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We begin with a short historical sketch of nonlinear functional analysis (NFA). During
the mid to late 1800s, beginnings of these analytical techniques appeared in the works of
the French Poincaré and Boussinesq. However, the first paper properly on NFA appeared
around 1926, written by G. D. Birkhoff and Kellogg. During the 1930s, this work was
expanded by Schauder and Leray, followed by Levrentief in the 1940s. Finally, during the
1950s, the subject really burgeoned with the work of Browder and many others.

Classical Fixed Point Theorems

The two primary theorems we shall introduce today are the Schauder fixed point
theorem and the Picard-Banach fixed point theorem, often known in a slightly different
form as the Contraction Mapping Principle.

Vocabulary: Let X be a topological space and U = {Uα}α∈I be a collection of open
subsets of X such that

⋃
α Uα = X . Then, X is paracompact if every open cover of X has

a locally finite subcover; that is, for any x ∈ X there exists a neighborhood V containing
x such that V

⋂
Uβ = ∅ except for a finite number of Uβ .

A further result is that any paracompact space has a partition of unity. That is,
let X be paracompact, with open cover {Uα}. Then there exist continuous functions
φα: Uα → [0, 1] having supp(φα) ⊂ Uα such that for every x ∈ X ,

∑
αεI φα(x) = 1 where

φα(x) = 0 except for a finite number of α. Prove this result by applying Urysohn’s Lemma.

The next theorem is a generalization of Brouwer’s fixed point theorem in finite dimen-
sions.

Theorem (Schauder): Let C be a compact, convex subset of a Banach space X . let
f : C → C be continuous. Then, f has a fixed point.

Proof: (not Schauder’s original approach) Let ε > 0. Write C =
⋃

x∈C Bε(x). By com-
pactness, take a finite subcover: C ⊂ ⋃N

i=1 Bε(xi). By paracompactness, we may construct
a partition of unity associated to this cover: that is, we have nonnegative {φi}N

i=1 such
that

∑N
i=1 φi(x) = 1 ∀x ∈ C and supp(φi) ⊂ Bε(xi) for 1 ≤ i ≤ N .

Let fε: C → C be given by the convex combination of xi, fε(x) =
∑N

i=1 φi(f(x))xi.
Notice that fε is a finite sum of continuous maps and, thus, is itself continuous. By
convexity of C, we have fε(x) ∈ C. In fact, fε: C → Cε = Co(x1, . . . , xN) ⊂ C, where Cε

denotes the convex hull.
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Now, for x ∈ C, we compute

|f(x)− fε(x)| =
∣∣∣∣∣

N∑
i=1

φi(f(x))(f(x)− xi)

∣∣∣∣∣
≤

N∑
i=1

φi(f(x))ε

= ε,

since f(x) ∈ Bε(xi) for some i (as the Bε sets form an open cover of C. Thus, we have the
fact that supx∈C |f(x)− fε(x)| ≤ ε.

Now consider fε|Cε
: Cε → Cε. By Brouwer’s theorem, we know that for each ε there

exists a fixed point xε ∈ Cε such that fε(xε) = xε.
Notice that we have a net {xε}ε>0. Since C is compact, there must exist a subsequence

of indices {εn}∞n=1 ⊂ R+ so that εn ↘ 0; hence, xεn
must converge to some x∞. Since f

is continuous, it follows that f(xεn
) → f(x∞). However,

f(xεn
) = f(xεn

)− xεn
+ xεn

= f(xεn
)− fεn

(xεn
) + xεn

→ 0 + x∞.

One might be concerned about uniform convergence in this context. If so, use a norm
argument:

‖f(xεn
)− x∞‖ ≤ ‖f(xεn

)− fεn
(xεn

)‖+ ‖fεn
(xεn

)− x∞‖
≤ small + ‖xεn

− x∞‖
but ‖xεn

− x∞‖ → 0. Thus, f(x∞) = x∞, which shows that f has a fixed point. �

We need a little more notation in order to state the next theorem, familiar from
previous studies.

Vocabulary: For x1 ∈ M , a metric space, the orbit of x1 under the map f : M → M is

Of (x1) = {x1, f(x1), f(f(x1)), f3(x1), . . . , fn(x1), . . .}.

Theorem (Contraction Mapping Principle): Let M be a complete metric space, with
metric d. Let f : M → M be a contraction, i.e.,

d(f(x), f(y)) ≤ θd(x, y) for a fixed θ < 1.

Then, there exists a unique x0 ∈ M such that f(x0) = x0 and furthermore, for any x1 ∈ M ,
fn(x1) → x0.

Theorem: Let M be a complete, bounded metric space. Suppose there exists a continuous
φ: R+ → R+ such that φ(0) = 0 and φ(r) < r for all r > 0. Let f : M → M be such
that d(f(x), f(y)) ≤ φ(d(x, y)). Then, f has a unique fixed point x∞ ∈ M , such that
x∞ = limn→∞ fnx0 for any x0 ∈ M .
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Notice that without loss of generality, we may assume that φ is increasing. This is
due to the fact that we may make φ monotone for free by defining φ̃(r) = max0≤s≤r φ(s).

Proof: Uniqueness. Suppose x and x̄ are fixed points with x 6= x̄. Then,

0 < d(x, x̄) = d(f(x), f(x̄)) ≤ φ(d(x, x̄)) < d(x, x̄),

a contradiction unless x = x̄.
Existence, by contradiction. Let x0 ∈ M . Let

dj = diam{Of (f jx0)} = sup
i,k≥j

d(f ix0, f
kx0).

We know that dj < ∞ since M is bounded. Suppose that dj → 0. Then, Of (x0) is a
Cauchy sequence, which perforce converges: f j(x0) → x∞ as j → ∞. Thus, f j+1(x0) →
x∞ but by continuity of f , f j+1(x0) = f(f j(x0)) → f(x∞).

Now,
dj+1 = sup

r,x≥j
d(f r+1(x0), fs+1(x0))

= sup
r,s≥j

d(f(f r(x0)), f(fs(x0)))

≤ sup
r,s≥j

φ(d(f r(x0), fs(x0)))

≤ sup
r,s≥j

d(f r(x0), fs(x0)) = dj

which implies that {dj}∞j=1 is a decreasing sequence of real, nonnegative numbers. Hence,
there must exist a limit, d∞ = limj→∞ dj . We want to show that d∞ = 0. Suppose
not. Then, by continuity of the function φ, φ(dj) → φ(d∞). However, by monotonicity,
φ(dj) ≥ dj+1 → d∞, which forces φ(d∞) ≥ d∞. This contradicts the condition that
φ(d∞) < d∞, unless d∞ = 0. Therefore, d∞ = 0. �

Problem: Use this result to prove the Contraction Mapping Principle stated earlier. The
difficulty lies in the fact that the CMP does not require boundedness.

Theorem(Variant of the above): Make the same assumptions about M , φ and f except
that we require

d(fN(x), fN(y)) ≤ φ(d(x, y)).

Then, f has a fixed point in M .
Proof: exercise.
Question: is the fixed point necessarily unique?
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