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Lectures on Algebraic Cycles

Second Edition

Spencer Bloch’s 1979 Duke lectures, a milestone in modern mathematics, have been
out of print almost since their first publication in 1980, yet they have remained
influential and are still the best place to learn the guiding philosophy of algebraic
cycles and motives. This edition, now professionally typeset, has a new preface by the
author giving his perspective on developments in the field over the past 30 years.

The theory of algebraic cycles encompasses such central problems in mathematics
as the Hodge conjecture and the Bloch–Kato conjecture on special values of zeta
functions. The book begins with Mumford’s example showing that the Chow group of
zero-cycles on an algebraic variety can be infinite dimensional, and explains how
Hodge theory and algebraic K-theory give new insights into this and other phenomena.

spencer bloch is R. M. Hutchins Distinguished Service Professor in the
Department of Mathematics at the University of Chicago.
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Preface to the second edition

30 Years later...

Looking back over these lectures, given at Duke University in 1979, I can
say with some pride that they contain early hints of a number of important
themes in modern arithmetic geometry. Of course, the flip side of that coin
is that they are now, thirty years later, seriously out of date. To bring them
up to date would involve writing several more monographs, a task best left
to mathematicians thirty years younger than me. What I propose instead is to
comment fairly briefly on several of the lectures in an attempt to put the reader
in touch with what I believe are the most important modern ideas in these
areas. The section on motives just below is intended as a brief introduction
to the modern viewpoint on that subject. The remaining sections until the last
follow roughly the content of the original book, though the titles have changed
slightly to reflect my current emphasis. The last section, motives in physics,
represents my recent research.

In the original volume I included a quote from Charlie Chan, the great Chi-
nese detective, who told his bumbling number one son “answer simple, but
question very very hard.” It seemed to me an appropriate comment on the sub-
ject of algebraic cycles. Given the amazing deep new ideas introduced into the
subject in recent years, however, I think now that the question remains very
very hard, but the answer is perhaps no longer so simple...

At the end of this essay I include a brief bibliography, which is by no means
complete. It is only intended to illustrate the various ideas mentioned in the
text.
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Motives

Much of the recent work in this area is centered around motives and the con-
struction – in fact various constructions, due to Hanamura (1995), Levine
(1998), and Voevodsky (Mazza et al. 2006; Voevodsky et al. 2000) – of a trian-
gulated category of mixed motives. I will sketch Voevodsky’s construction as
it also plays a central role in his proof of the Bloch–Kato–Milnor conjecture
discussed in Lecture 5. Then I will discuss various lectures from the original
monograph.

Let k be a field. The category Cork is an additive category with objects
smooth k-varieties: Ob(Cork) = Ob(Smk). Morphisms Z : X → Y are finite
linear combinations of correspondences Z =

∑
niZi where Zi ⊂ X×Y is closed

and the projection πi : Zi → X is finite and surjective. Intuitively, we may think
of Zi as a map X → SymnY associating to x ∈ X the fibre f −1

i (x) viewed as a
zero-cycle on Y . There is an evident functor

Smk → Cork

which is the identity on objects.
A presheaf on a category C with values in an abelian categoryA is simply a

contravariant functor F : Cop → A. An A-valued presheaf F on Cork induces
a presheaf F|Smk on Smk. Intuitively, to lift a presheaf G from Smk to Cork one
needs a structure of trace maps or transfers f∗ : G(Z) → G(X) for Z/X finite.
Presheaves on Cork are referred to as presheaves with transfers.

For X ∈ Ob(Smk) one has the representable sheaf Ztr(X) defined by

Ztr(X)(U) = HomCork (U, X).

An important elaboration on this idea yields for pointed objects xi ∈ Xi

Ztr((X1, x1) ∧ · · · ∧ (Xn, xi))

:= Coker
(⊕

Ztr(X1 × · · · X̂i × · · · Xn)→ Ztr(
∏

Xi)
)
.

In particular, one defines Ztr(
∧n Gm) by taking Xi = A1 − {0} and xi = 1.

A presheaf with transfers F is called homotopy invariant if, with obvious
notation, i∗0 = i∗1 : F(U × A1) → F(U). The complex of chains C∗(F) on a
presheaf with transfers F is the presheaf of complexes (placed in cohomologi-
cal degrees [−∞, 0])

C∗(F) := U �→ · · · → F(U × ∆n)→ · · · → F(U × ∆0)

Here

(0.1) ∆n := Spec k[t0, . . . , tn]/(
∑

ti − 1)



Preface to the second edition ix

is the algebro-geometric n-simplex. The boundary maps in the complex are
the usual alternating sums of restrictions to the faces ∆n−1 ↪→ ∆n defined by
setting ti = 0. The two restrictions

i∗0, i
∗
1 : C∗(F)(U × A1)→ C∗(F)(U)

are shown to be homotopic, so the homology presheaves Hn(C∗(F)) are homo-
topy invariant.

Maps f0, f1 : X → Y in Cork are A1-homotopic if there exists H : X×A1 → Y
in Cork such that f j = i∗jH. A1-homotopy is an equivalence relation, and A1-
homotopic maps induce homotopic maps

f0∗ � f1∗ : C∗Ztr(X)→ C∗Ztr(Y).

Voevodsky defines

Z(q) := C∗Ztr(
∧q Gm)[−q], q ≥ 0.

More precisely, the above complex is viewed as a complex of presheaves on
Smk and then localized for the Zariski topology. Motivic cohomology is then
defined (for q ≥ 0) as the hypercohomology of this complex of Zariski sheaves:

Hp
M(X,Z(q)) := Hp

Zar(X,Z(q)).

One has a notion of tensor product for presheaves on the category Cork, and
Ztr(X)⊗Ztr(Y ) = Ztr(X×Y ). In particular, Z(p)⊗Z(q)→ Z(p+q) so one gets
a product structure on motivic cohomology. In low degrees one has

H0
M(X,Z(0)) = Z[π0(X)],

Hp
M(X,Z(0)) = (0), p > 0,

Z(1) � Gm[−1].

Another important sign that this is the right theory is the link with Milnor
K-theory. (KMilnor

∗ (k) is defined as the quotient of the tensor algebra on k× by
the ideal generated by quadratic relations a ⊗ (1 − a) for a ∈ k − {0, 1}.)

Theorem Hn
M(Spec k,Z(n)) � KMilnor

n (k).

The fact that the Zariski topology suffices to define motivic cohomology is
somewhat surprising because a Zariski open cover π : U → X does not yield a
resolution of Zariski sheaves

(0.2) · · · → Ztr(U ×X U)→ Ztr(U)→ Z(X)→ 0.

To remedy this, Voevodsky employs the Nisnevich topology. A morphism
π : U → X is a Nisnevich cover if for any field K/k one has U(K) � X(K).
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To see that (0.2) becomes exact when localized for the Nisnevich topology, one
uses the fact that any finite cover of a Hensel local ring is a product of local
rings.

The actual triangulated category of effective motives over k is a quotient cat-
egory of the derived category D−(ShNis(Cork)) of bounded-below complexes of
Nisnevich sheaves on Cork. One considers the smallest thick subcategory W
containing all cones of Ztr(X × A1)→ Ztr(X), and one defines

DMeff
Nis(k) := D−ShNis(Cork)[W−1].

Said another way, one formally inverts all morphisms with cones in W. Finally,
the motive associated to a smooth k-variety X is defined by

(0.3) M(X) := Ztr(X) ∈ DMeff
Nis(k).

The category of geometric motives DMeff
geo(k) is the thick subcategory in DMeff

Nis(k)
generated by the M(X).

One has the following properties:

Mayer-Vietoris

M(U ∩ V)→ M(U) ⊕ M(V)→ M(X)→ M(U ∩ V)[1]

is a distinguished triangle.

Künneth

M(X × Y ) = M(X) ⊗ M(Y ).

Vector bundle theorem

M(X) � M(V)

for V/X a vector bundle.

Cancellation Assume varieties over k admit a resolution of singularities.
Write M(q) := M ⊗ Z(q). Then

Hom(M,N) � Hom(M(q),N(q)).

The category of (not necessarily effective) motives is obtained by inverting the
functor M �→ M(1) in DMeff.

Projective bundle theorem For V/X a rank n + 1 vector bundle

M(P(V)) �
⊕n

i=0 M(X)(i)[2i].
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Chow motives If X,Y are smooth projective, then

(0.4) Hom(M(X),M(Y )) � CHdimX(X × Y ).

The category of Chow motives over a field k has as objects triples
(X, p,m) with X smooth projective over k, p ∈ CHdimX(X × X)Q a projector
(i.e. p ◦ p = p) and m ∈ Z. The morphisms are given by

(0.5) Hom((X, p,m), (Y, q, n)) := q ◦ CHdimX+n−m(X × Y ) ◦ p.

It follows from (0.4) and the existence of projectors in DMeff
Nis(k) that the cate-

gory of Chow motives embeds in DMeff
Nis(k).

Motivic cohomology For X/k smooth, we have

(0.6) Hp
M(X,Z(q)) � HomDMeff

Nis(k)(Ztr(X),Z(q)[p]).

In fact, motivic cohomology is closely related to algebraic cycles, and this
relationship lies at the heart of modern cycle theory. There are a number of
ways to formulate things. I will use higher Chow groups because they relate
most naturally to arithmetic questions. Let ∆• be the cosimplicial variety as in
(0.1) above. DefineZq(X, n) to be the free abelian group of algebraic cycles on
X × ∆n which are in good position with respect to all faces X × ∆m ↪→ X × ∆n.
The complexZq(X, •) is defined by taking alternating sums of pullbacks in the
usual way:

(0.7) · · · → Zq(X, 2)→ Zq(X, 1)→ Zq(X, 0)→ 0.

(HereZq(X, n) is placed in cohomological degree −n.) The higher Chow groups
are defined by

(0.8) CHq(X, n) := H−n(Zq(X, •)).

For example, the usual Chow group CHq(X) = CHq(X, 0). Voevodsky proves
that for X smooth over a perfect field k one has

(0.9) Hp
M(X,Z(q)) � CHq(X, 2q − p) = Hp(Zq(X, •)[−2q]).

Beilinson and Soulé conjecture that the shifted chain complex
Zq(X, •)[−2q] ⊗ Q has cohomological support in degrees [0, 2q]. Actually,
their conjecture was formulated in terms of the γ-filtration in K-theory, but
one has the further identification

(0.10) Hp
M(X,Z(q)) ⊗Q � CHq(X, 2q − p) ⊗Q � grq

γKp(X) ⊗Q.
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Lecture 1: Zero-cycles

The two most important ideas here are firstly the conjecture that surfaces with
geometric genus zero (pg = 0) should have Chow group of zero-cycles repre-
sentable. For S such a surface over C we expect an exact sequence

0→ Alb(S )→ CH0(S )
deg
−−→ Z→ 0.

The group T (S ) defined in Lemma 1.4 is conjectured to be zero in
this case. Secondly, for any smooth projective variety X, the Chow
group of zero-cycles CH0(X) is conjectured (1.8) to carry a descending
filtration F∗CH0(X) which is functorial for correspondences such that

the map grp
FCH0(X)

Λ−→ grp
FCH0(Y ) induced by an algebraic cycle

Λ ∈ CHdimY (X × Y ) depends only on the class of Λ in cohomology.
Indeed, one may conjecture the existence of such a filtration on CHq(X)
for any q.

These conjectures remain unproven, but a very beautiful general picture,
based on the yoga of mixed motives, has been elaborated by A. Beilinson.
Interested readers should consult the important article by Jannsen (1994) and
the literature cited there. Let me sketch briefly (following Jannsen) the modern
viewpoint.

It is convenient to dualize the definition of M(X) (0.3). Assume X smooth,
projective of dimension d. Define (Hom means the internal Hom in DM)

M(X)∗ = HomDM(M(X),Z(0)).

The formula for the Chow group becomes

CHp(X) = H2p
M (X,Z(p)) = HomDM(Z(0), M(X)∗(p)[2p]).

One of Grothendieck’s standard conjectures about algebraic cycles is that
there exist Künneth projectors

πi ∈ CHd(X × X)Q/{homological equivalence}

inducing the natural projections H∗(X)→ Hi(X) on cohomology. If we assume
further that the ideal {homological equiv.}/{rational equiv.} ⊂ CHd(X × X)Q is
nilpotent (nilpotence conjecture), then the pri lift (non-canonically) to projec-
tors pri,rat ∈ CHd(X × X)Q and we may use (0.5) to decompose M(X)∗ ⊗ Q =⊕

i hi[−i] non-canonically as a direct sum of Chow motives. This idea is due
to J. Murre (1993a). The hope is that DM admits a t-structure such that

(0.11) Hi(M(X)∗ ⊗Q) = hi(X).
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The resulting spectral sequence

Ep,q
2 = HomDM(Z(0),Hq(M(X)∗( j)[p])⇒ HomDM(Z(0),M∗(X)( j)[p+q])

would yield filtrations on the Chow groups ⊗Q with

FνCH j(X)Q �
⊕2 j−ν

i=0 Ext2 j−i
DM (Q(0), hi(X)( j)),

grνFCH j(X)Q � ExtνDM(Q(0),H2 j−ν(X)( j)).

Murre suggests a natural strengthening of his conjectures, based on the idea
that one should be able for i ≤ d, to find representatives for πi supported on
Xi × X ⊂ X × X, where Xi ⊂ X is a general plane section of dimension i. For
example, π0 = {x} × X for a point x. Clearly this would imply πiCH j(X) = 0
for i < j, and since the conjectures imply

FνCH j(X) =
⊕2 j−ν

i=0 πi CH j(X),

we could conclude further that

FνCH j(X) = (0), ν > j.

Suppose, for example, that dim X = 2. We would get a 3-step filtration on
the zero-cycles: CH0(X) = F0 ⊃ F1 ⊃ F2 ⊃ (0), with

gr0
FCH0(X)Q = HomDM(Q(0), h4(X)(2)),

gr1
F = Ext1DM(Q(0), h3(X)(2)),

gr2
F = Ext2DM(Q(0), h2(X)(2)).

This fits perfectly with the ideas in Lecture 1. Indeed, Murre has computed
gr0 and gr1 and he finds exactly the degree and the Albanese. Of course, gr2

is more problematical, but note that the condition discussed in the text that
H2(X,Q�(1)) should be generated by divisors (which is equivalent to pg = 0
in characteristic zero) means h2(X)(2) � ⊕Q(1). (This is obvious for motives
modulo homological equivalence. Assuming the nilpotence conjecture, it holds
for Chow motives as well.) In this case, gr2

F can be computed for X = P2 when
it is clearly (0).

The conjectural “theorem of the hypersquare” (Proposition 1.12) can be
understood in motivic terms (Jannsen 1994, conj. 3.12) using the fact that
hn(X0 × · · · × Xn) is a direct summand of

⊕
hn(X0 × · · · X̂i · · · × Xn).

Clearly wrongheaded, however, is Metaconjecture 1.10, which stated that
F2CH0(X) is controlled by the polarized Hodge structure associated to H2(X).
Indeed, Ext2 = (0) in the category of Hodge structures. One may try (compare
Carlson and Hain 1989) to look at Exts in some category of variations of Hodge
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structure. In the absence of parameters supporting such variations (i.e. for X
over a number field), however, the Ext2 term should vanish and we should
have F2CH2(X) = (0).

Lectures 2 and 3: Intermediate jacobians

The modern point of view about intermediate jacobians is to view them as
Ext1(Z(0),H) where H is a suitable Hodge structure, and the Ext group is
taken in the abelian category of mixed Hodge structures (Carlson 1987). In the
classic situation, H = H2r−1(X,Z(r)) where X is a smooth projective variety.
Note in this case that H has weight −1. An extension 0→ H → E → Z(0)→ 0
would yield a mixed Hodge structure E with weights 0,−1 and Hodge filtration

EC = F−1EC ⊃ F0EC · · · .

Let f ,w ∈ EC be liftings of 1 ∈ Z(0) splitting the weight and Hodge filtrations
respectively. The difference between them w − f gives a well-defined class in
J = HC/(F0HC + HZ) which is the intermediate jacobian. To define the class
of a codimension-r cycle Z =

∑
ni Zi, let |Z| be the support of the cycle. We

have a cycle class with supports [Z] : Z→ H2r
|Z|(X,Z(r)) and a diagram

(0.12)
H2r−1
|Z| (X,Z(r)) H2r−1(X,Z(r)) H2r−1(X − |Z|,Z(r))

H2r
|Z|(X,Z(r)) H2r(X,Z(r))

Z 0

|Z|

H2r(X,Z(r))

The first group H2r−1
|Z| (X,Z(r)) is zero by purity, and vanishing of the lower

right-hand arrow will hold if Z is homologous to 0. Assuming this, we get the
desired extension of Hodge structures. (I believe this construction is due to
Deligne, though I do not have a good reference.)

For H any mixed Hodge structure with weights < 0 one has an analogous
construction. Note, however, the resulting abelian Lie group J need not be
compact. For example, Ext1(Z(0),Z(1)) � C× � S 1 × R. In Lecture 3, the
focus is on the case

H = H1(C,Z(2)) ⊗ H1
c (Gm,Z)⊗2 ⊂ H3

c (C × (Gm)2,Z(2)).
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Here H has weight −3, and

Ext1MHS (Z(0),H) � H1(C,C)/H1(C,Z(2)) � H1(C,C×(1)).

At the time I was very much inspired by the work of Borel (1977) on reg-
ulators for higher K-groups of number fields. I believed that similar regula-
tors could be defined for arithmetic algebraic varieties more generally, and that
these regulators could be related to values of Hasse–Weil L-functions. This was
done in a very limited and ad hoc way in Bloch (1980, 2000), and then much
more definitively by Beilinson (1985). From the point of view of Lecture 3, the
regulator can be thought of as a relative cycle class map

Hp
M(X,Z(q))

(0.9)
� CHq(X, 2q−p)→ Ext1MHS (Z(0),H) = HC/(HZ+F0HC).

Here H = H2q−1(X × ∆2q−p, X × ∂∆2q−p; Z(q)). For details of this construc-
tion, see Bloch (2000). Other constructions are given in Bloch (1986b) and
Goncharov (2005).

The quotient of this Ext group by its maximal compact subgroup is the cor-
responding Ext in the category of R-Hodge structures. It is an R-vector space.
More generally one can associate to any mixed Hodge structure a nilpotent
matrix γ (Cattani et al., 1986, prop. 2.20), which is the obstruction to a real
splitting of the filtration by weights. These invariants arise, for example, if the
curve C in Lecture 3 is allowed to degenerate, so H1(C,Z) is itself a mixed
Hodge structure.

Lecture 4: Cohomological methods

This chapter contains basic information about algebraic K-theory, an important
tool in the study of algebraic cycles. I describe the “Quillen trick” and use it
to construct the Gersten resolution for K-sheaves and also Betti and étale co-
homology sheaves for smooth varieties. Briefly, one considers Zariski sheaves
Kq (resp.Hq

Betti, resp.Hq
et) associated to the presheaf U �→ Kq(U) of algebraic

K-groups (resp. U �→ Hq
Betti(U,Z), resp. U �→ Hq

et(U,Z/nZ)). One obtains
resolutions of these sheaves which enable one to identify, for example,

Hp(X,Kp) � CHp(X),

Hp(X,H p
Betti) � CHp(X)/{algebraic equivalence}.

(0.13)

I think it is fair to say that the resulting K-cohomology and the parallel
constructions for Betti and étale cohomology have had important technical ap-
plications but have not been the breakthrough one had hoped for at the time.
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Despite the Gersten resolution, it turns out to be difficult to interpret the result-
ing cohomology. Finiteness results, for example, are totally lacking. One nice
application of the Betti theory (see reference [6] at the end of Lecture 4) was
to falsify a longstanding conjecture about differential forms of the second kind
on varieties of dimension ≥ 3. The spectral sequence Ep,q

2 = Hp
Zar(X,H

q
Betti)→

Hp+q
Betti(X,Z) leads to an exact sequence

(0.14) H3
Betti(X)

a−→ Γ(X,H3)
b−→ H2(X,H2)

c−→ H4
Betti(X)

Using (0.13) one can identify Ker(c) in (0.14) with the Griffiths group of
cycles homologous to zero modulo algebraic equivalence, a group which in
some cases is known not to be finitely generated (Clemens 1983). It follows in
such cases that a is not surjective, indeed Coker(a) is infinitely generated. But
Γ(X,H3) is precisely the space of meromorphic 3-forms of the second kind;
that is meromorphic forms which at every point differ from an algebraic form
which is regular at the point by an exact algebraic form. Thus, unlike the case
of curves and surfaces, differential forms of the second kind do not necessarily
come from global cohomology classes in dimensions ≥ 3.

Lecture 5: The conjecture of Milnor–Bloch–Kato

Let F be a field and � a prime with 1/� ∈ K. The Milnor ring KM
∗ (F)/� is gener-

ated by F×/F×� with relations given by Steinberg symbols f ⊗ (1− f ), f � 0, 1.
The conjecture in question states that the natural map to Galois cohomology

KM
∗ (F)/� → H∗(F, µ∗�)

is an isomorphism. My own contribution to this, which is explained in Lec-
ture 5, is a proof that KM

n (F) → Hn(F, µ⊗n
�

) is surjective when F has coho-
mological dimension n. For some years Voevodsky has been working on a
very difficult program, using his own motivic theory and results of M. Rost,
to prove the conjecture in complete generality. The proof is now complete (for
an outline with references, see the webpage of C. Weibel), but there is still no
unified treatment and the arguments use sophisticated techniques in algebraic
homotopy theory which I have not understood.

Geometrically, the result can be formulated as follows. Let i : X ↪→ Y be a
closed immersion of varieties over a field k of characteristic prime to �, and let
j : Y − X ↪→ Y be the open immersion. For simplicity I assume µ� ⊂ k so there
is no need to distinguish powers of µ�. Consider the exact sequence

Hp(Y,Z/�)
i∗−→ Hp(X,Z/�)

∂−→ Hp+1(Y, j!Z/�).
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Given a cohomology class c ∈ Hp(X) and a smooth point x ∈ X, there exists a
Zariski open neighborhood Y ⊃ U � x such that 0 = ∂(c)

∣∣∣
U
∈ Hp+1(U, j!Z/�).

As an exercise, the reader might work out how this is equivalent to the con-
jecture for F = k(X). Another exercise is to formulate a version of coniveau
filtration as described on page 52 for the group Hp+1(Y, j!Z/�) in such a way
that the image of ∂ lies in F1.

The whole picture of motivic cohomology with finite coefficients is now
quite beautiful (Voevodsky et al. 2000). Let X be a smooth, quasi-projective
scheme over an algebraically closed field k, and let m ≥ 2 be relatively prime
to the characteristic. Let r ≥ dim X. Then

H2r−n
M (X,Z/mZ(r)) � H2r−n

et (X,Z/mZ(r)).

Said another way, the cycle complexes Zr(X, •)[−2r], in equation (0.9), com-
pute the �-adic étale cohomology for all � prime to the characteristic, assuming
r ≥ dim X. The situation should be compared with that for abelian varieties A
where one has Tate modules T�(A) for all � and these calculate H1(A,Z�) for �
prime to the characteristic.

The subject of torsion in the Chow group seems to be important from many
points of view. I include in the bibliography a couple of relevant papers (Soulé
and Voisin 2005; Totaro 1997).

Lecture 6: Infinitesimal methods in motivic cohomology

The infinitesimal methods developed here were used also in my work on de
Rham–Witt cohomology (Bloch 1977).

It is fair to say that we still do not have an adequate notion of motivic coho-
mology. That is, we do not have contravariant cohomology functors defined on
singular schemes (e.g. on non-reduced schemes) with appropriate properties.
The notion of A1-homotopy invariance which is essential in Voevodsky’s work
is not what one wants. For example, if A is a non-reduced ring, then typically

H1
M(Spec A,Z(1)) = A× � A[t]× = H1

M(Spec A[t],Z(1)).

Curiously, the K-cohomology groups Hp
Zar(X,Kq) discussed in Lecture 4 do

have the correct functoriality properties, and in this lecture we examine what
can be learned from the infinitesimal structure of these groups.

An important step has been the work of Goodwillie (1986) computing the
K-theory of nilpotent ideals in characteristic zero in terms of cyclic homology.
To understand what motivic cohomology of an infinitesimal thickening might
mean, the reader could consult the two rather experimental papers Bloch and
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Esnault (1996, 2003). More definitive results have been obtained in Krishna
and Levine (2008), Park (2007), and Rülling (2007).

Assuming one has a good definition of motivic cohomology, what should
the “tangent space”

T Hp
M(X,Z(q)) := Ker

(
Hp(X × Spec k[ε],Z(q))→ Hp(X,Z(q))

)
mean? (Here ε2 = 0 and the map sends ε �→ 0.) To begin with, one should
probably not think of T HM as a tangent space in the usual sense. It can be
non-trivial in situations where the motivic cohomology itself is rigid, for ex-
ample for H3

M(k,Z(2)) with k a number field. Better, perhaps, to think of a
non-semistable moduli functor where jumps can occur at the boundary. For ex-
ample, consider the Picard scheme of (P1, {a, b}), that is isomorphism classes
of line bundles on P1 with trivializations at a, b. The degree-zero part is con-
stant Gm for a � b, but the limit as a → b is Ga given by degree-zero line
bundles on P1 with double order trivialization at a = b.

One important area of open questions about these groups concerns regu-
lators and relations with Euclidean scissors congruence groups. The regulator
for usual motivic cohomology is closely related to volumes in hyperbolic space
(Goncharov 1999), and it seems likely that there is a similar relation between
T HM and Euclidean volumes. Intuitively, this is another one of those limiting
phenomena where the radius of the hyperbolic disk is allowed to go to infinity
and lengths are scaled so in the limit one gets Euclidean geometry. It would be
nice to have a rigorous description of how this works.

Lecture 7: Diophantine questions

At the time of these lectures, I had expected that the Chow group of zero-cycles
on a rational surface would relate in some way to the zeta function of the sur-
face. As far as I can tell, that does not happen, and I have not thought further
in this direction. The reader who wants to work on diophantine questions re-
garding zero-cycles and Chow groups should consult Colliot-Thélène (1995),
Esnault (2003), and the references given in these papers.

Lectures 8 and 9: Regulators and values of L-functions

The whole subject of motivic cohomology, regulators, and values of L-functions
remains to a large extent conjectural, but we now understand much better what
should be true (Rapoport et al. 1988; Soulé 1986; Bloch and Kato 1990). For
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constructions of the regulator, the reader can consult Goncharov (2005) and
Bloch (1986b). Concerning the basic conjecture, I am especially attracted to
the formulation given by Fontaine and Perrin-Riou (Fontaine 1992; Fontaine
and Perrin-Riou 1994). To understand their idea, let X be a smooth, projective
variety of dimension d over Q. (In what follows I gloss over many intractable
conjectures.) Consider a motive M = hp(X)(q), where hp(X) is a Chow motive
as in (0.11), and write M∗(1) := h2d−p(X)(d − q + 1). Write MB = Hp

B(X,Q(q))
for the Betti cohomology of X(C). Let M+B ⊂ MB be the subspace invariant
under the action of conjugation. Let tM := Hp

DR(X,Q(q))/F0, where H∗DR is
de Rham cohomology. There is a natural map α : M+B ⊗ R → tM ⊗ R, and
(assuming certain conjectures) Fontaine and Perrin-Riou construct an exact
sequence of motivic cohomology

0→ HomDM(Q(0),M) ⊗ R→ Kerα→ (Ext1DM, f (Q(0),M∗(1)) ⊗ R)∗

→ Ext1DM, f (Q(0),M) ⊗ R→ Cokerα→ (HomDM(Q,M∗(1)) ⊗ R)∗ → 0.

(0.15)

Here Hom and Ext are taken in the triangulated category of Voevodsky mo-
tives over Q. The subscript f refers to behavior at finite primes. As a con-
sequence of (0.15) one gets a trivialization over R of the tensor product of
determinant lines

(0.16) det(R HomDM, f (Q(0),M))R

⊗ det(R HomDM, f (Q(0),M∗(1)))R ⊗ det(α)−1 � R.

The various determinants have Q-structures (though α, itself, does not), so
one may examine in (0.16) the ratio of the real trivialization and the rational
structure. In fact, using Galois and �-adic cohomology, the authors actually
get a Z-structure on the left. They show that the integral conjecture in Bloch
and Kato (1990) is equivalent to this ratio being given by L∗(M, 0), the first
non-vanishing term in the Taylor expansion of L(M, s) where L(M, s) is the
Hasse–Weil L-function associated to M.

Well, okay, there is a lot here we do not understand, but my thought is that
one might redo (0.15) working directly with the cycle complexesZq(X, •)[−2q]
and Zd+1−q(X, •)[−2(d + 1 − q)] which one should think of as concrete real-
izations of motivic cohomology RΓM(X,Z(q)) and RΓM(X,Z(d + 1 − q)). The
resulting determinant metrics could perhaps be deduced (or at least interpreted)
directly from the intersection–projection map (well defined in the derived cat-
egory)

Zq(X, •)[−2q]
L
⊗ Zd+1−q(X, •)[−2(d + 1 − q)] → Z1(Spec Q, •)[−2d].
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Hanamura suggested this approach to understanding heights and biexten-
sions. Of course, as it stands it is purely algebraic. It will be necessary to
take the cone over the regulator map in some fashion. The result should be
some kind of metric or related structure on the determinant of the cycle com-
plex. This would fit well with a conjecture of Soulé (1984), which says in this
context that for X regular and proper of dimension d over Spec Z, the Euler
characteristic ofZp(X, •)[−2p] should be defined and we should have

χ(Zp(X, •)[−2p]) =
∑

(−1)idimQHi
M(X,Q(p)) = −ords=d−pζX(s),

the negative of the order of zero or pole at s = d − p of the zeta function of X.

Coda: Motives in physics

The subjects of algebraic cycles and motives have enjoyed a tremendous the-
oretical development over the past 30 years. At the risk of scandalizing the
reader, I would say it is high time we start looking for applications.

Dirk Kreimer has been teaching me about Feynman amplitudes and pertur-
bative calculations in quantum field theory. These are periods that arise, for
example, in computations of scattering amplitudes. They have a strong ten-
dency to be multi-zeta numbers (Bloch et al. 2006; Broadhurst and Kreimer
1997; but cf. Belkale and Brosnan 2003). The periods in question are associ-
ated to graphs. Essentially, the Kirchhoff polynomial (Bloch et al. 2006) of a
graph Γ defines a hypersurface XΓ in projective space, and the Feynman am-
plitude is a period of this hypersurface relative to a reference symplex. If in-
deed these are multi-zeta numbers it should be the case that the cohomology
of XΓ has a big Tate piece. One knows if XΓ were smooth, then Hn

Betti(XΓ,Q)
would have pure weight n, so any Tate class, i.e. any map of Hodge structures
Z(−p) → Hn

Betti(XΓ,Q) would necessarily be a Hodge class, i.e. n = 2p. The
Hodge conjecture would say that such a class comes from an algebraic cycle,
i.e. a class in H2p

M (XΓ,Z(p)) via the realization map from motivic cohomology
to Betti cohomology. Unfortunately (or perhaps fortunately), the XΓ are highly
singular, so all one can say are that the weights of Hn are ≤ n. There are all
kinds of possibilities for interesting cohomology classes coming via realiza-
tion from motivic cohomology. For example, the “wheel with n spokes graph”
WS (n) gives rise to a hypersurface XWS (n) of dimension 2n − 2. The primi-
tive cohomology in the middle dimension for this graph is computed (Bloch
et al. 2006) to be Q(−2) (independent of n). An appropriate generalization of
the Hodge conjecture would suggest a class in H2n−2

M (XWS (n),Q(2)). The prob-
lem of computing such motivic cohomology groups can be attacked via the
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combinatorics of the graph, but what has so far proved more powerful is to
use classical algebro-geometric techniques to study the geometry of rank strat-
ifications associated to a homomorphism of vector bundles u : E → F over
projective space.

Ideally, knowledge of motives should provide a strong organizing force to
study complex physical phenomena. Even simple motivic invariants like weight
and Hodge level should help physicists understand the periods arising in their
computations. More sophisticated methods involving monodromy and limiting
mixed motives may give information about Landau singularities and unitarity
of the S -matrix.
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Introduction

The notes which follow are based on lectures given at Duke University in April,
1979. They are the fruit of ten years reflection on algebraic cycles; that is
formal linear combinations

∑
ni [Vi] of subvarieties Vi of a fixed smooth and

projective variety X, with integer coefficients ni.

Classically, X was an algebraic curve (Riemann surface) and the Vi were
points pi. In this context, cycles were a principal object of study for nineteenth-
century complex function theory. Two (at least) of their results merit immor-
tality: the theorems of Riemann–Roch and Abel–Jacobi.

The reader will recall that to a meromorphic function f on a smooth variety
or complex manifold one can associate a divisor (algebraic cycle of codimen-
sion 1) ( f ) by taking the sum of its components of zeros minus its components
of poles, all counted with suitable multiplicity. An algebraic cycle

∑
ni [Vi] is

said to be effective if all the ni ≥ 0. The Riemann–Roch theorem computes the
dimension �(D) of the vector space of functions f such that ( f ) + D is effec-
tive for a given divisor D. It has been generalized quite considerably in recent
years, but its central role in the study of divisors does not seem to carry over to
cycles of codimension greater than 1. (For example, one can use the Riemann–
Roch theorem to prove rationality of the zeta function of an algebraic curve
over a finite field [9], but the corresponding theorem for varieties of dimension
> 1 lies deeper.)

The other great pillar of function theory on Riemann surfaces, the Abel–
Jacobi theorem, tells when a given divisor D =

∑
ni (pi) is the divisor of a

function. Clearly a necessary condition is that the degree
∑

ni must be zero,
so we may assume this and write our cycle D =

∑
ni ((pi) − (p0)) for some

base point p0. We denote by Γ(X,Ω1
X) the space of all global holomorphic

differential 1-forms on X (where ω ∈ Γ(X,Ω1
X) can be written locally as f (z) dz

for z and f (z) holomorphic). A necessary and sufficient condition for D to equal
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( f ) is that ∑
ni

∫ pi

p0

ω =

∫
γ

ω

for some (topological) 1-cycle γ ∈ H1(X,Z) and all ω ∈ Γ(X,Ω1
X). Even more

is true; writing Γ(X,Ω1
X)∗ = HomC(Γ(X,Ω1

X),C) for the periods, the map

A0(X) �
divisors of degree 0
divisors of functions

→ Γ(X,Ω1
X)∗/H1(X,Z) := J(X)

is an isomorphism from A0(X) to the abelian variety J(X), where J(X) is the
jacobian of X.

To extend these results, we may define for X any smooth projective variety
over a field and r ≥ 0 an integer

zr(X) = free abelian group generated by irreducible
subvarieties of X of codimension r.

Given A =
∑

mi Ai ∈ zr(X) and B =
∑

n j Bj ∈ zs(X) such that every compo-
nent of Ai ∩ Bj has codimension r + s for all i and j, there is defined a product
cycle A · B ∈ zr+s(X) obtained by summing over all components of Ai ∩ Bj

with suitable multiplicities. If f : X → Y is a proper map, where dim X = d,
dim Y = e, one has f∗ : zr(X) → zr+e−d(Y ) defined on a single irreducible
codimension-r subvariety V ⊂ X by f∗(V ) = [k(V ) : k( f (V ))] · f (V ). Here
[k(V ) : k( f (V ))] is the degree of the extension of function fields. By conven-
tion this degree is zero if the extension is not finite.

Suppose now Γ ∈ zr(X × P1) and no component of Γ contains either X × {0}
or X × {∞}. The cycle

pr1∗
(
Γ · (X × ((0) − (∞)))

) ∈ zr(X), pr1 : X × P1 → X,

is then defined. By definition, zr
rat(X) ⊂ zr(X) is the subgroup of cycles of this

form. Replacing P1 by an arbitary (variable) smooth connected curve C, and
0,∞ by any two points a, b ∈ C one obtains a group zr

alg(X) with

zr
rat(X) ⊂ zr

alg(X) ⊂ zr(X).

We write

CHr(X) = zr(X)/zr
rat(X) (the Chow group),

Ar(X) = zr
alg(X)/zr

rat(X),

CHr(X) = CHd−r(X),

Ar(X) = Ad−r(X), d = dim X.
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Cycles in zr
rat(X) (resp. zr

alg(X)) are said to be rationally (resp. algebraically)
equivalent to zero (written x ∼

rat
0 or x ∼

alg
0, or if no ambiguity is possible just

x ∼ 0). As an exercise, the reader might prove that when the ground field k is
algebraically closed, the association

∑
ni (pi) �→

∑
ni defines an isomorphism

CH0(X)/A0(X) � Z. A bit more difficult is to show

CH1(X) �
divisors

divisors of functions
= divisor class group of X � Pic(X),

where Pic(X) is the group of isomorphism classes of line bundles on X. Still
harder is to prove that when X has a rational point, A1(X) is isomorphic to the
group of k-points of the Picard variety of X.

The purpose of these notes is to study algebraic cycles, particularly those
of codimension > 1 as it is here that really new and unexpected phenomena
occur. In keeping with the author’s philosophy that good mathematics “opens
out” and involves several branches of the subject, we will consider geometric,
algebraic and arithmetic problems.

The first three lectures are geometric in content, studying various aspects
of the Abel–Jacobi construction in codimensions > 1. We work with varieties
X over the complex numbers, and define (following Griffiths, Lieberman, and
Weil) compact complex tori (intermediate jacobians) Jr(X) and Abel–Jacobi
maps

Θ : Ar(X)→ Jr(X).

When r = d = dim X, Jr(X) = J0(X) = Γ(X,Ω1
X)∗/H1(X,Z) is called the Al-

banese variety and the Abel–Jacobi map is defined precisely as with curves.
The map Θ : A0(X) → J0(X) is surjective, and in the first lecture we study its
kernel T (X) when dim X = 2. We sketch an argument of Mumford that T (X) �
0 (in fact T (X) is enormous) when Pg(X) � 0, i.e. when X has a non-zero
global holomorphic 2-form. We give several examples motivating the conjec-
ture that Γ(X,Ω2

X) actually controls the structure of T (X) and that in particular
T (X) = 0 ⇐⇒ Γ(X,Ω2

X) = 0. This conjecture can be formulated in various
ways. One vague but exciting possibility is that groups like T (X) provide a ge-
ometric interpretation of the category of polarized Hodge structures of weight
two, in much the same way that abelian varieties do for weight 1.

The second and third lectures consider curves on threefolds. In Lecture 2
we focus on quartic threefolds, i.e. smooth hypersurfaces X of degree 4 in P4,
and verify in that case Θ is an isomorphism. Lecture 3 considers relative alge-
braic 1-cycles on X = C × P1 × P1, where C is a curve. We define a relative
intermediate jacobian which turns out to be a non-compact torus isomorphic
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to H1(C,C∗). The machinery of cycle classes constructed in this lecture is re-
lated in Lectures 8 and 9 to special values of Hasse–Weil zeta functions. Of
particular importance are the classes in H1(C,R) defined by factoring out by
the maximal compact. We show such classes can be defined for any (not nec-
essarily relative) cycle on C × P1 × P1.

Lectures 4 through 6 develop the algebraic side of the theory: the cohomol-
ogy groups of the K-sheaves Hp(X,Kq), the Gersten–Quillen resolution, and
analogues for singular and étale cohomology theories. Of particular interest
are the cohomological formulae

CHp(X) � Hp(X,Kp)

and (for X defined over C)

CHp(X)/Ap(X) � Hp(X,H p),

whereH p denotes the sheaf for the Zariski topology associated to the presheaf
U ⊂ X → Hp(U,Z) (singular cohomology). These techniques are used to
prove a theorem of Roitman that A0(X)tors, the torsion subgroup of the zero-
cycles, maps isomorphically to the torsion subgroup of the Albanese variety.
The heart of the proof is a result about the multiplicative structure of the Ga-
lois cohomology ring of a function field F of transcendence degree d over an
algebraically closed field. We prove for � prime to char F that the cup product
map

H1(F,Z/�Z) ⊗ · · · ⊗ H1(F,Z/�Z)︸��������������������������������������︷︷��������������������������������������︸
d times

→ Hd(F,Z/�Z)

is surjective. It would be of great interest both algebraically and geometrically
to know if the whole cohomology ring H∗(F,Z/�Z) were generated by H1.

The last three lectures are devoted to arithmetic questions. In Lecture 7 we
consider A0(X), where X is a surface over a local or global field k. We assume
the base extension of X to the algebraic closure of k is a rational surface. Using
a technique of Manin involving the Brauer group we show by example that
in general A0(X) � 0. We prove that A0(X) is finite when X has a pencil of
genus-zero curves (conic bundle surface). The key idea in the proof is a sort
of generalization of the Eichler norm theorem, describing the image of the
reduced norm map Nrd: A∗ → k(t)∗ when A is a quaternion algebra defined
over a rational field in one variable over k.

Finally, Lectures 8 and 9 take up, from a number-theoretic point of view, the
work of Lecture 3 on relative intermediate jacobians for curves on C×P1×P1.
We consider the case C = E = elliptic curve and compute explicitly the class
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in H1(E,R) associated to the curve

γ f ,g =
{
(x, f (x), g(x)) | x ∈ E

}
for f , g rational functions on E. When the zeros and poles of f are points of fi-
nite order, we show how to associate to f and g an element in Γ(E,K2) and how
to associate to an element in Γ(E,K2) a relative algebraic 1-cycle on E×P1×P1.
When E has complex multiplication by the ring of integers in an imaginary
quadratic field of class number one, we construct an element U ∈ Γ(EQ,K2)
such that the image under the Abel–Jacobi map into H1(E,R) � C of the asso-
ciated relative algebraic cycle multiplied by a certain simple constant (involv-
ing the conductor of the curve and Gauss sum) is the value of the Hasse–Weil
zeta function of E at s = 2. Conjecturally for E defined over a number field
k, the rank of Γ(Ek,K2) equals the order of the zero of the Hasse–Weil zeta
function of E at s = 0.

I want to thank Duke University for financial support, and my auditors at
Duke for their enthusiasm and tenacity in attending eight lectures in ten days.
I also want to acknowledge that much of the function theory of the diloga-
rithm which underlines the calculations in the last two lectures was worked
out in collaboration with David Wigner, and that I never would have gotten
the damned constants in (9.12) correct without help from Dick Gross. (I may,
indeed, not have gotten them correct even with help.)

Finally, a pedagogical note. When an idea is already well documented in
the literature and extensive detail would carry us away from the focus of these
notes on algebraic cycles, I have been very sketchy. For example, Quillen’s
work on the foundations of K-theory are magnificently presented in his own
paper [10]. I only hope the brief outline given here will motivate the reader to
turn to that source. The reader may also find the rapid treatment of the Mum-
ford argument showing Pg � 0 ⇒ T (X) � 0 in Lecture 1 to be unsatisfactory.
To remedy this, another demonstration rather different in spirit from Mum-
ford’s is included as an appendix. Historically, the negative force of this result
led us all to conclude that, except in certain obvious cases such as ruled sur-
faces, the structure of zero-cycles on a surface was total chaos. I wanted to
devote time to various examples showing that this is not the case. In retro-
spect, I have certainly “left undone those things which I ought to have done”
(e.g. Griffiths’ proof that homological equivalence � algebraic equivalence,
and Tate’s proof of the Tate conjecture for abelian varieties). I hope the reader
will spare me.
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valley, 2e année, Sécr. Math. Paris (1958).

[2] W. L. Chow, On equivalence classes of cycles in an algebraic variety,
Ann. of Math. (2), 64, 450–479 (1956).
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Zero-cycles on surfaces

In this first section I want to consider the question of zero-cycles on an alge-
braic surface from a purely geometric point of view. I will consider a number
of explicit examples, and give a heuristic description of a result of Mumford
[4] that Pg � 0 implies A0(X) is “very large”. In particular A0(X) is not an
abelian variety in this case. Finally I will discuss some conjectures motivated
by these ideas.

For purposes of this lecture, algebraic surface X will mean a smooth pro-
jective variety of dimension 2 over the complex numbers (or, if you prefer, a
compact complex manifold of dimension 2 admitting a projective embedding).
The space of global holomorphic i-forms (i = 1, 2) will be written Γ(X,Ωi

X)
(or Hi,0) and we will write

q = dim Γ(X,Ω1
X), Pg = dim Γ(X,Ω2

X).

If γ is a topological 1-chain on X, the integral over γ,
∫
γ
, is a well-defined

element in the dual C-vector space Γ(X,Ω1
X)∗. If C is a 2-chain,∫

∂C
ω =

∫
C

dω (Stokes’)

so
∫
∂C
= 0 in Γ(X,Ω1

X)∗, since global holomorphic forms are closed. Hence
we may map H1(X,Z) → Γ(X,Ω1

X)∗. It follows from the Hodge-theoretic de-
composition H1(X,C) = H0,1 ⊕ H1,0 that the quotient Γ(X,Ω1

X)∗/H1(X,Z) is
a compact complex torus, called the Albanese of X and written Alb(X). This
torus admits a polarization satisfying the Riemann bilinear relations and hence
is an abelian variety.

Fixing a base point p0 ∈ X, we define φ : X → Alb(X) by φ(p) =
∫ p

p0
.

Note that this is well defined: two paths from p0 to p differ by an element in
H1(X,Z). Notice, finally, that the above discussion is equally valid for smooth
projective varieties X of arbitrary dimension.
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Proposition (1.1)

(i) Let φn : X × · · · × X︸��������︷︷��������︸
n times

→ Alb(X) be defined by φn(x1, . . . , xn) = φ(x1) +

· · · + φ(xn). Then for n � 0, φn is surjective.
(ii) Let ψ : X → A be a map from X to a complex torus, and assume ψ(p0) = 0.

Then there exists a unique homomorphism θ : Alb(X) → A such that the
diagram

X
φ

ψ

Alb(X)

A

θ

commutes.
(iii) The map z0(X)

φ
→Alb(X), where (x) �→ φ(x), factors through the map

φ : CH0(X) → Alb(X). The induced map φ : A0 (X) → Alb(X) is surjec-
tive, and independent of the choice of base point p0.

Proof These results are more or less well known. The reader who is unfamil-
iar with them might try as an exercise to find proofs. (Hint: In (i) consider the
question infinitesimally and use the fundamental theorem of calculus to calcu-
late the derivative of

∫ p

p0
ω. For (iii), reduce the question to showing that a map

P1 → complex torus is necessarily constant.) �

Example (1.2) (Bloch et al. [2]) Let E and F be elliptic curves (Riemann
surfaces of genus 1). We propose to calculate the Chow group of the quotient
surface X = (F × E)/{1, σ}, where σ is a fixed-point-free involution on F × E
obtained by fixing a point η ∈ E of order 2, η � 0, and taking σ( f , e) =
(− f , e+η). Let E′ = E/{1, η}. There is a natural map ρ : X → E′ with all fibres
of ρ � F.

Notice

Γ(X,Ω1
X) � Γ(F × E,Ω1

F×E){1,σ}

�
[
Γ(E,Ω1

E) ⊕ Γ(F,Ω1
F)
]{1,σ}

� Γ(E,Ω1
E) � C

since the automorphism f → − f acts by −1 on Γ(F,Ω1
F). We conclude Alb(X)

has dimension 1. Since Alb(X) → E′ and the fibres of ρ are connected, it
follows that Alb(X) � E′.

Lemma (1.3) Let Y be a smooth quasi-projective variety, n > 0 an integer.
Then An(X) is a divisible group.
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Proof By definition An(X) ⊂ CHn(X) is generated by images under corre-
spondences from jacobians of curves. Since jacobians of curves are divisible
groups, the lemma follows. �

Lemma (1.4) Let Y be a smooth projective variety, and let

T (Y ) = Ker (A0(Y )→ Alb(Y )).

Then T (Y ) is divisible.

Proof For any abelian group A, let N A ⊂ A be the kernel of multiplication by
N. From the divisibility of A0(Y ) one reduces to showing N A0(Y ) � NAlb(Y )
for any N. If Y is a curve, the Chow group and Albanese both coincide with the
jacobian so N A0(Y ) � NAlb(Y ). It will suffice therefore to assume dim Y > 1
and show NAlb(W ) � NAlb(Y) for W ⊂ Y a smooth hyperplane section.
As a real torus, Alb(Y) can be identified with H1(Y,R/Z) and NAlb(Y) =
H1(Y,Z/NZ), so the question becomes the surjectivity of H1(W,Z/NZ) →
H1(Y,Z/NZ) or the vanishing of H1(Y,W; Z/NZ). This group is identified by
duality with H2dim Y−1(Y −W,Z/NZ) = (0) because the Stein variety Y−W has
cohomological dimension = dim Y . �

We now return to our surface X = F × E/{1, σ}.

Claim A0(X) � E′ � Alb(X). That is, T (X) = 0.

Proof We work with the diagram

F × E

π

E

X E′.

If z ∈ T (X) we may write

π∗z =
∑

ri
[
(qi, pi) + (−qi, pi + η)

]
,

where
∑

ri = 0 and
∑

2 ri pi = 0 in E. By Abel’s theorem

2 (q, p) ∼ 2 (q, p + η) on F × E,

(q, p) + (−q, p) ∼ 2 (0, p),

so

2 π∗z ∼
∑

2 ri [(qi, pi) + (−qi, pi)] ∼
∑

4 ri (0, pi)

= [(0) × E] ·
[
F ×
∑

4 ri (pi)
]

∼ 0 .
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It follows that 0 ∼ 2π∗π∗z = 4z, and hence 4T (X) = 0. Since T (X) is divisible,
this implies T (X) = 0. �

Example (1.5) (Inose and Mizukami [3]) Let Y : T 5
0 +T 5

1 +T 5
2 +T 5

3 = 0 in P3,
and let X = Y/(Z/5Z), where we identify Z/5Z with the group of fifth roots of
1 and we let a fifth root ω act on Y by (t0, t1, t2, t3)→ (t0, ωt1, ω2t2, ω3t3). This
action is fixed point free, so X is smooth.

Claim A0(X) = (0).

Proof Let π : Y → X be the projection. Since A0(X) is divisible, it suffices
to show 5A0(X) = π∗π∗A0(X) = (0). Since π∗ is surjective, it suffices to show
π∗π∗ : A0(Y ) → A0(Y ) is the zero map. We fix a fifth root of 1, ω � 1, and let
Z/5Z⊕3 act on Y by

e∗i T j =

{
T j j � i,
ωTi i = j,

i = 1, 2, 3.

This gives us a representation Z [Z/5Z⊕3] � R ⊂ End(A0(Y )), which we
denote by x �→ x̄. One checks immediately

(1.5.1) π∗π∗ = 1 + ē1ē2
2ē3

3 + (ē1ē2
2ē3

3)2 + · · · + (ē1ē2
2ē3

3)4.

The reader can verify also that the quotient of Y by any of the cyclic groups

〈e1e2e3, . . . , e
5
1e5

2e5
3〉 or

〈ei, e
2
i , . . . , e

5
i 〉, i = 1, 2, 3 or

〈eie j, e
2
i e2

j , . . . , e
5
i e5

j〉, i � j

is rational, leading to

0 =
4∑

n=0

ēn
1 ēn

2 ēn
3,

4∑
n=0

e−n
i = 0 =

4∑
n=0

ēn
i ēn

j in R ⊂ End (A0(Y )).(1.5.2)

Since A0 (Y ) is divisible, it will suffice to show π∗π∗ (1.5.1) is trivial in R⊗Q.
Writing F = Q(ω), the left-hand identities in (1.5.2) show that R ⊗ Q is a
quotient of the semi-simple ring F⊗QF⊗QF, so it will suffice to show that
π∗π∗ goes to zero under any homomorphism R⊗Q→ Q̄ = algebraic closure of
Q. A homomorphism h : F ⊗ F ⊗ F → Q̄ amounts to the choice of three non-
trivial fifth roots of 1, ω1, ω2, ω3. For h to factor through R ⊗Q the right-hand
identities in (1.5.2) force ωiω j � 1, i � j. On the other hand, for the image of
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π∗π∗ to be non-trivial, one must have ω1ω
2
2ω

3
3 = 1. One checks easily that the

conditions

ω1ω2ω3 � 1,

ωi � 1, ωiω j � 1, ω1ω
2
2ω

3
3 = 1, i � j = 1, 2, 3

cannot all hold, so π∗π∗ = 0. This proves the claim. �

Remarks The surface in (1.2) is called hyperelliptic; that in (1.5) is a Godeaux
surface. The reader should be warned that the author has exercised his prerog-
ative in selecting these examples very carefully. In particular, both examples
have Pg = 0.

I want now to sketch Mumford’s idea [4] for showing that Pg > 0 im-
plies T (X) is enormous. For another argument, see the appendix to this lec-
ture. Choose a base point p0 ∈ X and define a map ρn from the nth sym-
metric product SnX = set of unordered n-tuples of elements of X to A0 (X),
ρn : SnX → A0 (X), where ρn(x1, . . . , xn) =

∑
(xi) − n(p0). Notice if T (X) = 0,

so A0(X) � Alb(X), the fibres of ρn would be subschemes of SnX of codimen-
sion ≤ q = dim Alb(X). Mumford proves

Theorem (1.6) Assume Pg > 0 and let t ∈ SnX be a general point. Assume
t ∈ W ⊂ SnX is a subscheme on which ρn is constant; that is, ρn(W ) = ρn(t).
Then the codimension of W in SnX is ≥ n.

Idea of proof Let ω be a non-zero global holomorphic 2-form on X. By pull-
ing back along the various projections and adding up, one gets a 2-form

ω̃n = pr∗1ω + · · · + pr∗nω

on the cartesian product Xn = X × · · · × X. The form ω̃n is invariant under the
action of the symmetric group Sn on Xn and so in a certain sense ω̃n descends
to a form ωn on SnX = Xn/Sn. (This part of the argument requires considerable
care because SnX will have singularities.) Quite precisely, if T is a nonsingular
variety parameterizing an effective family of zero-cycles of degree n a general
element of which consists of n distinct points with multiplicity 1, there will be a
“pullback” ωn,T ∈ Γ(T,Ω2

T ) defined. Note that the singularities of SnX occur at
points (x1, . . . , xn) where two or more of the xi coincide. On the complement
(SnX)smooth of the singular set, ωn is well defined. There will be an open set

T 0 ⊂ T and a morphism T 0 ψ
→ (SnX)smooth, and ωn,T will be a holomorphic

extension of ψ∗ωn.
Using the definition of rational equivalence and the fact that there are no

global holomorphic forms on projective space, Mumford shows that if the
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cycles in the family parameterized by T are all rationally equivalent, then
ωn,T = 0. One next notices that if t ∈ (SnX)smooth is general, the two-form ωn

will give a non-degenerate alternating pairing on the tangent space at t. Shifting
t along W, our given subvariety, if necessary we may assume t is a nonsingular
point of W. Resolving singularities of W then does not change the situation
near t, but does show that our non-degenerate pairing, when restricted to the
tangent space of W at t, gives zero. It follows that dim W ≤ 1

2 dim SnX = n, so
codim W ≥ n. �

Example (1.7) (Fatemi [10]) A surface with Pg > 0 and an interesting Chow
group is the Fano surface. Let T be a cubic threefold, that is, a smooth hyper-
surface of degree 3 in P4. Let G be the Grassmann of lines in P4, and let S ⊂ G
be the subvariety of lines on T . The subvariety S is known to be a smooth
connected surface. We write Pic(S ) = CH1(S ), and Pic0(S ) = divisors alge-
braically equivalent to zero modulo rational equivalence. Pic0(S ) is the group
of closed points of the Picard variety of S , and there is an exact sequence

0→ Pic0(S )→ Pic(S )→ NS(S )→ 0,

where NS(S ) = Néron–Severi group of S = subgroup of H2(S ,Z) generated
by classes of divisors.

Intersection of divisors gives bilinear maps

Pic(S )⊗ZPic0(S )→ A0(S ),(1.7.1)

Pic0(S )⊗ZPic0(S )→ T (S ).(1.7.2)

(If D0 is algebraically equivalent to zero and D is any divisor, D · D0 will
have degree 0. The fact that D · D0 ∈ T (S ) if both D and D0 are algebraically
equivalent to zero can be checked by noting that the map

Pic0(S ) × Pic0(S )
intersect

A0(S )→ Alb(S )

is a continuous bilinear map of compact tori, hence trivial (exercise!).)

Claim The intersection maps (1.7.1) and (1.7.2) are surjective.

Proof I will give the proof only for (1.7.1). The minor modification needed
to prove (1.7.2) is left for the reader. Necessary facts about cubic 3-folds can
be found in Clemens and Griffiths [11] or Tyurin [12]. Let r, s ∈ S be general
points. It will suffice (using divisibility of A0(S )) to show that 2(r) − 2(s) ∈
Image(Pic0(S )⊗ZPic(S ) →A0(S )). The line on T corresponding to s ∈ S will
be denoted �s, and Ds will denote the divisor on S

Ds = Zariski closure of
{
t ∈ S | �t ∩ �s � ∅, t � s

}
.
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In general, s � Ds, and Ds ·Dt has degree 5. Thus, if r, s are general (“general,”
in this context, means the points in question do not lie on a finite number of
a priori specified proper closed subvarieties of S ) we can find a general t such
that �s ∩ �t � ∅ and �t ∩ �r � ∅. Since 2((r) − (s)) = 2((r) − (t)) + 2((t) − (s)),
we may assume �r ∩ �s � ∅.

Let L be the plane spanned by �r and �s in P4 and let �t be the third line in
L ∩ T = �r ∪ �s ∪ �t.

l t1

lt2

lt3

l t4
l sl

l t ba

c

r

Through a general point of T there pass 6 lines, and we denote by θ : CH0(T )→
CH0(S ) the correspondence thus defined. CH0(T ) � Z (any two points on T
can be connected by a chain of lines) so we have

θ(a) = (r) + (t) + (s1) + · · · + (s4)

∼ θ(b) = (s) + (t) + (r1) + · · · + (r4)

∼ θ(c) = (r) + (s) + (t1) + · · · + (t4).

On the other hand

Dr · Ds = (t) + (t1) + · · · + (t4),

Ds · Dt = (r) + (r1) + · · · + (r4),

Dr · Dt = (s) + (s1) + · · · + (s4).

Hence

θ(a) − Dr · Dt = (r) + (t) − (s),

θ(b) − Ds · Dt = (s) + (t) − (r),

(Ds − Dr) · Dt ∼ θ(a) − Dr · Dt − θ(b) + Ds · Dt = 2(r) − 2(s). �
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Philosophy The dual to Γ(S ,Ω2
S ) is the second cohomology group of the

structure sheaf, H2(S ,OS ) (Serre duality). The tangent space to Pic0(S ) is
H1(S ,OS ). In the case of the Fano surface, the cup product map induces an
isomorphism Λ2H1(S ,OS ) � H2(S ,OS ). In some mystical sense, the control
exercised by the geometric genus Pg over the size of T (S ) can be seen in the
following schema:

Pic0(S ) ⊗ Pic0(S )

tang. space tang. space

intersection
T (S )

bitang. space

H1(S ,OS ) ⊗ H1(S ,OS )
cup product

H2(S ,OS ) .

The idea of a bitangent space to T (S ) will be discussed further in Lecture 6.

I want to end with a conjecture, motivated in part by these examples. For
any smooth projective variety V , we may define at least the beginnings of a
filtration on CH0(V ) by

F1CH0(V ) = A0(V ) = Ker (deg: CH0(V )→ Z),

F2CH0(V ) = Ker (F1CH0(V )→ Alb(V )).

Presumably the filtration will in general have n steps where n = dim V . Except
in certain simple cases like abelian varieties or products of curves (Bloch [13]),
I don’t have much feeling for what should come beyond F2. We will therefore
“truncate” at F2.

Let X be a surface, and let Γ be a cycle on V × X with dim Γ = n = dim V .
The cycle Γ then induces a map

Γ∗ : CH0(V )→ CH0(X) .

The above filtration being functorial for correspondences, we get also

gr Γ∗ : gr CH0(V )→ gr CH0(X) � Z ⊕ Alb(X) ⊕ T (X).

Conjecture (1.8) The map gr Γ∗ depends only upon the cohomology class
[Γ] ∈ H4(V × X).

I want to discuss some consequences of this conjecture, and to try to make it
more precise. Let Γ(i, j) ∈ Hi(V ) ⊗ H j(X) denote the Künneth components of
Γ (since the graded pieces of CH0 are either divisible or torsion free, we may
as well work with rational cohomology). Because X is a surface, one knows
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(cf. Kleiman [15], 2A10 and 2.9) that the Γ(i, j) are algebraic. Altering Γ by
constant correspondences, we may suppose Γ(0, 4) = Γ(4, 0) = 0.

Lemma (1.9) Assuming conjecture (1.8), Γ(3, 1)∗ : gr CH0(V ) → gr CH0(X)
is zero. The map Γ(1, 3)∗ is zero on F2 CH0(V ).

Proof Let q = dim Alb(X). A Poincaré divisor D of Künneth type (1,1) on
X × Pic0(X) induces via correspondences an isomorphism

D∗ : H2q−1(Pic0(X)) � H1(X).

The inverse of this isomorphism will also be induced by an algebraic corre-
spondence (Kleiman [15], 3.11), so we can factor Γ(3, 1)∗ via an algebraic
correspondence Σ ∈ H3 (V ) ⊗ H2q−1(Pic0(X)). Such a Σ is represented by an
algebraic cycle on V × Pic0(X) of dimension dim V − 1, so on the cycle level
Σ∗CH0(V ) = (0). To study Γ(1, 3)∗ let j : C → X be a smooth hyperplane
section. The map Jacobian(C) → Alb(X) is split up to isogeny (Poincaré re-
ducibility). Since H3(X) � H2q−1(Alb(X)) one shows that there exists an alge-
braic correspondence ψ ∈ H1(V ) ⊗ H1(C) such that (1 × j∗)ψ = Γ(1, 3). Since
F2 CH0(C) = (0), this implies Γ(1, 3)∗F2 CH0(V ) = (0). �

From the point of view of cycles, the interesting correspondences to study
therefore are those of Künneth type (2, 2). Looking at an example like (1.7)
one might be tempted to formulate the fantastically vague:

Metaconjecture (1.10) There is an equivalence of categories between a suit-
able category of polarized Hodge structures of weight 2 and a category built
up from the F2 CH0(X).

Such an equivalence might provide a geometric interpretation of the cate-
gory of Hodge structures of weight 2 analogous to the abelian variety interpre-
tation for weight 1!

I want finally to record two other consequences of (1.8).

Proposition (1.11) Assume conjecture (1.8) holds, and let X be a surface of
geometric genus 0. Then F2 CH0(X) = (0).
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Proof Let ∆ ⊂ X×X be the diagonal. Then ∆∗ = ∆(2, 2)∗ = Id on F2 CH0(X).
Since X has geometric genus 0, H2(X) is generated by divisors, so ∆(2, 2) =∑

ai j Di × Dj where the Di are divisors. But a zero-cycle can be moved away
from a finite union of divisors, so ∆(2, 2)∗ : CH0(X)→ CH0(X) is zero. �

Proposition (1.12) (Conjectural theorem of the hypersquare) Assume con-
jecture (1.8) holds. Let X be a surface and V = V1 × V2 × V3, with all varieties
smooth and connected. Let Γ be a codimension-2 cycle on V×X and let vi j ∈ Vi

be points, i = 1, 2, 3 and j = 1, 2. Then

Γ∗
( ∑

j,k,�=1,2

(−1) j+k+�(vi j, v2k, v3�)
)
= 0 in CH0(X).

Proof View Γ as a family {Γt}t∈V3 of cycles on V1 × V2 × X parameterized by
V3. The Γt are clearly all homologous, so

Γv31∗ = Γv32∗ : F2 CH0(V1 × V2)→ F2 CH0(X).

But the cycle
∑

j,k=1,2(−1) j+k(vi j, v2k) is an element of F2 CH0(V1 × V2) (exer-
cise!). The desired identity is now straightforward. �

For further discussion of this sort of conjecture, the reader can see Bloch [14].
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Appendix: On an argument of Mumford in the
theory of algebraic cycles

S. Bloch
1

Let X be a smooth projective surface over an algebraically closed field k. Let
CH0(X) denote the Chow group of zero cycles modulo rational equivalence on
X, and let A0(X) ⊂ CH0(X) be the subgroup of cycles of degree 0. I will say
that A0(X) is finite dimensional if there exists a complete smooth (but possibly
disconnected) curve C mapping to X such that the map J(C) = Jacobian(C)→
A0(X) is surjective. Some years ago, Mumford proved, in the case k = C, that
Pg(X) > 0 implies A0(X) is not finite dimensional. The purpose of the present
note is to prove an analog of this result applicable in all characteristics. The
role of the geometric genus, which is not a good invariant in characteristic p,
is played by the “transcendental part” of H2

et(X,Q�). The present proof also
reveals the influence of the finite dimensionality of the Chow hypothesis on
the structure of the “motive” of X.

The idea that one could deduce interesting information about the Chow
group by considering the generic zero-cycle was suggested by Colliot-Thélène.
I am indebted to him for letting me steal it.

Lemma (1A.1) Let X be a smooth variety over an algebraically closed field
k, and Y any k-variety. Let n ≥ 0 be an integer. Then, writing K = k(Y ),

CHn(XK) � lim−−→
U⊂Y open

CHn(X ×k U),

where CHn equals codimension-n cycles modulo rational equivalence.

Proof For any variety W and any integer m, let Wm = set of points of codi-

1 The author gratefully acknowledges support from the NSF and from the conference on Chow
groups of rational varieties. The present note grew out of conversations with Colliot-Thélène
at the conference.
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mension m on W. One has

(XK)m = lim←−−
U

(X ×k U)m.

Since

CHn(XK) = Coker
( ∐

x∈(XK )n−1

K(x)∗ −→
∐

x∈(Xk)n

Z
)
,

CHn(X × U) = Coker
( ∐

y∈(X×U)n−1

k(x)∗ −→
∐

y∈(X×U)n

Z
)
,

the desired result is immediate. �

Proposition (1A.2) Let X be a smooth projective surface over k and
let Ω ⊃ k be a universal domain in the sense of Weil. Assume A0(XΩ)
is finite dimensional. Then there exist one-dimensional subschemes
C′,C′′ ⊂ X and a 2-cycle Γ supported on (C′ × X) ∪ (X × C′′) such that
some non-zero multiple of the diagonal ∆ on X ×k X is rationally equivalent
to Γ.

Proof Let C → X be such that J(CΩ) � A0(XΩ), and let C′ ⊂ X be the
image of C. Enlarging k, we may assume C′ defined over k.

Lemma (1A.3) Let k ⊂ K ⊂ K′ be extensions of fields. Then the kernel of
CH2(XK)→ CH2(XK′) is torsion.

Proof If [K′ : K] < ∞ this follows from the existence of a norm CH2(XK′)→
CH2(XK). The case K′ algebraic over K follows by a limit argument. Enlarging
K and K′, we may thus assume K algebraically closed. In this case, CH2(XK′ )
is a limit of Chow groups CH2(X ×K U), where U is a K-variety of finite type.
A K-point of U gives a section of CH2(X) → CH2(X ×K U) so the lemma
follows. �

Proof of proposition (1A.2) Let K be the function field of X over k, and fix an
embedding K ↪→ Ω. Let P ∈ X(Ω) be the corresponding point. Our hypotheses
imply CH2((X − C′)Ω) = (0), so by Lemma (1A.3), there exists N ≥ 1 such
that N(P) = 0 in CH2((X −C′)K). (We abuse notation by writing P also for the
generic point of X. In other words, P is the image in CH2(XK) of the diagonal
∆ in X × X.) By Lemma (1A.1), there exists U ⊂ X open � ∅ such that N ·∆ is
rationally equivalent to zero on (X − C′)×KU. Let C′′ ⊂ X be a subscheme of
codimension 1 containing X − U. The proposition now follows from the exact
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sequence{
cycles supported on
(C′ × X) ∪ (X ×C′′)

}
→ CH2(X ×k X)

→ CH2((X −C′)×k(X −C′′))→ 0. �

Exercise (1A.4) Generalize the definition of finite dimensionality for A0(X)
to varieties X of dimension > 2 and prove the analogue of Proposition (1A.2).

Fix now an � prime to char p, and define

H2(X)trans = H2
et(X,Q�)/Image(NS(X) ⊗Q� −→ H2

et(X,Q�)),

where NS(X) is the Néron–Severi group. We systematically ignore twisting by
roots of 1. An alternative description of H2(X)trans is given by

H2(X)trans = Image(H2
et(X,Q�)→ H2

Gal(K̄/K,Q�)).

Note H2
et(X), NS(X), and hence also H2(X)trans are functorial for correspon-

dences, which we will take to be elements in CH2(X ×k X). In particular, the
diagonal induces the identity on H2(X)trans.

Lemma (1A.5) With notation as in Proposition (1A.2), let Γ be a codimension-
2 cycle on X × X supported on (C′ × X) ∪ (X ×C′′). Then the correspondence
Γ∗ : H2(X)trans → H2(X)trans is zero.

Proof It is convenient to work with étale homology, which is defined for any
k-scheme Y which can be embedded in a smooth k-variety. Write Γ = Γ′ + Γ′′

with Supp Γ′ ⊂ C′ × X and Supp Γ′′ ⊂ X × C′′. Let i′ : C′ × X ↪→ X × X,
i′′ : X ×C′′ ↪→ X × X, and write [Γ′] ∈ H4(C′ × X,Q�), [Γ′′] ∈ H4(X ×C′′,Q�).
For α ∈ H2

et(X,Q�), we have

Γ′∗α = pr2∗(pr∗1(α) · i′∗[Γ′]) = pr2∗i
′
∗(i
′∗pr∗1(α) · Γ′)

= pr2∗i
′
∗(pr∗1i′∗(α) · Γ),

with morphisms labeled as indicated:

C′ × X
i′

pr1

X × X

pr1

C′
i′

X.

Note that NS(X)⊗Q� is self-dual under the cup product pairing on H2
et(X,Q�).

Without changing the image of α in H2(X)trans we may assume, therefore, that
α is perpendicular to NS(X). Since H2(C′,Q�) is generated by the classes of
components of C′, we find i′∗(α) = 0 in H2(C′,Q�), so Γ′∗(α) = 0.
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It remains to show Γ′′∗ (α) = 0 where Γ′′ is supported on X × C′′. We have a
diagram

X ×C′′
i′′

pr2

X × X

pr2

C′′
i′′

X

and the projection formula gives

Γ′′∗ α = pr2∗(i
′′
∗ Γ
′′ · pr∗1α)

= i′′∗ pr2∗(Γ
′′ · i′′∗pr∗1α)

∈ Image(H2(C′′,Q�)→ H2(X,Q�)) ⊂ NS(X) ⊗Q�,

so Γ′′∗ α→ 0 in H2(X)trans. �

We have proven:

Theorem (1A.6) Let X be a smooth projective surface over an algebraically
closed field k, and let k ⊂ Ω be a universal domain. If H2

et(X,Q�) � NS(X)⊗Q�

(� � char k), then A0(XΩ) is not finite dimensional.

Exercise (1A.7) Formulate and prove an analogous result for varieties of
dimension > 2.

Question (1A.8) If E is a supersingular elliptic curve over a field k of char-
acteristic � 0, �, then H2

et(E × E,Q�) = NS(E × E) ⊗ Q�. Is A0(E × E) finite
dimensional?

When k = C, H2
et(X) � NS(X) ⊗Q� if and only if Pg(X) > 0, so we recover

Mumford’s result:

Corollary (1A.9) When k = C, Pg(X) > 0 implies A0(XC) is not finite dimen-
sional.

References for Lecture 1 Appendix

D. Mumford, Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto
Univ., 9 (1968), 195–204.

A. A. Roitman, Rational equivalence of zero-dimensional cycles (in Russian),
Mat. Sb. (N.S.), 89 (131) (1972), 569–585, 671. [Translation: Math. USSR-Sb.,
18 (1974), 571–588.]
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Curves on threefolds and intermediate jacobians

The purpose of this lecture is to give some feeling for the geometry of curves
on threefolds over the complex numbers; in particular the link with intermedi-
ate jacobians. We will focus on the example of a quartic threefold, a smooth
hypersurface X in P4 of degree 4 and will show in this case that A2(X) is iso-
morphic to the intermediate jacobian J 2(X). (In all honesty the proof will not
be quite general, as we shall suppose for technical simplicity that the curve of
lines on X is smooth. This is false, for example, for the Fermat quartic; see Ten-
nison [9]. No one has worked out the details in the general case, which would
involve jacobians of singular curves. It seems likely the final result would be
the same.)

The intermediate jacobians to which these cycles are related can be de-
scribed as follows. Let X be a smooth projective variety and r > 0 an integer.
The complex cohomology H2r−1(X,C) has a Hodge filtration (Deligne [5])

H2r−1(X,C) = F0H2r−1 ⊃ F1 ⊃ · · · ⊃ F2r−1 ⊃ (0).

This complex vector space also has a Z-structure defined by the image of
H2r−1(X,Z) → H2r−1(X,C). In particular, it has an R-structure, so it makes
sense to talk about conjugating an element or a subspace. The key property of
the Hodge filtration is

Fi ⊕ F2r−i � H2r−1(X,C),

Fi ∩ F2r−i−1 � Hi,2r−i−1,

where

Hi, j � H j(X,Ωi
X).
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In particular, we see from this that

dimC Fr = 1
2 dimC H2r−1(X,C),

Fr ∩ Image(H2r−1(X,Z)→ H2r−1(X,C)) = (0),

so the quotient

J r(X) = H2r−1(X,C)/Fr + H2r−1(X,Z)

is a compact complex torus, called the intermediate jacobian.
If dim X = n, Poincaré duality implies

H2r−1(X,C)/Fr � (Fn−r+1H2n−2r+1(X,C))∗,

where ∗ denotes C-linear dual. It follows that

J r(X) � (Fn−r+1H2n−2r+1(X,C))∗/H2n−2r+1(X,Z).

For example, if r = n we find

J n(X) � Γ(X,Ω1
X)∗/H1(X,Z) � Alb(X).

The next step is to define cycle classes in these intermediate jacobians. In
this lecture we restrict ourselves to a concrete intuitive description valid for the
case at hand.

Let X be a smooth projective threefold, and let γ =
∑

ni γi be an algebraic
1-cycle on X. We assume γ is homologous to 0, that is [γ] = 0 in H4(X,Z),
and the idea will be to mimic the construction in Lecture 1 of X → Alb(X) by
associating to (p) − (p0) the integral∫ p

p0

∈ Γ(X,Ω1
X)∗/H1(X,Z).

We choose a 3-chain ∆ on X with ∂∆ = γ and consider
∫
∆

as an element in
the dual space to the space of 3-forms of types (3, 0) + (2, 1). (We are thinking
of J 2(X) = F2H3(X,C)∗/H3(X,Z).) The first point to note is that if ω is of type
(3, 0)+ (2, 1) and ω is exact, then we can write ω = dη, where η has type (2, 0).
(This is an easy consequence of Hodge theory; see Griffiths and Harris [7].)
Stokes’ theorem gives ∫

∆

ω =

∫
γ

η = 0

because there are no (2, 0) forms on a curve. Notice finally if ∆′ is another
3-chain with ∂∆′ = ∂∆ = γ, then ∆′ − ∆ is a 3-cycle so∫

∆′
−
∫
∆

∈ Image (H3 (X,Z)→ F2H3(X,C)∗).
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These remarks suffice to define a cycle class

j(γ) ∈ J 2(X).

Recall that A2(X) is the group of codimension-2 cycles algebraically equiv-
alent to zero, modulo rational equivalence. Since a cycle algebraically equiva-
lent to zero is certainly homologous to zero, one can hope for a map

Θ : A2(X)→ J 2(X), Θ(γ) = j(γ̃),

where γ̃ is a codimension-2 cycle representing γ ∈ A2(X).

Lemma (2.1) The above map Θ is well defined. That is, given a family
{Γt}t∈P1 of codimension-2 cycles parameterized by P1, j(Γt) ∈ J 2(X) is inde-
pendent of t.

Proof It is possible to show that t �→ j(Γt) defines a holomorphic function
P1 → J 2(X). Since P1 is simply connected, this lifts to a holomorphic map
P1 → CN , where N = dim J 2(X). But P1 has no non-constant global holomor-
phic functions, so any such map is constant. �

We want to study the map Θ when X ⊂ P4 is a smooth hypersurface
of degree 4. The family of lines on X is known to form a connected curve F
(Bloch and Murre [3]). In order to avoid certain technical problems which have
never been carefully considered, we will assume that F is smooth. This is the
case “in general” but not, for example, for X : T 4

0 + T 4
1 + T 4

2 + T 4
3 + T 4

4 = 0
(Tennison [9]).

Theorem (2.2) Let X be a smooth quartic threefold and assume the curve of
lines F is smooth. Then

Θ : A2(X)→ J 2(X)

is an isomorphism.

Remark (2.3) If s ∈ F corresponds to the line �s ⊂ X, one can define an
incidence correspondence Σ on F essentially by taking the closure of the set

{(s, t) ∈ F × F − ∆ | �s ∩ �t � ∅}.

One can then identify J 2(X), using a beautiful idea of Tyurin [10] (note, how-
ever, the criticism of Tyurin’s argument in Bloch and Murre [3]) with general-
ized Prym

PΣ(F) = Image (Σ∗ − 1: J(F)→ J(F)).

Here J(F) is the jacobian of F and Σ∗ satisfies a certain quadratic relation
Σ2
∗ + (q − 2)Σ∗ − (q − 1) = 0. The standard Prym would correspond to the case
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q = 1. For the quartic threefold, q = 24. We shall not pursue these ideas further
here.

As a first step toward proving (2.2), we show

Proposition (2.4) Let X be a smooth quartic threefold. Then Θ : A2(X) →
J 2(X) is an isogeny (i.e., Θ is surjective with finite kernel).

Proof In several lemmas:

Lemma (2.5) Let X be a smooth projective threefold, and let π : Y → X
be obtained by blowing up a non-singular closed subvariety V ⊂ X. Then
ΘX : A2(X)→ J 2(X) is an isogeny if and only if ΘY is.

Proof If V is a point, then A2(X) � A2(Y) and J 2(X) � J 2(Y). If V is a
curve, one finds (cf. Beauville [1], Clemens and Griffiths [4]) that A2(Y) �
A2(X) × J(V) and J 2(Y) � J 2(X) × J(V), where J(V) is the jacobian. In either
case, the assertion is clear since ΘY induces the identity on J(V). �

Lemma (2.6) Let X and Y be smooth projective threefolds, and let π : Y X
be a rational map of degree d � 0 (i.e. [k(Y) : k(X)] = d). If ΘY is an isogeny,
then so is ΘX.

Proof One knows from resolution theory that there exists a map Y ′ → Y
obtained by a succession of blowings up with nonsingular centers such that in
the diagram

Y ′

π′

Y
π

X

the arrow π′ is everywhere defined. We know that ΘY an isogeny implies ΘY ′

an isogeny, so we are reduced to the case π : Y → X everywhere defined.
Consider the diagram (commutative for either π∗ or π∗ – see Lieberman [12])

A2(Y)
ΘY

π∗

J 2(Y)

π∗

A2(X)
ΘX

π∗

J 2(X).

π∗

We have π∗π∗ = multiplication by d, and since A2(X) and J 2(X) are divisible
(Lecture 1, (1.3)),

π∗ : π∗(A2(X))� A2(X), π∗ : π∗(J 2(X))� J 2(X).
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In particular, ΘX is surjective. This implies that π∗(A2(Y)) � π∗(J 2(X)), and
hence that this map is an isogeny (its kernel is contained in KerΘY ). The map
π∗ : π∗(J 2(X))� J 2(X) is a map of tori and hence easily seen to be an isogeny,
so the composition ΘX ◦ π∗ = π∗ ◦ ΘY : π∗(A2(X)) → J 2(X) is an isogeny. It
now follows that ΘX is an isogeny. �

A rational map π : V W will be called a conic bundle if there exists
an open dense set W 0 ⊂ W for the Zariski topology such that π is everywhere
defined on π−1(W 0), and a closed embedding

π−1(W 0)
φ

P2
W 0

W 0

realizing π−1(W 0) as a family of conic curves over W 0. If η̄ → W denotes the
geometric generic point in the sense of algebraic geometry, this is equivalent
to the condition that the fibre Vη̄ be isomorphic to the projective line P1

η̄.

Lemma (2.7) Let π : V → W be a conic bundle, where V and W are smooth
and projective of dimensions three and two respectively. Assume that the map

A0(W)→ Alb(W) is an isogeny. Then A2(V)
ΘV−→ J 2(V) is an isogeny.

Proof Since the geometric generic fibre of π is P1, there exists a map f : W′ →
W of finite degree and a diagram

X

ρ φ

W ′ × P1

pr1

V

π

W ′ f
W

where ρ is obtained by a succession of blowings up with nonsingular centers,
and φ is everywhere defined.

We now enumerate a series of exercises for the reader.

Exercise 1 Let T (W′) = Ker (A0(W ′)→ Alb(W′)). Show that f∗T (W ′) = 0.

Exercise 2

T (W ′) �

f ∗
Ker (A2(W ′× P1)→ J 2(W ′× P1)) �

ρ∗

Ker (A2(X)→ J 2(X)) .
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Exercise 3 π∗ ◦ f∗ = φ∗ ◦ ρ∗ ◦ pr∗1 : A0(W ′)→ A2(V). (Hint: Move to general
position.)

Exercise 4 φ∗ : Ker (A2(X)→ J 2(X))� Ker (A2(V)→ J 2(V)).

Exercise 5 Prove (2.7). �

We return now to the proof of (2.4). There exists a non-empty open subset
X 0 of our quartic threefold X such that for all x ∈ X 0 we have:

(i) The intersection of the tangent hyperplane Hx to X at x with X, Hx ∩ X,
has an isolated ordinary double point at x and no other singularities.

(ii) There exist no lines � ⊂ P4 supported on V and passing through x. (This is
because the family of lines on X has dimension 1.)

For x ∈ X 0, let Qx ⊂ Hx be the tangent cone to x on Hx∩X. Set-theoretically
Qx is the union of all lines � ⊂ P4 which are at least triply tangent to X at x. In
terms of equations, one can choose homogeneous forms T0, . . . ,T4 on P4 such
that x = (1, 0, 0, 0, 0) and Hx : T4 = 0. The fact that x is an ordinary double
point on X ∩ Hx means that the equation for X has the form

T 2
0 · q2 (T1,T2,T3) + T0 · r3(T1, . . . ,T4)

+ s4 (T1, . . . ,T4) + T4 · t3 (T0, . . . ,T4) ,

where q2, r3, s4, t3 denote homogeneous polynomials of degrees 2, 3, 4, and
3 respectively. Moreover, q2 is non-degenerate (i.e. equivalent after change of
coordinates to the quadric T 2

1 + T2T3), and Qx : T4 = q2 (T1,T2,T3) = 0. In
particular, Qx is a cone over the smooth rational curve Dx defined by

Dx : T0 = T4 = q2 (T1,T2,T3) = 0 .

There is a conic bundle over X, π : D → X defined with π−1(x) = Dx for
v ∈ X 0.

There is a rational morphism ρ : D → X defined as follows: for x ∈ X 0 and
d ∈ Dx, let �d ⊂ Qx be the line (ruling) passing through d and x. The line
�d meets X in 4 points, at least three of which coincide with x. Define ρ(d) =
“fourth point of intersection of �d and X.”

Lemma (2.8) Let x ∈ X 0 and define Cx = ρ(Dx). Then Cx = Qx ∩ X is
a reduced, irreducible rational curve of degree 8. If x′ ∈ X 0, x′ � x, then
Cx′ � Cx.

Proof of lemma Qx ∩ X = Qx ∩ (X ∩ Hx) is the intersection of two distinct
irreducible hypersurfaces in Hx and hence has pure dimension 1. In particular,
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{x} ∈ Qx ∩ X is not an isolated component. It is clear, set-theoretically, that
ρ(Dx) ⊂ Qx ∩ X and Qx ∩ X − {x} ⊂ ρ(Dx), so we have ρ(Dx) = Qx ∩ X.

The degrees of Qx and X are 2 and 4 respectively, so deg Cx = 8. Also
Cx = ρ(Dx), so Cx is an irreducible rational curve. To show that the intersection
Qx∩X has multiplicity 1, choose two general points p1, p2 ∈ Cx and let �1, �2 ⊂
Qx be the corresponding lines. There exists a hyperplane L ⊂ P4 such that
L ∩ Qx = �1 ∪ �2. Note that (�1 ∪ �2)∩ X contains p1, p2 with multiplicity one,
because �i ∩ X contains x with multiplicity 3. On the other hand,

(�1 ∪ �2) ∩ X = L ∩ Qx ∩ X = L ∩Cx.

If the intersection Qx ∩ X were not smooth at pi, the multiplicity of pi on
L ∩ Qx ∩ X would be > 1.

It remains to show that x′ ∈ X0, x′ � x, implies Cx′ � Cx. Note that Cx ⊂ Hx,
Cx′ ⊂ Hx′ , Hx � Hx′ . If Cx = Cx′ , we would have Cx ⊂ Qx ∩ Hx′ = curve of
degree 2. This is impossible (even set-theoretically) by reason of degrees. �

Returning to the proof of (2.4), let π0 : D0 → X 0 denote the restriction of π
to D0 = π−1(X 0). The morphism π0 is a regular morphism, as is ρ0 : D0 → X.
The idea now is to construct a surface S and a conic bundle U over S by a
“bootstrap” technique. Let Γ ⊂ X be a reduced, irreducible curve. We assume
Γ0 = Γ ∩ X 0 � ∅, and that for some x ∈ Γ0, Γ � Cx. It follows from these
hypotheses that S 0 = π0−1(Γ0) is an irreducible quasi-projective surface, and
ρ0(S 0) ⊂ X has dimension 2. Note that Γ0 ⊂ ρ0 (S 0) (because x ∈ Cx = ρ(Dx)),
so ρ0(S 0) ∩ X 0 � ∅. Choose a projective desingularization and completion S
of S 0 such that ρ0|S 0 extends to a morphism ψ : S → X. Define U0 by the fibre
square

U0

f 0

h0

D0 ρ0

π0

X

S
ψ

X

U0 � ∅, and we have by composition a regular morphism h0 : U0 → X.
S is generically fibred over Γ with rational fibres, so it is easy to see A2(S ) �

Alb(S ). Also f 0−1(s) � P1 for s ∈ S a general point. The hypotheses of (2.7)
are thus verified (taking U = suitable completion of U0) and (2.4) will follow
if we show h0(U0) is dense in X.

Suppose that h0(U0) is not dense in X. This can only happen if for all points
x ∈ ψ(S ) ∩ X0, Cx ⊂ ψ(S ). Take another curve Γ′ analogous to Γ such that
Γ′ � ψ(S ) but Γ′∩ψ(S )∩X0 � ∅. Now repeat the above construction replacing
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Γ by Γ′!! We get ψ′ : S ′ → X. Every surface in X is a hypersurface section by
Lefschetz theory, so ψ′(S ′) ∩ ψ(S ) = finite union of curves. Let E = X0 ∩
ψ′(S ′) ∩ ψ(S ). E is non-empty (it meets Γ′) and open in ψ(S ) ∩ ψ′(S ′), hence
E is an infinite set.

Assume now that the triple (U′, S ′, f ′) is no good either – that is, that
dim h′(U′0) < 3. Then for every x ∈ E, we must have Cx ⊂ ψ(S ) ∩ ψ′(S ′).
This intersection is only a finite union of curves, so the infinite set E must
contain points x � x′ with Cx = Cx′ . This contradicts (2.8), so we conclude
that one of the maps h : U → X or h′ : U′ → X must be of finite degree. This
completes the proof of (2.4). �

We now have for the quartic threefold an isogeny θX : A2(X) ≈ J 2(X), and
we must verify

Theorem (2.2) ΘX is an isomorphism.

Proof Let V ⊃ X be a quartic fourfold which is general containing X. Let
C ⊂ S be respectively the curve of lines on X and the threefold of lines on V .
One knows that S and C are connected (for details cf. Bloch and Murre [3], §1)
and we have assumed C is smooth. Writing Gr(1, n) for the Grassmann of lines
in Pn we have Gr(1, n) is locally a complete intersection (in fact, smooth) of
codimension 2 in Gr(1, n + 1). Since scheme-theoretically C = S ∩ Gr(1, 4) ⊂
Gr(1, 5), smoothness of C implies smoothness of S along C. We now resolve
singularities of S , pulling back the line correspondence in S × V , and assume
both C and S smooth:

X
k

V

L(C)

r2

r1

P
j

p2

p1

L(S )

q2�

q1

C S

(2.9)

where L(C) and L(S ) are the incidence correspondences

L(?) = {(a, b) | a ∈ ?, b ∈ �a = line corresponding to a}

and

P = L(S ) ×V X = {(a, b) | a ∈ S , b ∈ �a ∩ X}. �

Lemma (2.10) P is isomorphic to the blow-up of S along C.

Proof One checks easily that P is smooth, p1 is an isomorphism off the
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pre-image of C, and p−1
1 (C) is a Cartier divisor. By a universal property of

blowings-up, this gives a map

P
π

BLS (C)

S .

The map π is bijective and birational. Since BLS (C) is smooth, π is an isomor-
phism. �

From the known cohomological structure of blowings-up, we get

(2.11) H3(P,Z) � H3(S ,Z) ⊕ H1(C,Z).

Lemma (2.12) The factor H3(S ,Z) ⊂ H3(P,Z) maps to zero under the map
p2∗ : H3(P,Z)→ H3(X,Z).

Proof H3(S ) sits in H3(P) via p∗1 = j∗q∗1. Since p2∗ j∗ = k∗q2∗, it suffices to
show that q2∗q∗1H3(S ) = 0. But this group sits in H3(V,Z) = (0) by Lefschetz
theory. �

Lemma (2.13) The map p2∗ : H3(P,Z)→ H3(X,Z) is surjective.

Before giving the proof of this, let me show how it implies the theorem.
First, by (2.11) and (2.12) we see the correspondence

r2∗r
∗
1 : H1(C,Z)→ H3(X,Z)

is surjective, so the corresponding map on jacobians

J(C)→ J 2(X)

has connected fibres. The diagram

A0(C) � J(C)

connected fibres

A2(X)
isogeny

ΘX
J 2(X)

shows that ΘX is an isogeny with connected fibres, hence an isomorphism,
proving (2.2).

For the proof of (2.13), we work with homology rather than cohomology.
Recall that given a Lefschetz pencil, {Xt}t∈P1 , of m-dimensional hyperplane
sections of a smooth projective variety V and a base point 0 ∈ P1 with X = X0

smooth, there is associated to any choice of a singular fibre Xti and a path �
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from 0 to ti on P1 a cycle class γ ∈ Hm(X,Z). The class γ is the base (boundary)
of a sort of cone Γ supported on

⋃
t∈� Xt with vertex the singular point on Xti

(Wallace [11]). These vanishing cycles are known to generate the kernel of
Hm(X,Z)→ Hm(V,Z). Now (2.13) follows by taking W = L(S ), Y = P in:

Lemma (2.14) Let V be a smooth projective variety defined over C, dim V =
d + 1, φ : W → V a proper morphism, generically finite of degree k (with W
irreducible), X ↪→ V a smooth hyperplane section, and Y = φ−1(X). Then the
image of φ∗ : Hd(Y,Z)→ Hd(X,Z) contains the vanishing cycles.

Proof

Step a. We may assume X generic. Indeed, let P∗ denote the parameter space
for hyperplanes X ↪→ V . We have families

X Y

and

P∗ P∗

with fibres, respectively, hyperplanes Xt ⊂ V and inverse images Yt = φ
−1(Xt) ⊂

W, t ∈ P∗. For t0 ∈ P∗, there exists a neighborhood t0 ∈ U ⊂ P∗ such that XU

and YU contract onto Xt0 and Yt0 respectively. For t ∈ U we get a commutative
diagram of specializations

Hd(Yt,Z)

φ∗

Hd(Yt0 ,Z)

φ∗

Hd(Xt,Z) Hd(Xt0 ,Z).

Assuming Xt, Xt0 smooth, the bottom horizontal arrow is an isomorphism. Thus
to prove the right-hand vertical arrow surjective, it suffices to show the left-
hand one is.

Step b. The sheaf Rdπ∗Z is constructible on P∗, where π : Y → P∗. Let U ⊂ P∗

be a non-empty Zariski open set such that Rdπ∗Z is locally constant on U. Let
� ∈ P∗ be a general line corresponding to a Lefschetz pencil {Xt} on V .

Let X0 = X and let Xt1 , . . . , Xtn denote the singular fibres. Choose paths
τi : [0, 1]→ � such that τi(0) = 0 and τi(1) = ti. We may suppose τi(x) ∈ U for
0 ≤ x ≤ 1. To each τi there corresponds a vanishing cycle δi ∈ Hd(X,Z), and
these vanishing cycles generate the group of vanishing cycles. Let us show, for
example, that δ1 ∈ Image(φ∗).

Since {Xt} is general, we may assume that the singular points of the fibres,
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p1, . . . , pn ∈ V lie in the open set over which φ is étale. Let N be a neighbor-
hood of p1 in V such that φ−1(N) = M(1) ∪ · · · ∪ M(k), where φ : M(i) ∼→ N for
each i. Let ε be close to 1, and let φε : Yε → Xε be the situation over the point
τ1(ε). Since |ε−1| is small, the vanishing cycle δε is “close to disappearing” on
Xε – that is, it is supported on Xε∩N – so it can be lifted to Yε∩M(i) → Xε∩N.
But now the fact that τ1([0, ε]) ⊆ U gives

Hd(Y0)
�

φ0∗

Hd(Yε)

φε∗

Hd(X0) �
Hd(Xε)

δ1 δε.

Since δε ∈ Image(φε∗), we get δ1 ∈ Image(φ0∗). This completes the proof of
Lemma (2.14). �

Remarks on the literature

Intermediate jacobians were first introduced by Weil, and then modified to vary
holomorphically in a family by Griffiths. The cycle map is defined in Grif-
fiths [6] and the first application to Fano varieties, the proof of the irrationality
of the cubic threefold, is in Clemens and Griffiths [4]. The first investigation of
the relation between A2 and J 2 for Fano threefolds is in Murre [8]. I have also
borrowed heavily from Tyurin [10], particularly regarding (2.9) and the proof
of (2.12).

References for Lecture 2

[1] A. Beauville, Variétés de Prym et jacobiennes intermédiaires, Ann. Sci.
Ecole Norm. Sup. (4), 10 (1977), 304–391.

[2] S. Bloch, An example in the theory of algebraic cycles, pp. 1–29 in Alge-
braic K-Theory, Lecture Notes in Math., no. 551, Springer, Berlin (1976).

[3] S. Bloch and J. P. Murre, On the Chow groups of certain types of Fano
threefolds, Compositio Math., 39 (1979), 47–105.

[4] C. H. Clemens and P. A. Griffiths, The intermediate jacobian of the cubic
threefold, Ann. of Math. (2), 95 (1972), 281–356.



36 Lecture 2
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Curves on threefolds and intermediate jacobians
– the relative case

Let X be a smooth quasi-projective variety over a field k, and Y ⊂ X a divisor
with normal crossings. A problem of considerable importance is to develop
a theory of relative algebraic cycles for X relative to Y . This problem arises
geometrically – for example, if X is the resolution of a singular variety X′ and
Y is the exceptional locus, and one wishes to study cycles on X′ (compare the
theory of generalized jacobians of Rosenlicht [4] and Serre [5]). It also arises
in K-theory. Indeed it seems likely that the higher K-groups of a variety admit a
filtration whose successive quotients can be interpreted up to torsion as relative
cycle groups in much the same way that the γ-filtration on K0 relates K0 to the
usual Chow group. (This is a point I hope to take up elsewhere.) Finally, and
rather surprisingly, there are compelling arithmetic reasons to develop such a
theory. An interesting example will be treated at length in Lectures 8 and 9.

One feature of such a theory when k ⊂ C is a theory of cycle classes for
relative codimension-r cycles in the intermediate jacobians J r(X,Y) associated
to the relative cohomology group H2r−1(X,Y) (see below). J r(X,Y) will be a
non-compact complex torus, so one may quotient by the maximal compact
real subtorus to obtain cycle classes in a real or complex vector space. In some
circumstances, one expects these cycle classes to fill out a lattice whose volume
is linked to some value of a zeta function in much the same way the classical
regulator is associated to the value at 1 of the zeta function of a number field.
Indeed, the classical case is precisely the case X = P1 and Y = {0,∞}. The
relative cycles are points in P1 − {0,∞} = Gm corresponding to units in a given
number field.

In this lecture we will work out in some detail the construction of relative
cycle classes of codimension 2 in the intermediate jacobian J 2(X,Y) for the
particular case X = C × P1 × P1 with C a nonsingular projective curve and
Y = (C × P1 × {0,∞}) ∪ (C × {0,∞} × P1) := C × #.
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A one-dimensional algebraic cycle γ =
∑

ni γi on C ×P1 ×P1 will be called
a relative cycle if

(i) all the γi meet C × # properly, and
(ii) if � ⊂ # is any of the four lines, γ ·C × � = 0 as a cycle.

These two conditions are sufficient if no component of γ meets any of the
“corners” C × {i, j}, for i, j = 0,∞. However, for the examples it is convenient
to permit γ to meet the corners, but only in a rather special way. Let p ∈ C × #,
p = (p0, p1, p2), and let Mε = D0 × D1,ε × D2,ε be a product of closed disks
centered at the pi where D0 is fixed and D1 and D2 have radius ε � 1, so p ∈
Mε ⊂ C × P1 × P1. To fix the ideas we will consider only the hard case where
p1, p2 = 0,∞. The discussion when p is a smooth point on C × # is analogous
but easier and is left for the reader. Assume p ∈ Supp γ. Condition (ii) above
implies for ε small that γ ∩ Mε is trivial in H2(Mε, ∂Mε) � H1(∂Mε). Indeed,
we can assume no component of γ meets ∂D0 × D1,ε × D2,ε, so

∂(γ ∩ Mε) � n1 p0 × ∂D1 × p2 + n2 p0 × p1 × ∂D2,

where ni is the multiplicity of intersection of γ with C × �i (�i = corresponding
line) at p. By hypothesis both ni = 0.

Now fix an ε0 for which the above discussion is valid and let Γ be a 3-chain
on Mε0 with ∂Γ = Mε0 ∩γ+τε0 , where τε0 is supported on D0×∂D1,ε0 ×D2,ε0 ∪
D0 × D1,ε0 × ∂D2,ε0 . Define Γε on Mε for ε ≤ ε0 by excision. For γ to be a
relative cycle we require the existence of Γε0 such that Γε0 ∩ C × # = {p} and
such that, moreover, writing x1, x2 for the two obvious meromorphic functions
on P1 × P1, we have

(3.1) lim
ε→0

∫
τε

dx1

x1
∧ dx2

x2
= 0.

(The reader should check this is always the case when p is a smooth point of
C × #.)

Example (3.2) Suppose p = (0, 0, 0), and that γ has two irreducible compo-
nents through p, one with coefficient +1 and the other with −1, parameterized
locally by

{(x, a1xr1 + hot, b1xs1 + hot)}
{(x, a2xr2 + hot, b2xs2 + hot)} (hot = higher order terms).

Changing coordinates (the first coordinate is immaterial) we can rewrite these
parameterizations

{(−, x, b1a−s1/r1

1 xs1/r1 + hot)},
{(−, x, b2a−s2/r2

2 xs2/r2 + hot)}.
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On D0 × ∂D1,ε × D2,ε, a natural chain to take is

τ′ε =
{
(λ(−) + (1 − λ) (−), x, λ(b1a−s1/r1

1 xs1/r1 + hot)

+ (1 − λ) (b2a−s2/r2

2 xs2/r2 + hot)
∣∣∣∣ |x| = ε, 0 ≤ λ ≤ 1

}
.

Assume now s1/r1 = s2/r2. One gets formally∫
τ′ε

dx1

x1
∧ dx2

x2
=

2πi
r1

log

(
br1

1 as1
2

br1
2 as1

1

)
+ o(1).

A similar analysis is valid on D0 × D1,ε × ∂D2,ε, and we find the conditions

(3.2.1)
r1

s1
=

r2

s2
, br1

1 as1
2 = br1

2 as1
1

lead to a relative cycle in (3.2). These conditions will really only begin to make
sense in Lecture 8 after we have studied K-theory and the tame symbol.

In Lecture 2, we defined the cycle map by integration over 3-chains. The
process will be similar here, except that we will deal with a family of 3-chains
∆ε and with a limit of integrals over ∆ε, as ε → 0. Let γ =

∑
ni γi be a

relative algebraic 1-cycle on C × P1 × P1. Let p(1), . . . , p(N) be the points
where components of γ meet C × #, and let Mε( j) be a neighborhood of p( j)
as above, ε ≤ ε0. Taking these neighborhoods to be sufficiently small we may
assume the disjoint union Mε =

∐
Mε( j) ⊂ C × P1 × P1. Let M0

ε ⊂ Mε be the
interior.

On each neighborhood Mε0 ( j) we can define a 3-chain Γε0 ( j) as before with
∂Γε0 ( j) = γ∩Mε0 ( j)−τε0 ( j) with τε0 ( j) supported on ∂Mε0 ( j). We define Γε( j)
for ε ≤ ε0 by excision, so ∂Γε( j) = γ ∩ Mε( j) − τε( j), where |τε( j)| ⊂ ∂Mε( j).
We take Γε =

∐
Γε( j), τε =

∐
τε( j).

Let γε be the homology 2-chain on C ×Gm ×Gm −M0
ε (here γε is a 2-cycle

relative to ∂Mε) obtained from γ by excision. The cycle γε − τε is a 2-cycle on
C ×Gm ×Gm − M0

ε . Let D = (Gm × {1}) ∪ ({1} ×Gm).

Lemma (3.3) There exists a 3-chain ∆ε0 on C ×Gm ×Gm −M0
ε0

with ∂∆ε0 =

γε0 − τε0 + Eε0 , where Eε0 is supported on C × D.

Proof The inclusion C × Gm × Gm − M0
ε0
→ C × Gm × Gm is easily seen to

be a homotopy equivalence. The Künneth decomposition gives therefore

H2(C ×Gm ×Gm − M0
ε0

) � H2(C) ⊗ H1(C) ⊗ H1(C) ⊗ Z.

Note that
dx1

x1
∧ dx2

x2

∣∣∣∣∣
γε

= 0
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by reason of type, so∫
γε−τε

dx1

x1
∧ dx2

x2
= −
∫
τε

dx1

x1
∧ dx2

x2
→ 0, as ε→ 0.

This implies that the class of γε0 − τε0 lies in H2(C) ⊕ H1(C) ⊕ H1(C). Since
this subgroup is the image of H2(C × D), we can find ∆ε0 as claimed. �

We define ∆ε for ε ≤ ε0 by considering the chain ∆ε0 − Γε0 and excising
away M0

ε . We have

(3.3.1) ∂∆ε = γε − τε + Eε, Supp Eε ⊂ C × D.

The next step is to define the appropriate intermediate jacobian.

Definition (3.4) (Deligne [2]) A mixed Hodge structure consists of

(a) a free Z-module of finite type HZ,
(b) a finite increasing filtration (weight filtration) W on HQ = HZ ⊗Z Q,
(c) a finite decreasing filtration F∗ on HC (Hodge filtration).

These data are required to satisfy the condition that there should exist on
grW HC a (necessarily unique) bigradation by subspaces Hpq such that

(i) gr n
W HC = ⊕p+q=nHpq,

(ii) the filtration F∗ induces on grW HC the filtration

grW (F)p = ⊕p′≥p Hp′,q

(iii) H
pq
= Hqp.

Suppose now we are given a mixed Hodge structure H with weights ≤ 2r−1,
that is gr m

W HQ = 0, for m > 2r − 1. The same prescription as before, namely

J r = HC/F
r + HZ,

will in this case give us an abelian complex Lie group; that is, the image of HZ

in HC/Fr is discrete but not necessarily cocompact.

Example (3.5) Let X be a smooth projective variety, and Y ⊂ X a closed
(not necessarily smooth or even connected) subvariety. In general, for a proper
variety Y , Deligne has defined [1] a mixed Hodge structure with weights ≤ k
on Hk(Y,C). He also defined [1] a Hodge structure on the relative cohomol-
ogy Hk(X,Y; C) of weight ≤ k compatible with the morphisms Hk−1(Y,C) →
Hk(X,Y; C) → Hk(X,C) in the relative cohomology sequence. We can thus
consider the relative intermediate jacobian

J r(X,Y) � H2r−1(X,Y; C)/Fr + H2r−1(X,Y; Z).
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More specific example (3.6) Take X = C × P1 × P1, Y = C × # as above,
and let r = 2. Actually, in this case the relative cohomology has a Künneth
decomposition, and we will focus on H1(C) ⊗ H2(P1 × P1, #). Combining the
exact sequence of relative cohomology for (P1×P1, #) with the Mayer–Vietoris
sequence

· · · → ⊕4Hi−1(P1)→ ⊕4Hi−1(pt)→ Hi(#)→ Hi(P1 × P1)→ · · · ,

one checks that there is an isomorphism of Hodge structures

H2(P1 × P1, #) � H0(pt).

Thus

F2(H1(C) ⊗ H2(P1 × P1, #)) = F2H1(C) ⊗ H2(P1 × P1, #) = (0),

so the intermediate jacobian associated to this piece of H3(C × P1 × P1,C × #)
is H1(C,C)/H1(C,Z) � H1(C,C∗).

We next define our cycle map{
relative algebraic
1-cycles on C × P1 × P1

}
→ H1(C,C∗).

Given a relative cycle γ we choose a family of 3-chains ∆ε depending on ε

such that, with notation as before,

∂∆ε = γε − τε + Eε, Supp Eε ⊂ C × D.

If η is a closed global C∞ 1-form on C, we define

(3.7) Pγ(η) = lim
ε→0

−1
4π2

∫
∆ε

η ∧ dx1

x1
∧ dx2

x2
.

Lemma (3.7.1)

(i) The limit in (3.7) is defined and < ∞.

(ii) Pγ(df ) = 0 if f is a C∞ function on C.

(iii) Different choices of ∆ε change Pγ by an integral period of C; that is, Pγ(η)
changes by

∫
α
η for some integral 1-cycle α on C independent of η.

Proof (i) It suffices to examine the situation in a neighborhood M of the finite
set of points where Supp γ meets C×#. On M we can write η = df , and Stokes’
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theorem gives ∫
∆ε∩M

d f ∧ dx1

x1
∧ dx2

x2
=

∫
−τε

f
dx1

x1
∧ dx2

x2
.

(
Note

dx1

x1
∧ dx2

x2

∣∣∣∣∣
γε

=
dx1

x1
∧ dx2

x2

∣∣∣∣∣
D
= 0.

)
Given our hypotheses about relative cycles, it is easy to show that the right-
hand side tends to 0 with ε, which is enough to deduce existence of the limit.

(ii) The argument is precisely the same as for (i), except the integral over
∆ε ∩ M is replaced by the integral over ∆ε.

(iii) Suppose ∆′ε is another family of 3-chains such that

∂∆′ε = γε − τ′ε + E′ε , E′ε ⊂ C × D.

There will exist a 3-chain Tε supported on the boundary of an Mε (notation as
(3.2)) such that ∂Tε = τε − τ′ε. Since H2(C × D) ↪→ H2(C × Gm × Gm) there
will exist a 3-chain Uε supported on C × D such that ∂Uε = Eε − E′ε. Then
∆ε −∆′ε −Uε + Tε is a 3-cycle. Since 1

2πi
dx j

x j
represents an integral cohomology

class on Gm, it follows that

−1
4π2

∫
∆ε−∆′ε−Uε+Tε

η ∧ dx1

x1
∧ dx2

x2
= period of η on C.

Clearly
∫

Uε
η∧ dx1

x1
∧ dx2

x2
= 0. Moreover, for ε small, η = df in some neighbor-

hood of Mε, so ∫
Tε

η ∧ dx1

x1
∧ dx2

x2
=

∫
τε−τ′ε

f
dx1

x1
∧ dx2

x2
→ 0,

as in (i). We conclude

lim
ε→0

−1
4π2

∫
∆ε−∆′ε

η ∧ dx1

x1
∧ dx2

x2
= period of η. �

We now have our cycle map{
algebraic 1-cycles on C × P1 × P1

relative to C × #

}
γ→Pγ

→ H1(C,C∗).

Lecture 8 will be devoted to a special example, where the period will be related
to the Hasse–Weil zeta function of the curve C. For this purpose, it will be
important to factor the non-compact torus H1(C,C∗) by its maximal compact
subgroup – that is, to consider for η a real closed 1-form on C

(3.8) Im Pγ(η) = lim
ε→0

Im

(
−1
4π2

∫
∆ε

η ∧ dx1

x1
∧ dx2

x2

)
.
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One virtue of this is that the assignment γ �→ Im Pγ extends naturally to
all (not necessarily relative) algebraic 1-cycles on C × P1 × P1 which meet
C × # properly:

Im P :

{
all algebraic 1-cycles on C × P1 × P1

meeting C × # properly

}
→ H1(C,R).

In order to see this, let γ now denote any such algebraic 1-cycle on C×P1×P1,
and let Vε =

∐
k Vk,ε ⊂ C be a union of small disjoint disks of radius ε about

the C coordinates of points in |γ| ∩ C × #. Then γ gives a class by excision in
H2(Cε ×Gm ×Gm, ∂Vε ×Gm ×Gm), where Cε = C − V0

ε .
Writing γ′ε = γ − V0

ε × P1 × P1, an analysis of the homology group H2(Cε ×
Gm×Gm, ∂Vε×Gm×Gm) shows that there exists a 3-chain ∆ε on Cε×Gm×Gm

with ∂∆ε = γ′ε + Eε + Fε, where |Eε| ⊂ (Cε ×D) and |Fε| ⊂ ∂Vε ×Gm ×Gm. As
before, we can construct a continuous family of ∆ε depending on ε as ε→ 0.

Lemma (3.9) Let η be a closed real 1-form on C. Then

Im lim
ε→0

∫
∆ε

η ∧ dx1

x1
∧ dx2

x2

is independent of the choice of ∆ε.

Proof Let Wε ⊂ C be the connected, simply connected set obtained by lin-
early ordering the disks Vk,ε and connecting them by narrow strips.

W:

Since W is simply connected, we have η|W = df .
Suppose now ∆̄ε is another 3-chain with

∂∆̄ε = γ
′
ε + Ēε + F̄ε,

|Ēε| ⊂ C × D, |F̄ε| ⊂ ∂Vε ×Gm ×Gm.

Let S = (W×Gm×Gm)∪(C×D). One checks easily that H2(S )→ H2(C×Gm×
Gm). Since Eε +Fε − Ēε − F̄ε is a 2-cycle on S which bounds on C×Gm ×Gm,
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there exist 3-chains T on W ×Gm ×Gm and U on C × D such that ∂T + ∂U =
∂(∆ε − ∆̄ε). In particular ∆ε − ∆̄ε − T − U is an integral 3-cycle, and

Im
∫
∆ε−∆̄ε

η ∧ dx1

x1
∧ dx2

x2
= Im

∫
T+U
= Im

∫
T
= Im

∫
∂T

f
dx1

x1
∧ dx2

x2
.

Note that dx1
x1
∧ dx2

x2
actually represents a class in H2(Gm × Gm,D; R). Also

∂T =
∑

k Fε,k − F̄ε,k rel (C × D). Thus Fε,k − F̄ε,k is a relative
2-cycle on Vk,ε × Gm × Gm, where say Vk,ε is a closed ε-disk about a point
tk ∈ C. It will suffice therefore to show

lim
ε→0

Im
∫

Fk,ε−Fk,ε

( f − f (tk))
dx1

x1
∧ dx2

x2
= 0.

This is straightforward. �
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K-theoretic and cohomological methods

In this lecture we will discuss briefly some of Quillen’s ideas about K-theory,
and their extensions to various other “cohomology theories”. Basic references
are Quillen [3] and Bloch and Ogus [6]. The main results are the cohomologi-
cal interpretations of the cycle groups

Hp(X,Kp) � CHp(X),

Hp(X,H p(Z)) � CHp(X)/Ap(X) (X defined over C),

Hp(X,H p(µ⊗p
�

)) � CHp(X)/�CHp(X).

(For notations, see below.)
Let C be a small category. The nerve of C, NC is the simplicial set with

p-simplices the set of diagrams

x0 → x1 → · · · → xp with xi ∈ ObC, arrows in Morph C.

Face operators arise by omitting objects and composing arrows. Degeneracies
are defined by inserting identity maps. The classifying space for NC is denoted
BC.

An exact category is an additive category M which can be embedded as a
full subcategory of an abelian categoryA in such a way that if

0→ A′ → A→ A′′ → 0

is exact inA and A′, A′′ are isomorphic to objects inM, then A is isomorphic
to an object ofM. (For an intrinsic characterization, see Quillen [3]). Given a
diagram in

0→ M′
i→ M

j
→ M′′ → 0

which is exact in A, Quillen refers to i as an admissible monomorphism and
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j as an admissible epimorphism. A functor F : M → M′ on exact categories
is exact if it preserves exact sequences.

The exact categoryM has a zero object, from which it follows that BM is
contractible (exercise). Quillen’s idea is to build fromM a new category QM
in such a way that

π1(BQM) � k0(M)

�
ZObM

〈[n] − [n′] − [n′′] | 0→ M′ → M → M′′ → 0 exact inM〉 .

He then defines

Kn(M) � πn+1(BQM).

Objects in QM will be the same as objects inM, but a morphism in QM,
M1 −→

QM
M2, is by definition an isomorphism in M of M1 with a subquotient

of M2, that is a filtration M′ ⊂ M′′ ⊂ M1 with M2/M′′, M2/M′, and M′′/M′

inM and an isomorphism Θ : M1 � M′′/M′. In other words, a morphism is a
diagram inM

M1
j

M′′
i

M2,

where i and j are admissible mono and epimorphisms respectively. For exam-
ple, for any M ∈ ObM, there are two canonical maps 0→ M in QM given by
the obvious sub and quotient arrows inM:

0 M.

One defines in this way a loop 0 M , and the map

K0(M)→ π1(BQM)

sends [M] �→ 0 M . (A direct proof that this is an isomorphism, or
even a well-defined map might be awkward. The reader is advised to con-
sult Quillen [3], where a preliminary discussion of covering spaces for spaces
BC helps to grease the skids.) Note finally that an exact functor F : M →M′
induces a functor QM→ QM′.

WhenM is the category of finitely generated projectives over a ring A (asso-
ciated with 1), Quillen gave another definition of K∗(M) � K∗(A). He defined
an H-space BGL(A)+ and a map from the classifying space of the infinite gen-
eral linear group (� lim−−→ BGLn(A))

BGL(A)→ BGL(A)+,

which was acyclic (i.e. induced an isomorphism on homology with coefficients
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in any local system) and hence (by obstruction theory) was universal for maps
BGL(A) → X, X any H-space. He defined Kn(A) = πn(BGL(A)+), n ≥ 1, and
proved πn(BGL(A)+) � πn+1(BQM) (Quillen and Grayson [4]). It is not hard
to show from this

K1(A) � GL(A)/[GL(A),GL(A)] � GL(A)/E(A),

K2(A) � H2(E(A),Z).

Here E(A) is the group of elementary matrices. One knows [1] that E(A) =
[GL(A),GL(A)] and [E(A), E(A)] = E(A). These definitions agreed, therefore,
with definitions given earlier by Bass [1] and Milnor [2] for K1 and K2. K2 can
also be defined to be the center of the universal central extension of E(A):

0→ K2(A)→ St(A)→ E(A)→ 1.

Here St(A) denotes the Steinberg group [2], and universal means that any cen-
tral extension of E(A) by an abelian group G arises via pushout from a unique
homomorphism K2(A)→ G.

Here is a compendium of useful facts about K0,K1,K2 for a commutative
local ring R:

(i) Projective modules over R are free, so K0(R) � Z.
(ii) E(R) = SL(R), so K1(R) � R∗, the unit group of R.

(iii) There is a bilinear pairing

R∗⊗ZR∗ → K2(R),

sending r1 ⊗ r2 to the Steinberg symbol {r1, r2}. This pairing satisfies the rela-
tions

(a) {r,−r} = 1, r ∈ R∗,
(b) {r, 1 − r} = 1 (Steinberg relation), r, 1 − r ∈ R∗,
(c) {r, s}{s, r} = 1, r, s ∈ R∗.

K2(R) is generated by Steinberg symbols, and when R is a field, the above list
of relations is complete (indeed redundant, as (a) and (c) follow from (b)).

We now merely list some of the main results proved by Quillen about the
spaces BQM for general exact categories M. First, let E be the category of
short exact sequences inM. A sequence E ∈ ObE can be written

0→ sE → tE → qE → 0.

We may view s, t, q as functors E →M.
E itself is an exact category, a diagram 0→ E′ → E → E′ → 0 being exact

if and only if the diagrams inM obtained by applying s, t, and g are exact.



48 Lecture 4

Characteristic sequence theorem (4.1) The functor (s, q) : QE → QM ×
QM is a homotopy equivalence (i.e. induces a homotopy equivalence BQE →
BQM× BQM).

Corollary (4.2) Let F′, F, F′′ : M1 → M2 be exact functors, and suppose
natural transformations F′ → F → F′′ are given such that for any object
M1 of M1, 0 → F′(M1) → F(M1) → F′′(M1) → 0 is exact. Then F∗ =
F′∗ + F′′∗ : K∗(M1)→ K∗(M2).

Proof The data given amount to a functor F : M1 → E2, where E2 is the
category of exact sequences forM2. Now apply (4.1). �

Resolution theorem (4.3) Let P be a full subcategory of an exact category
M which is closed under extensions and is such that

(i) for any extension 0→ M′ → M → M′′ → 0 inM, if M is in P then M′ is
in P,

(ii) for any M′′ ∈ M, there exists an exact sequence as in (i) with M ∈ ObP.

Then BQP → BQM is a homotopy equivalence.

Corollary (4.4) Let A be a regular ring,MA the category of finitely generated
A-modules, and PA the category of finitely generated projective A-modules.
Then K∗(MA) � K∗(PA).

Proof Let Pn ⊂ MA be the category of all finitely generated A-modules ad-
mitting a projective resolution of length ≤ n, so P0 = PA and MA = ∪nPn.
The hypotheses of (4.3) apply to Pn ⊂ Pn+1, so

K∗(PA) = K∗(P0) � K∗(P1) � · · · � K∗(∪Pn) � U∗(MA). �

Let A be an abelian category, B ⊂ A a non-empty full abelian subcategory
closed under taking subobjects, quotient objects, and finite products inA.

Devissage theorem (4.5) Suppose that every object M of A has a finite fil-
tration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M such that Mj/Mj−1 ∈ ObP for all j.
Then K∗(B) −→

�
K∗(A).

Localization theorem (4.6) Let B ⊂ A be a Serre subcategory, and letA/B
denote the quotient abelian category. Then there is a long exact sequence of
K-groups · · ·→ Kn(B)→ Kn(A)→ Kn(A/B)→ Kn−1(B)→ · · · .

As an example, let X be a noetherian scheme of finite Krull dimension. Let
MX be the category of coherent OX-modules, and let T i

X ⊂ MX denote the full
subcategory of sheaves whose support has codimension ≥ i. Let Xi denote the



K-theoretic and cohomological methods 49

set of points of X of codimension i. Then T i+1 ⊂ T i is a Serre subcategory, and
the quotient

T i/T i+1 �
∐
x∈Xi

⋃
n

M(OX,x/m
n
X,x),

where OX,x is the local ring at x and mX,x ⊂ OX,x is the maximal ideal. Notice
that an OX,x/m

n
X,x-module admits a finite filtration with successive quotients

OX,x/mX,x = k(x)-modules, so we may apply (4.5) and (4.6) to get (for any R a
ring, Kn(R) := Kn(PR), where PR = f.g. projectives)

(4.7)

· · · →Kn(T i+1) Kn(T i)
∐
x∈Xi

Kn(k(x)) Kn−1(T i+1)

=

· · ·

· · · →Kn−1(T i+2) Kn−1(T i+1)
∐

x∈Xi+1

Kn−1(k(x)) · · · .

The technique of exact couples shows that the above vertical maps fit to-
gether to give a complex∐

x∈X0

Kn(k(x))→
∐
x∈X1

Kn−1(k(x))→ · · · →
∐
x∈Xn

K0(k(x)),

which is the complex of E1-terms of a spectral sequence

(4.8) Ep,q
1 =

∐
x∈Xp

K−p−q (k(x))⇒ Kn(MX).

This construction makes sense for any open set of X, and is functorial for
pullback to open sets, so we obtain a spectral sequence of presheaves for the
Zariski topology on X. To pass to the associated sheaves, some notation is
convenient. For p ∈ Xk and A an abelian group, let ip A denote the sheaf for the
Zariski topology on X obtained by extending by zero the constant sheaf with
value A on the Zariski closure of p, {p̄}, to all of X. For example, if k = dim X
so that p is a closed point, ip A is the skyscraper sheaf with stalk A supported
at p. If k = 0 and X is irreducible, p is the generic point and ip A is the constant
sheaf A on all of X.

For a noetherian ring or scheme we denote by Kn (resp. K′n) the K-theory of
the category of finitely generated projective modules or vector bundles (resp.
the category of all finitely generated modules or of coherent sheaves). On the
scheme level, we define sheaves for the Zariski topology Kn andK′n by sheafi-
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fying the presheaves

U ⊂
open

X → Kn (U) or K′n (U).

The sheaf version of (4.8) reads

(4.9) Ep,q
1 =

∐
x∈Xp

ixK−p−q(k(x))⇒ K′n.

The main theorem, conjectured by Gersten [7] and proved by Quillen [3], is

Theorem (4.10) Let X be a regular k-scheme, where k is a field. Then (4.9)
degenerates at E2. In fact, Ep,q

2 = 0 for p � 0, so the complex of sheaves

Kn →
∐
x∈X0

ixKn(k(x))→
∐
x∈X1

ixKn−1(k(x))→ · · · →
∐
x∈Xn

ixK0(k(x))→ 0

is a resolution of the sheaf Kn (note Kn = K′n since X is regular).

Since exactness of a sequence of sheaves is a local question, the theorem
can be restated:

Theorem (4.11) Let X = Spec R, where R is a regular local k-algebra which
is a localization of a k-algebra of finite type. Then the sequence

0→ Kn(R)→
∐
x∈X0

Kn(k(x))→ · · · →
∐
x∈Xn

K0(k(x))→ 0

is exact.

Exactness of (4.11) is easily seen to follow from

Theorem (4.12) Let X = Spec R as above. Then the maps K∗(T i+1
X ) →

K∗(T i
X) are all zero. For the global case, the corresponding assertion is that

given α ∈ K∗(T i+1
X ) and x ∈ X, there exists an open neighborhood U � x in X

such that α �→ 0 in K∗(T i
U).

It turns out that these results can be established in a more general context
which includes certain cohomology theories, as well as K-theory.
I want to sketch this generalization, as well as the basic idea of the
proof. Let X be a variety over a field k, and consider a “cohomology
theory” H∗(X) which may be one of the following:

(i) k = C, H∗(X) = H∗(X, A), ordinary singular cohomology with coefficients
in some abelian group A (e.g. A = Z, Q, R, or C),

(ii) char k = 0 and H∗(X) = H∗DR(X), de Rham cohomology [10],
(iii) r prime to char k and H∗(X) = H∗et(X, µ

⊗r
n ), étale cohomology with coeffi-

cients in the rth twist of the sheaf µn of nth roots of 1.
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The role of µ⊗r
n in case (iii) is confusing. For purposes of exposition we will

fix an nth root of 1, ξ ∈ k, and identify µ⊗r
n � Z/nZ. Then at the end we will

simply state what the result would be, keeping track of the twist by r.
If Z ⊂ X is a closed subvariety of codimension p, there is (in any of the three

cases above) a notion of cohomology with supports in Z, H∗Z(X), fitting into a
long exact sequence

(4.13) · · · → Hr
Z(X)→ Hr(X)→ Hr(X − Z)→ Hr+1

Z (X)→ · · · .

(A topologist would write Hr
Z(X) = Hr(X, X − Z).) One of the basic tenets of

Grothendieck duality theory (Verdier [8], [9]) is that if X is smooth over k of
dimension n, then for any of the above theories, if we write

Hr(Z) := H2n−r
Z (X),

then Hr(Z) is independent of X and covariant functorial for proper maps Z →
Z′. In fact, H∗(Z) is a Borel–Moore homology theory [9] in the sense that if Z
is itself smooth (but not necessarily complete) of dimension d, then Hr(Z) �
H2d−r(Z) (simply take Z = X in the above discussion).

As a good exercise for understanding the various exact sequences, the reader
should construct an exact sequence (for Z′ ⊂ Z ⊂ X closed subschemes, with
X smooth)

(4.14) · · · → Hr(Z
′)→ Hr(Z)→ Hr(Z − Z′)→ Hr−1(Z′)→ · · · .

Now write

H∗Zp (X) = lim−−→
Z⊂X

codim Z≥p

H∗Z(X)

and deduce from (4.14) long exact sequences (compare with (4.7))

(4.15) · · · →Hr
Zi+1 (X) Hr

Zi (X)
∐
x∈Xi

Hr−2i(k(x)) Hr+1
Zi+1 (X)

=

· · ·

· · · →Hr+1
Zi+2 (X) Hr+1

Zi+1 (X)
∐

x∈Xi+1

Hr−2i−1(k(x)) · · · .

(Here if x ∈ Z ⊂ X is the generic point of Z, then we define H∗(k(x)) :=
lim−−→U⊂Z, open

H∗(U).) Precisely as before, one can use the exact couple technique

to construct a spectral sequence

(4.16) Ep,q
1 =

∐
x∈XP

Hq−p(k(x))⇒ Hp+q(X).
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The filtration F∗H∗(X) deduced from (4.16) is the filtration by codimension of
support; that is, a ∈ F pH∗(X) if and only if there exists Z ⊂ X a subscheme of
codimension p such that a �→ 0 in H∗(X − Z). Also, the complex of E1-terms
(4.16) can be sheafified as in (4.10), and one has

Theorem (4.17) The complex of sheaves∐
x∈X0

ixHp(k(x))→
∐
x∈X1

ixHp−1(k(x))→ · · · →
∐
x∈Xp

ixH0(k(x))→ 0

is a resolution of the Zariski sheafH p associated to the presheaf U → Hp(U).

Corollary (4.18) The E2-term of (4.16) is Ep,q
2 = Hp

Zar(X,H
q). We have

Hp
Zar(X,H

q) = 0 for p > q.

Proof The sheaves in (4.17) have no higher cohomology, so the complex of
abelian groups calculates H∗(X,H p). �

Remark (4.19) For either the étale or singular cohomology H∗(X), one calcu-
lates with a finer topology on X than the Zariski topology. One has a morphism
of sites Xfine

π→ XZar and hence a spectral sequence Hp
Zar(X,R

qπ∗)⇒ Hp+q
fine (X).

This spectral sequence coincides with (4.16) from E2 onward. For a proof
in the de Rham theory, see Bloch and Ogus [6]. The general result is due to
Deligne.

Corollary (4.20) One has

Hp(X,Kp) � CHp(X);

Hp(X,H p) � CHp(X)/Ap(X) , for X over C, H∗(X) = H∗(X,Z);

Hp(X,H p) � CHp(X)/�CHp(X),

for X over k = k̄, H∗(X) = H∗et(X,Z/�Z) (�, char k) = 1.

Proof One has (because the complexes of global sections of (4.10) and (4.17)
calculate the cohomology)∐

x∈Xp−1

k(x)∗ →
∐
x∈Xp

Z→ Hp(X,Kp)→ 0,(4.21)

using that K1(k(x)) = k(x)∗ and K0(k(x)) = Z, and∐
x∈Xp−1

H1(k(x))→
∐
x∈Xp

H0(k(x))→ Hp(X,H p)→ 0.(4.22)
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The idea of the proof for K-theory is that an irreducible family of codimension-
p cycles parameterized by P1

Γ

π1 π2

P1 X

gives rise to a codimension-(p − 1) subvariety π2(Γ) and normk(Γ)/k(π2Γ)(t) on
π2(Γ), where t = π∗1(u) and u is the “standard” function on P1 (u(0) = 0, u(∞) =
∞). For more details, see Quillen [3].

For the étale theory, H1(k(x)) � H1
Gal(k(x), µ�) (Galois cohomology). This

group can be calculated by the Kümmer sequence

0→ µ� → k(x)
∗ �

k(x)
∗ → 0 (k(x) = algebraic closure of k(x))

and the known vanishing of H1
Gal(k(x), k(x)

∗
) (Hilbert’s theorem 90). One gets

H1(k(x)) � k(x)∗/k(x)∗�. Since H0(k(x)) = Z/�Z, the presentation (4.22) for
the étale theory becomes∐

Xp−1

k(x)∗/k(x)∗� →
∐
Xp

Z/�Z→ Hp(X,H p)→ 0,

whence Hp(X,H p) � CHp(X)/�CHp(X).
Finally, for the singular theory H∗(X) = H∗(X,Z) one uses the fact that

algebraic and homological equivalence coincide for divisors to establish

CH1(Γ)/A1(Γ) � H1
Zar(Γ,H

1) ⊂ H2
sing(Γ,Z)

for any complete nonsingular Γ. Now for a diagram

Γ

π1 π2

C X

as before, where C now is any smooth connected curve and Γ is smooth (us-
ing resolution of singularities, we may assume this) one gets a commutative
diagram

H1(k(Γ))

norm

∐
γ∈Γ1

Z

norm

H1(Γ,H1) 0

∐
Xp−1

H1(k(x))
∐
Xp

Z Hp(X,H p) 0.
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The desired isomorphism follows from this. For more details, the reader should
see Bloch and Ogus [6]. �

We now sketch a proof of (4.17), indicating at the end how a similar argu-
ment proves (4.10). First, Theorem (4.17) can be reformulated in the spirit of
(4.12). Given α ∈ Hr

Zp (X) and x ∈ X, it suffices to show there exists an open
neighborhood x ∈ U ⊂ X such that α �→ 0 in Hr

Zp−1 (U). Now, let n = dim X
and let Z ⊂ X be a subscheme of pure codimension p such that α lies in the
image of H2n−r(Z)→ Hr

Zp (X). It suffices to exhibit an open neighborhood U of
x and a closed subscheme Z′ ⊂ U of codimension p − 1 such that Z ∩ U ⊂ Z′

and such that the map H2n−r(Z)→ H2n−r(Z′) is zero.
As a first step, replacing X by an open neighborhood of x and Z by its in-

tersection with this neighborhood, one can construct a cartesian diagram (by a
variant on Noether normalization)

X ×S Z
q

θ

X

π

Z

σ

p S

with S ⊂ An−1 an open subscheme, π smooth with fibre dimension 1, and p
finite. The pullback θ of π will then also be smooth, so by further localization
one can arrange for the image of Z under the section σ, σ(Z) ⊂ X ×S Z, to be
defined by the vanishing of a single function σ(Z) : f = 0. Let Z′ = q(X×SZ) ⊂
X. We have

H∗(Z)
σ∗−→ H∗(X ×S Z)

q∗−→ H∗(Z
′)

so it suffices to show σ∗ = 0. The best way to think of this is topologically.

s (Z )

X × Z
q* ∆

∆

S

Z

q
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If ∆ ∈ H∗(Z), then σ∗(∆) = θ∗∆ ∩ [σ(Z)], where θ∗ : H∗(Z) → H∗+2(X ×S Z)
is topological pullback (which exists even though θ is not proper), ∩ is cap
product, and [σ(Z)] ∈ H2(X ×S Z) is the divisor class. By hypothesis σ(Z) :
f = 0, so [σ(Z)] = 0 in H2(X×SZ) and σ∗ = 0 as claimed. For complete details
of these arguments, the reader is referred to Bloch and Ogus [6].

Remark (4.23) Quillen’s proof of (4.12) differed only in detail from the
above. Given X a regular scheme of finite type over a field k, x ∈ X, and
α ∈ K∗(T i+1

X ), one localizes around x to achieve a diagram

X′ = X ×S Y
q

θ

X

π

Y

σ

p S

where Y is a divisor in X, α ∈ Image(K∗(T i
Y ) → K∗(T i+1

X )), and π smooth with
fibre dimension 1 and p finite. Localizing further, one can arrange (since θ is
smooth with fibre dimension 1) for σ(Y) : f = 0 in X′. Writing S = Spec A,
Y = Spec B, X = Spec C, C′ = C⊗AB, one has K∗(T i

B) σ∗→K∗(T i
C′)

q∗→K∗(T i
C)

and one wants to show σ∗ = 0.
The exact sequence

0→ C′
. f

C′
σ∗

B→ 0
θ∗

is split, and θ∗ is flat, so for any M ∈ Ob T i
B one gets

0→ C′⊗BM
. f
−→ C′⊗BM → M → 0.

In other words, there is an exact sequence

0→ θ∗
. f
−→ θ∗ → σ∗ → 0

of exact functors T i
B → T i

C′ . One now applies (4.1)

θ∗ = θ∗ + σ∗ : K∗ (T i
B)→ K∗ (T i

C′),

that is σ∗ = 0.

Remark (4.24) For ease of exposition, I fixed an identification µn � Z/nZ
in working with the étale theory. This can be avoided. Keeping track of the
twisting, the spectral sequence (4.16) becomes

Ep,q
1 =

∐
x∈Xp

Hq−p
Gal

(
k(x), µ⊗m−p

n

)
⇒ Hp+q

et

(
X, µ⊗m

n

)
,
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and the complex (4.17) reads∐
x∈X0

ix Hp
(
k(x), µ⊗m

n

)
→
∐
x∈X1

ix Hp−1
(
k(x), µ⊗m−1

n

)
→ · · ·

→
∐
x∈Xp

ix H0
(
k(x), µ⊗m−p

n

)
→ 0.

This complex resolves the sheaf H p( µ⊗m
n ) associated to the presheaf U �→

Hp
et(U, µ

⊗m
n ).
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Torsion in the Chow group

The purpose of this lecture is to apply the techniques of Lecture 4 in order to
prove

Theorem (5.1) Let X be a smooth projective variety over an algebraically
closed field k. Then the map A0(X) → Alb(X) induces an isomorphism on
torsion prime to the characteristic of k.

This theorem was first proved geometrically by A. A. Roitman. For a differ-
ent geometric proof, see Bloch [3].

We have seen already (Lecture 1, proof of Lemma (1.4)) that the map on N-
torsion N A0(X) → NAlb(X) is surjective for any N prime to char k. (The proof
given there applies to k = C, but the same discussion is valid quite generally
with singular cohomology replaced by étale.)

Lemma (5.2) Suppose the map N A0(X) → NAlb(X) is injective for any sur-
face X. Then it is so for X of arbitrary dimension.

Proof Let dimension X > 2, and suppose we are given a zero-cycle

δ =
∑

ni (xi)

on X such that Nδ is rationally equivalent to zero. By definition, there exist
irreducible curves Ci ⊂ X and functions fi on Ci such that

∑
( fi) = Nδ.

By a succession of blowings up of nonsingular points on X, one constructs
X′

π→X such that the strict transform C′i of Ci on X′ is nonsingular for all i, and
such that moreover no two C′i meet. Let δ′ =

∑
ni (X′i ) be some lifting of δ to X′

(i.e. π∗δ′ = δ). Then viewing the fi as functions on C′i , we get
∑

( fi) = Nδ′ + η,
where π∗(η) = 0. Since the exceptional divisor in X′ is a union of projective
spaces, it is easy to see that there will exist lines � j ⊂ X′ and functions g j on � j

such that π(� j) = pt,
∑

(g j) = η, and no more than two � j meet at a point.
Let D = ∪C′i ∪ ∪� j. Let Y ⊂ X be a hypersurface section of large degree.
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Suppose D ⊂ Y but Y is otherwise “general.” I claim that such a Y is nonsin-
gular. Let OX′ (1) be the ample bundle on X′ and let Y correspond to a section
σ ∈ Γ(X′,OX′ (d)). Let I be the ideal of D ⊂ X′. We may assume d � 0
so I(d) is generated by its global sections. Since σ is general, this implies by
a standard Bertini argument that Y is nonsingular off of D. Further we may
assume Γ(X′, I(d)) → Γ(X′, (I/I 2)(d)) is surjective and the sheaf (I/I 2)(d) is
generated by global sections. Since rk I/I 2 > 1 and this sheaf is locally free
off the singular points of D, the section of (I/I 2)(d) induced by σ vanishes at
worst at singular points of D. This implies that Y is only singular (possibly) at
Dsing. Finally, since a singular point of D consists of two simple branches, it
will have embedding dimension ≤ 2. Since dim Y ≥ 2, one sees easily that Y
can be chosen nonsingular.

We may continue this construction inductively, cutting Y by a hypersurface
section, etc., until we get

D ⊂ Z ⊂ X,

where Z ⊂ X is a smooth complete intersection of hypersurfaces with dim Z =
2. Notice the cycle δ′ is supported on Z, and Nδ′ is rationally equivalent to 0
(on Z!). One has well-known isomorphisms (cf. Kleiman [8])

Alb(Z) � Alb(X′) � Alb(X)

and a diagram

δ′ ∈ N A0 (Z) NAlb(Z)

�

δ ∈ N A0(X) NAlb(X)

Assuming the top arrow injective, we see δ �→ 0⇒ δ = 0. Since δwas arbitary,
this proves the lemma. �

Lemma (5.3) To establish injectivity N A0(X) → NAlb(X), it suffices to con-
sider the case N = � = prime.

Proof This is straightforward, using divisibility of A0(X) (Lecture 1, (1.3)).
�

We assume henceforth N = � = prime and dim X = 2. We want to prove

�A0(X) → �Alb(X). We work with the reduction mod � of the sheaf K2X dis-
cussed in Lecture 4.

Lemma (5.4) There is an exact sequence (Zariski cohomology)

0→ H1(X,K2)/�νH1(X,K2)→ H1(X,K2/�
νK2)→ �νA0(X)→ 0.
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Proof The rows and columns of the following diagram of sheaves are exact

(5.4.1)

0 0 0

0 �νK2
∐
X0

ix(�νK2(k(x)))
a ∐

X1
ix(µ�ν ) 0

0 K2

x�ν

∐
X0

ix(K2(k(x)))

x�ν

∐
X1

ix(k(x)∗)

x�ν

∐
X2

ix(Z)

x�ν

0

0 K2
∐
X0

ix(K2(k(x)))
∐
X1

ix(k(x)∗)
∐
X2

ix(Z) 0

0 K2/�
νK ∐

X0
ix(K2(k(x))/�ν)

∐
X1

ix(k(x)∗/k(x)∗�
ν
)

∐
X2

ix(�νZ) 0.

0 0 0 0

This is not quite obvious, but becomes so once one observes that the map
labeled a on the top row is surjective. For example one can tensor the divisor
map

∐
X0 ix(k(x)∗)�

∐
X1 ixZ with µ�ν and get∐

X0

ix(k(x)∗⊗µ�ν )
∐
X1

ix µ�ν

∐
X0

ix(�νK2(k(x))).

a

The first row of (5.4.1) implies �νK2 has cohomological dimension ≤ 1, and
the first column now gives the desired sequence, using �νA0(X) � �νCH0(X) �
�νH2(X,K2). �

We can, if we like, pass to the limit in (5.4), getting

0→ H1(X,K2) ⊗Q�/Z� → H1(X,K2 ⊗Q�/Z�)→ A0(X)(�)→ 0,

where A0(X) (�) denotes the �-power torsion subgroup.

Lemma (5.5) H3
et (X,Q�/Z�(2)) � Alb(X)(�).
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Proof The Albanese and Picard varieties of X are dual, so the em-pairing of
Weil (Lang [9]) gives an isomorphism

�νAlb(X) � Hom(�νPic Var(X), µ�∞).

Passing to the limit over ν

Alb(X)(�) � Hom(T�(Pic Var(X)), µ�∞),

where T� = Tate module. In étale cohomological terms

T� (Pic Var(X)) � H1
et (X,Z�(1)),

and Poincaré duality implies

H3
et(X,Q�/Z�(2)) � Hom(H1(X,Z�(1)),H4(X,Q�/Z�(3)))

� Hom(H1(X,Z�(1)), µ�∞)

since H4(X,Q�/Z�(2)) � Q�/Z�. The lemma now follows. �

Theorem (5.6) There exists an isomorphism

α : H1(X,K2 ⊗Q�/Z�) � H3
et(X,Q�/Z�(2))

making the diagram below commute:

H1(X,K2 ⊗Q�/Z�)

α

A0(X)(�) 0

H3
et(X,Q�/Z�(2)) ≈ Alb(X)(�).

0

Note that the right-hand vertical arrow above is the cycle map, so Theo-
rem (5.1) will follow from (5.6).

We prove (5.6) by constructing isomorphisms for any ν

αν : H1(X,K2/�
νK2) � H3

et
(
X, µ⊗2

�ν
)
.

The first step is to interpret H3
et as a Zariski cohomology group. Recall from

Lecture 4, the Zariski sheaves Hq(µ⊗
2

�ν
) on X were defined to be the sheaves

associated to the presheaves U �→ Hq(X, µ⊗2
�ν

). This implies that Hq is the qth
right derived functor of the morphism of topoi π : Xet → XZar, so there is a
Leray spectral sequence

Ep,q
2 = Hp

Zar

(
X,Hq( µ⊗2

�ν
))⇒ Hp+q

et
(
X, µ⊗2

�ν
)
.
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In our case Hq = 0 for q ≥ 3 because dim X = 2, so locally (say on pieces of
an affine covering) X has cohomological dimension 2. Also we wrote down an
acyclic resolution of Hq of length q, so Hp(X,Hq) = 0 for p > q. The above
spectral sequence looks like

0

q

p

0

00

0 0

E
1
1,2

from which E1,2
2 = H1

Zar (X,H2(µ⊗2
�ν

)) � H3
et(X, µ

⊗2
�ν

).
Our objective thus becomes to construct an isomorphism

(5.6.1) αν : H1(X,K2/�
νK2) � H1(X,H2( µ⊗2

�ν
))
.

We will actually construct an exact sequence of sheaves

(5.6.2) 0→ C → K2/�
νK2 → H2( µ⊗2

�ν
)→ 0,

where C is a constant sheaf. (It may well be that C = 0. This is known when
� = 2; Elman and Lam [7].)

Recall Tate’s construction of the Galois symbol [10]

h : K2(k(X))/�νK2(k(X))→ H2
Gal
(
k(X), µ⊗2

�ν
)
.

We have seen in the proof of (4.20) that HGal(k(X), µ�ν ) � k(X)∗/k(X)∗�
ν

, so
there is a cup product pairing

k(X)∗/k(X)∗�
ν × k(X)∗/k(X)∗�

ν → H2
Gal
(
k(X), µ⊗2

�ν
)
.

Define h{ f , g} = f̄ ∪ ḡ where bar denotes class modulo �ν-th powers. To see
f̄ ∪ (1 − f ) = 0, note 1− f is a norm from the field L = k(X)( f �

−ν
), so (1 − f ) =

corL/k(X)(a) for some a ∈ H1
Gal(L, µ�ν ). Using the projection formula

f̄ ∪ (1 − f ) = f̄ ∪ cor (a) = corL/k(X) ( f̄ ∪ a) = �ν cor ( f �−ν ∪ a) = 0.
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The Galois symbol relates the solutions of K2/�
νK2 (5.4.1) and H2 (4.17)

as follows:

0 0

K2/�
νK2 H2( µ⊗2

�ν
)

∐
X0

ix(K2(k(x))/�νK2(k(x)))
h ∐

X0
ix
(
H2

Gal

(
k(x), µ⊗2

�ν
))

∐
X1

ix(k(x)∗/k(x)∗�
ν

)
∐
X1

ix(k(x)∗/k(x)∗�
ν

)

∐
X2

ix(Z/�νZ)
∐
X2

ix(Z/�νZ)

0 0.

(5.6.3)

The reader can show as an exercise that the squares of (5.6.3) commute. We
will thus have our exact sequence (5.6.2) and the ball game will be over, once
we show

Theorem (5.7) h : K2 (k(X))→ H2
Gal (k(X), µ⊗2

�ν
) is surjective.

Proof Note that k(X) has Galois cohomological dimension 2, so there is a
diagram

K2(k(X))
�

h

K2(k(X))

h

K2(k(X))/�2(k(X))

h

0

H2(k(X), µ⊗2
�ν−1

)
H2(k(X), µ⊗2

�ν
)

H2(k(X), µ⊗2
�

)
0.

From this, one reduces to the case ν = 1.
Let f : X → P1 be a dominant rational map. Let F = k(X), K = k(P1) ⊂ F,

and let Y be an affine open subvariety of the generic fibre of f . The subvariety
Y is thus an open curve defined and of finite type over K. We assume Y is
geometrically reduced and connected (i.e. K is algebraically closed in F).

Let K′ ⊃ K be a finite extension field, Y ′ = YK′ , F′ = F · K′, π : Y ′ → Y the
natural finite morphism. Associated to π there is a covariant trace morphism π∗
on étale cohomology, which is analogous to the corestriction on Galois coho-
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mology. In fact, there is a commutative diagram

Hr
et
(
Y ′, µ⊗2

�

)
π∗

Hr
Gal

(
F′, µ⊗2

�

)
cor

Hr
et
(
Y, µ⊗2

�

)
Hr

Gal

(
F, µ⊗2

�

)
.

(5.7.1)

One way to understand this situation is to notice that the “geometric fibres”
of π (i.e. schemes of the form Y ′×Y Spec A, where A is a strictly Henselian
ring lying over some local ring of Y) are finite over Spec A and hence strictly
Henselian. This implies that the higher derived functors of π are trivial, so
that Hr(Y ′, µ⊗2

�
) � Hr(Y, π∗(µ⊗2

�
)). The map π∗ comes from a map on sheaves

π∗(µ⊗2
�Y ′) → µ⊗2

�Y , which on the fibres is simply summing over connected com-
ponents. In particular, the map on sheaves is surjective. Since Y has cohomo-
logical dimension 2, it follows that π∗ in (5.7.1) is surjective.

We were free initially to shrink (localize) Y as much as we wanted, so it will
suffice to show

Image
(
H2(Y, µ⊗2

�

)→ H2(F, µ⊗2
�

)) ⊂ Image
(
K2(F)→ H2(F, µ⊗2

�

))
.

There is also a transfer map tr : K2(F′)→ K2(F), and the diagram

K2(F′)
h

tr

H2(F′, µ⊗2
�

)
cor

K2(F)
h

H2(F, µ⊗2
�

)(5.7.2)

is known to commute (Bass and Tate [2]). Together with (5.7.1) and the sur-
jectivity of π∗, this reduces us to proving

Image
(
H2(Y ′, µ⊗2

�

)→ H2(F′, µ⊗2
�

)) ⊂ Image
(
K2(F′)→ H2(F′, µ⊗2

�

))
for some finite extension K′ of K.

Let K̄ be the separable closure of K and write Ȳ = YK̄ · Ȳ has cohomological
dimension 1, and the Hochshild–Serre spectral sequence implies

H2(Y, µ⊗2
�

)
� H1

Gal
(
K,H1(Ȳ , µ⊗2

�

))
.

The point is (and this explains why we must work with varieties and étale
cohomology rather than the more familiar Galois cohomology of fields) that
H1(Ȳ , µ⊗2

�
) is a finite group. Thus for some finite K′ over K we may suppose

(i) Gal(K/K′) acts trivially on H1(Ȳ , µ⊗2
�

)
;

(ii) H1(Y ′, µ⊗2
�

)
maps onto H1(Ȳ , µ⊗2

�

)
.
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By the previous discussion, we can replace Y and Y ′ and assume (i) and (ii)
hold for Y and K. We then have

H1(K, µ�) ⊗ H1(Y, µ�) H2(Y, µ⊗2
�

)

res

H1(K, µ�) ⊗ H1(F, µ�) H2(F, µ⊗2
�

)

K2(F)/�K2(F)

h

(K∗/K∗�) ⊗ F∗/F∗�

�

(F∗/F∗�) ⊗ (F∗/F∗�)

cup

symbol

(5.7.3)

The reader easily checks that Image(res) ⊂ Image(h) as claimed. �

Remark (5.8) The arguments in this lecture can be pushed further in several
directions. For a surface X over an algebraically closed field of characteristic
prime to �, one can show that the �-power torsion in K1(X), K1(X)(�), maps
onto H2

et(X,Q�/Z�(2)), the map being an isomorphism at least when � = 2.
This leads to some detailed conjectures concerning Chern characters linking
K-theory with finite coefficients and étale cohomology. I hope to publish a
description of these conjectures and the evidence for them elsewhere.

Concerning (5.7), one can show by a similar argument that for F a func-
tion field of transcendence degree n over an algebraically closed field, the cup
product

H1(F, µ�ν )
⊗n ν−→Hn(F, µ⊗n

�ν )

is surjective.
I wonder whether the whole cohomology algebra ⊕Hr(F, µ⊗r

�ν
) might not be

generated by H1? If true, this would imply (identifying µ � Z/�Z) that the
Bockstein maps

Hr(F,Z/�Z)→ Hr+1(F,Z/�Z)

were all zero. Globally this would imply the existence of a divisor D ⊂ X such
that the composition

Hr
et(X,Z/�Z)

Bockstein
Hr+1

et (X,Z/�Z)→ Hr+1
et (X − D,Z/�Z)

was zero. In other words, the image of the Bockstein would lie in the first level
of the “coniveau filtration” (Bloch and Ogus [5]). When the ground field is
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the complex numbers, étale cohomology can be replaced by ordinary (singu-
lar) cohomology. It is known by work of Atiyah and Hirzebruch that torsion
cohomology classes are not always carried by algebraic cycles [1] (unlike the
situation for H2(X,Z), whose torsion subgroup is known to come from Chern
classes of divisors). Is it possible, however, that all torsion classes die in the
complement of a divisor?

References for Lecture 5

[1] M. Atiyah and F. Hirzebruch, Analytic cycles on complex manifolds,
Topology, 1 (1962) 25–45.

[2] H. Bass and J. Tate, The Milnor ring of a global field, in Algebraic K-
Theory II, Lecture Notes in Math., no. 342, Springer, Berlin (1973).

[3] S. Bloch, Torsion algebraic cycles and a theorem of Roitman, Compositio
Math., 39 (1979), 107–127.

[4] S. Bloch, Torsion algebraic cycles, K2, and Brauer groups of function
fields, Bull. Amer. Math. Soc., 80 (1974), 941–945.

[5] S. Bloch and A. Ogus, Gersten’s conjecture and the homology of schemes,
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Complements on H2(K2)

It is possible to study H2(X,K2) infinitesimally and analytically, as well as
algebraically. Although one cannot establish at this time any direct relation
between the results obtained and the structure of the Chow group, it is plau-
sible that such relations exist. Frequently such formal manipulation suggests
conjectures about cycles which can be tested directly.

Suppose for example X is an algebraic surface defined over C, and let K an
2

denote the sheaf for the complex topology on X obtained by sheafifying the
presheaf U → K2(Γ(U,OXan )). One can derive a version of the Gersten–Quillen
resolution for K an

2 . The problem is that the sheaves involved frequently have
non-trivial cohomology so there is no obvious map H2(Xan,K an

2 ) → CH2(X).
There is, however, an obvious map

CH2(X) � H2(XZar,K2)→ H2(Xan,K an
2 ).

The easiest case with which to deal is when Pg = q = 0. In this case, conjec-
turally CH2(X) � Z.

Theorem (6.1) Let X be a surface as above, and assume Pg = q = 0. Then
the image of CH2(X)→ H2(Xan,K an

2 ) is Z, and CH2(X)→ Image is the degree
map.

Proof The existence of a dlog map K an
2 → Ω

2
Xan leads to

CH2(X)

d log
deg

H2(Xan,K an
2 )

d log

H2(X,Ω2) � H2(Xan,Ω2
Xan ) � C,

so Ker(CH2(X)→ H2(Xan,K an
2 )) ⊂ Ker(deg).
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For the other inclusion, let δ be a cycle of degree 0 on X and let C ⊂ X be
a smooth curve with Supp δ ⊂ C. From the exact sequence of analytic sheaves
on C,

0→ C∗Can → O∗Can → Ω1
Can → 0,

one gets a class η ∈ H1(Can,C∗) mapping to [δ] ∈ H1(Can,O∗) � Pic(C). Let
OXan (∞C) denote that sheaf of analytic functions on Xan meromorphic along
C. One has sequences

0→ O∗Xan → OXan (∞C)∗ → j∗ZC → 0, j : C ↪→ X,(6.1.1)

0→ K an
2 → K2(OXan (∞C))

tame
j∗O∗Can → 0,(6.1.2)

and one has a symbol map

(6.1.1) ⊗Z C∗ → (6.1.2).

This gives a commutative diagram

η ∈ H1(Can,Z) ⊗ C∗
∂⊗1

�

H2(Xan,O∗Xan ) ⊗ C∗

H1(Can,C∗) ∂
H2(Xan,O∗Xan ⊗ C∗)

Pic(C) � H1(C,O∗Can )
∂

H2(Xan,K an
2 ).

(6.1.3)

It suffices to note now that the hypotheses Pg = q = 0 imply that H2(Xan,O∗Xan )⊗
C∗ = (0). Indeed, the exponential sequence

0→ ZXan → OXan → O∗Xan → 0

gives

H2(X,OX)→ H2(Xan,O∗Xan )→ H3(Xan,Z).

Since Pg = q = 0, the group on the left vanishes and that on the right is
finite. �

The rest of this lecture is devoted to the infinitesimal structure of H2(X,K2).
We fix a perfect ground field k which in the case of characteristic zero we
assume to be algebraic over Q. (Essentially, when k is not algebraic over the
prime field, a cycle on some variety over k must be viewed as the germ of a
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family of cycles. In the presence of non-trivial derivations of k, the deforma-
tions of k-cycles will be more complicated.) Let X be a smooth geometrically
connected k-variety. We consider a functor CH2

X from the category C of aug-
mented artinian k-algebras to abelian groups defined by

ĈH
2
X(A) = Ker(H2(Xk × A,K2)

augmentation
H2(X,K2)).

Consider first the case char k = 0. The basic local result is

Theorem (6.2) Let R be a local k-algebra, and A an augmented artinian
k-algebra with augmentation ideal m. Put S = R ⊗k A and I = R ⊗km, and
define

K2(S , I) = Ker(K2(S )→ K2(R)),

Ω1
S ,I = Ker(Ω1

S → Ω1
R),

where Ω1 is the module of absolute Kähler differentials. The universal deriva-
tion d : S → Ω1

S induces d : I → Ω1
S ,I , and we have an isomorphism K2(S , I) �

Ω1
S ,I/dI.

The proof is purely algebraic and will not be given in these notes. In terms
of symbols, the map

K2(S , I)→ Ω1
S ,I/dI

is given by

(6.2.1) {1 + ι, s} → log(1 + ι)
ds
s
, ι ∈ I, s ∈ S ∗.

One has an exact sequence (k′ = algebraic closure of k in R)

(6.2.2) k′ ⊗km
1⊗d−→ R ⊗kΩ

1
A,m → Ω1

S ,I/dI → (Ω1
R/dR

) ⊗km→ 0,

which can be used to analyze the structure of K2(S , I).
Thinking of R as the local ring at a variable point on X, we may pass to

Zariski sheaves, getting an exact sequence of sheaves of k-vector spaces

(6.2.3)

0 k ⊗k dm OX ⊗kΩ
1
A K2X×A,X×m (Ω1

X/dOX) ⊗km 0

(Ω1
X⊗km / dOX⊗km

′).
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Here m′ = Ker(d : m→ Ω1
A). Hodge theory gives an exact sequence when X is

complete:

0→ H∗(X,Ω1
X)→ H∗(X,Ω1

A/dOX)→ H∗+1(X,OX)→ 0.

In this case the long exact sequence of cohomology associated to (6.2.3) looks
like

0→ H2(X,OX)⊗(Ω1
A/dm)→ ĈH

2
X(A)

→ H2(X,Ω1
X/dOX) ⊗m H3(X,OX) ⊗Ω1

A

H3(X,OX) ⊗m.

1⊗d

(6.2.4)

Remark (6.2.5) (i) When H3(X,OX) = (0) (e.g. dim X = 2) or when
d : m ↪→ Ω1

A, one gets

(6.2.6) 0→ H2(X,OX) ⊗ (Ω1
A/dm)→ ĈH

2
X(A)→ H2(X,Ω1

X) ⊗m→ 0.

There do exist, however, artinian k-algebras for which d is not injective, so in
general the right-hand term is more complicated.

(ii) A functor F : C → (sets) is said to be pro-representable if there exists a
complete local k-algebra Λ and an isomorphism of functors

F(·) � Morphlocal k-algebra(Λ, ·).

The functor A → H2(X,Ω1
X) ⊗ m is pro-represented by the completion at

0 of the symmetric algebra on the dual vector space to H2(X,Ω1
X). When

H3(X,OX) = (0), (6.2.6) displays ĈH
2
X as a pro-representable quotient and a

non pro-representable kernel. If H2(X,OX) = H3(X,OX) = (0) we see that ĈH
2
X

is itself pro-representable, a result which should be compared with Lecture 1.

For example, when X is a surface, we find ĈH
2
X isomorphic to the formal group

at the origin of the Albanese if and only if H2(X,OX) = (0).

Example (6.2.7) Let A = k[ε, δ](ε2, δ2, εδ). Consider deformations of the
trivial divisor

Dε ∈ Ker(H1(X × k[ε],O∗)→ H1(X,O∗)) � H1(X,OX),

Eδ ∈ Ker(H1(X × k[δ],O∗)→ H1(X,O∗)) � H1(X,OX),
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and consider the product

Dε · Eδ ∈ Ker(H2(X × A,K2)→ H2(X × k[ε],K2) ⊕ H2(X × k[δ],K2))

� H2(X,OX).

If Dε and Eδ are represented by 1-cocycles 1 + di j ε and 1 + ei j δ respectively,
the intersection is represented by {1 + di j ε, 1 + e jk δ}. Viewed as an element in
H2(X,OX)⊗k(Ω1

A/dm), we find Dε ·Eδ represented by {di j e jk}⊗ε dδ. Identifying
Ω1

A/dm � k with generator ε dδ, it follows that intersection of cycles is given
by cup product H1(OX)⊗H1(OX)→ H2(OX). Thus, the non pro-representable
kernel in (6.2.6) does play a role in the cycle theory.

I want finally to discuss the work of Stienstra on ĈH
2
X when X is defined

over a perfect field k of characteristic p � 0. If R is a ring, the big Witt ring of
R, big W(R), is defined additively by

big W(R)+ = (1 + Rt[[t]])∗ = group of power series in R
with constant term 1.

The multiplication is determined by functoriality in R together with the re-
quirement (1 − at)−1 ∗ (1 − bt)−1 = (1 − abt)−1. When pR = 0, big W(R) splits
into a product of rings W(R),

W(R) =
{
E(a0t)E(a1tp)E(a2tp2

) · · ·
}
,

where

E(t) = exp

⎛⎜⎜⎜⎜⎝t + tp

p
+

tp2

p2
+ · · ·

⎞⎟⎟⎟⎟⎠ = Artin–Hasse exponential.

For example, k being perfect one finds that W(k) is a complete characteristic
zero discrete valuation ring with maximal ideal pW(k) and residue field k.

W(R) has a ring endomorphism F induced by the Frobenius r → rp on R
and an additive endomorphism V given by P(t) → P(tp), P being a power
series in t. One has FV = VF = p. The Frobenius on W(k) is an automorphism
and is usually denoted σ. The relation V(Fx · y) = xV(y) holds in W(R), so
W(R) is a module for the Dieudonné ring D = W(k) [F,V]. Relations in D are
FV = VF = p, Fw = wσF, Vw = wσ−1V with W ∈ W(k). An important
variant on these ideas arises by defining

big Ŵ(R) = Ker(R[T ]∗ −→
T �→1

R∗).

Big Ŵ(R) is a module for big W(R) and inherits the same splitting in character-
istic p:

Ŵ(R) = {E(a0t) · · · E(antpn
) | ai nilpotent}.
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We view Ŵ as a functor

(artinian k-algebras)
Ŵ−→ (left D-modules).

(6.3.1) Let M be a left D-module with the following properties:

(i) M is V-adically complete and separated,
(ii) M has no V-torsion,

(iii) M/V M is a W(k)-module of finite length.

For example, M = D/D · (Fn − Vm) or M = k[[V]]. We view M as a right
D-module via

mw = wm, mV = Fm, mF = Vm.

The tensor product M⊗DŴ then becomes a functor

M⊗DŴ : (artinian k-algebras)→ (abelian groups),

which is pro-representable, formally smooth (i.e. a surjection A → B of ar-
tinian k-algebras induces a surjection M⊗DŴ(A)→ M⊗DŴ(B)) and has finite-
dimensional “tangent space”

M⊗DŴ(k[ε]/(ε2)) � M/V M.

Such a functor is called a (smooth) formal group, and it turns out that any
smooth formal group can be represented as M⊗DŴ for some M.

Examples (6.3.2) (i) M = W(k), F = σ, and V = pσ−1. Then

W(k) ⊗DŴ � Ŵ/(1 − V)Ŵ � Ĝm,

where Ĝm is the formal multiplicative group and the map Ŵ → Ĝm is defined
by

E(a0t) · · · E(antpn
)→ E(a0) · · · E(an).

(ii) M = k[[V]] and F = 0. Then M⊗DŴ � Ŵ/VŴ � Ĝa, the formal
additive group.

As seen in characteristic zero, ĈH
2
X is not in general pro-representable. This

means that Ŵ and related functors are inadequate for its description. The trick
is to think of Ŵ as being associated to units in a polynomial ring, that is to K1.
This suggests considering “formal curves” on K2:

ĈK2 : (augmented artinian k-algebras) −→ (abelian groups)

A −→ Ker (K2(A[X])
X �→0−→ K2(A)).
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One can also define for any k-algebra R, curves of length n on K2:

CnK2(R) = Ker (K2(R[X]/Xn+1)→ K2(R)),

and curves on K2:

CK2(R) = lim←−−
n

CnK2(R).

There are bilinear pairings

big W(R) × ĈK2(A)→ K2(R⊗kA),

(1 − rT )−1 × α(X) �→ α(r)

and

CK2(R) × big Ŵ(A)→ K2(R⊗kA),

β(x) × (1 − aT )−1 �→ β(a).

(This makes sense because a is nilpotent.)
Also, when char k = p, there are splittings analogous to splittings on big W

and big Ŵ: ĈK2(A) =
∏
∞ TĈK2(A) (formal typical curves) and CK2(R) =∏

∞ TCK2(R) (typical curves). TCK2 and TĈK2 are D-modules, and the above
pairings give maps

Φ : W(R) ⊗DTĈK2(A)→ K2(R ⊗k A,R ⊗k M)

= Ker (K2(R ⊗k A)→ K2(R)),

Ψ : TCK2(R) ⊗DŴ(A)→ K2(R ⊗k A,R ⊗k M).

This suggests that the role of Ω1 in characteristic p is played by TCK2.
Pursuing this analogy, there is a map

d : W(R)→ TCK2(R)

defined by d(P(t)) = {P(t), t }, where P(t) is a monic power series and {·, ·} is the
Steinberg symbol. (This symbol can be shown to make sense even though t is
not a unit.) Stienstra writes ∂W−→(R) for the D-submodule generated by d(W(R))
in TCK2(R). His main local result is

Theorem (6.3.3) Let R be a regular local k-algebra and A an augmented
artinian local k-algebra. Then the composite

TCK2(R) ⊗DŴ(A)
Ψ→ K2(R⊗A,R⊗m)→ CokerΦ
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is trivial on ∂W−→(R) ⊗DŴ(A), and there is an induced exact sequence

0→ W(R) ⊗DTĈK2(A)→ K2(R ⊗k A,R ⊗km)

→ (TCK2(R)/∂W−→(R)) ⊗DŴ(A)→ 0.

This whole process can be sheafified. One works with presheaves

“lim←−−” Wn(OX), “lim←−−”(TCnK2(OX)/∂W−→(OX))

and cohomology groups

H∗(X,W) := lim←−−
n

H∗(X,Wn(OX)),

H∗(X,TCK2/∂W−→) := lim←−−
n

H∗(X,TCnK2(O)/∂W−→(O)).

The former was first studied by Serre [8]. It is known to satisfy (6.3.1) (i)–(iii),
and the formal groups H∗(X,W)⊗DŴ have been studied by Artin and Mazur.
The groups H∗(X,TCK2/∂W−→) may according to Stienstra have V-torsion and
so not satisfy (6.3.1)(ii). The main geometric consequence of (6.3.3) is

Theorem (6.3.4) Let X be a smooth complete surface over a perfect field of
characteristic p > 0. Then there is an exact sequence for any augmented local
artinian k-algebra A

· · · → H1(X, (TCK2/∂W−→)⊗DŴ(A))
δ

H2(X,W)⊗DTĈK2(A)

→ ĈH
2
X(A)→ H2(X,TCK2/∂W−→)⊗DŴ(A)→ 0.

If H2(X,W) has no p-torsion, the map δ is zero.

Remarks (6.3.5) (i) The point of taking X to be a surface is that H2 is right
exact, so the ⊗D can be brought outside the cohomology.

(ii) It seems certain that H2(X,TCK2/∂W−→)/(V-torsion) is the Dieudonné
module of the Albanese variety of X, although no one has written down a
proof. In the absence of V-torsion, this would make H2(X,TCK2/∂W−→)⊗DŴ the
formal group at the origin of the Albanese. It is certainly true under mild hy-
potheses that H2(X,TCK2/∂W−→) is “the part” of crystalline H3(X) with slopes
in [1, 2), but one doesn’t know precisely the correct hypotheses to impose at
this point.

(iii) The moral is that ĈH
2
X is controlled by the D-modules H2(X,W) and

H2(X,TCK2/∂W−→), and these two (playing the role of H2(X,OX) and H2(X,Ω1
X)

in characteristic zero) have a tendency to be Dieudonné modules, that is to
satisfy (6.3.1)(i)–(iii).
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The non pro-representable part of ĈH
2
x differs from a formal group in that

⊗DŴ is replaced by ⊗DTĈK2. It would be of interest to study algebraically
functors of the form M⊗DTĈK2. Can one give an intrinsic characterization of
such a functor? Can one understand the link between the algebraic properties
of these functors and the geometric properties of the cycles?
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Diophantine questions

A smooth projective algebraic surface X defined over a field k is said to be
rational if its function field becomes rational after extension to the algebraic
closure k̄ of k, that is k̄(X) � k̄(t1, t2) with t1, t2 independent transcendentals. If
k(X) � k(t1, t2) we say X is k-rational. The Chow group CH0(X) is defined as
usual, either geometrically

CH0(X) = Coker
(∐

X1

k(x)∗ →
∐
X2

Z
)

or algebraically by H2(X,K2). The degree map deg: CH0(X) → Z is a bit
tricky. It can be defined either as the composition

CH0(X)→ CH0(X̄)
deg

Z, where X̄ = X ×Spec k Spec k̄,

or directly by assigning to (x), x ∈ X2, deg(x) = [k(x) : k]. Let A0(X) ⊂ CH0(X)
be the kernel of deg.

Proposition (7.1) If X is k-rational, then A0(X) = (0).

Proof Let f : P2
k X be a birational map, defined over k, and let Γ be

its graph. From the geometric definition of CH0 one sees easily that a zero-
cycle can be moved off of any given proper closed subscheme of X or P2. The
correspondences

CH0(X)
Γt
∗−→ CH0(P2)

Γ∗−→ CH0(X)

are therefore inverse isomorphisms. One knows CH0(P2) � Z (exercise). �

The same argument shows, of course, that A0(X) is a k-birational invariant.
To simplify exposition we will tend to assume k is either a local or a global
field. By a technique of Manin involving Brauer groups, we will show A0(X)
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is not in general zero for X a rational surface. We then introduce the Néron–
Severi torus, T = TX , which is the k-torus with character group the Gal(k̄/k)-
module

N = NS(X̄) = CH1(X̄).

The rationality of X implies that N is a finitely generated free abelian group.
By definition,

T (k̄) = HomZ(N, k̄∗)

with the natural Galois action. This torus has been studied by Colliot-Thélène
and Sansuc [2]. They consider a map (as usual H∗(k,M) = H∗Gal(Gal(k̄/k),M))

Φ : A0(X)→ H1(k,T (k̄))

and show (assuming k to be a local or global field) that Image(Φ) is finite.
Using K-theory, we construct an exact sequence (F̄ = k̄(X))

(7.2) H0(k,T (k̄)) −→ H1(k,K2(F̄)/K2(k̄))
µ
−→ A0(X)

Φ−→ H1(k,T (k̄)) −→ H2(k,K2(F̄)/K2(k̄)).

When X has a rational pencil of genus-zero curves (X = conic bundle surface)
we will show for k local or global that H1(k,K2(F̄)/K2(k̄)) is a finite 2-group,
so A0(X) is finite in this case. The heart of the argument is an analog of the
Eichler norm theorem describing the image of the reduced norm

Nrd: A∗ → k(t)∗,

when A is a quaternion algebra over the rational function field k(t) (for k local
or global). As a corollary, we show that if X is a smooth cubic surface (i.e.
X ⊂ P3

k is cut out by a homogeneous function of degree 3), then the only
possible infinite torsion in A0(X) is 3-torsion.

Conjecture (7.3) A0(X) is finite for any rational surface over a local or
global field.

Question (7.4) As the reader will see, the structure of A0(X) is somehow
linked to the places of k where X has bad reduction. Does the order of

Image(A0(X)→ A0(Xkν ))

for the various completions of k have anything to do with the local factors at
bad places in the zeta function of X?
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To convince ourselves there is some interest in the subject, we must show
that A0(X) is not in general zero for a rational surface. The idea is due to Manin,
but I want to give a very “motivic” (some might say very pedantic) exposition.
Let C be the category of finite separable extension fields of k. (We avoid the
temptation to work with the larger category of all k-algebras because of possi-
ble technical problems.) We consider various covariant functors on C

X : C → (sets), k′ → X(k′) (functor of points),

Br: C → (abelian groups), k′ → Br(k′) = H2(k′, k̄∗),

A0(X) ⊂ CH0(X) : C → (abelian groups), k′ → A0(Xk′) ⊂ CH0(Xk′ ).

There is a natural morphism of functors X × X → A0, where (x1, x2) �→
(x1) − (x2). An element a ∈ H2

et(X,Gm)/H2(k, k̄∗) defines a morphism of func-
tors ã : X × X → Br,

ã(x1, x2) = a(x1) · a(x2)−1 ∈ Br(k′), x1, x2 ∈ X(k′).

Manin’s observation is that there exists a morphism A0(X)
ψa

Br making
the diagram

A0(X)

ψa

X × X
ã

Br

commute. In particular, if ãk : X(k) × X(k) → Br(k) is not zero, it follows that
the group A0(Xk) isn’t either.

To define ψa, we associate to a zero-cycle
∑

ni (xi) defined over k′

ψa

(∑
ni (xi)

)
=
∏

i

cor k′(xi)/k′ (a(xi))
ni ∈ Br(k′).

Given a correspondence defined over k′

Γ

p1 p2

Pk′ Xk′

we have (using the existence of transfer for the Brauer group)

ψa(p2∗p
∗
1((0) − (∞))) = ψp∗2(a)(p∗1((0) − (∞)))

= ψp1∗p
∗
2(a)((0) − (∞)).
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But p1∗p
∗
2(a) ∈ Br(P1

k′ )/Br(k′) = (0), so ψa is trivial on cycles rationally equiv-
alent to zero, as desired.

Lemma (7.5) Let X be a rational surface. Then

Br(X)/Br(k) � H1(Gal(k̄/k), Pic(X̄)).

Proof The Brauer group of a surface is a birational invariant, so

H2
et(X̄,Gm) � H2

et(P
2
k̄
,Gm) = (0)

(Grothendieck [11]). The Hochshild–Serre spectral sequence

Ep,q
2 = Hp(Gal(k̄/k),Hq

et(X̄,Gm))⇒ Hp+q
et (X,Gm)

gives rise, therefore, to an exact sequence

Br(k)→ Br(X)→ H1(Gal(k̄/k),H1(X̄,Gm))→ H3(Gal(k̄/k), k̄∗).

The right-hand term vanishes for k local or global. �

Remarks on calculating H1(Gal(k̄/k), Pic(X̄)) If k ⊂ K is a finite extension
such that Gal(k̄/K) acts trivially on Pic(X̄), one checks easily

H1(Gal(k̄/k), Pic(X̄)) � H1(Gal(K/k), Pic(X̄)).

Suppose now F is a finitely generated free abelian group of divisors on XK

such that F → Pic(XK). Let

L = { f ∈ K(X)∗ | ( f ) ∈ F}

and consider the exact sequence

0→ L/K∗ → F → Pic(XK)→ 0.

One has H1(Gal(K/k), F) = (0) (F is a permutation module) whence an exact
sequence

0→ Br(X)/Br(k)
∂

H2(Gal(K/k), L/F∗)→ H2(Gal(K/k), F).

In simple situations, Manin actually writes down 2-cochains fs,t with val-
ues in L ⊂ K(X)∗ such that the fs,t mod(K∗) represent the image of Br(X) in
H2(Gal(K/k), L/K∗). Given a zero-cycle

∑
ni (xi) defined over k and supported

in the complement of the support of L, we have ψa(
∑

ni (xi)) represented by
the 2-cocycle ∏

i

NK(xi)/K( fs,t(xi))
ni

with values in K∗. Here a ∈ Br(X)/Br(k) with ∂a represented by fs,t.
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When K/k is cyclic, one can use the periodicity of Galois cohomology to
identify

H2(Gal(K/k), L/K∗) � LGal(K/k)/k∗NK(X)/k(X)(L),

Br(k) ⊃ H2(Gal(K/k),K∗) � k∗/NK/k(K∗).

In this case one can write down f ∈ LGal(K/k) ⊂ k(X)∗ such that
∑

ni (xi) is not
rationally equivalent to 0 if∏

i

Nk(xi)/k f (xi)
ni � NK∗ ⊂ k∗.

Example (7.6) Châtelet surfaces are defined in affine coordinates by t2
1−at2

2 =

(x − a1)(x − a2)(x − a3), for a, ai ∈ k∗, ai � a j (Châtelet [1], Manin [5]). In this
case we can take K = k(

√
a). Manin shows that given k-points p1, p2 on the

surface such that the functions

f1 =
x − a1

x − a3
, f2 =

x − a2

x − a3

are defined and invertible at p1 and p2, if at least one of the ratios

fi(p1)
fi(p2)

� NK/k(K∗), i = 1, 2,

then p1 is not rationally equivalent to p2. Take for example

t2
1 − 5t2

2 = x(x − 1)(x − 7), k = Q.

For each value of x � 0, 1, 7 we obtain a conic curve, the rationality of which
(over Q) is determined by the Hilbert symbol

(5, x(x − 1)(x − 7)).

To obtain rational fibres take x = −1,

(5, (−1)(−2)(−8)) = (5,−1) = 1 (−1 ≡ 22 mod 5)

and x = 31,

(5, 31 · 30 · 24) ≡ (5, 31 · 5) = 1

(5 ≡ 62 mod 31 and 31 ≡ 1 mod 5; also (5, 5) = (5,−1) = 1). Let p1 be a
rational point in the curve over x = −1, p2 a rational point over x = 31:

f1(p1) =
−1
−8
≡ 2 mod NK/k k∗,

f1(p2) =
31
24
≡ 31

6
mod NK/k k∗.

To show p1 and p2 not rationally equivalent, we may at this point pass to a
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larger field, working with the 5-adic completions k5 = Q5 and K5 = Q5(
√

5).
The field K5 is tamely ramified over k5, so local class field theory implies

NK5/k5 K∗5 = 5Z · (1 + 5Ok5 )∗ · µ2
k5
, µk5 ⊂ k∗5 roots of 1.

Since 2 is not a square mod 5, we get f1(p1) � NK5/k5 K∗5. On the other hand,
31
6 ≡ 1 mod 5, so 31

6 ∈ NK5/k5 K∗5. We conclude that p1 is not rationally equiva-
lent to p2, even over Q5.

Our objective now is to construct the fundamental exact sequence (7.2).

Proposition (7.7) Let X be a smooth surface defined over k, and let Y be
obtained from X by blowing up a k-point. Then Γ(X,K2) = Γ(Y,K2) and
H1(X,K2) ⊕ k∗ = H1(Y,K2).

Proof Let F = k(X) and let e be the generic point of the exceptional divisor
E on Y . Consider the diagram

(7.7.1)

0 0

0 k∗ k(e)∗
∐
E1

0
Z 0

K2(F)
∐
y∈Y1

k(y)∗
∐
Y2

Z

K2(F)
∐
x∈X1

k(x)∗
∐
X2

Z .

0 0

(As usual, the superscript 0 indicates that the right-hand column is in degree 0.)
The middle and right-hand columns and the upper row are exact. The middle
and lower rows are complexes whose cohomology is identified with the coho-
mology of K2 on Y (resp. X) (cf. Lecture 4). These complexes are covariant
functorial for proper maps. Using the contravariant functoriality of Γ( · ,K2),
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we get a commutative diagram

(Y,K2)

K2(F),

(X,K2)

whence Γ(X,K2) � Γ(Y,K2). The assertions about H1 follow from diagram
chasing on (7.7.1). �

Definition (7.8) A rational surface X defined over k will be said to be split
over an extension field k′ if there exists a diagram

X′k′
p q

Xk′ P2
k′

such that the arrows p and q arise from a succession of blowings up of k′-
points.

It is known that there always exists k′ finite over k splitting X.

Proposition (7.9) Let X be a k-rational surface split over k. Then Pic(X) �
Pic(X̄) and H1(X,K2) � Pic(X)⊗Zk∗.

Proof The assertions of the proposition are true for X = P2. (For compu-
tations of Hp(Pn,Kq) see Gillet [14], Sherman [15].) One now applies (7.7)
noting that Pic(Y) � Pic(X) ⊕ Z, and checking that the extra factor of k∗ in
H1(Y,K2) comes from the map

Pic(Y) ⊗ k∗ = H1(Y,Gm) ⊗ k∗ → H1(Y,K2)

deduced from the Steinberg symbol Gm ⊗ k∗ → K2. �

Now let X be a rational surface defined over k, and let k′ be a Galois exten-
sion of k splitting X. Note in particular that X will be k′-rational, so A0(Xk′) =
(0) by (7.1). Write X′ = Xk′ , F′ = k′(X), and N = Pic(X′). We get exact
sequences (defining Z)

(7.10) 0→ Z →
∐

x′∈X′1

k′(x′)∗ →
∐
X′2

0
Z→ 0,

0→ K2(F′)/K2(k′)→ Z → N⊗k′∗ → 0.
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One has

H∗(k′/k,
∐

X′1 k′(x′)∗) �
∐

x∈X1
H∗(k′/kx, k′(x)∗)

by Shapiro’s lemma, where kx = k′ ∩ k(x). Also

Γ(k′/k,
∐

X′2
0Z) �

∐
X2

0Z.

It follows from the first sequence in equation (7.10) and Hilbert 90 that A0(X) �
H1(k′/k,Z). Substituting in the second sequence yields

(7.11) Γ(k′/k,N⊗k′)→ H1(k′/k,K2(F′)/K2(k′))→ A0(X)

→ H1(k′/k,N⊗k′)→ H2(k′/k,K2(F′)/K2(k′)) .

Finally, (7.11) may be identified with (7.2) by observing that the intersection
pairing on N is perfect, so N⊗k′∗ � Hom(N, k′∗) as Galois modules.

Let v be a non-archimedean place of the field k. A surface X defined over k
is said to have good reduction at v if there exists X̃ → Spec(Ov) smooth and
projective with X̃kv � Xkv . For k a global field, any smooth k-surface will have
good reduction at all but a finite number of places.

Theorem (7.12) Let X be a rational surface defined over a local or global
field k.

(i) If X has good reduction at a non-archimedean place v of k, then the map
Φv : A0(Xkv )→ H1(k̄v/kv,T (k̄v)) deduced from (7.2) is zero.

(ii) Quite generally, the image of Φ : A0(X)→ H1(k̄/k,T (k̄)) is finite.

Proof Local duality (Serre [13]) implies that H1(k̄/k,T (k̄)) is finite for k a
local field. Global duality (Nakayama [12]) says for k global, the kernel of
H1(k̄/k,T (k̄)) → ∏v H1(k̄v/kv,T (k̄v)) is finite. These results show that (i) ⇒
(ii), so it suffices to prove (i).

Lemma (7.12.1) Let R be a complete discrete valuation ring with residue
field f and quotient field k. Let f : X̃ → Spec R be smooth, projective, geomet-
rically irreducible, and assume the closed fibre X0 is a rational surface split
over f. Then the generic fibre X is rational and split over k.

Proof An f-valued point of X0 lifts by smoothness to an R-valued point of X̃,
so a morphism X0(1)→ X0 obtained by blowing up an f-point lifts to a diagram

X0(1) ⊂ X̃(1)

blow up an R-point

X0 ⊂ X̃.
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We may thus build a figure

Ỹ ⊃

blowings up

Y0

blowings down

X̃ ⊃ X0 P2
f
⊂ R2

R.

Let E0 ⊂ Y0 be an exceptional curve of the first kind. There exists a unique
family of exceptional curves of the first kind Ẽ ⊂ Ỹ lifting E0. Indeed, the
normal bundle of E0 � P1 in Y0 is O(−1), so both zeroeth and first cohomol-
ogy groups of the normal bundle vanish, implying uniqueness and existence of
liftings.

We may now blow down Ẽ on Ỹ in much the same way as E0 on Y0. Iterating,
we get a diagram

Y0 ⊂ Ỹ

P2
f
⊂ Z̃

where Z̃ is smooth and projective over Spec R with closed fibre P2
f
. Since P2

f

is rigid, it follows that Z̃ � P2
R. Passing now to the generic fibres we get Xk ←

Yk → Zk � P2
k , both morphisms being obtained by successive blowings up of

k-points. �

We return now to the proof of (7.12)(i). Let k be the local field, o ⊂ k the
ring of integers, and let

X̃ → Spec o

be smooth and projective with special fibre X0 and generic fibre X. Let k′ be an
unramified extension with residue field f′ splitting X0. The units o′∗ in the ring
of integers o′ ⊂ k′ are cohomologically trivial [13] so N ⊗ o′∗ is cohomolog-
ically trivial (Serre [13], theorem 9, p. 152). (Here N = Pic(Xk′) = Pic(Xk̄).)
The sequence

0→ N⊗o′∗ → N⊗k′∗ → N → 0

yields H1(k′/k,N⊗k′) � H1(k′/k,N).
Because N � Pic(X0,f′ ), there is an exact sequence of Gal(k′/k) (= Gal(f′/f))

modules (F
′

0 = f
′(X0))

0→ F′∗0 /f
′∗ → Div(X0,f′)→ N → 0.
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Since Div(X0,f′) is a permutation module, we obtain a diagram with exact rows
(F′ = k′(X))

(7.12.2)

A0(X) Φ
H1(k′/k,N⊗k′)

θ(7.2)
H2(k′/k,K2(F′)/K2(k′))

tame

0 H1(k′/k,N)
∂

H2(k′/k, F′∗0 /f
′∗).

Here tame: K2(F′) → F′∗0 is the tame symbol associated to the divisor X0,f′

on X̃ ×Spec oSpec o′. The fact that Φ = 0 now follows from

Lemma (7.12.3) The square in (7.12.2) is commutative up to sign.

Proof A point x′ ∈ X1
k′ can be viewed as the generic point of a divisor {x′}

on X̃ × Spec o′ flat over Spec o′ with function field k′(x′). The intersection
{x′} ∩ X0,f′ is a divisor on {x′}, so we obtain a valuation map

αx′ : k′(x′)∗ → Div(X0,f′ ).

Adding up over various x′, we obtain a diagram

K2(F′)
2©

1©

∐
x′∈X1

k′

k′(x′)∗

α=αx′

F′∗0 Div(X0,f′ ).

The maps labeled 1© and 2© are tame symbols and the diagram commutes up to
a sign. Since Z ⊂ ∐ k′(x′)∗ (cf. 7.10), we obtain a commutative diagram of
Galois modules:

0 K2(F′)/K2(k′)

1©

Z

α

N ⊗ k′∗

1⊗valuation

0

0 F′∗0 /f
′∗ Div(X0,f′ ) N 0.

The assertion regarding (7.12.2) is now straightforward. �

This completes the proof of (7.12). Returning to the exact sequence (7.2),
we see that finiteness for A0(X) for X/k local or global will follow whenever
we can prove H1(k̄/k,K2(F̄)/K2(k̄)) is finite, for F̄ = k̄(X) and X a rational
surface over k.
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Definition (7.13) X is a conic bundle surface if there exists a rational pencil
of genus-zero curves on X.

Examples (7.13.1) (i) The Châtelet surfaces discussed in (7.6) are conic bun-
dle surfaces. More generally any surface

t2
1 − f (x) t2

2 = g(x)

is a conic bundle surface.
(ii) A cubic surface (smooth cubic hypersurface in P3) which contains a line

� defined over k is a conic bundle surface. Indeed, the residual intersection of
X with a pencil of planes through � is a pencil of conics.

Before stating our main result, we recall that the Milnor ring [8] k∗(k) of a
field k is the graded Z/2Z-algebra with generators elements �(a) ∈ k1(k), for
a ∈ k∗, and relations 2�(a) = 0, �(ab) = �(a) + �(b), and �(a)�(1 − a) = 0, for
a � 0, 1.

Theorem (7.14) Let X be a conic bundle surface over a field k which is
either a local field, a global field, or a Ci-field [13] for i ≤ 3. Then the group
H1(k̄/k,K2(F̄)/K2(k̄)) is a subquotient of k3(k).1

As a consequence of results in Milnor [8] one has

k3(k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 k C2-field,
0 k local � R,
Z/2Z k = R,
⊕v real placeZ/2Z k global.

Combining (7.1), (7.13) and the above results of Milnor, one finds

Corollary (7.14.1) If X is a conic bundle surface over a local or global field,
then A0(X) is finite.

Corollary (7.14.2) If X is a cubic surface over a local or global field, then
A0(X)⊗ZZ[ 1

3 ] is finite. In particular if X is defined over R, then A0(X) is finite.

Proof of (7.14.2) Let k′/k be a finite Galois extension splitting X. The ex-
istence of a transfer A0(Xk′ ) → A0(Xk) implies that [k′ : k]A0(Xk) = (0).
It suffices therefore to show the �-power torsion subgroup A0(X)(�) is finite
for any prime � � 3. Let k� ⊂ k′ be the fixed field of the Sylow �-subgroup
of Gal(k′/k). Then � does not divide [k� : k] so a transfer argument shows

1 Combining their own ideas with arguments given in the text, Colliot-Thélène and Sansuc have
shown H1(k̄/k,K2(F̄)/K2(k̄)) ⊂ K3(k) for conic bundle surfaces X, and this cohomology group
is zero for k local or global unless χ(R) = φ for all real places of k. The group is non-zero for
k = R, χ = P1 ×C, where C is the non-trivial conic over R.
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that A0(X)(�) ↪→ A0(Xk� )(�). We may assume, therefore, that Gal(k′/k) is an
�-group.

Recall Xk̄ has 27 lines on it, all of which we may assume (taking k′ large to
begin with) are defined over k′. The �-group Gal(k′/k) will necessarily leave a
line fixed for � � 3, so X is a conic bundle surface (7.13.1)(ii). �

Proof of (7.14) Fix a conic bundle structure on X, that is a rational map
π : X → P1

k with fibre of genus 0. Blowing up on X, we may assume π is
everywhere regular. Let K = k(P1) and K̄ = k̄(P1). Since K̄ is a C1-field
[13] the generic fibre of π pulled back to k̄, XK̄ , is isomorphic to P1

K̄
. Writ-

ing F̄ = k̄(X) = K̄(XK̄) we have

(7.14.3) 0→ K2(K̄)→ K2(F̄)→
∐
x̄∈XK̄

K̄(x̄)∗
N−→ K̄∗ → 0,

where N is the norm map [7]. Similarly

(7.14.4) K2(K) � K2(k̄)⊕
∐0

ȳ∈P1
k̄

k̄∗,

where as usual
∐0 k̄∗ = Ker(

∐
k̄∗ → k̄∗).

Let n ⊂ K∗ be the image of the norm map from( ∐
x̄∈XK̄

K̄(x̄)∗
)Gal(k̄/k)

=
∐
x∈Xk

K(x)∗.

From (7.14.3) and (7.14.4) we get an exact sequence

(7.14.5) 0→ H1(k̄/k,K2(F̄)/K2(k̄))→ K∗/n
ψ
−→
∐
y∈P1

k

Br(k(y)).

Fix a, b ∈ K∗ such that XK is isomorphic to the conic curve

XK : T 2
0 − aT 2

1 − bT 2
2 = 0.

We will work with �(a) · �(b) ∈ k2(K), as well as with the quaternion algebra A
over K defined by T 2 = a, U2 = b, and TU = −UT . �

Lemma (7.14.6) Let Nrd: A∗ → K∗ be the reduced norm. Then
Nrd(A∗) ⊂ n.

Proof An extension K′/K splits A (i.e. A⊗K K′ � End(K′ ⊕ K′)) if and only
if XK has a K′-point. If α ∈ A, α � K, then K(α) splits A, so XK has a K(α)-
point. Since the reduced norm on A coincides on K(α) ⊂ A with the field norm,
we get Nrd(α) ∈ n. Finally, if α ∈ K, Nrd(α) = α2 ∈ n, since XK obviously
contains points of degree 2 over K. �
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We now can rewrite (7.14.5)

0 H1(k̄/k,K2(F̄)/K2(k̄)) K∗/n
ψ ∐

y∈P1
k

Br(k(y))

K∗/Nrd(A∗).
ψ′

(7.14.7)

and it will suffice to show Kerψ′ ↪→ k3(k).

Lemma (7.14.8) The map �(a)·�(b) : K∗ → k3(K), where c �→ �(c)·�(a)·�(b),
contains Nrd(A∗) in its kernel.

Proof Let β = Nrd(α) ∈ Nrd(A∗). We may assume α � K∗, so K(α) splits A.
This implies �(a) · �(b) → 0 in k2(K(α)) (Milnor [9], p. 152). The projection
formula [7] implies

�(Nrd(α)) · �(b)�(a) = NK(α)/K(�(α)) · �(b) · �(a)

= NK(α)/K(�(α) · �(b) · �(a)) = 0. �

Lemma (7.14.9) The diagram

K∗/Nrd(A∗)
ψ′(7.14.7)

·�(a)·�(b)

∐
y∈P1

k

Br(k(y))

k3(K)
tame symbol ∐

y∈P1
k

k2(k(y))

Galois symbol

commutes.

Lemma (7.14.10) The maps in the above square satisfy:

(i) “Galois symbol” is injective,

(ii) “tame symbol” has kernel k3(k) ⊂ k3(K),

(iii) “· �(a) · �(b)” is injective.

Note that these two lemmas suffice to complete the proof of (7.14). Note
also their geometric content. Let

∑
ni (yi) be a zero-cycle of degree zero on

P1
k . Assume the fibres of π : X → P1 over the yi are all smooth. A necessary

condition for there to exist a cycle Z on X such that π∗z =
∑

ni (yi) is that ni

should be even whenever π−1(yi) is non-split (i.e. � P1
k(yi)

). If ( f ) =
∑

ni (yi),
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(7.14.9) implies

ψ′( f ) =
∑

ni[π
−1(yi)], where [π−1(yi)] = class of

Severi–Brauer variety in Br(k(yi)).

Thus, in the local or global case when k3(k) is finite, we have divisors of
degree zero and even order at non-split places modulo norms of zero-cycles
rationally equivalent to on X = finite group. Finally the reader may wish to
compare this chain of ideas with the Eichler norm theorem describing the im-
age of the norm mapping for a divisor algebra over a local or global field.

Proof of (7.14.10) Injectivity of the Galois symbol follows from Lam [10],
given our assumptions about k, and the fact that Ker(tame) = k3(k) is proven
in [8]. To show injectivity of multiplication by �(a) · �(b), we consider the map
defined in Milnor [8]

k3(K)→ I3/I4,

�(a)�(b)�(c)→ (〈c〉 + 〈−1〉)(〈b〉 + 〈−1〉)(〈a〉 + 〈−1〉),

where I is the augmentation ideal in the Witt ring of K. The above quadratic
form is a Pfister form in the terminology of [10]. In particular, this form lies in
I4 if and only if it is hyperbolic ([10] cor. 3.4, p. 290; thm. X.6.17, p. 367, in
the 2005 book). Thus �(a)�(b)�(c) = 0 implies there exist x1, . . . , x8 ∈ K not
all 0 such that

abc x2
1 − ab x2

2 − ac x2
3 − bc x2

4 + a x2
5 + b x2

6 + c x2
7 − x2

8 = 0.

Formally, then, we may factor and write

c =
abx2

2 − ax2
5 − bx2

6 + x2
8

abx2
1 − ax2

3 − bx2
4 + x2

7

.

Notice both numerator and denominator are norms from A∗. We may assume
A � End(K ⊕ K), else XK � P1

K , X is k-rational, and the whole discussion
is silly. Thus the denominator in the above expression vanishes if and only if
x1 = x3 = x4 = x7 = 0. But vanishing of the denominator implies vanishing of
the numerator and hence all the xi, a contradiction. Hence neither numerator
nor denominator vanishes and we have written c as a norm from A∗. �

Proof of (7.14.9)

Lemma (7.14.11) Let XK be a conic curve over Spec K with K̄/K Galois
splitting XK. Let [XK] ∈ H2(K̄/K, K̄∗) be the class of XK as a Severi–Brauer
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variety, and assume [XK] � 0. Let F̄ = quotient field of XK̄ and consider the
exact sequence of Gal(K̄/K)-modules

0→ K̄∗ → F̄∗ →
∐
x∈XK̄

Z→ Z→ 0.

Then [XK] = ∂2∂1(1), where ∂i are the boundary maps associated to this exact
sequence.

Proof ( ∐
x∈XK̄

Z
)Gal(K̄/K)

=
∐
x∈XK

Z.

Since any x ∈ XK has even degree over Spec K (this follows from a norm
argument using the fact that XK splits over K(x)), we get an exact sequence

0→ Z/2Z→ H2(K̄/K, K̄∗)→ H2(F̄/F, F̄∗),

1 �→ ∂2∂2(1).

Since [XK]→ 0 in H2(F̄/F, F̄∗), we are done. �

Tensoring the sequence in (7.14.11) with K∗ and using the symbol map, we
obtain a commutative diagram

0 K̄∗⊗ZK∗ F̄∗⊗K∗
∐
x̄∈X1

K̄

K∗ K∗ 0

0 K2(K̄) K2(F̄)
∐

x̄

K̄(x̄)∗ K̄∗ 0.

Writing ∂′i for the boundary maps on cohomology associated to the bottom
row, we find a commutative triangle

K∗
[Xk]⊗ ·

∂′0·∂
′
1

H2(K̄/K, K̄∗)⊗ZK∗

symbol

H2(K̄/K,K2(K̄)).

Now take K = k(P1), K̄ = k̄(P1) and compose with the tame symbol to get a
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commutative square

K∗
ψ

[XK ]⊗ ·

∐
y∈P1

k

Br(k(y))

H2(k̄/k, K̄∗)⊗K∗ H2(k̄/k,K2(K̄)).

tame

The proof of (7.14.9) now follows from

Lemma (7.14.12) Let k be a field of characteristic � 2, k̄ = separable closure
of k. Let K be an extension field of transcendence degree 1 over k, and write
K̄ = Kk̄. Let a, b ∈ K∗ and write �(a)�(b) ∈ k2(K), (a, b) ∈ 2Br(K). Then

Br(K) � H2(k̄/k, K̄∗).

Moreover, if y is a place of K over k with residue field k(y), the diagram

(7.14.13)

H2(k/k,K∗)⊗K∗

K∗

(a,b)⊗ ·

· �(a)·�(b)

H2(k̄/k,K2(K̄))

T1

k3(K)
T2 Br(k(y))

(where T1 and T2 are tame symbols) commutes.

Proof Replacing k by its perfect closure, we may assume k(y) separable over
k. Next replacing K by its completion at y we may suppose k(y) ⊂ K and
K̄ =

∐
K̄i, one copy for each place lying over y. Now replacing the Galois

group by the decomposition group for one of the K̄i we may assume k = k(y),
K = k((π)).

We now have split exact sequences

0 o∗ K∗ Z 0, 0 ō∗ K̄∗ Z 0.

π 1

Note that 1 + πō is cohomologically trivial, so

H2(k̄/k, K̄∗) � H2(k̄/k, k̄∗) ⊕ H2(k̄/k,Z). �
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Case 1 For a, b ∈ o, let a0, b0 ∈ k∗ denote the mod π reductions of a, b. In this
case (a, b) = (a0, b0) ∈ H2(k̄/k, k̄∗). It is easy enough to see that going either
way around (7.14.13), f ∈ K∗ gets taken to ord( f ) · (a0, b0) ∈ Br(k).

Using linearity, it remains only to consider

Case 2 Suppose b = π, a ∈ o∗. In this case let G = Gal(k̄/k) and let ρ :
G×G → Z be a 2-cocycle representing the image of a under the composition

K∗ → H1(K̄/K, µ2)
δ→ H2(K̄/K,Z).(7.14.14)

a �→ χa

Here δ is the coboundary from the exact sequence

0→ Z→ Z→ Z/2Z→ 0.

Then (a, b) is represented by the cocycle

G ×G → K̄∗, (g1, g2) �→ πρ(g1,g2).

Indeed, one knows (cf. Serre [13], p. 214) that

(a, π) = (δ χa) · πρ(·,·).

With reference to (7.14.13), we must show

T1{πρ(g1,g2), f } = T2(�(a)�(π)�( f )).

If F = −π this is clear as both sides are trivial. If, on the other hand, f is a
unit with residue class f0, we reduce to showing that �(a0)�( f0) ∈ k2(k) maps
to the element in Br(k) represented by the cocycle f ρ(g1,g2)

0 . This follows as
above with K in (7.14.14) replaced by k and K̄ replaced by k̄. This completes
the proof of (7.14.12) and (7.14.9).

�
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enne, pp. 401–411 in Actes du Congrès International Mathématiciens
(Nice, 1970), vol. 1, Gauthier-Villars, Paris (1971).

For a more extensive list, the reader can see the bibliography in [5].

The following are referred to in the text for the arithmetic of symbols in K-
theory, and for quadratic forms:

[7] H. Bass and J. Tate, The Milnor ring of a global field, pp. 349–446 in
Algebraic K-Theory II, Lecture Notes in Math., no. 342, Springer, Berlin
(1973).

[8] J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math., 9
(1970), 318–344.

[9] J. Milnor, Introduction to Algebraic K-Theory, Annals of Mathematics
Studies, vol. 72, Princeton University Press, Princeton, N.J. (1971).

[10] T. Y. Lam, The Algebraic Theory of Quadratic Forms, W. A. Benjamin,
Reading, Mass. (1973). [Revised second printing, 1980. See also Intro-
duction to Quadratic Forms over Fields, American Mathematical Society,
Providence, R.I., 2005.]

[11] A. Grothendieck, Le groupe de Brauer I, II, III, pp. 46–188 in Dix exposés
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Relative cycles and zeta functions

We return now to the relative cycle maps described in Lecture 3. Changing
notation, we write

j :

{
relative algebraic
1-cycles on C × P1 × P1

}
→ H1(C,C∗),

and

log | j | :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
algebraic 1-cycles on
C × P1 × P1 meeting
C × # properly

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭→ H1(C,R)

for the cycle class maps. (Here C is a smooth complete curve over a field
k ↪→ C.) When C = E is an elliptic curve we will show explicitly how to
write down some interesting relative cycles γ and we will compute log | j | (γ).
In Lecture 9 we consider the case when E/Q has complex multiplication by
the full ring of integers in an imaginary quadratic number field. Identifying
H1(E,R) � C, we show there is a natural relative cycle γ defined over Q such
that

ρ · log | j | (γ) = L(2, χGröss),

where L(s, χGröss) is the Artin–Hasse zeta function of E (given in this case by
a Hecke L-series, whence the notation) and ρ is a constant built from a Gauss
sum, the conductor of E, and the imaginary part of τ. Since L(s, χ) has an Euler
product converging for Res > 3/2, it will follow that log | j | (γ) � 0.

These computations mimic those in an unpublished preprint [2], where I
define a map from K-theory

Γ(E,K2)→ H1(E(C),R) � C.

It seems likely that Γ(E,K2) can be identified with a suitable Chow group for
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E ×P1 ×P1 relative to E × # (cycles being defined over Q) and that the rank of
this group is the order of vanishing of L(s, χ) at s = 0. Indeed, one may hope
for a similar interplay between relative cycles, K-groups, and zeta functions
quite generally. I hope this exciting prospect will sustain the reader through
the complicated calculations which follow.

Recall we have an exact sequence

0 Γ(C,K2) K2(k(C)) T
∐
x∈C

k(x)∗.

Our first objective will be to associate to an element in Γ(C,K2) a relative
algebraic 1-cycle on C ×P1 ×P1, relative to C × #. This cycle will only be well
defined modulo some equivalence which we shall not describe explicitly.

Consider then an element
∏{ fi, gi} ∈ Γ(C,K2) ⊂ K2(k(C)). To each pair f , g

of rational functions on C we associate the double graph

γ f ,g = {(x, f (x), g(x))} ⊂ C × P1 × P1.

Let γ1 =
∑
γ fi,gi . The name of the game will be to add or subtract “trivial”

curves to γ1 in such a way that the resulting sum is a relative algebraic 1-cycle.
A curve τ ⊂ C ×P1 ×P1 is “trivial” for our purposes if either τ ⊂ {p} ×P1 ×P1

for some p ∈ C, or τ ⊂ (C×P1 ×{1})∪ (C×{1}×P1). One sees from Lecture 3
that log | j | (trivial curve) = 0.

Step 1 (Neutralizing the vertices) It may happen that Supp γ1 contains a point
(p, i, j), i, j = 0,∞. Suppose for example one of the components of γ1 looks
near (p, 0, 0) like

(8.1.1) {(x, axr + hot, bxs + hot)}, hot = higher order terms,

where x is a local coordinate near p, x(p) = 0. A calculation like (3.2) shows
that this component can be made to look like a relative cycle near (p, 0, 0) by
subtracting the “trivial” curve

(8.1.2) τ =
{(

p, a tr, b
( t
1 − t

)s)}
, t = standard parameter on P1.

Note that in addition to the intersection at (p, 0, 0), τ meets C × # with mul-
tiplicity r at (p,∞, (−1)sb) and with multiplicity s at (p, a,∞). We iterate the
above procedure mutatis mutandis for every vertex point (p, i, j) on γ1.

Step 2 (Neutralizing other boundary points) Let γ2 = γ1 −
∑
τ be the cycle

with vertex intersections neutralized. Recall we have on K2(k(C)) the tame
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symbol at p

Tp : K2(k(C))→ k(p)∗,

Tp{ f , g} = (−1)ordp f · ordpg f ordpg

gordp f
(p).

The tame symbol can be interpreted geometrically as follows: let

W = C ×Gm × {0} −C ×Gm × {∞} −C × {0} ×Gm +C × {∞} ×Gm

(note we have removed the vertices). For w ∈ Supp W, let ρ(w) ∈ Gm be either
the second or third coordinate, whichever � 0,∞. For x ∈ C × P1 × P1 let
ν(γ2,W; x) be the multiplicity of intersection of γ2 and W at x.

Lemma (8.1.3) With notation as above,

1 = Tp

(∏
i

{ fi, gi}
)
=

∏
w∈({p}×P1×P1)∩Supp W

ρ(w)ν(γ2,W;w).

Proof A cycle like (8.1.1) contributes (−1)rsasb−r to the tame symbol. This
is precisely the contribution of the cycle −τ to the right-hand side, where τ is
as in (8.1.2). The bookkeeping for non-vertex points is easier, and is left for
the reader. �

Given a, b ∈ Gm and p ∈ C, we consider the “trivial” cycles

Aa,b,p =

{(
p, t,

(t − a)(t − b)
(t − 1)(t − ab)

) ∣∣∣∣ t ∈ P1

}
,

Ba,b,p =

{(
p, t,

t − a
t − b

) ∣∣∣∣ t ∈ P1
}
.

We have for W̄ = closure of W, viewed as a cycle,

Aa,b,p · W̄ = (p, a, 0) + (p, b, 0) − (p, 0, 1) − (p, ab,∞)

− (p, 1,∞) + (p,∞, 1),

Ba,b,p · W̄ = (p, a, 0) − (p, b,∞) −
(
p, 0,

a
b

)
+ (p,∞, 1).

Starting at these formulae and using (8.1.3), it is straightforward to construct a
cycle

γ3 = γ2 +
∑

ni j Aai j,bi j,pi +
∑

mrs Bars,brs,pr

such that γ3 · (C × #) has support in

(C × {1} × {0,∞}) ∪ (C × {0,∞} × {1}).
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Step 3 (Finishing the job) We may now add or subtract cycles of the form
(p) × (1) × P1 and (p) × P1 × (1) to γ3 getting a γ4 such that γ4 · C × (i) × P1

and γ4 ·C × P1 × (i) are effective, i = 0,∞, but no cycle γ4 − (p) × P1 × (1) or
γ4 − (p)× (1)×P1 has this property. Write pr1 : C×P1 ×P1 → C. We have that

pr1∗[γ4 ·C × ((0) − (∞)) × P1],

pr1∗[γ4 ·C × P1 × ((0) − (∞))]

are zero-cycles rationally equivalent to 0 on C. There exist, therefore, functions
h1, h2 on C such that

γ = γ5 = γ4 + {(p, h1(p), 1) | p ∈ C} + {(p, 1, h2(p)) | p ∈ C}

is a relative cycle.

We now want to construct some interesting elements in Γ(C,K2) (and hence
some interesting relative algebraic 1-cycles) in the case C = E = elliptic curve.
Suppose E is defined over a field k. Let f , g be functions on E, N > 0 an integer,
and assume all zeros and poles of f and g are points of E of order N defined
over k. Consider the diagram

k(E)∗ ⊗k∗
div⊗1

symbol

∐
x∈E

k∗ Pic(E) ⊗k∗ 0

K2(k(E))
tame

∐
x∈E

k(x)∗.

(8.2)

Clearly tame{ f , g}N ∈ ∐ k∗ and goes to 0 in Pic(E) ⊗ k∗. There thus exist
functions fi ∈ k(E)∗ and constants ci ∈ k∗ such that

{ f , g}N
∏
{ fi, ci} ∈ Γ(E,K2) .

Notation (8.2.1) Fix an integer N and assume all points on E of order N are
defined over k. If a is such a point, let fa denote the function with zero of order
N at a, and pole of order N at 0. Let ρ be the function with poles of order 1
at every non-zero point of order N, and a zero of order N2 − 1 at the origin.
Define Sa ∈ Γ(E,K2) by

Sa ≡ { ρ, fa}N mod Image(k(E)∗ ⊗k∗ → K2(k(E))) .

Sa is actually well defined modulo torsion and symbols with both entries con-
stant, as one sees by looking at the kernel of div⊗1 in (8.2).
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Our objective is now to compute log | j(Sa)|. The key step in this program
will be to compute log | j(γ f ,g)| when γ f ,g = {(x, f (x), g(x)) | x ∈ E} for any two
functions f , g on E. We assume for simplicity that the divisors of f and g have
disjoint support. (The general case follows from this one by a limit argument.)
Slit E along non-intersecting simple closed paths between zeros and poles of
f , removing also ε-disks about these points:

Sf

f = 0

f = ∞. 
Tf

Sf

We do likewise for the zeros and poles of g, taking care that the slits for f and
g do not intersect. (This is possible because removing a simple arc will not dis-
connect the surface.) The resulting slit and punctured surface will be denoted
E′. The handles of the barbell-shaped affairs are called T f ,Tg or T f ,ε,Tg,ε. The
ε-circles are written S f , Sg or S f ,ε, Sg,ε.

It will be convenient to use the Jacobi parameterization π : C∗ → E �
C∗/qZ, q = e2πiτ. We let t be the standard parameter on C∗ and write t = e2πiz,
z = x + iy. Thus y = −1

2π log | t | is a function on C∗, but x is not.
We normalize the Weierstrass σ-function on E as in Lang [4]

φ(z) = e−
1
2 ηz2+πiz, σ(z) =

1
2πi

(t − 1)
∞∏

n=1

(1 − qnt)(1 − qnt−1)
(1 − qn)2

.

The given functions f , g on E can be factored in terms of the φ-function

f (z) = cf

∏
φ(z − a j)

mj , g(z) = cg

∏
φ(z − bk)nk , cf , cg ∈ C∗,∑

mj =
∑

nk =
∑

mja j =
∑

nkbk = 0.

For any fixed n we have ∏
k

e2πink(z−ak−nτ) = 1,

so if we write

f̃ =
∏

j

(1 − αj t)n j , αj = e−2πia j ,

we get

f (t) = cf

∏
n∈Z

f̃ (tqn).
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Finally, let C∗′ denote C∗ slit and punctured so as to lie over E′, π : C∗′ → E′.
Functions like log f and log g (resp. log f , log f̃ , log g) can be defined on E′

(resp. C∗′). Also a family of paths
−−−−→
1 f (p) or

−−−−→
1g(p) lying on Gm can be chosen

continuously for p ∈ E′.
Define 3-chains

∆ = ∆ε = {(p,
−−−−→
1 f (p), g(p)) | p ∈ E′},

Φ = Φε = {(p,
−−−−→
1 f (p),

−−−−→
1g(p)) | p ∈ T f }.

Bearing in mind orientations, we get

∂∆ = {(p,
−−−−→
1 f (p), g(p)) | p ∈ Sg ∪ T f ∪ S f } = γ′f ,g + deg,

∂Φ = {(p,
−−−−→
1 f (p),

−−−−→
1g(p)) | p ∈ ∂T f }

+ {(p,
−−−−→
1 f (p), g(p)) | p ∈ T f } + deg,

(where deg = cycle supported on E × Gm × {1} ∪ E × {1} × Gm), whence
∂(Φ−∆) = γ′f ,g+ chains supported on (Sg∪S f )×Gm×Gm+ degenerate chains.

Our duty becomes the calculation of

lim
ε→0

−1
4π2

Im
∫
Φε−∆ε

dx ∧ dx1

x1
∧ dx2

x2

and

lim
ε→0

−1
4π2

Im
∫
Φε−∆ε

dy ∧ dx1

x1
∧ dx2

x2
.

Lemma (8.3)

lim
ε→0

∫
∆ε

dy ∧ dx1

x1
∧ dx2

x2
= 2πi

(
y log(1 − t)

∣∣∣∣ n − ∫
n

log(1 − t) dy
)
.

(Here n denotes the infinite “cycle” on C∗

n =
∑
n∈Z
j,k

m j nk(αk β
−1
j qn), αk = e−2πiak , β j = e−2πib j ,

and
∫
n

denotes the integral along paths from points of negative multiplicity to
points of positive multiplicity. A different choice of paths does not change the
right-hand side.)

Proof of lemma The first claim is that

lim
ε→0

∫
E′ε

dy ∧ dg
g
= 0.
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To see this, think of g : E → P1. The above integral becomes

lim
ε→0

(
− i

2

) ∫
P1
ε

g∗(dz − dz̄)
du
u
,

where P1
ε denotes P1 with ε-balls about 0 and ∞ removed, and u is the stan-

dard parameter on P1. Note that g∗(dz) (resp. g∗(dz̄)) are global holomorphic
(resp. anti-holomorphic) differentials on P1, and hence are zero, so the integral
vanishes.

Now write ∫
∆ε

dy ∧ dx1

x1
∧ dx2

x2
= −
∫

E′ε

log f dy ∧ dx2

x2
.

Note that the differential can be written

log f dy ∧ dx2

x2
= cf dy ∧ dx2

x2
+ “trace”C∗/E log f̃ dy ∧ dx2

x2
,

where “trace” means the infinite sum over all deck transformations. The inte-
gral over cf dy ∧ dx2

x2
vanishes by the above, so

∫
∆ε

dy ∧ dx1

x1
∧ dx2

x2
= −
∫

C∗′
log f̃ dy ∧ dg

g

= −
∫

C∗′
d(y log f̃ ) ∧ dg

g
=

∫
T f∪Tg∪S f∪Sg

log g d(y log f̃ ).

Winding around a zero of g changes log g by 2πi, whence∫
Tg

log g d(y log f̃ ) = −2πi
∫

(g)
d(y log f̃ ) = −2πi y log f̃

∣∣∣∣
(g)
,

where
∫

(g)
means integrals taken over paths from poles to zeros of g. Similar

arguments show

lim
ε→0

∫
T f

log g d(y log f̃ ) = −2πi
∫

( f̃ )
log g dy.

Standard estimates imply

lim
ε→0

∫
Sg

log g d(y log f̃ ) = 0,

and an easy argument (replacing y by (y − y0) + y0 where y0 is the value of y at
the center of a circle S ⊂ S f ) gives

lim
ε→0

∫
S f

log g d(y log f̃ ) = lim
ε→0

∫
S f

y log g
d f̃
f
= 2πi y log g

∣∣∣∣
( f̃ )
.
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Combining these calculations

lim
ε→0

∫
∆ε

dy ∧ dx1

x1
∧ dx2

x2
= 2πi

(
y log g

∣∣∣∣
( f̃ )
− y log f

∣∣∣∣
(g)
−
∫

( f̃ )
log g dy

)
.

We have (g) =
∑

n∈Z,k nk(β−1
k qn) and ( f̃ ) =

∑
j m j(α−1

j ), so

lim
ε→0

∫
∆ε

dy ∧ dx1

x1
∧ dx2

x2

= 2πi
(∑

j,k
n∈Z

−mj nk

2π
log |α−1

j | log
(
1 − βkqnα−1

j
)

+
∑

j,k
n∈Z

mj nk

2π
log |qnβ−1

k | log
(
1 − α j β

−1
k qn) − ∫

n

log(1 − t) dy
)
.

Since for fixed n, k ∑
j

m j log
( − α j β

−1
k qn) = 0,

the above sum can be rewritten (replacing n by −n in the second sum)

lim
ε→0

∫
∆ε

dy ∧ dx1

x1
∧ dx2

x2
= +2πi

(
y log(1 − t)

∣∣∣∣
n
−
∫
n

log(1 − t) dy
)
.

This completes the proof of Lemma (8.3). �

Lemma (8.4)

lim
ε→0

∫
∆ε

dx ∧ dx1

x1
∧ dx2

x2
= −i lim

ε→0

∫
∆ε

dy ∧ dx1

x1
∧ dx2

x2
.

Proof
∫
∆ε

dz ∧ dx1
x1
∧ dx2

x2
= −
∫

E′
log f dz ∧ dg

g = 0 by reason of type. �

Lemma (8.5) Let du = either dx or dy. Then

lim
ε→0

Im
∫
Φε

du ∧ dx1

x1
∧ dx2

x2
= −2πRe

∫
n

log(1 − t) du.

Proof We have

lim
ε→0

Im
∫
Φε

du ∧ dx1

x1
∧ dx2

x2

= lim
ε→0

Im
∫

T f

log f log g du = −2πRe
∫

( f )
log g du.

The reader can easily reinterpret this integral as the desired integral
∫
n

on C∗.
�
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Theorem (8.6) The periods associated to the cycle

γ = γ f ,g = {(x, f (x), g(x))} ⊂ E × P1 × P1

are

Im Pγ(dx) =
−1
4π2

(
log | t | arg(1 − t)

∣∣∣∣
n
− Im

∫
n

log(1 − t)
dt
t

)
,

Im Pγ(dy) =
−1
4π2

log | t | log |1 − t |
∣∣∣∣
n
,

where Pγ and Im Pγ are as defined in Lecture 3.

Proof Simply use dt
t = 2πi dz and y = − log | t |

2π , together with the equations
resulting from Lemmas (8.3)–(8.5):

lim
ε→0

Im
∫
Φε−∆ε

dy ∧ dx1

x1
∧ dx2

x2
= −2πy log |1 − t |

∣∣∣∣
n
,

lim
ε→0

Im
∫
Φε−∆ε

dx ∧ dx1

x1
∧ dx2

x2

= Im
(
i
[
2πi y log(1 − t)

∣∣∣∣
n
− 2πi

∫
n

log(1 − t) dy
])
,

−2πRe
∫
n

log(1 − t) dx = −2πy arg(1 − t)
∣∣∣∣
n
− 2πRe

∫
n

log(1 − t) dz.

�

In order to make things neater, it is convenient to introduce two functions:

D(t) = log | t | arg(1 − t) − Im
∫ t

0
log(1 − u)

du
u
,

J(t) = log | t | log |1 − t |.

We first descend these functions by a process of summation to functions on E.

Lemma (8.7) The functions

Dq(t) =
∑
n∈Z

D(qnt),

Gq(t) =
∞∑

n=0

J(qnt) −
∞∑

n=1

J(qnt−1)

+
(log | t |)3

3 log |q| −
(log | t |)2

2
+

log | t | log |q|
6

are continuous on C∗ and invariant under t → qt, and hence descend to func-
tions on E.
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Proof We refer the reader to Bloch [1] for a proof that the function D(t) is
well defined. (At first glance it would appear to depend on a choice of path
from 0 to t.) Granting this, one easily checks that

∑∞
n=0 D(tqn) converges. We

have

log(1 − t)
dt
t
+ log

(
1 − 1

t

)d (1/t)
1/t

= log(−t)
dt
t
,

Im
∫ t

log(−u)
du
u
= Im

(1
2

(log(−x))2
)
+C +C′ log |x|,

where C′ accounts for the ambiguity in the branch of log(−t). Thus

D(t) + D(t−1) = −1
2

Im(log((−t))2) + arg(−t) log | t | +C +C′′ log | t |

= C +C′′ log | t |

with C′′ accounting for the ambiguity in the branches of log(−t) and arg(1− t).
For t < 0, however, D(t) = 0, so for all t we find

(8.7.1) D(t) = −D(t−1).

From this, one deduces convergence of
∑

n<0 D(tqn).
The corresponding continuity and invariance properties of Gq are straight-

forward, and are left to the reader. �

Lemma (8.8) With notation as above,

Im Pγ(dx) =
−1
4π2

Dq(A), Im Pγ(dy) =
−1
4π2

Gq(A),

where, writing ( f ) =
∑

mj (a j) and (g) =
∑

nk (bk) with a j, bk ∈ E (note
change of notation), A =

∑
mj nk (b j − ak). (We view Dq and Gq as functions

on divisors in the obvious way, for example Dq(
∑

ri (pi)) =
∑

ri Dq(pi).)

Proof The assertion for Im Pγ(dx) is immediate from Theorem (8.6). For
Im Pγ(dy), note that if

∑
nk(αk) and

∑
mj(β j) are divisors on C∗ with

∑
mj =∑

nk = 0,
∏
αk

nk =
∏
β j

m j = 1, then the function (log | t |)r vanishes on the
divisor

∑
mj nk(αk β

−1
j ) for r ≤ 3. The reader can now easily check Gq(A) =

log | t | log |1 − t |
∣∣∣∣
n

as claimed. �

We consider now the complex-valued function

Q :

{
1-cycles on
E × P1 × P1

}
→ C,

(8.8.1)

Q(γ) = Im Pγ(dx) − i Im Pγ(dy) .



Relative cycles and zeta functions 107

Notice that Q depends on the choice of a holomorphic differential dz = dx+i dy
on E. We have

Q(γ f ,g) =
−1
4π2

(
Dq ((g) ∗ (g)−) − i Gq ((g) ∗ ( f )−)

)
,

where with ( f ) =
∑

mj(a j) and (g) =
∑

nk(bk),

g ∗ ( f )− :=
∑

mj nk(bk − a j).

Recall that given a point of order N on E, which we write as k+�τ
N , we have

defined a relative algebraic 1-cycle associated to the element S k+�τ
N
∈ Γ(E,K2)

S k+�τ
N
=
{
p, f k+�τ

N

}N ·∏{ fi, ci}, ci ∈ C∗.

Let this cycle be denoted γ k+�τ
N

. As noted earlier it is not completely well de-
fined. However, Q(γ k+�τ

N
) is defined. Our main result can be given a purely

analytic formulation as follows: fix E = C/[1, τ] with y = Im τ > 0. Let

f : Z/NZ × Z/NZ→ C

be an odd function, that is f (a, b) = − f (−a,−b), and write

f̂ (k, �) =
1
N

N−1∑
a,b=0

f (a, b) e2πi
(
−ak+b�

N

)
.

Theorem (8.9) With notation as above,

N−1∑
k,�=0

f̂ (k, �)Q(γ k+�τ
N

) =
−y2N5

4π3

∑
m,n∈Z

(m,n)�(0,0)

f (m, n)
(mτ + n)2(mτ̄ + n)

.

Proof As in the first part of the proof of (8.3), one shows that Q(γ f ,c) = 0 for
c ∈ C∗, whence

(8.9.1) Q(γ k+�τ
N

) =
−N
4π2

(
Dq((ρ)−∗ ( f k+�τ

N
)) − i Gq((ρ)−∗ ( f k+�τ

N
))
)
.

Writing Qq =
−1
4π2 (Dq − i Gq), viewed as a function on E, one has

Q(γ k+�τ
N

) = N2
∑
Na=0
a�0

(
Qq(a) − Qq

(
a +

k + �τ
N

))

+ N2(N2 − 1)

(
Qq

(k + �τ
N

)
− Qq(0)

)
.

Since Qq(0) = 0, this yields

Q(γ k+�τ
N

) = N4Qq

(k + �τ
N

)
.
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Lemma (8.10)

N−1∑
k,�=0

f̂ (k, �)
( �3

3N3
− �2

2N2
+

�

6N

)
=

i N
4π3

∑
n∈Z
n�0

f (0, n)
n3

.

Proof We use the well-known Fourier series

∑
n∈Z
n�0

e2πi nx

n3
= 4π3i

( x3

3
− x2

2
+

x
6

)

to write

∑
k,�

f̂ (k, �)
( �3

3N3
− �2

2N2
+

�

6N

)

=
−i

4π3

∑
k,�

f̂ (k, �)
∑
n∈Z
n�0

e2πi�n/N

n3

=
−i

4π3N

∑
a,b,k,�

f (a, b) e2πi
(
−ak+b�

N

)∑
n�0

e2πi�n/N

n3

=
−i N
4π3

∑
n�0

f (0,−n)
n3

=
i N
4π3

∑ f (0, n)
n3

. �

It is convenient now to split up the function Qq. For this, we view Qq,Dq,Gq

as functions on C∗, and write

Qq(t) =
−1
4π2

(Dq(t) − i Gq(t))

=
i

4π2

( ∞∑
n=0

log |tqn| log(1 − tqn) −
∞∑

n=1

log |t−1qn| log(1 − t−1qn)
)

+
1

4π2

( ∞∑
n=0

Im
∫ xqn

x−1qn
log(1 − t)

dt
t

)

+
i

4π2

( (log | t |)3

3 log |q| −
(log | t |)2

2
+

log | t | log |q|
6

)
.

(In what follows |xqn| < 1 for n ≥ 0 and |x−1qn| < 1 for n ≥ 1, so there
will be no ambiguity about branches of functions.) Write the three terms in
parentheses as R′q(t), R′′q (t), and R′′′q (t) respectively, so

Qq(t) =
i

4π2
R′q(t) +

1
4π2

R′′q (t) +
i

4π2
R′′′q (t).
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We have already seen

i
4π2

N−1∑
k,�=0

f̂ (k, �) R′′′q

(
e2πi
(

k+�τ
N

))

=
i

4π2

N−1∑
k,�=0

f̂ (k, �)
(4π2y2�3

3N3
− 4π2y2�2

2N2
+

4π2y2�

6N

)

= i y2
∑
k,�

f̂ (k, �)
( �3

3N3
− �2

2N2
+

�

6N

)
=
−Ny2

4π3

∑
n∈Z
n�0

f (0, n)
n3

.

The formula in (8.9) to be proven now reads

(8.11)
N−1∑
k,�=0

f̂ (k, �)
(
R′′q

(
e2πi
(

k+�τ
N

))
+ i R′

(
e2πi
(

k+�τ
N

)))

=
−y2N
π

∑
m,n∈Z
m�0

f (m, n)
(mτ + n)2(mτ̄ + n)

.

Put

L =
1
N

N−1∑
k,�=0

f̂ (k, �) R′q
(
e2πi
(

k+�τ
N

))
,(8.12)

M =
−i
N

∑
f̂ (k, �) R′′q

(
e2πi
(

k+�τ
N

))
.

Proposition (8.13) We have

L =
−y
2π

∑
m∈Z
m�0

∑
n∈Z

f (m, n)
m(mτ + n)2

.

Proof

L =
−2πy

N

N−1∑
k,�=0

f̂ (k, �)
[ ∞∑

n=0

(
n +

�

N

)
log
(
1 − e2πi

(
k+�τ

N +nτ
))

−
∞∑

n−1

(
n − �

N

)
log
(
1 − e2πi

(
−k−�τ

N +nτ
))]

.

To consolidate the two series, note that (replacing k, � by N − k, N − �, and n
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by n + 1),

−
N−1∑
k,�=0

f̂ (k, �)
∞∑

n=1

(
n − �

N

)
log
(
1 − e2πi

(
−k−�τ

N +nτ
))

=

N−1∑
k=0

N∑
�=1

f̂ (k, �)
∞∑

n=0

(
n +

�

N

)
log
(
1 − e2πi

(
k+�τ

N +nτ
))

=

N−1∑
k,�=0

f̂ (k, �)
∞∑

n=0

(
n +

�

N

)
log
(
1 − e2πi

(
k+�τ

N +nτ
))

+

N−1∑
k=0

f̂ (k,N)
∞∑

n=1

n log
(
1 − e2πi

(
k
N +nτ
))

−
N−1∑
k=0

f̂ (k, 0)
∞∑

n=0

n log
(
1 − e2πi

(
k
N +nτ
))

=

N−1∑
k,�=0

f̂ (k, �)
∞∑

n=0

(
n +

�

N

)
log
(
1 − e2πi

(
k+�τ

N +nτ
))
.

Thus

L =
−4πy

N

N−1∑
k,�=0

f̂ (k, �)
∞∑

n=0

(
n +

�

N

)
log
(
1 − e2πi

(
k+�τ

N +nτ
))

=
−4πy

N2

∑
k,�,a,b

f (a, b) e2πi
(
−ak+b�

N

) ∞∑
n=0

∞∑
m=1

(
n +

�

N

)e2πim
(

k+�τ
N +nτ

)
m

.

This can be rewritten

(8.14) L =
4πy
N2

∑
a,b

f (a, b)
∞∑

n=0
m=1

m≡a(mod N)

ne2πi
(

mτ+b
N

)
m

.

Lemma (8.15) For Im x > 0,
∞∑

n=0

ne2π i nx =
−1

4 sin2 πx
.

Proof of lemma∑
ne2πi nx =

1
2πi

d
dx

(
1

1 − e2πi x

)
=

e2πi x

(1 − e2πi x)2

=
1

(eπi x − e−πi x)2
=

−1

4 sin2 π x
. �
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Returning to the expression for L (8.14), we see

L =
−πy
N2

∑
a,b

f (a, b)
∞∑

m=1
m≡a(mod N)

1

m sin2 π( mτ+b
N )

.

Now use

π2

sin2 πx
=
∑
n∈Z

1
(x + n)2

to write

L =
−y
πN2

∑
a,b

f (a, b)
∞∑

m=1
m≡a(mod N)

∑
n∈Z

1

m( mτ+b
N + n)2

=
−y
2π

∞∑
m,n=−∞

m�0

f (m, n)
m(mτ + n)2

.

This proves (8.13). �

Proposition (8.16) Let M be as in (8.12). Then

M =
−1
2π

∞∑
m,n=−∞

m�0

f (m, n) Im

(
1

m2(mτ + n)

)
.

Proof For | x | < 1, the “natural” branch of
∫ x

0
log(1 − t) dt

t is −∑∞m=1
xm

m2 . Thus

M =
i
N

N−1∑
k,�=0

f̂ (k, �) Im
( ∞∑

n=0
m=1

e2πi
(

k+�τ
N +nτ

)
m

m2
−

∞∑
n=1
m=1

e2πi
(
−k−�τ

N +nτ
)
m

m2

)
.

As with L, it will be convenient to combine the two sums:

−
N−1∑
k,�=0

f̂ (k, �)
∞∑

m=n=1

e2πi m
(

k+�τ
N +nτ

)
m2

=

N−1∑
k=0

N∑
�=1

f̂ (k, �)
∞∑

m=1
n=0

e2πi m
(

k+�τ
N +nτ

)
m2

=

N−1∑
k,�=0

f̂ (k, �)
∞∑

m=1
n=0

e2πi m
(

k+�τ
N +nτ

)
m2

−
N−1∑
k=0

f̂ (k, 0)
∞∑

m=1

e2πi mk
N

m2
,
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so

M =
2i
N

N−1∑
k,�=0

f̂ (k, �) Im
( ∞∑

n=0
m=1

e2πi
(

k+�τ
N +nτ

)
m

m2

)

− i
N

N−1∑
k=0

f̂ (k, 0) Im
( ∞∑

m=1

e2πi mk
N

m2

)
= M1 + M2.

Lemma (8.17)

M1 =
1
N

N−1∑
b=0

∞∑
m=1

f (m, b)
m2

− 1
2π

∞∑
m,n=−∞

m�0

f (m, n) Im

(
1

m2(mτ + n)

)
.

Proof

M1 =
2i
N2

∑
a,b,k,�

f (a, b) e2πi
(
−ak+b�

N

)
Im
( ∞∑

n=0
m=1

e2πi
(

k+�τ
N +nτ

)
m

m2

)
.

Note that
∑

a,b f (a, b) Re(e2πi ( −ak+b�
N )) = 0 because f (a, b) = − f (−a,−b), and

also

Im
(
ie2πi ( −ak+b�

N )(∗)
)
= −Im

(
e2πi
(
−ak+b�

N

))
Im(∗) + Re

(
e2πi
(
−ak+b�

N

))
Re(∗).

It follows that

M1 =
2

N2

∑
a,b,k,�

f (a, b) Im
(
i
∞∑
n=0
m=1

e2πi
(

(m−a)k
N +(nN+�) mτ+b

N

)
m2

)

=
2
N

∑
a,b

f (a, b) Im
(
i
∞∑

m=1
m≡a(mod N)

∞∑
n=0

e2πin
(

mτ+b
N

)
m2

)
.

Using the identity

1
1 − e2πix

=
i cot πx + 1

2
,

we can write

M1 =
1
N

∑
a,b

f (a, b) Im
( ∑

m=1
m≡a(mod N)

− cot π( mτ+b
N ) + i

m2

)

=
1
N

∞∑
m=1

b

f (m, b)
m2

− 1
N

∑
a,b

f (a, b) Im
(∑

m=1
m≡a

1
m2

cot
[
π
(mτ + b

N

)])
.



Relative cycles and zeta functions 113

Note that

cot πx =
1
π

lim
N→∞

N∑
n=−N

1
x + n

,

and

Im(cot πx) =
1
π

∑
n∈Z

Im
( 1

x + n

)

(the series converging without any special sort of summation), so we get

M1 =
1
N

∞∑
m=1

b

f (m, b)
m2

− 1
πN

∑
a,b

f (a, b)
∞∑

m=1
m≡a

∑
n∈Z

Im
( 1

m2
(mτ+b

N + n
) )

=
1
N

∞∑
m=1

b

f (m, b)
m2

− 1
2π

∑
m∈Z
m�0

∑
n∈Z

f (m, n) Im
( 1
m2(mτ + n)

)
.

This completes the computation of M1. �

Lemma (8.18) M2 =
−1
N

b=N−1
m=∞∑
m=1
b=0

f (m, b)
m2

.

Proof

M2 =
−i
N

N−1∑
k=0

f̂ (k, 0) Im
( ∞∑

m=1

e2πi mk
N

m2

)

=
−i
N2

∑
k,a,b

f (a, b) e
−2πiak

N Im
( ∞∑

m=1

e2πi mk
N

m2

)

=
−1
N2

∑
k,a,b

f (a, b) Im
(
i
∞∑

m=1

e2πi k
N (m−a)

m2

)

=
−1
N

∑ f (m, b)
m2

. �

We return now to the proof of (8.16).

M = M1 + M2 =
−1
2π

∑
m�0

∑
n∈Z

f (m, n) Im
( 1
m2(mτ + n)

)

as desired. �
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We can now complete the proof of Theorem (8.9):

N−1∑
k,�=0

f̂ (k, �)
(
R′′q

(
e2πi
(

k+�τ
N

))
+ i R′q

(
e2πi
(

k+�τ
N

)))
= i N(L + M)

=
−i yN

2π

(∑
m∈Z
m�0

∑
n∈Z

f (m, n)
( 1
m(mτ + n)2

+
1
y

Im
1

m2(mτ + n)

))
.

But

1
m(mτ + n)2

+
1
y

Im
( 1
m2(mτ + n)

)
=

1
m(mτ + n)2

+
1

2iy

(
1

m2 (mτ + n)
− 1

m2 (mτ̄ + n)

)

=
1

m(mτ + n)2
− 1

m(mτ + n)(mτ̄ + n)

= −2i y
1

(mτ + n)2 (mτ̄ + n)
,

so

N−1∑
k,�=0

f̂ (k, �)
(
R′′q (e2πi k+�τ

N ) + iR′(e2πi k+�τ
N )
)
=
−y2N
π

∑
m,n∈Z
m�0

f (m, n)
(mτ + n)2 (mτ̄ + n)

.

This completes the proof of (8.11) and also (8.9). �

References for Lecture 8

[1] S. Bloch, Applications of the dilogarithm function in algebraic K-theory
and algebraic geometry, pp. 103–114 in Proceedings of the International
Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinoku-
niyo Book Store, Tokyo (1978).

[2] S. Bloch, Higher Regulators, Algebraic K-Theory, and Zeta Functions
of Elliptic Curves, Lectures given at the University of California, Irvine
(1978). [CRM Monograph Series, no. 11, American Mathematical Soci-
ety, Providence, R.I., 2000.]

[3] A. Borel, Cohomologie de SLn et valeurs de fonctions zeta aux points
entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4 (1977), 613–636;
errata, 7 (1980), 373.

[4] S. Lang, Elliptic Functions, Addison-Wesley, Reading, Mass.
(1973). [Second edition: Springer, New York, 1987.]



9

Relative cycles and zeta functions – continued

In this final lecture we will show how Theorem (8.9) leads to a regulator for-
mula for the value at s = 2 of the zeta function of an elliptic curve E with
complex multiplication by the ring of integers in an imaginary quadratic field
k with class number 1. We begin with some general lemmas, valid without
hypotheses on E. Notation will be as in Lecture 8.

Lemma (9.1) Q(γ a+bτ
N

) = −Q(γ −a−bτ
N

).

Proof Using formulas (8.7.1) and (8.9.1), together with the fact that the divi-
sor (ρ) is invariant under z → −z, we reduce to proving Gq(t−1) = −Gq(t). We
have

Gq(t−1) +Gq(t) =
∞∑

n=0

J(qnt−1) −
∞∑

n=1

J(qnt)

+

∞∑
n=0

J(qnt) −
∞∑

n=1

J(qnt−1) − (log | t |)2

= J(t−1) + J(t) − (log | t |)2 = 0. �

Lemma (9.2) Q(γ a+b
N

) =
i y2N4

4π3

∑
(m,n)�(0,0)

sin(2π( an−bm
N ))

(m + nτ)2 (m + nτ̄)
.
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Proof Let ga+bτ (k + �τ) = 1
N e2πi ( a�−bk

N ). Then

ĝa+bτ (m + nτ) =
1

N2

∑
k,�

e2πi ( a�−bk
N )e2πi ( −kn+�m

N )

=
1

N2

∑
k,�

e2πi ( �(a+m)−k(b+n)
N )

=

{
0 a � −m or b � −n
1 a = −m or b = −n

= δ−a−bτ(m + nτ)

with obvious notation. Writing fa+bτ = g−a−bτ − ga+bτ we get

Q(γ a+bτ
N

) =
1
2

∑
f̂a+bτ(k + �τ)Q(γ k+�τ

N
) =
−y2N5

8π3

fa+bτ(m + nτ)
(m + nτ)2(m + nτ̄)

=
i y2N4

4π3

∑ sin
(
2π (an−bm)

N

)
(m + nτ)2(m + nτ̄)

. �

The following description of the “modular behavior” of Rq seemed worth
including although it will not be used:

Lemma (9.3) Let τ′ = ατ+β
γτ+δ

with
( α γ
β δ

) ∈ SL2(Z). Write q′ = e2πiτ′ and let( b
a
)
=
( α γ
β δ

)( b′
a′
)
. Then

Qq′ (γ a′+b′τ′
N

) = (γτ̄ + δ)−1Qq(γ a+bτ
N

).

(We write Qq and Qq′ to indicate dependence on q and q′.)

Proof Since SL2(Z) preserves the symplectic form
( 0 1
−1 0
)
, we find that

−a′�′ + b′k′ = −a� + bk, where
(
�
k

)
=
( α γ
β δ

)(
�′

k′
)
. Thus

Qq′ (γ a′+b′τ′
N

) =
i y′2N4

4π3

∑
k′,�′

sin
(
2π a′�′−b′k′

N

)
(k′ + �′τ′)2(k′ + �′τ̄′)

=
i y′2N4

4π3

∑
k′,�′

sin
(
2π a�−bk

N

)
(k′ + �′τ′)2(k′ + �′τ̄′)

.

Note that

k′ + �′τ′ = (γτ + δ)−1(k′δ + �′β + (k′γ + �′α)τ)

= (γτ + δ)−1(k + �τ),
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whence (using y′ = y
(γτ+δ)(γτ̄+δ) )

Qq′ (γ a′+b′τ′
N

) =
i y2N4(γτ + δ)2(γτ̄ + δ)
4π3(γτ + δ)2(γτ̄ + δ)2

∑
k,�

sin
(
2π a�−bk

N

)
(k + �τ)2(k + �τ̄)

= (γτ̄ + δ)−1Qq(γ a+bτ
N

). �

It is convenient to denote by 〈 〉 the bilinear form

〈 〉 : o/No × o/No→ C∗,

〈a + bτ, k + �τ〉 = e2πi( −a�+bk
N ).

We assume henceforth that o = Z + Zτ is an order in an imaginary quadratic
field κ.

Lemma (9.4) 〈xy, z〉 = 〈x, ȳz〉, where ȳ is the complex conjugate.

Proof Write x = x1+x2τ, y = y1+y2τ, z = z1+z2τ, and suppose τ2+Aτ+B = 0,
with xi, yi, zi, A, B ∈ Z. Then

xy = x1y1 − x2y2B + (x1y2 + x2y1 − x2y2A)τ,

〈xy, z〉 = exp
(
2πi

x2y2Bz2 − x1y1z2 + x1y2z1 + x2y1z1 − x2y2Az1

N

)
,

ȳz = y1z1 + y2z2B + y2z1τ̄ + y1z2τ

= (y1z1 + y2z2B − y2z1A) + (y1z2 − y2z1)τ,

〈x, ȳz〉 = exp
(
2πi
−x1y1z2 + x1y2z1 + x2y1z1 + x2y2z2B − x2y2z1A

N

)
.

�

Corollary (9.5) If ζ ∈ oκ is a unit (i.e. a root of 1), then Q(γ ζ(a+bτ)
N

) =

ζ−1Q(γ a+bτ
N

).

Proof

Q(γ ζ(a+bτ)
N

) =
i y2N4

4π3

Im〈ζ(a + bτ), k + �τ〉
(k + �τ)2(k + �τ̄)

=
i y2N4

4π3

∑ Im〈a + bτ, ζ̄(k + �τ)〉
(k + �τ)2(k + �τ̄)

=
i y2N4

4π3

∑ Im〈a + bτ, k′ + �′τ〉
(k′ + �′τ)2(k′ + �′τ̄)

= ζ−1Q(γ a+bτ
N

). �

Assume now for simplicity that o is the ring of integers in κ, and κ has class
number 1.
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Corollary (9.6) Suppose N = f g, with f , g ∈ oκ. Then

ḡ
∑
µ∈o/go

Q(γ a+bτ
N +

fµ
N

) = Q(γ a+bτ
f

) .

Proof We have

∑
µ∈o/go

〈µ, f̄ (k + �τ)〉 =
{

gḡ ḡ | k + �τ,
0 otherwise.

Thus ∑
µ∈o/go

Q(γ a+bτ
N +

fµ
N

) =
∑
k,�

i y2N4

4π3

∑
µ

〈µ, f̄ (k + �τ)〉 Im〈a + bτ, k + �τ〉
(k + �τ)2(k + �τ̄)

=
i gḡy2N4

4π3

∑
r,s

Im〈a + bτ, ḡ(r + sτ)〉
(r + sτ)2(r + sτ̄)ḡ2g

=
i y2N4

4ḡπ3

∑
r,s

Im〈g(a + bτ), r + sτ〉
(r + sτ)2(r + sτ̄)

= (ḡ)−1Q(γ g(a+bτ)
N

)

= (ḡ)−1Q(γ a+bτ
f

). �

Lemma (9.7) Let χ have conductor f | N, n = f g. Then

(i) χ̂(x) = 0 unless N | f̄ x.
(ii) For x ∈ (o/No)∗, χ̂(xy) = χ̄(x̄)χ(y).

(iii) Let f1 | f , f � f1, and suppose N | f̄1x. Then χ̂(x) = 0.

Proof (i) We have

χ̂(x) =
1
N

∑
y∈o/No

χ(y)〈x, y〉 = 1
N

∑
y′mod f

χ(y′)
∑

y′′mod g

〈x, y′〉〈x, f y′′〉

=
1
N

∑
y′mod f

χ(y′)〈x, y′〉
∑

y′′mod g

〈x f̄ , y′′〉

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ḡ � x,
gḡ
N

∑
y′mod f

χ(y′)〈x, y′〉 ḡ | x,

where the y′ (resp. y′′) run through representatives in o for the congruence
classes modulo f (resp. g).

(ii) If x ∈ (o/No)∗,

χ̂(xy) =
1
N

∑
z∈o/No

χ(z)〈xy, z〉 = 1
N
χ̄(ȳ)
∑

z

χ(zȳ)〈x, ȳz〉 = χ̄(ȳ)χ̂(x).
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(iii) Since conductor χ = f � f1, we can find y ≡ 1 mod f̄1, y a unit in o/No,
with χ(ȳ) � 1. Since N | f̄1 · x

χ̂(x) = χ̂(xy) = χ̄(ȳ)χ̂(x).

Thus χ̂(x) = 0. �

We now have the tools we need for the regulator formula. Assume as above
that o = Z+Zτ is the ring of integers in an imaginary quadratic field κ of class
number 1. We fix an embedding κ → C, an integer N, and a character χ of
(o/No)∗ which restricts to the given embedding µκ → C∗ on the roots of 1. Let
χGröss denote the Grössencharakter

χGröss(p) = h̄ χ(h) , p = (h), p � N.

Let f generate the conductor ideal of χ and write N = f g. From (8.9), (9.5),
(9.6), and (9.7) we get

L(2, χGröss) =
4π3

−y2N5

∑
w∈o/No

χ̂(w)Q(γ w
N

)(9.8)

=
4π3

−y2N5

∑
x∈(o/ f̄ o)∗

χ̂(xḡ)Q(γx f̄ −1 ) =
4π3χ̂(ḡ)
−y2N5

∑
x∈(o/ f̄ o)∗

χ̄(x̄)Q(γx f̄ −1 )

=
4π3χ̂(ḡ)g
−y2N5

∑
x∈(o/No)∗

χ̄(x̄)Q(γ x
N

) =
4π3| µκ| χ̂(ḡ)g
−y2N5

∑
x∈(o/No)∗/µκ

χ̄(x̄)Q(γ x
N

).

The j-invariant j(E) is known to be real and to generate the Hilbert class
field of κ. Since κ has class number 1, j(E) ∈ Q so we can choose a model EQ

defined over Q. Deuring’s theory associates to EQ a Grössencharakter χGröss of
κ with values in κ∗,

χGröss(p) = x̄ χ(x), where (x) = p � N.

The character χ takes values in µκ and χ(x̄) = χ̄(x) (this follows from theorem
10, p. 140 of Lang [4], which implies χGröss(p̄) = χGröss(p̄)), so we can rewrite
(9.8)

(9.9) L(2, χGröss) =
4π3| µκ | χ̂(ḡ)g
−y2N5

Q
( ∑

(o/No)∗/µκ

S x χ̄(x)/N

)
.

The ray class group (o/No)∗/µκ acts on points of order N by

x ·
( y

N

)
=

x−1χ(x) y
N
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and conjugation acts on these points in the natural way. The cycle

(9.10) U :=
∑

(o/No)∗/µκ

γx χ̄(x)/N

is invariant under both these actions, and hence is defined over Q. We get

Theorem (9.11) With notations as above, let χGröss be the Grössencharakter
associated to EQ. Let f be a generator for the conductor ideal and let f g =
N ∈ Z, g ∈ o. Then there exists a cycle U on E × P1 × P1 relative to E × # and
defined over Q such that

L(2, χGröss) =
4π3| µκ| χ̂(ḡ)g
−y2N5

Q(U).

Remarks (9.12) (i) L(s, χGröss) is related to the zeta function of EQ, ζEQ (de-
fined up to a finite number of factors by the product over all p ∈ Z such that E
has non-degenerate reduction mod p of the zeta function of the corresponding
curve over Fp), by

ζEQ (s) = ζQ(s)ζQ(s − 1)L(s, χGröss)−1.

(ii) Various renormalizations are possible and perhaps desirable to simplify
the right-hand constant in (9.11). Dick Gross suggests that the “corrected” for-
mula would give L′(0, χGröss) ∈ Q(U) ·Q. Since L′(0, χGröss) ∈ π−2L(2, χGröss) ·
Q, one might take Q̄ = 2πQ (this amounts to modifying (8.8.1) by 2π). A
standard Gauss sum calculation (cf. for example Lang [4], p. 289) yields

| χ̂(ḡ)| =
√

f f̄
N

, whence | χ̂(ḡ) · ḡ|
√

f f̄ gḡ
N

= 1.

Also for τ = x + i y ∈ k, we have y2 ∈ Q, so

L′(0, χGröss) ∈ ζ · Q̄(U) ·Q,

where ζ is a root of 1.
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Bloch, S. K2 and algebraic cycles, Ann. of Math. (2), 99 (1974), 349–379.
———. Torsion algebraic cycles, K2, and Brauer groups of function fields,
Bull. Amer. Math. Soc., 80 (1974), 941–945.

———. K2 of Artinian Q-algebras with application to algebraic cycles, Comm.
Algebra, 3 (1975), 405–428.

———. An example in the theory of algebraic cycles, pp. 1–29 in Algebraic
K-Theory, Lecture Notes in Math., no. 551, Springer, Berlin (1976).

———. Some elementary theorems about algebraic cycles on abelian vari-
eties, Invent. Math., 37 (1976), 215–228.

———. Algebraic K-theory and crystalline cohomology, Inst. Hautes Études
Sci. Publ. Math., no. 47 (1977), 187–268 (1978).

———. Applications of the dilogarithm function in algebraic K-theory and
algebraic geometry, pp. 103–114 in Proceedings of the International Sympo-
sium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book
Store, Tokyo (1978).

———. Higher Regulators, Algebraic K-Theory, and Zeta Functions of El-
liptic Curves, Lectures given at the University of California, Irvine (1978).



124 Bibliography

[CRM Monograph Series, no. 11, American Mathematical Society, Provi-
dence, R.I., 2000.]

———. Some formulas pertaining to the K-theory of commutative group
schemes, J. Algebra, 53 (1978), 304–326.

———. Torsion algebraic cycles and a theorem of Roitman, Compositio
Math., 39 (1979), 107–127.

Bloch, S., A. Kas, and D. Lieberman, Zero cycles on surfaces with Pg = 0,
Compositio Math., 33 (1976), 135–145,

Bloch, S. and J. P. Murre, On the Chow groups of certain types of Fano three-
folds, Compositio Math., 39 (1979), 47–105.

Bloch, S. and A. Ogus, Gersten’s conjecture and the homology of schemes,
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χGröss, Grössencharakter, 119
Chow group, 4

finite dimensional, 21
higher, xi
of zero-cycles, 79

Chow motive, xi
conductor, 118
conic bundle, 29, 80, 89
coniveau filtration, xvii, 66
corestriction, 63
crystalline cohomology, 76
cubic surface, 89
cycle class map, xv
cycle map, 41, 97
cyclic homology, xvii

degree map, 69, 79
Deuring’s theory, 119
devissage theorem, 48
de Rham cohomology, 50
Dieudonné ring, 73
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Grössencharakter, 119
Griffiths group, xvi
Grothendieck’s standard conjectures, xii

H , Zariski sheaf, 52
Hasse–Weil L-function, xv, xix
Hodge filtration, xiv, 25, 40
Hodge structure

polarized of weight two, 5
hyperelliptic surface, 13

incidence correspondence, 27
intermediate jacobian, xiv, 5, 25, 37
isogeny, 28

jacobian, 4
intermediate, xiv, 5, 25, 37

K-cohomology, xv, xvii
infinitesimal structure, 70

K-theory, 45
Milnor, ix
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analytic, 69
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localization theorem, 48
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Milnor–Bloch–Kato conjecture, xvi
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Chow, xi
effective, x
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formal, 74
Mumford’s theorem, 13
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Néron–Severi group, 14
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Picard variety, 5, 14
plus construction, Quillen’s, 46
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with transfers, viii
pro-representable functor, 72
Prym variety, 27

quantum field theory, xx
quartic threefold, 25
Quillen K-theory, 45

rational surface, 79
split, 85

regulator, xv, xviii, xix
regulator formula, 120
resolution theorem, 48
Riemann–Roch theorem, 3
Roitman’s theorem, 59

scissors conguence, xviii
singular cohomology, 50
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Soule’s conjecture on zeta functions, xx
split rational surface, 85
Steinberg group, 47
Steinberg symbol, xvi, 47
symbol map, 70

T (Y), Albanese kernel of Y , 11
tame symbol, 88, 91, 98
theorem of the hypersquare, xiii, 18
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transfer map, 65
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