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Abstract

These notes are based on the material contained in Chapter 3 of [2]. Some topics
from Chapters 1 and 2 are reviewed. The bundle of linear frames is defined and it is
shown that the tangent bundle of a manifold can be considered as a bundle associated
with the linear frame bundle with R

n as the standard fibre. Parallel transport in
vector bundle is described and it is explained how it gives rise to the notion of covariant
differentiation. Linear connections are defined and the properties of the corresponding
covariant derivative are described. Finally, affine connections are introduced and are
shown to be in a one-to-one correspondence with linear connections.

1. Some preliminaries

In this section we review some of the ideas and results from chapters 1 and 2 of
Kobayashi and Nomizu [2] (hereafter referred to as KN) that will be relevant to us.

1.1. Homomorphisms of principal fibre bundles. Some remarks on notation are in
order before we start reviewing the material. We shall represent a typical principal fibre
bundle by P (M,G). Here it is understood that P and M are differentiable manifolds and
G acts on P via a right action Φ : P × G → P such that P/G = M . The canonical
projection map is represented by π : P → M = P/G. Given u ∈ P and g ∈ G, we define
maps Φg : P → P and Φu : G→ P by Φg(u) := Φ(u, g) =: Φu(g) = Rg(u) = u · g (the last
bit of notation is specific to right actions; for left actions we write Φg(u) = g · u). In this
sequel we shall try to be as explicit in our notation as possible although from time to time
we shall point out the intuition behind the notation used in KN. To keep things under
control, we shall allow ourselves some (mild) abuse of notation (like writing ug instead of
u · g for example) but (unlike KN) we won’t do so without warning.

We review some material from Section 5 of Chapter 1 here. A homomorphism

of a principal fibre bundle P ′(M ′, G′) into another principal fibre bundle P (M,G) is a
triple (f, f1.f0) such that f is a fibre bundle map from P ′ to P over f1 : M ′ → M and

∗Graduate Student, Department of Mathematics and Statistics, Queen’s University, Kingston,

ON K7L3N6

Email: ajit@mast.queensu.ca, URL: http://www.mast.queensu.ca/~ajit/

1



2 A. Bhand

f0 : G′ → G is a homomorphism such that f(Ra′u) = f(u′a′) = Rf0(a)f1(u) = f1(u)f0(a).
Since (f, f1) is a fibre bundle map, the following diagram commutes.

P ′ f
−−−−→ P

π′





y





y

π

M ′ −−−−→
f1

M

where π′ : P ′ → M ′ and π : P → M are the natural projections. A homomorphism
(f, f1, f0) : P ′(M ′, G′) → P (M,G) is called an imbedding if f : P ′ → P is an imbedding
and if f0 : G′ → G is injective. In this case f1 : M ′ → M is also an imbedding. We can
therefore consider f(P ′)(f1(M

′), f0(G
′)) (that is, the image of P ′(M ′, G′) under (f, f1, f0))

a subbundle of P (M,G). If, moreover, M ′ = M and f1 : M ′ → M is the identity map of
M , we call (f, f1, f0) : P ′(M ′, G′) → P (M,G) a reduction of the structure group G of
P (M,G) to G′. The subbundle f(P ′)(M,f0(G

′)) is called a reduced subbundle . Given
P (M,G) and a Lie subgroup G′ of G, we shall say that the structure group G is reducible
to G′ if there is a reduced subbundle P ′(M,G′).

1.1 Remarks: (i) Note that when (f, f1, f0) is an imbedding, KN call P ′(M ′, G′) itself
a subbundle of P (M,G). This makes sense if one identifies P ′(M ′, G′) with its image
f(P ′)(f1(M

′), f0(G
′)).

(ii) KN represent f, f0 and f1 by the same symbol (f), the meaning being clear from
context. This definitely saves the trouble of writing a triple for a homomorphism. We
shall sometimes represent a homomorphism between principal fibre bundles simply
by f when the maps f0 and f1 are not relevant to the discussion or are clear from the
context. We shall, however, never use the same notation for all of the three maps.

1.2. Associated bundles. Let P (M,G) be a principal fibre bundle and let F be a
manifold on which G acts on the left:

Ψ : G× F → F

(g, ξ) 7→ Ψ(g, ξ) = g · ξ.

Define a right action of G on P × F as follows:

(P × F ) ×G→ (P × F )

((u, ξ), g) 7→ (Φ(u, g),Ψ(g−1, ξ))

KN
= (ug, g−1ξ)

Denote by E := (P ×F )/G =: P ×GF the quotient of P ×F by G and the projection onto
E by πG : P × F → E. Given (u, ξ) ∈ P × F , we know that πG(u, ξ) is the equivalence
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class (defined by the action of G on P × F ) containing (u, ξ). We denote this equivalence
class by [u, ξ]G (that is, πG(u, ξ) = [u, ξ]G; we follow Marsdenesque notation here). Define
a map πE : E →M by

πE([u, ξ]G) = π(u)

Now, it can be shown that E has a differentiable structure that makes πE a surjective
submersion. We shall not address this issue here and consider it a fact1.

The upshot of this is that πE : E →M is a (locally trivial) fibre bundle with standard
fibre F and we call it the bundle associated with P (M, G) with standard fibre F .
Following KN, we shall denote this bundle by E(M,F, P,G). Sometimes (to avoid the use
of excessive language) we shall call E(M,F, P,G) the associated bundle (rather than “the
bundle associated with P (M,G) with standard fibre F”) whenever the underlying principal
fibre bundle and the standard fibre are understood to be P (M,G) and F respectively.
This should cause no confusion. The following result is immediate once the notation is
understood properly.

1.2 Proposition: Let P (M,G) be a principal fibre bundle and F a manifold on which G
acts on the left. Let E(M,F,G, P ) be the associated bundle. For each u ∈ P and ξ ∈ F ,

write [u, ξ]G
KN
= uξ ∈ E. Then each u ∈ P is a mapping of F onto Fx = π−1

E (x) where
x = π(u) and

(ug)ξ = u(gξ) for g ∈ G, u ∈ P, ξ ∈ F (1.1 )

1.3 Remark: For u ∈ P and x = π(u), the map u : F → Fx is given by uξ = [u, ξ]G and
thus it is easy to see that [ug, ξ]G = [u, gξ]G, which is (1.1). We shall use the notation
“uξ” and “[u, ξ]G” interchangeably, depending on context.

Associated vector bundles. Let P (M,G) be a principal fibre bundle and ρ a repre-
sentation of G into GL(n; R). Let E(M,Rn, G, P ) be the associated bundle with standard
fibre R

n on which G acts through ρ. We shall call this associated bundle a vector bun-

dle over M . Each fibre π−1
E (x), x ∈ M has the structure of a vector space such that

(see Proposition 1.2) every u ∈ P with π(u) = x considered as a mapping from R
n to

π−1
E (x) is a linear isomorphism. Restating this in our notation, this means that given

[u, ξ]G, [u, ξ1]G, [u, ξ2]G ∈ π−1
E (x) where π(u) = x and c ∈ R, the vector space structure is

given by

c[u, ξ]G = [u, cξ]G and [u, ξ1]G + [u, ξ2]G = [u, ξ1 + ξ2]G

It clear from Proposition 1.2 that vector addition and scalar multiplication are well-defined
operations. That this definition is equivalent to the “usual” definition of a vector bundle
is not immediate here. We shall touch upon this issue in Section 1.4.

1If we ever get down to writing notes for Chapter 1, this will be discussed in detail
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Tensorial forms and associated bundles. Recall that given a principal fibre bundle
P (M,G) and a representation ρ of G on a finite-dimensional vector space V , a pseu-

dotensorial form of degree r on P of type (ρ, V ) is a V -valued r-form ϕ on P such
that

R∗
aϕ = ρ(a−1) · ϕ, a ∈ G

A pseudotensorial form of degree r on P of type (ρ, V ) is called a tensorial form if
it is horizontal in the sense that ϕ(X1, . . . , Xn) = 0 whenever Xi = 0 for at least one
i ∈ {1, . . . , n}.

Now, given P (M,G) and ρ on V , consider the associated bundle E(M,V,G, P ) with
natural fibre V on which G acts by ρ. A tensorial form ϕ of degree r of type (ρ, V ) can
be regarded as an assignment

M 3 x 7→ ϕ̃x

where for each x ∈M , ϕ̃x : TxM × . . .×TxM → π−1
E (x) is a r-multilinear skew-symmetric

mapping. In particular, we define

ϕ̃x(X1, . . . , Xr) = u(ϕ(X∗
1 , . . . , X

∗
r )), Xi ∈ TxM (1.2)

where u ∈ P such that π(u) = x and X∗
i is any vector at u that projects to Xi, that is

Tuπ(X∗
i ) = Xi for each i = 1, . . . , r. Since ϕ is a V -valued r-form, ϕ(X1, . . . , Xr) ∈ V . By

Proposition 1.2 we know that u : V → π−1
E (x) and thus the RHS of 1.2 is in π−1

E (x). Skew-
symmetry and bilinearity properties are clear. To see that the RHS of 1.2 is independent
of the choice of X∗

i , suppose that Y ∗
k ∈ TuP is such that Tuπ(Y ∗

k ) = Xk = Tπ(X∗
k) for

some fixed k. This means that X∗
k − Y ∗

k is vertical. We compute

ϕ(X∗
1 , . . . , X

∗
k , . . . , X

∗
r ) − ϕ(X∗

1 , . . . , Y
∗
k , . . . , X

∗
r ) = ϕ(X∗

1 , . . . , X
∗
k − Y ∗

k , . . . , X
∗
r ) = 0

since ϕ is tensorial. This implies that

ϕ(X∗
1 , . . . , X

∗
k , . . . , X

∗
r ) = ϕ(X∗

1 , . . . , Y
∗
k , . . . , X

∗
r )

which shows that definition of ϕ̃x is independent of the choice of X∗
i for each i. Finally,

we must also show that the definition is independent of the choice of u. To see this, let
v ∈ P such that π(v) = x. This means that v = ua for some a ∈ G. Since G acts on V by
ρ, by Proposition 1.2 we have

(ua)X = u(ρ(a)X), u ∈ P,X ∈ V

Choose Z∗
i ∈ TuaP such that Tuaπ(Z∗

i ) = Xi. We compute

(ua)(ϕ(Z∗
1 , . . . , Z

∗
r )) = u(ρ(a)ϕ(Z∗

1 , . . . , Z
∗
r ))

= u(ϕ(TuRa−1Z∗
1 , . . . , TuRa−1Z∗

r ))

= u(ϕ(X∗
1 , . . . , X

∗
r ))
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The last step follows since Tuπ(TuRa−1Z∗
i ) = Tua(π ◦ Ra−1)Z∗

i = Tuaπ(Z∗
i ) = Xi =

Tuπ(X∗
i ). We have thus shown that ϕ̃x is well-defined for each x ∈M .

Conversely, given an r-multilinear, skew-symmetric mapping ϕ̃x : TxM × . . . TxM →
π−1

E (x) for each x ∈M , we can define a V -valued tensorial r-form ϕ by

ϕ(X̄1, . . . , X̄r) = u−1ϕ̃x(Tuπ(X̄1), . . . , Tuπ(X̄r)), X̄i ∈ TuP, π(u) = x (1.3)

1.4 Example: The above discussion shows that a tensorial 0-form of type (ρ, V ) on P
can be identified with a section M → E of E(M,V,G, P ). In other words, each V -valued
function f : P → V satisfying f(ua) = ρ(a−1)f(u) for u ∈ P and a ∈ G can be identified
with a section of E. We shall have occasion to use this fact later on.

1.3. The bundle of linear frames. Let M be an n-dimensional manifold. A linear

frame at x is an ordered basis u = (X1, . . . , Xn) for the tangent space TxM at x ∈ M .
Let

Lx(M) = {u| u is a linear frame at x}

and write
L(M) =

⋃

x∈M

Lx(M)

Define a map πL : L(M) →M by

( a linear frame u at x) 7→ x

The general linear group GL(n; R) acts on L(M) on the right in the following manner. If
a = (ai

j) ∈ GL(n; R) and u = (X1, . . . , Xn) ∈ Lx(M), we define ΦL : L(M) × GL(n; R) →
L(M) by

(u, a) 7→ (ua) := (aj
1Xj , . . . , a

j
nXj)

Rather than using the elaborate notation, we write ΦL(u, a)
KN
= Ra(u) which is appropriate

for right actions. Intuitively, if we think of (X1, . . . , Xn) as a column vector, the action
Ra (for a ∈ GL(n; R)) looks like

Ra







X1
...
Xn






7→ aT







X1
...
Xn







One can see thus see that the action is indeed a right action.

Exercise 1.5 Show that the action ΦL is free and proper.

This means that the quotient L(M)/GL(n; R) possesses a differentiable structure and can
be identified with the manifold M . Next, we show that πL : L(M) → M satisfies the
local-triviality condition for a principal fibre bundle. Let (U, φ) be a chart for M with
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local coordinates (x1, . . . , xn). Every frame u ∈ Lx(M), x ∈ U can be uniquely expressed
as

u =

(

Xk
1

∂

∂xk
, . . . , Xk

n

∂

∂xk

)

where (Xk
i ) is an invertible matrix. If we write Xi = Xk

i
∂

∂xk , the map ψ : π−1
L (U) →

U × GL(n; R) given by
(X1, . . . , Xn) 7→ (x, (Xk

j ))

is a diffeomorphism. We can therefore use coordinates (xi, Xk
j ) on π−1

L (U) and define a
differentiable structure on L(M). It is also clear that the map

(X1, . . . , Xn) 7→ (Xk
j )

satisfies Rb(X1, . . . , Xn) = (Y1, . . . , Yn) where Yi = bjiXj and thus defines a local bundle
chart for L(M). We have thus shown that L(M)(M,GL(n; R)) is a principal fibre bundle.

There is another equivalent way to think about a linear frame. A linear frame u =
(X1, . . . , Xn) at x ∈ M can be regarded as an isomorphism u : R

n → TxM as follows. If
(e1, . . . , en) is the standard basis for R

n, the map u is given by

ciei 7→ ciXi, ci ∈ R

The right action of GL(n; R) on L(M) is interpreted as follows. Consider a = (ai
j) ∈

GL(n; R) as a linear transformation of R
n which acts on R

n by matrix multiplication.
Then ua = Ra(u) : R

n → TxM is the composition of the following two maps:

R
n a
−→ R

n u
−→ TxM

1.4. The tangent bundle as an associated bundle. Recall that GL(n; R) acts on
R

n on the left by (a, ξ) 7→ aξ (this is simply matrix multiplication). Given a manifold
M , we write E = L(M)×GL(n;R) R

n and construct the bundle E(M,Rn,GL(n; R), L(M))
associated with L(M)(M,GL(n; R)) with standard fibre R

n. It is clear that this is a vector
bundle over M in the sense of the definition given in Section 1.2. We have the following
result.

1.6 Lemma: The bundles E(M,Rn,GL(n; R), L(M)) and τM : TM → M are naturally
isomorphic as vector bundles over M . In particular, there a natural vector bundle isomor-
phism from E to TM over the identity mapping of M .

Proof: Following the discussion at the end of Section 1.3, we think of a frame u ∈ Lx(M)
as an isomorphism u : R

n → TxM . Thus for ξ ∈ R
n, we have uξ ∈ TxM where x = π(u).

We also know that [u, ξ]G ∈ π−1
E (x). Now, define a map ι : E → TM by

[u, ξ]G 7→ uξ
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To see that this is well-defined, for a ∈ G, consider [ua, a−1ξ]G (which is equal to [u, ξ]G).
We have

ι([ua, a−1ξ]G) = (ua)(a−1ξ)

The right hand side is the action of the composition of the following maps on ξ

R
n 3 ξ

a−1

7−→ R
n a
−→ R

n u
−→ TxM

and therefore ι([u, ξ]G) = ι([ua, a−1ξ]G).

Next, given v ∈ TxM , we claim that ι−1(v) = [u, u−1(v)]G for any u ∈ Lx(M). First
we show that this statement is independent of the choice of u. Suppose that ũ ∈ Lx(M),
then ũ = Rb(u) = ub for some b ∈ GL(n; R). Thus we have

[ũ, ũ−1(v)]G = [ub, (ub)−1(v)]G = [ub.b−1u−1(v)]G = [u, u−1(v)]G

Thus ι maps each fibre of E isomorphically to a fibre of TM . From the discussion on
associated vector bundles it is also clear that ι is linear. Finally, τM (ι([u, ξ]G) = x and
thus we conclude that ι is a vector bundle isomorphism between E and TM over the
identity on M . ¥

1.7 Remarks: (i) Notice that we have used the notation “uξ” to represent two different
objects in the sequel. In Proposition 1.2 “uξ” represents the image of ξ under the
map u : F → π−1

E (x). Let’s call this the “first” definition. In the proof of Lemma
1.6, we have used it to represent the image of ξ under the map u : R

n → TxM .
Call this the “second” definition. For the associated bundle E considered in Lemma
1.6, the natural fibre F = R

n and thus according to the “First” definition we have
u : F = R

n → π−1
E (x). Lemma 1.6 shows that π−1

E (x) is naturally isomorphic to
TxM for every x ∈ M and thus that the “first” and the “second” definitions are
really the same (upto isomorphism). One can see the unifying power of the KN
notation here.

(ii) The associated vector bundle construction described in this section is actually a
special case of a general construction for arbitrary vector bundles. In the section
on associated vector bundles, we presented a definition of a vector bundle over
a manifold M . We now show how this definition is equivalent to the standard
definition of a vector bundle. So suppose πE : E →M is vector bundle in the usual
sense, that is, it is a fibre bundle over M such that the fibre Ex over every x ∈ M
possess a vector space structure. Now, given x ∈ M , define Px := L(Rn, Ex) = {u :
R

n → Ex| u is a linear isomorphism } and set

P =
⋃

x∈M

L(Rn, Ex)
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It is easy to see that GL(n; R) acts on P on the right and that this action is free
and proper. Thus, P (M,GL(n; R)) is a principal fibre bundle. Next, consider the
usual left action of GL(n; R) on R

n and form the associated bundle with total space
Ẽ := (P × R

n)/GL(n; R) associated with P (M,GL(n; R)) with standard fibre R
n.

It can be seen that this associated bundle Ẽ(M,Rn,GL(n; R), P ) is isomorphic to
πE : E → M . That is, there exists a bundle isomorphism from Ẽ to E over the
identity map of M . This justifies why it makes sense to define vector bundles the
way we have done in these notes.

(iii) One can think of the bundle T r
s (TM) of (r, s) tensors on M as an associated bundle

as well. Observe that GL(n; R) acts on R
n by (A, ξ) 7→ Aξ and thus it also acts on

T r
s (Rn) (the (r, s) tensor space of R

n) on the left by push-forward. That is

GL(n; R) × T r
s (Rn) → T r

s (Rn)

(A, t) 7→ A∗t

It can be seen that the fibres of T r
s (TM) are isomorphic to the fibres of the bundle

E(M,T r
s (Rn),GL(n; R), L(M)) associated with L(M)(M,GL(n; R)) with standard

fibre T r
s (Rn) where E = (L(M) × T r

s (Rn))/GL(n; R).

2. Connections in a vector bundle

In Section 1.2 we defined the notion of a vector bundle considered as an associated
bundle E(M,Rn, G, P ) of a principal fibre bundle P (M,G) with natural fibre R

n. In this
section , we shall study the consequences of introducing a principal connection in P (M,G)
in this setup. In particular, we shall show that a principal connection in P (M,G) gives
rise to “covariant differentiation” on E. We first study how the notion of parallel transport
can be defined on arbitrary associated bundles.

2.1. Parallel transport in associated bundles. Given a principal connection Γ in a
principal fibre bundle P (M,G) one can define parallel transport in an associated bundle
E(M,F,G, P ) with standard fibre F . Recall that we have the natural projection maps
πG : P × F → E = (P ×G F ) and πE : E → M . Given w ∈ E, choose (u, ξ) ∈ P × F

such that πG(u, ξ) = w. Next, fix ξ ∈ F and consider the mapping πξ
G : P → E given by

u 7→ πG(u, ξ)(= [u, ξ]G). The horizontal subspace HwE at w is defined by

HwE = Tuπ
ξ
G(HuP ) (2.1)

where HuP is the horizontal subspace at u defined by the connection Γ in P .

Exercise 2.1 Show that the definition of HwE in (2.1) is independent of the choice of
(u, ξ) ∈ P × F .
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For w ∈ E, the vertical subspace VwE at w is defined in the usual manner, that is

VwE = ker(TwπE) = Tw(π−1
E (x)), x = πE(w)

It can be seen that TwE = HwE⊕VwE for each w ∈ E and thus (2.1) defines an Ehresmann
connection in the bundle E(M,F,G, P ). A curve in E is horizontal if its tangent vector
at each point is horizontal. Given a curve τ = xt, 0 ≤ t ≤ 12 in M a horizontal lift

of τ to E is a horizontal curve τ ∗ in E such that πE(τ∗) = τ . Given wo ∈ E such that
πE(w0) = x0, there is a unique horizontal lift τ ∗ = wt of τ to E starting from w0. We
prove the existence of τ ∗ below.

To construct the horizontal lift of τ = xt to E starting at w0 ∈ E, we choose (u0, ξ) ∈
P × F such that πG(u0, ξ) = [u0, ξ]G = w0. Let ut be the horizontal lift of τ to P (with
respect to the principal connection Γ starting at u0. Then it is easy to see that the curve
wt := [ut, ξ]G is the desired horizontal lift to E. Uniqueness of τ ∗ through w0 follows from
the corresponding result for lifts for principal fibre bundles. Motivated by this, we make
the following definition.

2.2 Definition: Let w0 = [u0, ξ0]G ∈ E = P ×G F and let x0 = π(u0). Let τ = xt, 0 ≤
t ≤ 1, be a curve in M . The parallel transport of w0 along the curve τ is defined to be
the curve [ut, ξ0]G where ut is the horizontal lift of τ to P starting at u0.

We adopt the notation
τ0
t : π−1

E (x0) → π−1
E (xt)

for the parallel transport map along the curve xt of a point [u0, ξ0]G ∈ π−1
E (x0) to the

corresponding point τ 0
t ([u0, ξ0]G) ∈ π−1

E (xt+s). That is

τ0
t ([u0, ξ0]G) = [ut, ξ0]G

where ut is the horizontal lift of xt to P starting at u0. In a similar manner, for t, t+ s ∈
[0, 1] we get a map

τ t
t+s : π−1

E (xt) → π−1
E (xt+s)

In general, it is not possible to define “covariant differentiation” on general associated
bundles since there’s no way to “subtract” elements in the same fibre. For associated
vector bundles where the fibre possesses a vector space structure, this notion is well-
defined. We discuss this case next.

2.2. Covariant differentiation in vector bundles. Given a principal fibre bundle
P (M,G) and a representation ρ of G on R

n, let E(M,Rn, G, P ) be a vector bundle over
M . Notice that in this case the parallel transport map (between fibres of E) along a curve

2It is interesting to note that KN denote a curve as xt and not x(t). This is another instance of
“notational compactness” that is prevalent in the book. If we use x(t) we shall have to specify the initial
condition as x(0) = x0 whereas the KN notation one doesn’t need to.
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xt ∈M is a linear isomorphism. We first define covariant differentiation of a section along
a curve.

2.3 Definition: Let ϕ be a section of E defined along a curve τ = xt ∈ M, t ∈ [a, b] so
that πE ◦ ϕ(xt) = xt for all t ∈ [a, b]. Denote the tangent vector to τ at xt by ẋt. Then,
for fixed t, the covariant derivative ∇ẋt

ϕ of ϕ with respect to ẋt is defined by

∇ẋtϕ = lim
h→0

1

h

(

τ t+h
t ϕ(xt+h) − ϕ(xt)

)

2.4 Remarks: (i) Notice that the covariant derivative ∇ẋtϕ is simply

∇ẋtϕ =
d

ds

∣

∣

∣

∣

s=0

τ t+s
t ϕ(xt+s)

(ii) Since τ t+h
t ϕ(xt+h) ∈ π−1

E (xt), we have ∇ẋtϕ ∈ π−1
E (xt) for every t ∈ [a, b] and thus

it defines a section of E along xt.

(iii) The section ϕ is parallel, that is, the curve ϕ(xt) in E is horizontal if and only if
∇ẋt = 0 for all t ∈ [a, b].

(iv) It is clear that if ϕ and ψ are sections along xt, then linearity of the parallel transport
map the derivative maps implies that

∇ẋt(ϕ+ ψ) = ∇ẋtϕ+ ∇ẋtψ

Also, from (ii), for an R-valued function λ we compute

∇ẋt(λϕ) =
d

ds

∣

∣

∣

∣

s=0

τ t+s
t λ(xt+s)ϕ(xt+s)

=
d

ds

∣

∣

∣

∣

s=0

λ(xt+s)τ
t+s
t ϕ(xt+s)

= λ(xt)
d

ds

∣

∣

∣

∣

s=0

τ t+s
t ϕ(xt+s) + ẋtλ · ϕ(xt)

= λ(xt)∇ẋtϕ+ ẋtλ · ϕ(xt)

We now define covariant derivative of a section defined in a local neighborhood.

2.5 Definition: For x ∈ M , let X ∈ TxM and ϕ : U → E be a section defined on a
neighborhood U containing x. Let τ = xt, t ∈ [−ε, ε], be a curve such that x0 = x and
ẋ0 := ẋt|t=0 = X. Then the covariant derivative ∇Xϕ of ϕ with respect to X is
defined by

∇Xϕ = ∇ẋ0
ϕ
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Given ϕ as as above, denote by fϕ the R
n-valued function defined on π−1(U) corresponding

to ϕ (as described in Example 1.4). In particular fϕ is defined by

fϕ(v) = v−1(ϕ(π(v)), v ∈ π−1(U)

The following result shows that ∇Xϕ is independent of the choice of xt.

2.6 Lemma: Given a section ϕ : U → E where x ∈ U and X ∈ TxM , let X∗ ∈ TuP be
the horizontal lift of X at u ∈ P . Then

∇Xϕ = u(X∗fϕ)

where

Proof: Let xt, t ∈ [−ε, ε] be a curve in M such that x0 = x and ẋ0 = X. Let ut be the
horizontal lift of xt to P such that u0 = u so that X∗ = u̇0. We compute,

X∗fϕ = lim
h→0

1

h
(fϕ(uh) − fϕ(u0)) = lim

h→0

1

h

(

u−1
h (ϕ(xh)) − u−1

0 (ϕ(x0)
)

(2.2)

and since u0 = u and x0 = x we have

u(X∗fϕ) = lim
h→0

1

h

(

u ◦ u−1
h (ϕ(xh)) − ϕ(x)

)

(2.3)

From Definition 2.3 and the equality (2.3), it suffices to show that

τh
0 (ϕ(xh)) = u ◦ u−1

h (xh) (2.4)

Next, we set ξ = u−1
h (φ(xh)). By definition, utξ = [ut, ξ]G is horizontal in E. Also, since

uhξ = φ(xh), we have by Definition 2.2, we have τ 0
h(u0ξ) = uhξ = ϕ(xh) from which (2.4)

follows. ¥

2.7 Remarks: (i) From Lemma 2.6 it is clear that Definition 2.5 of ∇Xϕ is independent
of the choice of the curve xt.

(ii) One can also easily see that for X ∈ TxM , ϕ : U → E and λ ∈ R we have ∇λXϕ =
λ∇Xϕ.

(iii) Given X,Y ∈ TxM, x ∈M and ϕ as above, let X∗ and Y ∗ be the horizontal lifts of
X and Y respectively. Then we know that X∗ + Y ∗ is the horizontal lift of X + Y .
Thus

∇X+Y ϕ = u((X + Y )∗fϕ) = u((X∗ + Y ∗)fϕ) = ∇Xϕ+ ∇Y ϕ

We compile our results above in the following proposition.

2.8 Proposition: (Proposition 1.1, Chapter 3) Let X,Y ∈ TxM, x ∈ M and let ϕ
and ψ be sections of E defined in a neighborhood of x. Then
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(i) ∇X+Y ϕ = ∇Xϕ+ ∇Y ϕ;

(ii) ∇X(ϕ+ ψ) = ∇Xϕ+ ∇Xψ;

(iii) ∇λXϕ = λ∇Xϕ, λ ∈ R;

(iv) ∇X(fϕ) = f(x) · ∇Xϕ+ (Xf) · ϕ(x), where f is an R-valued function defined in a
neighborhood of x.

In a similar manner, we can define covariant differentiation with respect to vector
fields.

2.9 Definition: Let ϕ : M → E be a (global) section and X a vector field on M . Then
the covariant derivative of ϕ with respect to X is the section ∇Xϕ : M → E defined
by

(∇Xϕ)(x) = ∇Xx
ϕ.

As a direct consequence of Proposition 2.8 we have the following result.

2.10 Proposition: Let X,Y be vector fields on M and ϕ and ψ be sections of E. Then

(i) ∇X+Y ϕ = ∇Xϕ+ ∇Y ϕ;

(ii) ∇X(ϕ+ ψ) = ∇Xϕ+ ∇Xψ;

(iii) ∇λXϕ = λ∇Xϕ, λ ∈ R;

(iv) ∇X(fϕ) = f(x) · ∇Xϕ+ (Xf) · ϕ(x), where f is an R-valued function defined in a
neighborhood of x.

IfX is a vector field onM andX∗ is its horizontal lift to P (with respect to the principal
connection that induces ∇ of course). Then ∇X corresponds to Lie differentiation LX∗

in the following manner. It was noted earlier that there’s a one-to-one correspondence3

between sections ϕ : M → E and functions fϕ : P → R
n that satisfy fϕ(ua) = ρ(a−1)fϕ(u)

for u ∈ P and a ∈ G. From this and Lemma 2.6, we have the following readily verifiable
result.

2.11 Proposition: If ϕ : M → E is a section and fϕ : P → R
n be the corresponding

function, then LX∗fϕ is the function corresponding to ∇Xϕ.

2.3. Fibre metrics in vector bundles. To be completed later.

3This correspondence is explicitly defined in the paragraph below Definition 2.5 and in Example 1.4.
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3. Linear connections

Let L(M)(M,GL(n; R)) be the bundle of linear frames of M where n = dim(M).
Denote the canonical projection by πL : L(M) →M . We first present a definition.

3.1 Definition: The canonical form of L(M) is the R
n-valued 1-form θ : TL(M) →

R
n define by

θ(X) = u−1(TuπLX)), X ∈ TuL(M)

where u ∈ L(M) is considered as a linear isomorphism u : R
n → TπL(u)M as before.

3.2 Proposition: The canonical form θ of L(M) is a tensorial 1-form of type
GL(n; R),Rn). It corresponds to the identity transformation of TxM at each x ∈M .

Proof: Note that GL(n; R) acts on R
n by (a, ξ) 7→ ρ(a)ξ = aξ, a ∈ GL(n; R) and thus

we write (ua) : R
n → TxM, x = πL(u) such that (ua)ξ = u(aξ) as usual (see the

subsection Tensorial forms and associated bundles for details). Let X ∈ TuL(M)
and a ∈ GL(n; R). Then TuaRaX ∈ TuaL(M). We now compute

(R∗
aθ) = θ(TuaRaX) = (ua)−1(TuaπL(TuaRaX))

= a−1u−1(θ(TuπLX)) = a−1θ(X)

which shows that θ is pseudo-tensorial. Now, let X ∈ TuL(M) be vertical. Then θ(X) =
u−1(TuπLX) = 0 and thus θ is tensorial.

For each x ∈M , the linear map ϕ̃x : Tx → TxM corresponding to ϕ is given by

ϕ̃x(X) = u(ϕ(X∗), X ∈ TxM,πL(u) = x

where X∗ ∈ TuL(M) is such that TuπL(X∗) = X. Using the definition of ϕ we get

ϕ̃x(X) = u(u−1TuπL(X∗)) = X

This is what we wished to show. ¥

Now, we define the main object of discussion in this section.

3.3 Definition: A principal connection in the bundle L(M)(M,GL(n; R)) of linear
frames over M is called a linear connection of M .

Given a linear connection Γ of M , we associate with each ξ ∈ R
n a horizontal vector field

B(ξ) on L(M) as follows. For each u ∈ L(M), (B(ξ))u is the unique horizontal vector at u
with the property that TuπL(B(ξ)u) = uξ. We shall call B(ξ) the standard horizontal

vector field corresponding to ξ. Note that this vector field is only defined in the
presence of a linear connection of M .

3.4 Proposition: The standard horizontal vector fields have the following properties:
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(i) If θ is the canonical form of L(M), then θ(B(ξ)u) = ξ for each ξ ∈ R
n and u ∈ L(M);

(ii) TuRa(B(ξ)u) = (B(a−1ξ))ua, a ∈ GL(n; R), ξ ∈ R
n;

(iii) If ξ 6= 0, then B(ξ) never vanishes.

3.5 Proposition: Let Γ be a linear connection of M . If A∗ is the fundamental vector
field (infinitesimal generator) corresponding to A ∈ gl(n; R) on L(M) and if B(ξ) is the
standard horizontal vector field corresponding to ξ ∈ R

n, then

[A∗, B(ξ)] = B(Aξ),

where Aξ denotes the image of ξ by A ∈ gl(n; R) which acts on R
n.

Next, we define the torsion form Θ of a linear connection Γ of M by

Θ = Dθ

where D is the exterior covariant differential, that is Dθ = (dθ)(hor). It can be shown
that Θ is a tensorial 2-form on L(M) of type (GL(n; R),Rn).

3.6 Theorem: (Structure equations) Let ω,Θ and Ω be the connection form, the torsion
form and the curvature form respectively of a linear connection Γ of M . Then the first

and second structure equations are satisfied:

dθ(X,Y ) = −
1

2
(ω(X) · θ(Y ) − ω(Y ) · θ(X)) + Θ(X,Y ),

dω(X,Y ) = −
1

2
[ω(X), ω(Y )] + Ω(X,Y )

where X,Y ∈ TuL(M) and u ∈ L(M).

Considering θ as a vector-valued form and ω as a matrix-valued form, we can write the
structure equations as

dθ = −ω ∧ θ + Θ

dω = −ω ∧ ω + Ω

3.7 Theorem: (Bianchi’s identities) For a linear connection the first and second

Bianchi identities hold:

DΘ = Ω ∧ θ

DΩ = 0
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Recall that the collection {Ej
i ; i, j = 1, . . . , n} where Ej

i ∈ gl(n; R) is an n×n matrix such
that the entry in the i-th column and j-th row is 1 and the rest of the entries are zero, is a
basis for gl(n; R). Now, given a linear connection Γ of M , let B1, . . . , Bn be the standard
horizontal vector fields corresponding to the natural basis e1, . . . , en of R

n and let Ej∗
i

the fundamental vector fields corresponding to the basis {Ej
i } of gl(n; R). We have the

following result.

3.8 Proposition: The n2 + n vector fields {Bk, E
j∗
i ; i, j = 1, . . . , n} define an absolute

parallelism in L(M), that is, the n2 + n vectors {(Bk)u, (E
j∗
i )u; i, j = 1, . . . , n} form a

basis for TuL(M) for every u ∈ L(M).

Let T r
s (TM) be the bundle of (r, s) tensors over M . Recall that given x ∈ M , the fibre

over x is given by the (r, s) tensor space of TxM and denoted as T r
s (TxM). We observed

in Remarks 1.7 that T r
s (TM) is a vector bundle associated with L(M)(M,GL(n; R)) with

standard fibre T r
s (Rn). Given a linear connection Γ of M , there is a notion of parallel

transport along a curve in M . Given a curve τ = xt ∈ M the parallel transport along
τ in TM is a linear isomorphism given by τ t

s : TxtM → TxsM where s, t ∈ R. For
τ ∈M , we define the parallel transport along τ in T r

s (TM) as follows. For t, s ∈ R, define
τ̃ t
s : T r

s (TxtM) → T r
s (TxsM) by

τ̃ t
s(A) = (τ t

s)∗(A), A ∈ T r
s (TxtM)

where (τ t
s)∗(A) is the push-forward of A by τ t

s. We can now use τ̃ to define covariant
differentiation of sections of the tensor bundle (that is, tensor fields) in exactly the same
manner in which we defined the covariant derivative of sections of a vector bundle in
Section 2.3. We denote the covariant derivative of an (r, s) tensor field K on M with
respect to a vector field X on M by ∇XK. We have the following result.

3.9 Proposition: Let T(M) be the algebra of tensor fields on M . Let X and Y be vector
fields on M . Then the covariant derivative has the following properties:

(i) ∇X : T(M) → T(M) is a type-preserving derivation.

(ii) ∇X commutes with every contraction

(iii) ∇Xf = LXf for every function f : M → R

(iv) ∇X+Y = ∇X + ∇Y

(v) ∇fXK = f · ∇XK for every function f on M and K ∈ T(M).

As a consequence of this result and Proposition 2.10 we have

3.10 Proposition: If X,Y and Z are vector fields on M , then

(i) ∇X(Y + Z) = ∇XY + ∇XZ

(ii) ∇X+Y Z = ∇XZ + ∇Y Z

(iii) ∇fXY = f · ∇XY for every f ∈ C∞(M)
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(iv) ∇X(fY ) = f · ∇XY + (LXf)Y for every f ∈ C∞(M).

This result thus shows that given a linear connection Γ of M , there exists a map ∇ :
Γ(TM)×Γ(TM) → Γ(TM) that has properties (i)-(iv). Later on we shall be able to prove
that corresponding to any operator ∇ that satisfies the properties (i)-(iv) in Proposition
3.10, there is a linear connection of M .

3.11 Proposition: Let M be a manifold with a linear connection. Every derivation D
(preserving type and commuting with contractions) of the algebra T(M) of tensor fields
into the tensor algebra T(TxM) at x ∈M can be decomposed as follows:

D = ∇X + S,

where X ∈ TxM and S : TxM → TxM is a linear endomorphism.

Given an (r, s) tensor field K on M , the covariant differential ∇K of K is an (r, s+1)
tensor field defined by

(∇K)(X1, . . . , Xs;X) = (∇XK)(X1, . . . , Xs)

Thus both sides of the above expression are (r, 0) tensor fields. We only write the (0, s)
arguments since those are the only ones involved in the definition. We have the following
result.

3.12 Proposition: If K is an (r, s) tensor field on M then

(∇K)(X1, . . . , Xs;X) = ∇X(K(X1, . . . , Xs)) −

s
∑

i=1

K(X1, . . . ,∇XXi, . . . , Xs)

where X,Xi, i = 1, . . . , s ∈ Γ(TM).

A tensor field K on M is parallel if and only if ∇XK = 0 for all X ∈ TxM and
x ∈M . We thus have the following result.

3.13 Proposition: A tensor field K on M is parallel if and only if ∇K = 0.

Given an (r, s) tensor field K on M , the second covariant differential ∇
2K of K

is the ((r, s+ 2) tensor field defined by ∇2K = ∇(∇K). We denote

(∇2K)(;X;Y ) = (∇Y (∇K))(;X)

In other words, for X,Y,Xi, i = 1, . . . , s ∈ Γ(TM), we have

(∇2K)(X1, . . . , Xs;X;Y ) = (∇Y (∇K))(X1, . . . , Xs;X)

This leads us to the final result of this section.

3.14 Proposition: For any tensor field K and for X,Y ∈ Γ(TM) we have

(∇2K)(;X;Y ) = ∇Y (∇XK) −∇∇Y XK.
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4. Affine connections

In this section we shall study the bundle of “affine frames”. A linear frame at a point
gives an ordered basis for the tangent space at that point. If we think of this tangent space
as an affine space, we can construct a new bundle by “patching together” all the “frames”
corresponding to these these affine spaces. It turns out that this bundle of affine frames
is a principal bundle with the group of affine automorphisms of affine Euclidean space as
the structure group. One can consider principal connections in this bundle (called “affine
connections”) and they naturally correspond to linear connections in L(M). This explains
why the terms linear and affine connections cam be (and have been ) used interchangeably.

4.1. The bundle of affine frames. Let M be an n-dimensional manifold and let
L(M)(M,GL(n; R)) be the bundle of linear frames of M . Recall that every vector space
can be thought of as an affine space modeled on itself. For each x ∈ M , when we think
of TxM as an affine space modeled on itself we call it the affine tangent space at x
and denote it by AxM . Similarly, R

n considered as an affine space modeled on itself is
denoted by A

n. We also denote by A(n; R) the group of affine transformations of A
n. It

is easy to see that

A(n; R) =

{

ã =

(

a ξ
0 1

)∣

∣

∣

∣

a ∈ GL(n; R), ξ ∈ R
n

}

.

The action of A(n; R) on A
n is given by (η, ã) 7→ aη + ξ, where η ∈ A

n. Next, we
define group homomorphisms α : R

n → A(n; R) and β : A(n; R) → GL(n; R) by

ξ
α
7→

(

idGL(n;R) ξ

0 1

)

and

(

a ξ
0 1

)

β
7→ a

The following is a short-exact sequence of group homomorphisms.

0 −→ R
n α
−→ A(n; R)

β
−→ GL(n; R) −→ idGL(n;R) (4.1)

This sequence is exact since the kernel of each homomorphism is the image of the preceding
one and thus by definition a short-exact sequence. Notice that α is injective and β is
surjective. Moreover, there is a homomorphism γ : GL(n; R) → A(n; R) defined by

γ(a) =

(

a 0
0 1

)

, a ∈ GL(n; R)

that satisfies β ◦ γ = idGL(n;R). This shows that the sequence is split-exact (see [1] for
details on exact sequences). The upshot of this is that A(n; R) is a semidirect-product
of GL(n; R) and R

n. This means that for every ã ∈ A(n; R) there exists a unique pair
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(a, ξ) ∈ GL(n; R)×R
n such that ã = α(ξ) · γ(a) where “·” represents the group operation

in A(n; R).
Given x ∈ M , an affine frame at x is a pair (p, u) where p ∈ AxM and u =

(X1, . . . , Xn) is a linear frame at x. That is, u ∈ Lx(M). We denote by 0 the origin of
R

n and by e = (e1, . . . , en) the canonical basis for R
n and call (0, e) the canonical

frame of A
n. Every affine frame (p, u) at x can be identified with an affine isomorphism

ũ : A
n → AxM which maps (0, e) into (p, u). We shall find it convenient to think of

u ∈ Lx(M) as a linear isomorphism from R
n → TxM . Using this notion, given an affine

frame (p, u) at x ∈M we can explicitly write down the corresponding affine isomorphism
ũ. In particular, ũ is given by

ũ(ξ̃) = u(ξ̃ − 0) + p = u(ξ̃) + p

where we have the following picture in mind

A
n ũ

−−−−→ AxM

I0





y





y

Ip

R
n −−−−→

u
TxM

where I0 : A
n → R

n is the isomorphism induced once 0 ∈ A
n is fixed. That is I0(ξ̃) =

ξ̃ − 0 = ξ̃ for ξ̃ ∈ A
n and similarly Ip : AxM → TxM is given by Ip(X) = X − p for

X ∈ AxM . We let

A(M) :=
⋃

x∈M

{set of affine frames at x}

and define the canonical projection πA : A(M) →M by

(an affine frame at x) 7→ x.

Now, the group A(n; R) acts on A(M) as follows:

A(M) ×A(n; R) → A(M)

(ũ, ã) 7→ (ũã) (4.2)

where ũã : A
n → AxM, x = πA(ũ) is interpreted as the composition of the following two

maps

A
n ã
−→ A

n ũ
−→ AxM

Exercise 4.1 Show that

(1) A(M) is a differentiable manifold,

(2) The right action (4.2) of A(n; R) on A(M) is free and proper.
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Using Exercise 4.1, it can be seen that A(M)(M,A(n; R)) is a principal fibre bundle. We
call it the bundle of affine frames of M .

There exist natural bundle homomorphisms β̃ : A(M) → L(M) and γ̃ : L(M) → A(M)
over the identity map of M given by

ũ = (p, u)
β̃

7−→ u and u
γ̃

7−→ (0x, u)

where x = πL(u) (recall that πL : L(M) → M is the natural projection) and 0x ∈
TxM is the zero vector. It can easily be seen that β̃ is surjective and γ̃ is injective and
that β̃ ◦ γ̃ = idL(M). Thus, L(M) can be thought of as a subbundle of A(M) via γ̃.
More precisely, γ̃(L(M))(M,γ(GL(n; R)) is a subbundle of A(M)(M,A(n; R)). Next we
introduce connections in A(M).

4.2 Definition: A generalized affine connection of M is a principal connection in
the bundle A(M)(M,A(n; R)).

We shall now study the relationship between generalized affine connections and linear
connections as promised earlier. Before we do that, let us mention that corresponding to
the sequence (4.1) of group homomorphisms, there exists a natural sequence of Lie algebra
homomorphisms given by

0 −→ R
n Teα
−→ a(n; R)

Teβ
−→ gl(n; R) −→ 0

where by abuse of notation we represent the identity elements of GL(n; R) and A(n; R)
by the same symbol e. This shows that the Lie algebra a(n; R) is the semi-direct sum of
gl(n; R) and R

n (thought of as a Lie algebra). This means that as a vector space (that is,
without considering the Lie algebra structure) a(n; R) = Teγ(gl(n; R)) ⊕ Teα(Rn) and for
Teγ ·Ai ⊕ Teα · ξi ∈ Teγ(gl(n; R)) ⊕ Teα(Rn), i = 1, 2 the Lie bracket is given by

[Teγ ·A1 ⊕ Teα · ξ1, Teγ ·A1 ⊕ Teα · ξ1] = Teγ · [A1, A2] ⊕ Teα · (A1(ξ2) −A2(ξ1)) (4.3)

For every Ã ∈ a(n; R) there exists a pair (A, η) ∈ gl(n; R) × R
n such that

Ã = Teγ(A) + Teα(η). (4.4)

For Ã =

(

A η
0 0

)

the equality (4.4) simply reads

(

A η
0 0

)

=

(

A 0
0 0

)

+

(

0 η
0 0

)
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4.3 Remark: We have tried to use explicit notation in this discussion. KN write (4.4)
as simply

Ã = A+ η

and similarly a(n; R)
KN
= gl(n; R)+R

n which can lead to some confusion in understanding
as to where each object lives. Since this is an important section, we shall avoid using KN
notation. The intuition behind their notation is clear–they identify gl(n; R) and R

n with
their images Teγ(gl(n; R) and Teα(Rn) respectively.

Now, let ω̃ be the connection 1-form of a generalized connection Γ̃ of M . Then the
pull-back γ̃∗ω̃ of ω̃ to L(M) is an a(n; R)-valued 1-form on L(M). Using the semi-direct
sum decomposition of a(n; R) as in (4.4), we write

γ̃∗ω̃ = Teγ · ω + Teα · ϕ (4.5)

such that ω is a gl(n; R)-valued 1-form on L(M) and ϕ is an R
n-valued 1-form on L(M).

Before proceeding further, let us recall a result from Chapter 2 of [2].

4.4 Proposition: (Proposition 6.4, Chapter 2) Let Q(M,H) be a subbundle of a princi-
pal fibre bundle P (M,G), where H is a Lie subgroup of G. Assume that the Lie algebra
g of G admits a subspace m such that g = m ⊕ h and ad(H)(m) = m, where h is the Lie
algebra of H. For every connection 1-form ω in P , the hcomponent ω ′ of ω restricted to
Q is a connection 1-form in Q.

Exercise 4.5 Consider the decomposition (4.5).

(1) Use Proposition 4.4 to show that ω : TL(M) → gl(n; R) defines a connection 1-form
in L(M)(M,GL(n; R)).

(2) Show that ϕ : TL(M) → R
n is a tensorial 1-form of type (GL(n; R),Rn).

As a consequence of Exercise 4.5, ϕ corresponds to a (1, 1)-tensor field Kϕ on M given
by4

Kϕ(X) = u(ϕ(X∗)), X ∈ TxM, πL(u) = x

where X∗ ∈ TuL(M) is such that TuπL(X∗) = X. We now present the main result of this
section.

4.6 Proposition: Let ω̃ be the connection 1-form of a generalized affine connection Γ̃ of
M and let

γ̃∗ω̃ = Teγ · ω + Teα · ϕ

where ω and ϕ are as described before. Let Γ be the linear connection of M defined by ω
and let K be the (1, 1) tensor field on M defined by ϕ. Then

(i) The correspondence between the set of generalized affine connections of M and the
set of pairs consisting of a linear connection of M and a (1, 1) tensor field on M
given by Γ̃ 7→ (Γ,K) is one-to-one.

4See the subsection Tensorial forms and associated bundles for details.
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(ii) The homomorphism β̃ : A(M) → L(M) maps Γ̃ into Γ.

Proof: (i) We have already seen that given a generalized connection Γ̃ of M there exist
Γ and K corresponding to it. It therefore suffices to show that given (Γ,K), there
exists Γ̃ which induces Γ and K. Let ω be the connection 1-form corresponding to Γ
and let ϕ be the tensorial 1-form on L(M) of type (GL(n; R),Rn) corresponding to
K. Given X̃ ∈ TũA(M), choose X ∈ TuL(M) and ã ∈ A(n; R) such that ũ = Rãγ̃(u)
and X̃ − Tγ̃(u)Rã(Tuγ̃X) is vertical. To see that this is possible, let u = β̃(ũ), then

πA(ũ) = πL ◦ β̃(ũ) = πL(u) because β̃ is a bundle homomorphism over the identity
map of M . Also, πA(γ̃(u)) = πL ◦ β̃(γ̃(u)) = πL(u) since β̃ ◦ γ̃ = idL(M). This shows

that γ̃(u), ũ ∈ π−1
A (x) where x = πA(ũ). Thus there exists ã ∈ A(n; R) such that ũ =

Rãγ̃(u). Next, set Y = TũπA(X̃) ∈ TxM, where x = πA(ũ). Now, let X ∈ TuL(M)
be the horizontal lift of Y to L(M) corresponding to the linear connection Γ. Then
TũπA(Tγ̃(u)Rã(Tuγ̃X)) = Tγ̃(u)(πA ◦ Rã)(Tuγ̃Y

∗) = Tu(πA ◦ γ̃)X = TuπLY
∗ = Y .

Therefore both X̃ and Tγ̃(u)Rã(Tuγ̃X)) project to the same vector under TũπA.

This means that X̃ − Tγ̃(u)Rã(Tuγ̃X)) is vertical. Thus, there exists A ∈ a(n; R)
such that

X̃ = Tγ̃(u)Rã(Tuγ̃X)) +A∗
ũ

where A∗ is the infinitesimal generator corresponding to A. Set

ω̃(X̃) = ad(ã−1)(Teγ · ω(X) + Teα · ϕ(X)) +A (4.6)

We leave it to the reader to show that this defines a connection 1-form on A(M)
that induces ω and ϕ.

(ii) Let X̃ ∈ TũA(M) and set u = β̃(ũ) and X = Tũβ̃X̃ ∈ TuL(M). Now, since
β̃ : A(M) → L(M) is a bundle homomorphism with β : A(n; R) → GL(n; R) =
A(n; R)/Rn the corresponding group homomorphism, one can identify L(M) with
A(M)/Rn. To see this, notice that R

n acts on A(M) as follows

A(M) × R
n → A(M)

(ũ, ξ) 7→ ũα(ξ)

Also, β̃(ũα(ξ)) = β̃(ũ)β(α(ξ)) = β̃(ũ) since β(α(ξ)) = idGL(n;R). It is therefore

clear that β̃ maps the orbit of ũ ∈ A(M) under the action of R
n on A(M) to β̃(ũ)

and thus we can identify img(β̃) = L(M) with A(M)/Rn. We therefore think of
β̃ : A(M) → A(M)/Rn as the natural projection. Since Tũβ̃X̃ = X = Tu(β̃ ◦ γ̃)X,
one can use the procedure similar to the one used in (i) to show that there exists
ξ ∈ R

n and η ∈ R
n (where R

n is thought of as a Lie group in the first case and as a
Lie algebra in the second one) such that ũ = uα(ξ) and

X̃ = Tγ̃(u)Rα(ξ)Tuγ̃X + (Teα(η))∗ũ (4.7)
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where (Teα(η))∗ is the infinitesimal generator corresponding to Teα(η) ∈ a(n; R).

Now, in order to show that β̃ maps Γ̃ to Γ we must show that β̃ maps the horizontal
subspace (with respect to Γ̃ at a point in A(M) to the horizontal subspace (with
respect to Γ) at the corresponding point. Suppose that X̃ is horizontal with respect
to Γ̃. Thus

0 = ω̃(X̃) = ω̃(Tγ̃(u)Rα(ξ)Tuγ̃X) + ω̃((Teα(η))∗ũ)

= ad(α(ξ)−1)ω̃(Tuγ̃X) + Teα(η)

and therefore

ω̃(Tuγ̃X) = (γ̃∗ω̃)X = −ad(α(ξ))(Teα(η))

Since (γ̃∗ω̃)X = Teγ · ω(X) + Teα · ϕ(X) we have

Teγ · ω(X) + Teα · ϕ(X) = −ad(α(ξ))(Teα(η)).

Since both Teα · ϕ(X) and ad(α(ξ))(Teα(η)) are in Teα(Rn) and Teγ · ω(X) ∈
Teγ(gl(n; R)), it can be seen that ω(X) = 0. Thus X is horizontal with respect
to Γ.

¥

Exercise 4.7 Show that (4.6) defines a connection 1-form ω̃ on A(M) that induces ω
and ϕ.

Having proved that a generalized affine connection gets mapped to the corresponding
linear connection, we now study the relationship between the corresponding curvature
forms of the connections.

4.8 Proposition: In Proposition 4.6, let Ω̃ and Ω be the curvature forms of Γ̃ and Γ
respectively. Then

γ̃∗Ω̃ = Teγ · Ω + Teα ·Dϕ (4.8 )

where D is the exterior covariant differentiation with respect to Γ, that is, Dϕ = (dϕ)(hor).

Proof: Let X,Y ∈ TuL(M). To prove that

γ̃∗(Ω̃)(X,Y ) = Teγ · Ω(X,Y ) + Teα ·Dϕ(X,Y ), (4.9)

it suffices to consider the following two cases: (1) at least one of X or Y is vertical (2)
X,Y are both horizontal. In the first case, since both sides of (4.8) are tensorial, they
vanish identically on vertical vectors and hence (4.9) is verified for the first case. As
for the second case when X,Y are horizontal, we have ω(X) = 0 = ω(Y ) and therefore
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γ̃∗ω̃(X) = Teα · ϕ(X) and γ̃∗ω̃(Y ) = Teα · ϕ(Y ). Using the structure equation for Γ̃, we
have

γ̃∗ω̃(X,Y ) = dω̃(Tuγ̃X, Tuγ̃Y ) = −
1

2
[ω̃(Tuγ̃X), ω̃(Tuγ̃X)] + Ω̃(Tuγ̃X, Tuγ̃X)

= −
1

2
[Teα · ϕ(X), Teα · ϕ(Y )] + Ω̃(Tuγ̃X, Tuγ̃X)

= Ω̃(Tuγ̃X, Tuγ̃X) (4.10)

where the last step essentially follows from the fact that the Lie bracket on R
n is zero. Also,

pullback commutes with the exterior derivative so that γ̃∗dω̃ = dγ̃∗ω̃ = Teγ ·dω+Teα ·dϕ
and thus

γ̃∗dω̃(X,Y ) = Teγ · dω(X,Y ) + Teα · dϕ(X,Y ) = Teγ ·Ω(X,Y ) + Teα ·Dϕ(X,Y ) (4.11)

where the last equality follows since X,Y are horizontal. Comparing (4.10) and (4.11) we
see that

γ̃∗ω̃(X,Y ) = Teγ · Ω(X,Y ) + Teα ·Dϕ(X,Y ).

The result now follows. ¥

We are finally in a position to define affine connections.

4.9 Definition: A generalized affine connection Γ̃ of M is called an affine connection

if (referring to Proposition 4.6) the R
n-valued 1-form ϕ is the canonical form θ of L(M).

It follows that the (1, 1) tensor field K corresponding to an affine connection Γ̃ is the
tensor field of identity transformations of tangent spaces to M . As a direct consequence
of Proposition 4.6, we have the following result.

4.10 Proposition: The bundle homomorphism β̃ : A(M) → L(M) maps every affine
connection Γ̃ of M into a linear connection Γ of M . Moreover, Γ̃ 7→ Γ gives a one-to-
one correspondence between the set of affine connections Γ̃ of M and the set of linear
connections Γ of M .

Proposition 4.10 justifies why the terms “affine connections” and “linear connections” can
be used interchangeably. This is the main result of this section. It establishes a one-to-one
correspondence between linear and affine connections, which, in the light of our treatment
of bundles of linear and affine frames respectively, is not entirely surprising. Following
KN, we shall continue to make a distinction between these two types of connections since
there are other interesting features of affine connections that we would like to explore. For
affine connections, Proposition 4.8 reduces to the following:

4.11 Proposition: Let Θ and Ω be the torsion form and the curvature form of a linear
connection Γ of M . Let Ω̃ be the curvature form of the corresponding affine connection.
Then

γ̃∗Ω̃ = Teγ · Ω + Teα · Θ (4.12 )

where γ̃ : L(M) → A(M) is the natural injection.
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Finally, we shall see how we can recover the two structure equations for L(M) that we
derived from first principles in the previous section. Consider the structure equation of
an affine connection Γ̃ of M :

dω̃ = −
1

2
[ω̃, ω̃] + Ω̃

Restrict both sides of this equation to γ̃(L(M)), we have

dω̃(Tuγ̃X, Tuγ̃Y ) = −
1

2
[ω̃(Tuγ̃X), ω̃(Tuγ̃Y )] + Ω̃(Tuγ̃X, Tuγ̃Y ) (4.13)

Now, we use more explicit notation to represent the decomposition of a(n; R), Let us write
ω̃(Tuγ̃X) = γ̃∗ω̃(X) = Teγ · ω(X) ⊕ Teα · θ(X) and ω̃(Tuγ̃Y ) = Teγ · ω(Y ) ⊕ Teα · θ(Y ).
Similarly, write

Ω̃(Tuγ̃X, Tuγ̃Y ) = γ̃∗Ω̃(X,Y ) = Teγ · Ω(X,Y ) ⊕ Teα · Θ(X,Y ).

Using the definition of the Lie bracket on Teγ(gl(n; R)) ⊕ Teα(Rn) given in (4.3), we
compute the Lie bracket on the RHS of (4.13)

[Teγ · ω(X) ⊕ Teα · θ(X), Teγ · ω(Y ) ⊕ Teα · θ(Y )]

= Teγ · [ω(X), ω(Y )] ⊕ Teα · (ω(X)θ(Y ) − ω(Y )θ(X)) (4.14)

Thus the first component of the RHS of (4.13) is given by

−
1

2
Teγ · [ω(X), ω(Y )] + Teγ · Ω(X,Y ) (4.15)

In a similar manner, we compute the second component of the RHS of (4.13) as

= −
1

2
Teα · (ω(X)θ(Y ) − ω(Y )θ(X)) + Teα · Θ(X,Y ) (4.16)

Also, from our previous observations, we have

dω̃(Tuγ̃X, Tuγ̃Y ) = Teγ · dω(X,Y ) ⊕ Teα · dθ(X,Y ) (4.17)

Thus, comparing the first and second components of the LHS and RHS respectively, we
get

dω(X,Y ) = −
1

2
[ω(X), ω(Y )] + Ω(X,Y )

dθ(X,Y ) = −
1

2
(ω(X)θ(Y ) − ω(Y )θ(X)) + Θ(X,Y )

Thus we recover the first and the second structure equations for L(M).
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