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The complete symmetry group classification of the fourth-order Euler–Bernoulli
ordinary differential equation, where the elastic modulus and the area moment of
inertia are constants and the applied load is a function of the normal displacement,
is obtained. We perform the Lie and Noether symmetry analysis of this problem. In
the Lie analysis, the principal Lie algebra which is one dimensional extends in four
cases, viz. the linear, exponential, general power law, and a negative fractional
power law. It is further shown that two cases arise in the Noether classification with
respect to the standard Lagrangian. That is, the linear case for which the Noether
algebra dimension is one less than the Lie algebra dimension as well as the negative
fractional power law. In the latter case the Noether algebra is three dimensional and
is isomorphic to the Lie algebra which is sl�2,R�. This exceptional case, although
admitting the nonsolvable algebra sl�2,R�, remarkably allows for a two-parameter
family of exact solutions via the Noether integrals. The Lie reduction gives a
second-order ordinary differential equation which has nonlocal symmetry.
© 2010 American Institute of Physics. �doi:10.1063/1.3377045�

I. INTRODUCTION

The Euler–Bernoulli beam equation that describes the relationship between the applied load
and the deflection in the beam is the fourth-order differential equation �DE� �see, e.g., Refs. 1 and
2�,

d2

dx2�EI
d2y

dx2� = f , �1�

where E is the elastic modulus, I the area moment of inertia, and f the applied load. Equation �1�
has been studied extensively for E and I constant and f depending on the independent variable x.
In the case of centripetal force distribution, the load is of the form f =��2y, where � is the linear
mass density and � the angular frequency. This motivates one to consider the load as a general
function of y and thus consider the equation

d4y

dx4 = f�y� , �2�

where E and I are assumed to be constant.
We now provide a brief survey of the literature on the algebraic properties of scalar lower-

order ordinary DEs �ODEs� to provide further motivation for our study.
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Second-order ODEs are of great importance in mathematical analysis and in several applica-
tions. They arise in relativity, continuum mechanics, and various other fields. Significant contri-
butions have been made to second-order ODEs from various viewpoints. This is due to these
equations naturally arising in several applications such as classical mechanics. Their algebraic
properties have been studied by many researchers �a sample, apart from the works of Lie,3 is given
by the contributions Prince and Eliezer,4 Sen,5 Damianou and Sophocleaus,6 Gorringe and Leach,7

Wafo and Mahomed,8 Naeem and Mahomed,9 and Mahomed and Qadir10�. Some fundamental
equations of classical mechanical systems are the free particle, the oscillator systems, Henon–
Heiles, and the Kepler problem with and without drag laws. These have enjoyed considerable
attention over several decades �see, e.g., Refs. 4 and 7 and Leach and Gorringe11�.

Third-order ODEs have also enjoyed some interest since the initial works of Lie3 on the
subject. Their canonical forms and integrability were investigated �see Mahomed and Leach12 and
Ibragimov and Nucci13�. Linearization criteria were also studied. These include the works of
Chern,14 Mahomed and Leach,15 Grebot,16 Neut et al.,17 Euler et al.,18 and Ibragimov and
Meleshko19 �see also Mahomed,20 for a review�.

Scalar fourth-order ODEs have been studied to some extent in Lie’s works. He gave an
implicit classification included in his general classification scheme. The explicit canonical forms
for third-order ODEs admitting four point symmetries were given in Cerquetelli et al.21 The
algebraic criteria for linearization were given in Ref. 15. Recently Ibragimov and Meleshko22 gave
invariant criteria for linearization for such equations.

There has been some work on the algebraic properties of the beam equation �1� in the case
when the Eq. �1� is a partial DE due to Özkaya and Pakdemirli23 and equivalent characterizations
using symmetries when the fourth-order partial DE has two functions given by Wafo Soh.24

In this work for the first time the Euler–Bernoulli fourth-order ODE �2� is studied from the
symmetry standpoint. We perform a complete Lie symmetry as well as Noether, with respect to the
standard Lagrangian, classification of the beam equation �2�. In this analysis an exceptional power
law model y−5/3 arises which allows for integration in terms of a two-parameter family of solu-
tions.

The paper is organized as follows. In Sec. II we present the complete Lie classification up to
equivalence point transformations. In Sec. III we obtain all the Noether point symmetries. Section
IV deals with the Noether integrals and Lie reductions. Finally in Sec. V we present a discussion
of the results obtained.

II. COMPLETE LIE POINT SYMMETRY CLASSIFICATION

We commence with equivalence transformations �see, e.g., Torrisi et al.,25 for computations of
these for a diffusion system� which are essential for simplifying the determining equation and for
obtaining disjoint classes. Equivalence transformations of the Eq. �2� are point transformations in
the �x ,y� space of independent and dependent variables of this equation which leaves invariant the
family �2�. That is, the equivalence transformations map any Eq. �2� with arbitrary function f into
the same family �2� with, in general, another function f . Equivalence transformations of the Eq. �2�
are straightforward to obtain. These are

x̄ = a1x + a1, ȳ = b1y + b2,

f̄ =
b1

a1
4 f , a1b1 � 0, �3�

where ai and bi are constants. These are used to simplify the classifying relation in the determining
equation for the infinitesimal generators of symmetry.

The generators of a symmetry group of Eq. �2� is
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X = ��x,y�
�

�x
+ ��x,y�

�

�y
. �4�

The fourth prolongation of the generator X is

X�4� = X + �
i=1

4

�i
�

�y�i� , �5�

where

�1 = Dx��� − y�Dx��� ,

�i = Dx��i−1� − y�i�Dx���, i = 2,3,4, �6�

where y�i�=diy /dxi and Dx is the total derivative operator. The determining equations for the
symmetry is given by

X�4��y�4� − f�y����2� = 0. �7�

This gives rise to

� = ��x�, � = ��x�y + ��x�, �� = 0, 3�� − 2�� = 0, �8�

− f���y + �� + f�� − 4��� + ��4� = 0. �9�

If f is arbitrary in y, then system �8� and �9� easily yields

� = c1, � = 0. �10�

Hence for arbitrary f�y�, Eq. �2� has symmetry generator,

X1 =
�

�x
. �11�

Thus the principal algebra of Eq. �2� is one dimensional and is spanned by �11�. Now we consider
all possibilities of f�y�, up to equivalence transformations, for which an extension of the principal
algebra occurs. We utilize the equivalence transformations �3�. Since f depends only on y, it is
possible for Eq. �9� to be satisfied when the coefficients vanish �this amounts to �10�� or are
proportional to a function of x. From �9� we therefore require that f�y� satisfies

− f��ay + b� + cf + d = 0, �12�

where a, b, c, and d are constants not all zero. If a=b=c=d=0, one obtains the principal algebra.
This relation �12� is the classifying relation which is simplified by means of the equivalence
transformations �3�. We find that the following cases arise for which an extension of the principal
Lie algebra is possible. We note that the log function cases do not provide extensions and hence
are not given below.

�I� f is linear. This linear case is of interest as the Lie algebra is not unique in dimension as for
the scalar linear second-order ODEs �Ref. 15� and they have other interesting properties
when compared with the corresponding Noether algebra which we pursue in Sec. III. There
are three subcases.

�i� f =0. The principal algebra extends by 7. Hence the Lie algebra is eight dimensional. It
is spanned by �11� and

X2 =
�

�y
, X3 = x

�

�x
, X4 = y

�

�y
, X5 = x

�

�y
,
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X6 = x2 �

�x
, X7 = x3 �

�y
, X8 = x2 �

�x
+ 3xy

�

�y
, �13�

�ii� f =1. Again the algebra is eight dimensional and is spanned by �11� and the operators

X2 =
�

�y
, X3 = �y −

x4

24
� �

�y
, X4 = x

�

�y
, X5 = x2 �

�y
,

X6 = x3 �

�y
, X7 = 6x

�

�x
+ x4 �

�y
, X8 =

x2

3

�

�x
+ �xy +

x5

72
� �

�y
, �14�

�iii� There are two subcases.

�a� f =y. The principal algebra extends by 5 and we have

X2 = y
�

�y
, X3 = exp x

�

�y
, X4 = exp�− x�

�

�y
, X5 = sin x

�

�y
, X6 = cos x

�

�y
.

�15�

Therefore, the Lie algebra is six dimensional.
�b� f =−y. The principal algebra extends by 5 and one has

X2 = y
�

�y
, X3 = exp

x
	2

sin
x
	2

�

�y
, X4 = exp

x
	2

cos
x
	2

�

�y
, X5 = exp�−

x
	2

�sin
x
	2

�

�y
,

X6 = exp�−
x
	2

�cos
x
	2

�

�y
, �16�

The Lie algebra is six dimensional here too.

�II� f is an exponential function. It is of the form f =� exp y, �= 	1.

The principal algebra extends by 1 with additional operator,

X2 = x
�

�x
− 4

�

�y
. �17�

Thus the Lie algebra is two dimensional.
�III� f is a general power law. In this case we have f =�y
, �= 	1,
�0,1 ,−5 /3.

The principal algebra extends by 1. We have

X2 = �1 − 
�x
�

�x
+ 4y

�

�y
. �18�

The Lie algebra is two dimensional as well.
�IV� f is a negative fractional power law. We have f =�y−5/3 ,�= 	1.

The principal algebra extends by 2. Here we have the sl�2,R� symmetry algebra. That is,
�11� and the generators,

X2 = x
�

�x
+

3

2
y

�

�y
, X3 = x2 �

�x
+ 3xy

�

�y
, �19�

span the Lie algebra sl�2,R�. This case is of great importance for integrability which we
investigate in Sec. IV. It also arises in the Noether classification in Sec. III.
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In the next section we investigate Noether point symmetries for our Eq. �2�.

III. COMPLETE NOETHER CLASSIFICATION

There has been much work done on the Noether classification for scalar second-order ODEs
�see Kara et al.26�, whereas Noether symmetries of fourth-order equations are scarce in the litera-
ture. Here we perform a Noether point symmetry classification of Eq. �2� with respect to the
standard Lagrangian.

The standard Lagrangian for Eq. �2� is

L =
1

2
�y��2 −
 f�y�dy . �20�

The determining equation �see, e.g., Kara and Mahomed27 for the general formula� for the Noether
point symmetries corresponding to L in �20� is

X�2�L + LDx��� = Dx�B� , �21�

where X is the generator of Noether symmetry and is of the form �2� and B is the gauge term
which in this case is a function of x, y, and y� as L has the second derivative term y�.

The solution of Eq. �21� results in

���x� = 0, � = 3
2��y + ��x� , �22�

− f�3

2
��y + �� − ��
 f�y�dy + ��4�y − ���x� = 0. �23�

The gauge function B is given by

B = ��y�2 + ��y� − ��y + ��x� . �24�

It is clear that if f�y� is arbitrary, system �22� and �23� implies that there is one Noether point
symmetry generator given by �11�. Therefore, in the generic case we have a one-dimensional
Noether algebra which is the same as the Lie algebra for arbitrary f . The other cases for which
more than one Noether symmetry results are listed below.

�NI� f is linear. This case also occurs in the Lie classification. However, it is important to
comment on these subcases again in order to compare the dimensionality of the Noether algebra
with the Lie algebra. There is a difference from what transpires for scalar second-order ODEs �see
Mahomed et al.26�.

�i� f =0. We have all the Lie symmetry generators in �13� except for X3 and X4 which combine
as X3+3X4 /2 in order to be Noether. Hence we obtain a seven-dimensional Noether algebra
which is a subalgebra of the eight-dimensional Lie algebra. Here we have one less dimen-
sion whereas for second-order linear ODEs one has eight and five dimensions for the Lie
and Noether algebras, respectively �see Ref. 26�.

�ii� f =1. Here too we deduce that all the Lie generators in �14� except for X3 and X7 which has
the combination 3X3 /2+X7 /6 to be Noether. Again the same remarks as in �i� apply.

�iii� f =�y ,�= 	1. In this case the homogeneity symmetry generator is no longer Noether. We
obtain a five-dimensional Noether algebra which is a subalgebra of the six-dimensional Lie
algebra spanned by the generators �15� and �16�, respectively. These submaximal algebra
do not arise for second-order ODEs.15,26

Thus, a study of the Lie and Noether symmetries for scalar fourth-order linear ODEs is quite
interesting in its own right.
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�NII� f is a negative power law f =�y−5/3 ,�= 	1. The Lie algebra is isomorphic to the
Noether algebra and it is the nonsolvable algebra sl�2,R�. This case is exceptional for another
reason as well. The integrability of the ODE for this f is quite interesting as we see in Sec. IV. We
consider both the Lie and Noether routes for reductions.

It is worth mentioning that the general power law and exponential function cases do not
provide further Noether point symmetries. They are part of the generic case.

In summary of this section, there are two cases for which the Noether point symmetries extend
beyond translations. These are �NI� and �NII� as given above. Both these cases having interesting
properties as remarked. The exceptional case �NII� will be further analyzed in Sec. IV.

IV. REDUCTIONS AND INTEGRABILITY

The integrability of the maximal Lie and Noether cases, i.e., the linear cases are trivial. The
other cases that arise in both the Lie and Noether classifications are nontrivial.

We first discuss the Lie reductions for the generic, exponential function, general power law,
and negative fractional power law in this order.

In the generic case when f is an arbitrary function of y the Lie reduction gives rise to the
third-order ODE,

v
d

du
�v

d

du
�v

dv
du
�� = f�u� , �25�

where u=y and v=y� are invariants of the translation group generated by X1 as given in �11�. One
cannot, in general, proceed further in the absence of further symmetries.

For the exponential function, f =� exp y, �= 	1, Eq. �2� admits the generators of symmetry
X1 and X2 given by �11� and �17�. The Lie algebra for this case has �X1 ,X2�=X1 which gives a
solvable algebra. Thus, one can reduce the order of the ODE �2� with this f twice. A basis of
invariants is given by

u = y�4 exp�− y�, v = y�−2y�. �26�

The second-order ODE after reduction is

�4uv − u�
dr

du
+ 3rv = �u−1, � = 	 1, �27�

where

r = �4uv − u�
dv
du

+ 2v2. �28�

For the general power law, f =�y
, �= 	
�01,−5 /3, the ODE �2� admits two generators of
symmetry X1 and X2 given by �11� and �18�. The Lie algebra has commutation relation �X1 ,X2�
= �1−
�X1. There arise two subcases here.

If 
�−3, a basis of invariants for this solvable group is

u = y−�3+
�/4y�, v = y�−2�1+
�/�3+
�y�. �29�

The reduced ODE is the second-order equation,

�uv −
3 + 


4
u�7+
�/�3+
�� dr

du
+

3
 + 1

3 + 

rv = �u−4
/�3+
�, � = 	 1, �30�

where
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r = �uv −
3 + 


4
�dv

du
+

2�1 + 
�
3 + 


v2. �31�

If 
=−3, a basis of invariants for the solvable group is

u = y�, v = yy�−1y�. �32�

In this subcase the reduced equation is the second-order ODE,

v
dr

du
+ 2rv − 2r = u−3, �33�

where

r = v
dv
du

+ v2u−1 − v . �34�

The Lie reductions for the general power law and exponential function, which do not arise in the
Noether classification, give at most second-order ODEs and one cannot proceed further in the
absence of further symmetries or deeper insights.

Now we comment on the Lie reduction for f =�y−5/3, �= 	1. The ODE �2� for this negative
fractional power law admits the sl�2,R� symmetry algebra which is nonsolvable. So one can at
most perform a double reduction in order by use of the Lie point symmetries. Basis of invariants
for the two-dimensional ideal �generated by X1 and X2� of this symmetry group is given by

u = y�y−1/3, v = y�y�, �35�

by means of which this fourth-order ODE reduces to

�uv −
1

3
u4� dr

du
− 3rv = �u5, � = 	 1, �36�

where

r = �uv −
1

3
u4�dv

du
− v2. �37�

This Lie reduced second-order ODE �35� has nonlocal symmetry,

X3 = exp 2
 v�uv −
1

3
u4�−1

du�3u−2 �

�u
+ �3u−3v + 4�

�

�v
� . �38�

We are unable to further reduce this ODE by use of this symmetry generator.
We now investigate the Noether integrals for Eq. �2�. The only interesting case is the negative

power law f =�y−5/3, �= 	1 for which Eq. �2� has sl�2,R� symmetry algebra. This is listed as �IV�
and �NII� in Secs. II and III as they arise in both the Lie and Noether analyses. We examine both
the generic case and this exceptional negative power law case below.

In order to examine Noether integrals we invoke the Noether theorem �see, e.g., Ref. 27�
adapted to the second-order Lagrangian �19�.

If X as in �4� is a generator of Noether point symmetry with respect to the Lagrangian L given
by �19�, then

I = B − �L − W
�L

�y�
− DxW

�L

�y�
�39�

is a first integral corresponding to X, where W=�−y�� is the characteristic function, �L /�y�=
−y�, �L /�y�=y�, and B is the gauge function given by �23�.
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We first consider the generic case for which X1=� /�x. The formula �39� provides the first
integral,

I =
1

2
�y��2 +
 f�y�dy − y�y�. �40�

Thus the reduced ODE is

1

2
�y��2 +
 f�y�dy − y�y� = c , �41�

where c is a constant. It is well known that one can use the same symmetry to affect another
reduction in order. We thus have the second-order ODE for f arbitrary as

−
1

2
v2�dv

du
�2

− v3d2v
du2 +
 f�u�du = c , �42�

where u=y and v=y�. One needs further symmetry to affect further reductions. Thus in the generic
case one has at most a second-order ODE.

We now investigate the integrals for the exceptional case f =�y−5/3, �= 	1. The generators for
this case are listed in �IV� and �NII�.

For X1 as in �11� we have from �39� that the first integral is

I1 = 1
2 �y��2 − 3

2�y−2/3 − y�y�. �43�

The invocation of �39� for X2 results in the first integral,

I2 = 1
2x�y��2 − 3

2x�y−2/3 − xy�y� + 3
2 yy� − 1

2 y�y�. �44�

Finally, for X3 �39� yields

I3 = 1
2x2�y��2 − 3

2x2�y−2/3 − x2y�y� + 3xyy� − xy�y� − 3yy� + 2y�2. �45�

We see a pattern in these integrals in that

I2 = xI1 + 3
2 yy� − 1

2 y�y�, �46�

I3 = x2I1 + 3xyy� − xy�y� − 3yy� + 2y�2. �47�

Thus if we set I1=c1, I2=c2, and I3=c3, where cis are constants, we obtain the reduced second-
order ODE,

3yy� − 2y�2 + x2c1 − 2xc2 + c3 = 0. �48�

We can immediately integrate this ODE when c1=c2=0 to obtain


 dy

		1

2
c3 + c4y4/3

= x + c5, �49�

where c4 and c5 are constants. Now c3 and c4 are not independent and are related by 27�
+2c3c4=0. Indeed this is seen by the substitution of the solution �49� into the ODE �2� for this f .
For all the cs zero one does not obtain a solution.

Thus, the Lie reductions do not provide a transparent way for integrability for this exceptional
case as the Noether point symmetries via their integrals do. This is done quite elegantly in the
Noether formalism as we have shown above.
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V. CONCLUDING REMARKS

We have performed the complete Lie and Noether, with respect to the standard Lagrangian,
group classifications of the fourth-order Euler–Bernoulli beam ODE �2�. Apart from the linear case
the only integrable case arose from the negative fractional power law f =�y−5/3, �= 	1. The
centripetal force distribution for which f is proportional to the normal displacement y gives rise to
submaximal Lie and Noether point symmetry algebras. It is also physical to have negative powers
for the normal displacement but it is intriguing that the negative fractional power law y−5/3 occurs.
This exceptional case which admits the nonsolvable algebra sl�2,R� remarkably allows for a
two-parameter family of exact solutions via the Noether integrals. The Lie reductions resulted in
a second-order equation with nonlocal symmetry. Second-order ODEs occur in the Lie reductions
for the exponential function and general power cases as well. The generic case in the Lie reduction
gives a third-order ODE.

Thus scalar nth-order equations �n=2,3 ,4� admitting sl�2,R� symmetry are of vital impor-
tance in analysis as well as in several applications. In fact, y�4�=�y−5/3 is the simplest fourth-order
equation that admits the nonsolvable algebra sl�2,R� and it arises in the study of an important
physical problem—the Euler–Bernoulli beam equation.

It certainly would be of great interest and benefit to further analyze the nonlocal symmetry
properties of this fractional power law beam equation.
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