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APPLICATION OF SYMMETRY ANALYSIS TO A 
PDE ARISING IN THE CAR WINDSHIELD DESIGN* 

NICOLETA BILAt 

Abstract. A new approach to parameter identification problems from the point of view of 
symmetry analysis theory is given. A mathematical model that arises in the design of car windshield 
represented by a linear second order mixed type PDE is considered. Following a particular case of the 
direct method (due to Clarkson and Kruskal), we introduce a method to study the group invariance 
between the parameter and the data. The equivalence transformations associated with this inverse 
problem are also found. As a consequence, the symmetry reductions relate the inverse and the direct 
problem and lead us to a reduced order model. 
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1. Introduction. Symmetry analysis theory links differential geometry to PDEs 
theory [18], symbolic computation [9], and, more recently, to numerical analysis theory 
[3], [6]. The notion of continuous transformation groups was introduced by Sophus 
Lie [14], who also applied them to differential equations. Over the years, Lie's method 
has been proven to be a powerful tool for studying a remarkable number of PDEs 
arising in mathematical physics (more details can be found for example in [2], [10], 
and [21]). In the last several years a variety of methods have been developed in order 
to find special classes of solutions of PDEs, which cannot be determined by applying 
the classical Lie method. Olver and Rosenau [20] showed that the common theme 
of all these methods has been the appearance of some form of group invariance. On 
the other hand, parameter identification problems arising in the inverse problems 
theory are concerned with the identification of physical parameters from observations 
of the evolution of a system. In general, these are ill-posed problems, in the sense that 
they do not fulfill Hadamard's postulates for all admissible data: a solution exists, the 
solution is unique, and the solution depends continuously on the given data. Arbitrary 
small changes in data may lead to arbitrary large changes in the solution. The iterative 
approach of studying parameter identification problems is a functional-analytic setup 
with a special emphasis on iterative regularization methods [8]. 

The aim of this paper is to show how parameter identification problems can be 
analyzed with the tools of group analysis theory. This is a new direction of research 
in the theory of inverse problems, although the symmetry analysis theory is a com- 
mon approach for studying PDEs. We restrict ourselves to the case of a parameter 
identification problem modeled by a PDE of the form 

(1.1) F(x, w(m), E(n)) -= 0, 

where the unknown function E = E(x) is called parameter, and, respectively, the 
arbitrary function w = w(x) is called data, with x = (xl,... ., ) E ) t c Rp a given 
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domain (here w(m) denotes the function w together with its partial derivatives up 
to order m). Assume that the parameters and the data are analytical functions. 
The PDE (1.1) sometimes augmented with certain boundary conditions is called the 
inverse problem associated with a direct problem. The direct problem is the same 
equation but the unknown function is the data, for which certain boundary conditions 
are required. 

The classical Lie method allows us to find the symmetry group related to a PDE. 
This is a (local) Lie group of transformations acting on the space of the independent 
variables and the space of the dependent variables of the equation with the property 
that it leaves the set of all analytical solutions invariant. Knowledge of these classi- 
cal symmetries allows us to reduce the order of the studied PDE and to determine 
group-invariant solutions (or similarity solutions) which are invariant under certain 
subgroups of the full symmetry group (for more details see [18]). Bluman and Cole [1] 
introduced the nonclassical method that allows one to find the conditional symmetries 
(also called nonclassical symmetries) associated with a PDE. These are transforma- 
tions that leave only a subset of the set of all analytical solutions invariant. Note 
that any classical symmetry is a nonclassical symmetry but not conversely. Another 
procedure for finding symmetry reductions is the direct method (due to Clarkson 
and Kruskal [5]). The relation between these last two methods has been studied by 
Olver [19]. Moreover, for a PDE with coefficients depending on an arbitrary function, 
Ovsiannikov [21] introduced the notion of equivalence transformations, which are (lo- 
cal) Lie group of transformations acting on the space of the independent variables, 
the space of the dependent variables and the space of the arbitrary functions that 
leave the equation unchanged. Notice that these techniques based on group theory 
do not take into account the boundary conditions attached to a PDE. 

To find symmetry reductions associated with the parameter identification problem 
(1.1) one can seek classical and nonclassical symmetries related to this equation. Two 
cases can occur when applying the classical Lie method or the nonclassical method, 
depending if the data w is known or not. From the symbolic computation point 
of view, the task of finding symmetry reductions for a PDE depending on an arbi- 
trary function might be a difficult one, due to the lack of the symbolic manipulation 
programs that can handle these kind of equations. Another method to determine 
symmetry reductions for (1.1) might be a particular case of the direct method, which 
has been applied by Zhdanov [24] to certain multidimensional PDEs arising in mathe- 
matical physics. Based on this method and taking into account that (1.1) depends on 
an arbitrary function, we introduce a procedure to find the relation between the data 
and the parameter in terms of a similarity variable (see section 2). As a consequence, 
the equivalence transformations related to (1.1) must be considered as well. These 
final symmetry reductions are found by using any symbolic manipulation program de- 
signed to determine classical symmetries for a PDE system-now both the data and 
the parameter are unknown functions in (1.1). The equivalence transformations relate 
the direct problem and the inverse problem. Moreover, one can find special classes 
of data and parameters, respectively, written in terms of the invariants of the group 
action, the order of the studied PDE can be reduced at least by one, and analytical 
solutions of (1.1) can be found. 

At the first step, the group approach of the free boundary problem related to 
(1.1) can be considered and, afterwards, the invariance of the boundary conditions 
under particular group actions has to be analyzed (see [2]). In the case of parameter 
identification problems we sometimes have to deal with two pairs of boundary condi- 
tions, for data and the parameter as well, otherwise we might only know the boundary 
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conditions for the data. Thus, the problem of finding symmetry reductions for a given 
data can be more complicated. At least by finding the equivalence transformations 
related to the problem, the invariants of the group actions can be used to establish 
suitable domains Q on which the order of the model can be reduced. 

In this paper we consider a mathematical model arising in the car windshield 
design. Let us briefly explain the gravity sag bending process, one of the main industrial 
processes used in the manufacture of car windshields. A piece of glass is placed over 
a rigid frame, with the desired edge curvature and heated from below. The glass 
becomes viscous due to the temperature rise and sags under its own weight. The final 
shape depends on the viscosity distribution of the glass obtained from varying the 
temperature. It has been shown that the sag bending process can also be controlled 

(in a first approximation) in the terms of Young's modulus E, a spatially varying 
glass material parameter, and the displacement of the glass w can be described by 
the thin linear elastic plate theory (see [11], [16], and [17] and references from there). 
The model is based on the linear plate equation 

(1.2) 

(E (w,, + 
Uwyy))xx + 2(1 - v)(Ewy)y + (E (wy, + 

vwx))y 

12(1 

h2 
on , 

where w = w(x, y) represents the displacement of the glass sheet (the target shape) 
occupying a domain Q R2, E = E(x, y) is Young's modulus, a positive function that 
can be influenced by adjusting the temperature in the process of heating the glass, f 
is the gravitational force, v C (0, -] is the glass Poisson ratio, and h is thickness of the 
plate. The direct problem (or the forward problem) is the following: for a given Young 
modulus E, find the displacement w of a glass sheet occupying a domain Q before 
the heating process. Note that the PDE (1.2) is an elliptic fourth order linear PDE 
for the function w. Until now, two problems related to (1.2) have been studied: the 
clamped plate case and the simply supported plate case (more details can be found for 
example in [15]). In this paper we consider the clamped case, in which the following 
boundary conditions are required: the plate is placed over a rigid frame, i.e., 

(1.3) w(x, Y)oan = O 

and, respectively, 

(1.4) = 0, 
On , 

which means the (outward) normal derivative of w must be zero, i.e., the sheet of 
glass is not allowed to freely rotate around the tangent to 02. The associated inverse 
problem consists of finding Young's modulus E for a given data w in (1.2). This is a 
linear second order PDE for Young's modulus that can be written as 

(1.5) (wx + vwyy)Exx + 2(1 - v)wxyExy + (wyy + vW~x)Eyy 

+ 2(Aw)xEx + 2(Aw),E, + (A2w)E = 1 

after the scaling transformations w -+ 'w or E E F, with k - 12(1-2) In (1.5), 
A denotes the Laplace operator. The main problem in the car windshield design is 
that the prescribed target shape w is frequent such that the discriminant 

D = (1 - v)2w2W _ (Wxx + vwyy)(wy + Vxx) 
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of (1.5) changes sign in the domain Q, so that we get a mixed type PDE. This is one 
of the reasons for which optical defects might occur during the process. Note that 
(1.5) would naturally call for boundaries conditions for E on 09Q in the purely elliptic 
case (when D < 0), and Cauchy data on a suitable (noncharacteristic part) F C 09Q 
in the purely hyperbolic part (for D > 0). There is a recent interest in studying this 
inverse problem (see, e.g., [13]). It is known [15] that a constant Young's modulus 
corresponds to a data which satisfies the nonhomogeneous biharmonic equation (2.29). 
A survey on this subject can be found in [23]. Salazar and Westbrook [22] studied 
the case when the data and the parameter are given by radial functions; Kiigler [12] 
used a derivative free iterative regularization method for analyzing the problem on 
rectangular frames; and a simplified model for the inverse problem on circular domains 
was considered by Engl and Kiigler [7]. 

So far it is not obvious which shapes can be made by using this technique. Hence, 
we try to answer this question by finding out the symmetry reductions related to the 
PDE (1.5) hidden by the nonlinearity that occurs between the data and the parameter. 
In this sense, we determine (see section 3) the group of transformations that leave the 
equation unchanged, and so, its mixed type form. Knowledge of the invariants of these 
group actions allows us to write the target shape and the parameter in terms of them, 
and, therefore, to reduce the order of the studied equation. We find again the obvious 
result that a Young's modulus constant corresponds to data which is a solution of 
a nonhomogeneous biharmonic equation. The circular case problem considered by 
Salazar and Westbrook is, in fact, a particular case of our study. We show that other 
target shapes which are not radial functions can be considered. We prove that (1.5) 
is invariant under scaling transformations. It follows that target shapes modeled by 
homogeneous functions can be analyzed as well. In particular, we are interested in 
target shapes modeled by homogeneous polynomials defined on elliptical domains or 
square domains with rounded corners. 

The paper is structured as follows. To reduce the order of the PDE (1.5) we 
propose in section 2 a method for studying the relation between the data and the pa- 
rameter in terms of the similarity variables. The equivalence transformations related 
to this equation are given in section 3. The symbolic manipulation program DESOLV, 
authors Carminati and Vu [4] has been used for this purpose. Table 1 contains a com- 
plete classification of these symmetry reductions. In the last section, we discuss the 
PDE (1.5) augmented with the boundary conditions (1.3) and (1.4), namely, how to 
use the invariants of the group actions (on suitable bounded domains Q) in order to 
incorporate the boundary conditions. In this sense, certain examples of exact and of 
numerical solutions of the reduced ODEs are given. 

2. Conditional symmetries. The direct method approach to a second order 
PDE 

F(x, y, E(2)) = 

consists of seeking solutions written in the form 

(2.1) E(x, y) = 4I(x, y, F(z)), where z = z(x, y), (x, y) E Q. 

In this case the function z is called similarity variable and its level sets {z = k} are 
named similarity curves. After substituting (2.1) into the studied second order PDE, 
we require that the result to be an ODE for the arbitrary function F = F(z). Hence, 
certain conditions are imposed upon the functions oI, z and their partial derivatives. 
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The particular case 

(2.2) E(x, y) = F(z(x, y)) 

consists of looking for solutions depending only on the similarity variable z. If z is an 
invariant of the group action then the solutions of the form (2.2) are as well. Assume 
that the similarity variable is such that j1zll : 0 0 on Q?. 

In this section we apply this particular approach to (1.5) in order to study if the 
parameter and the data are functionally independent, which means whether or not 
they can depend on the same similarity variable. Assume that Young's modulus takes 
the form (2.2). In this case we get the relation 

(2.3) F"(z) [zx(w + vwy) + 2zz(1 - )w y + zWYY + ( vwx)] 

+ F'(z) [zxx(wx + vwyy) + 2(1 - v)zxyWxy + +Zyy(wyy + vwxx) 

+2zx(AW)x + 2zy(Aw)y] + F(z)(A2w) = 1, 
which must be an ODE for the unknown function F = F(z). This condition is satisfied 
if the coefficients of the partial derivatives of F are function of z only (note that these 
coefficients are also invariant under the same group action). Denote them by 

Fi(z) = z (wxx + vwy) + 2zz(1 - v)wy + z + vzwyx), 

2(2.4)) = Z(Wxx + vwyy) + 2(1 - v)zxyWxy + zyy(wyy + VwZx) (2.4) 
+ 2zx(Aw)x + 2z (Aw) , 

F3(z) = A2w. 
If these relations hold, then the PDE (1.5) is reduced to the second order linear ODE 

(2.5) Fr (z)F"(z) + F2(z)F'(z) + F3(z)F(z) = 1. 

2.1. Data and parameter invariant under the same group. If the target 
shape is invariant under the same group action as Young's modulus, then 

(2.6) w(x, y) = G(z(x, y)), 
where G = G(z). Substituting (2.6) into the relations (2.4) we get 

I1 
= G"(z2 + z2 2 + G' [(z2 + vz )z~z + 2(1 - v)zxz zxy + (z2 + vz,)zy] , 

2 2G" -'( + z )2 + G" {[7zi + (v + 2)z2]zxx + 2(5 - v)zzyzzy 
+ [7z2 + (v + 2)z2]z y} +G' {(Az)2 + 2(1- v)(Z - zxxz 

(2.7) 
+ 2 [zx(Az)x + z (Az)~]}, 

3 = GC""(z + z22)2 + 2G0'" [(3z2 + z)zxx + 4zxzyzzy + (z + 
3z)zyY 

+ G" {3(Az)2 + 4(zxy - zzyy) + 4 [zx(Az)x + zy(Az)y]} + G'A2z. 

Next, the coefficients of the partial derivatives of the function G, denoted by Fi, must 
depend only on z, i.e., 

F1 = C4"G1 + 1alG', 

r2 = 2ac4G1"' + a2GC" + a3G', 

F3 
= 

a4G'C"" + 2a4G"' + a5G" + a6G', 
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where 

2Z Z2 2 
a2(z) = Zx + z , 
a, (z) = (z2 +vz))zz + 2(1 - v)zzzxzy + (z2 + 

vzX)zy, 
a2(z) [ 7z + (vi + 2)z2] zxx + 2(5 - v)zzyzx, + [7z, + (v + 2)z ] zyy, 

(2.8) a3(z) = (Az)2 + 2(1 - v)(Z2, - zxxzyy) + 2 [zx(Az)x + z,(Az)y], 

a4(z) = (3z2 + z 
)zzx 

+ 4zxz zzy + (z2 + 3z2)zy, 

a5(z) = 3(Az)2 + 4(z y - zxzyy) + 4 [zx(Az)x + zy(Az)y], 

a6(z) = A2z. 
The first relation in (2.8) is a two-dimensional (2D) eikonal equation. From this we 
get 

z ,+ 2zzz,zzy + z (z)a'(z), xz, 
= a 

2Zxzyz)y 
y ZZyy 

z = - a(z)a'(z) - zy 
z ZxY) 

z• 
= a(z) a'(Z) - zx ? yyz ZxY"Y 

The last two equations imply 

(2.9) zz2 zz z 2 = a3(z)a'(Z) - a4(z) ZXy (2.9) zz - 2zzyzx, + zyxy 
zx Zy 

Assume that there is a function p = P(z) such that 

(2.10) Zzy 
= 

3(z)zxZy. 

Indeed, since the left-hand side in (2.9) depends only on z, one can easily check if 
z satisfies both the 2D eikonal equation in (2.8) and (2.10), then all the functions 
ai = ai (z) defined by (2.8) are written in terms of a and /3. Therefore, the problem 
of finding the similarity variable z is reduced to that of integrating the 2D eikonal 
equation and the PDE system 

zzx = a' - /3zy, 
(2.11) zxy = zxzzy, 

z?, = aa' - 3zz. 
The system (2.11) is compatible if the following relation holds: 

aa" + a/2 - 30aa' + a2 (/2 - 
0•) 

= 0. 

Denote p = _2. In this case, the above compatibility condition can be written as 

(2.12) p" - 30-LIp' + 2p (32 - 3') = 0. 

On the other hand, if the function /3 is given by 

(2.13) (z) = (z) X'(Z) ' 
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where A is a nonconstant function, then (2.10) turns into 

(A(z)) = 0. 
The general solution of this equation is given by 

(2.14) A(z(x, y)) = a(x) + b(y), 

with a and b being arbitrary functions. Substituting P from (2.13) into the compati- 
bility condition (2.12) and after integrating once, we get 

(2.15) t'A' + 2pA" = k, 

where k is an arbitrary constant. 
Case 1. If k 

: 
0, then after integrating (2.15) and substituting back p = 12, we 

get 

(2.16) a2(z) = 2kA(z) + C 
A/2(z) 

The relation (2.14) implies A'(z)zx = a'(x), and A'(z)zy = b'(y). We substitute these 
relations, (2.14) and (2.16), into the 2D eikonal equation (see (2.8)). It follows that 
the functions a = a(x) and b = b(y) are solutions of the following respective ODEs: 

a'2(x) - 2ka(x) = C2 and b'2(y) - 2kb(y) = C3, 

with C2 + C3 = C1 (here Ci are real constants). The above ODEs admit the noncon- 
stant solutions 

1 1 
a(x) 

- [k2(X - C4)2 -C2] 
and b(y) 

-k 
[k2(y - C5)2 - C3] 

and so (2.14) takes the form 

k( C 
(2.17) A(z(x, y)) = 2 [(X - C4)2 + (y - C5)2] C 2 2k" 

Notice that I A or A+ k2 defines the same function 3 as the function A does. Moreover, 
since the PDE (1.5) is invariant under translations in the (x, y)-space, we can consider 

(2.18) A(z(x, y)) = x2 2 

If V?5 is a bijective function on a suitable interval, and if we denote by D =- (/iX)-1 its inverse function, then the similarity variable written in the polar coordinates (r, 0) 
(where x = r cos(0), y = r sin(0)) is given by 

(2.19) z(x, y) = 4D(r). 

For simplicity, we consider 4 = Id, and from that we get 

(2.20) E = F(r) and w = G(r), where z(x,y) = r. 

Hence, the ODE (2.5) turns into 

v 

v+) 
G1U+2G, 

1 
(2.21) G" + oG')F"+ (2G"' + -2 G' F'- 

+ (G"" G"' 2 G" + 3 G')F = 1, r r r 
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which can be reduced to the first order ODE 

( v 1 1 2 -22 -r (2.22) G" + - + '+ - G' F = 2 r r r2 2r r 

where ro E [0, 1] with the property that 

= [(rG" +vG') F' + (rG" +G" - G) F] I=ro 

is finite. The smoothness condition G'(0) = 0 implies that (2.22) can be written 
as [15] 

(2.23) G"+ rG' F'+ G' +G" - 
-2G') 

F = 
-. Sr 2 

Case 2. If k = 0, similarly we get 

(2.24) z(x, y) = 1((klx + k2y), 

where kI and k2 are real constants such that k2 + kI > 0. In this case, for 4 = Id, 
the parameter and the data are written as 

(2.25) E = F(z) and w = G(z), where z(x,y) = klx+k2y, 

and the ODE (2.5) turns into 

1 
(2.26) G"(z)F"(z) + 2G'"(z)F'(z) + G""(z)F(z) = (k + k)2 (k~ + k2)2' 

with {zlG"(z) = 0} the associated set of singularities. Integrating the above ODE on 
the set {zlG"(z) $ 0} we obtain that Young's modulus is given by 

E 
(klx + k2y)2 + Cl(klx + k2y) + C2 

S 2(k2 + k2 )2G"(kix + k2y) 
where Ci are arbitrary constants. 

2.2. Data and parameter invariant under different groups. Consider two 
functionally independent functions on Q, say, z = z(x, y) and v = v(x, y), and let 

(2.27) w = H(v(x, y)) 

be the target shape. In this case, the data and the parameter do not share the same 
invariance. Similar to the above, substituting (2.27) into the relations (2.4) we get 

(2.28) 

F1 = H" [(zzxv + zyvy)2 + V(Zyvz - z- Zv)2] 

z 
- 

2 
Vzz 

+ 
z 

+22 
21)] 

+ H' 
[Izxv x + 2zzzyv2, + zvyy + v (z" vy - 2zxzyzvy + zvxx), 

r2 = H"'(v + v)(2 (z + zXvy) + H" [I~zx + 2vxyzzy + vy Zyy 
+ i (v z - 

2v1vyzzy 

+ v z 
y) 

+ 
2z+v vx 

+ 2(zzvy + zyve)vxy + 
2zyvyvyy 

+ 
(zvvx 

+ zyvy)(AZv)] + H' [zzvxV + 2ZzyVZy + Zyyvyy + v (zXxVyy - 2zzyvxy 

+ zyyvx ) + zz(Az)z + zy(Av),], 
F3 = H""(v2 + v2)2 + 2H"' [(3v~ + v~)vxx + 4vxv v, + (v2 + 3v2)v~] 

+ H" [3v~x + 4v 2 + 3v 2 + 2+ ,v , + 4vx(Av)x + 4v,(,v),] + H'A2v. x y YY 
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Recall that Fi's are functions of z = z(x, y) only. Since each right-hand side in the 
above relations contains the function H = H(v) and its derivatives, we require that 
the coefficients of the derivatives of H to be functions of v. It follows that Fi must 
be constant and denote them by jyi. Therefore, the last condition in (2.28) becomes 

(2.29) A2(w) = 73, 

which is the biharmonic equation. According to the above assumption, we seek solu- 
tions of (2.29) that are functions of v only. Similar to section 2.1, we get 

(2.30) v(x, y) = 'F(r), or v(x, y) = (kix + k2y), 

and thus, for I = Id, the target shape is written as 

(2.31) w(x,y) = H(r), or w(x,y) = H(klx + k2y). 

Since z = z(x, y) and v = v(x, y) are functionally independent, we get 

(2.32) z(x,y) = kix + k2y, v(X, y) = Vx + 
or 

(2.33) z(x, y) = Vx2 +y2, v(x, y) = kix + k2y. 

One can prove that if the coefficients 'yi are constant, and if z and v are given by 
(2.32) or (2.33), respectively, then 'i = 72 = 0, and '3 : 

0. On the other hand, the 
solutions of the biharmonic equation (2.29) of the form (2.31) are the following: 

w(, y)=3 z4C2 C2ln(z) +C3z2ln(z) + C4 forT = V+y2 64 

and, respectively, 

w(x,"3 v4 + C v3 +C22 +C3v + C4 for 
v=kl 

x+k2y, 
24(k2 + k2)2 

and these correspond to the constant Young's modulus 

1 
(2.34) E(x, y) = 

-. 73 

Notice that only particular solutions of the biharmonic equation have been found in 
this case (i.e., solutions invariant under rotations and translations). Since this PDE 
is also invariant under scaling transformations, which act not only on the space of the 
independent variables but on the data space as well, it is obvious to extend our study 
and to seek other types of symmetry reductions. 

3. Equivalence transformations. Consider a one-parameter Lie group of trans- 
formations acting on an open set D C Q x W x , where W is the space of the data 
functions, and S is the space of the parameter functions, given by 

x* = x + e~(x, y, w, E) + O(E2), 
* 
3.1) 

Y + E(, y, w, E) + O(2), 

w* = W + Eo(x, y, w, E) + O(E2), 
E* = E + E(x, y, w, E) + O(E2), 
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where E is the group parameter. Let 

(3.2) V = ((x, y, w, E)O + 
r•(x, 

y, w, E)o, + ?(x, y, w, E)a, + b(x, y, w, E)&E 

be its associated general infinitesimal generator. The group of transformations (3.1) 
is called an equivalence transformation associated to the PDE (1.5) if this leaves the 
equation invariant. This means that the form of the equation in the new coordinates 
remains unchanged and the set of the analytical solutions is invariant under this trans- 
formation. The equivalence transformations can be found by applying the classical 
Lie method to (1.5), with E and w both considered as unknown functions (for more 
details see [10] and [21]). Following this method we obtain 

((x, y, w, E) = kI + k5x - k4y, 

(3.3) 
r(x, y, w, E) = k2 + k4x + k5y, 

1(x, y, w, E) = k3 + k7 + k6y + (4k5 - ks)w, 

4(x, y, w, E) = ksE, 

where ki are real constants. The vector field (3.2) is written as V = i=8 kiVi, where 

(3.4) 
V1 = ax, V2 = y, V3= aw,, V4 = -yOx + xy, V5 = xx? + yy + 4ww,, 

V6 = yw, V7 = x8,, Vs = 
-wOw 

+ E&E. 

PROPOSITION 3.1. The equivalence transformations related to the PDE (1.5) are 
generated by the infinitesimal generators (3.4). Thus, the equation is invariant under 
translations in the x-space, y-space, w-space, rotations in the space of the independent 
variables (x, y), scaling transformations in the (x, y, w)-space, Galilean transforma- 
tions in the (y, w) and (x, w) spaces, and scaling transformations in the (w, E)-space, 
respectively. 

Notice that the conditional symmetries found in section 2 represent particular 
cases of the equivalence transformations. Since each one-parameter group of trans- 
formations generated by Vi is a symmetry group, if (w = G(x, y), E = F(x, y)) is a 
pair of known solutions of (1.5), so are the following: 

W(1) 
= G(x - el, y), E(') = F(x - E , Y), 

w(2) = G(x, y - E2), E(2) = F(x, y - 2), 

w(3) = G(x, y) + e3, E(3) = F(x, y), 
w(4) = G(Q, y), E(4) = F(j, ), 

(3.5) ((5) _ e4E5G(e-1g5x, e-'5y), E(5) = F(e-15x, e-i5y), 

w(6) 
= G(x, y) + E6y, E(6) = F(x, y), 

w(7) = G(x, y) + E7x, E(7) = F(x, y), 

w(8) = e-EsG(x, y), E(-) = e68F(x, y), 
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where x = x cos(E4) + y sin(E4), y = -xsin(E4) + y cos(E4), and ei are real constants. 
Moreover, the general solution of (1.5) constructed from a known one is given by 

W(x, y) = e4E5-8 G(e-c5 
(x 

- k1), eE-5 (y - k2)) - e45-E866y + 
e4E5-s8 E7 + e465-E6s3, 

E(x, y) = e F(e-E ( - k), e (y 2)), 
where k1 = eI COS(E4) + E2 sin(E4), and k2 = C1 sin(E4) - E2 COS(E4). 

The equivalence transformations form a Lie group g with an eight-dimensional 
associated Lie algebra A. Using the adjoint representation of 9, one can find the 
optimal system of one-dimensional subalgebras of A (more details can be found in 
[18, pp. 203-209]). This optimal system is spanned by the vector fields given in 
Table 1. Denote by z, I, and J the invariants related to the one-parameter group 
of transformations generated by each vector field Vi. Here F and G are arbitrary 
functions, (r, 0) are the polar coordinates, and a, b, c are nonzero constants. To reduce 
the order of the PDE (1.5) one can also integrate the first order PDE system 

(3.6) 
((x, y, w, E)wx + rl(x, y, w, E)wy 

- 
(x, y, w, E), 

((3.6) , y, w, E)Ex + (, y, w, E)E, = (x, y, w, E), 

which defines the characteristics of the vector field (3.2). In Table 1, the associated 
reduced ODEs are listed. The invariance of (1.5) under the one-parameter groups of 
transformations generated by V1, V2, V1 + cV6, and V2 + cV7, respectively, leads us to 
the same ODE, 

(3.7) F"(z)G"(z) + 2F'(z)G"'(z) + F(z)G""(z) = 1, 
with the general solution 

z2 - C1 C2 (3.8) F(z) = 2G"(z) 
on the set {z G"(z) =4 0}. The invariance under the scaling transformation generated 
by the vector field V5 yields the reduced ODE 

[G" (z2 + 1)2 -6z(z2 + 1)G' + 12(z2 + v)G] F" 

(3.9) + 2 
[(z2 

+ 1)2 G"'- 5z(z2 + 1)G" + 3(4z2 + v + 1)G' - 12zG] F' 

+ [(z2 + 1)2 G"" - 4z(z2 + 1)G'" + 4(3z2 + 1)G" - 24zG' + 24G] F = 1. 

The ODE 

(3.10) 

[(z2 1)2 G"+2(c- 3)z(z2 + 1)G'+(c- 3)(c- 4)(z2 + )G F" 

+ {2 (2 + 1)2 G"' + 2(2c - 5)z(z2 + 1)G" + 2(c- 3)[z2(c- 4) + v(c - 1) -1]G' 

-2(c - 3)(c - 4)zG} F' + { (z2 + 1)2 G"" + 2(c - 2)z(z2 + 1)G'" + [(c - 3)(c - 4)z2 

-2(c- 2) + vc(c- 1)] G"- 2(c- 4)(c- 3)zG'+ 2(c- 4)(c- 3)G}F = 1 
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TABLE 1 

Infintesimal generator Invariants w = w(x, y) E = E(x, y) ODE 

1. 
Vl 

z = y w = G(z) E = F(z) (3.7) 
I=w 
J=E 

2. V2 z = x w = G(z) E = F(z) (3.7) 
I=w 
J=E 

3. V4 z = r w = G(z) E = F(z) (2.21) 
I=w 
J=E 

4. V5 z = w = x4G(z) E = F(z) (3.9) 
I x--4w 

J=E 

5. cV3 + V4 z = r w = cO + G(z) E = F(z) (2.21) 
I = w - cO 

J=E 

6. V5 + cV8 z - w = x4-cG(z) E = xcF(z) (3.10) 
I =XcX4W 
J = x-CE 

7. V4 + CV8 Z = r w = e-cG(z) E = eCeF(z) (3.11) 
I = eCew 

J = e-ceE 

8. V4 + cV5 z = re-c w = r4G(z) E = F(z) (3.13) 
I = r-4w 

J=E 

9. V4 + cX5 + bV 8 z = re-c w r4- G(z) E = r F(z) (3.14) 
I=rc-4w 

b 
J=r-cE 

10. 
Vl 

+ 
cV6 z = y w = cxy + G(z) E = F(z) (3.7) 

I w - cxy 
J=E 

11. V2 + cV7 z = x w = cxy + G(z) E = F(z) (3.7) 
I =w - cxy 

J=E 

12. VI +- cV8 z=y w = e-CXG(z) E = eCF(z) (3.15) 
I = ecxw 

J = e-C'E 

13. V2 + cVs z = x w = e-cyG(z) E = eCyF(z) (3.15) 
I = ecyw 

J = e-CyE 

is obtained in case 6 of Table 1. The reduced equation 

(3.11) 

SVC2_ 
v 

+_2 
2vc2 

_-1 C2(1 +2v) G" + -'+ 2G F" + 2G"' + 
rG1 

+ 2G' - F 

S,,,,2 ,,,+ c2 
- 1 1 - C2(2v + 1) 2c2(V 

+ 1) F +[+-G + G +r4+ T, r2 7,3 7,4 
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is related to case 7. This can be written as the first order ODE 

(3.12) 

G +-G + 
-G 

F + G1"1+ 

-G"r 

+ G' - F= 2r + 
r r2 )'r r20 2r r 

where ro E [0, 1] with the property that 

[ ( 
V 

) ( c2v - 
1 C2(1 + V) 

*- 
F1 rG" + vG1 + -G + F rG"' +G"G+ GI- 

r2 

G |r=ro 
r r r 

is finite. In cases 8 and 9, after the change of the variable z = exp(t), the reduced 
ODEs are the following: 

(3.13) 
{ (c2 + 1)2G" + (c2 + 1)(v + 7)G' + 4 [v(3c2 + 1) + c2 + 3] G} F" 

+ {2(c2 + 1)2G1"'+ (c2 + 1)(v + 19)G"+ 2[16 + (c2 + 1)(3v + 13)]G' + 8(v + 7)G}F' 

+ { (c2 + 1)2G0"" + 12(c2 + 1)G'" + 4(5c2 + 13)G" + 96G' + 64G} F = 1, 

and, respectively, 

(3.14) 

(c2+1)2 G1 + -+ c [c(v + 7) - 2b]G' + 
- [c3(1 + 3) -c2b 

+ c(v + 3) - b]G F"+ 2(c2 + 1)2G'+ + c [c(v + 19) - 4b]G" 

b2 b 
+2 b 

+2vb2 +c2(3v?+13)-4bc(v+1)-12-b +3v-+ 29 G' 

C2) 

+ - [2c(v 7) + b(v - 5)]G F' + (c2 2G"2 

+ 2 (c +) (6c - b)G'" + + -( - 17) + 20c2 - bc(v + 7) + vb2 + 52 G" 

S - [16c+ b(v - 5)]G' +2 - [8c+ b(v - 3)]G F = 1. C ( C 2 

In cases 12 and 13 we get the same equation, 

(3.15) (G" + vc2G) F" + 2 (G"' + vc2G') F' + (G"" + vc2GG") 
F = 1, 

with the general solution given by 

z2 + C1 + C2 
(3.16) F(z) G"(z) + G" (z)+ vc2G(z) 

on the set {zIG"(z) + vc2G(z) 5 0}, where C1 and C2 are arbitrary real constants. 
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4. Conclusions. The data w is the function that models the target shape of a 
car windshield. Hence, we seek data with relevant physical and geometrical properties, 
such as smoothness and a positive curvature graph at least in the center of the bounded 
domain Q, for which the boundary condition (1.3) is satisfied-which means that the 
sheet of glass is placed over a rigid frame. Moreover, if there is no free rotation of 
the plate around the tangent to 8Q, then the condition (1.4) is required. Applying 
symmetry reductions theory to the PDE (1.5), we have shown that the data w and 
Young's modulus E can be expressed in terms of the invariants z, I, and J associated 
with a certain group action, i.e., I = G(z) and J = F(z), where w occurs in I, 
and E in J, respectively. Since now the technique of reducing the PDE (1.5) to an 
ODE has been applied only in the case of the radial functions ([15], [22], and [23]). 
Other symmetry reductions related to the studied model can be derived and these 
are listed in Table 1. The data given by homogeneous polynomials can be related to 
the invariance of the equation with respect to the scaling transformations (see cases 
4 and 6, Table 1). The first two and last four cases in Table 1 allow us to construct 
other kind of data (see (3.5)). Since t must be bounded, the most interesting cases 
correspond to the rotational and the scaling symmetries. The problem of finding exact 
solutions of the reduced equations, which are second order linear nonhomogeneous 
ODEs, might be a difficult task depending on the form of the data. These equations 
are also, in general, ill-posed, as the initial problem is, and hence, regularization 
methods might be required in order to be studied, which is our current research. 

One can make the following remarks: assume that 09Q = {(x, y)I z(x, y) = k} is 
the k-level set of the function z (here k being a nonzero constant) and IIVzjj > 0 on 
(2. If the target shape is given by w(x, y) = a(x, y)G(z(x, y)), where a = a(x, y) is a 
suitable function according to Table 1, then the boundary conditions (1.3) and (1.4) 
are equivalent to G(k) = 0 and G'(k) = 0. Therefore, the data might have the form 

w(x, y) = a(x, y) (z(x, y) - k)2 H(z(x, y)). This corresponds to the case when the 
data and the bounded domain Q are invariant under the same symmetry reduction. 
In our case, this can be applied to rotational symmetries. For scaling invariance, we 
have to incorporate the noninvariant boundary conditions in invariant solutions. As 
a consequence, we can extend the study of the problem on elliptical domains and on 
square domains with rounded corners. For instance, the class of target shapes of the 
form w(x, y) = zm(2, y)- km, where m > 1 is a natural number, satisfies the boundary 
condition (1.3). In this case, the normal derivative of the data on the boundary is 

--an 
=I mkm-111Vz|| a. If this quantity is small then the condition (1.4) is almost 

satisfied (i.e., there is a small free rotation of the plate around the tangent to 0•Q). In 
the following examples, we assume that the glass Poisson ration v = 0.5. 

Example 1. Rotational invariant data and parameter. Consider the target shape 
of the form [23] 

1 1)2 
w(x, y) = G(r) = 1 (r - 1)2 (2r+ 1), r = 

Vx2+y2, 

defined on the unit disc (see Figure 4.1) which satisfies the boundary conditions (1.3) 
and (1.4). Since G'(0) = 0, the reduced ODE is (2.23) and this has a singularity at 
r = . Since E > 0, we consider the constant of integration C1 = 1, and so, 5 

1, ) = + 

The PDE (1.5) is elliptic for r E (, ), hyperbolic for r E [0, 3) U (, 1], and 
parabolic if r= or r = , respectively. 5 41 
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FIG. 4.1. The parameter E(x,y) = F(r) = - (r+ ? ) + (5r- 3)-6 and the target shape 

w(x,y) = G(r) = 
-- 

(r - 1)2 (2r + 1), with r = /2 +y2, defined on the unit disc. 

Example 2. Particular target shapes on rounded square domains. 
(a) Suppose the Lam6 oval o0 = {(x, y)I x2n + y2n - 1} is the boundary of the 

domain (here n > 2 is a natural number). For a target shape of the form 

(4.1) w(x, y) (x2n + y2n)m _ 1, 

m > 1 being a natural number, (1.5) is elliptic on Q - {(0, 0)} and parabolic in 
(0, 0). These target shapes are invariant with respect to V5 + cV8 + (4 - c)V3, where 
c = 4 - 2mn. For x > 0 or x < 0, the functions (4.1) can be written as 

w(x,y) 
=x2mn)G(z) 

-1, G(z)= (1+z22n), z= 
x 

According to case 6 in Table 1, the associated Young's modulus has the form 

E(x, y) = 4-2mnF(), z - 
Y 

Since w(x, y) = w(y, x) = w(-x, y) = w(x, -y) = w(-x, -y), Young's modulus also 
shares these discrete symmetries. Thus, the reduced ODE (3.10) can be integrated for 
z E [0, 1]. In particular, for n = 2 and m = 1, the data is a solution of the biharmonic 
equation and Young's modulus is E = 48-1. For n - 3 and m = 1, the data and the 
numerical solution F satisfying F(0) = 0.002 and F'(0) = 0 are given in Figure 4.2. 

(b) Assume that o0 = {(x, y)I x2n + y2 = 1}, where n > 1 is a natural number. 
Consider the class of target shapes 

w(x, y) = x2n + y2 _ 1, 

invariant under the vector field V2 + 2V6. Hence, (1.5) is reduced to the ODE (3.7). 
For n = 3, the associated Young's modulus is given by 

2 + C12x + C2 
E(x, y) = F(x) = 

2( 
x+C 

2(30X4 + 1)' 

and since E > 0, we can set C1 = 0 and C2 = 2 (see Figure 4.3). Equation (1.5) is 
elliptic on Q - Oy and parabolic on the y-axis. 
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defined on the rounded square domain {(x, y)I x6 + y6 < 1}. 
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FIG . 4.3. The parameter E(xy)- x2+2 and the data w(x, y) = x6 + y2 -1 defined on the 

rounded square domain {(x, y)l x6 + y2 < 1}. 

Example 3. Particular target shapes on elliptic domains. Consider the data 

(4.2) w(x,y) = + - 1, 

2 2 

on the elliptic domain Q = {(x, y)l | + 2 < 1}, where m > 1 is a natural number. 
These target shapes are obtained from the invariance of the studied PDE with respect 
to V5 + cVs + (4 - c)V3, where c = 4 - 2m. The PDE (1.5) is elliptic on Q - {(0, 0)} 
and parabolic in the origin. For x > 0 or x < 0, the functions (4.2) can be written as 

2m1 
2 zy 

-x, 
)= G(z) - 1, G(z) = 2- + , 

Z= (X, ) x G () (2a+b2)x 
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In this case, we look for solutions to (1.5) of the form 

E(x, y) 4-2mFz z - 

If m = 2, the data is a solution of the biharmonic equation, and the related Young's 
modulus is E - 24 (a-4 + b-4) + 16a-2b-2. If m > 3, the reduced ODE is (3.9). For 
m = 3, the data and the numerical solution F of (3.9) satisfying F(0) = 0.001 and 
F'(0) = 0 are plotted in Figure 4.4. 

In brief, suppose that the target shape w on a domain 1Q is given. In order to see 
if this is an invariant function with respect to the equivalence transformations related 
to the studied model, we should check if this is a solution of the first equation in (3.6), 
where the functions (, r1, and 0 are given by (3.3). Next, by integrating the second 
PDE in (3.6) we can determine the form of the parameter in terms of the similarity 
variables. The geometrical significance of the nonlinearity occurring between the data 
and the parameter in the inverse problem (1.1) is reflected by the group analysis tools. 
Investigating special groups of transformations connected to this equation, the order of 
the model can be reduced. The equation will be then written in terms of the invariants 
of the group actions. Another advantage of this approach is that of relating the direct 
and inverse problems through these symmetry reductions. It might be interesting for 
future study to link these results to the common approach of the inverse problems 
theory, especially in expressing the regularization methods in terms of the similarity 
variables. For other target shapes defined by functions which are not invariant under 
the listed symmetry reductions, the classical theory of the linear second order PDEs 
can be applied, but this might be quite difficult due to the form of the discriminant. 
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