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Preface to Second Edition

For this second edition almost every chapter has been revised and
updated in some way. The principal changes from the first edition are the
following. A second chapter on the geometry of complex contact mani-
folds, Chapter 13, has been added. Chapter 7 on the curvature of contact
metric manifolds has been reorganized and updated extensively. A sec-
tion on the projectivized tangent bundle has been added to Chapter 9.
Additional examples and commentary on further results have been added
throughout.

There has been considerable work in recent years on a number of areas
related to the subject, and it has been impossible to treat all of this work.
The author believes, however, that the text offers a good introduction to
and necessary background for the study of these topics.

The author expresses his appreciation to C. Abbas, T. Draghici,
B. Foreman and B. Korkmaz for reading parts of the manuscript and
offering valuable suggestions. The author also expresses his appreciation
to Birkhäuser for suggesting that he write a second edition and espe-
cially to Ann Kostant, Jessica Belanger and Tom Grasso for their kind
assistance in producing this book.

March, 2010 David E. Blair
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Preface to the First Edition

The author’s lectures “Contact Manifolds in Riemannian Geometry”,
volume 509 (1976), in the Springer-Verlag series Lecture Notes in
Mathematics have been out of print for some time and it seems appropri-
ate that an expanded version of this material should become available.
The present text deals with the Riemannian geometry of both symplectic
and contact manifolds, although the book is more contact than symplec-
tic. This work is based on the recent research of the author, his students,
colleagues, and other scholars, the author’s graduate courses at Michigan
State University and the earlier lecture notes.

Chapter 1 presents the general theory of symplectic manifolds. Prin-
cipal circle bundles are then discussed in Chapter 2 as a prelude to the
Boothby–Wang fibration of a compact regular contact manifold in Chap-
ter 3, which deals with the general theory of contact manifolds. Chapter
4 focuses on Riemannian metrics associated to symplectic and contact
structures. Chapter 5 is devoted to integral submanifolds of the contact
subbundle. In Chapter 6 we discuss the normality of almost contact struc-
tures, Sasakian manifolds, K-contact manifolds, the relation of contact
metric structures and CR-structures, and cosymplectic structures. Chap-
ter 7 deals with the important study of the curvature of a contact metric
manifold. In Chapter 8 we give a selection of results on submanifolds of

ix



x Preface to the First Edition

Kähler and Sasakian manifolds, including an illustration of the technique
of A. Ros in a theorem of F. Urbano on compact minimal Lagrangian
submanifolds in CPn. Chapter 9 discusses the symplectic structure of
tangent bundles, contact structure of tangent sphere bundles, general
vector bundles and normal bundles of Lagrangian and integral subman-
ifolds giving rise to new examples of symplectic and contact manifolds.
In Chapter 10 we study a number of curvature functionals on spaces of
associated metrics and their critical point conditions; we show also that
in the symplectic case, the “total scalar curvature” is a symplectic invari-
ant and in the contact case is a natural functional whose critcial points
are the metrics for which the characteristic vector field generates isomet-
rics. In the presence of a certain amount of negative curvature, special
directions appear in the contact subbundle; we discuss these and their
relations to Anosov and conformally Anosov flows in Chapter 11. Chap-
ter 12 deals with the subject of complex contact manifolds. We conclude
with a brief treatment of 3-Sasakian manifolds in Chapter 13.

The text attempts to strike a balance between giving detailed proofs
of basic properties, which will be instructive to the reader, and stating
many results whose proofs would take us too far afield. It has been im-
possible, however, to be encyclopedic and include everything, so that
unfortunately some important topics have been omitted or covered only
briefly. An extensive bibliography is given.

It is the author’s hope that the reader will find this both a good intro-
duction to the Riemannian geometry of contact and symplectic manifolds
and a useful reference to recent research in the area.

The author expresses his appreciation to C. Baikoussis, B.-Y. Chen,
D. Chinea, T. Draghici, B. Foreman, Th. Koufogiorgos, Y.-H. P. Pang
and D. Perrone for reading parts of the manuscript and offering valuable
suggestions. The author also expresses his appreciation to Ann Kostant of
Birkhäuser and to Elizabeth Loew of TEXniques for their kind assistance
in the production of this book.

October, 2001 David E. Blair
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1
Symplectic Manifolds

To set the stage for our development we begin this book with a treatment
of the basic features of symplectic geometry. In this chapter we discuss
symplectic manifolds and make brief mention of “associated metrics”, a
topic that will be thoroughly discussed in Chapter 4. Here we treat in
detail Lagrangian submanifolds and theorems of Darboux and Weinstein
on the local structure of a symplectic manifold. We end this chapter with
a brief discussion of symplectomorphisms.

1.1 Definitions and examples

By a symplectic manifold we mean an even-dimensional differentiable
(C∞) manifold M2n together with a global 2-form Ω which is closed
and of maximal rank, i.e., dΩ = 0, Ωn �= 0. By a symplectomorphism
f : (M1,Ω1) −→ (M2,Ω2) we mean a diffeomorphism f : M1 −→ M2

such that f∗Ω2 = Ω1.
Before continuing with symplectic manifolds we present some basic

linear algebra. On a vector space V 2n, if Ω ∈ ∧2 V with rkΩ = 2n, then
there exist θ1, . . . , θ2n ∈ V ∗, linearly independent and such that

Ω = θ1 ∧ θ2 + θ3 ∧ θ4 + · · ·+ θ2n−1 ∧ θ2n.

D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds,
DOI 10.1007/978-0-8176-4959-3_1, © Springer Science+Business Media, LLC 2010



2 1. Symplectic Manifolds

To see this, for a basis {ωi} of V ∗ write

Ω =
∑

i<j

aijω
i ∧ ωj = ω1 ∧

∑

1<j

a1jω
j + ω2 ∧

∑

2<j

a2jω
j

+ terms in ω3, . . . , ω2n

= ω1 ∧ β1 + ω2 ∧ β2 + terms in ω3, . . . , ω2n,

where β2 involves only ω3, . . . , ω2n, β1 = aω2 + β3, and β3 involves only
ω3, . . . , ω2n. Therefore

Ω = ω1 ∧ β1 +
1
a
β1 ∧ β2 − 1

a
β3 ∧ β2 + terms in ω3, . . . , ω2n

=
(

ω1 − 1
a
β2

)

∧ β1 + terms in ω3, . . . , ω2n

which is of the form θ1 ∧ θ2 + Ω1, where Ω1 involves only ω3, . . . , ω2n.
Now repeat the process for Ω1.

We shall often choose the labeling such that

Ω = θ1 ∧ θn+1 + · · ·+ θn ∧ θ2n.

As a corollary we see that there exists a basis {ei, en+i} of V 2n such that
Ω(ei, en+j) = δij , i, j = 1, . . . , n. A change of basis that leaves invariant
the normal form Ω =

∑n
i=1 θi∧θn+i is given by a symplectic matrix, i.e.,

(
A B
C D

)−1 =
(
D −C
−B A

)T if and only if

(
A B
C D

)T ( 0 I
−I 0

)(
A B
C D

)

=
(

0 I
−I 0

)

.

In particular, the structural group of the tangent bundle of a symplectic
manifold is reducible to Sp(2n, R). Further, using the fact that M2n may
be given a Riemannian metric and is orientable, the structural group is
reducible to SO(2n) and hence in turn to U(n). Thus in particular, M2n

carries an almost complex structure; this will be discussed in greater
detail below and in Chapter 4. The name symplectic is due to H. Weyl
[1939, p. 165] changing the Latin com/plex to the Greek sym/plectic.

Two canonical examples of symplectic manifolds are the following:

1. R
2n with coordinates (x1, . . . , xn, y1, . . . , yn) admits the symplectic

form Ω =
∑

dxi ∧ dyi. The classical theorem of Darboux states
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that on any symplectic manifold there exist local coordinates with
respect to which the symplectic form can be written in this way.
We will give a modern proof of this result in Section 1.3.

2. Let M be a differentiable manifold. Then its cotangent bundle T ∗M
has a natural symplectic structure. For z ∈ T ∗M and V in the
tangent space of T ∗M at z, TzT

∗M , define a 1-form β, often called
the Liouville form, by β(V )z = z(π∗V ), where π : T ∗M −→ M
is the projection map. If x1, . . . , xn are local coordinates on M ,
then qi = xi ◦ π together with fiber coordinates p1, . . . , pn give
local coordinates on T ∗M . In these coordinates β has the local
expression

∑n
i=1 pidqi. The natural symplectic structure on T ∗M

is given by Ω = −dβ.

The reader may recognize the second example from classical mechan-
ics; indeed, the cotangent bundle of the configuration space may be
thought of as the phase space of a dynamical system, and we may
obtain Hamilton’s equations of motion as follows. Let H be a real-
valued function on a symplectic manifold (M,Ω) and define a vector
field XH by Ω(XH , Y ) = Y H; XH is called the Hamiltonian vector
field generated by H. Two basic properties of XH are £XH

Ω = 0,
£ being Lie differentiation, and XHH = 0. In fact, the classical
Poisson bracket is {f1, f2} = Ω(Xf2 ,Xf1) = Xf1f2. In local coordinates
(q1, . . . , qn, p1, . . . , pn) given by the Darboux theorem, Ω =

∑
dqi ∧ dpi

and XH =
∑( − ∂H

∂qi
∂
∂pi + ∂H

∂pi
∂
∂qi

)
. Thus the differential equations for

the integral curves of XH are

ṗi = −∂H

∂qi
, q̇i =

∂H

∂pi
,

Hamilton’s equations of motion.
Before giving further examples, we mention the relationship with

Riemannian geometry that will become central for our study, viz., “as-
sociated metrics”. Given a symplectic manifold (M,Ω) there exist a
Riemannian metric g and an almost complex structure J such that
Ω(X,Y ) = g(X,JY ). In fact, we shall see in Chapter 4 that there are
many such metrics, g and J being created simultaneously by polarization.

On the other hand, given an almost complex structure J , i.e., a tensor
field J of type (1, 1) such that J2 = −I, on an almost complex manifold,
a Riemannian metric is said to be Hermitian if g(JX, JY ) = g(X,Y ) and
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the pair (J, g) is called an almost Hermitian structure. Now defining a
2-form Ω by Ω(X,Y ) = g(X,JY ), Ω is called the fundamental 2-form
of the almost Hermitian structure. If dΩ = 0, the almost Hermitian
structure is said to be almost Kähler, whereas the structure is Kähler if J ,
or equivalently Ω, is parallel with respect to the Levi-Civita connection of
g. Thus associated metrics can be thought of as almost Kähler structures
whose fundamental 2-form is the given symplectic form.

Since dΩ = 0, [Ω] ∈ H2(M, R), [Ω] denoting the de Rham cohomology
class determined by Ω. Using an associated metric, δΩ = 0 and hence Ω
is harmonic. To see this, use the fact that an almost Kähler manifold is
quasi-Kähler, i.e., (∇kJip)Jjp = (∇pJij)Jkp, sum on the indices i and k,
and use J2 = −I. Also [Ω]n = [Ωn] ∈ H2n(M, R). In particular, for M
compact the following are two necessary conditions for the existence of
a symplectic structure:

(i) M carries an almost complex structure.

(ii) There exists an element w ∈ H2(M, R) such that wn �= 0.

Thus, for example, from (i) the 4-dimensional sphere S4 is not symplectic,
and from (ii), S6 is not symplectic.

If M is an open manifold, Gromov in his thesis proved that (i) implies
the existence of a 1-form ω such that dω is symplectic (see A. Hae-
fliger [1971, p. 133]). Also, Kähler manifolds are symplectic, so there are
plenty of compact ones, e.g., complex projective space, S2×S2, algebraic
varieties. Note that the even-dimensional Betti numbers of a compact
almost Kähler manifold are nonzero. It is also well known that the odd-
dimensional Betti numbers of a compact Kähler manifold are even, but
this is not true in the almost Kähler case. We now give two descriptions
of an example of Thurston [1976] of a compact symplectic manifold with
no Kähler structure; this manifold is known as the Thurston manifold or
as the Kodaira–Thurston manifold (Kodaira [1964]).

Briefly, first take the product of a torus T 2, as a unit square with
opposite sides identified, and an interval and glue the ends together by
the diffeomorphism of T 2 given by the matrix ( 1 1

0 1 ). This gives a compact
3-manifold whose first Betti number is 2. Now taking the product with
S1, we have a 4-manifold M with first Betti number 3, and hence M
cannot have a Kähler structure. Let θ1, θ2 be coordinates on T 2; then
dθ1 ∧ dθ2 exists after the twisting on the 3-manifold. Thus if φ1 is the
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coordinate on the interval and φ2 the coordinate on the final circle, dθ1∧
dθ2 + dφ1 ∧ dφ2 is a symplectic form.

A second version of this example was given by E. Abbena [1984], who
also gave a natural associated metric for this symplectic structure, com-
puted its curvature, and showed that the first Betti number is 3 using
harmonic forms.

Let G be the closed connected subgroup of GL(4, C) defined by
⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

1 a12 a13 0
0 1 a23 0
0 0 1 0
0 0 0 e2πia

⎞

⎟
⎟
⎠

∣
∣
∣
∣
∣
a12, a13, a23, a ∈ R

⎫
⎪⎪⎬

⎪⎪⎭

,

i.e., G is the product of the Heisenberg group and S1. Let Γ be the
discrete subgroup of G with integer entries and M = G/Γ. Denote by
x, y, z, t coordinates on G, say for A ∈ G, x(A) = a12, y(A) = a23,
z(A) = a13, t(A) = a. If LB is left translation by B ∈ G, then L∗

Bdx = dx,
L∗
Bdy = dy, L∗

B(dz − xdy) = dz − xdy, L∗
Bdt = dt. In particular, these

forms are invariant under the action of Γ. Let π : G −→ M denote
projection. Then there exist 1-forms α1, α2, α3, α4 on M such that
dx = π∗α1, dy = π∗α2, dz − xdy = π∗α3, dt = π∗α4. Setting Ω =
α4 ∧ α1 + α2 ∧ α3, we see that Ω ∧ Ω �= 0 and dΩ = 0 on M giving M a
symplectic structure.

The vector fields

e1 =
∂

∂x
, e2 =

∂

∂y
+ x

∂

∂z
, e3 =

∂

∂z
, e4 =

∂

∂t

are dual to dx, dy, dz− x dy, dt and are left-invariant. Moreover, {ei} is
orthonormal with respect to the left-invariant metric on G given by

ds2 = dx2 + dy2 + (dz − x dy)2 + dt2.

On M the corresponding metric is g =
∑

αi⊗αi and is called the Abbena
metric.

Moreover, M carries an almost complex structure defined by

Je1 = e4, Je2 = −e3, Je3 = e2, Je4 = −e1.

Then noting that Ω(X,Y ) = g(X,JY ), we see that g is an associated
metric.
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At the time of Thurston’s example there was no known example of a
compact symplectic manifold with no Kähler structure. Since the
appearance of this example there have been many others, e.g., Watson
[1983], McDuff [1984], Cordero, Fernández and de Leon [1985], Cordero,
Fernández and Gray [1986], Benson and Gordon [1988], [1990], Fernández
and Gray [1990], Yamato [1990], McCarthy and Wolfson [1994], Gompf
[1994], [1995], Fernández, de Leon and Saralegi [1996], Jelonek [1996],
Holubowicz and Mozgawa [1998]. These examples are of several types: nil-
manifolds, solvmanifolds, simply connected examples obtained by sym-
plectic blowup, symplectic sums, and total spaces of fiber bundles. A
survey of these topics can be found in the book of A. Tralle and J. Oprea
[1997]. We also mention that Guan [1994] gave examples of complex sym-
plectic manfiolds (also known as holomorphic symplectic manifolds) that
are not Kähler including the complexification of the Kodaira–Thurston
manifold. A complex symplectic manifold is a complex manifold of com-
plex dimension 2n together with a closed holomorphic 2-form Ω such
that Ωn �= 0. Further examples of complex symplectic manifolds were
given by Yamada [2005].

1.2 Lagrangian submanifolds

Let ι : L −→M2n be an immersion into a symplectic manifold (M2n,Ω).
We say that L is a Lagrangian submanifold if the dimension of L is n
and ι∗Ω = 0. Two simple examples are the following:

1. The fibers of the cotangent bundle T ∗M as discussed in the previ-
ous section are Lagrangian submanifolds with respect to the sym-
plectic structure dβ. Also suppose that φ is a section of T ∗M . Then
φ∗β is equal to φ as a 1-form on M ; in particular,

(φ∗β)(X)m = β(φ∗X)φ(m) = φ(m)(π∗φ∗X) = φ(X)m.

Therefore φ∗Ω = φ∗(−dβ) = −dφ; thus a section φ : M −→ T ∗M is
a Lagrangian submanifold if and only if φ is closed. When φ is exact,
say dS, S is said to be a generating function for the submanifold.

2. Let (M1,Ω1) and (M2,Ω2) be symplectic manifolds and f :M1−→
M2 a diffeomorphism. Then (M1,Ω1)×(M2,−Ω2) is symplectic, say
M = M1 ×M2 with projections π1 and π2 and Ω = π∗

1Ω1 − π∗
2Ω2.
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Let Γf denote the graph of f . Then f is a symplectomorphism if
and only if Γf is a Lagrangian submanifold of (M,Ω).

There are several difficulties in studying Lagrangian submanifolds.
First of all, since ι∗Ω = 0, there is no induced structure, so in a sense
the geometry is transverse to the submanifold. From the standpoint of
submanifold theory the codimension is high, so that the theory is more
complicated. Another difficulty is that Lagrangian submanifolds are very
abundant. For example, given any vector X at a point m ∈M , there ex-
ists a Lagrangian submanifold through the point tangent to X. We shall
see this as a corollary to the Darboux theorem in the next section. Also,
Lagrangian submanifolds tend to get in the way of each other; loosely
speaking, two Lagrangian submanifolds that are C1-close tend to inter-
sect more than one would expect of two arbitrary C1-close submanifolds.
Going into this point in some detail, let M be a compact manifold and,
identifying M with the zero section of T ∗M , view M as a Lagrangian
submanifold of T ∗M . Now let L be a Lagrangian submanifold of T ∗M
near M . Regarding L as the image of a closed 1-form φ, the question of
when L and M intersect reduces to the question of when φ has a zero. So
to perturb M to a disjoint Lagrangian submanifold L, M must admit a
closed 1-form without zeros. An obstruction to this was given by Tischler
[1970] in the following theorem.

Theorem 1.1 If a compact manifold admits a closed 1-form without
zeros, then the manifold fibers over the circle and conversely.

In contrast, the problem of perturbing M to an arbitrary disjoint sub-
manifold is equivalent to finding a nonvanishing 1-form, which is equiv-
alent to finding a nonvanishing vector field, and the obstruction to this
is the Euler characteristic.

If M is simply connected, the situation is “worse”. For now φ is exact
and hence given by a function on M , but since M is compact, such a
function must have at least two critical points. So a perturbation of S2

to an arbitrary submanifold in T ∗S2 may intersect in only one point,
but a perturbation to a Lagrangian submanifold must have at least two
intersection points.

For L1 and L2, C1-close Lagrangian submanifolds of a symplectic man-
ifold (M,Ω), the same situation holds by virtue of the following theorem
of Weinstein [1971] which we will prove in the next section.
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Theorem (Weinstein) If L is a Lagrangian submanifold of a symplectic
manifold (M,Ω), then there exists a neighborhood of L in M that is
symplectomorphic to a neighborhood of the zero section in T ∗L.

More general than the notion of a Lagrangian submanifold are the
notions of isotropic and coisotropic submanifolds. A submanifold ι :
N −→ M2n is isotropic if ι∗Ω = 0, so in particular the dimension of
N is ≤ n. In the subject of almost Hermitian manifolds (M2n, J, g) these
submanifolds are called totally real submanifolds; see Yau [1974], Chen
and Ogiue [1974a]. The key point is that since Ω(X,Y ) = g(X,JY ), J
maps the tangent space into the normal space. We remark that one some-
times sees another notion of totally real submanifold in the literature,
namely a submanifold for which no tangent space contains a nonzero
complex subspace; however, we will use only the stronger notion in this
text.

The isotropic or totally real condition at a point m ∈ N can be written
as ι∗TmN ⊆ {V | Ω(V, ι∗TmN) = 0}. A submanifold ι : N −→ M2n is
coisotropic if ι∗TmN ⊇ {V | Ω(V, ι∗TmN) = 0}; in terms of (J, g), J
maps the normal space into the tangent space and hence the dimension
of N is ≥ n.

In particular, for a Lagrangian submanifold Nn in C
n, J maps the tan-

gent spaces onto the normal spaces; therefore TCn|N = TNn ⊕ iTNn =
TN ⊗ C and hence the complexified tangent bundle is trivial. Gromov
[1971] (see also Weinstein [1977]) proved that if Nn is compact, then Nn

admits a Lagrangian immersion into C
n if and only if the complexified

tangent bundle is trivial.
The question of embeddings is a different matter. It is known that

the sphere Sn cannot be embedded in C
n as a Lagrangian submanifold.

This is a consequence of a more general result of Gromov [1985] that a
compact embedded Lagrangian submanifold in C

n cannot be simply con-
nected (see also Sikorav [1986]). For an immersed sphere as a Lagrangian
submanifold with only one double point, see Example 5.3.3, Weinstein
[1977, p. 26], or Morvan [1983].

Our discussion also has the following application to the problem of
fixed points of symplectomorphisms; see Weinstein [1977, p. 29]. Let
(M,Ω) be a compact simply connected symplectic manifold. Then a sym-
plectomorphsim f sufficiently C1 close to the identity has at least two
fixed points. To see this, let Δ be the diagonal of (M,Ω)× (M,−Ω) and
Γf the graph of f . Then Δ and Γf intersect at least twice, and hence
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f has at least two fixed points. For example, let M be complex projec-
tive space CPn and f an automorphism of the Kähler structure that is
C1-close to the identity. Any function on CPn has at least n + 1 critical
points, so that f must have at least n + 1 fixed points.

1.3 The Darboux–Weinstein theorems

We have mentioned the theorems of Darboux and Weinstein already; in
this section we present a modern proof of both theorems using a technique
of Moser [1965]. The use of this idea to prove the classical Darboux the-
orem is due to Weinstein [1971, 1977] and independently to J. Martinet
[1970]. In addition to the papers mentioned, a general reference is the

book by P. Libermann and C.-M. Marle [1987, Chapter III, Section 15]
which we follow here; for the Darboux theorem see also N. Woodhouse
[1980, pp. 7–9]. We begin with the following theorem of Weinstein. As
a matter of notation, for a submanifold ι : N −→ M and a differential
form Φ on M , Φ|N denotes the form acting on TNM , the restriction of
TM to N , and not the pullback, ι∗Φ, of Φ to N (see, e.g., Libermann
and Marle [1987, p. 360]).

Theorem 1.2 Let Ω0 and Ω1 be symplectic forms on a symplectic man-
ifold M , and N a submanifold (possibly a point) on which Ω0|N = Ω1|N .
Then there exist tubular neighborhoods U and V of N and a symplecto-
morphism ρ : U −→ V such that ρ|N is the identity.

Proof. Since d(Ω1 − Ω0) = 0, by the generalized Poincaré lemma (see,
e.g., Libermann and Marle [1987, p. 361]) there exists a tubular neigh-
borhood W of N and a 1-form α on W such that Ω1 − Ω0 = dα and
α|N = 0. Now for t ∈ R set Ωt = Ω0 + t(Ω1 − Ω0); Ωt is nondegenerate
on an open subset W1 of W ×R containing N ×R. Let X be the vector
field on W1 defined by

X(m, t) Ωt(m) = −α(m),

where denotes the left interior product. For a point m, consider the
integral curve t −→ φm(t) of X through (m, 0) and regard the domain of
φ : (m, t) −→ φm(t) as an open subset W2 of W×R with W2 ⊂W1. Since
α|N = 0, X restricted to N × R vanishes and hence N × R ⊂ W2. Now
since [0, 1] is compact, any point m ∈ N has a neighborhood Um ⊂ M
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such that Um × [0, 1] ⊂ W2. Let U = ∪m∈NUm. For (m, t0) ∈ U × [0, 1]
we compute

d

dt
(φm(t)∗Ωt)(m)

∣
∣
t=t0

= φm(t0)∗
(

£XΩt0 +
d

dt
Ωt

∣
∣
t=t0

)

(m) = 0

since

£XΩt = X dΩt+d(X Ωt) = −dα = Ω0−Ω1, and
d

dt
Ωt = Ω1−Ω0.

Thus if ρ : U −→ V = ρ(U) ⊂ W is the diffeomorphism determined by
(ρ(m), 1) = φm(1), then ρ∗Ω1 = Ω0 and ρ(m) = m for m ∈ N .

As a corollary we now have the classical theorem of Darboux.

Theorem 1.3 Given (M2n,Ω) symplectic and m ∈ M , there exist a
neighborhood U of m and local coordinates (x1, . . . , xn, y1, . . . , yn) on U
such that Ω =

∑
dxi ∧ dyi.

Proof. Let (u1, . . . , un, v1, . . . , vn) be local coordinates on a neighbor-
hood of m such that ∂

∂ui (m) and ∂
∂vi (m) form a symplectic frame at the

point m. Set Ω0 = Ω and Ω1 =
∑

dui∧dvi. Then Ω0 and Ω1 agree at m.
Now constructing ρ as in the previous theorem, xi = ui ◦ρ and yi = vi ◦ρ
form the desired coordinates.

We remark that one can easily choose the “Darboux” coordinates such
that ∂

∂y1 (m) is any preassigned vector X at m and that xi = const
defines a Lagrangian submanifold. Thus we see that given a point m and
a tangent vector X at m there exists a Lagrangian submanifold through
the point and tangent to X as we remarked in the last section.

There are more general versions of the Darboux theorem, and it seems
worthwhile to state the following two theorems here. We refer the reader
to the book of S. Sternberg [1983, Chapter III, Section 6] for proofs and
as a more classical reference to these results.

Theorem 1.4 Let Ω be a closed 2-form such that Ωp �= 0 but Ωp+1 ≡
0. Then about every point there exist local coordinates (x1, . . . , xn−p,
y1, . . . , yp) such that Ω = dx1 ∧ dy1 + · · ·+ dxp ∧ dyp.

Theorem 1.5 Let ω �= 0 be a 1-form such that dωp �= 0 but ω∧ (dω)p ≡
0. Then there exist local coordinates (x1, . . . , xn−p, y1, . . . , yp) such that
ω = x1dy1 + · · ·+xpdyp. If ω∧ (dω)p �= 0 but dωp+1 ≡ 0, then there exist
local coordinates (x1, . . . , xn−p, y1, . . . , yp) such that ω = x1dy1 + · · · +
xpdyp + dxp+1.



1.4 Symplectomorphisms 11

We now prove the theorem of Weinstein that locally a symplectic man-
ifold is the cotangent bundle of a Lagrangian submanifold.

Theorem 1.6 If L is a Lagrangian submanifold of a symplectic manifold
(M,Ω), then there exists a neighborhood of L in M that is symplectomor-
phic to a neighborhood of the zero section in T ∗L.

Proof. Let TLM be the restriction of the tangent bundle TM to L and
E a Lagrangian complement of TL in TLM . Such a vector bundle E
exists but is by no means unique; e.g., relative to an associated metric
as described above, E could be taken as the normal bundle of L. Define
j : E −→ T ∗L by

j(ζ)(X) = Ω(ζ,X),

where ζ ∈ Em and X ∈ TmL, m ∈ L. Moreover there exist a tubular
neighborhood U of L in M and a diffeomorphism φ of U onto φ(U) ⊂ E
such that φ|L is the zero section and identifying Tφ(m)Em with Em,

φ∗(m)|Em = id|Em , m ∈ L

(see e.g., Libermann and Marle [1987, p. 358], or in the Riemannian
case use the inverse of the exponential map). Then j ◦ φ is a diffeomor-
phism of U onto the open subset j(φ(U)) of T ∗L whose restriction to L
is the zero section, s0 : L −→ L′ ⊂ T ∗L. Moreover, (j ◦ φ)∗(m) maps
the complementary Lagrangian subspaces TmL and Em onto Ts0(m)L

′

and Ts0(m)(T ∗
mL) respectively. But Ts0(m)L

′ and Ts0(m)(T ∗
mL) are com-

plementary Lagrangian subspaces with respect to the symplectic form dβ
on T ∗L. Now identifying L and L′, the restriction of (j ◦ φ)∗(m) to TmL
is just the identity and since φ∗(m)|Em = id|Em , (j ◦ φ)∗(m) restricted
to Em is j. In particular, (j ◦ φ)∗(m)ζ is vertical and X ∈ TmL, so using
the local expression

∑
dpi ∧ dqi of dβ on T ∗L,

dβ((j ◦ φ)∗(m)ζ, (j ◦ φ)∗(m)X) = j(ζ)(X) = Ω(ζ,X).

The result now follows from Theorem 1.2.

1.4 Symplectomorphisms

Recall that a diffeomorphism f : M −→ M is a symplectomorphism
if f∗Ω = Ω. A vector field X which generates a 1-parameter group of
symplectomorphisms is called a symplectic vector field. Clearly £XΩ = 0.
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Theorem 1.7 Let X be a symplectic vector field on (M,Ω), g an asso-
ciated metric, and J the corresponding almost complex structure. Then
Xi = J ikθk for some closed 1-form θ. Conversely, given a closed 1-form
θ, Xi = J ikθk defines a symplectic vector field.

Proof. First note that 0 = £XΩ = d(X Ω) implies that θ = 1
2(X Ω)

is a closed 1-form. Let T be the vector field given by g(T, Y ) = θ(Y ).
Then g(JT, Y ) = −θ(JY ) = −Ω(X,JY ) = g(X,Y ). Therefore Xi =
J ikT

k or Xi = J ikθk as desired. Conversely, given θ closed, define X
by Xi = J ikθk from which −θl = JliX

i = −JilX
i, i.e., θ = 1

2 (X Ω).
Therefore £XΩ = d(X Ω) = 2dθ = 0.

Corollary 1.1 For f ∈ C∞(M), J∇f is symplectic, where ∇f is the
gradient of f . Conversely, given X symplectic, X is locally J∇f .

In particular, X is locally the Hamiltonian vector field Xf . Compare
this with the following classical treatment. Suppose that N is a level
hypersurface of the function H on (M,Ω), on which dH �= 0. Then XH

is a nonzero tangent vector field that is in the direction of J of the normal
direction: g(Y,∇H) = Y H = Ω(XH , Y ) = g(XH , JY ) = −g(JXH , Y ),
giving XH = J∇H.

Finally, we prove a result of Hatakeyama [1966] that the group
of symplectomorphisms acts transitively on a compact symplectic
manifold.

Theorem 1.8 The group of symplectomorphisms acts transitively on a
compact symplectic manifold (M,Ω).

Proof. We first prove the result for a Darboux neighborhood U about
p ∈ M , i.e., we have local coordinates (x1, .., xn, y1, . . . , yn) such that
Ω =

∑
dxi ∧ dyi and xi(p) = yi(p) = 0. Let q(�= p) ∈ U with coordinates

(ai, bi) and define a function f on U by f = 1
2

∑
(aiyi − bixi). Then the

vector field X defined by X Ω = 2df generates a 1-parameter group φt
such that φ1(p) = q. Writing X as Xi ∂

∂xi + Xi∗ ∂
∂yi , we have X Ω =

Xidyi−Xi∗dxi = aidyi− bidxi. Thus X = ai ∂
∂xi + bi ∂

∂yi , and its integral
curves have the form xi = ait, yi = bit. Strictly speaking, X is determined
by f ∈ C∞(M), where f equals 1

2

∑
(aiyi − bixi) on U and vanishes

outside some larger neighborhood; M compact then implies that φt is
a diffeomorphism of M . Thus any two points in U may be joined by a
symplectomorphism. Now for p, q ∈M join them by a curve and cover it
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by a finite number of Darboux neighborhoods Uα, α = 1, . . . , k.
Choose a sequence of points pα such that p0 = p, pk = q and pα ∈
Uα ∩ Uα+1, and apply the above result.

For a generalization to symplectomorphisms mapping k points to k
points, see Boothby [1969] or Kriegl–Michor [1997, p. 472].





2
Principal S1-bundles

A very important theorem in the geometry of contact manifolds, and the
start of the modern theory, is the Boothby–Wang theorem, which states
that a compact regular contact manifold is a principal circle bundle over a
symplectic manifold of integral class. We will prove this result in Section
3.3. In preparation for this we review principal circle bundles in this
chapter.

2.1 The set of principal S1-bundles as a group

Let P and M be C∞ manifolds, π : P −→ M a C∞ map of P onto M ,
and G a Lie group acting on P to the right. Then (P,G,M) is called a
principal G-bundle if

1. G acts freely on P ,

2. π(p1) = π(p2) if and only if there exists g ∈ G such that p1g = p2,

3. P is locally trivial over M , i.e., for every m ∈ M there exists a
neighborhood U of m and a map FU : π−1(U) −→ G such that
for every p ∈ π−1(U) and g ∈ G, FU (pg) = (FU (p))g, and such

D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds,
DOI 10.1007/978-0-8176-4959-3_2, © Springer Science+Business Media, LLC 2010
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that the map ψ : π−1(U) −→ U ×G taking p to (π(p), FU (p)) is a
diffeomorphism.

For a general reference to the theory of principal fiber bundles see Bishop
and Crittenden [1964, Chapters 3 and 5], Kobayashi and Nomizu
[1963–69, Chapter II].

We now turn to the case where G = S1, in which case we say that P
is a principal circle bundle over M and we study the group structure of
the set P(M,S1) of all principal circle bundles over M . Our treatment
is based on Kobayashi [1956].

Given P,P ′ ∈ P(M,S1) with projections π, π′, let Δ(P × P ′) =
{(u, u′) ∈ P × P ′|π(u) = π′(u)}. We say (u1, u

′
1) ∼ (u2, u

′
2) if there

exists s ∈ S1 such that u1s = u2 and u′
1s

−1 = u′
2. Note that since S1 is

abelian, u3 = u2t = u1st, u′
3 = u′

2t
−1 = u′

1s
−1t−1 = u′

1(st)
−1.

Let P + P ′ = Δ(P × P ′)/ ∼ and π′′ : P + P ′ −→ M the induced
projection. S1 acts on Δ(P ×P ′) by (u, u′)s = (us, u′). Now if (u1, u

′
1) ∼

(u2, u
′
2), u1t = u2 and u′

1t
−1 = u′

2, we have u2s = u1ts = (u1s)t. There-
fore (u1s, u

′
1) ∼ (u2s, u

′
2) and hence S1 acts on P + P ′.

S1 acts freely: Suppose u′′s = u′′, u′′ ∈ P + P ′ and suppose
(u, u′) represents u′′. Then (u, u′) ∼ (us, u′), so that u′s−1 =
u′ and hence s = 1 ∈ S1.

S1 acts transitively on fibers: Suppose u′′
1 , u

′′
2 ∈ π′′−1(m) and

(u1, u
′
1), (u2, u

′
2) are representatives. Then u2 = u1s, u′

2 =
u′

1s
′, s, s′ ∈ S1. Now (u2, u

′
2) ∼ (u2s

′, u′
1) = (u1ss

′, u′
1) =

(u1, u
′
1)ss

′ and hence u′′
2 = u′′

1ss
′.

P + P ′ is locally trivial: If FU (u) = g, F ′
U (u′) = g′, set

F ′′
U (u, u′) = gg′. Then F ′′

U (us, u′) = gsg′ = gg′s.

Theorem 2.1 Under the operation +, P(M,S1) is an abelian group.

Proof. Let P0 be the trivial bundle and α : P −→ P + P0 defined by
α(u) = [(u, (π(u), 1))]. Then α is a bundle isomorphism:

α(us) = [(us, (π(u), 1))] = [(u, (π(u), 1))s]
= [(u, (π(u), 1))]s = α(u)s;

α−1([(u, (π(u), g))]) = α−1([(ug−1, (π(u), 1))]) = ug−1.
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Let −P be a manifold diffeomorphic to P and −u the point corre-
sponding to u. Define −π : −P −→ M by −π(−u) = π(u). S1 acts on
−P by (−u)s = −(us−1). Then −P ∈ P(M,S1). Now let (u1,−u2) ∈
Δ(P × −P ); then there exists a unique s ∈ S1 such that u1 = u2s. Let
α : P + (−P ) −→ P0 be defined by α([(u1,−u2)]) = (π(u1), s). Then α
is a bundle isomorphism.

Let Δ(P × P ′ × P ′′) = {(u, u′, u′′)|π(u) = π′(u′) = π′′(u′′)} and define
the equivalence ∼ by (u, u′, u′′) ∼ (us, u′s−1s′, u′′s′−1). Then Δ(P ×P ′×
P ′′)/ ∼ is naturally isomorphic to (P + P ′) + P ′′, ((u′s−1, us)s′, u′′s′−1),
and to P + (P ′ + P ′′), (us, (u′s′, u′′s′−1)s−1). S1 acts on Δ(P ×P ′×P ′′)
by (u, u′, u′′)s = (us, u′, u′′). Now if (u1, u

′
1, u

′′
1) ∼ (u2, u

′
2, u

′′
2), then u2 =

u1t, u
′
2 = u′

1t
−1t′, u′′

2 = u′′
1t

′−1. Then u2s = u1ts = (u1s)t so that the
right action preserves ∼.

Finally, P + P ′ is isomorphic to P ′ + P by [(u, u′)] ←→ [(u′, u)],
(us, u′) ∼ (u, u′s).

Let Gm be the cyclic subgroup of S1 of order m and P ∈ P(M,S1).
Since S1 acts on P on the right, so does Gm. Then P/Gm is a principal
bundle over M with group S1/Gm. But S1/Gm

∼= S1 and hence we can
consider P/Gm ∈ P(M,S1). More precisely: Let [u] be an element of
P/Gm that is represented by u ∈ P . Define the action of S1 on P/Gm by
setting [u]s = [us′], where s = s′m. This definition is independent of the
choice of u and s′. For if g ∈ Gm, then [ug]s = [ugs′] = [us′g] = [us′] =
[u]s, and if s′′m = s, then (s′−1s′′)m = 1 so that s′−1s′′ ∈ Gm and hence
[us′′] = [us′s′−1s′′] = [us′].

Theorem 2.2 Let P , Gm and P/Gm be as above. Then P/Gm
∼= m ·P .

Proof. From the definition above it follows by induction that m ·P can
be defined directly by

Δ(P × · · · × P ) = {(u1, . . . , um) ∈ P × · · · × P |π(u1) = · · · = π(um)},

two elements of which, say (u1, . . . , um) and (u1s1, . . . , umsm), are equiv-
alent if and only if s1 · · · sm = 1. The quotient space of Δ(P × · · · ×
P ) by this relation is m · P . The action of S1 on m · P is given by
[(u1, . . . , um)]s = [(u1s, u2, . . . , um)]. Define φ : P/Gm −→ m · P by
φ([u]) = [(u, . . . , u)], which is independent of the choice of u, for if
g ∈ Gm, gm = 1, then φ([ug]) = [(ug, . . . , ug)] = [(u, . . . , u)]. Now
take s ∈ S1 and s′ such that s′m = s. Then φ([u]s) = φ([us′]) =
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[(us′, . . . , us′)] = [(us, u, . . . , u)] = [(u, . . . , u)]s = (φ([u]))s. Therefore
φ is a bundle isomorphism of P/Gm onto m · P

Corollary 2.1 If P is simply connected and m > 1, then there is no
bundle P ′ ∈ P(M,S1) such that P = m · P ′.

Proof. Suppose that P ′ exists. Then P ∼= P ′/Gm and so P ′ is a covering
space of P . Since P is simply connected, this can happen only if m = 1.

A principal bundle may also be thought of as an equivalence class
of principal coordinate bundles that are given by their transition func-
tions. Let {Ui} be a differentiably simple open cover of M (i.e., {Ui}
is locally finite, each Ui has compact closure and any nonempty finite
intersection is diffeomorphic to an open cell of R

n). With respect to this
cover let fij : Ui ∩ Uj −→ S1 be the transition functions of a bundle
P ∈ P(M,S1). The fij are defined by fij(π(p)) = FUi(p)(FUj (p))−1.
Then fij ∈ Γ(Ui ∩ Uj,S1), the set of all sections over Ui ∩ Uj with
coefficients in S1, the sheaf of germs of local C∞ maps from M into
S1. Thus f = {fij} is a cochain of M . Now fik = fijfjk. Thus fi0i1i2 =
δfi0i1 = fi0i1f

−1
i0i2

fi1i2 = fi0i2f
−1
i0i2

= 1 and f is a cocycle. Now P and P ′

are equivalent if and only if P − P ′ is the trivial bundle, so P and P ′

are the same here if and only if ff ′−1 is a coboundary, where f ′ is the
cocycle of P ′. Therefore P(M,S1) ∼= H1(M,S1).

The natural short exact sequence 0 −→ Z −→ R −→ S1 −→ 0 induces
a short exact sequence of the corresponding sheaves 0 −→ Z −→ R −→
S1 −→ 0. From this we get the cohomology sequence

· · · → H1(M,R)→ H1(M,S1)→ H2(M,Z)→ H2(M,R)→ · · · .

Now let {φi} be a partition of unity subordinate to {Ui} with φi|M−Vi = 0,
V̄i ⊂ Ui. Let {βijk} ∈ Z2(M,R). Consider αij =

∑
k φkβijk. If in a neigh-

borhood of m ∈ Ui∩Uj , βijk is not defined, we have φk(m′) = 0 for every
m′ in the neighborhood. Hence we see that αij is defined on Ui∩Uj. Now

δ{αij} = {αij − αik + αjk} = {
∑

l

φl(βijl − βikl + βjkl)}

= {
∑

l

φlβijk} = {βijk}.
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This can be done for other-dimensional cocycles as well. Hence Zi(M,R) =
Bi(M,R), i > 0. Thus in particular we have that

H1(M,R) = H2(M,R) = 0.

On the other hand, the C∞ maps of M into Z are just the constant inte-
ger functions and hence the corresponding cohomology groups must be
isomorphic, in particular H2(M,Z) = H2(M, Z). Thus we finally have
the isomorphisms

H1(M,S1) ∼= H2(M, Z), P(M,S1) ∼= H2(M, Z).

For example, it is well known that for complex projective space CPn,
H2(CPn, Z) ∼= Z. Thus by the above isomorphism, P(CPn, S1) ∼= Z.
The most famous example of a principal circle bundle over CPn is the
Hopf fibration of an odd-dimensional sphere S2n+1. Suppose that S2n+1 ∈
P(CPn, S1) corresponds to k ∈ Z. Then since S2n+1 is simply connected,
k = ±1 by the corollary. Therefore we finally have the following result.

Theorem 2.3 P(CPn, S1) ∼= Z with S2n+1 corresponding to 1 for a
proper orientation of CPn.

2.2 Connections on a principal bundle

A connection on a principal G-bundle (P,G,M) is a C∞ distribution H
on P such that

1. TpP = Hp ⊕ Vp, Vp = ker π∗,

2. Rg∗(Hp) = Hpg, Rg being right translation.

Vectors in Hp are said to be horizontal, and for t ∈ TpP we denote its
horizontal part by Ht. The map π∗|Hp is one-to-one and hence π∗(Hp) =
Tπ(p)M . Thus given a vector field X on M there exists a unique vector
field X̃ on P such that X̃(p) ∈ Hp and π∗X̃(p) = X(π(p)), i.e., X̃ is
π-related to X. X̃ is called the horizontal lift of X. The following two
properties of horizontal lifts follow easily from the definitions:

[̃X,Y ] = H[X̃, Ỹ ], Rg∗X̃ = X̃.
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A p-form ω on P is vertical (resp. horizontal) if ω(t1, . . . , tp) = 0 when
one or more of the ti’s is horizontal (resp. vertical).

Now regard p ∈ P as a map of G −→ P by p(g) = pg. Let g denote
the Lie algebra of G and define a Lie algebra homomorphism of g into a
Lie algebra ḡ of vector fields on P by X̄ = (p∗X)(e). The map p : G −→
π−1(π(p)) is a diffeomorphism, so given t ∈ Vp, let X(e) = p−1∗ t. Then
there exists X̄ ∈ ḡ such that X̄(p) = t. On the other hand, given X̄ ∈ ḡ,
π∗X̄(p) = π∗(p∗X)(e) = (π ◦ p)∗X(e) = 0, since π ◦ p is a constant map.
Thus X̄ is vertical.

Given a connection H on (P,G,M) define a g-valued 1-form φ on P
by φ(t) = X ∈ g where X̄(p) is the vertical part of t. φ is called the
connection form of H. The following lemmas are well known and their
proofs can be found in the references (e.g., Bishop and Crittenden [1964,
pp. 76–77], Kobayashi and Nomizu [1963–69, Volume I, p. 64]).

Lemma 2.1 φ ◦Rg∗ = Adg−1 ◦ φ, i.e., φ is equivariant.

Lemma 2.2 If φ is a g-valued C∞ equivariant 1-form such that
φ(X̄(p)) = X, then there exists a unique connection H whose 1-form
is φ.

Given a g-valued p-form σ and a g-valued q-form ω, their bracket is
defined by

[σ, ω](X1, . . . ,Xp+q)

=
1

(p + q)!

∑

(i1,...,ip+q)

sgn(i1, . . . , ip+q)[σ(Xi1 , . . . ,Xip), ω(Xip+1 , . . . ,Xip+q)].

Let ω be a p-form on P and define a (p + 1)-form Dω by

Dω(t1, . . . , tp+1) = dω(Ht1, . . . ,Htp).

Clearly Dω is horizontal. If φ is the connection form of H, Φ = Dφ is
called the curvature form of H. Φ is equivariant as can be seen as follows:

Φ(Rg∗t1, Rg∗t2) = dφ(HRg∗t1,HRg∗t2) = dφ(Rg∗Ht1, Rg∗Ht2)

= −1
2
φ(Rg∗[Ht1,Ht2]) = −1

2
Adg−1φ([Ht1,Ht2])

= Adg−1Φ(t1, t2).
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We now have the structural equation; again for the proof see the refer-
ences (e.g., Bishop and Crittenden [1964, p. 81], Kobayashi and Nomizu
[1963–69, Volume I, p. 77]).

Theorem 2.4 dφ = −1
2 [φ, φ] + Φ.

Let P ∈ P(M,S1) and note that the Lie algebra of S1 is R with
the trivial bracket operation. Thus if η is a connection form on P , then
[η, η] = 0, and if Φ is the curvature, the structural equation is simply
dη = Φ.

Again since S1 is abelian, for X,Y ∈ TuP and s ∈ S1 we have

Φ(Rs∗X,Rs∗Y ) = Ads−1Φ(X,Y ) = Φ(X,Y ).

Therefore there exists a unique 2-form Ω on M such that Φ = π∗Ω. Now
π∗(dΩ) = dΦ = 0 and hence Ω is a closed 2-form on M .

If now η′ is another connection, then as before, (η− η′) ◦Rs∗ = η− η′.
Therefore there exists a unique 1-form β on M such that π∗β = η − η′.
Now π∗dβ = d(η − η′) = Φ − Φ′ = π∗Ω − π∗Ω′ and hence dβ = Ω −
Ω′. Thus the cohomology class of Ω is independent of the choice of the
connection form and is called the characteristic class of P ; again see
Kobayashi [1956]. Since the transition functions are mappings from Ui∩Uj
into S1, they can be considered as real-valued functions (mod 1), and it
can then be shown that Ω is integral, i.e.,

∫
c Ω = integer for any finite

singular cocycle c with integer coefficients. This gives a homomorphism
of P(M,S1) onto the integral classes of the second de Rham cohomology.

We end this chapter with the following theorem of Kobayashi [1963],
which should again be compared with the isomorphism P(M,S1) ∼=
H2(M, Z).

Theorem 2.5 Let Ω be a 2-form on M representing an element of
H2(M, Z). Then there exist a principal circle bundle P and a connec-
tion form η on P such that dη = π∗Ω.

Proof. Let P be the principal bundle corresponding to Ω and η′ a con-
nection form on P such that the closed 2-form Ω′ defined by dη′ = π∗Ω′

is cohomologous to Ω. Let β be a 1-form on M such that Ω− Ω′ = dβ.
Now set η = η′ +π∗β. Then π∗β is horizontal and equivariant, and hence
η is a connection form on P and dη = π∗Ω as desired.





3
Contact Manifolds

In this chapter we give the basic definitions and properties concerning
contact manifolds both as given by a global contact form and as a contact
structure in the wider sense. We then give many examples of contact
manifolds, a discussion of the celebrated Boothby–Wang fibration, and
a discussion of the Weinstein conjecture.

3.1 Definitions

By a contact manifold we mean a C∞ manifold M2n+1 together with a
1-form η such that η∧ (dη)n �= 0. In particular, η∧ (dη)n �= 0 is a volume
element on M , so that a contact manifold is orientable. Also dη has rank
2n on the Grassmann algebra

∧
T ∗
mM at each point m ∈ M , and thus

we have a 1-dimensional subspace, {X ∈ TmM |dη(X,TmM) = 0}, on
which η �= 0 and which is complementary to the subspace defined by
η = 0. Therefore choosing ξm in this subspace normalized by η(ξm) = 1,
we have a global vector field ξ satisfying

dη(ξ,X) = 0, η(ξ) = 1.

ξ is called the characteristic vector field or Reeb vector field (Reeb [1952])
of the contact structure η. Computing Lie derivatives by the formula

D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds,
DOI 10.1007/978-0-8176-4959-3_3, © Springer Science+Business Media, LLC 2010
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£ξ = d ◦ (ξ ) + (ξ ) ◦ d, we have immediately that

£ξη = 0, £ξdη = 0.

We denote by D the contact distribution or subbundle defined by the
subspaces Dm = {X ∈ TmM : η(X) = 0}. Roughly speaking, the mean-
ing of the contact condition, η∧ (dη)n �= 0, is that the contact subbundle
is as far from being integrable as possible; in particular, D rotates as one
moves around on the manifold. For a subbundle defined by a 1-form η
to be integrable it is necessary and sufficient that η ∧ (dη) ≡ 0. In con-
trast, we shall see in Chapter 5 that for a contact manifold M2n+1, the
maximum dimension of an integral submanifold of D is only n. A one-
dimensional integral submanifold of D will be called a Legendre curve,
especially to avoid confusion with an integral curve of the vector field ξ.

A contact structure is regular if ξ is regular as a vector field, that is,
every point of the manifold has a neighborhood such that any integral
curve of the vector field passing through the neighborhood passes through
only once (cf. Palais [1957]). Two well-known examples of nonregular
vector fields on surfaces are the irrational flow on a torus and the flow
around a Möbius band.

We now prove the classical theorem of Darboux. It is, of course, a
special case of Theorem 1.5, but it is worthwhile to give a short proof
here and to note that we will sometimes refer to a Darboux coordinate
system as one in which the contact form is given locally in the notation
of Theorem 3.1.

Theorem 3.1 About each point of a contact manifold (M2n+1, η) there
exist local coordinates (x1, . . . , xn, y1, . . . , yn, z) with respect to which

η = dz −
n∑

i=1

yidxi.

Proof. In some coordinate neighborhood choose a 2n-ball transverse to
ξ; dη is symplectic on this ball, and hence there exist local coordinates
(x1, . . . , xn, y1, . . . , yn, u) such that dη=

∑
dxi∧dyi. Now d(η+

∑
yidxi) =

0 so that η +
∑

yidxi = df for some function f , i.e., η = df −∑ yidxi.
Now η ∧ (dη)n = df ∧ dx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn �= 0. Therefore
df is independent of dx1, . . . , dxn, dy1, . . . , dyn, and hence we can regard
xi, yi and z = f as a coordinate system.
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In a Darboux coordinate system, ξ = ∂
∂z . For if ξ = a ∂

∂z +bi ∂
∂xi +ci ∂

∂yi ,
then 1 = η(ξ) = a− biyi. Also 0 = dη(ξ, ∂

∂xi ) =
∑

dxi ∧ dyi(ξ, ∂
∂xi ) gives

ci = 0. Similarly, 0 = dη(ξ, ∂
∂yi ) gives bi = 0. Thus a = 1 and ξ = ∂

∂z .
A diffeomorphism f of M2n+1 or between open subsets of R

2n+1 with
the contact structure of the Darboux form of Theorem 3.1 is called a
contact transformation if f∗η = τη for some nonvanishing function τ on
the domain of f . If τ ≡ 1, f is called a strict contact transformation.

There is also the notion of a contact structure in the wider sense,
often called simply a “contact structure” by many authors, which can
be defined in a number of ways. For example, a contact manifold in
the wider sense is a manifold with a differentiable structure modeled on
the pseudogroup of contact transformations on R

2n+1 (J. Gray [1959]),
i.e., in the overlap of coordinate neighborhoods the transition functions
preserve the Darboux form to within a nonvanishing function multiple.
An alternate approach is to put the emphasis on the field of 2n-planes
D and to define the structure as a hyperplane field defined locally by a
contact form. In the overlap of coordinate neighborhoods U ∩U ′, we have
η′ = f∗η = τη and hence dη′ = f∗dη = dτ ∧ η + τdη from which

η′ ∧ (dη′)n = τn+1η ∧ (dη)n �= 0.

Let M2n+1 be a contact manifold in the wider sense. On a coor-
dinate neighborhood Uα choose coordinates (x1, . . . , x2n+1) such that
ηα ∧ (dηα)n = λαdx1 ∧ · · · ∧ dx2n+1 with λα > 0. Similarly, on a neigh-
borhood Uβ choose coordinates (y1, . . . , y2n+1) such that ηβ ∧ (dηβ)n =
λβdy1 ∧ · · · ∧ dy2n+1 with λβ > 0. Now on Uα ∩ Uβ, ηα = ταβηβ and
hence ηα∧ (dηα)n = τn+1

αβ ηβ ∧ (dηβ)n. Therefore τn+1
αβ λβ

∣
∣ ∂yi

∂xj

∣
∣ = λα. From

this one may easily obtain the following results (see also J. Gray [1959],
Sasaki [1965], Stong [1974]).

Theorem 3.2 Let M2n+1 be a contact manifold in the wider sense. If
n is odd, then M2n+1 is orientable.

Theorem 3.3 Let M2n+1 be a contact manifold in the wider sense. If n
is even and M2n+1 is orientable, then M2n+1 is a contact manifold.

We also have the following theorem of Sasaki [1965].
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Theorem 3.4 Let M2n+1 be a contact manifold in the wider sense which
is not a contact manifold in the restricted sense. Then its 2-fold covering
manifold is a contact manifold in the restricted sense.

Proof. Let {Uα} be an open cover of M2n+1 by coordinate charts.
Recall the local contact forms ηα above and their transition ηα = ταβηβ.
Consider the 2-fold covering π : M̃2n+1 −→ M2n+1 given as follows:
M̃2n+1 is the union of the sets {Uα ×Z2} with the following equivalence
relation, where Z2 is the set of integers ±1. Let εα denote +1 or −1.
Two elements (pα, εα) ∈ Uα×Z2 and (pβ, εβ) ∈ Uβ ×Z2 are equivalent if
pα = pβ and εα = sgn(ταβ(pβ))εβ .

Now define local contact forms on Uα ×±1 by η(α,εα) = εαπ
∗ηα. Then

η(α,εα) = εαπ
∗ηα = εαπ

∗(ταβηβ) = εα(ταβ ◦ π)π∗ηβ = εαεβ(ταβ ◦ π)η(β,εβ)

and εαεβ(ταβ◦π) > 0. The local forms η(α,εα) can now be used to construct
a global contact form on M̃2n+1.

In particular, a connected and simply connected contact manifold in
the wider sense is a contact manifold in the restricted sense; for an al-
ternate approach to this idea see Monna [1983].

The name contact (Berührungstransformation) seems to be due to
Sophus Lie [1890] and is natural in view of the simple example of
Huygens’ principle (Huygens [1690]; see also Mac Lane [1968, part II,
p. 83]). Consider R

2 with coordinates (x, y). The classical notion of a
“line element” of R

2 is a point together with a nonvertical line through
the point. Thus a line element may be regarded as a point in R

3 deter-
mined by the point and the slope p of the line. Given a smooth curve
C in the plane without vertical tangents, say y = f(x), its tangent lines
determine a curve in R

3 with coordinates (x, y, p) which is a Legendre
curve of the contact form η = dy − p dx. If now C is a wave front, by
Huygens’ principle the new wave front Ct at time t is the envelope of the
circular waves centered at all the points of C, say of radius t taking the
velocity of propagation to be 1. Corresponding to a point (x, y) on C,
the point (x̄, ȳ) on Ct lies on both the normal line and the circle of radius
t centered at (x, y), i.e., ȳ− y = −1

p(x̄− x) and (x̄− x)2 + (ȳ − y)2 = t2.

Thus (x̄−x)2 = p2t2

p2+1
, so depending on the direction of propagation, e.g.,

choosing the negative root, the transformation of R
3 mapping (x, y, p) to

x̄ = x− pt
√

p2 + 1
, ȳ = y +

t
√

p2 + 1
, p̄ = p,
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maps C to Ct. A simple calculation shows that dȳ − p̄ dx̄ = dy − p dx,
and so the transformation is a contact transformation. Moreover, tangent
wave fronts (curves) are mapped to tangent wave fronts (curves) and
hence the name “contact”.

Beginning with Chapter 4, the main thrust of this book will be the
Riemannian geometry of contact and symplectic manifolds. For the reader
interested in purely topological considerations and constructions of con-
tact manifolds (in the wider sense) we refer to the expository writings of
H. Geiges [2006], [2008].

3.2 Examples

In [1971] J. Martinet proved that every compact orientable 3-manifold
carries a contact structure. However, we now have the following theorem
of J. Gonzalo [1987] showing that there are three independent contact
structures.

Theorem 3.5 Every closed orientable 3-manifold has a parallelization
by three contact forms.

Before turning to some detailed examples we should mention that in
contrast to Martinet’s result, there exist (2n+1)-dimensional manifolds,
n ≥ 2, with no contact structure even in the wider sense. In partic-
ular, Stong [1974] showed that for every n ≥ 2 there is a closed ori-
ented connected manifold of dimension 2n + 1 with no contact structure
in the wider sense. One such manifold is SU(3)/SO(3) for n = 2 and
(SU(3)/SO(3)) × S2n−4 for n > 2.

3.2.1 R2n+1

In effect, we have already seen that R
2n+1(x1, . . . , xn, y1, . . . , yn, z) with

the Darboux form η = dz −∑n
i=1 yidxi is a contact manifold. The char-

acteristic vector field ξ is ∂
∂z and the contact subbundle D is spanned

by

Xi =
∂

∂xi
+ yi

∂

∂z
, Xn+i =

∂

∂yi
,

i = 1, . . . , n.
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3.2.2 Rn+1 × PRn

We now give an example of a contact manifold in the wider sense which
is not a contact manifold in our sense (J. Gray [1959]). Consider R

n+1

with coordinates (x1, . . . , xn+1) and real projective space PR
n with ho-

mogeneous coordinates, (t1, . . . , tn+1) and let M2n+1 = R
n+1 × PR

n.
The subsets Ui, i = 1, . . . , n + 1, defined by ti �= 0 form an open cover
of M2n+1 by coordinate neighborhoods. On Ui define a 1-form ηi by
ηi = 1

ti

∑n+1
j=1 tjdxj ; we then have ηi ∧ (dηi)n �= 0 and ηi = tj

ti
ηj . Thus,

M2n+1 has a contact structure in the wider sense, but for n even, M2n+1

is nonorientable and hence cannot carry a global contact form.

3.2.3 M2n+1 ⊂ R2n+2 with TmM2n+1 ∩ {0} = ∅
Turning to more standard examples, we prove the following theorem
(J. Gray [1959]).

Theorem 3.6 Let ι : M2n+1 −→ R
2n+2 be a smooth hypersurface im-

mersed in R
2n+2 and suppose that no tangent space of M2n+1 contains

the origin of R
2n+2. Then M2n+1 has a contact structure.

Proof. Let xA, A = 1, . . . , 2n + 2, be Cartesian coordinates on R
2n+2

and consider the 1-form

α = x1dx2 − x2dx1 + · · · + x2n+1dx2n+2 − x2n+2dx2n+1.

Let V1, . . . , V2n+1 be 2n + 1 linearly independent vectors at a point x0 =
(x1

0, . . . , x
2n+2
0 ) and define a vector W at x0 with components

WA = ∗dxA(V1, . . . , V2n+1),

where ∗ is the Hodge star operator of the Euclidean metric on R
2n+2.

Then W is normal to the hyperplane spanned by V1, . . . , V2n+1. Now
regard x0 as a vector with components xA0 . Then

(α ∧ (dα)n)(V1, . . . , V2n+1) =
∑

xA0 WA.

Thus if no tangent space of M2n+1 regarded as a hyperplane in R
2n+2

contains the origin, then η = ι∗α is a contact form on M2n+1.

As a special case we see that an odd-dimensional sphere S2n+1 car-
ries a contact structure. Moreover, α on S2n+1 is invariant under reflec-
tion through the origin, (x1, . . . , x2n+2)→ (−x1, . . . ,−x2n+2), and hence
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the real projective space PR
2n+1 is also a contact manifold. J. A. Wolf

[1968] then considered more general quotients of S2n+1 and proved that
a complete connected odd-dimensional Riemannian manifold of positive
constant curvature inherits a contact structure from the form α.

Similarly, consider the 1-form β =
∑n+1

i=1 xidxn+1+i and denote by
R
n+1
1 and R

n+1
2 the subspaces defined by xi = 0 and xn+1+i = 0 re-

spectively, i = 1, . . . , n + 1. Then β induces a contact form on M2n+1 if
and only if M2n+1 ∩ R

n+1
1 = ∅ and M2n+1 ∩ R

n+1
2 is an n-dimensional

submanifold and no tangent space of M2n+1∩R
n+1
2 in R

n+1
2 contains the

origin of R
n+1
2 .

More generally, given a symplectic manifold (M,Ω), a hypersurface
ι : S −→M is said to be of contact type if there exists a contact form η
on S such that dη = ι∗Ω.

3.2.4 Unit and projectivized tangent and cotangent bundles

We shall show that the cotangent sphere bundle and the tangent sphere
bundle of a Riemannian manifold are contact manifolds (see, e.g., Reeb
[1952], Sasaki [1962]). Let M be an (n + 1)-dimensional Riemannian
manifold and T ∗M its cotangent bundle . Also let (x1, . . . , xn+1) be local
coordinates on a neighborhood U of M and (p̂1, . . . , p̂n+1) coordinates
on the fibers over U . If π : T ∗M −→M is the projection map, then as in
Chapter 1, qi = xi ◦π and p̂i are local coordinates on T ∗M . Consider the
Liouville form β; locally it is given by β =

∑n+1
i=1 p̂idqi. The bundle T ∗

1 M
of unit cotangent vectors has empty intersection with the zero section of
T ∗M , its intersection with any fiber of T ∗M is an n-dimensional sphere,
and no tangent space to this intersection contains the origin of the fiber.
Thus, as in the discussion at the end of the last example, β induces a
contact structure on the hypersurface T ∗

1 M of T ∗M .
Instead of the unit cotangent bundle one can consider the projectivized

cotangent bundle. Each fiber of T ∗M is R
n+1, and one can form the

corresponding projective space RPn giving the projectivized cotangent
bundle, PT ∗M . The p̂i’s are homogeneous coordinates for the fibers of
PT ∗M and we introduce nonhomogeneous coordinates (p1, . . . , pn) on
the neighborhood defined by p̂n+1 �= 0 by pi = p̂i

p̂n+1 . Then

η = dqn+1 +
n∑

i=1

pidqi
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is a local contact form, and taking charts on PT ∗M defined by p̂i �= 0,
we obtain a contact structure in the wider sense.

Example 3.2.2 can be thought of as the projectivized tangent bundle of
R
n+1, and in Section 9.5 we will briefly consider the geometry of the pro-

jectivized tangent bundle of the Beltrami model of the hyperbolic plane.
In the complex setting in Chapter 13 we will consider the projectivized
holomorphic tangent bundle of a Hermitian manifold.

Similarly one obtains a contact structure on the bundle T1M of unit
tangent vectors. In fact, if Gij denotes the components of the metric on
M with respect to the coordinates (x1, . . . , xn+1) and if (v1, . . . , vn+1)
are the fiber coordinates on TM , define β locally by β =

∑
i,j Gijv

jdqi,
where qi = xi ◦ π and π : TM −→ M is the projection. This structure
will be discussed in detail in Section 9.2.

3.2.5 T ∗M × R

Let M be an n-dimensional manifold and T ∗M its cotangent bundle. As
in the previous example we can define a 1-form β by the local expression
β =

∑n
i=1 pidqi. Let M2n+1 = T ∗M × R, t the coordinate on R, and

μ : M2n+1 −→ T ∗M the projection to the first factor. Then η = dt−μ∗β
is a contact form on M2n+1.

3.2.6 Tori

We have mentioned that Martinet proved that every compact orientable
3-manifold carries a contact structure. Here we first give explicitly a
contact structure on the 3-dimensional torus T 3. Consider R

3 with the
contact form

η = sin y dx + cos y dz; η ∧ dη = −dx ∧ dy ∧ dz,

ξ = sin y ∂
∂x + cos y ∂

∂z and D is spanned by { ∂∂y , cos y ∂
∂x − sin y ∂

∂z}. The
rotation of D in the direction of the y-axis is dramatically clear in this
example. Thus one sees the nonintegrability of D as one moves around
on the manifold, especially along the y-axis.

Now η is invariant under translation by 2π in each coordinate, and
hence the 3-dimensional torus also carries this structure. For each value
of y, ξ induces a flow on the 2-torus defined by y = const. Depending on
the value of y, the flow is a rational or irrational flow on T 2. Thus the
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contact structure on T 3 is not regular. Note here in particular, though,
that some of the integral curves of ξ are closed and some are not.

Concerning contact structures on higher dimensional tori, we will
discuss briefly the fact that all odd-dimensional tori carry contact struc-
tures. However, we will prove in Theorem 4.14 that no torus carries a
regular contact structure.

In [1979] R. Lutz proved the existence of contact structures on princi-
pal T 2-bundles over 3-manifolds. In particular, the 5-dimensional torus
admits a contact structure given by the form

η = sin θ2 cos θ2dθ1 − sin θ1 cos θ1dθ2 + cos θ1 cos θ2dθ3

+ (sin θ1 cos θ3 − sin θ2 sin θ3)dθ4 + (sin θ1 sin θ3 + sin θ2 cos θ3)dθ5.

The characteristic vector field for this structure is

ξ =
1

(sin2 θ1 + sin2 θ2)2 + cos2 θ1 cos2 θ2

×
(

sin θ2 cos θ2
∂

∂θ1
− sin θ1 cos θ1

∂

∂θ2
+ cos θ1 cos θ2

∂

∂θ3

+
(
sin θ1 cos θ3(sin2 θ1 + sin2 θ2 − cos2 θ1)

− sin θ2 sin θ3(sin2 θ1 + sin2 θ2 − cos2 θ2)
) ∂

∂θ4

+
(
sin θ1 sin θ3(sin2 θ1 + sin2 θ2 − cos2 θ1)

+ sin θ2 cos θ3(sin2 θ1 + sin2 θ2 − cos2 θ2)
) ∂

∂θ5

)

and the contact subbundle is spanned by

{ ∂

∂θ1
+ cos θ2 sin θ3

∂

∂θ4
− cos θ2 cos θ3

∂

∂θ5
,

∂

∂θ2
+ cos θ1 cos θ3

∂

∂θ4
+ cos θ1 sin θ3

∂

∂θ5
,

− cos θ1
∂

∂θ1
+ sin θ2

∂

∂θ3
, cos θ2

∂

∂θ2
+ sin θ1

∂

∂θ3

}
.

Hadjar [1998] obtains other explicit contact forms on the 5-torus, espe-
cially ones for which the contact subbundle is transverse to the trivial
fibration of T 5 over T 4 by circles, answering a question of Eliashberg and
Thurston, [1998, p. 20].
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There has been also been recent interest in constructing contact mani-
folds using other surfaces as fiber. In dimension 5 both Geiges [1997a] and
Altschuler and Wu [2000] have proved that if M is a compact orientable
3-manifold and Σ a compact orientable surface, then M × Σ carries a
contact form.

Altschuler and Wu also show the existence of contact forms on the
products S2p+k+3 ×Mk × Σ where Mk is compact, orientable and par-
allelizable, and Σ is a compact orientable surface as before.

Finally, Bourgeois [2002] proved the following theorem.

Theorem 3.7 Let M2n−3 be a closed contact manifold of dimension
2n − 3 ≥ 3 and let Σg be a Riemann surface of genus g ≥ 1. Then
the manifold Σg ×M2n−3 also admits a contact structure.

As a consequence we see that all odd-dimensional tori have contact struc-
tures.

3.2.7 Overtwisted contact structures

Examples 3.2.1 and 3.2.6 on R
3, namely η = (dz−ydx) and η = (sin ydx+

cos ydz), have cylindrical coordinate versions (see also Douady [1982/83,
p. 131], Bennequin [1983, p. 93]). Let (r, θ, z) be the usual cylindrical
coordinates on R

3 \{x = y = 0}. Making the naive substitutions y −→ r,
dx −→ rdθ, dz −→ dz, these examples become

η = dz − r2dθ, η ∧ dη = −2rdr ∧ dθ ∧ dz,

ξ =
∂

∂z
, D =

{
∂

∂r
,

∂

∂θ
+ r2 ∂

∂z

}

,

and

η = cos rdz + r sin rdθ, η ∧ dη = (r + sin r cos r)dr ∧ dθ ∧ dz,

ξ =
sin r

r + sin r cos r

∂

∂θ
+

r cos r + sin r

r + sin r cos r

∂

∂z
,

D =
{

∂

∂r
, cos r

∂

∂θ
− r sin r

∂

∂z

}

.

Note that in both examples the integral curves of ∂
∂r are Legendre

curves and in the second example that the curve r = π, z = const. is
also a Legendre curve. Thus in the second example D is tangent to the
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disk Δ = {z = 0, r ≤ π} ⊂ R
3 along the boundary. Now consider the

topological disk Δε = {z = εr2, r ≤ π}. D is tangent to Δε only at the
origin. On Δε \ {(0, 0, 0)} define a line field by the intersection of the
tangent plane to the paraboloid Δε and D at each point. These fields
can be expressed by the vector fields

r
∂

∂r
+ 2ε

∂

∂θ
+ 2εr2 ∂

∂z

in the first case and

r sin r
∂

∂r
− 2εr cos r

∂

∂θ
+ 2εr2 sin r

∂

∂z

in the second. For simplicity take the projection of these vector fields
to the xy-plane. The integral curves in the first case are the logarithmic
spirals r = Ae

θ
2ε and in the second case are the curves θ = −2ε ln sin r+C,

which near the origin spiral indefinitely and approach a limit cycle on the
boundary of the disk. Thus we have the following diagrams; a diagram
of this type for the second example was introduced by Douady [1982/83]
(see also Bennequin [1983, p. 94]), and such a diagram is called the
Douady portrait of the contact structure.

A 3-dimensional contact manifold is said to be overtwisted (Eliashberg
[1989]) if there exists a contact embedding of a neighborhood of the disk
Δ with the contact structure η = cos r dz + r sin r dθ.

Roughly speaking, the meaning of overtwisted is that as one moves
radially from the image of the origin, the plane D turns over in a finite
distance. For the radial Legendre curves in the disk Δ, D turns over as



34 3. Contact Manifolds

one goes from r = 0 to r = π. This means that for some r between 0
and π the vector field ξ is tangent to the disk Δ, and in particular for r
the solution of r cos r + sin r = 0 in (0, π), r ≈ 2.02876, the circle of this
radius in Δ is an integral curve of ξ.

As a higher dimensional analogue of being overtwisted, Niederkrüger
[2006] introduced the notion of a Plastikstufe (see also Albers and Hofer
[2009]). Here let Δ denote the unit disk with coordinates (x, y). A con-
tact manifold of dimension 2n + 1 with contact subbundle D contains
a Plastikstufe with singular set S if it admits a closed submanifold S of
dimension n− 1 and an embedding ι : Δ×S −→M with ι({0}×S) = S
having the following properties:

(1) There exists a contact form ηPS inducing D such that the 1-form
β = ι∗ηPS satisfies β ∧ dβ = 0 and β �= 0 on (Δ\{0}) × S. Near
{0} × S, β = xdy− ydx and the pullback of β to ∂Δ× S vanishes.

(2) The complement of {0} × S in (Δ\∂Δ) × S is smoothly foliated
by β via an S1-family of leaves diffeomorphic to (0, 1) × S,
where one of the ends converges to the singular set {0} × S and
the other is asymptotic to the leaf ∂Δ × S. The set ι(Δ × S) is
called the Plastikstufe, and a closed contact manifold is said to be
PS-overtwisted if it admits a contact form ηPS inducing D and con-
taining a Plastikstufe.

3.2.8 S2 × S1

Let Θ and Ψ be the azimuth and zenith on S2 respectively (0 ≤ Θ < 2π,
0 ≤ Ψ ≤ π) and α the coordinate on S1 (0 ≤ α < 2π). Then the form

η =
1
2
(sin ΨdΘ + cos Ψdα)

is a contact form on S2 × S1. The characteristic vector field and contact
subbundle are given by

ξ =
1
2

(
sinΨ

∂

∂Θ
+ cos Ψ

∂

∂α

)
, D =

{ ∂

∂Ψ
, cos Ψ

∂

∂Θ
− sinΨ

∂

∂α

}
.

Viewing S2 × S1 as a thick spherical shell with the interior and exterior
surfaces identified, one can visualize the geometry of this structure. At
the north and south poles of the 2-spheres, one sees ξ pointing upward,
and at the equatorial level (Ψ = π

2 ), ξ is tangent to the equators.
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An interesting variation of this structure arises if we consider the form

η =
1
2
(sin 2ΨdΘ + cos 2Ψdα).

Introduce new local coordinates (r, θ, z) by

r = 2Ψ, θ =
Θ

2Ψ + sin 2Ψ cos 2Ψ
, z = α +

Θ sin2 Ψ
2Ψ + sin 2Ψ cos 2Ψ

.

In these coordinates η = r sin rdθ + cos rdz, and we see that as one
moves radially, i.e., in the direction Ψ, from a north pole, the contact
subbundle turns over as we reach the equator r = π (Ψ = π

2 ). Thus we
have an embedded overtwisted disk and S2×S1 becomes an overtwisted
contact manifold.

3.2.9 Contact circles

At the beginning of this section we mentioned the result of Gonzalo
[1987] that a compact orientable 3-manifold has three independent con-
tact structures. Geiges and Gonzalo [1995] introduce the notion of a
contact circle: A 3-manifold admits a contact circle if it admits a pair of
contact forms (η1, η2) such that for any (λ1, λ2) ∈ S1, λ1η1 +λ2η2 is also
a contact form. This circle is a taut contact circle if the contact forms
λ1η1 + λ2η2 define the same volume form for all (λ1, λ2) ∈ S1; this is
equivalent to the following two conditions:

η1 ∧ dη1 = η2 ∧ dη2, η1 ∧ dη2 = −η2 ∧ dη1.

Geiges and Gonzalo then prove the following classification theorem.

Theorem 3.8 A compact orientable 3-manifold admits a taut contact
circle if and only if it is diffeomorphic to the quotient of a Lie group G
by a discrete subgroup, acting by left multiplication, where G is either
SU(2), the universal cover of PSL(2, R), or the universal cover of the
group of Euclidean motions E(2).

In contrast to the overtwisted contact structures in Example 3.2.7 (and
in contrast to taut contact circles), a contact structure is said to be tight
if it is not overtwisted (see, e.g., Eliashberg and Thurston [1998]). Geiges
and Gonzalo [1995] also prove that the connected sum of any number
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of copies of the manifolds listed in Theorem 3.8, T 2-bundles over S1, or
S2 × S1, admits a contact circle consisting of tight contact structures.

In further work Geiges and Gonzalo [1997] show that in fact on every
closed, orientable 3-manifold there are contact circles realizing any of the
two orientations. This paper also contains a number of explicit examples
of contact circles.

3.3 The Boothby–Wang fibration

We now give an important class of examples, namely principal circle
bundles over symplectic manifolds of integral class, and we will prove
the celebrated theorem of Boothby and Wang [1958] that a compact
regular contact manifold is of this type. An example of this type is often
referred to as a Boothby–Wang fibration.

In Chapter 2 we saw that the set of principal circle bundles over a
manifold M has a group structure isomorphic to the cohomology group
H2(M, Z). Now let (M2n,Ω) be a symplectic manifold such that [Ω] ∈
H2(M2n, Z), and π : M2n+1 −→ M2n the corresponding circle bun-
dle. By Theorem 2.5 there exists a connection form η on M2n+1 such
that dη = π∗Ω. Now if ξ is a vertical vector field, say with η(ξ) = 1,
and X1, . . . ,X2n linearly independent horizontal vector fields, then
(η ∧ (dη)n)(ξ,X1, . . . ,X2n) is nonzero. Thus regarding the Lie-algebra-
valued form η as a real-valued form, we see that η is a contact structure
on M2n+1.

The most well known special case of a Boothby–Wang fibration is the
Hopf fibration of an odd-dimensional unit sphere S2n+1 over complex
projective space CPn of constant holomorphic curvature equal to 4. The
standard contact structure on S2n+1 obtained in Example 3.2.3 can also
be obtained by the above construction. Additional details of the geometry
of Boothby–Wang fibrations will be given from time to time, particularly
in Examples 4.5.4 and 6.7.2.

Theorem 3.9 Let (M2n+1, η′) be a compact regular contact manifold.
Then there exists a contact form η = τη′ for some nonvanishing function
τ whose characteristic vector field ξ generates a free effective S1 action on
M2n+1. Moreover, M2n+1 is the bundle space of a principal circle bundle
π : M2n+1 −→ M2n over a symplectic manifold M2n whose symplectic
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form Ω determines an integral cocycle on M2n and η is a connection
form on the bundle with curvature form dη = π∗Ω.

Proof. Since η′ is regular, its characteristic vector field ξ′ is a regular
vector field, and hence its maximal integral curves or orbits are closed
subsets of M2n+1; but M2n+1 is compact, so these integral curves are
homeomorphic to circles. Moreover, since ξ′ is regular, M2n+1 is a fiber
bundle over a manifold M2n (the set of maximal integral curves with the
quotient topology; see, e.g., Palais [1957]) and we denote the projection
by π.

Now let f ′
t : M2n+1 −→M2n+1 denote the 1-parameter group of diffeo-

morphisms generated by ξ′ and define the period λ′ of ξ′ at m ∈M2n+1

by λ′(m) = inf{t | t > 0, f ′
t(m) = m}. Then λ′ is constant on each orbit

and since there are no fixed points, λ′ is never zero. Also, since the orbits
are circles, λ′ is not infinite. We will show that λ′ is constant on all of
M2n+1. Our argument is due to Tanno [1965]. Let k be a Riemannian
metric on M2n and let g = π∗k + η′⊗ η′. Then g is a Riemannian metric
on M2n+1 and ξ′ is a unit Killing vector field with respect to g since
η′(ξ′) = 1 and £ξ′η

′ = 0. If ∇ denotes the Levi-Civita connection of
g, then g(∇ξ′ξ′,X) = −g(∇Xξ′, ξ′) = 0 and hence the orbits of ξ′ are
geodesics. If γ is an orbit through m, let γ′ be an orbit sufficiently near
to γ that there exists a unique minimal geodesic from m to γ′ meeting
γ′ orthogonally at m′. Then since f ′

t is an isometry for all t, the image of
the geodesic arc m̂m′ is orthogonal to γ and γ′ for all t. Thus, as a point
m on γ moves through one period along γ, the corresponding point on
γ′ moves through one period and hence λ′ is constant on M2n+1.

Now define η and ξ by η = 1
λ′ η

′ and ξ = λ′ξ′. Since λ′ is constant, ξ is
the characteristic vector field of the contact form η. Moreover, ξ has the
same orbits as ξ′ and its period function λ = 1. Thus the one-parameter
group ft of ξ depends only on the equivalence class modulo 1 of t and
the action of S1 is effective and free.

Since ξ is regular, we may cover M2n+1 by coordinate neighborhoods
with coordinates (x1, . . . , x2n+1) such that the integral curves of ξ are
given by x1 = const., . . . , x2n = const. Projecting such neighborhoods,
we obtain an open cover {Ui} of M2n, and on each Ui we define a local
cross section si by setting x2n+1 = const. Then define Fi : Ui×S1 −→ S1

by Fi(p, t) = si(p)t. The transition functions for the bundle structure are
then given by fij(p) = Fi(p, t)Fj(p, t)−1.
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We have already seen that £ξη = 0 and £ξdη = 0, so that η and dη are
invariant under the action of S1. Now take A = d

dt as a basis of S1 = R,
the Lie algebra of S1, and set η̃ = ηA so that η may be regarded as
a Lie-algebra-valued 1-form. For an element B ∈ S1 denote by B∗ the
induced vector field on M2n+1. In particular, A∗ = ξ, so that η̃(A∗) = A.
Moreover, right translation by t ∈ S1 is just ft so that R∗

t η̃ = η̃ by the
invariance of η under the S1 action. Thus, η (precisely η̃) is a connection
form on M2n+1.

If Ω̃ is the curvature form of η, then the structural equation is dη =
−1

2 [η, η]+ Ω̃ = Ω̃ since S1 is abelian. On the other hand, dη is horizontal
and invariant, so there exists a 2-form Ω on M2n such that dη = π∗Ω.
Now π∗dΩ = dπ∗Ω = d2η = 0 so that dΩ = 0 and π∗(Ω)n = (π∗Ω)n =
(dη)n �= 0 giving Ωn �= 0. Therefore M2n is symplectic. Finally, since the
transition functions fij are real (mod 1)-valued, [Ω] ∈ H2(M2n, Z) (see,
e.g., Kobayashi [1956]).

3.4 The Weinstein conjecture

In Example 3.2.6 we studied a contact structure on the 3-dimensional
torus and observed that some of the orbits of ξ are closed and some are
not. It is a well-known conjecture of Weinstein [1979] that on a compact
contact manifold M satisfying H1(M, R) = 0, ξ must have a closed orbit.
The present author knows of no example of a compact contact manifold
not satisfying H1(M, R) = 0 for which ξ does not have a closed orbit and
believes the conjecture is true without the assumption of H1(M, R) = 0.
In view of the example on the torus, the following result of Petkov and
Popov [1995] is interesting. Let (M2n+1, η) be an analytic, connected
contact manifold with complete characteristic vector field ξ. Since η ∧
(dη)n is invariant under the action of ξ, it induces an invariant Lebesgue
measure on M2n+1. A point m ∈M2n+1 is a periodic point if the integral
curve of ξ through m is periodic. Petkov and Popov prove that either
the set of periodic points has measure 0 or there exists T > 0 such that
exp(Tξ)(m) = m for every point m. Note that for some m, T could be
a multiple of the period for that m (cf. the notion of an almost regular
contact structure below).

Interest in the Weinstein conjecture has often been phrased in terms
of the question of the existence of periodic orbits of Hamiltonian systems.
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In Section 1.1 we considered briefly a real-valued function H on a
symplectic manifold (M,Ω) and its Hamiltonian vector field XH . Since
XHH = 0, XH is tangent to the level (energy) surfaces of H. Thus if
a level surface S is of contact type, the Hamiltonian vector field XH is
collinear with the characteristic vector field ξ.

For hypersurfaces in R
2n+2 with the standard symplectic structure,

the Weinstein conjecture is known to be true if the hypersurface is con-
vex (Weinstein [1978]), star-shaped (Rabinowitz [1978]), and, more re-
cently, if the hypersurface is of contact type and without the assumption
H1(M, R) = 0 (Viterbo [1987], see also Hofer and Zehnder [1987]). As
an aside, it is interesting to note that Ginzburg [1995] showed that if
one gives up on the hypersurface being of contact type, then there exist
embeddings of S2n+1, n ≥ 3, in R

2n+2 whose Hamiltonian vector field
has no closed orbits.

In cotangent bundles T ∗M , first note that if S is a compact connected
hypersurface, then T ∗M \S has exactly two components, one of which is
bounded; Hofer and Viterbo [1988] prove that if the bounded component
of T ∗M \ S contains the zero section and if S is of contact type, then ξ
has a closed orbit.

For overtwisted compact contact manifolds the Weinstein conjecture
is intuitive, as alluded to in Example 3.2.7. On the standard overtwisted
disk we noted that as one moves radially from the origin, the plane D
turns over as one goes from r = 0 to r = π. In particular, the vector
field ξ is tangent to the disk for r the solution of r cos r + sin r = 0 in
(0, π), giving a periodic orbit of ξ. In [1993] Hofer showed that indeed the
Weinstein conjecture is true on a compact overtwisted contact manifold.
In the same paper he proved the conjecture for any contact form on the
3-sphere and on a closed orientable 3-manifold with π2 �= 0.

In [2005], Abbas, Cieliebak and Hofer proved the 3-dimensional
Weinstein conjecture for planar contact structures. A contact structure
is said to be planar if the pages of a supporting open-book decomposition
have genus zero. These include overtwisted contact structures.

Finally, for the 3-dimensional case, C. H. Taubes [2007] proved the
Weinstein conjecture in full generality. His proof uses a perturbed version
of the Seiberg–Witten equations on 3-dimensional manifolds.

In higher dimension Albers and Hofer [2009] proved the Weinstein con-
jecture for closed PS-overtwisted contact manifolds, showing that every
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Reeb vector field associated to a contact form inducing the contact sub-
bundle D has a contractible periodic orbit.

Banyaga [1990] showed that the Weinstein conjecture is true if the con-
tact form is C2-close to a regular contact form (again without assuming
H1(M, R) = 0). C. B. Thomas [1976] introduced the notion of an almost
regular contact structure. A contact structure is said to be almost reg-
ular, sometimes called quasi-regular, if there exists a positive integer N
such that every point has a neighborhood such that any integral curve
of ξ passing through the neighborhood passes through at most N times.
With this idea in mind, Banyaga and Rukimbira [1994] showed that the
Weinstein conjecture is true if the contact form is C1-close to an almost
regular contact form.

A contact manifold is called an R-contact manifold (Rukimbira [1993])
if ξ is Killing with respect to some (not necessarily associated (Chapter
4)) Riemannian metric g for which η(X) = g(X, ξ). For compact con-
tact manifolds admitting such a metric the Weinstein conjecture is true
(Rukimbira [1993]). Also on a compact K-contact manifold M2n+1 (see
Subsection 4.5.4 or Section 6.2), ξ has at least n+1 closed orbits (Rukim-
bira [1995a]). If a compact K-contact manifold M2n+1 has exactly n + 1
closed orbits, then it is finitely covered by a sphere (Rukimbira [2000]).



4
Associated Metrics

The main topic of this chapter is that of Riemannian metrics associated
to symplectic and contact structures, and their construction by means
of polarization. We also discuss the action of symplectic and contact
transformations on associated metrics. Some of our discussion is broader,
dealing with almost Hermitian and almost contact metric structures. The
chapter closes with several examples.

4.1 Almost complex and almost contact structures

We will generally regard the theory of almost Hermitian structures as
well known and give here only definitions and a few properties that will
be important for our study; many of these were already mentioned in
Chapter 1. For more detail the reader is referred to Gray and Hervella
[1980], Kobayashi–Nomizu [1963–69, Chapter IX] and Kobayashi–Wu
[1983]; also, despite its classical nature, the book of Yano [1965] con-
tains helpful information on many of these structures.

An almost complex structure is a tensor field J of type (1, 1) such that
J2 = −I. A Hermitian metric on an almost complex manifold (M,J) is
a Riemannian metric that is invariant by J , i.e.,

g(JX, JY ) = g(X,Y ).

D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds,
DOI 10.1007/978-0-8176-4959-3_4, © Springer Science+Business Media, LLC 2010
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Noting that J is negative self-adjoint with respect to g, i.e., g(X,JY ) =
−g(JX, Y ), therefore Ω(X,Y ) = g(X,JY ) defines a 2-form called the
fundamental 2-form of the almost Hermitian structure (M,J, g). If dΩ =
0, the structure is almost Kähler. If M is a complex manifold and J the
corresponding almost complex structure, we say that (M,J, g) is a
Hermitian manifold. For geometers working strictly over the complex
domain, a Hermitian metric is a Hermitian quadratic form and hence
complex-valued. It takes its nonzero values, as appropriate, when one
argument is of type (1, 0) and the other of type (0, 1). In particular, our
metric g becomes half the real part of g(X − iJX, Y + iJY ). For geome-
ters concerned with a variety of structures presented for the most part
in terms of real tensor fields, as we will be, it has become quite standard
to use the word Hermitian as we have done. A reader interested in this
point may want to see Kobayashi–Wu [1983, pp. 80–81] for commentary.

Note also that every almost complex manifold admits a Hermitian
metric, for if k is any Riemannian metric, then g defined by

g(X,Y ) = k(X,Y ) + k(JX, JY )

is Hermitian.
Given (M,J, g) we can construct a particular local orthonormal basis

as follows. Let U be a coordinate neighborhood on M and X1 any unit
vector field on U . Let X1∗ = JX1. Now choose a unit vector field X2

orthogonal to both X1 and X1∗ . Then JX2 is also orthogonal to X1 and
X1∗ . Continuing in this manner we have a local orthonormal basis of the
form {X1, . . . ,Xn, JX1, . . . , JXn}. Such a basis is called a J-basis. Note
in particular that an almost complex manifold is even-dimensional.

Again given (M,J), choose g Hermitian. Let {Uα} be an open cover
with J-bases {Xi,Xi∗}, {X̄i, X̄i∗} on Uα and Uβ respectively. With re-
spect to these bases J is given by

(
0 −I
I 0

)

.

If now X ∈ TmM , m ∈ Uα ∩ Uβ, then for the column vectors of compo-
nents (X) and (X̄) with respect to these bases, we have

(X̄) =
(

A B
C D

)

(X),
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where A,B,C,D are n× n matrices and
(
A B
C D

) ∈ O(2n). Now
(

0 −I
I 0

)(
A B
C D

)

(X) = (JX) =
(

A B
C D

)

(JX)

=
(

A B
C D

)(
0 −I
I 0

)

(X),

i.e.
(
A B
C D

)
and
(

0 −I
I 0

)
commute. Therefore D = A and C = −B and hence(

A B
C D

) ∈ U(n). In particular, the structural group of the tangent bun-
dle of an almost complex manifold is reducible to U(n). Recall also that
det
(
A B
−B A

)
= |det(A+ iB)|2 > 0 and therefore an almost complex man-

ifold is orientable.
Conversely, suppose that we are given M such that the structural group

of TM can be reduced to U(n). Let {Uα} be an open cover such that we
can choose local orthonormal bases which transform in the overlaps of
neighborhoods by the action of U(n). In each {Uα} define Jα by

(
0 −I
I 0

)
;

this matrix commutes with U(n), and hence the set {Jα} determines a
global tensor field J such that J2 = −I. Thus an almost complex (almost
Hermitian) structure on M can be thought of as a reduction of the struc-
tural group to U(n).

As we will see in our discussion of associated metrics below, the struc-
tural group of a symplectic manifold is reducible to U(n) and that of
a contact manifold to U(n)× 1 (Chern [1953]). For an odd-dimensional
manifold M2n+1, J. Gray [1959] defined an almost contact structure as
a reduction of the structural group to U(n) × 1. In terms of structure
tensors we say that M2n+1 has an almost contact structure or sometimes
(φ, ξ, η)-structure if it admits a tensor field φ of type (1, 1), a vector field
ξ, and a 1-form η satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1.

Many authors include also that φξ = 0 and η ◦φ = 0. However, these are
deducible from the other conditions, as we now show.

Theorem 4.1 Suppose M2n+1 has a (φ, ξ, η)-structure. Then φξ = 0
and η ◦ φ = 0. Moreover, the endomorphism φ has rank 2n.

Proof. First note that φ2 = −I + η ⊗ ξ and η(ξ) = 1 give φ2ξ =
−ξ + η(ξ)ξ = 0 and hence either φξ = 0 or φξ is a nontrivial eigenvector
of φ corresponding to the eigenvalue 0. Using φ2 = −I + η ⊗ ξ again,



44 4. Associated Metrics

we have 0 = φ2φξ = −φξ + +η(φξ)ξ or φξ = η(φξ)ξ. Now if φξ is
a nontrivial eigenvector of the eigenvalue 0, η(φξ) �= 0, and therefore
0 = φ2ξ = η(φξ)φξ = (η(φξ))2ξ �= 0, a contradiction. Thus, φξ = 0.

Now since φξ = 0, we also have that η(φX)ξ = φ3X + φX = −φX +
φ(η(X)ξ) + φX = 0 for any vector field X and hence η ◦ φ = 0.

Finally, since φξ = 0, ξ �= 0 everywhere, rankφ < 2n + 1. If a vector
field ξ̄ satisfies φξ̄ = 0, then φ2 = −I + η ⊗ ξ gives 0 = −ξ̄ + η(ξ̄)ξ; thus
ξ̄ is collinear with ξ and so rankφ = 2n.

If a manifold M2n+1 with a (φ, ξ, η)-structure admits a Riemannian
metric g such that

g(φX,φY ) = g(X,Y )− η(X)η(Y ),

we say that M2n+1 has an almost contact metric structure and g is called
a compatible metric. Setting Y = ξ we have immediately that

η(X) = g(X, ξ).

As in the almost Hermitian case, we define a 2-form, called the fun-
damental 2-form of the almost contact metric structure, by Φ(X,Y ) =
g(X,φY ). Also as in the case of an almost complex structure, the exis-
tence of the compatible metric is easy. For if k′ is any metric, first set
k(X,Y ) = k′(φ2X,φ2Y ) + η(X)η(Y ); then η(X) = k(X, ξ). Now define
g by

g(X,Y ) =
1
2
(
k(X,Y ) + k(φX,φY ) + η(X)η(Y )

)

and check the details.
For a manifold M2n+1 with an almost contact metric structure (φ, ξ, η, g)

we can also construct a useful local orthonormal basis. Let U be a
coordinate neighborhood on M and X1 any unit vector field on U
orthogonal to ξ. Then X1∗ = φX1 is a unit vector field orthogonal to
both X1 and ξ. Now choose a unit vector field X2 orthogonal to ξ, X1

and X1∗ . Then φX2 is also a unit vector field orthogonal to ξ, X1, X1∗

and X2. Proceeding in this way we obtain a local orthonormal basis
{Xi,Xi∗ = φXi, ξ}, called a φ-basis.

Now given a manifold M2n+1 with a (φ, ξ, η)-structure, let g be a
compatible metric and {Uα} an open cover with φ-bases {Xi,Xi∗ , ξ}.
With respect to such a basis φ is given by the matrix

⎛

⎝
0 −I 0
I 0 0
0 0 0

⎞

⎠ .
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Proceeding as in the almost complex case, we see that the structural
group of M2n+1 is reducible to U(n) × 1. Conversely, given an almost
contact structure as defined by this reduction of the structural group
and an open cover {Uα} respecting the action of U(n)× 1, define φα on
Uα by the above matrix and define ηα and ξα by row and column vectors
of 2n zeros and last entry 1. Then, again as in the almost complex case,
this defines global structure tensors (φ, ξ, η) satisfying φ2 = −I + η ⊗ ξ
and η(ξ) = 1. We shall subsequently speak of an almost contact structure
(φ, ξ, η) and suppress the terminology “(φ, ξ, η)-structure”.

4.2 Polarization and associated metrics

We begin with a discussion of the well-known decomposition, called
“polarization”, of a nonsingular matrix A into the product of an orthog-
onal matrix F and a positive definite symmetric matrix G. Let H(n)
denote the set of positive definite symmetric n×n matrices and as usual
O(n) the orthogonal group. In treating the subject of constructing
Riemannian metrics associated to 2-forms of rank 2r, Y. Hatakeyama
[1962] proved the analyticity of the polar decomposition; that the de-
composition is continuous can be found in Chevalley [1946, pp. 14–16].
We prove Hatakeyama’s result by a sequence of lemmas.

Lemma 4.1 For G ∈ H(n), let λi > 0 be the eigenvalues of G. Then
the map σG : gl(n, R) −→ gl(n, R) given by σG(A) = GAG−1 has positive
eigenvalues λi

λl
.

Proof. There exists P ∈ O(n) such that PGP−1 is diagonal, say Δ.
Then σ−1

P σΔσP = σG and hence σΔ and σG have the same
eigenvalues. Now σΔ(A)il = (ΔAΔ−1)il =

∑
jk λiδijajkδkl

1
λl

= λi
λl

ail.
Thus the n2 eigenvalues of σG are the positive numbers λi

λl
.

Lemma 4.2 For G ∈ H(n) and A skew-symmetric, AG symmetric
implies that A = 0.

Proof. AG = GTAT = −GA. Therefore σG(A) = −A, and so by the
previous lemma A = 0.

Now O(n) and H(n) are analytic submanifolds of GL(n, R); thus ϕ :
O(n)×H(n) −→ GL(n, R) defined by ϕ(F,G) = FG is analytic.
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Lemma 4.3 dϕ is one-to-one and hence ϕ−1 given by polarization is
analytic.

Proof. Let X ∈ T(F,G)O(n)×H(n) and consider the curve (FetA, G +
tB), where A is skew-symmetric and B is symmetric and which has
tangent X at (F,G):

dϕ(X) = lim
t→0

FetA(G + tB)− FG

t
= FAG + FB.

If now dϕ(X) = 0, then F (AG + B) = 0. Therefore AG = −B, which is
symmetric. Thus by Lemma 4.2, A = 0 and hence also B = 0.

Theorem 4.2 Polarization as a map from GL(n, R) −→ O(n) ×H(n)
gives an analytic diffeomorphism between these manifolds with respect to
the usual analytic structures.

We now prove the existence of associated metrics.

Theorem 4.3 Let (M2n,Ω) be a symplectic manifold. Then there exist
a Riemannian metric g and an almost complex structure J such that

g(X,JY ) = Ω(X,Y ).

Proof. Let k be any Riemannian metric on M and let {X1, . . . ,X2n}
be a local k-orthonormal basis. Let Aij = Ω(Xi,Xj). A is a 2n × 2n
nonsingular skew-symmetric matrix. By polarization we have A = FG
for some orthogonal matrix F and positive definite symmetric matrix G.
Now define g and J by

g(Xi,Xj) = Gij , JXi = Fi
jXj .

g is independent of the choice of k-orthonormal basis. For if {Y1, . . . , Y2n}
is another k-orthonormal basis, there is an orthogonal matrix P such that

Bij = Ω(Yi, Yj) = Ω(P k
iXk, P

l
jXl) = P k

iP
l
jAkl = (PAP−1)ij .

If B = ΦΓ is the polarization of B, then ΦΓ = PFP−1PGP−1, and so
by the uniqueness of the polar decomposition, Φ = PFP−1 and Γ =
PGP−1. Thus, in particular, we see that g and J are globally defined.
Also since A is skew-symmetric, F 2 = −I and F is skew-symmetric.
To see this, note that AT = GF T = −FG and hence applying F on
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the right, G = −FFF TGF . But F TGF is positive definite symmetric,
and so the uniqueness of the decomposition gives −F 2 = I. Finally,
F = −F−1 = −F T .

In particular, given a symplectic manifold (M2n,Ω), we say that a
Riemannian metric g is an associated metric if there exists an almost
complex structure J such that g(X,JY ) = Ω(X,Y ). We remark that if
g is an associated metric and one uses it as the starting metric k in the
above polarization process, the process yields the metric g back again.

Theorem 4.4 Let (M2n+1, η) be a contact manifold and ξ its charac-
teristic vector field. Then there exists an almost contact metric structure
such that g(X,φY ) = dη(X,Y ).

Proof. This time the proof is a two-step process. First let k′ be any
Riemannian metric and define a new metric k by

k(X,Y ) = k′(−X + η(X)ξ,−Y + η(Y )ξ) + η(X)η(Y ).

Then k(X, ξ) = η(X). Now polarize dη on the contact subbundle D
as in the symplectic case. This gives a metric g′ and almost complex
structure φ′ on D such that g′(X,φ′Y ) = dη(X,Y ). Extending g′ to a
metric g agreeing with k in the direction ξ and extending φ′ to a field of
endomorphisms φ by requiring φξ = 0, we have an almost contact metric
structure (φ, ξ, η, g) such that g(X,φY ) = dη(X,Y ).

As in the symplectic case, given a contact manifold (M2n+1, η), we
say that a Riemannian metric g is an associated metric if there exists an
almost contact metric structure such that g(X,φY ) = dη(X,Y ). In this
case we also speak of a contact metric structure; other authors often use
the phrase contact Riemannian structure. Working strictly with structure
tensors, one may avoid the polarization process by defining an associated
metric as follows: Given a contact manifold (M2n+1, η) with characteris-
tic vector field ξ, a Riemannian metric g is an associated metric if, first
of all,

η(X) = g(X, ξ)

and secondly, there exists a tensor field φ of type (1, 1) such that

φ2 = −I + η ⊗ ξ, dη(X,Y ) = g(X,φY ).

Finally, we caution that it is possible to have a contact manifold (M2n+1,η)
with characteristic vector field ξ and an almost contact metric structure
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(φ, ξ, η, g), same ξ and η, without g(X,φY ) = dη(X,Y ); see Example
4.5.3 for an example.

In the course of this book we will give many properties of associated
metrics; we give one simple property here, since it is discussed in Example
4.5.5 and used periodically.

Theorem 4.5 On a contact metric manifold the integral curves of ξ are
geodesics.

Proof. For a contact metric structure we have

0 = (£ξη)(X) = ξg(X, ξ) − g(∇ξX −∇Xξ, ξ) = g(X,∇ξξ),

so the integral curves of ξ are geodesics.

In our discussion above in both the symplectic and contact cases we
started with an arbitrary Riemannian metric and obtained an associated
metric. Thus we are led to believe that there are many associated metrics
for a given symplectic or contact form. Indeed, this is the case, and we
now show that the set A of all associated metrics is infinite-dimensional
by exhibiting a path of metrics in A determined by a C∞ function with
compact support. Such paths of associated metrics will be useful to us
in the study of critical points of curvature functionals on A. We give the
construction in the symplectic case and then remark on the similarity
with the contact case.

Let f be a C∞ function with compact support contained in a neigh-
borhood U of (M2n,Ω) and {X1, . . . ,Xn,X1∗ , . . . ,Xn∗} a local J-basis.
Let g be an associated metric. Make no change in g outside U , and on U
change g only in the planes spanned by {X1,X1∗} by the matrix

(
1 + tf + 1

2t2f2 1
2t2f2

1
2t2f2 1− tf + 1

2t2f2

)

.

This defines a path of metrics gt, and it is easy to check that each gt is an
associated metric for the symplectic form Ω. In the contact case simply
begin with a φ-basis and make the same construction.

Also, as already remarked in Section 1.1, it is evident that in the
symplectic case, A may be thought of as the set of all almost Kähler
metrics that have Ω as their fundamental 2-form.

On the other hand, it is possible for a Riemannian metric g to be an
associated metric for more than one symplectic structure. For example,
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on a hyper-Kähler manifold one has, by definition, three independent
global Kähler structures (Ja, g), a = 1, 2, 3, satisfying J1J2 + J2J1 = 0,
J3 = J1J2. Thus the three fundamental 2-forms give three symplectic
structures with g an associated metric for each of them.

We close this section by noting that all associated metrics have the
same volume element and give the proof only in the symplectic case.

Theorem 4.6 Let (M2n,Ω) be a symplectic manifold (resp. (M2n+1, η)
a contact manifold) and g an associated metric. Then

dV =
(−1)n

2nn!
Ωn (resp. dV =

(−1)n

2nn!
η ∧ (dη)n)).

Proof. Let X1, . . . ,Xn,X1∗ , . . . Xn∗ be a J-basis and θ1, . . . , θn, θ1∗ , . . . ,
θn

∗
the dual basis. Then with respect to this dual basis,

dV = θ1 ∧ θ1∗ ∧ θ2 ∧ θ2∗ ∧ · · · ∧ θn ∧ θn
∗

and

Ω =
n∑

i=1

(θi
∗ ∧ θi − θi ∧ θi

∗
) = −2

n∑

i=1

θi ∧ θi
∗
.

Therefore

Ωn = (−2)n((θ1 ∧ θ1∗) + · · ·+ (θn ∧ θn
∗
))n

= (−2)nn!(θ1 ∧ θ1∗) ∧ · · · ∧ (θn ∧ θn
∗
) = (−2)nn!dV.

4.3 Polarization of metrics as a projection

In the previous section we created associated metrics from an arbitrary
metric by polarization. In this section we give some further properties
of the set A and discuss how A sits in the set N of all Riemannian
metrics with the same volume element. Restricting ourselves to N , we
will interpret the polarization process of constructing associated metrics
from a given metric as a projection from N onto A.

On a compact manifold M the set M of all Riemannian metrics may
be given a Riemannian metric (Ebin [1970]): The tangent space, TgM,
ofM at a metric g is the space of symmetric tensor fields of type (0, 2).
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For symmetric tensor fields S and T of type (0, 2) we define a Riemannian
metric (·, ·) by

(S, T )g =
∫

M
SijTklg

ikgjldVg.

For the set N of metrics with the same volume element, the geodesics in
N were found by Ebin [1970] and are curves of the form geSt, where S
is symmetric with tr S = 0. gt = geSt is computed by

gt(X,Y ) = g(X, eStY ),

where here eSt acts on Y as a tensor field of type (1, 1). Again and
throughout we shall often denote a symmetric tensor field of type (0, 2)
and the corresponding tensor field of type (1, 1) by the same letter. In
fact, in most of our computations we begin with a local orthonormal
basis for some g ∈ A and regard S simply as its matrix of components.

As an aside, we remark that one can think of metrics with the same
total volume on an n-dimensional manifold as being at a fixed distance
from the zero tensor. Consider the path tg, t ∈ [0, 1], from the zero tensor
to the metric g; then since g may be considered as the tangent to the
path at each point, we have the following entertaining computation:

|g| ≡
∫ 1

0
(g, g)1/2tg dt =

∫ 1

0

(
n

t2

∫

M

√
tn det g dx1 · · · dxn

)1/2

dt = 4

√
volgM

n
.

4.3.1 Some linear algebra

For the projection result below, Theorem 4.8, we will need the polariza-
tion of a particular path in GL(2n, R). Let J denote the matrix

(
0 −I
I 0

)

and let S be any symmetric 2n × 2n matrix. First diagonalize S, say
Q−1SQ = Λ, Q ∈ O(2n), Λ diagonal, and set P = Qe−

1
2
Λt. Our problem

will be to polarize P TJP , i.e., find F (t) ∈ O(2n), G(t) ∈ H(2n) such
that P TJP = F (t)G(t).

Lemma 4.4 Any symmetric 2n × 2n matrix S can be uniquely writ-
ten as B + D, where B and D are symmetric and JB − BJ = 0 and
JD + DJ = 0.

Proof. Setting B = 1
2(−J SJ + S) and D = 1

2(J SJ + S), the decom-
position is immediate. If now B + D = B′ + D′, then B −B′ = D′ −D
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and hence J (B − B′) = (B − B′)J gives J (D′ − D) = (D′ − D)J =
−J (D′ −D). Therefore J (D′ −D) = 0, and so since J is nonsingular,
D′ = D and in turn B′ = B.

Of course B and D need not commute with each other. We will see
below that if [B,D] = 0, then F (t) = Q−1JQ, and G(t) = Q−1e−BtQ,
and conversely, if either F (t) or G(t) has this simple form, B and D
commute.

As a matter of notation, using the analyticity of the polar decomposi-
tion, we write

F (t) =
∞∑

k=0

F (k)tk, G(t) =
∞∑

k=0

G(k)tk.

At t = 0, P TJP = Q−1JQ, which we denote by M . Since J ∈ O(2n),
we have F (0) = M and G(0) = I. The main lemma of this section is the
following; due to its complexity we refer to the author’s paper [1983] for
its proof.

Lemma 4.5

F (k) =
1
2

k−1∑

j=1

( (−1)k

k!2k

(
k

j

)

Q−1J [(B −D)k−j, (B + D)j ]Q

− F (k−j)G(j) −MG(j)F (k−j)M + MF (k−j)F (j)
)
,

G(k) = MF (k) + M
k−1∑

j=1

F (k−j)G(j)

+
(−1)k

k!2k
Q−1
( k∑

j=0

(
k

j

)

(B −D)k−j(B + D)j
)
Q.

From this lemma we see easily that

F (1) = 0, F (2) =
1
4
Q−1J [B,D]Q.

Continuing, we can find F (k) and G(k) as far as desired; in particular,

G(1) =−Q−1BQ, G(2) =
1
2
Q−1B2Q,

G(3) = Q−1

(

−1
6
B3 − 1

24
(BD2 − 2DBD + D2B)

−1
8
(B2D − 2BDB + DB2)

)

Q,
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G(4) = Q−1

(
1
24

B4 +
1
16

(B3D −B2DB −BDB2 + DB3)

+
1
96

(2B2D2 − 7BDBD + 3DB2D + 7BD2B

− 7DBDB + 2D2B2)
)

Q.

Corollary 4.1 [B,D] = 0 implies F (t) = Q−1JQ and G(t) = Q−1e−BtQ.
Conversely, either of these implies the commutativity.

Proof. [B,D] = 0 implies that the bracket in F (k) vanishes, and hence
by induction, F (k) = 0 for k > 0. Again if B and D commute,

k∑

j=0

(
k

j

)

(B −D)k−j(B + D)j = 2kBk

and hence G(t) = Q−1e−BtQ.
Clearly F (t) = Q−1JQ gives F (2) = 1

4Q−1J [B,D]Q = 0 and hence
[B,D] = 0. Finally, if G(t) = Q−1e−BtQ, then

QG(3)Q−1 +
1
6
B3 = 0, QG(4)Q−1 − 1

24
B4 = 0.

Thus if we multiply the rest of the expression for G(3) on the left by 48B
and separately on the right by 48B and add these two to 96 times the
rest of G(4), we have

−3BDBD + 3DB2D + 3BD2B − 3DBDB = 0.

Thus [B,D]2 = 0, but [B,D] is skew-symmetric and hence [B,D] = 0.

Lemma 4.6 J eS = e−SJ if and only if SJ + JS = 0.

Proof. The sufficiency if clear, so we prove only the necessity. Suppose
SX = λX. Then J eSX = eλJX = e−SJX. Also let {ei} be an or-
thonormal eigenvector basis of S with Sei = λiei. If now JX = Y iei,
then

e−SJX = eλJX = eλY iei

and
e−SJX = e−SY iei =

∑

i

Y ie−λiei.
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Thus for each i, either λ = −λi or Y i = 0 and hence

SJX =
∑

i

Y iλiei = −λY iei = −λJX,

but J SX = λJX, giving (SJ + JS)X = 0 for any eigenvector X and
hence SJ + J S = 0.

4.3.2 Results on the set A
First we will give a remark about general curves in A. Let g be a metric
in A. If gt = g + D(1)t + D(2)t2 + · · · is a path of metrics, we can easily
obtain a sequence of necessary conditions for gt to lie in A. Again note
that we use the convention that D will signify a tensor field of type (0, 2)
or type (1, 1), related by the metric g, and it being clear from context
which is meant. We give the details in the symplectic case; the reader can
easily read φ instead of J for the contact case and follow the computation,
showing also that D(k)ξ = 0 by a small amount of further computation:

g(X,JY ) = Ω(X,Y ) = gt(X,JtY ) = g(X,JtY ) +
∞∑

k=1

D(k)(X,JtY )tk,

from which
J = Jt + D(1)Jtt + D(2)Jtt

2 + · · · .
Applying Jt on the right and J on the left, we have

Jt = J(I + D(1)t + D(2)t2 + · · · ).
Squaring this and comparing coefficients gives

JD(k) + D(k)J = −
k−1∑

j=1

D(j)JD(k−j).

Using this last result repeatedly, we see that

JD(k) + D(k)J = J(polynomial in theD(j), j < k).

In particular, we have the following:

JD(1) + D(1)J = 0, JD(2) + D(2)J = JD(1)2.

These equations yield immediately the following corollary.
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Corollary 4.2 A contains no line of metrics.

Recall that in the contact case the construction of associated metrics
was a two-step process, the first being the creation of a metric k such
that k(X, ξ) = η(X) from an arbitrary metric k′ and the second the
polarization of dη restricted to the contact subbundle. The first step
leads to a linear subspace L of M. If k0 and k1 are two Riemannian
metrics for which ki(X, ξ) = η(X), i = 0, 1, then k = (1 − t)k0 + tk1 for
all t for which k is positive definite is also a Riemannian metric with this
property. Moreover, if k′

0 and k′
1 yield k0 and k1 respectively under the

first step of the process, (1− t)k′
0 + tk′

1 yields k = (1− t)k0 + tk1.
We have also seen that all associated metrics have the same volume

element. On a symplectic manifold of dimension 2, A = N , and on a
contact manifold of dimension 3, A = N ∩ L. In higher dimensions A
is a proper subset of N (N ∩ L). We shall now show that A is totally
geodesic in N and then study how polarization of a path kt ∈ N acts as
a projection onto gt ∈ A.

Theorem 4.7 A is totally geodesic in N (N ∩ L) in the sense that
if g ∈ A and D is a symmetric tensor field satisfying DJ + JD = 0
(Dφ + φD = 0 and Dξ = 0), then gt = geDt lies in A.

Proof. Let Jt = JeDt (φt = φeDt) and note that JeDt = e−DtJ . Then

gt(X,JtY ) = g(X, eDtJeDtY ) = g(X,JY ) = Ω(X,Y ) (= dη(X,Y ))

and
J2
t = JeDtJeDt = J2 = −I (φ2

t = −I + η ⊗ ξ).

In particular, the tangent space TgA ofA at g is the set of all symmetric
tensor fields that anticommute with J (φ and annihilate ξ).

We now turn to the problem of understanding how the polarization of a
geodesic in N gives rise to path gt ∈ A and hence of viewing polarization
as a projection of N onto A (the author [1983]). We suppress mentioning
the contact case and for that case all tensors T should be understood as
also satisfying Tξ = 0.

Let us start with a geodesic kt = geSt in N where g ∈ A and S any
symmetric tensor field of vanishing trace. As we have seen, if S and J
anticommute, kt is already the path gt in A. We shall see as a corollary
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that if S and J commute, kt collapses to the metric g. (One can think
of a matrix B that commutes with J =

(
0 −I
I 0

)
as being orthogonal to

a matrix D that anticommutes with J by showing that trBD = 0.)
Writing S as B + D, we will see that the construction process takes kt
to geDt if and only if B and D commute, but that gt and geDt agree
through second order in general.

Let {Xi} be a local g-orthonormal basis with respect to which J is
given by the matrix

(
0 −I
I 0

)
. The first problem is to construct a kt-

orthonormal basis. As remarked above, we also denote by S the matrix of
S with respect to the initial basis {Xi}. If SX = λX, then eStX = eλtX,
and hence the eigenvalues of eSt are analytic in t. Let Q be an orthogonal
matrix diagonalizing S as in Subsection 4.3.1, i.e., Q−1SQ = Λ, and set
Δ = e−

1
2
Λt and P = QΔ so that P T eStP = I. Let Xi(t) = Pki(t)Xk.

Then

kt(Xi(t),Xj(t)) = g(PkiXk, e
StPljXl) = PkiPlj(eSt)mlgkm = P T eStP = I.

Thus {Xi(t)} is a kt-orthonormal basis, but note that Xi(0) = QkiXk.
Now our job is to polarize A(t) = Ω(Xi(t),Xj(t)) = P TJP , giving F (t)
and G(t) as in Lemma 4.5.

If we are to have an expression for gt that we can compare more easily
for each t, we should express g(t) with respect to the original basis {Xi}.
Now G(t) = gt(Xi(t),Xj(t)) = PkiPljgt(Xk,Xl) = P T (gt(Xk,Xl))P , but
since P = QΔ, we have

gt(Xk,Xl) = QΔ−1G(t)Δ−1Q−1.

Theorem 4.8 If kt = geSt is a geodesic in N through g ∈ A, then the
path gt = g + D(1)t + D(2)t2 + · · · in A obtained by polarization is given
with respect to the basis {Xi} by

D(l) =
l∑

j=0

1
j!2j

j∑

k=0

(
j

k

)

(B + D)j−kQG(l−j)Q−1(B + D)k,

G(l−j) being given by Lemma 4.5.

The proof is by expansion of gt(Xk,Xl) = QΔ−1G(t)Δ−1Q−1 using the
series expansions of Δ−1 = e

1
2
Λt and G(t) and noting that Λ = Q−1SQ

(again see the author [1983]).



56 4. Associated Metrics

We remark that Q need not be unique in the above argument (e.g., if
S does not have distinct eigenvalues), but each G(k) is of the form

Q−1 (polynomial inB andD)Q

and therefore D(k) is independent of the orthogonal matrix Q
diagonalizing S.

Again we list the first few terms:

D(1) = D, D(2) =
D2

2
, D(3) =

D3

6
− 1

12
(B2D − 2BDB + DB2),

D(4) =
D4

24
+

1
96

(−4B2D2 + 5BDBD + 3BD2B − 5DB2D

+ 5DBDB − 4D2B2).

Corollary 4.3 [B,D] = 0 if and only if gt = geDt.

Proof. If [B,D] = 0, then as in Corollary 4.1,

QG(k−j)Q−1 =
(−1)k−j

(k − j)!
Bk−j.

Thus

D(k) =
k∑

j=0

1
j!

(B + D)j
(−1)k−j

(k − j)!
Bk−j

=
1
k!

k∑

j=0

(
k

j

)

(−1)k−j(B + D)jBk−j =
1
k!

Dk.

Conversely, if D(k) = 1
k!D

k, multiply the rest of the expression for D(3)

on both the left and right by −48D and add these two to 96 times the
rest of D(4) to yield −3BDBD + 3DB2D + 3BD2B − 3DBDB = 0 and
in turn the conclusion as in Corollary 4.1.

Corollary 4.4 If kt = geSt and S commutes with J , then gt = g.

Proof. In this case D = 0, and the result follows from the previous
corollary.

Theorem 4.9 Two metrics in A may be joined by a unique geodesic.
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Proof. Let g0 and g1 be two metrics in A. From what has been said so
far, the problem is to find S such that g1 = g0e

S and SJ0 + J0S = 0. As
before, let {Xi} be a local g0-orthonormal basis with respect to which J0

is given by the matrix J =
(

0 −I
I 0

)
. Then

J = Ω(Xi,Xj) = g1(Xi, J1Xj),

from which g1 = −J J1, where here J1 and g1 are regarded as the matri-
ces of J1 and g1 with respect to the basis {Xi}. In particular, −J J1 is
positive definite symmetric and hence there exists a unique real symmet-
ric matrix S satisfying eS = −J J1. Then g1 = g0e

S , and since J2
1 = −I,

we have J eSJ eS = −I, from which e−SJ = J eS . Lemma 4.6 then gives
SJ + JS = 0.

4.4 Action of symplectic and contact transformations

We begin by showing that if f is a symplectomorphism or strict contact
transformation and g an associated metric, then f∗g is also an associated
metric.

Theorem 4.10 Let (M,Ω) be a symplectic manifold, or respectively
(M,η) a contact manifold, and f a diffeomorphism satisfying f∗Ω = Ω,
respectively f∗η = η. Then for any associated metric g, f∗g is also an
associated metric.

Proof. In the symplectic case define J∗ by (f∗g)(X,J∗Y ) = Ω(X,Y ).
Then

g(f∗X, f∗J∗Y ) = Ω(X,Y ) = Ω(f∗X, f∗Y ) = g(f∗X,Jf∗Y )

and therefore f∗J∗ = Jf∗. Now f∗J∗2X = J2f∗X = −f∗X, so that J∗

is an almost complex structure satisfying (f∗g)(X,J∗Y ) = Ω(X,Y ) and
hence f∗g is an associated metric.

In the case of a strict contact transformation, first note that

η(f∗ξ) = (f∗η)(ξ) = η(ξ) = 1,
dη(f∗ξ, f∗X) = (f∗dη)(ξ,X) = dη(ξ,X) = 0

and therefore f∗ξ = ξ. Now define φ∗ by (f∗g)(X,φ∗Y ) = dη(X,Y )
and proceed as in the symplectic case to get f∗φ∗ = φf∗ and in turn
φ∗2 = −I + η ⊗ ξ. Also it is easy to check that (f∗g)(ξ,X) = η(X).
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There is a partial converse for the case where M is a compact symplec-
tic manifold and the diffeomorphism belongs to the connected component
of the identity of the diffeomorphism group; in general, the converse is
not true and we will also give a couple of counterexamples (cf. Apostolov
and Draghici [1999]). The diffeomorphism group of a compact manifold
will be denoted by Diff and the connected component of the identity
by Diff0. The group of symplectomorphisms will be denoted by S.

Theorem 4.11 Let (M,Ω) be a compact symplectic manifold and g an
associated metric. If for a diffeomorphism f ∈ Diff0, f∗g is also an
associated metric, then f ∈ S.

Proof. For the associated metrics g and f∗g let J and J̃ be the corre-
sponding almost complex structures. Thus (J, g,Ω) and (J̃ , f∗g,Ω) are
almost Kähler structures, and consider the action of f−1 on the second
structure, i.e., setting J̃∗ = f∗J̃f−1∗. Then (J̃∗, g, f−1∗Ω) is again an
almost Kähler structure with the same metric g. Since the fundamental
2-form of a compact almost Kähler manifold is harmonic, both Ω and
f−1∗Ω are harmonic with respect to the metric g. Now f ∈ Diff0 and so
Ω and f−1∗Ω represent the same cohomology class in H2(M, R). There-
fore Ω− f−1∗Ω is exact, but since it is also harmonic, it must be zero by
the Hodge decomposition. Thus f−1∗Ω = Ω, giving f ∈ S.

In general, the above theorem is not true and we give two counterex-
amples. First consider the diffeomorphism f of R

4 given by x̄1 = 1
2(x1 +

x2 +x3 +x4), x̄2 = 1
2(−x1 +x2−x3 +x4), x̄3 = 1

2 (x1 +x2−x3−x4), x̄4 =
1
2(−x1+x2+x3−x4) and the symplectic form Ω = 2(dx̄1∧dx̄3+dx̄2∧dx̄4).
Let g be the standard Euclidean metric on R

4, which is clearly an as-
sociated metric. Now it is easy to see that

(
∂x̄j

∂xi

)
∈ SO(4) but not in

Sp(4, R). Thus f∗g = g but f∗Ω �= Ω; in fact f∗Ω = −Ω.
For a compact counterexample consider almost Kähler structures of

the form (M = M1 ×M2, g = g1 + g2, Ω = Ω1 + Ω2), where (M1, g1,Ω1)
is any almost Kähler manifold and (M2 = S1×S1, g2,Ω2) is the standard
product Kähler structure on S1×S1. Let f be the diffeomorphism idM1×
ψ, where ψ is the map on S1 × S1 that interchanges the two factors.
Clearly, f is an isometry of g, but it is not a ±-symplectomorphism,
since f∗Ω = Ω1 − Ω2.

In [1970], Ebin proved a “slice theorem” for the set of Riemannian
metrics M, i.e., given a metric g ∈ M there is a neighborhood of g in
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M that is the product of a neighborhood of g in the orbit of g under
the action of the diffeomorphism group and a submanifold orthogonal to
the orbit with respect to the inner product onM. The tangent space to
this submanifold or “slice” at g is the kernel of the codifferential δ of g
acting on second-order symmetric tensor fields (Berger–Ebin [1969]). In
Theorem 4.10 we saw that if f ∈ S and g ∈ A, then f∗g ∈ A and we may
consider the quotient space A/S. Considering the group of isometries
that are also symplectic transformations, Smolentsev [1995] shows that
the slice theorem of Ebin can be restricted to give a slice theorem for A.

This is a good point to give a technical lemma for use in Chapter 10, to
show the Berger–Ebin result that a symmetric tensor field D orthogonal
to an orbit of Diff is in the kernel of the codifferential and to show at
least that a symmetric tensor field D is orthogonal to an orbit of S if
and only if there exists a 2-form Ψ such that (δD) ◦ J = δΨ.

Lemma 4.7 Let (M,g) be a compact orientable Riemannian manifold
and for a vector field V let v(X) = g(V,X). Then

∫
M V iθidVg = 0

for every closed 1-form θ if and only if v = δΨ for some 2-form Ψ.∫
M viX

idVg = 0 for every vector field X if and only if v = 0.

Proof. Taking θ exact, say df , we have (v, df) = 0 and hence (δv, f) = 0
for every smooth function f , where (., .) denotes the global inner product
of differential forms. Therefore δv = 0, so that v = ω + δΨ for some
2-form Ψ and harmonic 1-form ω. Now taking θ = ω, (v, θ) = 0 gives
(ω, ω) = 0. Thus ω = 0 and v = δΨ. Conversely, for v = δΨ and θ
closed, (v, θ) = (δΨ, θ) = (Ψ, dθ) = 0. For the second statement we
already have v = δΨ, but now let X be the contravariant form of δΨ,
then 0 =

∫
M viX

idVg = (δΨ, δΨ) giving v = 0.

We now look again at the diffeomorphism group, Diff , of M . For a
vector field X on M , let ft be its 1-parameter subgroup in Diff . Then
ft(m) is the integral curve of X starting at m ∈M , so in particular,

d

dt
ft(m)

∣
∣
t=0

= X(m).

Conversely, given a path ft in Diff with f0 = id, we have for every
m ∈ M , d

dtft(m)|t=0 ∈ TmM . Thus the tangent space to Diff at the
identity may be viewed as the Lie algebra X of vectors fields on M .

Now consider the orbit of Og of g ∈M under Diff . We have remarked
(Section 4.3) that the tangent space TgM is the set of symmetric tensor
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fields of type (0, 2) on M and ask what are the symmetric tensor fields
that are tangent to the orbit. Let ψg : Diff −→ M be defined by
ψg(f) = f∗g. Then ψg∗ : X −→ TgOg. Given X ∈ X, let ft be its
1-parameter subgroup. Therefore

ψg∗(X) =
d

dt
f∗
t g = £Xg.

Suppose now that a symmetric tensor field D ∈ TgM is orthogonal to
Og at g. Then

0 = (£Xg,D) =
∫

M
(∇iXj +∇jXi)DijdVg

= 2
∫

M
(∇iXj)DijdVg = −2

∫

M
(∇iDij)XjdVg

for every vector field X, and hence by Lemma 4.7, δD = 0.
Now let M be a compact symplectic manifold and g an associated

metric with corresponding almost complex structure J . A symmetric
tensor field D is orthogonal to the orbit of g under the action of S if and
only if there exists a 2-form Ψ such that (δD)◦J = δΨ. To see this, first
note that the tangent space to the orbit of g under the action of S at g
is the set of tensor fields of the form £Xg where X is a symplectic vector
field. As we have seen (Theorem 1.7), Xi = J ikθk for some closed 1-form
θ. Then as in the argument above,

(£Xg,D) = 2
∫

M
(δD)iJ ikθkdVg,

and the result follows from Lemma 4.7.

4.5 Examples of almost contact metric manifolds

4.5.1 R2n+1

In Example 3.2.1 we considered R
2n+1 with its usual contact structure

dz−∑n
i=1 yidxi and saw that the contact subbundleD is spanned by ∂

∂xi +
yi ∂∂z ,

∂
∂yi , i = 1, . . . , n. For normalization convenience, we take as the

standard contact structure on R
2n+1 the 1-form η = 1

2(dz−∑n
i=1 yidxi).
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The characteristic vector field is then ξ = 2 ∂
∂z , and the Riemannian

metric

g = η ⊗ η +
1
4

n∑

i=1

((dxi)2 + (dyi)2)

gives a contact metric structure on R
2n+1. For reference purposes, we

give the matrix of components of g, namely

1
4

⎛

⎝
δij + yiyj 0 −yi

0 δij 0
−yj 0 1

⎞

⎠ .

The tensor field φ is given by the matrix
⎛

⎝
0 δij 0
−δij 0 0

0 yj 0

⎞

⎠ ,

and the vector fields Xi = 2 ∂
∂yi , Xn+i = 2

(
∂
∂xi + yi ∂∂z

)
, i = 1, . . . , n, and

ξ form a φ-basis for the contact metric structure.
The Riemannian metric given here has the following properties. The

vector field ξ is a Killing vector field, i.e., it generates a 1-parameter group
of isometries. The sectional curvature of any plane section containing ξ
is equal to 1. The sectional curvature of a plane section spanned by a
vector X orthogonal to ξ and φX is equal to −3; for this reason this
example is often denoted R

2n+1(−3).
In dimension 3 this example is often identified with the Heisenberg

group

HR =

⎧
⎨

⎩

⎛

⎝
1 y z
0 1 x
0 0 1

⎞

⎠

∣
∣
∣
∣
∣
x, y, z ∈ R

⎫
⎬

⎭
;

left translation preserves η, and g is a left-invariant metric on HR.
We have already seen that associated metrics are not unique, and in

Section 7.2 we shall give another associated metric of the contact form
η on R

2n+1 that is less standard but has some interesting and basic
properties.

4.5.2 M2n+1 ⊂ M̃2n+2 almost complex

We begin with a result of Tashiro [1963] that every C∞ orientable hyper-
surface of an almost complex manifold has an almost contact structure.
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Let (M̃2n+2, J) be an almost complex manifold and ι : M2n+1 −→ M̃2n+2

a C∞ orientable hypersurface. There exists a transverse vector field ν
along M2n+1 such that Jν is tangent. For if Jι∗X is tangent for every
tangent vector X, Jι∗X = ι∗fX defines a (1, 1)-tensor field f on M2n+1.
Applying J , we have f2 = −I on M2n+1, making M2n+1 an almost
complex manifold, a contradiction. Thus there exists a vector field ξ on
M2n+1 such that ν = Jι∗ξ is transverse.

Define a tensor field φ of type (1, 1) and a 1-form η on M2n+1 by

Jι∗X = ι∗φX + η(X)ν; (∗)

then applying J , we have

−ι∗X = ι∗φ2X + η(φX)ν − η(X)ι∗ξ

and hence φ2 = −I + η ⊗ ξ and η ◦ φ = 0. Taking X = ξ in equation
(∗) gives ν = ι∗φξ + η(ξ)ν and hence φξ = 0 and η(ξ) = 1. Therefore
(φ, ξ, η) is an almost contact structure on M2n+1.

If M̃2n+2 is almost Hermitian with Hermitian metric g̃, set g = ι∗g̃
and take ν to be a unit normal. Then Jν is tangent and defines ξ by
Jν = −ξ. Then again using equation (∗),

g(X,Y ) = g̃(Jι∗X,Jι∗Y ) = g(φX,φY ) + η(X)η(Y )

and we see that (φ, ξ, η, g) is an almost contact metric structure.
We can construct the usual contact structure on an odd-dimensional

sphere in this way. Let S2n+1
r be a sphere of radius r in C

2n+2 with its
usual Kähler structure denoted as on M̃2n+2 above with ∇̃ denoting the
connection on C

2n+2. With ν as the unit outer normal, η is the standard
contact form (cf. Example 3.2.3). Since S2n+1

r is an umbilical hypersur-
face, its second fundamental form is σ(X,Y ) = −1

rg(X,Y )ν. Thus, using
the fact that J is parallel and the Gauss–Weingarten equations, we have

0 = (∇̃XJ)ξ = ∇̃Xν − J(∇Xξ + σ(X, ξ)) =
1
r
X − φ∇Xξ − 1

r
η(X)ξ,

where ∇ is the Levi-Civita connection of g. Applying φ, we have
∇Xξ = −1

rφX. This in turn yields

dη(X,Y ) =
1
2
(g(∇Xξ, Y )− g(∇Y ξ,X)) =

1
r
g(X,φY ).
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Thus for r �= 1, g is not an associated metric, but this situation is easily
rectified. The structure η̄ = 1

rη, ξ̄ = rξ, φ̄ = φ and ḡ = 1
r2 g is a contact

metric structure. Alternatively, the metric g′ = 1
r g + (1 − 1

r )η ⊗ η is an
associated metric for the induced contact form η on S2n+1

r .
Of course in general, one cannot expect the induced almost contact

metric structure to be a contact metric structure. The condition for this
when the ambient space is Kähler was obtained by Okumura [1966], and
we have the following theorem.

Theorem 4.12 Let M2n+1 be a hypersurface of a Kähler manifold
M̃2n+2, (φ, ξ, η, g) its induced almost contact metric structure and A its
Weingarten map. Then (φ, ξ, η, g) is a contact metric structure if and
only if Aφ + φA = −2φ.

Proof. From the Gauss–Weingarten equations we have on the one hand
∇̃Xξ = ∇Xξ + σ(X, ξ) and on the other

∇̃Xξ = −∇̃XJν = JAX = φAX + η(AX)ν.

Comparing gives ∇Xξ = φAX. Therefore

2dη(X,Y ) = g(∇Xξ, Y )− g(∇Y ξ,X) = g((φA + Aφ)X,Y ),

from which the result follows.

4.5.3 S5 ⊂ S6

First consider R
7 as the imaginary part of the Cayley numbers O and

define a vector product by u× v by the imaginary part of uv. Then

(u×v)×w− (u ·w)v + (v ·w)u = −u× (v×w) + (u ·w)v− (u · v)w,

both sides not being ≡ 0 as in dimension 3. Also

(u× v) · (u×w) = (u · u)(v ·w)− (u ·w)(v · u),

though again in dimension 7, this would not hold if the second u were
replaced by a fourth vector.

The unit sphere (S6(1), g̃) in R
7 with outer unit normal N inherits an

almost complex structure J defined by JX = N × X. From the above
vector identities, we have

J2 = N × (N ×X) = −X,
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g̃(JX, JY ) = (N ×X) · (N × Y ) = X · Y = g̃(X,Y ),

giving S6 an almost Hermitian structure (J, g̃). One can also show that
(∇̃XJ)Y +(∇̃Y J)X = 0, and hence that the almost Hermitian structure
is nearly Kähler (see also Example 6.7.3 below).

Now consider the totally geodesic 5-sphere in S6(1) ⊂ R
7 defined by

x7 = 0 with ν = − ∂
∂x7 . Let (φ, ξ, η, g) be the induced almost contact

metric structure; in particular,

ξ =− Jν = N × ∂

∂x7
=

6∑

i=1

xi
∂

∂xi
× ∂

∂x7

= x1 ∂

∂x6
− x2 ∂

∂x5
− x3 ∂

∂x4
+ x4 ∂

∂x3
+ x5 ∂

∂x2
− x6 ∂

∂x1
;

η is the restriction of x1dx6−x6dx1 + x5dx2−x2dx5 + x4dx3−x3dx4 to
S5 and hence is the usual contact form.

Compare this with the construction of (φ′, ξ, η, g) on

S5 ⊂ R
6(x7 = 0) � C

3 = {x2 + ix5, x3 + ix4, x6 + ix1};

J ′ ∂
∂x2 = ∂

∂x5 , etc., so viewing C
3 ⊂ C

4 � O, J ′ is just left multiplication
by ∂

∂x7 considered as an imaginary unit in O. Then for X ⊥ ξ,

φ′X = J ′X =
∂

∂x7
X =

∂

∂x7
×X,

since ∂
∂x7 ⊥ X. Then g(φX,φ′X) = (N × X) · ( ∂

∂x7 × X) = 0. There-
fore (φ, ξ, η, g) is an almost contact metric structure with η contact and
ξ its characteristic vector field but is not a contact metric structure,
dη(X,Y ) = g(X,φ′Y ) �= g(X,φY ). The difference between φ and φ′

will be seen again in Example 6.7.3 by comparison of their covariant
derivatives.

4.5.4 The Boothby–Wang fibration

Let M2n+1 be a compact regular contact manifold and π : M2n+1 −→
M2n the Boothby–Wang fibration of M2n+1 over a symplectic manifold
M2n of integral class with symplectic form Ω . Let G be an associated
metric for Ω and J the corresponding almost complex structure; in par-
ticular, (M2n, J,G) is almost Kählerian. As we have seen, the contact
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form η can be viewed as a connection form on the principal circle bundle
M2n+1. Thus denoting the horizontal lift by π̃, we define a tensor field φ
on M2n+1 by φX = π̃Jπ∗X. Then, since the characteristic vector field ξ
is vertical, φ2 = −I + η ⊗ ξ and (φ, ξ, η) is an almost contact structure.
Now define a Riemannian metric on M2n+1 by g = π∗G + η ⊗ η. Since
dη = π∗Ω, we have

g(X,φY )=G(π∗X,Jπ∗Y )◦π = Ω(π∗X,π∗Y )◦π=π∗Ω(X,Y )=dη(X,Y ).

Clearly η(X) = g(X, ξ), and hence (φ, ξ, η, g) is a contact metric struc-
ture on M2n+1. It is also clear that ξ is a Killing vector field, i.e., ξ
generates a 1-parameter group of isometries. A contact metric struc-
ture for which the characteristic vector field is a Killing vector field is
called a K-contact structure, a notion that we will discuss further in later
chapters.

We can at this point give a topological result on compact regular con-
tact manifolds. Since the characteristic class of the principal circle bundle
π : M2n+1 −→ M2n is [Ω] ∈ H2(M2n, Z), the bundle is nontrivial, and
hence the Gysin sequence becomes

0→ H1(M2n, R) π∗→ H1(M2n+1, R)→ H0(M2n, R) L→ H2(M2n, R)→ · · ·
where L is left exterior multiplication by Ω. Now L is injective and there-
fore the map π∗ is an isomorphism giving the following theorem of Tanno
[1967a].

Theorem 4.13 Let π : M2n+1 −→ M2n be the Boothby–Wang fibra-
tion of a compact regular contact manifold M2n+1. Then the first Betti
numbers of M2n+1 and M2n are equal.

In Example 3.2.6 we saw that the 5-dimensional torus carries a contact
structure; we note, however, that it is not regular.

Theorem 4.14 No torus T 2n+1 can carry a regular contact structure.

Proof. If T 2n+1 admitted a regular contact structure, it would be a
principal circle bundle over a symplectic manifold M2n by the Boothby–
Wang fibration. We have just seen that the first Betti number of the base
b1(M2n) is equal to b1(T 2n+1) = 2n + 1. On the other hand, we have the
homotopy sequence of the bundle

0→ π2(M2n)→ π1(S1)→ π1(T 2n+1)→ π1(M2n)→ 0
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since π2(T 2n+1) = 0. Now consider the universal covering space R
2n+1 of

T 2n+1 and the lift of the fibration; each circle lifts to a line, and hence
the fibration of T 2n+1 by circles has no null-homotopic fibers. Thus the
map from π1(S1) into π1(T 2n+1) is nontrivial and hence π2(M2n) = 0.
Then by the exactness of the sequence, π1(M2n) = Z⊕···⊕Z

Z
, and hence

b1(M2n) = 2n, a contradiction.

It is also known that no torus can carry an R-contact structure,
Rukimbira [1993], so in particular no torus carries a K-contact struc-
ture. For this latter fact see also Itoh [1997].

4.5.5 M2n × R

Let (M2n, J,G) be an almost Hermitian manifold with local coordinates
x1, . . . , x2n and let t be the coordinate on R. Then on M2n × R set
η = fdt, ξ = 1

f
∂
∂t for some nonvanishing function f . Note that dη = df∧dt

and therefore η ∧ dη ≡ 0. Without stressing notation, for simplicity set
g = G + η ⊗ η and define φ by φξ = 0 and φX = JX for X ⊥ ξ. Then
(φ, ξ, η, g) is an almost contact metric structure that is certainly not a
contact metric structure. Generally, in this example f is taken to be
identically 1. However, since for a contact metric structure the integral
curves of ξ are geodesics, as we have seen, the question of whether for an
almost contact metric structure the integral curves of ξ must be geodesics
sometimes arises. That the integral curves of ξ need not be geodesics can
be seen in this example by choosing f so that it is not independent of
xi. For then using the standard formula for the Levi-Civita connection,

2g(∇XY,Z) = Xg(Y,Z) + Y g(X,Z) − Zg(X,Y )
+ g([X,Y ], Z) + g([Z,X], Y )− g([Y,Z],X),

we have

2g
(

∇ξξ, ∂

∂xi

)

= g

([
∂

∂xi
, ξ

]

, ξ

)

− g

([

ξ,
∂

∂xi

]

, ξ

)

= 2g
((

∂

∂xi
1
f

)
∂

∂t
, ξ

)

= − 2
f

∂f

∂xi
.
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4.5.6 Parallelizable manifolds

Let M2n+1 be a parallelizable manifold with {X1, . . . ,X2n+1} a set of
parallelizing vector fields. Define a Riemannian metric by g(XA,XB) =
δAB . Let ξ = X2n+1 and η its covariant form with respect to g. Similarly
let ωi be the covariant form of Xi, i = 1 . . . , n, and ωi

∗
that of Xi∗ =

Xn+i. Then define φ by

φ =
n∑

i=1

(ωi ⊗Xi∗ − ωi
∗ ⊗Xi),

and it is easy to check that (φ, ξ, η, g) is an almost contact metric struc-
ture.

In particular, any odd-dimensional Lie group carries an almost contact
structure.





5
Integral Submanifolds and Contact
Transformations

In this chapter we first discuss integral submanifolds of a contact mani-
fold, that is, submanifolds whose tangent vectors belong to the contact
subbundle. We then study contact transformations, some characteriza-
tions, their transitivity, etc., and end the chapter with several examples.

5.1 Integral submanifolds

Let M2n+1 be a contact manifold with contact form η. We have seen
that η = 0 defines a 2n-dimensional subbundle D called the contact
distribution or subbundle and that since η∧(dη)n �= 0, D is nonintegrable.
This nonintegrability was easily visualized on R

3 in Example 3.2.6.
A submanifold M r of M2n+1 is called an integral submanifold if

η(X) = 0 for every tangent vector X. It is clear that for any pair of
tangent vector fields we have

dη(X,Y ) =
1
2
(Xη(Y )− Y η(X)− η([X,Y ]) = 0.

Then in terms of associated metrics, g(X,φY ) = 0 and for this reason
integral submanifolds are often called C-totally real submanifolds. In par-
ticular, φ maps tangent vectors to normal vectors; also, since ξ is a normal
vector, the dimension r can be at most n. On the other hand, by the

D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds,
DOI 10.1007/978-0-8176-4959-3_5, © Springer Science+Business Media, LLC 2010
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Darboux theorem we have local coordinates (x1, . . . , xn, y1, . . . , yn, z)
with respect to which η = dz − ∑n

i=1 yidxi. Therefore xi = const,
z = const define an n-dimensional integral submanifold, and we have
the following theorem.

Theorem 5.1 Let M2n+1 be a contact manifold with contact form η.
Then there exist integral submanifolds of the contact subbundle D of di-
mension n but of no higher dimension.

Continuing this theme, we have the following result of Sasaki [1964].

Theorem 5.2 Let (xi, yi, z), i = 1, . . . , n, be local coordinates about a
point m = (xi0, i, y

i
0, z0) such that η = dz −∑n

i=1 yidxi on the coordi-
nate neighborhood. In order that r linearly independent vectors Xλ, λ =
1, . . . , r ≤ n, at m with components (aiλ, b

i
λ, cλ) be tangent to an r-

dimensional integral submanifold it is necessary and sufficient that
η(Xλ) = 0 and dη(Xλ, Yμ) = 0, that is, cλ =

∑
i y
i
0a
i
λ and

∑
i a
i
λb
i
μ =∑

i a
i
μb
i
λ.

Proof. Again the necessity is clear. To prove the sufficiency, set cλμ =∑
i a
i
λb
i
μ and choose a sufficiently small neighborhood U of the origin of

R
r with coordinates (u1, . . . , ur) such that

xi = xi0 +
∑

λ

aiλu
λ, yi = yi0 +

∑

λ

biλu
λ,

z = z0 +
∑

λ

cλu
λ +

1
2

∑

λ,μ

cλμu
λuμ

defines a mapping ι of U into M2n+1. Then ∂xi

∂uλ = aiλ,
∂yi

∂uλ = biλ and

∂z

∂uλ
= cλ +

∑

μ

cλμu
μ =
∑

i

yi0
∂xi

∂uλ
+
∑

i,μ

∂xi

∂uλ
∂yi

∂uμ
uμ =

∑

i

yi
∂xi

∂uλ
,

and hence the mapping ι defines an integral submanifold of D tangent
to X1, . . . ,Xr at m.

Finally, as in the symplectic case we note the abundance of integral
submanifolds of D; more precisely, we have the following result (Sasaki
[1964]).

Theorem 5.3 Given a vector X ∈ D at m ∈M2n+1 and any r, 1 ≤ r ≤
n, there exists an r-dimensional integral submanifold M r of D through
m with X tangent to M r.
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The proof is again immediate from the Darboux theorem, choosing the
Darboux coordinates (xi, yi, z), i = 1, . . . , n, such that X = ∂

∂y1 (m).
In Chapter 1 we discussed a theorem of Weinstein (Theorem 1.4) that

locally a symplectic manifold is the cotangent bundle of a Lagrangian
submanifold. We now state an analogous theorem due to Lychagin [1977]
(see also Kriegl–Michor [1997, p. 468]). Recall the Liouville form β on a
cotangent bundle (Section 1.1, Examples 3.2.4, 3.2.5).

Theorem 5.4 If L is an n-dimensional integral submanifold of a con-
tact manifold (M2n+1, η), then there exist an open neighborhood U of L
in M2n+1, an open neighborhood V of the zero section in T ∗L × R, and
a diffeomorphism f : U −→ V such that f |L is the identity on L
and f∗(β − dt) = η.

5.2 Contact transformations

Recall that a diffeomorphism f of M2n+1 is a contact transformation if
f∗η = τη for some nonvanishing function τ and that f is a strict contact
transformation if τ ≡ 1. Clearly f∗dη = dτ ∧η+τ dη, so if dη is invariant,
(τ − 1)dη = −dτ ∧ η and hence (τ − 1)η ∧ dη = 0, giving τ ≡ 1. Thus f
is strict if and only if dη is invariant.

Theorem 5.5 f is a contact transformation if and only if X ∈ D im-
plies f∗X ∈ D.

Proof. η(f∗X) = (f∗η)(X) = τη(X) = 0, and conversely 0 = η(f∗X) =
(f∗η)(X) implies that f∗η is proportional to η.

Theorem 5.6 A diffeomorphism f is a contact transformation if and
only if f maps r-dimensional integral submanifolds to r-dimensional in-
tegral submanifolds.

Proof. If f is a contact transformation and M r an integral submanifold,
then for X tangent to M r, f∗X ∈ D by the previous result and therefore
f(M r) is an integral submanifold. Conversely, given X ∈ Dm, we have
seen that there exists an integral submanifold M r through m with X
tangent to M r. Now since f(M r) is an integral submanifold, f∗X ∈ D
and hence f is a contact transformation.
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If £Xη = ση for some function σ, X is called an infinitesimal contact
transformation. If σ ≡ 0 we say that X is a strict infinitesimal contact
transformation.

Theorem 5.7 A vector field X is an infinitesimal contact transforma-
tion if and only if there exists a function f on M2n+1 such that X =
−1

2φ∇f + fξ.

Proof. For the sufficiency we compute as follows:

(£Xη)(Y ) = (X dη)(Y ) + df(Y ) = 2dη(−1
2
φ∇f + fξ, Y ) + Y f

= −dη(φ∇f, Y ) + Y f = −g(∇f, Y ) + η(∇f)η(Y ) + Y f

= (ξf)η(Y ).

Conversely, £Xη = ση implies Xη(Y )−η([X,Y ]) = ση(Y ). Then setting
f = η(X), we have

2dη(X,Y ) + Y f = ση(Y ),

or
−2g(φX, Y ) + g(∇f, Y ) = σg(ξ, Y ),

from which −2φX +∇f = σξ, and applying φ we have

X = −1
2
φ∇f + fξ

as desired; note also that σ = ξf , and hence we have the following
corollary.

Corollary 5.1 X is strict if and only if ξf = 0.

As in the symplectic case (Theorem 1.8) we have the following the-
orem of Hatakeyama [1966] on the transitivity of the group of contact
transformations.

Theorem 5.8 Let M2n+1 be a compact contact manifold. Then for any
two points p, q, there exists a contact transformation mapping p to q.
If M2n+1 is regular, there exists a strict contact transformation mapping
p to q.
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Proof. We first prove the result for a Darboux neighborhood U about
p = (0, 0, 0). Suppose q = (Ai, Bi, C) in this coordinate system and define
a function f on U by f =

∑
(Bixi−Aiyi)+C− 1

2

∑
AiBi. Let X be the

infinitesimal contact transformation generated by f (strictly speaking, X
is determined by f ∈ C∞(M) such that on U , f is as given and f vanishes
outside some larger neighborhood). Writing X as Xi ∂

∂xi +Xi∗ ∂
∂yi +X0 ∂

∂z ,
we have, since ξf = 0 on U , dη(X, ∂

∂xi ) = −1
2Xi∗ . Now by Theorem 5.7,

dη

(

X,
∂

∂xi

)

= dη

(

−1
2
φ∇f + fξ,

∂

∂xi

)

= −1
2
g

(

φ∇f, φ
∂

∂xi

)

= −1
2

(

g

(

∇f,
∂

∂xi

)

− η(∇f)η
(

∂

∂xi

))

= −1
2

∂f

∂xi
+

1
2
(ξf)η

(
∂

∂xi

)

= −1
2
Bi,

and hence Xi∗ = Bi. Similarly dη(X, ∂
∂yi ) = 1

2Ai, giving Xi = Ai. Now
f = η(X) = X0 − yiXi = X0 − yiAi, and so X0 − yiAi = Bixi − yiAi +
C − 1

2

∑
AiBi. Therefore

X = Ai ∂

∂xi
+ Bi ∂

∂yi
+
(
Bixi + C − 1

2

∑
AiBi

) ∂

∂z
.

Thus the integral curves of X in U are given by xi = Ait, yi = Bit,
z = (C − 1

2

∑
AiBi)t + (

∑
AiBi) t

2

2 . When t = 1 this curve is at q. Thus
the corresponding 1-parameter group ft of X gives a diffeomorphism f1

mapping p to q. For general p and q in M2n+1, the usual continuation
argument gives the result.

Now for M2n+1 regular, the result is a consequence of the following
lemma.

Lemma 5.1 If M2n+1 is a compact regular contact manifold and f a
C∞ function on a neighborhood U of p such that ξf = 0, then there
exists f̃ ∈ C∞(M2n+1) such that ξf̃ = 0 and on some neighborhood V of
p, f̃ ≡ f .

Proof. Let π : M2n+1 −→M2n be the principal circle bundle structure
of M2n+1. Since ξf = 0, f is constant on fibers and therefore there exist
a neighborhood V ′ about π(p) and a function f ′ on V ′ such that f = f ′◦π
on π−1(V ′). Now extend f ′ to a C∞ function f̃ ′ on M2n agreeing with
f ′ on V ′. Then setting f̃ = f̃ ′ ◦ π, we have the desired function.
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As in the symplectic case, Boothby [1969] mapped k points to k points;
see also Kriegl–Michor [1997, p. 472].

5.3 Examples of integral submanifolds

One can readily cite some simple examples of integral submanifolds,
e.g., an n-dimensional integral submanifold in R

2n+1 given by yi = 0
as already noted and the fibers of T ∗

1 M and T1M with the contact struc-
tures given in Example 3.2.4. We give a few more examples here, and
we will give further discussion of integral submanifolds and additional
examples from time to time.

5.3.1 Sn ⊂ S2n+1

Consider the space C
n+1 of n+1 complex variables and let J be its usual

almost complex structure. Let S2n+1 = {z ∈ C
n+1
∣
∣|z| = 1}. Then as we

have seen, we can give S2n+1 its usual contact structure as follows. For
every z ∈ S2n+1 and X ∈ TzS

2n+1, ξ = −Jz and φX is the tangential
part of JX. Let g be the standard metric on S2n+1 and η the dual 1-form
of ξ. Then (φ, ξ, η, g) is a contact metric structure on S2n+1. Now let L
be an (n + 1)-dimensional linear subspace of C

n+1 passing through the
origin and such that JL is orthogonal to L. Then, since ξ is simply the
negative of the action of J on the position vector, Sn = S2n+1 ∩ L is
orthogonal to ξ and is therefore an n-dimensional integral submanifold
of the contact structure on S2n+1. Clearly Sn is a totally geodesic integral
submanifold.

5.3.2 T 2 ⊂ S5

The following embedding of a 3-torus into the unit 5-sphere as a flat
minimal submanifold is well known. Given in terms of its position vector
x : T 3 −→ S5 ⊂ E6 ∼= C

3 it is

x =
1√
3
(cos u, sin u, cos v, sin v, cos w, sin w).

Now embedding T 2 in T 3 diagonally by u + v + w = 0, we have a flat
minimal surface in S5 given by

x =
1√
3
(cos u, sin u, cos v, sin v, cos(u + v),− sin(u + v)).
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Since the characteristic vector field is given by −J acting on the position
vector,

ξ = −Jx =
1√
3
(− sin u, cos u,− sin v, cos v, sin(u + v), cos(u + v)).

Computing the tangent vectors xu = ∂x
∂u and xv = ∂x

∂v directly, it follows
easily that 〈ξ,xu〉 = 〈ξ,xv〉 = 0 and hence that this torus in an intergral
surface of the contact structure on S5.

Examples 5.3.1 and 5.3.2 show that S5 contain both S2 and T 2 as inte-
gral submanifolds. It is known for topological reasons (see, e.g., Steenrod
[1951, p. 144]) that S5 does not admit a continuous field of 2-planes.
Thus S5 cannot be foliated by integral surfaces of its contact structure.

5.3.3 Legendre curves and Whitney spheres

Recall that a 1-dimensional integral submanifold of a contact manifold
is called a Legendre curve, and we begin with an elementary property
of Legendre curves in the contact manifold (R3, η = dz − y dx). The
projection γ∗ of a closed Legendre curve γ in R

3 to the xy-plane must
have self-intersections; moreover, the algebraic (signed) area enclosed by
γ∗ is zero. Since dz − y dx = 0 along γ, this follows from the elementary
formula for the area enclosed by a curve given by Green’s theorem,

0 = −
∫

γ
dz =

∫

γ∗
−y dx = area,

the area being + for γ∗ traversed counterclockwise and − for clockwise.
Legendre curves and their projections are discussed further in Section
8.3. Here we note that one can think of the pair of γ and its projec-
tion γ∗ in the following terms. Suppose that γ itself does not have self-
intersections and regard γ∗ as a Lagrangian submanifold in R

2 ∼= C with
self-intersections; then think of going from γ∗ to γ as a way of removing
the singularity but preserving the “Lagrangian–Legendre” property.

For example, the map of the circle u2 + v2 = 1 into R
2 given by

(u, v) −→ (v, 2uv)

has a double point, viz. (±1, 0)→ (0, 0). On the other hand, the map of
the circle u2 + v2 = 1 into (R3, η = dz − y dx) given by

(u, v) −→
(

2uv, v, 2u − 4
3
u3

)

is an embedding and is a Legendre curve.
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A generalization of this example and an important Lagrangian sub-
manifold of R

2n ∼= C
n is the Whitney sphere. We give two descriptions

of the Whitney sphere. Let Ω =
∑n

i=1 dxi∧dyi be the standard symplectic
form on R

2n and consider the sphere Sn in R
n+1 given by

∑n
i=0(u

i)2 = 1
immersed in R

2n by

(u0, . . . , un) −→ (u1, . . . , un, 2u0u1, . . . , 2u0un).

Again notice the double point (±1, 0, . . . , 0), and it is easy to check that
this immersed sphere is a Lagrangian submanifold of R

2n (cf. Weinstein
[1977, p. 26], Morvan [1983]). In Section 1.2 we remarked that the
sphere Sn can not be embedded in C

n as a Lagrangian submanifold.
In a related vein there are no umbilical, non-totally-geodesic
Lagrangian submanifolds isometrically immersed in any complex space-
form (Chen–Ogiue [1974b]).

Now embed
∑n

i=0(u
i)2 = 1 in the contact manifold R

2n+1 with its
standard contact metric structure (Example 4.5.1) by

(u0, . . . , un) −→
(

2u0u1, . . . , 2u0un, u1, . . . , un, 2u0 − 4
3
(u0)3

)

,

giving an embedded sphere as an integral submanifold of the standard
contact structure. We refer to this sphere as a contact Whitney sphere.

The Whitney sphere is often presented in another form, which, though
slightly more complicated, lends itself to natural geometric character-
ization. For the Whitney sphere Mn as a Lagrangian submanifold of
R

2n ∼= C
n, the immersion is

(u0, . . . , un) −→ 1
1 + (u0)2

(u1, . . . , un, u0u1, . . . , u0un).

This submanifold satisfies the relation

|H|2 =
n + 2

n2(n− 1)
τ,

where H is the mean curvature vector and τ the scalar curvature of Mn.
This equality characterizes the Whitney sphere as a Lagrangian subman-
ifold of C

n. More precisely, it was proven by Borrelli, Chen and Morvan
[1995] and independently by Ros and Urbano [1998] that if Mn is a
Lagrangian submanifold of C

n, then |H|2 ≥ n+2
n2(n−1)τ with equality if and
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only if Mn is either totally geodesic or a (piece of a) Whitney sphere.
Borrelli, Chen and Morvan [1995] and Ros and Urbano [1998] also gave
the characterization that the second fundamental form σ of a Lagrangian
submanifold in C

n is given by

σ(X,Y ) =
n

n + 2
(g̃(X,Y )H + g̃(JX,H)JY + g̃(JY,H)JX)

if and only if the submanifold is either totally geodesic or a (piece of a)
Whitney sphere.

In the contact manifold R
2n+1 with its standard contact metric struc-

ture we also have a second presentation of the contact Whitney sphere
as an embedded sphere and an integral submanifold of the contact struc-
ture, namely

(u0, . . . , un) −→ 1
1 + (u0)2

(
u0u1, . . . , u0un, u1, . . . , un,

u0

1 + (u0)2
)
.

For this contact Whitney sphere the analogues of the above results
of Borrelli, Chen and Morvan, and Ros and Urbano were given by
A. Carriazo and the author [2000/2001].

5.3.4 Lift of a Lagrangian foliation, Legendre foliations

Let π : M2n+1 −→ M2n be the Boothby–Wang fibration of a compact
regular contact manifold M2n+1 over a symplectic manifold M2n of inte-
gral class with symplectic form Ω and recall the details of Example 4.5.4.
Let L be a Lagrangian submanifold of M2n and consider the set of fibers
over L. Then since φX = π̃Jπ∗X, this is a submanifold Nn+1 of M2n+1

with the property that φ maps the tangent space into the normal space;
such a submanifold is sometimes called an anti-invariant submanifold. If
X and Y are horizontal tangent vector fields to Nn+1, then

0 = 2g(X,φY ) = 2dη(X,Y ) = Xη(Y )−Y η(X)−η([X,Y ]) = −η([X,Y ]).

Thus the horizontal distribution in Nn+1 is integrable, giving n-dimen-
sional integral submanifolds of M2n+1.

If now the base manifold has a foliation by Lagrangian submanifolds,
then the bundle space will have a foliation by n-dimensional integral
submanifolds. Such a foliation is called a Legendre foliation. M.-Y. Pang
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[1990] introduced an invariant for Legendre foliations, F , of contact
manifolds, (M,η), by

ΠF (X,Y ) = −(£X£Y η)(ξ) = 2dη(Y, [X, ξ]),

where X and Y are vector fields tangent to leaves of the foliation. Since
the foliation we just described is contained in a foliation by anti-invariant
submanifolds, [X, ξ] is tangent to the leaves of this foliation, and hence
ΠF = 0.

Examples of Legendre foliations for which the the Pang invariant is
nonzero are the non-Sasakian (κ, μ)-manifolds, and we will discuss this
briefly in Section 7.3. Legendre foliations and the Pang invariant have
also been studied by P. Libermann [1991], N. Jayne [1992], [1994], [1998],
and B. Cappelletti Montano and L. Di Terlizzi [2008].



6
Sasakian and Cosymplectic Manifolds

In this chapter we define the normality of an almost contact structure
and the notion of a Sasakian manifold as a normal contact metric mani-
fold. We also introduce another important structure tensor, h, which will
be useful in the study of non-Sasakian contact metric manifolds. As an
additional topic, cosymplectic manifolds will be discussed in some detail.
We also give several examples and additional commentary.

6.1 Normal almost contact structures

Recall that almost contact manifolds were defined as manifolds with
structural group U(n)×1 and hence can be thought of as odd-dimensional
analogues of almost complex manifolds. We now consider almost contact
manifolds that are, in a sense to be defined, analogous to complex man-
ifolds.

As is well known, an almost complex structure need not come from a
complex structure. The celebrated theorem of Newlander and Nirenberg
[1957] states that an almost complex structure J of class C2n+α with
vanishing Nijenhuis torsion is integrable, i.e., is the corresponding almost
complex structure of a complex structure. The Nijenhuis torsion [T, T ]

D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds,
DOI 10.1007/978-0-8176-4959-3_6, © Springer Science+Business Media, LLC 2010
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of a tensor field T of type (1, 1) is the tensor field of type (1, 2) given by

[T, T ](X,Y ) = T 2[X,Y ] + [TX, TY ]− T [TX, Y ]− T [X,TY ].

All manifolds under consideration are of class C∞, so the theorem of
Newlander and Nirenberg applies. For detailed studies of complex mani-
folds see for example Goldberg [1962], Kobayashi and Nomizu [1963–69,
Chapter IX], Kobayashi and Wu [1983], Morrow and Kodaira [1971],
Yano [1965], Zheng [2000].

Let M2n+1 be an almost contact manifold with structure tensors
(φ, ξ, η) and consider the manifold M2n+1 ×R. We denote a vector field
on M2n+1×R by (X, f d

dt), where X is tangent to M2n+1, t the coordinate
on R, and f a C∞ function on M2n+1 × R. Define an almost complex
structure J on M2n+1 × R by

J
(
X, f

d

dt

)
=
(
φX − fξ, η(X)

d

dt

)
;

that J2 = −I is easy to check. If now J is integrable, we say that
the almost contact structure (φ, ξ, η) is normal (Sasaki and Hatakeyama
[1961]).

Since the vanishing of the Nijenhuis torsion of J is a necessary and suf-
ficient condition for integrability, we seek to express the condition of nor-
mality in terms of the Nijenhuis torsion of φ. Since [J, J ] is a tensor field
of type (1, 2), it suffices to compute [J, J ]((X, 0), (Y, 0)) and[J, J ]((X, 0),
(0, ddt)) for vector fields X and Y on M2n+1:

[J, J ]((X, 0), (Y, 0)) = − ([X,Y ], 0) +
[(

φX, η(X)
d

dt

)
,
(
φY, η(Y )

d

dt

)]

− J
[(

φX, η(X)
d

dt

)
, (Y, 0)

]

− J
[
(X, 0),

(
φY, η(Y )

d

dt

)]

= (φ2[X,Y ]− η([X,Y ])ξ, 0) +
(
[φX,φY ], (φXη(Y )− φY η(X))

d

dt

)

−
(
φ[φX, Y ] + (Y η(X))ξ, η([φX, Y ])

d

dt

)

−
(
φ[X,φY ]− (Xη(Y ))ξ, η([X,φY ])

d

dt

)
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=
(
[φ, φ](X,Y ) + 2dη(X,Y )ξ, ((£φXη)(Y )− (£φY η)(X))

d

dt

)
,

[J, J ]
(
(X, 0),

(
0,

d

dt

))
=
[(

φX, η(X)
d

dt

)
, (−ξ, 0)

]

−J
[(

φX, η(X)
d

dt

)
,
(
0,

d

dt

)]
−J [(X, 0), (−ξ, 0)]

=
(
− [φX, ξ], (ξη(X))

d

dt

)
+
(
φ[X, ξ], η([X, ξ])

d

dt

)

= ((£ξφ)X, (£ξη)(X)).

We are thus led to define four tensors N (1), N (2), N (3), N (4) by

N (1)(X,Y ) = [φ, φ](X,Y ) + 2dη(X,Y )ξ,

N (2)(X,Y ) = (£φXη)(Y )− (£φY η)(X),

N (3) = (£ξφ)X,

N (4) = (£ξη)(X).

Clearly the almost contact structure (φ, ξ, η) is normal if and only if
these four tensors vanish. However, the vanishing of N (1) implies the
vanishing of N (2), N (3) and N (4), so that the normality condition is
simply

[φ, φ](X,Y ) + 2dη(X,Y )ξ = 0.

We now prove this and other properties of these tensors (cf. Sasaki and
Hatakeyama [1961], [1962]).

Theorem 6.1 For an almost contact structure (φ, ξ, η) the vanishing of
N (1) implies the vanishing of N (2), N (3) and N (4).

Proof. Setting Y = ξ and applying η we have dη(X, ξ) = 0, which easily
gives N (4) = 0. Then

0 = [φ, φ](X, ξ) = φ2[X, ξ]− φ[φX, ξ] = φ((£ξφ)X).

Applying φ and noting that dη(ξ, φX) = 0, implies η([ξ, φX]) = 0, we
have N (3) = 0. Finally, applying η to

0 = [φ, φ](φX, Y ) + 2dη(φX, Y )ξ,

we have η([φ2X,φY ]) + φXη(Y ) − η([φX, Y ]) = 0, which simplifies to
N (2) = 0.
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Theorem 6.2 For a contact metric structure (φ, ξ, η, g), N (2) and N (4)

vanish. Moreover, N (3) vanishes if and only if ξ is a Killing vector field.

Proof. We have already seen that N (4) = 0. Now N (2) can be written

N (2)(X,Y ) = 2dη(φX, Y )−2dη(φY,X) = 2g(φX,φY )−2g(φY, φX) = 0.

Turning to N (3), we note that since dη invariant is under the action
of ξ,

0 = (£ξdη)(X,Y ) = ξg(X,φY )− g([ξ,X], φY )− g(X,φ[ξ, Y ])
= (£ξg)(X,φY ) + g(X, (£ξφ)Y ),

from which we see that N (3) = 0 if and only if ξ is Killing.

Next we establish a formula for the covariant derivative of φ for a
general almost contact metric structure (φ, ξ, η, g).

Lemma 6.1 For an almost contact metric structure (φ, ξ, η, g), the
covariant derivative of φ is given by

2g((∇Xφ)Y,Z) = 3dΦ(X,φY, φZ) − 3dΦ(X,Y,Z) + g(N (1)(Y,Z), φX)

+ N (2)(Y,Z)η(X) + 2dη(φY,X)η(Z)
− 2dη(φZ,X)η(Y ).

Proof. Recall that the Riemannian connection ∇ of g is given by

2g(∇XY,Z) = Xg(Y,Z) + Y g(X,Z) − Zg(X,Y )
+ g([X,Y ], Z) + g([Z,X], Y )− g([Y,Z],X)

and that the coboundary formula for d on a 2-form Φ is

dΦ(X,Y,Z) =
1
3
{XΦ(Y,Z) + Y Φ(Z,X) + ZΦ(X,Y )

− Φ([X,Y ], Z)− Φ([Z,X], Y )− Φ([Y,Z],X)}.

Therefore

2g((∇Xφ)Y,Z) = 2g(∇XφY,Z) + 2g(∇XY, φZ)
= Xg(φY,Z) + φY g(X,Z) − Zg(X,φY )

+ g([X,φY ], Z) + g([Z,X], φY )− g([φY,Z],X)
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+ Xg(Y, φZ) + Y g(X,φZ) − φZg(X,Y )
+ g([X,Y ], φZ) + g([φZ,X], Y )− g([Y, φZ],X)

= XΦ(Y,Z) + φY (Φ(φZ,X) + η(Z)η(X)) − ZΦ(X,Y )
− Φ([X,φY ], φZ) + η([X,φY ])η(Z)
+ Φ([Z,X], Y )− g(φ[φY,Z], φX) + η(X)η([Z, φY ])
+ XΦ(φY, φZ)− Y Φ(Z,X) − φZ(Φ(φY,X)
+ η(Y )η(X)) + Φ([X,Y ], Z)− Φ([φZ,X], φY )
+ η([φZ,X])η(Y )− g(φ[Y, φZ], φX) + η(X)η([φZ, Y ])
+ {Φ([Y,Z],X) − g([Y,Z], φX)}
− {Φ([φY, φZ],X) − g([φY, φZ], φX)}
+ {g(2dη(Y,Z)ξ, φX)}

= 3dΦ(X,φY, φZ) − 3dΦ(X,Y,Z) + g(N (1)(Y,Z), φX)

+ N (2)(Y,Z)η(X)+2dη(φY,X)η(Z) − 2dη(φZ,X)η(Y ).

Corollary 6.1 For a contact metric structure the formula of Lemma 6.1
becomes

2g((∇Xφ)Y,Z) = g(N (1)(Y,Z), φX)+2dη(φY,X)η(Z)−2dη(φZ,X)η(Y ).

Taking X = ξ in Corollary 6.1, we see that ∇ξφ = 0 for any contact
metric structure. By choosing a φ-basis, Corollary 6.1 also yields

∇iφij = −2nηj

on a contact metric manifold.
While our main interest is in contact manifolds, we mention, in regard

to the normality of almost contact structures, papers of Sato [1977] and
Geiges [1997b]. Sato proved that if a compact 3-dimensional normal al-
most contact manifold M is not homotopic to S1×S2, then π2(M) = 0,
and Geiges gives a complete classification.

6.2 The tensor field h

We have seen that on a contact metric manifold, N (3) vanishes if and only
if ξ is Killing (Theorem 6.2) and a contact metric structure for which ξ
is Killing is called a K-contact structure . For a general contact metric
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structure the tensor field N (3) enjoys many important properties, and
for simplicity we define a tensor field h on a contact metric manifold by

h =
1
2
£ξφ =

1
2
N (3).

The first property to note is immediate, namely hξ = 0. We now give
a number of important properties of h.

Lemma 6.2 On a contact metric manifold h is a symmetric operator,

∇Xξ = −φX − φhX,

h anticommutes with φ, and trh = 0.

Proof. We have already seen that on a contact metric manifold ∇ξφ = 0
and ∇ξξ = 0. Thus

g((£ξφ)X,Y ) = g(∇ξφX −∇φXξ − φ∇ξX + φ∇Xξ, Y )
= g(−∇φXξ + φ∇Xξ, Y ),

which vanishes if either X or Y is ξ. For X and Y orthogonal to ξ, N (2) =
0 becomes η([φX, Y ]) + η([X,φY ]) = 0; continuing the computation, we
then have

g((£ξφ)X,Y ) = η(∇φXY ) + η(∇XφY )
= η(∇Y φX) + η(∇φY X)
= g((£ξφ)Y,X).

For the second statement, using Lemma 6.1 we have

2g((∇Xφ)ξ, Z) = g(φ2[ξ, Z]− φ[ξ, φZ], φX) − 2dη(φZ,X)
= − g(φ(£ξφ)Z, φX) − 2g(φZ, φX)
= − g((£ξφ)Z,X) + η((£ξφ)Z)η(X) − 2g(Z,X)

+ 2η(Z)η(X)
= − g((£ξφ)X,Z)− 2g(X,Z) + 2g(η(X)ξ, Z)

and hence −φ∇Xξ = −1
2(£ξφ)X−X +η(X)ξ. Applying φ we then have

∇Xξ = −φX − φhX.
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To see the anticommutativity, note that

2g(X,φY ) = 2dη(X,Y ) = g(∇Xξ, Y )− g(∇Y ξ,X)
= g(−φX − φhX, Y )− g(−φY − φhY,X).

Therefore 0 = g(−φhX, Y )− g(Y, hφX), giving hφ + φh = 0.
An immediate consequence of this anticommutativity is that if hX =

λX, then hφX = −λφX. Thus if λ is an eigenvalue of h, so is −λ and
hence trh = 0.

As a result we get the following easy corollary.

Corollary 6.2 On a contact metric manifold δη = 0.

Proof. Choosing an eigenvector basis {ei} of h we have

g(∇eiξ, ei) = g(−φei − φhei, ei) = 0.

Example 3.2.6 provides a nice illustration of the tensor field h. Let
η = 1

2(cos x3dx1 + sin x3dx2) be the contact form on R
3. Then ξ =

2(cos x3 ∂
∂x1 + sin x3 ∂

∂x2 ) is the characteristic vector field. The flat metric
gij = 1

4δij is an associated metric and φ is given by

φ =

⎛

⎝
0 0 sinx3

0 0 − cos x3

− sin x3 cos x3 0

⎞

⎠ .

The contact subbundle D is spanned by X = − sin x3 ∂
∂x1 +cos x3 ∂

∂x2 and
∂
∂x3 . Since the metric is Euclidean on R

3, ∇Xξ = 0. Therefore by Lemma
6.2, hφX = φX, but φX = ∂

∂x3 , and so h ∂
∂x3 = ∂

∂x3 , i.e., ∂
∂x3 spans the

+1 eigenspace of h and in turn X spans the −1 eigenspace. See figure on
page 86.

Conditions on ∇ξh arise frequently, as we will see in later chapters, but
we mention a couple at this point. Calvaruso and Perrone [2000] prove
that a 3-dimensional contact metric manifold is locally homogeneous if
and only if it is ball-homogeneous and ∇ξh = ahφ where a is a constant.
Moreover, recalling the contact circles (Example 3.2.9) of Geiges and
Gonzalo [1995], Calvaruso and Perrone prove that a compact orientable
3-manifold admits a taut contact circle if and only if it admits a locally
homogeneous contact metric structure satisfying ∇ξh = 0.
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[–1]

[+1]

x3

ξ

6.3 Definition of a Sasakian manifold

In this short section we give an important definition, namely that of
a Sasakian manifold. A Sasakian manifold is a normal contact metric
manifold. In some respects Sasakian manifolds may be viewed as odd-
dimensional analogues of Kähler manifolds. This point of view is reflected
in many of the examples and results on Sasakian manifolds that will
be discussed. To begin with, the following theorem is analogous to an
almost Hermitian manifold being Kähler if and only if the almost complex
structure is parallel with respect to the Levi-Civita connection.

Theorem 6.3 An almost contact metric structure (φ, ξ, η, g) is Sasakian
if and only if

(∇Xφ)Y = g(X,Y )ξ − η(Y )X.

Proof. The necessity follows easily from Lemma 6.1, for if (φ, ξ, η, g) is
a normal contact metric structure, then Φ = dη, N (1) = 0 and N (2) = 0,
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and hence

2g((∇Xφ)Y,Z) =2dη(φY,X)η(Z) − 2dη(φZ,X)η(Y )
=2(g(Y,X) − η(Y )η(X))η(Z) − 2g(Z,X)
− η(Z)η(X))η(Y )

=2g(g(X,Y )ξ − η(Y )X,Z).

Conversely, assuming (∇Xφ)Y = g(X,Y )ξ−η(Y )X, setting Y = ξ gives
−φ∇Xξ = η(X)ξ −X and hence ∇Xξ = −φX. Therefore

dη(X,Y ) =
1
2
(
g(∇Xξ, Y )− g(∇Y ξ,X)

)
= g(X,φY ),

showing that (φ, ξ, η, g) is a contact metric structure. Now

[φ, φ](X,Y ) = (φ∇Y φ−∇φY φ)X − (φ∇Xφ−∇φXφ)Y,

and straightforward substitution of the hypothesis simplifies this to

[φ, φ](X,Y ) = −2dη(X,Y )ξ.

Recall that a contact metric structure (φ, ξ, η, g) is said to be K-contact
if ξ is a Killing vector field, in particular if h = 0. Since ∇Xξ = −φX in
the above proof, h = 0 and we have the following corollary.

Corollary 6.3 A Sasakian manifold is K-contact.

In dimension 3 the converse is true, Corollary 6.5. For K-contact struc-
tures that are not Sasakian, see Example 6.7.2.

While we will see other examples of Sasakian manifolds in due course,
let us show here that the standard contact metric structure on an
odd-dimensional unit sphere is Sasakian. Recall that the standard con-
tact metric on an odd-dimensional sphere was exhibited in Example 4.5.2,
and in particular, if the radius is 1, the constant curvature metric is an
associated metric. Using the notation there and the Kähler property of
C

2n+2, we have

0 = (∇̃XJ)Y = ∇̃X(φY + η(Y )ν)− J(∇XY − g(X,Y )ν)
= ∇XφY − g(X,φY )ν + (Xη(Y ))ν + η(Y )X
− φ∇XY − η(∇XY )ν − g(X,Y )ξ

= (∇Xφ)Y − g(X,Y )ξ + η(Y )X + ((∇Xη)(Y )− g(X,φY ))ν.
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Taking the tangential part, we see that (∇Xφ)Y = g(X,Y )ξ − η(Y )X
and hence that the structure is Sasakian.

We close this section with a couple of diagrams indicating some analo-
gies between almost Hermitian manifolds and almost contact metric
manifolds. Let (M2nJ, g) be an almost Hermitian manifold and let Ω
denote the fundamental 2-form. Then we have the following schematic
array of structures.

Hermitian

[J, J ] = 0 [J, J ] = 0

Kähler

almost
Kähler

almost
Hermitian

dΩ = 0

dΩ = 0

∇J = 0

Recall that S6 carries an almost Hermitian structure that is neither
Hermitian nor almost Kähler (cf. Example 4.5.3 and Example 6.7.3
below). The well known Calabi–Eckmann manifolds S2p+1×S2q+1, p, q ≥
1, are Hermitian manifolds (see also Section 6.6 below) that are not
Kähler for the topological reason that the second Betti number of a com-
pact Kähler manifold is nonzero. As noted in Section 1.1, there are many
compact symplectic (and hence almost Kähler) manifolds with no Kähler
structure. Also the tangent bundle of a nonflat Riemannian manifold
carries an almost Kähler structure that is not Kählerian (Dombrowski
[1962]; Tachibana and Okumura [1962]; see also Section 9.1 below).
Finally, there are many well-known Kähler manifolds.

The corresponding diagram for almost contact metric manifolds is the
following, the notion of a K-contact manifold being intermediate between
a contact metric manifold and a Sasakian manifold.

We have already seen in Example 4.5.3 that S5 carries an almost con-
tact metric structure that is not a contact metric structure, and we will
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normal
almost
contact
metric

almost
contact
metric

contact
metric

Sasakian

N(1) = 0

Φ = dη

Φ = dη

N(1) = 0(∇Xφ)Y = g(X, Y )ξ–η(Y )X

see in Example 6.7.3 that the structure is not normal. Cosymplectic man-
ifolds as discussed in Section 6.5 are examples of normal almost contact
metric manifolds that are not Sasakian. Since the first Betti number of a
compact Sasakian manifold is even (cf. Section 6.8), odd-dimensional tori
have no Sasakian structures though they have the contact structures dis-
cussed in Example 3.2.6. Also we will see in Section 9.2 that the tangent
sphere bundles are in general not Sasakian. Finally, we just noted that the
odd-dimensional spheres are Sasakian, and other examples are given in
Section 6.7. Also in his classification of compact 3-dimensional normal
almost contact manifolds, Geiges [1997b] identifies those which are
normal contact (Sasakian). In particular he proves the following.

Theorem 6.4 A compact 3-dimensional manifold admits a Sasakian
structure if and only if it is diffeomorphic to a left-invariant quotient
of SU(2), the Heisenberg group, or S̃L(2, R) by a discrete group.

A similar treatment can be found in Belgun [2000].

6.4 CR-manifolds

In this section we discuss some aspects of the relation of almost contact
structures and contact metric structures to CR-structures. Let N be an
n-dimensional C∞ manifold and T CN its complexified tangent bundle,
i.e., T C

p N = TpN⊗RC � TpN⊕iTpN . LetH be a C∞ complex subbundle
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of complex dimension l. A CR-manifold, as introduced by Greenfield
[1968], of real dimension n and CR-dimension l is a pair (N,H) such
that Hp ∩ H̄p = 0 and H is involutive, i.e., for vector fields X,Y ∈ H,
[X,Y ] ∈ H. Then there exist a unique subbundle D of TN such that
DC = H⊕ H̄ and a unique bundle map J : D −→ D such that J 2 = −I
and H = {X − iJX|X ∈ D}.

Now let (M,H) be a CR-manifold with M of real dimension 2n + 1
and H of complex dimension n. Consider the space Fx of all covectors
f ∈ T ∗

xM such that D ⊆ kerf . This defines a real line bundle F ⊂ T ∗M .
If M is orientable, then F −→M admits a global nowhere vanishing sec-
tion η which is called a pseudo-Hermitian structure and (M,H, η) is called
a pseudo-Hermitian manifold. The Levi form of (M,H, η) is defined by

Lη(X,Y ) = −dη(X,J Y ), X, Y ∈ D;

(M,H, η) is nondegenerate if Lη is nondegenerate. In this case M has a
natural volume form η∧(dη)n; thus η is a contact form and its character-
istic vector field ξ is transversal to D. If Lη is positive definite (M,H, η)
is said to be strongly pseudoconvex. Using the direct sum decomposition
TM = D ⊕ {ξ} we may extend Lη to a Riemannian metric gη on M ,
called the Webster metric (see, e.g., S. Dragomir [1995]), by gη(ξ, ξ) = 1,
gη(ξ,X) = 0 for X ∈ D, and gη(X,Y ) = Lη(X,Y ) for X,Y ∈ D. More-
over, we may extend J to a tensor field φ on M by φξ = 0 and φX = JX
for X ∈ D. Therefore a strongly pseudoconvex CR manifold (M,H, η)
carries a contact metric structure (φ, ξ, η, gη).

In [1978] Bejancu defined the notion of a CR-submanifold of an almost
Hermitian manifold. A submanifold N of an almost Hermitian manifold
(M,J, g) is a CR-submanifold if there exists a holomorphic (J-invariant)
subbundle D of TN , with Dp �= {0} or TpN for any p ∈ N , and such that
its orthogonal complement D⊥ ⊂ TN is totally real, i.e., JD⊥

p ⊂ T⊥
p N .

Clearly real hypersurfaces are CR-submanifolds.
Let P denote the projection from TN to D and Q the projection from

TN to D⊥. Now since D is J-invariant, set J = JP and define a complex
subbundle H of T CN by H = {X − iJX|X ∈ D}. The following lemma
is immediate.

Lemma 6.3 J (X − iJX) = JPX − iJ JPX.

Now suppose that the ambient space (M,J, g) is Hermitian, i.e., the
almost complex structure J is integrable. We then have the following
lemma and the theorem of B.-Y. Chen and the author [1979].
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Lemma 6.4 Let N be a CR-submanifold of a Hermitian manifold
(M,J, g). Then for X,Y ∈ D, Q([JX, Y ] + [X,JY ]) = 0.

Proof. Since M is Hermitian, [J, J ] = 0 and hence

0 = [J, J ](JX, Y ) = −[JX, Y ]− [X,JY ] + J([X,Y ]− [JX, JY ]),

but [X,Y ] and [JX, JY ] are tangent to N , so J([X,Y ]− [JX, JY ]) has
no D⊥-component. Therefore [JX, Y ] + [X,JY ] has no D⊥-component.

Theorem 6.5 Let M be a Hermitian manifold and N a CR-submanifold.
Then N is a CR-manifold.

Proof. Let X,Y ∈ D. Then

[X − iJX,Y − iJ Y ] = [X,Y ]− [JX, JY ]− i[JX, Y ]− i[X,JY ]
= −J [JX, Y ]− J [X,JY ]− iP [JX, Y ]− iP [X,JY ]

by virtue of [J, J ] = 0 and Lemma 6.4. Continuing the computation using
Lemma 6.4 again and then Lemma 6.3,

[X − iJX,Y − iJ Y ] =− J [JX, Y ]− J [X,JY ] + iJ 2[JX, Y ]

+ iJ 2[X,JY ]
=− J ([JX, Y ]− iJ [JX, Y ])− J ([X,JY ]

− iJ [X,JY ]) ∈ H.

Turning to the case of almost contact structures, consider an almost
contact manifold M2n+1 with structure tensors (φ, ξ, η). Since φ2 = −I+
η⊗ξ and φξ = 0, the eigenvalues of φ are 0 and ±i each with multiplicity
n; in particular, φ is an almost complex structure on the subbundle D
defined by η = 0. Thus the complexification of Dp is decomposable as
D′
p⊕D′′

p , where D′
p = {X− iφX|X ∈ Dp} and D′′

p = {X + iφX|X ∈ Dp},
the eigenspaces of ±i respectively.

Lemma 6.5 φ(X − iφX) ∈ D′
p.

Proof. φ(φ(X − iφX)) = φ(i(X − iφX)) = iφ(X − iφX).

We now prove a theorem of Ianus [1972] that a normal almost contact
manifold is a CR-manifold. The converse is not true, and in Theorem 6.7
we will obtain a necessary and sufficient condition for a contact metric
manifold to be a CR-manifold.
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Theorem 6.6 If (M2n+1, φ, ξ, η, g) is a normal almost contact manifold,
then (M2n+1,D′) is a CR-manifold.

Proof. First of all, D̄′
p = D′′

p and D′
p ∩ D′′

p = 0; thus it remains to
show that [X − iφX, Y − iφY ] ∈ D′ for X,Y ∈ D. By the normality,
[φ, φ] + 2dη ⊗ ξ = 0, so that

0 = −[X,Y ] + [φX,φY ]− φ[φX, Y ]− φ[X,φY ].

Also since N (2) = 0, (£φXη)(Y )− (£φY η)(X) = 0, from which

η([φX, Y ] + [X,φY ]) = 0.

Now

[X − iφX, Y − iφY ] = [X,Y ]− [φX,φY ]− i[φX, Y ]− i[X,φY ]

= − φ[φX, Y ]− φ[X,φY ] + iφ2[φX, Y ]

− iη([φX, Y ])ξ + iφ2[X,φY ]− iη([X,φY ])ξ
= − φ([φX, Y ]− iφ[φX, Y ])− φ([X,φY ]

− iφ[X,φY ]) ∈ D′.

On a contact metric manifold M2n+1, (M2n+1,D′) might be CR with-
out the structure being normal. We present an important result of Tanno
[1989] giving a necessary and sufficient condition for a contact metric
manifold to be a CR-manifold.

Theorem 6.7 Let (M2n+1, η, g) be a contact metric manifold. Then the
pair (M2n+1,D′) is a (strongly pseudoconvex) CR-manifold if and only
if

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX). (∗)
Proof. The strong pseudoconvexity refers to the positive definiteness of
the Levi form

L(X,Y ) = −dη(X,φ|DY ), X, Y ∈ D.

We must show the equivalence of (∗) and

[X − iφX, Y − iφY ] ∈ D′ for X,Y ∈ D. (†)
Since N (2) = 0, η([X,Y ] − [φX,φY ]) = 0 for X,Y ∈ D, from which we
can see that (†) is equivalent to

φ[X,Y ]− φ[φX,φY ]− [φX, Y ]− [X,φY ] = 0 X,Y ∈ D. (‡)
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Now replacing X,Y by φX,φY , we have an expression for our condition
in terms of general vector fields X,Y , viz.

φ[φX, φY ]− φ[−X + η(X)ξ,−Y + η(Y )ξ]
− [−X + η(X)ξ, φY ]− [φX,−Y + η(Y )ξ] = 0.

Applying φ and changing the sign, we get

[φ, φ](X,Y )− η([φX,φY ])ξ − φ2[η(X)ξ, Y ]− φ2[X, η(Y )ξ]
+ φ[η(X)ξ, φY ] + φ[φX, η(Y )ξ] = 0.

Expressing the Nijenhuis torsion and Lie brackets in terms of covariant
derivatives and noting that −η([φX,φY ]) = 2dη(φX,φY ) = 2dη(X,Y ),
we have

(φ∇Y φ−∇φY φ)X − (φ∇Xφ−∇φXφ)Y + 2dη(X,Y )ξ

+ η(X)(φ2∇Y ξ − φ∇φY ξ)− η(Y )(φ2∇Xξ − φ∇φXξ) = 0.

Now recall that since g(X,φY ) = dη(X,Y ), the cyclic sum on {X,Y,Z}
in g((∇Xφ)Y,Z) must vanish. Thus taking the inner product of our con-
dition with a vector field Z and using this cyclic sum property twice, we
obtain

g(φ(∇Y φ)X,Z)− g(φ(∇Xφ)Y,Z) + g((∇Xφ)Z, φY ) + g((∇Zφ)φY,X)
− g((∇Y φ)Z, φX) − g((∇Zφ)φX, Y ) + 2dη(X,Y )η(Z)
+ η(X)

( − g((∇Y ξ, Z) + g((∇φY ξ, φZ)
)

− η(Y )
(− g((∇Xξ, Z) + g((∇φXξ, φZ)

)
= 0.

Also, since φ2 = −I+η⊗ξ, we have (∇Xφ)φY +φ(∇Xφ)Y = g(∇Xξ, Y )ξ+
η(Y )∇Xξ. Using this we obtain

2g((∇Zφ)φY,X) − g(∇Zξ, Y )η(X) − η(Y )g(∇Zξ,X)
+ η(X)g(∇φY ξ, φZ)− η(Y )g(∇φXξ, φZ) = 0.

Lemma 6.5 then yields −(∇Zφ)φY =
(
g(φZ, Y ) + g(φhZ, Y )

)
ξ. Finally,

replacing Y by φY , (∇Zφ)Y = g(Z +hZ, Y )ξ−η(Y )(Z +hZ) as desired.

In contrast to the fact that not every 3-dimensional contact metric
manifold is Sasakian, every 3-dimensional contact metric manifold is a
strongly pseudoconvex CR-manifold, as we see in the following corollary.
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Corollary 6.4 A three-dimensional contact metric manifold is a strongly
pseudoconvex CR-manifold; in particular, on a 3-dimensional contact
metric manifold,

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX).

Proof. The left-hand side of (‡) when restricted to D is just −φ[φ, φ],
and hence it is enough to verify (‡) on the basis {X,Y = φX} of D,
which is straightforward.

Corollary 6.5 A 3-dimensional K-contact manifold is Sasakian.

Proof. Since being K-contact is equivalent to a contact metric manifold
satisfying h = 0, the result follows from Corollary 6.4 and Theorem 6.3.

Remark. In the literature there is also the following definition of a
CR-structure which does not include the integrability. A CR-structure
on a manifold M is a contact form η together with a complex structure
J on the contact subbundle D (see, e.g., Chern–Hamilton [1985]). Let
(M,η,J ) be a CR-structure in this sense and set

H = {X − iJX|X ∈ D} = {Z ∈ DC|JZ = iZ}.

If the Levi form Lη is Hermitian, then (M,η,J ) is called a nondegenerate
pseudo-Hermitian manifold (the condition is equivalent to the partial
integrability condition: [X,Y ] ∈ DC for X,Y ∈ H). Then (M,η,J ) is
said to be integrable if H is involutive, i.e., [X,Y ] ∈ D for X,Y ∈ D.

If Lη is positive definite, (M,η,J ) is called a strongly pseudoconvex
CR-manifold. So the notion, in this sense, of a strongly pseudoconvex
CR-structure on M is equivalent to our notion of a contact metric struc-
ture (φ, ξ, η, g) by the relations g = Lη + η ⊗ η, J = φ|D, where Lη also
denotes its natural extension to a (0, 2) tensor field on M . Using this
definition of CR-structure, Theorem 6.7 can be given in the following
form: Let (M,η, g) be a contact metric manifold and (η,J ) the corre-
sponding strongly pseudoconvex CR-structure. Then (η,J ) is integrable
if and only if the condition (∗) of Theorem 6.7 holds. In particular,
(M,η, g) is Sasakian if and only if h = 0 and (η,J ) is integrable.

We shall continue to include the integrability in our definition of a
(strongly pseudoconvex) CR-manifold.
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6.5 Cosymplectic manifolds and remarks on the
Sasakian definition

There are two notions of a cosymplectic structure in the literature (in
fact, counting “Hermitian cosymplectic” (δΩ = 0) there are at least
three). P. Libermann [1959] defines a cosymplectic manifold to be a
(2n + 1)-dimensional manifold admitting a closed 1-form η and a closed
2-form Φ such that η ∧ Φn is a volume element. As before, on the sub-
bundle defined by η = 0, Φ may be polarized to give an almost contact
metric structure (φ, ξ, η, g) for which both η and the fundamental 2-form
Φ(X,Y ) = g(X,φY ) are closed. In [1967] the author defined a cosymplec-
tic structure to be a normal almost contact metric structure (φ, ξ, η, g)
with both η and Φ closed, and we adopt this point of view here.

Corresponding to Theorem 6.3 for Sasakian structures we have the
following result.

Theorem 6.8 An almost contact metric structure (φ, ξ, η, g) is cosym-
plectic if and only if φ is parallel.

Proof. Since N (1) = 0 implies N (2) = 0, that a cosymplectic manifold
satisfies ∇Xφ = 0 follows immediately from Lemma 6.1. Conversely,
∇Xφ = 0 implies that dΦ = 0 and N (1) = 2dη ⊗ ξ. Now

N (2)(Y, ξ) = (£φY η)(ξ) = −η([φY, ξ])
= −g(ξ,∇φY ξ −∇ξφY ) = g(ξ, φ∇ξY ) = 0;

so setting Z = ξ in Lemma 6.1, dη(φY,X) = 0 for all X. Therefore
dη = 0 and in turn N (1) = 0.

Since dη = 0 on a cosymplectic manifold, it is clear that the subbundle
defined by η = 0 is integrable; moreover, one can show that η is parallel.
Also, the projection map to the tangent spaces of the integral subman-
ifolds, −φ2 = I − η ⊗ ξ, is parallel. Thus from Theorem 6.8 we see
that locally a cosymplectic manifold is the product of a Kähler mani-
fold and an interval, the complex structure being the restriction of φ to
integral submanifolds. There are, however, cosymplectic manifolds that
are not globally the product of a Kähler manifold and a 1-dimensional
manifold; a 3-dimensional example was given by Chinea, de Leon and
Marrero [1993], and higher-dimensional examples were given by Marrero
and Padron [1998].
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We have remarked that a Sasakian manifold is sometimes viewed
as an odd-dimensional analogue of a Kähler manifold. In view of the
present theorem, the same can be said of cosymplectic manifolds. More-
over, recalling the almost complex structure J(X, f d

dt) = (φX − fξ,

η(X) ddt ) on M2n+1 × R defined at the beginning of this chapter, con-
sider the product metric G = g + dt2. An easy calculation shows that

G
(
J
(
X, f1

d

dt

)
, J
(
Y, f2

d

dt

))
= G
((

X, f1
d

dt

)
,
(
Y, f2

d

dt

))
,

so that (M2n+1×R, J,G) is an almost Hermitian manifold. Denote by ∇̄
the Levi-Civita connection of G. If now one assumes that this structure
is Kähler, then another straightforward computation gives

0 = (∇̄(X,0)J)(Y, 0) =
(
(∇Xφ)Y, (∇Xη)(Y )

d

dt

)
,

from which we see that M2n+1 is cosymplectic.
Thus we have the question of the relation between the metric structure

on M2n+1×R and the Sasakian condition. This was discussed by Tashiro
[1963] and Oubina [1985]. Let G = e2ρG′ be a conformal change of a
Kähler metric. Then, as is well known, the respective connections are
related by

DXY = D′
XY + (Xρ)Y + (Y ρ)X −G′(X,Y )P,

where P = grad′ρ, and we have

(DXJ)Y = (JY ρ)X −G′(X,JY )P − (Y ρ)JX + G′(X,Y )JP.

Now suppose that the product metric G on M2n+1 ×R is conformally
equivalent to a Kähler metric G′ with ρ = −t. Then grad′ρ = −e−2t d

dt .
Thus for X,Y vector fields on M2n+1,

(D(X,0)J)(Y, 0) = −η(Y )(X, 0) + g(X,φY )
(
0,

d

dt

)
+ g(X,Y )(ξ, 0)

on the one hand, and on the other,

(D(X,0)J)(Y, 0) = D(X,0)

(
φY, η(Y )

d

dt

)
− J(∇XY, 0)

=
(
∇XφY, (Xη(Y ))

d

dt

)
−
(
φ∇XY, η(∇XY )

d

dt

)
.
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Comparing the components, we see that (∇Xφ)Y = g(X,Y )ξ − η(Y )X
and hence that M2n+1 is Sasakian. Also (∇Xη)(Y ) = g(X,φY ), since ξ
is now Killing.

Conversely, it is clear that if M2n+1 is Sasakian, then (D(X,0)J)(Y, 0)
is given as above. Therefore, making the inverse conformal change,

(D′
(X,0)J)(Y, 0) = 0.

Moreover,

(D(X,0)J)
(
0,

d

dt

)
= D(X,0)(−ξ, 0) = (−∇Xξ, 0) = (φX, 0),

and this is equal to

(D′
(X,0)J)

(
0,

d

dt

)
− g(X, ξ)

d

dt
+
(
φX, η(X)

d

dt

)
.

Therefore (D′
(X,0)J)(0, ddt) = 0, and similarly

(
D′

(0, d
dt

)
J
)

(Y, 0) = 0,
(
D′

(0, d
dt

)
J
)(

0,
d

dt

)
= 0.

Combining these cases, we see that G′ is a Kähler metric.
The idea of using a deformed metric on M×R to characterize Sasakian

manifolds can be done in another way which is sometimes taken as the
definition of a Sasakian manifold (see, e.g., Boyer and Galicki [2008,
Definition 6.5.15]). Let (Mm, g) be a Riemannian manifold, R+ the
positive reals and

C(Mm) = (R+ ×Mm, dr2 + r2g)

the cone over Mm. Then (Mm, g) is Sasakian if and only if the holonomy
group of C(Mm) reduces to a subgroup of U(m+1

2 ). Thus (R+×Mm, dr2+
r2g) is Kähler and m = 2n + 1, n ≥ 1. Boyer and Galicki are particu-
larly interested in defining 3-Sasakian manifolds in an analogous way;
see Chapter 14 of this book, Boyer, Galicki, and Mann [1994], or Boyer
and Galicki [2008, p. 477].

6.6 Products of almost contact manifolds

We continue our discussion in the last section with a look at products
of almost contact manifolds. However, we stress only the statement of
results rather than the details of their proofs; the interested reader may
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consult the references. Let M1 and M2 be almost contact manifolds with
almost contact structures (φi, ξi, ηi), i = 1, 2. A. Morimoto [1963] defined
an almost complex structure J on the product M1 ×M2 by

J(X1,X2) = (φ1X1 − η2(X2)ξ1, φ2X2 + η1(X1)ξ2);

that J2(X1,X2) = −(X1,X2) is an easy calculation. Morimoto then
proved the following theorem.

Theorem 6.9 J is integrable if and only if both (φ1, ξ1, η1) and
(φ2, ξ2, η2) are normal.

An interesting corollary of this is a result of Calabi and Eckmann [1953]
that the product of two odd-dimensional spheres is a complex manifold.

Corollary 6.6 S2p+1 × S2q+1 is a complex manifold.

Turning again to metric considerations, let M1 and M2 be almost con-
tact metric manifolds with almost contact metric structures (φi, ξi, ηi, gi),
i = 1, 2. Capursi [1984] studied the product metric G = g1 + g2, and it
is again an easy calculation that

G(J(X1,X2), J(Y1, Y2)) = G((X1,X2), (Y1, Y2)).

The result of Capursi is the following.

Theorem 6.10 (M1×M2, J,G) is Kähler if and only if both (M1, φ1, ξ1,
η1, g1) and (M2, φ2, ξ2, η2, g2) are cosymplectic.

In view of this and the observation of Tashiro and Oubina in the last
section on how to obtain the Sasakian condition from the structure on
M × R, one might ask how to get both M1 and M2 Sasakian out of the
almost Hermitian structure (J,G) on M1×M2. To the author’s knowledge
this is an open question. On the other hand, a special almost contact
metric structure introduced by Kenmotsu [1972] seems to play a role
here.

An almost contact metric manifold (M,φ, ξ, η, g) is called a Kenmotsu
manifold if it satisfies

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX.

Kenmotsu [1972] gave a local characterization of this structure.
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Theorem 6.11 Every point of a Kenmotsu manifold has a neighborhood
that is a warped product (−ε, ε)×f V , where f(t) = cet and V is Kähler.

Returning to the product space M1 ×M2, define an almost complex
structure by

J(X1,X2) =
(
φ1X1 − e−2μη2(X2)ξ1, φ2X2 + e−2μη1(X1)ξ2

)
.

Again J2(X1,X2) = −(X1,X2) is an easy calculation. Let G = e2ρg1 +
e2τg2. Then G is Hermitian if and only if μ = 1

2 (ρ− τ). Oubina and the
author [1990] then noted the following.

Theorem 6.12 Let M1 and M2 be almost contact metric manifolds and
U a coordinate neighborhood on M2 such that ξ2 = ∂

∂t . Consider the
change of metric G = e2ρg1 + e2τg2 on M1 × U , where ρ = log(k − e−t)
and τ = −t for some constant k. Then (M1×U , J,G) is Kähler if and only
if the structure on M1 is Sasakian and the structure on U is Kenmotsu.

A variation of the above result is that if (M1 × U , J,G) is Kähler for
the conformal change ρ = τ = −t, then M1 is Sasakian and the structure
(φ2,−ξ2,−η2, g2) is Kenmotsu.

The fact that this theorem is local in regard to the second manifold
M2 is not unnatural. Even for M1 × R, the 1-dimensional case for M2,
note that the Hopf manifold S2n+1 × S1 is locally conformally Kähler
but not globally conformally Kähler.

We close this section with a remark on a generalization of these struc-
tures. In the classification of Gray and Hervella [1980] of almost
Hermitian manifolds there appears a class, W4, of Hermitian manifolds
which are closely related to locally conformally Kähler manifolds. Again
consider M1 × R with the almost complex structure J(X, f d

dt) = (φX −
fξ, η(X) ddt ) and product metric G. Oubina [1985] introduced the
notion of a trans-Sasakian structure as an almost contact metric structure
(φ, ξ, η, g) for which the almost Hermitian manifold (M1 × R, J,G)
belongs to the class W4. This may be expressed by the condition

(∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX)

for functions α and β on M , and the trans-Sasakian structure is said to
be of type (α, β). If β but not α (respectively α but not β) vanishes,
the structure is α-Sasakian (resp. β-Kenmotsu) (see also Janssens and
Vanhecke [1981]). Marrero [1992] showed that a trans-Sasakian mani-
fold of dimension ≥ 5 is either α-Sasakian, β-Kenmotsu or cosymplectic.
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He also showed that if M is a 3-dimensional Sasakian manifold with
structure tensors (φ, ξ, η, g), f a positive nonconstant function and ḡ =
fg+(1−f)η⊗η, then (φ, ξ, η, ḡ) is trans-Sasakian of type ( 1

f , 1
2ξ(log f)).

6.7 Examples

6.7.1 R2n+1

In Example 4.5.1 we gave explicitly an associated almost contact metric
structure (φ, ξ, η, g) to the Darboux contact form η = 1

2(dz−∑n
i=1 yidxi)

on R
2n+1. From the matrix expression for φ given in Example 4.5.1 it is

easy to check that [φ, φ]+2dη⊗ ξ = 0 and hence that this contact metric
structure is Sasakian.

6.7.2 Principal circle bundles

In Example 4.5.4 we saw that a compact regular contact manifold M2n+1

carries a K-contact structure (φ, ξ, η, g), defined in terms of the almost
Kähler structure (J,G) of the base manifold M2n. Since £ξφ = N (3) = 0,

[φ, φ](ξ,X) + 2dη(ξ,X)ξ = φ2[ξ,X]− φ[ξ, φX] = 0.

Now φX = π̃Jπ∗X, so for projectable horizontal vector fields X and Y ,

[φ, φ](X,Y ) + 2dη(X,Y )ξ = π̃J2π∗[X,Y ] + [π̃Jπ∗X, π̃Jπ∗Y ]
− π̃Jπ∗[π̃Jπ∗X,Y ]− π̃Jπ∗[X, π̃Jπ∗Y ]
+ dη(X,Y )ξ

= π̃J2[π∗X,π∗Y ] + π̃[Jπ∗X,Jπ∗Y ]
+ η([π̃Jπ∗X, π̃Jπ∗Y ])ξ − π̃J [Jπ∗X,π∗Y ]
− π̃J [π∗X,Jπ∗Y ] + dη(X,Y )ξ

= π̃[J, J ](π∗X,π∗Y )− 2(Ω(Jπ∗X,Jπ∗Y ) ◦ π

− Ω(π∗X,π∗Y ) ◦ π)ξ
= π̃[J, J ](π∗X,π∗Y ).

Thus we see that the K-contact structure (φ, ξ, η, g) is Sasakian if and
only if the base manifold (M2nJ,G) is Kählerian (Hatakeyama [1963]).
If (M2nJ,G) is only almost Kähler, then (φ, ξ, η, g) is only K-contact.
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Similar to the Boothby–Wang fibration of compact regular contact
manifolds, A. Morimoto [1964] obtained a fibration of compact normal al-
most contact manifolds with ξ regular. First, however, let π : M2n+1 −→
M2n be a principal circle bundle over a complex manifold M2n and sup-
pose there exists a connection form η such that dη = π∗Ψ, where Ψ is a
form of bidegree (1, 1) on M2n. Then we again define φ by φX = π̃Jπ∗X,
where J is the almost complex structure on M2n and π̃ the horizontal
lift with respect to η. Let ξ be a vertical vector field with η(ξ) = 1. Then
(φ, ξ, η) is an almost contact structure. Noting that £ξη = 0, since η is
a connection form, and £ξφ = 0 by the definition of φ, a computation of
N (1) similar to the one just given shows that M2n+1 is a normal almost
contact manifold (Morimoto [1963]).

Conversely, we give the following theorem of Morimoto [1964] and just
sketch its proof, since the major ideas have already been given.

Theorem 6.13 Let M2n+1 be a compact normal almost contact mani-
fold with structure tensors (φ, ξ, η) and suppose that ξ is a regular vec-
tor field. Then M2n+1 is the bundle space of a principal circle bundle
π : M2n+1 −→ M2n over a complex manifold M2n. Moreover, η is a
connection form and the 2-form Ψ on M2n such that dη = π∗Ψ is of
bidegree (1, 1).

Proof. In the proof of the Boothby–Wang theorem (Section 3.3) we
defined the period function λ of the vector field ξ and showed that λ was
constant on M2n+1, which we then took to be 1. The argument (cf. Tanno
[1965]) required only that η(ξ) = 1 and £ξη = N (4) = 0. Thus we again
have a circle bundle structure as in the Boothby–Wang fibration with
η a connection form. Now since £ξφ = N (3) = 0, φ is projectable and
we can define an almost complex structure J on M2n by JX = π∗φπ̃X,
where π̃ denotes the horizontal lift with respect to η. That J2 = −I is
immediate and

π̃[J, J ](X,Y ) =− [π̃X, π̃Y ] + η([π̃X, π̃Y ])ξ + [φπ̃X, φπ̃Y ]
− η([φπ̃X, φπ̃Y ])ξ − φ[φπ̃X, π̃Y ]− φ[π̃X, φπ̃Y ]

= [φ, φ](π̃X, π̃Y ) + 2dη(φπ̃X, φπ̃Y )ξ
= [φ, φ](π̃X, π̃Y ) + 2dη(π̃X, π̃Y )ξ = 0,

the last equality following from N (1) = 0 and the next to last from N (2) =
0. Finally, Ψ(JX, JY )◦π = dη(φπ̃X, φπ̃Y ) = dη(π̃X, π̃Y ) = Ψ(X,Y )◦π,
showing that Ψ is of bidegree (1, 1).
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6.7.3 A nonnormal almost contact structure on S5

In Example 4.5.3 we saw that S5 inherits from the almost Hermitian
structure on S6 an almost contact metric structure different from the
standard one. Recall that the almost Hermitian structure (J, g̃) on S6

given in Example 4.5.3 is a nearly Kähler structure, i.e., (∇̃XJ)X = 0
for all vector fields X. The geometric meaning of this condition is that
geodesics are holomorphically planar curves. A curve γ on an almost
Hermitian manifold is holomorphically planar if the holomorphic section
determined by its tangent field is parallel along the curve.

We will now show that the induced almost contact metric structure
(φ, ξ, η, g) on S5 satisfies a similar condition, namely (∇Xφ)X = 0. This
is an immediate consequence of the following theorem of the author
[1971]; for notation see Example 4.5.2.

Theorem 6.14 Let M2n+1 be a hypersurface of a nearly Kähler mani-
fold M̃2n+2. Then the induced almost contact metric structure (φ, ξ, η, g)
satisfies (∇Xφ)X = 0 if and only if the second fundamental form σ is
proportional to (η ⊗ η)ν.

Proof. From equation (∗) in Example 4.5.2 and ∇̃XY = ∇XY +σ(X,Y )
we have

(∇XΦ)(Y,Z) = (∇̃XΩ)(Y,Z) + g̃(σ(X,Y ), ν)η(Z)− g̃(σ(X,Z), ν)η(Y ),

where Ω is the fundamental 2-form of the nearly Kähler structure.
Interchanging X and Z and adding, we obtain

(∇XΦ)(Y,Z) + (∇ZΦ)(Y,X)
= −2g̃(σ(X,Z), ν)η(Y ) + g̃(σ(X,Y ), ν)η(Z)

+ g̃(σ(Z, Y ), ν)η(X).

Now if σ is proportional to (η ⊗ η)ν, (∇Xφ)X = 0. Conversely, if
(∇Xφ)X = 0,

0 = −2g̃(σ(X,Z), ν)η(Y ) + g̃(σ(X,Y ), ν)η(Z) + g̃(σ(Z, Y ), ν)η(X).

Setting Y = ξ gives 2g̃(σ(X,Z), ν) = g̃(σ(X, ξ), ν)η(Z)+g̃(σ(Z, ξ), ν)η(X),
but now setting X = ξ, we have g̃(σ(ξ, Z), ν) = g̃(σ(ξ, ξ), ν)η(Z) and
consequently g̃(σ(X,Z), ν) = g̃(σ(ξ, ξ), ν)η(X)η(Z).

A cosymplectic version of this theorem was given by Goldberg in
[1968a] (see also Okumura [1965]). An almost contact metric structure
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(φ, ξ, η, g) satisfying (∇Xφ)X = 0 is called a nearly cosymplectic struc-
ture. As a further justification of this name we remark, without proof,
that a normal nearly cosymplectic manifold is cosymplectic (see the
author’s paper [1971] for details), but we do give the following two
propositions.

Proposition 6.1 On a nearly cosymplectic manifold, ξ is a Killing vec-
tor field.

Proof. Clearly (∇ξφ)ξ = 0, from which one easily obtains ∇ξξ = 0.
Now differentiating the compatibility condition g(φX,φY ) = g(X,Y )−
η(X)η(Y ) with respect to ξ, we obtain

g((∇ξφ)X,φY ) + g(φX, (∇ξφ)Y ) = 0.

The nearly cosymplectic condition then gives

g((∇Xφ)ξ, φY ) + g(φX, (∇Y φ)ξ) = 0,

which easily simplifies to

g(∇Xξ, Y ) + g(∇Y ξ,X) = 0.

Proposition 6.2 On a normal nearly cosymplectic manifold, dη = 0.

Proof. Since the structure is normal, N (1) and N (2) vanish; thus set-
ting Y = X and Z = ξ in Lemma 6.1 we have dη(X,φX) = 0 for all
vector fields X. Linearizing this, we obtain dη(X,φY ) + dη(Y, φX) = 0,
but from the vanishing of N (2), dη(X,φY ) = −dη(φX, Y ) and hence
dη(X,φY ) = 0. Also dη(X, ξ) = 1

2(g(∇X , ξ, ξ) − g(∇ξξ,X)) = 0, and so
we obtain dη = 0.

Turning now to S5 as a totally geodesic hypersurface of S6 (Exam-
ple 4.5.3), its induced structure is nearly cosymplectic by Theorem 6.14.
This structure is not normal, for if it were, then by our two proposi-
tions η would be respectively coclosed and closed and hence harmonic,
contradicting the vanishing of the first Betti number of S5.
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6.7.4 M2n+1 ⊂ M̃2n+2

We have already seen that the odd-dimensional spheres are Sasakian
manifolds and that this structure may be obtained both by viewing the
sphere as a hypersurface in C

n+1 and by considering the Hopf fibration
π : S2n+1 −→ CPn as a special case of the Boothby–Wang fibration. In
Theorem 4.12 we saw the condition for the induced almost contact metric
structure on a hypersurface of a Kähler manifold to be contact metric.
Now similar to Theorem 6.14 we give the condition for the hypersurface
to be Sasakian; this is a result of Tashiro [1963] and we will omit the
proof since it is similar to the proof of Theorem 6.14.

Theorem 6.15 Let M2n+1 be a hypersurface of a Kähler manifold
M̃2n+2. Then the induced almost contact metric structure (φ, ξ, η, g) is
Sasakian if and only if the second fundamental form σ = (−g+β(η⊗η))ν,
for some function β.

An almost contact metric structure (φ, ξ, η, g) is said to be nearly
Sasakian if (∇Xφ)Y + (∇Y φ)X = 2g(X,Y )ξ − η(X)Y − η(Y )X. The
above theorem also holds for this structure on a hypersurface of a nearly
Kähler manifold (Showers, Yano and the author [1976]). Similar to the
structure on S5 obtained in Examples 4.5.3 and 6.7.3, consider S5 as
an umbilical hypersurface of the unit sphere S6 at a “latitude” of 45◦,
so that σ(X,Y ) = −g(X,Y )ν. Then the induced almost contact metric
structure is nearly Sasakian but not Sasakian.

For other results on hypersurfaces of Kähler manifolds see Okumura
[1964a, 1964b, 1966], Vernon [1987].

6.7.5 Brieskorn manifolds

In this section we will show that the Brieskorn manifolds admit Sasakian
structures which are often nonregular.

Consider C
n+1 with coordinates z = (z0, . . . , zn) and let (a0, . . . , an)

be an (n+1)-tuple of positive integers. A polynomial of the form P (z) =
za00 +· · ·+zan

n is called a Brieskorn polynomial, and we let V 2n(a0, . . . , an),
or just V 2n, denote the zero set of P . Then Σ2n−1(a0, . . . , an) = V 2n ∩
S2n+1(1), or just Σ2n−1, is called a Brieskorn manifold.

For w ∈ C define fw : C
n+1 −→ C

n+1 by

fw(z) =
(
e

mw
a0 z0, . . . , e

mw
an zn

)
,
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where m is the least common multiple of (a0, . . . , an). GC = {fw|w ∈
C} is an abelian group of diffeomorphisms of C

n+1. Let GR be the
1-parameter subgroup given by {fs|s ∈ R}. The R-action leaves V 2n

invariant, and differentiating with respect to s at s = 0, we see that the
vector field that generates GR is

a =
(m

aα
zα

)
.

Now let GS = {fit|t ∈ R}; fit equals fi(t+2π) and is an S1-action on
C
n+1 leaving Σ2n−1 invariant. The vector field that generates GS is

b = ia =
(m

aα
izα

)
.

The almost complex structure J on C
n+1 restricts to V 2n, and ξ = −b =

−Ja is a vector field tangent to Σ2n−1. Moreover, for an arbitrary vector
field tangent to Σ2n−1, decomposing JX as

JX = φX + η(X)a

gives Σ2n−1 an almost contact structure (φ, ξ, η) as in Example 4.5.2;
see Sasaki and Takahashi [1976] and Sasaki [1985]. (In Sasaki [1985],
the structure tensors have the opposite sign from our construction here.)
Sasaki and Takahashi prove the following.

Theorem 6.16 The almost contact structure (φ, ξ, η) on the Brieskorn
manifold Σ2n−1 is normal.

Recalling the theorem of Morimoto, Theorem 6.9, we have following
result of Brieskorn and Van de Ven [1968].

Corollary 6.7 Let Σ2n−1 and Σ2m−1 be Brieskorn manifolds. Then
Σ2n−1 × R and Σ2n−1 × Σ2m−1 are complex manifolds.

In regard to nonregularity, Sasaki and Takahashi prove the following.

Theorem 6.17 The almost contact structure (φ, ξ, η) on the Brieskorn
manifold Σ2n−1(a0, . . . , an), is nonregular if and only if there exist three
positive integers aλ, aμ, aν among the positive integers a0, . . . , an such
that the least common multiple of aλ and aμ is not equal to the least
common multiple of aλ, aμ, aν.
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Now let H be the inner product of a with the position vector z ∈
C
n+1, i.e., denoting the inner product on C

n+1 by 〈, 〉, H = 〈a, z〉 =
m
∑n

α=0
zαz̄α
aα

. Taking the inner product of JX = φX + η(X)a with
the position vector z, we have Hη(X) = 〈JX, z〉 = −〈X,Jz〉. Thus if ι :
Σ2n−1 −→ C

n+1 denotes the embedding and ω = i
2

∑n
α=0(z̄αdzα−zαdz̄α),

then η = ι∗ω/H and ι∗ω are contact forms on Σ2n−1. This was shown by
Sasaki and Hsu [1976] and simpler proofs were given by Abe [1977] and
Vaisman [1978].

Turning to the question of an associated metric for η, set

g(X,Y ) =
1
H

(〈X,Y 〉 − η(X)〈Y, ξ〉 − η(Y )〈X, ξ〉
+ η(X)η(Y )〈ξ, ξ〉) + η(X)η(Y ).

Note that g is not the induced metric from the embedding ι : Σ2n−1 −→
C
n+1. Sasaki [1985] then showed that (φ, ξ, η, g) is a Sasakian structure

on Σ2n−1.
Thus we see that there are in fact many nonregular Sasakian manifolds.

Much of the above goes over to more general spaces. For discussion of
these generalizations, see the references mentioned as well as Abe [1976],
Abe and Erbacher [1975], Lutz and Meckert [1976] and Sato [1977]. An
earlier example of a nonregular Sasakian manifold was given by Tanno
[1969].

In recent years, interest in the homotopy spheres as Sasakian manifolds
has increased. For example, Boyer, Galicki and Nakamaye [2003a] prove
the following result.

Theorem 6.18 Every homotopy sphere of dimension ≥ 5 that can be
realized as the boundary of a parallelizable manifold admits a Sasakian
metric of positive Ricci curvature.

For more information on Sasakian structures on homotopy spheres see
the book of Boyer and Galicki [2008, Chapter 9].

6.8 Some early topology

In the 1960s, a great deal of work was done on the topology of compact
Sasakian and to a lesser extent cosymplectic manifolds. The idea was to
see how much a compact Sasakian manifold must be like a sphere. In the
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case of a compact Kähler manifold, the even-dimensional Betti numbers
are different from zero and the odd-dimensional Betti numbers are even,
properties which are certainly enjoyed by complex projective space (see,
e.g., Goldberg [1962, Chapter V]). Furthermore, the Betti numbers bp of
a compact Kähler manifold of positive constant holomorphic curvature
are equal to 1 for p even and vanish for p odd (see, e.g., Goldberg [1962,
Chapter VI]).

In [1965] Tachibana proved that the first Betti number of a compact
Sasakian manifold M2n+1 is zero or even. This is proved by first showing
that on a compact K-contact manifold, a harmonic 1-form ω is orthog-
onal to the contact form η. Then letting ω̃ = ω ◦ φ and computing the
Laplacian of ω̃, one obtains the harmonicity of ω̃ as well. Thus the num-
ber of independent harmonic 1-forms is even. The computation uses the
fact that on a Sasakian manifold the Ricci operator commutes with φ, a
fact that we will prove in our subsequent discussions of curvature. More
generally, the pth Betti number is even for p odd and 1 ≤ p ≤ n and
by duality for p even and n + 1 ≤ p ≤ 2n (Fujitani [1966]; see also S. I.
Goldberg and the author [1967]).

For a regular Sasakian manifold M2n+1 fibering over a Kähler man-
ifold M2n, the Betti numbers are related by bp(M2n+1) = bp(M2n) −
bp−2(M2n), 0 ≤ p ≤ n (see Boyer and Galick: [2008 chapter 7]).

In Section 3.4 we noted the result of Rukimbira [1995a] that on a
compact K-contact manifold M2n+1, ξ has at least n+1 closed orbits. In
the same paper he proves that a compact Sasakian manifold for which ξ
has only a finite number of closed orbits has vanishing first Betti number.

Considerable attention has been given to the vanishing of the second
Betti number of a Sasakian manifold under some curvature restrictions as
well as such a manifold being isometric to the unit sphere under stronger
conditions. A compact Sasakian manifold of strictly positive curvature
has vanishing second Betti number (Moskal [1966], Tachibana and Ogawa
[1966], Tanno [1968], Goldberg [1967] in the regular case and Goldberg
[1968b] in the regular case with nonnegative curvature). A compact, sim-
ply connected Sasakian Einstein space of strictly positive curvature is
isometric to the unit sphere (Moskal [1966]). Pinching theorems have
been obtained by Tanno [1968] including an analogue of holomorphic
pinching.

In [1986] Goldberg showed that a compact simply connected regular
Sasakian manifold M of strictly positive curvature is homeomorphic
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to a sphere. If, in addition, M has constant scalar curvature, then
Goldberg had shown earlier [1967] that M is isometric to a sphere, but
not necessarily with a constant curvature metric (cf. the metrics on the
sphere in Example 7.8.1).

Allowing some negative curvature, Tanno [1968] showed that if M2n+1

is a compact K-contact manifold with sectional curvature greater than
−3

2n−1 , then b1 = 0. Similarly, if the Ricci tensor ρ is such that ρ + 2g is
positive definite, then b1 = 0. By duality in dimension 3, one also has
b2 = 0.

In dimension 5, Perrone [1989] showed that if M5 is a compact
simply connected regular Sasakian manifold with b2 = 0 and with scalar
curvature τ > −4, then M5 is homeomorphic to a sphere. If, in addition,
M5 has constant scalar curvature, M is isometric to a sphere (but not
necessarily with a constant curvature metric).

A classical result on the topology of a compact Kähler manifold M2n

is the monotonicity of the Betti numbers, namely bp ≤ bp+2, p ≤ n − 1;
this is proved using the idea of effective harmonic forms (see Goldberg
[1962, Chapter V]). We briefly describe the idea of effective forms in
the almost contact context. Let (M2n+1, φ, ξ, η, g) be a compact almost
contact manifold, and as before, we denote the fundamental 2-form by
Φ. Define two operators L and Λ acting on differential forms α by

Lα = α ∧ Φ, Λα = ∗L ∗ α,

where ∗ denotes the Hodge star isomorphism (Lα = α ∧ Ω in the sym-
plectic case). A p-form α is said to be effective if Λα = 0. We now have
the following proposition (see Goldberg and the author [1967], Chinea,
de Leon and Marrero [1993]).

Proposition 6.3 On an almost contact metric manifold of dimension
2n + 1, every p-form α with p ≤ n + 1 may be written uniquely as a sum

α =
r∑

k=0

Lkβp−2k,

where the βp−2k’s, 0 ≤ k ≤ r, are effective forms of degree p − 2k and
r =
[p

2

]
.

In the cosymplectic case we cite the work of Chinea, de Leon and
Marrero [1993]. They prove that on a compact cosymplectic manifold
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M2n+1, b0 ≤ b1 ≤ · · · ≤ bn = bn+1 and bn+1 ≥ bn+2 ≥ · · · ≥ b2n+1.
Moreover, the differences b2p+1 − b2p with 0 ≤ p ≤ n are even, and so
in particular, the first Betti number of M2n+1 is odd. They also prove a
strong Lefschetz property for a compact cosymplectic manifold and show
that such a manifold is formal (i.e., the homotopy type of the differential
graded algebra of differential forms is the same as the homotopy type of
the cohomology ring).

This topological work involves generalizing from Kähler geometry
notions of the bidegree of differential forms, effective harmonic forms,
etc. For studies of the tridegree of differential forms and applications, see
Chinea, de Leon and Marrero [1997], Moskal [1977], and Fujitani [1966].
A p-form α is said to be coeffective if Lα = 0. Coeffective cohomology
was studied in the symplectic case by Bouche [1990] and in the almost
cosymplectic case by Chinea, de Leon and Marrero [1995]. In both
papers the relation between the coeffective and the de Rham cohomolo-
gies of the manifolds is discussed (for the almost contact case see also
M. Fernández, R. Ibánez and M. de Leon [1997], [1998]).





7
Curvature of Contact Metric Manifolds

In this chapter we discuss many aspects of the curvature of contact metric
manifolds. As such, it is to be regarded as one of the most important
chapters in this book.

7.1 Basic curvature properties

We begin with some preliminaries concerning the tensor field h. Let
M2n+1 be a contact metric manifold with structure tensors (φ, ξ, η, g)
and h = 1

2£ξφ as before. Recall that in Lemma 6.2 we saw that ∇Xξ =
−φX − φhX.

Proposition 7.1 On a contact metric manifold M2n+1 we have the
following formulas:

(∇ξh)X = φX − h2φX − φRX ξξ,

1
2
(Rξ Xξ − φRξ φXξ) = h2X + φ2X.

Proof. We compute Rξ Xξ = ∇ξ∇Xξ −∇X∇ξξ −∇[ξ,X]ξ using ∇Xξ =
−φX − φhX; thus

Rξ Xξ = ∇ξ(−φX − φhX) + φ[ξ,X] + φh[ξ,X].

D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds,
DOI 10.1007/978-0-8176-4959-3_7, © Springer Science+Business Media, LLC 2010
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Applying φ and recalling that ∇ξφ = 0, we have

φRξ Xξ = ∇ξ(X + hX)− η(∇ξ(X + hX))ξ−[ξ,X] + η([ξ,X])ξ − h[ξ,X]
= (∇ξh)X +∇Xξ + h∇Xξ.

Using ∇Xξ = −φX − φhX and φh + hφ = 0 (Lemma 6.2), this becomes

φRξ Xξ = (∇ξh)X − φX + h2φX,

which is the first formula.
Now from the first formula we have

Rξ Xξ = h2X + φ2X − φ(∇ξh)X

and
φRξ φXξ = −h2X − φ2X − φ(∇ξh)X;

subtracting then yields the second formula.

Corollary 7.1 On a contact metric manifold M2n+1 the Ricci curvature
in the direction ξ is given by

Ric(ξ) = 2n− trh2.

Proof. Choosing X to be a unit vector orthogonal to ξ, the inner prod-
uct of X with the second formula yields the following formula for sectional
curvatures:

K(ξ,X) + K(ξ, φX) = 2(1− g(h2X,X)).

Therefore if {X1, . . . ,Xn, φX1, . . . , φXn, ξ} is a φ-basis, then summing
over {X1, . . . ,Xn} yields the result.

Recall that a K-contact structure is a contact metric structure for
which the vector field ξ is Killing and that this is the case if and only if the
symmetric operator h vanishes. Thus from the above corollary we have
the following immediate result (the author [1977]).

Theorem 7.1 A contact metric manifold M2n+1 is K-contact if and
only if Ric(ξ) = 2n.

With regard to sectional curvature we have an earlier result obtained by
Hatakeyama, Ogawa, and Tanno [1963].
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Theorem 7.2 A contact metric manifold is K-contact if and only if
the sectional curvature of all plane sections containing ξ are equal to 1.
Moreover, on a K-contact manifold,

RX ξξ = X − η(X)ξ.

Proof. In view of the above, the sufficiency is clear. Conversely, if the
structure is K-contact, then since∇Xξ = −φX, we have for X orthogonal
to ξ,

Rξ Xξ = ∇ξ(−φX) + φ[ξ,X] = −φ∇Xξ = φ2X = −X.

The second statement is easily obtained.

Furthermore, for the Ricci operator Q acting on ξ we have the following.

Proposition 7.2 On a K-contact metric manifold M2n+1, Qξ = 2nξ.

Proof. Since ξ is Killing, it is affine and therefore

∇X∇Y ξ −∇∇XY ξ = RX ξY.

From this we have −(∇Xφ)Y = RX ξY , but in Section 6.1 we saw that
on a contact metric manifold ∇iφij = −2nηj. Thus letting {XA} be a
local orthonormal basis of the contact subbundle we have

Qξ =
∑

Rξ XA
XA =

∑
(∇XA

φ)XA = 2nξ.

We noted in Theorem 7.2 that on a K-contact manifold, RX ξξ =
X−η(X)ξ. On a Sasakian manifold we have the following stronger result.

Proposition 7.3 On a Sasakian manifold,

RX Y ξ = η(Y )X − η(X)Y.

Proof.

RX Y ξ = −∇XφY +∇Y φX + φ[X,Y ]
= −(∇Xφ)Y + (∇Y φ)X
= η(Y )X − η(X)Y.

As converses of these results one often sees propositions of the following
type (Hatakeyama, Ogawa, and Tanno [1963]).
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Proposition 7.4 Let (M2n+1, g) be a Riemannian manifold admitting
a unit Killing field ξ such that RX ξξ = X for X orthogonal to ξ. Then
M2n+1 is a K-contact manifold.

Proof. Let η(X) = g(X, ξ) and φX = −∇Xξ. Since ξ is unit Killing,
we have ∇ξξ = 0 and

∇X∇Y ξ −∇∇XY ξ = RX ξY. (∗)

Thus for X orthogonal to ξ,

φ2X = ∇∇Xξξ = Rξ Xξ = −X

and φξ = 0. Therefore φ2 = −I + η ⊗ ξ. Moreover,

dη(X,Y ) =
1
2
(g(∇Xξ, Y )− g(∇Y ξ,X)) = −g(∇Y ξ,X) = g(X,φY ).

Therefore (φ, ξ, η, g) is a contact metric structure on M2n+1.

An interesting variation is a result of Rukimbira [1995b] that if a
Riemannian manifold admits a unit Killing field ξ such that the sec-
tional curvatures of plane sections containing ξ is positive, then it also
admits a K-contact structure but with a possibly different metric.

Proposition 7.5 If in Proposition 7.4, RX Y ξ = g(ξ, Y )X − g(X, ξ)Y ,
then M2n+1 is Sasakian.

Proof. From equation (∗) in the proof of Proposition 7.4, (∇Xφ)Y =
Rξ XY and hence

g((∇Xφ)Y,Z) = g(Rξ XY,Z) = g(RY Zξ,X) = g(η(Z)Y − η(Y )Z,X).

These results start with a Riemannian structure and construct the de-
sired structure. However, given a contact metric structure we have the
following proposition.

Proposition 7.6 A contact metric structure is Sasakian if and only if

RX Y ξ = η(Y )X − η(X)Y.
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Proof. The necessity is Proposition 7.3 above. To prove the sufficiency
first note that for X orthogonal to ξ, Rξ Xξ = −X, and so from the
second equation of Proposition 7.1 we have

1
2
(−X − φ(−φX)) = h2X + φ2X = h2X −X.

Therefore h2 = 0, but h is a symmetric operator and so h = 0. Thus ξ is
Killing and the result follows as above.

Finally, for future use we establish some additional lemmas on Sasakian
manifolds. The reader will recognize these curvature properties as being
analogous to well-known curvature properties of Kähler manifolds. Let
M2n+1 be a Sasakian manifold with structure tensors (φ, ξ, η, g) and
define a tensor field P of type (0,4) by

P (X,Y,Z,W ) = dη(X,Z)g(Y,W ) − dη(X,W )g(Y,Z)
− dη(Y,Z)g(X,W ) + dη(Y,W )g(X,Z).

Lemma 7.1 On a Sasakian manifold we have

(a) g(RX Y Z, φW ) + g(RX Y φZ,W ) = −P (X,Y,Z,W ).

For X,Y,Z,W orthogonal to ξ we have

(b) g(RφX φY φZ, φW ) = g(RX Y Z,W )

and

(c) g(RX φXY, φY ) = g(RX YX,Y )+g(RX φY X,φY )−2P (X,Y,X, φY ).

Proof. A direct computation or the Ricci identity shows that

(∇X∇Y Φ−∇Y∇XΦ−∇[X,Y ]Φ)(Z,W )

= −g(RX Y Z, φW )− g(RX Y φZ,W ).

Computing the left-hand side using (∇Xφ)Y = g(X,Y )ξ − η(Y )X
yields (a). Using (a) and the definition of P we obtain (b). Finally,
applying the first Bianchi identity to g(RX φXY, φY ) and using (a),
we obtain (c).
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Lemma 7.2 On a Sasakian manifold, Qφ = φQ.

Proof. Choosing a φ-basis {Xi,Xn+i = φXi, ξ}, we have for X and Y
orthogonal to ξ,

g(QφX,φY ) =
2n∑

A=1

g(RφX XA
XA, φY ) + g(RφX ξξ, φY )

=
2n∑

A=1

g(RφX φXA
φXA, φY ) + g(X,Y )

= g(QX,Y ),

where we have used (b) from the previous lemma. We already know
that Qξ = 2nξ, and hence the Ricci operator Q commutes with φ on a
Sasakian manifold.

7.2 Curvature of contact metric manifolds

Before giving our main curvature results, we present some rather
complicated lemmas from the paper [1979] of Olszak.

Lemma 7.3 On a contact metric manifold,

(∇Xφ)Y + (∇φXφ)φY = 2g(X,Y )ξ − η(Y )(X + hX + η(X)ξ).

Proof. Using Corollary 6.1 or by direct differentiation of ∇Y ξ = −φY −
φhY we obtain

(∇XΦ)(φY,Z)− (∇XΦ)(Y, φZ) = −η(Y )g(X + hX,φZ)
−η(Z)g(X + hX,φY ), (∗)

and replacing Z by φZ and using Corollary 6.1 again we obtain

(∇XΦ)(φY, φZ)+(∇XΦ)(Y,Z) = η(Y )g(X+hX,Z)−η(Z)g(X+hX, Y ).
(∗∗)

Now since dΦ = 0, we have

(∇XΦ)(Y,Z) + (∇Y Φ)(Z,X) + (∇ZΦ)(X,Y )
+ (∇φXΦ)(φY,Z) + (∇φY Φ)(Z, φX) + (∇ZΦ)(φX,φY )
+ (∇φXΦ)(Y, φZ) + (∇Y Φ)(φZ, φX) + (∇φZΦ)(φX, Y )
− (∇XΦ)(φY, φZ) − (∇φY Φ)(ΦZ,X) − (∇φZΦ)(X,φY ) = 0.
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Now (∗) and (∗∗) give

(∇φXΦ)(Z, φY ) + (∇XΦ)(Z, Y )
= 2η(Z)g(X,Y )− η(Y )g(X + hX,Z)− η(X)η(Y )η(Z),

from which the result follows.

Lemma 7.4 The curvature tensor of a contact metric manifold satisfies

g(Rξ XY,Z) = −(∇XΦ)(Y,Z)− g(X, (∇Y φh)Z) + g(X, (∇Zφh)Y ),
g(Rξ XY,Z)− g(Rξ XφY, φZ) + g(Rξ φXY, φZ) + g(Rξ φXφY,Z)
= 2(∇hXΦ)(Y,Z)− 2η(Y )g(X + hX,Z) + 2η(Z)g(X + hX, Y ).

Proof. Differentiating ∇Zξ = −φZ − φhZ, we have

RY Zξ = −(∇Y φ)Z + (∇Zφ)Y − (∇Y φh)Z + (∇Zφh)Y,

which, since dΦ = 0, yields the first formula. Now set

A(X,Y,Z) = − (∇XΦ)(Y,Z) + (∇XΦ)(φY, φZ)
− (∇φXΦ)(Y, φZ)− (∇φXΦ)(φY,Z)

and

B(X,Y,Z) = − g(X, (∇Y φh)Z) + g(X, (∇φY φh)φZ)
− g(φX, (∇Y φh)φZ)− g(φX, (∇φY φh)Z).

Then by the first formula, the left side of the second formula is
A(X,Y,Z) + B(X,Y,Z) − B(X,Z, Y ). Now by Lemma 7.3 and equa-
tion (∗∗) in its proof we have

A(X,Y,Z) = 2g(X,Y )η(Z)− 2g(X,Z)η(Y ).

Also it is straightforward to show that η((∇φY h)Z) = g(−Y + hY, hZ).
Now rewrite B as

B(X,Y,Z) =− g(X, (∇Y φ)hZ) + g(X,h(∇Y φ)Z)
+ g(X,hφ(∇φY φ)Z) + g(X,φ(∇φY φ)hZ)
+ η(X)η((∇φY h)Z).
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Then using Lemma 7.3 again,

B(X,Y,Z) = 2g(hX, (∇Y φ)Z) + 2η(Z)g(hX, Y )− 2η(X)g(hY, hZ).

Finally, computing A(X,Y,Z) + B(X,Y,Z) − B(X,Z, Y ) and using
dΦ = 0, we have the result.

Let ρ denote the Ricci tensor and τ the scalar curvature. In addition,
we define the ∗-Ricci tensor ρ∗ and ∗-scalar curvature τ∗ by contracting
the curvature tensor by φ instead of the metric. Precisely,

ρ∗ij = Riklmφklφj
m, τ∗ = ρ∗ii.

These notions have their origin in almost Hermitian geometry, and we
shall see their almost Hermitian analogues in Section 10.2. We now have
an important proposition due to Olszak [1979].

Proposition 7.7 On a contact metric manifold M2n+1,

τ∗ − τ + 4n2 = trh2 +
1
2
(|∇φ|2 − 4n) ≥ 0,

with equality if and only if M2n+1 is Sasakian.

Proof. We have seen that ∇iφij = −2nηj and ∇kξj = −φjk −φjmhmk.
Therefore using φ2 = −I + η⊗ ξ and basic properties of h (Section 6.4),
we have

φkj∇k∇iφij = −4n2. (∗)
Differentiation of φ2 = −I + η⊗ ξ yields φkj∇tφkj = 0. Since dΦ = 0, we
have φkj∇kφtj = φkj(−∇tφjk−∇jφkt) from which we obtain φkj∇kφtj =
0. In turn, φkj∇t∇kφtj = −(∇tφkj)(∇kφtj). Using dΦ = 0 on the second
factor on the right and simplifying, we have

φkj∇t∇kφtj = −1
2
|∇φ|2. (∗∗)

From (∗) and (∗∗),

φkj(∇k∇tφtj −∇t∇kφtj) =
1
2
|∇φ|2 − 4n2.

Therefore by Corollary 7.1,
1
2
|∇φ|2 − 4n2 = φkj(Rkta

tφaj −Rktj
aφta) = (gka − ξkξa)(−ρka) + τ∗

= τ∗ − τ + (2n− trh2),

which is the desired formula.
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Now (∇iφjk − gikηj + gijηk)(∇iφjk − gikξj + gijξk) ≥ 0 is equivalent
to |∇φ|2 − 4n ≥ 0, giving the inequality, and by Theorem 6.3, equality
holds if and only if the structure is Sasakian.

We now prove the following important result of Olszak [1979].

Theorem 7.3 If a contact metric manifold M2n+1 is of constant cur-
vature c and dimension ≥ 5, then c = 1 and the structure is Sasakian.

Proof. Recall from Proposition 7.1 that 1
2(Rξ Xξ − φRξ φXξ) = h2X +

φ2X; thus if RX Y Z = c(g(Y,Z)X − g(X,Z)Y ), then c
2(η(X)ξ − X +

φ2X) = h2X + φ2X. Therefore h2X + (c − 1)φ2X and hence trh2 =
2n(1− c). Now from the second equation in Lemma 7.4,

c(g(X,Y )η(Z)− η(Y )g(X,Z))− 0− cη(Y )g(φX,φZ) + cη(Z)g(φX,φY )

= 2(∇hXΦ)(Y,Z)− 2η(Y )g(X + hX,Z) + 2η(Z)g(X + hX, Y ).

Therefore

(∇hXΦ)(Y,Z) = (1− c)(η(Y )g(X,Z) − η(Z)g(X,Y ))
+ η(Y )g(hX,Z) − η(Z)g(hX, Y ).

Replacing X by hX, we have

−g((∇(c−1)(−X+η(X)ξ)φ)Y,Z) = (1− c)(η(Y )g(hX,Z) − η(Z)g(hX, Y ))

+ η(Y )g((c − 1)(−X + η(X)ξ), Z)
− η(Z)g((c − 1)(−X + η(X)ξ), Y ),

and hence

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX).

Using this to compute |∇φ|2 and using trh2 = 2n(1− c), we obtain

|∇φ|2 = 4n(2− c).

On the other hand, τ = 2n(2n + 1)c, and τ∗ = 2nc, as is easily checked.
Now from Olszak’s formula in Proposition 7.7,

τ − τ∗ − 4n2 = −trh2 − 1
2
|∇φ|2 + 2n ≤ 0,
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with equality if and only if the structure is Sasakian. Computing both
sides of this formula, we find that 4n2(c− 1) = 4n(c− 1); thus if n > 1,
then c = 1 and hence τ − τ∗ − 4n2 = 0, giving M2n+1 Sasakian.

Earlier, the present author [1976] showed that in dimension ≥ 5, there
are no flat associated metrics. Thus while the 5-torus carries a contact
structure (Example 3.2.6), the flat metric is not an associated metric. In
dimension 3, the only constant curvature, cases are constant curvature 0
and 1, as we will note below. The nonexistence of flat associated metrics
does raise the question whether there are contact metric manifolds of
everywhere non-positive curvature, except for the flat 3-dimensional case.
If the manifold is compact and we ask for strictly negative curvature, we
can answer this question in the negative using the following deep result
of A. Zeghib [1995] on geodesic plane fields. Recall that a plane field on a
Riemannian manifold is said to be geodesic if any geodesic tangent to the
plane field at one point is tangent to it at every point.

Theorem 7.4 A compact negatively curved Riemannian manifold has
no C1 geodesic plane field (of nontrivial dimension).

Since for any contact metric structure the integral curves of ξ are geo-
desics (Theorem 4.5), ξ determines a geodesic line field to which we can
apply the theorem of Zeghib, as was pointed out by Rukimbira [1998].
Thus we have the following corollary.

Corollary 7.2 On a compact contact manifold, there is no associated
metric of strictly negative curvature.

The author conjectures that this and a bit more is true locally, viz. that
except for the flat 3-dimensional case, any contact metric manifold has
some positive sectional curvature. The fact that hyperbolic space has
many 1-dimensional totally geodesic foliations does not violate such a
conjecture, since the hyperbolic metric cannot be an associated metric
of any contact structure by the above theorem of Olszak.

Along the line of the influence of a contact structure on the curvature of
its associated metrics we also make the following remark. In [1941] Myers
proved that a complete Riemannian manifold for which Ric ≥ δ > 0 is
compact and has finite fundamental group. In [1981] Hasegawa and Seino
generalized Myers’ theorem for a K-contact manifold by proving that a
complete K-contact manifold for which Ric ≥ −δ > −2 is compact (they
state their result in the Sasakian case, but their proof uses only the
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K-contact property). As we have seen in the K-contact case, all sectional
curvatures of plane sections containing ξ are equal to 1, and hence there is
some of positive curvature from the outset. In an attempt to weaken the
K-contact requirement in this result, R. Sharma and the author [1990a]
considered a contact metric manifold M2n+1 for which ξ is an eigenvector
field of the Ricci operator, equivalently, the divergence of hφ is propor-
tional to η. In this case, if Ric ≥ −δ > −2 and the sectional curvatures
of plane sections containing ξ are ≥ ε > δ′ ≥ 0, where

δ′ = 2
√

n(δ − 2
√

2δ + n + 2)− (δ − 2
√

2δ + 1 + 2n),

then M2n+1 is compact.
The flat case was investigated further by Rukimbira [1998], who showed

that a compact flat contact metric manifold is isometric to the quotient
of a flat 3-torus by a finite cyclic group of isometries of order 1, 2, 3, 4
or 6.

In Example 3.2.6 and Section 6.2 we saw explicitly a flat contact metric
structure on R

3 and in turn on the 3-dimensional torus T 3. As in Section
6.2, let η = 1

2 (cos x3dx1 +sinx3dx2) be the contact form; gij = 1
4δij is an

associated metric, and the nonzero eigenvalues of h are ±1. It is inter-
esting to study this example in Darboux coordinates and to generalize it
to higher dimensions. By the Darboux theorem there exist coordinates
(x, y, z) such that the contact form η is given by 1

2(dz − y dx). Consider
the map f : R

3 −→ R
3 given by

x1 = z cos x− y sin x, x2 = −z sin x− y cos x, x3 = −x.

Then 1
2 (dz− y dx) = f∗η and g0 = f∗g is a flat associated metric for the

Darboux form η0 = 1
2(dz − y dx). The metric g0 is given by

g0 =
1
4

⎛

⎝
1 + y2 + z2 z −y

z 1 0
−y 0 1

⎞

⎠ .

Now consider the Darboux form η = 1
2(dz −∑ yidxi) on R

2n+1. The
metric

g =
1
4

⎛

⎝
δij + yiyj + δijz

2 δijz −yi

δijz δij 0
−yj 0 1

⎞

⎠
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is an associated metric quite different from the Sasakian metric given in
Examples 4.5.1 and 6.7.1. Direct computation shows that h ∂

∂yi = − ∂
∂yi .

Therefore −1 is an eigenvalue of h of multiplicity n, and hence in turn +1
is also an eigenvalue of multiplicity n. This metric enjoys the following
curvature properties: Rξ Xξ = 0 for every X and RX Y ξ = 0 for X,Y ∈
{−1}. However, RX Y ξ �= 0 in general; for example in dimension 5,

R ∂
∂x1

∂
∂x2

ξ =
1
2

(

−y2 ∂

∂x1
+ y1 ∂

∂x2
+ y2z

∂

∂y1
− y1z

∂

∂y2

)

.

We now show that the condition RX Y ξ = 0 for all X,Y has a strong
and interesting implication for a contact metric manifold, namely that it
is locally the product of Euclidean space En+1 and a sphere of constant
curvature +4 (the author [1977]).

Theorem 7.5 A contact metric manifold M2n+1 satisfying RX Y ξ = 0
is locally isometric to En+1 × Sn(4) for n > 1 and flat for n = 1.

Proof. RX Y ξ = 0 implies, by Proposition 7.1, that h2 + φ2 = 0 and
hence that the nonzero eigenvalues of h are ±1, each with multiplicity
n. For X,Y ∈ [−1],

0 = −∇[X,Y ]ξ = φ[X,Y ] + φh[X,Y ]

and η([X,Y ]) = −2dη(X,Y ) = −2g(X,φY ) = 0. Thus [−1] is integrable.
Also 0 = −∇[X,ξ]ξ, so that [X, ξ] ∈ [−1]. Therefore [−1] ⊕ {ξ} is inte-
grable.

Choose coordinates (u0, . . . , u2n) such that ∂
∂u0 , . . . , ∂

∂un ∈ [−1]⊕ {ξ}.
Let Xi = ∂

∂un+i +
∑n

j=0 f ji
∂
∂uj , where the f ji ’s are functions chosen so

that Xi ∈ [+1]. Now [ ∂
∂uk ,Xi] ∈ [−1]⊕ {ξ}, k = 0, . . . , n, and hence

0 = ∇[ ∂

∂uk ,Xi]
ξ = ∇ ∂

∂uk
∇Xiξ −∇Xi∇ ∂

∂uk
ξ = −2∇ ∂

∂uk
φXi,

from which
∇φXj

φXi = 0.

We therefore see that the integral submanifolds of [−1]⊕{ξ} are totally
geodesic and flat.

From the second equation of Lemma 7.4, we have for X,Y,Z orthog-
onal to ξ that g((∇Xφ)Y,Z) = 0. Also for X,Y ∈ [+1],

0 = RX Y ξ = −2∇XφY + 2∇Y φX −∇[X,Y ]ξ

= − 2(∇Xφ)Y + 2(∇Y φ)X − 2φ[X,Y ] + φ[X,Y ] + φh[X,Y ].
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Taking the inner product with Z ∈ [+1] gives g(−φ[X,Y ]−hφ[X,Y ], Z) =
0, and hence g(φ[X,Y ], Z) = 0. Thus [X,Y ] is orthogonal to [−1]. Also
η([X,Y ]) = 0, and therefore [+1] is integrable.

Now take X ∈ [−1] and Y ∈ [+1]. Then

0 = RX Y ξ = −2∇XφY + φ[X,Y ] + φh[X,Y ]
= − 2(∇Xφ)Y − φ∇XY − φ∇Y X − hφ∇XY + hφ∇Y X.

Taking the inner product with Z ∈ [−1], we have g(φ∇Y X,Z) = 0 and
hence that ∇Y X is orthogonal to [+1]. Also ∇Y ξ = −2φY is orthogonal
to [+1]. Therefore the integral submanifolds of [+1] are totally geodesic.
Moreover, we are now at the point that M2n+1 has a local Riemannian
product structure.

For X ∈ [+1],

g((∇Xφ)Y, ξ) = −g((∇Xφ)ξ, Y ) = g(φ∇Xξ, Y )
= g(φ(−2φX), Y ) = 2g(X,Y ),

and hence by the second formula of Lemma 7.4, (∇Xφ)Y = 2g(X,Y )ξ
for X,Y ∈ [+1]. Now for X,Y,Z,W ∈ [+1],

g(∇X∇Y φZ, φW )− g(∇X∇Y Z,W )
= g(∇X (2g(Y,Z)ξ + φ∇Y Z), φW )− g(∇X∇Y Z,W )
= −4g(Y,Z)g(X,W ),

using the property we noted above that g((∇Xφ)Y,Z) = 0 for X,Y,Z
orthogonal to ξ. Using this property again to treat the terms involving
∇[X,Y ], we have

g(RX Y φZ, φW )−g(RX Y Z,W ) = −4(g(Y,Z)g(X,W )−g(X,Z)g(Y,W ))

but g(RX Y φZ, φW ) = 0 by virtue of the Riemannian product structure.
Therefore the integral submanifolds of [+1] are locally isometric to Sn(4).

In dimension 3, the integrability of [−1] and [+1] is immediate and the
rest of the proof goes through, giving that M3 is flat.

7.3 The (κ, μ)-manifolds

As a generalization of both RX Y ξ = 0 (Theorem 7.5 above) and the
Sasakian case, RX Y ξ = η(Y )X − η(X)Y , consider

RX Y ξ = κ(η(Y )X − η(X)Y ) + μ(η(Y )hX − η(X)hY )
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for constants κ and μ. A contact metric manifold satisfying this condi-
tion is called a (κ, μ)-manifold. Despite the technical appearance of this
condition there are good reasons for considering it; we first mention them
here, referring to Koufogiorgos and Papantoniou and the author [1995] for
details and then give a classification theorem due to Boeckx [2000] and
other results.

Theorem 7.6 A (κ, μ)-manifold M is a strongly pseudoconvex
CR-manifold.

Theorem 7.7 Let M2n+1 be a (κ, μ)-manifold. Then κ ≤ 1. If κ = 1,
the structure is Sasakian. If κ < 1, the (κ, μ) condition determines the
curvature of M2n+1 completely.

We remark that when κ = 1, the proof shows that h = 0, and hence μ
is indeterminant in this case. When κ < 1, the nonzero eigenvalues of h
are ±√1− κ, each with multiplicity n. Let λ be the positive eigenvalue.
Then M2n+1 admits three mutually orthogonal subbundles, D(0), D(λ)
and D(−λ), which are integrable.

The curvature tensor of a non-Sasakian (κ, μ)-manifold may be found
in Boeckx [1999]. We mention only that for a unit vector X ∈ [λ], φX ∈
[−λ], we have the following sectional curvatures:

K(X, ξ) = κ + λμ, K(φX, ξ) = κ− λμ, K(X,φX) = −(κ + μ).

Thus, turning to the question of the sign of the curvature, if a (κ, μ)-
manifold were of negative curvature, then λ > 1 by Corollary 7.1 and
now with both κ ± λμ < 0, we have λ2 − 1 > λ|μ|. Then K(X,φX) =
−(κ + μ) < 0 which gives λ|μ| < λ2 − 1 < μ, a contradiction.

The Ricci operator and the scalar curvature of a (2n + 1)-dimensional
(κ, μ)-manifold are given by

QX = (2(n− 1)− nμ)X + (2(n− 1) + μ)hX

+ (n(2κ + μ)− 2(n − 1))η(X)ξ,
τ = 2n(2(n− 1) + κ− nμ).

Theorem 7.8 Let M be a 3-dimensional (κ, μ)-manifold. Then M is
either Sasakian or locally isometric to one of the unimodular Lie groups
SU(2), SL(2, R), E(2), E(1, 1) with a left-invariant metric.
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Theorem 7.9 The standard contact metric structure on the tangent
sphere bundle T1M (see Section 9.2) satisfies the (κ, μ) condition if and
only if the base manifold M is of constant curvature. In particular, if M
has constant curvature c, then κ = c(2− c) and μ = −2c.

Given a contact metric structure (φ, ξ, η, g), consider the deformed
structure

η̄ = aη, ξ̄ =
1
a
ξ, φ̄ = φ, ḡ = ag + a(a− 1)η ⊗ η,

where a is a positive constant. Such a deformation is called aD-homothetic
deformation, since the metrics restricted to the contact subbundle D are
homothetic. This deformation was introduced by Tanno in [1968] and
has many applications. While such a change preserves the state of being
contact metric, K-contact, Sasakian, or strongly pseudoconvex CR, it
destroys a condition like RX Y ξ = 0 or RX Y ξ = κ(η(Y )X − η(X)Y ).
However, the form of the (κ, μ) condition is preserved under a D-homo-
thetic deformation with

κ̄ =
κ + a2 − 1

a2
, μ̄ =

μ + 2a− 2
a

.

For a non-Sasakian (κ, μ)-manifold M , Boeckx [2000] introduced an
invariant

IM =
1− μ

2√
1− κ

and showed that for two non-Sasakian (κ, μ)-manifolds (Mi, φi, ξi, ηi, gi),
i = 1, 2, we have IM1 = IM2 if and only if up to a D-homothetic defor-
mation, the two spaces are locally isometric as contact metric manifolds.
Thus we know all non-Sasakian (κ, μ)-manifolds locally as soon as we
have for every odd dimension 2n + 1 and for every possible value of the
invariant I, one (κ, μ)-manifold (M,φ, ξ, η, g) with IM = I. From The-
orem 7.9 we see that for the standard contact metric structure on the
tangent sphere bundle of a manifold of constant curvature c, I = 1+c

|1−c| .
Therefore as c varies over the reals, I takes on every value > −1. Boeckx
now gives an example for any odd dimension and value of I ≤ −1; his
construction is as follows.

Let g be a (2n + 1)-dimensional Lie algebra, n ≥ 2. Introduce a basis
for g, {ξ,X1, . . . ,Xn, Y1, . . . , Yn}, and for real numbers α and β define
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the Lie bracket by

[ξ,X1] = −αβ

2
X2 − α2

2
Y1, [ξ,X2] =

αβ

2
X1 − α2

2
Y2,

[ξ,Xi] = −α2

2
Yi, i ≥ 3,

[ξ, Y1] =
β2

2
X1 − αβ

2
Y2, [ξ, Y2] =

β2

2
X2 +

αβ

2
Y1,

[ξ, Yi] =
β2

2
Xi, i ≥ 3,

[X1,Xi] = αXi, i �= 1, [Xi,Xj ] = 0, i, j �= 1,
[Y2, Yi] = βYi, i �= 2, [Yi, Yj] = 0, i, j �= 2,

[X1, Y1] = −βX2 + 2ξ, [X1, Yi] = 0, i ≥ 2,
[X2, Y1] = βX1 − αY2, [X2, Y2] = αY1 + 2ξ, [X2, Yi] = βXi, i ≥ 3,
[Xi, Y1] = −αYi, i ≥ 3, [Xi, Y2] = 0, i ≥ 3,
[Xi, Yj ] = δij(−βX2 + αY1 + 2ξ), i, j ≥ 3.

The associated Lie group G is not unimodular for dim g ≥ 5, and
not both α and β are equal to zero, since tr adX1 = (n − 1)α and tr
adY2 = (n−1)β. Now define a metric on G by left translation of the basis
{ξ,X1, . . . ,Xn, Y1, . . . , Yn}, taken as orthonormal at the identity. Then
taking η as the metric dual of ξ and defining φ by φξ = 0, φXi = Yi and
φYi = −Xi, we have a contact metric structure on G. Now for the present
purpose suppose that β2 > α2. Then G is a non-Sasakian (κ, μ)-manifold
and

IG = −β2 + α2

β2 − α2
≤ −1;

thus for appropriate choices of β > α ≥ 0, IG attains any value
≤ −1.

For the 3-dimensional case, keeping Theorem 7.8 in mind, consider the
Lie algebra

[ξ,X] = −α2

2
Y, [ξ, Y ] =

β2

2
X, [X,Y ] = 2ξ,

which corresponds to a unimodular Lie group. Boeckx [2000] now points
out that for β > α > 0 we obtain a left-invariant contact metric structure
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on SL(2, R) with ISL(2,R) < −1. For β > 0 and α = 0 we have a left-
invariant contact metric structure on E(1, 1) with IE(1,1) = −1. It is
worth mentioning that there are also (κ, μ)-structures on SL(2, R) with
−1 < ISL(2,R) < +1, on E(2) with IE(2) = +1 and on SU(2) with
ISU(2) > 1. (see also Koufogiorgos, Papantoniou and the author [1995]).

In [2000] Koufogiorgos and Tsichlias considered the question of contact
metric manifolds for which ξ satisfies the (κ, μ) condition but where
κ and μ are functions rather than constants and called these spaces
generalized (κ, μ)-manifolds. They showed that in dimensions ≥ 5, κ and
μ must be constant and in dimension 3 gave an example for which κ
and μ are not constants; this case is studied further in Koufogiorgos and
Tsichlias [2003]. Moreover, this idea is closely related to the question of
the characteristic vector field as a map into the tangent sphere bundle
being a harmonic map. We discuss this topic in Subsection 10.3.1.

We have already noted that for a non-Sasakian (κ, μ)-manifold, h
admits two nonzero eigenvalues ±λ determining n-dimensional integrable
subbundles D(λ) and D(−λ) and hence two complementary Legendre
foliations. Cappelletti Montano and Di Terlizzi [2008] studied these
foliations in detail. The Pang invariants (see Example 5.3.4) are

ΠD(λ) =
(λ + 1)2 − κ− μλ

λ
g|D(λ)×D(λ),

ΠD(−λ) =
−(λ− 1)2 + κ− μλ

λ
g|D(−λ)×D(−λ).

Cappelletti Montano and Di Terlizzi then prove the following theorem.

Theorem 7.10 Let (M,φ, ξ, η, g) be a non-Sasakian contact metric man-
ifold. Then the manifold is a (κ, μ)-manifold if and only if it admits two
mutually orthogonal Legendre subbundles L and Q and a unique linear
connection ∇̄ such that

∇̄L ⊂ L, ∇̄Q ⊂ Q,

∇̄η = 0, ∇̄dη = 0, ∇̄g = 0, ∇̄φ = 0, ∇̄h = 0,

T̄ (X,Y ) = 2dη(X,Y )ξ for all X, Y ∈ D,

T̄ (X, ξ) = [ξ,XL]Q + [ξ,XQ]L for all tangent vector fields X,

where T̄ denotes the torsion of ∇̄ and the subscripts indicate the projec-
tions to L and Q. Furthermore, L and Q are integrable and coincide with
the eigenspaces D(λ) and D(−λ).
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For a Legendre foliation with ΠF nondegenerate, Libermann [1991]
introduced a linear map Λ : TM −→ TF by

ΠF (ΛX,Y ) = dη(X,Y ).

While the kernel of this map is TF ⊕ Rξ and Λ2 = 0, this map and ΠF
can be used in particular cases to define a field of endomorphisms φ and
a metric g to give a contact metric structure to a contact manifold as
in the works of Jayne [1998] and Cappelletti Montano [to appear]. The
latter author especially gives conditions under which a contact manifold
admits a (κ, μ)-structure.

If on a (κ, μ)-manifold, μ = 0, the contact metric manifold is said to
be one for which ξ belongs to the κ-nullity distribution. In general, the
κ-nullity distribution of a Riemannian manifold (M,g) is the subbundle
N(k) defined by

Np(κ) = {Z ∈ TpM |RXY Z = κ
(
(g(Y,Z)X − g(X,Z)Y

)∀X,Y ∈ TpM}.
In dimension 3, Koufogiorgos, Sharma and the author [1990] showed

that ξ belonging to N(κ) is equivalent to the Ricci operator Q commuting
with φ and equivalent to the contact metric manifold being η-Einstein,
i.e.,

Q = aI + bη ⊗ ξ

for some functions a and b. In dimensions ≥ 5 it is known that for any
η-Einstein K-contact manifold, a and b are constants. The main result of
the author’s papers with Koufogiorgos and Sharma [1990] and H. Chen
[1992] is that a 3-dimensional contact metric manifold for which ξ belongs
to the κ-nullity distribution is either Sasakian, flat, or locally isometric
to a left-invariant metric on the Lie group SU(2) or SL(2, R).

We now give another example of a manifold with ξ belonging to the
κ-nullity distribution. Using the Boeckx invariant we construct an exam-
ple with κ = 1 − 1

n , n > 1. Since the Boeckx invariant for a (1 − 1
n , 0)-

manifold is
√

n > −1, referring to Theorem 7.9 above, we consider the
tangent sphere bundle of an (n + 1)-dimensional manifold of constant
curvature c. Choose a D-homothetic deformation so that the resulting
manifold will be a (1 − 1

n , 0)-manifold. That is, for κ = c(2 − c) and
μ = −2c, we solve

1− 1
n

=
κ + a2 − 1

a2
, 0 =

μ + 2a− 2
a
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for a and c. The result is

c =
(
√

n± 1)2

n− 1
, a = 1 + c,

and taking c and a to be these values, we have a contact metric manifold
with ξ belonging to the (1− 1

n)-nullity distribution.
Now consider the concircular curvature tensor

ZXY V = RXY V − τ

2n(2n + 1)
(g(Y, V )X − g(X,V )Y )

and let ZξX ·Z denote the action of ZξX on Z as a derivation. J.-S. Kim,
M. M. Tripathi and the author [2005] proved the following theorem.

Theorem 7.11 A (2n+1)-dimensional contact metric manifold M with
ξ belonging to the κ-nullity distribution satisfies

ZξX · Z = 0

if and only if M is 3-dimensional and flat, or locally isometric to the
sphere S2n+1(1), or locally isometric to the above example (κ = 1 − 1

n ,
n > 1).

An interesting side question associated with ξ belonging to the κ-
nullity distribution is the dimension of the κ-nullity distribution itself.
Clearly if a vector Z belongs to N(κ), then the sectional curvatures of
all plane sections containing Z are equal to κ. In particular, on any
Riemannian manifold, N(κ) is nontrivial for at most one value of κ. It is
known that N(κ) is an integrable subbundle with totally geodesic leaves
of constant curvature κ; see, e.g., Tanno [1978a]. In unpublished work,
Baikoussis, Koufogiorgos and the author showed that if the characteristic
vector field ξ on a contact metric manifold M2n+1 with n > 1 belongs
to N(κ), then (κ ≤ 1 and) if κ < 1 and κ �= 0, then dimN(κ) = 1. The
corresponding result for n = 1 is due to R. Sharma [1995]. If κ = 0,
M2n+1 is locally En+1 × Sn(4), as we have seen, and ξ is tangent to
the Euclidean factor, giving dimN(0) = n + 1. If κ = 1, the structure
is Sasakian. This leaves the question of the dimension of N(1) on a
Sasakian manifold. P. Rukimbira [2009] showed that the dimension of
N(1) is either ≤ n or 2n + 1, i.e., N(1) is the whole tangent bundle. F.
Gouli-Andreou and the author conjecture that the dimension of N(1)
must be either 2n + 1 (and M2n+1 is of constant curvature) or 3 (and
M2n+1 has a Sasakian 3-structure; see Chapter 14) or 1.
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7.4 Sasakian Einstein manifolds

Sasakian Einstein manifolds have recently been shown to be very numer-
ous, and so a brief discussion is in order. For a more complete treatment
see the book of Boyer and Galicki [2008, Chapter 11] and for very recent
results see the papers of J. Kollár [2009], J. Sparks [2009], and C. van
Coevering [2009].

First note that on a Sasakian Einstein manifold M , Qξ = 2nξ and
Q = τ

2n+1I, and hence the scalar curvature is τ = 2n(2n + 1) > 0. The
Einstein constant being 2n implies that in the compact case, π1(M) is
finite by Myers’ theorem [1941].

An important recent result is the following theorem of Boyer and
Galicki [2001]; see also Boyer and Galicki [2008, pp. 372–374]. This re-
markable result should be compared with the Goldberg conjecture that a
compact almost Kähler Einstein space is Kähler (see Section 10.2). The
Goldberg conjecture is true for nonnegative scalar curvature (Sekigawa
[1987]). Since Sasakian Einstein manifolds have positive scalar curvature,
one might hope for a result similar to the Goldberg conjecture in contact
geometry, and Boyer and Galicki achieved the following.

Theorem 7.12 A compact K-contact Einstein manifold M2n+1 is
Sasakian.

For an almost regular (quasiregular) K-contact manifold the proof of
this theorem by Boyer and Galicki is to consider the quotient by the flow
of ξ, which is an almost Kähler orbifold and is Einstein with positive
scalar curvature. Since Sekigawa’s proof of the Goldberg conjecture uses
only local computations and certain integral formulas, one has that the
orbifold is Kähler Einstein. Thus in turn, one has that the given manifold
is Sasakian. If ξ is not almost regular, Boyer and Galicki show that it
may be approximated by a sequence of almost regular vector fields that
define K-contact structures for a sequence of metrics.

An alternative proof of this theorem was given by Apostolov, Draghici
and Moroianu [2006]. Their approach is to use the cone

C(M2n+1) = (R+ ×M2n+1, ḡ = dr2 + r2g)

over the K-contact manifold M2n+1. The curvature R̄ of the cone is given
by R̄XY Z = RXY Z +g(X,Z)Y −g(Y,Z)X for vectors tangent to M2n+1

and vanishes if any of the vectors is ∂
∂r . Then Q̄X = QX − 2nX, and
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we see that g is Einstein (with Einstein constant 2n) if and only if the
cone is Ricci flat. Thus the bulk of the work in this proof is to prove the
integrability.

It is also known that a contact metric Einstein manifold of dimension
≥ 5 with ξ belonging to the κ-nullity distribution is Sasakian (Tanno
[1988]). In fact, aside from the flat 3-dimensional case there are no non-
Sasakian Einstein (κ, μ)-manifolds, as can easily be seen from the formula
for the Ricci operator of a (κ, μ)-manifold given in the last section.

In [2006] Apostolov, Draghici and Moroianu also prove the following
theorem.

Theorem 7.13 Let (M,φ, ξ, η, g) be a Sasakian Einstein manifold.. Then
any contact metric structure on M with characteristic vector field ξ′ and
the same metric g is Sasakian. Moreover, if ξ′ �= ±ξ, then either (M,g)
admits a 3-Sasakian structure (see Chapter 14) or (M,g) is covered by
a round sphere.

There are many Sasakian Einstein manifolds, as shown by Boyer and
Galicki in [2000] and in their book [2008, Chapter 11], including the well-
known Sasakian Einstein structure on S3×S2 (see Tanno [1978b] and Sec-
tion 9.2). Generalizing this last example, Boyer, Galicki and Nakamaye
[2003b] showed that S3 × S2 carries 14 inequivalent Sasakian Einstein

structures and that there are infinite families of such structures on the
connected sums S3 × S2# · · ·#S3 × S2 with 2, . . . , 7 summands. More
recently, J. Kollár [2007] proved the existence of families of Sasakian
Einstein metrics for any number of summands ≥ 6. We also note that
very explicit expressions for Sasakian Einstein metrics on S3 × S2 were
given in Gauntlett, Martelli, Sparks and Waldram [2004].

It is also known that there exist Sasakian Einstein metrics on many
homotopy spheres; see Boyer, Galicki and Kollár [2005] and Boyer and
Galicki [2008, Section 11.5].

Let us now turn briefly to the η-Einstein case. Recall that this means
that the Ricci tensor ρ = ag+bη⊗η, where initially a and b are functions,
but if the dimension is≥ 5, a and b must be constants. S. Morimoto [1992]
and independently Boyer and Galicki [2001] prove the following theorem.

Theorem 7.14 If M2n+1 is a compact η-Einstein K-contact manifold
with Ricci tensor, then ρ = ag + bη ⊗ η, and if a ≥ −2, then M2n+1 is
Sasakian.
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Boyer and Galicki in their treatment of this question prove more,
namely, that if a > −2, then the D-homothetically deformed metric
g = αg + α(α − 1)η ⊗ η with α = a+2

2n+2 is Sasakian Einstein and hence
π1(M2n+1) is finite. For further results on Sasakian η-Einstein structures
we refer to the paper of Boyer, Galicki and Matzeu [2006] and to the book
of Boyer and Galicki [2008, Sections 11.1 and 11.8].

7.5 Locally symmetric contact metric manifolds

The question of locally symmetric contact metric manifolds has a long
history, but the list of such manifolds is very short, and we highlight just
a few of the results in this direction.

Already in [1962a] Okumura proved that a locally symmetric Sasakian
manifold is of constant curvature +1. This was generalized to the
K-contact case by Tanno [1967b].

In [1989] the author showed that the standard contact metric structure
of the tangent sphere bundle (or unit tangent bundle but with a homo-
thetic change of metric) T1M of a Riemannian manifold M is locally
symmetric if and only if either M is flat, in which case T1M is locally
isometric to En+1×Sn(4), or M is 2-dimensional and of constant curva-
ture +1, in which case T1M is locally isometric to T1S

2 ∼ RP 3 ∼ SO(3).
We remark that even though T1S

3 is topologically S3 × S2, the product
metric is not an associated metric to the natural contact structure (see
Section 9.2).

The above results raise the question of the classification of all locally
symmetric contact metric manifolds, and one might conjecture that the
only two posibilities are contact metric manifolds that are locally iso-
metric to S2n+1(1) or En+1×Sn(4). In dimension 3, R. Sharma and the
author [1990b] showed that a locally symmetric contact metric manifold
is of constant curvature 0 or 1. In dimension 5, A. M. Pastore [1998]
showed that indeed local isometry with S5(1) or E3×S2(4) are the only
two possibilities.

In [1994] K. Bang showed that a locally symmetric contact metric man-
ifold with RX ξξ = 0 is locally isometric to En+1 × Sn(4); this answered
positively a question posed by D. Perrone [1992a].

When the contact metric manifold is a CR-manifold (i.e., (∇Xφ)Y =
g(X + hX, Y )ξ − η(Y )(X + hX)) of dimension 2n + 1 > 3 but �= 7,
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Ghosh and Sharma showed in [1999] that the condition of being locally
symmetric implies that the manifold is locally isometric to S2n+1(1) or
En+1 × Sn(4).

Finally, in [2006], without any further restrictions, Boeckx and Cho
proved the following classification theorem.

Theorem 7.15 A locally symmetric contact metric manifold is locally
isometric to S2n+1(1) or En+1 × Sn(4).

7.6 Conformally flat contact metric manifolds

Instead of asking when a contact metric manifold is locally symmetric, we
now consider the question of a contact metric manifold being conformally
flat. In [1962a] Okumura showed that a conformally flat Sasakian man-
ifold of dimension ≥ 5 is of constant curvature +1 and in [1963,1967b]
Tanno extended this result to the K-contact case and for dimensions ≥ 3.

Theorem 7.16 A conformally flat K-contact manifold is of constant
curvature +1 and Sasakian.

In a similar vein, if a contact metric manifold of dimension ≥ 5 is a
CR-manifold, Ghosh, Koufogiorgos and Sharma [2001] showed that
conformal flatness implies constant curvature +1.

In dimension ≥ 5, as we have seen, a contact metric structure of con-
stant curvature must be of constant curvature +1 and in dimension 3
a contact metric structure of constant curvature must be of constant
curvature 0 or +1. For simplicity and future use we introduce another
symmetric operator l by

lX = RX ξξ.

K. Bang [1994] showed that in dimension ≥ 5 there are no conformally
flat contact metric structures with l = 0, even though there are many
contact metric manifolds satisfying l = 0; see Theorem 9.16. Bang’s result
was extended to dimension 3 and in fact generalized by Gouli-Andreou
and Xenos [1999] who showed that in dimension 3 the only conformally
flat contact metric structures satisfying ∇ξl = 0 (equivalent to ∇ξh = 0,
Perrone [1992a]) are those of constant curvature 0 or 1.

In the case of the standard contact metric structure on the tangent
sphere bundle (Section 9.2), the condition of conformal flatness is quite
extreme; in fact, the metric is conformally flat if and only if the base
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manifold is a surface of constant Gaussian curvature 0 or 1 (Theorem
9.6), as was shown by Th. Koufogiorgos and the author [1994].

In [1999] Calvaruso, Perrone and Vanhecke showed that in dimension
3 the only conformally flat contact metric structures for which ξ is an
eigenvector of the Ricci tensor are those of constant curvature 0 or 1. This
seems to be a somewhat key condition and has attracted the attention
of several authors. Finally, in [2004] the corresponding result in higher
dimensions was achieved by F. Gouli-Andreou and N. Tsolakidou. An
independent and basis-free proof was given by K. Bang and the author
in [2008].

Theorem 7.17 A conformally flat contact metric manifold whose char-
acteristic vector field is everywhere an eigenvector of the Ricci operator
is of constant curvature.

A contrasting condition to ξ being an eigenvector of the Ricci tensor,
namely that Qξ be orthogonal to ξ, was considered by F. Gouli-Andreou
and R. Sharma [2003]. They showed that a compact 3-dimensional con-
formally flat contact metric manifold satisfying this condition is flat.

In view of these strong curvature results one may ask whether there
are any conformally flat contact metric structures that are not of con-
stant curvature. We devote the rest of this section to showing the local
existence and giving some additional remarks.

We will work in R
3, primarily with cylindrical coordinates (r, θ, z). Let

η = 1
2(α dr + β rdθ + γ dz) be a contact form on R

3. Then

dη =
1
2
(
(β + rβr − αθ)dr ∧ dθ + (γr − αz)dr ∧ dz + (γθ − rβz)dθ ∧ dz

)
.

If g is a conformally flat metric, we may write it as ds2 = 1
4e2σ(dr2 +

r2dθ2 + dz2). If g is also an associated metric, the characteristic vector
field is given by

ξ = 2e−2σ
(
α

∂

∂r
+ β

1
r

∂

∂θ
+ γ

∂

∂z

)
,

and η(ξ) = 1 gives e2σ = α2 + β2 + γ2. Computing g−1, we can obtain φ
from dη but we must have dη(ξ,X) = 0 and φ2 = −I + η ⊗ ξ.

Much of our analysis will actually be done with respect to the Euclid-
ean metric on R

3, and we denote the Euclidean length of a vector field
B by |B|. In particular, if B = α ∂

∂r + β 1
r
∂
∂θ + γ ∂

∂z , then |B| = eσ.
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Now dη(ξ,X) = 0 for all X gives

1
r
β(β + rβr − αθ) + γ(γr − αz) = 0,

α(αθ − β − rβr) + γ(γθ − rβz) = 0,

α(αz − γr) +
1
r
β(rβz − γθ) = 0,

and therefore curlB is proportional to B, say curlB = fB. Then φ2 =
−I + η ⊗ ξ yields f2 = e2σ. Therefore curlB = ±eσB. Since we may
change the sign of η without changing the problem, our study reduces to
the study of the differential equation

curlB = |B|B.

Thus we are at the point that the existence of 3-dimensional confor-
mally flat contact metric manifolds corresponds to finding solutions of
curlB = |B|B. Had we carried out our analysis in Cartesian coordi-
nates (x, y, z), we would have been led to the same differential equation
for a vector field B = α ∂

∂x + β ∂
∂y + γ ∂

∂z . The familiar unit vector field
B = sin z ∂

∂x + cos z ∂
∂y that is equal to its own curl corresponds to the

flat case. Stereographic projection from S3 to R
3 gives the vector field

ξ = (xz − y)
∂

∂x
+ (x + yz)

∂

∂y
+

1
2
(1 + z2 − x2 − y2)

∂

∂z

corresponding to the contact form

η =
4(xz − y)dx + 4(x + yz)dy + 2(1 + z2 − x2 − y2)dz

(1 + x2 + y2 + z2)2

for which g = 4(dx2+dy2+dz2)
(1+x2+y2+z2)2 is an associated metric of constant curvature

+1. The vector field B = 8
(1+x2+y2+z2)2

ξ satisfies curlB = |B|B, though
we remark that it is not of vanishing divergence.

In both of the two constant curvature examples above, the component
functions are not functions of the radial coordinate alone. If curlB =
|B|B and the component functions are functions of r alone, then α = 0
and the other components, β(r) and γ(r), satisfy

1
r
β + β′ =

√
β2 + γ2 γ, −γ′ =

√
β2 + γ2 β. (∗)
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Local existence away from r = 0 follows easily from the standard exis-
tence theorems for systems of ordinary differential equations.

Finally, one can show that the metric ds2 = 1
4e2σ(dr2 + r2dθ2 + dz2)

with e2σ = β2 + γ2 is not of constant curvature. Differentiating e2σ =
β2+γ2 using (∗), we have σ′ = −β2/re2σ . If g were of constant curvature,
the value of the curvature would be 0 or +1. Consider the unit vector
field X = 2e−2σ

(γ
r

∂
∂θ − β ∂

∂z

)
belonging to the contact subbundle D.

Then computing the sectional curvature of the plane section spanned by
ξ and X, we have

g(RXξξ,X) = −4e−2σ

(

σ′2 +
σ′

r

)

=
4e−6σ

r2
β2γ2.

If the constancy of the curvature were 0, then β or γ would vanish,
and from (∗) both would vanish, making η ≡ 0, a contradiction. If the
curvature is +1, then re3σ = 2βγ; differentiating this using (∗) and
σ′ = − β2

re2σ , we again have that β = 0.
This class of examples was studied further by G. Calvaruso [2000]; he

showed that
∇ξh = ahφ, a =

2βγ

re3σ
�= constant.

He also showed that if a is a constant �= 2, then a 3-dimensional con-
formally flat contact metric manifold satisfying ∇ξh = ahφ has constant
curvature. It is not known whether there exist conformally flat contact
mteric manifolds of dimension ≥ 5 that are not locally isometric to the
standard Sasakian structure on the unit sphere.

The equation curlB = fB for some function f arises in solar physics,
and curlB = |B|B can be viewed as a special case; B = μH, where
H is the magnetic field and μ the magnetic permeability. An “active
region” on the sun is an area of extreme magnetic flux. These regions
contain sunspots as well as the highly volatile phenomena of solar flares.
For some solar phenomena, such as flares and prominences, the Lorentz
force, j×B, j being the current density, dominates the pressure gradient
and gravitational forces and thus for a relatively slow moving plasma
we have from the equations of motion the approximation j × B = 0,
the so-called “force-free” field. From Maxwell’s equations we have for an
electrically neutral field curlB = μj. Thus one is led to curlB = fB.
There are many solutions in the literature (see, e.g., the book by E.
Priest [1982]) which by Maxwell’s equation must also satisfy divB = 0.
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Except for the simple case B = sin z ∂
∂x + cos z ∂

∂y , the solutions listed in
Priest [1982] do not satisfy curlB = |B|B. Our vector field is divergence-
free and hence another solution; also its series expansion converges rapidly,
so that its calculation for physical purposes is not prohibitive.

7.7 φφφ-sectional curvature

In this section we introduce the notion of φ-sectional curvature. This idea
plays the role in Sasakian geometry that holomorphic sectional curvature
plays in Kähler geometry. A plane section in TmM2n+1 is called a φ-
section if there exists a vector X ∈ TmM2n+1 orthogonal to ξ such that
{X,φX} span the section. The sectional curvature K(X,φX), denoted
H(X), is called φ-sectional curvature.

Recall that the sectional curvatures of a Riemannian manifold deter-
mine the curvature transformation RX Y Z. It is also well known that
the holomorphic sectional curvatures of a Kähler manifold determine
the curvature completely. We shall show that on a Sasakian manifold
the φ-sectional curvatures determine the curvature completely (Moskal
[1966]). Let B(X,Y ) = g(RX Y Y,X) and for X orthogonal to ξ, let
D(X) = B(X,φX). Also recall the tensor field P defined by

P (X,Y,Z,W ) = dη(X,Z)g(Y,W ) − dη(X,W )g(Y,Z)
− dη(Y,Z)g(X,W ) + dη(Y,W )g(X,Z)

in Section 7.1.

Proposition 7.8 On a Sasakian manifold, for tangent vectors X and
Y orthogonal to ξ we have

B(X,Y ) =
1
32

(
3D(X + φY ) + 3D(X − φY )−D(X + Y )−D(X − Y )

− 4D(X)− 4D(Y )− 24P (X,Y,X, φY )
)
.

Proof. Direct expansion and Lemma 7.1 give

1
32

(
3D(X + φY ) + 3D(X − φY )−D(X + Y )−D(X − Y )

− 4D(X) − 4D(Y )− 24P (X,Y,X, φY )
)
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=
1
32

(
6g(RX Y Y,X) + 6g(RφX φY φY, φX) + 8g(RX φXφY, Y )

+ 12g(RX Y φY, φX) − 2g(RX φY φY,X)− 2g(RφX Y Y, φX)

+ 4g(RX φY Y, φX) − 24P (X,Y,X, φY )
)

= g(RX Y Y,X).

Proposition 7.9 Let M be a Sasakian manifold and {X,Y } an ortho-
normal pair in TmM with X and Y orthogonal to ξ. Set g(X,φY ) = cos θ,
0 ≤ θ ≤ π. Then the sectional curvature K(X,Y ) is given by

K(X,Y ) =
1
8
(
3(1 + cos θ)2H(X + φY ) + 3(1− cos θ)2H(X − φY )

−H(X + Y )−H(X − Y )−H(X)−H(Y ) + 6 sin2 θ
)
.

Proof. K(X,Y ) = B(X,Y ) in the previous proposition, so we examine
the terms in the expansion of B(X,Y ). Clearly D(X) = g(X,X)2H(X)
for any X orthogonal to ξ, and hence for the given pair {X,Y },
g(X + φY,X + φY ) = 2(1 + cos θ), g(X − φY,X − φY ) = 2(1 − cos θ),
g(X + Y,X + Y ) = 2 and g(X − Y,X − Y ) = 2. Thus D(X + φY ) =
4(1 + cos θ)2H(X + φY ), and so on. Finally, note that P (X,Y,X, φY ) =
− sin2 θ, completing the proof.

Theorem 7.18 The φ-sectional curvatures of a Sasakian manifold
determine the curvature completely.

Proof. Since the sectional curvatures of a Riemannian manifold deter-
mine the curvature, it suffices to show that for an orthonormal pair
{X,Y }, K(X,Y ) is determined uniquely by H and g. If X and Y are or-
thogonal to ξ, the previous proposition applies. If X or Y is ξ, K(X,Y ) =
1. So suppose that X = η(X)ξ + aZ and Y = η(Y )ξ + bW , where η(X),
η(Y ), a =

√
1− η(X)2, and b =

√
1− η(Y )2 are nonzero. Recall that on

a Sasakian manifold, Rξ Zξ = −Z and RZ ξZ = −ξ for any unit vector
orthogonal to ξ. Therefore

K(X,Y ) = g(Rη(X)ξ+aZ η(Y )ξ+bWη(Y )ξ + bW, η(X)ξ + aZ)

= b2η(X)2 − 2abη(X)η(Y )g(Z,W ) + a2η(Y )2

+ a2b2g(RZ WW,Z).
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Now g(Z,W ) + 1
ab g(X − η(X)ξ, Y − η(Y )ξ) = − 1

ab η(X)η(Y ), giving

g(RZ WW,Z) =(1− g(Z,W )2)K(Z,W )

=
(
1− 1

a2b2
η(X)2η(Y )2

)
K(Z,W ).

Thus

K(X,Y ) = η(X)2(1− η(Y )2) + 2η(X)2η(Y )2 + η(Y )2(1− η(X)2)

+ ((1− η(X)2)(1 − η(Y )2)− η(X)2η(Y )2))K(Z,W )

= η(X)2 + η(Y )2 + (1− η(X)2 − η(Y )2)K(Z,W ),

and K(Z,W ) is given by the previous proposition completing the proof.

Note that the above proof uses not only the values of the φ-sectional
curvatures, but also the facts that on a Sasakian manifold Rξ Xξ = −X
and RX ξX = −ξ for any unit vector X orthogonal to ξ. Thus we have
actually proved that any tensor field of type (1, 3) on a Sasakian manifold
that satisfies the symmetries of the curvature tensor, the first Bianchi
identity, identity (a) of Lemma 7.1, Rξ Xξ = −X, and RX ξX = −ξ for
any unit vector X orthogonal to ξ and that agrees with the values of the
φ-sectional curvatures must be the curvature tensor. Therefore we can
easily prove the following theorem of Ogiue [1964].

Theorem 7.19 If the φ-sectional curvature at any point of a Sasakian
manifold of dimension ≥ 5 is independent of the choice of φ-section at
the point, then it is constant on the manifold and the curvature tensor is
given by

RX Y Z =
c + 3

4
(g(Y,Z)X − g(X,Z)Y )

+
c− 1

4

(
η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

− g(Y,Z)η(X)ξ + Φ(Z, Y )φX−Φ(Z,X)φY +2Φ(X,Y )φZ
)
,

where c is the constant φ-sectional curvature.

Proof. In view of the above remark, in order to see that the curvature
tensor has the above form with c a function on the manifold one need
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only check the necessary conditions, and this is easily done. The Ricci
tensor ρ and the scalar curvature τ are given by

ρ(X,Y ) =
n(c + 3) + c− 1

2
g(X,Y )− (n + 1)(c− 1)

2
η(X)η(Y )

and
τ =

1
2
(n(2n + 1)(c + 3) + n(c− 1)).

Now from the second Bianchi identity, ∇ατ − 2∇βρβα = 0, where ρβα
are the components of the Ricci tensor of type (1, 1), and hence

(n− 1)dc + (ξc)η = 0.

Applying this to ξ, we have ξc = 0 and hence dc = 0 for n �= 1, as desired.

A Sasakian manifold of constant φ-sectional curvature c will be called
a Sasakian space form and denoted by M(c). Note that a Sasakian space
form has constant scalar curvature and is η-Einstein. Also if c < 1 we
have the following pinching of the sectional curvature, similar to that in
the Kähler case:

c ≤ K(X,Y ) ≤ c + 3
4

;

if c > 1, the inequalities are reversed.
Th. Koufogiorgos [1997a] studied (κ, μ)-manifolds of dimension ≥ 5

for which the φ-sectional curvature at any point is independent of the
choice of φ-section at the point. He proved that the φ-sectional curvature
is constant and obtained the curvature tensor explicitly.

In the general context of contact metric manifolds J. T. Cho [2003]
introduced the notion of a contact Riemannian space form. We get at
this notion in the following way. In Mitric [1991] and Tanno [1992] it was
shown that the tangent sphere bundle with its standard contact metric
structure is a CR-manifold if and only if the base manifold is of constant
curvature (see Theorem 9.9 below). Cho first computes the covariant
derivative of h in this case, obtaining

(∇Xh)Y = g((h − h2)φX, Y )ξ + η(Y )(h− h2)φX − μη(X)hφY,

where μ is a constant. He then abstracts this idea and defines the class
Q of contact metric CR-manifolds for which the covariant derivative of
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h satisfies the above condition. We remark that in the study of contact
manifolds in general, lack of control of the covariant derivative of h is
often an obstacle to further results.

Now for a contact metric manifold M2n+1 of class Q with n > 1 and for
which the φ-sectional curvature is independent of the choice of φ-section,
Cho shows that the φ-sectional curvature is constant on M2n+1 and
he computes the curvature tensor explicitly. He then defines a contact
Riemannian space form to be a complete, simply connected contact met-
ric manifold of class Q of constant φ-sectional curvature. Cho also gives a
number of non-Sasakian examples and shows that a contact Riemannian
space form is locally homogeneous and is strongly locally φ-symmetric
(see Section 7.9).

Another generalization of a Sasakian space form was introduced by
P. Alegre, A. Carriazo and the author in [2004] and studied further by
Alegre and Carriazo in [2008]. An almost contact metric manifold is a
generalized Sasakian space form if its curvature tensor is of the form

RX Y Z = f1(g(Y,Z)X − g(X,Z)Y )
+ f2(g(X,φZ))φY − g(Y, φZ)φX + 2g(X,φY )φZ)
+ f3(η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ
− g(Y,Z)η(X)ξ),

where the fi’s are differentiable functions. There exist numerous exam-
ples, but the most interesting ones are on almost contact metric manifolds
that are not contact metric manifolds. In particular, in dimensions ≥ 5
a contact metric generalized Sasakian space form is a Sasakian space
form. For this reason we will not give a detailed discussion and refer the
reader to the references. The special case of f2 = f3 with some additional
conditions was considered by Bueken and Vanhecke [1988b].

7.8 Examples of Sasakian space forms

To begin, let (φ, ξ, η, g) be a contact metric structure and recall the notion
of a D-homothetic deformation:

η̄ = aη, ξ̄ =
1
a
ξ, φ̄ = φ, ḡ = ag + a(a− 1)η ⊗ η,
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where a is a positive constant. The deformed structure (φ̄, ξ̄, η̄, ḡ) is
again a contact metric structure, and it enjoys many of the properties
of the original structure as we remarked in Section 7.3. In particular, if
(φ, ξ, η, g) is Sasakian, so is (φ̄, ξ̄, η̄, ḡ); if M(c) is a Sasakian space form,
then deforming the structure, we obtain the Sasakian space form M(c̄)
where c̄ = c+3

a − 3 (see Tanno [1968], [1969] for details). We will show
that there exist Sasakian space forms M(c) for every value of c. More-
over, we state the following theorem of Tanno and refer to [1969] for the
proof.

Theorem 7.20 Let M(c) be a complete, simply connected Sasakian
manifold with constant φ-sectional curvature c. Then M(c) belongs one
of the three families of examples listed below.

7.8.1 S2n+1

Let (φ, ξ, η, g) be the standard contact metric structure on the sphere
S2n+1 constructed either as a hypersurface of C

2n+2 (Example 4.5.2 and
Section 6.3) or as a principal circle bundle over CPn (Examples 4.5.4
and 6.7.2). Applying a D-homothetic deformation to this structure, one
obtains a Sasakian structure on S2n+1 with constant φ-sectional curva-
ture c = 4

a − 3. Note that from the remark on pinching in Section 7.7,
these metrics on S2n+1 for c > 0 satisfy the condition of Goldberg’s
theorem [1967] refered to in Section 6.8.

7.8.2 R2n+1

In Examples 4.5.1 and 6.7.1 we saw that R
2n+1 with coordinates (xi, yi, z),

i = 1, . . . , n, admits the Sasakian structure

η =
1
2
(dz −

n∑

i=1

yidxi), g = η ⊗ η +
1
4

n∑

i=1

((dxi)2 + (dyi)2).

With this metric, R
2n+1 is a Sasakian space form with c = −3

(cf. Okumura [1962b]) and often denoted by R
2n+1(−3).

7.8.3 Bn × R

Let Bn be a simply connected bounded domain in C
n and (J,G) a Kähler

structure with constant holomorphic sectional curvature k < 0. For such
a structure, the fundamental 2-form Ω of the Kähler structure is exact
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and hence Ω = dω for some real analytic 1-form ω. Now on Bn × R

let π denote the projection onto Bn and t the coordinate on R. Then
Bn × R with η = π∗ω + dt and g = π∗G + η ⊗ η is a Sasakian manifold.
Regarding η as a connection form on Bn × R, let π̃X denote the hori-
zontal lift of a vector field X on Bn. Also we denote by K the sectional
curvature of Bn. Then by direct computation (see Ogiue [1965] or use the
Riemannian submersion technique of O’Neill [1966]), we have
K(π̃X, π̃Y ) = K(X,Y ) − 3η(∇π̃X π̃Y )2 where {X,Y } is an orthonor-
mal pair on Bn. Now g(∇π̃X π̃Y, ξ) = −g(π̃Y,∇π̃Xξ) = g(π̃Y, φπ̃X) =
g(π̃Y, π̃JX). Therefore Bn × R has constant φ-sectional curvature c =
k − 3.

7.9 Locally φ-symmetric spaces

We have seen that the only locally symmetric Sasakian manifolds are
locally isometric to S2n+1(1) and that the only locally symmetric contact
metric manifolds are locally isometric to S2n+1(1) or to En+1 × Sn(4).
Certainly this can be regarded as saying that the idea of being locally
symmetric is too strong. For this reason, T. Takahashi [1977] introduced
the notion of a locally φ-symmetric space. A Sasakian manifold is said
to be a Sasakian locally φ-symmetric space if

φ2(∇V R)X Y Z = 0

for all vector fields V,X, Y, Z orthogonal to ξ; such spaces were called
locally D-symmetric spaces by Shibuya [1982]. It is easy to check that
Sasakian space forms are locally φ-symmetric spaces. In [1987a] L. Van-
hecke and the author showed that a Sasakian manifold is locally φ-
symmetric if and only if

g((∇XR)X φXX,φX) = 0

for all vector fields X orthogonal to ξ.
Note that on a Sasakian manifold M , or more generally on a K-contact

manifold, a geodesic that is initially orthogonal to ξ remains orthogonal
to ξ. We call such a geodesic a φ-geodesic. A local diffeomorphism sm of
M , m ∈M , is a φ-geodesic symmetry if its domain contains a (possibly)
smaller domain U such that for every φ-geodesic γ(s) parametrized by
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γ (–s) γ (s)

γ

m

arc length we have (i) γ(0) is in the intersection of U and the integral
curve of ξ through m, and (ii)

(sm ◦ γ)(s) = γ(−s)

for all s with γ(±s) ∈ U . Since the points of the integral curve of ξ
through m are fixed, we see that setting S = −I + 2η ⊗ ξ, we have

sm = expm ◦ Sm ◦ exp−1
m .

Takahashi [1977] defines a Sasakian manifold to be a Sasakian globally
φ-symmetric space by requiring that any φ-geodesic symmetry can be
extended to a global automorphism of the structure and that the Killing
vector field ξ generate a 1-parameter group of global transformations.

Among the main results of Takahashi [1977] are the following four
theorems.

Theorem 7.21 A Sasakian locally φ-symmetric space is locally isomet-
ric to a Sasakian globally φ-symmetric space, and a complete, connected,
simply connected Sasakian locally φ-symmetric space is globally
φ-symmetric.

Theorem 7.22 A Sasakian manifold is locally φ-symmetric if and only
if it admits a φ-geodesic symmetry at every point that is a local automor-
phism of the structure.

Now suppose that U is a neighborhood on M on which ξ is regular.
Then since M is Sasakian, the projection π : U −→ V = U/ξ gives a
Kähler structure on V. Furthermore, if sπ(m) denotes the geodesic sym-
metry on V at π(m), then sπ(m) ◦ π = π ◦ sm.
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Theorem 7.23 A Sasakian manifold is locally φ-symmetric if and only
if each Kähler manifold that is the base of a local fibering is a Hermitian
locally symmetric space.

Following Okumura [1962a], we define on a Sasakian manifold a linear
connection ∇̄ by ∇̄XY = ∇XY + TXY, where

TXY = dη(X,Y )ξ − η(X)φY + η(Y )φX,

and it is easy to see that the structure tensors are parallel with respect
to this connection. Takahashi [1977] then proves the following.

Theorem 7.24 A Sasakian manifold is a locally φ-symmetric space if
and only if ∇̄R̄ = 0, equivalently,

(∇V R)X Y Z = −TV RX Y Z + RTV X Y Z + RX TV Y Z + RX Y TV Z

for all X,Y,Z, V .

In the spirit of the fact that a Riemannian manifold is locally symmet-
ric if and only if the local geodesic symmetries are isometries and in view
of the above results of Takahashi, we state the following extension of
Theorem 7.21 (sufficiency in the Sasakian case, Vanhecke and the author
[1987b]; in the K-contact case, Bueken and Vanhecke [1989]).

Theorem 7.25 On a Sasakian locally φ-symmetric space, local φ-
geodesic symmetries are isometries. Conversely, if on a K-contact man-
ifold the local φ-geodesic symmetries are isometries, the manifold is a
Sasakian locally φ-symmetric space.

Originally, the notion of a locally φ-symmetric space was for the most
part explored only in the Sasakian context, and it was not clear what
the corresponding notion should be for a general contact metric manifold.
Without the K-contact property one loses the fact that a geodesic initially
orthogonal to ξ remains orthogonal to ξ. We have just seen that in the
Sasakian case local φ-symmetry is equivalent to reflections in the integral
curves of the characteristic vector field being isometries. Boeckx and
Vanhecke [1997] proposed this property as the definition for local
φ-symmetry in the contact metric case and formalized two notions in
Boeckx, Bueken and Vanhecke [1999]. We adopt this formulation here. A
contact metric manifold is a weakly locally φ-symmetric space if it satisfies

φ2(∇V R)X Y Z = 0
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for all vector fields V,X, Y, Z orthogonal to ξ as in the Sasakian case.
A contact metric manifold is a strongly locally φ-symmetric space if
reflections in the integral curves of the characteristic vector field are
isometries.

From Chen and Vanhecke [1989] (see also Boeckx, Bueken and
Vanhecke [1999]) one sees that on a strongly locally φ-symmetric space,

g((∇2k
X···XR)X Y X, ξ) = 0,

g((∇2k+1
X···XR)X Y X,Z) = 0,

g((∇2k+1
X···XR)X ξX, ξ) = 0,

for all X,Y,Z orthogonal to ξ and all k ∈ N. Conversely, on an analytic
Riemannian manifold these conditions are sufficient for the contact met-
ric manifold to be a strongly locally φ-symmetric space. In particular,
taking k = 0 in the second condition, we note that a strongly locally
φ-symmetric space is weakly locally φ-symmetric. Calvaruso, Perrone
and Vanhecke [1999] showed that a 3-dimensional strongly locally φ-
symmetric space is either K-contact with constant scalar curvature or
is a (κ, μ)-manifold with κ < 1. They also showed that a 3-dimensional
contact metric manifold is a strongly locally φ-symmetric space if and
only if it is locally contact homogeneous, i.e., the pseudogroup of local
automorphisms of the contact metric structure acts transitively on the
manifold, and ξ is an eigenvector of the Ricci operator.

Examples of strongly locally φ-symmetric spaces include the non-
Sasakian (κ, μ)-manifolds (Boeckx [1999]). Special cases of these are the
non-abelian 3-dimensional unimodular Lie groups with left-invariant con-
tact metric structures (Boeckx, Bueken and Vanhecke [1999]). Boeckx,
Bueken and Vanhecke [1999] also gave an example of a non-unimodular
Lie group with a weakly locally φ-symmetric contact metric structure
which is not strongly locally φ-symmetric.

To see these last examples explicitly, we include the classification of
simply connected homogeneous 3-dimensional contact metric manifolds
as given by Perrone [1998]. Let W = 1

8(τ − Ric(ξ) + 4) denote the
Webster scalar curvature (cf. Section 10.4 below). The classification of
3-dimensional Lie groups and their left-invariant metrics was given by
Milnor in [1976].
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Theorem 7.26 Let (M3, η, g) be a simply connected homogeneous
contact metric manifold. Then M is a Lie group G and both g and η
are left invariant. More precisely, we have the following classification:
(1) If G is unimodular, then it is one of the following Lie groups:

1. The Heisenberg group when W = |£ξg| = 0;

2. SU(2) when 4
√

2W > |£ξg|;
3. the universal covering of the group of rigid motions of the Euclidean

plane when 4
√

2W = |£ξg| > 0;

4. the universal covering of SL(2, R) when −|£ξg| �= 4
√

2W < |£ξg|;
5. the group of rigid motions of the Minkowski plane when 4

√
2W =

−|£ξg| < 0.

(2) If G is non-unimodular, its Lie algebra is given by

[e1, e2] = αe2 + 2ξ, [e1, ξ] = γe2, [e2, ξ] = 0,

where α �= 0, e1, e2 = φe1 ∈ D, and 4
√

2W < |£ξg|. Moreover, if γ = 0,
the structure is Sasakian and W = −α2

4 .

The structures on the unimodular Lie groups in this theorem sat-
isfy the (κ, μ)-nullity condition, and hence they are strongly locally φ-
symmetric. The weakly locally φ-symmetric contact metric structure
of Boeckx, Bueken and Vanhecke [1999] that is not strongly locally φ-
symmetric is the non-unimodular case with γ = 2.

Notice also in the unimodular case the role played by the invariant
p = 4

√
2W/|£ξg|. Moreover, W = (2−μ)

4 and |£ξg| = 2
√

2
√

1− κ; thus,
p = 2− μ/2

√
1− κ, which is the invariant IM of Boeckx discussed in

Section 7.3.
Returning to Boeckx’s observation [1999] that a non-Sasakian (κ, μ)-

manifold is strongly locally φ-symmetric and also locally homogeneous,
he recently, [2006], proved a converse.

Theorem 7.27 Let M be a locally contact homogeneous contact met-
ric manifold. If M is strongly locally φ-symmetric, then it is a (κ, μ)-
manifold.

J. Berndt [1997] studied the geometry of the complex Grassmannian
CG2,m of complex 2-planes in C

m+2. Each point in his model of this
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Grassmannian represents a closed geodesic in the focal set Qm+1 of
CPm+1 in HPm+1, and he views the Riemannian submersion Qm+1 −→
CG2,m as an analogue of the Hopf fibration S2m+1 −→ CPm. Among
Berndt’s observations [1997, p. 37] is that Qm+1 is a Sasakian globally
φ-symmetric space and that Q2 has constant φ-sectional curvature equal
to 5.

Cho [1999] makes use of the generalized Tanaka connection ∗∇ (see
Section 10.4) and studies contact metric manifolds satisfying

(∗∇γ̇R)(·, γ̇)γ̇ = 0

for any unit ∗∇-geodesic γ (∗∇γ̇ γ̇ = 0). Cho shows that a (κ, μ)-manifold
satisfying this condition is either Sasakian locally φ-symmetric,
3-dimensional with μ = 0 and weakly locally φ-symmetric, or has μ = 2
and is weakly locally φ-symmetric.

Returning to the Sasakian context, Vanhecke and the author [1987a]
showed that complete, simply connected globally φ-symmetric spaces are
naturally reductive homogeneous spaces. Watanabe [1980] showed that a
Sasakian locally φ-symmetric space is locally homogeneous and analytic.
Berndt and Vanhecke [1999] proved that a simply connected Sasakian
φ-symmetric space is weakly symmetric, i.e., any two points can be
interchanged by an isometry. Complete simply connected globally
φ-symmetric spaces have been classified by Jiménez and Kowalski [1993].
In dimension 3, the classification is the unit sphere S3 together with the
universal covering of SL(2, R), the Heisenberg group, and SU(2), each
with a special left-invariant metric (Vanhecke and the author [1987b]).
In dimension 5, the classification was obtained by Kowalski and
Wegrzynowski [1987]. As a corollary to this classification, Kowalski and
Wegrzynowski in dimension 5 and Jiménez and Kowalski in general di-
mension gave a classification of the complete, simply connected Sasakian
space forms. An isospectral problem for locally φ-symmetric spaces was
studied by Shibuya [1982].

Watanabe [1980] also showed that a 3-dimensional Sasakian manifold
with constant scalar curvature is locally φ-symmetric. Two extensions
of this are the following: A compact regular Sasakian manifold with
constant scalar curvature and nonnegative sectional curvature is locally
φ-symmetric (Perrone and Vanhecke [1991]). A 3-dimensional contact
metric manifold with Qφ = φQ is weakly locally φ-symmetric if and only
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if it is of constant scalar curvature (Koufogiorgos, Sharma and the author
[1990]).

We have remarked that the product metric on S3 × S2 is not an
associated metric. A family of Sasakian globally φ-symmetric structures
on S3×S2 was constructed by Watanabe and Fujita [1988], and Perrone
and Vanhecke [1991] proved that the only 5-dimensional compact,
simply connected, homogeneous contact manifolds are diffeomorphic to
S5 or S3 × S2.

On a Riemannian locally symmetric space, the local geodesic symme-
tries are isometries and hence volume-preserving. However, there exist
Riemannian manifolds whose local geodesic symmetries are volume pre-
serving but not locally symmetric (see, e.g., Kowalski and Vanhecke
[1984]). In dimension 3 (Vanhecke and the author [1987b]; see also
Watanabe [1980]) and dimension 5 (Vanhecke and the author [1987c]),
Sasakian manifolds whose geodesic symmetries are volume-preserving are
locally φ-symmetric and conversely.

J. C. González-Dávila, M. C. González-Dávila and L. Vanhecke [1995]
considered metrics with respect to which a given vector field ξ is a unit
Killing vector field, with emphasis on the case in which the dual form η
is a contact form; this is again the context of the R-contact manifolds of
Rukimbira [1993]. These authors study the case in which local reflections
with respect to the flow lines are isometries; such spaces are called locally
Killing-transversally symmetric spaces . In particular, they show that a
Riemannian manifold with a unit Killing vector field ξ has a natural
structure as a Sasakian locally φ-symmetric space if and only if it is a
locally Killing-transversally symmetric space and K(X, ξ) = 1 for all X
orthogonal to ξ.

There are a number of other geometric ideas surrounding the subjects
of Sasakian space forms and locally φ-symmetric spaces, and we will men-
tion a few of these with a few references. One area of interest is the study
of reflections and other symmetries; in addition to some of the references
already given, we mention Bueken and Vanhecke [1993] which studies
reflections in a submanifold. Another area is the study of Jacobi vector
fields and their use in the characterization of Sasakian space forms as well
as in the study of symmetries. Here we will give only a few references on
the use of Jacobi fields: Vanhecke and the author [1987d], Bueken and
Vanhecke [1988a], and Vanhecke [1988] for a survey of the techniques
involved.





8
Submanifolds of Kähler and Sasakian
Manifolds

In this chapter we study submanifolds in both contact and Kähler geom-
etry. These are extensive subjects in their own right, and we give only a
few basic results.

8.1 Invariant submanifolds

For a submanifold M of a Riemannian manifold (M̃, g̃) we denote the
induced metric by g. Then the Levi-Civita connection ∇ of g and the
second fundamental form σ are related to the ambient Levi-Civita con-
nection ∇̃ by

∇̃XY = ∇XY + σ(X,Y ).

For a normal vector field ν we denote by Aν the corresponding Wein-
garten map and we denote by ∇⊥ the connection in the normal bundle;
in particular, Aν and ∇⊥ are defined by

∇̃Xν = −AνX +∇⊥
Xν.

The Gauss equation is

R̃(X,Y,Z,W ) = R(X,Y,Z,W ) + g̃(σ(X,Z), σ(Y,W ))
− g̃(σ(Y,Z), σ(X,W )).

D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds,
DOI 10.1007/978-0-8176-4959-3_8, © Springer Science+Business Media, LLC 2010
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Defining the covariant derivative of σ by (∇′σ)(X,Y,Z) = ∇⊥
Xσ(Y,Z)−

σ(∇XY,Z)− σ(Y,∇XZ), the Codazzi equation is

(R̃X Y Z)⊥ = (∇′σ)(X,Y,Z) − (∇′σ)(Y,X,Z).

Finally, for normal vector fields ν and ζ, the equation of Ricci–Kühne is

R̃(X,Y, ν, ζ) = R⊥(X,Y, ν, ζ)− g([Aν , Aζ ]X,Y ).

For a general reference to submanifold theory see Chen [2000].
Let M̃2n be an almost Hermitian manifold with structure tensors

(g̃, J̃). A submanifold M is said to be invariant if J̃TpM ⊂ TpM . It
is well known that an invariant submanifold of a Kähler manifold is both
Kähler and minimal.

For a contact metric manifold M̃2n+1 with structure tensors (φ̃, ξ̃, η̃, g̃),
a submanifold M is said to be invariant if φ̃TpM ⊂ TpM . Some authors
also require that ξ̃ be tangent to M , but this is a consequence. Clearly
ξ̃ cannot be normal on any neighborhood U of M , for then U would be
an integral submanifold of the contact subbundle D and hence as we
have seen (Section 5.1) would not be invariant by φ̃. Now if ξ̃ = U + ν,
where U is tangent and ν is normal, first note that φ̃ν is normal, since
g̃(φ̃ν,X) = −g̃(ν, φ̃X) = 0. Therefore 0 = φ̃ξ̃ = φ̃U + φ̃ν and hence
φ̃U = 0 and φ̃ν = 0. As a result, U = η̃(U)ξ̃ and ν = η̃(ν)ξ̃, but both U
and ν cannot be collinear with ξ̃.

Clearly an invariant submanifold inherits a contact metric structure
by restriction. Moreover, for the induced structure (φ, ξ, η, g) we have
h = h̃|M as well. Also for the second fundamental form we have

σ(ξ,X) = ∇̃Xξ −∇Xξ = −φ̃X − φ̃h̃X − (−φX − φhX) = 0.

Our first result is a theorem of Chinea [1985] and independently of
Endo [1985]; we give the proof of Chinea.

Theorem 8.1 An invariant submanifold M of a contact metric mani-
fold is minimal.

Proof. By Lemma 7.3 we have

(∇̃X φ̃)Y + (∇̃φ̃X φ̃)φ̃Y = 2g̃(X,Y )ξ̃ − η̃(Y )(X + h̃X + η̃(X)ξ̃),
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from which

∇XφY + σ(X,φY )− φ∇XY − φ̃σ(X,Y )

+∇φX(−Y + η(Y )ξ)− σ(φX, Y )− φ∇φXφY − φ̃σ(φX,φY )

= 2g̃(X,Y )ξ̃ − η̃(Y )(X + h̃X + η̃(X)ξ̃).

Taking the normal part, we have

σ(X,φY )− σ(φX, Y )− φ̃(σ(X,Y ) + σ(φX,φY )) = 0.

Interchanging X and Y now yields

σ(φX,φY ) = −σ(X,Y )

and hence that M is minimal.

Note also that σ(X,φY ) = σ(φX, Y ). Thus we have g(AνX,φY ) =
g̃(σ(X,φY ), ν) = g̃(σ(φX, Y ), ν) = g(AνφX, Y ) and hence

Aνφ + φAν = 0.

Moreover, a φ-section on M is a φ̃-section on M̃ ; the Gauss equation
and σ(φX,φY ) = −σ(X,Y ) yield H(X) ≤ H̃(X), with equality holding
everywhere if and only if M is totally geodesic (Endo [1986]).

Theorem 8.2 If M̃ is a K-contact (resp. Sasakian) manifold and M an
invariant submanifold, then M is also K-contact (resp. Sasakian).

Proof. We have already noted that h = h̃|M and hence the K-contact
result. Now again as in the last proof,

(∇̃X φ̃)Y = ∇XφY + σ(X,φY )− φ∇XY − φ̃σ(X,Y ),

so if (∇̃X φ̃)Y = g̃(X,Y )ξ̃ − η̃(Y )X, we have (∇Xφ)Y = g(X,Y )ξ −
η(Y )X.

In [1973a] Harada showed that invariant submanifolds of a compact
regular Sasakian manifold respect the Boothby–Wang fibration. For a
compact regular Sasakian manifold M , let us denote by M/ξ the base
manifold of the Boothby–Wang fibration, which, as we have seen, carries
a natural Kähler structure. We can now state Harada’s result.
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Theorem 8.3 Let M be a compact invariant submanifold of a compact
regular Sasakian manifold M̃ . Then M is regular and M/ξ is a Kähler
(invariant) submanifold of M̃/ξ.

For example, consider the complex quadric Qn−1 in CPn together with
the Hopf fibration S2n+1 −→ CPn. Then the set of fibers over Qn−1

form a codimension 2 invariant submanifold of the Sasakian structure on
S2n+1; see Kenmotsu [1969], Kon [1976].

Let us now very briefly recall results of Simons [1968] and of Chern, do
Carmo and Kobayashi [1970] on submanifolds of a sphere. The Simons
result is that if Mn is a closed minimal submanifold of the sphere Sn+p(1)
and if |σ|2 < n/(2− 1

p), then Mn is totally geodesic. Chern, do Carmo and
Kobayashi proved that the only minimal submanifolds of the sphere
Sn+p(1) with |σ|2 = n/(2 − 1

p) are pieces of the Clifford minimal hy-
persurfaces and the Veronese surface. The proofs of these center on the
computation of the Laplacian of |σ|2. In [1972] Ogiue used these ideas to
study complete invariant submanifolds M2n in CPn+p(1), the complex
projective space with the Fubini–Study metric of constant holomorphic
curvature 1. Ogiue’s results of [1972] may be summarized as follows: Let
M2n be a complete Kähler submanifold of CPn+p(1). If the holomorphic
curvature H of M2n is greater than 1

2 and the scalar curvature of M2n

is constant or if H > 1− n+2
2(n+2p) , then M2n is totally geodesic.

In his excellent survey article [1974], Ogiue obtained other results,
posed several conjectures and open problems, and continued this theme in
[1976a]. For example, in the context of the above results Ogiue proved in
[1976a] that if the sectional curvature K of M2n exceeds n+3

8n or if K > 1
8

and H > 1
2 , then M2n is totally geodesic. Ogiue’s conjectures from [1974]

and [1976a] included that (i) H > 1
2 or (ii) K > 1

8 and n ≥ 2 imply that
M2n is totally geodesic. In [1985a] A. Ros introduced a new technique to
attack this kind of problem for M2n compact, viz. for unit tangent vectors
V , regard |σ(V, V )|2 as a function of the unit tangent bundle of M2n and
study its behavior at its maximum point. The result of Ros in [1985a] is
that Ogiue’s conjecture (i) is true, and using the same technique, Ros and
Verstraelen in [1984] proved conjecture (ii). Notice that the Calabi
(Veronese) embeddings of CPn(1

2 ) into CP
n(n+3)

2 (1) show that these con-
jectures are best possible (see Section 12.7). In fact, in [1985b] Ros gave
a complete classification of compact Kähler submanifolds of CPn+p(1)
with H ≥ 1

2 ; there are seven interesting cases. As an illustration of the
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Ros technique we will give in the next section the proof of a theorem of
Urbano [1985] on Lagrangian submanifolds of CPn.

The corresponding problem in Sasakian geometry is to study a com-
pact invariant submanifold M2n+1 of a Sasakian space form M̃2(n+p)+1(c̃)
with constant φ-sectional curvature c̃ > −3. This was first taken up by
Harada [1973a], [1973b], Kon [1976], and later by VanLindt, Verheyen
and Verstraelen [1986]. Again the later results are the stronger ones and
use the Ros technique; in particular, VanLindt, Verheyen and Verstraelen
prove that if the φ-sectional curvature of M2n+1 exceeds c̃+3

2 or if the
sectional curvature of M2n+1 exceeds c̃+3

8 , then M2n+1 is totally geodesic.
A well-known classical characterization of complex space forms is the

following theorem of Yano and Mogi [1955].

Theorem 8.4 A Kähler manifold M2n, n ≥ 2, is a complex space form
if and only if for every point and every holomorphic section at the point,
there exists a unique totally geodesic holomorphic curve tangent to the
given holomorphic section at the point.

The condition that for every point and for every holomorphic section
at the point there exists a totally geodesic surface through the point and
tangent to the section is known as the axiom of holomorphic planes,
and this result has many generalizations. For example, instead of planes
one can consider 2k-dimensional holomorphic subspaces, 1 ≤ k < n, and
instead of totally geodesic submanifolds one can consider umbilical
submanifolds (axiom of holomorphic 2k-spheres), Kassabov [1982] (see
also Goldberg and Moskal [1976], where the umbilical submanifolds are
assumed to have parallel mean curvature vector).

In Sasakian geometry one has the axiom of φ-holomorphic planes,
which requires for every point and every φ-section at the point the exis-
tence of a totally geodesic surface tangent to the φ-section at the point.
K. Ogiue [1964] showed that a Sasakian manifold is a Sasakian space
form if and only if it satisfies the axiom of φ-holomorphic planes. For the
idea of an axiom of φ-holomorphic 2-spheres, see Harada [1974a].

8.2 Lagrangian and integral submanifolds

We have already seen in Section 1.2 that the maximum dimension of an
isotropic submanifold of a symplectic manifold M2n is n and that an
n-dimensional isotropic submanifold is called a Lagrangian submanifold.
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In Section 5.1 we saw that the maximum dimension of an integral sub-
manifold of a contact manifold M2n+1 is also n. In almost Hermitian
geometry, isotropic submanifolds are known as totally real submanifolds,
since they are characterized by the fact that the almost complex struc-
ture maps the tangent space at any point into the normal space at the
point.

In the spirit of the results of the last section we mention a few results
on compact minimal Lagrangian submanifolds Mn of a complex space
form M̃2n(c). In [1974] Yau considered a totally real minimal surface
M2 in a Kähler surface of constant holomorphic curvature c and proved
the following results: (1) If M2 has genus zero, then M2 is the standard
embedding of RP 2 in CP 2. (2) If M2 is complete and nonnegatively
curved, then it is totally geodesic or flat. (3) If M2 is complete and
nonpositively curved with Gaussian curvature K and if c

4 −K ≥ a > 0
for some constant a, then M2 is totally geodesic or flat. In [1973] Houh
proved that if a totally real minimal surface M2 in CP 2 has constant
scalar normal curvature, it is totally geodesic or is nonpositively curved,
and combining this with Yau’s result, Houh showed that if in addition M2

is complete, it is totally geodesic or flat. The flat case is realized by the
torus, T 2, embedded in CP 2 as a flat minimal Lagrangian submanifold;
Ludden, Okumura and Yano [1975].

In [1976b] Ogiue showed that if c > 0 and the sectional curvature K of
Mn satisfies K > (n−2)c

4(2n−1) , then Mn is totally geodesic. This was extended

by Chen and Houh [1979], who showed that if c > 0 and K ≥ (n−2)c
4(2n−1) ,

then either Mn is totally geodesic or n = 2 and the surface M2 is flat. If a
minimal Lagrangian submanifold in M̃2n(c) is itself of constant curvature
k, then it was shown by Chen and Ogiue [1974a] that the submanifold
is either totally geodesic or k ≤ 0; this was improved upon by Ejiri
[1982], who showed that the submanifold is either totally geodesic or
flat. Finally, to give a stronger result and to illustrate the technique of
A. Ros, we give the following theorem of Urbano [1985] with proof.

Theorem 8.5 Let M be a compact Lagrangian submanifold minimally
immersed in CPn(c). If the sectional curvature K of M is greater than 0,
then M is totally geodesic.

Proof. We denote by (J, g̃) the almost Hermitian structure on CPn(c),
where g̃ is the Fubini–Study metric of constant holomorphic curvature c.
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For tangent vectors X and Y we have readily

0 = (∇̃XJ)Y = ∇̃XJY−J∇̃XY = −AJY X+∇⊥
XJY−J∇XY−Jσ(X,Y ),

giving
AJY X = −Jσ(X,Y ), ∇⊥

XJY = J∇XY.

The equations of Ricci–Kühne and Gauss give

R⊥(X,Y, JZ, JW ) = g̃(R̃X Y JZ, JW ) + g([AJZ , AJW ]X,Y )
= g(RX Y Z,W )− g̃(σ(Y,Z), σ(X,W ))

+ g̃(σ(X,Z), σ(Y,W )) + g(AJWX,AJZY )
− g(AJZX,AJWY )

= g(RX Y Z,W ).

Since the ambient space is of constant holomorphic curvature, R̃X Y Z =
c
4(g(Y,Z)X − g(X,Z)Y −Ω(Y,Z)JX + Ω(X,Z)JY + 2Ω(X,Y )JZ) and
hence (R̃X Y Z)⊥ = 0. Thus by the Codazzi equation, (∇′σ)(X,Y,Z) =
∇⊥
Xσ(Y,Z)− σ(∇XY,Z)− σ(Y,∇XZ) is symmetric. Defining ∇′2σ by

(∇′2σ)(X,Y,Z,W ) = ∇⊥
X((∇̃σ)(Y,Z,W ))
− (∇′σ)(∇XY,Z,W )− (∇′σ)(Y,∇XZ,W )
− (∇′σ)(Y,Z,∇XW )

we have by the symmetry of (∇′σ)(X,Y,Z) that

(∇′2σ)(X,Y,Z,W ) =(∇′2σ)(Y,X,Z,W ) + R⊥
X Y σ(Z,W )

− σ(RX Y Z,W )− σ(Z,RX Y W ).

Define a real-valued function on the unit tangent bundle T1M by
f(V ) = g̃(σ(V, V ), JV ). Since T1M is compact, f attains its maximum
at a unit vector V tangent to M at a point p. For any unit tangent vector
U at p, let γ(t) be the geodesic in M with γ(0) = p and γ′(0) = U . Let
V (t) be the parallel vector field along γ with V (0) = V . Then

0 =
d

dt
f(V (t))

∣
∣
t=0

= g̃((∇′σ)(U, V, V ), JV ).
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Also

0 ≥ d2

dt2
f(V (t))

∣
∣
t=0

= g̃((∇′2σ)(U,U, V, V ), JV )

= g̃((∇′2σ)(U, V, V, U), JV )

= g̃((∇′2σ)(V,U, V, U) + R⊥
U V σ(V,U)− σ(RU V V,U)

− σ(RU V U, V ), JV )

= g̃((∇′2σ)(V, V, U,U), JV ) + g(RU V V, Jσ(U, V ))
− g(AJURU V V, V )− g(AJV RU V U, V )

= g̃((∇′2σ)(V, V, U,U), JV ) + 2g(RU V V, Jσ(U, V ))
+ g(RU V U, Jσ(V, V )).

On the other hand, restricting f to the fiber of T1M at p and taking
U orthogonal to V, we have

0 = Uf = 2g̃(σ(U, V ), JV ) + g̃(σ(V, V ), JU)
= 2g(AJV V,U) + g̃(σ(V, V ), JU) = 3g̃(σ(V, V ), JU).

Therefore, since U is any unit vector orthogonal to V ,

σ(V, V ) = f(V )JV or AJV V = f(V )V,

i.e., V is an eigenvector of AJV with eigenvalue f(V ). Furthermore,

0 ≥ U2f = 6g̃(σ(U, V ), JU) + 3g̃(σ(V, V ), J(−V ))
= 6g̃(σ(U,U), JV )− 3f(V )
= 6g(AJV U,U)− 3f(V ).

Thus if {U1, . . . , Un} is an orthonormal eigenvector basis of AJV with
Un = V and if λi, i = 1, . . . , n− 1, are the other eigenvalues, then

f(V )− 2λi ≥ 0.
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Now from the above and the minimality, we have

0 ≥
n∑

i=1

{
g̃((∇̃2σ)(V, V, Ui, Ui), JV )

+ 2g(RUi V V, Jσ(Ui, V )) + g(RUi V Ui, Jσ(V, V ))
}

=
n−1∑

i=1

{− 2λiK(V,Ui) + f(V )K(V,Ui)
}

=
n−1∑

i=1

K(V,Ui)
{
f(V )− 2λi

}
.

Finally, since the sectional curvature is positive, we conclude that each λi
equals 1

2f(V ) and hence trAJV = (n+1)f(V )
2 = 0, giving f(V ) = 0. Now

f(−U) = −f(U) and V was the maximum point of f , so f = 0. Thus
σ(V, V ) is orthogonal to JV and to JU for any U ⊥ V , and hence
σ(V, V ) = 0 for any vector V , and so M must be totally geodesic.

In Section 1.2 and Example 5.3.3 we remarked that there is no topo-
logical embedding of a sphere as a Lagrangian submanifold of C

n and no
umbilical, non-totally-geodesic, Lagrangian submanifolds of a complex
space-form. The immersed Whitney sphere was the closest candidate
with only one double point. Its second fundamental form σ was given by

σ(X,Y ) =
n

n + 2
(g̃(X,Y )H + g̃(JX,H)JY + g̃(JY,H)JX),

where H denotes the mean curvature vector (Borrelli, Chen and Morvan
[1995], Ros and Urbano [1998]).

More generally, a Lagrangian submanifold of a Kähler manifold is said
to be Lagrangian H-umbilical if the second fundamental form σ is of the
form

σ(X,Y ) = αg̃(JX,H)g̃(JY,H)H
+ βg̃(H,H)(g̃(X,Y )H + g̃(JX,H)JY + g̃(JY,H)JX)

for suitable functions α and β. This notion was introduced and a classi-
fication of such submanifolds in complex space forms was given by Chen
in a series of papers [1997a,b], [1998].

In the contact case, integral submanifolds are often called C-totally
real submanifolds, since φ maps the tangent space at any point into the
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normal space. However, we will not adopt this term here. As a reminder,
since η(X) = 0 for any vector X tangent to the integral submanifold, ξ
is a normal vector field.

Examples that we might mention here are Sn ⊂ S2n+1 as a totally
geodesic integral submanifold as was described in Example 5.3.1 and
T 2 ⊂ S5 as a flat minimal integral submanifold as was described in
Example 5.3.2.

We begin our discussion of integral submanifolds with the following
lemma.

Lemma 8.1 Let M be an integral submanifold of a K-contact manifold
M̃ . Then Aξ = 0.

Proof.

g(AξX,Y ) = g̃(σ(X,Y ), ξ) = g̃(∇̃XY, ξ) = −g̃(Y, ∇̃Xξ) = g̃(Y, φX) = 0.

Now for an integral submanifold Mn of a Sasakian manifold M̃2n+1, let
{e1, . . . , en} be a local orthonormal basis on Mn. Then {φe1, . . . , φen, ξ}
is an orthonormal basis of the normal space at each point of the local
domain. For simplicity we write Ai for Aφei

.

Lemma 8.2 Let M be an integral submanifold of a Sasakian manifold
M̃ . Then Aiej = Ajei.

Proof.

g(Aiej , ek) = g̃(σ(ej , ek), φei) = g̃(∇̃ek
ej , φei)

= − g̃(ej , (∇̃ek
φ)ei + φ∇̃ek

ei) = g̃(∇̃ek
ei, φej) = g(Ajei, ek).

Now let Mn be an integral submanifold of a Sasakian space form M̃(c);
the Gauss equation yields

g(RX Y Z,W ) =
c + 3

4
(g(X,W )g(Y,Z) − g(X,Z)g(Y,W ))

+
n∑

i=1

(g(AiX,W )g(AiY,Z)− g(AiX,Z)g(AiY,W ))
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by virtue of Lemma 8.1. In turn, the sectional curvature K(X,Y ) of Mn

determined by an orthonormal pair {X,Y } is given by

K(X,Y ) =
c + 3

4
+

n∑

i=1

(g(AiX,X)g(AiY, Y )− g(AiX,Y )2).

Moreover, the Ricci tensor ρ and the scalar curvature τ of Mn are given
by

ρ(X,Y ) =
n− 1

4
(c + 3)g(X,Y ) +

n∑

i=1

(trAi)g(AiX,Y )−
n∑

i=1

g(AiX,AiY ),

τ =
n(n− 1)

4
(c + 3) +

n∑

i=1

(trAi)2)− |σ|2.

From these expressions the following proposition is not difficult, and
we omit the proof.

Proposition 8.1 Let Mn be an integral submanifold of a Sasakian space
form M̃2n+1(c) that is minimally immersed. Then the following are equiv-
alent:

(a) Mn is totally geodesic.

(b) Mn is of constant curvature c+3
4 .

(c) ρ = n−1
4 (c + 3)g.

(d) τ = n(n−1)
4 (c + 3).

Similar to the result of Chen and Ogiue [1974a] in the Kähler case,
Yamaguchi, Kon and Ikawa [1976] proved the following result.

Theorem 8.6 Let Mn be a minimal integral submanifold of a Sasakian
space form M̃2n+1(c). If Mn has constant curvature k, then either Mn

is totally geodesic or k ≤ 0.

For the standard Sasakian structure on S5(1) we give the following the-
orem of Yamaguchi, Kon and Miyahara [1976], and we include a proof,
since its techniques, though not new, are different from those presented
so far in this book.



162 8. Submanifolds of Kähler and Sasakian Manifolds

Theorem 8.7 Let M2 be a complete integral surface of S5(1) that is
minimally immersed. If the Gaussian curvature K of M2 is ≤ 0, then
M2 is flat.

Proof. Choose a system of isothermal coordinates (x1, x2) so that the
induced metric g is given by g = E((dx1)2 + (dx2)2). Let Xi = ∂

∂xi and
σij = σ(Xi,Xj). Recall the standard formulas for the induced connection:

∇X1X1 = −∇X2X2 =
X1E

2E
X1−X2E

2E
X2, ∇X1X2 =

X2E

2E
X1+

X1E

2E
X2.

Using the minimality and the Codazzi equation, one readily obtains

∇⊥
X1

σ12 −∇⊥
X2

σ11 = 0, ∇⊥
X1

σ11 +∇⊥
X2

σ12 = 0.

Now define a complex-valued function F by

F = g̃(σ11, φX1)− ig̃(σ12, φX1).

Note that F is nowhere zero on M2, for if F = 0 at some point m,
then g̃(σ11, φX1) and g̃(σ12, φX1) vanish at m, but by the minimality
g̃(σ22, φX1) = −g̃(σ11, φX1) = 0 and by Lemma 8.2 g̃(σ12, φX2) =
g̃(σ22, φX1) = 0 and −g̃(σ22, φX2) = g̃(σ11, φX2) = g̃(σ12, φX1) = 0.
Thus σ vanishes at m, and so by the Gauss equation, the Gaussian cur-
vature at m is +1, contradicting the hypothesis K ≤ 0.

Differentiating the real part of F with respect to X1, we have

X1ReF = g̃(∇⊥
X1

σ11, φX1) + g̃

(

σ11, Eξ +
X1E

2E
φX1 − X2E

2E
φX2

)

= − g̃(∇⊥
X2

σ12, φX1) + g̃

(

σ11,
X1E

2E
φX1 − X2E

2E
φX2

)

.

Differentiating with respect to X2 and making similar calculations for
the imaginary part of F , Lemma 8.2 and the minimality yield X1ReF =
X2ImF and X2ReF = −X1ImF . Thus F is analytic and therefore
log |F |2 is harmonic.

Now |F |2 = g̃(σ11, φX1)2+ g̃(σ12, φX1)2. On the other hand, the Gauss
equation gives the Gaussian curvature K as

K = 1 +
1

E2
(g̃(σ11, σ22)− g̃(σ12, σ12)) = 1− 2

E3
|F |2.
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Thus |F |2 = E3
(

1−K
2

)
. Note also the classical formula for the Gaussian

curvature of g, namely K = −1
6EΔ log E3.

Suppose now that the Gaussian curvature of M2 is nonpositive. Then

Δ log
|F |2
E3

= −Δ log E3 = 6EK ≤ 0 (∗)

and

log
|F |2
E3

= log
1−K

2
≥ log

1
2
.

Thus − log |F |2
E3 is a subharmonic function which is bounded above.

Now define a metric g∗ on M2 by g∗ = |F |((dx1)2 + (dx2)2); its
Gaussian curvature is − 1

4|F |Δ log |F |2 = 0. That is, g∗ is a flat met-
ric on M2 that is conformally equivalent to g, and hence the universal
covering surface M̃ of M2 is conformally equivalent to the Euclidean
plane. Thus M̃ is a parabolic surface; but every subharmonic function
that is bounded above on a parabolic surface is a constant. Therefore
− log |F |2

E3 , lifted to M̃ , is a constant, and hence it is constant on M2.
Equation (∗) now gives K = 0.

Combining Theorems 8.6 and 8.7, we have the following corollary.

Corollary 8.1 A complete integral surface of S5(1) with constant cur-
vature that is minimally immersed has constant curvature 0 or +1.

Turning to curvature conditions in the spirit of the Urbano result
above, we have the following result of VanLindt, Verheyen and
Verstraelen [1986].

Theorem 8.8 Let Mn be a compact integral submanifold minimally
immersed in a Sasakian space form M2n+1(c) with c > −3. If K > 0,
then Mn is totally geodesic.

If the sectional curvature is only ≥ 0, one can do better in dimension 7;
namely, we have the following result of Dillen and Vrancken [1989].

Theorem 8.9 Let M3 be a compact integral submanifold of the standard
Sasakian structure on S7(1) that is minimally immersed. If K ≥ 0, then
either M3 is totally geodesic, M3 is a covering of the 3-torus or M3 is a
covering of S1(

√
3)× S2(

√
3

2 ).

In dimension 5 the third case does not have an analogue, and the corre-
sponding result was given by Verstraelen and Vrancken [1988]. For the
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example of S1(
√

3)× S2(
√

3
2 ) in the above theorem, the sectional curva-

tures satisfy 0 ≤ K ≤ 4
3 , where both extremal values are attained (Dillen

and Vrancken [1990]). Restricting the curvature to 0 ≤ K ≤ 1, Dillen
and Vrancken proved in [1990] the following theorem.

Theorem 8.10 If Mn is a compact minimal integral submanifold of
S2n+1(1) and if 0 ≤ K ≤ 1, then K is identically 0 or 1.

Other conditions on integral submanifolds of Sasakian space forms
that have been considered include the notions of the mean curvature
vector H and second fundamental form being C-parallel. That is, ∇⊥

XH
is parallel to ξ for all tangent vectors X, and respectively, (∇′σ)(X,Y,Z)
is parallel to ξ for all tangent vectors X,Y,Z. Recall also that a curve γ(s)
parametrized by arc length in a Riemannian manifold is a Frenet curve of
osculating order r if there exist orthonormal vector fields E1, E2, . . . , Er

along γ, such that

γ̇ = E1, ∇γ̇E1 = k1E2, ∇γ̇E2 = −k1E1 + k2E3,

∇γ̇Er−1 = −kr−2Er−2 + kr−1Er, ∇γ̇Er = −kr−1Er−1,

where k1, k2, . . . , kr−1 are positive C∞ functions of s. The function kj
is called the jth curvature of γ. So, for example, a geodesic is a Frenet
curve of osculating order 1, a circle is a Frenet curve of osculating order 2
with k1 a constant; a helix of order r is a Frenet curve of osculating order
r such that k1, k2, . . . , kr−1 are constants. With these ideas in mind, C.
Baikoussis and the author [1992] proved the following theorem.

Theorem 8.11 Let M2 be an integral surface of a Sasakian space form
M̃5(c). If the mean curvature vector H is C-parallel, then either M2 is
minimal or locally the Riemannian product of two curves as follows: (i)
a helix of order 4 and a geodesic or helix of order 3, (ii) a helix of order
3 and a geodesic or helix of order 3, or (iii) a circle and a geodesic or
helix of order 3.

On the other hand, Baikoussis, Koufogiorgos and the author [1995]
obtained the following result.

Theorem 8.12 Let M3 be an integral submanifold of a Sasakian space
form M̃7(c) with C-parallel second fundamental form. Then locally M3

is either flat or totally geodesic or a product γ ×M2, where γ is a curve
and M2 is a surface of constant curvature and also has C-parallel second
fundamental form.
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This paper of Baikoussis, Koufogiorgos and the author includes for the
unit sphere, S7(1), an explicit representation of the flat case. Recently,
Fetcu and Oniciuc [to appear] obtained an explicit expression of the flat
case for S7(c), the Sasakian space form with −3 < c < 1 (see Example
7.8.1).

We now give an example of this theorem in the case of φ-sectional
curvature c < −3. In Example 7.8.3 we saw that the product Bn × R,
where Bn is a simply connected bounded domain in C

n, has a Sasakian
structure of constant φ-sectional curvature c < −3. Now take Bn to be
the unit ball in C

n with the metric

ds̄2 = 4
(1 −∑ |zi|2)(

∑
dzidz̄i) + (

∑
z̄idzi)(

∑
zidz̄i)

(1−∑ |zi|2)2 .

This metric has constant holomorphic curvature −1, and the fundamen-
tal 2-form Ω of the Kähler structure is given by

Ω = dω = −4i
(1−∑ |zj |2)(

∑
dzj ∧ dz̄j) + (

∑
z̄jdzj) ∧ (

∑
zjdz̄j)

(1−∑ |zj |2)2

= d

(

Re
4i
∑

z̄jdzj
1−∑ |zj |2

)

.

Then Bn×R with contact form η = ω + dt and metric ds2 = ds̄2 + η⊗ η
is a Sasakian space form with constant φ-sectional curvature c = −4.

It is well known that setting the imaginary part of zj equal to zero gives
an embedding of real hyperbolic space Hn of constant curvature −1

4 as a
totally real, totally geodesic submanifold of Bn. To construct a nontrivial
example of M3 as an integral submanifold of M̄7(−4) = B3 × R with
C-parallel second fundamental form, we consider an umbilical surface in
H3, and as t varies in R we rotate H3 so that the surface will trace out
the desired M3. For this purpose it will be convenient to use the polar
form rje

iθj of zj . Then η, ξ and ds2 become

η = 4

∑
r2
jdθj

1−∑ r2
j

+ dt, ξ =
∂

∂t
,
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and

ds2 =
(1−∑ r2

j )(
∑

(dr2
j + r2

jdθ2
j )) + (

∑
rjdrj)2 + (

∑
r2
jdθj)2

(1−∑ r2
j )2

+ 16
(
∑

r2
jdθj)2

(1 −∑ r2
j )2

+ 8

∑
r2
jdθjdt

1−∑ r2
j

+ dt.

We remark that the induced metric on H3 in B3 defined by θj =
constant is the Beltrami–Klein model and not the Poincaré model of
hyperbolic space. In this model an umbilical submanifold is in general an
ellipsoid. With this in mind we construct our example as follows. On the
Sasakian space form M̄7(−4) = B3 ×R we designate the coordinates by
(x1, . . . , x7) = (r1, r2, r3, θ1, θ2, θ3, t). Now define ι : M → M̄7(−4) by

(r1, r2, t) �→
(

r1, r2, b
√

1− r2
1 − r2

2, 0, 0,−
1 − b2

4b2
t, t

)

,

where b is a constant such that b2 < 1. It is easy to see that η(ι∗∂1) =
η(ι∗∂2) = η(ι∗∂7) = 0. Thus M is a 3-dimensional integral submanifold
of the Sasakian space form M̄7(−4). Direct computation then shows that
M has C-parallel second fundamental form (see Baikoussis, Koufogiorgos
and the author [1995] for details).

In [1973] Chen and Ogiue introduced the axiom of antiholomorphic
k-planes on a Kähler manifold M2n, n ≥ 2. The axiom requires that for
every point and every totally real k-plane at the point, there exists a
k-dimensional totally geodesic submanifold tangent to the k-plane at the
point. The main result of Chen and Ogiue is that a Kähler manifold
M2n, n ≥ 3, is a complex space form if and only if it satisfies the axiom
of antiholomorphic 2-planes.

In [2001] Kirichenko took a somewhat different approach to this prob-
lem and introduced the axiom of totally real k-planes for an almost
Hermitian manifold M2n. The axiom requires that for every point and
every totally real k-plane at the point, there exists a k-dimensional
totally real, totally geodesic submanifold tangent to the k-plane at the
point. Kirichenko is then able to extend the axiomatic characterization
of complex space forms to the almost Kähler (symplectic) setting.

Theorem 8.13 An almost Kähler manifold M2n, n ≥ 3, is a complex
space form if and only if it satisfies the axiom of totally real n-planes
(Lagrangian).
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Similarly, in contact geometry one has these two settings. A Sasakian
manifold satisfies the axiom of anti-φ-holomorphic planes if for every
point and every 2-plane at the point that is annihilated by η and dη,
there exists a totally geodesic surface tangent to the plane at the point
(Harada [1974b]). Harada proves that a Sasakian manifold of dimension
≥ 7 is a Sasakian space form if and only if it satisfies the axiom of anti-φ-
holomorphic planes. On the other hand, Kirichenko and Borisovski [1998]
introduced an axiom called the geodesic integrability (of the contact

subbundle) for a contact metric manifold M2n+1. The idea is to require
that for every point and every n-dimensional linear subspace at the point
that is annihilated by η and dη, there exists a unique n-dimensional,
totally geodesic, integral submanifold tangent to the subspace at the
point. With this notion Kirichenko and Borisovski can extend the Harada
idea to the K-contact case. Specifically, they prove that a K-contact
manifold of dimension ≥ 7 is a Sasakian space form if and only if it is
geodesically integrable.





9
Tangent Bundles and Tangent Sphere
Bundles

In the first two sections of this chapter we discuss the geometry of the
tangent bundle and the tangent sphere bundle. In Section 3 we briefly
present a more general construction on vector bundles and in Section
4 specialize to the case of the normal bundle of a submanifold. The
formalism for the tangent bundle and the tangent sphere bundle is of
sufficient importance to warrant its own development, rather than spe-
cializing from the vector bundle case. In Section 5 we discuss briefly a
contact structure on the projectivized tangent bundle of the hyperbolic
plane and the geodesic flow on this bundle rather than on the unit
tangent bundle, which is its usual setting.

9.1 Tangent bundles

In Chapter 1 we saw that the cotangent bundle of a manifold has a
natural symplectic structure, and we will see here that the same is true
of the tangent bundle of a Riemannian manifold. Moreover, the tangent
bundle carries a natural Riemannian metric, called the Sasaki metric.
We give the connection and curvature of this metric and the implication
of the metric being locally symmetric or conformally flat.

D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds,
DOI 10.1007/978-0-8176-4959-3_9, © Springer Science+Business Media, LLC 2010
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Let M be an (n + 1)-dimensional C∞ manifold and π̄ : TM −→M its
tangent bundle. If (x1, . . . , xn+1) are local coordinates on M , set qi = xi◦
π̄; then (q1, . . . , qn+1) together with the fiber coordinates (v1, . . . , vn+1)
form local coordinates on TM .

If X is a vector field on M , its vertical lift XV on TM is the vector
field defined by XV ω = ω(X) ◦ π̄, where ω is a 1-form on M , which on
the left side of this equation is regarded as a function on TM .

For an affine connection D on M , the horizontal lift XH of X is defined
by XHω = DXω. The covariant derivative DXω has local expression
(Xi ∂ωj

∂xi −XiωkΓkij)dxj , where the Γkij’s are the connection coefficients. If
we evaluate DXω on a vector t = vl ∂

∂xl , we have easily

(DXω)(t) = vjXi ∂ωj
∂xi
−XivjΓkijωk =

(
Xi ∂

∂qi
−XivjΓkij

∂

∂vk

)
ωlv

l.

Thus the local expression for XH is

XH = Xi ∂

∂qi
−XivjΓkij

∂

∂vk
.

The span of the horizontal lifts at t ∈ TM is called the horizontal sub-
space of TtTM . The connection map K : TTM −→ TM is defined by

KXH = 0, KXV
t = Xπ̄(t), t ∈ TM.

The connection map K may also be defined in the following way. Given
X ∈ TtTM , let γ be a smooth curve in TM with tangent vector X at
t = γ(0). Let α = π̄ ◦ γ be the projection of the curve to M . Then

KX = Dα̇γ|0 ,
and the curve γ in TM is horizontal if γ, viewed as a vector field along
α, is parallel. The horizontal subspace can also be defined by

{(s◦α)∗(0) ∈ TtTM |α path in M,s section of TM, s(α(0)) = t,Dα̇(0)s = 0}.

It is immediate that [XV , Y V ]ω = 0. Furthermore,

[XH , Y V ] =
[
Xi ∂

∂qi
−i vjΓkij

∂

∂vk
, Y l ∂

∂vl

]

=
(
Xi ∂Y k

∂xi
+ XiY lΓkil

) ∂

∂vk
= (DXY )V .
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Similarly, denoting the curvature tensor of D on M by R we have at the
point t ∈ TM ,

[XH , Y H ]t = [X,Y ]Ht − (RX Y t)V .

TM admits an almost complex structure J defined by

JXH = XV , JXV = −XH .

Using the above expressions for the Lie brackets in the Nijenhuis torsion
of J one can easily see that J is integrable if and only if D has vanishing
curvature and torsion (Hsu [1960], Dombrowski [1962]).

If now G is a Riemannian metric on M and D its Levi-Civita connec-
tion, we define a Riemannian metric ḡ on TM called the Sasaki metric,
Sasaki [1958] (not to be confused with a Sasakian structure), by

ḡ(X,Y ) =
(
G(π̄∗X, π̄∗Y ) + G(KX,KY )

) ◦ π̄,

where X and Y are vector fields on TM . Since π̄∗ ◦J = −K and K ◦J =
π̄∗, ḡ is Hermitian for the almost complex structure J .

On TM define the Liouville form β by β(X)t = G(t, π̄∗X), t ∈ TM ,
or equivalently by the local expression β =

∑
Gijv

idqj. Then dβ is a
symplectic structure on TM , and in particular, 2dβ is the fundamental
2-form of the almost Hermitian structure (J, ḡ). To see this, first note
that since β(XV ) = 0 and [XV , Y V ] = 0, 2dβ(XV , Y V ) = 0. Similarly

2dβ(XV , Y H)t = XV (G(t, π̄∗Y H) ◦ π̄) = XV

(

G

(

vl
∂

∂xl
, Y

)

◦ π̄

)

= G(X,Y ) = ḡ(XV , Y V ) = ḡ(XV , JY H).

Now choose a vector field Z on M such that Zm = t and (DXZ)m = 0
for all X. Then

2dβ(XH , Y H)t = (XH(G(Z, Y ) ◦ π̄)− Y H(G(Z,X) ◦ π̄)−G(t, [X,Y ]))m
= G(t,DXY )m −G(t,DY X)m −G(t, [X,Y ])m = 0.

Thus TM has an almost Kähler structure which is Kählerian if and only
if (M,G) is flat (Tachibana and Okumura [1962]).

As before, we let R denote the curvature tensor of D, which is now
the Levi-Civita connection of G. The Levi-Civita connection ∇̄ of ḡ and
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its curvature tensor R̄ were computed by Kowalski [1971]. These are
given by the following formulas, and we will give a partial proof as an
illustration:

(∇̄XH Y H)t = (DXY )Ht −
1
2
(RX Y t)Vt ,

(∇̄XH Y V )t =
1
2
(Rt Y X)Ht + (DXY )Vt ,

(∇̄XV Y H)t =
1
2
(Rt XY )Ht ,

∇̄XV Y V = 0.

For example, from 2ḡ(∇̄XY,W ) = Xḡ(Y,W )+Y ḡ(X,W )−Wḡ(X,Y )+
ḡ([X,Y ],W ) + ḡ([W,X], Y )− ḡ([Y,W ],X) we have

2ḡ(∇̄XH Y V ,W V ) = XH ḡ(Y V ,W V ) + ḡ((DXY )V ,W V )

− ḡ((DXW )V, Y V )

= ḡ((DXY )V ,W V ) + G(DXY,W ) ◦ π̄

= 2ḡ((DXY )V ,W V )

and

2ḡ(∇̄XH Y V ,WH)t = Y V ḡ(XH ,WH) + ḡ((RX W t)V , Y V )

= G(Rt Y X,W ) ◦ π̄ = ḡ((Rt YX)H ,WH),

giving the formula for (∇̄XH Y V )t.
Turning to the curvature, we have

R̄XV Y V ZV = 0,

(R̄XV Y V ZH)t =
(

RX Y Z +
1
4
Rt XRt Y Z − 1

4
Rt YRt XZ

)H

t

,

(R̄XH Y V ZV )t = −
(

1
2
RY ZX +

1
4
Rt YRt ZX

)H

t

,

(R̄XH Y V ZH)t =
1
2
(
(DXR)t Y Z

)H
t

+
(

1
2
RX ZY +

1
4
RRtY Z Xt

)V

t

,
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(R̄XH Y H ZV )t =
1
2
(
(DXR)t ZY − (DY R)t ZX

)H
t

+
(

RX Y Z +
1
4
RRtZY X t− 1

4
RRtZX Y t

)V

t

,

(R̄XH Y H ZH)t =
(

RX Y Z +
1
4
RtRZY tX +

1
4
RtRXZtY +

1
2
RtRXY tZ

)H

t

+
1
2
(
(DZR)X Y t

)V
t

.

We will prove the fourth of these formulas. Recall that we may write
the point t as vl ∂

∂xl ; this is important when we have to differentiate with
respect to position. Also we abbreviate ∂

∂xi by ∂i:

R̄XH Y V ZH = ∇̄XH

1
2
vl(R∂l Y Z)H

− ∇̄Y V

(
(DXZ)H − 1

2
vi(RX Z∂i)V

)− ∇̄(DXY )V ZH .

Therefore

(R̄XH Y V ZH)t = − 1
2
XivjΓkij(R∂k Y Z)H

+
1
2
vl
(
(DXR∂l Y Z)Ht −

1
2
(RXR∂lY

Zt)Vt
)

− 1
2
(Rt Y DXZ)Ht +

1
2
(RX ZY )Vt −

1
2
(Rt DXY Z)Ht ,

from which the fourth curvature formula readily follows.
The main result of Kowalski [1971] is the following theorem.

Theorem 9.1 The tangent bundle TM with the Sasaki metric ḡ is
locally symmetric if and only if the base manifold (M,G) is flat, in
which case (TM, ḡ) is flat.

Proof. Clearly if the base manifold is flat, then so is (TM, ḡ); so we have
only the necessity to prove. Using the above formulas for the connection
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and curvature of ḡ, we have

(
(∇̄WH R̄)XH Y V ZV

)
t
= ∇̄WH

(

−1
2
RY ZX − 1

4
Rt YRt ZX

)H

t

− R̄((DWX)H
t − 1

2
(RWX t)

V
t )Y V ZV

− R̄XH ( 1
2
(RtY W )H

t +(DWY )V
t )Z

V

− R̄XH Y V

(
1
2
(RtZW )Ht + (DWZ)Vt

)

.

Using the hypothesis and taking the vertical part, we obtain

0 =
1
2
RW ( 1

2
RY ZX+ 1

4
RtY RtZX)t

−
(

RX 1
2
RtY W

Z +
1
4
RRtZ

1
2
RtY W Xt− 1

4
RRtZX

1
2
RtY W

t

)

−
(

1
4
RRtY

1
2
RtZW Xt +

1
2
RX 1

2
RtZW

Y

)

.

In this expression set Y = t and Z = t to get respectively

RW RtZXt−RXRtZW t = 0,
RW RY tX t− 2RXRtY W t = 0.

Now replace Y by Z in the second of these equations and compare with
the first to obtain

RXRtZW t = 0.

Setting W = X and taking the inner product with Z yields |RtZX|2 = 0
and hence that (M,G) is flat.

K. Bang [1994] obtained the corresponding result for (TM, ḡ) being
conformally flat as a corollary to his result on conformally flat vector
bundles, Theorem 9.13.

Theorem 9.2 The tangent bundle TM with the Sasaki metric ḡ is
conformally flat if and only if the base manifold (M,G) is flat, in which
case (TM, ḡ) is flat.
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9.2 Tangent sphere bundles

We have seen that principal circle bundles over symplectic manifolds
form a large class of examples of contact manifolds; they have K-contact
structures which are Sasakian when the base manifolds are Kählerian.
These examples together with the standard structure on R

2n+1 (Exam-
ples 3.2.1, 4.5.1, 6.7.1, 7.8.2) show that Sasakian manifolds form a large
and important class of contact manifolds. However, despite the example
of T1S

2 ∼= RP 3 and more generally Theorem 9.3 below, the tangent and
cotangent sphere bundles (Example 3.2.4) are not, in general,
K-contact, even though they are classically an important class of con-
tact manifolds. Boothby and Wang [1958] proved that a compact, simply
connected, homogeneous contact manifold M of dimension 4r + 1 with
r > 1 is homeomorphic to a tangent sphere bundle only when M is the
Stiefel manifold V2r+2,2. In [1978] the author showed that the standard
contact structure on the tangent sphere bundle of a compact Riemannian
manifold of nonpositive constant curvature cannot be regular.

We will regard the tangent sphere bundle of a Riemannian manifold
as the bundle of unit tangent vectors, even though, owing to the factor 1

2
in the coboundary formula for dη, a homothetic change of metric will be
made. (If one adopts the convention that the 1

2 does not appear in the
coboundary formula, this change is not necessary. However, to be con-
sistent, the odd-dimensional sphere as a standard example of a Sasakian
manifold should then be taken as a sphere of radius 2 (cf.Tashiro [1969]
and Sasaki and Hatakeyama [1962]).)

The tangent sphere bundle, π : T1M −→M , is the hypersurface of TM
defined by

∑
Gijv

ivj = 1. The vector field ν = vi ∂
∂vi is a unit normal

as well as the position vector for a point t ∈ T1M . We denote by g′ the
Riemannian metric induced on T1M from the Sasaki metric ḡ on TM
and by ∇ its Levi-Civita connection. We can easily find the Weingarten
map of a hypersurface. For any vertical vector field U tangent to T1M ,

∇̄Uν = Uvi
∂

∂vi
+ vi∇̄U

(
∂

∂xi

)V
= U.

For a horizontal tangent vector field X, we may suppose that X is the
restriction of a horizontal lift. Then

(∇̄(∂j)H ν)t = ((∂j)Hvi)
∂

∂vi
+

1
2
vi(Rt ∂i

∂j)Ht + vi(D∂j
∂i)Vt

=
1
2
(Rt t∂j)Ht = 0,
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where we have again abbreviated ∂
∂xj by ∂j . Thus the Weingarten map

A of T1M with respect to the normal ν is given by AU = −U for any
vertical vector U and AX = 0 for any horizontal vector X.

With the simple form for the Weingarten map just obtained, many
computations on T1M can be done on TM . Yampol’skii [1985] (see also
Borisenko and Yampol’skii [1987a], Tanno [1992]) computed the Levi-
Civita connection and the curvature of g′.

While this is enough formalism to proceed, since vertical lifts need
not be tangent to T1M , Boeckx and Vanhecke [1997] introduced the
notion of a tangential lift. For X ∈ TmM , the tangential lift XT of X to
(m, t) ∈ T1M is given by

XT = XV −G(X, t)ν.

The metric g′ on T1M at a point (m, t) is then given by

g′(XH , Y H) = ḡ(XH , Y H) = G(X,Y ), g′(XH , Y T ) = 0,

g′(XT , Y T ) = ḡ(XT , Y T ) = G(X,Y )−G(X, t)G(Y, t).

The Levi-Civita connection of g′ is given by ∇XT Y T = −G(Y, t)XT ,
while the formulas for ∇XH Y H , ∇XH Y T and ∇XT Y H are given by for-
mulas for ∇̄ in the last section with vertical lifts replaced by tangential
lifts, e.g.,

∇XH Y H = (DXY )H − 1
2
(RX Y t)T ,

since G(Rπ∗X tt, t) = 0.
We know that as a hypersurface of the almost Kähler manifold TM ,

T1M inherits an almost contact metric structure. Following the usual
procedure (Example 4.5.2), we define φ′, ξ′, and η′ by on T1M by

ξ′ = −Jν = −viJ

(
∂

∂xi

)V
= vi

(
∂

∂xi

)H
, JX = φ′X + η′(X)ν.

Then (φ′, ξ′, η′, g′) is an almost contact metric structure. Moreover, η′ is
the form on T1M induced from the Liouville form β on TM , for

η′(X) = ḡ(ν, JX) = 2dβ(ν,X) = 2
∑(

d(Gijv
j) ∧ dqi

)(
vk

∂

∂vk
,X
)

=
∑

Gijv
jdqi(X) = β(X).
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However, g′(X,φ′Y ) = 2dη′(X,Y ), so strictly speaking, (φ′, ξ′, η′, g′) is
not a contact metric structure. Of course the difficulty is easily rectified
and

η =
1
2
η′, ξ = 2ξ′, φ = φ′, g =

1
4
g′

is taken as the standard contact metric structure on T1M . In local
coordinates,

ξ = 2vi
(

∂

∂xi

)H
;

the vector field vi( ∂
∂xi )H is the well-known geodesic flow on T1M .

Before proceeding to our theorems we obtain explicitly the covariant
derivatives of ξ and φ. For a horizontal tangent vector field we may again
use a horizontal lift. Then

(∇XH ξ)t = (∇̄XH ξ)t = (XH2vi)(∂i)Ht + 2vi(DX∂i)Ht − (RX tt)Vt
= − (RX tt)Vt ,

and hence for any horizontal vector X at (m, t) ∈ T1M we have

(∇Xξ) = −(Rπ∗X tt)V = −(Rπ∗X tt)T .

For a vertical vector field U tangent to T1M we have

(∇Uξ)t =(∇̄Uξ)t = (U2vi)(∂i)Ht −vi(RKU t(∂i))Ht =−2(φU)t−(RKU tt)Ht ,

since (∂i)H = −J(∂i)V , or in terms of tangential lifts of a vector X on
M ,

∇XT ξ = −2φXT − (RX tt)H .

Comparing with ∇Xξ = −φX − φhX, we have for X horizontal and
orthogonal to ξ and for U vertical,

hX = −X + (Rπ∗X tt)H , hU = U − (RKU tt)T .

One can approach the differentiation of φ either in terms of lifts or by
considering T1M as a hypersurface in TM . First note that

φXH = XT , φXT = −XH +
1
2
G(X, t)ξ
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and that for any tangent vector fields X and Y ,

(∇Xφ)Y = ∇̄XJY − (∇Xη′)(Y )ν + η′(Y )AX

− g′(X,AφY )ν − J∇̄XY − g′(X,AY )ξ′.

We present two computations, one done in each manner.
As before, for X,Y horizontal we suppose that they are horizontal lifts,

and we have
(∇XH φ)Y H = ∇XH Y T − φ∇XH Y H

=
1
2
(Rt,Y X)H + (DXY )T − φ

(
(DXY )H − 1

2
(RX Y t)T

)

=
1
2
(Rt XY )H ,

where we have used the first Bianchi identity.
For U = U i ∂

∂vi a vertical vector field tangent to T1M and X a hori-
zontal tangent vector we have

((∇Xφ)U)t = − (XU i)(∂i)Ht − U i(Dπ∗X∂i)Ht +
1
2
(Rπ∗XKU t)Vt

− (∇Xη′)(U)ν − J(XU i)(∂i)Vt − U iJ(Dπ∗X∂i)Vt

+
1
2
J(RKU tπ∗X)Ht

=
1
2
(Rπ∗X tKU)Tt ,

where we have used (∇Xη′)(U) = g′(∇Xξ′, U) = −1
2G((Rπ∗X tt,KU) =

1
2 ḡ((Rπ∗X tKU)Vt , ν).

Similarly one obtains

(∇Uφ)X = − 2η(X)U +
1
2
(RKU tπ∗X)T ,

(∇Uφ)W = 2g(U,W )ξ +
1
2
(RKU tKW )H ,

where W is also a vertical vector field tangent to T1M .
We now prove a theorem of Tashiro [1969] which shows that the contact

metric structure on the tangent sphere bundle is almost never Sasakian.

Theorem 9.3 The contact metric structure (φ, ξ, η, g) on T1M is K-
contact if and only if the base manifold (M,G) has positive constant
curvature +1, in which case T1M is Sasakian.
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Proof. If (φ, ξ, η, g) is a K-contact structure, then ∇Xξ = −φX, as we
have seen, but for a horizontal lift we have (∇XH ξ)t = −(RX tt)V and
hence (φXH)t = (RX tt)V . Now for X orthogonal to t, φXH = XV and
therefore RX tt = X for all orthogonal pairs {X, t} on (M,G) from which
we have RX Y Z = G(Y,Z)X −G(X,Z)Y .

Conversely, by the formulas above for the covariant derivative of φ, the
condition RX Y Z = G(Y,Z)X −G(X,Z)Y on (M,G) gives us on T1M

(∇Xφ)Y =
1
2
(G(π∗X,π∗Y )t−G(π∗Y, t)π∗X)H = g(X,Y )ξ − η(Y )X,

(∇Xφ)U =
1
2
(G(KU, t)π∗X −G(π∗X,KU)t)T = 0,

(∇Uφ)X = − 2η(X)U +
1
2
(G(t, π∗X)KU −G(KU,π∗X)t)T = −η(X)U,

and

(∇Uφ)W = 2g(U,W )ξ+
1
2
(G(t,KW )KU−G(KU,KW )t)H= g(U,W )ξ,

showing that T1M is Sasakian.

In particular, the contact metric structure on the tangent sphere
bundle of a unit sphere is η-Einstein, as shown by Tanno [1987b], and can
be deformed by a D-homothetic deformation to an Einstein metric. Thus
T1S

3(1) ∼ S3 × S2 admits an Einstein metric other than a Riemannian
product of constant curvature metrics. If g0 denotes the standard metric
on the sphere, then (S3, 2g0) × (S2, g0) is Einstein but clearly not an
associated metric for any contact structure in view of Theorem 7.15 on
locally symmetric contact metric manifolds. Recall also our discussion in
Section 7.4 of the many Sasakian Einstein structures on S3 × S2.

The symmetric operator l was defined by lX = RX ξξ (Section 7.6).
For a K-contact structure we have l = I − η ⊗ ξ, and there exist many
contact metric manifolds for which l = 0, as we will see in Section 9.4,
Theorem 9.16. More strongly, we have seen that RX Y ξ = 0 implies that
the contact metric manifold M2n+1 is locally isometric to En+1 × Sn(4)
(Theorem 7.5), which is the tangent sphere bundle of Euclidean space.
In the case of the contact metric structure on T1M we have the following
result (the author [1977]).

Theorem 9.4 The standard contact metric structure (φ, ξ, η, g) on T1M
satisfies lU = 0 for vertical vector fields U if and only if the base manifold
(M,G) is flat, in which case we have RX Y ξ = 0 for all X and Y on T1M .
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Proof. First note that for a vertical vector field U tangent to T1M ,
RU ξξ = 0 implies R̄U ξξ = 0. Now recall that

K(R̄XH Y V ZH)t =
1
2
RX ZY +

1
4
RRtY Z Xt.

Since ξ = 2vi( ∂
∂xi )H , combining these facts gives

RRKUtt tt = 0,

i.e., RRY XXXX = 0 for any orthonormal pair on (M,G). Taking the
inner product with Y gives |RY XX|2 = 0 from which we see that (M,G)
is flat.

Conversely, if (M,G) is flat, the Gauss equation for T1M as a hyper-
surface of TM gives g′(R′

X Y ξ, Z) = 0 and hence that RX Y ξ = 0.

We remark at this point that if the base manifold (M,G) has constant
curvature −1, then the sectional curvature K(U, ξ) = 1 for any vertical
vector U tangent to T1M and K(X, ξ) = −7 for any horizontal vector
tangent to T1M .

In Section 7.5 we studied the classification of all locally symmetric con-
tact metric manifolds. Since these are locally isometric to En+1 × Sn(4)
or of constant curvature +1, the only possible cases for the standard
contact metric structure on the tangent sphere bundle being locally sym-
metric are those in which the base manifold is flat or 2-dimensional and
of constant curvature +1. The second case follows from Musso–Tricerri
[1988], who prove that (T1M,g′) is Einstein only when dimM = 2, or
by Theorem 9.6 below on the conformally flat case. For a direct proof of
this result on locally symmetric tangent sphere bundles see the author’s
paper [1989] .

For the more general case of locally φ-symmetric contact metric man-
ifolds we note the following theorem of Boeckx and Vanhecke [1997].

Theorem 9.5 The standard contact metric structure (φ, ξ, η, g) on T1M
is strongly locally φ-symmetric if and only if the base manifold (M,G) is
of constant curvature.

When the base manifold is either odd-dimensional or of dimension 2,
this is also equivalent to the contact metric structure on T1M satisfying
∇ξh = ahφ for some function a that is constant on the fibers (Boeckx,
Perrone and Vanhecke [1998]).
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The result for (T1M,g) being conformally flat is much stronger than
that of being locally symmetric (Koufogiorgos and the author [1994]).

Theorem 9.6 The standard contact metric structure on T1M is confor-
mally flat if and only if the base manifold (M,G) is a surface of constant
Gaussian curvature 0 or +1.

We now study the condition ∇ξh = 0 and prove a result of Perrone
[1994]. For each unit tangent vector t ∈ TmM , let [t]⊥ be the subspace
of TmM orthogonal to t and define a symmetric linear transformation
Lt : [t]⊥ −→ [t]⊥ by LtX = RX tt.

Lemma 9.1 If the contact metric structure on T1M satisfies ∇ξh = 0,
then for any orthonormal pair {X, t} on (M,G), L2

tX = LtX and (M,G)
is locally symmetric.

Proof. Since hUt = Ut − (RKU tt)V for a vertical vector U ∈ TtT1M ,
we have h2Ut = Ut − 2(LtKU)V + (L2

tKU)V . Proceeding as in the proof
of Theorem 9.4, we also have lUt = (L2

tKU)V +2((DtR)KU tt)H . On the
other hand, since ∇ξh = 0, applying φ to the first equation of Proposi-
tion 7.1 gives φ2 + h2 + l = 0. Applying this to U , the vertical part gives
L2
t = Lt on (M,G). The horizontal part gives us that (M,G) is locally

symmetric by a result of Cartan that a Riemannian manifold (M,G) is
locally symmetric if and only if G((DXR)Y XY,X) = 0 for all orthonor-
mal pairs {X,Y } (English translation: Cartan [1983, pp. 257–258]).

Theorem 9.7 The standard contact metric structure (φ, ξ, η, g) on T1M
satisfies ∇ξh = 0 if and only if the base manifold (M,G) is of constant
curvature 0 or +1.

Proof. This theorem follows from Lemma 9.1 and the purely Riemannian
result (Perrone [1994]) that a Riemannian manifold (M,G) is locally sym-
metric and satisfies L2

t = Lt if and only if (M,G) is of constant curvature
0 or +1.

As we have been seeing from time to time, conditions on ∇ξh on a
contact metric manifold are of significant geometric interest. Here we
mention a result of Boeckx, Perrone and Vanhecke [1998]. Define a tensor
field S of type (1, 1) by SXH = XH and SXT = −XT .

Theorem 9.8 The base manifold (M,G) is locally isometric to a
two-point homogeneous space if and only if the contact metric structure
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(φ, ξ, η, g) on T1M satisfies

∇ξh = ahφ + bφS,

where a and b are functions that are constant along the fibers of T1M .
Moreover, this is true if and only if the eigenvalues of h are constant
along the fibers and l maps vertical vectors to vertical vectors.

In Section 6.4 we saw that a contact metric structure gives rise to a
strongly pseudoconvex CR-structure if and only if

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX).

For the tangent sphere bundle we have the following result of Mitric
[1991], Tanno [1992].

Theorem 9.9 For dim M ≥ 3 the standard contact metric structure on
T1M gives rise to a strongly pseudoconvex CR-structure if and only if
the base manifold (M,G) is of constant curvature.

Proof. Using hUt = Ut − (RKU tt)V , evaluate the right-hand side of

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX)

on two vertical vectors U and W and compare with our earlier expres-
sion for the left-hand side. The right-hand side becomes 2g(U,W )ξt −
g((RKU tt)Vt ,W )ξt, while the left-hand side is 2g(U,W )ξt +
1
2(RKU tKW )Ht . Equality implies that on the base manifold, RX tY is
collinear with t for all X,Y orthogonal to t. In particular, G(RX tY,X) =
0 for every orthonormal triple {t,X, Y }, and hence (M,G) is of constant
curvature. Conversely, if RX Y Z = c(G(Y,Z)X − G(X,Z)Y ), evaluate
both sides of (∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX) for the four
cases of X,Y being both horizontal, both vertical and each one horizon-
tal with the other vertical, and compare.

Tanno actually proves more: In [1992] (and [1991]) he introduces a
gauge invariant B of type (1, 3) (on the contact subbundle) whose van-
ishing implies the CR-condition of Theorem 6.7 and conversely under
the CR-condition, B reduces to the Chern–Moser–Tanaka invariant. See
Section 10.5 for the notion of a gauge transformation. Tanno proves that
on T1M , dimM ≥ 3, B vanishes if and only if (M,G) is of constant
curvature −1.
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Th. Koufogiorgos studied in [1997a] the idea of constant φ-sectional
curvature for non-Sasakian contact metric manifolds, especially for (κ, μ)-
manifolds. For the tangent sphere bundle he proved the following
theorem.

Theorem 9.10 If (M,G) is of constant curvature c and dimension ≥ 3,
the standard contact metric structure on T1M has constant φ-sectional
curvature (equal to c2) if and only if c = 2±√5.

For (M,G) a surface of constant curvature c �= 1, (T1M,g) has constant
φ-sectional curvature c2, as follows readily from Theorem 7.9 and the
formula K(X,φX) = −(κ + μ) from the same section.

Recently E. Boeckx [2003] [2005] studied the question of the reducibil-
ity of the tangent sphere bundle.

Theorem 9.11 The standard contact metric structure on the tangent
sphere bundle of a Riemannian manifold of dimension greater than 2
is locally reducible if and only if the base manifold has a flat factor. If
the tangent sphere bundle is a global Riemannian product, then the base
manifold is either flat or a global Riemannian product.

Additional results on the geometry of the tangent sphere bundle can
be found in the survey of G. Calvaruso [2005].

9.3 Geometry of vector bundles

The geometric constructions on the tangent bundle described in Section
9.1 can be carried out on a general vector bundle. In this section we
describe this construction and the corresponding results without proofs.
We follow the treatment given by K. Bang in [1994].

Let (Mn, G) be a Riemannian manifold with Levi-Civita connection D
and curvature tensor R as before. Consider a vector bundle π : En+k −→
Mn with fiber metric g⊥ and a metric connection ∇. If (x1, . . . , xn) are lo-
cal coordinates on M , set qi = xi◦π; if {eα} is a local orthonormal basis of
sections of E, writing a point (m,U) ∈ E as U =

∑
uαeα, (q1, . . . , qn) to-

gether with the fiber coordinates (u1, . . . , uk) form local coordinates on E.
For a section ζ =

∑
ζαeα of E, the connection ∇ is given by

∇Xζ = Xi
(∂ζα

∂xi
+ ζβμαβi

)
eα,

where ∇∂i
eβ = μαβieα.
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If X is a tangent vector field on M and if ζ is a section of E, the
horizontal lift XH of X and the vertical lift ζV of ζ are defined by

XH = Xi ∂

∂qi
−Xiuβμαβi

∂

∂uα

and

ζV = ζα
∂

∂uα
.

Then π∗XH = X and π∗ζV = 0. Define a linear map K : TE −→ E by

KXH = 0, KζV(m,U) = ζm, (m,U) ∈ E,

or by its local expression: If (X̃i, X̃n+α) are the components of a vector
X̃ tangent to E at (m,U) with respect to the coordinate basis, then

KX̃ = (X̃n+α + X̃iuβμαβi)eα.

We define a Riemannian metric ḡ on E, called the Sasaki metric , by

ḡ(X̃, Ỹ ) = G(π∗X̃, π∗Ỹ ) + g⊥(KX̃,KỸ ),

where X̃ and Ỹ are vector fields on E. When E = TM and ∇ = D, ḡ is
the Sasaki metric on TM .

The curvature tensor R of ∇ is given by RX Y ζ = ∇X∇Y ζ−∇Y∇Xζ−
∇[X,Y ]ζ and ∇ is said to be flat if R vanishes for all vector fields X,Y
on M and all sections ζ of E. Since RX Y ζ is also a section of E, we
can compute its inner product g⊥(RX Y ζ, ψ) with another section ψ. We
then define the adjoint R̂ζ ψX by

G(R̂ζ ψX,Y ) = g⊥(RX Y ζ, ψ).

With this notation in mind we give the the covariant derivatives of the
Levi-Civita connection ∇̄ of the Sasaki metric ḡ at a point (m,U) ∈ E:

∇̄XH Y H = (DXY )H − 1
2
(RX Y U)V , ∇̄XH ζV =

1
2
(R̂U ζX)H + (∇Xζ)V ,

∇̄ζV Y H =
1
2
(R̂U ζY )H , ∇̄ζV ψV = 0.
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The curvature R̄ of the Sasaki metric at (m,U) is given as follows: R̄
vanishes on three vertical lifts and

R̄ζV ψV ZH =
(

R̂ζ ψZ +
1
4
R̂U ζR̂U ψZ − 1

4
R̂U ψR̂U ζZ

)H
,

R̄XH ζV ψV = −
(

1
2
R̂ζ ψX +

1
4
R̂U ζR̂U ψX

)H
,

R̄XH ζV ZH =
1
2

(
(DXR̂)U ζZ

)H
+
(

1
2
RX Zζ +

1
4
RR̂UζZ X

U

)V
,

R̄XH Y H ζV =
1
2
(
(DXR̂)U ζY − (DY R̂)U ζX

)H

+
(
RX Y ζ +

1
4
RR̂UζY X

U − 1
4
RR̂UζX Y U

)V
,

R̄XH Y H ZH =
(

RX Y Z +
1
4
R̂U RZY UX +

1
4
R̂U RXZUY +

1
2
R̂U RXY UZ

)H

+
1
2
(
(∇ZR)X Y U

)V
.

Concerning the questions of the vector bundle E with the Sasaki metric
being locally symmetric or conformally flat, K. Bang proved the following
theorems.

Theorem 9.12 Let π : En+k −→ Mn be a vector bundle over a
Riemannian manifold (M,G) with fiber metric g⊥ and a metric
connection ∇. Then the Sasaki metric on E is locally symmetric if and
only if the connection ∇ is flat and (M,G) is locally symmetric.

Theorem 9.13 Let π : En+k −→ Mn be a vector bundle over a
Riemannian manifold (M,G) with fiber metric g⊥ and a metric con-
nection ∇. Then the Sasaki metric on E is conformally flat if and only
if either (M,G) is flat with flat connection ∇ or (M,G) has constant
curvature with flat connection ∇ and k = 1.

As a corollary K. Bang pointed out that the tangent bundle TM with
the Sasaki metric ḡ is conformally flat if and only if the base manifold is
flat (Theorem 9.2 above).
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9.4 Normal bundles

For the case of the normal bundle of a submanifold of a Riemannian
manifold, the above construction of the Sasaki metric was developed
by Reckziegel [1979] and Borisenko and Yampol’skii [1987b] using the
normal connection ∇⊥. In this section we consider the special cases in
which the submanifold is a Lagrangian submanifold of a Kähler manifold
or an integral submanifold of a Sasakian manifold. Again the results were
obtained by K. Bang in his thesis [1994].

First let L be a Lagrangian submanifold of a symplectic manifold M2n

with associated metric g̃ and corresponding almost complex structure J̃ .
Recall that if X is tangent to L, then J̃X is normal. Typically, normal
vectors will be denoted by ζ, ν, ψ. Using the ideas of horizontal and
vertical lifts in the case of vector bundles from the last section, we define
an almost complex structure J̄ on the normal bundle T⊥L of L by

J̄XH = (J̃X)V , J̄ζV = (J̃ζ)H .

That J̄2 = −I and that the Sasaki metric ḡ is Hermitian with respect
to J̄ are easily verified. However, the symplectic nature of (T⊥L, J̄ , ḡ)
depends on the ambient manifold (M2n, J̃ , g̃) being Kähler. Let Ω̄ be the
fundamental 2-form of the almost Hermitian structure just defined on
T⊥L.

Theorem 9.14 Let L be a Lagrangian submanifold of a Kähler manifold
(M2n, J̃ , g̃). Then the normal bundle (T⊥L, Ω̄) is a symplectic manifold.

Proof. Since (J̄ , ḡ) is an almost Hermitian structure, it is immediate
that Ω̄n �= 0, so we have only to show that Ω̄ is a closed 2-form. First,
it is immediate that Ω̄(XH , Y H) = 0, Ω̄(XH , ζV ) = g̃(X,Jζ), and
Ω̄(ζV , ψV ) = 0. Now for horizontal lifts of vector fields tangent to L,
we have

[XH , Y H ] = [X,Y ]H − (R⊥
X Y ν)V

at the point ν ∈ T⊥L. Thus using the coboundary formula for dΩ̄, we
have

3dΩ̄(XH , Y H , ZH)

= XH Ω̄(Y H , ZH) + Y HΩ̄(ZH , XH) + ZHΩ̄(XH , Y H)

− Ω̄([XH , Y H ], ZH)− Ω̄([Y H , ZH ],XH)− Ω̄([ZH , XH ], Y H)

= Ω̄((R⊥
X Y ν)V , ZH) + Ω̄((R⊥

Y Zν)V , XH) + Ω̄((R⊥
Z Xν)V , Y H).
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In keeping with the notation of this chapter, let G be the induced metric
on L, D its Levi-Civita connection and R is curvature tensor. Using
the Gauss–Weingarten equations and the Kähler condition, one readily
obtains

J̃∇⊥
Xν = DX J̃ν.

Thus we have

Ω̄((R⊥
X Y ν)V , ZH) = ḡ((R⊥

X Y ν)V , J̄ZH) = −ḡ((J̃R⊥
X Y ν)H , ZH)

= −G(RX Y J̃ν, Z) = G(RX Y Z, J̃ν).

Substituting this and like expressions in the coboundary formula and
using the Bianchi identity, we have 3dΩ̄(XH , Y H , ZH) = 0. In much the
same way one shows that dΩ̄(XH , Y H , ζV ) = 0 and dΩ̄(XH , ζV , ψV ) = 0,
and of course dΩ̄ vanishes on three vertical vectors.

We now turn to the question of when the above almost Kähler structure
on T⊥L is itself Kähler.

Theorem 9.15 Let L be a Lagrangian submanifold of a Kähler manifold
(M2n, J̃ , g̃). Then the following are equivalent: (i) (T⊥L, J̄ , ḡ) is Kähler.
(ii) L has flat normal connection. (iii) L is flat.

Proof. In the previous proof we noted that J̃∇⊥
Xν = DX J̃ν and there-

fore RX Y J̃ν = J̃R⊥
X Y ν. Thus L is flat if and only if L has flat normal

connection.
To complete the proof we show that the almost complex structure J̄

on T⊥L is integrable if and only if L has flat normal connection. This
will be done by computing the Nijenhuis torsion of J̄ :

[J̄ , J̄ ](XH , ζV ) = −[XH , ζV ] + [(J̃X)V , (J̃ζ)H ]− J̄ [(J̃X)V , ζV ]

−J̄ [XH , (J̃ζ)H ]

= −(∇⊥
Xζ)V − (∇⊥

J̃ζ
J̃X)V − J̄

(
[X, J̃ζ]H − (R⊥

X J̃ζ
ν)V
)

= −(∇⊥
Xζ +∇⊥

J̃ζ
J̃X + J̃ [X, J̃ζ])V + (J̃R⊥

X J̃ζ
ν)H .

Now using the Kähler condition and the fact that J̃ [X, J̃ζ] is normal to
L one can show that ∇⊥

Xζ +∇⊥
J̃ζ

J̃X + J̃ [X, J̃ζ] = 0. Therefore

[J̄ , J̄ ](XH , ζV ) = (J̃R⊥
X J̃ζ

ν)H .
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Similarly

[J̄ , J̄ ](XH , Y H) = (R⊥
X Y ν)V , [J̄ , J̄ ](ζV , ψV ) = −(R⊥

J̃ζ J̃ψ
ν)V ,

and the result follows.

We remark that in Chapter 1 we proved a theorem of Weinstein that
a symplectic manifold is locally the cotangent bundle of any Lagrangian
submanifold. Here one may note that since J̃∇⊥

Xν = DX J̃ν, J̃ provides a
connection preserving isomorphism between the tangent bundle and the
normal bundle of L.

Turning to the contact case, let Mn be an integral submanifold of a
contact metric manifold M2n+1 with structure tensors (φ̃, ξ̃, η̃, g̃). On the
normal bundle T⊥Mn, we define an almost contact structure (φ̄, ξ̄, η̄) by

φ̄XH = (φ̃X)V , φ̄ξ̃V = 0, φ̄ζV = (φ̃ζ)H

for all tangent vectors X and normal vectors ζ orthogonal to ξ̃. Also let

ξ̄ = ξ̃V , η̄(X) = ḡ(X, ξ̄)

for any vector X. Then η̄(ξ̄) = 1 and φ̄2 = −I + η̄ ⊗ ξ̄ follow easily.
Using the coboundary formula for dη̄ we have at a point ν ∈ T⊥Mn,

2dη̄(XH , Y H) = XH η̄(Y H)− Y H η̄(XH)− η̄([XH , Y H ])

= − ḡ([XH , Y H ], ξ̄) = g̃(R⊥
X Y ν, ξ̃)

= g̃(R̃X Y ν, ξ̃) + g̃([Aν , Aξ̃]X,Y )

by the equation of Ricci–Kühne. For a normal vector ζ orthogonal to ξ̃
we have

2dη̄(XH, ζV )=−ḡ([XH, ζV ], ξ̄)=−g̃(∇⊥
Xζ, ξ̃)=−g̃(∇̃Xζ, ξ̃)= g̃(ζ, ∇̃X ξ̃).

Similarly dη̄(XH , ξ̄) = 0, dη̄(ζV , ξ̄) = 0 and dη̄(ζV , ψV ) = 0.
If now M2n+1 is Sasakian, by Lemma 8.1, Aξ̃ = 0, and by Proposition

7.3, R̃X Y ξ̃ = η̃(Y )X − η̃(X)Y , giving g̃(R⊥
X Y ν, ξ̃) = g̃(R̃X Y ν, ξ̃) = 0.

Thus R⊥
X Y ξ̃ = 0 for any tangent vectors X and Y , and in turn, R̂ξ̃ νX = 0

for all ν ∈ T⊥Mn. Now setting

φ = φ̄, ξ = 2ξ̄, η =
1
2
η̄, g =

1
4
ḡ,
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we see that dη(X,Y ) = g(X,φY ) for all vector fields on T⊥M , giving
T⊥Mn a contact metric structure (φ, ξ, η, g).

In Section 7.6 we mentioned in passing that there exist many contact
metric manifolds satisfying l = 0 (lX = RX ξξ). This is seen from the
following theorem of Bang [1994].

Theorem 9.16 Let Mn be an integral submanifold of a Sasakian man-
ifold M2n+1 with structure tensors (φ̃, ξ̃, η̃, g̃). Then the normal bundle,
T⊥Mn, has a contact metric structure (φ, ξ, η, g) satisfying l = 0.

Proof. We have just seen that when Mn is an integral submanifold
of a Sasakian manifold M2n+1, T⊥Mn has a contact metric structure
(φ, ξ, η, g). So it remains only to show that l = 0. From the curvature
expressions of Section 9.3 and R̂ξ̃ νX = 0 we have

RXH ξξ = 4RXH ξ̃V ξ̃V = −(R̂ν ξ̃R̂ν ξ̃X)H = 0

and RζV ξξ = 0.

In particular, we see that the contact metric structure (φ, ξ, η, g) on
T⊥Mn is never Sasakian. Concerning the question of flat normal connec-
tion we have the following result of Yano and Kon [1983, p. 50].

Theorem 9.17 Let Mn be an integral submanifold of a Sasakian mani-
fold M2n+1. Then Mn has flat normal connection if and only if (Mn, G)
has constant curvature 1.

As an example of Theorem 9.17 recall Example 5.3.1 of Sn as a totally
geodesic integral submanifold of the Sasakian manifold S2n+1. In this
case the normal bundle T⊥Sn has flat normal connection, and T⊥Sn

as a contact metric manifold with the structure (φ, ξ, η, g) is again the
common example En+1 × Sn(4) (cf. Theorem 7.5).

We also point out that for a normal vector ζ orthogonal to ξ̃, we have on
T⊥Mn that ∇ζV ξ = 2∇̄ζV ξ̃V = 0 where ∇ is the Levi-Civita connection
of g. Thus from Lemma 6.2, hζV = −ζV , and hence −1 is an eigenvalue
of h with multiplicity n. Since hφ+φh = 0, +1 is also an eigenvalue with
multiplicity n and hXH = XH . From [XH , Y H ] = [X,Y ]H − (R⊥

X Y ν)V

we see that the subbundle [+1] is integrable if and only if Mn has flat
normal connection.

We close this section with a continuation of Example 5.3.2. There we
gave an embedding of the 2-torus as a flat minimal integral submanifold
of S5. In keeping with the notation of Section 9.3 we let {x1, x2} be
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the local coordinates on T 2 instead of {u, v}; X1 = ∂
∂x1 ,X2 = ∂

∂x2 are
orthonormal in the metric G, the restriction of g̃ to T 2. Let e1 = φ̃X1,
e2 = φ̃X2 and e3 = ξ̃. To find ∇⊥

∂i
eβ = μαβieα explicitly, compute ∇̃eα

using the Sasakian condition. Then one obtains

μ1
31 = −1, μ2

32 = −1, μ3
11 = 1, μ3

22 = 1

as the nonzero μαβi’s. Also {u1, u2, u3} denote the fiber coordinates, so
that {qi = xi ◦π, uα} are local coordinates on T⊥T 2. Now computing the
Sasaki metric ḡ, we have

ḡ
( ∂

∂qi
,

∂

∂qj

)
= δij +

∑
μαβiμ

α
δju

βuδ,

ḡ
( ∂

∂qi
,

∂

∂uα

)
= μαβiu

β, ḡ
( ∂

∂uα
,

∂

∂uβ

)
= δαβ .

Thus for the contact metric metric structure (η, g) on T⊥T 2 we have

η =
1
2
(du3 + u1dq1 + u2dq2)

and

g =
1
4

⎛

⎜
⎜
⎜
⎜
⎝

1 + (u1)2 + (u3)2 u1u2 −u3 0 u1

u1u2 1 + (u2)2 + (u3)2 0 −u3 u2

−u3 0 1 0 0
0 −u3 0 1 0
u1 u2 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Compare this metric with the metric

g =
1
4

⎛

⎝
δij + yiyj + δijz

2 δijz −yi

δijz δij 0
−yj 0 1

⎞

⎠

associated to the Darboux form η = 1
2(dz−∑ yidxi) on R

2n+1 introduced
in Section 7.2 as a formal generalization of the flat associated metric of
the Darboux form on R

3.
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9.5 The geodesic flow on the projectivized tangent
bundle

In this section we consider the geodesic flow on the projectivized tangent
bundle rather than on its usual home, the unit tangent bundle. We do
this in anticipation of our discussion of the complex case, Sections 13.2–
13.4, and for illustrative purposes we restrict ourselves to case where the
base manifold is the Beltrami model of the hyperbolic plane. This model
is the open unit disk in the xy-plane with the Beltrami metric G given
by

ds2 =
(1− y2)dx2 + 2xy dx dy + (1− x2)dy2

(1− x2 − y2)2
.

Geodesics in the model are chords of the disk.
The projectivized tangent bundle, PTM , is the product of the disk

with a real projective line, which one can imagine as vertical line fibers
over a horizontal disk. Let m = v2

v1 be a nonhomogenous coordinate
on the fibers, v1 and v2 being homogeneous coordinates. We will use
(x, y,m), or (x1, x2,m) to accommodate indexing (1, 2, 3), to denote the
local coordinates in the projectivized tangent bundle. The metric g on
PTM will be the projection of the Sasaki metric on the tangent bundle,
and the formalism is the following. Set Pi = Gi1v

1 + Gi2v
2. Instead of

tangential lifts we introduce projective lifts by

( ∂

∂xi

)P
= v1

( ∂

∂vi
− Pi

∑
vj

∂

∂vj

)
.

The projective lifts of the coordinate fields project to PTM as

( ∂

∂x

)P −→ −m
∂

∂m
,

( ∂

∂y

)P −→ ∂

∂m
.

To obtain the metric g, first recall that the unit tangent bundle is
defined by G11(v1)2 + 2G12v

1v2 + G22(v2)2 = 1, and we construct the
fiber as a projective line (m = v2

v1
) from this restriction. Note that v1 =

1−x2−y2√
1+m2−(mx−y)2 . First,

g33 = g
( ∂

∂m
,

∂

∂m

)
= ḡ
(( ∂

∂y

)P
,
( ∂

∂y

)P)
=

1− x2 − y2

(1 + m2 − (mx− y)2)2
.
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Using this, the component g13 is readily computed from

0 = ḡ
(( ∂

∂x

)H
,
( ∂

∂y

)P)
= g
( ∂

∂x
+ m

x + my

1− x2 − y2

∂

∂m
,

∂

∂m

)

= g13 +
m(x + my)

(1 + m2 − (mx− y)2)2
.

Similarly, one finds g23, and then using horizontal lifts one finds g11,
g12 and g22. In summary,

g11 =
1− y2

(1− x2 − y2)2
+

m2(x + my)2

(1− x2 − y2)(1 + m2 − (mx− y)2)2
,

g12 =
xy

(1− x2 − y2)2
− m(x + my)2

(1− x2 − y2)(1 + m2 − (mx− y)2)2
,

g22 =
1− x2

(1− x2 − y2)2
+

(x + my)2

(1− x2 − y2)(1 + m2 − (mx− y)2)2
,

g13 = − m(x + my)
(1 + m2 − (mx− y)2)2

, g23 =
(x + my)

(1 + m2 − (mx− y)2)2
,

g33 =
1− x2 − y2

(1 + m2 − (mx− y)2)2
.

The “geodesic flow” is given by the vector field ∂
∂x + m ∂

∂y , and an
integral curve through a point (x, y,m) is a line of slope m lying in a copy
of the disk at height m and passing through (x, y). Note that the point at
infinity on a fiber corresponds to a vertical line in the (x, y)-plane. The
geodesic flow is hyperbolic (an Anosov flow without the compactness
requirement), as can be visualized in the following discussion.

Consider a directed line (chord) in the disk and a point on it. Through
the point there are two horocycles; these are ellipses tangent to each
other at the point and tangent to the boundary of the disk at the ends of
the chord. Asymptotic parallels to the line in the positive direction have
greater slope on one side of the line and lesser slope on the other and
are orthogonal to the horocycle in the positive direction from the point.
The curve in the projectivized tangent bundle lying over (and under) the
horocycle whose m-value at each point is the slope of the corresponding
asymptotic parallel is the stable submanifold of the geodesic flow through
each of its points. Similarly, the asymptotic parallels to the line in the
negative direction have lesser slope on the first side and greater on the
other and are orthogonal to the horocycle in the negative direction.
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The curve in the projectivized tangent bundle lying under (and over)
the horocycle whose m-value at each point is the slope of the corre-
sponding asymptotic parallel is the unstable submanifold of the geodesic
flow through each of its points.

The vector field 2
∑

vj( ∂
∂xj )H projects to

ξ = 2
1− x2 − y2

√
1 + m2 − (mx− y)2

( ∂

∂x
+ m

∂

∂y

)

and its covariant form is

η =
(1 + y(mx− y))dx + (m− x(mx− y))dy

2(1− x2 − y2)
√

1 + m2 − (mx− y)2
.

This is a contact form with

η ∧ dη =
−dx ∧ dy ∧ dm

4(1 − x2 − y2)(1 + m2 − (mx− y)2)
.

The metric 1
4g is an associated metric for the contact form η, and ξ is

the characteristic vector field giving a contact metric structure on the
projectivized tangent bundle.





10
Curvature Functionals on Spaces of
Associated Metrics

In this chapter we discuss a number of curvature functionals defined
on the spaces of associated metrics for both compact symplectic and
compact contact manifolds. Since these spaces are smaller than the space
of Riemannian metrics of the same total volume, one expects for the
classical curvature functionals weaker but still interesting critical point
conditions. Other functionals that depend on the symplectic and contact
structures are also considered.

10.1 Introduction to critical metric problems

The study of the integral of the scalar curvature, A(g) =
∫
M τ dVg, as

a functional on the set M1 of all Riemannian metrics of the same to-
tal volume on a compact orientable manifold M is now classical, dating
back to Hilbert [1915] (see also Nagano [1967]). A Riemannian met-
ric g is a critical point of A(g) if and only if g is an Einstein metric.
Since there are so many Riemannian metrics on a manifold, one can re-
gard, philosophically, the finding of critical metrics as an approach to
searching for the best metric for the given manifold. Other functions
of the curvature have been taken as integrands as well, most notably
B(g) =

∫
M τ2 dVg, C(g) =

∫
M |ρ|2 dVg, where ρ is the Ricci tensor, and

D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds,
DOI 10.1007/978-0-8176-4959-3_10, © Springer Science+Business Media, LLC 2010
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D(g) =
∫
M |Rkjih|2 dVg; the critical point conditions for these have been

computed by Berger [1970]. From the critical point conditions it is easy to
see that Einstein metrics are critical for B(g) and C(g) but not necessar-
ily conversely. For example, an η-Einstein manifold M2n+1 with scalar
curvature equal to 2n(2n + 1) or 2n(2n + 3) is a non-Einstein critical
metric of C(g), Yamaguchi and Chūman [1983]. In the case of B(g),
Yamaguchi and Chūman showed that a Sasakian critical point is
Einstein.

Another area of interest in the functional B(g) is the study of ex-
tremal Kähler metrics initiated by Calabi in [1954], [1982] and [1985].
Let (M,J, g) be a compact Kähler manifold with fundamental 2-form Ω
and let M[Ω] denote the set of Kähler metrics on M whose fundamen-
tal 2-forms belong to the same cohomology class as Ω. Calabi defined
an extremal metric as a critical point of B(g) restricted to M[Ω] and
proved that a Kähler metric is extremal if and only if the gradient of the
scalar curvature is a (real) holomorphic vector field, i.e., an infinitesimal
automorphism of the complex structure (see also Besse [1987, p. 334]).
In a developing area, Boyer, Galicki and Simanca [2008], [2009] intro-
duced the notion of an extremal Sasakian structure by considering the
functional B(g) on the set of Sasakian structures with the same char-
acteristic vector field and complex normal bundle as a given Sasakian
structure. Unfortunately, a detailed treatment of these topics would take
us too far afield, and we refer the interested reader to the references in
this paragraph.

Metrics of constant curvature and Kähler metrics of constant holomor-
phic curvature are critical for D(g), see Muto [1975]. Also, a Sasakian
manifold of dimension m and constant φ-sectional curvature 3m − 1 is
critical for D(g), see Yamaguchi and Chūman [1983].

To introduce the techniques for our study we will prove the classical
result that a Riemannian metric is critical for A(g) if and only if it is
Einstein. Let M be a compact orientable manifold andM1 the set of all
Riemannian metrics normalized by the condition of having the same total
volume, usually taken to be 1, but one need not insist on the particular
value in a given problem. As in Section 4.3 we often denote by the same
letter a tensor field of type (0, 2) and its corresponding types (1, 1) and
(2, 0) determined by the metric under consideration, e.g., we may write
trTD = T i

jD
j
i = T ijDji.
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Lemma 10.1 Let T be a second order symmetric tensor field on M .
Then

∫
M trTD dVg = 0 for all symmetric tensor fields D satisfying∫

M trD dVg = 0 if and only if T = cg for some constant c.

Proof. If T = cg, trTD = c trD and the sufficiency is immediate. Thus
we have only to prove the necessity. Let X,Y be an orthonormal pair
of vector fields on a neighborhood U on M and f a C∞ function with
compact support in U . Regarding X and Y as part of a local orthonormal
basis, define a tensor field D on M by D(X,X) = f and D(Y, Y ) = −f ,
with all other components equal to zero and D ≡ 0 outside U . Then∫
M (T (X,X) − T (Y, Y ))f dVg = 0 for any C∞ function with compact

support and hence T (X,X) = T (Y, Y ) for every orthonormal pair X,Y .
Therefore T = cg for some function c and it remains to show that c is
a constant. To see this, let X be any vector field and D = £Xg. Then
since the integral of a divergence vanishes,

0 =
∫

M
T ij(∇iXj +∇jXi) dVg = −2

∫

M
(∇iT ij)Xj dVg,

but X, is arbitrary so that ∇iT ij = 0 (Lemma 4.7), from which we see
that c must be a constant.

Now the approach to these critical point problems is to differentiate the
functional in question along a path of metrics. The curvature functionals
we study are not generally invariant under homothetic transformations;
so when necessary we normalize these problems by restricting them to
M1. Let g(t) be a path of metrics in M1 and

Dij =
∂gij
∂t

∣
∣
∣
∣
t=0

its tangent vector at g = g(0). We define two other tensor fields by

Dji
h =

1
2
(∇jDi

h +∇iDj
h −∇hDji),

Dkji
h = ∇kDji

h −∇jDki
h,

where ∇ denotes the Riemannian connection of g(0), and we note that

Dji
h =

∂Γjih

∂t

∣
∣
∣
∣
t=0

, Dkji
h =

∂Rkji
h

∂t

∣
∣
∣
∣
t=0

,

where Γjih and Rkji
h denote the Christoffel symbols and curvature tensor

of g(t).
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Theorem 10.1 Let M be a compact orientable C∞ manifold and M1

the set of all Riemannian metrics on M with unit volume. Then g ∈M1

is a critical point of A(g) =
∫
M τ dVg if and only if g is Einstein.

Proof. The proof is to compute dA
dt at t = 0 for a path g(t) inM1. First

note that from gijg
jk = δki ,

∂gij

∂t

∣
∣
∣
∣
t=0

= −Dij.

Differentiation of the volume element gives

d

dt
dVg =

d

dt

√
det(g(t))dx1 ∧ · · · ∧ dxn =

1
2det(g(t))

(
d

dt
det(g(t))

)

dVg

=
1
2
gij
(

d

dt
gij

)

dVg =
1
2
Di
idVg.

Now

dA

dt

∣
∣
∣
∣
t=0

=
d

dt

∫

M
Rkji

kgji dVg

∣
∣
∣
∣
t=0

=
∫

M
(Dkji

kgji − ρjiD
ji +

1
2
τgjiDji) dVg

=
∫

M
(−ρji +

1
2
τgji)Dji dVg,

since the integral of a divergence vanishes. On the other hand, differen-
tiation of

∫
M dVg = 1 gives

∫
M Di

i dVg = 0. Thus setting dA
dt

∣
∣
t=0

= 0 and
applying Lemma 10.1, we have

ρji − 1
2
τgji = cgji

for some constant c and hence that g is Einstein. The converse is imme-
diate.

In [1974a] Y. Muto computed the second derivative of A(g) at a critical
point and proved the following theorem.

Theorem 10.2 The index of A(g) and the index of −A(g) are both pos-
itive at each critical point.
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Y. Muto also considered the second derivative of the functional D(g)
from the following point of view. Let Diff denote the diffeomorphism
group of M ; if f ∈ Diff , then D(f∗g) = D(g), and hence we have
an induced mapping D̃ : M1/Diff −→ R. We say that a metric g is
a critical point of D̃ if its orbit under Diff is a critical point of D̃.
Recall from the introduction to this section that a Riemannian metric
of constant curvature is a critical point of D(g); Y. Muto [1974b] proved
the following result.

Theorem 10.3 If M is diffeomorphic to a sphere and g0 is a metric of
positive constant curvature, then the index of D(g) and the index of D̃
are both zero at g0 and D̃ has a local minimum at g0.

We now turn to integral functionals defined on the set of metrics as-
sociated to a symplectic or contact structure. To begin, we recall from
Chapter 4 how the set A of associated metrics sits in the set N of all
Riemannian metrics with the same volume element. In particular, we saw
that a symmetric tensor field D is tangent to a path in A at g if and
only if

DJ + JD = 0

in the symplectic case and

Dξ = 0, Dφ + φD = 0

in the contact case.
Similar to the role played by Lemma 10.1 we have the following lemma

for critical point problems on A.

Lemma 10.2 Let T be a second order symmetric tensor field on M .
Then

∫
M T ijDij dV = 0 for all symmetric tensor fields D satisfying DJ+

JD = 0 in the symplectic case and Dξ = 0, Dφ + φD = 0 in the contact
case if and only if TJ = JT in the symplectic case and φT − Tφ =
η⊗ φTξ − (η ◦ Tφ)⊗ ξ in the contact case (i.e., φ and T commute when
restricted to the contact subbundle).

Proof. We give the proof in the symplectic case, the proof in the
contact case being similar (see A. J. Ledger and the author [1986]).
Let X1, . . . ,X2n be a local J-basis defined on a neighborhood U (i.e.,
X1, . . . ,X2n is an orthonormal basis with respect to g and X2i = JX2i−1)
and note that the first vector field X1 may be any unit vector field on U .
Let f be a C∞ function with compact support in U and define a path
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of metrics g(t) as follows. Make no change in g outside U and within U
change g only in the planes spanned by X1 and X2 by the matrix

(
1 + tf + 1

2t2f2 1
2t2f2

1
2t2f2 1− tf + 1

2t2f2

)

.

It is easy to check that g(t) ∈ A, and clearly the only nonzero components
of D are D11 = −D22 = f . Then

∫
M T ijDij dV = 0 becomes

∫

M
(T 11 − T 22)f dV = 0.

Thus since X1 was any unit vector field on U ,

T (X,X) = T (JX, JX)

for any vector field X. Since T is symmetric, linearization gives TJ = JT .
Conversely, if T commutes with J and D anticommutes with J , then
trTD = trTJDJ = trJTDJ = −trTD, giving T ijDij = 0.

We end this section with our first main result (S. Ianus and the author
[1986]), namely we consider the functional A(g) restricted to the set A
and find the critical point condition. Since A is a smaller set of metrics
thanM1, we expect a weaker critical point condition than that of being
Einstein; we will see that the condition is that the Ricci operator com-
mute with the corresponding almost complex structure, and hence we
still have a very natural condition.

Theorem 10.4 Let M be a compact symplectic manifold and A the set
of metrics associated to the symplectic form. Then g ∈ A is a critical
point of A(g) =

∫
M τ dVg restricted to A if and only if the Ricci operator

Q of g commutes with the almost complex structure corresponding to g.

Proof. The proof is again to compute dA
dt at t = 0 for a path g(t) in A.

Since all associated metrics have the same volume element, this is easier
than in the Riemannian case. In particular, we have

dA

dt

∣
∣
∣
∣
t=0

=
d

dt

∫

M
Rkji

kgji dVg

∣
∣
∣
∣
t=0

=
∫

M
Dkji

kgji − ρjiD
ji dVg

= −
∫

M
ρjiDji dVg,
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Since Dkji
kgji = (∇k Dji

k)gji = ∇k(Dji
kgji) which is a divergence; note

that trD = 0 and hence Dki
k = 0. Setting dA

dt

∣
∣
t=0

= 0, the result follows
from Lemma 10.2.

The commutativity QJ = JQ is equivalent to ρ(JX, JY ) = ρ(X,Y )
and is often referred to as the J-invariance of the Ricci tensor or as the
manifold having Hermitian Ricci tensor.

10.2 The ∗-scalar curvature

In Section 7.2 we defined the ∗-Ricci tensor and the ∗-scalar curvature
in contact geometry. In almost Hermitian geometry these are defined
similarly by

ρ∗ij = RikltJ
klJj

t, τ∗ = ρ∗i
i.

On a Kähler manifold, ρ∗ij = ρij . The most important property of τ∗ on
an almost Kähler manifold is the analogue or forerunner of Proposition
7.7, viz.

τ − τ∗ = −1
2
|∇J |2.

Therefore τ − τ∗ ≤ 0, with equality holding if and only if the metric is
Kähler. Thus for M compact, Kähler metrics are maxima of the func-
tional

K(g) =
∫

M
τ − τ∗ dV

on A, and hence it is natural to ask for the critical point condition in
general. This was the main question of S. Ianus and the author in [1986];
the critical point condition for K(g) turns out to be the same as for A(g)
on A, viz. QJ = JQ.

Theorem 10.5 Let M be a compact symplectic manifold and A the set
of metrics associated to the symplectic form. Then g ∈ A is a critical
point of K(g) if and only if QJ = JQ.

At first it may seem surprising that A(g) and K(g) have the same
critical point condition, but we will see in the course of our discussion
that this is natural. The proof of Theorem 10.5 will then be an easy
consequence of Theorem 10.4 and Theorem 10.6 below. It is also natural
to ask whether Kähler metrics are the only critical points of K(g); the
answer to this is negative and a counterexample was given by Davidov
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and Mus̆karov [1990] on the twistor space of a compact Einstein, self-dual
4-manifold with negative scalar curvature.

In [1969] S. I. Goldberg showed that if RXY JZ = JRXY Z on an al-
most Kähler manifold, then the metric is Kähler and conjectured that
a compact almost Kähler Einstein manifold is Kähler. This conjecture
is still open, but under the additional assumption of nonnegative scalar
curvature it was proved by Sekigawa [1987]. Without the assumption of
compactness, the conjecture is false; nonexistence was shown by
Armstrong [1998]; Nurowski and Przanowski [1999] gave an example
of a 4-dimensional non-Kähler almost Kähler that is Ricci flat; and
Apostolov, Draghici and Moroianu [2001] have given noncompact coun-
terexamples to the conjecture in dimensions ≥ 6. The scalar curvature
in the twistor space example, mentioned above, of a non-Kähler, almost
Kähler manifold satisfying QJ = JQ is negative; thus one might ask
in light of Sekigawa’s result whether a compact almost Kähler mani-
fold with QJ = JQ and nonnegative scalar curvature is Kähler. Draghici
[1999] answered this question affirmatively in dimension 4 and negatively
in general dimension. As a partial result in general dimension, Draghici
proved in [1994] that if M is a compact almost Kähler manifold with
Hermitian Ricci tensor and if there exists a constant λ ≥ 0 such that
λ ≤ Ric(X) ≤ 2λ for any direction X, then M is Kähler. Recently there
has been interest in other curvature conditions that imply that an al-
most Kähler structure is Kähler, especially questions involving the Weyl
curvature tensor; see, e.g., Kirchberg [2004] and Draghici and the author
[2009].

The original proof of Theorem 10.5 was to proceed as in Theorem 10.4
and differentiate −τ∗. This is very complicated and only after clever use
of many identities does one see that differentiation of this term again
yields a contribution of −ρijDij to the integrand and hence that one
has the same critical point condition (precisely 2Q commuting with J).
This suggests that if we consider the “total scalar curvature” I(g) =∫
M τ + τ∗ dV , the contributions of each term to the derivative of the

integrand would have canceled each other, and hence every metric in A
would have been a critical point; thus, since A is path connected, I(g)
must be constant on A and hence a symplectic invariant (the author
[1991a]). We now prove this using only relatively short computations.
The motivation for studying the integral of the sum of τ and τ∗ lies in



10.2 The ∗-scalar curvature 203

the author’s work with D. Perrone [1992] on critical point problems in
the contact case and will be discussed later in this section.

Theorem 10.6 Let M be a compact symplectic manifold. Then
∫
M τ +

τ∗ dV is a symplectic invariant and to within a constant is the cup product

(c1(M) ∪ [Ω]n−1)([M ]),

where c1(M) is the first Chern class of M .

Proof. Consider an almost Hermitian manifold with structure tensors
(J, g). The generalized Chern form γ is given by

8πγij = −4Jkjρ∗ik − Jkl(∇jJhk)∇iJlh.
Now on an almost Kähler manifold,

(∇kJip)Jjp = (∇pJij)Jkp;
this is the condition for an almost Hermitian structure to be quasi-Kähler
(see e.g., Gray and Hervella [1980]). Using this we have the following
computation:

8πγijJ
ji = 4τ∗ − Jkl(∇jJkh)(∇iJhl)Jj i

= 4τ∗ − Jkl(∇jJkh)(∇jJhi)Jli
= 4τ∗ − |∇J |2,

but τ − τ∗ = −1
2 |∇J |2, and hence

2(τ + τ∗) = 4τ∗ − |∇J |2 = 8πγijJ
ji.

Thus the “total scalar curvature” of an associated metric becomes I(g) =
4π
∫
M γijJ

ji dV . Moreover, writing Ω in terms of a J-basis, a simple
computation shows that

∫

M
γijJ

ji dV =
1

2n−1(n− 1)!

∫

M
γ ∧Ωn−1.

Thus one has a relatively easy proof that the “total scalar curva-
ture” is a symplectic invariant, and writing τ − τ∗ as 2τ − (τ + τ∗), we
see that A(g) and K(g) have the same critical point condition, proving
Theorem 10.5.
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On a Kähler manifold the Ricci form is, up to a constant, the first
Chern form γ, i.e., 2πγij = −ρikJ

k
j. On an almost Kähler manifold the

Ricci tensor need not be J-invariant and hence the Ricci form is not in
general defined. In [1994] Draghici defined a Ricci form on an almost
Kähler manifold by decomposing the Ricci tensor ρ into its J-invariant
and J-anti-invariant parts and defining the Ricci form ψ by ψ(X,Y ) =
ρinv(X,JY ). Similarly define the ∗-Ricci form by ψ∗(X,Y ) = ρ∗(X,JY );
since ρ∗(JX, JY ) = ρ∗(Y,X), ψ∗ is a well-defined 2-form. Draghici then
obtained a cohomological version of the Goldberg conjecture and proved
that if M is a compact almost Kähler manifold whose Ricci form is
cohomologous to the first Chern class, then M is a Kähler manifold.

In the contact case the results corresponding to Theorems 10.4 and 10.5
were obtained by A. J. Ledger and the author in [1986], and the critical
point conditions are different. The integral K(g) for a contact manifold
M2n+1 is taken to be K(g) =

∫
M τ − τ∗ − 4n2 dV (see Proposition 7.7)

even though it is not necessary to include the constant 4n2.

Theorem 10.7 Let M be a compact contact manifold and A the set of
metrics associated to the contact form. Then g ∈ A is a critical point
of A(g) restricted to A if and only if Q and φ commute when restricted
to the contact subbundle.

Theorem 10.8 Let M be a compact contact manifold and A the set of
metrics associated to the contact form. Then g ∈ A is a critical point
of K(g) if and only if Q − 2nh and φ commute when restricted to the
contact subbundle.

Moreover, from Proposition 7.7 we see that Sasakian metrics, when they
exist, are maxima of K(g).

In approaching Theorem 10.6 we remarked that the study of∫
M τ + τ∗ dV in symplectic geometry was motivated by the correspond-

ing study in contact geometry (Perrone and the author [1992]). It is
interesting to remark that many results in contact and Sasakian geome-
try were motivated by the corresponding ones in symplectic and Kähler
geometry. Here we have an example of a result in contact geometry
preceding its symplectic analogue. In contact geometry the functional
I(g) =

∫
M τ + τ∗ dV is not an invariant and gives a critical point prob-

lem whose critical point condition gives the important class of K-contact
metrics, i.e., associated metrics for which the characteristic vector field
generates isometries.
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Theorem 10.9 Let M be a compact contact manifold and A the set of
metrics associated to the contact form. Then g ∈ A is a critical point
of I(g) =

∫
M τ + τ∗ dV if and only if g is K-contact.

Proof. The terms τ and τ∗ are differentiated as in Ledger and the author
[1986], and the contributions of ρijDij cancel instead of doubling up as
in Theorem 10.8 and the original proof of Theorem 10.5. The result is
that

d

dt

∫

M
τ + τ∗ dV

∣
∣
∣
∣
t=0

= −4n
∫

M
hjlDjl dV.

Thus from Lemma 10.2 and hξ = 0, the critical point condition becomes
φh− hφ = 0; but φh + hφ = 0 and hence h = 0. Therefore ξ is a Killing
vector field (see Section 6.2).

Turning to the second variation, we have the following result of Perrone
and the author [1995].

Theorem 10.10 The index of I(g) and the index of −I(g) are both
positive at each critical point.

Proof. Referring to Perrone and the author [1995] for details, the second
derivative of I(g) evaluated at a critical point is given by the following
succinct formula:

I ′′(0) = 2n
∫

M
tr(φD£ξD) dV.

Now as in the proof of Lemma 10.2, let X1, . . . ,X2n, ξ be a local φ-basis
defined on a neighborhood U and again note that the first vector field
X1 may be any unit vector field on U orthogonal to ξ. Let f be a C∞

function with compact support in U and define a path of metrics g(t) as
follows. Make no change in g outside U and within U change g only in
the planes spanned by X1 and X2 by the matrix

(
1 + t2f2 tf

tf 1

)

.

It is easy to check that g(t) ∈ A, and clearly the only nonzero components
of D are D12 = D21 = f . Denoting the first vector field in the φ-basis
by X, calculation of I ′′(0) in the above formula yields

I ′′(0) = −4n
∫

M
f2η([[ξ,X],X]) dV,
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where X may be regarded as any unit vector field on U belonging to
the contact subbundle. Thus the proof reduces to finding unit vector
fields belonging to the contact subbundle on U for which η([[ξ,X],X])
has either sign, and again we refer to Perrone and the author [1995] for
details.

As a application of Theorem 10.10 we prove the following result
(Perrone and the author [1995]).

Theorem 10.11 The functional A(g) restricted to A cannot have a local
minimum at any Sasakian metric.

Proof. Suppose that g0 is a Sasakian metric and a local minimum of
A(g) in A. Then there exists a neighborhood U of g0 ∈ A on which
A(g0) ≤ A(g). Since all associated metrics have the same volume element,∫
M τ0 dV ≤ ∫M τ dV for every g ∈ U . From Proposition 7.7,

2τ − 4n2 ≤ τ + τ∗,

with equality if and only if the metric is Sasakian. Thus we have

I(g0) =
∫

M
2τ0 − 4n2 dV ≤

∫

M
2τ − 4n2 dV ≤ I(g)

for every g ∈ U , that is, g0 is a local minimum for I(g), contradicting
Theorem 10.10.

10.3 The integral of Ric(ξ)

The integral L(g) =
∫
M Ric(ξ) dV was studied in general dimension by

the author in [1984] and independently by Chern and Hamilton in [1985]
in the 3-dimensional case. Recall (Corollary 7.1) that

Ric(ξ) = 2n− trh2;

thus K-contact metrics, when they occur, are maxima for L(g) on A.
Moreover, the critical point question for L(g) is the same as that for∫
M |h|2 dV or

∫
M |T |2 dV , where T (X,Y ) = (£ξg)(X,Y ) = 2g(X,hφY ).

It is the integral E(g) =
∫
M |T |2 dV that was studied by Chern and

Hamilton [1985] for 3-dimensional contact manifolds as a functional on
A regarded as the set of CR-structures on M (there was an error in their
calculation of the critical point condition, as was pointed out by Tanno
[1989]). The first result concerning L(g) is the following.
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Theorem 10.12 Let M be a compact regular contact manifold and A
the set of metrics associated to the contact form. Then g ∈ A is a critical
point of L(g) =

∫
M Ric(ξ) dV if and only if g is K-contact.

Proof. As with our other critical point problems, the first step is to
compute dL

dt at t = 0 for a path g(t) ∈ A:

dL

dt

∣
∣
∣
∣
t=0

=
∫

M
(−himhmk −Rk

rs
iξrξs + 2hik)Dik dV.

Thus if g(0) is a critical point, Lemma 10.2 gives

RX ξξ = −φ2X − h2X + 2hX

as the critical point condition. Using the first formula of Proposition 7.1,
this becomes

(∇ξh)X = −2φhX.

From this we see that the eigenvalues of h are constant along the integral
curves of ξ and that for an eigenvalue λ �= 0 and unit eigenvector X,
g(∇ξX,φX) = −1.

If now M is a regular contact manifold, then M is a principal circle
bundle with ξ tangent to the fibers; locally, M is U×S1. Since hφ+φh =
0, we may choose an orthonormal φ-basis of eigenvectors of h at some
point of U × S1, say X2i−1, X2i = φX2i−1, ξ. Since the eigenvalues are
constant along the fiber, we can continue this basis along the fiber with
at worst a change of orientation of some of the eigenspaces when we
return to the starting point. Thus if Y is a vector field along the fiber,
we may write

Y =
∑

i

(α2i−1X2i−1 + β2iX2i) + γξ,

where the coefficients are periodic functions.
Now suppose that the critical point g is not a K-contact metric. Since

φ and h anticommute, we may assume that all the λ2i−1, i = 1, . . . , n, are
nonnegative. Also from (∇ξh)X = −2φhX it is easy to see that if some
of the λ2i−1 vanish, the zero eigenspace of h is parallel along ξ, and hence
we may choose the corresponding X2i−1 and X2i parallel along a fiber.
Again since M is regular, we may choose a vector field Y on U ×S1 such
that at least some α2i−1 �≡ 0 for some λ2i−1 �= 0 and Y is horizontal and
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projectable, that is, [ξ, Y ] = 0. Writing Y =
∑

i(α2i−1X2i−1 + β2iX2i)
along a fiber we have using ∇Xξ = −φX − φhX,

0 = [ξ, Y ] = ∇ξY −∇Y ξ

=
∑

i

(
(ξα2i−1)X2i−1 + α2i−1∇ξX2i−1 + (ξβ2i)X2i + β2i∇ξX2i

+ α2i−1X2i + λ2i−1α2i−1X2i − β2iX2i−1 + λ2i−1β2iX2i−1

)
.

Taking components, we have

0 = ξα2j−1 +
∑

i

α2i−1g(∇ξX2i,X2j) + λ2j−1β2j ,

0 = ξβ2j +
∑

i

β2ig(∇ξX2i,X2j) + λ2j−1α2j−1.

Multiplying the first of these by β2j , the second by α2j−1, and summing
on j, we have

ξ
(∑

j

α2j−1β2j

)
= −

∑

j

λ2j−1(α2
2j−1 + β2

2j) ≤ 0.

Thus
∑

j α2j−1β2j is a nonincreasing, nonconstant function along the
integral curve, contradicting its periodicity.

One might conjecture Theorem 10.12 without the regularity. How-
ever, we have the following counterexample: The standard contact met-
ric structure on the tangent sphere bundle of a compact manifold of
constant curvature −1 is a critical point of L but is not K-contact (the
author [1991b]). We give this in the next theorem. Recall also the result
of Tashiro, Theorem 9.3, that the standard contact metric structure on
the tangent sphere bundle of a Riemannian manifold is K-contact if and
only if the base manifold is of constant curvature +1.

Theorem 10.13 Let T1M be the tangent sphere bundle of a compact
Riemannian manifold (M,G) and A the set of all Riemannian metrics
associated to its standard contact structure. Then the standard associated
metric is a critical point of the functional L(g) if and only if (M,G) is
of constant curvature +1 or −1.

Proof. We have seen that the critical point condition of L(g) is

RX ξξ = −φ2X − h2X + 2hX
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or φ2 + h2 + l = 2h (lX = RX ξξ). Applying this to a vertical vector
U ∈ TtT1M as in the proof of Lemma 9.1, we find that (M,G) is locally
symmetric by the Lemma of Cartan [1983, pp.257–258] and that L2

tX =
X for any orthonormal pair {X, t} on (M,G). Thus the only eigenvalues
of Lt : [t]⊥ −→ [t]⊥ are ±1. The manifold M is irreducible; for if M
had a locally Riemannian product structure, then choosing t tangent
to one factor and X tangent to the other, we would have RX tt = 0,
contradicting the fact that the only eigenvalues of Lt are ±1. Now the
sectional curvature of an irreducible locally symmetric space does not
change sign. Thus if for some t, Lt had both +1 and −1 as eigenvalues,
there would be sectional curvatures equal to +1 and −1. Consequently,
only one eigenvalue can occur, and hence (M,G) must be a space of
constant curvature +1 or −1.

Conversely, if (M,G) has constant curvature c, our expressions for h
on horizontal vectors X orthogonal to ξ and vertical vectors U in Section
9.2, namely

hX = −X + (Rπ∗X tt)H , hU = U − (RKU tt)V ,

become hX = (c − 1)X and hU = (1 − c)U . Similarly lU = c2U and
lX = (4c − 3c2)X. Substituting these into the critical point condition,
we see that it is satisfied if and only if c = ±1.

In [1991] S. Deng studied the second variation of the functional L(g),
or equivalently, of E(g) =

∫
M |T |2 dV .

Theorem 10.14 Let g ∈ A be a critical point of E(g). Then g is a
minimum.

Proof. As with Theorem 10.10 we will sketch the proof and refer to
Deng [1991] for details. The first step is a lengthy calculation of E′′(0)
yielding

E′′(0) = 2
∫

M
|£ξD|2 dV ≥ 0.

The second step is an auxiliary result that if £ξD = 0, then |T |2 is
constant along the geodesics g(t) = geDt in A. Now proceed as follows.
If £ξD = 0 for all D, then |T | is constant and hence E(g) is constant.
So suppose that g is not a minimum and that there exist D such that
£ξD �= 0. Let V be the subspace of TgA consisting of those D with
£ξD = 0 and V ⊥ its orthogonal complement. Let U be a neighborhood
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of g in expgV ⊥ (cf. Ebin [1970, p. 37]) on which E exceeds E(g). Let
W be a neighborhood of U ⊂ A formed by geodesic arcs in directions
belonging to V . Since g is not a minimum, there exists ḡ ∈ W such that
E(ḡ) < E(g). Then there is a geodesic γ from ḡ in a direction D̄ ∈ V
that meets U at say ĝ. E is constant along γ and therefore E(ĝ) < E(g),
contradicting E(ĝ) > E(g) for ĝ ∈ U .

We have noted a number of times a role played by conditions of the
form∇ξh = ahφ for some function a, and here the critical point condition
for the functional L, or equivalently E, is of this type, viz. ∇ξh = 2hφ,
equivalently ∇ξT − 2T · φ = 0, where T · φ(X,Y ) = T (X,φY ). Barletta
and Dragomir [2001] pointed out that this condition has a “universality”
property for functionals depending on |T |2 and refer to ∇ξT − 2T ·φ = 0
as Tanno’s equation. Specifically, let f : R −→ R be a real analytic
function and set t = |T |2. Then g ∈ A is a critical point of the functional
Ef (g) =

∫
M f(t)dV on A if and only if

f ′′(t)(ξt)T + f ′(t)(∇ξT − 2T · φ) = 0.

In [1992b] D. Perrone considered the integral

F (g) =
∫

M
τ + τ∗ + 2nRic(ξ) dV,

or setting τ1 = τ∗+2nRic(ξ), F (g) =
∫
M τ +τ1 dV on A. In dimension 3,

letting K(D) denote the sectional curvature of the contact subbundle D,
τ = 2K(D) + 2Ric(ξ), and τ∗ = 2K(D), so τ1 = τ . In higher dimensions
using Proposition 7.7,

τ1 = τ + (2n − 1)(Ric(ξ) − 2n) +
1
2
(|∇φ|2 − 4n),

and hence if the manifold is Sasakian, τ1 = τ . The critical point condition
for F (g) is ∇ξh = 0.

Little has been said about the existence of critical metrics, and in
general this is a difficult problem. Recall the notion of an almost reg-
ular contact manifold as given by C. B. Thomas [1976] (Section 3.4).
Rukimbira [1995c] proved that every almost regular contact manifold
admits a critical metric for E(g) (equivalently L(g)). A number of peo-
ple, including this author, have raised the question of approaching the
existence question as a Ricci flow problem on A, but to date there are
no definitive results.
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10.3.1 H-contact manifolds

We have often encountered the condition that ξ be an eigenvector of
the Ricci operator Q. One of the more important interpretations of this
condition is that of an H-contact manifold as introduced by D. Perrone
[2004], and this is a good place to discuss this concept. First, on a given
compact m-dimensional Riemannian manifold (M,g), a unit vector field
X is said to be a harmonic vector field (C. M. Wood [1997]) if it is a
critical point of the energy functional

E(X) =
m

2
vol(M,g) +

1
2

∫

M
‖∇X‖2 dV

on the space of all unit vector fields. Perrone then defines an H-contact
manifold to be a contact metric manifold for which the characteristic
vector field ξ is a harmonic vector field and proves the following theorem.

Theorem 10.15 A contact metric manifold is an H-contact manifold if
and only if its characteristic vector field is an eigenvector of the Ricci
operator.

Note that from ∇ξ = −φ−φh, if we consider the energy E as a functional
on A for a fixed contact form, and hence a fixed unit vector field ξ, then
g ∈ A is critical for E if and only if it is critical for the functional L.

In the same paper Perrone also proves the following theorem.

Theorem 10.16 Let (M2n+1, η, g) be a compact H-contact manifold such
that g is critical for L. If ρ + cg is positive definite for some constant
c < 2− |τ |√

2n
, the first Betti number of M2n+1 vanishes.

Furthermore, in dimension 3, Perrone showed that a compact H-contact
3-manifold such that g is critical for L is either Sasakian or locally isomet-
ric to a non-Sasakian left-invariant contact metric structure on SL(2, R)
and conversely. In particular, using the classification of Geiges, Theorem
6.4, Perrone showed that a compact H-contact 3-manifold such that g is
critical for L is diffeomorphic to a left quotient of SU(2), the Heisenberg
group or S̃L(2, R) by a discrete group.

By a result of Han and Yim [1998], a harmonic vector field X on a
Riemannian manifold (M,g) defines a harmonic map into the tangent
sphere bundle with the metric g′ induced from the Sasaki metric on TM
(see Section 9.2) if it satisfies the additional condition

tr(Z −→ −R∇ZX,XY ) = 0
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for all vector fields Y on M . Perrone [2003] related this idea to the gener-
alized (κ, μ)-manifolds of Koufogiorgos and Tsichlias [2000] by showing
that a 3-dimensional contact metric manifold is a (κ, μ)-manifold on an
everywhere open dense set if and only if the characteristic vector field
defines a harmonic map into the tangent sphere bundle. Following up on
these ideas, Koufogiorgos, Markellos and Papantoniou [2008] introduced
the notion of a (κ, μ, ν)-manifold as a contact metric manifold whose
curvature tensor satisfies

RX Y ξ = κ(η(Y )X − η(X)Y ) + μ(η(Y )hX − η(X)hY )
+ ν(η(Y )hφX − η(X)hφY )

for functions κ, μ and ν and showed that for dimensions > 3 such
a manifold is a (κ, μ)-manifold. However, in dimension 3 they proved
that a (κ, μ, ν)-manifold is an H-contact manifold and conversely, a
3-dimensional H-contact manifold is a (κ, μ, ν)-manifold on an every-
where open dense set. This paper also contains examples of 3-dimensional
(κ, μ, ν)-manifolds that are not generalized (κ, μ)-manifolds, and there-
fore for these examples the characteristic vector fields are harmonic
vector fields but do not define harmonic maps.

10.4 The Webster scalar curvature

In Theorem 6.7 we saw that a contact metric manifold is a strongly
pseudo-convex CR-manifold if and only if (∇Xφ)Y = g(X + hX, Y )ξ −
η(Y )(X +hX). On a strongly pseudoconvex CR-manifold Tanaka [1976]
introduced a canonical connection. In [1989] Tanno introduced the corre-
sponding connection on a contact metric manifold called the generalized
Tanaka connection; it agrees with the connection of Tanaka when the
contact metric manifold is a strongly pseudoconvex (integrable)
CR-manifold. This connection, denoted by ∗∇, is defined by

∗∇XY = ∇XY + η(X)φY − η(Y )∇Xξ + (∇Xη)(Y )ξ
= ∇XY + η(X)φY + η(Y )(φX+ φhX) + dη(X,Y )ξ+dη(hX, Y )ξ.

The torsion of this connection, ∗T , is given by

∗T (X,Y ) = η(X)φY − η(Y )φX − η(Y )∇Xξ + η(X)∇Y ξ + 2dη(X,Y )ξ
= η(Y )φhX − η(X)φhY + 2g(X,φY )ξ.
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Tanno [1989] then proves the following proposition.

Proposition 10.1 The generalized Tanaka connection ∗∇ on a contact
metric manifold is the unique linear connection such that

∗∇η = 0, ∗∇ξ = 0, ∗∇g = 0,
(∗∇Xφ)Y = (∇Xφ)Y − g(X + hX, Y )ξ + η(Y )(X + hX),
∗T (ξ, φY ) = − φ∗T (ξ, Y ),
∗T (X,Y ) = 2dη(X,Y )ξ, on D.

Tanno also computed the curvature of ∗∇ and upon contraction
obtains the generalized Tanaka–Webster scalar curvature

W1 = τ −Ric(ξ) + 4n.

This is eight times the Webster scalar curvature as defined by Chern
and Hamilton [1985] on 3-dimensional contact manifolds and as used by
Perrone [1998] in Theorem 7.26.

We now prove a theorem of Chern and Hamilton [1985], an alternate
proof of which was given by Perrone in [1990], and a theorem of Tanno
[1989]. The proofs will be given simultaneously.

Theorem 10.17 (Chern–Hamilton) Let M be a compact 3-
dimensional contact manifold and A the set of metrics associated to the
contact form. Then g ∈ A is a critical point of E1(g) =

∫
M W1 dV if and

only if g is K-contact.

Theorem 10.18 (Tanno) Let M be a compact contact manifold and A
the set of metrics associated to the contact form. Then g ∈ A is a critical
point of E1(g) =

∫
M W1 dV if and only if

(Qφ− φQ)− (lφ− φl) = 4φh− η ⊗ φQξ + (η ◦Qφ)⊗ ξ.

Proofs. Clearly it is enough to consider
∫
M τ −Ric(ξ) dV , and having

computed the derivatives of each term separately in our previous theo-
rems, we have

d

dt

∫

M
τ −Ric(ξ) dV

∣
∣
∣
∣
t=0

=
∫

M
(−ρki + himhmk + Rk

rs
iξrξs − 2hik)Dik dV.

Thus by Lemma 10.2 we see that the critical point condition is

(Qφ− φQ)− (lφ− φl) = 4φh− η ⊗ φQξ + (η ◦Qφ)⊗ ξ.
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Now in dimension 3, the Ricci operator determines the full curvature
tensor, i.e.,

RXY Z = (g(Y,Z)QX − g(X,Z)QY + g(QY,Z)X − g(QX,Z)Y )

− τ

2
(g(Y,Z)X − g(X,Z)Y ).

Therefore the operator l is given by

lX = QX − η(X)Qξ + g(Qξ, ξ)X − g(QX, ξ)ξ − τ

2
(X − η(X)ξ),

from which

(lφ− φl)X = (Qφ− φQ)X + η(X)φQξ − g(QφX, ξ)ξ.

Combining this and the critical point condition, we have 4φh = 0, and
hence, since hξ = 0, h = 0.

As we saw in the last section, in dimension 3, τ = 2K(D) + 2Ric(ξ)
and τ∗ = 2K(D). Using this, W1 = τ −Ric(ξ) + 4n becomes

W1 =
1
2
(τ + τ∗ + 8).

Thus in dimension 3 the critical point problem for E1(g) is the same as
the critical point problem for I(g) in Theorem 10.9, suggesting that

W =
1
2
(τ + τ∗ + 4n(n + 1))

may be the proper generalization of the Webster scalar curvature.
There are, however, other generalizations of the Webster scalar curva-

ture. Again in dimension 3, we may write W1 as τ∗ + Ric(ξ) + 4, and we
define a second generalization of the Webster scalar curvature by

W2 = τ∗ + Ric(ξ) + 4n2.

In general dimension the critical point condition of E2(g) =
∫
M W2 dV is

(Qφ− φQ)− (lφ− φl) = −4(2n − 1)φh − η ⊗ φQξ + (η ◦Qφ)⊗ ξ

(see Perrone and the author [1992]). The generalization of the Webster
scalar curvature W = 1

2(τ + τ∗+4n(n+1)) is the average of W1 and W2.
Th. Koufogiorgos [1997b] has considered the difference of these, and we
briefly mention his results.
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Proposition 10.2 Let M2n+1 be a contact metric manifold with a
strongly pseudoconvex CR-structure. Then

(Qφ− φQ) = (lφ− φl) + 4(n− 1)hφ − η ⊗ φQξ + (η ◦Qφ)⊗ ξ.

Theorem 10.19 Let M2n+1 be a contact manifold with n > 1 and A the
set of associated metrics. If g ∈ A gives rise to a strongly pseudoconvex
CR-structure, then g is a critical point of

∫
M W1 −W2 dV .

The idea of the proof of this theorem is to find the critical point condition
of
∫
M W1 −W2 dV , which is exactly the formula of Proposition 10.2.

Finally, a word is in order on the constants depending on dimension
that occur in the definitions of W1, W2 and W . Again recall the notion
of a D-homothetic deformation, namely a change of structure tensors of
the form

η̄ = aη, ξ̄ =
1
a
ξ, φ̄ = φ, ḡ = ag + a(a− 1)η ⊗ η,

where a is a positive constant. By direct computation one shows that τ ,
Ric(ξ), and τ∗ transform in the following manner:

τ̄ =
1
a
τ +

1− a

a2
Ric(ξ)− 2n

(a− 1
a

)2
,

Ric(ξ̄) =
1
a2

(
Ric(ξ) + 2n(a2 − 1)

)
,

τ̄∗ =
1
a
τ∗ +

a− 1
a2

Ric(ξ) + 2n
(
2n
(1− a

a

)
+

1− a2

a2

)
.

From these we see that W̄1 = 1
aW1, W̄2 = 1

aW2 and W̄ = 1
aW .

10.5 A gauge invariant

Use has often been made of the notion of a D-homothetic deformation, as
we have seen. The notion of a gauge transformation of a contact metric
structure has not received as much attention. No doubt this is due in part
to computational complexity; nonetheless, comparing with the notion of a
contact structure in the wider sense, the notion of a gauge transformation
should be fundamental and deserving of attention.

Let (M2n+1, φ, ξ, η, g) be a contact metric manifold and consider a
gauge transformation η̄ = ση of the contact structure, where σ is a
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positive function on M2n+1. Let ζ = 1
2σφ∇σ, ∇σ being the g-gradient

of the function σ, and let z be the covariant form of ζ. Now define new
structure tensors ξ̄, φ̄ and ḡ by

ξ̄ =
1
σ

(ξ + ζ), φ̄ = φ +
1
2σ

η ⊗ (∇σ − (ξσ)ξ),

ḡ = σ(g − η ⊗ z − z ⊗ η) + σ(σ − 1 + |ζ|2)η ⊗ η.

Then (φ̄, ξ̄, η̄, ḡ) is a contact metric structure, and the change from
(φ, ξ, η, g) to (φ̄, ξ̄, η̄, ḡ) is called a gauge transformation of the contact
metric structure. When σ is a constant this is a D-homothetic deforma-
tion. The notion of a gauge transformation in contact metric geometry
is due to Sasaki [1965, p. PTSB-1-3] (see also Tanno [1989]).

Tanno [1989] computed the change of the generalized Tanaka–Webster
scalar curvature under a gauge transformation. The result of his
computation is

W̄1 =
1
σ

(
W1 − 2(n + 1)

σ
(Δσ − ξξσ)− (n + 1)(n − 2)

σ2
(|dσ|2 − (ξσ)2)

)
.

In the same paper Tanno generalizes an invariant of Jerison and Lee
[1984] for strongly pseudoconvex CR-manifolds; specifically, he considers

κ(η,g) = inf
{∫

M

(4(n + 1)
n

(|df |2 − (ξf)2) + W1f
2
)

dVg

}
,

where the infimum is taken over all nonnegative functions f such that∫
M fp dVg = 1, p = 2 + 2

n , and proves that κ(η,g) is a gauge invariant.
Now for a compact contact manifold (M2n+1, η) let F(p) be the set

of all nonnegative functions f such that
∫
M fp dVg = 1 and define a

functional Fη :M×F(p) −→ R by

Fη(g, f) =
∫

M

(4(n + 1)
n

(|df |2 − (ξf)2) + W1f
2
)

dVg.

Also define F(η,g) : F(p) −→ R by F(η,g)(f) = Fη(g, f). In [1989] Tanno
studied these functionals in detail; here we mention only the following
result.

Theorem 10.20 Let (M2n+1, φ, ξ, η, g) be a compact contact metric man-
ifold with constant generalized Tanaka–Webster scalar curvature W1.
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Then Fη is critical at the pair (g, f) with f = (vol(M,g))−1/p if and
only if

(Qφ− φQ)− (lφ− φl) = 4φh− η ⊗ φQξ + (η ◦Qφ)⊗ ξ.

Note that this is also the critical point condition of E1(g) =
∫
M W1 dV

in Theorem 10.18.

10.6 The Abbena metric as a critical point

In Section 1.1 we discussed Thurston’s example of a compact symplectic
manifold with no Kähler structure and a natural Riemannian metric
on this manifold introduced by E. Abbena [1984]. She computed the
curvature, and with respect to the basis {ei} introduced in Section 1.1,
the Ricci operator Q is given by the matrix

⎛

⎜
⎜
⎝

−1
2 0 0 0

0 −1
2 0 0

0 0 1
2 0

0 0 0 0

⎞

⎟
⎟
⎠ .

From the expression for Q it is clear that (M,g) is not Einstein, nor is
QJ = JQ. Thus this metric is not a critical point for A(g) considered
as a functional on M1 or on A, or for K(g) on A. Also, τ = −1/2 and
τ∗ = +1/2, giving zero for the “total scalar curvature”.

In [1996] Park and Oh discussed a functional for which the Abbena
metric on the Thurston manifold is a critical point; their results are
given in the following theorem. Recall that M1 denotes the space of
Riemannian metrics with unit volume.

Theorem 10.21 The Abbena metric on the Thurston manifold is a crit-
ical point of the functional

∫

M

(
4
3
trQ3 − τ

)

dVg

on M1. The index of this functional and its negative are both positive at
the Abbena metric on the Thurston manifold.

We remark that the Abbena metric on the Thurston manifold is a
critical point for K(g) in a different context. C. M. Wood [1995] showed
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that the Abbena metric is a critical point of K(g) = −1
2

∫
M |∇J |2 dV

defined with respect to variations through almost complex structures J
that preserve g. For this problem the critical point condition is

[J,∇∗∇J ] = 0,

where ∇∗∇J is the rough Laplacian of the metric in question.



11
Negative ξ-sectional Curvature

In this chapter we introduce some special directions that belong to the
contact subbundle of a contact metric manifold with negative sectional
curvature for plane sections containing the characteristic vector field.
We also discuss in this chapter some questions concerning Anosov and
conformally Anosov flows.

11.1 Special directions in the contact subbundle

In [1998] the author introduced some special directions belonging to the
contact subbundle of a contact metric manifold with negative sectional
curvature for plane sections containing the characteristic vector field ξ
or more generally when the operator h admits an eigenvalue greater
than 1. For simplicity we will often refer to the sectional curvature of
plane sections containing the characteristic vector field ξ as ξ-sectional
curvature.

We may regard the equation

∇Xξ = −φX − φhX

of Lemma 6.2 as indicating how ξ or, by orthogonality, the contact
subbundle rotates as one moves around on the manifold. For example,

D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds,
DOI 10.1007/978-0-8176-4959-3_11, © Springer Science+Business Media, LLC 2010
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when h = 0, as we move in a direction X orthogonal to ξ, ξ is
always “turning” or “falling” toward −φX. If hX = λX, then ∇Xξ =
−(1 + λ)φX, and again ξ is turning toward −φX if λ > −1 or toward
φX if λ < −1. Recall that we noted above that if λ is an eigenvalue of h
with eigenvector X, then −λ is also an eigenvalue with eigenvector φX.

Now one can ask whether there can ever be directions, say Y orthog-
onal to ξ, along which ξ “falls” forward or backward in the direction of
Y itself.

Theorem 11.1 Let M2n+1 be a contact metric manifold. If the tensor
field h admits an eigenvalue λ > 1 at a point p, then there exists a vector
Y orthogonal to ξ at p such that ∇Y ξ is collinear with Y . In particular,
if M2n+1 has negative ξ-sectional curvature, such directions Y exist.

Proof. Let λ denote a positive eigenvalue of h and X a corresponding
unit eigenvector. Then

∇Xξ = −(1 + λ)φX, ∇φXξ = (1− λ)X.

Now let Y = aX + bφX with a > 0, b > 0, a2 + b2 = 1 and suppose that
∇Y ξ = αY. Then

α(aX + bφX) = ∇Y ξ = −(1 + λ)aφX + (1− λ)bX,

from which αa = (1− λ)b, αb = −(1 + λ)a and hence

a2 =
λ− 1
2λ

, b2 =
λ + 1
2λ

, α = −
√

λ2 − 1.

Thus we see that directions along which ∇Y ξ is collinear with Y
exist whenever h admits an eigenvalue greater than 1. From the fact
that Ric(ξ) = 2n − trh2 (Corollary 7.1) we see that if M2n+1 has neg-
ative ξ-sectional curvature, at least one of the eigenvalues of h must
exceed 1.

Note that when there exists a direction Y along which ∇Y ξ is collinear
with Y as above, there is also a second such direction, namely Z =
aX−bφX. For Z we have ∇Zξ = −αZ; thus we think of ξ as falling
backward as we move in the direction Y and falling forward as we move
in the direction Z.

Next note that
g(Y,Z) = a2 − b2 = − 1

λ
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and hence that such directions Y and Z are never orthogonal. Also, if
λ has multiplicity m ≥ 1, then there are m-dimensional subbundles Y
and Z such that ∇Y ξ = αY for any Y ∈ Y and ∇Zξ = −αZ for any
Z ∈ Z. We refer to directions along which the covariant derivative of ξ
is collinear with the direction as special directions.

11.2 Anosov flows

The most notable example of a contact manifold for which the char-
acteristic vector field is Anosov is the tangent sphere bundle of a neg-
atively curved manifold; here the characteristic vector field is (twice)
the geodesic flow, as we saw in Section 9.2. In the case of the tangent
sphere bundle of a surface, this is closely related to the structure on
SL(2, R) from both the topological and Anosov points of view. If we set
Z2 =

{(
1
0

0
1

)
,
(−1

0
0
−1

)}
, then PSL(2, R) = SL(2, R)/Z2 is homeomorphic

to the tangent sphere bundle of the hyperbolic plane. Moreover, the geo-
desic flow on a compact surface of constant negative curvature may be
realized on PSL(2, R)/Γ by

{(et

0
0
e−t

)}
, where Γ is a discrete subgroup

of SL(2, R) for which SL(2, R)/Γ is compact (see e.g., Auslander, Green
and Hahn [1963, pp. 26–27]). However, from the Riemannian point of
view these examples are quite different, as we shall see. In fact, in the
case of the tangent sphere bundle of a negatively curved surface, the spe-
cial directions never agree with the stable and unstable directions of the
Anosov flow (Theorem 11.3).

Classically an Anosov flow is defined as follows (Anosov [1967]). Let
M be a compact differentiable manifold, ξ a nonvanishing vector field
and {ψt} its 1-parameter group of (Ck) diffeomorphisms. {ψt} is said to
be an Anosov flow (or ξ to be Anosov) if there exist subbundles Es and
Eu that are invariant along the flow and such that TM = Es⊕Eu⊕{ξ},
and there exists a Riemannian metric such that

|ψt∗Y | ≤ ae−ct|Y | for t ≥ 0 and Y ∈ Es
p,

|ψt∗Y | ≤ aect|Y | for t ≤ 0 and Y ∈ Eu
p ,

where a and c are positive constants independent of p ∈ M and Y in
Es
p or Eu

p . The subbundles Es and Eu are called the stable and unstable
subbundles or the contracting and expanding subbundles. The subbundles
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Es and Eu are integrable with Ck integral submanifolds, but in general
the subbundles themselves are only continuous.

When M is compact the notion is independent of the Riemannian
metric. If M is not compact the notion is metric dependent; in fact, we
will give an example of a metric on R

3 with respect to which a coordinate
field is Anosov, even though a coordinate field is clearly not Anosov
with respect to the Euclidean metric on R

3. Since we are dealing with
Riemannian metrics associated to a contact structure, when we speak
of the characteristic vector field being Anosov, we will mean that it is
Anosov with respect to an associated metric of the contact structure.

The following properties of Anosov flows will be of importance here.
The subbundles Es ⊕ {ξ} and Eu ⊕ {ξ} are integrable (Anosov [1967,
Theorem 8]). Let μ denote the measure induced on M by the Riemannian
metric. Recall that a flow is ergodic if for every measurable set S, ψt(S) =
S for all t implies μ(S)μ(M − S) = 0. If on a compact manifold an
Anosov flow admits an integral invariant, i.e., an invariant measure that
is equivalent to the measure μ, in particular if it is volume preserving,
then it is ergodic (Anosov [1967, Theorem 4]), and in turn, by the ergodic
theorem almost all orbits are dense (see e.g, Walters [1975, pp. 29–30]).

As an aside we note that on a compact manifold, an Anosov flow has
a countable number of periodic orbits (Anosov [1967, Theorem 2]) and
if the flow admits an integral invariant, then the set of periodic orbits is
dense in M (Anosov [1967, Theorem 3]). This has an immediate implica-
tion for contact geometry. In Section 3.4 we discussed the conjecture of
Weinstein that on a simply connected compact contact manifold, ξ must
have a closed orbit, so in particular the Weinstein conjecture holds (with-
out the simple connectivity) for a compact contact manifold on which ξ
is Anosov.

Let us now turn our attention to the case of a 3-dimensional contact
metric manifold and suppose that the ξ-sectional curvature is negative
and that ξ is Anosov with respect to the associated metric. We then have
both the special directions of Section 11.1 and the Anosov directions, i.e.,
the 1-dimensional stable and unstable bundles. One can then ask what
happens if the special directions and the Anosov directions agree.

Theorem 11.2 Let (M3, η, g) be a 3-dimensional contact metric mani-
fold with negative ξ-sectional curvature. If the characteristic vector field
ξ generates an Anosov flow with respect to g and the special directions
agree with the Anosov directions, then the contact metric structure
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satisfies ∇ξh = 0. Moreover, if M3 is compact, then it is a compact
quotient of S̃L(2, R).

Proof. Suppose that Y is a local unit vector field such that ∇Y ξ = αY ,
α = −√λ2 − 1. Since ξ is Anosov and Y agrees with the stable Anosov
subbundle, the subbundle Y ⊕ {ξ} is integrable. Thus from [ξ, Y ] =
∇ξY −αY , ∇ξY belongs to Y ⊕{ξ}; but g(∇ξY, ξ) = 0 and Y is unit, so
g(∇ξY, Y ) = 0. Thus ∇ξY = 0. Similarly ∇ξZ = 0. Recall the operator
l defined by lX = RX ξξ for any X; clearly l is a symmetric operator.
Computing RY ξξ and RZ ξξ we have

lY = −(ξα + α2)Y, lZ = (ξα− α2)Z;

but Y and Z are not orthogonal, so ξα = 0 and l|D = −α2I|D. Now
compute∇ξh acting on each vector of the h-eigenvector basis, {X,φX, ξ},
using the first equation of Proposition 7.1; this gives

(∇ξh)X = φ(X − h2X − lX) = φ(X − λ2X + α2X) = 0

and similarly (∇ξh)φX = 0; (∇ξh)ξ = 0 is immediate. Therefore
∇ξh = 0.

Finally, recall a result of E. Ghys [1987] that if ξ is Anosov on a
compact 3-dimensional contact manifold M and the Anosov directions
are smooth, then M is a compact quotient of S̃L(2, R). This may also be
proved directly using consequences of ∇ξh = 0; see the author’s paper
[1998].

We now exhibit a family of contact metric structures on the Lie group
SL(2, R), show that the characteristic vector field is Anosov, and show
that the special directions agree with the Anosov directions.

On a 3-dimensional unimodular Lie group we have a Lie algebra struc-
ture of the form

[e2, e3] = c1e1, [e3, e1] = c2e2, [e1, e2] = c3e3.

In [1976] J. Milnor gave a complete classification of 3-dimensional Lie
groups and their left-invariant metrics. If one ci is nonzero, the dual
1-form ωi is a contact form and ei is the characteristic vector field.
However, for the Riemannian metric defined by g(ei, ej) = δij at the
identity and extended by left translation to be an associated metric for
ωi, we must have ci = 2. For SL(2, R) two of the ci’s are positive and one
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negative in the Milnor classification, so taking ω1 as the contact form,
we write the Lie algebra as

[e2, e3] = 2e1, [e3, e1] = (1− λ)e2, [e1, e2] = (1 + λ)e3, (∗)
where λ > 1. Further, by way of notation, set

SL(2, R) =
{(

x y
u v

) ∣
∣
∣xv − yu = 1

}

.

Now consider the matrices
(

1
2

√
λ2 − 1 0
0 −1

2

√
λ2 − 1

)

,

⎛

⎝
0 −

√
λ+1

2√
λ+1

2 0

⎞

⎠ ,

⎛

⎝
0 −

√
λ−1

2

−
√

λ−1
2 0

⎞

⎠

in the Lie algebra sl(2, R), which we regard as the tangent space of
SL(2, R) at the identity. Applying the differential of left translation by
( x yu v ) to these matrices gives the vector fields

ζ1 =
1
2

√
λ2 − 1

(

x
∂

∂x
− y

∂

∂y
+ u

∂

∂u
− v

∂

∂v

)

,

ζ2 =

√
λ + 1

2

(

y
∂

∂x
− x

∂

∂y
+ v

∂

∂u
− u

∂

∂v

)

,

ζ3 = −
√

λ− 1
2

(

y
∂

∂x
+ x

∂

∂y
+ v

∂

∂u
+ u

∂

∂v

)

,

whose Lie brackets satisfy (∗). Using these matrices again, define a left-
invariant metric g; then {ζ1, ζ2, ζ3} is an orthonormal basis. The contact
form ω1 is given by

ω1 =
2√

λ2 − 1
(v dx− y du).

The characteristic vector field ξ is ζ1. The metric g is an associated
metric and φ as a skew-symmetric operator is given by φξ = 0 and
φζ2 = ζ3. The symmetric operator h is given by hξ = 0, hζ2 = λζ2,
hζ3 = −λζ3. The special directions are

Y =

√
λ− 1
2λ

ζ2 +

√
λ + 1
2λ

ζ3 = −
√

λ2 − 1√
λ

(

x
∂

∂y
+ u

∂

∂v

)
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and

Z =

√
λ− 1
2λ

ζ2 −
√

λ + 1
2λ

ζ3 =
√

λ2 − 1√
λ

(

y
∂

∂x
+ v

∂

∂u

)

.

The 1-parameter group of {ψt} of ξ is given by

ψt

(
x y
u v

)

=

(
xe

1
2

√
λ2−1 t ye−

1
2

√
λ2−1 t

ue
1
2

√
λ2−1 t ve−

1
2

√
λ2−1 t

)

.

Then applying ψt∗ to Y at a point p yields

ψt∗Yp = e−
1
2

√
λ2−1 tYp = e−

√
λ2−1 tYψt(p),

ψt∗Zp = e
1
2

√
λ2−1 tZp = e

√
λ2−1 tZψt(p).

Thus the corresponding subbundles Y and Z are invariant under the
flow. Finally, since {ζ1, ζ2, ζ3} is orthonormal, |Y |2 = λ−1

2λ + λ+1
2λ = 1 and

hence
|ψt∗Yp| = e−

1
2

√
λ2−1 t|Yp|;

similarly
|ψt∗Zp| = e

1
2

√
λ2−1 t|Zp|.

Thus ξ is an Anosov vector field and the special directions Y and Z agree
with the Anosov directions.

In contrast to this, consider the contact metric structure on the tan-
gent sphere bundle. We mentioned at the beginning of this section that
the tangent sphere bundle of a surface is closely related to the struc-
ture on SL(2, R) from both the topological and Anosov points of view.
Comparing the above with the following theorem, we see that from the
Riemannian point of view these are quite different.

Theorem 11.3 With respect to the standard contact metric structure
on the tangent sphere bundle of a negatively curved surface, the charac-
teristic vector field is Anosov, but the special directions never agree with
the stable and unstable directions.

Proof. We noted in Section 9.2 that for the standard contact met-
ric structure on the tangent sphere bundle of a Riemannian manifold,
the characteristic vector field ξ is (twice) the geodesic flow, which is an
Anosov vector field when the base manifold is negatively curved (see, e.g.,
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Anosov [1967]). By Theorem 11.2, if the special directions of the contact
metric structure agree with the Anosov directions, then ∇ξh = 0. Now
by Theorem 9.7 the standard contact metric structure of the tangent
sphere bundle of any Riemannian manifold satisfies ∇ξh = 0 if and only
if the base manifold is of constant curvature 0 or +1.

Perrone [2000], utilizing the special directions Y and Z belonging to the
contact subbundle on a contact metric manifold of negative ξ-sectional
curvature, introduced another notion. Let Y and Z denote the subbun-
dles generated by Y and Z. The special directions are said to be Anosov-
like if the subbundles Y ⊕ {ξ} and Z ⊕ {ξ} are integrable. Perrone then
proved that a contact metric 3-manifold admits Anosov-like special direc-
tions if and only if it satisfies ∇ξh = 0 and has negative Ricci curvature
in the direction ξ.

Three-dimensional contact metric manifolds satisfying ∇ξh = 0 were
called 3-τ -manifolds by F. Gouli-Andreou and Ph. Xenos [1998]. The
name comes from the equivalent condition ∇ξτ = 0, where here τ = £ξg;
in particular, τ and h are related by τ(X,Y ) = 2g(hφX, Y ).
A 3-dimensional contact metric manifold on which the Ricci operator
Q and φ commute satisfies ∇ξh = 0 but not conversely.

We close this section with an example (the author [1996]) of a contact
metric manifold satisfying ∇ξh = 0 but with Qφ �= φQ. We include this
example here because it is also an example of a metric on R

3 with respect
to which the coordinate field ∂

∂z is Anosov.
Consider the standard Darboux contact form η = 1

2(dz − y dx) and
characteristic vector field ξ = 2 ∂

∂z . Let f be a smooth function of x and
y bounded below by a positive constant c. Then the metric given by

g =
1
4

⎛

⎜
⎝

ezf+(1+f2)e−zf−2
f2 + y2 ezf−1

f −y
ezf−1
f ezf 0
−y 0 1

⎞

⎟
⎠

is an associated metric. The tensor fields φ and h are given by

φ =

⎛

⎜
⎜
⎝

ezf−1
f ezf 0

−(e
zf+(1+f2)e−zf−2

f2 ) −(e
zf−1
f ) 0

y(e
zf−1
f ) yezf 0

⎞

⎟
⎟
⎠ ,
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h =

⎛

⎜
⎝

ezf fezf 0
−(fe

zf +(1+f2)(−f)e−zf

f2 ) −ezf 0
yezf yfezf 0

⎞

⎟
⎠ .

By direct computation, ∇ξh = 0. Also 2λ2 = trh2 = 2(1 + f2), and
hence the positive eigenfunction of h is λ =

√
1 + f2 > 1. Now on a

3-dimensional contact metric manifold satisfying Qφ = φQ, the eigen-
function λ is a constant (Koufogiorgos, Sharma, and the author [1990]).
Thus if f is not constant this structure on R

3 satisfies ∇ξh = 0 but not
Qφ = φQ.

For this structure the special directions discussed in Section 11.1 are
given by

Y = f
∂

∂x
− ∂

∂y
+ yf

∂

∂z
, Z =

∂

∂y
.

To check that ξ = 2 ∂
∂z is Anosov with respect to g, consider for simplicity

just ∂
∂z ; its flow ψt maps a point p0(x, y, z) to the point p(x, y, z + t).

Now recalling that the function f was chosen to be bounded below by a
positive constant c, we have for t ≤ 0,
∣
∣
∣ψt∗

∂

∂y
(p0)
∣
∣
∣ =
∣
∣
∣

∂

∂y
(p)
∣
∣
∣ =

1
2
e

(z+t)f
2 = e

tf
2

∣
∣
∣

∂

∂y
(p0)
∣
∣
∣ ≤ e

ct
2

∣
∣
∣

∂

∂y
(p0)
∣
∣
∣.

Similarly for t ≥ 0,
∣
∣
∣ψt∗
(
f

∂

∂x
− ∂

∂y
+ yf

∂

∂z

)
(p0)
∣
∣
∣ ≤ e

−ct
2

∣
∣
∣
(
f

∂

∂x
− ∂

∂y
+ yf

∂

∂z

)
(p0)
∣
∣
∣.

Thus ∂
∂z , equivalently ξ, is Anosov with respect to this metric;

Y determines the stable subbundle and Z the unstable subbundle.

11.3 Conformally Anosov flows

Another interesting notion, more general than an Anosov flow, is that of
a conformally Anosov flow. We will show that if a 3-dimensional com-
pact contact metric manifold has negative ξ-sectional curvature, then the
characteristic vector field is conformally Anosov.

Mitsumatsu [1995] and Eliashberg and Thurston [1998] introduced a
generalization of Anosov flows as follows. A flow ψt and its corresponding
vector field are said to be conformally Anosov, Eliashberg and Thurston
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[1998] (projectively Anosov Mitsumatsu [1995]), if there is a continuous
Riemannian metric and a continuous, invariant splitting TM = Es ⊕
Eu ⊕ {ξ} as in the Anosov case such that for Z ∈ Eu and Y ∈ Es,

|ψt∗Z|
|ψt∗Y | ≥ ect

|Z|
|Y |

for some constant c > 0 and all t ≥ 0.
Now a contact structure η on a 3-dimensional contact manifold M3

determines an orientation on M3. This is true in dimension 3 even for a
contact structure in the wider sense, since the sign of η∧dη is independent
of the choice of local contact form η.

The main result for our purpose from Mitsumatsu [1995, p. 1418] and
Eliashberg and Thurston [1998, pp. 26–27] is the following.

Theorem 11.4 If two contact structures (in the wider sense) on a com-
pact 3-dimensional contact manifold M3 induce opposition orientations,
then the vector field directing the intersection of the two contact sub-
bundles is a conformally Anosov flow. Conversely, given a conformally
Anosov flow on M3, there exist two contact structures giving opposite
orientations on M3 whose contact subbundles intersect tangent to the
flow.

We now show that certain curvature hypotheses on a compact contact
metric 3-manifold imply that the characteristic vector field ξ is con-
formally Anosov; in particular, negative ξ-sectional curvature is such a
hypothesis (the author [2000]). A variation of this result appears in the
author’s paper with D. Perrone [1998].

Theorem 11.5 Let (M3, φ, ξ, η, g) be a compact 3-dimensional contact
metric manifold with nowhere vanishing h and {e1, e2(= φe1), ξ} an
orthonormal eigenvector basis of h with he1 = λe1 and λ the positive
eigenvalue. If K(ξ, e1) < (1+λ)2 and K(ξ, e2) < (1−λ)2, then ξ is confor-
mally Anosov. In particular, if the ξ-sectional curvature is negative, ξ is
conformally Anosov.

Proof. Let ω1, ω2 be the dual 1-forms of e1 and e2. Since the three
eigenvalues of h are everywhere distinct, the corresponding line fields are
global. By the orientability, one may choose local bases directing the line
fields that either agree or have two directions reversed in the overlap of
coordinate neighborhoods. Thus in computing ω1 ∧ dω1 and ω2 ∧ dω2 on
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such a basis we may regard the computations as global. By straightfor-
ward computation we have

ω1 ∧ dω1(e1, e2, ξ) =
λ− 1

6
− 1

6
g(∇ξe1, e2),

ω2 ∧ dω2(e1, e2, ξ) = −λ + 1
6
− 1

6
g(∇ξe1, e2).

On the other hand, applying the first equation of Proposition 7.1 to e1

and e2, we obtain

K(ξ, e1) = 1− λ2 − 2λg(∇ξe1, e2),

K(ξ, e2) = 1− λ2 + 2λg(∇ξe1, e2).

Combining these equations, we have

ω1 ∧ dω1(e1, e2, ξ) =
1

12λ
((λ− 1)2 −K(ξ, e2))

and
ω2 ∧ dω2(e1, e2, ξ) =

1
12λ

(−(λ + 1)2 + K(ξ, e1)).

The hypotheses now imply that ω1 ∧ dω1(e1, e2, ξ) > 0 and ω2 ∧ dω2

(e1, e2, ξ) < 0. Therefore ξ is conformally Anosov by the result of
Mitsumatsu and Eliashberg–Thurston.

We remark that the curvature of the standard contact metric structure
on the tangent sphere bundle of a surface of negative curvature satisfies
the curvature hypotheses in the first statement of the theorem. In partic-
ular, the standard contact metric structure on the tangent sphere bun-
dle of a surface of constant curvature −1 has sectional curvature −7 for
horizontal plane sections and sectional curvature +1 for plane sections
spanned by ξ and the vertical direction; the positive eigenvalue λ is +2
with vertical vectors as eigenvectors (see Section 9.2).

We also remark that our argument uses two contact structures to
study a third, an interesting idea in view of the result of Gonzalo [1987]
(Section 3.2) that a 3-dimensional compact orientable manifold admits
three independent contact structures.

It is immediate that the characteristic vector field ξ of a contact
structure can never be Anosov or conformally Anosov with respect to
a Sasakian metric. This is a consequence of the fact that on a Sasakian
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manifold ξ is a Killing vector field; thus its flow is metric preserving and
therefore cannot satisfy the exponential growth behavior in the defini-
tion of a classical or conformal Anosov flow. It is possible, however, for
a vector field to belong to the contact subbundle of a Sasakian structure
and be conformally Anosov with respect to this metric. We present an
example of this which has the additional feature that the characteris-
tic vector field is invariant along the flow (again see the author and D.
Perrone [1998]). We begin with the following lemma.

Lemma 11.1 On a 3-dimensional contact manifold, in terms of local
Darboux coordinates (x, y, z) (η = 1

2(dz − y dx)), any associated metric
is of the form

g =
1
4

⎛

⎝
a b −y
b c 0
−y 0 1

⎞

⎠

with ac− b2− cy2 = 1; the metric is Sasakian if and only if the functions
a, b and c are independent of z.

Proof. The form of the last row and column follows from the require-
ment that η(X) = g(X, ξ). In dimension 3 the remaining requirements
reduce to the determinant of the matrix (without the 1

4) being 1. Also in
dimension 3 the Sasakian condition is equivalent to the contact metric
structure being K-contact. Thus evaluating the Lie derivative, £ξg, on
the coordinate vector fields, we see that ξ = 2 ∂

∂z is Killing if and only if
the functions a, b and c are independent of z.

To construct the example, consider R3
+ = {(x, y, z)|y > 0} with the

standard Darboux contact form η = 1
2 (dz − y dx). The characteristic

vector field is 2 ∂
∂z and the Riemannian metric given by the following

matrix is Sasakian by the lemma:

g =
1
4

⎛

⎝
e2y

√
e2y − y2 − 1 −y√

e2y − y2 − 1 1 0
−y 0 1

⎞

⎠ .

The vector field ∂
∂y is conformally Anosov with respect to this metric.

To see this we observe that the subbundles determined by ∂
∂z = 1

2ξ and
∂
∂x correspond to Es and Eu respectively. The flow simply maps a point
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p0(x, y, z) to the point p(x, y + t, z), and we have easily that

| ∂∂x(p)|
| ∂∂z (p)| = et

| ∂∂x(p0)|
| ∂∂z (p0)|

.

Clearly this flow satisfies ψt∗ξ = ξ.
For a discussion of conformally Anosov flows on 3-dimensional homo-

geneous contact metric manifolds including an Anosov flow belonging
to the contact subbundle on the Lie group E(1, 1), see Perrone and the
author [1998].





12
Complex Contact Manifolds

While the study of complex contact manifolds is almost as old as the
modern theory of real contact manifolds, the subject has received much
less attention, and since many examples are now appearing in the liter-
ature, we devote this and the next chapter to the subject.

12.1 Complex contact manifolds and associated
metrics

The notion of a complex contact manifold stems from the late 1950s and
early 1960s with the papers of Kobayashi [1959] and Boothby [1961],
[1962]; this is just shortly after the Boothby–Wang fibration in real con-
tact geometry. Then in [1965], J. A. Wolf studied homogeneous complex
contact manifolds and their relation to quaternionic symmetric spaces.
An example of more recent work is the result of Moroianu and Semmel-
mann [1994] that on a compact spin Kähler manifold M of positive scalar
curvature and complex dimension 4l+3, the following are equivalent: (i)
M is a Kähler–Einstein manifold admitting a complex contact structure,
(ii) M is the twistor space of a quaternionic Kähler manifold of positive
scalar curvature, (iii) M admits Kählerian Killing spinors. LeBrun [1995]
proves that a complex contact manifold of positive first Chern class, i.e., a

D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds,
DOI 10.1007/978-0-8176-4959-3_12, © Springer Science+Business Media, LLC 2010
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Fano contact manifold, is a twistor space if and only if it admits a Kähler
Einstein metric and conjectures that every Fano contact manifold is a
twistor space.

In the 1970s and early 1980s there was a development, of the
Riemannian theory of complex contact manifolds by Ishihara and Konishi
[1979], [1980], [1982]. In this development, however, the notion of normal-
ity seems too strong, since it precludes the complex Heisenberg group as
one of the canonical examples, although it does include complex projec-
tive spaces of odd complex dimension as one would expect (see Section
12.4). In the real case both the Heisenberg group and the odd-dimensional
spheres have natural Sasakian (normal contact metric) structures. As a
subject, the Riemannian geometry of complex contact manifolds is still
in its infancy.

A complex contact manifold is a complex manifold of odd complex
dimension 2n + 1 together with an open covering {Oα} by coordinate
neighborhoods such that:

1. On each Oα there is a holomorphic 1-form θα such that

θα ∧ (dθα)n �= 0.

2. On Oα ∩Oβ �= ∅ there is a nonvanishing holomorphic function fαβ
such that θα = fαβθβ.

The subspaces {X ∈ TmOα : θα(X) = 0} define a nonintegrable holo-
morphic subbundle H of complex dimension 2n called the complex con-
tact subbundle or horizontal subbundle. The quotient L = TM/H is a
complex line bundle over M . Kobayashi [1959] proved that c1(M) =
(n + 1)c1(L) and hence for a compact complex contact manifold, a com-
plex contact structure is given by a global 1-form if and only if its first
Chern class vanishes (see also Boothby [1961], [1962]). It is for this reason
that our definition of complex contact structure is analogous to that of a
contact structure in the wider sense. Even for the most canonical exam-
ple of a complex contact manifold, CP 2n+1, the structure is not given by
a global form. Since a holomorphic p-form on a compact Kähler manifold
is closed (see, e.g., Goldberg [1962, p. 177]), no compact Kähler manifold
has a complex contact structure given by a global contact form. More-
over, Ye [1994] showed that a compact Kähler manifold with vanishing
first Chern class has no complex contact structure. There are, however,
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interesting examples of complex contact manifolds with global complex
contact forms, as we shall see; these are called strict complex contact
manifolds (Foreman [2000a], [2000b]).

We will not need a complex Darboux theorem in our development here,
but a complex version of the real Darboux theorem is possible, and such
a result is discussed briefly by LeBrun [1995, p. 423].

If (M, {θα}) is a complex contact manifold, the transition functions fαβ
define a holomorphic line bundle over M , viz. L−1. Using local sections
of this bundle we define complex-valued 1-forms {πα} such that each
πα is a nonvanishing, complex-valued function multiple of θα and on
Oα ∩ Oβ �= ∅,

πα = hαβπβ, hαβ : Oα ∩ Oβ −→ S1.

The hαβ are then the transition functions of a circle bundle P over M
(see Ishihara and Konishi [1982]) and on Oα,

πα ∧ (dπα)n ∧ π̄α ∧ (dπ̄α)n �= 0.

Writing πα = uα − ivα, we have vα = uα ◦ J , since θα is holomorphic.
Moreover, uα and vα transform naturally with respect to S1; namely, if
hαβ = a + ib, then

uβ = auα − bvα, vβ = buα + avα, a2 + b2 = 1.

The set {πα} is called a normalized complex contact structure with
respect to {θα}; Foreman [1996].

For simplicity we will often omit the subscripts on the local tensor
fields. Define a local section U of TM , i.e., a section of TO, by du(U,X) =
0 for every X ∈ H, u(U) = 1 and v(U) = 0. Such local sections then
define a global subbundle V by V|O = Span{U, JU}. We now have TM =
H⊕ V, and we denote the projection map to H by

p : TM −→ H.

The subbundle V is called the vertical subbundle or characteristic subbun-
dle. It is generally assumed that V is integrable, but in Subsection 13.4.1
we will give an example of a complex contact structure for which V is
not integrable. Except for this example the integrability will be assumed
throughout.
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On the other hand, if M is a complex manifold with almost complex
structure J , Hermitian metric g and open covering by coordinate neigh-
borhoods {Oα}, M is called a complex almost contact metric manifold if
it satisfies the following two conditions:
(1) On each Oα there exist 1-forms uα and vα = uα ◦ J with orthogonal
dual vector fields Uα and Vα = −JUα and (1, 1) tensor fields Gα and
Hα = GαJ such that

G2
α = H2

α = −I + uα ⊗ Uα + vα ⊗ Vα,

GαJ = −JGα, GαU = 0, g(X,GαY ) = −g(GαX,Y ).

(2) On Oα ∩ Oβ �= ∅,
uβ = auα − bvα, vβ = buα + avα,

Gβ = aGα − bHα, Hβ = bGα + aHα,

where a and b are functions with a2 + b2 = 1.
It is clear that Hα also anticommutes with J and is skew-symmetric

with respect to g and that Gα and Hα annihilate both U and V .
Returning to the local forms πα = uα − ivα on a complex contact

manifold, a Hermitian metric g is called an associated metric if there
are local fields of endomorphisms Gα such that the tensor fields Gα,
Hα = GαJ , Uα, Vα = −JUα, uα, vα = uα ◦ J , g form a complex almost
contact metric structure satisfying

g(X,GαY ) = duα(X,Y ), g(X,HαY ) = dvα(X,Y ), X, Y ∈ H.

As a consequence we also have Uβ = aUα − bVα, Vβ = bUα + aVα and
hence Uα + iVα = h−1

αβ(Uβ + iVβ). In particular, {h−1
αβ} are the transition

functions of the bundle V. Another way to look at this subbundle is to
note that on Oα ∩ Oβ, Uα ∧ Vα = Uβ ∧ Vβ and hence that each Uα ∧ Vα
defines part of a global object.

Kobayashi [1959] also showed that the structural group of a com-
plex contact manifold is reducible to (Sp(n) · U(1)) × U(1). Such a
reduction is equivalent to a complex almost contact metric structure;
cf. Shibuya [1978]. Shibuya’s approach is the complex analogue of that
of Hatakeyama [1962], which we utilized in Section 4.2. A formulation
in terms of global tensor fields similar to the fundamental 4-form of a
quaternionic Kähler manifold (see, e.g., Ishihara [1974]) was given by
Ishihara, Ludden and the author [1978].
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Ishihara and Konishi [1982] (see also Foreman [1996]) prove that a com-
plex contact manifold admits a complex almost contact metric structure
for which the local contact form θ is of the form u− iv to within a non-
vanishing complex-valued function multiple and the local tensor fields G
and H are related to du and dv by

du(X,Y ) = g(X,GY ) + (σ ∧ v)(X,Y ),
dv(X,Y ) = g(X,HY )− (σ ∧ u)(X,Y )

for some 1-form σ. When V is integrable, σ takes the form σ(X) =
g(∇XU, V ). We refer to a complex contact manifold with a complex
almost contact metric structure satisfying these conditions as a complex
contact metric manifold. For a given normalized contact structure we
denote by A, as in the real case, the space of associated metrics. As
a matter of notation we define local 2-forms Ĝ and Ĥ by Ĝ(X,Y ) =
g(X,GY ) and Ĥ(X,Y ) = g(X,HY ).

In the case of a strict complex contact structure, u and v may be taken
globally such that θ = u− iv and σ = 0.

Bearing in mind that the local contact form θ is u − iv to within a
nonvanishing complex-valued function multiple and since in the overlap
Oα ∩Oβ, uβ = auα− bvα, vβ = buα + avα, we can define an integral sub-
manifold as a submanifold whose tangent spaces belong to the complex
contact subbundle, i.e., u(X) = v(X) = 0 or equivalently θ(X) = 0. If
the submanifold is itself a complex submanifold, we call it a holomor-
phic integral submanifold. When the holomorphic integral submanifold
has complex dimension 1, it is called a holomorphic Legendre curve.
Recall that in real contact geometry the maximum dimension of an
integral submanifold of a contact manifold of dimension 2n + 1 is only
n. Similarly, since U and V are normal, from the above equations we
see that for any integral submanifold, GX and HX are normal for any
tangent vector X. Thus an integral submanifold of a complex contact
manifold of complex dimension 2n + 1 has real dimension at most 2n.

We have seen in the earlier chapters that for a contact metric structure
(φ, ξ, η, g), the tensor field h defined by h = 1

2£ξφ plays a fundamental
role. Now for a complex contact metric structure we define local tensor
fields by

hU =
1
2
sym(£UG) ◦ p, hV =

1
2
sym(£V H) ◦ p,
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where sym denotes the symmetric part; hU anticommutes with G, hV
anticommutes with H, and

∇XU = −GX −GhUX + σ(X)V, ∇XV = −HX −HhV X − σ(X)U.

From these equations one readily sees that the integral surfaces of V are
totally geodesic submanifolds. Just as the meaning of the vanishing of h
in the real case is that the metric was invariant under the action of ξ,
i.e., ξ is Killing, an associated metric g is projectable with respect to the
foliation induced by the integrable subbundle V if and only if hU and hV
vanish.

12.2 Examples of complex contact manifolds

12.2.1 Complex Heisenberg group

We have seen that R
3 with the Darboux form η = 1

2(dz − y dx) as its
contact structure and Sasakian metric g = 1

4(dx2 + dy2) + η ⊗ η is a
standard example of a contact metric manifold. Identifying R

3 with the
Heisenberg group

HR =

⎧
⎨

⎩

⎛

⎝
1 y z
0 1 x
0 0 1

⎞

⎠
∣
∣
∣x, y, z ∈ R

⎫
⎬

⎭
� R

3,

left translation preserves η, and g is a left-invariant metric on HR (see
Example 4.5.1).

The complex Heisenberg group is the closed subgroup HC of GL(3, C)
given by

HC =

⎧
⎨

⎩

⎛

⎝
1 z2 z3

0 1 z1

0 0 1

⎞

⎠
∣
∣
∣z1, z2, z3 ∈ C

⎫
⎬

⎭
� C

3.

If LB denotes left translation by B ∈ HC, then L∗
Bdz1 = dz1, L∗

Bdz2 =
dz2, L∗

B(dz3 − z2dz1) = dz3 − z2dz1. The vector fields ∂
∂z1

+ z2
∂
∂z3

, ∂
∂z2

,
∂
∂z3

are dual to the 1-forms dz1, dz2, dz3 − z2dz1 and are left-invariant
vector fields. Moreover, relative to the coordinates (z1, z2, z3, z̄1, z̄2, z̄3)
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the Hermitian metric (Jayne [1992, p. 234])

g =
1
8

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + |z2|2 0 −z2

O 0 1 0
−z̄2 0 1

1 + |z2|2 0 −z̄2

0 1 0 O

−z2 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

is a left-invariant metric on HC, but it is not a Kähler metric. The form

θ =
1
2
(dz3 − z2dz1)

is a complex contact structure on HC, and in our view, (HC, θ, g) plays
the role in the geometry of complex contact manifolds that R

3 with
its standard Sasakian structure does in the geometry of real contact
manifolds.

As we have seen, a complex contact manifold admits a complex almost
contact metric structure. Here HC � C

3 and θ is global, so the structure
tensors may be taken globally. With J denoting the standard almost
complex structure on C

3, J ∂
∂xi

= ∂
∂yi

, we may give a complex almost
contact metric structure to HC as follows. Since θ is holomorphic, setting
θ = u−iv, we have v = u◦J . Also set 4 ∂

∂z3
= U+iV ; then u(X) = g(U,X)

and v(X) = g(V,X). Finally, in complex coordinates G and H were given
by Jayne [1992, p. 235]:

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0
O −1 0 0

0 z2 0

0 1 0
−1 0 0 O

0 z̄2 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −i 0
O i 0 0

0 −iz2 0

0 i 0
−i 0 0 O

0 iz̄2 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that the matrix gG is that of the real part dθ and the matrix gH is
that of the imaginary part of dθ. For this structure the 1-form σ vanishes.

Now let

Γ =

⎧
⎨

⎩

⎛

⎝
1 γ2 γ3

0 1 γ1

0 0 1

⎞

⎠
∣
∣
∣γk = mk + ink, mk, nk ∈ Z

⎫
⎬

⎭
;

Γ is a subgroup of HC � C
3. The 1-form dz3−z2dz1 is invariant under the

action of Γ and hence the quotient HC/Γ is a compact complex contact
manifold with a global complex contact form. HC/Γ is known as the
Iwasawa manifold. The Iwasawa manifold has no Kähler structure, but
it does have an indefinite Kähler structure and it has symplectic forms;
see Fernández and Gray [1986].

12.2.2 Odd-dimensional complex projective space

We will need a local expression for the complex contact structure on
CP 2n+1 and will use homogeneous coordinates (z1, . . . , zn+1,
w1, . . . , wn+1). Then the complex contact structure is given by the holo-
morphic 1-form

ψ =
n+1∑

k=1

(zkdwk − wkdzk).

To give a little more detail we remark that the complex contact struc-
ture on CP 2n+1 is closely related to the Sasakian 3-structure on the
sphere S4n+3 (see Chapter 14) and to the quaternionic Kähler struc-
ture on quaternionic projective space HPn. The space C

2n+2 � H
n+1

has three almost complex structures I, J , K, which act on the position
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vector x as

Ix = ix = (iz1, . . . , izn+1, iw1, . . . , iwn+1),
Jx = (iw̄1, . . . , iw̄n+1,−iz̄1, . . . ,−iz̄n+1),
Kx = (w̄1, . . . , w̄n+1,−z̄1, . . . ,−z̄n+1).

The vector fields on S4n+3 given by ξ1 = −Ix, ξ2 = −Jx, ξ3 = −Kx are
the characteristic vector fields of the three contact structures η1, η2, η3

on S4n+3. In terms of the complex coordinates, η1, η2, η3 on S4n+3 are
the restrictions of the following forms on C

2n+2, which we denote by the
same letters:

η1 = − i

2

n+1∑

k=1

(zkdz̄k − z̄kdzk + wkdw̄k − w̄kdwk),

ψ = η3 + iη2 =
n+1∑

k=1

(zkdwk −wkdzk).

Ishihara and Konishi [1979] proved that if one of the contact structures
of a manifold M̃4n+3 with a Sasakian 3-structure (see Theorem 14.10) is
regular, the base manifold M of the induced fibration is a complex con-
tact manifold. The structure is constructed as follows. If (φ1, ξ1, η1, g)
is the regular Sasakian structure, then φ1 and g are projectable. Let π̃
denote the horizontal lift with respect to the principal S1 bundle connec-
tion defined by η1. Then J defined by JX = π∗φ1π̃X and the projected
metric form a Kähler structure on M (cf. Example 6.7.2). For a coordi-
nate neighborhood U on M and a local cross section s of M̃4n+3 over U ,
the 1-forms u and v and a tensor field G defined on U by

u(X) ◦ π = η2(s∗X), v(X) ◦ π = η3(s∗X),
GX = π∗(φ2s∗X − η1(s∗X)ξ3 + η3(s∗X)ξ1),

define the complex contact and complex almost contact structures on M .
In the case of the Hopf fibration this is the standard Kähler structure on
CP 2n+1 with the Fubini–Study metric. With the Hopf fibration induced
by ξ1, ψ = η3 +iη2 is a local expression for the complex contact structure
on CP 2n+1.
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12.2.3 Twistor spaces

Generalizing the previous example, we discuss twistor spaces over quater-
nionic Kähler manifolds, the twistor space of quaternionic projective
space being odd-dimensional complex projective space. Consider a Rie-
mannian manifold (M4n, g) whose holonomy group is contained in Sp(n)·
Sp(1) = Sp(n)×Sp(1)/{±I}). This means that there exists a subbundle
E ⊂ End(TM) with 3-dimensional fibers such that locally there exists
a basis of E consisting of almost complex structures {I,J ,K} satisfy-
ing, IJ = −JI = K and such that ∇XI,∇XJ ,∇XK belong to the
span of {I,J ,K} for any vector field X on M . In dimension 4 (n = 1),
Sp(1) ·Sp(1) = SO(4), so the holonomy group condition is not a restric-
tion. For n > 1, (M4n, g) is called a quaternionic Kähler manifold . A
well-known result of Alekseevskii [1968] (see also Berger [1966], Ishihara
[1974]) is that in this case, the metric g is Einstein.

Since Sp(1) · Sp(1) = SO(4), a stronger definition of quaternionic
Kähler manifold is needed in dimension 4. A 4-dimensional manifold is
said to be a quaternionic Kähler manifold if it is Einstein and self-dual
with nonzero scalar curvature (see, e.g., LeBrun [1991]).

Returning to the subbundle π̄ : E −→M , regardless of dimension, we
define the horizontal subspace H̄p at p ∈ E as follows. Let α denote a
curve in M such that α(0) = π̄(p) and let s denote a section of E such
that s(α(0)) = p. Then set

H̄p = {(s ◦ α)∗(0) ∈ TpE | ∇α̇(0)s = 0}.
Now induce a bundle metric on E by making each quaternionic Kähler

frame {I,J ,K} an orthonormal basis. Let Z be the space of all unit
elements of E. Locally

Z = {xI + yJ + zK ∈ E | x2 + y2 + z2 = 1};
π : Z −→M , is called the twistor space of M and each element j ∈ Z is
an almost complex structure on the tangent space of M at π(j).

Let V = ker π∗. Since each fiber of Z is a unit sphere, then at
j = xI + yJ + zK, x2 + y2 + z2 = 1, we may make the identification

Vj = {X ∈ Eπ(j) | X ⊥ j} = {aI + bJ + cK | ax + by + cz = 0}.
Setting H = H̄|Z , we have the splitting TZ ∼= V ⊕ H. Define an almost
complex structure J on Z as follows. For a vertical vector V ∈ Vj , set
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JV = j × V , where × denotes the usual vector product in Euclidean
3-space; in particular, this is the usual almost complex structure on S2.
To define the action of J on X ∈ Hj, first let˜denote the horizontal lift
with respect to the connection on E determined by H̄. Then since j is an
almost complex structure on the tangent space of M at π(j), set JX =
j̃π∗X. Now local V-valued forms θ defining H give Z a complex contact
structure; see Salamon [1982] or for verification of the integrability, Besse
[1987, pp. 413–415] and for θ ∧ (dθ)n �= 0, Besse [1987, p. 416].

Now let {Uα} be an open covering of the quaternionic Kähler manifold
(M4n, g), and corresponding to a neighborhood Uα set

Oα = {xI+yJ + zK ∈ Z | z �= 1}, O′
α = {xI+yJ + zK ∈ Z | z �= −1}.

The collection of pairs {Oα,O′
α} is then an atlas on Z. On Oα define

vector fields Û and V̂ by

Û =
1− z − x2

1− z
I − xy

1− z
J + xK

and V̂ = −JÛ . Then {Û , V̂ } forms a basis of V on Oα. As elements
of E, Û and V̂ are unit and there exist real 1-forms û and v̂ such that
û(Û ) = v̂(V̂ ) = 1, û(V̂ ) = v̂(Û ) = 0. On O′

α define vector fields Û ′ and
V̂ ′ by

Û ′ =
1 + z − x2

1 + z
I − xy

1 + z
J + xK

and V̂ ′ = −JÛ ′. Again we have the corresponding 1-forms û′, v̂′ and

Û + iV̂ = h(Û ′ + iV̂ ′), û− iv̂ = h(û′ − iv̂′),

where h : Oα∩O′
α −→ S1. Thus {û−iv̂} is a normalized contact structure

on Z and û⊗ û + v̂ ⊗ v̂ is a global tensor field on Z.
Let c > 0 and define a Riemannian metric gc on Z by

gc = c2(û⊗ û + v̂ ⊗ v̂) + π∗g,

gc|V = c2〈, 〉, where 〈, 〉 is the Euclidean metric on fibers of E restricted
to S2. The metric gc is called the Salamon, Bérard-Bergery metric with
vertical coefficient c. Setting uc = cû, vc = cv̂, {uc − ivc} is a normalized
contact structure on Z and

gc = uc ⊗ uc + vc ⊗ vc + π∗g.

In [1996] Foreman proved the following theorem.
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Theorem 12.1 Let (M4n, g) be a quaternionic Kähler manifold and τ
the scalar curvature of g. Consider the twistor space Z with the Salamon,
Bérard-Bergery metric gc, c > 0, and normalized contact structure
{uc − ivc}. Then we have the following:

1. gc is Hermitian with respect to the complex structure J on Z.
2. gc is an associated metric if and only if c|τ | = 8n(n + 2).
3. gc is Kähler if and only if c2τ = 4n(n + 2).
4. gc is associated and Kähler if and only if c = 1

2 and τ = 16n(n+2).

Recall that in Section 1 we noted conditions for an associated metric g
to be projectable with respect to the foliation induced by the integrable
subbundle V, namely that hU and hV vanish. Foreman [1996] also proves
the following result.

Theorem 12.2 Let Z be the twistor space over a quaternionic Kähler
manifold (M4n, g) of constant scalar curvature τ and let c be such that
c|τ | = 8n(n+2). Then in the space A of all associated metrics with respect
to the normalized contact structure {uc − ivc}, the Salamon, Bérard-
Bergery metric gc is the only projectable associated metric in A.

Again it seems worthwhile to mention the result of LeBrun [1995].

Theorem 12.3 A complex contact manifold of positive first Chern class
is a twistor space if and only if it admits a Kähler Einstein metric.

Further discussion of the geometry of twistor space can be found in
Foreman [2000b], [2002b]. In particular he gives curvature conditions for a
complex contact metric manifold to be the twistor space of a quaternionic
Kähler manifold. His main result is the following.

Theorem 12.4 A complex contact metric manifold is isometric to the
twistor space of a quaternionic Kähler manifold with positive scalar cur-
vature if and only if

RX Y (aU + bV ) = (au + bv)(Y )X − (au + bv)(X)Y
+ (au + bv)(JY )JX − (au + bv)(JX)JY

+ 2g(X,JY )(aU + bV )

12.2.4 The Complex Boothby–Wang fibration

In [2000a] and again in [2000b] Foreman constructed complex contact
manifolds with global complex contact forms and fibrations with vertical
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fibers S1 × S1, and hence these examples are quite different from the
twistor space examples. Here we discuss the complex Boothby–Wang
fibration of Foreman [2000a]. Let (M,Ω) be a complex symplectic man-
ifold of complex dimension 2n and complex structure J0, i.e., M is a
complex manifold together with a closed holomorphic 2-form Ω such
that Ωn �= 0. Writing Ω = Ω1 + iΩ2, we see that Ω1 and Ω2 are closed
2-forms. On the other hand, Ω may be written in terms of a local basis
of holomorphic 1-forms as θ1 ∧ θn+1 + · · · + θn ∧ θ2n. Then taking real
and imaginary parts of θk = αk + iβk, we have

Ω1 = α1 ∧ αn+1 − β1 ∧ βn+1 + · · ·+ αn ∧ α2n − βn ∧ β2n,

Ω2 = α1 ∧ βn+1 + β1 ∧ αn+1 + · · ·+ αn ∧ β2n − βn ∧ α2n,

from which we see that Ω2n
1 �= 0 and Ω2n

2 �= 0. Thus we have two distinct
symplectic structures on M . If each of these is of integral class, we have
two principal circle bundles P1 and P2 with contact (connection) forms
η1 and η2 as in Sections 3.3, 4.5.4 and 6.7.2, and each dηk = Ωk. Finally,
let ξ1 and ξ2 be the characteristic vector fields of these contact structures.

Define a principal S1×S1-bundle P over M by P = P1⊕P2 and let π
denote the projection map. For z ∈ P , set VzP = ker π∗

∣
∣
z
. This defines

a vector bundle V over P , and by extending each ξk to be trivial on the
other factor, we may regard ξ1 and ξ2 as vector fields on P . Moreover, the
pair (η1, η2) defines a connection on P (see Foreman [2000b] for details).
We denote the horizontal subspace determined by the connection at z by
HzP and the horizontal lift by π̃ or X̃ .

The bundle space P carries an almost complex structure J defined as
follows. On V define J by Jξ1 = ξ2 and Jξ2 = −ξ1, and for X ∈ HzP ,
set JX = π̃J0π∗X. Since the Lie algebra s1 ⊕ s1 is abelian, [ξ1, ξ2] = 0
and hence [J, J ](ξ1, ξ2) = 0. Also it is easy to check that [ξk, X̃ ] = 0
and hence that [J, J ](ξk, X̃) = 0. Finally, utilizing the integrability of J0

on M one can readily show that π∗[J, J ](X̃, Ỹ ) = 0. Therefore P is a
complex manifold.

We can now define a complex contact structure on the complex mani-
fold P . First note that η2 = −η1 ◦ J , where again by extending each ηk
to be trivial on the other factor we regard η1 and η2 as 1-forms on P .
Set θ = η1 + iη2; then θ is of type (1, 0). Since Ω is holomorphic and
dθ = π∗Ω, we see that θ is a holomorphic 1-form. Again since dθ = π∗Ω,
a straightforward computation shows that θ∧(dθ)n �= 0. Thus P becomes
a complex contact manifold with a global complex contact form.
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We summarize the above construction in the following theorem.

Theorem 12.5 Let M be a complex symplectic manifold with a com-
plex symplectic form Ω = Ω1 + iΩ2 such that both Ω1 and Ω2 deter-
mine integral classes. Then the S1 × S1-bundle defined by ([Ω1], [Ω2]) ∈
H2(M, Z) ⊕H2(M, Z) has a complex contact structure given by a holo-
morphic connection form whose curvature form is Ω.

For example, CPn×CPn is a complex symplectic manifold, and hence
the Calabi–Eckmann manifold S2n+1 × S2n+1 carries a complex contact
structure as described in the theorem. In [2000a] Foreman also gave
examples for which the base complex symplectic manifold is a complex
torus of even complex dimension.

Foreman next proved a converse to this theorem as a complex Boothby–
Wang fibration; we state the result here and refer to Foreman [2000a] for
the proof. For a global complex contact form θ we write θ = u − iv,
where u and v are reals forms with v = u ◦ J ; the vertical bundle V is
then spanned by global vector fields U and V = −JU , where

u(U) = 1, v(U) = 0, ι(U)du = 0,
u(V ) = 0, v(V ) = 1, ι(V )dv = 0.

Theorem 12.6 Let P be a (2n + 1)-dimensional compact complex con-
tact manifold with a global form θ = u − iv such that the correspond-
ing vertical vector fields U and V are regular. Then θ generates a free
S1 × S1-action on P and p : P −→ M is a principal S1 × S1-bundle
over a complex symplectic manifold M such that θ is a connection form
for this fibration and the complex symplectic form Ω on M is given by
p∗Ω = dθ.

12.2.5 3-dimensional homogeneous examples

In the previous example we saw that B. Foreman had given a complex
Boothby–Wang fibration for (regular) complex contact manifolds with a
global contact form. In [1999] Foreman studied 3-dimensional complex
homogeneous complex contact manifolds with a global complex contact
form and obtained the following classification.

Theorem 12.7 If M is a 3-dimensional complex homogeneous complex
contact manifolds with global complex contact form, then M is of the



12.2 Examples of complex contact manifolds 247

form M = G/Γ, where G is a simply connected 3-dimensional complex
Lie group and Γ ⊂ G is a discrete subgroup.

1. Suppose G is unimodular. Then G is one of the following:

(a) SL(2, C) if rk(ad(V)) = 2;

(b) The universal cover of the group of rigid motions of the com-
plex Euclidean plane if rk(ad(V)) = 1;

(c) HC if rk(ad(V)) = 0.

2. Suppose G is not unimodular. Then G is solvable, rk(ad(V)) = 1,
and G is one of the following complex Lie groups:

(a) The semidirect product Gα = C ×τα C
2, for any α ∈ C

∗\1,
where τα is the representation of C in GL(2, C) given by τα(t) =(
e−t 0
0 e−αt

)
;

(b) G =
{(

et tet u
0 et v
0 0 1

) ∣
∣
∣t, u, v ∈ C

}
.

The question of the regularity of the vertical foliation on compact
quotients of SL(2, C) by a discrete group was discussed by Foreman in
[2010]. In Section 13.5 we will discuss complex contact structures on the
Lie group SL(2, C) in more detail.

12.2.6 Complex contact Lie groups

A complex contact Lie group is a (2n+1)-dimensional complex Lie group
G with a left-invariant holomorphic 1-form θ such that θ ∧ (dθ)n �= 0 on
the complex manifold G. Define ξ in the Lie algebra g by dθ(ξ, ·) = 0
and θ(ξ) = 1. Then g = V ⊕H with V = 〈ξ〉C; ξ is called the Reeb vector
field of θ.

Complex contact Lie groups in dimensions greater than 3 and for which
the adjoint representation of ξ is diagonalizable were studied by Foreman
in [2006]. His result is the following.

Theorem 12.8 Let (G, θ) be a (2n+1)-dimensional complex contact Lie
group G such that ad(ξ) : g −→ g is diagonalizable. If n > 1, then the
universal cover group of G is the semidirect product C

2n ×Ω C, where Ω
is the standard symplectic form on C

2n.
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12.2.7 Cn+1 × CP n(16)

In [1998] B. Korkmaz gave a complex analogue of the real contact metric
manifold En+1 × Sn(4) together with a curvature characterization anal-
ogous to Theorem 7.5. We describe the example and state the theorem.

Let (t0, . . . , tn) be homogeneous coordinates on CPn and Ui the neigh-
borhood defined by ti �= 0. On Ui introduce nonhomogeneous coordi-
nates by wj = tj

ti
, j = 0, . . . , n, j �= i. Let Oi = C

n+1 × Ui and let
(z0, . . . , zn) be coordinates on C

n+1. Define a holomorphic 1-form θi on
Oi by θi = 1

ti

∑n
k=0 tkdzk. Then θi ∧ (dθi)n �= 0 on Oi and θj = ti

tj
θi on

Oi ∩ Oj . Thus {θi}ni=0 is a complex contact structure on C
n+1 × CPn.

For convenience we continue our work on O0 with θ0 = dz0 +∑n
k=1 wkdzk. The product metric on C

n+1 × CPn(16) is given by the
matrix

g =
1
8

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

In+1 0
O

0 g

In+1 0
O

0 gT

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where 1
8g is the metric on CPn(16), i.e.,

gij =
(1 +

∑n
k=1 |wk|2)δij − w̄iwj

(1 +
∑n

k=1 |wk|2)2 .

Let f0 = 1 +
∑n

k=1 |wk|2 and define real 1-forms u0 and v0 by

u0 =
1

4
√

f0

(

dz0 + dz̄0 +
n∑

k=1

(wkdzk + w̄kdz̄k)

)

,

v0 =
i

4
√

f0

(

dz0 − dz̄0 +
n∑

k=1

(wkdzk − w̄kdz̄k)

)

.

Similarly define vector fields U0 and V0 by

U0 =
2√
f0

(
∂

∂z0
+

∂

∂z̄0
+

n∑

k=1

(

w̄k ∂

∂zk
+ wk ∂

∂z̄k

))

,

V0 =
−2i√

f0

(
∂

∂z0
− ∂

∂z̄0
+

n∑

k=1

(

w̄k ∂

∂zk
− wk ∂

∂z̄k

))

.
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Then θ0 = 2
√

f0(u0 − iv0), du0(U0,X) = 0 for all X ∈ H, u0(U0) = 1,
v0(U0) = 0, and g(U0,X) = u0(X) for all X.

Let

G0 = f
− 3

2
0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 A
O

B 0

0 Ā
O

B̄ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

w1 w2 · · · wn

|w1|2 − f0 w̄1w2 · · · w̄1wn

w1w̄2 |w2|2 − f0 · · · w̄2wn

...
...

. . .
...

w1w̄n w2w̄n · · · |wn|2 − f0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

B = f
1
2
0

⎛

⎜
⎜
⎜
⎝

−w1

−w2

... In
−wn

⎞

⎟
⎟
⎟
⎠

.

Then G2
0 = −I + u0 ⊗ U0 + v0 ⊗ V0, G0J + JG0 = 0, etc. On O1 set

f1 = 1 + |w0|2 +
∑n

k=2 |wk|2. Then f0
f1

= |t1|2
|t0|2 . Setting a− bi = t0

t1

√
f0
f1

on

O0 ∩ O1, we have a2 + b2 = 1 and

u1 = au0− bv0, v1 = bu0 + av0, G1 = aG0− bH0, H1 = bG0 + aH0,

where u1, v1, G1,H1 are the structure tensors on O1. Therefore

{(uk, vk, Uk, Vk, Gk,Hk, g)} on {Ok}nk=0

is a complex contact metric structure on C
n+1 × CPn(16).

It can be shown that for this structure, hU = hV ; see Korkmaz [1998].
We now state a characterization of this example due to Korkmaz [1998]
analogous to Theorem 7.5 that a contact metric manifold on which
RX Y ξ = 0 is locally isometric to En+1 × Sn(4).

Theorem 12.9 Let M be a complex contact metric manifold with hU =
hV . If RX Y V = 0, then M is locally isometric to C

n+1 × CPn(16).
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12.2.8 cos z3dz1 + sin z3dz2

In Example 3.2.6, Section 6.2, and Section 7.2 we studied the contact
form

1
2
(cos x3dx1 + sin x3dx2)

on R
3 and T 3 with 1

4δij as a flat associated metric. We can similarly
consider the complex contact form

θ =
1
2
(cos z3dz1 + sin z3dz2)

on C
3, zk = xk + iyk, k = 1, 2, 3. For this structure,

U + iV = 4
(

cos z3 ∂

∂z1
+ sin z3 ∂

∂z2

)
,

and an associated metric is given by

(gλμ̄) =
1
8

⎛

⎝
sech 2y3 0 0

0 sech 2y3 0
0 0 1

⎞

⎠ .

The other structure tensors can be readily computed (cf. Jayne [1992,
pp. 222–223]). One can also compute the curvature of this metric quite
readily and one finds that the metric is not flat.

In the real case we have noted that aside from the flat 3-dimensional
case, there are no flat associated metrics in any dimension. In the complex
case we conjecture that there are no flat complex contact metric struc-
tures at all. In view of Olszak’s result that the only contact metric man-
ifolds of constant curvature and dimension ≥ 5 are of constant curvature
+1 (Theorem 7.3), we also conjecture that aside from odd-dimensional
complex projective space, there are no complex contact metric structures
of constant holomorphic curvature.

12.3 Normality of complex contact manifolds

As we have seen, in real contact geometry the product M × R of an
almost contact manifold and the real line carries a natural almost com-
plex structure J , and if J is integrable, the structure is said to be normal.
Recall also that a Sasakian manifold is a normal contact metric manifold.
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Ishihara and Konishi [1979], [1980] introduced a notion of normality
for complex contact structures. Their notion is the vanishing of the two
tensor fields S and T given by

S(X,Y ) =[G,G](X,Y ) + 2Ĝ(X,Y )U − 2Ĥ(X,Y )V
+ 2(v(Y )HX − v(X)HY ) + σ(GY )HX − σ(GX)HY

+ σ(X)GHY − σ(Y )GHX,

T (X,Y ) =[H,H](X,Y )− 2Ĝ(X,Y )U + 2Ĥ(X,Y )V
+ 2(u(Y )GX − u(X)GY ) + σ(HX)GY − σ(HY )GX

+ σ(X)GHY − σ(Y )GHX.

However, this notion seems to be too strong; among its implications is
that the underlying Hermitian manifold (M,g) is Kähler. Thus while
indeed one of the canonical examples of a complex contact manifold,
the odd-dimensional complex projective space, is normal in this sense,
the complex Heisenberg group is not. B. Korkmaz [2000] generalized the
notion of normality, and we adopt her definition in this book. A complex
contact metric structure is normal if

S(X,Y ) = T (X,Y ) = 0, for every X,Y ∈ H,

S(U,X) = T (V,X) = 0, for every X.

Even though the definition appears to depend on the special nature of U
and V , it respects the change in overlaps Oα ∩Oβ and is a global notion
(Korkmaz [2000]). With this notion of normality both odd-dimensional
complex projective space and the complex Heisenberg group with their
standard complex contact metric structures are normal. We remark that
for Ishihara and Konishi’s notion of normality, the holonomy group is the
full unitary group U(2m + 1) Houh [1976]. Also, Ishihara and
Konishi’s notion of normality is equivalent to the curvature condition in
Theorem 12.4, Foreman [2000b].

One consequence of normality is that hU = 0 for every U ∈ V; this is
analogous to the fact that every Sasakian structure is K-contact. Another
is that the sectional curvature of a plane section spanned by a vector in V
and a vector in H is equal to +1 (cf. Korkmaz [2000], Foreman [2000b]).

We now give expressions for the covariant derivatives of G and H on a
normal complex contact metric manifold; for proofs see Korkmaz [2000].
A complex contact metric manifold is normal if and only if the covariant
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derivatives of G and H have the following forms:

g((∇XG)Y,Z) = σ(X)g(HY,Z) + v(X)dσ(GZ,GY )
− 2v(X)g(HGY,Z) − u(Y )g(X,Z) − v(Y )g(JX,Z)
+ u(Z)g(X,Y ) + v(Z)g(JX, Y ).

g((∇XH)Y,Z) = − σ(X)g(GY,Z) − u(X)dσ(HZ,HY )
− 2u(X)g(GHY,Z) + u(Y )g(JX,Z) − v(Y )g(X,Z)
− u(Z)g(JX, Y ) + v(Z)g(X,Y ).

In these formulas the first two terms on the right vanish for the com-
plex Heisenberg group (Example 12.2.1), and the second and third terms
cancel on PC

2n+1 (Example 12.2.2). Also one has

∇XU = −GX, ∇XV = −HX

on HC and

∇XU = −GX + σ(X)V, ∇XV = −HX − σ(X)U

on CP 2n+1. Finally, on a normal complex contact manifold we have

g((∇XJ)Y,Z)
= u(X)

(
dσ(Z,GY )− 2g(HY,Z)

)
+ v(X)

(
dσ(Z,HY ) + 2g(GY,Z)

)
.

When the complex contact structure is strict, i.e., given by a global
complex contact form, the situation is more restrictive. In particular,
σ = 0 and therefore some of the above formulas simplify. Foreman [2000b]
defines a complex Sasakian manifold to be a normal complex contact
metric manifold whose complex contact structure is given by a global
complex contact form. His paper gives a number of examples and basic
properties including local projectivity to a hyper-kähler manifold.

12.4 GH-sectional curvature

Corresponding to the ideas of holomorphic curvature in complex geome-
try and φ-sectional curvature in real contact geometry, B. Korkmaz [2000]
defined the notion of GH-sectional curvature for a complex contact met-
ric manifold. For a unit vector X ∈ Hm, the plane in TmM spanned by X
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and Y = aGX + bHX, a, b ∈ R, a2 + b2 = 1, is called a GH-plane section,
and its sectional curvature, K(X,Y ), the GH-sectional curvature of the
plane section. For a given vector X, K(X,Y ) is independent of the vector
Y in the plane of GX and HX if and only if K(X,GX) = K(X,HX)
and g(RXGXHX,X) = 0. Let M be a normal complex contact metric
manifold; if the GH-sectional curvature is independent of the choice of
GH-section at each point, it is constant on the manifold, and we say that
M is a complex contact space form. The curvature tensor and the follow-
ing theorems were obtained by Korkmaz [2000]; explicitly, the curvature
tensor is

RXY Z =
c + 3

4

(
g(Y,Z)X − g(X,Z)Y

+ g(Z, JY )JX − g(Z, JX)JY + 2g(X,JY )JZ
)

+
c− 1

4

(
−(u(Y )u(Z)+v(Y )v(Z)

)
X+
(
u(X)u(Z)+v(X)v(Z)

)
Y

+ 2u ∧ v(Z, Y )JX − 2u ∧ v(Z,X)JY + 4u ∧ v(X,Y )JZ

+ g(Z,GY )GX − g(Z,GX)GY + 2g(X,GY )GZ

+ g(Z,HY )HX − g(Z,HX)HY + 2g(X,HY )HZ

+
(− u(X)g(Y,Z) + u(Y )g(X,Z)

+ v(X)g(JY,Z) − v(Y )g(JX,Z) + 2v(Z)g(X,JY )
)
U

+
(− v(X)g(Y,Z) + v(Y )g(X,Z)

− u(X)g(JY,Z) + u(Y )g(JX,Z) − 2u(Z)g(X,JY )
)
V
)

− 4
3
(dσ(U, V ) + c + 1)

((
v(X)u ∧ v(Z, Y )− v(Y )u ∧ v(Z,X)

+ 2v(Z)u ∧ v(X,Y )
)
U − (u(X)u ∧ v(Z, Y )

− u(Y )u ∧ v(Z,X) + 2u(Z)u ∧ v(X,Y )
)
V
)
.

Odd-dimensional complex projective space with the Fubini–Study metric
of constant holomorphic curvature 4 is of constant GH-sectional curva-
ture 1. The complex Heisenberg group has holomorphic curvature 0 for
horizontal and vertical holomorphic sections and constant GH-sectional
curvature −3.

Theorem 12.10 Let M be a normal complex contact metric manifold.
Then M has constant GH-sectional curvature c if and only if for X
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horizontal, the holomorphic sectional curvature of the plane spanned by
X and JX is c + 3.

Theorem 12.11 Let M be a normal complex contact metric manifold of
constant GH-sectional curvature +1 and satisfying dσ(V,U) = 2. Then
M has constant holomorphic curvature 4. If, in addition, M is complete
and simply connected, then M is isometric to CP 2n+1 with the Fubini–
Study metric of constant holomorphic curvature 4.

Korkmaz [2000] then introduced the idea of anH-homothetic deforma-
tion of a complex contact metric structure. Let α be a positive constant
and consider the local structure tensors (G,H,U, V, u, v, g). Then define
new structure tensors by

ũ = αu, ṽ = αv, Ũ =
1
α

U, Ṽ =
1
α

V, G̃ = G, H̃ = H,

g̃ = αg + α(α − 1)(u⊗ u + v ⊗ v).

This change of structure is called an H-homothetic deformation. The
new structure then respects the transitions on the overlaps of coordinate
neighborhoods and hence gives a new complex contact metric structure
on M . Moreover, S̃(X,Y ) = S(X,Y ) on H, S̃(X, Ũ ) = 1

αS(X,U), etc.,
so if the given structure is normal, so is the new structure. Korkmaz
computed the curvature and showed that if on a normal complex contact
metric manifold the original structure has constant GH-sectional cur-
vature c, then the new structure has constant GH-sectional curvature
c̃ = c+3

α − 3; in particular, she proved the following results.

Theorem 12.12 Complex projective space CP 2n+1 carries a normal com-
plex contact metric structure with constant GH-section curvature 4

α − 3
for every α > 0.

Theorem 12.13 A normal complex contact metric manifold with met-
ric g̃ of constant GH-sectional curvature c̃ > −3 is H-homothetic to a
normal complex contact metric manifold with metric g of constant GH-
section curvature c = 1. Moreover, if dσ(Ṽ , Ũ) = (c̃ + 3)2/8, the metric
g is Kähler and has constant holomorphic curvature 4.

In [2003] B. Korkmaz continued her study of the curvature of complex
contact metric manifolds and of H-homothetic deformations; in partic-
ular, she developed a theory of complex (κ, μ)-spaces analogous to that
described in Section 7.3 for the real contact geometry.
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12.5 The set of associated metrics and integral
functionals

In [1996] B. Foreman began the study of the set of all associated metrics
on a complex contact manifold. In Chapter 4 we studied how the set of
associated metrics A for a symplectic or contact form sits in the set of
Riemannian metrics with the same volume element, and in particular we
studied the tangent space to A at an associated metric g. As before, we
will typically use the same letter for a symmetric tensor field as a tangent
vector to a curve of metrics and for the corresponding tensor field of type
(1, 1) determined by the metric.

As already mentioned, and in keeping with the notation in the real
case, we will denote by A the set of all associated metrics for a complex
contact structure as defined in Section 12.1. As in the real case, A is
infinite dimensional; all associated metrics to a given complex contact
structure have the same volume element; A is totally geodesic in N in
the sense that if D ∈ TgA, the geodesic gt = getD is a path in A; and two
metrics in A may be joined by a geodesic. We now give a characterization
of TgA; for details of this and the preceeding statements see Foreman
[1996].

Lemma 12.1 Let g be a metric in A. Then a symmetric tensor field D
of type (0, 2) is in TgA if and only if D, as a tensor field of type (1, 1),
satisfies

DJ = JD, D|V = 0, DG = −GD

for any local tensor field G as in the preceding sections.

As before, to study integral functionals defined on A we will be differ-
entiating such functionals along paths of metrics, and for this we need the
following fundamental lemma (Foreman [1996]). For an endomorphism
T of a complex vector space, set

T s =
1
2
(T − JTJ), T d =

1
2
(T + JTJ),

i.e., T s is the part of T that commutes with J , and T d the part of T that
anticommutes with J .

Lemma 12.2 For g ∈ A and T a symmetric (1, 1) tensor field,
∫

M
tr TD dV = 0
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for every D ∈ TgA if and only if

p(TJ + JT )p = HTG−GTH,

or equivalently
pT sp = −GT sG.

In Section 10.3 we studied the integral of the Ricci curvature in the
direction of the characteristic vector field ξ, i.e., L(g) =

∫
M Ric(ξ) dV ,

as a functional on the set of associated metrics. In [1996] Foreman gave
two analogues of Ric(ξ) for complex contact manifolds and proved the
following results. For a unit vertical vector field U , Ric(U) + Ric(JU) is
global, i.e., it respects transition on Oα∩Oβ, and we denote it by Ric(V).
For the second analogue, Foreman utilizes the ∗-Ricci tensor, and it is
easy to check that for a unit vertical vector field U , Ric∗(U) = R∗

ijU
iU j

is independent of the unit vertical vector field U and globally defined;
we denote it by Ric∗(V). Define functionals L and L∗ on A by

L(g) =
∫

M
Ric(V) dV, L∗(g) =

∫

M
Ric∗(V) dV.

Theorem 12.14 Let M be a compact complex contact manifold and A
the set of associated metrics. Then g ∈ A is a critical point of L(g) if
and only if

(∇UhU )s + (∇V hV )s = σ(U)hsV − σ(V )hsU − 4GhdU

for any local unit vertical vector field U .

Clearly, any projectable associated metric is a critical point of L(g).
In fact, Foreman showed that Ric(V) = 8n − 2K(V) − trh2

U − trh2
V ,

where K(V) is the sectional curvature of a vertical plane section, and
moreover that

∫
M K(V) dV is independent of the associated metric. Thus

projectable metrics are maxima of L(g). If g is Kähler, hsU = 0 for any
vertical vector field U , and moreover, (∇WhdU )s = 0 for any vertical
vector field W . Thus we also have the following corollary.

Corollary 12.1 If g ∈ A is Kähler and a critical point of L(g), then it
is projectable.

Theorem 12.15 Let M be a compact complex contact manifold and A
the set of associated metrics. Then g ∈ A is a critical point of L∗(g) if
and only if

hdU (∇UJ) = 0

for any local unit vertical vector field U .
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In particular, if g is projectable or Kähler, it is critical. For the twistor
spaces as described in Example 12.2.3 this theorem may be improved
as follows. If Z is the twistor space of a compact quaternionic Kähler
manifold M4n, 4n ≥ 8, with normalized complex contact structure {uc−
ivc} and if the Salamon, Bérard-Bergery metric gc is an associated metric,
then an associated metric g is critical for L∗ if and only if hdU = 0 for
every vertical vector U .

B. Foreman also obtained some important results on the constancy of
L∗, i.e., when L∗ is independent of the associated metric.

Theorem 12.16 Let M be a complex contact manifold with correspond-
ing almost complex structure J . Then L∗ is constant on A if and only if
J is projectable.

Theorem 12.17 Suppose M is a compact complex contact manifold
with a global complex contact structure and A the set of associated met-
rics. Then L∗ is constant on A.

Turning now to the scalar curvatures, in real contact geometry the
“total scalar curvature” defined by

∫
M τ + τ∗ dV is a functional on A

whose critical points are precisely the K-contact metrics, as we have
seen (Theorem 10.9). B. Foreman (unpublished) has also defined a ∗∗-
scalar curvature by first contracting the curvature with the local tensor
fields G and H as in the ∗-scalar curvature, giving ∗-scalar curvatures
τ∗
G and τ∗

H ; τ∗∗ = τ∗
G + τ∗

H is then globally defined, and one defines the
“total scalar curvature” I(g) by I(g) =

∫
M τ + τ∗ + τ∗∗ dV . Recall that

an almost Hermitian structure (J, g) is semi-Kähler if the fundamental
2-form Ω is coclosed. Foreman computed the critical point condition for
this functional and though complicated, it yields the following result.

Theorem 12.18 A projectable semi-Kähler metric is a critical point of
the functional I(g).

12.6 Holomorphic Legendre curves

Let M̃ be a Hermitian manifold of complex dimension n with complex
structure J and corresponding Riemannian metric g. Following Chern,
Cowen and Vitter [1974] and S. Dolbeault [1977], we describe holomor-
phic curves and Frenet frames. A holomorphic curve in M̃ is a noncon-
stant holomorphic map ι : M → M̃ , where M is a Riemann surface.
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If zi = zi(w) is a local representation of M in a neighborhood of w = 0,
then its holomorphic tangent vector at ι(0) is given by

∑
z′i(0)

∂
∂zi

= wpV ,
where p is a nonnegative integer and V a nonzero vector. The isolated
points where p > 0 are called stationary points of order 0. A unitary
frame {f1, . . . , fn} is called a Frenet frame if f1 = V

|V | and

∇̃Xfi = ωii−1(X)fi−1 + ωii(X)fi + ωii+1(X)fi+1

for i = 1 to n − 1, where ωii+1 is a holomorphic 1-form and ωi+1i(X) =
−ωii+1(X). Points where ωii+1 vanish are called stationary points of order
i. In general, a unitary frame is not holomorphic, but we will be interested
in the case in which the fi’s are holomorphic vector fields, and we then
speak of a holomorphic Frenet curve and a holomorphic Frenet frame.

Not every holomorphic curve in a Hermitian manifold M̃ has a Frenet
frame. Chern, Cowen and Vitter [1974] (or see Dolbeault [1977]) give
curvature conditions on M̃ under which every holomorphic curve has a
Frenet frame; in particular, a Kähler manifold of complex dimension ≥ 3
has a Frenet frame along every holomorphic curve if and only if it has
constant holomorphic curvature.

M being a holomorphic Frenet curve has implications on M as a sub-
manifold. In the following lemma we give three such implications, the first
two of which are immediate in any Kähler manifold. For our purpose we
give the lemma only for Hermitian manifolds of complex dimension 3
(see Baikoussis, Gouli-Andreou and the author [1998] for the proof).
Recall that the span of the second fundamental form α is called the first
normal space and will be denoted by ν1. Let ‘proj’ denote projection to
the orthogonal complement of TM ⊕ ν1. Define β(X,Y,Z) by

β(X,Y,Z) = proj∇̃X∇̃Y Z(= proj∇⊥
Xα(Y,Z)).

The span of β is called the second normal space and will be denoted by
ν2. Successively the higher normal spaces may be defined in this manner
taking higher order derivatives.

Lemma 12.3 Let M be a holomorphic Frenet curve in a 3-dimensional
Hermitian manifold (M̃ , J, g) with second fundamental form α. Let R̃
denote the curvature tensor of M̃ . Then

(1) α(X,JY ) = Jα(X,Y ) for any tangent vectors X,Y , and hence the
real dimension of the first normal space is 2;
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(2) ∇̃XJ |TM⊕T⊥M = 0;

(3) for any tangent vectors X,Y,Z, we have that R̃(X,Y )Z is orthog-
onal to the second normal space.

Conversely, if M is a holomorphic curve satisfying (1), (2), and (3),
then it has a holomorphic Frenet frame.

Related to the idea of a Frenet frame are the curvatures themselves.
These Frenet curvatures for a holomorphic curve date back to Calabi
[1953a], who defined (n − 1) real-valued curvature functions (see also
Lawson [1970]). When the ambient space is a complex space form, these
curvatures are actually intrinsic (Lawson [1970]). We follow the develop-
ment as presented by Lawson.

Let M be a holomorphic curve in a 3-dimensional Hermitian mani-
fold M̃ for which the properties of the lemma hold. From α(X,JY ) =
Jα(X,Y ) we have easily that for all unit tangent vectors X,Y (Y not
necessarily distinct from X), |α(X,Y )|2 is a function of position alone,
say κ1(p), p ∈M ; κ1 is called the curvature or first curvature of M . Now
with β(X,Y,Z) defined as above, from property (2) of the lemma we
have β(X,Y, JZ) = Jβ(X,Y,Z). From the second expression for β in
the definition we see that β is symmetric in the second and third vari-
ables, giving β(X,JY,Z) = Jβ(X,Y,Z). Let ν be a vector in the second
normal space. Then by property (3), g(∇̃X∇̃Y Z, ν) = g(∇̃Y ∇̃XZ, ν),
giving that β is symmetric in the first and second variables and therefore
β(JX, Y,Z) = Jβ(X,Y,Z). From these properties of β we have that

κ2(p) =
|β(X,Y,Z)|2

κ1(p)
is well defined, X,Y,Z being any unit tangent vectors. We call κ2 the
torsion or second curvature and also denote it by τ .

It is interesting to compare the curvature and torsion with the deriva-
tives of the Frenet frames and the holomorphic connection forms ωii+1.
In particular, writing f1 as e1−iJe1√

2
, we have κ = |ω12(e1)|2 and τ =

|ω23(e1)|2.
We begin with the following proposition from Baikoussis, Gouli-Andreou

and the author [1998].

Proposition 12.1 Let M be a real surface in (HC, θ, g) such that
θ(X) = 0 for any tangent vector X. Then M is a holomorphic Legendre
curve as well as a holomorphic Frenet curve with torsion τ ≡ 1.
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We now state two results, due to Baikoussis, Gouli-Andreou and the
author [1998].

Theorem 12.19 If the torsion of a holomorphic Frenet curve in the
complex Heisenberg group is not identically zero and at one point the
complex contact form annihilates the tangent space, then the curve is a
holomorphic Legendre curve.

Theorem 12.20 Let M be a holomorphic Legendre curve in (HC, θ, g)
and N its projection to C

2 = {(z1, z2)} with its standard complex struc-
ture and Kähler (Euclidean) metric. Then the Gaussian curvature of M
is 8 times that of N .

Turning to the complex contact manifold CP 3, we a give complete
characterization of holomorphic Legendre curves due to Bryant [1982].

Theorem 12.21 Let M be a connected Riemann surface and let f and
g be meromorphic functions on M with g nonconstant. In terms of ho-
mogeneous coordinates define ι : M −→ CP 3 by

ζ −→
(

1, g, f − g
f ′

2g′
,

f ′

2g′

)

.

Then ι : M −→ CP 3 is a holomorphic Legendre curve. Conversely, any
holomorphic Legendre curve is either of this form or has its image in
some CP 1 ⊂ CP 3.

Specifically, if (z1, z2, w1, w2) are homogeneous coordinates on CP 3 and
ψ = z1dw1−w1dz1 + z2dw2−w2dz2 as in Example 12.2.2, then it is easy
to check that ψ(ι∗ ∂

∂ζ ) = 0.
As an application of his result, Bryant uses the fibration of CP 3 over S4

to show that given a compact Riemann surface, there exists a conformal
superminimal generically one-to-one immersion into S4 whose image in
S4 is an algebraic surface.

12.7 The Calabi (Veronese) embeddings as integral
submanifolds of CP 2n+1

In [1953b] Calabi showed that up to holomorphic congruence there is a
unique holomorphic embedding of CPn( 4

ν ) into CPN (4), N =
(n+ν
ν

)− 1
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that does not lie in any totally geodesic complex projective space of lower
dimension. Nakagawa and Ogiue [1976] showed that the only full isomet-
ric immersions of positively curved complex space forms into positively
curved complex space forms are local versions of these embeddings. These
embeddings are known as the Calabi embeddings or as the Veronese em-
beddings, especially in the case CP 2(2) −→ CP 5(4). For n = 1 these
embeddings are called Calabi curves. Classically the Calabi embeddings
are given as follows. Let ζ1, . . . , ζn+1 be homogeneous coordinates for
CPn( 4

ν ). The Calabi embedding of CPn( 4
ν ) into CPN (4), in terms of

homogeneous coordinates for CPN (4), is given by

(ζ1, . . . ,ζn+1)

−→
(
ζν1 ,
√

νζν−1
1 ζ2, . . . ,

√
ν!

a1! · · · an+1!
ζa11 · · · ζan+1

n+1 , . . . , ζνn+1

)
,

where
∑n+1

i=1 ai = ν, the ai’s being nonnegative integers. The meaning of
the integer ν is that there are ν− 1 normal spaces for these embeddings.

The question to be addressed in this section is the following. For which
of these embeddings is there a holomorphic congruence of CP 2n+1 that
positions the submanifold as a holomorphic integral submanifold of the
complex contact structure?

For the Calabi curves we have the following positive answer due to
Dillen, Verstraelen, Vrancken and the author [1996].

Theorem 12.22 There exists a holomorphic congruence of CP 2n+1(4)
that positions the Calabi curve CP 1( 4

2n+1 ) as a holomorphic Legendre
curve in CP 2n+1(4).

The embedding is given explicitly as follows. For simplicity set Ak =√(2n+1
k−1

)
; now position CP 1( 4

2n+1 ) in CP 2n+1(4) by

(ζ1, ζ2) −→
(
ζ2n+1
1 , . . . , Akζ

2n+2−k
1 ζk−1

2 , . . . , An+1ζ
n+1
1 ζn2 ,

ζ2n+1
2 , . . . , (−1)k−1Akζ

2n+2−k
2 ζk−1

1 , . . . , (−1)nAn+1ζ
n+1
2 ζn1

)
.
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Then

∂

∂ζ1
=

n+1∑

k=1

(
Ak(2n + 2− k)ζ2n+1−k

1 ζk−1
2

∂

∂zk

+ (−1)k−1Ak(k − 1)ζ2n+2−k
2 ζk−2

1

∂

∂wk

)
,

∂

∂ζ2
=

n+1∑

k=1

(
Ak(k − 1)ζ2n+2−k

1 ζk−2
2

∂

∂zk

+ (−1)k−1Ak(2n + 2− k)ζ2n+1−k
2 ζk−1

1

∂

∂wk

)

represent the tangent space, and the proof is to show that ψ( ∂
∂ζ1

) =
ψ( ∂

∂ζ2
) = 0, where ψ =

∑n+1
k=1(zkdwk − wkdzk) as in Example 12.2.2.

On the other hand, there is no holomorphic congruence of CP 5(4)
that brings the Veronese surface CP 2(2) into position as a Legendre
submanifold of the complex contact structure on CP 5(4) even though
the codimension is large enough. This has to do with the fact that the
integer ν is equal to 2.

Theorem 12.23 Assume that N =
(n+2

2

) − 1 is odd. There is no holo-
morphic congruence of CPN(4) that brings the Calabi embedding of CPn(2)
into position as an integral submanifold of the complex contact structure
on CPN (4).

Proof. Recall that the meaning of the condition ν = 2 is that the first
normal space is the whole normal space. Suppose now that CPn(2) −→
CPN (4) is an integral submanifold of the complex contact structure with
second fundamental form α. We have already noted that the vector fields
U and V are normal and that for any tangent vector X, GX is normal.
Using ∇̃XU = −GX + σ(X)V, we have

0 = Xg(Y,U) = g(∇̃XY,U)− g(Y,GX) = g(α(X,Y ), U),

and similarly g(α(X,Y ), V ) = 0. Thus U and V are orthogonal to both
the tangent space and the first normal space, but the first normal space
is the whole normal space, giving a contradiction.

For ν = 3 we first give a nonexistence result for n = 2 and then a
positive result for n odd; these results are due to Korkmaz, Vrancken
and the author [2000].
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Theorem 12.24 There is no holomorphic congruence of CP 9(4) that
brings the Calabi embedding of CP 2(4

3) into position as an integral sub-
manifold of the complex contact structure on CP 9(4).

Theorem 12.25 When ν = 3 and n is odd, N =
(n+3

3

) − 1 is odd
and there exists a holomorphic congruence of CPN (4) that brings the
Calabi embedding of CPn(4

3 ) into position as an integral submanifold of
the complex contact structure on CPN (4).

Finally, we give an example with ν =5. In terms of the homogeneous
coordinates (z1, . . . , z28, w1, . . . , w28), CP 3(4

5 ) may be realized as an
integral submanifold of the complex contact structure on CP 55(4) in
the following way:

z1 = ζ5
1 w1 = −ζ5

3

z2 = ζ5
2 w2 = −ζ5

4

z3 =
√

5ζ4
1ζ2 w3 = −

√
5ζ4

3ζ4

z4 =
√

5ζ4
1ζ3 w4 =

√
5ζ4

3ζ1

z5 =
√

5ζ4
1ζ4 w5 =

√
5ζ4

3ζ2

z6 =
√

5ζ4
2ζ1 w6 = −

√
5ζ4

4ζ3

z7 =
√

5ζ4
2ζ3 w7 =

√
5ζ4

4ζ1

z8 =
√

5ζ4
2ζ4 w8 =

√
5ζ4

4ζ2

z9 =
√

10ζ3
1ζ2

2 w9 = −
√

10ζ3
3ζ2

4

z10 =
√

10ζ3
1ζ2

3 w10 = −
√

10ζ3
3ζ2

1

z11 =
√

10ζ3
1ζ2

4 w11 = −
√

10ζ3
3ζ2

2

z12 =
√

10ζ3
2ζ2

1 w12 = −
√

10ζ3
4ζ2

3

z13 =
√

10ζ3
2ζ2

3 w13 = −
√

10ζ3
4ζ2

1

z14 =
√

10ζ3
2ζ2

4 w14 = −
√

10ζ3
4ζ2

2

z15 =
√

20ζ3
1ζ2ζ3 w15 =

√
20ζ3

3ζ1ζ4

z16 =
√

20ζ3
1ζ2ζ4 w16 =

√
20ζ3

3ζ2ζ4

z17 =
√

20ζ3
1ζ3ζ4 w17 = −

√
20ζ3

3ζ1ζ2

z18 =
√

20ζ3
2ζ1ζ3 w18 =

√
20ζ3

4ζ1ζ3

z19 =
√

20ζ3
2ζ1ζ4 w19 =

√
20ζ3

4ζ2ζ3
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z20 =
√

20ζ3
2ζ3ζ4 w20 = −

√
20ζ3

4ζ1ζ2

z21 =
√

30ζ2
1ζ2

2ζ3 w21 =
√

30ζ2
3ζ2

4ζ1

z22 =
√

30ζ2
1ζ2

2ζ4 w22 =
√

30ζ2
3ζ2

4ζ2

z23 =
√

30ζ2
1ζ2

3ζ2 w23 = −
√

30ζ2
3ζ2

1ζ4

z24 =
√

30ζ2
1ζ2

4ζ2 w24 = −
√

30ζ2
3ζ2

2ζ4

z25 =
√

30ζ2
1ζ2

4ζ3 w25 =
√

30ζ2
3ζ2

2ζ1

z26 =
√

30ζ2
2ζ2

4ζ1 w26 = −
√

30ζ2
2ζ2

4ζ3

z27 =
√

60ζ2
1ζ2ζ3ζ4 w27 = −

√
60ζ2

3ζ1ζ2ζ4

z28 =
√

60ζ2
2ζ1ζ3ζ4 w28 = −

√
60ζ2

4ζ1ζ2ζ3



13
Additional Topics in Complex Geometry

Before turning to our main topics we first discuss partially hyperbolic
diffeomorphisms and holomorphic Anosov flows as introduced by Étienne
Ghys [1995]. In Section 13.2 we discuss the geometry of the projectivized
holomorphic tangent and cotangent bundles. The study of the projec-
tivized holomorphic tangent bundle naturally raises the question of a
complex geodesic flow, which we discuss in Section 13.3. In Section 13.4
we return to the projectivized holomorphic tangent bundle and develop
its complex almost contact metric structure. In Section 13.5 we first dis-
cuss special directions on complex contact manifolds analogous to our
treatment in the real case in Chapter 11 and then discuss complex con-
tact structures on the Lie group SL(2, C) in detail.

13.1 Partial and holomorphic hyperbolicity

The purpose of this section is to present, as preliminaries, some ideas
related to real and complex hyperbolicity. A diffeomorphism f of a (usu-
ally compact) Riemannian manifold M is said to be partially hyperbolic
in the narrow sense (see, e.g., Pesin [2004, pp. 13–14]) if there exist
numbers C > 0 and

0 < λ1 ≤ μ1 < λ2 ≤ μ2 < λ3 ≤ μ3, μ1 < 1, λ3 > 1,

D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds,
DOI 10.1007/978-0-8176-4959-3_13, © Springer Science+Business Media, LLC 2010
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independent of p ∈M , and an invariant spliting

TM = Es ⊕ Ec ⊕ Eu

such that for n > 0,

C−1λn1‖v‖ ≤ ‖fn∗ v‖ ≤ Cμn1‖v‖, v ∈ Es
p,

C−1λn2‖v‖ ≤ ‖fn∗ v‖ ≤ Cμn2‖v‖, v ∈ Ec
p,

C−1λn3‖v‖ ≤ ‖fn∗ v‖ ≤ Cμn3‖v‖, v ∈ Eu
p .

As mentioned in Section 11.2 for Anosov flows, when M is compact the
notion is independent of the choice of metric, but when M is noncompact,
the notion is in general metric dependent. The subbundles Es, Ec and
Eu are called the stable, central, and unstable subbundles respectively.

For example, let ψt be an Anosov flow corresponding to a vector
field ξ. For fixed t the diffeomorphism ψt is partially hyperbolic with
1-dimensional central direction generated by ξ. In Section 13.5 we will
encounter a real vector field whose corresponding 1-parameter group is
a group of partially hyperbolic diffeomorphisms for which the central
subbundle has dimension 2.

In [1995] É. Ghys defines the notion of a holomorphic Anosov flow as
a particular C

∗-action on a complex manifold that gives rise to an invari-
ant splitting of the real tangent bundle, together with natural growth
conditions on the subbundles. Lemma 2.1 of Ghys [1995] shows that the
resulting stable and unstable subbundles extend to complex subbundles
in the complexified tangent bundle. Also, in remarks on page 600 of his
paper, Ghys discusses the possible consideration of starting with a holo-
morphic vector field and the flow it generates. This is described in terms
of a splitting of the complexified tangent bundle, but one could equally
well begin with a splitting of the holomorphic tangent bundle, and we
take this point of view here.

Let ξ be a holomorphic vector field on a Hermitian manifold M ; strictly
speaking, ξ does not determine a flow due to the lack of a natural order-
ing of the complex numbers. However, for a holomorphic vector field, the
theory of complex differential equations goes through as in the real case.
Let w1, . . . , wn be local complex coordinates on M and f j(w1, . . . , wn)
the holomorphic component functions of ξ with respect to the basis
{ ∂
∂w1

, . . . , ∂
∂wn
}. Then the complex autonomous system

dwα

dz
= fα(w1 . . . , wn), α = 1, . . . , n,
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satisfies existence and uniqueness theorems similar to those in the real
case (see, e.g., Hille [1976, Theorem 2.2.2]). Thus for a given point w0 ∈
M one can construct a unique local holomorphic curve through the point
by the solution w(z) = (w1(z), . . . , wn(z)), w(0) = w0. Therefore given
ξ, one can define a “flow”ψz mapping a point w0 to the point w(z). We
say that ξ (and the flow) is a holomorphic Anosov flow if there exists an
invariant splitting of the holomorphic tangent bundle τ as a direct sum
of type-(1, 0) subbundles Es, Eu and the 2-dimensional bundle tangent
to the orbits of ψz together with numbers C > 0, λ > 0 such that

‖ψz∗v‖ ≤ Ce−λRe(z)‖v‖, v ∈ Es
p,

‖ψz∗v‖ ≥ CeλRe(z)‖v‖, v ∈ Eu
p ,

where Re denotes the real part.
Before leaving this section we discuss briefly the question of integra-

bility for a complex autonomous system of the form

∂wα

∂z
= fα(w1, . . . , wn), α = 1, . . . , n,

where the functions on the right are complex-valued but not necessarily
holomorphic. This is motivated by the consideration of a vector field, ξ =∑

fα ∂
∂wα , of type (1, 0) but not necessarily holomorphic. The question

is when is there a local foliation by holomorphic curves whose tangent
spaces are determined by the vector field. Being of type (1, 0), the vector
field is of the form X − iJX for some real vector field X, and hence
it determines a subbundle spanned by X and JX. Integrability of the
subbundle requires that the Lie bracket [X,JX] be a linear combination
of X and JX, say [X,JX] = aX + bJX for some real-valued functions a
and b. Since [ξ, ξ̄] = 2i[X,JX], the integrability condition takes the form
[ξ, ξ̄] = i(αξ + ᾱξ̄), α = a + ib.

Proposition 13.1 Consider the complex autonomous system

∂wα

∂z
= fα(w1, . . . , wn), α = 1, . . . , n,

where the complex-valued functions fα are smooth and nonvanishing on
a simply connected domain. Then the system is integrable if and only if
the f j’s are of the form fα = gFα, where each Fα is holomorphic and g
is complex-valued.
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Proof. For the sufficiency suppose fα = gFα, where each Fα is holo-
morphic. Then

[ξ, ξ̄] =
[∑

gFα ∂

∂wα
,
∑

ḡF̄ β ∂

∂w̄β

]

=
∑

gFα ∂ḡ

∂wα
F̄ β ∂

∂w̄β
−
∑

ḡF̄α ∂g

∂w̄α
F β ∂

∂wβ

= −
( ḡ

g

∑
F̄α ∂g

∂w̄α

)
ξ +
(g

ḡ

∑
Fα ∂ḡ

∂wα

)
ξ̄,

giving the integrability.
Conversely, given the integrability of the subbundle, we can view it

as a foliation of a domain in C
n by J-invariant submanifolds, but such

submanifolds are complex submanifolds and therefore are given by holo-
morphic functions wj(z). The corresponding holomorphic tangent vector
field, say

∑
Fα ∂

∂wα , must then be proportional to the given vector field
∑

fα ∂
∂wα .

We can easily generalize this proposition slightly. Suppose that the
hypotheses on the fα’s hold for α = 1, . . . , p and that fα ≡ 0 for α > p.
Then for any solution, wα = const. for α > p, and the remaining p
equations behave as in the proposition. For example, in Example 12.2.7
we have the nonholomorphic vector field

U0 + iV0 =
4√
f0

( ∂

∂z0
+

n∑

α=1

w̄α ∂

∂zα

)
,

where we caution that the coordinates in this example are {z0, . . . , zn,
w1, . . . , wn}. For the corresponding autonomous system, the wα’s become
constants and the n+1 functions on the right-hand sides of the remaining
equations are of the form g = 4√

f0
times the constant functions Fα =

w̄α. The solutions represent the integral submanifolds of the vertical sub
bundle V.

13.2 Projectivized holomorphic bundles

In Section 9.5 we gave an example of a contact structure on the projec-
tivized tangent bundle of the hyperbolic plane, and in Example 3.2.4 we
briefly mentioned the projectivized cotangent bundle. In the complex set-
ting we first discuss the projectivized holomorphic cotangent bundle and
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then study the projectivized holomorphic tangent bundle as a complex
analogue of the tangent sphere bundle.

Let M be an n + 1 complex dimensional complex manifold with lo-
cal coordinates (w0, . . . , wn) and τ∗ its holomorphic cotangent bundle
with fiber coordinates (p̂0, . . . , p̂n). Each fiber of τ∗ is a copy of C

n+1,
and one can consider the corresponding projective space CPn giving the
projectivized holomorphic cotangent bundle Pτ∗.

If π : τ∗ −→ M is the projection map, then wα and p̂α are local
coordinates on τ∗, where we have identified wα with wα ◦π. Consider the
Liouville form β, which is given locally by β =

∑n
α=0 p̂αdwα. Now on Pτ∗

the p̂α’s are homogeneous coordinates for the fibers, and we introduce
nonhomogeneous coordinates (p1, . . . , pn) on the neighborhood defined
by p̂0 �= 0 by pα = p̂α

p̂0 . Then

θ = dw0 +
n∑

i=1

pαdqα

is a local complex contact form, and taking charts on Pτ∗ defined by
p̂α �= 0, we obtain a complex contact structure.

Turning to the Hermitian setting, we first note that one case of the
projectivized holomorphic tangent bundle has already been discussed,
namely C

n+1 × CPn(16) in Example 12.2.7. More generally, let M be
an n+1 complex dimensional Hermitian manifold with local coordinates
{w0, . . . , wn} and π̂ : τ −→M its holomorphic tangent bundle with fiber
coordinates {ζ̂0, . . . , ζ̂n}. Each fiber is C

n+1, and we consider the corre-
sponding complex projective space CPn. We call the bundle constructed
in this way the projectivized holomorphic tangent bundle Pτ . The ζ̂α’s
are homogeneous coordinates for the fibers of Pτ, and we introduce non-
homogeneous coordinates {ζ1, . . . , ζn} on the neighborhood defined by
ζ̂0 �= 0 by ζα = ζ̂α/ζ̂0. Let π : Pτ −→M denote the projection, and we
denote by {w0, . . . , wn, ζ1, . . . , ζn} the local coordinates on Pτ, where we
have identified wα with wα ◦ π.

The vertical coordinate fields on τ project to Pτ in the following
manner:

∂

∂ζ̂0
−→ − 1

ζ̂0

n∑

γ=1

ζγ
∂

∂ζγ
,

∂

∂ζ̂α
−→ 1

ζ̂0

∂

∂ζα
α = 1, . . . , n.

Let Gαβ̄ denote the Hermitian metric on M and μαβγ the connection
coefficients. The metric gives rise to horizontal lifts of vector fields to τ
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by
( ∂

∂wβ

)H
=

∂

∂wβ
− ζ̂γμαβγ

∂

∂ζ̂α
.

The vertical lift of ∂
∂wβ is ( ∂

∂wβ )V = ∂
∂ζ̂β

.

In the fibers of τ consider the spheres
∑n

α,γ=0 Gαγ̄ ζ̂
αζ̂γ = 1 and set

Pα =
∑n

γ=0 Gαγ̄ ζ̂γ . Now instead of studying the vertical lift of a vector
field to τ , we define the projective lift to τ by

( ∂

∂wα

)P
= ζ̂0

( ∂

∂ζ̂α
− Pα

n∑

γ=0

ζ̂γ
∂

∂ζ̂γ

)
.

Projecting to Pτ , we have

( ∂

∂w0

)P −→ −
n∑

γ=1

ζγ
∂

∂ζγ
,
( ∂

∂wα

)P −→ ∂

∂ζα
, a = 1, . . . , n.

We also remark that dividing
∑n

α,γ=0 Gαγ̄ ζ̂
αζ̂γ = 1 by |ζ̂0|2 gives

G00̄ +
n∑

γ=1

G0γ̄ ζ̄γ +
n∑

α=1

Gα0̄ζ
α +

n∑

α,γ=1

Gαγ̄ζ
αζ̄γ =

1
|ζ̂0|2 .

The left-hand side is now a local function on Pτ , and hence 1
|ζ̂0|2 , or just

|ζ̂0|, becomes an important local function on Pτ .
The holomorphic tangent bundle carries a Hermitian metric, similar to

the Sasaki metric of Section 9.1 on the tangent bundle of a Riemannian
manifold (see, e.g., Munteanu [2004, p. 50]). Denoting this metric by ĝ,
it is given in terms of vectors X,Y of type (1, 0) on M by

ĝ(XH , Ȳ H) = ĝ(XV , Ȳ V ) = G(X, Ȳ ), ĝ(XH , Ȳ V ) = 0.

We now define a Hermitian metric g on Pτ by

g(XH , Ȳ H) = ĝ(XH , Ȳ H) = G(X, Ȳ ),

g(XH , Ȳ P ) = 0, g(XP , Ȳ P ) = ĝ(XP , Ȳ P ).



13.3 The complex geodesic flow 271

13.3 The complex geodesic flow

Let us first recall the characterization of complex space forms of Yano and
Mogi (Theorem 8.4) that a Kähler manifold M2n, n ≥ 2, is a complex
space form if and only if for every point and every holomorphic section
at the point, there exists a unique totally geodesic holomorphic curve
through the point and tangent to the given holomorphic section at the
point. Thus for complex space forms one has a natural complex analogue
of a geodesic.

Now consider the vector field on the holomorphic tangent bundle τ
defined by

n∑

α=0

ζ̂α
( ∂

∂wα

)H
.

For our discussion of the projectivized holomorphic tangent bundle Pτ ,
first divide the above vector field by ζ̂0 and consider the vector field

Ξ =
( ∂

∂w0

)H
+

n∑

α=1

ζα
( ∂

∂wα

)H
.

We will do this explicitly for complex hyperbolic space CHn+1 and com-
plex projective space CPn+1. The case of C

n+1 is trivial.
For complex hyperbolic space, the Bergman metric of constant holo-

morphic curvature −1 is given by

ds2 = 4
(1 −∑ |wε|2)(∑ dwεdw̄ε) + (

∑
w̄εdwε)(

∑
wεdw̄ε)

(1 −∑ |wε|2)2 .

The connection coefficients are

μβββ =
2w̄β

1−∑ |wε|2 , μγγβ =
w̄β

1−∑ |wε|2 , μαββ = 0, μαβγ = 0.

For complex projective space CPn+1, we have the Fubini–Study metric
of constant holomorphic curvature +1:

ds2 = 4
(1 +

∑ |wε|2)(∑ dwεdw̄ε)− (
∑

w̄εdwε)(
∑

wεdw̄ε)
(1 +

∑ |wε|2)2 .

The connection coefficients are

μβββ =
−2w̄β

1 +
∑ |wε|2 , μγγβ =

−w̄β

1 +
∑ |wε|2 , μαββ = 0, μαβγ = 0.
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An important observation is that in both cases μβββ = 2μγγβ . In fact, a
Kähler manifold of complex dimension ≥ 2 with local coordinates {wα}
and satisfying μβββ = 2μγγβ , μαββ = 0, μαβγ = 0 is of constant holomorphic
curvature. This fact may be of some independent interest, and a proof is
given in the author’s paper [2007].

We now use the projections of the vertical coordinate fields from τ
to Pτ and the expression for horizontal lifts from the previous section.
The following computation is straightforward, though somewhat delicate,
but it relies only on the properties μβββ = 2μγγβ , μαββ = 0, μαβγ = 0 of the
connection coeffiecients and is therefore the same for both CHn+1 and
CPn+1:

( ∂

∂w0

)H
+

n∑

β=1

ζβ
( ∂

∂wβ

)H −→

∂

∂w0
+ μ0

00

n∑

γ=1

ζγ
∂

∂ζγ
−

n∑

γ=1

μγ0γζ
γ ∂

∂ζγ
+

n∑

γ,δ=1

μ0
0γζ

γζδ
∂

∂ζδ

+
n∑

β=1

ζβ
{ ∂

∂wβ
− μβββζ

β ∂

∂ζβ
−
∑

γ �=β,0
μγβγζ

γ ∂

∂ζγ

+ μ0
β0

n∑

γ=1

ζγ
∂

∂ζγ
−
∑

γ �=β,0
μββγζ

γ ∂

∂ζβ
− μββ0

∂

∂ζβ

}

=
∂

∂w0
+

1
2
μ0

00

n∑

γ=1

ζγ
∂

∂ζγ
+

1
2

n∑

γ,δ=1

μγγγζ
γζδ

∂

∂ζδ

+
n∑

β=1

ζβ
∂

∂wβ
−

n∑

β=1

μβββ(ζ
β)2

∂

∂ζβ
− 1

2

n∑

β=1

∑

γ �=β,0
μβββζ

βζγ
∂

∂ζγ

+
1
2

n∑

β,γ=1

μβββζ
βζγ

∂

∂ζγ
− 1

2

n∑

β=1

∑

γ �=β,0
μγγγζ

βζγ
∂

∂ζβ

− 1
2
μ0

00

n∑

β=1

ζβ
∂

∂ζβ

=
∂

∂w0
+

n∑

β=1

ζβ
∂

∂wβ
.
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For this vector field consider the holomorphic autonomous system

dw0

dz
= 1,

dwα

dz
= ζα,

dζα

dz
= 0.

Solving, we have a map ψz that maps a point (w0
0, w

1
0, . . . , w

n
0 , ζ1

0 , . . . , ζn0 )
to the point (w0

0 + z,w1
0 + ζ1

0z, . . . , wn
0 + ζn0 z, ζ1

0 , . . . , ζn0 ), and the orbits
of ψz are lifts of the complex geodesics. We call this flow, and the vector
field, the complex geodesic flow, and we have the following theorem.

Theorem 13.1 On the projectivized holomorphic tangent bundle of a
Kähler manifold of constant holomorphic curvature, the vector field

Ξ =

(
∂

∂w0

)H

+
n∑

β=1

ζβ

(
∂

∂wβ

)H

generates a flow whose orbits are horizontal lifts of the complex geodesics
of the Kähler manifold.

Before studying this complex geodesic flow further for the cases of the
complex hyperbolic plane and complex projective plane, we will prove a
converse of Theorem 13.1 for Kähler manifolds. That is, when the base
manifold is Kähler we take up the question of the integrability of the
subbundle determined by the vector field Ξ.

First recall that when the base manifold M is Kähler, the connection
coefficients take the form

μαβγ = Gδ̄α
∂Gγδ̄

∂wβ
,

and the curvature of M is given by

∂μσαγ
∂w̄β

= −Rαβ̄γδ̄G
δ̄σ.

Thus the Lie brackets of horizontal lifts of the coordinate fields become
[( ∂

∂wβ

)H
,
( ∂

∂w̄δ

)H]
= ζ̂γ

∂μαβγ
∂w̄δ

∂

∂ζ̂α
− ζ̂ε

∂μ̄αδε
∂wβ

∂

∂
¯̂α
ζ

= −ζ̂γRβδ̄γε̄G
ε̄α ∂

∂ζ̂α
+ ζ̂εRβδ̄γε̄G

γᾱ ∂

∂ζ̂α
.
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To find the integrability condition of the subbundle determined by Ξ
we write Ξ as

Ξ =
1
ζ̂0

n∑

δ=0

ζ̂δ
( ∂

∂wδ

)H

and compute the Lie bracket [Ξ, Ξ̄]. The horizontal part vanishes and the
vertical part is imaginary, namely

− 2

|ζ̂0|2 Im
(
ζ̂δζ̂εζ̂γRδε̄γβ̄G

β̄α ∂

∂ζ̂α

)
,

where we have used the symmetry Rαβ̄γδ̄ = Rβᾱδγ̄ . Therefore the
subbundle will be integrable when the inner product of this with ∂

∂ζσ

vanishes. Computing this on the bundle τ in terms of the metric ĝ and
relabeling, we have

ĝ
(( ∂

∂wσ

)P
, ζ̂δζ̂εζ̂βRδε̄γβ̄G

γᾱ
( ∂

∂wα

)P)
= |ζ̂0|2ζ̂δζ̂ε ζ̂β(Rδε̄σβ̄−PσRδε̄γβ̄ ζ̂

γ).

Now if this vanishes, we interpret it in terms of (1, 0) vectors Z and W ,
giving

G(RZZ̄W, Z̄) = G(W, Z̄)G(RZZ̄Z, Z̄).

Taking conjugates, we have

G(RZZ̄Z, W̄ ) = λG(Z, W̄ ),

where λ = G(RZZ̄Z, Z̄). Writing Z as X − iJX and taking the (1, 0)
part, we have

R(X−iJX)(X+iJX)(X − iJX) = λ(X − iJX),

since the left-hand side expands to 2i(RXJXX − iJRXJXX). From this
we see that the integrability condition of the subbundle is that RXJXX
be proportional to JX, a well-known characterization of constant holo-
morphic curvature (Kosmanek [1964] for Kähler manifolds and general-
ized by Tanno [1973] to almost Hermitian manifolds satisfying
G(RJXJY JX, JZ) = G(RXY X,Z)). Combining with Theorem 13.1 we
have the following theorem.

Theorem 13.2 On the projectivized holomorphic tangent bundle of a
Kähler manifold M , the vector field Ξ =

(
∂
∂w0

)H +
∑n

β=1 ζβ
(

∂
∂wβ

)H

determines an integrable subbundle if and only if M is of constant holo-
morphic curvature.
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To compare the vector field here with the corresponding one in the
real case we refer the reader to Sections 9.2 and 9.5.

For the complex space forms the differential of the complex geodesic
flow, ψz, is easily computed and for n = 2 is simply the matrix

⎛

⎝
1 0 0
0 1 z
0 0 1

⎞

⎠ .

We now discuss in greater detail the geometry of the complex geodesic
flow for the complex hyperbolic plane and the complex projective plane.
In particular, we will first analyze the flow ψz for the vector field ∂

∂w0 +
ζ ∂
∂w1 on the bundle Pτ over CH2; since n + 1 = 2, we denote the fiber

coordinate ζ1 simply by ζ, but for the index on a tensor we use 1∗.
The metric g of the previous section on Pτ is given with respect to the
coordinates {w0, w1, ζ} by

g00̄ =
4(1 − |w1|2)

(1− |w0|2 − |w1|2)2 +
|ζ|2|w̄0 + ζw̄1|2

(1− |w0|2 − |w1|2)(1 + |ζ|2 − |ζw0 − w1|2)2 ,

g01̄ =
4w̄0w1

(1− |w0|2 − |w1|2)2−
ζ|w̄0 + ζw̄1|2

(1− |w0|2 − |w1|2)(1 + |ζ|2 − |ζw0 − w1|2)2 ,

g11̄ =
4(1 − |w0|2)

(1− |w0|2 − |w1|2)2 +
|w̄0 + ζw̄1|2

(1− |w0|2 − |w1|2)(1 + |ζ|2 − |ζw0 − w1|2)2 ,

g01̄∗ =− ζ(w̄0 + ζw̄1)
(1 + |ζ|2 − |ζw0 − w1|2)2 ,

g11̄∗ =
(w̄0 + ζw̄1)

(1 + |ζ|2 − |ζw0 − w1|2)2 , g1∗1̄∗ =
1− |w0|2 − |w1|2

(1 + |ζ|2 − |ζw0 − w1|2)2 .

Now consider the vector fields

V ± =

⎛

⎝
0

w0 + ζ̄w1 ±
√

1 + |ζ|2 − |ζw0 − w1|2
1 + |ζ|2

⎞

⎠ ,

the entries being the components with respect to the basis { ∂
∂w0 , ∂

∂w1 , ∂
∂ζ }.

Notice that ζw0 − w1 is constant along the orbits of the flow ψz. Apply
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the differential of the flow to the values of V ± at (w0
0, w

1
0, ζ0):

⎛

⎝
1 0 0
0 1 z
0 0 1

⎞

⎠

⎛

⎝
0

w0
0 + ζ̄0w

1
0 ±
√

1 + |ζ0|2 − |ζ0w0
0 − w1

0|2
1 + |ζ0|2

⎞

⎠

=

⎛

⎝
0

w0
0 + ζ̄0w

1
0 + (1 + |ζ0|2)z ±

√
1 + |ζ0|2 − |ζ0w0

0 − w1
0|2

1 + |ζ0|2

⎞

⎠

but this is the value of V ± at the image point (w0
0 + z,w1

0 + ζ0z, ζ0).
Therefore V ± determine invariant subbundles transverse to orbits of the
flow.

Next we compute the square of the length of V ± and obtain

g(V ±, V̄ ±) =

∣
∣w0 + ζ̄w1 ±√1 + |ζ|2 − |ζw0 − w1|2 ∣∣2

(1− |w0|2 − |w1|2)2(1 + |ζ|2 − |ζw0 − w1|2)
× (4(1− |w0|2)(1 + |ζ|2 − |ζw0 − w1|2) + 1− |w0|2 − |w1|2).

The idea is to compare this at the image point with its value at the
initial point; not surprisingly, this is quite complicated. Also the map ψz
is not an isometry. However, consider the isometry of CH2 that maps the
disk ζw0 − w1 = ζw0

0 − w1
0, fixed ζ, to the disk w1 = 0 (ζ = 0) and the

point (w0
0, w

1
0) to the origin. Now w0 is just z on the unit disk. Moreover,

the function w0 + ζ̄w1 ±
√

1 + |ζ|2 − |ζw0 − w1|2, which is the second
component of V ±, is mapped to the function z ± 1, which is the value
of the second component of V ± along (w0, 0, 0). Now along (w0, 0, 0) the
square of the length of V ± as given above is just

|z ± 1|2
1− |z|2 × 5,

and we study this function on the unit disk. The function tends to infinity
as |z| −→ 1 along all radii except the negative real axis in the plus case
and the positive real axis in the minus case; in these cases the limit is 0.
Restricted to the real axis this is hyperbolic behavior, with the plus case
corresponding to the unstable bundle and the minus case to the stable
bundle relative to increasing real parameter. Moreover, returning to the
complex disk, choose a number R such that 0 < R < 1. Let C = 1 − R

and α such that Rα = (1−R)2

1+R . Then on |z| ≤ R, we have

C|z|α5 ≤ |z ± 1|2
1− |z|2 5 ≤ C

|z|α 5

in the spirit of Ghys’s condition for a holomorphic Anosov flow.
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Now in contrast consider CP 2. The metric g on Pτ with respect to
the coordinates {w0, w1, ζ} is given by

g00̄ =
4(1+ |w1|2)

(1+ |w0|2+ |w1|2)2 +
|ζ|2|w̄0+ ζw̄1|2

(1+ |w0|2+ |w1|2)(1+ |ζ|2+ |ζw0− w1|2)2 ,

g01̄ =− 4w̄0w1

(1+ |w0|2+ |w1|2)2−
ζ|w̄0+ ζw̄1|2

(1+ |w0|2+ |w1|2)(1+ |ζ|2+ |ζw0− w1|2)2 ,

g11̄ =
4(1 + |w0|2)

(1+ |w0|2+ |w1|2)2 +
|w̄0+ ζw̄1|2

(1+ |w0|2+ |w1|2)(1+ |ζ|2+ |ζw0− w1|2)2 ,

g01̄∗ =
ζ(w̄0 + ζw̄1)

(1 + |ζ|2 + |ζw0 − w1|2)2 ,

g11̄∗ = − (w̄0 + ζw̄1)
(1 + |ζ|2 + |ζw0 − w1|2)2 ,

g1∗1̄∗ =
1 + |w0|2 + |w1|2

(1 + |ζ|2 + |ζw0 − w1|2)2 .

Now suppose the vector field V = a ∂
∂w0 + b ∂

∂w1 + ∂
∂ζ is invariant under

ψz∗ and compute the square of its length along (w0, 0, 0):

g(V, V̄ ) = |a|2 4
(1 + |w0|2)2 + |b|2 4 + |w0|2

1 + |w0|2 − bw̄0 − b̄w0 + (1 + |w0|2).

Taking the initial point to be (0, 0, 0) and V = a0
∂
∂w0 + b0

∂
∂w1 + ∂

∂ζ at
this point we have at z (= w0),

g(V, V̄ ) =
4|a0|2

(1 + |z|2)2 +
3|z + b0|2
1 + |z|2 + 1 + |b0|2,

which has limit 4+|b0|2 as |z| → ∞. On the other hand, if either |V (z)| ≤
1

|z|α |V (0)| or |V (z)| ≥ |z|α|V (0)|, then the limit of g(V, V̄ ) as |z| → ∞
is either 0 or ∞. Thus for CP 2, ψz∗ on Pτ does not admit holomorphic
hyperbolic behavior. Thus, as with the classical geodesic flow, we see
some hyperbolic behavior in the case of the negatively curved space CH2,
but not in the positively curved space CP 2.
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13.4 Complex almost contact metric structure
on Pτ

One of the difficulties of Hermitian geometry is the lack of holomorphic-
ity in the metric. In fact, the only time the components of a Hermitian
metric are holomorphic functions is when they are constants, and hence
the metric is already flat, a much too restrictive situation. Thus, instead
of seeking a complex contact metric structure on Pτ , which insists on the
holomorphicity of the local contact forms, we relax this to require only
that the local forms be of type (1, 0). Another difficulty of Hermitian
geometry is that using the metric to raise or lower indices reverses type
(e.g., lowering the index on a (1, 0) vector field gives a (0, 1)-form). How-
ever this difficulty is easily overcome by taking conjugates. Using the
metric we define a form by looking at the inner products g( ∂

∂wα , Ξ̄) giv-
ing a (1, 0)-form θ,

θ =
1

(ζ̂0)

n∑

α=0

Pαdwα,

or equivalently

θ =
n∑

α=0

(Gα0̄ + pα)dwα, pα =
n∑

γ=1

Gαγ̄ ζ̄γ .

We remark that in the overlap with the coordinate patch defined by
ζ̂1 �= 0 one has θ1 = (ζ̂0/ζ̂1)θ0, where we have used subscripts to identify
the forms on the particular coordinate patches.

Staying within Kähler geometry, we can ask whether the local (1, 0)-
forms θ are contact forms in the sense that θ ∧ (dθ)n �= 0, even though
they are not necessarily holomorphic forms giving a complex contact
structure. Recalling that ∂Gαγ̄/∂wβ is symmetric in α and β on a Kähler
manifold, the differential of θ is a form of type (1,1) and given by

dθ = −
(∂Gα0̄

∂w̄β
+

n∑

γ=1

∂Gαγ̄

∂w̄β
ζ̄γ
)
dwα ∧ dw̄β −

n∑

γ=1

Gαγ̄dwα ∧ dζ̄γ .

To show that θ ∧ (dθ)n �= 0, it is enough to evaluate it on the coordinate
vector fields { ∂

∂w0
,

∂

∂w1
, . . . ,

∂

∂wn
,

∂

∂ζ̄1
, . . . ,

∂

∂ζ̄n

}
.
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Let
⊕

denote the sum on the signed permutations of κ0, . . . , κn. It is
sufficient to look at sums of the form

⊕
θ
( ∂

∂wκ0

)
dθ
( ∂

∂wκ1
,

∂

∂ζ̄1

)
· · · dθ

( ∂

∂wκn
,

∂

∂ζ̄n

)

=
⊕ 1

(ζ̂0)
Pκ0

(−1
2

)n
Gκ11̄ · · ·Gκnn̄

=
(−1

2

)n 1

(ζ̂0)

⊕( n∑

γ=0

Gκ0γ̄ ζ̂
γ
)
Gκ11̄ · · ·Gκnn̄.

The terms in the
∑

-sum for γ = 1, . . . , n will give zero upon doing the⊕
-sum. Therefore we have

(−1
2

)n⊕
Gκ00̄Gκ11̄ · · ·Gκnn̄ =

(−1
2

)n
det(Gκγ̄) �= 0.

Therefore θ ∧ (dθ)n �= 0, giving us a local contact form of type (1, 0).

Returning to the general setting, we show that even though we cannot
expect a complex contact metric structure on the projectivized holomor-
phic tangent bundle Pτ , it does carry a complex almost contact metric
structure.

Define local real 1-forms u and v by

u− iv =
|ζ̂0|
2

θ

and vector fields U and V by

U + iV = 4|ζ̂0|Ξ.

Since both Ξ and θ are of type (1, 0), we have that V = −JU and
v = u ◦ J . By an easy computation we see that θ(Ξ) = 1

|ζ̂0|2 and then

2u(U + iV ) = |ζ̂0|
2 (θ + θ̄)(4|ζ̂0|Ξ) = 2, giving u(U) = 1 and u(V ) = 0.

Similarly v(V ) = 1 and v(U) = 0.
Before defining the fields of endomorphisms G and H, we introduce

the following vector fields:

Eα = ζ̂0
(( ∂

∂wα

)H
− Pαζ̂0Ξ

)
, α = 1, . . . , n.
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Then one can check directly that the subbundle H defined by θ = 0 is
spanned by {E1, . . . , En,

∂
∂ζ1 , . . . , ∂

∂ζn }.
We now define G by GU = GV = 0 (or GΞ = 0),

GEα =
∂

∂ζ̄α
, G

∂

∂ζa
= −Ēα, GĒα =

∂

∂ζα
, G

∂

∂ζ̄α
= −Eα.

Then it is straightforward to show that G2 = −I+u⊗U +v⊗V and that
GJ + JG = 0. Setting H = GJ , one can easily check the corresponding
conditions.

For the metric we first recall that the real metric associated to a
Hermitian metric g, also denoted by g, is given by

g(X,Y ) =
1
2
Re g(X − iJX, Y + iJY ).

Recall also that for the standard contact metric structure on the tangent
sphere bundle (Section 9.2), a homothetic change with factor 1

4 was made
in the induced metric from the Sasaki metric on the tangent bundle.
Similarly, we take the real Riemannian metric g on Pτ to be 1

4 of that
used in Sections 13.2 and 13.3 now denoted by g′. This ensures that u
and v are the covariant forms of U and V . The condition g(X,GY ) =
−g(GX,Y ) is equivalent to

Re g′(X − iJX,G(Y − iJY )) = −Re g′(G(X + iJX), Y + iJY ).

Note also that

g′(Eα, Ēβ) = g′
( ∂

∂ζα
,

∂

∂ζ̄β

)
= |ζ̂0|2(Gαβ̄ − PαPβ̄).

It now becomes straightforward to check the skew-symmetry of G. Thus
we have the following theorem.

Theorem 13.3 The projectivized holomorphic tangent bundle of a
Hermitian manifold carries a natural complex almost contact metric
structure.

13.4.1 A complex contact structure with nonintegrable vertical
subbundle

The motivation to consider the question of a complex geodesic flow in
this chapter and in the author’s paper [2007] was not just the question
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itself, even though that is a natural consideration, but also the question
of the complex analogue of the tangent sphere bundle as a canonical
example in complex contact geometry. We noted in Section 13.2 that
the projectivized holomorphic cotangent bundle of a complex manifold
carries a natural complex contact structure and we have just seen that
the projectivized holomorphic tangent bundle carries a natural complex
almost contact metric structure. In Riemannian geometry one can easily
use the metric and its inverse to give a diffeomorphism between the tan-
gent bundle and the cotangent bundle. In particular, we pass from vector
fields to their dual 1-forms with ease. As remarked above, doing this in
Hermitian geometry reverses type, but using conjugation, one could still
construct a diffeomorphism between the holomorphic tangent bundle and
the holomorphic cotangent bundle. However, it will not in general be a
holomorphic or antiholomorphic map; as we noted above, the only time
the components of a Hermitian metric are holomorphic functions is when
they are constants. In the case of C

n+1×CPn(16) (Example 12.2.7) the
vector field of type (1, 0) corresponding to the vertical subbundle of the
complex contact structure is

∂

∂w0
+

n∑

α=1

ζ̄α
∂

∂wα
,

which is not holomorphic, but the Hermitian metric of the structure
and conjugation give the underlying local complex contact form dw0 +∑

ζαdwα. One might consider reversing our procedure for a given holo-
morphic 1-form θ and seek a vector field Ξ on Pτ such that θα = gαB̄ ΞB,
where B denotes that the sum is over the whole range of coordinates..
One might first try for CH2 the 1-forms θ = dw0 +ζdw1, or analogous to
the real projectivized tangent bundle of the Beltrami model of the real
hyperbolic plane,

θ = (1− w1(w1 − ζw0))dw0 + (ζ + w0(w1 − ζw0))dw1;

again see Section 9.5. While these lend themselves to higher-dimensional
generalizations as holomorphic contact forms, via the metric on Pτ they
yield vector fields Ξ that do not give rise to a natural vertical subbun-
dle, V to play the role of the characteristic vector field in real contact
geometry.

Instead for the projectivized holomorphic tangent bundle of CH2 we
make a shift in the role of the coordinates and consider the local
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holomorphic contact form

θ = dw1 − ζdw0 = gαB̄ ΞB.

The resulting vector field via the metric is

Ξ =
(1− |w0|2 − |w1|2)

4

{
− (ζ̄(1− |w0|2) + w0w̄1)

∂

∂w0

+ (1− |w1|2 + ζ̄w̄0w1)
∂

∂w1

− w̄0 + ζw̄1

1− |w0|2 − |w1|2 (1 + |ζ|2 − |ζw0 − w1|2) ∂

∂ζ

}
.

Note that

1∑

α=0

G0ᾱ Ξα = −ζ and
1∑

α=0

G1ᾱ Ξα = 1.

This is the analogue of the Liouville form
∑

pi dqi on the cotangent
bundle, where the qi are the generalized coordinates and pi the momenta.

Now θ(Ξ) = (1−|w0|2−|w1|2)
4 (1+ |ζ|2−|ζw0−w1|2), and we consider the

normalized form

u− iv =
1

√
1− |w0|2 − |w1|2√1 + |ζ|2 − |ζw0 − w1|2 θ.

The equation θ = 0 defines the horizontal subbundleH, which is spanned
by

{ ∂

∂ζ
± ∂

∂ζ̄
,
( ∂

∂w0
+ ζ

∂

∂w1

)
±
( ∂

∂w̄0
+ ζ̄

∂

∂w̄1

)}
.

Consider the normalized vector field

U + iV =
8

√
1− |w0|2 − |w1|2√1 + |ζ|2 − |ζw0 − w1|2 Ξ.

As we saw in Section 12.1 the defining requirement for the correspond-
ing vertical subbundle of a complex contact structure is a vector field U
such that du(U,X) = 0 for X ∈ H, u(U) = 1 and v(U) = 0. Then U and
V = −JU span the vertical subbundle V and one checks that U defined
above satisfies these conditions.
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Now recall that it is typically assumed that the vertical subbundle V
of a complex contact structure is integrable. The 1-form

(1− |w1|2 + ζ̄w̄0w1)dw0 + (ζ̄(1− |w0|2) + w0w̄1)dw1

applied to any linear combination of U and V is zero. Thus if V were
integrable,

(
(1− |w1|2 + ζ̄w̄0w1)dw0 + (ζ̄(1− |w0|2) + w0w̄1)dw1

)
([U, V ])

would vanish, but it does not. To our knowledge this complex contact
structure on the projectivizd holomorphic tangent bundle of CH2 is the
first known example of a complex contact structure for which V is not
integrable.

13.5 Special directions on complex contact manifolds
and the Lie group SL(2, C)

In this section we first summarize the ideas of holomorphic and real spe-
cial directions on a 3-dimensional complex contact metric manifold as
given by B. Korkmaz and the author in [2009] and analogous to the
real case as discussed in Chapter 11. We then discuss a 2-parameter
family of complex contact metric structures on the Lie group SL(2, C).
Recall from Section 13.1 the notion of a holomorphic Anosov flow, which
was introduced by E. Ghys in [1995]. On SL(2, C) we show that for our
2-parameter family of structures, the holomorphic special directions
determine subbundles which agree with the stable and unstable sub-
bundles of the corresponding holomorphic Anosov flow. Reducing to a
1-parameter family of complex contact metric structures, we also show
that SL(2, C) admits a real vector field generating a partially hyperbolic
flow whose central bundle has dimension 2.

Another treatment of complex contact structures on SL(2, C) was
given by Foreman [2002a], which we will discuss at the end of this section.

To begin let k = hU − hV . Then it is straightforward (or see Blair–
Korkmaz [2009]) to show that

kJ + Jk = 0.

Since k anticommutes with J , if it is nonzero it admits a positive eigen-
value, say κ > 0 with unit eigenvector X. Then X is a horizontal vector
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field and −κ is also an eigenvector of k with eigenvector JX. Since the
real dimension is 6, there is another eigenvector W of k with nonnegative
eigenvalue ν. Then again W is a horizontal vector field and −ν is also
an eigenvalue of k with eigenvector JW .

Definition. A vector Y − iJY of type (1, 0) on a complex contact met-
ric manifold M where Y is horizontal is called a holomorphic special
direction if

∇Y−iJY (U + iV ) = (γ + iδ)(Y − iJY )

for some nonzero complex number γ + iδ.

We remark that if hU = hV (k = 0), then there are no holomorphic
special directions, and from the author’s paper with B. Korkmaz [2009]
we have the following result.

Theorem 13.4 Let M be a complex contact metric manifold of complex
dimension 3 with hU �= hV . If σ = 0 and if k is nonsingular on the
horizontal subbundle, then there exist holomorphic special directions
on M .

One can also raise the question of real special directions on a complex
contact metric manifold.

Definition. A horizontal real vector Y on a complex contact metric
manifold M is called a real special direction for U (resp. for V ) if

∇Y U = γY

(resp. ∇Y V = γY ) for a nonzero number γ.

Again from B. Korkmaz and the author [2009] we have for the vector
field U the following result and a similar one for V .

Theorem 13.5 Let M be a complex contact metric manifold with σ = 0.
If hU has an eigenvalue λ > 1, then there are real special directions for
U . In particular, if all plane sections generated by U and a horizontal
vector field have negative sectional curvatures, real special directions for
U exist.

We now study the Lie group

SL(2, C) =
{( z1 z2

z3 z4

)

|z1z4 − z2z3| = 1
}

.
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We form a 2-parameter family of complex contact metric structures on
SL(2, C) as follows. Take λ > μ > 0 and consider the matrices

1
2

√
λ2 − μ2

(
1 0
0 −1

)

,

√
λ + μ

2

(
0 −1
1 0

)

,

√
λ− μ

2

(
0 −1
−1 0

)

in the Lie algebra sl(2, C), which we regard as the tangent space of
SL(2, C) at the identity. Applying the differential of left translation to
these matrices gives the vector fields

ξ1 =
1
2

√
λ2 − μ2

(
z1

∂

∂z1
− z2

∂

∂z2
+ z3

∂

∂z3
− z4

∂

∂z4

)
,

ξ2 =

√
λ + μ

2

(
z2

∂

∂z1
− z1

∂

∂z2
+ z4

∂

∂z3
− z3

∂

∂z4

)
,

ξ3 = −
√

λ− μ

2

(
z2

∂

∂z1
+ z1

∂

∂z2
+ z4

∂

∂z3
+ z3

∂

∂z4

)
.

The complex contact form on SL(2, C) is

ω =
2

√
λ2 − μ2

(z4dz1 − z2dz3) = u− iv.

Set ξ1 = 1
2(U + iV ), ξ2 = 1

2(E2− iJE2), ξ3 = 1
2 (E3− iJE3). An associ-

ated metric is determined by left translation of the basis {U, V,E2, JE2,
E3, JE3}, as an orthonormal basis at the identity, and the structure
tensors G and H = GJ are determined by GE2 = E3 and HE2 = −JE3.

The basis {U, V,E2, JE2, E3, JE3} is an eigenvector basis of the oper-
ators hU and hV . In particular,

hUE2 = λE2, hUJE2 = −λJE2, hV E2 = μE2, hV JE2 = −μJE2.

Using the anticommutivities hUG + GhU = 0 and hV H + HhV = 0, we
get

hUE3 = −λE3, hUJE3 = λJE3, hV E3 = μE3, hV JE3 = −μJE3.

Also, from this Lie algebra of vector fields it is straightforward to compute
covariant derivatives and, in particular, to easily show that σ = 0.

We now turn to the question of holomorphic special directions in
SL(2, C). Using the eigenvalues and the eigenvectors of hU and hV , we
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see that E2 and JE3 are eigenvectors of k = hU − hV corresponding to
the eigenvalues λ− μ and λ + μ respectively. If a and b are two numbers
satisfying a2 + b2 = λ−μ

2λ , then

Y = aE2 + bJE2 +

√
λ + μ

λ− μ
bJE3 +

√
λ + μ

λ− μ
aE3

gives a holomorphic special direction with

∇Y−iJY (U + iV ) = −
√

λ2 − μ2(Y − iJY ),

and

Z = aE2 + bJE2 −
√

λ + μ

λ− μ
bJE3 −

√
λ + μ

λ− μ
aE3

gives an independent holomorphic special direction with

∇Z−iJZ(U + iV ) =
√

λ2 − μ2(Z − iJZ).

Theorem 13.6 On SL(2, C) the vector field ξ1 is a holomorphic Anosov
flow, and the stable and unstable subbundles, Es and Eu, agree with
the subbundles determined by the special directions corresponding to the
vector fields Y and Z respectively.

Proof. The complex flow associated to the holomorphic vector field

2ξ1 = U + iV =
√

λ2 − μ2
(
z1

∂

∂z1
− z2

∂

∂z2
+ z3

∂

∂z3
− z4

∂

∂z4

)

is

ψz =

(
z1e
√
λ2−μ2 z z2e

−
√
λ2−μ2 z

z3e
√
λ2−μ2 z z4e

−
√
λ2−μ2 z

)

,

and its differential with respect to { ∂
∂z1

, ∂
∂z2

, ∂
∂z3

, ∂
∂z4
} is given by

ψz∗ =

⎛

⎜
⎜
⎜
⎜
⎝

e
√
λ2−μ2 z 0 0 0

0 e−
√
λ2−μ2 z 0 0

0 0 e
√
λ2−μ2 z 0

0 0 0 e−
√
λ2−μ2 z

⎞

⎟
⎟
⎟
⎟
⎠

.
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Now for the vector field Y ,

Y − iJY = (a + ib)(E2 − iJE2) +

√
λ + μ

λ− μ
(a + ib)(E3 − iJE3)

= 2(a + ib)ξ2 + 2

√
λ + μ

λ− μ
(a + ib)ξ3

= −4

√
λ + μ

2
(a + ib)

(
z1

∂

∂z2
+ z3

∂

∂z4

)
.

Applying ψz∗ to Y − iJY at the point p, we have

ψz∗(Y − iJY )p = e−
√
λ2−μ2 z(Y − iJY )p = e−2

√
λ2−μ2 z(Y − iJY )ψz(p)

and
‖ψz∗(Y − iJY )p‖ = e−

√
λ2−μ2Re(z)‖(Y − iJY )p‖.

Therefore the special direction determined by Y determines the stable
subbundle.

Similarly, the vector field Z yields the holomorphic special direction

Z − iJZ = 2(a + ib)ξ2 − 2

√
λ + μ

λ− μ
(a + ib)ξ3

= 4

√
λ + μ

2
(a + ib)

(
z2

∂

∂z1
+ z4

∂

∂z3

)
.

Therefore
ψz∗(Z − iJZ)p = e2

√
λ2−μ2 z(Z − iJZ)ψz(p)

and
‖ψz∗(Z − iJZ)p‖ = e

√
λ2−μ2Re(z)‖(Z − iJZ)p‖,

giving the unstable subbundle.

We now study the real special directions associated to the vector
field U .

Theorem 13.7 If λ > 1, then there exist real special directions associ-
ated to the vector field U on SL(2, C). Moreover, when μ = 1,
U determines a partially hyperbolic flow with 2-dimensional central
subbundle Ec spanned by U and V .
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Proof. The first statement is clear from Theorem 13.5. In terms of the
coordinates zj = xj + iyj, when μ = 1,

U =
1
2

√
λ2 − 1

4∑

j=1

(−1)j+1
(
xj

∂

∂xj
+ yj

∂

∂yj

)
.

The corresponding flow ψt maps a point (x1, y1, x2, y2, x3, y3, x4, y4) to
the point

e

√
λ2−1
2

t(x1, y1, 0, 0, x3, y3, 0, 0) + e−
√

λ2−1
2

t(0, 0, x2, y2, 0, 0, x4, y4).

Consider the vector field

Y = aE2 + bE3 = −
√

λ2 − 1
λ

(
x1

∂

∂x2
+ y1

∂

∂y2
+ x3

∂

∂x4
+ y3

∂

∂y4

)
.

Applying ψt∗ at a point p, we have

ψt∗Yp = e−
√

λ2−1
2

tYp = e−
√
λ2−1 tYψt(p)

and

‖ψt∗Yp‖ = e−
√

λ2−1
2

t‖Yp‖.
Now consider the vector field

JY = aJE2 + bJE3 =

√
λ2 − 1

λ

(
y1

∂

∂x2
− x1

∂

∂y2
+ y3

∂

∂x4
− x3

∂

∂y4

)
.

Applying ψt∗ to this vector we have

ψt∗JYp = e−
√

λ2−1
2

tJYp = e−
√
λ2−1 tJYψt(p)

and

||ψt∗JYp|| = e−
√

λ2−1
2

t||JYp||.
Thus Y and JY give a subbundle, Es, which ψt∗ leaves invariant and
for which ψt∗ shortens lengths exponentially. We remark that since JE3

is also an eigenvector of hU with eigenvalue λ, aJE3 + bJE2 is a special
direction but the corresponding vector field is not invariant under ψt∗.
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Similarly, we have the special direction

Z = aE2 + bE3 = −
√

λ2 − 1
λ

(
x2

∂

∂x1
+ y2

∂

∂y1
+ x4

∂

∂x3
+ y4

∂

∂y3

)
,

which satisfies
ψt∗Zp = e

√
λ2−1 tZψt(p)

and together with JZ defines an unstable bundle Eu.
Finally, consider the vector field

V =
1
2

√
λ2 − 1

4∑

j=1

(−1)j+1
(
yj

∂

∂xj
− xj

∂

∂yj

)
.

Applying ψt∗, we have
ψt∗Vp = Vψt(p).

Thus U defines a partially hyperbolic flow whose central bundle is
2-dimensional and spanned by U and V ; Es and Eu are the stable and
unstable bundles.

In [2002a] B. Foreman looked at complex contact structures on SL(2, C)
from a more algebraic point of view. He considers PSL(2, C) which has a
well-known identification with the space M of Möbius transformations,
the isometry group of hyperbolic 3-space H3. Every linear fractional
transformation z �→ az+b

cz+d can be written in such a way that the ma-
trix
(
a b
c d

)
has determinant +1; the matrix is unique up to sign, giving

SL(2, C) as a 2-fold cover of M. The boundary ∂H3 of H3 is readily
identified with Ĉ ∼= S2. If g ∈ M has exactly one fixed point in Ĉ, then
g is said to be parabolic. Suppose g ∈M has two fixed points. Then if g
has infinitely many fixed points in H3, g is elliptic; on the other hand, if
g has no fixed points in H3 and preserves an open disk or half-plane in Ĉ,
g is hyperbolic. Foreman first proves an Iwasawa decomposition theorem.

Theorem 13.8 Given two distinct points q1, q2 ∈ ∂H3 and a point x ∈
H3 lying on the geodesic connecting q1 and q2, there is a unique Iwasawa
decomposition of M given by

M = K ·A ·N,
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where

K = {g ∈M : g is elliptic, g(x) = x} ∪ {id},
A = {g ∈M : g is hyperbolic, g(q1) = q1, g(q2) = q2} ∪ {id},
N = {g ∈M : g is parabolic, g(q2) = q2} ∪ {id}.

As a real Lie algebra, sl(2, C) has a natural complex structure given
by

J

(
a b
c −a

)

=
(

ia ib
ic −ia

)

.

Also, from the Iwasawa decomposition of M, N is the set of all par-
abolic transformations fixing some q ∈ Ĉ, and we denote the correspond-
ing space by Nq. Then the corresponding Lie algebra nq is a J-invariant
subspace of real dimension 2. Again taking q ∈ Ĉ, let Fq = {g ∈ M :
g(q) = q}, a Lie subgroup of M; its Lie algebra fq is a J-invariant sub-
space of complex dimension 2.

We are interested in left-invariant complex contact structures on M,
i.e., those that are described by ker θ for some θ ∈ sl(2, C)∗. The main
result of Forman [2002] is the following.

Theorem 13.9 Let ker θ be a left-invariant 2-dimensional subspace of
sl(2, C). Then ker θ satisfies exactly one of the following statements:

1. ker θ = nq1 + nq2 for two distinct q1, q2 ∈ ∂H3. In this case ker θ is
a complex contact structure.

2. ker θ = fq for some q ∈ ∂H3. In this case ker θ is a foliation.

In the first case, for any f ∈M−{id} such that f(q1) = q1, f(q2) = q2

there is a unique complex contact structure θ such that the corresponding
characteristic vector field ξ(= 1

2 (U + iV )) satisfies exp(ξ) = f .



14
3-Sasakian Manifolds

In this chapter we will give more of a survey of 3-Sasakian manifolds and
only a few proofs. A more thorough treatment is given in the book by
Boyer and Galicki [2008, Chapter 13].

14.1 3-Sasakian manifolds

If a manifold M2m+1 admits three almost contact structures (φi, ξi, ηi), i =
1, 2, 3, satisfying the following for an even permutation (i, j, k) of (1, 2, 3),

φk = φiφj − ηj ⊗ ξi = −φjφi + ηi ⊗ ξj,

ξk = φiξj = −φjξi, ηk = ηi ◦ φj = −ηj ◦ φi,

then the manifold is said to have an almost contact 3-structure. This
notion was introduced by Kuo [1970] and independently under the name
almost coquaternion structure by Udriste [1969]. Some authors follow
different sign conventions, taking φk = −φiφj + ηj ⊗ ξi, etc. (see, e.g.,
the latter part of Section 14.2, the author’s paper with Baikoussis [1995],
Boyer and Galicki [2008, p. 486]). Note that given two almost contact

D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds,
DOI 10.1007/978-0-8176-4959-3_14, © Springer Science+Business Media, LLC 2010
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metric structures satisfying

φ1φ2 − η2 ⊗ ξ1 = − φ2φ1 + η1 ⊗ ξ2,

φ1ξ2 = − φ2ξ1, η1 ◦ φ2 = −η2 ◦ φ1, η2(ξ1) = η1(ξ2) = 0,

then there exists a third almost contact structure defined by

φ3 = φ1φ2 − η2 ⊗ ξ1, ξ3 = φ1ξ2, η3 = −η2 ◦ φ1

giving an almost contact 3-structure.
Now given an almost contact 3-structure (φi, ξi, ηi), define on M2m+1×

R three almost complex structures Ji using each of the almost contact
structures as in Section 6.1. It is then easy to check that Jk = JiJj =
−JjJi. Therefore M2m+1 ×R has an almost quaternionic structure, and
hence its dimension is a multiple of 4. Thus the dimension of a manifold
with an almost contact 3-structure is of the form 4n + 3. Tachibana and
Yu [1970] used this idea to show that there cannot be a fourth almost
contact structure (φ4, ξ4, η4) with ηi(ξ4) = η4(ξi) = 0, i = 1, 2, 3, and sat-
isfying the anticommutativity conditions with the first three structures.
To see this, let J4 be the almost complex structure on M2m+1 × R con-
structed using (φ4, ξ4, η4). Then pairing J4 with each of J1, J2, J3 yields
J4Ji = −JiJ4, i = 1, 2, 3. This contradicts J3J4 = J1J2J4 = −J1J4J2 =
J4J1J2 = J4J3.

The normality of these almost contact structures was discussed by
Yano, Ishihara and Konishi [1973]. In particular, if two of the almost
contact structures are normal, then so is the third.

Kuo [1970] proved that given an almost contact 3-structure, there ex-
ists a Riemannian metric compatible with each of them, and hence we can
speak of an almost contact metric 3-structure (φi, ξi, ηi, g), i = 1, 2, 3. He
also showed that the structural group of the tangent bundle is reducible
to Sp(n) × I3. Moreover, the vector fields {ξ1, ξ2, ξ3} are orthonormal
with respect to the compatible metric.

If the three structures (φi, ξi, ηi, g) are contact metric structures, we
say that M4n+3 has a contact metric 3-structure. If the three structures
are Sasakian, we say that M4n+3 has a 3-Sasakian structure, sometimes
called a Sasakian 3-structure, and M4n+3 is a 3-Sasakian manifold.

As we remarked at the end of Section 6.5, Boyer and Galicki [2008,
p. 477] define a 3-Sasakian manifold by considering the cone R+ ×M .
A Riemannian manifold (Mm, g) is a 3-Sasakian manifold if and only



14.1 3-Sasakian manifolds 293

if the holonomy group of the cone (R+ × M,dr2 + r2g) reduces to a
subgroup of Sp(m+1

4 ). Again we see that m = 4n + 3, n ≥ 1. Moreover,
(R+×M,dr2+r2g) is a hyper-Kähler manifold, i.e., it has a quaternionic
structure consisting of three global almost complex structures that are
Kähler with respect to the metric dr2+r2g. For a proof of the equivalence
of these definitions see Boyer, Galicki, Mann [1994].

One can also have the notion of an almost hyper-Kähler manifold,
where the three fundamental 2-forms of the almost Hermitian structures
are only required to be closed. However, it is an important result of
Hitchin [1987] that an almost hyper-Kähler manifold is in fact hyper-
Kähler.

Now the cone over a manifold with a contact metric 3-structure has
an immediate almost hyper-Kähler structure and hence by the above
mentioned result of Hitchin is a hyper-Kähler manifold. Thus we have the
following theorem of Kashiwada [2001]; her proof used a generalization
of Hitchin’s result that she gave in [1998].

Theorem 14.1 Every contact metric 3-structure is 3-Sasakian.

There is also a notion of hypercontact structure that was introduced by
Geiges and Thomas [1995]. A hypercontact structure is a triple of contact
forms (α1, α2, α3) and an almost contact metric 3-structure (φi, ξi, ηi, g),
i = 1, 2, 3, such that each dαi is the covariant form of φi. If ηi = αi,
this would be a contact metric 3-structure and hence 3-Sasakian. Per-
rone [2002] considers hypercontact structures for which the characteristic
vector field ζi of αi is the metric dual of αi and calls such a structure a
hypercontact metric structure. In their paper Geiges and Thomas prove
a connected sum theorem for hypercontact manifolds. In the Perrone
paper he proves that a 3-dimensional hypercontact metric manifold is
either 3-Sasakian and locally isometric to S3(1) or is locally isometric to
SL(2, R) with a left-invariant hypercontact metric structure that is not
a contact metric 3-structure.

Again if M4n+3 has two Sasakian structures (φi, ξi, ηi, g), i = 1, 2, with
ξ1 and ξ2 orthogonal, then the third structure defined by ξ3 = φ1ξ2 and
φ3X = −∇Xξ3 gives a 3-Sasakian structure. Exploring this idea further,
Tachibana and Yu [1970] proved the following theorem.

Theorem 14.2 Let M be a complete simply connected Riemannian
manifold admitting Sasakian structures (φi, ξi, ηi, g), i = 1, 2, such that
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g(ξ1, ξ2) is a nonconstant function on M . Then M is isometric to a unit
sphere.

The proof of this theorem is to differentiate the function f = g(ξ1, ξ2)
twice and use the Sasakian conditions to show that f satisfies ∇l∇kfj +
2flgkj+fkglj+fjglk = 0, where fj = ∇jf . Then by a well-known theorem
of Obata [1965] (see also Tanno [1978a]), M is isometric to a unit sphere.

Using ∇Xξi = −φiX one readily obtains on a manifold with a
3-Sasakian structure that [ξi, ξj ] = 2ξk. Thus the subbundle spanned
by {ξ1, ξ2, ξ3} is integrable with totally geodesic leaves that are easily
seen to be of constant curvature +1. Notice also that from φiξj = ξk,
etc., each leaf of the foliation is itself a 3-Sasakian manifold.

The canonical example of a manifold with a 3-Sasakian structure is
the sphere S4n+3. Its structure is readily obtained by taking S4n+3 as
a hypersurface in H

n+1. Each of the three almost complex structures
forming the quaternionic structure of H

n+1 applied to the outer normal of
the sphere gives a vector field ξi, i = 1, 2, 3, on S4n+3. These three vector
fields are orthogonal and give rise to the standard 3-Sasakian structure
on S4n+3. This 3-Sasakian structure on S4n+3 also projects under the
Hopf fibration to the quaternionic structure on quaternionic projective
space HPn. We will briefly discuss generalizations of this fibration below.

We first, however, prove an early result of Kashiwada [1971] that a
3-Sasakian manifold is Einstein; this can be regarded as analogous to
the well-known fact that a quaternionic Kähler manifold is Einstein.
Kashiwada’s proof is computational relative to an orthonormal basis, but
here we give a noncomputational proof utilizing properties of cones and
hyper-Kähler manifolds.

Theorem 14.3 Let M4n+3 be a manifold with a 3-Sasakian structure

(φi, ξi, ηi, g), i = 1, 2, 3.

Then M4n+3 is an Einstein space with positive scalar curvature.

Proof. First, recall that the cone over a Riemannian manifold M is
Ricci flat if and only if M is Einstein with Einstein constant equal to
dim M − 1. Second, recall that hyper-Kähler manifolds are Ricci flat.
Thus considering the cone over M4n+3, we have the result.

As a corollary, or from our previous remarks, we see that a 3-dimen-
sional manifold with a 3-Sasakian structure is of constant curvature +1.
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Additional curvature properties of 3-Sasakian manifolds include the
following. For a vector X orthogonal to {ξ1, ξ2, ξ3} (4n+3 ≥ 7), the sum
of the three φ-sectional curvatures satisfies

3∑

i=1

K(X,φiX) = 3;

Tanno [1971]. If the sectional curvature of plane sections orthogonal to
{ξ1, ξ2, ξ3} is constant (4n+3 ≥ 7), the 3-Sasakian manifold is of constant
curvature +1; Konishi and Funabashi [1976].

All complete 3-dimensional 3-Sasakian manifolds were classified by
Sasaki [1972] in the following theorem.

Theorem 14.4 A complete 3-dimensional 3-Sasakian manifold is a quo-
tient S3/Γ, where Γ is one of the following finite subgroups of Clifford
translations on S3:

1. Γ = {I},
2. Γ = {±I},
3. Γ is the cyclic group of order q > 2 generated by

⎛

⎜
⎜
⎜
⎝

cos 2π
q − sin 2π

q 0 0
sin 2π

q cos 2π
q 0 0

0 0 cos 2π
q − sin 2π

q

0 0 sin 2π
q cos 2π

q

⎞

⎟
⎟
⎟
⎠

,

4. Γ is a group of Clifford translations corresponding to a binary
dihedral group or the binary polyhedral groups of the regular
tetrahedron, octahedron, or icosahedron.

Boyer, Galicki and Mann [1994] classified all 3-Sasakian homogeneous
spaces.

Theorem 14.5 Let M be a 3-Sasakian homogeneous space. Then M is
one of the following:

Sp(n + 1)
Sp(n)

� S4n+3,
Sp(n + 1)
Sp(n)× Z2

� RP 4n+3,

SU(m)
S(U(m− 2)× U(1))

,
SO(k)

SO(k − 4)× Sp(1)
,



296 14. 3-Sasakian Manifolds

G2

Sp(1)
,

F4

Sp(3)
,

E6

SU(6)
,

E7

Spin(12)
,

E8

E7
.

For the first two cases when n = 0, Sp(0) is the identity group; m ≥ 3;
and k ≥ 7. Moreover, M fibers over a quaternionic Kähler manifold; the
fiber is Sp(1) for S4n+3 and SO(3) in the other cases.

There are in addition many inhomogeneous 3-Sasakian spaces, even
simply connected ones. Boyer, Galicki and Mann [1994] prove that there
are infinitely many homotopically distinct 7-dimensional strongly inho-
mogeneous compact simply connected 3-Sasakian manifolds.

Let (M,φ, ξ, η, g) be a Sasakian manifold with complete Riemannian
metric g and denote by I(M) the isometry group of g. Let A(M) be
the automorphism group of the Sasakian structure (φ, ξ, η, g), i.e., A(M)
is the subgroup of isometries which also preserve φ, ξ and η. In [1970]
Tanno proved the following theorem.

Theorem 14.6 Let (M,φ, ξ, η, g) be a complete Sasakian manifold that
is not of constant curvature. Then either

dim I(M) = dimA(M) or dim I(M) = dimA(M) + 2.

Moreover, dim I(M) = dimA(M) if and only if M does not admit a
3-Sasakian structure, and dim I(M) = dimA(M) + 2 if and only if M
admits a 3-Sasakian structure.

Turning to fibration questions, Tanno [1971] proves that of the three di-
mensional 3-Sasakian manifolds in Theorem 14.4, only S3(1) and RP 3(1)
are regular with respect to any of the three characteristic vector fields.
Consequently, we have the following result of Tanno [1971].

Lemma 14.1 Let (M4n+3, φi, ξi, ηi, g), i = 1, 2, 3, be a complete
Riemannian manifold with a 3-Sasakian structure. If ξ1 is regular then
so are ξ2 and ξ3, and the leaves of the foliation induced by {ξ1, ξ2, ξ3} are
isometric to S3(1) and RP 3(1).

Tanno’s proof uses only the K-contact property, but by Kashiwada’s
result (Theorem 14.1) the structure is 3-Sasakian. Moreover, M4n+3 is
a fiber bundle over an almost quaternionic Kähler manifold M4n that is
both Einstein and quaternionic Kähler. These properties of 3-Sasakian
manifolds have been proved by various authors at different points in
time. Under the assumptions of regularity, Tanno proved in [1971] that
the base manifold of the fibration is Einstein. When n ≥ 2, Ishihara
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[1973] proved that the base manifold is quaternionic Kähler. Conversely,
if the induced structure on the base manifold is quaternionic Kähler, then
the structure is 3-Sasakian; Konishi [1973]. The reason for the restriction
n ≥ 2 is that the usual definition of a quaternionic Kähler manifold M4n

in terms of holonomy breaks down in dimension 4; more precisely, the
condition that holonomy group be contained in Sp(n) ·Sp(1) (= Sp(n)×
Sp(1)/{±I}) ⊂ SO(4n) becomes in dimension 4 simply the orientability
of the manifold since Sp(1) · Sp(1) = SO(4). Thus in dimension 4, a
manifold is said to be a quaternionic Kähler manifold if it is Einstein with
nonzero scalar curvature and self-dual (see, e.g., LeBrun [1991]). With
this understanding Tanno [1996] extended Ishihara’s result to include
n = 1. We summarize this discussion in the following theorem.

Theorem 14.7 Let (M4n+3, φi, ξi, ηi, g), i = 1, 2, 3, be a complete
Riemannian manifold with a contact metric 3-structure. If one of the
ξi’s is regular, then M4n+3 is an Sp(1) or SO(3) bundle over a quater-
nionic Kähler manifold M4n.

The converse question was considered by Konishi in [1975], i.e., starting
with a quaternionic Kähler manifold M4n with n > 1, she constructs a
canonical SO(3) bundle, M4n+3, over M4n. When the scalar curvature of
M4n is positive, M4n+3 has a 3-Sasakian structure. Tanno [1996] extends
this construction to the case n = 1 and to the case of negative scalar
curvature. We state these results as follows.

Theorem 14.8 Let M4n be a quaternionic Kähler manifold with nonzero
scalar curvature. Then there exists a canonical SO(3) bundle, M4n+3,
over M4n. If the scalar curvature of M4n is positive, M4n+3 admits a
3-Sasakian structure; if the scalar curvature is negative, M4n+3 admits a
pseudo-3-Sasakian structure, the signature of the metric g being (3, 4n).

In dimensions 7 and 11 the complete principal Riemannian fibrations
with 3-Sasakian structure of positive scalar curvature were determined by
Boyer, Galicki and Mann [1993, p.253]. They are S7, RP 7 and SU(3)/U(1)
in dimension 7, and S11, RP 11, SU(4)/S(U(2)×U(1)) and G2/SU(2) in
dimension 11.

In general, the foliation determined by the vector fields {ξ1, ξ2, ξ3} is
not a fibration, and Boyer, Galicki, and Mann [1994] prove the following
result.
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Theorem 14.9 Let (M4n+3, φi, ξi, ηi, g), i = 1, 2, 3, be a 3-Sasakian
manifold such that the vector fields ξ1, ξ2, ξ3 are complete. Then the
space of leaves of the foliation determined by {ξ1, ξ2, ξ3} is a quaternionic
Kähler orbifold of dimension 4n with positive scalar curvature 16n(n+2).

In view of our study of twistor spaces as complex contact manifolds
over quaternionic Kähler manifolds, we also consider fibrations of a mani-
fold with a contact metric 3-structure by one of the structure vector fields.
The following result of Ishihara and Konishi [1979] is not surprising.

Theorem 14.10 Let M4n+3 be a manifold with a contact metric
(Sasakian) 3-structure and suppose that one of the structures, say (φ1, ξ1,
η1, g), is regular (and Sasakian). Then the orbit space M4n+3/ξ1 admits
a complex contact metric structure. Moreover, the complex contact met-
ric structure on the orbit space is a Kähler Einstein structure of positive
scalar curvature.

Without the regularity, this question was taken up by Boyer and Galicki
[1997], who gave an orbifold version and showed that the space Z =
M4n+3/ξ1 is the twistor space of a quaternionic Kähler orbifold.

Some important results on the topology of a compact 3-Sasakian man-
ifold are the following due to Galicki and Salamon [1996] (see also Boyer
and Galicki [2008, Section 13.5]). In Section 6.8 we noted that the odd
Betti numbers of a compact Sasakian manifold are even up to middle
dimension. Galicki and Salamon prove a stronger result for 3-Sasakian
manifolds.

Theorem 14.11 Let M4n+3 be a compact 3-Sasakian manifold. Then
the odd Betti numbers b2k+1 are all zero for 0 ≤ k ≤ n.

In the regular case, Galicki and Salamon [1996] relate the Betti num-
bers of M4n+3 to those of the quaternionic Kähler base space M4n and
the intermediate space Z obtained as the Boothby–Wang fibration with
respect to one of the characteristic vector fields. In particular, the odd
Betti numbers of M4n and Z vanish. Furthermore, one has the rela-
tions b2k(M4n+3) = b2k(Z)− b2k−2(Z) = b2k(M4n)− b2k−4(M4n), k ≤ n.
Galicki and Salamon also prove the following remarkable result.

Theorem 14.12 Up to isometries, there are only finitely many compact
regular 3-Sasakian manifolds in each dimension 4n + 3, n ≥ 0, and the
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only compact regular 3-Sasakian manifolds with b2 > 0 are the spaces

U(m)
U(m− 2)× U(1)

, m ≥ 3.

In the same paper Galicki and Salomon obtain the following result on
sums of Betti numbers.

Theorem 14.13 The Betti numbers of a compact regular 3-Sasakian
manifold of dimension 4n + 3 satisfy

n∑

k=1

k(n + 1− k)(n + 1− 2k)b2k = 0.

Moreover, if b4 = 0 and n = 3 or 4, then the manifold is either a sphere
or a real projective space.

14.2 Integral submanifolds

When we have one contact structure on a manifold of dimension 2n + 1,
we have seen that the maximum dimension of an integral submanifold is
n. In the present context we have three independent contact structures
on a manifold of dimension 4n + 3, and we begin with the following
lemma.

Lemma 14.2 The maximum dimension of a submanifold which is an
integral submanifold of all three contact structures is n.

Proof. If X1, . . . ,Xr is a local basis tangent to such a submanifold,
then the φiXa, i = 1, 2, 3, a = 1, . . . , r, are normal to the submanifold as
well as perpendicular to ξi, i = 1, 2, 3, since φiξj = ξk. Moreover, from
φk = φiφj − ηj ⊗ ξi these vectors are independent. Thus the codimension
is at least 3r + 3, and hence r ≤ n.

Thus in dimension 7 these would be integral (Legendre) curves, and
that they are plentiful can be seen as follows. The characteristic vector
fields of the standard 3-Sasakian structure on S7 are tangent to the fibers
S3 of S7 viewed as a principal S3-bundle over S4. Thus the horizontal
lift of a curve on S4 gives a curve in S7 which is a Legendre curve for
each of the three contact structures. Curves in S7 which are Legendre
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curves for all three contact structures and of constant curvature and unit
torsion were classified by Baikoussis and the author in [1995].

In contrast to this lemma, it is possible to have submanifolds of
dimension up to 2n + 1 which are integral submanifolds of two of the
three contact structures. We will discuss this briefly in the case of S7.
Note first that if M3 is a 3-dimensional submanifold of a manifold with
3-Sasakian structure that is an integral submanifold of the first Sasakian
structure (φ1, ξ1, η1, g) and an invariant submanifold with respect to the
third Sasakian structure (φ3, ξ3, η3, g), then it is an integral submani-
fold of the second Sasakian structure (φ2, ξ2, η2, g). To see this, let X be
tangent to M3; then η2(X) = g(ξ2,X) = g(φ3ξ1,X) = −g(ξ1, φ3X) =
−η1(φ3X) = 0.

To give a couple of examples, consider Euclidean space E8 with three
complex structures (or quaternionic structure),

I =
(

0 −I4

I4 0

)

, J =

⎛

⎜
⎜
⎝

0 0 0 I2

0 0 −I2 0
0 I2 0 0
−I2 0 0 0

⎞

⎟
⎟
⎠ , K = −IJ,

where In denotes the n × n identity matrix. Let x denote the position
vector of the unit sphere in E8, and as usual define three vector fields on
S7 by ξ1 = −Ix, ξ2 = −Jx, ξ3 = −Kx. The dual 1-forms ηi are three
independent contact structures on S7. Now consider the linear subspace
L of E8 defined by x5 = x6 = x7 = x8 = 0. The intersection S3 = S7 ∩L
is then an integral submanifold for η1 and η2, but ξ3 is tangent, and this
sphere is invariant under the action of K restricted to S7. Now consider
the torus in the 3-sphere we just constructed defined by x2

1 + x2
3 = 1

2 ,
x2

2 + x2
4 = 1

2 . This torus is an integral surface for both η1 and η2, but
ξ3 is tangent. Note also that the image of the tangent space under φ3 is
normal.

We now state the following result from Baikoussis and the author
[1995].

Theorem 14.14 Let M3 be a 3-dimensional submanifold of S7 isomet-
rically immersed as an integral submanifold of the Sasakian structure
(φ1, ξ1, η1, ḡ) (and (φ2, ξ2, η2, ḡ)) and an invariant submanifold of the
third Sasakian structure (φ3, ξ3, η3, ḡ). Then M3 is a principal circle bun-
dle over a holomorphic Legendre curve in CP 3. Moreover, if M3 is of
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constant φ-sectional curvature then either M3 is totally geodesic or a
principal circle bundle over the holomorphic (Calabi) curve CP 1(4

3).

As a corollary, we note that a holomorphic Legendre curve of constant
Gaussian curvature in CP 3 cannot lie in a totally geodesic subspace
CP 2. Similarly, if M3 is a 3-dimensional submanifold of S7 isometrically
immersed as an integral submanifold of one of the Sasakian structures
and as an invariant submanifold of one of the other Sasakian structures
and if M3 is of constant φ-sectional curvature and not totally geodesic,
then M3 cannot lie in any totally geodesic Sasakian submanifold (S5)
of S7.

We now turn to the case of a 2-dimensional submanifold of S7 which is
an integral submanifold of two of the Sasakian structures. Even though
it cannot be an integral submanifold for the third structure, we still can
have that φ3 maps the tangent bundle into the normal bundle as in the
above example of a torus. In this regard we have the following result of
Baikoussis and the author [1995].

Theorem 14.15 Let M2 be a surface isometrically immersed in S7 as
an integral submanifold of the Sasakian structures (φ1, ξ1, η1, ḡ) and
(φ2, ξ2, η2, ḡ) and suppose that φ3(TM) ⊂ T⊥M . Then M2 is flat and
ξ3 is tangent to M2.
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Kōdai Math. J., 5, 30–37.

Itoh, M.
[1997] Odd dimensional tori and contact structure, Proc. Japan Acad., 72,

58–59.

Janssens, D. and Vanhecke, L.
[1981] Almost contact structures and curvature tensors, Kōdai Math. J. , 4,
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Kodaira, K.
[1964] On the structure of compact complex analytic surfaces, I, Amer.

J. Math., 86, 751–798.

Kollár, J.
[2007] Einstein metrics on connected sums of S2 × S3, J. Differential Geo-

metry, 75, 259–272.
[2009] Positive Sasakian structures on 5-manifolds, Riemannian Topology and

Geometric Structures on Manifolds, Birkhäuser, Boston, 93–117.
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zontal sectional curvature, Kōdai Math. Sem. Rep., 27, 362–366.

Korkmaz, B.
[1998] A curvature property of complex contact metric structures, Kyungpook

Math. J., 38, 473–488.



Bibliography 321

[2000] Normality of complex contact manifolds, Rocky Mountain J. Math.,
30, 1343–1380.

[2003] A nullity condition for complex contact metric manifolds, J. Geom.,
77, 108–128.

Kosmanek, E.
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20, 95–178.
[1971] Formes de contact sur les variétiés de dimension 3, Lecture Notes in
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dynamiques, Mémoires de l’Acad. Roy. de Beligique, Sci. Ser. 2, 27,
1–62.



Bibliography 327

Ros, A.
[1985a] Positively curved Kaehler submanifolds, Proc. Amer. Math. Soc., 93,

329–331.
[1985b] A characterization of seven compact Kaehler submanifolds by holo-

morphic pinching, Ann. of Math., 121, 377–382.

Ros, A. and Verstraelen, L.
[1984] On a conjecture of K. Ogiue, J. Differential Geometry, 19, 561–566.

Ros, A. and Urbano, F.
[1998] Lagrangian submanifolds of Cn with conformal Maslov form and the

Whitney sphere, J. Math. Soc. Japan, 50, 203–226.

Rukimbira, P.
[1993] Some remarks on R-contact flows, Ann. Global Anal. Geom., 11,

165–171.
[1995a] Topology and closed characteristics of K-contact manifolds, Bull.

Belg. Math. Soc., 349–356.
[1995b] Vertical sectional curvature and K-contactness, J. Geom., 53,

163–166.
[1995c] Chern-Hamilton’s conjecture and K-contactness, Houston J. Math.,

21, 709–718.
[1998] A characterization of flat contact metric geometry, Houston J. Math.,

24, 409–414.
[2000] Spherical rigidity via contact dynamics, Bull. Belg. Math. Soc., 7,

563–569; Correction to: Spherical rigidity via contact dynamics, Bull.
Belg. Math. Soc. 8 (2001), 147–153.

[2009] The 1-nullity of Sasakian manifolds, Riemannian Topology and Geo-
metric Structures on Manifolds, Birkhäuser, Boston, 153–159.
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519–531.

Tashiro, Y.
[1963] On contact structures of hypersurfaces in complex manifolds I, Tôhoku
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4, 337–356.

Walters, P.
[1975] Ergodic Theory-Introductory Lectures, Lecture Notes in Mathematics,

Vol. 458, Springer, Berlin.

Watanabe, Y.
[1980] Geodesic symmetrices in Sasakian locally φ-symmetric spaces, Kōdai
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Ibánez, R., 109
Ikawa, T., 161
Ishihara, S., 234–237, 241, 242, 251,

292, 296, 298
Itoh, M., 66

Janssens, D., 99
Jayne, N., 78, 128, 239, 250
Jelonek, W., 6
Jerison, D., 216
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