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LINEAR PARTIAL DIFFERENTIAL EQUATIONS, 

WITH CONSTANT COEFFICIENTS 


S. BOCHNER 

(Received September 14, 1945) 

We will derive by tt simple method some elementary properties of solutions of 
dysterns of linear. partial differential equations with constant coefficients. In 
particular, we will obtain a general theorem on removable singularities. No use 
will be made of Green's functions or other source functions. Accordingly, our 
results will be stated for equations in general, although most of them will be of 
consequence only for equations of elliptic or similar type. 

For fixed n, we consider an operator of the form 

that is a $finite sun1 of the form 

The coefficients are all constants. The variables XI ,  . . . , z, are real, the co- 
efficients may be complex. The integer N o ,  if it is the smallest possible one, 
will be called the order of Aj .  Whenever an entire system of operators will be 
introduced, as will be the case in Chapter 11, the order No will be the smallest 
integer admissible for all operators occurring. 

If we consider the differential equation 

then for N 2 No we will say that j(x) is a strict solution of class CVin an open set 
D, if j(x) is defined and belongs to differentiability class CNin D, and if it satisfies 
the given equation a t  every point of D. 

We will say that j(x) is a weak solution of class CNin D, if it is defined almost 
everywhere in D and Lebesque integrable in every compact subset of D, and if 
corresponding to any point z0 in D there exist a neighborhood U = U(zO), such 
that in U, j(x) is a weak limit of strict solutions of class C Nin U. In other words, 
there exist a sequence of functions { j'"(x) ) , k = 1, 2, . . . , each of which is de- 
fined, and a strict solution of class C Nin U, such that for. every bounded measur- 
able function +(x) in U ,  we have 

j'k'(x)$(x) dv, = 
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In what follom-s, the symbol D' will invariably denote an open subset of D 
whose closure in space is a bounded subset of D.  Furthermore, any function 
cp(x)in D which vanishes outside some D' will be called a testing function. 

We will start with a very simple theorem. 
THEOREM1. A function f ( z )  of class CNi n  D is a strict solutio,~~ of (2), i f  and 

only i f  we haoe 

for every testing function of  class CN. 
PROOF. If f and cp both belong to CN, and if cp is a testing function, then by 

Stokes' t,heorem we have 

Thus, (3) is equivalent with 

However, for given f nre will have relation (4) holding for. all testing functions of 
any class CM, if and only if ,ij = 0, as asserted. 

LEMMA1. If ( U J  is  a covering of D by a system of neighborhoods, i f  D' i s  a 
subset of D as described before, and if cp(x) i s  a testing function of class CNwhich 
vanishes outside D', then there exist a j h i t e  number of neighborhoods U1, . . . , U ,  
out of the given covering, and correspo7zding functions cpl , . . . , cp, of class CN,such 
that cp, vanishes outside CT, , p = 1, . . . , r,  and that 

(5) cp(x) = cp1(x) + . . . + $ 0 7  ( x )  

in all of D. 
This lemma is a familiar tool in the theory of differential equations and of 

differentiable manifolds.' 
LEMMA2. If ( by)is  a covering of D and i f  we assume that relation (3) holds for 

every testing function of class Cx which vanishes outside some U, then it holds for all 
testing functions of class C K .  

PROOF. Follo~vs from ( 5 ) .  
THEOREM If f ( x )  is  a weak solutior~ of class CN,then2. 

(6) JDf.ncp.dvZ = o 
holds for all testing functior~s of class C'" 

PROOF. 1f f ( ' ) (x)  approximates weakly to f on C ,  then by Theorem 1 we have 

(7) JC j ( " ( ~ )  = o. ~ c p d ~ ,  

-.----- --
1 See P BOCHNER, k or, the theorem ofRenia~ Green, Duke Joiu~ial,3 (1937), 33-1-338 
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for every testing function in I:. Letting k -+ x , n-e obtain ( 7 )  for f (a)  itself, 
and by Lemma 2, for D instead of t'. 

By combining Theorem 2 with one half of Theorem 1, Ire obtain 
THEOREM I f  f ( x )  i s  a weak solution of class CA',and i f f  ( x )  happens to belong 3. 

to differentiability class C", M 2 NO, then f ( x )  i s  a strict solution of class C M .  
Our next aim is to invert Theorem 2. This will be done by using so-called 

h- average^.^ If the boundary of D'has a distance 2 p from the boundary of D, 
and if j ( x )  in D is integrable in every compact subset of D, then for .2- in D' \re 
can form the h-average 

if h < p. If h < p/lM, 111 2 1, we can iterate the process of forming the h-average 
M times. The JIthiterate will be denoted by jh, ,,(r) and also called the h-arer- 
age of order M. 

THEOREM4. I f  f ( x )  i s  integrable and (6) holds for (p 6 P' and D'i s  an  open sub- 
set of D as b~jore ,  then for euery M 2 1 and h s y f i c i~n t l y  slnnll we hntz relation 

for every testing function cp of class C.' i7z  I)'. 
PROOF. If (p(x) is a testing-function in D',then for each sufficiently small 

t = (tl , . . . , t,), the function cp(x - t )  is a testing-function in D. Therefore hy 
assumption (6) we have 

and by a translation of c~ordinat~es \re hence obtain 

for t sufficiently small. If Ire integrate this with respect to t ,  \re obtain ( 8 )  for 
M = 1 and small h, and by iteration for JI 2 1. 

THEOREM I f  f (2)i s  a strict solution o j  class ('' ( x )  i s  a 5 .  i n  D, then zn D',j,, , , 
strict solution for ;TI 2 1 and small h.  

PROOFS. Theorems 4 and 1. 
THEOREMG. I f  f ( x )  i s  a weak solz~tion (f( 1 )  i n  D,then zn L)', j ~ , ,w(n.) is a strict 

solutzon for M 2 .Yo + I ,  and small h.  
PROOF. If f ( x )  is integrable, then fh(2) is continuous, and fi,,,,(x) belongs to 

class CM-' .  Sow, if f ( x )  is a weak solution, then by Theorems 2 and 4 we have 
relation ( 8 ) .  For M 2 ,Yo + I ,  jh , is therefore a strict solution by Theorem I .  

? For the  role of h-average3 in the  calculus of varations, see J .  W CALKIS,and C .  B 
~ I O R R E Y ,Func tzo t~sof sezleral varznbles and nbsolutc cor~litctclt?/,I h k e  Journal,  4 (1040), 
170-186 and 187-215 



THEOREM7. If j(r) is integrable and if (6) holds for (p e CM,then for every 111, 
n o  matter how lai,ge, j ( x )  i s  a weak solutiotz o j  ( 1 )  of class CU. 

PROOF. By Theorem 4, we hare relation (8), and by Theorem 1 it hence fol- 
lows that j,,,.,, is a strict solution for 31 2 -No+ 1. However, for fixed Jf,f ~ , , , ~ ( x )  
converges weakly to j ( x )  in D' as h -+0 ,  and this proves the theorem. 

THEOREM8. I f  f ( x )  i s  a weak sol~ction of class c", then i t  i s  also a weak solution 
of class C", for all V 2 N. 

PROOF. Theorems 2 and 7. 
We also note 
THEOREM9. I f  f ( x )  is a [leak solzct~on i ) l  11, then j,,, ,, i s  a weak solution in Dl, 

jor d l  2 1. 
Finally we point out a special theorem. 
TITEOREM10. - 4 7 1 ~v>eak solution of thc Laplace equation 

i s  also (afler correction on a ~ ~ z ~ l l - s e t )  a strict solution, that is,  a harmonic function. 
PROOF. If a sequence j '"(x)  is weakly convergent, then in particular the 

ID,norm. 1 f ( " ( x )  1 &i are hounded in k .  Xu\\-, if f ( x )  is harmonic in D, then 

a t  each point .roin 11,j ( xo )  is equal to the ( I L  - 1)-dimensional average over the 
boundary of the sphere with center a t  z@. From this it follows that j ( xo )  is also 
equal to the n-dimensional average over the interior of the sphere. Frem this 
it follows that every \i-eakly convergent sequence of harmonic functions in D is 
boundedly convergent in every compact subset. From the Poisson integral it 
then follo~~-s that the sequence is also uniformly convergent and that so is also 
the sequence of their partial derivatives of every order. Thus the limit function 
is likewise harmonic. 

CHAPTER11. SYSTE>ISO F  EQTATIONS 

We will nest consider systems of equations If 

( 9 )  *iy,. . . , A ' j  

are a fixed system of operators of the type considered before, and if 

is :t variable systetrl of such operntolss, then 

(10) ~f E + ~ , ~ ( - < ~ j ). . . + ~ ,~(~ i r f )~ ' ( ~ l f )  + 
is again an operator of this kind. \Ye will say that (10)  has been induced by 
the system ( 9 ) ,and \re \\-ill call it an intiuced operator. 

I: f ( r )  is a strict common solution of the system of equations 
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and if it has derivatives of sufficiently high order, then it is also a solutiorl of 
the induced equation 

(12) Lf = 0. 

Thus by Theorem 7 we obtain 
THEOREM If f (x) is a common weak so1utio)z of the system (11), then i t  i s11. 

also a weak solution of every induced equation. 
We will now add a second generalization. We will assume that the synlbol 

f(x) represents not one function but a finite set of function 

(13) f(x) = ( f i (~ ) ,. . . ,fs(x)), 

the integer shaving no arithmetical connection with the dimension n of the space. 
An operator A j  shall be an expression of the form 

where each A,f, is an operator of our original type. It should be noted that al- 
though Af operates on a vector function of s components, its value is a one-com- 
ponent function. If the notions of integrability, differentiability, weak con-
vergence, h-average, etc. are applied to each component separately; and if the 
integral 

I f .  ~ 9 . d ~ ~  

which occurs in several theorems is replaced by 

/ A19 + . . + f8 A89)dv= 

where (F(x) is a one-component function; then previous theorems will also apply 
to vector-functions, and to systems of equations as well. 

APPLICATIONS.AS an application of Theorem 11, we consider for n = 3 
the system of equations 

(14) div j = 0, rot f = 0, 

that is the system 

By the known relation Af = grad div f - rot rot f, the system (14) induces the 
equations 

Aj l  = 0, Aj, = 0, Af3 = 0, 

and thus by Theorems 10 and 11\ire obtain the theorem of H. IVeyL3 

3 The method of orthogonal projectiorl in potential theory, Duke Journal, 7 (1940), 
p .  412. 
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THEOREM 12. For n = 3, every weak solution of (14) has derivatives of all orders. 
Similar to this is 
THEOREM 13. For n = 2, a weak solution of the Cauchy-Riemann equations 

is a strict solution, and thus u + i v  is analytic zn x + iy. 
The reason being that equations (16) induce the equations Au = 0, Av = 0. 
Our approach also throws light on the classical theorem of Morera which we 

will derive in a general set-up. As before, we take any space dimension n, and 
we introduce for any s 2 1, expressions 

(17) , i ' f = ~ ; j ~ + . . - + ~ f j , ;  i = l , . . . , n .  

We denote by No the precise order of the system and we assume that j(x) belongs 
to class CNO in an open set D. 

If we will assume that a function j also belongs to CNO+', then by Stokes 
theorem the integral 

will have the same value as 

where B is a domain in D, and S is its boundary, the latter being sufficiently 
snlooth. Now, if the surface integral vanishes for all (n - 1)-dimensional 
surfaces S, then j is a strict solution of 

We now claim that the conclusion also holds iff belongs only to C."'. 
THEOREM 14. Ij the system (17) is oj  order No and j belongs to C"O and if (18) 

vanishes over all spheres, then j is a weak solution of (20). 
PROOF. If (18) vanishes for all spheres S, then for fixed S i t  vanishes for trans- 

lated spheres S - (t), for sufficiently small t. Or, if we replace x by x + t ,  we 
see that (18) vanishes for j(x + t) in place of j(x). If we then integrate with 
respect to t under the integral, we arrive a t  the vanishing of (18) for jh(x) instead 
of j(.r). But if j(x) belongs to CNO, then jh(x) belongs to c"o+', and thus jh(x) 
is a strict solution of (20). Therefore, j(x) itself is a weak solution of (20), as 
asserted. 

For instance, if u and u are continuous functions in (x, y), and a,  /3, y, 6 are 
constants, and 
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for all closed curves in a domain, then (u, v) are a weak solution of 

-
a 

(au + bv) --a 
(yu + 6v) = 0. 

ay ax 

In particular, if 

[(dz = (U + iv)(dx + idy)  = 0, 
d 


then we have 

-
a (iu - v) - -a (u + iv) = 0 

ax ay 

and this equation decomposes into the Cauchy-Riemann equations (16). How-
ever, a weak solution of the latter equations is also a strict solution, and in this 
way we obtain a peculiar new proof for the theorem of Morera. 

Another curious little theorem for arbitrary n is as follows. 
THEOREM15. If f(x) is continuous in D, and if 

jdxz d s  . . dx, = 0 

for every spherical hypersurface, then (df/axl) exists and is equal to 0. 
PROOF. By Theorem 14,f(x) is a weak solution of (df/axl) = 0, and fh(x) is 

a strict solution. Thus fh(x) is constant in xl , and since in the present, mse 
fh(x) converges uniformly to f(x), the latter function is also constant in x, . 

Finally we note the following theorem. 
THEOREM16. If i t  is known that f belonqs to C' in D, and that 

for all spheres S, then f is harmonic. 

Let A be an arbitrary bounded measurable set in n-space and for 0 < E < w 

let A ,  denote the E-neighborhood of A,  that is, the union of all open spheres of 
radius E with centers at  points of A .  As shown elsewhere,' there is in entire 
space a function Q,(x) of class Cmhaving the following properties: (i) / Q,(x) / 5 
1; (ii) Qt(x) = 0 in AZr; (iii) Q,(x) = 1 outside A3, ;and (iv) for every multi- 
index (kl , . . . , k,) there exist a constant which is independent of x and E such 
that 

Now, let D be a bounded open set, let Dobe an open subset,, and let A be the 
difference D - Do . We d l  look upon A as an "exceptional set" in D. Let 

(21) APf = 0, p = 1, . . . , T ,  
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be a system of equations for the vector function 

and let Sobe the order of the system (21). Let f be a given weak solution of 
(21) in Do and let it be integrable in Do . We complete the vector function f on 
the exceptional set by assigning there the values 0, and L1.e are posing the prob- 
lem of deciding under what conditions the complet,ed furlction will be a weak 
solution of (21) in all of D. 

If cp is a t,esting function in D,then 

will be a testing function of the same class in Do . Since f was assumed to be a 
weak solution of (21) in Do , we have 

If we take into consideration that the partial derivatives of (p of order 5 No are 
bounded in D, and if we make use of all properties of Q, ( T ) ,  it is not hard to 
see that for x in D we have 

where Co is independent of .L and 6 .  If we use property (iii) and compare (23) 
and (24) we next obtain the decisive inequality 

By using Theorem 7 we now arrive at  the follotving theorem. 
THEOREM 17. I f  a vector function f i s  a weak solution of a system (21) of order 

No in a bounded open set Do = D - -4, .where D i s  a larger bounded open set and A 
a n  exceptional set in i t ;  if B ,  i s  the 6-neighborhood of A i n  Do and v(6) its Lebesque 
measure; and if we denote by T ( t )  the strong average o f f  over B ,  , that i s  

then adding the ilalz~es f = 0 on 9 will produce a weak solufion of (21) in all of D 
provided we h n v ~  

as e -+ 0. 
If the set -4 lias (n-d~rucnsional) 1,ebesque measure 0 ,  it makes no difference 

by which values we conlplete f on the points of A ,  since a weak solution is deter- 
mined only up to a null-~et. If furthermore the systern (21) is such that every 
\veak soll~tion is automatically a strict solution, then the given vector f in D,, 
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>+-ill automatically determine its additional values on A, and in this case our 
theorem is truly a theorem on removable singularities. 

If A is a sufficiently smooth pointset of dimension m, 0 5 m < n, then 

(27)  V ( E )= O(tnPm)  

and (26)  is implied by 

(28)  T ( E )= o(eNo+m-n1. 
For No + m = n this is T ( e )  = o(1)  and thus the requirement is that f shall 
vanish in the strong average when x approaches the exceptional set A. If No + 
m > n, a stringent mode of vanishing is required, whereas for No + m < n a 
certain latitude of unboundedness is not precluded a priori. 

If we take an integer M such that 0 < M < N ,  if we introduce the derivatives 

for 

and iff belongs to class CM, then we can set up the averages 

Very often relation (26)  can be replaced by 

and similarly (28)  by 

This replacement will certainly be admissible if there exists a system of equations 

of order NO- M such that a combination of the systems (33)  and (29)  will in- 
duce the original system ( 21 ) .  In particular for M = No -1 we thus obtain 

TNo-l(t) = O ( E ~ - ~ + ' ) ,  

and for a hypersurface A of dimension n - 1 this will be fulfilled whenever f 
and its derivatives of order 5 hTo-1 are approaching values 0 as x approaches A .  

CHAPTERIV. THEOREMA UXIQUEXESS 

We will draw a peculiar conclusion from the last theorem. 
THEOREM18. I f  DO i s  a bounded domain and i f  B i s  a n  (n - 1)-dimensional 

piece of hypersurface on the boundary of Do and B ,  i s  i ts  t-neighborhood in Do ; i f  
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the system (21) of order No i s  such that every weak solution i s  automatically analytic 
in the real variables xl , . . . , x, ; and if 

or more speci$cally i j  

T ( e )  = o(eNo-I). 

then j ( x )  = 0. 
If (21) i s  inducible from a system of order No - M as described in Chapter 111, 

and if 
T " ( € )  = O ( C N ~ - M - '  1, 

then again f ( x )  = 0. 
We can take a domain Dl which borders on B from the outside. If we put 

A = B + Dl , D = Do + A = D + B + Dl , we may apply Theorem 17 and the 
conclusion is that f ( x ) ,  if completed by values 0 in d,is a weak solution in all 
of D.  By our specific assumption, j ( x )  is analytic in Dl  and since it vanishes in 
an open subset Dl , it vanishes identically, as asserted. 

Some of our results, notably the theorem on removable singularities, will 
remain valid if the coefficients a, which occur in our operators are general func- 
tions of (xl  , . . . , x,). We introduce an expression of the form 

C dT1+".+Tnfa,, . . . r,  ( x )  --------
rl+" . + T , ~ N O  a;; . . . a::: 

in which the coefficients a,(%) have bounded continuous derivatives of order 
5 No in the given domain D ; or of any larger order N and in some larger domain, 
if the context will so require. The given operator will be denoted by ; i f ;whereas 
by A j  we will denote its formal adjoint, that is the operator 

If j belongs to CN0and cp is a testing function of class C"'" we have 

ID( f . A e  - u ; ~ f ) d v ,= 0, 

and we will say that j ( x )  is a weak solution of the equation 

x j = o  
in D if it is defined almost everywhere and Lebesque integrable in every compact, 
subset of D and if for every testing function (p of class CY"we have 

(34) lDj .  Acp dv, = 0. 
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A similar definition holds for a vector function being a solution of an equation 

In testing relation (34)we may restrict ourselves to functions cp from CAY,for 
some AT L No ,since for every testing function cp of class C N othere exist a sequence 
of testing functiorls {cp,  J,each of class CN,such that 

Furthermore, the fundamental facts about induced equations remain in force, 
sinre t,he formal adjoint of E(; i f )  is A(Lf) and (34)implies 

It must be pointed out that in general no smoothing process in the nature of 
an h-average will be available for our weak solutions, and we cannot claim that 
a weak solution is a weak limit of strict solutions. However, the proofs in 
Chapters I11and IV do not depend on the latter facts and we thus may state 

THEOREM Theorems 17 and 18 are also valid for operators with non-constant 19. 
coefiients. 


