looking computer-supported proof of
the longstanding conjecture of Kepler that is presently known. We summarize
their heroic achievement in a short statement.

Theorem 1.4.1 The densest packing of unit balls in E3 has density π√
18

,

which is attained by the “cannonball packing”.

For several of the above-mentioned papers Voronoi cells of unit ball pack-
ings play a central role. Recall that the Voronoi cell of a unit ball in a packing
of unit balls in E3 is the set of points that are not farther away from the
center of the given ball than from any other ball’s center. As is well known,
the Voronoi cells of a unit ball packing in E3 form a tiling of E3. One of the
most attractive problems on Voronoi cells is the Dodecahedral Conjecture of
L. Fejes Tóth published in [132]. According to this the volume of any Voronoi
cell in a packing of unit balls in E3 is at least as large as the volume of a
regular dodecahedron with inradius 1. Very recently Hales and McLaughlin
[164], [165] have succeeded in proving this long-standing conjecture of L. Fejes
Tóth. Thus, we have the following theorem.

Theorem 1.4.2 The volume of any Voronoi cell in a packing of unit balls in
E3 is at least as large as the volume of a regular dodecahedron with inradius
1.

We wish to mention that although neither Theorem 1.4.1 nor Theo-
rem 1.4.2 implies the other, their proofs follow a similar outline and share
a significant number of methods, and in particular, both are based on long
computer calculations.

As a next step towards a better understanding of the underlying geome-
try, it seems natural to investigate the following strengthened version of the
Dodecahedral Conjecture, which we call the Strong Dodecahedral Conjecture.
It was first articulated in [55].
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Conjecture 1.4.3 The surface area of any Voronoi cell in a packing with
unit balls in E3 is at least as large as 16.6508 . . ., the surface area of a regular
dodecahedron of inradius 1.

It is easy to see that Conjecture 1.4.3 implies Theorem 1.4.2. The first
efforts for a proof of the Strong Dodecahedral Conjecture were made by the
author and Daróczy-Kiss [63]. In order to phrase their result properly we need
to introduce a bit of terminology. A face cone of a Voronoi cell in a packing
with unit balls in E3 is the convex hull of the chosen face and the center of the
unit ball sitting in the given Voronoi cell. The surface area density of a unit
ball in a face cone is simply the spherical area of the region of the unit sphere
(centered at the apex of the face cone) that belongs to the face cone divided
by the Euclidean area of the face. It should be clear from these definitions
that if we have an upper bound for the surface area density in face cones of
Voronoi cells, then the reciprocal of this upper bound times 4π (the surface
area of a unit ball) is a lower bound for the surface area of Voronoi cells. Now
we are ready to state the main theorem of [63].

Theorem 1.4.4 The surface area density of a unit ball in any face cone of a
Voronoi cell in an arbitrary packing of unit balls of E3 is at most

−9π + 30 arccos
(√

3
2 sin

(
π
5

))
5 tan

(
π
5

) = 0.77836 . . . ,

and so the surface area of any Voronoi cell in a packing with unit balls in E3

is at least
20π tan

(
π
5

)
−9π + 30 arccos

(√
3
2 sin

(
π
5

)) = 16.1445 . . . .

Moreover, the above upper bound 0.77836 . . . for the surface area density is
best possible in the following sense. The surface area density in the face cone
of any n-sided face with n = 4, 5 of a Voronoi cell in an arbitrary packing of
unit balls of E3 is at most

3(2− n)π + 6n arccos
(√

3
2 sin(πn )

)
n tan(πn )

and equality is achieved when the face is a regular n-gon inscribed in a circle
of radius 1

√
3 cos

(
π
n

) and positioned such that it is tangent to the corresponding

unit ball of the packing at its center.

The following recent improvement was obtained in [5].

Theorem 1.4.5 The surface area of any Voronoi cell in a packing with unit
balls in E3 is at least 16.1977 . . ..
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Recall that the Voronoi cell of a unit ball in a packing of unit balls in Ed
is the set of points that are not farther away from the center of the given
ball than from any other ball’s center. As is well known, the Voronoi cells
of a unit ball packing in Ed form a tiling of Ed. One of the most attractive
results on the sphere packing problem was proved by C. A. Rogers [218] in
1958. It was rediscovered by Baranovskii [20] and extended to spherical and
hyperbolic spaces by Böröczky [89]. It can be phrased as follows. Take a regular
d-dimensional simplex of edge length 2 in Ed and then draw a d-dimensional
unit ball around each vertex of the simplex. Let σd denote the ratio of the
volume of the portion of the simplex covered by balls to the volume of the
simplex.

Theorem 1.4.6 The volume of any Voronoi cell in a packing of unit balls in
Ed is at least ωd

σd
, where ωd denotes the volume of a d-dimensional unit ball.

The following strengthening of Theorem 1.4.6 has been proved by the
author in [55]. (See also [54] for a somewhat simpler proof.)

Theorem 1.4.7 The surface volume of any Voronoi cell in a packing of unit
balls in Ed, d ≥ 2 is at least dωd

σd
.

Indeed, Theorem 1.4.7 implies Theorem 1.4.6 by observing that the volume
of a Voronoi cell in a packing of unit balls in Ed is at least as large as 1

d times
the surface volume of the Voronoi cell in question. The next theorem due to
the author [56] improves the estimate of Theorem 1.4.7 even further for all
d ≥ 8. For this we need a bit of notation. As usual, let lin(·), aff(·), conv(·),
vold(·), ωd, Svold−1(·), dist(·, ·), ‖ · ‖, and o refer to the linear hull, the affine
hull, the convex hull in Ed, the d-dimensional Euclidean volume measure, the
d-dimensional volume of a d-dimensional unit ball, the (d − 1)-dimensional
spherical volume measure, the distance function in Ed, the standard Euclidean
norm, and to the origin in Ed.

Let conv{o,w1, . . . ,wd} be a d-dimensional simplex having the property
that the linear hull lin{wj −wi|i < j ≤ d} is orthogonal to the vector wi in
Ed, d ≥ 8 for all 1 ≤ i ≤ d− 1; that is, let

conv{o,w1, . . . ,wd}

be a d-dimensional orthoscheme in Ed. Moreover, let

‖wi‖ =

√
2i

i+ 1
for all 1 ≤ i ≤ d.

It is clear that in the right triangle M wd−2wd−1wd with right angle at the

vertex wd−1 we have the inequality ‖wd − wd−1‖ =
√

2
d(d+1) <

√
2

(d−1)d =

‖wd−1 − wd−2‖ and therefore ∠wd−1wd−2wd < π
4 . Now, in the plane

aff{wd−2,wd−1, wd} of the triangle M wd−2wd−1wd let
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C wd−2wdwd+1

denote the circular sector of central angle

∠wdwd−2wd+1 =
π

4
− ∠wd−1wd−2wd

and of center wd−2 sitting over the circular arc with endpoints wd,wd+1 and
radius ‖wd −wd−2‖ = ‖wd+1 −wd−2‖ such that

C wd−2wdwd+1 and M wd−2wd−1wd

are adjacent along the line segment wd−2wd and are separated by the line of
wd−2wd. Then let

D(wd−2,wd−1,wd,wd+1) =M wd−2wd−1wd ∪ C wd−2wdwd+1

be the convex domain generated by the triangle M wd−2wd−1wd with constant
angle

∠wd−1wd−2wd+1 =
π

4
.

Now, let

W = conv
(
{o,w1, . . . ,wd−3} ∪D(wd−2,wd−1,wd,wd+1)

)
be the d-dimensional wedge (or cone) with (d− 1)-dimensional base

QW = conv
(
{w1, . . . ,wd−3} ∪D(wd−2,wd−1,wd,wd+1)

)
and apex o.

Finally, if B = {x ∈ Ed| dist(o,x) = ‖x‖ ≤ 1} denotes the d-dimensional unit
ball centered at the origin o of Ed and Sd−1 = {x ∈ Ed| dist(o,x) = ‖x‖ = 1}
denotes the (d− 1)-dimensional unit sphere centered at o, then let

σ̂d =
Svold−1(W ∩ Sd−1)

vold−1(QW )
=

vold(W ∩B)

vold(W)

be the the surface density (resp., volume density) of the unit sphere Sd−1
(resp., of the unit ball B) in the wedge W . For the sake of completeness we
remark that as the regular d-dimensional simplex of edge length 2 can be
dissected into (d + 1)! pieces each being congruent to conv{o,w1, . . . ,wd}
therefore

σd =
vold(conv{o,w1, . . . ,wd} ∩B)

vold(conv{o,w1, . . . ,wd})
.

Now, we are ready to state the main result of [56]. Recall that the surface
density of any unit sphere in its Voronoi cell in a unit sphere packing of Ed
is defined as the ratio of the surface volume of the unit sphere to the surface
volume of its Voronoi cell.
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Theorem 1.4.8 The surface volume of any Voronoi cell in a packing of unit
balls in the d-dimensional Euclidean space Ed, d ≥ 8 is at least dωd

σ̂d
; that

is, the surface density of any unit sphere in its Voronoi cell in a unit sphere
packing of Ed, d ≥ 8 is at most σ̂d. Thus, the volume of any Voronoi cell in
a packing of unit balls in Ed, d ≥ 8 is at least ωd

σ̂d
and so, the (upper) density

of any unit ball packing in Ed, d ≥ 8 is at most σ̂d (< σd).

Last but not least we note that the proof of Theorem 1.4.8 published in
[56] gives a proof of the following even stronger statement. Take a Voronoi cell
of a unit ball in a packing of unit balls in the d-dimensional Euclidean space
Ed, d ≥ 8 and then take the intersection of the given Voronoi cell with the

closed d-dimensional ball of radius
√

2d
d+1 concentric to the unit ball of the

Voronoi cell. Then the surface area of the truncated Voronoi cell is at least
d·ωd
σ̂d

.

1.5 On the Density of Sphere Packings in Spherical
Containers

In this section we propose a way for investigating an analogue of Kepler’s
problem for finite packings of congruent balls in hyperbolic 3-space H3. The
idea goes back to the theorems of L. Fejes Tóth [133] in E2, J. Molnár [199]
in S2, and the author [39], [40] in H2 which, in short, can be summarized as
follows.

Theorem 1.5.1 If at least two congruent circular disks are packed in a circu-
lar disk in the plane of constant curvature, then the packing density is always
less than π√

12
.

The hyperbolic case of this theorem conjectured by L. Fejes Tóth and
proved by the author in [39] (see also [40]) is truly of hyperbolic nature be-
cause there are (infinite) packings of congruent circular disks in H2 in which
the density of any circular disk in its respective Voronoi cell is significantly
larger than π√

12
. Also, we note that the constant π√

12
is best possible in the

above theorem. As an additional point we mention that because the standard
methods do not give a good definition of density in H2 (in fact all of them fail
to work as was observed by Böröczky [88]) and because even today we know
only a rather “fancy” way of defining density in hyperbolic space (see the
work of Bowen and Radin [87]), it seems important to study finite packings
in bounded containers of the hyperbolic space where there is no complica-
tion with the proper definition of density. All this leads us to the following
question.

Problem 1.5.2 Let r > 0 be given. Then prove or disprove that there exists
a positive integer N(r) with the property that the density of at least N(r)
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non-overlapping balls of radii r in a ball of H3 is always less than π√
18

=
0.74048 . . . .

1.6 Upper Bounds on Sphere Packings in High
Dimensions

Recall that a family of non-overlapping d-dimensional balls of radii 1 in the
d-dimensional Euclidean space Ed is called a unit ball packing of Ed. The
density of the packing is the proportion of space covered by these unit balls.
The sphere packing problem asks for the densest packing of unit balls in
Ed. Indubitably, of all problems concerning packing it was the sphere packing
problem which attracted the most attention in the past decade. It has its roots
in geometry, number theory, and information theory and it is part of Hilbert’s
18th problem. The reader is referred to [108] (especially the third edition,
which has about 800 references covering 1988-1998) for further information,
definitions, and references. In what follows we report on a few selected recent
developments.

The lower bound for the volume of Voronoi cells in congruent sphere pack-
ings due to C. A. Rogers [218] and Baranovskii [20] (mentioned earlier) com-
bined with Daniel’s asymptotic formula [219] yields the following corollary.

Theorem 1.6.1 The (upper) density of any unit ball packing in Ed is at most

σd =
d

e
2−(0.5+o(1))d (as d→∞).

Then 20 years later, in 1978 Kabatiansky and Levenshtein [173] improved
this bound in the exponential order of magnitude as follows. They proved the
following theorem.

Theorem 1.6.2 The (upper) density of any unit ball packing in Ed is at most

2−(0.599+o(1))d (as d→∞).

In fact, Rogers’ bound is better than the Kabatiansky–Levenshtein bound
for 4 ≤ d ≤ 42 and above that the Kabatiansky–Levenshtein bound takes over
([108], p. 20).

There has been some very important recent progress concerning the ex-
istence of economical packings. On the one hand, improving earlier results,
Ball [13] proved the following statement through a very elegant completely
new variational argument. (See also [152] for a similar result of W. Schmidt
on centrally symmetric convex bodies.)

Theorem 1.6.3 For each d, there is a lattice packing of unit balls in Ed with
density at least

d− 1

2d−1
ζ(d),

where ζ(d) =
∑∞
k=1

1
kd

is the Riemann zeta function.
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On the other hand, for some small values of d, there are explicit (lattice)
packings which give (considerably) higher densities than the bound just stated.
The reader is referred to [108] and [209] for a comprehensive view of results
of this type.

Further improvements on the upper bounds σ̂d < σd for the dimensions
from 4 to 36 have been obtained very recently by Cohn and Elkies [103].
They developed an analogue for sphere packing of the linear programming
bounds for error-correcting codes, and used it to prove new upper bounds
for the density of sphere packings, which are better than the author’s upper
bounds σ̂d for the dimensions 4 through 36. Their method together with the
best-known sphere packings yields the following nearly optimal estimates in
dimensions 8 and 24.

Theorem 1.6.4 The density of the densest unit ball packing in E8 (resp.,
E24) is at least 0.2536 . . . (resp., 0.00192 . . . ) and is at most 0.2537 . . . . (resp.,
0.00196 . . . ).

Cohn and Elkies [103] conjecture that their approach can be used to solve
the sphere packing problem in E8 (resp., E24).

Conjecture 1.6.5 The E8 root lattice (resp., the Leech lattice) that produces
the corresponding lower bound in the previous theorem in fact, represents the
largest possible density for unit sphere packings in E8 (resp., E24).

If linear programming bounds can indeed be used to prove optimality of
these lattices, it would not come as a complete surprise because, for example,
the kissing number problem in these dimensions was solved similarly.

Last but not least we mention the following more recent and related result
of Cohn and Kumar [104] according to which the Leech lattice is the densest
lattice packing in E24. (The densest lattices have been known up to dimension
8.)

Theorem 1.6.6 The Leech lattice is the unique densest lattice in E24, up to
scaling and isometries of E24.

We close this section with a short summary on the recent progress of L.
Fejes Tóth’s [138] “sausage conjecture” that is one of the main problems of the
theory of finite sphere packings. According to this conjecture if in Ed, d ≥ 5 we
take n ≥ 1 non-overlapping unit balls, then the volume of their convex hull is
at least as large as the volume of the convex hull of the “sausage arrangement”
of n non-overlapping unit balls under which we mean an arrangement whose
centers lie on a line of Ed such that the unit balls of any two consecutive
centers touch each other. By optimizing the methods developed by Betke,
Henk, and Wills [28], [29], finally Betke and Henk [27] succeeded in proving
the sausage conjecture of L. Fejes Tóth in any dimension of at least 42. Thus,
we have the following natural-looking but, extremely not trivial theorem.

Theorem 1.6.7 The sausage conjecture holds in Ed for all d ≥ 42.
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It remains a highly interesting challenge to prove or disprove the sausage
conjecture of L. Fejes Tóth for the dimensions between 5 and 41.

Conjecture 1.6.8 Let 5 ≤ d ≤ 41 be given. Then the volume of the convex
hull of n ≥ 1 non-overlapping unit balls in Ed is at least as large as the
volume of the convex hull of the “sausage arrangement” of n non-overlapping
unit balls which is an arrangement whose centers lie on a line of Ed such that
the unit balls of any two consecutive centers touch each other.

1.7 Uniform Stability of Sphere Packings

The notion of solidity, introduced by L. Fejes Tóth [136] to overcome diffi-
culties of the proper definition of density in the hyperbolic plane, has been
proved very useful and stimulating. Roughly speaking, a family of convex sets
generating a packing is said to be solid if no proper rearrangement of any finite
subset of the packing elements can provide a packing. More concretely, a circle
packing in the plane of constant curvature is called solid if no finite subset of
the circles can be rearranged such that the rearranged circles together with
the rest of the circles form a packing not congruent to the original. An (easy)
example for solid circle packings is the family of incircles of a regular tiling
{p, 3} for any p ≥ 3. In fact, a closer look at this example led L. Fejes Tóth
[140] to the following simple sounding but difficult problem: he conjectured
that the incircles of a regular tiling {p, 3} form a strongly solid packing for
any p ≥ 5; that is, by removing any circle from the packing the remaining
circles still form a solid packing. This conjecture has been verified for p = 5
by Böröczky [90] and Danzer [117] and for p ≥ 8 by A. Bezdek [30]. Thus, we
have the following theorem.

Theorem 1.7.1 The incircles of a regular tiling {p, 3} form a strongly solid
packing for p = 5 and for any p ≥ 8.

The outstanding open question left is the following.

Conjecture 1.7.2 The incircles of a regular tiling {p, 3} form a strongly solid
packing for p = 6 as well as for p = 7.

In connection with solidity and finite stability (of circle packings) the no-
tion of uniform stability (of sphere packings) has been introduced by the
author, A. Bezdek, and Connelly [34]. According to this a sphere packing (in
the space of constant curvature) is said to be uniformly stable if there exists an
ε > 0 such that no finite subset of the balls of the packing can be rearranged
such that each ball is moved by a distance less than ε and the rearranged
balls together with the rest of the balls form a packing not congruent to the
original one. Now, suppose that P is a packing of (not necessarily) congruent
balls in Ed. Let GP be the contact graph of P, where the centers of the balls
serve as the vertices of GP and an edge is placed between two vertices when
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the corresponding two balls are tangent. The following basic principle can be
used to show that many packings are uniformly stable. For the more technical
definitions of “critical volume condition” and “infinitesimal rigidity” entering
in the theorem below we refer the interested reader to the proof discussed in
the proper section of this book.

Theorem 1.7.3 Suppose that Ed, d ≥ 2 can be tiled face-to-face by congruent
copies of finitely many convex polytopes P1,P2, . . . ,Pm such that the vertices
and edges of that tiling form the vertex and edge system of the contact graph
GP of some ball packing P in Ed. Assume that each Pi and the graph GP
restricted to the vertices of Pi (and regarded as a strut graph), satisfy the
critical volume condition and assume that the bar framework GP (restricted
to the vertices of Pi) is infinitesimally rigid. Then the packing P is uniformly
stable.

By taking a closer look at the Delaunay tilings of a number of lattice
sphere packings one can derive the following corollary (for more details see
[34]).

Corollary 1.7.4 The densest lattice sphere packings A2, A3, D4, D5, E6, E7,
E8 up to dimension 8 are all uniformly stable.

Last we mention another corollary (for details see [34]), which was also
observed by Bárány and Dolbilin [23] and which supports the above-mentioned
conjecture of L. Fejes Tóth.

Corollary 1.7.5 Consider the triangular packing of circular disks of equal
radii in E2 where each disk is tangent to exactly six others. Remove one disk
to obtain the packing P ′. Then the packing P ′ is uniformly stable.
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Finite Packings by Translates of Convex Bodies

2.1 Hadwiger Numbers of Convex Bodies

Let K be a convex body (i.e., a compact convex set with nonempty interior) in
d-dimensional Euclidean space Ed, d ≥ 2. Then the Hadwiger number H(K)
of K is the largest number of non-overlapping translates of K that can all
touch K. An elegant observation of Hadwiger [154] is the following.

Theorem 2.1.1 For every d-dimensional convex body K,

H(K) ≤ 3d − 1,

where equality holds if and only if K is an affine d-cube.

On the other hand, in another elegant paper Swinnerton–Dyer [236] proved
the following lower bound for Hadwiger numbers of convex bodies.

Theorem 2.1.2 For every d-dimensional (d ≥ 2)convex body K,

d2 + d ≤ H(K).

Actually, finding a better lower bound for Hadwiger numbers of d-dimensi-
onal convex bodies is a highly challenging open problem for all d ≥ 4. (It is not
hard to see that the above theorem of Swinnerton–Dyer is sharp for dimensions
2 and 3.) The best lower bound known in dimensions d ≥ 4 is due to Talata
[239], who by applying Dvoretzky’s theorem on spherical sections of centrally
symmetric convex bodies succeeded in showing the following inequality.

Theorem 2.1.3 There exists an absolute constant c > 0 such that

2cd ≤ H(K)

holds for every positive integer d and for every d-dimensional convex body K.
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Now, if we look at convex bodies different from a Euclidean ball in dimen-
sions larger than two, then our understanding of their Hadwiger numbers is
very limited. Namely, we know the Hadwiger numbers of the following convex
bodies different from a ball. The result for tetrahedra is due to Talata [241]
and the rest was proved by Larman and Zong [187].

Theorem 2.1.4 The Hadwiger numbers of tetrahedra, octahedra, and rhom-
bic dodecahedra are all equal to 18.

In order to gain some more insight on Hadwiger numbers it is natural to
pose the following question.

Problem 2.1.5 For what integers k with 12 ≤ k ≤ 26 does there exist a
3-dimensional convex body with Hadwiger number k? What is the Hadwiger
number of a d-dimensional simplex (resp., crosspolytope) for d ≥ 4?

2.2 One-Sided Hadwiger Numbers of Convex Bodies

The author and Brass [60] assigned to each convex body K in Ed a specific
positive integer called the one-sided Hadwiger number h(K) as follows: h(K)
is the largest number of non-overlapping translates of K that touch K and
that all lie in a closed supporting halfspace of K. In [60], using the Brunn–
Minkowski inequality, the author and Brass proved the following sharp upper
bound for the one-sided Hadwiger numbers of convex bodies.

Theorem 2.2.1 If K is an arbitrary convex body in Ed, d ≥ 2, then

h(K) ≤ 2 · 3d−1 − 1.

Moreover, equality is attained if and only if K is a d-dimensional affine cube.

The following is an open problem raised in [60].

Problem 2.2.2 Find the smallest positive integer n(d) with the property that
if K is an arbitrary convex body in Ed, then the maximum number of non-
overlapping translates of K that can touch K and can lie in an open supporting
halfspace of K is at most n(d).

The notion of one-sided Hadwiger numbers was introduced to study the
(discrete) geometry of the so-called k+-neighbour packings, which are packings
of translates of a given convex body in Ed with the property that each packing
element is touched by at least k others from the packing, where k is a given
positive integer. As this area of discrete geometry has a rather large literature
we refer the interested reader to [60] for a brief survey on the relevant results.
Here, we emphasize the following corollary of the previous theorem proved in
[60].
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Theorem 2.2.3 If K is an arbitrary convex body in Ed, then any k+-
neighbour packing by translates of K with k ≥ 2 · 3d−1 must have a posi-
tive density in Ed. Moreover, there is a (2 · 3d−1 − 1)+-neighbour packing by
translates of a d-dimensional affine cube with density 0 in Ed.

2.3 Touching Numbers of Convex Bodies

The touching number t(K) of a convex body K in d-dimensional Euclidean
space Ed is the largest possible number of mutually touching translates of K
lying in Ed. The elegant paper [116] of Danzer and Grünbaum gives a proof
of the following fundamental inequality. In fact, this inequality was phrased
by Petty [213] as well as by P. Soltan [231] in another equivalent form saying
that the cardinality of an equilateral set in any d-dimensional normed space
is at most 2d.

Theorem 2.3.1 For an arbitrary convex body K of Ed,

t(K) ≤ 2d

with equality if and only if K is an affine d-cube.

In connection with the above inequality the author and Pach [41] conjec-
ture the following even stronger result.

Conjecture 2.3.2 For any convex body K in Ed, d ≥ 3 the maximum num-
ber of pairwise tangent positively homothetic copies of K is not more than
2d.

Quite surprisingly this problem is still open. In [41] it was noted that 3d−1
is an easy upper bound for the quantity introduced in Conjecture 2.3.2. More
recently Naszódi [207] (resp., Naszódi and Lángi [208]) improved this upper
bound to 2d+1 in the case of a general convex body (resp., to 3 · 2d−1 in the
case of a centrally symmetric convex body).

It is natural to ask for a non-trivial lower bound for t(K). Brass [94], as
an application of Dvoretzky’s well-known theorem, gave a partial answer for
the existence of such a lower bound.

Theorem 2.3.3 For each k there exists a d(k) such that for any convex body
K of Ed with d ≥ d(k),

k ≤ t(K).

It is remarkable that the natural sounding conjecture of Petty [213] stated
next is still open for all d ≥ 4.

Conjecture 2.3.4 For each convex body K of Ed, d ≥ 4,

d+ 1 ≤ t(K).
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A generalization of the concept of touching numbers was introduced by
the author, Naszódi, and Visy [59] as follows. The mth touching number (or
the mth Petty number) t(m,K) of a convex body K of Ed is the largest
cardinality of (possibly overlapping) translates of K in Ed such that among
anym translates there are always two touching ones. Note that t(2,K) = t(K).
The following theorem proved by the author, Naszódi, and Visy [59] states
some upper bounds for t(m,K).

Theorem 2.3.5 Let t(K) be an arbitrary convex body in Ed. Then

t(m,K) ≤ min

{
4d(m− 1),

(
2d +m− 1

2d

)}
holds for all m ≥ 2, d ≥ 2. Also, we have the inequalities

t(3,K) ≤ 2 · 3d, t(m,K) ≤ (m− 1)[(m− 1)3d − (m− 2)]

for all m ≥ 4, d ≥ 2. Moreover, if Bd (resp., Cd) denotes a d-dimensional
ball (resp., d-dimensional affine cube) of Ed, then

t(2,Bd) = d+ 1, t(m,Bd) ≤ (m− 1)3d, t(m,Cd) = (m− 1)2d

hold for all m ≥ 2, d ≥ 2.

We cannot resist raising the following question (for more details see [59]).

Problem 2.3.6 Prove or disprove that if K is an arbitrary convex body in
Ed with d ≥ 2 and m > 2, then

(m− 1)(d+ 1) ≤ t(m,K) ≤ (m− 1)2d.

2.4 On the Number of Touching Pairs in Finite Packings

Let K be an arbitrary convex body in Ed. Then the contact graph of an arbi-
trary finite packing by non-overlapping translates of K in Ed is the (simple)
graph whose vertices correspond to the packing elements and whose two ver-
tices are connected by an edge if and only if the corresponding two packing
elements touch each other. One of the most basic questions on contact graphs
is to find out the maximum number of edges that a contact graph of n non-
overlapping translates of the given convex body K can have in Ed. In a very
recent paper [95] Brass extended the earlier mentioned result of Harborth
[166] to the “unit circular disk packings” of normed planes as follows.

Theorem 2.4.1 The maximum number of touching pairs in a packing of n
translates of a convex domain K in E2 is b3n −

√
12n− 3c, if K is not a

parallelogram, and b4n−
√

28n− 12c, if K is a parallelogram.
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The main result of this section is an upper bound for the number of touch-
ing pairs in an arbitrary finite packing of translates of a convex body, proved
by the author in [57]. In order to state the theorem in question in a concise
way we need a bit of notation. Let K be an arbitrary convex body in Ed,
d ≥ 3. Then let δ(K) denote the density of a densest packing of translates of
the convex body K in Ed, d ≥ 3. Moreover, let

iq(K) :=
(svold−1(bdK))

d

(vold(K))
d−1

be the isoperimetric quotient of the convex body K, where svold−1(bdK)
denotes the (d − 1)-dimensional surface volume of the boundary bdK of K
and vold(K) denotes the d-dimensional volume of K. Moreover, let B denote
the closed d-dimensional ball of radius 1 centered at the origin o in Ed. Finally,
let Ko := 1

2 (K + (−K)) be the normalized (centrally symmetric) difference
body assigned to K with H(Ko) (resp., h(Ko)) standing for the Hadwiger
number (resp., one-sided Hadwiger number) of Ko.

Theorem 2.4.2 The number of touching pairs in an arbitrary packing of
n > 1 translates of the convex body K in Ed, d ≥ 3 is at most

H(Ko)

2
n− 1

2dδ(Ko)
d−1
d

d

√
iq(B)

iq(Ko)
n
d−1
d − (H(Ko)− h(Ko)− 1).

In particular, the number of touching pairs in an arbitrary packing of n > 1
translates of a convex body in Ed, d ≥ 3 is at most

3d − 1

2
n−

d
√
ωd

2d+1
n
d−1
d ,

where ωd = π
d
2

Γ ( d2+1)
is the volume of a d-dimensional ball of radius 1 in Ed.

In the proof of Theorem 2.4.2 published by the author [57] the following
statement plays an important role that might be of independent interest and
so we quote it as follows. For the sake of completeness we wish to point out
that Theorem 2.4.3 and Corollary 2.4.4, are actual strengthenings of Theorem
3.1 and Corollary 3.1 of [28] mainly because, in our case the containers of the
packings in question are highly non-convex.

Theorem 2.4.3 Let Ko be a convex body in Ed, d ≥ 2 symmetric about the
origin o of Ed and let {c1 +Ko, c2 +Ko, . . . , cn+Ko} be an arbitrary packing
of n > 1 translates of Ko in Ed. Then

nvold(Ko)

vold(
⋃n
i=1 ci + 2Ko)

≤ δ(Ko).
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We close this section with the following immediate corollary of Theo-
rem 2.4.3.

Corollary 2.4.4 Let Pn(Ko) be the family of all possible packings of n > 1
translates of the o-symmetric convex body Ko in Ed, d ≥ 2. Moreover, let

δ(Ko, n) := max

{
nvold(Ko)

vold(
⋃n
i=1 ci + 2Ko)

| {c1+Ko, . . . , cn+Ko} ∈ Pn(Ko)

}
.

Then
lim sup
n→∞

δ(Ko, n) = δ(Ko).



3

Coverings by Homothetic Bodies - Illumination
and Related Topics

3.1 The Illumination Conjecture

Let K be a convex body (i.e., a compact convex set with nonempty interior)
in the d-dimensional Euclidean space Ed, d ≥ 2. According to Hadwiger [155]
an exterior point p ∈ Ed \ K of K illuminates the boundary point q of K
if the halfline emanating from p passing through q intersects the interior
of K (at a point not between p and q). Furthermore, a family of exterior
points of K say, p1,p2, . . . ,pn illuminates K if each boundary point of K is
illuminated by at least one of the point sources p1,p2, . . . ,pn. Finally, the
smallest n for which there exist n exterior points of K that illuminate K is
called the illumination number of K denoted by I(K). In 1960, Hadwiger [155]
raised the following amazingly elementary, but very fundamental question.
An equivalent but somewhat different-looking concept of illumination was
introduced by Boltyanski in [78]. There he proposed to use directions (i.e.,
unit vectors) instead of point sources for the illumination of convex bodies.
Based on these circumstances we call the following conjecture the Boltyanski–
Hadwiger Illumination Conjecture.

Conjecture 3.1.1 The illumination number I(K) of any convex body K in
Ed, d ≥ 3 is at most 2d and I(K) = 2d if and only if K is an affine d-cube.

It is quite easy to prove the Illumination Conjecture in the plane (see for
example [47]). Also, it has been noticed by several people that the illumination
number of any smooth convex body in Ed is exactly d + 1 ([47]). (A convex
body of Ed is called smooth if through each of its boundary points there exists
a uniquely defined supporting hyperplane of Ed.) However, the Illumination
Conjecture is widely open for convex d-polytopes as well as for non-smooth
convex bodies in Ed for all d ≥ 3. In fact, a proof of the Illumination Con-
jecture for polytopes alone would not immediately imply its correctness for
convex bodies in general, mainly because of the so-called upper semicontinuity
of the illumination numbers of convex bodies. More exactly, here we refer to
the following statement ([84]).
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Theorem 3.1.2 Let K be a convex body in Ed. Then for any convex body K′

sufficiently close to K in the Hausdorff metric of the convex bodies in Ed the
inequality I(K′) ≤ I(K) holds (often with strict inequality).

In what follows we survey the major results known about the Illumination
Conjecture. For earlier and by now less updated accounts on the status of this
problem we refer the reader to the survey papers [47] and [195].

3.2 Equivalent Formulations

There are two equivalent formulations of the Illumination Conjecture that
are often used in the literature (for more details see [195]). The first of these
was raised by Gohberg and Markus [148]. (In fact, they came up with their
problem independently of Boltyanski and Hadwiger by studying some geomet-
ric properties of normed spaces.) It is called the Gohberg–Markus Covering
Conjecture.

Conjecture 3.2.1 Let K be an arbitrary convex body in Ed, d ≥ 3. Then K
can be covered by 2d smaller positively homothetic copies and 2d copies are
needed only if K is an affine d-cube.

Another equivalent formulation was found independently by P. Soltan and
V. Soltan [232] (who formulated it for the centrally symmetric case only) and
by the author [43] (see also [44]). In the formulation below of the K. Bezdek
– P. Soltan – V. Soltan Separation Conjecture a face of a convex body means
the intersection of the convex body with a supporting hyperplane.

Conjecture 3.2.2 Let K be an arbitrary convex body in Ed, d ≥ 3 and o
an arbitrary interior point of K. Then there exist 2d hyperplanes of Ed such
that each face of K can be strictly separated from o by at least one of the 2d

hyperplanes. Furthermore, 2d hyperplanes are needed only if K is the convex
hull of d linearly independent line segments which intersect at the common
relative interior point o.

3.3 The Illumination Conjecture in Dimension Three

The best upper bound known on the illumination numbers of convex bodies
in E3 is due to Papadoperakis [212].

Theorem 3.3.1 The illumination number of any convex body in E3 is at most
16.

It is quite encouraging that the Illumination Conjecture is known to hold
for some “relatively large” classes of convex bodies in E3 as well as in Ed,
d ≥ 4. In what follows, first we survey the 3-dimensional results.

The author [43] succeeded in proving the following theorem.



3.4 The Illumination Conjecture in High Dimensions 25

Theorem 3.3.2 If P is a convex polyhedron of E3 with affine symmetry (i.e.,
if the affine symmetry group of P consists of the identity and at least one other
affinity of E3), then the illumination number of P is at most 8.

On the other hand, the following theorem also holds. The first part of
that was proved by Lassak [184] (in fact, this paper was published before the
publication of Theorem 3.3.2), and the second part by Dekster [120], extending
the above theorem of the author on polyhedra to convex bodies with center
or plane symmetry.

Theorem 3.3.3
(i) If K is a centrally symmetric convex body in E3, then I(K) ≤ 8.
(ii) If K is a convex body symmetric about a plane in E3, then I(K) ≤ 8.

Lassak [186] and later also Weissbach [246] and the author, Lángi, Naszódi,
and Papez [69] gave a proof of the following.

Theorem 3.3.4 The illumination number of any convex body of constant
width in E3 is at most 6.

It is tempting to conjecture the following even stronger result. If true, then
it would give a new proof and insight of the well-known theorem, conjectured
by Borsuk long ago (see for example [1]), that any set of diameter 1 in E3 can
be partitioned into (at most) four subsets of diameter smaller than 1.

Conjecture 3.3.5 The illumination number of any convex body of constant
width in E3 is exactly 4.

As a last remark we need to mention the following. In [81] Boltyanski
announced a solution of the Illumination Conjecture in dimension 3. Unfor-
tunately, even today the proposed proof of this result remains incomplete. In
other words, one has to regard the Illumination Conjecture as a still open
problem in dimension 3.

3.4 The Illumination Conjecture in High Dimensions

It was rather a coincidence, at least from the point of view of the Illumination
Conjecture, when in 1964 Erdős and Rogers [127] proved the following theo-
rem. In order to state their theorem in a proper form we need to introduce
the following notion. If we are given a covering of a space by a system of sets,
the star number of the covering is the supremum, over sets of the system,
of the cardinals of the numbers of sets of the system meeting a set of the
system. On the one hand, the standard Lebesgue “brick-laying” construction
provides an example, for each positive integer d, of a lattice covering of Ed
by closed cubes with star number 2d+1 − 1. On the other hand, Theorem 1
of [127] states that the star number of a lattice covering of Ed by translates
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of a centrally symmetric convex body is always at least 2d+1 − 1. However,
from our point of view, the main result of [127] is the one under Theorem 2
(which combined with some observations from [126] and with the inequality
of Rogers and Shephard [220] on the volume of difference bodies) reads as
follows.

Theorem 3.4.1 Let K be a convex body in the d-dimensional Euclidean space
Ed, d ≥ 2. Then there exists a covering of Ed by translates of K with star
number at most

vold(K−K)

vold(K)
(d ln d+ d ln ln d+ 5d+ 1) ≤

(
2d

d

)
(d ln d+ d ln ln d+ 5d+ 1).

Moreover, for sufficiently large d, 5d can be replaced by 4d.

The periodic and probabilistic construction on which Theorem 3.4.1 is
based gives also the following.

Corollary 3.4.2 If K is an arbitrary convex body in the d-dimensional Eu-
clidean space Ed, d ≥ 2, then

I(K) ≤ vold(K−K)

vold(K)
(d ln d+ d ln ln d+ 5d) ≤

(
2d

d

)
(d ln d+ d ln ln d+ 5d).

Moreover, for sufficiently large d, 5d can be replaced by 4d.

For the sake of completeness we mention also the inequality I(K) ≤ (d+
1)dd−1− (d− 1)(d− 2)d−1 due to Lassak [185], which is valid for an arbitrary
convex body K in Ed, d ≥ 2. (Actually, Lassak’s estimate is (somewhat) better
than the estimate of Corollary 3.4.2 for some small values of d.)

Note that, from the point of view of the Illumination Conjecture, the esti-
mate of Corollary 3.4.2 is nearly best possible for centrally symmetric convex

bodies, because in that case vold(K−K)
vold(K) = 2d. However, most convex bodies

are far from being symmetric and so, in general, one may wonder whether the
Illumination Conjecture is true at all, in particular, in high dimensions. Thus,
it was important progress when Schramm [226] managed to prove the Illumi-
nation Conjecture for all convex bodies of constant width in all dimensions at
least 16. In fact, he has proved the following inequality.

Theorem 3.4.3 If W is an arbitrary convex body of constant width in Ed, d ≥
3, then

I(W) < 5d
√
d(4 + ln d)

(
3

2

) d
2

.

Very recently the author has extended the estimate of Theorem 3.4.3 to
a family of convex bodies much larger than the family of convex bodies of
constant width also including the family of “fat” ball-polyhedra. For the more



3.4 The Illumination Conjecture in High Dimensions 27

exact details see Theorem 6.8.3 and also the discussion there on the illumi-
nation of ball-polyhedra, which are convex bodies that with scaling form an
everywhere dense subset of the space of convex bodies.

Recall that a convex polytope is called a belt polytope if to each side of
any of its 2-faces there exists a parallel (opposite) side on the same 2-face.
This class of polytopes is wider than the class of zonotopes, moreover, it is
easy to see that any convex body of Ed can be represented as a limit of a
covergent sequence of belt polytopes with respect to the Hausdorff metric in
Ed. The following theorem on belt polytopes was proved by Martini in [194].
The result that it extends to the class of convex bodies called belt bodies
(including zonoids) is due to Boltyanski [80]. (See also [83] for a somewhat
sharper result on the illumination numbers of belt bodies.)

Theorem 3.4.4 Let P be an arbitrary d-dimensional belt polytope (resp., belt
body) different from a parallelotope in Ed, d ≥ 2. Then

I(P) ≤ 3 · 2d−2.

Now, let K be an arbitrary convex body in Ed and let T (K) be the family
of all translates of K in Ed. The Helly dimension him(K) of K is the smallest
integer h such that for any finite family F ⊂ T (K) with cardF > h + 1
the following assertion holds: if every h + 1 members of F have a point in
common, then all the members of F have a point in common. As is well
known 1 ≤ him(K) ≤ d. Using this notion Boltyanski [82] gave a proof of the
following theorem.

Theorem 3.4.5 Let K be a convex body with him(K) = 2 in Ed, d ≥ 3. Then

I(K) ≤ 2d − 2d−2.

In fact, in [82] Boltyanski conjectures the following more general inequality.

Conjecture 3.4.6 Let K be a convex body with him(K) = h > 2 in Ed,
d ≥ 3. Then

I(K) ≤ 2d − 2d−h.

The author and Bisztriczky gave a proof of the Illumination Conjecture
for the class of dual cyclic polytopes in [53]. Their upper bound for the illu-
mination numbers of dual cyclic polytopes has been improved by Talata in
[240]. So, we have the following statement.

Theorem 3.4.7 The illumination number of any d-dimensional dual cyclic

polytope is at most (d+1)2

2 for all d ≥ 2.

In connection with the results of this section quite a number of questions
remain open including the following ones.

Problem 3.4.8
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(i) What are the illumination numbers of cyclic polytopes?
(ii) Can one give a proof of the Separation Conjecture for zonotopes (resp.,
belt polytopes)?
(iii) Is there a way to prove the Separation Conjecture for 0/1-polytopes?

3.5 On the X-Ray Number of Convex Bodies

In 1972, the X-ray number of convex bodies was introduced by P. Soltan as
follows (see also [195]). Let K be a convex body of Ed, d ≥ 2. Let L ⊂ Ed
be a line through the origin of Ed. We say that the point p ∈ K is X-rayed
along L if the line parallel to L passing through p intersects the interior of K.
The X-ray number X(K) of K is the smallest number of lines such that every
point of K is X-rayed along at least one of these lines. Obviously, X(K) ≥ d.
Moreover, it is easy to see that this bound is attained by any smooth convex
body. On the other hand, if Cd is a d-dimensional (affine) cube and F is one
of its (d− 2)-dimensional faces, then the X-ray number of the convex hull of
the set of vertices of Cd \ F is 3 · 2d−2.

In 1994, the author and Zamfirescu [52] published the following conjecture.

Conjecture 3.5.1 The X-ray number of any convex body in Ed is at most
3 · 2d−2.

This conjecture, which we call the X-ray Conjecture, is proved only in the
plane and it is open in high dimensions. A related and much better studied
problem is the above-mentioned Illumination Conjecture. Here we note that
the inequalities X(K) ≤ I(K) ≤ 2X(K) hold for any convex body K ⊂ Ed.
Putting it differently, any proper progress on the X-ray Conjecture would
imply progress on the Illumination Conjecture and vice versa. Finally we note
that a natural way to prove the X-ray Conjecture would be to show that any
convex body K ⊂ Ed can be illuminated by 3 · 2d−2 pairs of pairwise opposite
directions. The main results of [72] can be summarized as follows. In order to
state it properly we need to recall two basic notions. Let K be a convex body
in Ed and let F be a face of K. The Gauss image ν(F ) of the face F is the
set of all points (i.e., unit vectors) u of the (d − 1)-dimensional unit sphere
Sd−1 ⊂ Ed centered at the origin o of Ed for which the supporting hyperplane
of K with outer normal vector u contains F . It is easy to see that the Gauss
images of distinct faces of K have disjoint relative interiors in Sd−1 and ν(F )
is compact and spherically convex for any face F . Let C ⊂ Sd−1 be a set of
finitely many points. Then the covering radius of C is the smallest positive
real number r with the property that the family of spherical balls of radii r
centered at the points of C covers Sd−1.

Theorem 3.5.2 Let K ⊂ Ed, d ≥ 3 be a convex body and let r be a positive
real number with the property that the Gauss image ν(F ) of any face F of
K can be covered by a spherical ball of radius r in Sd−1. Moreover, assume
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that there exist 2m pairwise antipodal points of Sd−1 with covering radius R
satisfying the inequality r + R ≤ π

2 . Then X(K) ≤ m. In particular, if there
are 2m pairwise antipodal points on Sd−1 with covering radius R satisfying

the inequality R ≤ π/2− rd−1, where rd−1 = arccos
√

d+1
2d is the circumradius

of a regular (d − 1)-dimensional spherical simplex of edge length π/3, then
X(W) ≤ m holds for any convex body of constant width W in Ed.

Theorem 3.5.3 If W is an arbitrary convex body of constant width in E3,
then X(W) = 3. If W is any convex body of constant width in E4, then
4 ≤ X(W) ≤ 6. Moreover, if W is a convex body of constant width in Ed with
d = 5, 6, then d ≤ X(W) ≤ 2d−1.

Corollary 3.5.4 If W is an arbitrary convex body of constant width in E3,
then 4 ≤ I(W) ≤ 6. If W is any convex body of constant width in E4, then
5 ≤ I(W) ≤ 12. Moreover, if W is a convex body of constant width in Ed
with d = 5, 6, then d+ 1 ≤ I(W) ≤ 2d.

It would be interesting to extend the method described in the paper [72] for
the next couple of dimensions (more exactly, for the dimensions 7 ≤ d ≤ 14)
in particular, because in these dimensions neither the X-ray Conjecture nor
the Illumination Conjecture is known to hold for convex bodies of constant
width.

3.6 The Successive Illumination Numbers of Convex
Bodies

Let K be a convex body in Ed, d ≥ 2. The following definitions were introduced
by the author in [50] (see also [43] that introduced the concept of the first
definition below).

Let L ⊂ Ed \K be an affine subspace of dimension l, 0 ≤ l ≤ d− 1. Then
L illuminates the boundary point q of K if there exists a point p of L that
illuminates q on the boundary of K. Moreover, we say that the affine sub-
spaces L1, L2, . . . , Ln of dimension l with Li ⊂ Ed \K, 1 ≤ i ≤ n illuminate
K if every boundary point of K is illuminated by at least one of the affine
subspaces L1, L2, . . . , Ln. Finally, let Il(K) be the smallest positive integer
n for which there exist n affine subspaces of dimension l say, L1, L2, . . . , Ln
such that Li ⊂ Ed \ K for all 1 ≤ i ≤ n and L1, L2, . . . , Ln illuminate K.
Il(K) is called the l-dimensional illumination number of K and the sequence
I0(K), I1(K), . . . , Id−2(K), Id−1(K) is called the successive illumination num-
bers of K. Obviously, I0(K) ≥ I1(K) ≥ · · · ≥ Id−2(K) ≥ Id−1(K) = 2.

Let Sd−1 be the unit sphere centered at the origin of Ed. Let HSl ⊂
Sd−1 be an l-dimensional open great-hemisphere of Sd−1, where 0 ≤ l ≤
d − 1. Then HSl illuminates the boundary point q of K if there exists
a unit vector v ∈ HSl that illuminates q, in other words, for which it
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is true that the halfline emanating from q and having direction vector
v intersects the interior of K. Moreover, we say that the l-dimensional
open great-hemispheres HSl1, HS

l
2, . . . ,HS

l
n of Sd−1 illuminate K if each

boundary point of K is illuminated by at least one of the open great-
hemispheres HSl1, HS

l
2, . . . ,HS

l
n. Finally, let I ′l(K) be the smallest number of

l-dimensional open great-hemispheres of Sd−1 that illuminate K. Obviously,
I ′0(K) ≥ I ′1(K) ≥ · · · ≥ I ′d−2(K) ≥ I ′d−1(K) = 2.

Let L ⊂ Ed be a linear subspace of dimension l, 0 ≤ l ≤ d−1 in Ed. The lth
order circumscribed cylinder of K generated by L is the union of translates of
L that have a nonempty intersection with K. Then let Cl(K) be the smallest
number of translates of the interiors of some lth order circumscribed cylinders
of K the union of which contains K. Obviously, C0(K) ≥ C1(K) ≥ · · · ≥
Cd−2(K) ≥ Cd−1(K) = 2.

The following theorem, which was proved in [50], collects the basic infor-
mation known about the quantities just introduced. (The inequality (ii) was
in fact, first proved in [45] and proved again in a different way in [48].)

Theorem 3.6.1 Let K be an arbitrary convex body of Ed. Then
(i) Il(K) = I ′l(K) = Cl(K) for all 0 ≤ l ≤ d− 1;
(ii) dd+1

l+1 e ≤ Il(K) for all 0 ≤ l ≤ d− 1 with equality for any smooth K;
(iii) Id−2(K) = 2 for all d ≥ 3.

The Generalized Illumination Conjecture was phrased by the author in [50]
as follows.

Conjecture 3.6.2 Let K be an arbitrary convex body and C be a d-dimensi-
onal affine cube in Ed. Then

Il(K) ≤ Il(C)

holds for all 0 ≤ l ≤ d− 1.

The above conjecture was proved for zonotopes and zonoids in [50]. The
results of parts (i) and (ii) of the next theorem are taken from [50], where
they were proved for zonotopes (resp., zonoids). However, in the light of the
more recent works in [80] and [83] these results extend to the class of belt
polytopes (resp., belt bodies) in a rather straightforward way so we present
them in that form. The lower bound of part (iii) was proved in [50] and the
upper bound of part (iii) is the major result of [179]. Finally, part (iv) was
proved in [49].

Theorem 3.6.3 Let K′ be a belt polytope (resp., belt body) and C be a d-
dimensional affine cube in Ed. Then
(i) Il(K

′) ≤ Il(C) holds for all 0 ≤ l ≤ d− 1;
(ii) Ib d2 c

(K′) = · · · = Id−1(K′) = 2;

(iii) 2d∑l
i=0 (di)

≤ Il(C) ≤ K(d, l), where K(d, l) denotes the minimum cardi-

nality of binary codes of length d with covering radius l, 0 ≤ l ≤ d− 1;
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(iv) I1(C) = 2d

d+1 provided that d+ 1 = 2m.

We close this section with a conjecture of Kiss ([179]) on the illumination
numbers of affine cubes and call the attention of the reader to the problem of
proving the Generalized Illumination Conjecture in a stronger form for convex
bodies of constant width in E4.

Conjecture 3.6.4 Let C be a d-dimensional affine cube in Ed. Then Il(C) =
K(d, l), where K(d, l) denotes the minimum cardinality of binary codes of
length d with covering radius l, 0 ≤ l ≤ d− 1.

Conjecture 3.6.5 Let K′′ be a convex body of constant width in E4. Then
I0(K′′) ≤ 8 (and so, I1(K′′) ≤ 4).

3.7 The Illumination and Covering Parameters of
Convex Bodies

Let Ko be a convex body in Ed, d ≥ 2 symmetric about the origin o of Ed.
Then Ko defines the norm

‖x‖Ko
= inf{λ | x ∈ λKo}

of any x ∈ Ed (with respect to Ko).
The illumination parameter ill(Ko) of Ko was introduced by the author

in [46] as follows.

ill(Ko) = inf

{∑
i

‖pi‖Ko
| {pi} illuminates Ko

}
.

Clearly this ensures that far-away light sources are penalised. The following
theorem was proved in [46] (see also [67]). In the same paper the problem of
finding the higher-dimensional analogue of that claim was raised as well.

Theorem 3.7.1 If Ko is an o-symmetric convex domain of E2, then

ill(Ko) ≤ 6

with equality for any affine regular convex hexagon.

The illumination parameters of the cube, octahedron, dodecahedron, and
icosahedron (i.e., of the centrally symmetric Platonic solids) have been com-
puted in the papers [67] and [180]. Thus, we have the following theorem.

Theorem 3.7.2 The illumination parameters of the (affine) cube, octahe-
dron, dodecahedron, and icosahedron in E3 are equal to 8, 6, 4

√
5 + 2, and

12.
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Kiss and de Wet [180] conjecture the following.

Conjecture 3.7.3 The illumination parameter of any o-symmetric convex
body in E3 is at most 12.

Motivated by the notion of the illumination parameter Swanepoel [235]
introduced the covering parameter cov(Ko) of Ko in the following way.

cov(Ko) = inf{
∑
i

(1− λi)−1 | Ko ⊂ ∪i(λiKo + ti), 0 < λi < 1, ti ∈ Ed}.

In this way homothets almost as large as Ko are penalised. Swanepoel
[235] proved the following fundamental inequalities.

Theorem 3.7.4 For any o-symmetric convex body Ko in Ed, d ≥ 2 we have
that
(i) ill(Ko) ≤ 2cov(Ko) ≤ O(2dd2 ln d);
(ii) v(Ko) ≤ ill(Ko), where v(Ko) is the maximum possible degree of a vertex
in a Ko-Steiner minimal tree.

Based on the above theorems, it is natural to study the following question
that was proposed by Swanepoel [235]). One can regard this problem as the
quantitative analogue of the Illumination Conjecture.

Problem 3.7.5 Prove or disprove that the inequality ill(Ko) ≤ O(2d) holds
for all o-symmetric convex bodies Ko of Ed.

3.8 On the Vertex Index of Convex Bodies

The following concept related to the illumination parameters of convex bodies
was introduced by the author and Litvak in [70]. Let Ko be a convex body
in Ed, d ≥ 2 symmetric about the origin o of Ed. Now, place Ko in a convex
polytope, say P, with vertices p1,p2, . . . ,pn, where n ≥ d + 1. Then it is
natural to measure the closeness of the vertex set of P to the origin o by
computing

∑
1≤i≤n ‖pi‖Ko

, where ‖x‖Ko
= inf{λ > 0 | x ∈ λKo} denotes

the norm of x ∈ Ed with respect to Ko. Finally, look for the convex polytope
that contains Ko and whose vertex set has the smallest possible closeness to
o and introduce the vertex index, vein(Ko), of Ko as follows,

vein(Ko) = inf

{∑
i

‖pi‖Ko | Ko ⊂ conv{pi}
}
.

Note that vein(Ko) is an affine invariant quantity assigned to Ko; that is,
if A : Ed → Ed is an (invertible) linear map, then vein(Ko) = vein(A(Ko)).
Moreover, it is also clear that
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vein(Ko) ≤ ill(Ko)

holds for any o-symmetric convex body Ko in Ed with equality for smooth
convex bodies.

In what follows we summarize the major results of [70]. Also, we note that
estimates on Banach–Mazur distances between convex bodies as well as on
(outer) volume ratios of convex bodies, approximation by convex polytopes
and spherical isoperimetric inequalities turn out to play a central role in the
proofs of the following two theorems of [70].

Theorem 3.8.1 For every d ≥ 2 one has

d3/2√
2πe
≤ vein(Bd

2) ≤ 2d3/2,

where Bd
2 denotes the unit ball of Ed. Moreover, if d = 2, 3 then vein(Bd

2) =
2d3/2.

The author and Litvak [70] conjecture the following stonger result.

Conjecture 3.8.2 For every d ≥ 2 one has

vein(Bd
2) = 2d3/2.

The result of [70] mentioned next gives the “big picture” presently known
on vertex indices of convex bodies.

Theorem 3.8.3 There is an absolute constant C > 0 such that for every
d ≥ 2 and every o-symmetric convex body Ko in Ed one has

d3/2√
2πe ovr(Ko)

≤ vein(Ko) ≤ Cd3/2 ln(2d),

where ovr(Ko) = inf{vold(E)/vold(Ko)}1/d is the outer volume ratio of Ko

with the infimum taken over all ellipsoids E containing Ko and with vold(. . .)
denoting the volume.

It has been noted in [70] that the above-mentioned conjecture on vein(Bd
2)

implies the inequality 2d ≤ vein(Ko) for any o-symmetric convex body Ko in
Ed (with equality for d-dimensional crosspolytopes). This inequality has just
been proved in [147].

Theorem 3.8.4 Let Ko be an o-symmetric convex body in Ed. Then

2d ≤ vein(Ko).
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Coverings by Planks and Cylinders

4.1 Plank Theorems

As usual, a convex body of the Euclidean space Ed is a compact convex set
with non-empty interior. Let C ⊂ Ed be a convex body, and let H ⊂ Ed
be a hyperplane. Then the distance w(C, H) between the two supporting
hyperplanes of C parallel to H is called the width of C parallel to H. Moreover,
the smallest width of C parallel to hyperplanes of Ed is called the minimal
width of C and is denoted by w(C).

Recall that in the 1930’s, Tarski posed what came to be known as the plank
problem. A plank P in Ed is the (closed) set of points between two distinct
parallel hyperplanes. The width w(P) of P is simply the distance between the
two boundary hyperplanes of P. Tarski conjectured that if a convex body of
minimal width w is covered by a collection of planks in Ed, then the sum of
the widths of these planks is at least w. This conjecture was proved by Bang
in his memorable paper [18]. (In fact, the proof presented in that paper is a
simplification and generalization of the proof published by Bang somewhat
earlier in [17].) Thus, we call the following statement Bang’s plank theorem.

Theorem 4.1.1 If the convex body C is covered by the planks P1,P2, . . . ,Pn
d

1 ∪P2 ∪ · · · ∪Pn ⊂ Ed), then

n∑
i=1

w(Pi) ≥ w(C).

In [18], Bang raised the following stronger version of Tarski’s plank prob-
lem called the affine plank problem. We phrase it via the following definition.
Let C be a convex body and let P be a plank with boundary hyperplanes
parallel to the hyperplane H in Ed. We define the C-width of the plank P as
w(P)
w(C,H) and label it wC(P). (This notion was introduced by Bang [18] under

the name “relative width”.)

K. Bezdek, Classical Topics in Discrete Geometry, CMS Books in Mathematics, 35

in E , d ≥ 2 (i.e., C ⊂ P

DOI 10.1007/978-1-4419-0600-7_4,  © Springer Science+Business Media, LLC 2010 
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Conjecture 4.1.2 If the convex body C is covered by the planks P1,P2, . . . ,
Pn in Ed, d ≥ 2, then

n∑
i=1

wC(Pi) ≥ 1.

The special case of Conjecture 4.1.2, when the convex body to be covered
is centrally symmetric, has been proved by Ball in [12]. Thus, the following is
Ball’s plank theorem.

Theorem 4.1.3 If the centrally symmetric convex body C is covered by the
planks P1,P2, . . . ,Pn in Ed, d ≥ 2, then

n∑
i=1

wC(Pi) ≥ 1.

From the point of view of discrete geometry it seems natural to mention
that after proving Theorem 4.1.3 Ball [13] used Bang’s proof of Theorem 4.1.1
to derive a new argument for an improvement of the Davenport–Rogers lower
bound on the density of economical sphere lattice packings.

It was Alexander [3] who noticed that Conjecture 4.1.2 is equivalent to the
following generalization of a problem of Davenport.

Conjecture 4.1.4 If a convex body C in Ed, d ≥ 2 is sliced by n − 1 hyper-
plane cuts, then there exists a piece that covers a translate of 1

nC.

We note that the paper [33] of A. Bezdek and the author proves Conjec-
ture 4.1.4 for successive hyperplane cuts (i.e., for hyperplane cuts when each
cut divides one piece). Also, the same paper ([33]) introduced two additional
equivalent versions of Conjecture 4.1.2. As they seem to be of independent
interest we recall them following the terminology used in [33].

Let C and K be convex bodies in Ed and let H be a hyperplane of Ed.
The C-width of K parallel to H is denoted by wC(K, H) and is defined as
w(K,H)
w(C,H) . The minimal C-width of K is denoted by wC(K) and is defined as

the minimum of wC(K, H), where the minimum is taken over all possible
hyperplanes H of Ed. Recall that the inradius of K is the radius of the largest
ball contained in K. It is quite natural then to introduce the C-inradius of
K as the factor of the largest (positively) homothetic copy of C, a translate
of which is contained in K. We need to do one more step to introduce the
so-called successive C-inradii of K as follows. Let r be the C-inradius of K.
For any 0 < ρ ≤ r let the ρC-rounded body of K be denoted by KρC and
be defined as the union of all translates of ρC that are covered by K. Now,
take a fixed integer n ≥ 1. On the one hand, if ρ > 0 is sufficiently small,
then wC(KρC) > nρ. On the other hand, wC(KrC) = r ≤ nr. As wC(KρC)
is a decreasing continuous function of ρ > 0 and nρ is a strictly increasing
continuous function of ρ, there exists a uniquely determined ρ > 0 such that
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wC(KρC) = nρ.

This uniquely determined ρ is called the nth successive C-inradius of K
and is denoted by rC(K, n). Notice that rC(K, 1) = r. Now, the two equivalent
versions of Conjecture 4.1.2 and Conjecture 4.1.4 introduced in [33] can be
phrased as follows.

Conjecture 4.1.5 If a convex body K in Ed, d ≥ 2 is covered by the planks
P1,P2, . . . ,Pn, then

∑n
i=1 wC(Pi) ≥ wC(K) for any convex body C in Ed.

Conjecture 4.1.6 Let K and C be convex bodies in Ed, d ≥ 2. If K is sliced
by n − 1 hyperplanes, then the minimum of the greatest C-inradius of the
pieces is equal to the nth successive C-inradius of K; that is, it is rC(K, n).

A. Bezdek and the author [33] proved the following theorem that (under
the condition that C is a ball) answers a question raised by Conway ([32]) as
well as proves Conjecture 4.1.6 for successive hyperplane cuts.

Theorem 4.1.7 Let K and C be convex bodies in Ed, d ≥ 2. If K is sliced
into n pieces by n− 1 successive hyperplane cuts (i.e., when each cut divides
one piece), then the minimum of the greatest C-inradius of the pieces is the nth
successive C-inradius of K (i.e., rC(K, n)). An optimal partition is achieved
by n− 1 parallel hyperplane cuts equally spaced along the minimal C-width of
the rC(K, n)C-rounded body of K.

4.2 Covering Convex Bodies by Cylinders

In his paper [18], Bang, by describing a concrete example and writing that
it may be extremal, proposes investigating a quite challenging question that
can be phrased as follows.

Problem 4.2.1 Prove or disprove that the sum of the base areas of finitely
many cylinders covering a 3-dimensional convex body is at least half of the
minimum area 2-dimensional projection of the body.

If true, then the estimate of Problem 4.2.1 is a sharp one due to a covering
of a regular tetrahedron by two cylinders described in [18]. A very recent
paper of the author and Litvak ([71]) investigates Problem 4.2.1 as well as its
higher-dimensional analogue. Their main result can be summarized as follows.

Given 0 < k < d define a k-codimensional cylinder C in Ed as a set which
can be presented in the form C = H + B, where H is a k-dimensional linear
subspace of Ed and B is a measurable set (called the base) in the orthogonal
complement H⊥ of H. For a given convex body K and a k-codimensional
cylinder C = H +B we define the cross-sectional volume crvK(C) of C with
respect to K as follows,
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crvK(C) :=
vold−k(C ∩H⊥)

vold−k(PH⊥K)
=

vold−k(PH⊥C)

vold−k(PH⊥K)
=

vold−k(B)

vold−k(PH⊥K)
,

where PH⊥ : Ed → H⊥ denotes the orthogonal projection of Ed onto H⊥.
Notice that for every invertible affine map T : Ed → Ed one has crvK(C) =
crvTK(TC). The following theorem is proved in [71].

Theorem 4.2.2 Let K be a convex body in Ed. Let C1, . . . ,CN be k-codi-
mensional cylinders in Ed, 0 < k < d such that K ⊂

⋃N
i=1 Ci. Then

N∑
i=1

crvK(Ci) ≥
1(
d
k

) .
Moreover, if K is an ellipsoid and C1, . . . ,CN are 1-codimensional cylinders
in Ed such that K ⊂

⋃N
i=1 Ci, then

N∑
i=1

crvK(Ci) ≥ 1.

The case k = d−1 of Theorem 4.2.2 corresponds to Conjecture 4.1.2, that
is, to the affine plank problem. Theorem 4.2.2 for k = d− 1 implies the lower
bound 1/d that can be somewhat further improved (for more details see [71]).

As an immediate corollary of Theorem 4.2.2 we get the following estimate
for Problem 4.2.1.

Corollary 4.2.3 The sum of the base areas of finitely many (1-codimensional)
cylinders covering a 3-dimensional convex body is always at least one third of
the minimum area 2-dimensional projection of the body.

Also, note that the inequality of Theorem 4.2.2 on covering ellipsoids by
1-codimensional cylinders is best possible. By looking at this result from the
point of view of k-codimensional cylinders we are led to ask the following
quite natural question. Unfortunately, despite its elementary character it is
still open.

Problem 4.2.4 Let 0 < c(d, k) ≤ 1 denote the largest real number with the
property that if K is an ellipsoid and C1, . . . ,CN are k-codimensional cylin-
ders in Ed, 1 ≤ k ≤ d − 1 such that K ⊂

⋃N
i=1 Ci, then

∑N
i=1 crvK(Ci) ≥

c(d, k). Determine c(d, k) for given d and k.

On the one hand, Theorems 4.1.1 and 4.2.2 imply that c(d, d − 1) = 1
and c(d, 1) = 1; moreover, c(d, k) ≥ 1

(dk)
. On the other hand, a clever con-

struction due to Kadets [174] shows that if d− k ≥ 3 is a fixed integer, then
limd→∞ c(d, k) = 0. Thus the following as a subquestion of Problem 4.2.4
seems to be open as well.
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Problem 4.2.5 Prove or disprove the existence of a universal constant c > 0
(independent of d) with the property that if Bd denotes the unit ball centered
at the origin o in Ed and C1, . . . ,CN are (d− 2)-codimensional cylinders in

Ed such that Bd ⊂
⋃N
i=1 Ci, then the sum of the 2-dimensional base areas of

C1, . . . ,CN is at least c.

4.3 Covering Lattice Points by Hyperplanes

In their paper [51], the author and Hausel established the following discrete
version of Tarski’s plank problem.

Recall that the lattice width of a convex body K in Ed is defined as

w(K,Zd) = min
{

max
x∈K
〈x,y〉 −min

x∈K
〈x,y〉 | y ∈ Zd, y 6= o

}
,

where Zd denotes the integer lattice of Ed. It is well known that if y ∈ Zd, y 6=
o is chosen such that λy /∈ Zd for any 0 < λ < 1 (i.e., y is a primitive integer
point), then

max
x∈K
〈x,y〉 −min

x∈K
〈x,y〉

is equal to the Euclidean width of K in the direction y divided by the Eu-
clidean distance between two consecutive lattice hyperplanes of Zd that are
orthogonal to y. Thus if K is the convex hull of finitely many points of Zd,
then

max
x∈K
〈x,y〉 −min

x∈K
〈x,y〉

is an integer namely, it is less by one than the number of lattice hyperplanes
of Zd that intersect K and are orthogonal to y. Now, we are ready to state
the following conjecture of the author and Hausel ([51]).

Conjecture 4.3.1 Let K be a convex body in Ed. Let H1, . . . ,HN be hyper-
planes in Ed such that

K ∩ Zd ⊂
N⋃
i=1

Hi.

Then
N ≥ w(K,Zd)− d.

Properly translated copies of cross-polytopes, described in [51], show that
if true, then the above inequality is best possible.

The special case, when N = 0, is of independent interest. (In particular,
this case seems to be “responsible” for the term d in the inequality of Con-
jecture 4.3.1.) Namely, it seems reasonable to conjecture (see also [16]) that if
K is an integer point free convex body in Ed, then w(K,Zd) ≤ d. On the one
hand, this has been proved by Banaszczyk [15] for ellipsoids. On the other
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hand, for general convex bodies containing no integer points, Banaszczyk,
Litvak, Pajor, and Szarek [16] have proved the inequality w(K,Zd) ≤ C d

3
2 ,

where C is an absolute positive constant. This improves an earlier result of
Kannan and Lovász [177].

Although Conjecture 4.3.1 is still open we have the following partial results
which were recently published. Improving the estimates of [51], Talata [238]
has succeeded in deriving a proof of the following inequality.

Theorem 4.3.2 Let K be a convex body in Ed. Let H1, . . . ,HN be hyper-
planes in Ed such that

K ∩ Zd ⊂
N⋃
i=1

Hi.

Then

N ≥ c w(K,Zd)
d

− d,

where c is an absolute positive constant.

In the paper [71], the author and Litvak have shown that the plank the-
orem of Ball [12] implies a slight improvement on the above inequality for
centrally symmetric convex bodies whose lattice width is at most quadratic in
dimension. (Actually, this approach is different from Talata’s technique and
can lead to a somewhat even stronger inequality in terms of the relevant ba-
sic measure of the given convex body. For more details on this we refer the
interested reader to [71].)

Theorem 4.3.3 Let K be a centrally symmetric convex body in Ed. Let H1,
. . . , HN be hyperplanes in Ed such that

K ∩ Zd ⊂
N⋃
i=1

Hi.

Then

N ≥ c w(K,Zd)
d ln(d+ 1)

,

where c is an absolute positive constant.

Motivated by Conjecture 4.3.1 and by a conjecture of Corzatt [109] (ac-
cording to which if in the plane the integer points of a convex domain can be
covered by N lines, then those integer points can also be covered by N lines
having at most four different slopes), Brass, Moser, and Pach [96] have raised
the following related question.

Problem 4.3.4 For every positive integer d find the smallest constant c(d)
such that if the integer points of a convex body in Ed can be covered by N
hyperplanes, then those integer points can also be covered by c(d)N parallel
hyperplanes.
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Theorem 4.3.2 implies that c(d) ≤ c d2 for convex bodies in general and for
centrally symmetric convex bodies Theorem 4.3.3 yields the somewhat better
upper bound c d ln(d + 1). As a last note we mention that the problem of
finding good estimates for the constants of Theorems 4.3.2 and 4.3.3 is an
interesting open question as well.

4.4 On Some Strengthenings of the Plank Theorems of
Ball and Bang

Recall that Ball ([12]) generalized the plank theorem of Bang ([17], [18]) for
coverings of balls by planks in Banach spaces (where planks are defined with
the help of linear functionals instead of inner product). This theorem was
further strengthened by Kadets [175] for real Hilbert spaces as follows. Let C
be a closed convex subset with non-empty interior in the real Hilbert space H
(finite or infinite dimensional). We call C a convex body of H. Then let r(C)
denote the supremum of the radii of the balls contained in C. (One may call
r(C) the inradius of C.) Planks and their widths in H are defined with the
help of the inner product of H in the usual way. Thus, if C is a convex body
in H and P is a plank of H, then the width w(P) of P is always at least as
large as 2r(C ∩P). Now, the main result of [175] is the following.

Theorem 4.4.1 Let the ball B of the real Hilbert space H be covered by the
convex bodies C1,C2, . . . ,Cn in H. Then

n∑
i=1

r(Ci ∩B) ≥ r(B).

We note that an independent proof of the 2-dimensional Euclidean case
of Theorem 4.4.1 can be found in [35]. Kadets ([175]) proposes to investigate
the analogue of Theorem 4.4.1 in Banach spaces. Thus, an affirmative answer
to the following problem would improve the plank theorem of Ball.

Problem 4.4.2 Let the ball B be covered by the convex bodies C1,C2, . . . ,Cn

in an arbitrary Banach space. Prove or disprove that

n∑
i=1

r(Ci ∩B) ≥ r(B).

In order to complete the picture on plank-type results in spaces other
than Euclidean we mention the statement below, proved by Schneider and
the author [74]. It is an extension of Theorem 4.4.1 for coverings of large balls
in spherical spaces. Recall that Sd stands for the d-dimensional unit sphere in
(d+ 1)-dimensional Euclidean space Ed+1, d ≥ 2. A spherically convex body is
a closed, spherically convex subset K of Sd with interior points and lying in
some closed hemisphere, thus, the intersection of Sd with a (d+1)-dimensional
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closed convex cone of Ed+1 different from Ed+1. The inradius r(K) of K is the
spherical radius of the largest spherical ball contained in K. Also, recall that a
lune in Sd is the d-dimensional intersection of Sd with two closed halfspaces of
Ed+1 with the origin o in their boundaries. The intersection of the boundaries
(or any (d−1)-dimensional subspace in that intersection, if the two subspaces
are identical) is called the ridge of the lune. Evidently, the inradius of a lune
is half the interior angle between the two defining hyperplanes.

Theorem 4.4.3 If the spherically convex bodies K1, . . . ,Kn cover the spher-
ical ball B of radius r(B) ≥ π

2 in Sd, d ≥ 2, then

n∑
i=1

r(Ki) ≥ r(B).

For r(B) = π
2 the stronger inequality

∑n
i=1 r(Ki∩B) ≥ r(B) holds. Moreover,

equality for r(B) = π or r(B) = π
2 holds if and only if K1, . . . ,Kn are lunes

with common ridge which have pairwise no common interior points.

Theorem 4.4.3 is a consequence of the following result proved by Schneider
and the author in [74]. Recall that Svold(. . . ) denotes the spherical Lebesgue
measure on Sd, and recall that (d+ 1)ωd+1 = Svold(Sd).

Theorem 4.4.4 If K is a spherically convex body in Sd, d ≥ 2, then

Svold(K) ≤ (d+ 1)ωd+1

π
r(K).

Equality holds if and only if K is a lune.

Indeed, Theorem 4.4.4 implies Theorem 4.4.3 as follows. If B = Sd; that
is, the spherically convex bodies K1, . . . ,Kn cover Sd, then

(d+ 1)ωd+1 ≤
n∑
i=1

Svold(Ki) ≤
(d+ 1)ωd+1

π

n∑
i=1

r(Ki),

and the stated inequality follows. In general, when B is different from Sd,
let B′ ⊂ Sd be the spherical ball of radius π − r(B) centered at the point
antipodal to the center of B. As the spherically convex bodies B′,K1, . . . ,Kn

cover Sd, the inequality just proved shows that

π − r(B) +
n∑
i=1

r(Ki) ≥ π,

and the stated inequality follows. If r(B) = π
2 , then K1 ∩ B, . . . ,Kn ∩ B

are spherically convex bodies and as B′,K1 ∩ B, . . . ,Kn ∩ B cover Sd , the
stronger inequality follows. The assertion about the equality sign for the case
when r(B) = π or r(B) = π

2 follows easily.
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4.5 On Partial Coverings by Planks: Bang’s Theorem
Revisited

The following variant of Tarski’s plank problem was introduced very recently
by the author in [73]: let C be a convex body of minimal width w > 0 in Ed.
Moreover, let w1 > 0, w2 > 0, . . . , wn > 0 be given with w1 +w2 + · · ·+wn <
w. Then find the arrangement of n planks say, of P1,P2, . . . ,Pn, of width
w1, w2, . . . , wn in Ed such that their union covers the largest volume subset of
C, that is, for which vold((P1 ∪P2 ∪ · · · ∪Pn)∩C) is as large as possible. As
the following special case is the most striking form of the above problem, we
are putting it forward as the main question of this section.

Problem 4.5.1 Let Bd denote the unit ball centered at the origin o in Ed.
Moreover, let w1, w2, . . . , wn be positive real numbers satisfying the inequality
w1 + w2 + · · ·+ wn < 2. Then prove or disprove that the union of the planks
P1,P2, . . . ,Pn of width w1, w2, . . . , wn in Ed covers the largest volume subset
of Bd if and only if P1 ∪P2 ∪ · · · ∪Pn is a plank of width w1 +w2 + · · ·+wn
with o as a center of symmetry.

Clearly, there is an affirmative answer to Problem 4.5.1 for n = 1. Also,
we note that it would not come as a surprise to us if it turned out that the
answer to Problem 4.5.1 is positive in proper low dimensions and negative in
(sufficiently) high dimensions. The following partial results have been obtained
in [73].

Theorem 4.5.2 Let w1, w2, . . . , wn be positive real numbers satisfying the
inequality w1+w2+ · · ·+wn < 2. Then the union of the planks P1,P2, . . . ,Pn

of width w1, w2, . . . , wn in E3 covers the largest volume subset of B3 if and
only if P1 ∪P2 ∪ · · · ∪Pn is a plank of width w1 +w2 + · · ·+wn with o as a
center of symmetry.

Corollary 4.5.3 If P1,P2, and P3 are planks in Ed, d ≥ 3 of widths w1, w2,
and w3 satisfying 0 < w1 +w2 +w3 < 2, then P1 ∪P2 ∪P3 covers the largest
volume subset of Bd if and only if P1∪P2∪P3 is a plank of width w1+w2+w3

having o as a center of symmetry.

The following estimate of [73] can be derived from Bang’s paper [18]. In
order to state it properly we introduce two definitions.

Definition 4.5.4 Let C be a convex body in Ed and let m be a positive integer.
Then let T mC,d denote the family of all sets in Ed that can be obtained as the

intersection of at most m translates of C in Ed.

Definition 4.5.5 Let C be a convex body of minimal width w > 0 in Ed and
let 0 < x ≤ w be given. Then for any non-negative integer n let

vd(C, x, n) := min{vold(Q) | Q ∈ T 2n

C,d and w(Q) ≥ x }.
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Now, we are ready to state the theorem which although it was not pub-
lished by Bang in [18], follows from his proof of Tarski’s plank conjecture.

Theorem 4.5.6 Let C be a convex body of minimal width w > 0 in Ed.
Moreover, let P1,P2, . . . ,Pn be planks of width w1, w2, . . . , wn in Ed with
w0 = w1 + w2 + · · ·+ wn < w. Then

vold(C \ (P1 ∪P2 ∪ · · · ∪Pn)) ≥ vd(C, w − w0, n);

that is,

vold((P1 ∪P2 ∪ · · · ∪Pn) ∩C) ≤ vold(C)− vd(C, w − w0, n).

Clearly, the first inequality above implies (via an indirect argument) that
if the planks P1,P2, . . . ,Pn of width w1, w2, . . . , wn cover the convex body C
in Ed, then w1+w2+· · ·+wn ≥ w. Also, as an additional observation from [73]
we mention the following statement, that can be derived from Theorem 4.5.6
in a straightforward way and, on the other hand, represents the only case
when the estimate in Theorem 4.5.6 is sharp.

Corollary 4.5.7 Let T be an arbitrary triangle of minimal width (i.e., of
minimal height) w > 0 in E2. Moreover, let w1, w2, . . . , wn be positive real
numbers satisfying the inequality w1 + w2 + · · · + wn < w. Then the union
of the planks P1,P2, . . . ,Pn of width w1, w2, . . . , wn in E2 covers the largest
area subset of T if P1 ∪P2 ∪ · · · ∪Pn is a plank of width w1 +w2 + · · ·+wn
sitting on the side of T with height w.

It was observed by the author in [73] that there is an implicit connection
between problem 4.5.1 and the well-known Blaschke–Lebesgue problem, which
is generated by Theorem 4.5.6. The details are as follows.

First, recall that the Blaschke–Lebesgue problem is about finding the min-
imum volume convex body of constant width w > 0 in Ed. In particular,
the Blaschke–Lebesgue theorem states that among all convex domains of con-
stant width w, the Reuleaux triangle of width w has the smallest area, namely
1
2 (π−

√
3)w2. Blaschke [76] and Lebesgue [188] were the first to show this and

the succeeding decades have seen other works published on different proofs of
that theorem. For a most recent new proof, and for a survey on the state of
the art of different proofs of the Blaschke–Lebesgue theorem, see the elegant
paper of Harrell [167]. Here we note that the Blaschke–Lebesgue problem is
unsolved in three and more dimensions. Even finding the 3-dimensional set
of least volume presents formidable difficulties. On the one hand, Chakerian
[101] proved that any convex body of constant width 1 in E3 has volume at

least π(3
√
6−7)
3 = 0.365 . . .. On the other hand, it has been conjectured by

Bonnesen and Fenchel [85] that Meissner’s 3-dimensional generalizations of
the Reuleaux triangle of volume π( 2

3 −
1
4

√
3 arccos(1

3 )) = 0.420 . . . are the
only extramal sets in E3.
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For our purposes it is useful to introduce the notation Kw,d
BL (resp., K

w,d

BL)
for a convex body of constant width w in Ed having minimum volume (resp.,

surface volume). One may call Kw,d
BL (resp., K

w,d

BL) a Blaschke–Lebesgue-type
convex body with respect to volume (resp., surface volume). Note that for

d = 2, 3 one may choose Kw,d
BL = K

w,d

BL , however, this is likely not to happen
for d ≥ 4. (For more details on this see [101].) As an important note we
mention that Schramm [227] has proved the inequality

vold(K
w,d
BL) ≥

(√
3 +

2

d+ 1
− 1

)d(
w

2

)d
vold(B

d),

which gives the best lower bound for all d > 4. By observing that the or-
thogonal projection of a convex body of constant width w in Ed onto any
hyperplane of Ed is a (d − 1)-dimensional convex body of constant width w
one obtains from the previous inequality of Schramm the following one,

svold−1(bd(K
w,d

BL)) ≥ d
(√

3 +
2

d
− 1

)d−1(
w

2

)d−1
vold(B

d).

Second, let us recall that if X is a finite (point) set lying in the interior of
a unit ball in Ed, then the intersection of the (closed) unit balls of Ed centered
at the points of X is called a ball-polyhedron and it is denoted by B[X]. (For
an extensive list of properties of ball-polyhedra see the recent paper [69].) Of
course, it also makes sense to introduce B[X] for sets X that are not finite
but in those cases we get sets that are typically not ball-polyhedra.

Now, we are ready to state our theorem.

Theorem 4.5.8 Let B[X] ⊂ Ed be a ball-polyhedron of minimal width x with
1 ≤ x < 2. Then

vold(B[X]) ≥ vold(K
2−x,d
BL ) + svold−1(bd(K

2−x,d
BL ))(x− 1) + vold(B

d)(x− 1)d.

Thus, Theorem 4.5.6 and Theorem 4.5.8 imply the following immediate
estimate.

Corollary 4.5.9 Let Bd denote the unit ball centered at the origin o in Ed,
d ≥ 2. Moreover, let P1,P2, . . . ,Pn be planks of width w1, w2, . . . , wn in Ed
with w0 = w1 + w2 + · · ·+ wn ≤ 1. Then

vold((P1 ∪P2 ∪ · · · ∪Pn) ∩Bd) ≤ vold(B
d)− vd(Bd, 2− w0, n)

≤ (1− (1− w0)d)vold(B
d)− vold(K

w0,d
BL )− svold−1(bd(K

w0,d

BL ))(1− w0).





5

On the Volume of Finite Arrangements of
Spheres

5.1 The Conjecture of Kneser and Poulsen

Recall that ‖ . . . ‖ denotes the standard Euclidean norm of the d-dimensional
Euclidean space Ed. So, if pi,pj are two points in Ed, then ‖pi − pj‖ de-
notes the Euclidean distance between them. It is convenient to denote the
(finite) point configuration consisting of the points p1,p2, . . . ,pN in Ed by
p = (p1,p2, . . . ,pN ). Now, if p = (p1,p2, . . . ,pN ) and q = (q1,q2, . . . ,qN )
are two configurations of N points in Ed such that for all 1 ≤ i < j ≤ N the
inequality ‖qi − qj‖ ≤ ‖pi − pj‖ holds, then we say that q is a contraction

motion p(t) = (p1(t),p2(t), . . . ,pN (t)), with pi(t) ∈ Ed for all 0 ≤ t ≤ 1 and
1 ≤ i ≤ N such that p(0) = p and p(1) = q, and ‖pi(t)−pj(t)‖ is monotone
decreasing for all 1 ≤ i < j ≤ N . When there is such a motion, we say that
q is a continuous contraction of p. Finally, let Bd[pi, ri] denote the (closed)
d-dimensional ball centered at pi with radius ri in Ed and let vold(. . . ) rep-
resent the d-dimensional volume (Lebesgue measure) in Ed. In 1954 Poulsen
[216] and in 1955 Kneser [183] independently conjectured the following for the
case when r1 = · · · = rN .

Conjecture 5.1.1 If q = (q1,q2, . . . ,qN ) is a contraction of p = (p1,p2,
. . . ,pN ) in Ed, then

vold

(
N⋃
i=1

Bd[pi, ri]

)
≥ vold

(
N⋃
i=1

Bd[qi, ri]

)
.

Conjecture 5.1.2 If q = (q1,q2, . . . ,qN ) is a contraction of p = (p1,p2,
. . . ,pN ) in Ed, then

vold

(
N⋂
i=1

Bd[pi, ri]

)
≤ vold

(
N⋂
i=1

Bd[qi, ri]

)
.
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of p. If q is a contraction of p, then there may or may not be a continuous
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Actually, Kneser seems to be the one who has generated a great deal of
interest in the above conjectures also via private letters written to a number
of mathematicians. For more details on this see, for example, [181].

5.2 The Kneser–Poulsen Conjecture for Continuous
Contractions

For a given point configuration p = (p1,p2, . . . ,pN ) in Ed and radii r1, r2, . . . ,
rN consider the following sets,

Vi = {x ∈ Ed | for all j , ‖x− pi‖2 − r2i ≤ ‖x− pj‖2 − r2j},

Vi = {x ∈ Ed | for all j , ‖x− pi‖2 − r2i ≥ ‖x− pj‖2 − r2j}.

The set Vi (resp., Vi) is called the nearest (resp., farthest) point Voronoi
cell of the point pi. (For a detailed discussion on nearest as well as farthest
point Voronoi cells we refer the interested reader to [124] and [230].) We now
restrict each of these sets as follows.

Vi(ri) = Vi ∩Bd[pi, ri],

Vi(ri) = Vi ∩Bd[pi, ri].

We call the set Vi(ri) (resp., Vi(ri)) the nearest (resp., farthest) point
truncated Voronoi cell of the point pi. For each i 6= j let Wij = Vi ∩Vj and
W ij = Vi ∩ Vj . The sets Wij and W ij are the walls between the nearest
and farthest point Voronoi cells. Finally, it is natural to define the relevant
truncated walls as follows.

Wij(pi, ri) = Wij ∩Bd[pi, ri]

= Wij(pj , rj) = Wij ∩Bd[pj , rj ],

W ij(pi, ri) = W ij ∩Bd[pi, ri]

= W ij(pj , rj) = W ij ∩Bd[pj , rj ].

The following formula discovered by Csikós [113] proves Conjecture 5.1.1
as well as Conjecture 5.1.2 for continuous contractions in a straighforward way
in any dimension. (Actually, the planar case of the Kneser–Poulsen conjecture
under continuous contractions has been proved independently in [77], [112],
[99], and [26].)
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Theorem 5.2.1 Let d ≥ 2 and let p(t), 0 ≤ t ≤ 1 be a smooth motion of a
point configuration in Ed such that for each t, the points of the configuration
are pairwise distinct. Then

d

dt
vold

(
N⋃
i=1

Bd[pi(t), ri]

)

=
∑

1≤i<j≤N

(
d

dt
dij(t)

)
· vold−1 (Wij(pi(t), ri)) ,

d

dt
vold

(
N⋂
i=1

Bd[pi(t), ri]

)

=
∑

1≤i<j≤N

−
(
d

dt
dij(t)

)
· vold−1

(
W ij(pi(t), ri)

)
,

where dij(t) = ‖pi(t)− pi(t)‖.

On the one hand, Csikós [114] managed to generalize his formula to config-
urations of balls called flowers which are sets obtained from balls with the help
of operations ∩ and ∪. This work extends to hyperbolic as well as spherical
space. On the other hand, Csikós [115] has succeeded in proving a Schläfli-type
formula for polytopes with curved faces lying in pseudo-Riemannian Einstein
manifolds, which can be used to provide another proof of Conjecture 5.1.1
as well as Conjecture 5.1.2 for continuous contractions (for more details see
[115]).

5.3 The Kneser–Poulsen Conjecture in the Plane

In the recent paper [58] the author and Connelly proved Conjecture 5.1.1 as
well as Conjecture 5.1.2 in the Euclidean plane. Thus, we have the following
theorem.

Theorem 5.3.1 If q = (q1,q2, . . . ,qN ) is a contraction of p = (p1,p2,
. . . ,pN ) in E2, then

vol2

(
N⋃
i=1

B2[pi, ri]

)
≥ vol2

(
N⋃
i=1

B2[qi, ri]

)
;

moreover,

vol2

(
N⋂
i=1

B2[pi, ri]

)
≤ vol2

(
N⋂
i=1

B2[qi, ri]

)
.
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In fact, the paper [58] contains a proof of an extension of the above the-
orem to flowers as well. In what follows we give an outline of the three-step
proof published in [58] by phrasing it through a sequence of theorems each
being higher-dimensional. Voronoi cells play an essential role in our proofs of
Theorems 5.3.2 and 5.3.3.

Theorem 5.3.2 Consider N moving closed d-dimensional balls Bd[pi(t), ri]
with 1 ≤ i ≤ N, 0 ≤ t ≤ 1 in Ed, d ≥ 2. If Fi(t) is the contribution of the ith

ball to the boundary of the union
⋃N
i=1 Bd[pi(t), ri] (resp., of the intersection⋂N

i=1 Bd[pi(t), ri]), then ∑
1≤i≤N

1

ri
svold−1 (Fi(t))

decreases (resp., increases) in t under any analytic contraction p(t) of the
center points, where 0 ≤ t ≤ 1 and svold−1(. . . ) refers to the relevant (d− 1)-
dimensional surface volume.

Theorem 5.3.3 Let the centers of the closed d-dimensional balls Bd[pi, ri],
1 ≤ i ≤ N lie in the (d − 2)-dimensional affine subspace L of Ed, d ≥ 3.
If Fi stands for the contribution of the ith ball to the boundary of the union⋃N
i=1 Bd[pi, ri] (resp., of the intersection

⋂N
i=1 Bd[pi, ri]), then

vold−2

(
N⋃
i=1

Bd−2[pi, ri]

)
=

1

2π

∑
1≤i≤N

1

ri
svold−1(Fi)

resp., vold−2

(
N⋂
i=1

Bd−2[pi, ri]

)
=

1

2π

∑
1≤i≤N

1

ri
svold−1(Fi)

 ,

where Bd−2[pi, ri] = Bd[pi, ri] ∩ L, 1 ≤ i ≤ N .

Theorem 5.3.4 If q = (q1,q2, . . . ,qN ) is a contraction of p = (p1,p2, . . . ,
pN ) in Ed, d ≥ 1, then there is an analytic contraction p(t) = (p1(t), . . . ,
pN (t)), 0 ≤ t ≤ 1 in E2d such that p(0) = p and p(1) = q.

Note that Theorems 5.3.2, 5.3.3, and 5.3.4 imply Theorem 5.3.1 in a
straighforward way.

Also, we note that Theorem 5.3.4 (called the Leapfrog Lemma) cannot be
improved; namely, it has been shown in [24] that there exist point configura-
tions q and p in Ed, actually constructed in the way suggested in [58], such
that q is a contraction of p in Ed and there is no continuous contraction from
p to q in E2d−1.

In order to describe a more complete picture of the status of the Kneser–
Poulsen conjecture we mention two additional corollaries obtained from the
proof published in [58] and just outlined above. (For more details see [58].)
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Theorem 5.3.5 Let p = (p1,p2, . . . ,pN ) and q = (q1,q2, . . . ,qN ) be two
point configurations in Ed such that q is a piecewise-analytic contraction of p
in Ed+2. Then the conclusions of Conjecture 5.1.1 as well as Conjecture 5.1.2
hold in Ed.

The following generalizes a result of Gromov in [150], who proved it in the
case N ≤ n+ 1.

Theorem 5.3.6 If q = (q1,q2, . . . ,qN ) is an arbitrary contraction of p =
(p1,p2, . . . ,pN ) in Ed and N ≤ n + 3, then both Conjecture 5.1.1 and Con-
jecture 5.1.2 hold.

As a next step it would be natural to investigate the case N = n+ 4.

5.4 Non-Euclidean Kneser–Poulsen-Type Results

It is somewhat surprising that in spherical space for the specific radius of
balls (i.e., spherical caps) one can find a proof of both Conjecture 5.1.1 and
Conjecture 5.1.2 in all dimensions. The magic radius is π

2 and the following
theorem describes the desired result in details.

Theorem 5.4.1 If a finite set of closed d-dimensional balls of radius π
2 (i.e.,

of closed hemispheres) in the d-dimensional spherical space Sd, d ≥ 2 is rear-
ranged so that the (spherical) distance between each pair of centers does not
increase, then the (spherical) d-dimensional volume of the intersection does
not decrease and the (spherical) d-dimensional volume of the union does not
increase.

The method of the proof published by the author and Connelly in [61]
can be described as follows. First, one can use a leapfrog lemma to move
one configuration to the other in an analytic and monotone way, but only
in higher dimensions. Then the higher-dimensional balls have their combined
volume (their intersections or unions) change monotonically, a fact that one
can prove using Schläfli’s differential formula. Then one can apply an integral
formula to relate the volume of the higher-dimensional object to the volume
of the lower-dimensional object, obtaining the volume inequality for the more
general discrete motions.

The following statement is a corollary of Theorem 5.4.1, the Euclidean
part of which has been proved independently by Alexander [4], Capoyleas, and
Pach [98] and Sudakov [234]. For the sake of completeness in what follows,
we recall the notion of spherical mean width, which is most likely less known
than its widely used Euclidean counterpart. Let Sd be the d-dimensional unit
sphere centered at the origin in Ed+1. A spherically convex body is a closed,
spherically convex subset of Sd with interior points and lying in some closed
hemisphere, thus, the intersection of Sd with a (d + 1)-dimensional closed
convex cone of Ed+1 different from Ed+1. Recall that Svold(. . . ) denotes the
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spherical Lebesgue measure on Sd, and recall that (d + 1)ωd+1 = Svold(Sd).
Moreover, as usual we denote the standard inner product of Ed+1 by 〈·, ·〉,
and for u ∈ Sd we write u⊥ := {x ∈ Ed+1 : 〈u,x〉 = 0} for the orthogonal
complement of lin{u}. For a spherically convex body K, the polar body is
defined by

K∗ := {u ∈ Sd : 〈u,v〉 ≤ 0 for all v ∈ K}.

It is also spherically convex, but need not have interior points. The number

U(K) :=
1

2
Svold({u ∈ Sd : u⊥ ∩K 6= ∅})

can be considered as the spherical mean width of K. Obviously, a vector u ∈ Sd
satisfies u ∈ K∗ ∪ (−K∗) if and only if u⊥ does not meet the interior of K,
hence

(d+ 1)ωd+1 − 2Svold(K
∗) = 2U(K). (5.1)

Now, (5.1) and Theorem 5.4.1 imply the following theorem in a rather
straighforward way.

Theorem 5.4.2 Let p = (p1,p2, . . . ,pN ) be N points on a closed hemisphere
of Sd, d ≥ 2 (resp., points in Ed, d ≥ 2), and let q = (q1,q2, . . . ,qN ) be a
contraction of p in Sd (resp., in Ed). Then the spherical mean width (resp.,
mean width) of the spherical convex hull (resp., convex hull) of q is less than or
equal to the spherical mean width (resp., mean width) of the spherical convex
hull (resp., convex hull) of p.

Before we continue our non-Euclidean discussions it seems natural to men-
tion a Euclidean Kneser–Poulsen-type result supported by Theorem 5.4.2. For
that purpose, let p = (p1,p2, . . . ,pN ) be N points in Ed, d ≥ 2, and let
q = (q1,q2, . . . ,qN ) be an arbitrary contraction of p in Ed. Now, if r > 0 is
sufficiently large, then the union of the balls of radius r centered at the points
of q (resp., p) is eventually the same as the outer parallel domain of radius r
of the convex hull of q (resp., p). Then writing out Steiner’s formula for the
volumes of the outer parallel domains just mentioned with coefficients equal
to the proper intrinsic volumes and noting that the first intrinsic volume is
equal to the mean width (up to some constant), Theorem 5.4.2 implies that
Conjecture 5.1.1 holds for sufficiently large equal radii (provided of course,
that the mean width in question is non-zero). A similar argument supports
the inequality of Conjecture 5.1.2 to hold for sufficiently large equal radii.
Thus we have arrived at the following theorem that was proved regorously by
Gorbovickis in [149] (using a different approach).

Theorem 5.4.3 If q = (q1,q2, . . . ,qN ) is a contraction of p = (p1,p2,
. . . ,pN ) in Ed, then there exists r0 > 0 such that for any r ≥ r0,

vold

(
N⋃
i=1

Bd[pi, r]

)
≥ vold

(
N⋃
i=1

Bd[qi, r]

)
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(
resp., vold

(
N⋂
i=1

Bd[pi, r]

)
≤ vold

(
N⋂
i=1

Bd[qi, r]

))
.

We note that Theorem 5.4.1 extends to flowers as well; moreover, a positive
answer to the following problem would imply that both Conjecture 5.1.1 and
Conjecture 5.1.2 hold for circles in S2 (for more details on this see [61]).

Problem 5.4.4 Suppose that p = (p1,p2, . . . ,pN ) and q = (q1,q2, . . . ,qN )
are two point configurations in S2. Then prove or disprove that there is
a monotone piecewise-analytic motion from p = (p1,p2, . . . ,pN ) to q =
(q1,q2, . . . ,qN ) in S4.

Note that in fact, Theorem 5.4.1 states a volume inequality between two
spherically convex polytopes satisfying some metric conditions. The following
problem searches for a natural analogue of that in the hyperbolic 3-space H3.
In order to state it properly we recall the following. Let A and B be two planes
in H3 and let A+ (resp., B+) denote one of the two closed halfspaces bounded
by A (resp., B) such that the set A+ ∩B+ is nonempty. Recall that either A
and B intersect or A is parallel to B or A and B have a line perpendicular to
both of them. Now, “the dihedral angle A+ ∩B+” means not only the set in
question, but also refers to the standard angular measure of the corresponding
angle between A and B in the first case, it refers to 0 in the second case, and
finally, in the third case it refers to the negative of the hyperbolic distance
between A and B.

Problem 5.4.5 Let P and Q be compact convex polyhedra of H3 with P
(resp., Q) being the intersection of the closed halfspaces H+

P,1, H
+
P,2, . . . ,H

+
P,N

(resp., H+
Q,1, H

+
Q,2, . . . ,H

+
Q,N ). Assume that the dihedral angle H+

Q,i ∩ H
+
Q,j

(containing Q) is at least as large as the corresponding dihedral angle H+
P,i ∩

H+
P,j (containing P) for all 1 ≤ i < j ≤ N . Then prove or disprove that the

volume of P is at least as large as the volume of Q.

Using Andreev’s version [6], [7] of the Koebe–Andreev–Thurston theorem
and Schläfli’s differential formula the author [64] proved the following partial
analogue of Theorem 5.4.1 in H3.

Theorem 5.4.6 Let P and Q be nonobtuse-angled compact convex polyhedra
of the same simple combinatorial type in H3. If each inner dihedral angle of
Q is at least as large as the corresponding inner dihedral angle of P, then the
volume of P is at least as large as the volume of Q.

5.5 Alexander’s Conjecture

It seems that in the Euclidean plane, for the case of the intersection of con-
gruent disks, one can sharpen the results proved by the author and Connelly
[58]. Namely, Alexander [4] conjectures the following.
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Conjecture 5.5.1 Under arbitrary contraction of the center points of finitely
many congruent disks in the Euclidean plane, the perimeter of the intersection
of the disks cannot decrease.

The analogous question for the union of congruent disks has a negative
answer, as was observed by Habicht and Kneser long ago (for details see [58]).
In [68] some supporting evidence for the above conjecture of Alexander has
been collected; in particular, the following theorem was proved.

Theorem 5.5.2 Alexander’s conjecture holds for continuous contractions of
the center points and it holds up to 4 congruent disks under arbitrary contrac-
tions of the center points.

We note that Alexander’s conjecture does not hold for incongruent disks
(even under continuous contractions of their center points) as shown in [68].
Finally we remark that if Alexander’s conjecture were true, then it would be
a rare instance of an asymmetry between intersections and unions for Kneser–
Poulsen-type questions.

5.6 Densest Finite Sphere Packings

Let Bd denote the closed d-dimensional unit ball centered at the origin o of
Ed, d ≥ 2 and let P := {c1 + Bd, c2 + Bd, . . . , cn + Bd} be a packing of n
unit balls with centers c1, c2, . . . , cn in Ed. We say that P is a densest packing
among all packings of n unit balls in Ed if there exists a parameter r > 1 with
the property that

δ(P) :=
nvold(B

d)

vold (
⋃n
i=1 ci + rBd)

=
nωd

vold (
⋃n
i=1 ci + rBd)

= max

{
nωd

vold (
⋃n
i=1 xi + rBd)

| ‖xj − xk‖ ≥ 2 for all 1 ≤ j < k ≤ n
}

;

that is,

vold(
n⋃
i=1

ci + rBd) = min
‖xj−xk‖≥2 for all 1≤j<k≤n

{
vold(

n⋃
i=1

xi + rBd)
}
. (5.2)

The definition (5.2) is rather natural from the point of the Kneser–Poulsen
Conjecture and it seems to lead to a new definition of densest finite sphere
packings. The closest related notion is the definition of parametric density,
introduced by Wills in [247] (see also [28]), where the union of balls is replaced
by the convex hull of the union of balls thereby replacing our concave container
by a convex one.
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First, let us investigate (5.2) in E2. If (5.2) holds with parameter r satisfy-
ing 1 < r ≤ 2√

3
= 1.1547 . . . , then it is easy to see that P must be a packing

with the largest number of touching pairs among all packings of n unit disks,
and therefore according to the well-known result of Harborth [166], P must
be a subset of the densest infinite hexagonal packing of unit disks in E2. If
(5.2) holds with parameter r satisfying 2√

3
< r, then the Hajós Lemma (see,

for example, [200]) easily implies that δ(P) < π√
12

. This inequality, for any

fixed 2√
3
< r, is asymptotically best possible (with respect to n). However,

the following remains a challenging open question.

Problem 5.6.1 Assume that P is a densest packing of n unit disks in E2

with parameter 2√
3
< r in (5.2). Prove or disprove that P is a subset of the

densest infinite hexagonal packing of unit disks in E2.

Next, let us take a closer look of (5.2) in E3. If (5.2) holds with param-
eter r satisfying 2 ≤ r, then Theorem 2.4.3 and Theorem 1.4.1 imply in a
straightforward way that δ(P) ≤ π√

18
. Not surprisingly, this inequality, for

any fixed 2 ≤ r, is asymptotically best possible (with respect to n). Moreover,

if (5.2) holds with parameter r satisfying
√

3
2 = 1.2247 · · · ≤ r < 2, then The-

orem 1.4.6 implies that δ(P) ≤ σ3 = 0.7796 . . . . Last but not least, if (5.2)
holds with parameter r satisfying 1 < r < 2√

3
= 1.1547 . . . , then it is easy to

see that P must be a packing with the largest number C(n) of touching pairs
among all packings of n unit balls in E3. For some exact values as well as
estimates on C(n) see Theorem 1.3.5 and the discussion there. The following
problem might generate further progress on the problem at hand. For natural
reasons we call it the Truncated Dodecahedral Conjecture.

Conjecture 5.6.2 Let F be an arbitrary (finite or infinite) family of non-
overlapping unit balls in E3 with the unit ball B centered at the origin o of E3

belonging to F . Let P stand for the Voronoi cell of the packing F assigned to B
and let Q denote a regular dodecahedron circumscribed B having circumradius√

3 tan π
5 = 1.2584 . . . . If r is any parameter with 2√

3
< r ≤

√
3 tan π

5 , then

vol3(P ∩ rB) ≥ vol3(Q ∩ rB) .

We note that obviously the inequality of Conjecture 5.6.2 holds for any pa-
rameter with 1 < r ≤ 2√

3
. Moreover, for the sake of completeness we mention

that the special case, when r =
√

3 tan π
5 in Conjecture 5.6.2, had already been

conjectured by L. Fejes Tóth in [135], and it is still open, although the closely
related (but weaker) Dodecahedral Conjecture has been recently proved by
Hales and McLaughlin [164], [165].

Finally, we take a look at (5.2) in Ed, d ≥ 4. On the one hand, if (5.2)
holds with parameter r satisfying 2 ≤ r, then Theorem 2.4.3 implies the
estimate δ(P) ≤ δ(Bd). On the other hand, if (5.2) holds with parameter r
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satisfying
√

2d
d+1 ≤ r < 2, then Theorem 1.4.6 implies that δ(P) ≤ σd. In fact,

Theorem 1.4.8 improves that inequality to δ(P) ≤ σ̂d (< σd) for all d ≥ 8.
Last but not least, if (5.2) holds with parameter r satisfying 1 < r < 2√

3
, then

it is easy to see that P must be a packing with the largest number of touching
pairs (called the contact number of P) among all packings of n unit balls in
Ed. Theorem 2.4.2 gives estimates on the contact number of P.



6

Ball-Polyhedra as Intersections of Congruent
Balls

6.1 Disk-Polygons and Ball-Polyhedra

The previous sections indicate a good deal of geometry on unions and intersec-
tions of balls that is worthwhile studying. In particular, when we restrict our
attention to intersections of balls the underlying convexity suggests a broad
spectrum of new analytic and combinatorial results. To make the setup ideal
for discrete geometry from now on we look at intersections of finitely many
congruent closed d-dimensional balls with non-empty interior in Ed. In fact,
one may assume that the congruent d-dimensional balls in question are of unit
radius; that is, they are unit balls of Ed. Also, it is natural to assume that
removing any of the unit balls defining the intersection in question yields the
intersection of the remaining unit balls becoming a larger set. If d = 2, then
we call the sets in question disk-polygons and for d ≥ 3 they are called ball-
polyhedra. This definition along with some basic properties of ball-polyhedra
(resp., disk-polygons) were introduced by the author in a sequence of talks at
the University of Calgary in the fall of 2004. Based on that, the paper [69]
written by the author, Lángi, Naszódi, and Papez systematically extended
those investigations to get a better understanding of the geometry of ball-
polyhedra (resp., disk-polygons) by proving a number of theorems, which one

6.2 Shortest Billiard Trajectories in Disk-Polygons

Billiards have been around for quite some time in mathematics and have
generated a great deal of research. (See, for example, the recent elegant book
[237] of Tabachnikov.) For our purposes it seems natural to define billiard
trajectories in the following way. This introduces a larger class of polygonal
paths for billiard trajectories than the traditional definition widely used in the
literature (see [237]). Let C be an arbitrary convex body in the d-dimensional
Euclidean space Ed, d ≥ 2 that is a compact convex set with non-empty

K. Bezdek, Classical Topics in Discrete Geometry, CMS Books in Mathematics, 57

can regard as the analogues of the classical theorems on convex polytopes.
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interior in Ed. Then we say that the closed polygonal path P (possibly with
self-intersections) is a generalized billiard trajectory of C if all the vertices
of P lie on the boundary of C and if each of the (inner) angle bisectors
of P between two consecutive sides of P is perpendicular to a supporting
hyperplane of C passing through the corresponding vertex of P. If P has n
sides, then we say that P is an n-periodic generalized billiard trajectory in C.
Note that our definition of generalized billiard trajectories coincides with the
traditional definition of billiard trajectories whenever the billiard table has no
corner points. It seems that the paper [42] was among the first suggesting a
detailed study of generalized billiard trajectories in convex domains. For some
analogue higher-dimensional investigations we refer the interested reader to
the recent paper [146]. Generalized billiard trajectories have the following
fundamental property proved by the author and D. Bezdek in the very recent
paper [38].

Theorem 6.2.1 Let C be a convex body in Ed, d ≥ 2. Then C possesses at
least one shortest generalized billiard trajectory; moreover, any of the shortest
generalized billiard trajectories in C is of period at most d+ 1.

For the sake of completeness we mention that according to the main result
of [25] any d-dimensional billiard table with a smooth boundary, but not
necessarily convex, has a k-periodic billiard trajectory with k ≤ d+ 1, which
is a closely related result.

It was observed in [38] that for the following special family of disk-polygons
one can improve the estimate on periods in Theorem 6.2.1. If D is a disk-
polygon in E2 having the property that the pairwise distances between the
centers of its generating unit disks are at most 1, then we say that D is a fat
disk-polygon.

Theorem 6.2.2 Let D be a fat disk-polygon in E2. Then any of the shortest
generalized billiard trajectories in D is a 2-periodic one.

In the recent paper [146], the following fundamental question is studied
that was raised by Zelditch in [249] motivated by applications to inverse spec-
tral problems. In which convex bodies are the shortest periodic billiard trajec-
tories of period 2? It is proved in [146] that any convex body whose inscribed
ball touches the boundary of the given convex body at two diametrically op-
posite points has that property. Theorem 6.2.2 shows that the family of fat
disk-polygons possesses the same property as well.

According to Birkhoff’s well-known theorem ([237]) if B is a strictly convex
billiard table with smooth boundary (i.e., if the boundary of B is a simple,
closed, smooth, and strictly convex curve) in E2, then for every positive integer
N > 1 there exist (at least two) N -periodic billiard trajectories in B. (In
fact, here the rotation number of the billiard trajectory in question can be
preassigned as well. Also, it is well known that neither the convexity nor
smoothness can be removed from the assumptions in order to have the same
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conclusion. Last but not least, for a higher-dimensional analogue of Birkhoff’s
theorem we refer the interested reader to [128].) Billiard tables suitable for
Birkhoff’s theorem can be easily constructed from disk-polygons as follows.
Take a disk-polygon D in E2. Then choose a positive ε not larger than the
inradius of D (which is the radius of the largest circular disk contained in
D) and take the union of all circular disks of radius ε that lie in D. We call
the set obtained in this way the ε-rounded disk-polygon of D and denote it by
D(ε). The following theorem proved in [38] also shows the complexity of the
problem of Zelditch [249] on characterizing convex domains whose shortest
periodic billiard trajectories are of period 2.

Theorem 6.2.3 Let D be a fat disk-polygon in E2. Then any of the shortest
(generalized) billiard trajectories in the ε-rounded disk-polygon D(ε) is a 2-
periodic one for all ε > 0 being sufficiently small.

Actually, we believe ([38]) that the following even stronger statement holds.

Conjecture 6.2.4 Let D be a fat disk-polygon in E2. Then any of the shortest
(generalized) billiard trajectories in the ε-rounded disk-polygon D(ε) is a 2-
periodic one for all ε being at most as large as the inradius of D.

Finally we mention the following result that can be obtained as an im-
mediate corollary of Theorem 6.2.2. This might be of independent interest,
in particular because it generalizes the result proved in [42] that any closed
curve of length at most 1 can be covered by a translate of any convex domain
of constant width 1

2 in the Euclidean plane. As usual if C is a convex domain
of the Euclidean plane, then let w(C) denote the minimal width of C (i.e.,
the smallest distance between two parallel supporting lines of C).

Corollary 6.2.5 Let D be a fat disk-polygon in E2. Then any closed curve
of length at most 2w(D) in E2 can be covered by a translate of D.

It would be interesting to find the higher-dimensional analogues of the 2-
dimensional results just mentioned in this section. In particular, the following
question does not seem to be an easy one.

Problem 6.2.6 Let P be a ball-polyhedron in Ed, d ≥ 3 with the property that
the pairwise distances between the centers of its generating unit balls are at
most 1. Then prove or disprove that any of the shortest generalized billiard
trajectories in P is a 2-periodic one.

6.3 Blaschke–Lebesgue-Type Theorems for
Disk-Polygons

The classical isoperimetric inequality combined with Barbier’s theorem (stat-
ing that the perimeter of any convex domain of constant width w is equal to
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πw) implies that the largest area of convex domains of constant width w is the
circular disk of diameter w, having the area of π

4w
2 (for more details see, for

example, [79]). On the other hand, the well-known Blaschke-Lebesgue theo-
rem states that among all convex domains of constant width w, the Reuleaux
triangle of width w has the smallest area, namely 1

2 (π−
√

3)w2. Blaschke [76]
and Lebesgue [188] were the first to show this and the succeeding decades have
seen other works published on different proofs of that theorem. For a most
recent new proof, and for a survey on the state of the art of different proofs
of the Blaschke–Lebesgue theorem, see the elegant paper of Harrell [167]. The
main goal of this section is to extend the Blaschke–Lebesgue Theorem for
disk-polygons.

The disk-polygon D is called a disk-polygon with center parameter t, 0 <
t <
√

3 = 1.732 . . . , if the distance between any two centers of the generating
unit disks of D is at most t. Let F(t) denote the family of all disk-polygons
with center parameter t. Let ∆(t) denote the regular disk-triangle whose three
generating unit disks are centered at the vertices of a regular triangle of side
length t, 1 ≤ t <

√
3 = 1.732 . . . . Recall that the inradius r(C) of a convex

domain C in E2 is the radius of the largest circular disk lying in C (simply
called the incircle of C). The following formulas give the inradius r(∆(t)),
the minimal width w(∆(t)), the area a(∆(t)) and the perimeter p(∆(t)) of
∆(t) for all 1 ≤ t <

√
3:

r(∆(t)) = 1− 1

3

√
3t;

w(∆(t)) = 1− 1

2

√
4 + 2t2 − 2

√
3t
√

4− t2;

a(∆(t)) =
3

2
arccos t+

1

4

√
3t2 − 3

4
t
√

4− t2 − 1

2
π;

p(∆(t)) = 2π − 6 arcsin
t

2
.

The following theorem has been proved by M. Bezdek [75].

Theorem 6.3.1 Let D ∈ F(t) be an arbitrary disk-polygon with center pa-
rameter t, 1 ≤ t <

√
3. Then r(D) ≥ r(∆(t)) and w(D) ≥ w(∆(t)). Moreover,

the area of D is at least as large as the area of ∆(t); that is,

a(D) ≥ a(∆(t))

with equality if and only if D = ∆(t).

For t = 1 the above area inequality and the well-known fact (see, e.g., [79])
that the family of Reuleaux polygons of width 1 is a dense subset of the family
of convex domains of constant width 1, imply the Blaschke–Lebesgue theorem
in a straightforward way. In connection with Theorem 6.3.1 we propose to
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investigate the following related problem, in particular, because an affirmative
answer to that question would imply the area inequality of Theorem 6.3.1.

Problem 6.3.2 Let D ∈ F(t) be an arbitrary disk-polygon with center pa-
rameter t, 1 ≤ t <

√
3. Prove or disprove that the perimeter of D is at least

as large as the perimeter of ∆(t); that is,

p(D) ≥ p(∆(t)).

Let C ⊂ E2 be a convex domain and let ρ > 0 be given. Then, the outer
parallel domain Cρ of radius ρ of C is the union of all (closed) circular disks of
radii ρ, whose centers belong to C. Recall that a(Cρ) = a(C) + p(C)ρ+ πρ2.
Let 0 < t < 1 be given and let R(t)1−t denote the outer parallel domain of
radius 1 − t of a Reuleaux triangle R(t) of width t. Note that R(t)1−t is a
convex domain of constant width 2−t and so, Barbier’s theorem ([79]) implies
that its perimeter is equal to p (R(t)1−t) = π(2− t); moreover, it is not hard
to check that its area is equal to a (R(t)1−t) = 1

2 (π −
√

3)t2 − πt + π. The
following theorem is a natural counterpart of Theorem 6.3.1. Also, we note
that it is equivalent to the 2-dimensional case of Theorem 4.5.8.

Theorem 6.3.3 Let D ∈ F(t) be an arbitrary disk-polygon with center pa-
rameter t, 0 < t < 1. Then, the area of D is strictly larger than the area of
R(t)1−t; that is,

a(D) > a (R(t)1−t) .

6.4 On the Steinitz Problem for Ball-Polyhedra

One can represent the boundary of a ball-polyhedron in E3 as the union
of vertices, edges, and faces defined in a rather natural way as follows. A
boundary point is called a vertex if it belongs to at least three of the closed
unit balls defining the ball-polyhedron. A face of the ball-polyhedron is the
intersection of one of the generating closed unit balls with the boundary of
the ball-polyhedron. Finally, if the intersection of two faces is non-empty, then
it is the union of (possibly degenerate) circular arcs. The non-degenerate arcs
are called edges of the ball-polyhedron. Obviously, if a ball-polyhedron in E3

is generated by at least three unit balls, then it possesses vertices, edges,
and faces. Finally, a ball-polyhedron is called a standard ball-polyhedron if its
vertices, edges, and faces (together with the empty set and the ball-polyhedron
itself) form an algebraic lattice with respect to containment. We note that
not every ball-polyhedron of E3 is a standard one, a fact that is somewhat
surprising and is responsible for some of the difficulties arising in studying
ball-polyhedra in general (for more details see [66] as well as [69]).

For us a graph is always a non-oriented one that has finitely many vertices
and edges. Also, recall that a graph is 3-connected if it has at least four vertices
and deleting any two vertices yields a connected graph. Moreover, a graph is
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called simple if it contains no loops (edges with identical endpoints) and no
parallel edges (edges with the same two endpoints). Finally, a graph is planar
if it can be drawn in the Euclidean plane without crossing edges. Now, recall
that according to the well-known theorem of Steinitz a graph is the edge-graph
of some convex polyhedron in E3 if, and only if, it is simple, planar, and 3-
connected. As a partial analogue of Steinitz’s theorem for ball-polyhedra the
following theorem is proved in [69].

Theorem 6.4.1 The edge-graph of any standard ball-polyhedron in E3 is a
simple, planar, and 3-connected graph.

Based on that it would be natural to look for an answer to the following
question raised in [69].

Problem 6.4.2 Prove or disprove that every simple, planar, and 3-connected
graph is the edge-graph of some standard ball-polyhedron in E3.

6.5 On Global Rigidity of Ball-Polyhedra

One of the best known results in the geometry of convex polyhedra is Cauchy’s
rigidity theorem: If two convex polyhedra P and Q in E3 are combinatorially
equivalent with the corresponding faces being congruent, then the angles be-
tween the corresponding pairs of adjacent faces are also equal and thus, P
is congruent to Q. Putting it somewhat differently the combinatorics of an
arbitrary convex polyhedron and its face angles completely determine its in-
ner dihedral angles. For more details on Cauchy’s rigidity theorem and on its
extensions we refer the interested reader to [106].

In this section we look for analogues of Cauchy’s rigidity theorem for ball-
polyhedra. In order to reach this goal in a short way it seems useful to recall
the following terminology from [66]. To each edge of a ball-polyhedron in E3

we can assign an inner dihedral angle. Namely, take any point p in the relative
interior of the edge and take the two unit balls that contain the two faces of
the ball-polyhedron meeting along that edge. Now, the inner dihedral angle
along this edge is the angular measure of the intersection of the two half-
spaces supporting the two unit balls at p. The angle in question is obviously
independent of the choice of p. Finally, at each vertex of a face of a ball-
polyhedron there is a face angle formed by the two edges meeting at the given
vertex (which is, in fact, the angle between the two tangent halflines of the two
edges meeting at the given vertex). We say that the standard ball-polyhedron
P in E3 is globally rigid with respect to its face angles (resp., its inner dihedral
angles) if the following holds. If Q is another standard ball-polyhedron in E3

whose face lattice is isomorphic to that of P and whose face angles (resp.,
inner dihedral angles) are equal to the corresponding face angles (resp. inner
dihedral angles) of P, then Q is congruent to P. A ball-polyhedron of E3 is
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called triangulated if all its faces are bounded by three edges. It is easy to see
that any triangulated ball-polyhedron is, in fact, a standard one.

The claims (i) and (ii) of Theorem 6.5.1 have been proved in [66]. Claim
(iii) of Theorem 6.5.1 is based on a special class of standard polyhedra defined
as follows. We say that P is a normal ball-polyhedron if P is a standard ball-
polyhedron in E3 with the property that the vertices of the underlying farthest
point Voronoi tiling of the center points of the generating unit balls of P
all belong to the interior of P. (Actually, this condition is equivalent to the
following one: the distance between any center point of the generating unit
balls of P and any of the vertices of the farthest point Voronoi cell assigned to
the center in question is strictly less than one.) Now, recall that the farthest
point Voronoi tiling just mentioned gives rise to the relevant Delaunay tiling of
the convex hull P′ of the centers of the generating unit balls of P. This induces
a duality between the face lattices of the ball-polyhedron P and of the convex
polyhedron P′. Thus, it is not hard to see that claim (i) of Theorem 6.5.1 and
Cauchy’s rigidity theorem applied to P′ imply statement (iii) of Theorem 6.5.1
on P. Thus, we have the following analogues of Cauchy’s rigidity theorem for
ball-polyhedra.

Theorem 6.5.1
(i) The face lattice and the face angles determine the inner dihedral angles of
any standard ball-polyhedron in E3.
(ii) Let P be a triangulated ball-polyhedron in E3. Then P is globally rigid
with respect to its face angles.
(iii) Let P be a normal ball-polyhedron in E3. Then P is globally rigid with
respect to its face angles.

Deciding whether all standard ball-polyhedra of E3 are globally rigid with
respect to their face angles remains a challenging open problem. Finally, The-
orem 6.5.1 raises the following dual question.

Problem 6.5.2 Prove or disprove that the face lattice and the inner dihedral
angles determine the face angles of any standard ball-polyhedron in E3.

We mention that one can regard the above problem as an extension of
the (still unresolved) conjecture of Stoker [233] according to which for convex
polyhedra the face lattice and the inner dihedral angles determine the face
angles.

6.6 Separation and Support for Spindle Convex Sets

The following theorem of Kirchberger is well known (see, e.g., [22]). If A and
B are finite (resp., compact) sets in Ed with the property that for any set
T ⊂ A ∪ B of cardinality at most d + 2 (i.e., with card T ≤ d + 2) the two
sets A ∩ T and B ∩ T can be strictly separated by a hyperplane, then A
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and B can be strictly separated by a hyperplane. It is shown in [69] that no
similar statement holds for separation by unit spheres. However, [69] proves
the following analogue of Kirchberger’s theorem for separation by spheres of
radius at most one. For this purpose it is convenient to denote the (d − 1)-
dimensional sphere of Ed centered at the point c and having radius r with
Sd−1(c, r) and say that the sets A ⊂ Ed and B ⊂ Ed are strictly separated by
Sd−1(c, r) if both A and B are disjoint from Sd−1(c, r) and one of them lies
in the interior and the other one in the exterior of Sd−1(c, r). Also, we denote
by Bd(c, r) (resp., Bd[c, r]) the open (resp., closed) ball of radius r centered
at the point c in Ed. Thus, we say that the sets A and B are separated by
Sd−1(c, r) in Ed if either A ⊂ Bd[c, r] and B ⊂ Ed \Bd(c, r), or B ⊂ Bd[c, r]
and A ⊂ Ed \Bd(c, r).

Theorem 6.6.1 Let A,B ⊂ Ed be finite sets. Then A and B can be strictly
separated by a sphere Sd−1(c, r) with r ≤ 1 such that A ⊂ Bd(c, r) if and only
if the following holds. For every T ⊂ A ∪ B with card T ≤ d + 2, T ∩ A and
T ∩B can be strictly separated by a sphere Sd−1(cT , rT ) with rT ≤ 1 such that
T ∩A ⊂ Bd(cT , rT ).

The following interesting question remains open.

Problem 6.6.2 Prove or disprove that Theorem 6.6.1 extends to compact
sets.

It is natural to proceed with some basic support and separation properties
of convex sets of special kind that include ball-polyhedra. For this purpose
let us recall the following definition from [69]. Let a and b be two points in
Ed. If ‖a − b‖ < 2, then the (closed) spindle of a and b, denoted by [a,b]s,
is defined as the union of circular arcs with endpoints a and b that are of
radii at least one and are shorter than a semicircle. If ‖a − b‖ = 2, then
[a,b]s := Bd(a+b

2 , 1). If ‖a− b‖ > 2, then we define [a,b]s to be Ed. Next, a
set C ⊂ Ed is called spindle convex if, for any pair of points a,b ∈ C, we have
that [a,b]s ⊂ C. Finally, recall that if a closed unit ball Bd[c, 1] contains a
set C ⊂ Ed and a point x ∈ bdC is on Sd−1(c, 1), then we say that Sd−1(c, 1)
or Bd[c, 1] supports C at x. (Here, as usual, the boundary of a set X ⊂ Ed is
denoted by bdX.)

Theorem 6.6.3 Let A ⊂ Ed be a closed convex set. Then the following are
equivalent.
(i) A is spindle convex.
(ii) A is the intersection of unit balls containing it.
(iii) For every boundary point of A, there is a unit ball that supports A at
that point.

Recall that the interior of a set X ⊂ Ed is denoted by intX.
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Theorem 6.6.4 Let C,D ⊂ Ed be spindle convex sets. Suppose C and D
have disjoint relative interiors. Then there is a closed unit ball Bd[c, 1] such
that C ⊂ Bd[c, 1] and D ⊂ Ed \Bd(c, 1).

Furthermore, if C and D have disjoint closures and one, say C, is different
from a unit ball, then there is an open unit ball Bd(c, 1) such that C ⊂ Bd(c, 1)
and D ⊂ Ed \Bd[c, 1].

6.7 Carathéodory- and Steinitz-Type Results

In this section we study the spindle convex hull of a set and give analogues of
the well-known theorems of Carathéodory and Steinitz to spindle convexity.
Carathéodory’s theorem (see, e.g., [22]) states that the convex hull of a set
X ⊂ Ed is the union of simplices with vertices in X. Steinitz’s theorem (see,
e.g., [22]) is that if a point is in the interior of the convex hull of a set X ⊂ Ed,
then it is also in the interior of the convex hull of at most 2d points of X. This
number 2d cannot be reduced as shown by the cross-polytope and its center
point. Recall the following definition introduced in [69]. Let X be a set in Ed.
Then the spindle convex hull of X is the set defined by convsX :=

⋂
{C ⊂

Ed|X ⊂ C and C is spindle convex in Ed}. Based on this, we can now phrase
the major result of this section proved in [69].

Theorem 6.7.1 Let X ⊂ Ed be a closed set.
(i) If y ∈ bd(convsX), then there is a set {x1,x2, . . . ,xd} ⊂ X such that
y ∈ convs{x1,x2, . . . ,xd}.
(ii) If y ∈ int(convsX), then there is a set {x1,x2, . . . ,xd+1} ⊂ X such that
y ∈ int(convs{x1,x2, . . . ,xd+1}).

6.8 Illumination of Ball-Polyhedra

Recall the Boltyanski–Hadwiger Illumination Conjecture [155], [78]. Let K
be a convex body (i.e. a compact convex set with nonempty interior) in the
d-dimensional Euclidean space Ed, d ≥ 2. According to Boltyanski [78] the di-
rection v ∈ Sd−1 (i.e. the unit vector v of Ed) illuminates the boundary point
b of K if the halfline emanating from b having direction vector v intersects
the interior of K, where Sd−1 ⊂ Ed denotes the (d−1)-dimensional unit sphere
centered at the origin o of Ed. Furthermore, the directions v1,v2, . . . ,vn il-
luminate K if each boundary point of K is illuminated by at least one of
the directions v1,v2, . . . ,vn. Finally, the smallest n for which there exist n
directions that illuminate K is called the illumination number of K denoted
by I(K). An equivalent but somewhat different looking concept of illumina-
tion was introduced by Hadwiger in [155]. There he proposed to use point
sources instead of directions for the illumination of convex bodies. Based on
these circumstances the following conjecture, that was independently raised by
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Boltyanski [78] and Hadwiger [155] in 1960, is called the Boltyanski–Hadwiger
Illumination Conjecture: The illumination number I(K) of any convex body
K in Ed, is at most 2d and I(K) = 2d if and only if K is an affine d-cube.
As discussed in previous sections, this conjecture is proved for d = 2 and it is
open for all d ≥ 3 despite the large number of partial results presently known.
The following, rather basic principle, can be quite useful for estimating the
illumination numbers of some convex bodies in particular, in low dimensions.
(It can be proved in a way similar to that of the proof of Theorem 3.5.2.)

Theorem 6.8.1 Let K ⊂ Ed, d ≥ 3 be a convex body and let r be a positive
real number with the property that the Gauss image ν(F ) of any face F of K
can be covered by a spherical ball of radius r in Sd−1. Moreover, assume that
there exist N points of Sd−1 with covering radius R satisfying the inequality
r +R ≤ π

2 . Then I(K) ≤ N .

Using Theorem 6.8.1 as well as the optimal codes for the covering radii of
4 and 5 points on S2 ([142]) one can prove the first and the second inequality
of the theorem stated below. The third inequality has been proved in [69].

Theorem 6.8.2 Let B[X] be a ball-polyhedron in E3, which is the intersection
of the closed 3-dimensional unit balls centered at the points of X ⊂ E3.
(i) If the Euclidean diameter diam(X) of X satisfies 0 < diam(X) ≤ 0.577,
then I(B[X]) = 4;
(ii) If diam(X) satisfies 0.577 < diam(X) ≤ 0.774, then I(B[X]) ≤ 5;
(iii) If 0.774 < diam(X) ≤ 1, then I(B[X]) ≤ 6.

By taking a closer look of Schramm’s proof [226] of Theorem 3.4.3 and
making the necessary modifications, it turns out, that the estimate of The-
orem 3.4.3 can be somewhat improved, but more importantly it can be ex-
tended to the following family of convex bodies that is much larger than the
family of convex bodies of constant width and also includes the family of “fat”
ball-polyhedra. Thus, we have the following theorem.

Theorem 6.8.3 Let X ⊂ Ed, d ≥ 3 be an arbitrary compact set with
diam(X) ≤ 1 and let B[X] be the intersection of the closed d-dimensional
unit balls centered at the points of X. Then

I(B[X]) < 4
(π

3

) 1
2

d
3
2 (3 + ln d)

(
3

2

) d
2

< 5d
3
2 (4 + ln d)

(
3

2

) d
2

.

On the one hand, 4
(
π
3

) 1
2 d

3
2 (3 + ln d)

(
3
2

) d
2 < 2d for all d ≥ 15. (More-

over, for every ε > 0 if d is sufficiently large, then I(B[X]) <
(√

1.5 + ε
)d

=
(1.224 . . .+ε)d.) On the other hand, based on the elegant construction of Kahn
and Kalai [176], it is known (see [2]), that if d is sufficiently large, then there
exists a finite subset X ′′ of {0, 1}d in Ed such that any partition of X ′′ into

parts of smaller diameter requires more than (1.2)
√
d parts. Let X ′ be the
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(positive) homothetic copy of X ′′ having unit diameter and let X be the (not
necessarily unique) convex body of constant width one containing X ′. Then

it follows via standard arguments that I(B[X]) > (1.2)
√
d with X = B[X].

The natural question whether there exist ”fat” ball-polyhedra with the same
property remains open.

Theorem 6.8.2 and Theorem 6.8.3 suggest attacking the Boltyanski–
Hadwiger Illumination Conjecture by letting 0 < diam(X) < 2 to get ar-
bitrarily close to 2 with circumradius 0 < cr(X) < 1.

6.9 The Euler–Poincaré Formula for Ball-Polyhedra

The main result of this section, published in [69], is an Euler–Poincaré-
type formula for a large family of ball-polyhedra of Ed called standard ball-
polyhedra. This family of ball-polyhedra is an extension of the relevant 3-
dimensional family of standard ball-polyhedra already discussed in previous
sections. The details are as follows.

Let Sl(p, r) be a sphere of Ed. The intersection of Sl(p, r) with an affine
subspace of Ed that passes through p is called a great-sphere of Sl(p, r).
Note that Sl(p, r) is a great-sphere of itself. Moreover, any great-sphere is
itself a sphere. Next, let P ⊂ Ed be a ball-polyhedron with the family of
generating balls Bd[x1, 1], . . . ,Bd[xk, 1] (meaning that P = ∩ki=1B

d[xi, 1]).
Also, recall that by definition removing any of the balls in question yields
that the intersection of the remaining balls becomes a set larger than P.
The boundary of a generating ball of P is called a generating sphere of P.
A supporting sphere Sl(p, r) of P is a sphere of dimension l, where 0 ≤ l ≤
d − 1, which can be obtained as an intersection of some of the generating
spheres of P such that P ∩ Sl(p, r) 6= ∅. Note that the intersection of finitely
many spheres in Ed is either empty, or a sphere, or a point. In the same way
that the faces of a convex polytope can be described in terms of supporting
affine subspaces, we describe the faces of a certain class of ball-polyhedra in
terms of supporting spheres. Thus, let P be a d-dimensional ball-polyhedron.
We say that P is standard if for any supporting sphere Sl(p, r) of P the
intersection F := P ∩ Sl(p, r) is homeomorphic to a closed Euclidean ball of
some dimension. We call F a face of P; the dimension of F is the dimension of
the ball to which F is homeomorphic. If the dimension is 0, 1, or d−1, then we
call the face a vertex, an edge, or a facet, respectively. Note that the dimension
of F is independent of the choice of the supporting sphere containing F . The
following theorem has been proved in [69], the last part of which is the desired
Euler–Poincaré formula for standard ball-polyhedra.

Theorem 6.9.1 Let Λ be the set containing all faces of a standard ball-
polyhedron P ⊂ Ed and the empty set and P itself. Then Λ is a finite bounded
lattice with respect to ordering by inclusion. The atoms of Λ are the vertices
of P and Λ is atomic; that is, for every element F ∈ Λ with F 6= ∅ there is
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a vertex v of P such that v ∈ F . Moreover, P has k-dimensional faces for
every 0 ≤ k ≤ d−1 and P is the spindle convex hull of its (d−2)-dimensional
faces. Furthermore, no standard ball-polyhedron in Ed is the spindle convex
hull of its (d − 3)-dimensional faces. Finally, if fi(P) denotes the number of
i-dimensional faces of P, then

1 + (−1)d+1 =
d−1∑
i=0

(−1)ifi(P).
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Selected Proofs on Sphere Packings

7.1 Proof of Theorem 1.3.5

7.1.1 A proof by estimating the surface area of unions of balls

Let B denote the unit ball centered at the origin o of E3 and let P :=
{c1 + B, c2 + B, . . . , cn + B} denote the packing of n unit balls with centers
c1, c2, . . . , cn in E3 having the largest number C(n) of touching pairs among
all packings of n unit balls in E3. (P might not be uniquely determined up to
congruence in which case P stands for any of those extremal packings.) First,
observe that Theorem 1.4.1 and Theorem 2.4.3 imply the following inequality
in a straightforward way.

Lemma 7.1.1
nvol3(B)

vol3(
⋃n
i=1 ci + 2B)

≤ δ(B) =
π√
18
.

Lemma 7.1.2

36πvol23

(
n⋃
i=1

ci + 2B

)
≤ svol32

(
bd

(
n⋃
i=1

ci + 2B

))
.

Thus, Lemma 7.1.1 and Lemma 7.1.2 generate the following inequality.

Corollary 7.1.3

4(18π)
1
3n

2
3 ≤ svol2

(
bd

(
n⋃
i=1

ci + 2B

))
.

Now, assume that ci + B ∈ P is tangent to cj + B ∈ P for all j ∈ Ti,
where Ti ⊂ {1, 2, . . . , n} stands for the family of indices 1 ≤ j ≤ n for which
‖ci − cj‖ = 2. Then let Si := bd(ci + 2B) and let CSi(cj ,

π
6 ) denote the open

K. Bezdek, Classical Topics in Discrete Geometry, CMS Books in Mathematics, 71

Second, the well-known isoperimetric inequality [97] yields the following.
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spherical cap of Si centered at cj ∈ Si having angular radius π
6 . Clearly, the

family {CSi(cj , π6 ), j ∈ Ti} consists of pairwise disjoint open spherical caps of
Si; moreover,∑

j∈Ti svol2
(
CSi(cj ,

π
6 )
)

svol2
(
∪j∈TiCSi(cj , π3 )

) =

∑
j∈Ti Sarea

(
C(uij ,

π
6 )
)

Sarea
(
∪j∈TiC(uij ,

π
3 )
) , (7.1)

where uij := 1
2 (cj − ci) ∈ S2 and C(uij ,

π
6 ) ⊂ S2 (resp., C(uij ,

π
3 ) ⊂ S2)

denotes the open spherical cap of S2 centered at uij having angular radius
π
6 (resp., π

3 ) and where svol2(·) (resp., Sarea(·)) denotes the 2-dimensional
surface volume measure in E3 (resp., spherical area measure on S2) of the
corresponding set. Now, Molnár’s density bound (see Satz 1 in [200]) implies
that ∑

j∈Ti Sarea
(
C(uij ,

π
6 )
)

Sarea
(
∪j∈TiC(uij ,

π
3 )
) < 0.89332 . (7.2)

In order to estimate svol2 (bd (
⋃n
i=1 ci + 2B)) from above let us assume

that m members of P have 12 touching neighbours in P and k members of
P have at most 9 touching neighbours in P. Thus, n−m− k members of P
have either 10 or 11 touching neighbours in P. Without loss of generality we
may assume that 4 ≤ k ≤ n −m. Based on the notation just introduced, it
is rather easy to see, that (7.1) and (7.2) together with the well-known fact
that the kissing number of B is 12, imply the following estimate.

Corollary 7.1.4

svol2

(
bd

(
n⋃
i=1

ci + 2B

))
< 12.573(n−m− k) + 38.9578k

<
38.9578

3
(n−m− k) + 38.9578k .

Hence, Corollary 7.1.3 and Corollary 7.1.4 yield in a straightforward way
that

1.1822n
2
3 − 3k < n−m− k . (7.3)

Finally, as the number C(n) of touching pairs in P is obviously at most

1

2
(12n− (n−m− k)− 3k) ,

therefore (7.3) implies that

C(n) ≤ 1

2
(12n− (n−m− k)− 3k) < 6n− 0.5911n

2
3 < 6n− 0.59n

2
3 ,

finishing the proof of Theorem 1.3.5.
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7.1.2 On the densest packing of congruent spherical caps of special
radius

We feel that it is worth making the following comment: it is likely that (7.2)
can be replaced by the following sharper estimate.

Conjecture 7.1.5∑
j∈Ti Sarea

(
C(uij ,

π
6 )
)

Sarea
(
∪j∈TiC(uij ,

π
3 )
) ≤ 6

(
1−
√

3

2

)
= 0.8038 . . . ,

with equality when 12 spherical caps of angular radius π
6 are packed on S2.

If so, then one can improve Theorem 1.3.5 as follows.

Proposition 7.1.6 Conjecture 7.1.5 implies that

C(n) ≤ 6n− 3(18π)
1
3

2π
n

2
3 = 6n− 1.8326 . . . n

2
3 .

Proof: Indeed, Conjecture 7.1.5 implies in a straightforward way that

svol2

(
bd

(
n⋃
i=1

ci + 2B

))

≤ 16πn− 1

6
(

1−
√
3
2

)16π

(
1−
√

3

2

)
C(n) = 16πn− 8π

3
C(n) .

The above inequality combined with Corollary 7.1.3 yields

4(18π)
1
3n

2
3 ≤ 16πn− 8π

3
C(n) ,

from which the inequality of Proposition 7.1.6 follows. �

7.2 Proof of Theorem 1.4.7

7.2.1 The Voronoi star of a Voronoi cell in unit ball packings

Without loss of generality we may assume that the d-dimensional unit ball
B ⊂ Ed centered at the origin o of Ed is one of the unit balls of the given unit
ball packing in Ed, d ≥ 2. Let V be the Voronoi cell assigned to B. We may
assume that V is bounded; that is, V is a d-dimensional convex polytope in
Ed.

First, following [218], we dissect V into finitely many d-dimensional
simplices as follows. Let Fi denote an arbitrary i-dimensional face of V,
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0 ≤ i ≤ d− 1. Let the chain F0 ⊂ F1 ⊂ · · · ⊂ Fd−1 be called a flag of V, and
let F be the family of all flags of V. Now, let f ∈ F be an arbitrary flag of V
with the associated chain F0 ⊂ F1 ⊂ · · · ⊂ Fd−1. Then let vi ∈ Fd−i be the
point of Fd−i closest to o, 1 ≤ i ≤ d. Finally, let Vf := conv{o,v1, . . . ,vd},
where conv(·) stands for the convex hull of the given set. It is easy to see that
the family V := {Vf | f ∈ F and dim(Vf ) = d} of d-dimensional simplices
forms a tiling of V (i.e., ∪Vf∈VVf = V and no two simplices of V have an
interior point in common). This tiling is a rather special one, namely the d-
dimensional simplices of V have o as a common vertex; moreover the union
of their facets opposite to o is the boundary bdV of V. Finally, as shown in
[218], for any Vf ∈ V with Vf = conv{o,v1, . . . ,vd} we have that√

2i

i+ 1
≤ ‖vi‖ = dist (o, conv{vi,vi+1, . . . ,vd}) , 1 ≤ i ≤ d, (7.4)

where dist(·, ·) (resp., ‖ · ‖) stands for the Euclidean distance function (resp.,
norm) in Ed.

Second, we define the Voronoi star V∗ ⊂ V assigned to the Voronoi
cell V as follows. Let Vf ∈ V with Vf = conv{o,v1, . . . ,vd}. Then let
v∗1 := H∩ lin{v1}, where H denotes the hyperplane parallel to the hyperplane
aff{v1, . . . ,vd} and tangent to B such that it separates o from aff{v1, . . . ,vd}
(with lin(·) and aff(·) standing for the linear and affine hulls of the given sets
in Ed). Finally, let V∗f := conv{o,v∗1,v2, . . . ,vd} and let the Voronoi star
V∗ of V be defined as V∗ := ∪Vf∈VV∗f . It follows from the definition of
the Voronoi star and from (7.4) that the following inequalities and (surface)
volume formula hold:

1 ≤ ‖v∗1‖ = dist (o, conv{v∗1,v2, . . . ,vd}) ≤ ‖v1‖, (7.5)

√
2i

i+ 1
≤ ‖vi‖ = dist (o, conv{vi,vi+1, . . . ,vd}) , 2 ≤ i ≤ d, and (7.6)

vold(V
∗) =

1

d
svold−1(bdV), (7.7)

where vold(·) (resp., svold−1(·)) refers to the d-dimensional (resp., (d − 1)-
dimensional) volume (resp., surface volume) measure.

7.2.2 Estimating the volume of a Voronoi star from below

As an obvious corollary of (7.7), we find that Theorem 1.4.7 follows from the
following theorem.

Theorem 7.2.1 vold(V
∗) ≥ ωd

σd
.



7.3 Proof of Theorem 1.4.8 75

Proof: The main tool of our proof is the following lemma of Rogers. (See
[218] and [219] for the original version of the lemma, which is somewhat dif-
ferent from the equivalent version below. Also, for a strengthening we refer
the interested reader to Lemma 7.3.11.)

Lemma 7.2.2 Let W := conv{o,w1, . . . ,wd} be a d-dimensional simplex of
Ed having the property that lin{wj−wi | i < j ≤ d} is orthogonal to the vector
wi in Ed for all 1 ≤ i ≤ d − 1 (i.e., let W be a d-dimensional orthoscheme
in Ed). Moreover, let U := conv{o,u1, . . . ,ud} be a d-dimensional simplex
of Ed such that ‖ui‖ = dist (o, conv{ui,ui+1, . . . ,ud}) for all 1 ≤ i ≤ d. If
‖wi‖ ≤ ‖ui‖ holds for all 1 ≤ i ≤ d, then

vold(W)

vold(B ∩W)
≤ vold(U)

vold(B ∩U)
,

where B stands for the d-dimensional unit ball centered at the origin o of Ed.

Now, let W be the orthoscheme of Lemma 7.2.2 with the additional prop-

erty that ‖wi‖ =
√

2i
i+1 for all 1 ≤ i ≤ d. Notice that a regular d-dimensional

simplex of edge length 2 in Ed can be dissected into (d + 1)! d-dimensional
simplices, each congruent to W. This implies that

σd =
vold(B ∩W)

vold(W)
. (7.8)

Finally, let U := V∗f = conv{o,v∗1,v2, . . . ,vd} for Vf ∈ V. Clearly, (7.5)
and (7.6) show that W and U, just introduced, satisfy the assumptions of
Lemma 7.2.2. Thus, Lemma 7.2.2 and (7.8) imply that

1

σd
≤

vold(V
∗
f )

vold(B ∩V∗f )
. (7.9)

Hence, (7.9) yields that

ωd
σd
≤
∑

Vf∈V

vold(B ∩V∗f )
vold(V

∗
f )

vold(B ∩V∗f )
=
∑

Vf∈V

vold(V
∗
f ) = vold(V

∗),

finishing the proof of Theorem 7.2.1. �

7.3 Proof of Theorem 1.4.8

7.3.1 Basic metric properties of Voronoi cells in unit ball packings

Let P be a bounded Voronoi cell, that is, a d-dimensional Voronoi polytope of
a packing P of d-dimensional unit balls in Ed. Without loss of generality we
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may assume that the unit ball B = {x ∈ Ed| dist(o,x) = ‖x‖ ≤ 1} centered
at the origin o of Ed is one of the unit balls of P with P as its Voronoi cell.
Then P is the intersection of finitely many closed halfspaces of Ed each of
which is bounded by a hyperplane that is the perpendicular bisector of a line
segment ox with x being the center of some unit ball of P. Now, let Fd−i
be an arbitrary (d − i)-dimensional face of P, 1 ≤ i ≤ d. Then clearly there
are at least i + 1 Voronoi cells of P which meet along the face Fd−i, that
is, contain Fd−i (one of which is, of course, P). Also, it is clear from the
construction that the affine hull of centers of the unit balls sitting in all of
these Voronoi cells is orthogonal to affFd−i. Thus, there are unit balls of these
Voronoi cells with centers {o,x1, . . . ,xi} such that X = conv{o,x1, . . . ,xi} is
an i-dimensional simplex and of course, affX is orthogonal to affFd−i. Hence,
if R(Fd−i) denotes the radius of the (i − 1)-dimensional sphere that passes
through the vertices of X, then

R(Fd−i) = dist(o, affFd−i), where 1 ≤ i ≤ d.

As the following statements are well known and their proofs are relatively
straightforward, we refer the interested reader to the relevant section in [56]
for the details of those proofs.

Lemma 7.3.1 If Fd−i−1 ⊂ Fd−i and R(Fd−i) = R <
√

2 for some i, 1 ≤ i ≤
d− 1, then

2√
4−R2

≤ R(Fd−i−1).

Corollary 7.3.2
√

2i
i+1 ≤ R(Fd−i) for all 1 ≤ i ≤ d.

Lemma 7.3.3 If R(Fd−i) <
√

2 for some i, 1 ≤ i ≤ d, then the orthog-
onal projection of o onto affFd−i belongs to relintFd−i and so R(Fd−i) =
dist(o, Fd−i).

7.3.2 Wedges of types I, II, and III, and truncated wedges of
types I, and II

Let F0 ⊂ F1 ⊂ · · · ⊂ Fd−1 be an arbitrary flag of the Voronoi polytope P.
Then let ri ∈ Fd−i be the uniquely determined point of the (d−i)-dimensional
face Fd−i of P that is closest to the center point o of P; that is, let

ri ∈ Fd−i such that ‖ri‖ = min{‖x‖ | x ∈ Fd−i}, where 1 ≤ i ≤ d.

Definition 7.3.4 If the vectors r1, . . . , ri are linearly independent in Ed,
then we call conv{o, r1, . . . , ri} the i-dimensional Rogers simplex assigned
to the subflag Fd−i ⊂ · · · ⊂ Fd−1 of the Voronoi polytope P, where 1 ≤
i ≤ d. If conv{o, r1, . . . , rd} ⊂ Ed is the d-dimensional Rogers simplex
assigned to the flag F0 ⊂ · · · ⊂ Fd−1 of P, then conv{rd−i, . . . , rd} is
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called the i-dimensional base of the given d-dimensional Rogers simplex and
dist(o, aff{rd−i, . . . , rd}) = dist(o, affFi) = R(Fi) is called the height assigned
to the i-dimensional base, where 1 ≤ i ≤ d.

Definition 7.3.5 The i-dimensional simplex Y = conv{o,y1, . . . ,yi} ⊂ Ed
with vertices y0 = o,y1, . . . ,yi is called an i-dimensional orthoscheme if for
each j, 0 ≤ j ≤ i − 1 the vector yj is orthogonal to the linear hull lin{yk −
yj | j + 1 ≤ k ≤ i}, where 1 ≤ i ≤ d.

It is shown in [218] that the union of the d-dimensional Rogers simplices of
the Voronoi polytope P is the polytope P itself and their interiors are pairwise
disjoint. This fact together with Corollary 7.3.2 and Lemma 7.3.3 imply the
following metric properties of Rogers simplices in a straightforward way.

Lemma 7.3.6
(1) If conv{o, r1, . . . , ri} is an i-dimensional Rogers simplex assigned to the

subflag Fd−i ⊂ · · · ⊂ Fd−1 of the Voronoi polytope P, then
√

2j
j+1 ≤ ‖rj‖ for

all 1 ≤ j ≤ i, where 1 ≤ i ≤ d.
(2) If Fd−i ⊂ · · · ⊂ Fd−1 is a subflag of the Voronoi polytope P with
R(Fd−i) <

√
2, then conv{o, r1, . . . , ri} is an i-dimensional Rogers simplex

which is, in fact, an i-dimensional orthoscheme (in short, an i-dimensional
Rogers orthoscheme) with the property that each rj ∈ relintFd−j , 1 ≤ j ≤ i is
the orthogonal projection of o onto affFd−j, where 1 ≤ i ≤ d.
(3) If F2 ⊂ · · · ⊂ Fd−1 is a subflag of the Voronoi polytope P ⊂ Ed, 3 ≤ d with
R(F2) <

√
2, then the union of the 2-dimensional bases of the d-dimensional

Rogers simplices that contain the orthoscheme conv{o, r1, . . . , rd−2} is the
(uniquely determined) 2-dimensional face F2 of the Voronoi polytope P that is
totally orthogonal to conv{o, r1, . . . , rd−2} at the point rd−2 and so, ‖rd−2‖ =
dist(o, affF2) with rd−2 ∈ relintF2.

Now we are ready for the definitions of wedges and truncated wedges.
Recall that for any 2-dimensional face F2 of the Voronoi polytope P ⊂ Ed, d ≥
3 we have that

√
2(d−2)
d−1 ≤ R(F2).

Definition 7.3.7
(1) Let F2 be a 2−dimensional face of the Voronoi polytope P ⊂ Ed, d ≥
3 with

√
2(d−2)
d−1 ≤ R(F2) <

√
2(d−1)
d and let conv{o, r1, . . . , rd−2} be any

(d − 2)-dimensional Rogers simplex with rd−2 ∈ relintF2. Then the union
WI of the d-dimensional Rogers simplices of P that contain the orthoscheme
conv{o, r1, . . . , rd−2} is called a wedge of type I (generated by the (d − 2)-
dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2}). F2 is called the 2-
dimensional base of WI , and ‖rd−2‖ = dist(o, affF2) is the height of WI

assigned to the base F2.
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(2) Let F2 be a 2-dimensional face of the Voronoi polytope P ⊂ Ed, d ≥ 3 with√
2(d−1)
d ≤ R(F2) <

√
2d
d+1 and let conv{o, r1, . . . , rd−2} be any (d − 2)-

dimensional Rogers simplex with rd−2 ∈ relintF2. Then the union WII

of the d-dimensional Rogers simplices of P that contain the orthoscheme
conv{o, r1, . . . , rd−2} is called a wedge of type II (generated by the (d − 2)-
dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2}). F2 is called the 2-di-
mensional base of WII , and ‖rd−2‖ = dist(o, affF2) is the height of WII

assigned to the base F2.
(3) Let conv{o, r1, . . . , rd} be the d-dimensional Rogers simplex assigned to
the flag F0 ⊂ F1 · · · ⊂ Fd−1 of the Voronoi polytope P ⊂ Ed, d ≥ 3 with√

2d
d+1 ≤ R(F2). Then WIII = conv{o, r1, . . . , rd} is called a wedge of type

III.

At this point, it useful to recall, that for any vertex F0 of the Voronoi

polytope P ⊂ Ed we have that
√

2d
d+1 ≤ R(F0).

Definition 7.3.8 Let B =
{

x ∈ Ed| dist(o,x) = ‖x‖ ≤
√

2d
d+1

}
.

(1) If WI is a wedge of type I with the 2-dimensional base F2 which is gener-
ated by the (d − 2)-dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2} of
the Voronoi polytope P ⊂ Ed, d ≥ 3, then

WI = conv
(
(B ∩ F2) ∪ {o = r0, . . . , rd−3}

)
is called the truncated wedge of type I with the 2-dimensional base B ∩ F2

generated by the (d− 2)-dimensional Rogers orthoscheme

conv{o, r1, . . . , rd−2}.

(2) If WII is a wedge of type II with the 2-dimensional base F2 which is
generated by the (d−2)-dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2}
of the Voronoi polytope P ⊂ Ed, d ≥ 3, then

WII = conv
(
(B ∩ F2) ∪ {o = r0, . . . , rd−3}

)
is called the truncated wedge of type II with the 2-dimensional base B ∩ F2

generated by the (d− 2)-dimensional Rogers orthoscheme

conv{o, r1, . . . , rd−2}.

As the following claim can be proved by Lemma 7.3.6 in a straightforward
way, we leave the relevant details to the reader.

Lemma 7.3.9
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(1) Let WI (resp., WII) denote the wedge of type I (resp., of type II) with the
2-dimensional base F2 which is generated by the (d − 2)-dimensional Rogers
orthoscheme conv{o, r1, . . . , rd−2} of the Voronoi polytope P ⊂ Ed, d ≥ 3.
If the points x,y ∈ affF2 are chosen so that the triangle 4rd−2xy has a
right angle at the vertex x, then conv{o, r1, . . . , rd−2,x,y} is a d-dimensional
orthoscheme. Moreover, if z ∈ affF2 is an arbitrary point, then conv{o =
r0, . . . , rd−3, z} is a (d− 2)-dimensional orthoscheme.
(2) Let WI denote the wedge of type I with the 2-dimensional base F2 which is
generated by the (d−2)-dimensional Rogers orthoscheme conv{o = r0, r1, . . . ,
rd−2} of the Voronoi polytope P ⊂ Ed, d ≥ 3. Let Q2 ⊂ affF2 and Q∗2 ⊂ affF2

be compact convex sets with relintQ2 ∩ relintQ∗2 = ∅. If K2 = Q2 (resp.,
K∗2 = Q∗2) and Kj = conv(Kj−1∪{rd−j}) (resp., K∗j = conv(K∗j−1∪{rd−j}))
for j = 3, . . . , d, then Kd = conv(Q2 ∪ {o = r0, . . . , rd−3}) (resp., K∗d =
conv(Q∗2 ∪ {o = r0, . . . , rd−3})), moreover relintKd ∩ relintK∗d = ∅. A similar
statement holds for WII .
(3) Let WI (resp., WI) denote the wedge of type I (resp., truncated wedge
of type I) with the 2-dimensional base F2 (resp., B ∩ F2) which is generated
by the (d− 2)-dimensional Rogers orthoscheme conv{o = r0, r1, . . . , rd−2} of
the Voronoi polytope P ⊂ Ed, d ≥ 3. If K2 = F2 (resp., K2 = B ∩ F2) and
Kj = conv(Kj−1∪{rd−j}) for j = 3, . . . , d, then Kd = WI (resp., Kd = WI).
Similar statements hold for WII and WII .

We close this section with the following important observation published
in [56], and refer the interested reader to [56] for the details of the seven-page
proof, which is based on Corollary 7.3.2 and Lemma 7.3.3.

Lemma 7.3.10 Let B∩ F2 be the 2-dimensional base of the type I truncated
wedge WI (resp., type II truncated wedge WII) in the Voronoi polytope P ⊂
Ed of dimension d ≥ 8. Then the number of line segments of positive length
in relbd(B ∩ F2) is at most 4.

7.3.3 The lemma of comparison and a characterization of regular
polytopes

Recall that B = {x ∈ Ed| dist(o,x) = ‖x‖ ≤ 1} and let

S = {x ∈ Ed| dist(o,x) = ‖x‖ = 1}.

Then let H ⊂ Ed be a hyperplane disjoint from the interior of the unit ball
B and let Q ⊂ H be an arbitrary (d− 1)-dimensional compact convex set. If
[o, Q] denotes the convex cone conv({o} ∪Q) with apex o and base Q, then
the (volume) density δ([o, Q],B) of the unit ball B in the cone [o, Q] is defined
as

δ([o, Q], B) =
vold([o, Q] ∩B)

vold([o, Q])
,
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where vold(·) refers to the corresponding d-dimensional Euclidean volume
measure. It is natural to introduce the following very similar notion. The
surface density δ̂([o, Q], S) of the unit sphere S in the convex cone [o, Q] with
apex o and base Q is defined by

δ̂([o, Q], S) =
Svold−1([o, Q] ∩ S)

vold−1(Q)
,

where Svold−1(·) refers to the corresponding (d − 1)-dimensional spherical
volume measure.

If h = dist(o, H), then clearly h · δ([o, Q],B) = δ̂([o, Q], S). We need the
following statement, the first part of which is due to Rogers [218] and the
second part of which has been proved by the author in [55].

Lemma 7.3.11 Let U = conv{o,u1, . . . ,ud} be a d-dimensional orthoscheme
in Ed and let V = conv{o,v1, . . . ,vd} be a d-dimensional simplex of Ed
such that ‖vi‖ = dist(o, conv{vi,vi+1, . . . ,vd}) for all 1 ≤ i ≤ d − 1. If
1 ≤ ‖ui‖ ≤ ‖vi‖ holds for all 1 ≤ i ≤ d, then
(1) δ(U,B) ≥ δ(V,B) and

(2) δ̂(U, S) ≥ δ̂(V, S).

For the sake of completeness we mention the following statement that
follows from Lemma 7.3.11 using the special decomposition of convex poly-
topes into Rogers simplices. Actually, the characterization of regular poly-
topes through the corresponding volume (resp., surface volume) inequality
below was first observed by Böröczky and Máthéné Bognár [91] (resp., by the
author [55]). (In fact, it is easy to see that the statement on surface volume
implies the one on volume.) For more details on related problems we refer the
interested reader to [93].

Corollary 7.3.12 Let U′ be a regular convex polytope in Ed with circumcen-
ter o and let si denote the distance of an i-dimensional face of U′ from o,
0 ≤ i ≤ d− 1. If V′ is an arbitrary convex polytope in Ed such that o ∈ intV′

and the distance of any i-dimensional face of V′ from o is at least si for all
0 ≤ i ≤ d − 1, then vold(V

′) ≥ vold(U
′) (resp., svold−1(V′) ≥ svold−1(U′)).

Moreover, equality holds if and only if V′ is congruent to U′ and its circum-
center is o.

7.3.4 Volume formulas for (truncated) wedges

Definition 7.3.13 Let x1, . . . ,xn, n ≥ 1 be points in Ed, d ≥ 1 and let X ⊂
Ed be an arbitrary convex set. If X0 = X and Xm = conv({xn−(m−1)}∪Xm−1)
for m = 1, . . . , n, then we denote the final convex set Xn by

[x1, . . . ,xn, X].
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Definition 7.3.14 Let WI (resp., WI) denote the wedge (resp., truncated
wedge) of type I with the 2-dimensional base F2 (resp., B ∩ F2) which is
generated by the (d−2)-dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2}
of the Voronoi polytope P ⊂ Ed, d ≥ 4. Then let

QI = [r1, . . . , rd−3, F2]
(
resp.,QI = [r1, . . . , rd−3,B ∩ F2]

)
be called the (d − 1)-dimensional base of the type I wedge WI = [o, QI ]
(resp., type I truncated wedge WI = [o, QI ]). Similarly, we define the (d−1)-
dimensional bases QII and QII of WII and WII . Finally, let

h1 = ‖r1‖, h2 = ‖r2 − r1‖, . . . , hd−2 = ‖rd−2 − rd−3‖.

Lemma 7.3.15 Let WI (resp., WII) denote the wedge of type I (resp., of
type II) with the 2-dimensional base F2 which is generated by the (d − 2)-
dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2} of the Voronoi polytope
P ⊂ Ed, d ≥ 4. Then we have the following volume formulas.

(1) vold−1(QI) = 2
(d−1)!

(∏d−2
i=2 hi

)
vol2(F2) and

(2) vold(WI) = 2
d!

(∏d−2
i=1 hi

)
vol2(F2).

Similar formulas hold for the corresponding dimensional volumes of QI ,
WI , QII , WII , QII , and WII .

In general, if K ⊂ affF2 is a convex domain, then

(3) vold−1([r1, . . . , rd−3,K]) = 2
(d−1)!

(∏d−2
i=2 hi

)
vol2(K) and

(4) vold([o, r1, . . . , rd−3,K]) = 2
d!

(∏d−2
i=1 hi

)
vol2(K).

Proof: The proof follows from Lemma 7.3.6 and Lemma 7.3.9 in a straight-
forward way. �

7.3.5 The integral representation of surface density in (truncated)
wedges

The central notion of this section is the limiting surface density introduced as
follows.

Definition 7.3.16 Let WI (resp., WII) denote the wedge of type I (resp.,
of type II) with the 2-dimensional base F2 which is generated by the (d− 2)-
dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2} of the Voronoi polytope
P ⊂ Ed, d ≥ 4. Then choose a coordinate system with two perpendicular axes
in the plane affF2 meeting at the point rd−2. Now, if x is an arbitrary point
of the plane affF2, then for a positive integer n let Tn(x) ⊂ affF2 denote
the square centered at x having sides of length 1

n parallel to the fixed coor-

dinate axes. Then the limiting surface density δ̂lim ([o, r1, . . . , rd−3,x], S) of
the (d− 1)-dimensional unit sphere S in the (d− 2)-dimensional orthoscheme
[o, r1, . . . , rd−3,x] is defined by
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δ̂lim ([o, r1, . . . , rd−3,x], S) = lim
n→∞

δ̂ ([o, r1, . . . , rd−3, Tn(x)], S) .

Based on this we are able to give an integral representation of the surface
density in a (truncated) wedge.

Lemma 7.3.17 Let WI (resp., WII) denote the wedge of type I (resp., of
type II) with the 2-dimensional base F2 which is generated by the (d − 2)-
dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2} of the Voronoi polytope
P ⊂ Ed, d ≥ 4.
(1) If x ∈ affF2 and y ∈ affF2 are points such that ‖x‖ ≤ ‖y‖, then

δ̂lim ([o, r1, . . . , rd−3,x], S) ≥ δ̂lim ([o, r1, . . . , rd−3,y], S) .

(2) For the surface densities of the unit sphere S in the wedge WI and in the
truncated wedge WI we have the following formulas.

δ̂(WI , S) =
Svold−1([o, QI ] ∩ S)

vold−1(QI)

=
1

vol2(F2)

∫
F2

δ̂lim ([o, r1, . . . , rd−3,x], S) dx

and

δ̂(WI , S) =
Svold−1([o, QI ] ∩ S)

vold−1(QI)

=
1

vol2(B ∩ F2)

∫
B∩F2

δ̂lim ([o, r1, . . . , rd−3,x], S) dx,

where dx stands for the Euclidean area element in the plane affF2. Similar
formulas hold for WII and WII .
(3) In general, if K ⊂ affF2 is a convex domain, then the surface density of the
unit sphere S in the d-dimensional convex cone [o, r1, . . . , rd−3,K] with apex
o and (d− 1)-dimensional base [r1, . . . , rd−3,K] can be computed as follows.

δ̂([o, r1, . . . , rd−3,K], S) =
1

vol2(K)

∫
K

δ̂lim ([o, r1, . . . , rd−3,x], S) dx.

Proof:
(1) It is sufficient to look at the case ‖x‖ < ‖y‖. (The case ‖x‖ = ‖y‖

follows from this by standard limit procedure.) Then recall that

δ̂ ([o, r1, . . . , rd−3, Tn(x)], S) = h1δ ([o, r1, . . . , rd−3, Tn(x)], S)

and

δ̂ ([o, r1, . . . , rd−3, Tn(y)], S) = h1δ ([o, r1, . . . , rd−3, Tn(y)], S) .

Thus, it is sufficient to show that if n is sufficiently large, then
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δ ([o, r1, . . . , rd−3, Tn(x)], S) ≥ δ ([o, r1, . . . , rd−3, Tn(y)], S) .

This we can get as follows. We can approximate the d-dimensional convex
cone [o, r1, . . . , rd−3, Tn(x)] (resp., [o, r1, . . . , rd−3, Tn(y)]) arbitrarily close
with a finite (but possibly large) number of non-overlapping d-dimensional
orthoschemes each containing the (d− 3)-dimensional orthoscheme [o, r1, . . . ,
rd−3] as a face and each having all the edge lengths of the 3 edges going out
from the vertex o and not lying on the face [o, r1, . . . , rd−3] close to ‖x‖ (resp.,
‖y‖) for n sufficiently large (see also Lemma 7.3.9). Thus, the claim follows
from (1) of Lemma 7.3.11 rather easily.

(2),(3) It is sufficient to prove the corresponding formula for K.
A typical term of the Riemann–Lebesgue sum of

1

vol2(K)

∫
K

δ̂lim ([o, r1, . . . , rd−3,x], S) dx

is equal to

1

vol2(K)
δ̂ ([o, r1, . . . , rd−3, Tn(xm)], S) vol2(Tn(xm)),m ∈M.

Using Lemma 7.3.15 this turns out to be equal to

vold−1([r1, . . . , rd−3, Tn(xm)])

vold−1([r1, . . . , rd−3,K])
δ̂ ([o, r1, . . . , rd−3, Tn(xm)], S)

=
Svold−1([o, r1, . . . , rd−3, Tn(xm)] ∩ S)

vold−1([r1, . . . , rd−3,K])
.

Finally, as the union of the non-overlapping squares Tn(xm),m ∈M is a good
approximation of the convex domain K in the plane affF2 we get that∑

m∈M

Svold−1([o, r1, . . . , rd−3, Tn(xm)] ∩ S)

vold−1([r1, . . . , rd−3,K])

=

∑
m∈M Svold−1([o, r1, . . . , rd−3, Tn(xm)] ∩ S)

vold−1([r1, . . . , rd−3,K])

is a good approximation of

Svold−1 ([o, r1, . . . , rd−3,K] ∩ S)

vold−1([r1, . . . , rd−3,K])
= δ̂([o, r1, . . . , rd−3,K], S).

This completes the proof of Lemma 7.3.17. �
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7.3.6 Truncation of wedges increases the surface density

Lemma 7.3.18 Let WI (resp., WII) denote the wedge of type I (resp., of
type II) with the 2-dimensional base F2 which is generated by the (d − 2)-
dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2} of the Voronoi polytope
P ⊂ Ed, d ≥ 4. Then

δ̂(WI , S) ≤ δ̂(WI , S)
(
resp., δ̂(WII , S) ≤ δ̂(WII , S)

)
.

Proof: Notice that (1) of Lemma 7.3.17 easily implies that if 0 < vol2(F2\B),

then for any x∗ ∈ F2 with ‖x∗‖ =
√

2d
d+1 we have that

1

vol2(F2 \B)

∫
F2\B

δ̂lim ([o, r1, . . . , rd−3,x], S) dx

≤ δ̂lim ([o, r1, . . . , rd−3,x
∗], S)

≤ 1

vol2(B ∩ F2)

∫
B∩F2

δ̂lim ([o, r1, . . . , rd−3,x], S) dx.

Thus, if 0 < vol2(F2 \B), then (2) of Lemma 7.3.17 yields that

δ̂(WI , S) =
1

vol2(F2)

∫
F2

δ̂lim ([o, r1, . . . , rd−3,x], S) dx

=
vol2(B ∩ F2)

vol2(F2)
· 1

vol2(B ∩ F2)

∫
B∩F2

δ̂lim ([o, r1, . . . , rd−3,x], S) dx

+
vol2(F2 \B)

vol2(F2)
· 1

vol2(F2 \B)

∫
F2\B

δ̂lim ([o, r1, . . . , rd−3,x], S) dx

≤ vol2(B ∩ F2)

vol2(F2)
· 1

vol2(B ∩ F2)

∫
B∩F2

δ̂lim ([o, r1, . . . , rd−3,x], S) dx

+
vol2(F2 \B)

vol2(F2)
· 1

vol2(B ∩ F2)

∫
B∩F2

δ̂lim ([o, r1, . . . , rd−3,x], S) dx

=
1

vol2(B ∩ F2)

∫
B∩F2

δ̂lim ([o, r1, . . . , rd−3,x], S) dx = δ̂(WI , S).

As the same method works for WII and WII this completes the proof of
Lemma 7.3.18. �
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7.3.7 Maximum surface density in truncated wedges of type I

Let WI denote the truncated wedge of type I with the 2-dimensional base
B ∩ F2 which is generated by the (d − 2)-dimensional Rogers orthoscheme
conv{o, r1, . . . , rd−2} of the Voronoi polytope P ⊂ Ed, d ≥ 8. By assumption
F2 is a 2-dimensional face of the Voronoi polytope P with√

2(d− 2)

d− 1
≤ h = R(F2) <

√
2(d− 1)

d
.

Let G0 ⊂ affF2 (resp., G ⊂ affF2) denote the closed circular disk of radius

g0(h) =

√
2d

d+ 1
− h2

(
resp., g(h) =

2− h2√
4− h2

)
centered at the point rd−2. It is easy to see that G ⊂ relintG0 for all√

2(d−2)
d−1 ≤ h <

√
2(d−1)
d . (Moreover G = G0 for h =

√
2(d−1)
d .) Notice that

G0 = B ∩ affF2, thus Corollary 7.3.2 implies that there is no vertex of the
face F2 belonging to the relative interior of G0. Moreover, as h = R(F2) <

√
2

Lemma 7.3.1 yields that 2√
4−h2

≤ R(F1) holds for any side F1 of the face F2,

hence G ⊂ F2 and of course, G ⊂ B ∩ F2 = G0 ∩ F2. Now, let M ⊂ affF2 be
a square circumscribed about G. A straightforward computation yields that

g0(h)
g(h) is a strictly decreasing function on the interval

[√
2(d−2)
d−1 ,

√
2(d−1)
d

)
(i.e., d

dh

(
g0(h)
g(h)

)
< 0 on the interval

(√
2(d−2)
d−1 ,

√
2(d−1)
d

)
) and

g0

(√
2(d−2)
d−1

)
g

(√
2(d−2)
d−1

) =

√
2d

d+ 1
<
√

2.

Thus, the vertices of the square M do not belong to G0. Finally, as d ≥ 8
Lemma 7.3.10 implies that there are at most four sides of the face F2 that
intersect the relative interior of G0.

The following statement is rather natural from the point of view of the
local geometry introduced above, however, its three-page proof based on
Lemma 7.3.11 and Lemma 7.3.17 published in [56] is a bit technical and so,
for that reason we do not prove it here; instead we refer the interested reader
to the proper section in [56].

Lemma 7.3.19 Let WI denote the truncated wedge of type I with the 2-
dimensional base B∩F2 which is generated by the (d−2)-dimensional Rogers
orthoscheme conv{o, r1, . . . , rd−2} of the Voronoi polytope P ⊂ Ed, d ≥ 8.
Then

δ̂(WI , S) ≤ δ̂([o, r1, . . . , rd−3, G0 ∩M ], S).
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It is clear from the construction that we can write δ̂([o, r1, . . . , rd−3, G0 ∩
M ], S) as a function of d− 2 variables, namely

∆̂(ξ1, . . . , ξd−3, ξd−2) = δ̂([o, r1, . . . , rd−3, G0 ∩M ], S),

where ξ1 = ‖r1‖, . . . , ξd−3 = ‖rd−3‖, ξd−2 = ‖rd−2‖ = h. Corollary 7.3.2 and
the assumption on h imply that

m1 = 1 ≤ ξ1, . . . ,mi =

√
2i

i+ 1
≤ ξi, . . . ,md−3 =

√
2(d− 3)

d− 2
≤ ξd−3,

md−2 =

√
2(d− 2)

d− 1
≤ ξd−2 = h <

√
2(d− 1)

d
.

Notice that if ‖ri‖ = mi for all 1 ≤ i ≤ d − 2, then [o, r1, . . . , rd−3, G0 ∩M ]
can be dissected into four pieces each being congruent to W and therefore
δ̂([o, r1, . . . , rd−3, G0 ∩M ], S) = σ̂d.

Lemma 7.3.20

∆̂(ξ1, . . . , ξd−3, ξd−2) ≤ ∆̂(m1, . . . ,md−3,md−2) = σ̂d.

Proof: For any fixed ξd−2 = h, (2) of Lemma 7.3.11 easily implies that

∆̂(ξ1, . . . , ξd−3, h) ≤ ∆̂(m1, . . . ,md−3, h).

Finally, using Lemma 7.3.11 again, it is rather straightforward to show that
the function ∆̂(m1, . . . ,md−3, h) as a function of h is decreasing on the interval(√

2(d−2)
d−1 ,

√
2(d−1)
d

)
. From this it follows that

∆̂(m1, . . . ,md−3, h) ≤ ∆̂(m1, . . . ,md−3,md−2) = σ̂d,

finishing the proof of Lemma 7.3.20. �

Thus, Lemma 7.3.19 and Lemma 7.3.20 yield the following immediate es-
timate.

Corollary 7.3.21 Let WI denote the truncated wedge of type I with the 2-
dimensional base B∩F2 which is generated by the (d−2)-dimensional Rogers
orthoscheme conv{o, r1, . . . , rd−2} of the Voronoi polytope P ⊂ Ed, d ≥ 8.
Then

δ̂(WI , S) ≤ σ̂d.

7.3.8 An upper bound for the surface density in truncated wedges
of type II

It is sufficient to prove the following statement.
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Lemma 7.3.22 Let WII denote the truncated wedge of type II with the 2-
dimensional base B∩F2 which is generated by the (d−2)-dimensional Rogers
orthoscheme conv{o, r1, . . . , rd−2} of the Voronoi polytope P ⊂ Ed, d ≥ 4.
Then

δ̂(WII , S) ≤ σ̂d.

Proof: By assumption F2 is a 2-dimensional face of the Voronoi polytope P
with √

2(d− 1)

d
≤ h = R(F2) <

√
2d

d+ 1
.

Let G0 ⊂ affF2 denote the closed circular disk of radius g0(h) =
√

2d
d+1 − h2

centered at the point rd−2. As h = R(F2) <
√

2, therefore Lemma 7.3.1 yields
that √

2d

d+ 1
≤ 2√

4− h2
≤ R(F1)

holds for any side F1 of the face F2. Thus,

B ∩ F2 = G0

and so
δ̂(WII , S) = δ̂([o, r1, . . . , rd−3, G0], S).

It is clear from the construction that we can write δ̂([o, r1, . . . , rd−3, G0], S)
as a function of d− 2 variables, namely

∆̂∗(ξ1, . . . , ξd−3, ξd−2) = δ̂([o, r1, . . . , rd−3, G0], S),

where ξ1 = ‖r1‖, . . . , ξd−3 = ‖rd−3‖, ξd−2 = ‖rd−2‖ = h. Corollary 7.3.2 and
the assumption on h imply that

m1 = 1 ≤ ξ1, . . . ,mi =

√
2i

i+ 1
≤ ξi, . . . ,md−3 =

√
2(d− 3)

d− 2
≤ ξd−3,

m∗d−2 =

√
2(d− 1)

d
≤ ξd−2 = h <

√
2d

d+ 1
.

For any fixed ξd−2 = h, (2) of Lemma 7.3.11 easily implies that

∆̂∗(ξ1, . . . , ξd−3, h) ≤ ∆̂∗(m1, . . . ,md−3, h).

Finally, again applying (2) of Lemma 7.3.11 we immediately get that

∆̂∗(m1, . . . ,md−3, h) ≤ ∆̂∗(m1, . . . ,md−3,m
∗
d−2) ≤ σ̂d.

This completes the proof of Lemma 7.3.22. �
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7.3.9 The overall estimate of surface density in Voronoi cells

Let P be a d-dimensional Voronoi polytope of a packing P of d-dimensional
unit balls in Ed, d ≥ 8. Without loss of generality we may assume that the
unit ball B = {x ∈ Ed | dist(o,x) = ‖x‖ ≤ 1} centered at the origin o of Ed
is one of the unit balls of P with P as its Voronoi cell. As before, let S denote
the boundary of B.

First, we dissect P into d-dimensional Rogers simplices. Then let conv{o,
r1, . . . , rd} be one of these d-dimensional Rogers simplices assigned to the
flag say, F0 ⊂ · · · ⊂ Fd−1 of P. As ri ∈ Fd−i, 1 ≤ i ≤ d it is clear that
aff{rd−2, rd−1, rd} = affF2 and so

dist(o, aff{rd−2, rd−1, rd}) = dist(o, affF2) = R(F2).

Notice that Corollary 7.3.2 implies that
√

2(d−2)
d−1 ≤ R(F2).

Second, we group the d-dimensional Rogers simplices of P as follows.

(1): If
√

2(d−2)
d−1 ≤ R(F2) <

√
2(d−1)
d , then we assign the Rogers simplex

conv{o, r1, . . . , rd} to the type I wedge WI with the 2-dimensional base F2

generated by the (d−2)-dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2}
of the Voronoi polytope P ⊂ Ed, d ≥ 8.

(2): If
√

2(d−1)
d ≤ R(F2) <

√
2d
d+1 , then we assign the Rogers simplex

conv{o, r1, . . . , rd} to the type II wedge WII with the 2-dimensional base F2

generated by the (d−2)-dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2}
of the Voronoi polytope P ⊂ Ed, d ≥ 8.

(3): If
√

2d
d+1 ≤ R(F2), then we assign the Rogers simplex conv{o, r1,

. . . , rd} to itself as the type III wedge WIII .
As the wedges of types I, II, and III of the given Voronoi polytope P

sit over the 2-skeleton of P and form a tiling of P it is clear that each d-
dimensional Rogers simplex of P belongs to exactly one of them. As a result,

in order to show that the surface density δ̂(P, S) = Svold−1(S)
svold−1(bdP) = dωd

svold−1(bdP)

of the unit sphere S in the Voronoi polytope P is bounded from above by σ̂d,
it is sufficient to prove the following inequalities.

(1̂): δ̂(WI , S) ≤ σ̂d,
(2̂): δ̂(WII , S) ≤ σ̂d,
(3̂): δ̂(WIII , S) ≤ σ̂d.
This final task is now easy. Namely, Lemma 7.3.18, Corollary 7.3.21, and

Lemma 7.3.22 yield (1̂) and (2̂) in a straightforward way. Finally, (3̂) follows
with the help of (2) of Lemma 7.3.11 rather easily.

For the details of the proof of σ̂d < σd, based on the so-called “Lemma
of Strict Comparison”, we refer the interested reader to the proper section in
[56].

This completes the proof of Theorem 1.4.8.
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7.4 Proof of Theorem 1.7.3

7.4.1 The signed volume of convex polytopes

Definition 7.4.1 Let P := conv{p1,p2, . . . ,pn} be a d-dimensional convex
polytope in Ed, d ≥ 2 with vertices p1,p2, . . . , pn. If F := conv{pi1 , . . . ,pik}
is an arbitrary face of P, then the barycenter of F is

cF :=
1

k

k∑
j=1

pij . (7.10)

Let F0 ⊂ F1 ⊂ · · · ⊂ Fl, 0 ≤ l ≤ d − 1 denote a sequence of faces,
called a (partial) flag of P, where F0 is a vertex and Fi−1 is a facet (a face
one dimension lower) of Fi for i = 1, . . . , l. Then the simplices of the form
conv{cF0

, cF1
, . . . , cFl} constitute a simplicial complex CP whose underlying

space is the boundary of P.
We regard all points in Ed as row vectors and use qT for the column vector

that is the transpose of the row vector q. Moreover, [q1, . . . ,qd] is the (square)
matrix with the ith row qi.

Choosing a (d − 1)-dimensional simplex of CP to be positively oriented,
one can check whether the orientation of an arbitrary (d − 1)-dimensional
simplex conv{cF0

, cF1
, . . . , cFd−1

} of CP (generated by the given sequence of
its vertices), is positive or negative. Let sign

(
conv{cF0

, cF1
, . . . , cFd−1

}
)

be
equal to 1 (resp., −1) if the orientation of the (d − 1)-dimensional simplex
conv{cF0 , cF1 , . . . , cFd−1

} is positive (resp., negative).

Definition 7.4.2 The signed volume V (P) of P is defined as

1

d!

∑
F0⊂F1⊂···⊂Fd−1

sign
(
conv{cF0 , cF1 , . . . , cFd−1

}
)

det[cF0 , cF1 , . . . , cFd−1
],

(7.11)
where the sum is taken over all flags of faces F0 ⊂ F1 ⊂ · · · ⊂ Fd−1 of P, and
det[·] is the determinant function.

The following is clear.

Lemma 7.4.3

V (P) =
1

d!

∑
F0⊂···⊂Fd−1

sign
(
conv{cF0 , cF1 , . . . , cFd−1

}
)
cF0 ∧ cF1 ∧ · · · ∧ cFd−1

,

where ∧ stands for the wedge product of vectors. Moreover, one can choose
the orientation of the boundary of P such that V (P) = vold(P), where vold(·)
refers to the d-dimensional volume measure in Ed, d ≥ 2.
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7.4.2 The volume force of convex polytopes

We wish to compute the gradient of V (P), where P = conv{p1,p2, . . . ,pn}
is regarded as a function of its vertices p1,p2, . . . ,pn. To achieve this we
consider an arbitrary path p(t) = p + tp′ in the space of the configurations
p := (p1,p2, . . . ,pn), where p′ := (p′1,p

′
2, . . . ,p

′
n). Based on Definition 7.4.1,

Definition 7.4.2, and Lemma 7.4.3 we introduce V (P(t)) as a function of t
(with t being an arbitrary real with sufficiently small absolute value) via

1

d!

∑
F0⊂F1⊂···⊂Fd−1

sign
(
conv{cF0

(t), . . . , cFd−1
(t)}

)
det[cF0

(t), . . . , cFd−1
(t)]

=
1

d!

∑
F0⊂F1⊂···⊂Fd−1

sign
(
conv{cF0(t), . . . , cFd−1

(t)}
)
cF0(t) ∧ · · · ∧ cFd−1

(t),

where cF (t) := 1
k

∑k
j=1 pij (t) for any face F = conv{pi1 , . . . ,pik} of P.

Clearly, V (P(0)) = V (P). Moreover, evaluating the derivative d
dtV (P(t))

of V (P(t)) at t = 0, collecting terms, and using the anticommutativity of the
wedge product we get that

d

dt
V (P(t)) |t=0 =

1

d!

n∑
i=1

Ni ∧ p′i, (7.12)

where each Ni is some linear combination of wedge products of d− 1 vectors
pj with pj and pi sharing a common face.

Definition 7.4.4 We call N := (N1,N2, . . . ,Nn) the volume force of the
d-dimensional convex polytope P ⊂ Ed with n vertices.

The following are some simple properties of the volume force. We leave
the rather straightforward proofs to the reader.

Lemma 7.4.5 Let N := (N1,N2, . . . ,Nn) be the volume force of the d-
dimensional convex polytope P ⊂ Ed, d ≥ 2 with vertices p1,p2, . . . ,pn. Then
the following hold.
(1) Each Ni is only a function of the vertices that share a face with pi, but
not pi itself.
(2) Assume that the origin o of Ed is the barycenter of P; moreover, let
T : Ed → Ed be an orthogonal linear map satisfying T (P) = P. If T (pi) = pj,
then T (Ni) = Nj.

For more details and examples on volume forces we refer the interested
reader to the proper sections in [34].
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7.4.3 Critical volume condition

Let P := conv{p1,p2, . . . ,pn} be a d-dimensional convex polytope in Ed, d ≥
2 with vertices p := (p1,p2, . . . , pn). Let G be a graph defined on this vertex
set p. Here, G may or may not consist of the edges of P. We think of the edges
of G as defining those pairs of vertices of P that are constrained not to get
closer. In the terminology of the geometry of rigid tensegrity frameworks each
edge of G is a strut. (For more information on rigid tensegrity frameworks and
the basic terminology used there we refer the interested reader to [222].)

Let p′ := (p′1,p
′
2, . . . , p′n) be an infinitesimal flex of G(p), where G(p)

refers to the realization of G over the point configuration p. That is, for each
edge (strut) {i, j} of G we have

(pi − pj) · (p′i − p′j) ≥ 0, (7.13)

where “·” denotes the standard inner product (also called the “dot product”)
in Ed.

Let e denote the number of edges of G. Then the rigidity matrix R(p)
of G(p) is the e × nd matrix whose row corresponding to the edge {i, j} of
G consists of the coordinates of d-dimensional vectors within a sequence of
n vectors such that all the coordinates are zero except maybe the ones that
correspond to the coordinates of the vectors pi − pj and pj − pi listed on
the ith and jth position. Another way to introduce R(p) is the following.
Let f : End → Ee be the map defined by x = (x1,x2, . . . ,xn) → (. . . , ‖xi −
xj‖2, . . . ). Then it is immediate that 1

2
d
dxf |x=p = R(p). Now, we can rewrite

the inequalities of (7.13) in terms of the rigidity matrix R(p) of G(p) (using
the usual matrix multiplication applied to R(p) and the indicated column
vector) as follows,

R(p)(p′)T ≥ 0, (7.14)

where the inequality is meant for each coordinate.
For each edge {i, j} of G, let ωij be a scalar. We collect all such scalars into

a single row vector called the stress ω := (. . . , ωij , . . . ) corresponding to the
rows of the matrix R(p). Append the volume force N := (N1,N2, . . . ,Nn) as

the last row onto R(p) to get a new matrix R̂(p), which we call the augmented

rigidity matrix. So, when performing the matrix multiplication R̂(p)(p′)T , we
find that the result is a column vector of length e+1 having (pi−pj)·(p′i−p′j)

on the position corresponding to the edge {i, j} of G, and having
∑n
k=1 Nk ·p′k

on the (e+ 1)st position. Also, it is easy to see that

(ω, 1)R̂(p) =

. . . ,∑
j

ωij(pi − pj) + Ni, . . .

 , (7.15)

where each sum is taken over all pj adjacent to pi in G, and we collect d
coordinates at a time.
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Definition 7.4.6 Let N = (N1,N2, . . . ,Nn) be the volume force of the d-
dimensional convex polytope P ⊂ Ed, d ≥ 2 with vertices p = (p1,p2, . . . ,
pn). We say that the stress ω = (. . . , ωij , . . . ) resolves N if for each i we

have that
∑
j ωij(pi−pj) + Ni = o or, equivalently, (ω, 1)R̂(p) = o, where o

denotes the zero vector.

Definition 7.4.7 The d-dimensional convex polytope P ⊂ Ed, d ≥ 2 and the
graph G defined on the vertices of P satisfy the critical volume condition if
the volume force N can be resolved by a stress ω = (. . . , ωij , . . . ) such that for
each edge {i, j} of G, ωij < 0.

Theorem 7.4.8 Let the d-dimensional convex polytope P ⊂ Ed, d ≥ 2 and
the strut graph G, defined on the vertices of P, satisfy the critical volume
condition. Moreover, let p′ = (p′1,p

′
2, . . . , p′n) be an infinitesimal flex of the

strut framework G(p) (i.e., let p′ satisfy (7.13)). Then

d

dt
V (P(t)) |t=0 =

1

d!

n∑
i=1

Ni ∧ p′i ≥ 0

with equality if and only if (pi − pj) · (p′i − p′j) = 0 for each edge {i, j} of G.

Proof: The assumptions, (7.15), the associativity of matrix multiplication,
and (7.12) imply in a straightforward way that

0 = o · p′ = (ω, 1)R̂(p)(p′)T =
∑
{i,j}

ωij(pi − pj) · (p′i − p′j) +
n∑
i=1

Ni · p′i

=
∑
{i,j}

ωij(pi − pj) · (p′i − p′j) +
n∑
i=1

Ni ∧ p′i ≤
n∑
i=1

Ni ∧ p′i =
d

dt
V (P(t)) |t=0,

where Ni is regarded as a d-dimensional vector so that Ni ∧ p′i can be inter-
preted as the standard inner product Ni · pi, with appropriate identification
of bases. We clearly get equality if and only if (pi − pj) · (p′i − p′j) = 0 for
each edge {i, j} of G. �

7.4.4 Strictly locally volume expanding convex polytopes

The following definition recalls standard terminology from the theory of rigid
tensegrity frameworks. (See [105] for more information.) Consider now just
the bar graph G, which is the graph G with all the struts changed to bars, and
take its realization G(p) sitting over the point configuration p = (p1,p2, . . . ,
pn). (Here bars mean edges whose lengths are constrained not to change.) We
say that the infinitesimal motion p′ = (p′1,p

′
2, . . . , p′n) is an infinitesimal flex

of G(p) if for each edge (bar) {i, j} of G, we have

(pi − pj) · (p′i − p′j) = 0.

This is the same as saying R(p)(p′)T = o for the rigidity matrix R(p).
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Definition 7.4.9 We say that p′ is a trivial infinitesimal flex if p′ is a (di-
rectional) derivative of an isometric motion of Ed, d ≥ 2. We say that G(p)
(resp., G(p)) is infinitesimally rigid if G(p) (resp., G(p)) has only trivial
infinitesimal flexes.

Theorem 7.4.10 Let the d-dimensional convex polytope P ⊂ Ed, d ≥ 2 and
the strut graph G, defined on the vertices of P, satisfy the critical volume
condition and assume that the bar framework G(p) is infinitesimally rigid.
Then

d

dt
V (P(t)) |t=0 =

1

d!

n∑
i=1

Ni ∧ p′i > 0

for every non-trivial infinitesimal flex p′ = (p′1,p
′
2, . . . , p

′
n) of the strut frame-

work G(p).

Proof: By Theorem 7.4.8 we have that d
dtV (P(t)) |t=0 = 1

d!

∑n
i=1 Ni∧p′i ≥ 0.

If d
dtV (P(t)) |t=0 = 0, then applying Theorem 7.4.8 again, p′ = (p′1,p

′
2, . . . ,

p′n) must be an infinitesimal flex of the bar framework G(p). However, then
by the infinitesimal rigidity of G(p), this would imply that p′ is trivial. Thus,
d
dtV (P(t)) |t=0 > 0. �

The following definition leads us to the core part of this section.

Definition 7.4.11 Let P ⊂ Ed, d ≥ 2 be a d-dimensional convex polytope
and let G be a strut graph defined on the vertices p = (p1,p2, . . . , pn) of P.
We say that P is strictly locally volume expanding over G, if there is an ε > 0
with the following property. For every q = (q1,q2, . . . ,qn) satisfying

‖pi − qi‖ < ε for all i = 1, . . . , n (7.16)

and
‖pi − pj‖ ≤ ‖qi − qj‖ for each edge {i, j} of G, (7.17)

we have V (P) ≤ V (Q) (where V (Q) is defined via (7.10) and (7.11) substi-
tuting q for p) with equality only when P is congruent to Q, where Q is the
polytope generated by the simplices of the barycenters in (7.10) using q instead
of p.

Theorem 7.4.12 Let the d-dimensional convex polytope P ⊂ Ed, d ≥ 2 and
the strut graph G, defined on the vertices of P, satisfy the critical volume
condition and assume that the bar framework G(p) is infinitesimally rigid.
Then P is strictly locally volume expanding over G.

Proof: The inequalities (7.17) define a semialgebraic set X in the space of
all configurations {(q1,q2, . . . ,qn)|qi ∈ Ed, i = 1, . . . , n}. Suppose there is no
ε as in the conclusion. Add V (P) ≥ V (Q) to the constraints defining X. By
Wallace [245] (see [105]) there is an analytic path p(t) = (p1(t),p2(t), . . . ,
pn(t)), 0 ≤ t < 1, with p(0) = p and p(t) ∈ X, p(t) not congruent to p(0) for
0 < t < 1. So,
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‖pi − pj‖ ≤ ‖pi(t)− pj(t)‖ for each edge {i, j} of G and (7.18)

V (P) ≥ V (P(t)) for 0 ≤ t < 1. (7.19)

Then after suitably adjusting p(t) by congruences (as in [105] as well as
[107]) we can define

p′ :=
dkp(t)

dtk
|t=0

for the smallest k that makes p′ a non-trivial infinitesimal flex. (Such k exists
by the argument in [105] as well as [107]).

Because (7.18) holds we see that p′ is a non-trivial infinitesimal flex of
G(p) and (7.19) implies that

d

dt
V (P(t)) |t=0 ≤ 0.

But this contradicts Theorem 7.4.10, finishing the proof of Theorem 7.4.12.
�

7.4.5 From critical volume condition and infinitesimal rigidity to
uniform stability of sphere packings

Here we start with the assumptions of Theorem 1.7.3 and apply Theo-
rem 7.4.12 to each Pi and GP restricted to the vertices of Pi, 1 ≤ i ≤ m.
Then let ε0 > 0 be the smallest ε > 0 guaranteed by the strict locally volume
expanding property of Theorem 7.4.12. All but a finite number of tiles are
fixed. The tiles that are free to move are confined to a region of fixed volume
in Ed, d ≥ 2. Each Pi is strictly locally volume expanding, therefore the vol-
ume of each of the tiles must be fixed. But the strict condition implies that
the motion of each tile must be an isometry. Because the tiling is face-to-face
and the vertices are given by GP we conclude inductively (on the number of
tiles) that each vertex of GP must be fixed. Thus, P is uniformly stable with
respect to ε0 introduced above, finishing the proof of Theorem 1.7.3.
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Selected Proofs on Finite Packings of
Translates of Convex Bodies

8.1 Proof of Theorem 2.2.1

8.1.1 Monotonicity of a special integral function

Lemma 8.1.1 Let f : [0, 1] → R be a function such that f is positive and

monotone increasing on (0, 1]; moreover, f(x) = (g(x))
k

for some concave
function g : [0, 1]→ R, where k is a positive integer. Then

F (y) :=
1

f(y)

∫ y

0

f(x)dx

is strictly monotone increasing on (0, 1].

Proof: Without loss of generality we may assume that f is differentiable.
So, to prove that F (y) := 1

f(y)

∫ y
0

is sufficient to show that d
dyF > 0 or equivalently that

∫ y
0
f(x)dx < (f(y))2

f ′(y) .

From now on, let 0 < y < 1 be fixed (with f ′(y) > 0).
As f = gk for some concave g therefore the linear function l(x) = b1 +

b2(x−y) with b1 = (f(y))
1
k and b2 = f ′(y)

k(f(y))
k−1
k

satisfies the inequality g(x) ≤

l(x) for all 0 ≤ x ≤ 1, and so we have that f(x) ≤ (l(x))
k

holds for all
0 ≤ x ≤ 1. Thus, for all 0 ≤ x ≤ 1 we have

f(x) ≤

(
(f(y))

1
k +

f ′(y)

k (f(y))
k−1
k

(x− y)

)k
= f(y)

(
1 +

f ′(y)

kf(y)
(x− y)

)k
.

(8.1)
By integration we get∫ y

0

f(x)dx ≤
∫ y

0

f(y)

(
1 +

f ′(y)

kf(y)
(x− y)

)k
dx
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f(x)dx is strictly monotone increasing, it
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=
k

k + 1

(f(y))
2

f ′(y)

(
1−

(
1− yf ′(y)

kf(y)

)k+1
)
. (8.2)

Now, because the first factor of (8.2) is strictly between 0 and 1, it is sufficient
to show that the last factor is at most 1; that is, we are left to show the
inequality

0 ≤
(

1− yf ′(y)

kf(y)

)k+1

(8.3)

Suppose that (8.3) is not true; then
(

1− yf ′(y)
kf(y)

)k+1

< 0. Let G(x) :=(
1 + f ′(y)

kf(y) (x− y)
)k+1

. As G(y) = 1 and by assumption G(0) < 0, therefore

there must be an 0 < x0 < y such that G(x0) =
(

1 + f ′(y)
kf(y) (x0 − y)

)k+1

= 0.

But then this and (8.1) imply in a straightforward way that f(x0) ≤

f(y)
(

1 + f ′(y)
kf(y) (x0 − y)

)k
= 0. However, by the assumptions of Lemma 8.1.1

we have that f(x0) > 0, a contradiction. This completes our proof of
Lemma 8.1.1. �

8.1.2 A proof by slicing via the Brunn–Minkowski inequality

Let the convex body K be positioned in Ed such that the hyperplane {x ∈
Ed | 〈x,v〉 = −1} with normal vector v is a supporting hyperplane for K
and the non-overlapping translates t1 + K, . . . , tk + K are all touching K and
(together with K) are all lying in the closed halfspace {x ∈ Ed | 〈x,v〉 ≥ −1}.
Now, due to the well-known fact that by replacing K with 1

2 (K +−(K)) and
performing the same symmetrization for each of the translates t1+K, . . . , tk+
K one preserves the packing property, touching pairs, and one-sidedness, we
may assume that K is in fact, a centrally symmetric convex body of Ed say,
it is o-symmetric, where o stands for the origin of Ed. Moreover, as in the
classical proof for the Hadwiger number [151], we use that

⋃k
i=0(ti+K) ⊂ 3K,

where t0 = o. Furthermore, let the family t0 + K, t1 + K, . . . , tk + K be
scaled so that the normal vector v is a unit vector (i.e., ‖v‖ = 1). Next,
let Hx := {p ∈ Ed | 〈p,v〉 = x} for x ∈ R. Then clearly, K is between the
hyperplanes H−1 and H1 touching both, and the translates t1+K, . . . , tk+K
(together with K = t0 + K) all lie between the hyperplanes H−1 and H3.

Obviously,
∫ 1

−1 vold−1 (K ∩Hx) dx = vold(K), where vold(·) (resp., vold−1(·))
denotes the d-dimensional (resp., d−1-dimensional) volume measure. Also, it
follows from the given setup in a straightforward way that∫ 3

−1
vold−1

(
Hx ∩

k⋃
i=0

(ti + K)

)
dx = (k + 1)vold(K). (8.4)

Our goal is to write the integral in (8.4) as a sum of two integrals from −1 to
0 and from 0 to 3, and estimate them separately.
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First, notice that∫ 3

0

vold−1

(
Hx ∩

k⋃
i=0

(ti + K)

)
dx ≤

∫ 3

0

vold−1 (Hx ∩ (3K)) dx =
3d

2
vold(K).

(8.5)
Second, notice that∫ 0

−1
vold−1

(
Hx ∩

k⋃
i=0

(ti + K)

)
dx =

k∑
i=0

∫ 0

−1
vold−1 (Hx ∩ (ti + K)) dx

(8.6)

=
k∑
i=0

∫ 1

0

vold−1 (K ∩ (−ti +Hx−1)) dx =
∑

0≤ai≤1

∫ 1−ai

0

f(x)dx, (8.7)

where f(x) := vold−1 (K ∩Hx−1) , 0 ≤ x ≤ 1 and ai := 〈v, ti〉, 0 ≤ i ≤ k. We
note that ai ≥ 0 for all 0 ≤ i ≤ k (and for some j we have that aj ≥ 1).
Moreover, f is positive and monotone increasing on (0, 1], and by the Brunn–

Minkowski inequality (see, e.g., [85]) the function f
1
d−1 is concave (for all

d ≥ 2). Thus, Lemma 8.1.1 implies that

∑
0≤ai≤1

∫ 1−ai

0

f(x)dx ≤
∑

0≤ai≤1

(
f(1− ai)
f(1)

∫ 1

0

f(x)dx

)
(8.8)

=

∫ 1

0
f(x)dx

f(1)

∑
0≤ai≤1

f(1− ai) =

∫ 1

0
f(x)dx

f(1)

∑
0≤ai≤1

vold−1 (K ∩H−ai) (8.9)

=

∫ 1

0
f(x)dx

f(1)

k∑
i=0

vold−1 ((ti + K) ∩H0) (8.10)

=

∫ 1

0
f(x)dx

f(1)
vold−1

(
H0 ∩

k⋃
i=0

(ti + K)

)
≤
∫ 1

0
f(x)dx

f(1)
vold−1 (H0 ∩ (3K))

(8.11)

=
1

2
vold(K)

1

vold−1(H0 ∩K)
vold−1 (H0 ∩ (3K)) =

3d−1

2
vold(K). (8.12)

Hence, (8.4), (8.5), (8.6), (8.7), (8.8), (8.9), (8.10), (8.11), and (8.12) yield
that

(k + 1)vold(K) ≤ 3d

2
vold(K) +

3d−1

2
vold(K),

and so, k ≤ 2 · 3d−1 − 1 as claimed in Theorem 2.2.1.
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To prove that equality can only be reached for d-dimensional affine
cubes, notice first that the equality in (8.8) and the strict monotonicity of
Lemma 8.1.1 imply that for all ai with 0 ≤ ai < 1 we have ai = 0 and for all
ai = 1 we have f(1 − ai) = 0. Taking into account the equality in (8.11), we
get that translates of H0 ∩K must tile H0 ∩ (3K). Hence, [151] yields that
H0 ∩K as well as H0 ∩ (3K) are (d− 1)-dimensional affine cubes. Also, there
is only the obvious way to tile H0 ∩ (3K) by 3d−1 translates of H0 ∩K, so
the set of the translation vectors {ti | ti ∈ H0} is o-symmetric. But then the((

3d−1 − 1
)

+ 1
)

+ 2
(
(2 · 3d−1 − 1)− (3d−1 − 1)

)
= 3d translates

{ti + K | ti ∈ H0} ∪ {ti + K | ti /∈ H0} ∪ {−ti + K | ti /∈ H0}

of K form a packing in 3K. Thus, the Hadwiger number of K is 3d−1 and so,
using [151] we get that K is indeed a d-dimensional affine cube. This completes
the proof of Theorem 2.2.1.

8.2 Proof of Theorem 2.4.3

Let Cn := {c1, c2, . . . , cn} and assume that the inequality stated in Theorem
2.4.3 does not hold. Then there is an ε > 0 such that

vold(Cn + 2Ko) =
nvold(Ko)

δ(Ko)
− ε. (8.13)

Let Λ ⊂ Ed be a d-dimensional packing lattice of Cn + 2Ko such that
Cn + 2Ko is contained in the fundamental parallelotope P of Λ. For each
λ > 0 let Qλ denote the d-dimensional cube of edge length 2λ centered at the
origin o of Ed having edges parallel to the corresponding coordinate axes of
Ed. Obviously, there is a constant µ > 0 depending on P only such that for
each λ > 0 there is a subset Lλ ⊂ Λ with Qλ ⊂ Lλ+P and Lλ+ 2P ⊂ Qλ+µ.
Moreover, let Pn(Ko) be the family of all possible packings of n > 1 translates
of the o-symmetric convex body Ko in Ed. The definition of δ(Ko) implies
that for each λ > 0 there exists a packing in the family Pm(λ)(Ko) with
centers at the points of Cm(λ) such that Cm(λ) + Ko ⊂ Qλ and

lim
λ→∞

m(λ)vold(Ko)

vold(Qλ)
= δ(Ko).

As limλ→∞
vold(Qλ+µ)
vold(Qλ)

= 1, therefore there exist ξ > 0 and a packing in the

family Pm(ξ)(Ko) with centers at the points of Cm(ξ) and with Cm(ξ) +Ko ⊂
Qξ such that

vold(P)δ(Ko)

vold(P) + ε
<
m(ξ)vold(Ko)

vold(Qξ+µ)
(8.14)

and
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nvold(Ko)

vold(P) + ε
<
nvold(Ko)card(Lξ)

vold(Qξ+µ)
. (8.15)

Now, for each x ∈ P we define a packing of n(x) translates of the o-
symmetric convex body Ko in Ed with centers at the points of

Cn(x) := {x + Lξ + Cn} ∪ {y ∈ Cm(ξ) | y /∈ x + Lξ + Cn + int(2Ko)}.

Clearly, Cn(x) + Ko ⊂ Qξ+µ. As a next step we introduce the (characteristic)
function χy : P → R as follows: χy(x) := 1 if y /∈ x + Lξ + Cn + int(2Ko)
and χy(x) := 0 for any other x ∈ P. Thus,

∫
x∈P

n(x) dx =

∫
x∈P

n card(Lξ) +
∑

y∈Cm(ξ)

χy(x)

 dx

= nvold(P)card(Lξ) +m(ξ) (vold(P)− vold(Cn + 2Ko)) .

Hence, there is a point p ∈ P with

n(p) ≥ m(ξ)

(
1− vold(Cn + 2Ko)

vold(P)

)
+ n card(Lξ)

and so,

n(p)vold(Ko)

vold(Qξ+µ)

≥ m(ξ)vold(Ko)

vold(Qξ+µ)

(
1− vold(Cn + 2Ko)

vold(P)

)
+
nvold(Ko)card(Lξ)

vold(Qξ+µ)
. (8.16)

Thus, (8.16), (8.15), (8.14), and (8.13) imply in a straightforward way that

n(p)vold(Ko)

vold(Qξ+µ)

>
vold(P)δ(Ko)

vold(P) + ε

(
1− vold(Cn + 2Ko)

vold(P)

)
+

nvold(Ko)

vold(P) + ε
= δ(Ko). (8.17)

As Cn(p)+Ko ⊂ Qξ+µ, therefore (8.17) leads to the existence of a packing

by translates of Ko in Ed with density strictly larger than δ(Ko), a contra-
diction. This finishes the proof of Theorem 2.4.3.
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Selected Proofs on Illumination and Related
Topics

9.1 Proof of Corollary 3.4.2 Using Rogers’ Classical
Theorem on Economical Coverings

The proof is based on the following classical theorem of Rogers [217]. We do
not prove it here, but instead refer the interested reader to the numerous
resources on that, in particular to [219], [1], [143], and [131]. Let ϑ(K) denote
the infimum of the densities of coverings of Ed by translates of the convex
body K.

Theorem 9.1.1 For any convex body K ⊂ Ed, d ≥ 2 there exists a covering
of Ed by translates of K with density not exceeding d ln d+ d ln ln d+ 5d; that
is, we have ϑ(K) ≤ d ln d + d ln ln d + 5d. Moreover, for sufficiently large d,
5d can be replaced by 4d.

we can choose a discrete set T ⊂ Ed such that⋃
t∈T

t + intK = Ed and

∑
t∈T∩C vold (t + intK)

vold(C)
≤ ϑ(intK) + ε

holds for every sufficiently large cube C (centered at the origin o of Ed). Let
N(x) := card (T ∩ x + (K− intK)) with x ∈ Ed, where card(·) refers to the
cardinality of the corresponding set.

Lemma 9.1.2
I(K) ≤ N(x)

for all x ∈ Ed.

Proof: It is easy to see that (t + intK) ∩ (x + K) 6= ∅ holds if and only if
t ∈ x + (K− intK). Hence, as ∪t∈T t + intK = Ed, therefore

x + K ⊂
⋃

t∈T∩x+(K−intK)

t + intK,

K. Bezdek, Classical Topics in Discrete Geometry, CMS Books in Mathematics,
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Now, the proof of Corollary 3.4.2 goes as follows. Clearly, for each ε > 0
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finishing the proof of Lemma 9.1.2. �

As by assumption we have that

card(T ∩C) ≤ vold(C)

vold(intK)
(ϑ(intK) + ε),

therefore one can easily verify that

1

vold(C)

∫
C

N(x)dx ≤ vold(K− intK)

vold(intK)
(ϑ(intK) + 2ε)

holds for every sufficiently large cube C. The latter inequality together with
Lemma 9.1.2 implies the existence of x0 ∈ Ed satisfying

I(K) ≤ N(x0) ≤ vold(K− intK)

vold(intK)
(ϑ(intK) + 2ε).

As I(K) is an integer, by choosing ε sufficiently small, we can guarantee
that

I(K) ≤ vold(K− intK)

vold(intK)
ϑ(intK).

This together with Theorem 9.1.1 completes the proof of Corollary 3.4.2.

9.2 Proof of Theorem 3.5.2 via the Gauss Map

Recall the following statement published in [52] that gives a reformulation of
the X-ray number of a convex body in terms of its Gauss map.

Lemma 9.2.1 Let M be a convex body in Ed, d ≥ 3, and let b ∈ bdM be
given; moreover, let F denote (any of) the face(s) of M of smallest dimension
containing b. Then b is X-rayed along the line L if and only if L⊥∩ν(F ) = ∅,
where L⊥ denotes the hyperplane orthogonal to L and passing through the
origin o of Ed and ν(F ) denotes the Gauss image of F . Moreover, X(M)
is the smallest number of (d − 2)-dimensional great spheres of Sd−1 with the
property that the Gauss image of each face of M is disjoint from at least one
of the given great spheres.

Let {p1,−p1, . . . ,pm,−pm} be the family of pairwise antipodal points in
Sd−1 with covering radius R. Moreover, let Bi ⊂ Sd−1 be the union of the two
(d − 1)-dimensional closed spherical balls of radius R centered at the points
pi and −pi in Sd−1, 1 ≤ i ≤ m. Finally, let Si be the (d − 2)-dimensional
great sphere of Sd−1 whose hyperplane is orthogonal to the diameter of Sd−1
with endpoints pi and −pi, 1 ≤ i ≤ m. Based on Lemma 9.2.1 it is sufficient
to show that the Gauss image of each face of K is disjoint from at least one
of the great spheres Si, 1 ≤ i ≤ m.
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Now, let F be an arbitrary face of the convex body K ⊂ Ed, d ≥ 3, and
let BF denote the smallest spherical ball of Sd−1 with center f ∈ Sd−1 which
contains the Gauss image ν(F ) of F . By assumption the radius of BF is at
most r. As the family {Bi, 1 ≤ i ≤ m} of antipodal pairs of balls forms a
covering of Sd−1 therefore f ∈ Bj for some 1 ≤ j ≤ m. If, in addition, we have
that f ∈ intBj (where int( ) denotes the interior of the corresponding set in
Sd−1), then the inequality r+R ≤ π

2 implies that ν(F )∩Sj = ∅. If f does not
belong to the interior of any of the sets Bi, 1 ≤ i ≤ m, then clearly f must
be a boundary point of at least d sets of the family {Bi, 1 ≤ i ≤ m}. Then
either we find an Si being disjoint from ν(F ) or we end up with d members
of the family {Si, 1 ≤ i ≤ m} each being tangent to BF at some point of
ν(F ). Clearly, the latter case can occur only for finitely many ν(F )s and
so, by taking a proper congruent copy of the great spheres {Si, 1 ≤ i ≤ m}
within Sd−1 (under which we mean to avoid finitely many so-called prohibited
positions) we get that each ν(F ) is disjoint from at least one member of the
family {Si, 1 ≤ i ≤ m}. This completes the proof of the first part of Theorem
3.5.2. Finally, the second part of Theorem 3.5.2 follows from the first one in
a rather straightforward way.

9.3 Proof of Theorem 3.5.3 Using Antipodal Spherical
Codes of Small Covering Radii

We show that any set of constant width in E3 can be X-rayed by 3 pairwise
orthogonal directions (i.e., by 3 lines passing through the origin o of E3), one
of which can be chosen arbitrarily. This is a somewhat stronger statement
than the first claim of Theorem 3.5.3. Now, let us take the following special
class of convex sets in E3. Let Y ⊂ E3 be an arbitrary set of diameter at
most 1 and let B[Y ] denote the intersection of the closed 3-dimensional unit
balls centered at the points of Y . Using the fact that a closed set Y ⊂ E3 is
of constant width 1 if, and only if, B[Y ] = Y (cf. [125]), we obtain that the
following theorem implies the statement at the beginning of this section and
so, the first claim of Theorem 3.5.3.

Theorem 9.3.1 Let Y ⊂ E3 be an arbitrary set of diameter at most 1. Then
B[Y ] can be X-rayed by 3 pairwise orthogonal directions of E3, one of which
can be chosen arbitrarily.

Proof: Let K ⊂ E3 be a convex body and b ∈ bdK. Then let NK(b) ⊂ S2
denote the set of inward unit normal vectors of the planes that support K at
b. Moreover, if L ⊂ E3 is an arbitrary line passing through the origin o of E3,
then let C(L) denote the great circle of S2, whose plane is orthogonal to L. It
is well known (see [72]) that L can X-ray the boundary point b of K if and
only if NK(b) ∩ C(L) = ∅. We need the following lemma.
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Lemma 9.3.2 Let Y ⊂ E3 be an arbitrary set of diameter at most 1 and let
b ∈ bd (B[Y ]). Then NK(b) ⊂ S2 is of spherical diameter not greater than π

3 .

Proof: We may assume that Y is closed. It is sufficient to show that if
y1,y2 ∈ S2(b, 1)∩Y (where S2(b, 1) denotes the unit sphere centered at b in
E3), then ^(y1by2) ≤ π

3 . Indeed, this is true, because the Euclidean isosceles
triangle conv{y1,b,y2} has two legs y1b and y2b of length 1, and a base,
namely y1y2 of length at most 1 due to the assumption that the diameter of
Y is at most 1. This finishes the proof of Lemma 9.3.2. �

Let L1 ⊂ E3 be an arbitrary line passing through the origin o of E3.
We call L1 vertical, and lines perpendicular to L1 horizontal. We pick two
pairwise orthogonal, horizontal lines, L2 and L3. Assume that the lines L1, L2,
and L3 do not X-ray B[Y ], where Y ⊂ E3 is an arbitrary set of diameter
at most 1. Then there is a point b ∈ bd (B[Y ]) such that NB[Y ](b) ⊂ S2
intersects each of the three great circles C(L1), C(L2), and C(L3) of S2. We
choose three points of NB[Y ](b), one on each great circle: z1 ∈ NB[Y ](b) ∩
C(L1), z2 ∈ NB[Y ](b)∩C(L2), and z3 ∈ NB[Y ](b)∩C(L3). Note that each of
the three great circles is dissected into four equal arcs (of length π

4 ) by the two
other great circles. By Lemma 9.3.2, NB[Y ](b) ⊂ S2 is a spherically convex
set of spherical diameter at most π

3 . However, z1, z2, z3 ∈ NB[Y ](b), so the
generalization of Jung’s theorem for spherical space by Dekster [119] shows
that z1, z2, and z3 are the midpoints of the great circular arcs mentioned
above. So, the only way that the point b ∈ bd (B[Y ]) is not X-rayed by
any of the lines L1, L2, and L3 is the following. The set NB[Y ](b) contains a
spherical equilateral triangle of spherical side length π

3 and the vertices of this
spherical triangle lie on C(L1), C(L2), and C(L3), respectively. Furthermore,
each vertex is necessarily the midpoint of the quarter arc of the great circle on
which it lies, and NB[Y ](b) does not intersect either of the three great circles
in any other point. Because the set {NB[Y ](b

′) : b′ ∈ bd (B[Y ])} is a tiling of
S2, there are only finitely many boundary points b′ ∈ bd (B[Y ])} such that
NB[Y ](b

′) contains an equilateral triangle of side length π
3 with a vertex on

C(L1). We call these tiles blocking tiles. Now, by rotating L2 and L3 together
in the horizontal plane, we can easily avoid all the blocking tiles; that is, we
can find a rotation R about the line L1 such that none of the blocking tiles
has a vertex on both circles C(R(L2)) and C(R(L3)). Now, L1, R(L2), and
R(L3) are the desired directions finishing the proof of Theorem 9.3.1. �

Now, we turn to a proof of the case d = 4 of Theorem 3.5.3. Based on
Theorem 3.5.2, it is sufficient to find 12 pairwise antipodal points of S3 whose

covering radius is at most α = π/2−r3 = π/2−arccos
√

5
8 . In order to achieve

this let us take two regular hexagons of edge length 1 inscribed into S3 such
that their 2-dimensional planes are totally orthogonal to each other in E4.
Now, let P be the convex hull of the 12 vertices of the two regular hexagons.
If F is any facet of P, then it is easy to see that F is a 3-dimensional simplex
having two pairs of vertices belonging to different hexagons with the property
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that each pair is in fact, a pair of two consecutive vertices of the relevant
hexagon. As an obvious corollary of this we get that if one projects any facet
of P from the center o of S3 onto S3, then the projection is a 3-dimensional
spherical simplex whose two opposite edges are of length π

3 and the other four
remaining edges are of length π

2 . Also, it is easy to show that the circumradius

of that spherical simplex is equal to α = arccos
√

3
8 . This means that the

covering radius of the 12 points in question lying in S3 is precisely α, finishing
the proof of Theorem 3.5.3 for d = 4.

In dimensions d = 5, 6 we proceed similarly using Theorem 3.5.2. More
exactly, we are going to construct 2d pairwise antipodal points on Sd−1 (d =

5, 6) with covering radius at most π/2− arccos
√

d+1
2d = arccos

√
d−1
2d .

For d = 5 we need to find 32 pairwise antipodal points on S4 with covering

radius at most arccos
√

2
5 = 50.768...◦. Let us take a 2-dimensional plane E2

and a 3-dimensional subspace E3 in E5 such that they are totally orthogonal
to each other (with both passing through the origin o of E5). Let P2 be
a regular 16-gon inscribed into E2 ∩ S4 and let P3 be a set of 16 pairwise
antipodal points on E3 ∩ S4 with covering radius Rc = 33.547...◦. For the
details of the construction of P3 see [129]. Finally, let P be the convex hull of
P2∪P3. If F is any facet of P, then it is easy to see that F is a 4-dimensional
simplex having two vertices in P2 and three vertices in P3. If one projects
F from the center o of S4 onto S4, then the projection F ′ is a 4-dimensional
spherical symplex. Among its five vertices there are two vertices say, a and b
lying in P2. Here a and b must be consecutive vertices of the regular 16-gon
inscribed into E2 ∩ S4, and the remaining three vertices must form a triangle
inscribed into E3 ∩ S4 with circumscribed circle C of radius Rc. Now, let c′

be the center of C and c be an arbitrary point of C; moreover, let m be the
midpoint of spherical segment ab. Clearly, am = 11.25◦, c′m = 90◦, and
cc′ = Rc on S4. If s denotes the center of the circumscribed sphere of F ′ in
S4, then s is a point of the spherical segment c′m. Let as = bs = cs = x,
sm = y and c′s = 90◦ − y. Now, the cosine theorem applied to the spherical
right triangles ∆ams and ∆cc′s implies that

cosx = cos 11.25◦ · cos y, and cosx = cosRc sin y.

By solving these equations for x and y we get that x = 50.572...◦ < arccos
√

2
5

= 50.768...◦ finishing the proof of Theorem 3.5.3 for d = 5.
For d = 6 we need to construct 64 pairwise antipodal points on S5 with

covering radius at most arccos
√

5
12 = 49.797...◦. In order to achieve this let us

take two 3-dimensional subspaces E3
1 and E3

2 in E6 such that they are totally
orthogonal to each other (with both passing through the origin o of E6). For
i = 1, 2 let Pi be a set of 32 pairwise antipodal points on E3

i ∩S5 with covering
radius Rc = 22.690...◦. For the details of the construction of Pi, i = 1, 2 see
[129]. Finally, let P be the convex hull of P1 ∪ P2. If F is any facet of P,
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then it is easy to see that F is a 5-dimensional simplex having three vertices
both in P1 and in P2. If one projects F from the center o of S5 onto S5,
then the projection F ′ is a 5-dimensional spherical symplex. It follows from
the construction above that two spherical triangles formed by the two proper
triplets of the vertices of F ′ have circumscribed circles C1 and C2 of radius
Rc. If ci denotes the center of Ci, i = 1, 2 and s denotes the center of the
circumscribed sphere of F ′ in S5, then it is easy to show that s is, in fact, the
midpoint of the spherical segment c1c2 whose spherical length is of 90◦. Thus,
if x denotes the spherical radius of the circumscribed sphere of F ′ in S5, then
the cosine theorem applied to the proper spherical right triangle implies that

cosx = cosRc · cos 45◦.

Hence, it follows that x = 49.278...◦ < arccos
√

5
12 = 49.797...◦ finishing the

proof of Theorem 3.5.3 for d = 6.

9.4 Proofs of Theorem 3.8.1 and Theorem 3.8.3

9.4.1 From the Banach–Mazur distance to the vertex index

We identify the d-dimensional affine space with Rd. By | · | and 〈·, ·〉 we denote
the canonical Euclidean norm and the canonical inner product on Rd. The
canonical basis of Rd we denote by e1, . . . , ed. By ‖ ·‖p, 1 ≤ p ≤ ∞, we denote
the `p-norm; that is,

‖x‖p :=

 ∑
1≤i≤d

|xi|p
1/p

for p <∞ and ‖x‖∞ := sup{|xi| | 1 ≤ i ≤ d}

where x = (x1, . . . , xd). In particular, ‖ · ‖2 = | · |. As usual, `dp = (Rd, ‖ · ‖p),
and the unit ball of `dp is denoted by Bd

p.

Given points x1, . . . ,xk in Rd we denote their convex hull by conv{xi}i≤k
and their absolute convex hull by absconv{xi}i≤k := conv{±xi}i≤k. Similarly,
the convex hull of a set A ⊂ Rd is denoted by convA and the absolute convex
hull of A is denoted by absconvA := conv(A ∪ −A).

Let K ⊂ Rd be a convex body, that is, a compact convex set with non-
empty interior such that the origin o of Rd belongs to K. We denote by K◦

the polar of K, that is,

K◦ := {x | 〈x,y〉 ≤ 1 for every y ∈ K} .

If K is an o-symmetric convex body, then the Minkowski functional of K,

‖x‖K := inf{λ > 0 | x ∈ λK},
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defines a norm on Rd with the unit ball K.
The Banach–Mazur distance between two o-symmetric convex bodies K

and L in Rd is defined by

d(K,L) := inf {λ > 0 | L ⊂ TK ⊂ λL},

where the infimum is taken over all linear operators T : Rd → Rd. It is easy
to see that

d(K,L) = d(K◦,L◦).

The Banach–Mazur distance between K and the closed Euclidean ball Bd
2

we denote by dK. As is well known, John’s theorem ([172]) implies that for
every o-symmetric convex body K, dK is bounded by

√
d.

Given a (convex) body K in Rd we denote its volume by vold(K). Let K
be an o-symmetric convex body in Rd. The outer volume ratio of K is

ovr(K) := inf

(
vold(E)

vold(K)

)1/d

,

where the infimum is taken over all o-symmetric ellipsoids E in Rd containing
K. By John’s theorem we have

ovr(K) ≤
√
d.

Lemma 9.4.1 Let K and L be o-symmetric convex bodies in Rd. Then

vein(K) ≤ d (K,L) · vein(L).

Proof: Let T be a linear operator such that K ⊂ TL ⊂ λK. Let
p1,p2, . . . ,pn ∈ Rd be such that conv{pi}1≤i≤n ⊃ L. Then conv{Tpi}1≤i≤n
⊃ TL ⊃ K. Because TL ⊂ λK, we also have ‖ · ‖K ≤ λ‖ · ‖TL. Therefore,∑

1≤i≤n

‖Tpi‖K ≤ λ
∑

1≤i≤n

‖Tpi‖TL = λ
∑

1≤i≤n

‖pi‖L,

which implies the desired result. �

9.4.2 Calculating the vertex index of Euclidean balls in dimensions
2 and 3

Theorem 9.4.2
(i) For the Euclidean balls in R2 and R3 we have

vein(B2
2) = 4

√
2, vein(B3

2) = 6
√

3.

(ii) In general, if K ⊂ R2, L ⊂ R3 are arbitrary o-symmetric convex bodies,
then

4 ≤ vein(K) ≤ 6 ≤ vein(L) ≤ 18.
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Proof: We prove (i) as follows. As Bd
2 ⊂

√
d Bd

1 for all d, therefore
vein(Bd

2) ≤ 2d
√
d. So, we need to prove the lower estimates vein(B2

2) ≥ 4
√

2
and vein(B3

2) ≥ 6
√

3.
Let P ⊂ R2 be a convex polygon with vertices p1,p2, . . . ,pn, n ≥ 3 con-

taining B2
2. Let P◦ denote the polar of P. Assume that the side of P◦ cor-

responding to the vertex pi of P generates the central angle 2αi with vertex
o. Clearly, 0 < αi < π/2 and |pi| ≥ 1

cosαi
for all i ≤ n. As 1

cos x is a convex
function over the open interval (−π/2, π/2) therefore the Jensen inequality
implies that

n∑
i=1

|pi| ≥
n∑
i=1

1

cosαi
≥ n

cos
(∑n

i=1 αi
n

) =
n

cos πn
.

It is easy to see that n
cos (π/n) ≥

4
cos (π/4) = 4

√
2 holds for all n ≥ 3. Thus,

vein(B2
2) ≥ 4

√
2. This completes the proof of the planar case.

Now, we handle the 3-dimensional case. Let P ⊂ R3 be a convex polyhe-
dron with vertices p1,p2, . . . ,pn, n ≥ 4, containing B3

2. Of course, we assume
that |pi| > 1. We distinguish the following three cases: (a) n = 4 , (b) n ≥ 8,
and (c) 5 ≤ n ≤ 7. In fact, the proof given for Case (c) also works for Case
(b), however, Case (b) is much simpler, so we have decided to consider it
separately.

Case (a): n = 4. In this case P is a tetrahedron with triangular faces
T1, T2, T3, and T4. Without loss of generality we may assume that B3

2 is tan-
gential to the faces T1, T2, T3, and T4. Then the well-known inequality between
the harmonic and arithmetic means yields that

1 =
4∑
i=1

1
3vol2(Ti)

vol3(P)
≥

4∑
i=1

1

|pi|+ 1
≥ 42∑4

i=1(|pi|+ 1)
.

This implies in a straightforward way that

4∑
i=1

|pi| ≥ 12 > 6
√

3,

finishing the proof of this case.
For the next two cases we need the following notation. Fix i ≤ n. Let Ci

denote the (closed) spherical cap of S2 with spherical radius Ri which is the
union of points x ∈ S2 such that the open line segment connecting x and pi
is disjoint from B3

2. In other words, Ci is the (closed) spherical cap with the
center pi/|pi| and the spherical radius Ri, satisfying |pi| = 1

cosRi
. By bi we

denote the spherical area of Ci. Then bi = 2π(1− cosRi).
Case (b): n ≥ 8. Because P contains B3

2, we have

S2 ⊂
n⋃
i=1

Ci.
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Comparing the areas, we observe

4π ≤
n∑
i=1

bi =
n∑
i=1

2π (1− cosRi) ,

which implies
n∑
i=1

cosRi ≤ n− 2.

Applying again the inequality between the harmonic and arithmetic means,
we obtain

n∑
i=1

|pi| =
n∑
i=1

1

cosRi
≥ n2∑n

i=1 cosRi
≥ n2

n− 2
≥ 64

6
> 6
√

3.

Case (c): 5 ≤ n ≤ 7. Let P◦ denote the polar of P. Given i ≤ n, let
Fi denote the central projection of the face of P◦ that corresponds to the
vertex pi of P from the center o onto the boundary of B3

2, that is, onto the
unit sphere S2 centered at o. Obviously, Fi is a spherically convex polygon
of S2 and Fi ⊂ Ci. Let ni denote the number of sides of Fi and let ai stand
for the spherical area of Fi. Note that the area of the sphere is equal to the
sum of areas of Fis; that is

∑n
i=1 ai = 4π. As 10 < 6

√
3 = 10.3923... < 11,

therefore without loss of generality we may assume that there is no i for
which |pi| = 1

cosRi
≥ 11 − 3 = 8; in other words we assume that 0 < Ri <

arccos 1
8 = 1.4454... < π

2 for all i ≤ n. Note that this immediately implies that
0 < ai < bi = 2π(1− cosRi) <

7π
4 < 5.5 for all 1 ≤ i ≤ n.

It is well known that if C ⊂ S2 is a (closed) spherical cap of radius less
than π

2 , then the spherical area of a spherically convex polygon with at most
s ≥ 3 sides lying in C is maximal for the regular spherically convex polygon
with s sides inscribed in C. (This can be easily obtained with the help of the
Lexell circle (see [134]).) It is also well known that if F ∗i denotes a regular
spherically convex polygon with ni sides and of spherical area ai, and if R∗i
denotes the circumradius of F ∗i , then 1

cosR∗i
= tan π

ni
tan

(ai+(ni−2)π
2ni

)
. Thus,

for every i ≤ n we have

|pi| =
1

cosRi
≥ tan

π

ni
tan

(
ai + (ni − 2)π

2ni

)
.

Here 3 ≤ ni ≤ n− 1 ≤ 6 and 0 < ai <
7π
4 for all 1 ≤ i ≤ n.

Now, it is natural to consider the function f(x, y) = tan π
y tan

(x+(y−2)π
2y

)
defined on {(x, y) | 0 < x < 2π, 3 ≤ y}. As in the 2-dimensional case we use
the Jensen inequality. But, unfortunately, it turns out that f is convex only
on a proper subset of its domain; namely the following holds. (This can be
proved using a standard analytic approach or tools such as MAPLE. We omit
the details.)
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Lemma 9.4.3 Let f be a function of two variables defined by

f(x, y) = tan
π

y
tan

(
x+ (y − 2)π

2y

)
.

Then
(i) for every fixed 0 < x0 < 2π the function f(x0, y) is decreasing in y over
the interval [3,∞),
(ii) for every fixed y0 ≥ 3 the function f(x, y0) is increasing in x over the
interval (0, 2π),
(iii) for every fixed y0 ≥ 3 the function f(x, y0) is convex on the interval
(0, 2π),
(iv) f is convex on the closed rectangle {(x, y) | 0.4 ≤ x ≤ 5.5, 3 ≤ y ≤ 9}.

Without loss of generality we may assume that m is chosen such that
0 < ai < 0.4 for all i ≤ m and 0.4 ≤ ai < 5.5 for all m + 1 ≤ i ≤ n. Because∑n

i=1 ai = 4π, one has m < n − 1. By Lemma 9.4.3 (iv) and by the Jensen
inequality, we obtain

n∑
i=1

|pi| ≥
m∑
i=1

|pi|+
n∑

i=m+1

f(ai, ni)

≥ m+ (n−m) f

(
1

n−m

n∑
i=m+1

ai,
1

n−m

n∑
i=m+1

ni

)

(here by
∑0
i we mean 0). Because

∑n
i=1 ai = 4π, we have

∑n
i=m+1 ai >

4π − 0.4m. By Euler’s theorem on the edge graph of P◦ we also have that∑n
i=1 ni ≤ 6n−12 and therefore

∑n
i=m+1 ni ≤ (6n−12)−3m. Thus, applying

Lemma 9.4.3 (i) and (ii), we observe

n∑
i=1

|pi| ≥ m+ (n−m)f

(
4π − 0.4m

n−m
,

(6n− 12)− 3m

n−m

)
=: g(m,n).

First we show that g(m,n) ≥ 6
√

3 = 10.3923... for every (m,n) with
6 ≤ n ≤ 7 and 0 ≤ m < n− 1.

Subcase n = 7:

g(0, 7) = 10.9168..., g(1, 7) = 10.8422..., g(2, 7) = 10.8426...,

g(3, 7) = 11.0201..., g(4, 7) = 11.7828..., g(5, 7) = 18.3370....

Subcase n = 6:

g(0, 6) = 6
√

3 = 10.3923..., g(1, 6) = 10.4034..., g(2, 6) = 10.6206...,

g(3, 6) = 11.5561..., g(4, 6) = 21.2948....
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Subcase n = 5: First note that

6
√

3 < g(1, 5) = 10.6302... < g(2, 5) = 11.8680... < g(3, 5) = 28.1356....

Unfortunately, g(0, 5) < 6
√

3, so we treat the case n = 5 slightly differently
(in fact the proof is easier than the proof of the case 6 ≤ n ≤ 7, because we
use convexity of a function of one variable). In this case P has only 5 vertices,
so it is either a double tetrahedron or a cone over a quadrilateral. As the
latter one can be thought of as a limiting case of double tetrahedra, we can
assume that the edge graph of P has two vertices, say p1 and p2, of degree
three and three vertices, say p3,p4, and p5, of degree four. Thus n1 = n2 = 3
and n3 = n4 = n5 = 4. Therefore

5∑
i=1

|pi| ≥
5∑
i=1

f(ai, ni) =
2∑
i=1

f(ai, 3) +
5∑
i=3

f(ai, 4).

By Lemma 9.4.3 (iii) and by the Jensen inequality, we get

5∑
i=1

|pi| ≥ 2 f

(
a1 + a2

2
, 3

)
+ 3 f

(
a3 + a4 + a5

3
, 4

)

= 2 f(a, 3) + 3 f

(
4π − 2a

3
, 4

)
= 2
√

3 tan

(
a+ π

6

)
+ 3 tan

(
5π − a

12

)
=: h(a),

where 0 ≤ a = a1+a2
2 < 5.5. Finally, it is easy to show that the minimum

value of h(a) over the closed interval 0 ≤ a ≤ 5.5 is (equal to 10.5618... and
therefore is) strictly larger than 6

√
3 = 10.3923..., completing the proof of

part (i) of Theorem 9.4.2.
Finally, we prove part (ii) of Theorem 9.4.2 as follows. First, observe that

(i), John’s theorem, and Lemma 9.4.1 imply that

4 =
4
√

2√
2
≤ vein(B2

2)

dK
≤ vein(K)

and

6 =
6
√

3√
3
≤ vein(B3

2)

dL
≤ vein(L) ≤ dL · vein(B3

2) ≤ 18.

Second, Theorem 3.7.1 implies that indeed vein(K) ≤ 6, finishing the proof
of Theorem 9.4.2. �
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9.4.3 A lower bound for the vertex index using the
Blaschke–Santaló inequality and an inequality of Ball and Pajor

Theorem 9.4.4 For every d ≥ 2 and every o-symmetric convex body K in
Rd one has

d3/2√
2πe ovr(K)

≤ d(
vold(Bd

2)
)1/d

ovr(K)
≤ vein(K).

Proof: Recall that vein(K) is an affine invariant; that is, vein(K) = vein(TK)
for every invertible linear operator T : Rd → Rd. Thus, without loss of gen-
erality we can assume that Bd

2 is the ellipsoid of minimal volume for K. In
particular, K ⊂ Bd

2, so | · | ≤ ‖ · ‖K.
Let {pi}N1 ∈ Rd be such that K ⊂ conv{pi}N1 . Clearly N ≥ d+ 1. Denote

L := absconv{pi}N1 .

Then
L◦ = {x | |〈x,pi〉| ≤ 1 for every i ≤ N} .

By Theorem 2 of [11], we get that

vold (L◦) ≥

(
d∑N

1 |pi|

)d
.

On the one hand, according to the Blaschke–Santaló inequality (see, e.g.,

[215]) vold (L) vold (L◦) ≤
(
vold

(
Bd

2

))2
. On the other hand, K ⊂ L, therefore

the above inequality implies that

vold (K) ≤ vold (L) ≤
(
vold

(
Bd

2

))2
vold (L◦)

≤
(
vold

(
Bd

2

))2(1

d

N∑
1

|pi|

)d
.

As Bd
2 is the minimal volume ellipsoid of K and as ‖ · ‖K ≥ | · |, therefore

we conclude that

1

ovr(K)
=

(
vold (K)

vold
(
Bd

2

))1/d

≤
(
vold

(
Bd

2

))1/d 1

d

N∑
1

‖pi‖K.

Thus, the inequality

d(
vold(Bd

2)
)1/d

ovr(K)
≤

N∑
1

‖pi‖K

together with the well-known inequality (see, e.g., [215])
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vold(B
d
2) =

πd/2

Γ (1 + d/2)
≤
(

2πe

d

)d/2
finishes the proof of Theorem 9.4.4. �

As an immediate corollary of Theorem 9.4.4 we get the lower bound in
the following statement. (The upper bound mentioned there has been derived
earlier as a rather simple observation.)

Corollary 9.4.5 For every d ≥ 2 one has

d3/2√
2πe
≤ vein(Bd

2) ≤ 2 d3/2.

9.4.4 An upper bound for the vertex index using a theorem of
Rudelson

Let u, v ∈ Rd. As usual Id : Rd → Rd denotes the identity operator and u⊗v
denotes the operator from Rd to Rd, defined by (u⊗v)(x) = 〈u,x〉v for every
x ∈ Rd. In [223] and [224], M. Rudelson proved the following theorem (see
Corollary 4.3 of [224] and Theorem 1.1 with Remark 4.1 of [223]).

Theorem 9.4.6 For every o-symmetric convex body K in Rd and every ε ∈
(0, 1] there exists an o-symmetric convex body L in Rd such that d(K,L) ≤
1 + ε and Bd

2 is the minimal volume ellipsoid containing L, and

Id =
M∑
i=1

ciui ⊗ ui,

where c1, . . . , cM are positive numbers, u1, . . . ,uM are contact points of L and
Bd

2 (i.e., ‖ui‖L = |ui| = 1), and

M ≤ C ε−2 d ln(2d),

with an absolute constant C.

It is a standard observation (cf. [14], [243]) that under the conditions of
Theorem 9.4.6 one has

P ⊂ L ⊂ Bd
2 ⊂
√
d L,

for P = absconv{ui}i≤M . Indeed, P ⊂ L by the convexity and the symmetry
of L, and for every x ∈ Rd we have

x = Id x =
M∑
i=1

ci〈ui,x〉ui,

so
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|x|2 = 〈x,x〉 =
M∑
i=1

ci〈ui,x〉2 ≤ maxi≤M 〈ui,x〉2
M∑
i=1

ci = ‖x‖2P◦
M∑
i=1

ci.

Because

d = trace Id = trace
M∑
i=1

ciui ⊗ ui =
M∑
i=1

ci〈ui,ui〉 =
M∑
i=1

ci,

we obtain |x| ≤
√
d ‖x‖P◦ , which means P◦

√
d ⊂ Bd

2. By duality we have
Bd

2 ⊂
√
d P. Therefore, d(K,P) ≤ d(K,L) d(L,P) ≤ (1 + ε)

√
d, and, hence,

we have the following immediate consequence of Theorem 9.4.6.

Corollary 9.4.7 For every o-symmetric convex body K in Rd and every ε ∈
(0, 1] there exists an o-symmetric convex polytope P in Rd with M vertices
such that d(K,P) ≤ (1 + ε)

√
d and

M ≤ C ε−2 d ln(2d),

where C is an absolute constant.

Corollary 9.4.7 implies the general upper estimate for vein(K).

Theorem 9.4.8 For every centrally symmetric convex body K in Rd one has

vein(K) ≤ C d3/2 ln(2d),

where C is an absolute constant.

Proof: Let P be a polytope given by Corollary 9.4.7 applied to K with
ε = 1. Then d(K,P) ≤ 2

√
d. Clearly, vein(P) ≤ M (just take the pis in the

definition of vein(·) to be the vertices of P). Thus, by Lemma 9.4.1 we obtain
vein(K) ≤ 2M

√
d, which completes the proof. �
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Selected Proofs on Coverings by Planks and
Cylinders

10.1 Proof of Theorem 4.1.7

10.1.1 On coverings of convex bodies by two planks

Lemma 10.1.1 If a convex body K in Ed, d ≥ 2 is covered by the planks P1

and P2, then wC(P1) + wC(P2) ≥ wC(K) for any convex body C in Ed.

Proof: Let H1 (resp., H2) be one of the two hyperplanes which bound
the plank P1 (resp., P2). If H1 and H2 are translates of each other, then
the claim is obviously true. Thus, without loss of generality we may assume
that L := H1 ∩ H2 is a (d − 2)-dimensional affine subspace of Ed. Let E2

be the 2-dimensional linear subspace of Ed that is orthogonal to L. If (·)′
denotes the (orthogonal) projection of Ed parallel to L onto E2, then obviously,
wC′(P

′
1) = wC(P1), wC′(P

′
2) = wC(P2) and wC′(K

′) ≥ wC(K). Thus, it is
sufficient to prove that

wC′(P
′
1) + wC′(P

′
2) ≥ wC′(K

′).

In other words, it is sufficient to prove Lemma 10.1.1 for d = 2. Hence, in
the rest of the proof, K,C,P1,P2, H1, and H2 mean the sets introduced and
defined above, however, for d = 2. Now, we can make the following easy
observation

wC(P1) + wC(P2) =
w(P1)

w(C, H1)
+

w(P2)

w(C, H2)

=
w(P1)

w(K, H1)

w(K, H1)

w(C, H1)
+

w(P2)

w(K, H2)

w(K, H2)

w(C, H2)

≥
(

w(P1)

w(K, H1)
+

w(P2)

w(K, H2)

)
wC(K)

= (wK(P1) + wK(P2))wC(K).

K. Bezdek, Classical Topics in Discrete Geometry, CMS Books in Mathematics, 115
DOI 10.1007/978-1-4419-0600-7_10,  © Springer Science+Business Media, LLC 2010 
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Then recall that Theorem 4 in [3] states that if a convex set in the plane is
covered by planks, then the sum of their relative widths is at least 1. Thus,
using our terminology, we have that wK(P1) + wK(P2) ≥ 1, finishing the
proof of Lemma 10.1.1. �

10.1.2 A proof of the affine plank conjecture of Bang for
non-overlapping cuts

Let K and C be convex bodies in Ed, d ≥ 2. We prove Theorem 4.1.7 by
induction on n. It is trivial to check the claim for n = 1. So, let n ≥ 2
be given and assume that Theorem 4.1.7 holds for at most n − 2 successive
hyperplane cuts and based on that we show that it holds for n− 1 successive
hyperplane cuts as well. The details are as follows.

Let H1, . . . ,Hn−1 denote the hyperplanes of the n − 1 successive hyper-
plane cuts that slice K into n pieces such that the greatest C inradius of
the pieces is the smallest possible say, ρ. Then take the first cut H1 that
slices K into the pieces K1 and K2 such that K1 (resp., K2) is sliced into
n1 (resp., n2) pieces by the successive hyperplane cuts H2, . . . ,Hn−1, where
n = n1 +n2. The induction hypothesis implies that ρ ≥ rC(K1, n1) =: ρ1 and
ρ ≥ rC(K2, n2) =: ρ2 and therefore

wC(K1
ρC) ≤ wC(K1

ρ1C) = n1ρ1 ≤ n1ρ; (10.1)

moreover,
wC(K2

ρC) ≤ wC(K2
ρ2C) = n2ρ2 ≤ n2ρ. (10.2)

Now, we need to define the following set. In order to simplify matters let us
assume that the origin o of Ed belongs to the interior of C. Then consider all
translates of ρC which are contained in K. The set of points in the translates
of ρC that correspond to o form a convex set called the inner ρC-parallel
body of K denoted by K−ρC.

Clearly,

(K1)−ρC ∪ (K2)−ρC ⊂ K−ρC with (K1)−ρC ∩ (K2)−ρC = ∅.

Also, it is easy to see that there is a plank P with wC(P) = ρ such that it is
parallel to H1 and contains H1 in its interior; moreover,

K−ρC ⊂ (K1)−ρC ∪ (K2)−ρC ∪P.

Hence, applying Lemma 10.1.1 to (K1)−ρC as well as (K2)−ρC we get that

wC (K−ρC) ≤ wC ((K1)−ρC) + ρ+ wC ((K2)−ρC) . (10.3)

It follows from the definitions that wC ((K1)−ρC) = wC(K1
ρC) − ρ,

wC ((K2)−ρC) = wC(K2
ρC) − ρ and wC (K−ρC) = wC(KρC) − ρ. Hence,

(10.3) is equivalent to



10.2 Proof of Theorem 4.2.2 117

wC(KρC) ≤ wC(K1
ρC) + wC(K2

ρC). (10.4)

Finally, (10.1),(10.2), and (10.4) yield that

wC(KρC) ≤ n1ρ+ n2ρ = nρ. (10.5)

Thus, (10.4) clearly implies that rC(K, n) ≤ ρ. As the case, when the optimal
partition is achieved, follows directly from the definition of the nth successive
C-inradius of K, the proof of Theorem 4.1.7 is complete.

10.2 Proof of Theorem 4.2.2

10.2.1 Covering ellipsoids by 1-codimensional cylinders

We prove the part of Theorem 4.2.2 on ellipsoids. In this case, every Ci can
be presented as Ci = li + Bi, where li is a line containing the origin o in
Ed and Bi is a measurable set in Ei := l⊥i . Because crvK(C) = crvTK(TC)
for every invertible affine map T : Ed → Ed, we therefore may assume that
K = Bd, where Bd denotes the unit ball centered at the origin o in Ed. Recall
that ωd−1 := vold−1(Bd−1). Then

crvK(Ci) =
vold−1(Bi)

ωd−1
.

Consider the following (density) function on Ed,

p(x) = 1/
√

1− ‖x‖2

for ‖x‖ < 1 and p(x) = 0 otherwise, where ‖ ‖ denotes the standard Euclidean
norm in Ed. The corresponding measure on Ed we denote by µ; that is, dµ(x) =
p(x)dx. Let l be a line containing o in Ed and E = l⊥. It follows from direct
calculations that for every z ∈ E with ‖z‖ < 1,∫

l+z

p(x) dx = π.

Thus, we have

µ(Bd) =

∫
Bd
p(x) dx =

∫
Bd∩E

∫
l+z

p(x) dx dz = π ωd−1

and for every i ≤ N ,

µ(Ci) =

∫
Ci

p(x) dx =

∫
Bi

∫
li+z

p(x) dx dz = π vold−1(Bi).

Because Bd ⊂
⋃N
i=1 Ci, we obtain
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π ωd−1 = µ(Bd) ≤ µ
( N⋃
i=1

Ci

)
≤

N∑
i=1

µ(Ci) =
N∑
i=1

π vold−1(Bi).

It implies
N∑
i=1

crvBd(Ci) =
N∑
i=1

vold−1(Bi)

ωd−1
≥ 1.

10.2.2 Covering convex bodies by cylinders of given codimension

We show the general case of Theorem 4.2.2 as follows. For i ≤ N denote
C̄i := Ci ∩K and Ei := H⊥i and note that

K ⊂
N⋃
i=1

C̄i and PEiC̄i = Bi ∩ PEiK.

Because C̄i ⊂ K we also have

max
x∈Ed

volk(C̄i ∩ (x +Hi)) ≤ max
x∈Ed

volk(K ∩ (x +Hi)).

We use the following theorem, proved by Rogers and Shephard [221] (see also
[102] and Lemma 8.8 in [215]).

Theorem 10.2.1 Let 1 ≤ k ≤ d− 1. Let K be a convex body in Ed and E be
a k-dimensional linear subspace of Ed. Then

max
x∈Ed

vold−k(K ∩ (x + E⊥)) volk(PEK) ≤
(
d

k

)
vold(K).

We note that the reverse estimate

max
x∈Ed

vold−k(K ∩ (x + E⊥)) volk(PEK) ≥ vold(K)

is a simple application of the Fubini theorem and is correct for any measurable
set K in Ed.

Thus, applying Theorem 10.2.1 (and the remark after it, saying that we
don’t need convexity of C̄i) we obtain for every i ≤ N :

crvK(Ci) =
vold−k(Bi)

vold−k(PEiK)
≥ vold−k(PEiC̄i)

vold−k(PEiK)

≥ vold(C̄i)

maxx∈Ed volk(C̄i ∩ (x +Hi))

maxx∈Ed volk(K ∩ (x +Hi))(
d
k

)
vold(K)

≥ vold(C̄i)(
d
k

)
vold(K)

.
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Using that C̄is cover K, we observe

N∑
i=1

crvK(Ci) ≥
1(
d
k

) ,
which completes the proof.

10.3 Proof of Theorem 4.5.2

Let P1,P2, . . . ,Pn be an arbitrary family of planks of width w1, w2, . . . , wn in
E3 and let P be a plank of width w1 +w2 + · · ·+wn with o as a center of sym-
metry. Moreover, let S(x) denote the sphere of radius x centered at o. Now,
recall the well-known fact that if P(y) is a plank of width y whose both bound-
ary planes intersect S(x), then sarea(S(x) ∩ P(y)) = 2πxy, where sarea( . )
refers to the surface area measure on S(x). This implies in a straightforward
way that

sarea[(P1 ∪P2 ∪ · · · ∪Pn) ∩ S(x)] ≤ sarea(P ∩ S(x)),

and so,

vol3((P1 ∪P2 ∪ · · · ∪Pn) ∩B3) =

∫ 1

0

sarea[(P1 ∪P2 ∪ · · · ∪Pn) ∩ S(x)] dx

≤
∫ 1

0

sarea(P ∩ S(x)) dx = vol3(P ∩B3),

finishing the proof of the “if” part of Theorem 4.5.2. Actually, a closer look
of the above argument gives a proof of the “only if” part as well.

10.4 Proof of Theorem 4.5.8

Recall that if X is a finite set lying in the interior of a unit ball in Ed,
then we can talk about its spindle convex hull convs(X), which is simply the
intersection of all (closed) unit balls of Ed that contain X (for more details
see [69]). The following statement can be obtained by combining Corollary
3.4 of [69] and Proposition 1 of [65].

Lemma 10.4.1 Let X be a finite set lying in the interior of a unit ball in
Ed. Then
(i) convs(X) = B

[
B[X]

]
and therefore B[X] = B

[
convs(X)

]
,

(ii) the Minkowski sum B[X] + convs(X) is a convex body of constant width
2 in Ed and so, w(B[X]) + diam

(
convs(X)

)
= 2, where diam( . ) stands for

the diameter of the corresponding set in Ed.
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By part (ii) of Lemma 10.4.1, diam
(
convs(X)

)
≤ 2−x. This implies, via a

classical theorem of convexity (see, e.g., [85]), the existence of a convex body
L of constant width (2 − x) in Ed with convs(X) ⊂ L. Hence, using part (i)
of Lemma 10.4.1, we get that B[L] ⊂ B[X] = B

[
convs(X)

]
. Finally, notice

that as L is a convex body of constant width (2−x) therefore B[L] is, in fact,
the outer-parallel domain of L having radius (x − 1) (i.e., B[L] is the union
of all d-dimensional (closed) balls of radii (x − 1) in Ed that are centered at
the points of L). Thus,

vold(B[X]) ≥ vold(B[L]) = vold(L)+svold−1(bd(L))(x−1)+vold(B
d)(x−1)d.

The above inequality together with the following obvious ones

vold(L) ≥ vold(K
2−x,d
BL ) and svold−1(bd(L)) ≥ svold−1(bd(K

2−x,d
BL ))

implies Theorem 4.5.8 in a straightforward way.
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Selected Proofs on the Kneser–Poulsen
Conjecture

11.1 Proof of Theorem 5.3.2 on the Monotonicity of
Weighted Surface Volume

First, recall the following underlying system of (truncated) Voronoi cells. For
a given point configuration p = (p1,p2, . . . ,pN ) in Ed and radii r1, r2, . . . ,
rN consider the following sets,

Vi = {x ∈ Ed | for all j , ‖x− pi‖2 − r2i ≤ ‖x− pj‖2 − r2j},

Vi = {x ∈ Ed | for all j , ‖x− pi‖2 − r2i ≥ ‖x− pj‖2 − r2j}.

The set Vi (resp., Vi) is called the nearest (resp., farthest) point Voronoi
cell of the point pi. We now restrict each of these sets as follows,

Vi(ri) = Vi ∩Bd[pi, ri],

Vi(ri) = Vi ∩Bd[pi, ri].

We call the set Vi(ri) (resp., Vi(ri)) the nearest (resp., farthest) point
truncated Voronoi cell of the point pi. For each i 6= j let Wij = Vi ∩Vj and
W ij = Vi∩Vj . The sets Wij and W ij are the walls between the nearest point
and farthest point Voronoi cells. Finally, it is natural to define the relevant
truncated walls as follows.

Wij(pi, ri) = Wij ∩Bd[pi, ri]

= Wij(pj , rj) = Wij ∩Bd[pj , rj ],

W ij(pi, ri) = W ij ∩Bd[pi, ri]

= W ij(pj , rj) = W ij ∩Bd[pj , rj ].

K. Bezdek, Classical Topics in Discrete Geometry, CMS Books in Mathematics, 121
DOI 10.1007/978-1-4419-0600-7_11,  © Springer Science+Business Media, LLC 2010 
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Second, for each i = 1, 2, . . . , N and 0 ≤ s, define ri(s) =
√
r2i + s. Clearly,

d

ds
ri(s) =

1

2ri(s)
. (11.1)

Now, define r(s) = (r1(s), . . . , rN (s)), and introduce

Vd(t, s) := vold

(
Bd⋃[p(t), r(s)]

)
,

and
V d(t, s) := vold

(
Bd⋂[p(t), r(s)]

)
as functions of the variables t and s, where

Bd⋃[p(t), r(s)] :=
N⋃
i=1

Bd[pi(t), ri(s)],

and

Bd⋂[p(t), r(s)] :=
N⋂
i=1

Bd[pi(t), ri(s)].

Throughout we assume that all ri > 0.

Lemma 11.1.1 Let d ≥ 2 and let p(t), 0 ≤ t ≤ 1 be a smooth motion of
a point configuration in Ed such that for each t, the points of the configura-
tion are pairwise distinct. Then the volume functions Vd(t, s) and V d(t, s) are
continuously differentiable in t and s simultaneously, and for any fixed t, the
nearest point and farthest point Voronoi cells are constant.

Proof: Let t = t0 be fixed. Then recall that the point x belongs to the Voronoi
cell Vi(t0, s) (resp., Vi(t0, s)), when for all j, ‖x−pi(t0)‖2−‖x−pj(t0)‖2−
ri(s)

2+rj(s)
2 is non-positive (resp., non-negative). But ri(s)

2−rj(s)2 = r2i−r2j
is constant. So each Vi(t0, s) and Vi(t0, s) is a constant function of s.

As p(t) is continuously differentiable, therefore the partial derivatives of
Vd(t, s) and V d(t, s) with respect to t exist and are continuous by Theo-
rem 5.2.1. Each ball Bd[pi(t), ri(s)], d ≥ 2 is strictly convex. Hence, the
(d − 1)-dimensional surface volume of the boundaries of Bd⋃[p(t), r(s)] and

Bd⋂[p(t), r(s)] are continuous functions of s, and the partial derivatives of

Vd(t, s) and V d(t, s) with respect to s exist and are continuous. Thus, Vd(t, s)
and V d(t, s) are both continuously differentiable with respect to t and s si-
multaneously. �

Lemma 11.1.2 Let p(t), 0 ≤ t ≤ 1 be an analytic motion of a point configu-
ration in Ed, d ≥ 2. Then there exists an open dense set U in [0, 1] × (0,∞)
such that for any (t, s) ∈ U the following hold.
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∂2

∂t∂s
Vd(t, s) =

∑
1≤i<j≤N

(
d

dt
dij(t)

)
· ∂
∂s

vold−1 [Wij(pi(t), ri(s))] ,

and

∂2

∂t∂s
V d(t, s) =

∑
1≤i<j≤N

−
(
d

dt
dij(t)

)
· ∂
∂s

vold−1
[
W ij(pi(t), ri(s))

]
.

Hence, if p(t) is contracting, then ∂
∂sVd(t, s) is monotone decreasing in t, and

∂
∂sV

d(t, s) is monotone increasing in t.

Proof: Given that p(t), 0 ≤ t ≤ 1 is an analytic function of t, we wish
to define an open dense set U in [0, 1] × (0,∞), where the volume functions
Vd(t, s) and V d(t, s) are analytic in t and s simultaneously. Lemma 11.1.1
implies that the Voronoi cells Vi and Vi are functions of t alone. Moreover,
clearly there are only a finite number of values of t in the interval [0, 1], where
the combinatorial type of the above Voronoi cells changes. The volume of the
truncated Voronoi cells Vi (ri(s)) and Vi (ri(s)) are obtained from the volume
of the d-dimensional Euclidean ball of radius ri(s) by removing or adding the
volumes of the regions obtained by conning over the walls Wij(pi(t), ri(s)) or
W ij(pi(t), ri(s)) from the point pi(t). By induction on d, starting at d = 1,
each Wij and W ij is an analytic function of t and s, when the ball of radius
ri(s) is not tangent to any of the faces of Vi or Vi. So, for any fixed t the
ball of radius ri(s) will not be tangent to any of the faces Vi or Vi for all
but a finite number of values of s. Thus, we define U to be the set of those
(t, s), where for some open interval about t in [0, 1], the combinatorial type
of the Voronoi cells is constant and for all i, the ball of radius ri(s) is not
tangent to any of the faces of Vi or Vi. We also assume that the points of the
configuration p(t) are distinct for any (t, s) ∈ U . If, for i 6= j and for infinitely
many values of t in the interval [0, 1], pi(t) = pj(t), then they are the same
point for all t, and those points may be identified. Then the set U is open
and dense in [0, 1]× (0,∞) and the volume functions Vd(t, s) and V d(t, s) are
analytic in t and s. Thus, the formulas for the mixed partial derivatives in
Lemma 11.1.2 follow from the definition of U and from Theorem 5.2.1. (Note
also that here we could interchange the order of partial differentiation with
respect to the variables t and s.)

To show that ∂
∂sVd(t, s) and ∂

∂sV
d(t, s) are monotone, suppose they are

not. We show a contradiction. If we perturb s slightly to s0 say, then us-
ing the formulas for the mixed partial derivatives in Lemma 11.1.2 we get
that the partial derivative of ∂

∂sVd(t, s) and ∂
∂sV

d(t, s) with respect to t ex-
ists and has the appropriate sign, except for a finite number of values of
t for s = s0. (Here we have also used the following rather obvious mono-
tonicity property of the walls: Wij(pi(t), ri(s)) ⊂ Wij(pi(t), ri(s

∗)) and
W ij(pi(t), ri(s)) ⊂ W ij(pi(t), ri(s

∗)) for any s ≤ s∗.) Since ∂
∂sVd(t, s) and

∂
∂sV

d(t, s) are continuous as a function of t at s = s0 by Lemma 11.1.1, they
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are monotone. But the functions at s0 approximate the functions at s (again
by Lemma 11.1.1) providing the contradiction. So, ∂

∂sVd(t, s) and ∂
∂sV

d(t, s)
are indeed monotone. This completes the proof of Lemma 11.1.2. �

First, note that

Fi(t) = Vi(t, 0) ∩ bd
(
Bd⋃[p(t), r(0)]

)
(11.2)

and (
resp., Fi(t) = Vi(t, 0) ∩ bd

(
Bd⋂[p(t), r(0)]

))
. (11.3)

Second, (11.1), (11.2) and (11.3) imply in a straightforward way that

∂

∂s
Vd(t, s)

∣∣∣∣
s=0

=
1

2

N∑
i=1

1

ri
svold−1(Fi(t)) = lim

s0→0+

∂

∂s
Vd(t, s)

∣∣∣∣
s=s0

(11.4)

(
resp.,

∂

∂s
V d(t, s)

∣∣∣∣
s=0

=
1

2

N∑
i=1

1

ri
svold−1(Fi(t)) = lim

s0→0+

∂

∂s
Vd(t, s)

∣∣∣∣
s=s0

)
.

(11.5)
Thus, (11.4) and (11.5) together with Lemma 11.1.2 finish the proof of

Theorem 5.3.2.

11.2 Proof of Theorem 5.3.3 on Weighted Surface and
Codimension Two Volumes

We start with the following volume formula from calculus, which is based on
cylindrical shells.

Lemma 11.2.1 Let X be a compact measurable set in Ed, d ≥ 3 that is a
solid of revolution about Ed−2. In other words the orthogonal projection of
X∩

{
Ed−2 × (s cos θ, s sin θ)

}
onto Ed−2 is a measurable set X(s) independent

of θ. Then

vold(X) =

∫ ∞
0

(2πs)vold−2 (X(s)) ds.

By assumption the centers of the closed d-dimensional balls Bd[pi, ri],
1 ≤ i ≤ N lie in the (d− 2)-dimensional affine subspace L of Ed. Now, recall
the construction of the following (truncated) Voronoi cells.

Vi(d) = {x ∈ Ed | for all j , ‖x− pi‖2 − r2i ≤ ‖x− pj‖2 − r2j},

Vi(d) = {x ∈ Ed | for all j , ‖x− pi‖2 − r2i ≥ ‖x− pj‖2 − r2j}.
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The set Vi(d) (resp., Vi(d)) is called the nearest (resp., farthest) point
Voronoi cell of the point pi in Ed. Then we restrict each of these sets as
follows:

Vi(ri, d) = Vi ∩Bd[pi, ri],

Vi(ri, d) = Vi ∩Bd[pi, ri].

We call the set Vi(ri, d) (resp., Vi(ri, d)) the nearest (resp., farthest)
point truncated Voronoi cell of the point pi in Ed. As the point configuration
p = (p1,p2, . . . ,pN ) lies in the (d − 2)-dimensional affine subspace L ⊂ E
and as without loss of generality we may assume that L = Ed−2, therefore
one can introduce the relevant (d − 2)-dimensional truncated Voronoi cells
Vi(ri, d − 2) and Vi(ri, d − 2) in a straightforward way. We are especially
interested in the relation of the volume of Vi(ri, d − 2) and Vi(ri, d − 2) in
Ed−2 i i

Vi(ri, d) in Ed.

Lemma 11.2.2 We have that

vold (Vi(ri, d)) =

∫ ri

0

(2πs)vold−2 (Vi(s, d− 2)) ds,

and

vold
(
Vi(ri, d)

)
=

∫ ri

0

(2πs)vold−2
(
Vi(s, d− 2)

)
ds.

Proof: It is clear, in both cases, that Vi(ri, d) and Vi(ri, d) are compact mea-
surable sets of revolution (about Ed−2). Note that the orthogonal projection
of Bd[pi, ri] ∩

{
Ed−2 × (s cos θ, s sin θ)

}
onto Ed−2 is the (d− 2)-dimensional

ball of radius
√
r2i − s2 centered at pi. Thus, by Lemma 11.2.1 we have that

vold (Vi(ri, d)) =

∫ ri

0

(2πs)vold−2

(
Vi

(√
r2i − s2, d− 2

))
ds .

But if we make the change of variable u =
√
r2i − s2, we get the desired

integral. A similar calculation works for vold
(
Vi(ri, d)

)
. �

The following is an immediate corollary of Lemma 11.2.2.

Corollary 11.2.3 We have that

d

dr
vold (Vi(r, d))

∣∣∣∣
r=ri

= 2πrivold−2 (Vi(ri, d− 2)) ,

and
d

dr
vold

(
Vi(r, d)

) ∣∣∣∣
r=ri

= 2πrivold−2
(
Vi(ri, d− 2)

)
.

to the volume of the corresponding truncated Voronoi cells V (r , d) and

Proof of Theorem 5.3.3 on Weighted Surface and Codimension Two Volumes

d
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Moreover, it is clear that if Fi stands for the contribution of the ith ball
to the boundary of the union

⋃N
i=1 Bd[pi, ri], then

svold−1(Fi) =
d

dr
vold (Vi(r, d))

∣∣∣∣
r=ri

. (11.6)

Similarly, if Fi denotes the contribution of the ith ball to the boundary of
the intersection

⋂N
i=1 Bd[pi, ri], then

svold−1(Fi) =
d

dr
vold

(
Vi(r, d)

) ∣∣∣∣
r=ri

. (11.7)

Finally, it is obvious that

vold−2

(
N⋃
i=1

Bd−2[pi, ri]

)
=

N∑
i=1

vold−2 (Vi(ri, d− 2)) , (11.8)

and

vold−2

(
N⋂
i=1

Bd−2[pi, ri]

)
=

N∑
i=1

vold−2
(
Vi(ri, d− 2)

)
. (11.9)

Thus, Corollary 11.2.3 and (11.6), (11.8) (resp., (11.7), (11.9)) finish the
proof of Theorem 5.3.3.

11.3 Proof of Theorem 5.3.4 - the Leapfrog Lemma

Actually, we are going to prove the following even stronger statement. For
more information on the background of this theorem we refer the interested
reader to [58].

Theorem 11.3.1 Suppose that p and q are two configurations in Ed, d ≥ 1.
Then the following is a continuous motion p(t) = (p1(t), . . . ,pN (t)) in E2d,
that is analytic in t, such that p(0) = p, p(1) = q and for 0 ≤ t ≤ 1,
‖pi(t)− pj(t)‖ is monotone:

pi(t) =

(
pi + qi

2
+ (cosπt)

pi − qi
2

, (sinπt)
pi − qi

2

)
, 1 ≤ i < j ≤ N.

Proof: We calculate:

4‖pi(t)− pj(t)‖2 = ‖(pi − pj)− (qi − qj)‖2

+‖(pi − pj) + (qi − qj)‖2 + 2(cosπt)(‖pi − pj‖2 − ‖qi − qj‖2) .

This function is monotone, as required. �
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11.4 Proof of Theorem 5.4.1

11.4.1 The spherical leapfrog lemma

As usual, let Sd, d ≥ 2 denote the unit sphere centered at the origin o in Ed+1,
and let X(p) be a finite intersection of closed balls of radius π

2 (i.e., of closed
hemispheres) in Sd whose configuration of centers is p = (p1, . . . ,pN ). We
say that another configuration q = (q1, . . . ,qN ) is a contraction of p if, for all
1 ≤ i < j ≤ N , the spherical distance between pi and pj is not less than the
spherical distance between qi and qj . We denote the d-dimensional spherical
volume measure by Svold(·). Thus, Theorem 5.4.1, that we need to prove,
can be phrased as follows: if q is a configuration in Sd that is a contraction of
the configuration p, then

Svold (X(p)) ≤ Svold (X(q)) . (11.10)

We note that the part of Theorem 5.4.1 on the union of closed hemispheres
is a simple set-theoretic consequence of (11.10).

Next, we recall Theorem 11.3.1, which we like to call the (Euclidean)
Leapfrog Lemma ([58]). We need to apply this to a sphere, rather than Eu-
clidean space. Here we consider the unit spheres Sd ⊂ Sd+1 ⊂ Sd+2 · · · in such
a way that each Sd is the set of points that are a unit distance from the origin
o in Ed+1. So we need the following.

Corollary 11.4.1 Suppose that p and q are two configurations in Sd. Then
there is a monotone analytic motion from p to q in S2d+1.

Proof: Apply Theorem 11.3.1 to each configuration p and q with o as
an additional configuration point for each. So for each t, the configuration
p(t) = (p1(t), . . . ,pN (t)) lies at a unit distance from o in E2d+2, which is just
S2d+1. �

11.4.2 Smooth contractions via Schläfli’s differential formula

We look at the case when there is a smooth motion p(t) of the configuration p
in Sd. More precisely we consider the family X(t) = X(p(t)) of convex spheri-
cal d-polytopes in Sd having the same combinatorial face structure with facet
hyperplanes being differentiable in the parameter t. The following classical
theorem of Schläfli (see, e.g., [182]) describes how the volume of X(t) changes
as a function of its dihedral angles and the volume of its (d− 2)-dimensional
faces.

Lemma 11.4.2 For each (d−2)-face Fij(t) of the convex spherical d-polytope
X(t) in Sd let αij(t) represent the (inner) dihedral angle between the two facets
Fi(t) and Fj(t) meeting at Fij(t). Then the following holds.
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d

dt
Svold (X(t)) =

1

d− 1

∑
Fij

Svold−2 (Fij(t)) ·
d

dt
αij(t),

to be summed over all (d− 2)-faces.

Corollary 11.4.3 Let q be a configuration in Sd with a differentiable con-
traction p(t) in t of the configuration p in Sd and assume that the convex
spherical d-polytopes X(t) = X(p(t)) of Sd have the same combinatorial face
structure. Then

d

dt
Svold (X(t)) ≥ 0 .

Proof: As the spherical distance between pi(t) and pj(t) is decreasing, the
derivative of the dihedral angle d

dtαij(t) ≥ 0. The result then follows from
Lemma 11.4.2. �

11.4.3 Relating higher-dimensional spherical volumes to
lower-dimensional ones

The last piece of information that we need before we get to the proof of
Theorem 5.4.1 is a way of relating higher-dimensional spherical volumes to
lower-dimensional ones. Let X be any integrable set in Sn. Recall that we
regard

X ⊂ Sn = Sn × {o} ⊂ En+1 × Ek+1 .

Regard
{o} × Sk ⊂ En+1 × Ek+1 .

Let X ∗Sk be the subset of Sn+k+1 consisting of the union of the geodesic arcs
from each point of X to each point of {o} × Sk. (So, in particular, Sn ∗ Sk =
Sn+k+1).

Lemma 11.4.4 For any integrable subset X of Sn,

Svoln+k+1

(
X ∗ Sk

)
=
κn+k+1

κn
Svoln(X) ,

where κn = Svoln (Sn), κn+k+1 = Svoln+k+1

(
Sn ∗ Sk

)
= Svoln+k+1

(
Sn+k+1

)
.

Proof: Since the ∗ operation (a kind of spherical join) is associative, we
only need to consider the case when k = 0. Regard {o} × S0 = S0 = {n, s},
the north pole and the south pole of Sn+1. We use polar coordinates centered
at n to calculate the (n + 1)-dimensional volume of X ∗ S0. Let X(z) =
(X ∗ S0) ∩

(
En+1 × {z}

)
, and let θ be the angle that a point in Sn+1 makes

with n, the north pole in Sn+1. So z = z(θ) = cos θ. Then the spherical volume
element for Sn(z) = Sn+1 ∩

(
En+1 × {z}

)
is dVn(z) = (sinn θ)dVn(0) because

Sn(z) is obtained from Sn(0) by a dilation by sin θ. Then
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Svoln+1

(
X ∗ S0

)
=

∫
X∗S0

dVn(z)dθ (11.11)

=

∫ π

0

∫
X(z(θ))

dVn(z)dθ =

∫ π

0

(sinn θ)Vn(X)dθ (11.12)

= Svoln(X)

∫ π

0

(sinn θ)dθ = Svoln(X)
κn+1

κn
, (11.13)

where (11.13) can be seen by taking X = Sn, or by performing the integral
explicitly. �

11.4.4 Putting pieces together

Now, we are ready for the proof of Theorem 5.4.1.
Let the configuration q = (q1, . . . ,qN ) be a contraction of the configura-

tion p = (p1, . . . ,pN ) in Sd. By Corollary 11.4.1, there is an analytic motion
p(t), in S2d+1 for 0 ≤ t ≤ 1, where p(0) = p, and p(1) = q, and all the
pairwise distances between the points of p(t) decrease in t.

Without loss of generality we may assume that Xd(p(0)) := X(p(0)) is a
convex spherical d-polytope in Sd. Since p(t) is analytic in t, the intersection
X2d+1 (p(t)) of the (closed) hemispheres centered at the points of the config-
uration p(t) in S2d+1 is a convex spherical (2d+ 1)-polytope with a constant
combinatorial structure, except for a finite number of points in the interval
[0, 1]. By Corollary 11.4.3, Svol2d+1

(
X2d+1(p(t))

)
is monotone increasing in

t.
Recall that Xd(p) and Xd(q) are the intersections of the (closed) hemi-

spheres centered at the points of p and q in Sd. From the definition of the
spherical join ∗,

Xd(p) ∗ Sd = X2d+1(p) = X2d+1(p(0))

Xd(q) ∗ Sd = X2d+1(q) = X2d+1(p(1)).

Hence, by Lemma 11.4.4,

Svold
(
Xd(p)

)
=

κd
κ2d+1

Svol2d+1

(
X2d+1(p(0))

)
≤ κd
κ2d+1

Svol2d+1

(
X2d+1(p(1))

)
= Svold

(
Xd(q)

)
.

This finishes the proof of Theorem 5.4.1.
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11.5 Proof of Theorem 5.4.6

11.5.1 Monotonicity of the volume of hyperbolic simplices

Case 11.5.1 P and Q are simplices.

Let Xn be the spherical, Euclidean, or hyperbolic space Sn, En, or Hn of
constant curvature +1, 0, −1, and of dimension n ≥ 2. By an n-dimensional
simplex∆n in Xn we mean a compact subset with nonempty interior which can
be expressed as an intersection of n+1 closed halfspaces. (In the case of spher-
ical space we require that ∆n lies on an open hemisphere.) Let F0, F1, . . . , Fn
be the (n− 1)-dimensional faces of the simplex ∆n. Each (n− 2)-dimensional
face can be described uniquely as an intersection Fij = Fi ∩ Fj . We identify
the collection of all inner dihedral angles of the simplex ∆n with the symmet-
ric matrix α = [αij ], where αij is the inner dihedral angle between Fi and Fj
for i 6= j, and where the diagonal entries αii are set equal to π by definition.
Then the Gram matrix G(∆n) = [gij(∆

n)] of the simplex ∆n ⊂ Xn is the
(n+ 1)× (n+ 1) symmetric matrix defined by gij (∆n) = − cosαij . Note that
all diagonal entries gii(∆

n) are equal to one. Finally, let

Gn+ := {G(∆n) | ∆n is an n-dimensional simplex is Sn} ,
Gn0 := {G(∆n) | ∆n is an n-dimensional simplex in En} ,
Gn− := {G(∆n) | ∆n is an n-dimensional simplex in Hn} , and

Gn := Gn+ ∪Gn0 ∪Gn−.

The following lemma summarizes some of the major properties of the sets Gn+,
Gn0 , G

n
−, and Gn that have been studied on several occasions including the

papers of Coxeter [110], Milnor [197], and Vinberg [244].

Lemma 11.5.2
(1) The determinant of G(∆n) is either positive or zero or negative depending
on whether the simplex ∆n is spherical or Euclidean or hyperbolic.

(2) Gn is an open convex set in RN with N = n(n+1)
2 . (Note that the affine

space consisting of all symmetric unidiagonal (n+ 1) × (n+ 1) matrices has

dimension N = n(n+1)
2 .)

(3) Gn0 is an (N − 1)-dimensional topological cell that cuts Gn into two open
subcells Gn+ and Gn−.
(4) Gn+ (resp., Gn+ ∪Gn0 ) is an open convex (resp., closed convex) set in RN .

We need the following property for our proof of Theorem 5.4.6 that seems
to be a new property of Gn+ (resp., Gn+ ∪Gn0 ) not yet mentioned in the liter-
ature. It is useful to introduce the notations

RN<0 := {(x1, x2, . . . , xN ) | xi < 0 for all 1 ≤ i ≤ N} ,

and
RN≤0 := {(x1, x2, . . . , xN ) | xi ≤ 0 for all 1 ≤ i ≤ N} .
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Lemma 11.5.3 Gn+∩RN<0 (resp.,
(
Gn+ ∪Gn0

)
∩RN≤0) is a convex corner; that

is, if g = (g1, g2, . . . , gN ) ∈ Gn+ ∩ RN<0 (resp., g ∈
(
Gn+ ∪Gn0

)
∩ RN≤0), then

for any g′ = (g′1, g
′
2, . . . , g

′
N ) with g1 ≤ g′1 < 0, . . . , gN ≤ g′N < 0 (resp.,

g1 ≤ g′1 ≤ 0, . . . , gN ≤ g′N ≤ 0) we have that g′ ∈ Gn+ ∩ RN<0 (resp. g′ ∈(
Gn+ ∪Gn0

)
∩ RN≤0).

Proof: Due to Lemma 11.5.2 it is sufficient to check the claim of Lemma 11.5.3
for the set Gn+ ∩ RN<0 only. Let g = (g1, g2, . . . , gN ) ∈ Gn+ ∩ RN<0. Then it is
sufficient to show that for any ε1, ε2, . . . , εN with g1 ≤ ε1 < 0, g2 ≤ ε2 <
0, . . . , gN ≤ εN < 0 we have that

(*)

g1 := (ε1, g2, . . . , gN ) ∈ Gn+ ∩ RN<0,
g2 := (g1, ε2, g3, . . . , gN ) ∈ Gn+ ∩ RN<0,
...
gN := (g1, . . . , gN−1, εN ) ∈ Gn+ ∩ RN<0.

Namely, it is easy to see that (*) and the convexity of Gn+ ∩ RN<0 imply that
Gn+ ∩ RN<0 is indeed a convex corner. Although it is not needed here, for the
sake of completeness we note that the origin of RN is in fact, an interior point
of Gn+.

Let ∆n be the n-dimensional simplex of Sn whose Gram matrix G(∆n) =
[gij (∆n)] corresponds to g = (g1, g2, . . . , gN ); that is,

(g1, g2, . . . , gN ) = (− cosα01, . . . ,− cosα0n,− cosα12, . . . ,− cosα(n−1)n).

As g ∈ Gn+ ∩ RN<0 we have that 0 < α01 < π
2 , 0 < α02 < π

2 , . . . , 0 <
α0n < π

2 , 0 < α12 < π
2 , . . . , 0 < α(n−1)n < π

2 . In order to show that
g1 = (ε1, g2, . . . gN ) ∈ Gn+ ∩ RN<0 we have to show the existence of an n-
dimensional simplex ∆n

1 of Sn with dihedral angles

arccos(−ε1), α02, . . . , α0n, α12, . . . , α(n−1)n.

(As the task left for the remaining parts of (*) is the same we do not give
details of that here.) We show the existence of ∆n

1 via polarity. Let ∗∆n =
{x ∈ Sn | x · y ≤ 0 for all y ∈ ∆n} be the spherical polar of ∆n, where x · y
denotes the standard inner product of the unit vectors x and y. As is well
known, ∗∆n is an n-dimensional simplex of Sn with edgelength π − α01, π −
α02, . . . , π−α0n, π−α12, . . . , π−α(n−1)n each being larger than π

2 . Let F be
the (n−2)-dimensional face of ∗∆n disjoint from the edge of length π−α01 of
∗∆n. Let v0 and v1 be the endpoints of the edge of length π−α01 of ∗∆n. By
assumption π

2 < π − arccos(−ε1) ≤ π − α01 < π. Now, rotate v1 towards v0

about the (n− 2)-dimensional greatsphere Sn−2 of F in Sn until the rotated
image v̄1 of v1 becomes a point of the (n−1)-dimensional greatsphere Sn−1 of
the facet of ∗∆n disjoint from v1. Obviously, the above rotation about Sn−2
decreases the (spherical) distance v0v1 in a continuous way. We claim via
continuity that there is a rotated image say, v01 of v1 such that the spherical
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distance v0v01 is equal to π−arccos(−ε1). Namely, the n+1 points formed by
v0, v̄1 and the vertices of F all belong to an open hemisphere of Sn−1 with the
property that all pairwise spherical distances different from v0v̄1 are larger
than π

2 . (Here we assume that v0 and v̄1 are distinct because if they coincide,
then the existence of v01 is trivial.) But, then a theorem of Davenport and
Hajós [118] implies that v0v̄1 ≤ π

2 and so, the existence of v01 follows. Thus,
the spherical polar of the n-dimensional simplex of Sn spanned by v0,v01 and
F gives us ∆n

1 . This completes the proof of Lemma 11.5.3. �

Now, we are in a position to show that Gn− ∩ RN≤0 is monotone-path con-
nected.

Lemma 11.5.4 Gn−∩RN≤0 is monotone-path connected in the following strong

sense. If g = (g1, . . . , gN ) ∈ Gn−∩RN≤0 and g′ = (g′1, . . . , g
′
N ) ∈ Gn−∩RN≤0 with

g′1 ≤ g1, . . . , g′N ≤ gN , then λg′ + (1− λ)g ∈ Gn− ∩ RN≤0 for all 0 ≤ λ ≤ 1.

Proof: Lemma 11.5.2 implies that λg′+ (1−λ)g ∈ Gn for all 0 ≤ λ ≤ 1 and
so it is sufficient to prove that λg′+ (1−λ)g 6∈ Gn+ ∪Gn0 for all 0 ≤ λ ≤ 1. As
g 6∈ Gn+ ∪Gn0 and Gn+ ∪Gn0 is convex (Lemma 11.5.2) moreover

(
Gn+ ∪Gn0

)
∩

RN≤0 is a convex corner via Lemma 11.5.3, therefore there exists a supporting

hyperplane H in RN that touches Gn+∪Gn0 at some point h ∈ Gn0 ∩RN≤0 and is
disjoint from g and separates g from Gn+∪Gn0 . In fact, again using the convex
corner property of

(
Gn+ ∪Gn0

)
∩ RN≤0 we get that H separates h + RN≤0 from

Gn+ ∪ Gn0 and therefore H separates g + RN≤0 from Gn+ ∪ Gn0 as well. Finally,

notice that g′ ∈ g+RN≤0 and g+RN≤0 is disjoint from H and therefore g+RN≤0
is disjoint from Gn+ ∪Gn0 . This finishes the proof of Lemma 11.5.4. �

Now, we are ready to give a proof of the following volume monotonicity
property of hyperbolic simplices.

Theorem 11.5.5 Let P and Q be nonobtuse-angled n-dimensional hyperbolic
simplices. If each inner dihedral angle of Q is at least as large as the corre-
sponding inner dihedral angle of P, then the n-dimensional hyperbolic volume
of P is at least as large as that of Q.

Proof: By moving to the space of Gram matrices of n-dimensional hyperbolic
simplices and then applying Lemma 11.5.4 we get that there exists a smooth
one-parameter family P(t), 0 ≤ t ≤ 1 of nonobtuse-angled n-dimensional
hyperbolic simplices with the property that P(0) = P and P(1) = Q; more-
over, if α01(t), α02(t), . . . , α0n(t), α12(t), . . . , α(n−1)n(t) denote the inner dihe-
dral angles of P(t), then αij(t) is a monotone increasing function of t for all
0 ≤ i < j ≤ n. Now, Schläfli’s classical differential formula (see, e.g., [182])
yields that

d

dt
Hvoln (P(t)) =

−1

n− 1

∑
0≤i<j≤n

Hvoln−2 (Fij(t)) ·
d

dt
αij(t), (11.14)
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where Fij(t) denotes the (n − 2)-dimensional face of P(t) on which the di-
hedral angle αij(t) sits and Hvoln(·), Hvoln−2(·) refer to the corresponding
dimensional hyperbolic volume measures. Thus, as d

dtαij(t) ≥ 0, (11.14) im-

plies that d
dtHvoln (P(t)) ≤ 0 and so, indeed Hvoln (P(0)) ≥ Hvoln (P(1)),

finishing the proof of Theorem 11.5.5. �

11.5.2 From Andreev’s theorem to smooth one-parameter family
of hyperbolic polyhedra

Case 11.5.6 The combinatorial type of P and Q is different from that of a
tetrahedron.

First, recall the following classical theorem of Andreev [6].

Theorem 11.5.7 A nonobtuse-angled compact convex polyhedron of a given
simple combinatorial type, different from that of a tetrahedron and having
given inner dihedral angles exists in H3 if and only if the following conditions
are satisfied:
(1) if three faces meet at a vertex, then the sum of the inner dihedral angles
between them is larger than π;
(2) if three faces are pairwise adjacent but not concurrent, then the sum of
the inner dihedral angles between them is smaller than π;
(3) if four faces are cyclically adjacent, then at least one of the dihedral angles
between them is different from π

2 ;
(4) (for triangular prism only) one of the angles formed by the lateral faces
with the bases must be different from π

2 .

Second, observe that the Andreev theorem implies that the space of the
inner dihedral angles of nonobtuse-angled compact convex polyhedra of a
given simple combinatorial type different from that of a tetrahedron in H3 is
a convex set. As a result we get that if P and Q are given as in Theorem 5.4.6
and are different from a tetrahedron, then there exists a smooth one-parameter
family P(t), 0 ≤ t ≤ 1 of nonobtuse-angled compact convex polyhedra of
the same simple combinatorial type as of P and Q with the property that
P(0) = P and P(1) = Q; moreover, if αE(t) denotes the inner dihedral angle
of P(t) which sits over the edge corresponding to the edge E of P, then αE(t)
is a monotone increasing function of t for all edges E of P. Applying Schläfli’s
differential formula to the smooth one-parameter family P(t) we get that

d

dt
Hvol3 (P(t)) = −1

2

∑
E

Hlength (Et) ·
d

dt
αE(t), (11.15)

where Et denotes the edge of P(t) corresponding to the edge E of P and E
(resp., Et) runs over all edges of P (resp., P(t)). Hence, as d

dtαE(t) ≥ 0, (11.15)

implies that d
dtHvol3 (P(t)) ≤ 0 and so, indeed Hvol3 (P(0)) ≥ Hvol3 (P(1)),

completing the proof of Theorem 5.4.6.
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Selected Proofs on Ball-Polyhedra

12.1 Proof of Theorem 6.2.1

12.1.1 Finite sets that cannot be translated into the interior of a
convex body

We start with the following rather natural statement that can be proved easily
with the help of Helly’s theorem [85].

Lemma 12.1.1 Let F be a finite set of at least d+1 points and C be a convex
set in Ed, d ≥ 2. Then C has a translate that covers F if and only if every
d+ 1 points of F can be covered by a translate of C.

Proof: For each point p ∈ F let Cp denote the set of all translation vectors
in Ed with which one can translate C such that it contains p; that is, let
Cp := {t ∈ Ed | p ∈ t + C}. Now, it is easy to see that Cp is a convex set of
Ed for all p ∈ F moreover, F ⊂ t+C if and only if t ∈ ∩p∈FCp. Thus, Helly’s
theorem [85] applied to the convex sets {Cp | p ∈ F} implies that F ⊂ t + C
if and only if Cp1 ∩Cp2 ∩ · · · ∩Cpd+1

6= ∅ holds for any p1,p2, . . . ,pd+1 ∈ F,
i.e. if and only if any p1,p2, . . . ,pd+1 ∈ F can be covered by a translate of C,
finishing the proof of Lemma 12.1.1. �

Also the following statement plays a central role in our investigations. This

Lemma 12.1.2 Let F = {f1, f2, . . . , fn} be a finite set of points and C be a
convex body in Ed, d ≥ 2. Then F cannot be translated into the interior of
C if and only if the following two conditions hold. There are closed support-
ing halfspaces H+

i1
, H+

i2
, . . . ,H+

is
of C assigned to some points of F say, to

fi1 , fi2 , . . . , fis with 1 ≤ i1 < i2 < · · · < is ≤ n and a translation vector t ∈ Ed
such that
(i) the translated point t + fij belongs to the closed halfspace H−ij for all 1 ≤
j ≤ s, where the interior of H−ij is disjoint from the interior of H+

ij
and its

K. Bezdek, Classical Topics in Discrete Geometry, CMS Books in Mathematics, 135

is a generalization of the analogue 2-dimensional statement proved in [42].
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boundary hyperplane is identical to the boundary hyperplane of H+
ij

(which is

in fact, a supporting hyperplane of C);
(ii) the intersection ∩sj=1H

+
ij

is nearly bounded, meaning that it lies between

two parallel hyperplanes of Ed.

Proof: First, we assume that there are closed supporting halfspaces H+
i1
,

H+
i2
, . . . ,H+

is
of C assigned to some points of F say, to fi1 , fi2 , . . . , fis with

1 ≤ i1 < i2 < · · · < is ≤ n and a translation vector t ∈ Ed satisfying (i) as
well as (ii). Based on this our goal is to show that F cannot be translated into
the interior of C or equivalently that F cannot be covered by a translate of the
interior intC of C. We prove this in an indirect way: we assume that F can be
covered by a translate of intC and look for a contradiction. Indeed, if F can
be covered by a translate of intC, then t + F can be covered by a translate of
intC; that is, there is a translation vector t∗ ∈ Ed such that t+F ⊂ t∗+intC.
In particular, if F∗ := {fi1 , fi2 , . . . , fis}, then t + F∗ ⊂ t∗ + intC. Clearly, this
implies that ∩sj=1H

+
ij
⊂ int

(
∩sj=1 t∗ +H+

ij

)
, a contradiction to (ii).

Second, we assume that F cannot be translated into the interior of C
and look for closed supporting halfspaces H+

i1
, H+

i2
, . . . ,H+

is
of C assigned to

some points of F say, to fi1 , fi2 , . . . , fis with 1 ≤ i1 < i2 < · · · < is ≤ n
and a translation vector t ∈ Ed satisfying (i) as well as (ii). In order to
simplify matters let us start to investigate the case when C is a smooth
convex body in Ed, that is, when through each boundary point of C there
exists precisely one supporting hyperplane of C. (Also, without loss of gen-
erality we assume that the origin o of Ed is an interior point of C.) As F
cannot be translated into intC therefore Lemma 12.1.1 implies that there
are m ≤ d + 1 points of F say, Fm := {fj1 , fj2 , . . . , fjm} with 1 ≤ j1 <
j2 < · · · < jm ≤ n such that Fm cannot be translated into intC. Now, let
λ0 := inf{λ > 0 | λFm cannot be translated into intC}. Clearly, λ0 ≤ 1
and λ0Fm cannot be translated into intC; moreover, as λ0 = sup{δ >
0 | δFm can be translated into C}, therefore there exists a translation vec-
tor t ∈ Ed such that t + λ0Fm ⊂ C. Let t + λ0fi1 , t + λ0fi2 , . . . , t + λ0fis
with 1 ≤ i1 < i2 < · · · < is ≤ n, 2 ≤ s ≤ m ≤ d + 1 denote the points of
t +λ0Fm that are boundary points of C and let H+

i1
, H+

i2
, . . . ,H+

is
be the cor-

responding closed supporting halfspaces of C. We claim that H+ := ∩sk=1H
+
ik

is nearly bounded. Indeed, if H+ were not nearly bounded, then there would
be a translation vector t′ ∈ Ed with H+ ⊂ t′ + intH+. As C is a smooth
convex body therefore this would imply the existence of a sufficiently small
µ > 0 with the property that {t +λ0fi1 , t +λ0fi2 , . . . , t +λ0fis} ⊂ µt′+ intC,
a contradiction. Thus, as o ∈ intC therefore the points fi1 , fi2 , . . . , fis and
the closed supporting halfspaces H+

i1
, H+

i2
, . . . ,H+

is
and the translation vector

t ∈ Ed satisfy (i) as well as (ii). We are left with the case when C is not
necessarily a smooth convex body in Ed. In this case let CN , N = 1, 2, . . . be
a sequence of smooth convex bodies lying in intC with limN→+∞CN = C. As
F cannot be translated into the interior of CN for all N = 1, 2, . . . therefore
applying the method described above to each CN and taking proper subse-
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quences if necessary we end up with some points of F say, fi1 , fi2 , . . . , fis with
1 ≤ i1 < i2 < · · · < is ≤ n and with s convergent sequences of closed sup-
porting halfspaces H+

N,i1
, H+

N,i2
, . . . ,H+

N,is
of CN and a convergent sequence of

translation vectors tN that satisfy (i) and (ii) for each N . By taking the limits
H+
i1

:= limN→+∞H+
N,i1

, H+
i2

:= limN→+∞H+
N,i2

, . . . ,H+
is

:= limN→+∞H+
N,is

,
and t := limN→+∞ tN we get the desired nearly bounded family of closed
supporting halfspaces of C and the translation vector t ∈ Ed satisfying (i) as
well as (ii). This completes the proof of Lemma 12.1.2. �

12.1.2 From generalized billiard trajectories to shortest ones

Lemma 12.1.3 Let C be a convex body in Ed, d ≥ 2. If P is a generalized
billiard trajectory in C, then P cannot be translated into the interior of C.

Proof: Let p1,p2, . . . ,pn be the vertices of P and let v1,v2, . . . ,vn be the
points of the unit sphere Sd−1 centered at the origin o in Ed whose position
vectors are parallel to the inner angle bisectors (halflines) of P at the ver-
tices p1,p2, . . . ,pn of P. Moreover, let H+

1 , H
+
2 , . . . ,H

+
n denote the closed

supporting halfspaces of C whose boundary hyperplanes are perpendicular
to the inner angle bisectors of P at the vertices p1,p2, . . . ,pn. Based on
Lemma 12.1.2 in order to prove that P cannot be translated into the interior
of C it is sufficient to show that ∩ni=1H

+
i is nearly bounded or equivalently

that o ∈ conv({v1,v2, . . . ,vn}), where conv(.) denotes the convex hull of the
corresponding set in Ed. It is easy to see that o ∈ conv({v1,v2, . . . ,vn})
if and only if for any hyperplane H of Ed passing through o and for any
of the two closed halfspaces bounded by H say, for H+, we have that
H+ ∩ conv({v1,v2, . . . ,vn}) 6= ∅. Indeed, for a given H+ let t ∈ Ed be
chosen so that t + H+ is a supporting halfspace of conv({p1,p2, . . . ,pn}).
Clearly, at least one vertex of P say, pi0 must belong to the boundary of
t + H+ and therefore vi0 ∈ H+ ∩ conv({v1,v2, . . . ,vn}), finishing the proof
of Lemma 12.1.3. �

For the purpose of the following statement it seems natural to introduce
generalized (d + 1)-gons in Ed as closed polygonal paths (possibly with self-
intersections) having at most d+ 1 sides.

Theorem 12.1.4 Let C be a convex body in Ed, d ≥ 2 and let Fd+1(C) denote
the family of all generalized (d+1)-gons of Ed that cannot be translated into the
interior of C. Then Fd+1(C) possesses a minimal length member; moreover,
the shortest perimeter members of Fd+1(C) are identical (up to translations)
with the shortest generalized billiard trajectories of C.

Proof: If P is an arbitrary generalized billiard trajectory of the convex body
C in Ed with vertices p1,p2, . . . ,pn, then according to Lemma 12.1.3 P cannot
be translated into the interior of C. Thus, by Lemma 12.1.1 P possesses at
most d + 1 vertices say, pi1 ,pi2 , . . . ,pid+1

with 1 ≤ i1 ≤ i2 ≤ · · · ≤ id+1 ≤ n
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such that pi1 ,pi2 , . . . ,pid+1
cannot be translated into the interior of C. This

implies that by connecting the consecutive points of pi1 ,pi2 , . . . ,pid+1
by

line segments according to their cyclic ordering the generalized (d + 1)-gon
Pd+1 obtained, has length l(Pd+1) at most as large as the length l(P) of
P; moreover, Pd+1 cannot be covered by a translate of intC (i.e., Pd+1 ∈
Fd+1(C)). Now, by looking at only those members of Fd+1(C) that lie in
a d-dimensional ball of sufficiently large radius in Ed we get via a standard
compactness argument and Lemma 12.1.2 that Fd+1(C) possesses a member
of minimal length say, ∆d+1(C). As the inequalities l(∆d+1(C)) ≤ l(Pd+1) ≤
l(P) hold for any generalized billiard trajectory P of C, therefore in order to
finish our proof it is sufficient to show that ∆d+1(C) is a generalized billiard
trajectory of C. Indeed, as ∆d+1(C) ∈ Fd+1(C) therefore ∆d+1(C) cannot
be translated into intC. Thus, the minimality of ∆d+1(C) and Lemma 12.1.2
imply that if q1,q2, . . . ,qm denote the vertices of ∆d+1(C) with m ≤ d +
1, then there are closed supporting halfspaces H+

1 , H
+
2 , . . . ,H

+
m of C whose

boundary hyperplanes H1, H2, . . . ,Hm pass through the points q1,q2, . . . ,qm
(each being a boundary point of C) and have the property that ∩mi=1H

+
i is

nearly bounded in Ed. If the inner angle bisector at a vertex of ∆d+1(C) say,
at qi were not perpendicular to Hi, then it is easy to see via Lemma 12.1.2
that one could slightly move qi along Hi to a new position q′i (which is
typically an exterior point of C on Hi) such that the new generalized (d+ 1)-
gon ∆′d+1(C) ∈ Fd+1(C) would have a shorter length, a contradiction. This
completes the proof of Lemma 12.1.4. �

Finally, notice that Theorem 6.2.1 follows from Theorem 12.1.4 in a
straightforward way.

12.2 Proofs of Theorems 6.6.1, 6.6.3, and 6.6.4

12.2.1 Strict separation by spheres of radii at most one

For the proof of Theorem 6.6.1 we need the following weaker version of it due
to Houle [169] as well as the following lemma proved in [69].

Theorem 12.2.1 Let A,B ⊂ Ed be finite sets. Then A and B can be strictly
separated by a sphere Sd−1(c, r) such that A ⊂ Bd(c, r) if and only if for every
T ⊂ A ∪B with cardT ≤ d+ 2, T ∩A and T ∩B can be strictly separated by
a sphere Sd−1(cT , rT ) such that T ∩A ⊂ Bd(cT , rT ).

Lemma 12.2.2 Let A,B ⊂ Ed be finite sets and suppose that Sd−1(o, 1) is
the smallest sphere that separates A from B such that A ⊂ Bd[o, 1]. Then there
is a set T ⊂ A ∪ B with cardT ≤ d + 1 such that Sd−1(o, 1) is the smallest
sphere Sd−1(c, r) that separates T∩A from T∩B and satisfies T∩A ⊂ Bd[c, r].

We prove the “if” part of Theorem 6.6.1; the opposite direction is trivial.
Theorem 12.2.1 guarantees the existence of the smallest sphere Sd−1(c′, r′)
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that separates A and B such that A ⊂ Bd[c′, r′]. According to Lemma 12.2.2,
there is a set T ⊂ A∪B with cardT ≤ d+1 such that Sd−1(c′, r′) is the smallest
sphere that separates T ∩A from T ∩B and whose convex hull contains T ∩A.
By the assumption, we have r′ < rT ≤ 1. Note that Theorem 12.2.1 guarantees
the existence of a sphere Sd−1(c∗, r∗) that strictly separates A from B and
satisfies A ⊂ Bd(c∗, r∗). Because r′ < 1, there is a sphere Sd−1(c, r) with r ≤ 1
such that Bd[c′, r′] ∩ Bd(c∗, r∗) ⊂ Bd(c, r) ⊂ Ed \

(
Bd(c′, r′) ∪ Bd[c∗, r∗]

)
.

This sphere clearly satisfies the conditions in Theorem 6.6.1 and so, the proof
of Theorem 6.6.1 is complete.

12.2.2 Characterizing spindle convex sets

Our proof of Theorem 6.6.3 is based on the following statement.

Lemma 12.2.3 Let a spindle convex set C ⊂ Ed be supported by the hyper-
plane H in Ed at x ∈ bdC. Then the closed unit ball supported by H at x and
lying in the same side as C contains C.

Proof: Let Bd[c, 1] be the closed unit ball that is supported by H at x and
is in the same closed half-space bounded by H as C. We show that Bd[c, 1]
is the desired unit ball.

Assume that C is not contained in Bd[c, 1]. So, there is a point y ∈ C, y /∈
Bd[c, 1]. Then, by taking the intersection of the configuration with the plane
that contains x,y, and c, we see that there is a shorter unit circular arc
connecting x and y that does not intersect Bd(c, 1). Hence, H cannot be a
supporting hyperplane of C at x, a contradiction. �

Indeed, it is easy to see that Lemma 12.2.3 implies Theorem 6.6.3 in a
rather straightforward way.

12.2.3 Separating spindle convex sets

Finally, we prove Theorem 6.6.4 as follows. Since C and D are spindle convex,
they are convex bounded sets with disjoint relative interiors. So, their closures
are convex compact sets with disjoint relative interiors. Hence, they can be
separated by a hyperplane H that supports C at a point, say x. The closed
unit ball Bd[c, 1] of Lemma 12.2.3 satisfies the conditions of the first statement
of Theorem 6.6.4. For the second statement of Theorem 6.6.4, we assume that
C and D have disjoint closures, so Bd[c, 1] is disjoint from the closure of D
and remains so even after a sufficiently small translation. Furthermore, C is a
spindle convex set that is different from a unit ball, so c /∈ conv(C∩Sd−1(c, 1)).
Hence, there is a sufficiently small translation of Bd[c, 1] that satisfies the
second statement of Theorem 6.6.4, finishing the proof of Theorem 6.6.4.
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12.3 Proof of Theorem 6.7.1

12.3.1 On the boundary of spindle convex hulls in terms of
supporting spheres

Let Sk(c, r) ⊂ Ed be a k-dimensional sphere centered at c and having radius r
with 0 ≤ k ≤ d−1. Recall the following strong version of spherical convexity. A
set F ⊂ Sk(c, r) is spherically convex if it is contained in an open hemisphere
of Sk(c, r) and for every x,y ∈ F the shorter great-circular arc of Sk(c, r)
connecting x with y is in F . The spherical convex hull of a set X ⊂ Sk(c, r)
is defined in the natural way and it exists if and only if X is in an open
hemisphere of Sk(c, r). We denote it by Sconv(X,Sk(c, r)). Carathéodory’s
theorem can be stated for the sphere in the following way. If X ⊂ Sk(c, r) is a
set in an open hemisphere of Sk(c, r), then Sconv(X,Sk(c, r)) is the union of
spherical simplices with vertices in X. The proof of this spherical equivalent
of the original Carathéodory’s theorem uses the central projection of the open
hemisphere of Sk(c, r) to Ek.

Recall that the circumradius cr(X) of a bounded set X ⊂ Ed is defined as
the radius of the unique smallest d-dimensional closed ball that contains X
(also known as the circumball of X). Now, it is easy to see that if C ⊂ Ed is a
spindle convex set such that C ⊂ Bd[q, 1] and cr(C) < 1, then C ∩Sd−1(q, 1)
is spherically convex on Sd−1(q, 1).

The following lemma describes the surface of a spindle convex hull.

Lemma 12.3.1 Let X ⊂ Ed be a closed set such that cr(X) < 1 and let
Bd[q, 1] be a closed unit ball containing X. Then
(i) X ∩ Sd−1(q, 1) is contained in an open hemisphere of Sd−1(q, 1),
(ii) convs(X) ∩ Sd−1(q, 1) = Sconv(X ∩ Sd−1(q, 1), Sd−1(q, 1)).

Proof: Because cr(X) < 1, we obtain that X is contained in the intersection
of two distinct closed unit balls which proves (i). Note that by (i), the right-
hand side Z := Sconv(X ∩Sd−1(q, 1), Sd−1(q, 1)) of (ii) exists. We show that
the set on the left-hand side is contained in Z; the other containment follows
from the discussion right before Lemma 12.3.1.

Suppose that y ∈ convs(X) ∩ Sd−1(q, 1) is not contained in Z. We show
that there is a hyperplane H through q that strictly separates Z from y.
Consider an open hemisphere of Sd−1(q, 1) that contains Z, call the spherical
center of this hemisphere p. If y is an exterior point of the hemisphere, H
exists. If y is on the boundary of the hemisphere, then, by moving the hemi-
sphere a little, we find another open hemisphere that contains Z, but with
respect to which y is an exterior point.

Assume that y is contained in the open hemisphere. Let L be a hyperplane
tangent to Sd−1(q, 1) at p. We project Z and y centrally from q onto L and,
by the separation theorem of convex sets in L, we obtain a (d−2)-dimensional
affine subspace T of L that strictly separates the image of Z from the image
of y. Then H := aff(T ∪ {q}) is the desired hyperplane.
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Hence, y is contained in one open hemisphere of Sd−1(q, 1) and Z is in the
other. Let v be the unit normal vector of H pointing towards the hemisphere
of Sd−1(q, 1) that contains Z. Since X is closed, its distance from the closed
hemisphere containing y is positive. Hence, we can move q a little in the
direction v to obtain the point q′ such that X ⊂ Bd[q, 1] ∩ Bd[q′, 1] and
y /∈ Bd[q′, 1]. As Bd[q′, 1] separates X from y, the latter is not in convs(X),
a contradiction. �

12.3.2 From the spherical Carathéodory theorem to an analogue
for spindle convex hulls

Now, we prove Theorem 6.7.1.
Assume that cr(X) > 1. Recall that the intersection of the d-dimensional

closed unit balls of Ed centered at the points of X is denoted by B[X]. Then
B[X] = ∅; hence, by Helly’s theorem, there is a set {x0,x1, . . . ,xd} ⊂ X such
that B[{x0,x1, . . . ,xd}] = ∅. It follows that convs({x0,x1, . . . ,xd}) = Ed.
Thus, (i) and (ii) follow.

Now, we prove (i) for cr(X) < 1. By the spherical Carathéodory theorem,
Lemma 12.2.3, and Lemma 12.3.1 we obtain that

y ∈ Sconv({x1,x2, . . . ,xd}, Sd−1(q, 1))

for some {x1,x2, . . . ,xd} ⊂ X and some q ∈ Ed such that X ⊂ Bd[q, 1].
Hence, y ∈ convs{x1,x2, . . . ,xd}.

We prove (i) for cr(X) = 1 by a limit argument as follows. Without loss
of generality, we may assume that X ⊂ Bd[o, 1]. Let Xk := (1 − 1

k )X for
any k ∈ Z+. Let yk be the point of bd

(
convs(X

k)
)

closest to y. Thus,
lim
k→∞

yk = y. Clearly, cr(Xk) < 1, hence there is a set {xk1 ,xk2 , . . . ,xkd} ⊂ Xk

such that yk ∈ convs{xk1 ,xk2 , . . . ,xkd}. By compactness, there is a sequence

0 < i1 < i2 < . . . of indices such that all the d sequences {xij1 : j ∈
Z+}, {xij2 : j ∈ Z+}, . . . , {xijd : j ∈ Z+} converge. Let their respective limits
be x1,x2, . . . ,xd. Since X is closed, these d points are contained in X. Clearly,
y ∈ convs{x1,x2, . . . ,xd}.

To prove (ii) for cr(X) ≤ 1, suppose that y ∈ int (convsX). Then
let x0 ∈ X ∩ bd (convsX) be arbitrary and let y1 be the intersection of
bd (convsX) with the ray starting from x0 and passing through y. Now, by
(i), y1 ∈ convs{x1,x2, . . . ,xd} for some {x1,x2, . . . ,xd} ⊂ X. Then clearly
y ∈ int (convs{x0,x1, . . . ,xd}).
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12.4 Proof of Theorem 6.8.3

12.4.1 On the boundary of spindle convex hulls in terms of normal
images

Let X ⊂ Ed, d ≥ 3 be a compact set of Euclidean diameter diam(X) ≤ 1.
Recall that B[X] ⊂ Ed denotes the convex body which is the intersection
of the closed unit balls of Ed centered at the points of X. For the following
investigations it is more proper to use the normal images than the Gauss
images of the boundary points of B[X] defined as follows. The normal image
NB[X](b) of the boundary point b ∈ bd (B[X]) of B[X] is

NB[X](b) := −ν({b})

In other words, NB[X](b) ⊂ Sd−1 is the set of inward unit normal vectors of
all hyperplanes that support B[X] at b. Clearly, NB[X](b) is a closed spheri-

cally convex subset of Sd−1. (Here we refer to the strong version of spherical
convexity introduced for Lemma 12.3.1.)

We need to introduce the following notation as follows. For a set A ⊂ Sd−1
let A+ = {x ∈ Sd−1 | 〈x,y〉 > 0 for all y ∈ A}. (Here ‖ · ‖ and 〈·, ·〉 refer to
the canonical Euclidean norm and the canonical inner product on Ed.)

As is well known, illumination can be reformulated as follows: The direction
u ∈ Sd−1 illuminates the boundary point b of the convex body B[X] if and only
if u ∈ NB[X](b)+. (Because the proof of this claim is straightforward we leave
it to the reader. For more insight on illumination we refer the interested reader
to [47] and the relevant references listed there.)

Finally, we need to recall some further notations as well. Let a and b be
two points in Ed. If ‖a−b‖ < 2, then the (closed) spindle of a and b, denoted
by [a,b]s, is defined as the union of circular arcs with endpoints a and b that
are of radii at least one and are shorter than a semicircle. If ‖a−b‖ = 2, then
[a,b]s := Bd[a+b

2 , 1], where Bd[p, r] denotes the (closed) d-dimensional ball
centered at p with radius r in Ed. If ‖a − b‖ > 2, then we define [a,b]s to
be Ed. Next, a set C ⊂ Ed is called spindle convex if, for any pair of points
a,b ∈ C, we have that [a,b]s ⊂ C. Finally, let X be a set in Ed. Then the
spindle convex hull of X is the set defined by convsX :=

⋂
{C ⊂ Ed|X ⊂

C and C is spindle convex in Ed}.
Now, we are ready to state Lemma 12.4.1, which is the core part of this

section and whose proof is based on Lemma 12.3.1.

Lemma 12.4.1 Let X ⊂ Ed, d ≥ 3 be a compact set of Euclidean diameter
diam(X) ≤ 1. Then the boundary of the spindle convex hull of X can be
generated as follows:

bd (convs(X)) =
⋃

b∈bd(B[X])

{b + y | y ∈ NB[X](b)}.
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Proof: Let b ∈ bd (B[X]). Then (ii) of Lemma 12.3.1 implies that

b +NB[X](b) = Sconv(X ∩ Sd−1(b, 1), Sd−1(b, 1)) = convs(X) ∩ Sd−1(b, 1).

This together with the fact that⋃
b∈bd(B[X])

NB[X](b) = Sd−1

finishes the proof of Lemma 12.4.1. �

12.4.2 On the Euclidean diameter of spindle convex hulls and
normal images

Lemma 12.4.2
diam (convs(X)) ≤ 1.

Proof: By assumption diam(X) ≤ 1. Recall that Meissner [196] has called
a compact set M ⊂ Ed complete if diam(M ∪ {p}) > diam(M) for any p ∈
Ed \M . He has proved in [196] that any set of diameter 1 is contained in a
complete set of diameter 1. Moreover, he has shown in [196] that a compact set
of diameter 1 in Ed is complete if and only if it is of constant width 1. These
facts together with the easy observation that any convex body of constant
width 1 in Ed is in fact a spindle convex set, imply that X is contained in a
convex body of convex width 1 and any such convex body must necessarily
contain convs(X). Thus, indeed diam (convs(X)) ≤ 1. �

For an arbitrary nonempty subset A of Sd−1 let

UB[X](A) =

 ⋃
NB[X](b)∩A6=∅

NB[X](b)

 ⊂ Sd−1.

Lemma 12.4.3 Let ∅ 6= A ⊂ Sd−1 be given. Then

diam
(
UB[X](A)

)
≤ 1 + diam(A).

Proof: Let y1 ∈ NB[X](b1) and y2 ∈ NB[X](b2) be two arbitrary points
of UB[X](A) with b1,b2 ∈ bd (B[X]). We need to show that ‖y1 − y2‖ ≤
1 + diam(A).

By Lemma 12.4.1 and by Lemma 12.4.2 we get that

‖(y1 − y2) + (b1 − b2)‖ = ‖(b1 + y1)− (b2 + y2)‖ ≤ 1.

Thus, the triangle inequality yields that

‖(y1 − y2)‖ ≤ 1 + ‖(b2 − b1)‖.
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This means that in order to finish the proof of Lemma 12.4.3 it is sufficient to
show that ‖(b2 − b1)‖ ≤ diam(A). This can be obtained easily from the as-
sumption thatNB[X](b1)∩A 6= ∅, NB[X](b2)∩A 6= ∅ and from the fact that the
sets b1+NB[X](b1) ⊂ bd (convs(X)) and b2+NB[X](b2) ⊂ bd (convs(X)) are

separated by the hyperplane H of Ed that bisects the line segment connecting
b1 to b2 and is perpendicular to it with b1+NB[X](b1) (resp., b2+NB[X](b2))
lying on the same side of H as b2 (resp., b1). �

12.4.3 An upper bound for the illumination number based on a
probabilistic approach

Let µd−1 denote the standard probability measure on Sd−1 and define

Vd−1(t) := inf{µd−1(A+) | A ⊂ Sd−1,diam(A) ≤ t},

where just as before A+ = {x ∈ Sd−1 | 〈x,y〉 > 0 for all y ∈ A}. Moreover, let
nd−1(ε) denote the minimum number of closed spherical caps of Sd−1 having
Euclidean diameter ε such that they cover Sd−1, where 0 < ε ≤ 2.

Lemma 12.4.4

I(B[X]) ≤ 1 +
ln (nd−1(ε))

− ln (1− Vd−1(1 + ε))

holds for all 0 < ε ≤
√

2− 1 and d ≥ 3.

Proof: Let ∅ 6= A ⊂ Sd−1 be given with Euclidean diameter diam(A) ≤
1+ε ≤

√
2. Then the spherical Jung theorem [119] implies that A is contained

in a closed spherical cap of Sd−1 having angular radius 0 < arcsin
√

d−1
d

< π
2 . Thus, A+ contains a spherical cap of Sd−1 having angular radius π

2 −
arcsin

√
d−1
d > 0 and of course, A+ is contained in an open hemisphere of

Sd−1. Hence, 0 < Vd−1(1 + ε) < 1
2 and so, the expression on the right in

Lemma 12.4.4 is well defined.
Let m be a positive integer satisfying

m >
ln (nd−1(ε))

− ln (1− Vd−1(1 + ε))
.

It is sufficient to show that m directions can illuminate B[X]. Let n = nd−1(ε)
and let A1, A2, . . . , An be closed spherical caps of Sd−1 having Euclidean diam-
eter ε and covering Sd−1. By Lemma 12.4.3 we have diam

(
UB[X](Ai)

)
≤ 1 + ε

for all 1 ≤ i ≤ n and therefore

µd−1
(
UB[X](Ai)

+
)
≥ Vd−1(1 + ε)

for all 1 ≤ i ≤ n. Let the directions u1,u2, . . . ,um be chosen at random,
uniformly and independently distributed on Sd−1. Thus, the probability that
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uj lies in UB[X](Ai)
+ is equal to µd−1

(
UB[X](Ai)

+
)
≥ Vd−1(1 + ε). Therefore

the probabilty that UB[X](Ai)
+ contains none of the points u1,u2, . . . ,um

is at most (1− Vd−1(1 + ε))
m

. Hence, the probability p that at least one
UB[X](Ai)

+ will contain none of the points u1,u2, . . . ,um satisfies

p ≤
n∑
i=1

(1− Vd−1(1 + ε))
m
< n (1− Vd−1(1 + ε))

ln(n)

− ln(1−Vd−1(1+ε)) = 1.

This shows that one can choosem directions say, {v1,v2, . . . ,vm} ⊂ Sd−1 such
that each set UB[X](Ai)

+, 1 ≤ i ≤ n contains at least one of them. We claim
that the directions v1,v2, . . . ,vm illuminate B[X]. Indeed, let b ∈ bd (B[X]).
We show that at least one of the directions v1,v2, . . . ,vm illuminates the
boundary point b. As the spherical caps A1, A2, . . . , An form a covering of
Sd−1 therefore there exists an Ai with Ai ∩NB[X](b) 6= ∅. Thus, by definition
NB[X](b) ⊂ UB[X](Ai) and therefore

NB[X](b)+ ⊃ UB[X](Ai)
+.

UB[X](Ai)
+ contains at least one of the directions v1,v2, . . . ,vm, say vk.

Hence,
vk ∈ UB[X](Ai)

+ ⊂ NB[X](b)+

and so, vk illuminates the boundary point b of B[X], finishing the proof of
Lemma 12.4.4. �

12.4.4 Schramm’s lower bound for the proper measure of polars of
sets of given diameter in spherical space

We need the following notation for the next statement. For u ∈ Sd−1 let
Ru : Ed → Ed denote the reflection about the line passing through the points
u and −u. Clearly, Ru(x) = 2〈x,u〉u− x for all x ∈ Ed.

Lemma 12.4.5 Let A ⊂ Sd−1 be a set of Euclidean diameter 0 < diam(A) ≤
t contained in the closed spherical cap C[u, arccos a] ⊂ Sd−1 centered at u ∈
Sd−1 having angular radius 0 < arccos a < π

2 with 0 < a < 1 and 0 < t ≤
2
√

1− a2. Then

A+ ∪Ru(A+) ⊃ C
(

u, arctan

(
2a

t

))
,

where C
(
u, arctan

(
2a
t

))
⊂ Sd−1 denotes the open spherical cap centered at u

having angular radius 0 < arctan( 2a
t ) < π

2 .

Proof: Suppose that x ∈ Sd−1 \(A+ ∪Ru(A+)) and let θ denote the angular
distance between x and u. Clearly 0 < θ ≤ π and

x = (cos θ)u + (sin θ)v
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with v ∈ Sd−1 being perpendicular to u. As x /∈ A+ (resp., x /∈ Ru(A+) i.e.
Ru(x) /∈ A+) therefore there exists a point y ∈ A (resp., z ∈ A) such that

0 ≥ 〈y,u〉 cos θ + 〈y,v〉 sin θ (resp., 0 ≥ 〈z,u〉 cos θ − 〈z,v〉 sin θ).

By adding together the last two inequalities and using the inequalities ‖y −
z‖ ≤ t and sin θ ≥ 0 we get that

0 ≥ 〈y + z,u〉 cos θ + 〈y − z,v〉 sin θ ≥ 〈y + z,u〉 cos θ − t sin θ.

As A ⊂ C[u, arccos a] ⊂ Sd−1 therefore if cos θ > 0, then the last inequality
implies that

tan θ ≥ 〈y + z,u〉
t

=
〈y,u〉+ 〈z,u〉

t
≥ 2a

t
.

Thus, θ ≥ arctan
(
2a
t

)
follows for all 0 < θ ≤ π, finishing the proof of

Lemma 12.4.5. �

Lemma 12.4.6

Vd−1(t) ≥ 1√
8πd

(
3

2
+

(
2− 1

d

)
t2 − 2

4−
(
2− 2

d

)
t2

)− d−1
2

for all 0 < t <
√

2d
d−1 and d ≥ 3.

Proof: Let ∅ 6= A ⊂ Sd−1 be given with (Euclidean) diameter diam(A) ≤ t.
The spherical Jung theorem [119] implies that A is contained in the closed

spherical cap C

[
u, arcsin

(√
d−1
2d t

)]
⊂ Sd−1 centered at the properly cho-

sen u ∈ Sd−1 having angular radius 0 < arcsin

(√
d−1
2d t

)
< π

2 , where by

assumption 0 < t <
√

2d
d−1 . Thus, Lemma 12.4.5 implies that

A+ ∪Ru(A+) ⊃ C
(

u, arctan

(
2a

t

))

with a =
√

1− d−1
2d t

2. Hence,

µd−1(A+) =
1

2

(
µd−1(A+) + µd−1(Ru(A+))

)
≥ 1

2
µd−1

(
A+ ∪Ru(A+)

)

≥ 1

2
µd−1

(
C

(
u, arctan

(
2a

t

)))
=

1

2

Svold−1
(
C
(
u, arctan

(
2a
t

)))
Svold−1(Sd−1)
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=
Svold−1

(
C
(
u, arctan

(
2a
t

)))
2dωd

=
Svold−1

(
C
[
u, arctan

(
2a
t

)])
2dωd

.

As sin
(
arctan( 2a

t )
)

=
(

1 + t2

4a2

)− 1
2

therefore

Svold−1

(
C

[
u, arctan

(
2a

t

)])

> vold−1

(
Bd−1

[
cos

(
arctan

(
2a

t

))
u,

(
1 +

t2

4a2

)− 1
2

])

=

(
1 +

t2

4a2

)− d−1
2

ωd−1 and so, µd−1(A+) ≥ ωd−1
2dωd

(
1 +

t2

4a2

)− d−1
2

.

Hence, using the well-known estimate (see also [226]) ωd−1

ωd
≥
√

d
2π we get

that

µd−1(A+) ≥ 1

2d

√
d

2π

(
1 +

t2

4a2

)− d−1
2

.

Finally, substituting a =
√

1− d−1
2d t

2 we are led to the following inequality

µd−1(A+) ≥ 1√
8πd

(
1 +

t2

4− 2(d−1)t2
d

)− d−1
2

=
1√
8πd

(
3

2
+

(
2− 1

d

)
t2 − 2

4−
(
2− 2

d

)
t2

)− d−1
2

.

This finishes the proof of Lemma 12.4.6. �

12.4.5 An upper bound for the number of sets of given diameter
that are needed to cover spherical space

Lemma 12.4.7

nd−1(ε) <

(
1 +

4

ε

)d
for all 0 < ε ≤ 2 and d ≥ 3.

Proof: Let {p1,p2, . . .pn} ⊂ Sd−1 be the largest family of points on Sd−1
with the property that ‖pi − pj‖ ≥ ε

2 for all 1 ≤ i < j ≤ n. Then clearly⋃n
i=1 Bd

[
pi,

ε
2

]
⊃ Sd−1 and therefore n ≥ nd−1(ε). As the balls Bd[pi,

ε
4 ], 1 ≤

i ≤ n form a packing in Bd[o, 1 + ε
4 ] therefore

n
( ε

4

)d
ωd <

(
1 +

ε

4

)d
ωd,
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implying that

nd−1(ε) ≤ n <
(
1 + ε

4

)d(
ε
4

)d =

(
1 +

4

ε

)d
.

This completes the proof of Lemma 12.4.7. �

Actually, using [122], one can replace the inequality of Lemma 12.4.7 by

the stronger inequality nd−1(ε) ≤ ( 1
2 + o(1))d ln d

(
2
ε

)d
. As this improves the

estimate of Theorem 6.8.3 only in a rather insignificant way, we do not in-
troduce it here.

12.4.6 The final upper bound for the illumination number

Now, we are ready for the proof of Theorem 6.8.3. As x < − ln(1− x) holds
for all 0 < x < 1, therefore by Lemma 12.4.4 we get that

I(B[X]) ≤ 1 +
ln (nd−1(ε))

− ln (1− Vd−1(1 + ε))
< 1 +

ln (nd−1(ε))

Vd−1(1 + ε)

holds for all 0 < ε ≤
√

2 − 1 and d ≥ 3. Now, let ε0 =
√

2d
2d−1 − 1. As

0 < ε0 <
√

2−1 holds for all d ≥ 3, therefore Lemma 12.4.6 and Lemma 12.4.7
together with the easy inequality ε0 >

4
16d−1 yield that

I(B[X]) < 1 +
√

8πd

(
3

2

) d−1
2

ln (nd−1(ε0))

< 1 +
√

8πd

(
3

2

) d−1
2

ln

((
1 +

4

ε0

)d)
< 1 +

√
8πd

(
3

2

) d−1
2

ln
(
(16d)d

)
= 1 + 4

√
π

3
d
√
d

(
3

2

) d
2

(ln 16 + ln d) < 4
(π

3

) 1
2

d
3
2 (3 + ln d)

(
3

2

) d
2

,

finishing the proof of Theorem 6.8.3.

12.5 Proof of Theorem 6.9.1

12.5.1 The CW-decomposition of the boundary of a standard
ball-polyhedron

Let K be a convex body in Ed and b ∈ bdK. Then recall that the Gauss
image of b with respect to K is the set of outward unit normal vectors of
hyperplanes that support K at b. Clearly, it is a spherically convex subset of
Sd−1(o, 1) and its dimension is defined in the natural way.



12.5 Proof of Theorem 6.9.1 149

Theorem 12.5.1 Let P be a standard ball-polyhedron. Then the faces of P
form the closed cells of a finite CW-decomposition of the boundary of P.

Proof: Let {Sd−1(p1, 1), . . . , Sd−1(pk, 1)} be the reduced family of gener-
ating spheres of P. The relative interior (resp., the relative boundary) of an
m-dimensional face F of P is defined as the set of those points of F that are
mapped to Bm(o, 1) (resp., Sm−1(o, 1)) under any homeomorphism between
F and Bm[o, 1]. For every b ∈ bdP define the following sphere

S(b) :=
⋂
{Sd−1(pi, 1) : pi ∈ Sd−1(b, 1), i ∈ {1, . . . , k}}.

Clearly, S(b) is a support sphere of P. Moreover, if S(b) is an m-dimensional
sphere, then the face F := S(b) ∩ P is also m-dimensional as b has an m-
dimensional neighbourhood in S(b) that is contained in F . This also shows
that b belongs to the relative interior of F . Hence, the union of the relative
interiors of the faces covers bdP.

We claim that every face F of P can be obtained in this way; that is, for
any relative interior point b of F we have F = S(b)∩P. Clearly, F ⊃ S(b)∩P,
as the support sphere of P that intersects P in F contains S(b). It is sufficient
to show that F is at most m-dimensional. This is so, because the Gauss image
of b with respect to P is at least (d −m − 1)-dimensional, since the Gauss
image of b with respect to

⋂
{Bd[pi, 1] : pi ∈ Sd−1(b, 1), i ∈ {1, . . . , k}} ⊃ P

is (d−m− 1)-dimensional.
The above argument also shows that no point b ∈ bdP belongs to the

relative interior of more than one face. Moreover, if b ∈ bdP is on the relative
boundary of the face F then S(b) is clearly of smaller dimension than F .
Hence, b belongs to the relative interior of a face of smaller dimension. This
concludes the proof of Theorem 12.5.1. �

12.5.2 On the number of generating balls of a standard
ball-polyhedron

Corollary 12.5.2 The generating balls of any standard ball-polyhedron P in
Ed consist of at least d+ 1 unit balls.

Proof: because the faces form a CW-decomposition of the boundary of
P, there is a vertex v. The Gauss image of v is (d − 1)-dimensional. So,
v belongs to at least d generating spheres from the family of generating
balls. We denote the centers of those spheres by x1,x2, . . . ,xd. Let H :=
aff{x1,x2, . . . ,xd}. Then B[{x1,x2, . . . ,xd}], which denotes the intersection
of the closed d-dimensional unit balls centered at the points x1,x2, . . . ,xd,
is symmetric about H. Let σH be the reflection of Ed about H. Then
S := Sd−1(x1, 1) ∩ Sd−1(x2, 1) ∩ · · · ∩ Sd−1(xd, 1) contains the points v and
σH(v), hence S is a sphere, not a point. Finally, as P is a standard ball-
polyhedron, therefore there is a unit-ball Bd[xd+1, 1] in the family of gener-
ating balls of P that does not contain S. �
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12.5.3 Basic properties of face lattices of standard ball-polyhedra

Corollary 12.5.3 Let Λ be the set containing all faces of a standard ball-
polyhedron P ⊂ Ed and the empty set and P itself. Then Λ is a finite bounded
lattice with respect to ordering by inclusion. The atoms of Λ are the vertices
of P and Λ is atomic: for every element F ∈ Λ with F 6= ∅ there is a vertex
x of P such that x ∈ F .

Proof: First, we show that the intersection of two faces F1 and F2 is another
face (or the empty set). The intersection of the two supporting spheres that
intersect P in F1 and F2 is another supporting sphere of P, say Sl(p, r).
Then Sl(p, r)∩P = F1∩F2 is a face of P. From this the existence of a unique
maximum common lower bound (i.e., an infimum) for F1 and F2 follows.

Moreover, by the finiteness of Λ, the existence of a unique infimum for any
two elements of Λ implies the existence of a unique minimum common upper
bound (i.e., a supremum) for any two elements of Λ, say C and D, as follows.
The supremum of C and D is the infimum of all the (finitely many) elements
of Λ that are above C and D.

Vertices of P are clearly atoms of Λ. Using Theorem 12.5.1 and induction
on the dimension of the face it is easy to show that every face is the supremum
of its vertices. �

Corollary 12.5.4 A standard ball-polyhedron P in Ed has k-dimensional
faces for every 0 ≤ k ≤ d− 1.

Proof: We use an inductive argument on k, where we go from k = d−1 down
to k = 0. Clearly, P has facets. A k-face F of P is homeomorphic to Bk[o, 1],
hence its relative boundary is homeomorphic to Sk−1(o, 1), if k > 0. Since the
(k − 1)-skeleton of P covers the relative boundary of F , P has (k − 1)-faces.
�

Corollary 12.5.5 Let d ≥ 3. Any standard ball-polyhedron P is the spindle
convex hull of its (d − 2)-dimensional faces. Furthermore, no standard ball-
polyhedron is the spindle convex hull of its (d− 3)-dimensional faces.

Proof: For the first statement, it is sufficient to show that the spindle convex
hull of the (d − 2)-faces contains the facets. Let p be a point on the facet,
F = P ∩ Sd−1(q, 1). Take any great circle C of Sd−1(q, 1) passing through
p. Since F is spherically convex on Sd−1(q, 1), C ∩ F is a unit circular arc of
length less than π. Let r, s ∈ Sd−1(q, 1) be the two endpoints of C ∩F . Then
r and s belong to the relative boundary of F . Hence, by Theorem 12.5.1, r
(resp., s) belongs to a (d− 2)-face. Clearly, p ∈ convs{r, s}.

The proof of the second statement goes as follows. By Corollary 12.5.4
we can choose a relative interior point p of a (d − 2)-dimensional face F of
P. Let q1 and q2 be the centers of the generating balls of P such that F :=
Sd−1(q1, 1)∩Sd−1(q2, 1)∩P. Clearly, p /∈ convs((B

d[q1, 1]∩Bd[q2, 1])\{p}) ⊃
convs(P\{p}). �
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Corollary 12.5.6 (Euler–Poincaré Formula) If P is an arbitrary standard
d-dimensional ball-polyhedron, then

1 + (−1)d+1 =
d−1∑
i=0

(−1)ifi(P),

where fi(P) denotes the number of i-dimensional faces of P.

Proof: It follows from Theorem 12.5.1 and the fact that a ball-polyhedron
in Ed is a convex body, hence its boundary is homeomorphic to Sd−1(o, 1). �
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134. L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum, Springer
Verlag, Berlin-Göttingen-Heidelberg, 1953.
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143. Z. Füredi and J.-H. Kang, Covering the n-space by convex bodies and its
chromatic number, Discrete Math. 308/19 (2008), 4495–4500.

144. H. Freudenthal and B. L. van der Waerden, On an assertion of Euclid, Simon
Stevin 25 (1947), 115–121.

145. C. F. Gauss, Untersuchungen über die Eigenschaften der positiven ternären
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