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Summary

The two-dimensional shallow water equations and their semi-geostrophic approximation that
arise in meteorology and oceanography are analysed from the point of view of symmetry
groups theory. A complete classification of their associated classical symmetries, potential
symmetries, variational symmetries and conservation laws is found. The semi-geostrophic
equations are found to lack conservation of angular momentum. We also show how the particle
relabelling symmetry can be used to rewrite the semi-geostrophic equations in such a way that
a well-defined formal series solution, smooth only in time, may be carried out. We show that
such solutions are in the form of an ‘infinite linear cascade’.

1. Introduction

Many natural phenomena are described by a system of nonlinear partial differential equations
(PDEs), which are often difficult to solve analytically as there is no existing general theory for
completely solving nonlinear PDEs.

In the mid-nineteenth century, Sophus Lie introduced a new method for studying differential
equations by using their symmetries. For each PDE, or system of PDEs, there is a local group of
transformations, called a symmetry group, that acts on the space of its independent and dependent
variables, with the property that it maps the set of all analytical solutions to itself, and so leaves the
form of the equation unchanged. The method of finding the symmetry group associated with the a
PDE is called the classical Lie method. Moreover, the classical Lie method leads to special types
of solutions in terms of solutions of lower-dimensional equations. For a modern description see,
for example, (1). The classical Lie method is an algorithmic procedure for which many symbolic
manipulation programs have became available; cf. (2 to 4). Their use became imperative in finding
classical symmetries associated with large systems of PDEs.

The variational symmetry group of a variational problem is a subgroup of the symmetry group as-
sociated with the Euler–Lagrange equations, with the property that it leaves the variational integral
unchanged. Knowledge of the variational symmetries leads, by Noether’s theorem, to the conserva-
tion laws associated with the studied system: for each one-parameter variational symmetry there is
an associated conservation law; for details see (1, §§4.3, 4.4, 5.3).
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In the past twenty years, the semi-geostrophic equations have become a model for describing
atmospheric motions on a synoptic scale, including the presence of fronts (5 to 7). In two-
dimensional shallow water theory (8), a typical particle (more precisely, fluid column) has the
Cartesian horizontal coordinates

x = x(a, b, t), y = y(a, b, t) (1.1)

expressed as functions of the particle labels (a, b) ∈ R2 and time t ∈ R+. For convenience, each
particle is labelled by its position at a reference time t = 0; this means the functions in (1.1) are
defined such that x(a, b, 0) = a and y(a, b, 0) = b. The incompressibility hypothesis requires that

h(a, b, 0)

h(a, b, t)
= ∂(x, y)

∂(a, b)
, (1.2)

where the Jacobian on the right is that of the mapping (1.1). The time derivative of (1.2) following
the particle gives the continuity equation. In this paper we assume h(a, b, 0) = 1, so that the
incompressibility hypothesis becomes

h(a, b, t) = 1/(xa yb − xb ya), (1.3)

where subscripts denote partial derivatives. The mapping (1.1) is assumed to be invertible, such that
when a = a(x, y, t) and b = b(x, y, t) are inserted into (1.2), then the current depth h is expressed
as a function of x , y and t , which represents the Eulerian description.

The equations of the horizontal momentum balance for the flows over a bed which is rotating
with position-dependent Coriolis parameter f = f (y) are

ẍ + ghx − f ẏ = 0, ÿ + ghy + f ẋ = 0, (1.4)

where g is a non-zero constant (representing the combined effect of the acceleration due to gravity
and a centrifugal component due to the Earth’s rotation), a dot denotes the time derivative following
a particle, and hx and hy are given by

hx = h(ybha − yahb), hy = h(xahb − xbha).

Henceforth we shall assume that f is a constant. It is known that the shallow water potential vor-
ticity, defined by

� = 1

h

(
∂ ẏ

∂x
− ∂ ẋ

∂y
+ f

)
, (1.5)

is conserved on particles; see (9, 10) and the references therein.
The semi-geostrophic approximation to (1.4) is the replacement of the true acceleration by the

time derivative of the vector

ug = −ghy/ f, vg = ghx/ f, (1.6)

following the particle. This vector field is called the geostrophic velocity. Thus, the semi-geostrophic
approximation seeks to find motions satisfying

u̇g + ghx − f ẏ = 0, v̇g + ghy + f ẋ = 0. (1.7)
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It is also known that the semi-geostrophic potential vorticity, given by

�∗ = 1

h

(
f + ∂vg

∂x
− ∂ug

∂y
+ 1

f

∂(ug, vg)

∂(x, y)

)
, (1.8)

is conserved on particles (11).
In this paper we give a complete classification of the symmetries and the conservation laws as-

sociated with the two-dimensional shallow water (SW) equations (1.4) and the semi-geostrophic
(SG) equations (1.7). In sections 2 and 3 we determine the Lie point symmetries associated with the
SW equations and SG equations, written in their classical forms (2.1) and (3.1), respectively, and
in their potential forms (2.5) and (3.2), respectively. In sections 4 and 5, we determine the conser-
vation laws derived from the variational symmetries. The particle relabelling symmetry leads to the
conservation of the shallow water potential vorticity � (12) and semi-geostrophic potential vorticity
(13), the time invariance leads to the conservation of the energy of the SW equations (12) and of SG
equations, and the translation invariance to the conservation of linear momentum of the SW and SG
equations, respectively. Moreover, the rotation invariance leads to the conservation of the angular
momentum of SW equations, but this is lost for the SG equations. Indeed, the SG equations are not
suitable for the study of vortex dynamics (14).

The particle relabelling symmetry of Lagrangian fluid dynamics is important not only for the
conservation of potential vorticity but for geometric studies of the equations. For example, in (10)
it is shown how the symmetry relates to Hamiltonian properties, while in (9) it is shown how the
symmetry relates to symplecticity with a view to symplectic integration methods. Here we use the
symmetry to reframe the equations in a way which is adapted to the derivation of formal series
solutions. The aim is to elucidate the structure of those solutions which are smooth in time, at
least for small time. We show that these solutions can be described in terms of an ‘infinite linear
cascade’. The method can be used for any equation having the particle relabelling group, and thus
is of independent interest. While we find a large class of such solutions, they do not satisfy the
physically natural flow property,

x(x(a, b, t), y(a, b, t), s) = x(a, b, t + s), y(x(a, b, t), y(a, b, t), s) = y(a, b, t + s),

also known as the integral curve property. This contrasts with the semi-geostrophic approximation
of the two-dimensional Euler equations, which do have such solutions (15).

2. Classical and potential symmetries for the shallow water equations

2.1 Classical symmetries of the shallow water equations

Substituting the function h defined by (1.3) into (1.4) yields

ẍ − g
[
y2

b xaa − 2ya ybxab + y2
a xbb − xb yb yaa + (xa yb + xb ya)yab − xa ya ybb

]
(xa yb − xb ya)3 = f ẏ, (2.1a)

ÿ + g
[
xb ybxaa − (xa yb + xb ya)xab + xa yaxbb − x2

b yaa + 2xaxb yab − x2
a ybb
]

(xa yb − xb ya)3 = − f ẋ, (2.1b)
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which we shall refer to as the classical form of the SW equations. To determine the Lie point
symmetries, the classical symmetries, we consider the one-parameter group of transformations

a∗ = a + εξ(a, b, t, x, y) +O(ε2), (2.2a)

b∗ = b + εη(a, b, st, x, y) +O(ε2), (2.2b)

t∗ = t + εθ(a, b, t, x, y) +O(ε2), (2.2c)

x∗ = x + εφ(a, b, t, x, y) +O(ε2), (2.2d)

y∗ = y + εψ(a, b, t, x, y) +O(ε2), (2.2e)

where ξ , η, θ , φ and ψ are the infinitesimals which depend on a, b, t , x and y. Applying the classical
Lie method shows that θ is a constant, and

φ(a, b, t, x, y) = Ax − By + C cos( f t) + D sin( f t) + E,

ψ(a, b, t, x, y) = Ay + Bx + D cos( f t) − C sin( f t) + F,

with A, B, C , D, E and F constants, and ξ = ξ(a, b) and η = η(a, b) satisfy

ξa + ηb = 4A. (2.3)

The infinitesimal generator associated with (2.2) is

X = ξ(a, b)∂a + η(a, b)∂b + θ∂t + {Ax − By + C cos( f t) + D sin( f t) + E} ∂x

+ {Ay + Bx + D cos( f t) − C sin( f t) + F} ∂y,

where ∂a = ∂/∂a, ∂b = ∂/∂b, ∂t = ∂/∂t , ∂x = ∂/∂x and ∂y = ∂/∂y, and so we have the following
result.

THEOREM 2.1. The symmetry group associated with the SW equations (2.1) is generated by the
following vector fields:

X1 = ∂t , X2 = ∂x , X3 = ∂y, X4 = −y∂x + x∂y,

X5 = cos( f t)∂x − sin( f t)∂y, X6 = sin( f t)∂x + cos( f t)∂y,

X0 = ξ(a, b)∂a + η(a, b)∂b + Ax∂x + Ay∂y,

with A an arbitrary constant, and where ξ and η satisfy (2.3).

Therefore the SW equations (2.1) are invariant under translations in t , x and y (vector fields X1,
X2 and X3 respectively), rotations in the (x, y)-space (X4), and helical rotations with respect t in the
(x, y)-space (X5 and X6). The vector field X0 with A = 0 is the infinitesimal form of the particle
relabelling symmetry: if a and b are the particle labels and

a∗ = φ(a, b), b∗ = ψ(a, b) (2.4)

is the relabelling, then

φaψb − φbψa = 1.
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A one-parameter family of such transformations yields a flow on (x, y)-space, and then (ξ, η) is
the vector field generating that flow. The zero divergence of the vector field corresponds to the area
preservation of the flow.

We remark that we are not able to apply the classical Lie symmetry method using currently
available software packages to (1.4) and (1.7) as they stand. This is because differentiation with
respect to x or y and time t do not commute, as x and y depend on t .

2.2 Potential symmetries of the shallow water equations

If we let u = ẋ and v = ẏ, then the SW equations (1.4) can be written as

ẋ = u, (2.5a)

ẏ = v, (2.5b)

u̇ + gh(ybha − yahb) − f v = 0, (2.5c)

v̇ + gh(xahb − xbha) + f u = 0, (2.5d)

where h is given by (1.3), which we shall refer to as the potential form of the SW equations (1.4).
To determine the associated Lie point symmetries, the potential symmetries, we consider the one-
parameter group of transformations

a∗ = a + εξ(a, b, t, x, y, u, v) +O(ε2),

b∗ = b + εη(a, b, t, x, y, u, v) +O(ε2),

t∗ = t + εθ(a, b, t, x, y, u, v) +O(ε2),

x∗ = x + εφ(a, b, t, x, y, u, v) +O(ε2),

y∗ = y + εψ(a, b, t, x, y, u, v) +O(ε2),

u∗ = u + εζ(a, b, t, x, y, u, v) +O(ε2),

v∗ = v + εω(a, b, t, x, y, u, v) +O(ε2),

where the infinitesimals ξ , η, θ , φ, ψ , ζ and ω are functions of a, b, t , x , y, u and v . Applying the
classical Lie method shows that θ is a constant,

φ(a, b, t, x, y, u, v) = Ax − By + C cos( f t) + D sin( f t) + E, (2.6a)

ψ(a, b, t, x, y, u, v) = Ay + Bx + D cos( f t) − C sin( f t) + F, (2.6b)

ζ(a, b, t, x, y, u, v) = Au − Bv − C f sin( f t) + D f cos( f t), (2.6c)

ω(a, b, t, x, y, u, v) = Av + Bu − D f sin( f t) − C f cos( f t), (2.6d)

with A, B, C , D, E and F constants, and ξ = ξ(a, b) and η = η(a, b) satisfy the condition (2.3),
as previously. The infinitesimal generator is

X = ξ(a, b)∂a + η(a, b)∂b + θ∂t + {Ax − By + C cos( f t) + D sin( f t) + E} ∂x

+ {Ay + Bx + D cos( f t) − C sin( f t) + F} ∂y

+ {Au − Bv − C f sin( f t) + D f cos( f t)} ∂u

+ {Av + Bu − D f sin( f t) − C f cos( f t)} ∂v , (2.7)

and so we obtain the following result.
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THEOREM 2.2. The potential symmetries associated with the SW equations (2.5) are generated by
the vector fields

X1 = ∂t , X2 = ∂x , X3 = ∂y, X4 = −y∂x + x∂y − v∂u + u∂v ,

X5 = cos( f t)∂x − sin( f t)∂y − f sin( f t)∂u − f cos( f t)∂v ,

X6 = sin( f t)∂x + cos( f t)∂y + f cos( f t)∂u − f sin( f t)∂v ,

X0 = ξ(a, b)∂a + η(a, b)∂b + A(x∂x + y∂y + u∂u + v∂v),

with A an arbitrary constant, and where ξ and η satisfy (2.3).

Therefore the potential form of the SW equations (2.5) is invariant under translations in t , x and y
(X1, X2 and X3 respectively), rotations in the (x, y, u, v)-space (X4), helical rotations with respect t
in the (x, y, u, v)-space (X5 and X6), while the vector field X0 corresponds to the particle relabelling
symmetry (2.4). We remark that the potential symmetries of the SW equations are actually the
classical symmetries prolonged to the space of the t-derivatives of the dependent variables x and y.

3. Classical and potential symmetries for semi-geostrophic equations

3.1 Classical symmetries of the semi-geostrophic equations

The classical form of the SG equations (1.7) is as follows:

hhbẋa − hha ẋb + (ḣhb + hḣb)xa − (ḣha + hḣa)xb + f hhb ya − f hha yb = − f 2 ẏ/g, (3.1a)

hhb ẏa − hha ẏb + (ḣhb + hḣb)ya − (ḣha + hḣa)yb − f hhbxa + f hhaxb = f 2 ẋ/g, (3.1b)

with h given by (1.3). This system is obtained after substituting the functions ug and vg given
by (1.6) into (1.7). The Lie point symmetries of this system of PDEs will be called the classical
symmetries of the SG equations.

If we consider the one-parameter group of transformations (2.2), then on applying the classical
Lie method, we find that θ is a constant,

φ = Ax − By + E, ψ = Ay + Bx + F,

where A, B, E , F are constants, and ξ = ξ(a, b) and η = η(a, b) satisfy (2.3). The infinitesimal
generator is

X = ξ(a, b)∂a + η(a, b)∂b + θ∂t + (Ax − By + E) ∂x + (Ay + Bx + F) ∂y,

and so we have the following result.

THEOREM 3.1. The vector fields

X1 = ∂t , X2 = ∂x , X3 = ∂y, X4 = −y∂x + x∂y,

X0 = ξ(a, b)∂a + η(a, b)∂b + Ax∂x + Ay∂y,

with A an arbitrary constant, and where ξ and η satisfy (2.3), generate the symmetry group associ-
ated with the SG equations (3.1).

Therefore the SG equations (1.7) are invariant under translations in t , x , y and rotations in the
(x, y)-space. The relabelling symmetry corresponds to the vector field X0.
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3.2 Potential symmetries of the semi-geostrophic equations

The potential form of the SG equations is given by (1.6) and (1.7), that is,

ug = −gh(xahb − xbha)/ f, (3.2a)

vg = gh(ybha − yahb)/ f, (3.2b)

u̇g + gh(ybha − yahb) − f ẏ = 0, (3.2c)

v̇g + gh(xahb − xbha) + f ẋ = 0, (3.2d)

where f is a non-zero constant and h is given by (1.3). To determine the associated Lie point
symmetries, the potential symmetries, we consider the one-parameter group of transformations

a∗ = a + εξ(a, b, t, x, y, ug, vg) +O(ε2),

b∗ = b + εη(a, b, t, x, y, ug, vg) +O(ε2),

t∗ = t + εθ(a, b, t, x, y, ug, vg) +O(ε2),

x∗ = x + εφ(a, b, t, x, y, ug, vg) +O(ε2),

y∗ = y + εψ(a, b, t, x, y, ug, vg) +O(ε2),

u∗
g = ug + εζ(a, b, t, x, y, ug, vg) +O(ε2),

v∗
g = vg + εω(a, b, t, x, y, ug, vg) +O(ε2),

where the infinitesimals ξ , η, θ , φ, ψ , ζ and ω depend a, b, t , x , y, ug and vg . Applying the classical
Lie method yields

φ(a, b, t, x, y, ug, vg) = Ax − By + E, (3.3a)

ψ(a, b, t, x, y, ug, vg) = Ay + Bx + F, (3.3b)

ζ(a, b, t, x, y, ug, vg) = Aug − Bvg, (3.3c)

ω(a, b, t, x, y, ug, vg) = Avg + Bug, (3.3d)

where A, B, E , F and θ are constants, and ξ = ξ(a, b) and η = η(a, b) satisfy (2.3). The infinites-
imal generator is

X = ξ(a, b)∂a + η(a, b)∂b + θ∂t + (Ax − By + E) ∂x + (Ay + Bx + F) ∂y

+ (Aug − Bvg)∂u + (Avg + Bug)∂v , (3.4)

and so we have the following result.

THEOREM 3.2. The vector fields

X1 = ∂t , X2 = ∂x , X3 = ∂y, X4 = −y∂x + x∂y − vg∂ug + ug∂vg ,

X0 = ξ(a, b)∂a + η(a, b)∂b + A(x∂x + y∂y + ug∂ug + vg∂vg ),

with A an arbitrary constant, and where ξ and η satisfy (2.3), generate the potential symmetries
associated with the SG equations (3.2).
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Therefore (3.2) is invariant under translations in t , x , y and rotations in the (x, y, ug, vg)-space.
The vector field X0 corresponds to particle relabelling symmetry (2.4).

4. Variational symmetries and conservation laws for shallow water equations

4.1 Variational symmetries of the shallow water equations

A variational symmetry of a system of Euler–Lagrange equations is one that leaves the variational
integral invariant. These are important since they yield conservation laws via Noether’s theorem.
Salmon (12) showed that there is a first-order Lagrangian

L = (u − R)ẋ + (v + P)ẏ − 1
2 (u2 + v2 + gh), (4.1)

where the functions P = P(x, y) and R = R(x, y) satisfy

Px + Ry = f,

with h given by (1.3) and f constant, for which the associated Euler–Lagrange equations represent
(up to sign) the SW equations (2.5), that is the potential form of the SW equations.

THEOREM 4.1. The variational symmetry group of the variational problem associated with the
Lagrangian (4.1) is generated by the following vector fields

X1 = ∂t , Y0 = −Sb(a, b)∂a + Sa(a, b)∂b, Sb = −ξ, Sa = η. (4.2)

Moreover, if the functions P = P(x, y) and R = R(x, y) satisfy the system

B(yRx − x Ry + P) − E Rx − F Ry = 0, (4.3a)

B(−y Px + x Py + R) + E Px + F Py = 0, (4.3b)

Px + Ry = f, (4.3c)

then the vector field

Y = (E − By)∂x + (F + Bx)∂y − Bv∂u + Bu∂v , (4.4)

with B, E and F real constants, generates a variational symmetry transformation.
Particular cases of these are as follows.

Case 1. If B �= 0, then let λ = E/B, γ = F/B. Making the transformation x = −γ + r cos s,
y = λ + r sin s, yields

P(r, s) = −δ(r) sin s +
(

1
2 f r + k/r

)
cos s, R(r, s) = δ(r) cos s +

(
1
2 f r + k/r

)
sin s, (4.5)

and there is a variational symmetry group generated by

Y1 = −(y − λ)∂x + (x + γ )∂y − v∂u + u∂v . (4.6)

Case 2. If B = 0 and E �= 0, then let λ = F/B. In this case it follows that

P(x, y) = δ(y − λx), R(x, y) = λδ(y − λx) − λ f x + f y + k, (4.7)

where δ(x) is an arbitrary function, and there is a variational symmetry group generated by

Y2 = ∂x + λ∂y . (4.8)
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Case 3. If B = 0 and E = 0 then

P(x, y) = f x + k, R(x, y) = δ(x), (4.9)

with k an arbitrary real constant and δ(x) an arbitrary function, and there is a variational symmetry
group generated by

Y3 = ∂y . (4.10)

Proof. Consider the general infinitesimal generator (2.7) of the symmetry group of the SW equa-
tions. Since (2.5) is a first-order system of PDEs, the criterion for infinitesimal invariance is

pr(1)X(L) + L∇ •ζζζ = 0,

where ζζζ = (ξ, η, θ) and

pr(1)X(L) = X(L) + φ[a] ∂L
∂xa

+ φ[b] ∂L
∂xb

+ φ[t] ∂L
∂ ẋ

+ ψ [a] ∂L
∂ ya

+ ψ [b] ∂L
∂ yb

+ ψ [t] ∂L
∂ ẏ

(4.11)

is the first-order prolongation of the general infinitesimal generator X given by (2.7) applied to the
Lagrangian (4.1), with infinitesimals φ, ψ , ζ and ω given by (2.6) and

φ[a] = (A − ξa)xa − Bya − ηaxb, (4.12a)

φ[b] = −ξbxa + (A − ηb)xb − Byb, (4.12b)

φ[t] = −C f sin( f t) + D f cos( f t) + Aẋ − B ẏ, (4.12c)

ψ [a] = Bxa + (A − ξa)ya − ηa yb, (4.12d)

ψ [b] = Bxb − ξb ya + (A − ηb)yb, (4.12e)

ψ [t] = −D f sin( f t) − C f cos( f t) + Bẋ + Aẏ. (4.12f)

The relation (2.3) implies ∇ •ζζζ = ξa + ηb = 4A, and thus we have

pr(1)X(L) + 4AL = 0. (4.13)

The non-zero partial derivatives of the Lagrangian (4.1) are the following:

∂L
∂x

= −Rx ẋ + Px ẏ,
∂L
∂y

= −Ry ẋ + Py ẏ,
∂L
∂u

= ẋ − u,

∂L
∂v

= ẏ − v,
∂L
∂xa

= 1
2 gh2yb,

∂L
∂xb

= − 1
2 gh2ya,

∂L
∂ ẋ

= u − R,
∂L
∂ ya

= − 1
2 gh2xb,

∂L
∂ yb

= 1
2 gh2xa,

∂L
∂ ẏ

= v + P.

(4.14)

Substituting (2.6), (4.11), (4.12) and (4.14) into (4.13), and equating to zero the coefficients of
the t-derivatives ẋ , ẏ and the free term, it follows A = C = D = 0, and the relations (4.3) between
the constants B, E , F and the functions P = P(x, y) and R = R(x, y) defining the Lagrangian
(4.1). If A = 0, then (2.3) implies ξa + ηb = 0, and we can consider a function S = S(a, b) such
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that Sb = −ξ and Sa = η. It follows that the variational symmetry generated by the vector fields X1
and Y0 is given by (4.2). The compatibility of (4.3) implies the form (4.4) for another variational
symmetry.

Let us now discuss the particular cases of (4.3).

Case 1. If B �= 0, then let λ = E/B and γ = F/B, so (4.3) becomes

(y − λ)Rx − (x + γ )Ry + P = 0, (λ − y)Px + (x + γ )Py + R = 0, Px + Ry = f.

Consider the change of variables x = −γ + r cos s, y = λ + r sin s. Then the general solution is
given by (4.5) and so the vector field (4.4) is written as (4.6). For B = 0, (4.3) is equivalent to

E Px + F Py = 0, E Rx + F Ry = 0, Px + Ry = f. (4.15)

Case 2. If B = 0 and E �= 0, then (4.15) is written as

Rx + λRy = 0, Px + λPy = 0, Px + Ry = f, (4.16)

where λ = F/E . Integrating this system, we find that (4.7) represents its general solution and,
moreover, there is a variational symmetry generated by the vector field (4.8).

Case 3. If B = 0 and E = 0, then (4.15) turns into

F Ry = 0, F Py = 0, Px + Ry = f. (4.17)

If F �= 0, then we get Ry = 0, Py = 0, and so Px = f . Its general solution is (4.9) and we obtain a
variational symmetry generated by the vector field (4.10).

In the case F = 0, we get that (4.2) is the only vector field that generates a variational symmetry.

DEFINITION 4.2. A conservation law for the SW equations is given by a divergence expression

Da(P1) + Db(P2) + Dt (P3) = 0,

where PPP = (P1,P2,P3) is a triple of smooth functions of a, b, t , x , y, u, v and the derivatives of x ,
y, u, v . The function P3 is the conserved density and the pair (P1,P2) is the associated flux vector
field.

THEOREM 4.3. The conservation laws associated with the SW equations (2.5), derived from the
variational symmetries are given in Table 1. Moreover, the conservation law derived from Y0 is
equivalent to P̃PP = (P̃1, P̃2, P̃3), where

P̃1 = P1 + Dt (ST2), P̃2 = P2 − Dt (ST3), P̃3 = −S� = P3 − Da(ST2) + Db(ST3), (4.18)

and � is the shallow water potential vorticity (1.5).

Proof. If we apply the higher Euler operators to the first-order Lagrangian (4.1), we obtain

E (1)
1 = ∂L

∂xa
= 1

2 gh2yb, E (1)
2 = ∂L

∂ya
= − 1

2 gh2xb, E (1)
3 = ∂L

∂ua
= 0, E (1)

4 = ∂L
∂va

= 0,

E (2)
1 = ∂L

∂xb
= − 1

2 gh2ya, E (2)
2 = ∂L

∂ yb
= 1

2 gh2xa, E (2)
3 = ∂L

∂ub
= 0, E (2)

4 = ∂L
∂vb

= 0,

E (3)
1 = ∂L

∂ ẋ
= u − R, E (3)

2 = ∂L
∂ ẏ

= v + P, E (3)
3 = ∂L

∂ u̇
= 0, E (3)

4 = ∂L
∂v̇

= 0.
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In what follows, we determine the conservation laws derived from the variational symmetries gen-
erated by the vector fields (4.2), (4.4), and in particular (4.6), (4.8) and (4.10).

1. For the vector field X1 = ∂t , the corresponding characteristic Q = (Q1, Q2, Q3, Q4) has com-
ponents given by

Q1 = −ẋ, Q2 = −ẏ, Q3 = −u̇, Q4 = −v̇ .

Now the conservation law is given by

PPP = (P1,P2,P3) = −(AAA+ Lζζζ ), (4.19)

where in this case ζζζ = (ξ, η, θ) = (0, 0, 1) and where AAA = (A1,A2,A3) with

Ak =
4

∑
j=1

Q j
∂L
∂u j

k

. (4.20)

Thus

A1 = 1
2 gh2(ẏxb − ẋ yb), A2 = 1

2 gh2(ẋ ya − ẏxa), A3 = ẋ(R − u) − ẏ(v + P),

and so

P1 = 1
2 (ẋ yb − ẏxb), P2 = 1

2 (ẏxa − ẋ ya), P3 = 1
2 (u2 + v2 + gh).

Thus, the time invariance leads to the conservation of the energy P3 of the system (12).

Table 1 Symmetries and their associated conservation laws for the SW equations

vector field PPP = (P1,P2,P3),

X1 = ∂t ( 1
2 gh2(ẋ yb − ẏxb),

1
2 gh2(ẏxa − ẋ ya),

1
2 (u2 + v2 + gh))

Y0 = ξ(a, b)∂a + η(a, b)∂b

(ξT1, ηT1, ηT2 + ξT3)

T1 = ẋ(R − u) − ẏ(v + P) + 1
2 (u2 + v2) + gh

T2 = xb(u − R) + yb(v + P)

T3 = xa(u − R) + ya(v + P)

Y1 = −(y − λ)∂x + (x + γ )∂y

− v∂u + u∂v

( 1
2 gh2(xb(x + γ ) + yb(y − λ)),

1
2 gh2(ya(λ − y) − xa(x + γ )),

(y − λ)(u − R) − (x + γ )(v + P)),

Y2 = ∂x + λ∂y ( 1
2 gh2(λxb − yb),

1
2 gh2(ya − λxa), R − u − λ(v + P))

Y3 = ∂y ( 1
2 gh2xb, − 1

2 gh2xa, −v − P)



12 of 29 N. BÎLĂ et al.

2. The characteristic Q = (Q1, Q2, Q3, Q4) of the vector field Y0 = −Sb(a, b)∂a + Sa(a, b)∂b is
given by

Q1 = Sbxa − Saxb, Q2 = Sb ya − Sa yb, Q3 = Sbua − Saub, Q4 = Sbva − Savb.

In this case, ζζζ = (−Sb, Sa, 0) and from (4.20) we get

A1 = 1
2 ghSb, A2 = − 1

2 ghSa,

A3 = Sb[xa(u − R) + ya(v + P)] − Sa[xb(u − R) + yb(v + P)].

Therefore, substituting them into (4.19) one obtains

P1 = −SbT1, P2 = SaT1, P3 = SaT2 − SbT3,

where

T1 = ẋ(R − u) − ẏ(v + P) + 1
2 (u2 + v2) + gh,

T2 = xb(u − R) + yb(v + P), T3 = xa(u − R) + ya(v + P).

For the vector field Y0 we can write an equivalent form of the associated conservation law. Note
that the potential vorticity � defined by (1.5) satisfies

Da(T2) − Db(T3) = �.

Define P̃PP = (P̃1, P̃2, P̃3) given by (4.18) and let PPP∗ = (P∗
1 ,P∗

2 ,P∗
3 ) with the components

P∗
1 = Dt (ST2), P∗

2 = −Dt (ST3), P∗
3 = −Da(ST2) + Db(ST3).

One verifies that ∇ •PPP∗ ≡ 0. It follows that the conservation laws PPP and P̃PP = PPP + PPP∗ are
equivalent. Thus, the particle relabelling symmetry (2.4) leads to the conservation of the potential
vorticity � (12).

3. In the case of the vector field (4.4), the characteristic Q = (Q1, Q2, Q3, Q4) is defined by

Q1 = E − By, Q2 = F + Bx, Q3 = −Bv, Q4 = Bu.

Because ζζζ = (0, 0, 0), from (4.19) it follows that P j = A j , j = 1, 2, 3. From (4.20) we get

A1 = 1
2 gh2[Eyb − Fxb − B(xxb + yyb)],

A2 = 1
2 gh2[−Eya + Fxa + B(xxa + yya)],

A3 = E(u − R) + F(v + P) + B[x(v + P) − y(u − R)],

and so PPP = (P1,P2,P3) = (A1,A2,A3). In particular, for the vector fields Y1, Y2 and Y3
given by (4.6), (4.8) and (4.10), respectively, if one substitutes B = 1, E = λ, F = γ , and
B = 0, E = 1, F = λ, and respectively B = 0, E = 0, F = 1 into the above expressions,
one obtains the conservation laws contained in Table 1. The rotation invariance leads to the
conservation of the angular momentum and the translation invariance to the conservation of
linear momentum.
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5. Variational symmetries and conservations laws for the semi-geostrophic equations

5.1 Variational symmetries for the semi-geostrophic equations

The SW equations (3.2) represent the Euler–Lagrange equations associated with the first-order
Lagrangian (13)

L = (ug − R)ẋ + (vg + P)ẏ − 1
2 (u2

g + v2
g + gh) − r u̇g + pv̇g, (5.1)

where P(x, y), R(x, y), p(ug, vg) and r(ug, vg) are arbitrary functions satisfying

Px + Ry = f, pug + rvg = 1/ f ,

and h is given by (1.3).

THEOREM 5.1. The variational symmetry group of the variational problem associated with the La-
grangian (5.1) is generated by the vector fields (4.2). Moreover, if P(x, y) and R(x, y) are solutions
of (4.15), then the vector field

Z = E∂x + F∂y (5.2)

also generates a variational symmetry transformation.

1. If E �= 0, then let λ = F/E. It follows that P and R are given by (4.7). In this case, there is an
additional variational symmetry generated by the vector field (5.2) denoted by Z1 and given by
(4.8).

2. For E = 0, the functions P and R are given by (4.9). The vector field Z = Z2 defined by (4.10)
generates the associated additional variational symmetry.

Proof. Let us consider the infinitesimal generator of the symmetry group associated with the SG
equations given by (3.4). The criterion for infinitesimal invariance implies that

pr(1)X(L) + L∇ •ζζζ = 0,

where ζζζ = (ξ, η, θ). Using ∇ •ζζζ = ξa + ηb = 4A, the above condition becomes

pr(1)X(L) + 4AL = 0. (5.3)

The non-zero partial derivatives of the Lagrangian (5.1) are the following:

∂L
∂x

= −Rx ẋ + Px ẏ,
∂L
∂y

= −Ry ẋ + Py ẏ,
∂L
∂u

= ẋ − ug − rug u̇g + pug v̇g,

∂L
∂v

= ẏ − v − rvg u̇g + pvg v̇g,
∂L
∂xa

= 1
2 gh2yb,

∂L
∂xb

= − 1
2 gh2ya,

∂L
∂ ẋ

= ug − R,
∂L
∂ ya

= − 1
2 gh2xb,

∂L
∂ yb

= 1
2 gh2xa,

∂L
∂ ẏ

= vg + P,

∂L
∂ u̇g

= −r,
∂L
∂v̇g

= p.

(5.4)
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Applying the first-order prolongation of the vector field X to the Lagrangian L it follows that

pr(1)X(L) = φ
∂L
∂x

+ ψ
∂L
∂y

+ ζ
∂L
∂u

+ ω
∂L
∂v

+ φ[a] ∂L
∂xa

+ φ[b] ∂L
∂u

+ φ[t] ∂L
∂ ẋ

+ ψ [a] ∂L
∂ ya

+ ψ [b] ∂L
∂ yb

+ ψ [t] ∂L
∂ ẏ

+ ζ [t] ∂L
∂ u̇g

+ ω[t] ∂L
∂v̇g

, (5.5)

where the functions φ, ψ , ζ and ω are given by (3.3) and, moreover,

φ[a] = (A − ξa)xa − Bya − ηaxb, (5.6a)

φ[b] = −ξbxa + (A − ηb)xb − Byb, (5.6b)

φ[t] = Aẋ − B ẏ, (5.6c)

ψ [a] = Bxa + (A − ξa)ya − ηa yb, (5.6d)

ψ [b] = Bxb − ξb ya + (A − ηb)yb, (5.6e)

ψ [t] = Bẋ + Aẏ, (5.6f)

ζ [t] = Au̇g − Bv̇g, (5.6g)

ω[t] = Bu̇g + Av̇g. (5.6h)

Substituting (3.3), (5.5), (5.6) and (5.4) into the relation (5.3), and equating to zero the coefficients
of the t-derivatives ẋ , ẏ, u̇g and v̇g and the free term, we get A = B = 0, and the conditions
(4.15) between the constants E , F and the functions P = P(x, y) and R = R(x, y) from the
Lagrangian (5.1). If A = 0, then the condition (2.3) turns into ξa + ηb = 0, and so there is a
function S = S(a, b) such that Sa = η and Sb = −ξ . We obtain that the variational symmetries are
generated by the vector fields (4.2). Moreover, if the functions P and R satisfy (4.15), then there is
an additional variational symmetry corresponding to the vector field Z given by (5.2).

Some special cases for (4.15) are as follows.

1. If E �= 0, then let λ = F/E . Hence (4.15) can be written as (4.16) with the general solution
given by (4.7). The vector field Z, (5.2), becomes (4.8).

2. If E = 0, then (4.15) is written as (4.17).

(a) If F �= 0 then the general solution is given by (4.9) and the vector field Z, (5.2), becomes
(4.10).

(b) If F = 0, there are only variational symmetries generated by the vector fields (5.2).

We remark that the particular cases of Theorem 5.1 correspond to case 2 of Theorem 4.1.

5.2 Conservation laws for the semi-geostrophic equations

THEOREM 5.2. The conservation laws associated with the SG equations are presented in Table 2,
where P1 and P2 are the associated flux vector fields and P3 the conserved densities. The conser-
vation law deriving from the vector field Y0 is equivalent to that defined by P̃PP = (P̃1, P̃2, P̃3) with
the components

P̃1 = P1 + Dt (ST2), P̃2 = P2 − Dt (ST3), P̃3 = −S�∗ = P3 − Da(ST2) + Db(ST3),
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where

T1 = ẋ(R − ug) − ẏ(vg + P) + 1
2 (u2

g + v2
g) + gh + r u̇g − pv̇g, (5.7a)

T2 = xb(ug − R) + yb(vg + P) − rug,b + pvg,b, (5.7b)

T3 = xa(ug − R) + ya(vg + P) − rug,a + pvg,a, (5.7c)

and �∗ is the potential vorticity (1.8).

Proof. In the Appendix we give a brief outline of the method used to calculate conservation laws
from variational symmetries (Noether’s theorem). This involves the use of the so-called higher
Euler operators and the characteristic of the symmetry. We also define the notion of equivalence of
conservation laws.

The higher Euler operators applied to the Lagrangian (5.1) are

E (1)
1 = ∂L

∂xa
= 1

2 gh2yb, E (1)
2 = ∂L

∂ya
= − 1

2 gh2xb, E (1)
3 = ∂L

∂ug,a
= 0, E (1)

4 = ∂L
∂vg,a

= 0,

E (2)
1 = ∂L

∂xb
= − 1

2 gh2ya, E (2)
2 = ∂L

∂yb
= 1

2 gh2xa, E (2)
3 = ∂L

∂ug,b
= 0, E (2)

4 = ∂L
∂vg,b

= 0,

E (3)
1 = ∂L

∂ ẋ
= ug − R, E (3)

2 = ∂L
∂ ẏ

= vg + P, E (3)
3 = ∂L

∂ u̇g
= −r, E (3)

4 = ∂L
∂v̇g

= p.

For each of the vector fields yielding a variational symmetry (Theorem 5.1), we find the associated
conservation law.

1. For the vector field Y1 = ∂t , the characteristic Q = (Q1, Q2, Q3, Q4) has components given by

Q1 = −ẋ, Q2 = −ẏ, Q3 = −u̇g, Q4 = −v̇g.

In this case, PPP = (P1,P2,P3), given by (4.19), is determined by ζζζ = (0, 0, 1) and AAA =
(A1,A2,A3), where

A1 = 1
2 gh2(−ẋ yb + ẏxb), A2 = 1

2 gh2(ẋ ya − ẏxa),

A3 = −ẋ(ug − R) − ẏ(vg + P) + u̇gr − v̇g p.

Table 2 Symmetries and their associated conservation laws for the SG equations

vector field PPP = (P1,P2,P3)

X1 = ∂t ( 1
2 gh2(ẋ yb − ẏxb),

1
2 gh2(ẏxa − ẋ ya),

1
2 (u2

g + v2
g + gh))

Y0 = −Sb(a, b)∂a + Sa(a, b)∂b (−SbT1, SaT1, SaT2 − SbT3)

Z1 = ∂x + λ∂y ( 1
2 gh2(λxb − yb),

1
2 gh2(ya − λxa), R − ug − λ(vg + P))

Z2 = ∂y ( 1
2 gh2xb,

1
2 gh2xa, −vg − P)
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On substituting them into (4.19) it follows that

P1 = 1
2 gh2(ẋ yb − ẏxb), P2 = 1

2 gh2(ẏxa − ẋ ya), P3 = 1
2 (u2

g + v2
g + gh),

which defines the corresponding conservation law. Thus, the time invariance implies the conser-
vation P3 of the energy of the SG equations.

2. Consider the vector field

Y0 = −Sb(a, b)∂a + Sa(a, b)∂b,

for which the characteristic is

Q1 = Sbxa − Saxb, Q2 = Sb ya − Sa yb, Q3 = Sbug,a − Saug,b, Q4 = Sbvg,a − Savg,b.

In the relation (4.19) one substitutes ζζζ = (−Sb, Sa, 0) and AAA = (A1,A2,A3) given by (4.20),
namely

A1 = 1
2 ghSb, A2 = − 1

2 ghSa,

A3 = Sa[xb(R − ug) − yb(vg + P) + rug,b − pvg,b]

+Sb[xa(ug − R) + ya(vg + P) − rug,a + pvg,a],

and it follows that

P1 = −SbT1, P2 = SaT1, P3 = SaT2 − SbT3,

where

T1 = ẋ(R − ug) − ẏ(vg + P) + 1
2 (u2

g + v2
g) + gh + r u̇g − pv̇g,

T2 = xb(ug − R) + yb(vg + P) − rug,b + pvg,b,

T3 = xa(ug − R) + ya(vg + P) − rug,a + pvg,a .

The conservation law deriving from the vector field Y0 can be written in an equivalent form.
Note that

Da(T2) − Db(T3) = �∗,

where �∗ is the potential vorticity (1.8). Consider P̃PP = (P̃1, P̃2, P̃3) defined by

P̃1 = −SbT1 + Dt (ST2) = P1 + Dt (ST2),

P̃2 = SaT1 − Dt (ST3) = P2 − Dt (ST3),

P̃3 = −S�∗ = P3 − Da(ST2) + Db(ST3),

and

P∗
1 = Dt (ST2), P∗

2 = −Dt (ST3), P∗
3 = −Da(ST2) + Db(ST3).

Because ∇ •PPP∗ = 0, it follows that PPP and P̃PP = PPP + PPP∗ are equivalent conservation laws.
Conservation of potential vorticity �∗ follows (13).
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3. In the case of the vector field Z given by (5.2), the characteristic Q = (Q1, Q2, Q3, Q4) has the
components

Q1 = E, Q2 = F, Q3 = 0, Q4 = 0.

While ζζζ = (0, 0, 0) it follows that P j = A j , j = 1, 2, 3. Using (4.20) we get

A1 = 1
2 gh2(Eyb − Fxb), A2 = 1

2 gh2(Fxa − Eya), A3 = E(ug − R) + F(vg + P),

and in this case, the relation (4.19) implies that

P1 = 1
2 gh2(Fxb − Eyb), P2 = 1

2 gh2(Eya − Fxa), P3 = E(R − ug) − F(vg + P).

In the particular cases Z = Z1 and Z = Z2, one substitutes E = 1 and F = λ and respectively
E = 0 and F = 1 into the above expressions. The corresponding triple PPP = (P1,P2,P3) leads
to the conservation of linear momentum (Table 2).

6. Particle relabelling symmetry for the semi-geostrophic equations

In this section we explore further consequences of the particle relabelling symmetry for the
SG equations. As shown above, this is the symmetry responsible for the conservation of potential
vorticity.

We first note the invariants, the invariant differential operators and their commutators, and the
differential relations, or syzygies, between the invariants. These allow us to rewrite the SG equa-
tions in a way in which symbolic formal solution mechanisms can be applied effectively. Even so,
the application of these series solution methods is far from routine, as formal expansions for the
differential operators are also involved.

The result is that solutions of the SG equations can be expressed in terms of solutions of an infinite
linear cascade; see Theorem 6.3. Finally we ask whether the series solution corresponds to a phys-
ical fluid flow, that is, do solutions obey the integral curve property, x(x(a, b, t), y(a, b, t), s) =
x(a, b, t + s) and y(x(a, b, t), y(a, b, t), s) = y(a, b, t + s). The startling observation is that the
formal solution cannot correspond to any such flow. We note that this property is not the same as
invariance under translation in time, which corresponds rather to the fact that the origin in the time
coordinate can be set arbitrarily.

6.1 Invariants of the particle relabelling symmetry

Under the particle relabelling symmetry group (2.4), the fluid particle positions satisfy x∗(a∗, b∗) =
x(a, b) and y∗(a∗, b∗) = y(a, b), and so in the parlance of group theory, are said to be invariant
functions. Since

x∗
a∗ y∗

b∗ − x∗
b∗ y∗

a∗ = xa yb − xb ya

φaψb − φbψa
= xa yb − xb ya,

we have that the function � = xa yb − xb ya is an invariant of the pseudogroup, as are u = xt and
v = yt .

The invariant differential operators are

∂x = yb∂a − ya∂b

xa yb − xb ya
, ∂y = −xb∂a + xa∂b

xa yb − xb ya
, (6.1)
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where, as above, ∂a = ∂/∂a and ∂b = ∂/∂b are the usual partial derivatives. The operators (6.1) are
the same as those that would be obtained under a standard change of coordinates from (a, b)-space
to (x, y)-space.

The systems studied vary in time, t , which is invariant under the pseudogroup, as is the (total)
derivative with respect to time. On functions of a, b and t , the derivative with respect to t is simply
∂t = ∂/∂t . On functions of (x, y), however, since x and y depend on t , it is the total derivative that
is used. To distinguish this fact we use the notation Dt to denote total differentiation with respect to
time. The notation of fx for ∂x f can trap the unwary as Dt and ∂x do not commute. For this reason
we do not use the notation fx for ∂x f in expressions where Dt also occurs.

The method of moving frames as applied to this pseudogroup (16, 17) yields the following.

THEOREM 6.1. The functions � = xa yb−xb ya, x and y are the fundamental generating differential
invariants. Every differential invariant is a function of these and their invariant derivatives. More-
over, the only differential relation between the invariants, or syzygy, is the well-known continuity
relation

Dt� = �(∂x Dt x + ∂yDt y). (6.2)

One of the main problems in analysing systems involving both Dt and ∂x , ∂y derivatives is that
these operators do not commute.

THEOREM 6.2. The commutation relations between Dt , ∂x and ∂y are

[∂x , ∂y] = 0, (6.3a)

[Dt , ∂x ] = −(∂x Dt x)∂x − (∂x Dt y)∂y, (6.3b)

[Dt , ∂y] = −(∂yDt x)∂x − (∂yDt y)∂y . (6.3c)

Proof. We check (6.3b) here:

[Dt , ∂x ] = Dt

(
yb∂a − ya∂b

xx yb − xb ya

)
−
(

yb∂a − ya∂b

xx yb − xb ya

)
Dt

= −Dt�

�
∂x + ybt∂a − yat∂b

�

= −Dt�

�
∂x + ybt

�
(xa∂x + ya∂y) − yat

�
(xb∂x + yb∂y)

= −Dt�

�
∂x +

(
ybt xa − yat xb

�

)
∂x +

(
ybt ya − yat yb

�

)
∂y

= −Dt�

�
∂x + ∂y(Dt y)∂x − ∂x (Dt y)∂y

= −∂x (Dt x)∂x − ∂x (Dt y)∂y,

using the syzygy (6.2). That these make sense can be seen by calculating the commutation relations
on x and y.
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6.2 A reformulation of the two-dimensional semi-geostrophic equations

We write the SG equations (1.6), (1.7) in terms of the invariants and invariant operators given above.
Instead of � we use h, where

h = 1

�
= 1

xa yb − xb ya
.

In the notation used in this section, these equations are written as

Dt x = − g

f 2 Dt∂x h − g

f
∂yh, Dt y = − g

f 2 Dt∂yh + g

f
∂xh. (6.4)

The syzygy (6.2) and commutation relations (6.3) hold identically. If we evaluate them on the SG
equations, by which we mean backsubstituting for the various quantities, we obtain relations which
must be true on solutions of the SG equations, and in fact are equivalent to them.

If we backsubstitute for Dt x and Dt y using the SG equations, the syzygy becomes

Dt h = g

f 2 (∂x Dt∂x h + ∂yDt∂yh),

and the commutation relations become

[Dt , ∇] = g

f 2

(
∂x Dt∂x h ∂x Dt∂yh

∂yDt∂x h ∂yDt∂yh

)
∇ + g

f

(
hxx hxy

hxy hyy

)(
0 −1
1 0

)
∇.

If we let these commutation relations act on the function h, and then backsubstitute for Dt h using
the syzygy (6.2) and for Dt∂xh and Dt∂yh from (6.4), we obtain

f 2

g
u + f hy = (h(ux + vy))x + uxhx + vx hy, (6.5a)

f 2

g
v − f hx = (h(ux + vy))y + uyhx + vyhy, (6.5b)

where we have put u = Dt x and v = Dt y, a standard notation for these quantities.
We have effected a linear substitution of each of equations (6.4) into one component each of an

identity, and it is simple to see that (6.5) are equivalent to the two-dimensional SG equations.
In this notation, the potential vorticity conservation law is (cf. (1.8))

Dt�
∗ = 0, where �∗ = 1

h

{
f + g

f

(
hxx + hyy

)+ g2

f 3

(
hxx hyy − h2

xy

)}
. (6.6)

The equations (6.5) are linear in u and v and since they involve only x and y derivatives which
commute, we may apply standard completion procedures to this system (18 to 23). The result is two
compatibility conditions. The important one is easily obtained. If we denote (6.5a) by A and (6.5b)
by B, then a first-order (with respect to u and v) compatibility equation is obtained by calculating
C = Ay − Bx . This yields

uy

(
f 2

g
+ hxx

)
− vx

(
f 2

g
+ hyy

)
+ hxy(vy − ux ) + f (hxx + hyy) = 0. (6.7)

Interestingly, the conservation of potential vorticity, (6.6), is not a compatibility condition of
(6.5). It turns out that Dt�

∗ = 0 is an identity on the formal solution of (6.5) that we find, and
imposes no further conditions.
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6.3 Formal solution procedures

One major application of differential system completion procedures is that the calculation of formal
series solutions proceeds without the discovery of unsuspected consistency conditions on the coef-
ficients; see, for example, (22 to 24). There are, moreover, convergence results which are classical
(25).

6.3.1 The naive approach. Take power series for x and y in time,

x(a, b, t) = a + x1(a, b)t + x2(a, b)t2 +O(t3), (6.8a)

y(a, b, t) = b + y1(a, b)t + y2(a, b)t2 +O(t3), (6.8b)

which use the standard initial condition x(a, b, 0) = a, y(a, b, 0) = b. The corresponding series
for u = Dt x , v = Dt y are simply the time derivatives of those for x and y, while those for h, ∂x

and ∂y are readily calculated. Indeed, we have

h = 1 − (x1,a + y1,b)t +
{

(x1,a + y1,b)
2 + x1,b y1,a − x1,a y1,b − x2,a − y2,b

}
t2 +O(t3) (6.9)

and

∂x =
{

1 − x1,at + (x2
1,a + x1,b y1,a − x2,a)t

2 +O(t3)
}

∂a

+
{

−y1,at + (y1,ax1,a + y1,b y1,a − y2,a)t
2 +O(t3)

}
∂b,

∂y =
{

−x1,bt + (x1,bx1,a + x1,b y1,b − x2,b)t
2 +O(t3)

}
∂a

+
{

1 − y1,bt + (y2
1,b + y1,ax1,b − y2,b)t

2 +O(t3)
}

∂b.

These were inserted into (6.5) and (6.7), and coefficients of like powers of t were collected.
We denote the coefficient of tn in the expansion of A, that is, (6.5a), by an , that in B, that is,

(6.5b), by bn , and that in C, that is, (6.7), by cn . These coefficients must all be zero on solutions.
Setting these coefficients equal to zero leads to a system in the xi , yi .

6.3.2 The zeroth level. Setting t = 0 in the expansions for A, B and C yields

c0 = f 2

g
(x1,b − y1,a), a0 = − f 2

g
x1 + x1,aa + y1,ab, b0 = − f 2

g
y1 + x1,ab + y1,bb.

These must all be zero on a solution of the SG equations. Thus one has, immediately to first order,
that

x1 = αa, y1 = αb, αaa + αbb = f 2

g
α (6.10)

for some function α.
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6.3.3 The first level. The coefficients are complicated, so we simplify them using the zeroth-
order system. In order for this to be done in an effective manner in a computer algebra environment,
it is important to use symbolic simplification algorithms (18 to 23) that are guaranteed to prevent
infinite loops in the reduction process and to obtain a well-defined, indeed unique, result. We obtain

2y2,a − 2x2,b + f y1,b + f x1,a = 0, (6.11)

and an equation for x2 of the form

x2,aa + x2,bb = f 2

g
x2 + F2(x1, y1).

If we take x2 = βa + 1
2 f αb and y2 = βb − 1

2 f αa , so that (6.11) is satisfied, and substitute
these into a1 and b1, we obtain two conditions which are the a and b derivatives of the following
condition on β:

βaa + βbb − f 2

g
β − f 2

2g
(α2

a + α2
b) + αaaαbb − α2

ab − f 4

g2 α2 = 0. (6.12)

Note that we may absorb the constant of integration into β. Algorithms are available which sym-
bolically integrate total derivatives (26 to 28).

6.3.4 The second level. Continuing as before, we obtain conditions for x3 and y3 in terms of x1,
y1, x2 and y2. The first-order compatibility condition is

3y3,a − 3x3,b + f y2,a + f x2,b + 3 f (x1,a y1,b − x1,b y1,a) = 0,

and a condition for x3 of the form

x3,aa + x3,ab = f 2

g
x3,a + F3(x1, y1, x2, y2)

is obtained. Setting x3 = γa + 1
3 fβb + f αbαaa and y3 = γb − 1

3 fβa + f αbαab into a2 and b2, we
obtain the a and b derivatives of a condition for γ of the form

γaa + γbb − f 2

g
γ = F3(β, α). (6.13)

Continuing, we find that the structure of the equations to leading order is the same at the third and
fourth levels. One tedious aspect of this process is the need to perform symbolic integrations to find
the condition for the function αn introduced at each order (α0 = α, α1 = β, α2 = γ ). In the proof
of the general result, we use a different process to find the condition for the function introduced at
each order in one step.

6.3.5 Results check. If we substitute

x(a, b, t) = a + αat +
(
βa + 1

2 f αb

)
t2 +

(
γa + 1

3 fβb + f αbαaa

)
t3 +O(t4),

y(a, b, t) = b + αbt +
(
βb − 1

2 f αa

)
t2 +

(
γb − 1

3 fβa + f αbαab

)
t3 +O(t4)
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into the conservation law for Q and the original SG equations, then they are satisfied to the relevant
order provided that (6.10), (6.12) and (6.13) hold. For the sake of completeness, we record the
expansions for h, hx and hy in terms of α, β etc.:

h = 1 − f 2

g
αt − f 2

2g
(α2

a + α2
b + 2β)t2 − f 2

g

(
βaαa + βbαb + 1

2 f αaαb + γ
)

t2 +O(t3),

hx = − f 2

g
αat − f 2

g
βat2 − f 2

g
(γa + f αbαaa)t

3 +O(t4),

hy = − f 2

g
αbt − f 2

g
βbt2 − f 2

g
(γb + f αbαab)t

3 +O(t4).

6.3.6 Proof of the general result.

THEOREM 6.3. The two-dimensional SG equations are equivalent to an infinite set of essentially
linear equations in a triangular or cascade form. Indeed, if x and y are of the form (6.8), then there
are functions pn(a, b), Fn and Gi

n such that

xn+1 = g

n f 2 pn,a + G1
n(p0, p1, . . . pn−1), yn+1 = g

n f 2 pn,b + G2
n(p0, p1, . . . pn−1), (6.14)

where

pn,aa + pn,bb = f 2

g
pn + Fn(p0, . . . , pn−1). (6.15)

Proof. If we define

U = f 2

g
u + f hy − ux hx − vx hy, V = f 2

g
v − f hx − uyhx − vyhy, (6.16)

then (6.5) are of the forms

U = �x , V = �y, (6.17)

where we have defined � by

� = h(ux + vy). (6.18)

The compatibility condition (6.7) is then

Uy − Vx = 0.

By substituting in the definitions of ∂x and ∂y , (6.17) can be rewritten as

xaU + yaV = �a, xbU + ybV = �b. (6.19)

The recursive expansion method consists of the following steps.

1. Set

� =
∞
∑
j=0

p j (a, b)t j , (6.20)

where the p j are functions to be determined.
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2. Substitute the expressions for �, U and V from (6.20) and (6.16) into (6.19), together with the
expansions for u = Dt x , v = Dt y from (6.8) and (6.9), and equate coefficients of powers of t
to zero. At each order n we obtain the two equations (6.14) whose form can be seen by leading-
order analysis.

3. Substitute (6.14) into (6.18). At each order of t we obtain an equation for pn−1 in terms of
p0, p1, . . . , pn−2. By a leading term analysis, we have that the equation for pn is of the form
(6.15).

6.3.7 Discussion. The formal solution provides a mechanism for solving the two-dimensional
SG equations in terms of a sequence of boundary-value problems.

6.4 The cascade in the Legendre transform coordinates

The numerical solution of two-dimensional SG equations is carried out in Legendre transform co-
ordinates, which we now define. Setting

X = x + vg/ f, Y = y − ug/ f,

then for solutions of the SG equations we have

Dt X = ug, Dt Y = vg. (6.21)

At time t = 0, we have X (a, b, 0) = a and Y (a, b, 0) = b.
Just as we have the invariants, invariant differential operators and syzygies of the particle rela-

belling symmetry in the a, b, t, x, y variables, so we have the same information in the a, b, t, X, Y
variables. Thus we have the three fundamental invariants H = 1/(XaYb − XbYa), X and Y , and the
invariant differential operators

∂X = Yb∂a − Ya∂b

XaYb − XbYa
, ∂Y = −Xb∂a + Xa∂b

XaYb − XbYa
,

while the syzygy is

Dt H + H(UX + VY ) = 0,

where U = Dt X and V = Dt Y .
In these coordinates, the conservation of potential vorticity takes the form

XaYb − XbYa ≡ 1,

and so the syzygy takes the form

UX + VY = 0.

Since H ≡ 1, the idea used in the previous section to find a more amenable form of the equations
to study, that of evaluating the commutation rules on the invariant h, fails.

The standard procedure is to introduce a potential function � such that

U = Dt X = −�Y , V = Dt Y = �X . (6.22)
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There are two relations connecting h with �, one from the definitions and one from the conservation
of potential vorticity.

THEOREM 6.4. In terms of the potential function �, we have both of

h = f

g
� − 1

2g
(�2

X + �2
Y ), (6.23a)

h−1 = 1 − 1

f
(�X X + �Y Y ) + 1

f 2 (�X X�Y Y − �2
XY ), (6.23b)

and thus

1 ≡
{

f

g
� − 1

2g
(�2

X + �2
Y )

}{
1 − 1

f
(�X X + �Y Y ) + 1

f 2 (�X X�Y Y − �2
XY )

}
. (6.24)

A ‘cascade’ solution to the SG equations can be obtained in terms of the function � as follows.
From the fact that h(a, b, 0) ≡ 1 and (6.23) we have that ψ(a, b, 0) ≡ g/ f . Then equations (6.22)
can be rewritten as

Dt X = Xb�a − Xa�b, Dt Y = Yb�a − Ya�b, (6.25)

so that the equations for X and Y are the same, but their initial conditions are different; recall
X (a, b, 0) = a and Y (a, b, 0) = b. Substituting

� = g

f
+

∞
∑
j=1

ψ j t
j

into (6.25) and equating coefficients of powers of t to zero, yields a series of equations of the form

X1 = 0, Y1 = 0,

X2 = − 1
2ψ1,b, Y2 = 1

2ψ1,a,

...
...

Xn+1 = − 1

n + 1
ψn,b + l.o.t., Yn+1 = 1

n + 1
ψn,a + l.o.t.

Backsubstituting these into the expansion of (6.24) yields the equations for the ψ j . We already
know ψ0 ≡ g/ f and so

ψ1,aa + ψ1,bb = f 2

g
ψ1,

ψ2,aa + ψ2,bb = f 2

g
ψ2 − 1

f
(ψ1,aaψ1,bb − ψ2

1,ab) − f 3

g2 ψ2
1 − 1

2 f
(ψ2

1,a + ψ2
1,b),

...

ψn,aa + ψn,bb = f 2

g
ψn + l.o.t.
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From the first expression for h in (6.23), and noting that � = −Dt h, we may obtain the series
for the αn obtained in the previous section, in terms of the φ j . Using (6.21) we have also that

� = 1

2 f
(v2

g + u2
g) + g

f
h,

and thus we can obtain the functions ψ j in terms of the αn .
It is interesting to note that the linear equation governing each cascade is the same. Further, to

second order in time, ug = u and vg = v , presumably reflecting the order of the semi-geostrophic
approximation to the SW equations.

6.5 Cascade solutions are not flows

Since the evolution of the particles with coordinates (x, y) is supposed to approximate that of a fluid
flow, it is interesting to check that the flow condition actually holds, that is,

x(x(a, b, t), y(a, b, t), s) = x(a, b, t + s), y(x(a, b, t), y(a, b, t), s) = y(a, b, t + s)

are satisfied for all (a, b) and all t and s. Series expansions satisfying these conditions are precisely
those that are one-parameter group actions, and are well understood. In fact, the series depends, in
a way which can be made precise, on the first-order coefficients only. This is the content of Sophus
Lie’s theorem that a group action depends only on the infinitesimal generator. In (29, p. 27) can
be found the conditions that must be satisfied by the second- and higher-order coefficients. In the
present case these take the forms

x(a, b, t) = a + αat + 1
2 t2(αaαaa + αbαab) +O(t3),

y(a, b, t) = b + αbt + 1
2 t2(αaαab + αbαbb) +O(t3).

It is simple to check that the only solution satisfying both the cascade equations and the flow con-
ditions is the identity solution,

x(a, b, t) ≡ a, y(a, b, t) ≡ b,

the failure occurring at the second order! Thus while smooth solutions exist, they do not correspond
in the obvious physical sense to the motion of a fluid. This is in contrast to the semi-geostrophic
approximation of the two-dimensional Euler equations (15).

There are several avenues for the further research needed to fully understand this apparent co-
nundrum. One is to find a computationally effective method of understanding the evolution of the
solutions in the various function spaces, in which solutions corresponding to fluid flows are known
to exist (30, 31).
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APPENDIX A

Variational symmetries and Noether’s theorem

In this Appendix we record the formulae used in the paper, together with a brief indication of how Noether’s
theorem works in computations. Proofs can be found in the text by P. J. Olver (1, §§4.3,4.4,5.3).

In the application in this paper, the independent variables are a, b and t , while the dependent variables are
x , y, u and v . The infinitesimals of group actions on a, b and t were denoted by ξ , η and θ respectively,
while the infinitesimals of group actions on x , y, u and v were denoted by φ, ψ , ζ and ω respectively. To
ease the exposition, we will denote independent variables by ti , i = 1, . . . , 3 and dependent variables by uα ,
α = 1, . . . , 4. The derivatives of uα will be denoted by uα

K , where K is a multi-index of differentiation. The
infinitesimal generators for the ti will be denoted by ξ i and the infinitesimal generators for the uα will be
denoted by φα . The infinitesimal generator for uα

K will be denoted by φα
[K ]. Thus

(uα
K )∗ = uα

K + εφα
[K ] +O(ε2).

Define µ = dt1 ∧ dt2 ∧ dt3 and µ∗ = dt∗1 ∧ dt∗2 ∧ dt∗3 . The group action on a Lagrangian volume form is

(L dµ)∗ = L(t∗i , uα∗, uα
K

∗, . . .) dµ∗ = L(t∗i , uα∗, uα
K

∗, . . .)
∂(t∗1 , t∗2 , t∗3 )

∂(t1, t2, t3)
dµ. (A.1)

If L dµ = (L dµ)∗ is true for all elements of the group, then we can differentiate (L dµ)∗ with respect to
a group parameter. Suppose ε is a group parameter and that ε = 0 occurs at the identity of the group. Taking
d/dε at ε = 0 of both sides of (A.1) yields

0 = ∑
i,α,K

∂L
∂ti

ξ i + ∂L
∂uα

φα + ∂L
∂uα

K
φα

[K ] + L∇ • ξ

= ∑
K

DK

(
φα − ∑

i
uα

i ξ i

)
∂L
∂uα

K
+ ∇ •

(
Lξ1,Lξ2,Lξ3

)
. (A.2)
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This can be written compactly using the following notation. Defining

DL = ∑
K

∂L
∂uα

K
duα

K and vvvQ = ∑ DK (Qα) ∂

∂uα
K

,

where Q is a vector, Q = (Qα), then (A.2) can be written as

vQ �D(L) + ∇ • (L(ξ1, ξ2, ξ3)) = 0, (A.3)

where

Qα = φα − ∑
i

uα
i ξ i .

The functions Qα are called the characteristic functions of the symmetry.
The Euler–Lagrange operator also involves the D operator. In fact,

D(L) dµ = ∑
α

Eα(L) duα ∧ dµ + ∇ • A, (A.4)

where A can be explicitly determined.

EXAMPLE. For L = L(x, xa, xaa) we have

D(L) dµ = ∂L
∂x

dx dµ + ∂L
∂xa

dxa dµ + ∂L
∂xaa

dxaa dµ

=
{

∂L
∂x

− d

da

(
∂L
∂xa

)
+ d2

da2

(
∂L

∂xaa

)}
dx dµ + d

da

(
∂L
∂xa

dx dµ + 2
∂L

∂xaa
dxa dµ

)

= E [x](L) dx dµ + d

dx
(A) ,

where this defines A, and where d(dx)/da = dxa , etc.

Operating on both sides of (A.4) with vQ� and applying the symmetry condition (A.3) yields

0 = ∑
α

Qα Eα(L) + ∇ •
(

vQ�A − L(ξ1, ξ2, ξ3)
)

. (A.5)

Equation (A.5) is the essential content of Noether’s theorem; it shows how a divergence expression is ob-
tained by the dot product of the Euler–Lagrange equations and the characteristic functions of the symmetry.
There remains only the explicit formulae for the vector inside the divergence operator to be given.

The formula forAAA = vQ�A is given in terms of the so-called higher Euler operators E J
α , where J is an index

of differentiation. We need some notation regarding the index notation. We write an index of differentiation in
concatenated form, so that

I = 11 . . . 1︸ ︷︷ ︸
ı̃1terms

22 . . . 2︸ ︷︷ ︸
ı̃2terms

. . . .

Then I k is the multi-index obtained by adding another k to I . Define #I = ∑ ı̃k . Given two indices I and J , the
expression I ⊃ J means that ı̃k � j̃k for all k, while the multi-index K = I \ J satisfies κ̃k = max{0, ı̃k − j̃k}.
We define I ! = ı̃1!ı̃2! · · · ı̃ p! and, finally, the multinomial coefficient is defined to be(

I

J

)
= I !

J !(I \ J )!
.

The higher Euler operators are given explicitly by

E J
α (P) = ∑

I⊃J

(
I

J

)
(−D)I\J ∂ P

∂uα
I
.
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We have A = (A1,A2,A3) and

Ak = ∑
α

∑
#I>0

ı̃k + 1

#I + 1
DI (Qα E Ik

α (L)).

Finally, if B is a conservation law for the system � = 0, that is, if ∇ • B
∣∣
�=0 = 0, we say that B is trivial

if either

(i) B = ∇ ∧ C so that ∇ • B = 0 is an identity (independent of the system of equations � = 0 being
studied);

(ii) each component of B is zero on solutions of � = 0.

Two conservation laws are said to be equivalent if they differ by a trivial conservation law.


