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1 Introduction

This Special Issue of the Journal of Engineering Mathematics focuses on recent theoretical and applied developments
in Similarity, including asymptotic/numerical similarity and associated software. In particular, it is devoted to papers
by leading researchers who apply similarity analysis to engineering and biological problems (asymptotics involving
similarity solutions), develop significant extensions of similarity methods to find and use symmetries and conserva-
tion laws of partial differential equations (PDEs), develop and use numerical methods for PDEs based on admitted
symmetries and/or conservation laws, and develop symbolic manipulation software to implement similarity analy-
ses. As a consequence, it is hoped that these four distinct groups of similarity researchers will more readily become
aware of recent developments and needs in related fields. In turn, this should lead to important and fruitful research
directions. These papers arose from presentations at a conference on Similarity: Generalizations, Applications and
Open Problems in Vancouver, British Columbia, August 11–15, 2009, sponsored by PIMS (Pacific Institute for the
Mathematical Sciences) and AMSI (Australian Mathematical Sciences Institute). This introductory article includes
a brief summary of the papers as well as a reference to part of the discussion on open problems during a session of
the conference.
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2 G. Bluman et al.

1.1 Similarity

Similarity is concerned with invariance of an aspect of a given problem under continuous symmetries. When a
problem is invariant under a continuous transformation, i.e., it has a continuous symmetry, then often the complexity
in solving it is reduced by the dimension of the symmetry. A natural scaling invariance of a problem arises from
dimensional consistency (dimensional analysis). This is fundamental to modelling (cf. [1–11]). More generally,
similarity (symmetry) analysis has become a very sophisticated subject. For a given problem, often one can
determine admitted symmetries and conservation laws that are not obvious by inspection. In turn, one can use
admitted symmetries and conservation laws for intermediate or long-time asymptotic analysis, as an aid for deter-
mining numerical solutions, to obtain particular solutions, to map the problem to a simpler problem (e.g., lineari-
zation), etc.

Self-similar solutions for PDEs arise for many real problems from invariance under dimensional analysis. More
generally, self-similar solutions arise from invariance under scalings of variables.

When the form of the similarity reduction can be identified a priori (often by means of a conservation law), the
result is often termed a self-similar solution of the first kind; when the similarity exponent must be determined as
the eigenvalue in an eigenvalue problem for the similarity solution, the latter is termed “second kind” (the most
widely studied such examples involving the calculation of travelling-wave speeds).

Still more generally, if a PDE system is invariant under a Lie group of point transformations (point symmetries),
one can find, constructively, similarity solutions (invariant solutions) that are invariant under a subgroup of the full
group admitted by the PDE system. Similarity solutions arise from solving a reduced system of DEs with fewer
independent variables. Similarity solutions can be constructed for specific boundary value problems.

Beginning in the 1980s, and continuing to date, there have been numerous studies analyzing finite-time
singularity formation for nonlinear parabolic second-order PDEs (cf. [12–17]) and more recently for their higher-
order generalizations (cf. [18–20]). The applications of singularity formation are diverse, including fourth-order
lubrication theory models from fluids (cf. [21–23]), chemotactic aggregation governed by systems of nonlin-
ear PDEs (cf. [24,25]), and quenching behaviour in a nonlinear PDE model of a MEMS capacitor (cf. [26]).
For such problems, a singularity forms in finite time whereby either the solution or its partial derivatives
diverge. Although generally it is not possible to determine analytically the singularity time or point(s) where
a solution loses its regularity, it is of considerable interest to characterize analytically the local solution (typi-
cally a similarity solution) behaviour near a singularity, and to determine the stability of any locally self-sim-
ilar solutions. Therefore, in this context, similarity solutions of such PDEs describe local solution behaviour
near singularities. A comprehensive survey of rigorous, formal, and numerical approaches to local self-simi-
larity in describing singularity behaviour in a wide class of physically based PDE models, relating primarily
to fluid systems, is given in [27]. An extensive bibliography of further problems is given in the bibliography
of [28].

Similarity solutions also play an essential role in describing intermediate-asymptotic behaviour for wide classes
of PDEs (cf. [5,7]). In particular, important issues arising from the study of similarity solutions include:

– rigorous stability properties of local self-similar solutions for second-order PDE models characterizing singu-
larity formation is rather well-developed (cf. [16,29]) owing to the Sturm–Liouville structure of the linearized
operator, leading to a countably discrete spectrum. In contrast, for high-order PDE models exhibiting singularity
formation, there can be a countably infinite set of local self-similar solutions whose stability properties must be
studied on a case-by-case basis (cf. [18–20,27]);

– the role of quasi-self-similar solutions (which satisfy the governing equations only asymptotically, rather than
exactly) in describing ultimate (long-time or close to finite-time singularity) evolutions (cf. [17,30–32]). Remark-
ably, such solutions arise often in applications (cf. [27,28]) and their analysis requires a synthesis of similarity,
dynamical systems, perturbation, and numerical methods;

– rigorous analysis of the above issues (cf. [12–17,29]). In many cases such analysis builds directly on the formal
results;
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Similarity: generalizations, applications and open problems 3

– the development of systematic symmetry-based techniques for identifying candidate intermediate-asymptotic
solutions (see, for example, [7]; there is considerable further scope for the application of modern symmetry
approaches).

In recent years there have been many developments in extending symmetry-based methods to find similarity
solutions and conservation laws for PDE systems. Such advances have focused on how to:

– find and implement further applications for admitted symmetries (cf. [10,11,33–36]);
– find multipliers yielding conservation laws and the resulting fluxes of conservation laws (cf. [37–42]);
– extend the spaces of admitted symmetries and hence construct further similarity solutions (cf. [10,11,33,42–47]);
– extend the applications to construct solutions from admitted symmetries to include admitted “symmetries”

arising from generalizations (similarity solutions arising from the nonclassical and other related methods)
(cf. [10,42,48–55]);

– efficiently solve the (overdetermined) linear systems of determining equations for symmetries or conservation
law multipliers and solve the nonlinear systems of determining equations for the nonclassical and related methods
through the development of symbolic manipulation software (cf. [42,56–71]);

– develop numerical schemes that effectively use symmetries and/or conservation laws for ODE’s (cf. [72]), for
difference equations (cf. [73,74]), and for PDE models that exhibit finite-time singular behaviour (cf. [75–77]).

2 Contents of this issue

The articles in this issue can be grouped into the following rough classification.

2.1 Self-similarity

As mentioned previously, self-similar solutions arise naturally as particular solutions of PDE systems from dimen-
sional analysis and, more generally, from invariance of PDE systems under scalings of variables. Usually, such
solutions do not globally satisfy imposed boundary conditions. However, through delicate analysis, one can often
show that a self-similar solution holds asymptotically in certain identified domains (near singularities, large time,
small time, intermediate, etc).

2.1.1 Stability and dynamics of self-similarity in evolution equations

In [28], a methodology is presented for studying linear stability for self-similar solutions. It is shown that self-similar
phenomena can be studied through use of many ideas arising in the study of dynamical systems. In particular, there
is a discussion of the role of symmetries in the context of stability of self-similar dynamics. For blow-up solutions, it
is demonstrated that symmetries give rise to positive eigenvalues associated with rescaling symmetries as opposed
to instability. Moreover, it is shown how such a stability analysis can identify a unique (and observable) stable
solution from a countable infinity of self-similar solutions. It is argued that linearization methods, combined with
careful analysis of associated symmetries, provide a powerful tool for analyzing stability of self-similar solutions.

2.1.2 Thin-film rupture for large slip

In [78], there is a study of the rupture of thin liquid films on hydrophobic substrates, assuming large slip at the
liquid/solid interface. Using a strong-slip lubrication model, it is shown that the rupture can pass through up to
three self-similar regimes with different dominant balances and different scaling exponents. For one of the regimes,
there is a self-similar solution of the second kind, and the similarity (scaling) exponent is determined by solving a
boundary-value problem for a corresponding reduced nonlinear ODE. Moreover, in this regime it is shown that the
self-similar solution blows up after a finite time.
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2.1.3 Self-similarity in particle-laden flows at constant volume

In [79], there is consideration of constant volume thin-film slurries on an incline. Clear fluids in this geometry are
known to have a front position that moves according to a t1/3 scaling law, based on self-similar solution analysis
[80]. By comparing theory with experiments, it is shown that the t1/3 scaling law persists, to leading order, for
slurry flows with particle settling.

2.1.4 Asymptotic analysis of extinction behaviour in fast nonlinear diffusion

In [81], there is a summary of the range of applications that arise for the equation of fast nonlinear diffusion. There
is a discussion of relevant similarity solutions and intermediate-asymptotic behaviour arising from the invariance of
the fast nonlinear diffusion equations under translations in space and time and a two-parameter family of scalings.
In turn, this yields a one-parameter family of self-similar solutions for consideration to obtain relevant asymptotic
solutions (in terms of determining appropriate values in different regimes for the free scaling parameter) through
delicate analysis in terms of posed data.

2.2 Applications of symmetry methods

In the past, symmetries and conservation laws used in applications and the uses themselves were often obvious by
inspectional analysis. However, in recent years, with the development of more sophisticated symmetry methods
and especially with the help of ever-improving software, one is able to find nontrivial uses of symmetries and
conservation laws in applications.

2.2.1 Temperature-dependent surface diffusion near a grain boundary

For a linear partial differential equation, an admitted point symmetry (Lie symmetry) leads algorithmically, through
a corresponding separation of variables, to solutions that are much more general than the usual similarity solutions
directly obtained by symmetry reduction. This allows one to formally solve free-boundary problems that have
approximate symmetries at early times. In [82], this method is applied to a complicated practical boundary-value
problem for fourth-order surface diffusion near a grain boundary at changing temperature.

2.2.2 Relevance of symmetry methods in mechanics of materials

In [83], the interest and relevance of symmetry methods as a predictive and systematic methodology in the con-
tinuum mechanics of materials are analyzed, relying on a classification of the inherent aspects in terms of direct,
extended direct and inverse methods. In particular, the direct problem of finding invariants associated with a given
material’s constitutive law, including dissipation is considered as well as the inverse problem of constructing a
material’s constitutive law from invariance under a given Lie group of transformations.

2.2.3 Higher-order symmetries and conservation laws of the G-equation for premixed combustion
and resulting numerical schemes

In [84], it is shown that the set of computable local symmetries of the G-equation for flame front propagation of
premixed combustion is considerably extended if higher-order symmetries are considered. In particular, it is shown
that the G-equation admits an infinite number of higher-order symmetries for an arbitrary velocity field. Geometrical
and kinematic interpretations of the symmetries are given. In the case of constant flow velocity, the direct method
(cf. [37–39]) is used to derive an infinite set of local conservation laws of the G-equation. The derived infinite sets
of local symmetries and conservation laws are used to develop novel numerical schemes to perform calculations in
practical applications involving the G-equation.
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2.2.4 Hidden symmetries and reductions for ideal magnetohydrodynamics equilibria

In [85], hidden symmetries are derived for the axially symmetric steady-state solutions of the ideal magnetohydro-
dynamic equations. A reduction of these equations to a scalar second-order partial differential equation is obtained.
Applications of the hidden symmetries yield large families of exact axially symmetric MHD equilibria.

2.3 Construction of conservation laws

The direct method for constructing local conservation laws of PDEs is applicable to wide classes of PDE systems
(cf. [37–39,42]). Within this method, one seeks multipliers such that the linear combination of the PDEs in a given
PDE system with the multipliers will yield a divergence expression. After local conservation law multipliers are
found, one constructs the fluxes of the corresponding conservation law.

2.3.1 Computation of fluxes of conservation laws

In the review paper [86], there is a discussion of various methods for flux computation, including a comparison
of these methods as well as illustrations by examples. There is also a presentation of the implementation of these
methods in symbolic software.

2.4 Extending the spaces of admitted symmetries

2.4.1 Potential systems for PDEs having several conservation laws

Knowledge of the symmetry properties of the modelling PDE system of a physical process can be very useful for
understanding the behaviour of solutions, e.g., the group invariance property of a PDE system allows one to generate
new solutions from known ones (cf. [85]), to construct conservation laws (cf. [86]), and find wide classes of exact
invariant solutions. For many nonlinear systems, invariant solutions are the only known solutions and can be used
as testing solutions for numerical and other approximate solutions. Hence knowledge of a new symmetry can be of
great importance for a given PDE system. In [87], another way of constructing potential systems is illustrated that
can lead to finding new potential symmetries (cf. [10,42,44,46,47,55]) of a given PDE system.

2.5 Symmetry-classification algorithms

Recent developments in solving overdetermined systems of differential equations and their implementation in terms
of various symbolic software packages have allowed one to solve seemingly intractable problems of symmetry
classification.

2.5.1 An algorithm for the complete symmetry classification of differential equations based on Wu’s method

In [88], an algorithm is presented which gives a new application of Wu’s method (differential characteristic set
algorithm) for the complete symmetry classification of differential equations containing arbitrary parameters/func-
tions. As illustrative examples, complete potential symmetry classifications of linear and nonlinear wave equations
with an arbitrary function as well as classical and nonclassical symmetries of parametric Burgers’ equations are
presented.
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2.5.2 Algorithmic symmetry classification with invariance

In [89], symmetry classification for a system of differential equations is achieved algorithmically by applying a
differential reduction and completion (DRC) algorithm (cf. [63]) to the linear infinitesimal determining equations of
the system. It is shown that the invariance of the classification under the action of the equivalence group can be tested
algorithmically knowing only the determining equations of the equivalence group. The method is implemented in
Maple.

2.6 Numerical methods involving symmetries and/or conservation laws

2.6.1 How to adaptively resolve evolutionary singularities in differential equations with symmetry

In [90], the theory of self-similar blow-up in evolutionary differential equations is reviewed and a moving mesh
method is presented to simulate numerically such phenomena. The method exploits the evolving symmetries in
such problems to guide the adaptivity in both time and space. This is shown to provide an efficient and reliable
way to simulate self-similar singularity formulation. This enables one to capture dynamics where the behaviour is
exactly or asymptotically self-similar. It turns out that this method is simple to program and extends the utility of
naive finite difference discretization methods. The focus is on the practical implementation with examples drawn
from applications.

2.6.2 A rarefaction-tracking method for hyperbolic conservation laws

In [91], a numerical method is presented for one-dimensional scalar conservation laws that combines the method of
characteristics, local similarity solutions, and particle management. The solution is approximated by local similarity
solutions. While traditional approaches use shocks, the presented method uses rarefaction and compression waves.
Although shocks are not explicitly tracked, they can be located accurately. The method is exhibited by numerical
examples. Specific applications are outlined as well as extensions of the method.

2.7 Other topics

2.7.1 Invariance and first integrals of continuous and discrete Hamiltonian equations

In [92], there is consideration of the relationship between symmetries and first integrals (conservation laws) for both
continuous and discrete Hamiltonian equations. It is shown that canonical Hamiltonian equations can be obtained
through a variational principle from an action functional. The invariance properties of the functional are considered
as is done in the Lagrangian formalism. The well-known Noether identity is rewritten in terms of the Hamiltonian
and symmetry operators. This is shown to provide a simple and clear way to construct first integrals of Hamiltonian
equations without integration. The discrete analog of this identity for discrete Hamiltonian equations can be used
to construct conservative finite-difference schemes in the Hamiltonian framework that are important in numerical
implementations.

2.7.2 Coarsening dynamics of slipping droplets

In [93], the late-phase dewetting process of nanoscopic thin polymer films on hydrophobized substrate is studied,
using some recent lubrication models that take account of large slippage at the polymer–substrate interface.
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2.7.3 Ultrasound detection of externally induced microthrombi cloud formation: a theoretical study

In [94], a mathematical model is presented for the formation of microaggregates (microthrombi) of fibrin polymers
in blood flow, induced by an external source.

2.8 Open problems

During the Vancouver conference, there was a two-part session, led by George Bluman, on open problems relat-
ing to the Similarity areas 2.1–2.6. The tape of the first part, which includes presentations on open problems by
Andrew Bernoff, George Bluman, Philip Broadbridge, Chris Budd and Jean-François Ganghoffer, is available at
the following website address: http://new.pims.math.ca/pix/video/similarity4.mov. Unfortunately, the tape of the
shorter second part is unavailable.

References

1. Buckingham E (1914) On physically similar systems; illustrations of the use of dimension equations. Phys Rev 4:345–376
2. Buckingham E (1915) The principles of similitude. Nature 96:396–397
3. Buckingham E (1915) Model experiments and the form of empirical equations. Trans ASME 37:263–296
4. Bridgman PW (1931) Dimensional analysis, 2 edn. Yale University Press, New Haven
5. Barenblatt GI (1979) Similarity, self-similarity, and intermediate asymptotics. Consultants Bureau, New York, 218 pp
6. Barenblatt GI (1987) Dimensional analysis. Gordon and Breach, New York, 134 pp
7. Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymptotics. Cambridge University Press, Cambridge, 386 pp
8. Sedov LI (1982) Similarity and dimensional methods in mechanics, 9th edn. Mir, Moscow, 424 pp
9. Bluman GW, Cole JD (1974) Similarity methods for differential equations. Springer, New York, 332 pp

10. Bluman GW, Kumei S (1989) Symmetries and differential equations. Springer, New York, 412 pp
11. Bluman GW, Anco SC (2002) Symmetry and integration methods for differential equations. Springer, New York, 419 pp
12. Giga Y, Kohn RV (1985) Asymptotically self-similar blowup of semilinear heat equations. Commun Pure Appl Math 38:297–319
13. Giga Y, Kohn RV (1987) Characterizing blowup using self-similar variables. Indiana Univ Math J 36:1–40
14. Levine HA (1989) Quenching, nonquenching, and beyond quenching for the solution of some parabolic equations. Ann Math Pure

Appl 155:243–260
15. Levine HA (1990) The role of critical exponents in blowup theorems. SIAM Rev 32:262–288
16. Fillipas S, Kohn RV (1992) Refined asymptotics for the blowup of ut − �u = u p . Commun Pure Appl Math 45:821–869
17. Galaktionov VA, Vázquez JL (2002) The problem of blow-up in nonlinear parabolic equations. Discret Contin Dyn Syst 8:399–433
18. Galaktionov VA, Williams JF (2004) On very singular similarity solutions of a higher order semilinear parabolic equation. Non-

linearity 17:1075–1099
19. Budd CJ, Galaktionov VA, Williams JF (2004) Self-similar blow-up in higher-order parabolic equations. SIAM J Appl Math

64:1775–1809 (electronic)
20. Evans JD, Galaktionov VA, King JR (2007) Source-type solutions of the fourth-order unstable thin film equation. Eur J Appl Math

18:1799–1841
21. Bernoff AJ, Bertozzi AL (1995) Singularities in a modified Kuramoto–Sivashinsky equation describing interface motion for phase

transition. Physica D 85:375–404
22. Bernoff AJ, Bertozzi AL, Witelski TP (1998) Axisymmetric surface diffusion; dynamics and stability of self-similar pinchoff.

J Stat Phys 93:725–776
23. Bertozzi AL, Pugh MC (2000) Finite-time blowup of solutions of some long-wave unstable thin film equations. Indiana Univ Math

J 49:1323–1366
24. Herrero MA, Velázquez JJL (1996) Singularity formation in a chemotaxis model. Math Ann 306:583–623
25. Brenner MP, Constantin P, Kadanoff LP, Schenkel A, Venkataramani SC (1997) Diffusion, attraction, and collapse. Nonlinearity

10:1739–1754
26. Guo Y, Pan Z, Ward MJ (2006) Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties.

SIAM J Appl Math 66:309–338
27. Eggers J, Fontelos MA (2009) The role of self-similarity in singularities of partial differential equations. Nonlinearity 22:R1–R44
28. Bernoff AJ, Witelski TP (2010) Stability and dynamics of self-similarity in evolution equations. J Eng Math. doi:10.1007/

s10665-009-9309-8
29. Galaktionov VA, Vazquez JL (2004) A stability technique for evolution partial differential equations: a dynamical systems approach.

Progress in nonlinear differential equations and their applications, vol 56. Birkhäuser, Boston, 377 pp

123

http://new.pims.math.ca/pix/video/similarity4.mov
http://dx.doi.org/10.1007/s10665-009-9309-8
http://dx.doi.org/10.1007/s10665-009-9309-8


8 G. Bluman et al.

30. Hocking LM, Stewartson K, Stuart JT (1972) A nonlinear instability burst in plane parallel flow. J Fluid Mech 51:705–735
31. Dupont TF, Goldstein RE, Kadanoff LP, Zhou SM (1993) Finite-time singularity formation in Hele-Shaw systems. Phys Rev E

47:4182–4196
32. Quittner O, Souplet P (2007) Superlinear parabolic problems: blow-up, global existence and steady states. Birkhäuser advanced

texts. Birkhäuser, Basel, 684 pp
33. Olver PJ (1986) Applications of Lie groups to differential equations. Springer, New York, 497 pp
34. Bluman GW, Kumei S (1990) Symmetry-based algorithms to relate partial differential equations, I. local symmetries. Eur J Appl

Math 1:189–216
35. Bluman GW, Kumei S (1990) Symmetry-based algorithms to relate partial differential equations, II: linearization by nonlocal

symmetries. Eur J Appl Math 1:217–223
36. Mikhailov AV, Shabat AB, Sokolov VV (1991) The symmetry approach to classification of integrable equations. In: Zakharov VE

(ed) What is integrability. Springer, Berlin, pp 115–184
37. Anco SC, Bluman GW (1997) Direct construction of conservation laws from field equations. Phys Rev Lett 78:2869–2873
38. Anco SC, Bluman GW (2002) Direct construction method for conservation laws of partial differential equations. Part I: examples

of conservation law classifications. Eur J Appl Math 14:545–566
39. Anco SC, Bluman GW (2002) Direct construction method for conservation laws of partial differential equations. Part II: general

treatment. Eur J Appl Math 14:567–585
40. Bluman GW, Temuerchaolu G, Anco SC (2006) New conservation laws obtained directly from symmetry action on a known

conservation law. J Math Anal Appl 322: 233–250
41. Anco SC, Bluman GW, Wolf T (2008) Invertible mappings of nonlinear PDEs to linear PDEs through admitted conservation laws.

Acta Appl Math 101:21–38
42. Bluman GW, Cheviakov AF, Anco SC (2009) Applications of symmetry methods to partial differential equations. Springer, New

York
43. Olver PJ (1977) Evolution equations possessing infinitely many symmetries. J Math Phys 18:1212–1215
44. Bluman GW, Kumei S, Reid GJ (1988) New classes of symmetries for partial differential equations. J Math Phys 29:806–811
45. Akhatov IS, Gazizov RK, Ibragimov NH (1991) Nonlocal symmetries. Heuristic approach. J Sov Math 55:1401–1450
46. Bluman GW, Cheviakov AF, Ivanova NM (2006) Framework for nonlocally related partial differential equations systems and

nonlocal symmetries: extension, simplification, and examples. J Math Phys 47:113505
47. Bluman GW, Cheviakov AF, Ganghoffer J-F (2008) Nonlocally related PDE systems for one-dimensional nonlinear elastodynam-

ics. J Eng Math 62:203–221
48. Bluman GW, Cole JD (1969) The general similarity solution of the heat equation. J Math Mech 18:1025–1042
49. Clarkson PA, Kruskal MD (1989) New similarity solutions of the Boussinesq equation. J Math Phys 30:2201–2213
50. Levi D, Winternitz P (1989) Non-classical symmetry reduction: example of the Boussinesq equation. J Phys A 22:2915–2924
51. Burde GI (1996) New similarity reductions of the steady-state boundary layer equations. J Phys A 29:1665–1683
52. Martina L, Sheftel MB, Winternitz P (2001) Group foliation and non-invariant solutions of the heavenly equation. J Phys A

34:9243–9263
53. Bluman GW, Yan Z (2005) Nonclassical potential solutions of partial differential equations. Eur J Appl Math 16:239–261
54. Galaktionov VA, Svirshchevskii SR (2007) Exact solutions and invariant subspaces of nonlinear partial differential equations in

mechanics and physics. Chapman and Hall, Boca Raton, 498 pp
55. Cheviakov AF (2008) An extended procedure for finding exact solutions of PDEs arising from potential symmetries. Applications

to gas dynamics. J Math Phys 49:083502
56. Wu WT (1984) Basic principles of mechanical theorem proving in elementary geometries. J Syst Sci Math Sci 4:207–235
57. Kersten PHM (1987) Infinitesimal symmetries: a computational approach. CWI tract no. 34. Centrum voor Wiskunde en Inform-

atica, Amsterdam, 155 pp
58. Reid GJ (1990) A triangularization algorithm which determines the Lie symmetry algebra of any system of PDEs. J Phys A

23:L853–L859
59. Reid GJ (1991) Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solution space and

calculating its Taylor series solution. Eur J Appl Math 2:293–318
60. Reid GJ (1991) Finding abstract symmetry algebra of differential equations of differential equations without integrating determin-

ing equations. Eur J Appl Math 2:319–340
61. Wolf T, Brand A (1992) The computer algebra package CRACK for investigating PDEs. In: Proceedings of ERCIM advanced

course on partial differential equations and group theory, Bonn
62. Boulier F, Lazard D, Ollivier F, Petitot M (1995) Representation for the radical of a finitely generated differential ideal. In: ISAAC

95: proceedings of the 1995 international symposium on symbolic and algebraic computation. ACM, New York, pp 158–166
63. Reid GJ, Wittkopf AD, Boulton A (1996) Reduction of systems of nonlinear partial differential equations to simplified involutive

forms. Eur J Appl Math 7:604–635
64. Mansfield EL (1996) The differential algebra package diffgrob2. Maple Tech 3:33–37
65. Hereman W (1997) Review of symbolic software for Lie symmetry analysis. Math Comput Model 25:115–132
66. Wolf T (2002) Investigating differential equations with CRACK. In: Grabmeier J, Kaltofen E, Weispfenning V (eds) LiePDE,

Applysymm and ConLaw, handbook of computer algebra, foundations, applications, systems. Springer, New York, pp 465–468
67. Wolf T (2002) A comparison of four approaches to the calculation of conservation laws. Eur J Appl Math 13:129–152

123



Similarity: generalizations, applications and open problems 9

68. Temuerchaolu G (2003) An algorithmic theory of reduction of differential polynomial systems. Adv Math 32:208–220 (in Chinese)
69. Wittkopf AD (2004) Algorithms and implementations for differential elimination. PhD thesis, Simon Fraser University, Burnaby.

http://ir.lib.sfu.ca:8080/retrieve/205/etd0400.pdf
70. Hereman W (2005) Symbolic computation of conservation laws of nonlinear partial differential equations in multi-dimensions. Int

J Quantum Chem 106:278–299
71. Cheviakov AF (2007) GeM software package for computation of symmetries and conservation laws of differential equations.

Comput Phys Commun 176:48–61
72. Budd CJ, Iserles A (1999) Geometrical integration: numerical solution of differential equations on manifolds. Philos Trans R Soc

Lond Ser A 357:945–956
73. Dorodnitsyn VA (2000) Group properties of difference equations. MAKC Press, Moscow, 210 pp (in Russian)
74. Levi D, Winternitz P (2006) Continuous symmetries of difference equations. J Phys A 39:1–63
75. Berger M, Kohn RV (1988) A rescaling algorithm for the numerical calculation of blowing-up solutions. Commun Pure Appl Math

41:841–863
76. Witelski T (2001) Computing finite-time singularities in interfacial flows. In: Modern methods in scientific computing and appli-

cations (Montreal, QC, 2001). Nato Sc. Ser. II Math. Phys. Chem., vol 75. Kluwer, Dordrecht, pp 451–487
77. Budd CJ, Carretero-Gonzalez R, Russell RD (2005) Precise computations of chemotactic collapse using moving mesh methods.

J Comput Phys 2002:463–487
78. Peschka D, Münch A, Niethammer B (2010) Thin-film rupture for large slip. J Eng Math. doi:10.1007/s10665-009-9342-7
79. Grunewald N, Levy R, Mata M, Ward T, Bertozzi AL (2010) Self-similarity in particle-laden flows at constant volume. J Eng Math.

doi:10.1007/s10665-009-9345-4
80. Huppert HE (1982) Flow and instability of a viscous current down a slope. Nature 300:427–429
81. King JR (2010) Asymptotic analysis of extinction behaviour in fast nonlinear diffusion. J Eng Math. doi:10.1007/

s10665-009-9329-4
82. Broadbridge P, Goard JM (2010) Temperature-dependent surface diffusion near a grain boundary. J Eng Math. doi:10.1007/

s10665-009-9332-9
83. Ganghoffer J-F, Magnenet V, Rahouadj R (2010) Relevance of symmetry methods in mechanics of materials. J Eng Math. doi:10.

1007/s10665-009-9311-1
84. Oberlack M, Cheviakov AF (2010) Higher-order symmetries and conservation laws of the G-equation for premixed combustion

and resulting numerical schemes. J Eng Math. doi:10.1007/s10665-009-9339-2
85. Bogoyavlenskij O (2010) Restricted Lie point symmetries and reductions for ideal magnetohydrodynamics equilibria. J Eng Math.

doi:10.1007/s10665-009-9326-7
86. Cheviakov AF (2010) Computation of fluxes of conservation laws. J Eng Math. doi:10.1007/s10665-009-9307-x
87. Ivanova NM (2010) Potential systems for PDEs having several conservation laws. J Eng Math. doi:10.1007/s10665-009-9308-9
88. Chaolu T, Jing P (2010) An algorithm for the complete symmetry classification of differential equations based on Wu’s method. J

Eng Math. doi:10.1007/s10665-009-9344-5
89. Lisle I, Huang S-LT (2010) Algorithmic symmetry classification with invariance. J Eng Math. doi:10.1007/s10665-009-9327-6
90. Budd CJ, Williams JF (2010) How to adaptively resolve evolutionary singularities in differential equations with symmetry. J Eng

Math. doi:10.1007/s10665-009-9343-6
91. Farjoun Y, Seibold B (2010) A rarefaction-tracking method for hyperbolic conservation laws. J Eng Math. doi:10.1007/

s10665-009-9338-3
92. Dorodnitsyn V, Kozlov R (2010) Invariance and first integrals of continuous and discrete Hamiltonian equations. J Eng Math.

doi:10.1007/s10665-009-9312-0
93. Kitavtsev G, Wagner B (2010) Coarsening dynamics of slipping droplets. J Eng Math. doi:10.1007/s10665-009-9313-z
94. Guria GT, Herrero MA, Zlobina KE (2010) Ultrasound detection of externally induced microthrombi cloud formation: a theoretical

study. J Eng Math. doi:10.1007/s10665-009-9340-9

123

http://ir.lib.sfu.ca:8080/retrieve/205/etd0400.pdf
http://dx.doi.org/10.1007/s10665-009-9342-7
http://dx.doi.org/10.1007/s10665-009-9345-4
http://dx.doi.org/10.1007/s10665-009-9329-4
http://dx.doi.org/10.1007/s10665-009-9329-4
http://dx.doi.org/10.1007/s10665-009-9332-9
http://dx.doi.org/10.1007/s10665-009-9332-9
http://dx.doi.org/10.1007/s10665-009-9311-1
http://dx.doi.org/10.1007/s10665-009-9311-1
http://dx.doi.org/10.1007/s10665-009-9339-2
http://dx.doi.org/10.1007/s10665-009-9326-7
http://dx.doi.org/10.1007/s10665-009-9307-x
http://dx.doi.org/10.1007/s10665-009-9308-9
http://dx.doi.org/10.1007/s10665-009-9344-5
http://dx.doi.org/10.1007/s10665-009-9327-6
http://dx.doi.org/10.1007/s10665-009-9343-6
http://dx.doi.org/10.1007/s10665-009-9338-3
http://dx.doi.org/10.1007/s10665-009-9338-3
http://dx.doi.org/10.1007/s10665-009-9312-0
http://dx.doi.org/10.1007/s10665-009-9313-z
http://dx.doi.org/10.1007/s10665-009-9340-9

	1 Introduction
	1.1 Similarity

	2 Contents of this issue
	2.1 Self-similarity
	2.2 Applications of symmetry methods
	2.3 Construction of conservation laws
	2.4 Extending the spaces of admitted symmetries
	2.5 Symmetry-classification algorithms
	2.6 Numerical methods involving symmetries and/or conservation laws
	2.7 Other topics
	2.8 Open problems

	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


