CARTAN CONNECTIONS IN FOLIATED BUNDLES

Robert A. Blumenthal

1. Introduction. Let M be a smooth connected manifold of dimension # and
let F be a smooth codimension ¢ foliation of M. Let G be a Lie group and let
be a closed subgroup of G such that G/H has dimension q. Let 7: P—>M be a
foliated principal H-bundle in the sense of [10]. We define a Cartan connection
in P as a certain type of one-form w on P with values in the Lie algebra of G. This
generalizes the notion of a Cartan connection in an ordinary principal bundle
and provides a unified setting for the study of Riemannian, conformal, and pro-
jective foliations as well as other types of geometric structures for foliations.

THEOREM 1. Let w be a complete Cartan connection in P. Then all the leaves
of F have the same universal cover. In particular, if & has a compact leaf with
finite fundamental group, then all the leaves of & are compact with finite fund-
amental group.

As a corollary to Theorem 1, we will obtain the stability theorem of B. Rein-
hart [23] for Riemannian foliations.

THEOREM 2. Let w be a complete flat Cartan connection in P. Let p: M — M
be the universal cover of M and let (G/H)™ be the universal cover of G/H.
There is a locally trivial fiber bundle M — (G/H)™ whose fibers are the leaves

of p~I(F).

As a corollary to Theorem 2, we will obtain the structure theorem of G. Reeb
[22] for codimension one foliations of a compact manifold defined by a non-
singular closed one-form.

We consider projective and conformal foliations from the point of view of
Cartan connections in foliated bundles and we obtain:

THEOREM 3. Let F be a complete projective or conformal foliation of co-
dimension q (q 22 in the projective case, q 23 in the conformal case). If T has
a compact leaf with finite holonomy group, then all the leaves of & are compact
with finite holonomy group.

THEOREM 4. Let § be a complete flat projective or conformal foliation of co-
dimension q (q 22 in the projective case, q 23 in the conformal case) of a con-
nected manifold M. Then the universal cover of M fibers over SY, the fibers
being the leaves of the lifted foliation. ’

We give a class of examples of complete Cartan connections in foliated bundles
(a class which includes the generalized Roussaire foliations) as well as an example
in the incomplete case.
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2. Foliated bundles. We briefly recall some generalities on foliated bundles
(cf. [10], [11], [17], [18], [6]).

Let M be a smooth connected manifold of dimension # and let & be a smooth
codimension g foliation of M. Let T (M) be the tangent bundle of M and let
ECT (M) be the tangent bundle of &. Let H be a Lie group and let w: P—> M be
a smooth principal H-bundle. We say w: P—> M is a foliated bundle if there is a
foliation & of P satisfying

(i) & is H-invariant,

(i) E,NV,={0) for all u€P,

(i) ., (E,)=E.q, for allu€P,
where £C T(P) is the tangent bundle of § and ¥'C T(P) is the bundle of vertical
vectors. If K is a Lie subgroup of H, then a reduction PyCP to a principal
K-bundle is said to be foliated if Py is a union of leaves of ¥.

EXAMPLE. Let Q=T (M)/E be the normal bundle of &. The frame bundle
F(Q) of Qs a foliated GL(q, R)-bundle. A foliated reduction of F(Q) to a Lie
subgroup KC GL(q, R) is a transverse K-structure for &. Riemannian (respec-
tively, conformal) foliations correspond to the case where K is the orthogonal
(respectively, conformal) group. More generally, the bundle P"(M, F) of trans-
verse r-frames is a foliated G"(g)-bundle where G"(q) is the group of r-frames at
0€R9. A conformal or projective structure for F is a foliated reduction of
P%(M,F) to an appropriate Lie subgroup of G2(q).

3. Cartan connections in foliated bundles. Let & be a codimension g foli-
ation of M. Let G be a Lie group and let HC G be a closed subgroup with
dimension(G/H)=gq. Let w: P—> M be a foliated principal H-bundle. Let ¢ be
the Lie algebra of G and let £ be the Lie algebra of H. For each A € 4, let A* be
the corresponding fundamental vector field on P.

DEFINITION. A Cartan connection in the foliated bundle 7: P—>M is a g-
valued one-form w on P satisfying
(i) w(A*)=A for all A €4,
() (R,)*w=ad(a e for all a€H where R, denotes the right translation
by a acting on P and ad(a ") is the adjoint action of @' on ¢,
(i) For each u €P, w,: T,(P)—> g is onto and w,(E,) =0, )
(iv) Lxw=0 for all X€TI'(£) where I'(E) denotes the smooth sections of £
and Ly is the Lie derivative.

REMARK. If dim F =0, then w is a Cartan co~nnection in the sense of Ehres-
mann [7]. See also [15] and~[l6]. Note that w,: Q, —> ¢ is an isomorphism where
O is the normal bundle of .

Following Molino [19] we say that a section Y€TI'(Q) is complete if there
exists a complete~ vector field Y on P which projects to Y under the natural pro-
jection T'(P) — Q.

DEFINITION. We say w is complete if each section ¥ of O such that w(Y) is
constant is complete.
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REMARK. If dim F =0, this reduces to the notion of completeness given in [12]
and [13].

EXAMPLE. Let & be a connection in F(Q) which is basic in the sense of [10]
(transversely projectable in the terminology of [17]). Let # be the canonical RY-
valued one-form on F(Q). Then w=60+ & is a Cartan connection in F(Q) and w
is complete if and only if & is complete in the sense of [19].

THEOREM 3.1. If w is complete, then all the leaves of & are diffeomorphic.

Proof. Let Y be a smooth vector field on P such that w(Y) is constant. Then
for any X €TI'(E) we have

—30[X,Y]=dw(X,Y)=(Lx o)(Y)—d(«(X))(Y) =0,

and so [X,Y]€T(E). Let X,...,X, be a basis of g. Let ¥},...,¥,€T'(Q)
be the unique sections satisfying w(Y;)=X;, i=1,...,r. Let Y},...,Y, be com-
plete vector fields on P which project to ¥}, ..., ¥, under the natural projection
T(P)—Q. For i=1,...,r let ¢/, tER, be the flow generated by Y;. Since
[X, Y;]€ET(E) for all X€T'(F), it follows that ¢; preserves ¥. Moreover, the
group generated by the diffeomorphisms ¢; acts transitively on the set of leaves
of each connected component of P ([5], [20]). Finally, we get from one com-
ponent of P to another by a suitable element of H. O

Since the leaves of § are coverings of the leaves of &, Theorem 1 follows from
Theorem 3.1.
As a corollary to Theorem 1, we obtain the Reinhart Stability Theorem [23]:

COROLLARY 3.2. Let § be a Riemannian foliation of a compact connected
manifold M. Then all the leaves of & have the same universal covering space.

Proof. Let O(Q) be the bundle of orthonormal frames of the normal bundle
Q of F. Let 6 be the canonical R%valued one-form on O(Q) and let @ be the
unique torsion-free basic connection on O(Q). Then w=0+& is a Cartan con-
nection in the foliated bundle O(Q) — M. Since O(Q) is compact, w is complete
and so by Theorem 1 all the leaves of & have the same universal cover.

PROPOSITION 3.3. Let M and M’ be manifolds with dimM = dimM' =
dim G/H. Let «': P’"> M’ and w: P—> M be principal H-bundles. Let «’ and w be
Cartan connections in P’ and P, respectively. Let f: M'— M be a connection-
preserving local diffeomorphism. If v’ is complete, then f is onto, f is a covering
map, and w is complete.

Proof. The hypothesis on f means that we have a bundle homomorphism
f: P’> P satisfying f*w=w'. For each A € i, let »’~!(A4) (respectively, w ~'(A4))
be the unique vector field on P’ (respectively, P) such that o'(w’~'(A4))=A (re-
spectively, w(w~1(A4))=A). Let V' (respectively, V) be the linear connection on
P’ (respectively, P) such that the vector fields o’ ~'(A4) (respectively, w ~'(A))
are parallel along every curve. Since the geodesics of V’ are the integral curves of
the vector fields ' ~!(A), it follows that Vv’ is complete. Moreover, f~ (V) =V".
Hence V is complete and f is a covering map [9]. In particular, the vector fields
o~ !(A) are complete and so w is complete.
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Let X, €M and let ¢: [0,1] > M be a curve with ¢(0) =x,. Let yo€ 1 Hxp].
Let zg€ 7' ~!{ )}, and let Wwo=/f(20). There is a curve 7: [0,1] = P such that
mor=0, 7(0)=wy and a curve p: [0,1] = P’ such that fep=7, p(0)=z,. Then
g=m">p is a curve in M'satisfying 6(0) =y,, f°6=0 and so f is a covering pro-
jection ([17], [24]). O

Let N be a connected manifold with dim N=dim G/H, let p: Q—>N be a
principal H-bundle, and let @ be a Cartan connection in the bundle p: Q—> N.
Let M be a connected manifold and let f: M — N be a submersion. Let 7: P> M
be the pull-back of Q under f and let /: P— Q be the map such that peF=for.
Then 7 : P— M is a foliated bundle with respect to the foliations & of M and &
of P defined by the submersions f and F, respectively. Let w=F*®. Then wis a
Cartan connection in the foliated bundle n: P — M.

THEOREM 3.4. If w is complete, then f is a locally trivial fiber bundle and & is
also complete.

Proof. Let X,,...,X,;, X441,...,X, be a basis of g such that X, 1,.. X, 18
a basis of A. For each i=1,..., q let ¥; be the section of the normal bundle of &
satisfying w(Y;) =X; and let Y; be a complete vector field on P which projects ¥;.
Foreachi=qg+1,...,r let ¥; be the fundamental vector field on P corresponding
to X;. Foreach i=1,...,r let ¢/, t €R, be the flow generated by Y;. Since w(Y;)
is constant, the diffeomorphisms ¢, send leaves to leaves.

Let yo € P and let L be the leaf of & through y,. Define ®: R'x L — P by

‘I’(tq+l’---:tr’ rla" ',tq)=¢>g]i:°"'°¢tr,°¢t]1°“'°¢g,(y)'

Since the leaves of § are closed, there is a neighborhood V of 0 in R” such that
®: Vx L - U is a diffecomorphism where U is an open saturated set in P [20].
We may assume V is of the form V] x V, where V] is a neighborhood of 0 in R" ™7
and V, is a neighborhood of 0 in RY. Let L = (L). Since Y 41,..., Y, are verti-
cal, ® induces a smooth map ¥: V, X L =M such that 7e®=WV¥e(7X 7) where
7: V= V5 is projection onto the second factor. By shrinking V; if necessary, we
may assume that ¥ is a diffeomorphism. Thus #(U) is an open saturated set
in M and ¥ maps the foliation of V; X L by leaves of the form {¢} XL, t€V;,
diffeomorphically to &. Let C be a compact neighborhood of 0 in R, CCV;.
Then ¥ (C x L) is a closed saturated neighborhood of L in M and so the leaf
space M/T is regular. Since the leaves of & are closed, M/J is Hausdorff. Thus
M/F is a smooth Hausdorff manifold and the natural projection M —>M/F is
a locally trivial fiber bundle.

The principal H-bundle 7 : P — M induces a principal H-bundle 7: P/F -> M/F
and w induces a complete Cartan connection @ in this bundle such that the map
f:M/F— N induced by f is a connection-preserving local diffeomorphism.
By Proposition 3.3, & is complete and f is a covering map. Hence f is a locally
trivial fiber bundle. O

DEFINITION. The curvature of w is the g-valued 2-form @ on P defined by
Q=dw+1[w,w]. We say w is flat if 2=0.
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We now prove Theorem 2. The general idea is to use the flatness of w to pro-
duce a G/H-cocyle defining F such that the transition functions are G-translations
of G/H. Then a monodromy argument yields a submersion g: M — G/H defin-
ing p ~1(F). We show g is a fiber bundle by applying Theorem 3.4.

Since dw= —-%[w, w], we have that for each u € P there is a neighborhood U
of u and a submersion f: U— G defining /U and satisfying f*wy=w where wyq
is the Maurer-Cartan form on G [8]. Let U=7(U), let p=n(u) and lets: U—>P
be a section such that s(U)C U, s(p)=u. Define §: UH— G as follows. For
each y€ UH there is a unique h€ H such that y =s(w(y))h. Set §(y) =
f(s(w(»))h. Then g is H-equivariant and §=f on U. Moreover, § is a sub-
mersion defining §/UH and g*wy=w. It follows that g induces a smooth sub-
mersion g: U— G/H defining &/ U such that peg=gew where p: G— G/H is the
natural projection. Let { U,},e4 be an open cover of P and for each a €A let
&.: UuH—G, g,: U,— G/H be as above. If U,NUz# @, there exists g, €G
such that g,=g.g8s. Hence g, =g,583 on U,N U;. The proof of the following
lemma is straightforward.

LEMMA 3.5. Let w be a Cartan connection in the foliated bundle w: P — M.
Let p: M — M be the universal cover of M. Let \: p*(P) = M be the pull-back of
Pand let p: p*(P) — P be the map such that wo p=peo\. Then \: p*(P)>Misa
foliated bundle and p*w is a Cartan connection. If w is complete, then p*w is
complete.

By a monodromy argument we obtain maps g: p*(P)—>G and g: M—>G/H
such that g is a submersion defining p ~!(F) and p*w=g*w, (cf. [1] and [2]).
By Lemma 3.5 g*w, is complete, and hence by Theorem 3.4 g is a locally trivial
fiber bundle. Finally, g lifts to a bundle map M — (G/H)". a

COROLLARY 3.6 (G. Reeb [22]). Let F be a codimension one foliation of a
compact manifold M defined by a nonsingular closed one-form. Then the univer-
sal cover of M is a product L X R and the lifted foliation is the product foliation.

Proof. The closed one-form defines a complete flat Cartan connection in the
foliated bundle id: M —M where G=R, H={0}. Since R is contractible, the
bundle M — R is trivial and so M =L xR. 0O

EXAMPLE. Let G be a Lie group and HC G a closed subgroup. Let &, be the
foliation of G defined by the natural projection f: G—>G/H. Letp: f*(G) > G
be the pull-back under f of the principal H-bundle f: G—>G/H and let
f: f*(G)— G be the map such that fof=fop. Let wy be the Maurer-Cartan
form on G and let &= _f*w,. Then & is a Cartan connection in the foliated bundle
p:f*(G)— G and an elementary argument shows that & is complete. Let I" be a
discrete subgroup of G. Then F, passes to a foliation F of M=I'\G. The left
action of I' on G X G given by (v, g1, &2)~ (v&,vg2) preserves f*(G) and since
all the structure of the foliated H-bundle p: f*(G) = G is preserved by the left
action of T, we obtain a foliated H-bundle 7 : P —> M where P=TI"\ f*(G). Clearly
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@ projects to a g-valued one-form w on P and w is a complete flat Cartan connec-
tion in the foliated bundle 7 : P — M. We remark that the Roussarie example [4] is
the case where G=SL(2, R), H is the two-dimensional affine group, and M is the
unit tangent bundle of a compact connected Riemann surface of genus >2. The
generalized Roussarie example is the case where G=SL(g+1, R) and G/H = RPY.

EXAMPLE. Define f: R*—> R by f(x,y)=e” sin 2xx. The codimension one
foliation of R? defined by f passes to a codimension one foliation § of the torus
T2. There is an R-cocycle {(U,, f., 8ap)}a,pea defining F such that each g,z is
the restriction of an affine transformation of R. Let F(R) be the frame bundle of
R. Let 4 be the canonical one-form on F(R) and let & be the connection form on
F(R) corresponding to the canonical linear connection of R. Then =0+ & is a
flat Cartan connection in F(R). Since w is preserved by the maps g,g, it induces a
flat Cartan connection w in the frame bundle of the normal bundle of &. Observe
that f: R>> R is not a locally trivial fiber bundle and w is not complete.

4. Projective and conformal foliations. In this section we prove Theorems 3
and 4 by considering the normal projective (respectively, conformal) connection
in the projective (respectively, conformal) normal bundle of a projective (respec-
tively, conformal) foliation.

Let & be a smooth codimension g foliation of a connected manifold M. Let
CO(q) be the conformal group, CO(g)={A€GL(q,R):'AA=cl,c€R, c>0}.
We say & is a conformal foliation if the frame bundle F(Q) of the normal bundle
QO of F admits a foliated reduction to a principal CO(qg)-bundle PCF(Q) (cf.
[25], [21], {3D).

A projective foliation cannot be described via a foliated reduction of F(Q). In
order to treat conformal and projective foliations in a unified manner we con-
sider the bundle of transverse 2-frames. _

Let U and V be neighborhoods of 0 in R? and let f: U—>M, g: V—>M be
smooth maps transverse to & with f(0)=g(0) =x. Let W be a neighborhood of x
and let F: W— RY be a submersion constant along the leaves of F/W. We say that
S and g define the same transverse r-frame at x if o f and F-g have the same par-
tial derivatives up to order r at 0. This definition is independent of the choice of
the submersion F. Let j;(f) denote the transverse r-frame determined by f and
let P"(M, F) be the set of transverse r-frames on M. Then =,: P'(M,F) > M,
7 (Jx(f)) =x, is a principal bundle over M with group G'(q) where G'(q) is the
group of r-frames at 0 € RY. The right action of G'(g) on P'(M, F) is given by
Jx(f)Jb(8)=Ji(Sfg), for ji(f)EP'(M,TF), ji(g)EG'(q). Clearly, P'(M,5)
is the bundle F(Q) of linear frames of the normal bundle of & with group
G'(q)=GL(q,R).

Let W be an open set in M and let F: W— R? be a submersion constant along
the leaves of &/W. Then F induces a submersion F"): P"(M, F)/W — P"(RY) by
FUYGI)) =JFy (Fof) where P'(RY) is the bundle of r-frames of RY. Hence if
(W, Fy, 8a8))a, sea is an R%-cocycle defining &, then

{(Wr_l(Wa)sFa(r)s go(zﬁ))]a,ﬁEA
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is a P"(R?)-cocycle on P"(M, F) and hence defines a foliation F* of P"(M, F)
which makes 7, : P"(M, F) - M a foliated bundle.

(A) Projective model. Let G=PGL(q, R)=SL(gq+1, R)/center. Then RP7=
G/H. The Lie algebra ¢ of G is sl(¢+1,R) and is graded as g=g_;+go+ ¢
where g_;=RY, go=gl(q, R), ¢;=(R?)* (cf. [15]).

(B) Conformal model. Let G=0(g+1,1). Then SY=G/H. The Lie algebra ¢
of Gis o(g+1,1) and is graded as g=g_,+go+g; Where ¢_; =R, go=co(q),
g1= (RY)* (cf. [15]). oxp

Let G/H be as in (A) or (B). Then the mapping R’=g4_,—>G— G/H gives a
diffeomorphism from a neighborhood of 0 in R? onto a neighborhood of H in
G/H. Let a € H. Since a is a transformation of G/H fixing H we may regard a as
a local diffeomorphism of RY fixing 0. Let ji(a) € G*(q) be the 2-frame deter-
mined by a. Since the homomorphism a~ j&(a) is one-one, we may regard H as
a subgroup of Gz(q) ([15], [16]).

Let & be a smooth codimension g foliation of a connected manifold M. Let
7, : P?2(M, ) — M be the bundle of transverse 2-frames. We say ¥ is a projective
(respectively, conformal) foliation if P?(M, F) admits a foliated reduction to the
group H of (A) (respectively, (B)).

The foliation & may be defined by an N-cocycle {(Uy, fu, &a8)}a,sea Where

(i) N is a (not necessarily connected) g-dimensional manifold with a projec-

tive (respectively, conformal) structure PC P?(N),
(i) {U,l}oe4 is an open cover of M,
(iii) f,: U, — N is a submersion defining /U,
(iv) gap:f5(UsNUg) = fo,(U,NUpg) is a projective (respectively, conformal)
transformation satisfying f, = g,5°/3 on U, N U;.
Let a(g, R) =R+ gl(g, R) be the Lie algebra of the group of affine transforma-
tions of R?. Let §=(6’,/) be the canonical a(g, R)-valued one-form on P*(N)
([14], [15]). Let (&°, ch) be the restriction to P of 8. The following theorem is
well-known; see, e.g., [15] and [16].

THEOREM 4.1. Let q 22 in the projective case and q 23 in the conformal case.
There is a unique Cartan connection &= (&', wj ,&;) in P such that the curvature
Q=(0, QJ',Q ) satisfies EK,,,—O where Q) =3 ZKJ’HG: NG

This connection @ is called the normal projective (respectively, conformal)
connection.

From now on we assume g =2 in the projective case and g > 3 in the conformal
case.

Since the maps g,p are projective (respectively, conformal) transformations,
the maps g7 preserve P and hence the restriction of  to P will be defined by
the P—cocycle (w5 WU, fofz), (2))}a e Since the normal projective (respec-
tively, conformal) connection is unique, we have g{3*@=a. Let w be the g-valued
one-form on P given by w/m5 1(U,) =£P*&. Then w is a well-defined Cartan con-
nection in the foliated bundle n,: P— M depending only on the projective (re-
spectively, conformal) structure PC P?>(M, F). We call » the normal projective
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(respectively, conformal) connection in the projective (respectively, conformal)
normal bundle P of &.

DEFINITION. We say & is a complete projective (respectively, conformal) foli-
ation if w is complete. We say & is a flat projective (respectively, conformal) foli-
ation if w is flat.

To prove Theorem 3, let G(q) be the group of germs of local diffeomorphisms
of RY fixing 0 and let #": G(gq) — G'(q) be the natural projection. Let L be a leaf
of & and let xo,€ L. Let H: (L, Xxy) = G(q) be the holonomy homomorphism
and let H'(L,Xx,) be the infinitesimal holonomy group of order r of L at x;
that is, H'(L,x,)=image(n -H)CG'(q). Let L" be a leaf of ¥ such that
7,(L"y=L. Then w,: L" — L is a regular covering whose group of covering trans-
formations is isomorphic to H' (L, Xx).

Since the germ at a point of a projective (respectively, conformal) transforma-
tion of a g-dimensional manifold with g >2 (respectively, g = 3) is determined by
the 2-jet of the transformation at that point, it follows that H 2(L, xp) is iso-
morphic to the germinal holonomy group H(L, xy) of L at xj.

Suppose L, is a compact leaf with finite holonomy group. Let L3 be a leaf of
F@ guch that 7, (L3) = Ly. Then L} is compact. By Theorem 3.1, all the leaves of
5@ are compact. Hence all the leaves of & are compact with finite holonomy
group, proving Theorem 3. 0

Theorem 4 follows from Theorem 2 and the fact that the universal cover of the
G/H in (A) or (B) is S9.

EXAMPLE. Let G/H be as in (A) (respectively, (B)). Let a € G. Then the
composition R/=g_, =G %5 G/H % G/H determines a 2-frame j2;(a) at aH €
G/H. Theset { j2y(a): a € G}C P*(G/H) defines a projective (respectively, con-
formal) structure on G/H which can be identified with the bundle f: G—> G/H.
The Maurer-Cartan form wy of G is the normal projective (respectively, con-
formal) connection. Let I' be a discrete subgroup of G and let w be the Cartan
connection in the foliated bundle 7 : I'\ f*(G) =P — M =T'\G constructed in the
first example in Section 3. Then n: P— M is a projective (respectively, con-
formal) structure for the foliation & of M and w is the normal projective (respec-
tively, conformal) connection in the projective (respectively, conformal) normal
bundle Pof &. Thus & is a complete flat projective (respectively, conformal) foli-
ation. In particular, the generalized Roussarie example is a complete flat projec-
tive foliation.
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