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LINEAR PARTIAL DIFFERENTIAL EQUATIONS,
WITH CONSTANT COEFFICIENTS

S. BocHNER
(Received September 14, 1945)

We will derive by a simple method some elementary properties of solutions of
systems of linear partial differential equations with constant coefficients. In
particular, we will obtain a general theorem on removable singularities. No use
will be made of Green’s functions or other source functions. Accordingly, our
results will be stated for equations in general, although most of them will be of
consequence only for equations of elliptic or similar type.

CHAPTER I. DIFFERENTIAL EQUATIONS
For fixed n, we consider an operator of the form

a"l+' N ‘+7nf

(1) Af= X e

b
it AR S No axit - -+ 9x?

that is a finite sum of the form

of of Of
The coeflicients are all constants. The variables z;, - -- , 2, are real, the co-
efficients may be complex. The integer N, if it is the smallest possible one,
will be called the order of Af. Whenever an entire system of operators will be
introduced, as will be the case in Chapter II, the order N, will be the smallest
integer admissible for all operators occurring.
If we consider the differential equation

(2 Af =0,

then for N = N, we will say that f(z) is a strict solution of class CV in an open set
D, if f(z) is defined and belongs to differentiability class C* in D, and if it satisfies
the given equation at every point of D.

We will say that f(x) is a weak solution of class C" in D, if it is defined almost
everywhere in D and Lebesque integrable in every compact subset of D, and if
corresponding to any point 2° in D there exist a neighborhood U = U(z"), such
that in U, f(x) is a weak limit of strict solutions of class C¥ in U. In other words,
there exist a sequence of functions {f*(z)}, & = 1, 2, - - - , each of which is de-
fined, and a strict solution of class C¥ in U, such that for every bounded measur-
able function y(z) in U, we have

lime-n [ S9N @) i = [ @) o,

[dv: = dx; - - - dza].
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LINEAR PARTIAL DIFFERENTIAL EQUATIONS 203

In what follows, the symbol D’ will invariably denote an open subset of D
whose closure in space is a bounded subset of D. Furthermore, any function
¢(x) in D which vanishes outside some D’ will be called a testing function.

We will start with a very simple theorem.

TrEOREM 1. A function f(x) of class C" in D is a strict solution of (2), if and
only if we have

3) ff-Aqo'dvz =0

for every testing function of class C~.
Proor. If f and ¢ both belong to C", and if ¢ is a testing function, then by
Stokes’ theorem we have

ff-mp-dv,: f o Af-dvs .
D D
Thus, (3) is equivalent with

4) fb o Af-dvs = 0.

However, for given f we will have relation (4) holding for all testing functions of
any class C¥, if and only if Af = 0, as asserted.

Lemma 1. If {U} 7s a covering of D by a system of neighborhoods, if D’ is a
subset of D as described before, and if ¢(x) is a testing function of class C™ which

vanishes outside D', then there exist a finite number of neighborhoods U, , - - - , U,
out of the given covering, and corresponding functions ¢y, - - - , . of class CV, such
that ¢, vanishes outside U, , p = 1, - -+ , r, and that

() o) = e(x) + -+ + o(2)

i all of D.

This lemma is a familiar tool in the theory of differential equations and of
differentiable manifolds."

Lemma 2. If {U} is a covering of D and if we assume that relation (3) holds for
every testing function of class C" which vanishes outside some U, then 1t holds for all
testing functions of class C".

Proor. Follows from (5).

TrEOREM 2. If () is a weak solution of class C~, then

) [ 5-2e-do =0

holds for all testing functions of class C~
Proor. If f* (z) approximates weakly to f on U, then by Theorem 1 we have

(7 f , ¥ () Ag-dvs, = 0

t See S. BOoCHNER, Remark or the theorem of Green, Duke Journal, 3 (1937), 334-338.
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for every testing function in U. Letting k — =, we obtain (7) for f(x) itself,
and by Lemma 2, for D instead of U.

By combining Theorem 2 with one half of Theorem 1, we obtain

TuroreM 3.  If f(x) s a weak solution of class C, and if f(x) happens to belong
to differentiability class C¥, M = N, , then f(x) is a strict solution of class C™.

Our next aim is to invert Theorem 2. This will be done by using so-called
h-averages.” If the boundary of D’ has a distance = p from the boundary of D,
and if f(x) in D is integrable in every compact subset of D, then for x in D’ we
can form the h-average

h h

J@) = (2_—}5;‘ [h o [;,f(xl + b, e, @t ) doy

ifh <p. Ifh<p/M,M = 1, we can iterate the process of forming the h-average

M times. The M iterate will be denoted by fi.x(z) and also called the h-aver-
age of order M.

TuroreM 4. If f(x) is integrable and (6) holds for ¢ € C~ and D’ is an open sub-

set of D as before, then for every M = 1 and h sufficiently small we have relation

® fD frou(@) - Ap-dv, = 0

for every testing function ¢ of class C" in D'

Proor. If o(x) is a testing-function in D’, then for each sufficiently small
t = (, - -+, ta), the function o(x — ¢) is a testing-function in D. Therefore by
assumption (6) we have

[ 1@ sota — Db = o,

and by a translation of coordinates we hence obtain
f f@ + 0 Ap@)-dvs = 0
b

for ¢ sufficiently small. If we integrate this with respect to ¢, we obtain (8) for
M = 1 and small h, and by iteration for M = 1.

TuroreM 5. If f(x) is a strict solution of class C" in D, then in D', fi u(z) is a
strict solution for M = 1 and small h.

Proors. Theorems 4 and 1.

TaeoREM 6. If f(x) 1s a weak solution of (1) in D, then in D', fi »(x) is a strict
solution for M = N, + 1, and small h.

Proor. If f(x) is integrable, then fi(x) is continuous, and fi, () belongs to
class C* . Now, if f(z) is a weak solution, then by Theorems 2 and 4 we have
relation (8). For M = N, + 1, fi.y is therefore a strict solution by Theorem 1.

2 For the role of h-averages in the calculus of varations, see J. W. CaLkIN, and C. B.
MoRREY, Functions of several variables and absolute continuity, Duke Journal, 4 (1940),
170-186 and 187-215.
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THEOREM 7. If f(z) is integrable and if (6) holds for ¢ € C", then for every M,
no matter how large, f(x) is a weak solution of (1) of class C™.

Proor. By Theorem 4, we have relation (8), and by Theorem 1 it hence fol-
lows that f,  is a strict solution for M = N, + 1. However, for fixed M, fi,» (x)
converges weakly to f(x) in D’ as h — 0, and this proves the theorem.

THEOREM 8. If f(2) is a weak solution of class C~, then it is also a weak solution
of class C*, for all M = N.

Proor. Theorems 2 and 7.

We also note

TureorEM 9. If f(2) is a weak solution in D, then fi v 1s a weak solution in D',
Jor M = 1.

Finally we point out a special theorem.

TueoreM 10. Any weak solution of the Laplace equation

*f af
a2 =0
is also (after correction on a null-set) a strict solution, that is, a harmonic function.
Proor. If a sequence f*(z) is weakly convergent, then in particular the

norms f | f ®(2) | dz are bounded in k. Now, if f(z) is harmonic in D, then
b

at each point 2° in D, f(z°) is equal to the (n — 1)-dimensional average over the
boundary of the sphere with center at 2°. From this it follows that f (") is also
equal to the n-dimensional average over the interior of the sphere. From this
it follows that every weakly convergent sequence of harmonic functions in D is
boundedly convergent in every compact subset. From the Poisson integral it
then follows that the sequence is also uniformly convergent and that so is also
the sequence of their partial derivatives of every order. Thus the limit function
is likewise harmonie.

CHAPTER II. SysteEMms oF EQuAiTIiONs

We will next consider systems of equations. If

(9) Alfr ) A,f
are a fixed system of operators of the type considered before, and if
L'g, ---,Ly

is a variable system of such operators, then
(10) Lf = L'AY) + LX(Af) + -+ + L'(Af)

is again an operator of this kind. We will say that (10) has been induced by
the system (9), and we will call it an induced operator.
If f(x) is a strict common solution of the system of equations

(11) Apf=0v p=17"'7r)
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and if it has derivatives of sufficiently high order, then it is also a solution of
the induced equation

(12) Lf = 0.
Thus by Theorem 7 we obtain

THEOREM 11. If f(x) 7s a common weak solution of the system (11), then 1t is
also a weak solution of every induced equation.

We will now add a second generalization. We will assume that the symbol
f(x) represents not one function but a finite set of function

(13) f@) = (@), - -+, fil2),

the integer s having no arithmetical connection with the dimension n of the space.
An operator Af shall be an expression of the form

Alfl+ + Asfs)

where each A.f, is an operator of our original type. It should be noted that al-
though Af operates on a vector function of s components, its value is a one-com-
ponent function. If the notions of integrability, differentiability, weak con-
vergence, h-average, etc. are applied to each component separately; and if the
integral

f f - Ap-dv,
which occurs in several theorems is replaced by
f (firho + -+ + fer Asp)db,

where ¢(z) is a one-component function; then previous theorems will also apply
to vector-functions, and to systems of equations as well.

AppricATIONS. As an application of Theorem 11, we consider for n = 3
the system of equations
(14) div f = 0, rot f = 0,
that is the system
(15) ?ii_aif=0, 3f1+ai2+a_fi= .

6:v,~ éil?i 5—171 a.’liz axa

By the known relation Af = grad div f — rot rot f, the system (14) induces the
equations

Afl = 0, Afz = 0, Afa = 0,
and thus by Theorems 10 and 11 we obtain the theorem of H. Weyl.*

3 The method of orthogonal projection in potential theory, Duke Journal, 7 (1940),
p. 412.




LINEAR PARTIAL DIFFERENTIAL EQUATIONS 207

THEOREM 12. Forn = 3, every weak solution of (14) has derivatives of all orders.
Similar to this is
TreEOREM 13. For n = 2, a weak solution of the Cauchy-Riemann equations

(16) Uy — vy = 0, Uy + v, =0

1s a strict solution, and thus u + v s analytic in x + y.
The reason being that equations (16) induce the equations Au = 0, Av = 0.
Our approach also throws light on the classical theorem of Morera which we
will derive in a general set-up. As before, we take any space dimension n, and
we introduce for any s = 1, expressions

) Af=Afi+ -+ Alf; =1, ,n.

We denote by N, the precise order of the system and we assume that f(x) belongs
to class C"° in an open set D.

If we will assume that a function f also belongs to C¥°*', then by Stokes
theorem the integral

(18) _/‘Z:"nl (=1 'A(f(2)) day -+ - dxioy dTuyy - - - dTs

will have the same value as

(19) L(ZLI 5‘% A"f) dvs

where B is a domain in D, and S is its boundary, the latter being sufficiently
smooth. Now, if the surface integral vanishes for all (n — 1)-dimensional
surfaces S, then f is a strict solution of

n a T
(20) Zi=1 Er A'f=0.
We now claim that the conclusion also holds if f belongs only to C*°.

TuEOREM 14. If the system (17) is of order No and f belongs to CV° and if (18)
vanishes over all spheres, then f is a weak solution of (20).

Proor. If (18) vanishes for all spheres S, then for fixed S it vanishes for trans-
lated spheres S — (t), for sufficiently small ¢{. Or, if we replace x by = + ¢, we
see that (18) vanishes for f(z + ¢) in place of f(z). If we then integrate with
respect to ¢ under the integral, we arrive at the vanishing of (18) for f(z) instead
of f(x). But if f(x) belongs to C™°, then fi(x) belongs to C*°*, and thus fi(z)
is a strict solution of (20). Therefore, f(z) itself is a weak solution of (20), as
asserted.

For instance, if © and v are continuous functions in (z, y), and «, 8, v, & are
constants, and

[ ew+ o) dz + G+ vy dy = 0
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for all closed curves in a domain, then (u, v) are a weak solution of
—a—(-au+ bv) —i('yu+51)) =0
dy dx ’

In particular, if
ffdz = f(u + w)(dx 4+ i dy) = 0,
S S
then we have
a ,. I¢] .
5;(114—0) —@(u-i-w) =0

and this equation decomposes into the Cauchy-Riemann equations (16). How-
ever, a weak solution of the latter equations is also a strict solution, and in this
way we obtain a peculiar new proof for the theorem of Morera.

Another curious little theorem for arbitrary n is as follows.

TueoreM 15. If f(x) is continuous in D, and if

ffdxgdxa o dzy = 0
S

for every spherical hypersurface, then (df/dz,) exists and is equal to 0.

Proor. By Theorem 14, f(z) is a weak solution of (3f/dx:) = 0, and fi(x) is
a strict solution. Thus fi(x) is constant in z;, and since in the present rase
fr(x) converges uniformly to f(x), the latter function is also constant in z, .

Finally we note the following theorem.

THEOREM 16. If it is known that f belongs to C' in D, and that

[Z:LI (—l)i_l %dxl s AT d2ig - dx, = 0

for all spheres S, then f is harmonic.

CHAPTER III. REMOVABLE SINGULARITIES

Let A be an arbitrary bounded measurable set in n-space and for 0 < ¢ < «
let A. denote the e-neighborhood of A, that is, the union of all open spheres of
radius e with centers at points of A. As shown elsewhere,' there is in entire
space a function Q.(z) of class C” having the following properties: (i) | Q.(z) | =
1; (i) Qx) = 0 in A..; (iil)) Q(xr) = 1 outside A;.; and (iv) for every multi-

index (k1, - -, k.) there exist a constant which is independent of x and e such
that

| akptes-tkn

Lo™ Q(x) < - c _

| aaf T agk | = ST

Now, let D be a bounded open set, let Dy be an open subset, and let A be the
difference D — Do . We will look upon A as an “exceptional set” in D. Let

(21) Apf=07 p=1,~",7‘,
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be a system of equations for the vector function

(22) f=(fl,""f8)7

and let N, be the order of the system (21). Let f be a given weak solution of
(21) in Dy and let it be integrable in D, . We complete the vector function f on
the exceptional set by assigning there the values 0, and we are posing the prob-
lem of deciding under what conditions the completed function will be a weak
solution of (21) in all of D.

If ¢ is a testing function in D, then

‘P(x) : Qe(x)

will be a testing function of the same class in D, . Since f was assumed to be a
weak solution of (21) in D,, we have

(23) [0 aeQ) + - £ Ao dox = 0.

If we take into consideration that the partial derivatives of ¢ of order = N, are
bounded in D, and if we make use of all properties of Q. (x), it is not hard to
see that for z in D we have

Co

(24) | AS(eQe) — Ale) | = )

where C, is independent of 2 and . If we use property (iii) and compare (23)
and (24) we next obtain the decisive inequality

[astet ot patode) s G [ AR+ 1D

By using Theorem 7 we now arrive at the following theorem.

TrEOREM 17. If a vector function f is a weak solution of a system (21) of order
Ny in a bounded open set Dy = D — A, where D s a larger bounded open set and A
an exceptional set in it; if B, is the e-netghborhood of A in Dy and v(e) its Lebesque
measure; and if we denote by T (e) the strong average of f over B. , that s

(25) 76 = 5 [ (Uil + -+ 1@ ) s

then adding the values f = 0 on A will produce a weak solution of (21) in all of D
provided we have

(26) T(e) = o<ihi)

v(e

as e — 0.

If the set 4 has (n-dunensional) Lebesque measure 0, it makes no difference
by which values we complete f on the points of A, since a weak solution is deter-
mined only up to a null-set. If furthermore the system (21) is such that every
weak solution is automatically a strict solution, then the given vector f in D,
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will automatically determine its additional values on A, and in this case our
theorem is truly a theorem on removable singularities.
If A is a sufficiently smooth pointset of dimension m, 0 £ m < =, then

(27) v(e) = 0("™)
and (26) is implied by
(28) T(e) = o(e¥t™™).

For Ny + m = n thisis T(¢) = o(1) and thus the requirement is that f shall
vanish in the strong average when x approaches the exceptional set A. If N, +
m > n, a stringent mode of vanishing is required, whereas for Ny + m < n a
certain latitude of unboundedness is not precluded a priori.

If we take an integer M such that 0 < M < N, if we introduce the derivatives

anx+"~+ﬂnfc

axf* - -- ozt

(29) Sowreeonn

for
0§F-1+"'+F-néMy

and if f belongs to class C*, then we can set up the averages

(30) Ta(e) = 1%) fﬁ(; ; If.,,,,l>dvz.

Very often relation (26) can be replaced by

No—M
(31) Tule) = o<°-v(5)

and similarly (28) by

(32) Tu(e) = o (7.

This replacement will certainly be admissible if there exists a system of equations
33) L(fe 5 for) =0

of order Ny — M such that a combination of the systems (33) and (29) will in-
duce the original system (21). In particular for M = N, —1 we thus obtain

To-1(e) = o(e™ ™),

and for a hypersurface A of dimension n — 1 this will be fulfilled whenever f
and its derivatives of order £ Ny —1 are approaching values 0 as x approaches 4.

CHAPTER IV. A UNIQUENEsS THEOREM

We will draw a peculiar conclusion from the last theorem.
TuroreM 18. If D, 7s a bounded domain and if B is an (n — 1)-dimensional
piece of hypersurface on the boundary of Dy and B. is its e-neighborhood in Dy ; if
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the system (21) of order N is such that every weak solution is automatically analytic
in the real variables z,, -+, z, ; and if

Tte) = "(v( )

T(e) = o(e"™™),

or more specifically if

then f(x) = 0.

If (21) is inducible from a system of order No — M as described in Chapter 111,
and if

() = o( Y,

then again f(x) =

We can take a domain D; which borders on B from the outside. If we put
A=B+D,,D=Dy+ A =D+ B+ D;,wemay apply Theorem 17 and the
conclusion is that f(z), if completed by values 0 in A, is a weak solution in all
of D. By our specific assumption, f(z) is analytic in D, and since it vanishes in
an open subset D, it vanishes identically, as asserted.

APPENDIX
OPERATORS WITH NON-CONSTANT COEFFICIENTS

Some of our results, notably the theorem on removable singularities, will
remain valid if the coefficients a, which occur in our operators are general func-

tions of (z1, -+, x,). We introduce an expression of the form
1'1+ +1‘nf
cTa (T ) .
"1+"'+"ﬂ§N0 . axn

in which the coefficients a.(x) have bounded contmuous derivatives of order
=< Ny in the given domain D; or of any larger order N and in some larger domain,
if the context will so require. The given operator will be denoted by Af; whereas
by Af we will denote its formal adjoint, that is the operator

S e )

it TS No Az v 9o

If f belongs to C¥° and ¢ is a testing function of class C°, we have

[ @20 = o Epde =0,

and we will say that f(x) is a weak solution of the equation

Af=0
in D if it is defined almost everywhere and Lebesque integrable in every compact
subset of D and if for every testing function ¢ of class C¥° we have

(34) Lf’A(p dv, = 0.
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A similar definition holds for a vector function being a solution of an equation

M) + - 4+ L) = 0.

In testing relation (34) we may restrict ourselves to functions ¢ from C”, for
some N = N, , since for every testing function ¢ of class C¥° there exist a sequence
of testing functions {¢.}, each of class C", such that

Ag, — Ao

Furthermore, the fundamgntal facts about induced equations remain in force,
since the formal adjoint of L(Af) is A(Lf) and (34) implies

[ 5a@p @ =o.

It must be pointed out that in general no smoothing process in the nature of
an h-average will be available for our weak solutions, and we cannot claim that
a weak solution is a weak limit of strict solutions. However, the proofs in
Chapters I1I and IV do not depend on the latter facts and we thus may state

THEOREM 19. Theorems 17 and 18 are also valid for operators with non-constant
coefficients.
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