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overview

Here is a quick run-down on these notes, with various terms to be learned in boldface.

Much of scientific work involves relationships called maps:

f : X → Y : x 7→ f(x)

For example,

◦ time 7→ the population of the US;

◦ temperature 7→ pressure in a bottle;

◦ location (longitude, latitude, altitude) 7→ (barometric pressure, humidity, temperature);

◦ mother’s age 7→ frequency of newborn with Down syndrom

◦ available resources ( capital, raw materials, labor pool, etc) 7→ output of the US economy

◦ etc.

All this is part of our hope to understand effects in terms of causes.

Once we feel we understand such a relationship, we are eager to put it to use in order to find out how
to cause certain effects. Mathematically, we are trying to solve the equation:

f(?) = y

for given f : X → Y and given y ∈ Y .

In this generality and vagueness, nothing much can be said other than to urge familiarity with basic map
terms, such as, domain, target and range of a map, the map properties 1-1 (equivalent to uniqueness of
solutions), onto (equivalent to existence of a solution for any y), invertible (equivalent to having exactly
one solution for any y ∈ Y , the best-possible situation), and the notions of left inverse, right inverse and
inverse related to the earlier notions by the concept of map composition.

Often, though, the map f is a smooth map, from some subset X of real n-dimensional coordinate
space IRn to IRm, say. With the list x = (x1, . . . , xn) our notation for x ∈ IRn, this means that, first of all,

f(x) = (f1(x), f2(x), . . . , fm(x)) ∈ IRm

with each fj a scalar-valued function, and, secondly, at any point p ∈ X , we can expand each fj into a
Taylor series:

fj(p+ h) = fj(p) +Dfj(p)th+ o(h), j = 1, . . . ,m,

with
Dfj(p) = (D1fj(p), . . . , Dnfj(p)) ∈ IRn

the gradient of fj at p, and xty the scalar product of the n-vectors x and y, and the o(h) denoting
‘higher-order’ terms that we eventually are going to ignore in best scientific fashion.

This implies that
f(p+ h) = f(p) +Df(p)h+ o(h),

with

Df(p) =




D1f1(p) · · · Dnf1(p)

... · · ·
...

D1fm(p) · · · Dnfm(p)





the Jacobian matrix of f at p.

With this, a standard approach to finding a solution to the equation

f(?) = y
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is Newton’s method: If x is our current guess at the solution, we are looking for a correction h so that

y = f(x+ h) = f(x) +Df(x)h+ o(h);

we ignore the ‘higher-order’ terms that hide behind the expression o(h), and so get a linear equation for h:

y − f(x) = Df(x)?,

which we solve for h, add this correction to our current x to get a new guess

x← x+ h = x+Df(x)−1(y − f(x))

and repeat. Under suitable circumstances, the process converges, to a solution.

The key idea here is the reduction, from solving a general equation f(?) = y to solving a sequence of
linear equations, Df(x)? = z. This works since, in principle, we can always solve a linear system.

Most equations f(?) = y that can be solved are actually solved by this process or a variant thereof,
hence the importance of knowing how to solve linear equations.

For this reason, our first task will be to introduce linear maps and linear spaces, especially linear
spaces of functions., i.e., vector spaces in which the basic vector operations, namely vector addition
and multiplication by a scalar, are defined pointwise. These provide the proper means for expressing
the concept of linearity. Then we recall elimination as the method for solving a homogeneous linear
system

A? = 0

with A ∈ IRm×n. Specifically, we recall that elimination classifies the unknowns as bound and free, and
this leads to row echelon forms, in particular the rrref or really reduced row echelon form, from
which we can obtain a complete description of the solution set of A? = 0, i.e., for nullA, the nullspace of A,
as well as an efficient description of ranA, the range of A. Thus equipped, we deal with the general linear
system A? = b via the homogeneous linear system [A, b]? = 0.

Both nullA and ranA are typical examples of linear subspaces, and these efficient descriptions for
them are in terms of a basis, i.e., in terms of an invertible linear map V from some coordinate space IFn

to the linear subspace in question. This identifies bases as particular column maps, i.e., linear maps from
some coordinate space, i.e., maps of the form

IFn → X : a 7→ a1v1 + · · · anvn =: [v1, . . . , vn]a

for some sequence v1, . . . , vn in the linear space X in question.

We’ll spend some time recalling various details about bases, how to construct them, how to use them,
and will also mention their generalization, direct sums and their associated linear projectors or idem-
potents. We stress the notion of dimension (= number of columns or elements in a basis), in particular
the Dimension Formula

dim domA = dim ranA+ dim nullA,

valid for any linear map A, which summarizes much of what is important about dimension.

We’ll also worry about how to determine the coordinates of a given x ∈ X with respect to a given
basis V for X , i.e., how to solve the equation

V ? = x.

This will lead us to row maps, i.e., linear maps from some linear space to coordinate space, i.e., maps of
the form

X → IFn : x 7→ (λ1x, · · · , λnx) =: [λ1, . . . , λn]tx

for some sequence λ1, . . . , λn of linear functionals on the linear space X in question. It will also lead
us to interpolation aka change of basis, and will make us single out inner product spaces as spaces
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with a ready supply of suitable row maps, and thence to least-squares, to particularly good bases, namely
o.n. (:= orthonormal) bases (which are the isometries for the standard norm, the Euclidean norm
‖x‖2 =

√
xtx associated with the standard inner product and which can be constructed from an arbitrary

basis by Gram-Schmidt).

We’ll find that bases also show up naturally when we try to factor a given linear map A ∈ L(X,Y ) in
the most efficient way, as a product

A = V Λt

with Λt ∈ L(X, IFr) and V ∈ L(IFr, Y ) and r as small as possible. It will be one of my tasks to convince
you that you have actually carried out such factorizations, in fact had to do this in order to do certain
standard operations, like differentiating or integrating polynomials and other functions. Such factorizations
are intimately connected with the rank of A (since the smallest possible r is the rank of A) and lead, for a
matrix A, to the SVD, or Singular Value Decomposition,

A = V ΣW c

with V , W o.n. and Σ diagonal, a factorization that is, in a certain sense, a best way of describing the
action of the linear map A. Other common factorizations for matrices are the PLU factorization with P a
permutation matrix, L unit lower triangular, and U upper triangular (generated during elimination);
and the (more stable) QR factorization, with Q unitary (i.e., an o.n. basis) and R upper, or, right
triangular, obtained by elimination with the aid of specific elementary matrices called Householder
reflections.

For square matrices, one hopes to (but does not always) get factorizations of the form A = V ΣV −1

with Σ diagonal (the simplest example of a matrix without such a factorization is the nilpotent matrix[
0 1
0 0

]
), but often must be (and is) content to get the Schur form, which is available for any square matrix

and is of the form A = V UV c with V an o.n. basis and U upper triangular. In either case, A is then said
to be similar to Σ and U , respectively. These latter factorizations, or similarities, are essential for an
understanding of the power sequence

A0 = id, A1 = A,A2 = AA,A3 = AAA, ....

of the square matrix A and, more generally, for an understanding of the matrix polynomial p(A), since,
e.g.,

A = V diag(µ1, . . . , µn)V −1 =⇒ p(A) = V diag(p(µ1), . . . , p(µn))V −1,

for any polynomial p and even for some well-behaved functions p like the exponential p : t 7→ exp(t). In
particular, then

Ak = V diag(µk
1 , . . . , µ

k
n)V −1, k = 0, 1, 2, . . . ,

therefore we can describe the behavior of the matrix sequence (Ak : k = 0, 1, 2, . . .) entirely in terms of
the scalar sequences (µk

j : k = 0, 1, 2, . . .). Specifically, we can characterize power-boundedness, conver-
gence, and convergence to 0.

There are many reasons for wanting to understand the power sequence of a matrix; here is one. Often,
elimination is not the most efficient way to solve a linear system. Rather, the linear system

A? = b

itself is solved by iteration, by splitting A =: M−N with M ‘easily’ invertible, and looking at the equivalent
equation

M? = N? + b

which leads to the iteration

x←M−1(Nx+ b) =: Bx+ c.
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Convergence of this process depends crucially on the behavior of the power sequence for B (and does not
at all depend on the particular vector norm or map norm used).

The factorization

A = V diag(µ1, . . . , µn)V −1

is equivalent to having AV = V diag(µ1, . . . , µn), i.e.,

[Av1, . . . , Avn] = [µ1v1, . . . , µnvn]

for some invertible V = [v1, . . . , vn] : IFn → domA, i.e., to having a basis V consisting of eigenvectors for
A, with the µj the corresponding eigenvalues. For this reason, we’ll study the eigenstructure of A and
the spectrum of A, as well as similarity, i.e., the equivalence relation

A ∼ C := ∃V A = V CV −1.

In this study, we make use of polynomials, particular the annihilating polynomials (which are the nontriv-
ial polynomials p for which p(A) = 0) and their cousins, the nontrivial polynomials p for which p(A)x = 0
for some x 6= 0, and the unique monic annihilating polynomial of minimal degree, called the minimal
polynomial for A, as well as the Krylov sequence x,Ax,A2x, . . ..

We’ll discuss the most important classification of eigenvalues, into defective and non-defective eigen-
values, and give a complete description of the asymptotic behavior of the power sequence A0, A1, A2, . . . in
terms of the eigenstructure of A, even when A is not diagonalizable, i.e., is not similar to a diagonal matrix
(which is equivalent to some eigenvalue of A being defective).

We’ll also discuss standard means for locating the spectrum of a matrix, such as Gershgorin’s circles
and the characteristic polynomial of a matrix, and give the Perron-Frobenius theory concerning the
dominant eigenvalue of a positive matrix.

From the Schur form (vide supra), we derive the basic facts about the eigenstructure of hermitian and
of normal matrices. We give the Jordan form only because of its mathematical elegance since, in contrast
to the Schur form, it cannot be constructed reliably numerically.

As a taste of the many different applications of Linear Algebra, we discuss briefly: the solution of a
system of constant-coefficient ODEs, Markov processes, subdivision in CAGD, Linear Programming, the
Discrete Fourier Transform, approximation by broken lines, and the use of flats in analysis and CAGD.

Further, we also consider briefly minimization of a real-valued map

f : K → IR

with K ⊂ IRn. Returning to our Taylor expansion

f(p+ h) = f(p) +Df(p)th+ o(h),

we notice that, usually, p cannot be a minimum point for f unless it is a critical point, i.e., unless the
gradient, Df(p), is the zero vector. However, even with Df(p) = 0, we only know that f is ‘flat’ at p. In
particular, a critical point could also be a (local) maximum point, or a saddle point, etc. To distinguish
between the various possibilities, we must look at the second-order terms, i.e., we must write and know,
more explicitly, that

f(p+ h) = f(p) +Df(p)th+ htD2f(p)h/2 + o(hth),

with

H := D2f :=




D1D1f · · · D1Dnf

... · · ·
...

DnD1f · · · DnDnf
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the Hessian for f , hence

h 7→ htD2f(p)h =
∑

i,j

DiDjf(p)hihj

the associated quadratic form.

We will learn to distinguish between maxima, minima, and saddle points by the signs of the eigenvalues
of the Hessian, mention Sylvester’s Law of Inertia, and show how to estimate the effect of perturbations
on H on the spectrum of H , using ideas connected with the Rayleigh quotient.

At this point, you will realize that these notes are strongly influenced by the use of Linear Algebra in
Analysis, with important applications, e.g., in Graph Theory, ???, or ???, being ignored (partly through
ignorance).

Finally, although determinants have little to contribute to Linear Algebra at the level of this book,
we’ll give a complete introduction to this very important Linear Algebra tool, and then discuss the Schur
complement, Sylvester’s determinant identity, and the Cauchy-Binet formula.

Throughout, we’ll rely on needed material from prerequisite courses as collected in an appendix called
Background.
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1

1. Sets, assignments, lists, and maps

The basic objects of Mathematics are sets and maps. Linear Algebra is perhaps the first course where
this fact becomes evident and where it can be illustrated in a relative straightforward context. Since a
complete understanding of the course material requires a thorough appreciation of the basic facts about
maps, we begin with these and their simpler cousins, lists and assignments, after a brief review of standard
language and notation concerning sets.

Sets

Sets of interest in these notes include

◦ the natural numbers : IN := {1, 2, . . .};
◦ the integers : ZZ := {. . . ,−1, 0, 1, . . .} = (−IN) ∪ {0} ∪ IN;

◦ the nonnegative integers : ZZ+ := {p ∈ ZZ : p ≥ 0};
◦ the rational numbers : ZZ÷ IN := {p/q : p ∈ ZZ, q ∈ IN};
◦ the real numbers and the nonnegative reals : IR, IR+ := {x ∈ IR : x ≥ 0};
◦ the complex numbers : C := IR + iIR = {x+ iy : x, y ∈ IR}, i :=

√
−1.

As these examples show, a set is often specified in the form {x : P (x)} which is read ‘the set of all x
that have the property P (x)’. Note the use of the colon, ‘:’, (rather than a vertical bar, ‘|’) to separate,
the initial, provisional, description of the typical element of the set, from the conditions imposed on it for
membership in the set. In these notes, braces, ‘{’, ‘}’, are used solely in the description of sets.

Standard notation concerning sets includes:

◦ #S denotes the cardinality of the set S, i.e., the count of its elements.

◦ x ∈ S and S ∋ x both mean that x is an element of S.

◦ S ⊂ T , T ⊃ S both mean that S is a subset of T , i.e., all the elements of S are also elements of T ; if
we want to convey that S is a proper subset of T , meaning that S ⊂ T but S 6= T , we write S ⊆

′
T .

◦ {} denotes the empty set, the set with no elements.

◦ S ∩ T := {x : x ∈ S and x ∈ T } is the intersection of S and T .

◦ S ∪ T := {x : x ∈ S or x ∈ T } is the union of S and T .

◦ S\T := {x : x ∈ S but not x ∈ T } is the difference of S from T and is often read ‘S take away T ’. In
these notes, this difference is never written S−T , as the latter is reserved for the set {s−t : s ∈ S, t ∈ T }
formable when both S and T are subsets of the same vector space.

1.1 What is the standard name for the elements of IR\(ZZ ÷ IN)?

1.2 What is the standard name for the elements of iIR?

1.3 Work out each of the following sets. (a) ({−1, 0, 1} ∩ IN) ∪ {−2}; (b) ({−1, 0, 1} ∪ {−2}) ∩ IN; (c) ZZ\(2ZZ); (d)
{z2 : z ∈ iIR}.

1.4 Determine #((IR+\{x ∈ IR : x2 > 16}) ∩ IN).
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2 1. Sets, assignments, lists, and maps

Assignments

Definition: An assignment or, more precisely, an assignment on I or I-assignment

f = (fi)i∈I = (fi : i ∈ I)

associates with each element i in its domain (or, index set)

dom f := I

some term or item or entry or value fi. In symbols:

f : dom f : i 7→ fi.

The set
ran f := {fi : i ∈ dom f}

of all items appearing in the assignment f is called the range of the assignment.

If also g is an assignment, then f = g exactly when fi = gi for all i ∈ dom f = dom g.

Very confusingly, many mathematicians call an assignment an indexed set, even though it is most
certainly not a set. The term family is also used; however it, too, smacks too much of a set or collection.

We call the assignment f 1-1 if fi = fj =⇒ i = j.

The simplest assignment is the empty assignment, (), i.e., the unique assignment whose domain is
the empty set. Note that the empty assignment is 1-1 (why??).

An assignment with domain the set

n := {1, 2, . . . , n}

of the first n natural numbers is called a list, or, more explicitly, an n-list.

To specify an n-list f , it is sufficient to list its terms or values:

f = (f1, f2, . . . , fn).

For example, the cartesian product

×n
i=1Xi := X1 ×X2 × · · · ×Xn := {(x1, x2, . . . , xn) : xi ∈ Xi, i = 1:n}

of the set sequence X1, . . . , Xn is, by definition, the collection of all n-lists with the ith item or coordinate
taken from Xi, all i.

In these notes, we deal with n-vectors, i.e., n-lists of numbers, such as the 3-lists (1, 3.14,−14) or (3, 3, 3).
(Note that the list (3, 3, 3) is quite different from the set {3, 3, 3}. The list (3, 3, 3) has three terms, while
the set {3, 3, 3} has exactly one element.)

Definition: An n-vector is a list of n scalars (numbers). The collection of all real (complex)
n-vectors is denoted by IRn (Cn).
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Matrices 3

In MATLAB, there are (at least) two ways to specify an n-vector, namely as a one-row matrix
(colloquially known as a row vector), or as a one-column matrix (colloquially known as a column
vector). For example, we can record the 3-vector x = (1.3, 3.14,−15) as the one-row matrix

x_as_row = [1.3,3.14,-15];

or as the one-column matrix

x_as_col = [1.3;3.14;-15];

One can also write a one-column matrix as a column, without the need for the semicolons, e.g.,

x_as_col = [1.3
3.14

-15];

Back to general assignments. If dom f is finite, say # dom f = n, then we could always describe f by
listing the n pairs (i, fi), i ∈ dom f , in some fashion. However, that may not always be the most helpful
thing to do. Here is a famous example.

During the Cholera outbreak in 1854 in London, Dr. John Snow recorded the deaths by address, thus
setting up an assignment whose domain consisted of all the houses in London. But he did not simply make
a list of all the addresses and then record the deaths in that list. Rather, he took a map of London and
marked the number of deaths at each address right on the map (not bothering to record the value 0 of no
death). He found that the deaths clustered around one particular public water pump, jumped to a conclusion
(remember that this was well before Pasteur’s discoveries), had the handle of that pump removed and had
the satisfaction of seeing the epidemic fade.

Thus, one way to think of an assignment is to visualize its domain in some convenient fashion, and, ‘at’
each element of the domain, its assigned item or value.

This is routinely done for matrices, another basic object in these notes.

1.5 In some courses, students are assigned to specific seats in the class room. (a) If you were the instructor in such a
class, how would you record this seating assignment? (b) What are the range and domain of this assignment?

1.6 A relation between the sets X and Y is any subset of X × Y . Each such relation relates or associates with some
elements of X one or more elements of Y . For each of the following relations, determine whether or not it provides an
assignment on the set X := 3 =: Y . (i) R = X × Y ; (ii) R = {(x, x) : x ∈ X}; (iii) R = {(1, 2), (2, 2)}; (iv) R = {(1, 2), (2, 1)};
(v) R = {(1, 2), (3, 1), (2, 1)}; (vi) R = {(1, 2), (2, 2), (3, 1), (2, 1)}.

Matrices

Definition: A matrix, or, more precisely, an m × n-matrix, is any assignment with domain the
cartesian product

m× n = {(i, j) : i ∈ m, j ∈ n}
of m with n, for some nonnegative m and n.

The collection of all real, resp. complex m× n-matrices is denoted by IRm×n, resp. Cm×n.

In other words, a matrix has a rectangular domain. Correspondingly, it is customary to display such an
m× n-matrix A as a rectangle of items:

A =





A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

. . .
...

Am,1 Am,2 · · · Am,n
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4 1. Sets, assignments, lists, and maps

rather than as a list of pairs. This means that we must think of its domain rotated clockwise 90◦ when
compared to the ordinary (x, y)−plane, i.e., the domain of many other bivariate assignments (or maps).

This way of displaying a matrix has led to the following language.

Let A be an m× n-matrix. The item
Ai,j

corresponding to the index (i, j) is also called the (i, j)-entry of A. The list Ai: := (Ai,j : j ∈ n) is
called the ith row of A, the list A:j := (Ai,j : i ∈ m) is called the jth column of A, and the list
(Aii = Ai,i : 1 ≤ i ≤ min{m,n}) is called the (main) diagonal of A.

A matrix with nonzero entries only on or above (below) the diagonal is called upper triangular
(lower triangular). A diagonal matrix is one that is both upper and lower triangular.

By definition, At denotes the transpose of the matrix A, i.e., the n×m-matrix whose (i, j)-entry is
Aji, all i, j. Because of its importance in the later parts of these notes, we usually use the conjugate
transpose Ac := At whose (i, j)-entry is the scalar Aji, with α the complex conjugate of the scalar α.

When m = n, A is called a square matrix of order n.

The notation Ai: for the ith row and A:j for the jth column of the matrix A is taken from
MATLAB, where, however, A(i,:) is a one-row matrix and A(:,j) is a one-column matrix (rather
than just a vector). The (main) diagonal of a matrix A is obtained in MATLAB by the command
diag(A), which returns, in a one-column matrix, the list of the diagonal elements. The upper
(lower) triangular part of a matrix A is provided by the command triu(A) (tril(A)). The conjugate
transpose of a matrix A is obtained by A’. This is the same as the transpose if A is real. To get the
mere transpose At in the contrary case, you must use the notation A.’ which is strange since there
is nothing pointwise about this operation.

The above-mentioned need to look at displays of matrices sideways is further compounded
when we use MATLAB to plot a matrix. Here, for example, is the ‘picture’ of the 8 × 16-matrix
A := eye(8,16) as generated by the command mesh(eye(8,16)). This matrix has all its diagonal
entries equal to 1 and all other entries equal to 0. But note that a careless interpretation of this
figure would lead one to see a matrix with 16 rows and only 8 columns, due to the fact that MATLAB’s
mesh(A) command interprets A(i,j) as the value of a bivariate function at the point (j,i).

The rectangular identity matrix eye(8,16) as plotted in MATLAB
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Lists of lists 5

While lists can be concatenated in just one way, by letting one follow the other, matrices can be
‘concatenated’ by laying them next to each other and/or one underneath the other. The only requirement
is that the result be again a matrix. If, for example,

A := [ 1 2 ] , B :=




3
6
9



 C :=

[
4 5
7 8

]
,

then there are four different ways to ‘concatenate’ these three matrices, namely




1 2 3
4 5 6
7 8 9



 ,




4 5 3
7 8 6
1 2 9



 ,




3 1 2
6 4 5
9 7 8



 ,




3 4 5
6 7 8
9 1 2



 .

In MATLAB, one would write the three matrices

A = [1 2]; B = [3;6;9]; C = [4 5; 7 8];

and would describe the four possible ‘concatenations’

[[A;C],B]; [[C;A],B]; [B,[A;C]]; [B,[C;A]];

We saw earlier that even vectors are described in MATLAB by matrices since MATLAB only knows
matrices.

1.7 For the matrix A given by [[0 0 0 0];eye(2,4)], determine the following items: (a) the main diagonal; (b) the

second column; (c) the third row; (d) A3,2; (e) At; (f) Ac; (g) is A lower or upper triangular?

Lists of lists

Matrices are often used to record or represent a list f = (f1, f2, . . . , fn) in which all the items fj are
themselves lists. This can always be done if all the items fj in that list have the same length, i.e., for some
m and all j, #fj = m. Further, it can be done in two ways, by columns or by rows.

Offhand, it seems more natural to think of a matrix as a list of its rows, particularly since we are used
to writing things from left to right. Nevertheless, in these notes, it will always be done by columns, i.e., the
sequence (f1, f2, . . . , fn) of m-vectors will be associated with the m × n-matrix A whose jth column is fj ,
all j. We write this fact in this way:

A = [f1, f2, . . . , fn]; i.e., A:j = fj, j = 1:n.

This makes it acceptable to denote by
#A

the number of columns of the matrix A. If I need to refer to the number of rows of A, I will simply count
the number of columns of its transpose, At, or its conjugate transpose, Ac, i.e., write

#At or #Ac,

rather than introduce yet another notation.

Here is a picturesque example of a list of lists, concerning the plotting of a polyhedron,
specifically the regular octahedron. Its vertex set consists of the three unit vectors and their
negatives, i.e.:

vs = [1 0 0; -1 0 0; 0 1 0; 0 -1 0; 0 0 1; 0 0 -1]’;
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6 1. Sets, assignments, lists, and maps

Each face is a triangle, and we specify it here by giving the index, in the vertex array vs, of each
of its three vertices:

ff = [2 4 5; 2 5 3; 4 1 5; 2 6 4]’;
bf = [2 3 6; 6 1 4; 6 3 1; 5 1 3]’;

The faces have been organized into front faces and back faces, in anticipation of the plotting about
to be done, in which we want to plot the front faces strongly, but only lightly indicate the back
faces. Be sure to look for specific faces in the figure below, in which the six vertices are numbered
as in vs. E.g., the first front face, specified by the first column of ff, involves the vertices numbered
2, 4, 5; it is the face we are viewing head-on.

First, we set the frame:

axis([-1 1 -1 1 -1 1])
hold on, axis off

Then we plot the back-faces first (using r=[1 2 3 1] to make sure that we plot closed triangles):

r = [1 2 3 1];
for j=1:4

plot3(vs(1,bf(r,j)),vs(2,bf(r,j)),vs(3,bf(r,j)),’:’)
end

Then, finally, we plot the front faces and finish the picture:

for j=1:4
plot3(vs(1,ff(r,j)),vs(2,ff(r,j)),vs(3,ff(r,j)),’linew’,1.5);

end
hold off

Here is the resulting figure (obtained by the command print -deps2 figoctah.epswhich generates
a postscript file). I have labeled all the vertices by their index in the vertex list vs.

1

2

3

4

5

6

The regular octahedron.

1.8 The regular octahedron is one of five regular solids. Write a MATLAB function drawrs(n) that will, for input

n ∈ (1, 2, 3, 4, 5), draw the regular (tetrahedron, cube, octahedron, dodecahedron, icosahedron).
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Maps 7

Maps

Definition: A map
f : X → Y : x 7→ f(x)

associates with each element x of its domain dom f := X a unique element y = f(x), called the value
of f at x, from its target tar f := Y . If g is also a map, then f = g means that dom f = dom g,
tar f = tar g, and f(x) = g(x) for all x ∈ dom f .

The collection
ran f := {f(x) : x ∈ X}

of all values taken by f is called the range of f . More generally, for any subset Z of X ,

fZ := f(Z) := {f(z) : z ∈ Z}

is called the image of Z under f . In these terms,

ran f = f(dom f).

Also, for any U ⊂ Y , the set
f−1U := {x ∈ X : f(x) ∈ U}

is called the pre-image of U under f . The collection of all maps from X to Y is denoted by

Y X or (X → Y ).

Names other than map are in use, such as mapping, operator, morphism, transformation etc.,
all longer than ‘map’. A scalar-valued map is often called a function. Somewhat confusingly, many mathe-
maticians use the term ‘range’ for what we have called here ‘target’; the same mathematicians use the term
image for what we have called here ‘range’.

Every map f : X → Y gives rise to an assignment on X , namely the assignment (f(x) : x ∈ X). On
the other hand, an assignment f on X gives rise to many maps, one for each Y that contains ran f , by the
prescription X → Y : x 7→ fx. We call this the map into Y given by the assignment f .

If X is empty, then Y X consists of exactly one element, namely the map given by the empty assignment,
and this even holds if Y is empty.

However, if Y is empty and X is not, then there can be no map from X to Y , since any such map would
have to associate with each x ∈ X some y ∈ Y , yet there are no y ∈ Y to associate with.

“Wait a minute!”, you now say, “How did we manage when X was empty?” Well, if X is empty,
then there is no x ∈ X , hence the question of what element of Y to associate with never comes up. Isn’t
Mathematics slick?

1.9 Which of the following lists of pairs describes a map from {o,u,i,a} to {t,h,s}? A: ((u,s), (i,s), (a,t), (o,h), (i,s)); B:
((i,t), (a,s), (o,h), (i,s), (u,s)); C: ((a,s), (i,t), (u,h), (a,s), (i,t)).

1.10 For each of the following MATLAB maps, determine their range, as maps on real 2-by-3 matrices: (a) A 7→ max(A); (b)
A 7→ A(:,2); (c) A 7→ diag(A); (d) A 7→ size(A); (e) A 7→ length(A); (f) A 7→ cos(A); (g) A 7→ ones(A); (h) A 7→ sum(A).

1.11 The characteristic function χ
S

of the subset S of the set T is, by definition, the function on T that is 1 on S and

0 otherwise:

χ
S

: T → {0, 1} : t 7→
{

1, if t ∈ S;
0, otherwise.

Let R and S be subsets of T . Prove that (a) χ
R∪S

= max(χ
R

, χ
S
); (b) χ

R∩S
= min(χ

R
, χ

S
) = χ

R
χ

S
; (c) χ

R\S
= χ

R
(1−χ

S
).

(d) R ⊂ S iff χ
R

≤ χ
S
.
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8 1. Sets, assignments, lists, and maps

1.12 Let f : T → U , and consider the map from subsets of U to subsets of T given by the rule

R 7→ f−1R := {t ∈ T : f(t) ∈ R}.

Prove that this map commutes with the set operations of union, intersection and ‘take away’, i.e., for any subsets R and S of
U , (a) f−1(R ∪ S) = (f−1R) ∪ (f−1S); (b) f−1(R ∩ S) = (f−1R) ∩ (f−1S); (c) f−1(R\S) = (f−1R)\(f−1S).

1-1 and onto

In effect, a map is an assignment together with a target, with the target necessarily containing the
range of the assignment. A major reason for introducing the concept of map (as distinct from the notion of
assignment) is in order to raise the following basic question:

Given the map f : X → Y and y ∈ Y , find x ∈ X for which f(x) = y, i.e., solve the equation

(1.1) f(?) = y.

Existence occurs if this equation has a solution for every y ∈ Y , i.e., if ran f = tar f . Uniqueness
occurs if there is at most one solution for every y ∈ Y , i.e., if f(x) = f(z) implies that x = z, i.e., the
assignment (f(x) : x ∈ X) is 1-1.

Here are the corresponding map properties:

Definition: The map f : X → Y is onto in case ran f = Y .

Definition: The map f : X → Y is 1-1 in case f(x) = f(y) =⇒ x = y.

Not surprisingly, these two map properties will play a major role throughout these notes. (At last count,
‘1-1’ appears over 300 times in these notes, and ‘onto’ over 200 times.) – There are other names in use for
these properties: An onto map is also called surjective or epimorph(ic), while a 1-1 map is also called
injective or monomorph(ic).

Perhaps the simplest useful examples of maps are those derived from lists, i.e., maps from some n into
some set Y . Here is the basic observation concerning such maps being 1-1 or onto.

(1.2) If g : n→ Y is 1-1 and f : m→ Y is onto, then n ≤ m, with equality if and only if g is also onto
and f is also 1-1.

Proof: The sequence (f(1), . . . , f(m)) contains every element of Y , but may also contain duplicates
of some. Throw out all duplicates to arrive at the sequence (h(1), . . . , h(q)) which still contains all elements
of Y but each one only once. In effect, we have ‘thinned’ f to a map h : q → Y that is still onto but also
1-1. In particular, q ≤ m, with equality if and only if there were no duplicates, i.e., f is also 1-1.

Now remove from (h(1), . . . , h(q)) every entry of the sequence (g(1), . . . , g(n)). Since h is onto and 1-1,
each of the n distinct entries g(j) does appear in h’s sequence exactly once, hence the remaining sequence
(k(1), . . . , k(r)) has length r = q − n. Thus, n ≤ q, with equality, i.e., with r = 0, if and only if g is onto.
In any case, the concatenation (g(1), . . . , g(n), k(1), . . . , k(r)) provides an ‘extension’ of the 1-1 map g to a
map to Y that is still 1-1 but also onto.

Put the two arguments together to get that n ≤ q ≤ m, with equality if and only if f is also 1-1 and g
is also onto.
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Note the particular conclusion that if both g : n→ Y and f : m→ Y are 1-1 and onto, then necessarily
n = m. This number is called the cardinality of Y and is denoted

#Y.

Hence, if we know that #Y = n, i.e., that there is some invertible map from n to Y , then we know that any
map f : n→ Y is onto if and only if it is 1-1. This is the

(1.3) Pigeonhole principle: If f : n→ Y with #Y = n, then f is 1-1 if and only if f is onto.

Any map from n to n that is 1-1 and onto is called a permutation of order n since its list is a
reordering of the first n integers. Thus (3, 2, 1) or (3, 1, 2) are permutations of order 3 while the map into 3
given by the 3-vector (3, 3, 1) is not a permutation, as it is neither 1-1 nor onto.

By the Pigeonhole principle, in order to check whether an n-vector represents a permutation, we only
have to check whether its range is n (which would mean that it is onto, as a map into n), or we only have to
check whether all its values are different and in n (which would mean that it is a 1-1 map into its domain,
n).

The finiteness of n is essential here. For example, consider the right shift

(1.4) r : IN→ IN : n 7→ n+ 1.

This maps different numbers to different numbers, i.e., is 1-1, but fails to be onto since the number 1 is not
in its range. On the other hand, the left shift

(1.5) l : IN→ IN : n 7→ max{n− 1, 1}

is onto, but fails to be 1-1 since it maps both 1 and 2 to 1.

In light of this example, it is all the more impressive that such a pigeonhole principle continues to hold
for certain special maps f : X → Y with both X and Y infinite. Specifically, according to (4.16)Corollary,
if X and Y are vector spaces of the same finite dimension and f : X → Y is a linear map, then f is 1-1
if and only f is onto. This result is one of the high points of basic linear algebra. A more down-to-earth
formulation of it, as in (3.16)Theorem, is the following: A linear system with as many equations as unknowns
has a solution for every right-hand side if and only if it has only the trivial solution when the right-hand
side is 0.

1.13 Prove: any g : n → Y with n > #Y cannot be 1-1.

1.14 Prove: any f : m → Y with m < #Y cannot be onto.

1.15 Let g : n → Y be 1-1, and f : m → Y be onto. Prove that

(i) for some k ≥ n, g can be ‘extended’ to a map h : k → Y that is 1-1 and onto;

(ii) for some k ≤ m, f can be ‘thinned’ to a map h : k → Y that is onto and 1-1.

1.16 Prove: If T is finite and S ⊂ T , then S is finite, too. (Hint: consider the set N of all n ∈ IN∪ {0} for which there is
a 1-1 map g : n → S.)

1.17 Prove that S ⊂ T and #T < ∞ implies that #S ≤ #T , with equality if and only if S = T .

Some examples

The next simplest maps after those given by lists are probably those that come to you in the form of a
list of pairs. For example, at the end of the semester, I am forced to make up a grade map. The authorities
send me the domain of that map, namely the students in this class, in the form of a list, and ask me to
assign, to each student, a grade, thus making up a list of pairs of the form

name | grade
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10 1. Sets, assignments, lists, and maps

Here at UW, the target of the grade map is the set

{A, AB, B, BC, C, D, F, I},

but there is no requirement to make this map onto. In fact, I could not meet that requirement if there were
fewer than 8 students in the class. Neither is it required to make the grade map 1-1. In fact, it is not possible
to make the grade map 1-1 if the class has more than 8 students in it. But if the class has exactly 8 students
in it, then a grade map that is onto is automatically also 1-1, and a grade map that is 1-1 is automatically
also onto.

There are many maps in your life that are given as a list of pairs, such as the list of dorm-room
assignments or the price list in the cafeteria. The dorm-room assignment list usually has the set of students
wanting a dorm room as its domain and the set of available dorm rooms as its target, is typically not 1-1,
but the authorities would like it to be onto. The price list at the cafeteria has all the items for sale as its
domain, and the set IN/100 := {m/100 : m ∈ IN} of all positive reals with at most two digits after the
decimal point as its target. There is little sense in wondering whether this map is 1-1 or onto.

1.18 Describe an interesting map (not already discussed in class) that you have made use of in the last month or so (or,
if nothing comes to mind, a map that someone like you might have used recently). Be sure to include domain and target of
your map in your description and state whether or not it is 1-1, onto.

Maps and their graphs

One successful mental image of a ‘map’ is to imagine both domain and target as sets of some possibly
indistinct shape, with curved arrows indicating with which particular element in the target the map f
associates a particular element in the domain.

x

f(x)

X Y

One way to visualize the map f : X → Y : x 7→ f(x).

Another successful mental (and more successful mathematical) image of a map f : X → Y is in terms
of its graph, i.e., in terms of the set of pairs

{(x, f(x)) : x ∈ X}.

In fact, the mathematically most satisfying definition of ‘map from X to Y ’ is: a subset of X × Y that, for
each x ∈ X , contains exactly one pair (x, y). In this view, a map is its graph.

Here, for example, is the (graph of the) grade map G for a graduate course I taught recently. I
abbreviated the students’ names, to protect the innocent.
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NA

•

SC

•

SG

•
AK

•

TK

•

AM

•

JP

•

DS

•

ST

•

TW

•

ZH

•A

AB

B

BC

C

D

F

I

You may be more familiar with the graphs of real functions, such as the ‘squaring’ map

()2 : [0 . . 2]→ [0 . . 4] : x 7→ x2,

whose graph is shown in the next figure.

X = [0 . . 2] = dom f = tar f−1

Y = [0 . . 4] = tar f = dom f−1

X × Y

Y ×X

4

y = f(?)

0

0

?

2

The graph of the squaring map f := ()2 : [0 . . 2]→ [0 . . 4] : x 7→ x2 and of
its inverse f−1 =

√
: [0 . . 4]→ [0 . . 2] : x 7→ √x.
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12 1. Sets, assignments, lists, and maps

1.19 For each of the following subsets R of the cartesian product X × Y with X = [0 . . 2] and Y = [0 . . 4], determine
whether it is the graph of a map from X to Y and, if it is, whether that map is 1-1 and/or onto or neither.

(a) R = {(x, y) : y = (x − 1/2)2}; (b) R = {(x, y) : x ≥ 1, y = (2x − 2)2}; (c) R = {(x, y) : y = (2x − 2)2}; (d)
R = {(x, y) : x = y}.

1.20 Same as previous problem, but with X and Y interchanged and, correspondingly, R replaced by R−1 := {(y, x) ∈
Y × X : (x, y) ∈ R}. Also, discuss any connections you see between the answers in these two problems.

Invertibility

The graph of a map f helps us solve the standard ‘computational’ problem involving maps, namely the
problem of finding an x ∈ X that solves the equation

f(?) = y

for given f : X → Y and y ∈ Y . The solution set is the pre-image of {y} under f , i.e., the set

f−1{y} = {x ∈ X : f(x) = y}.

For example, when looking at the graph of the above grade map G, we see that G−1{AB} = {JP, ST},
while G−1{D} = {} (the empty set). In the first case, we have two solutions, in the second case, we have
none.

In effect, when looking for solutions to the equation f(?) = y, we are looking at the graph of f with
the roles of domain and target interchanged: We are trying to associate with each y ∈ Y some x ∈ X in
such a way that f(x) = y. If f is onto, then there is at least one solution for every y ∈ Y , and conversely
(existence). If f is 1-1, then there is at most one solution for any y ∈ Y , and conversely (uniqueness).
Ideally, there is, for each y ∈ Y , exactly one x ∈ X for which f(x) = y.

Definition: The map f : X → Y is invertible := for every y ∈ Y there exists exactly one x ∈ X for
which f(x) = y.

Let f : X → Y .

f is invertible if and only if f is 1-1 and onto.

f is invertible if and only if the inverse of its graph, i.e., the set

{(f(x), x) : x ∈ X} ⊂ Y ×X,

is the graph of a map from Y to X . This latter map is called the inverse of f and is denoted by f−1.

Any 1-1 assignment f , taken as a map into its range, is invertible, since it is both 1-1 and onto. The
above grade map G fails on both counts to be invertible, it is neither 1-1 nor onto. The squaring map
()2 : [0 . . 2] → [0 . . 4] : x 7→ x2, on the other hand, is invertible since it is both 1-1 and onto. The earlier
figure shows the graph of its inverse, obtained from the graph of the squaring map by reversing the roles of
domain and target. In effect, we obtain the inverse of the graph of f by looking at the graph of f sideways
and can often tell at a glance whether or not it is the graph of a map, i.e., whether f is 1-1 and onto.

A map may be ‘half’ invertible, i.e., it may be either 1-1 or onto, without being both. For example, the
right shift (1.4) is 1-1, but not onto, while the left shift (1.5) is onto, but not 1-1. Only if domain and target
happen to have the same finite number of elements, then being 1-1 is guaranteed to be the same as being
onto, by the pigeonhole principle (see Problem 1.34).

(1.6) If f : X → Y , with #X = #Y <∞, then f 1-1 or onto implies f 1-1 and onto, i.e., invertible.
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Invertibility 13

In particular, for any finite X , any map f : X → X that is 1-1 or onto is automatically invertible.

The notion of f being ‘half’ invertible is made precise by the notions of left and right inverse. Their
definition requires the identity map, often written

id

if its domain (which is also its target) is clear from the context. The full definition is:

idX : X → X : x 7→ x.

In other words, the identity map is a particularly boring map, it leaves everything unchanged.

We also need map composition:

Definition: The composition f ◦ g of two maps f : X → Y and g : U →W ⊂ X is the map

f ◦ g : U → Y : u 7→ f(g(u)).

We write fg instead of f ◦ g whenever there is no danger of confusion.
Map composition is associative, i.e., whenever fg and gh are defined, then

(fg)h = f ◦ (gh).

There is a corresponding definition for the composition x ◦ y of two assignments, x and y, under the
assumption that ran y ⊂ domx. Thus,

xy := x ◦ y = (xyi
: i ∈ dom y)

is an assignment whose domain is dom y and whose range is contained in ranx.

As a simple example, if x is an n-vector and y is an m-vector with ran y ⊂ n = {1, . . . , n}, then

z := xy := x ◦ y = (xy1
, . . . , xym

).

In MATLAB, if x describes the n-vector x and y describes the m-vector y with entries in n =
{1, . . . , n}, then z=x(y) describes the m-vector z = xy = x ◦ y.

In the same way, if A ∈ IFm×n, and b is a k-list with entries from m = {1, . . . ,m}, and c

is an l-list with entries from n = {1, . . . , n}, then A(b, c) is a k × l-matrix, namely the matrix
D := A(b, c) ∈ IFk×l with

D(i, j) = A(b(i), c(j)), i ∈ k, j ∈ l.

In effect, the matrix D = A(b, c) is obtained from A by choosing rows b(1), b(2), . . . , b(k) and
columns c(1), c(2), . . . , c(l) of A, in that order.

If all rows, in their natural order, are to be chosen, then use A(:,c). Again if all columns, in
their natural order, are to be chosen, then use A(b,:).

In particular, A(1,:) is the matrix having the first row of A as its sole row, and A(:,end) is
the matrix having the last column of A as its sole column. The matrix A(1:2:end,:) is made up
from all the odd rows of A. A(end:-1:1,:) is the matrix obtained from A by reversing the order
of the rows (as could also be obtained by the command fliplr(A)). A(:,2:2:end) is obtained by
removing from A all odd-numbered columns. If x is a one-row matrix, then x(ones(1,m),:) and
x(ones(m,1),:) both give the matrix having all its m rows equal to the single row in x (as would
the expression repmat(x,m,1)).
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14 1. Sets, assignments, lists, and maps

MATLAB permits the expression A(b,c) to appear on the left of the equality sign: If A(b,c) and
D are matrices of the same size, then the statement

A(b,c) = D;

changes, for each (i,j) ∈ domD, the entry A(b(i),c(j)) of A to the value of D(i,j). What if, e.g.,
b is not 1-1? MATLAB does the replacement for each entry of b, from the first to the last. Hence, the
last time is the one that sticks. For example, if a=1:4, then the statement a([2,2,2])=[1,2,3]

changes a to [1,3,3,4]. On the other hand, if A appears on both sides of such an assignment, then
the one on the right is taken to be as it is at the outset of that assignment. For example,

A([i,j],:) = A([j,i],:);

is a nice way to interchange the ith row of A with its jth.

As a first use of map composition, here is the standard test for a map being onto or 1-1.

If fg is onto, then f is onto; if fg is 1-1, then g is 1-1.

Proof: Since ran(fg) ⊂ ran f ⊂ tar f = tar fg, fg onto implies f onto. Also, if g(y) = g(z), then
(fg)(y) = (fg)(z), hence fg 1-1 implies y = z, i.e., g is 1-1.

For example, the composition lr of the left shift (1.5) with the right shift (1.4) is the identity, hence l
is onto and r is 1-1 (as observed earlier).

Remark. The only practical way to check whether a given g is 1-1 is to come up with an f so that fg
is ‘obviously’ 1-1, e.g., invertible. The only practical way to check whether a given f is onto is to come up
with a g so that fg is ‘obviously’ onto, e.g., invertible.

Definition: If f ∈ Y X and g ∈ XY and fg = id, then f (being to the left of g) is a left inverse of
g, and g is a right inverse of f . In particular, any left inverse is onto and any right inverse is 1-1.

To help you remember which of f and g is onto and which is 1-1 in case fg = id, keep in mind that
being onto provides conclusions about elements of the target of the map while being 1-1 provides conclusions
about elements in the domain of the map.

Now we consider the converse statements.

If f : X → Y is 1-1, then f has a left inverse.

Proof: If f is 1-1 and x ∈ X is some element, then

g : Y → X : y 7→
{
f−1{y} if y ∈ ran f ;
x otherwise,

is well-defined since each y ∈ ran f is the image of exactly one element of X . With g so defined, gf = id
follows.
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Invertibility 15

The corresponding statement: If f : X → Y is onto, then f has a right inverse would have the following
‘proof’: Since f is onto, we can define g : Y → X : y 7→ some point in f−1{y}. Regardless of how we pick
that point g(y) ∈ f−1{y}, the resulting map is a right inverse for f . – Some object to this argument since it
requires us to pick, for each y, a particular element from that set f−1{y}. The belief that this can always
be done is known as “The Axiom of Choice”.

If f is an invertible map, then f−1 is both a right inverse and a left inverse for f . Conversely, if g is a
right inverse for f and h is a left inverse for f , then f is invertible and h = f−1 = g.
Consequently, if f is invertible, then: (i) f−1 is also invertible, and (f−1)−1 = f ; and, (ii) if also g
is an invertible map, with tar g = dom f , then fg is invertible, and (fg)−1 = g−1f−1 (note the order
reversal).

Proof: Let f : X → Y be invertible. Since, for every y ∈ Y , f−1(y) solves the equation f(?) = y,
we have ff−1 = idY , while, for any x ∈ X , x is a solution of the equation f(?) = f(x), hence necessarily
x = f−1(f(x)), thus also f−1f = idX .

As to the converse, if f and has both a left and a right inverse, then it must be both 1-1 and onto, hence
invertible. Further, if hf = idX and fg = idY , then (using the associativity of map composition),

h = h idY = h ◦ (fg) = (hf)g = idXg = g,

showing that h = g, hence h = f−1 = g.

As to the consequences, the identities ff−1 = idY and f−1f = idX explicitly identify f as a right
and left inverse for f−1, hence f must be the inverse of f−1. Also, by map associativity, (fg)g−1f−1 =
f idXf

−1 = ff−1 = idY , etc.

While fg = id implies gf = id in general only in case # dom f = # tar f < ∞, it does imply that gf
is as much of an identity map as it can be: Indeed, if fg = id, then (gf)g = g ◦ (fg) = g id = g, showing
that (gf)x = x for every x ∈ ran g. There is no such hope for x 6∈ ran g, since such x cannot possibly be
in ran gf = g(ran f) ⊂ ran g. However, since gf(x) = x for all x ∈ ran g, we conclude that ran gf = ran g.
This makes gf the identity on its range, ran g. In particular, (gf) ◦ (gf) = gf , i.e., gf is idempotent or, a
projector.

(1.7) Proposition: If f : X → Y and fg = idY , then gf is a projector, i.e., the identity on its range,
and that range equals ran g.

For example, the composition lr of the left shift (1.5) with the right shift (1.4) is the identity, hence rl
must be the identity on ran r = {2, 3, . . .} and, indeed, it is.

If the n-vector c in MATLAB describes a permutation, i.e., if the map c : n → n : j 7→ c(j) is
1-1 or onto, hence invertible, then the n-vector cinv giving its inverse can be obtained with the
commands

cinv = c; cinv(c) = 1:length(c);

The first command makes sure that cinv starts out as a vector of the same size as c. With that,
the second command changes cinv into one for which cinv(c) = [1,2,...,length(c)]. In other
words, cinv describes a left inverse for (the map given by) c, hence the inverse (by the pigeonhole
principle).
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16 1. Sets, assignments, lists, and maps

A second, more expensive, way to construct cinv is with the help of the command sort, as
follows:

[d, cinv] = sort(c);

For (try help sort), whether or not c describes a permutation, this command produces, in the
n-vector d, the list of the items in c in nondecreasing order, and provides, in cinv, the recipe for
this re-ordering:

d(i)=c(cinv(i)), i= 1:n.

In particular, if c describes a permutation, then, necessarily, d = [1,2,3,...], therefore c(cinv)

= [1,2,...,length(c)], showing that cinv describes a right inverse for (the map given by) c,
hence the inverse (by the pigeonhole principle).

Both of these methods extend, to the construction of a left, respectively a right, inverse, in
case the map given by c has only a left, respectively a right, inverse.

1.21 Let f : 2 → 3 be given by the list (2, 3), and let g : 3 → 2 be the map given by the list (2, 1, 2).

(a) Describe fg and gf (e.g., by giving their lists).

(b) Verify that fg is a projector, i.e., is the identity on its range.

1.22 For each of the following maps, state whether or not it is 1-1, onto, invertible. Also, describe a right inverse or a left
inverse or an inverse for it or else state why such right inverse or left inverse or inverse does not exist.

The maps are specified in various ways, e.g., by giving their list and their target or by giving both domain and target and
a rule for constructing their values.

(a) a is the map to {1, 2, 3} given by the list (1, 2, 3).

(b) b is the map to {1, 2, 3, 4} given by the list (1, 2, 3).

(c) c is the map to {1, 2} given by the list (1, 2, 1).

(d) d : IR2 → IR : x 7→ 2x1 − 3x2.

(e) f : IR2 → IR2 : x 7→ (−x2, x1).

(f) g : IR2 → IR2 : x 7→ (x1 + 2, x2 − 3).

(g) h : IR → IR2 : y 7→ (y/2, 0).

1.23 Verify that, in the preceding problem, dh = id, and explain geometrically why one would call hd a projector.

1.24 Prove: If fg = fh for g, h : S → T and with f : T → U 1-1, then g = h.

1.25 Prove: If fh = gh for f, g : T → U and with h : S → T onto, then f = g.

1.26 Use the preceding two problems to prove the following converse of (1.7)Proposition: If f : X → Y and gf is a
projector, then f is onto and g is 1-1 iff fg = idY .

1.27 If both f and g are maps from n to n, then so are both fg and gf . In particular, for any f ∈ nn, its power sequence

f0 := idn, f1 := f, f2 := f ◦ f, f3 := f ◦ f2, . . .

is well defined. Further, since nn is finite, the sequence f0, f1, f2, . . . of powers must eventually repeat itself. In other words,
there must be a first r such that fr = fj for some j < r. Let’s call the difference d := r − j between these two exponents the
cycle length of f .

(a) Find the cycle length for the map given by the sequence (2, 3, 4, 1, 1). (Feel free to use MATLAB.)

(b) Also determine the cycle lengths for the following maps:

A:=(2,3,4,5,1); B:=(2,3,1,5,4); C:=(1,2,3,4,5);
D:=(2,5,2,2,1); E:=(2,5,2,5,2); F:=(2,5,2,2,5).

(c) Given all these examples (and any others you care to try), what is your guess as to the special nature of the map fd in
case the cycle length of f is d and f is invertible?

1.28 Finish appropriately the following MATLAB function

function b = ii(a)
% If ran(a) = N := {1,2,...,length(a)} , hence a describes
% the invertible map
% f:N --> N : j -> a(j)
% then b describes the inverse of f , i.e., the map g:N --> N for which
% fg = id_N and gf = id_N .
% Otherwise, the message
% The input doesn’t describe an invertible map
% is printed and an empty b is returned.

15jan03 c©2002 Carl de Boor



The inversion of maps 17

1.29 Let fi : X → X for i = 1:n, hence g := f1 · · · fn is also a map from X to X. Prove that g is invertible if, but not
only if, each fi is invertible, and, in that case, g−1 = f−1

n · · · f−1
1 . (Note the order reversal!)

1.30 If f : S → T is invertible, then f has exactly one left inverse. Is the converse true?

1.31 Let g be a left inverse for f : S → T , and assume that #S > 1. Prove that g is the unique left inverse for f iff g is
1-1. (Is the assumption that #S > 1 really needed?)

1.32 Let g be a right inverse for f . Prove that g is the unique right inverse for f iff g is onto.

1.33 If f : S → T is invertible, then f has exactly one right inverse. Is the converse true?

1.34

(i) Prove: If g : Z → X is invertible, then, for any f : X → Y , f is 1-1 (onto) if and only if the map fg is 1-1 (onto).

(ii) Derive (1.6) from (1.3).

The inversion of maps

The notions of 1-1 and onto, and the corresponding notions of right and left inverse, are basic to the
discussion of the standard ‘computational’ problem already mentioned earlier: for f : X → Y and y ∈ Y ,
solve

(1.1) f(?) = y.

When we try to solve (1.1), we are really trying to find, for each y ∈ Y , some x ∈ X for which f(x) = y, i.e.,
we are trying to come up with a right inverse for f . Existence of a solution for every right side is the same
as having f onto, and is ensured by the existence of a right inverse for f . Existence of a left inverse for f
ensures uniqueness: If hf = id, then f(x) = f(y) implies that x = h(f(x)) = h(f(y)) = y. Thus existence
of a left inverse implies that f is 1-1. But existence of a left inverse does not, in general, provide a solution.

When f has its domain in IRn and and its target in IRm, then we can think of solving (1.1) numerically.
Under the best of circumstances, this still means that we must proceed by approximation. The solution is
found as the limit of a sequence of solutions to linear equations, i.e., equations of the form A? = b, with A
a linear map. This is so because linear (algebraic) equations are the only kind of equations we can actually
solve exactly (ignoring roundoff). This is one reason why Linear Algebra is so important. It provides
the mathematical structures, namely vector spaces and linear maps, needed to deal efficiently with linear
equations and, thereby, with other equations.

1.35 T/F

(a) 0 is a natural number.

(b) #{3, 3, 3} = 1.

(c) #(3, 3, 3) = 3.

(d) ({3, 1, 3, 2, 4} ∩ {3, 5, 4}) ∪ {3, 3} = {4, 3, 3, 3, 3}.
(e) If A, B are finite sets, then #(A ∪ B) = #A + #B − #(A ∩ B).

(f) #{} = 1.

(g) {3, 3, 1, 6}\{3, 1} = {3, 6}.
(h) If f : X → X for some finite X, then f is 1-1 if and only if f is onto.

(i) The map f : 3 → 3 given by the list (3, 1, 2) is invertible, and its inverse is given by the list (2, 3, 1).

(j) The map f : 3 → 2 given by the list (1, 2, 1) has a right inverse.

(k) If U ⊂ tar f , then f maps f−1U onto U .

(l) The map f is invertible if and only if f−1 is the graph of a map.

(m) If f, g ∈ XX and h := fg is invertible, then both f and g are invertible.

(n) The matrix

[
0 0
0 1

]
is diagonal.

(o) The matrix

[
0 0 0
0 0 0

]
is upper triangular.
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18 2. Vector spaces and linear maps

2. Vector spaces and linear maps

Vector spaces, especially spaces of functions

Linear algebra is concerned with vector spaces. These are sets on which two operations, vector addition

and multiplication by a scalar, are defined in such a way that they satisfy various laws. Here they are, for
the record:

(2.1) Definition: To say that X is a linear space (of vectors), or a vector space, over the
commutative field IF (of scalars) means that there are two maps, (i) X × X → X : (x, y) 7→ x + y
called (vector) addition; and (ii) IF ×X → X : (α, x) 7→ αx =: xα called scalar multiplication,
which satisfy the following rules.

(a) X is a commutative group with respect to addition; i.e., addition

(a.1) is associative: x+ (y + z) = (x+ y) + z;

(a.2) is commutative: x+ y = y + x;

(a.3) has neutral element: ∃0 ∀x x+ 0 = x;

(a.4) has inverse: ∀x ∃y x+ y = 0.

(s) scalar multiplication is

(s.1) associative: α(βx) = (αβ)x;

(s.2) field-addition distributive: (α + β)x = αx + βx;

(s.3) vector-addition distributive: α(x + y) = αx + αy;

(s.4) unitary: 1x = x.

It is standard to denote the element y ∈ X for which x + y = 0 by −x since such y is uniquely determined
by the requirement that x + y = 0. I will denote the neutral element in X by the same symbol, 0, used for
the zero scalar. For reasons to become clear, I often write xα for αx.

While the scalars can come from some abstract field, we will only be interested in the real scalars IR
and the complex scalars C. Also, from a practical point of view, the most important linear spaces consist
of functions, i.e., of scalar-valued maps all on some common domain. This means that the typical linear
space we will deal with is (a subset of) the collection of all maps IFT from some fixed domain T into the
scalar field IF (either IF = IR or IF = C), with pointwise addition and multiplication by scalars. Here is
the definition:

(2.2) Definition of pointwise vector operations:

(a) The sum f + g of f, g ∈ IFT is the function

f + g : T → IF : t 7→ f(t) + g(t).

(s) The product αf of the scalar α ∈ IF with the function f ∈ IFT is the function

αf : T → IF : t 7→ αf(t).
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Vector spaces, especially spaces of functions 19

With respect to these operations, IFT is a linear space (over IF). In particular, the function

0 : T → IF : t 7→ 0

is the neutral element, or zero vector, and, for f ∈ IFT ,

−f : T → IF : t 7→ −f(t)

is the additive inverse for f .

Note that it is not possible to add two functions unless they have the same domain!

Standard examples include:

(i) T = n, in which case we get n-dimensional coordinate space IFn whose elements (vectors) we
call n-vectors.

(ii) T = m× n, in which case we get the space IFm×n, whose elements we call m-by-n matrices.

(iii) T = IR, IF = IR, in which case we get the space of all real-valued functions on the real line.

(iv) T = IRn, IF = IR, in which case we get the space of all real-valued functions of n real variables.

The most common way to get a vector space is as a linear subspace:

Definition: A nonempty subset Y of a vector space X is a linear subspace (of X) in case it is closed
under addition and multiplication by a scalar. This means that the two sets

Y + Y := {y + z : y, z ∈ Y } and IFY := {αy : α ∈ IF, y ∈ Y }

are in Y .

Standard examples include:

(i) The trivial space {0}, consisting of the zero vector alone; it’s a great space for testing one’s
understanding.

(ii) Πk := the set of all polynomials of degree ≤ k as a subset of IFIF.

(iii) The set C([a . . b]) of all continuous functions on the interval [a . . b].

(iv) The set of all real symmetric matrices of order n as a subset of IRn×n.

(v) The set of all real-valued functions on IR that vanish on some fixed set S.

(vi) The set BLξ ⊂ C([ξ1 . . ξℓ+1]) of all broken lines with (interior) breaks at ξ2 < · · · < ξℓ.

It is a good exercise to check that, according to the abstract definition of a vector space, any linear
subspace of a vector space is again a vector space. Conversely, if a subset of a vector space is not closed
under vector addition or under multiplication by scalars, then it cannot be a vector space (with respect
to the given operations) since it violates the basic assumption that the sum of any two elements and the
product of any scalar with any element is again an element of the space. (To be sure, the empty subset {}
of a linear space is vacuously closed under the two vector operations but fails to be a linear subspace since
it fails to be nonempty.)

Proposition: A subset Y of a vector space X is a vector space (with respect to the same addition
and multiplication by scalars) if and only if Y is a linear subspace (of X), i.e., Y is nonempty and is
closed under addition and multiplication by scalars.
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20 2. Vector spaces and linear maps

Corollary: The sum, Y + Z := {y + z : y ∈ Y, z ∈ Z}, and the intersection, Y ∩ Z, of two linear
subspaces, Y and Z, of a vector space is a linear subspace.

We saw that pointwise addition and multiplication by a scalar makes the collection IFT of all maps from
some set T to the scalars a vector space. The same argument shows that the collection XT of all maps from
some set T into a vector space X (over the scalar field IF) is a vector space under pointwise addition and
multiplication by scalars. This means, explicitly, that we define the sum f + g of f, g ∈ XT by

f + g : T → X : t 7→ f(t) + g(t)

and define the product αf of f ∈ XT with the scalar α ∈ IF by

αf : T → X : t 7→ αf(t).

Thus, we can generate from one vector space X many different vector spaces, namely all the linear
subspaces of the vector space XT , with T an arbitrary set.

2.1 For each of the following sets of real-valued assignments or maps, determine whether or not they form a vector space
(with respect to pointwise addition and multiplication by scalars), and give a reason for your answer. (a) {x ∈ IR3 : x1 = 4};
(b) {x ∈ IR3 : x1 = x2}; (c) {x ∈ IR3 : 0 ≤ xj , j = 1, 2, 3}; (d) {(0, 0, 0)}; (e) {x ∈ IR3 : x 6∈ IR3}; (f) C([0 . . 2]); (g) The
collection of all 3×3 matrices with all diagonal entries equal to zero; (h) {(x, 0) : x ∈ IR} ∪ {(0, y) : y ∈ IR}.

2.2 Prove that, for every x in the vector space X, (−1)x = −x, and 0x = 0.

2.3 Prove that the intersection of any collection of linear subspaces of a vector space is a linear subspace.

2.4 Prove: The union of two linear subspaces is a linear subspace if and only if one of them contains the other.

2.5 Prove: The finite union of linear subspaces is a linear subspace if and only if one of them contains all the others.
(Hint: reduce to the situation that no subspace is contained in the union of the other subspaces and, assuming this leaves you
with at least two subspaces, take from each a point that is in none of the others and consider the straight line through these
two points.)

2.6 Provide a proof of the above Proposition.

Linear maps

Definition: Let X,Y be vector spaces (over the same scalar field IF). The map f : X → Y is called
linear if it is

(a) additive, i.e.,
∀{x, z ∈ X} f(x+ z) = f(x) + f(z);

and

(s) homogeneous, i.e.,
∀{x ∈ X,α ∈ IF} f(αx) = αf(x).

We denote the collection of all linear maps from X to Y by

L(X,Y ).

Many books call a linear map a linear transformation or a linear operator. It is customary to
denote linear maps by capital letters. Further, if A is a linear map and x ∈ domA, then it is customary to
write Ax instead of A(x).
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Examples: If X is a linear subspace of IFT , then, for every t ∈ T , the map

δt : X → IF : f 7→ f(t)

of evaluation at t is linear since the vector operations are pointwise.

The map D : C(1)(IR)→ C(IR) : g 7→ Dg that associates with each continuously differentiable function
g its first derivative Dg is a linear map.

The map C([a . . b])→ IR : g 7→
∫ b

a g(t) dt is linear.

Let c := {a : IN → IF : limn→∞ an exists}, i.e., c is the vector space of all convergent sequences. Then
the map c→ IF : a 7→ limn→∞ an is linear.

These examples show that the basic operations in Calculus are linear. This is the reason why so many
people outside Algebra, such as Analysts and Applied Mathematicians, are so interested in Linear Algebra.

The simplest linear map on a vector space X to a vector space Y is the so-called trivial map. It is the
linear map that maps every element of X to 0; it is, itself, denoted by

0.

It is surprising how often this map serves as a suitable illustration or counterexample.

Example: If a ∈ IRn, then

(2.3) at : IRn → IR : x 7→ atx := a1x1 + a2x2 + · · ·+ anxn

is a linear map of great practical importance. Indeed, any (real) linear algebraic equation in n unknowns
has the form

at? = y

for some coefficient vector a ∈ IRn and some right side y ∈ IR. Such an equation has solutions for
arbitrary y if and only if a 6= 0. You have already learned that the general solution can always be written as
the sum of a particular solution and an arbitrary solution of the corresponding homogeneous equation

at? = 0.

In particular, the map at cannot be 1-1 unless n = 1.

Assume that a 6= 0. For n = 2, it is instructive and easy to visualize the solution set as a straight line,
parallel to the straight line

null at := {x ∈ IR2 : atx = 0}

through the origin formed by all the solutions to the corresponding homogeneous problem, and perpendicular
to the coefficient vector a. Note that the ‘nullspace’ nullat splits IR2 into the two half-spaces

{x ∈ IR2 : atx > 0} {x ∈ IR2 : atx < 0},

one of which contains a. Here is such a figure, for the particular equation

2x1 + 3x2 = 6.
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3

2

a

atx < 0

0 < atx < 6

6 < atx

(2.4) Figure. One way to visualize all the parts of the equation atx = 6
with a = (2, 3).

By adding or composing two linear maps (if appropriate) or by multiplying a linear map by a scalar,
we obtain further linear maps. Here are the details.

The (pointwise) sum A+B of A,B ∈ L(X,Y ) and the product αA of α ∈ IF with A ∈ L(X,Y ) are again
in L(X,Y ), hence L(X,Y ) is closed under (pointwise) addition and multiplication by a scalar, therefore a
linear subspace of the vector space Y X of all maps from X into the vector space Y .

L(X,Y ) is a vector space under pointwise addition and multiplication by a scalar.

Linearity is preserved not only under (pointwise) addition and multiplication by a scalar, but also under
map composition.

The composition of two linear maps is again linear (if it is defined).

Indeed, if A ∈ L(X,Y ) and B ∈ L(Y, Z), then BA maps X to Z and, for any x, y ∈ X ,

(BA)(x + y) = B(A(x + y)) = B(Ax +Ay) = B(Ax) + B(Ay) = (BA)(x) + (BA)(y).

Also, for any x ∈ X and any scalar α,

(BA)(αx) = B(A(αx)) = B(αAx) = αB(Ax) = α(BA)(x).

2.7 For each of the following maps, determine whether or not it is linear (give a reason for your answer).

(a) Π<k → ZZ+ : p 7→ #{x : p(x) = 0} (i.e., the map that associates with each polynomial of degree < k the number of its
zeros).

(b) C([a . . b]) → IR : f 7→ maxa≤x≤b f(x)

(c) IF3×4 → IF : A 7→ A2,2

(d) L(X, Y ) → Y : A 7→ Ax, with x a fixed element of X (and, of course, X and Y vector spaces).

(e) IRm×n → IRn×m : A 7→ Ac (with Ac the (conjugate) transpose of the matrix A)
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(f) IR → IR2 : x 7→ (x, sin(x))

2.8 The linear image of a vector space is a vector space: Let f : X → T be a map on some vector space X into some set
T on which addition and multiplication by scalars is defined in such a way that

(2.5) f(αx + βy) = αf(x) + βf(y), α, β ∈ IF, x, y ∈ X.

Prove that ran f is a vector space (with respect to the addition and multiplication as restricted to ran f). (See Problem 4.27

for an important application.)

Linear maps from IFn

As a ready source of many examples, we now give a complete description of L(IFn, X).

For any sequence v1, v2, . . . , vn in the vector space X , the map

f : IFn → X : a 7→ v1a1 + v2a2 + · · ·+ vnan

is linear.

Proof: The proof is a boring but necessary verification.

(a) additivity:

f(a+ b) = v1 (a+ b)1 + v2 (a+ b)2 + · · ·+ vn (a+ b)n (definition of f)
= v1 (a1 + b1) + v2 (a2 + b2) + · · ·+ vn (an + bn) (addition of n-vectors)
= v1a1 + v1b1 + v2a2 + v2b2 + · · · + vnan + vnbn (multipl. by scalar distributes)
= v1a1 + v2a2 + · · ·+ vnan + v1b1 + v2b2 + · · ·+ vnbn (vector addition commutes)
= f(a) + f(b) (definition of f)

(s) homogeneity:

f(αa) = v1 (αa)1 + v2 (αa)2 + · · ·+ vn (αa)n (definition of f)
= v1αa1 + v2αa2 + · · ·+ vnαan (multipl. of scalar with n-vectors)
= α(v1a1 + v2a2 + · · ·+ vnan) (multipl. by scalar distributes)
= αf(a) (definition of f)

Definition: The weighted sum
v1a1 + v2a2 + · · ·+ vnan

is called the linear combination of the vectors v1, v2, . . . , vn with weights a1, a2, . . . , an. I will
use the suggestive abbreviation

[v1, v2, . . . , vn]a := v1a1 + v2a2 + · · ·+ vnan,

hence use
[v1, v2, . . . , vn]

for the map V : IFn → X : a 7→ v1a1 + v2a2 + · · ·+ vnan. I call such a map a column map, and call
vj its jth column. Further, I denote its number of columns by

#V.
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The most important special case of this occurs when also X is a coordinate space, X = IFm say. In this
case, each vj is an m-vector, and

v1a1 + v2a2 + · · ·+ vnan = V a,

with V the m × n-matrix with columns v1, v2, . . . , vn. This explains why I chose to write the weights in
the linear combination v1a1 + v2a2 + · · · + vnan to the right of the vectors vj rather than to the left. For,
it suggests that working with the map [v1, v2, . . . , vn] is rather like working with a matrix with columns
v1, v2, . . . , vn.

Note that MATLAB uses the notation [v1, v2, . . . , vn] for the matrix with columns v1, v2, . . . , vn, as
do some textbooks. This stresses the fact that it is customary to think of the matrix C ∈ IFm×n with
columns c1, c2, . . . , cn as the linear map [c1, c2, . . . , cn] : IFn → IFm : x 7→ c1x1 + c2x2 + · · ·+ cnxn.

Agreement: For any sequence v1, v2, . . . , vn of m-vectors,

[v1, v2, . . . , vn]

denotes both the m× n-matrix V with columns v1, v2, . . . , vn and the linear map

V : IFn → IFm : a 7→ [v1, v2, . . . , vn]a = v1a1 + v2a2 + · · ·+ vnan.

Thus,
IFm×n = L(IFn, IFm).

Thus, a matrix V ∈ IFm×n is associated with two rather different maps: (i) since it is an assignment
with domain m×n and values in IF, we could think of it as a map on m×n to IF; (ii) since it is the n-list of
its columns, we can think of it as the linear map from IFn to IFm that carries the n-vector a to the m-vector
V a = v1a1 + v2a2 + · · ·+ vnan. From now on, we will stick to the second interpretation when we talk about
the domain, the range, or the target, of a matrix. Thus, for V ∈ IFm×n, domV = IFn and tarV = IFm, and
ranV ⊂ IFm. – If we want the first interpretation, we call V ∈ IFm×n a (two-dimensional) array.

Next, we prove that there is nothing special about the linear maps of the form [v1, v2, . . . , vn] from IFn

into the vector space X , i.e., every linear map from IFn to X is necessarily of that form. The identity map

idn : IFn → IFn : a→ a

is of this form, i.e.,
idn = [e1, e2, . . . , en]

with ej the jth unit vector, i.e.,
ej := (0, . . . , 0︸ ︷︷ ︸

j−1 zeros

, 1, 0, . . . , 0)

the vector (with the appropriate number of entries) all of whose entries are 0, except for the jth, which is 1.
Written out in painful detail, this says that

a = e1a1 + e2a2 + · · ·+ enan, ∀a ∈ IFn.

Further,

(2.6) Proposition: If V = [v1, v2, . . . , vn] : IFn → X and f ∈ L(X,Y ), then fV = [f(v1), . . . , f(vn)].
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Proof: If dom f = X and f is linear, then fV is linear and, for any a ∈ IFn,

(fV )a = f(V a) = f(v1a1 + v2a2 + · · ·+ vnan) = f(v1)a1 + f(v2)a2 + · · ·+ f(vn)an = [f(v1), . . . , f(vn)]a.

Consequently, for any f ∈ L(IFn, X),

f = f idn = f [e1, e2, . . . , en] = [f(e1), . . . , f(en)].

This proves:

(2.7) Proposition: The map f from IFn to the vector space X is linear if and only if

f = [f(e1), f(e2), . . . , f(en)].

In other words,
L(IFn, X) = {[v1, v2, . . . , vn] : v1, v2, . . . , vn ∈ X} (≃ Xn).

As a simple example, recall from (2.3) the map at : IRn → IR : x 7→ a1x1 + a2x2 + · · · + anxn =
[a1, . . . , an]x, and, in this case, atej = aj , all j. This confirms that at is linear and shows that

(2.8) at = [a1, . . . , an] = [a]t.

Notation: I follow MATLAB notation. E.g., [V,W ] denotes the column map in which first all the
columns of V are used and then all the columns of W . Also, if V and W are column maps, then I write

V ⊂W

to mean that V is obtained by omitting (zero or more) columns from W ; i.e., V = W (:, c) for some subse-
quence c of 1:#W .

Finally, if W is a column map and M is a set, then I’ll write

W ⊂ M

to mean that the columns of W are elements of M . For example:

(2.9) Proposition: If Z is a linear subspace of Y and W ∈ L(IFm, Y ), then W ⊂ Z =⇒ ranW ⊂ Z.

The important (2.6)Proposition is the reason we define the product of matrices the way we do, namely
as

(AB)(i, j) :=
∑

k

A(i, k)B(k, j), ∀i, j.

For, if A ∈ IFm×n = L(IFn, IFm) and B = [b1, b2, . . . , br] ∈ IFn×r = L(IFr, IFn), then AB ∈ L(IFr, IFm) =
IFm×r, and

AB = A[b1, b2, . . . , br] = [Ab1, . . . , Abr].

Notice that the product AB of two maps A and B makes sense if and only if domA ⊃ tarB. For matrices
A and B, this means that the number of columns of A must equal the number of rows of B; we couldn’t
apply A to the columns of B otherwise.
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In particular, the 1-column matrix [Ax] is the product of the matrix A with the 1-column matrix [x],
i.e.,

A[x] = [Ax], ∀A ∈ IFm×n, x ∈ IFn.

For this reason, most books on elementary linear algebra and most users of linear algebra identify the n-
vector x with the n× 1-matrix [x], hence write simply x for what I have denoted here by [x]. I will feel free
from now on to use the same identification. However, I will not be doctrinaire about it. In particular, I will
continue to specify a particular n-vector x by writing down its entries in a list, like x = (x1, x2, . . .), since
that uses much less space than does the writing of

[x] =




x1

x2
...



 .

It is consistent with the standard identification of the n-vector x with the n× 1-matrix [x] to mean by
xt the 1× n-matrix [x]t. Further, with y also an n-vector, one identifies the (1, 1)-matrix [x]t[y] = xty with
the scalar ∑

j

xjyj = ytx.

On the other hand,
yxt = [y][x]t = (yixj : (i, j) ∈ n× n)

is an n× n-matrix (and identified with a scalar only if n = 1).

However, I will not use the terms ‘column vector’ or ‘row vector’, as they don’t make sense to me. Also,
whenever I want to stress the fact that x or xt is meant to be a matrix, I will write [x] and [x]t, respectively.

For example, what about the expression xytz in case x, y, and z are vectors? It makes sense only if y
and z are vectors of the same length, say y, z ∈ IFn. In that case, it is [x][y]t[z], and this we can compute in
two ways: we can apply the matrix xyt to the vector z, or we can multiply the vector x with the scalar ytz.
Either way, we obtain the vector x(ytz) = (ytz)x, i.e., the (ytz)-multiple of x. However, while the product
x(ytz) of x with (ytz) makes sense both as a matrix product and as multiplication of the vector x by the
scalar ytz, the product (ytz)x only makes sense as a product of the scalar ytz with the vector x.

(2.10) Example: Here is an example, of help later. Consider the socalled elementary row opera-
tion

Ei,k(α)

on n-vectors, in which one adds α times the kth entry to the ith entry. Is this a linear map? What is a
formula for it?

We note that the kth entry of any n-vector x can be computed as ek
tx, while adding β to the ith entry

of x is accomplished by adding βei to x. Hence, adding α times the kth entry of x to its ith entry replaces
x by x+ ei(αek

tx) = x+ αeiek
tx. This gives the handy formula

(2.11) Ei,k(α) = idn + αeiek
t.

Now, to check that Ei,j(α) is linear, we observe that it is the sum of two maps, and the first one, idn, is
certainly linear, while the second is the composition of the three maps,

ek
t : IFn → IF ≃ IF1 : z 7→ ek

tz, [ei] : IF1 → IFn : β → eiβ, α : IFn → IFn : z 7→ αz,

and each of these is linear (the last one because we assume IF to be a commutative field).

Matrices of the form

(2.12) Ey,z(α) := id + αyzt

are called elementary. They are very useful since, if invertible, their inverse has the same simple form; see
(2.19)Proposition below.
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2.9 Use the fact that the jth column of the matrix A is the image of ej under the linear map A to construct the matrices
that carry out the given action.

(i) The matrix A of order 2 that rotates the plane clockwise 90 degrees;

(ii) The matrix B that reflects IRn across the hyperplane {x ∈ IRn : xn = 0};
(iii) The matrix C that keeps the hyperplane {x ∈ IRn : xn = 0} pointwise fixed, and maps en to −en;

(iv) The matrix D of order 2 that keeps the y-axis fixed and maps (1, 1) to (2, 1).

2.10 Use the fact that the jth column of the matrix A ∈ IFm×n is the image of ej under A to derive the four matrices

A2, AB, BA, and B2 for each of the given pair A and B: (i) A = [e1, 0], B = [0, e1]; (ii) A = [e2, e1], B = [e2,−e1]; (iii)
A = [e2, e3, e1], B = A2.

2.11 For each of the following pairs of matrices A, B, determine their products AB and BA if possible, or else state why
it cannot be done.

(a) A =

[
1 −1 1
1 1 1

]
, B the matrix eye(2); (b) A =

[
2 1 4
0 1 2

]
, B = At; (c) A =

[
2 1 4
0 1 2
0 0 −1

]
, B =

[−1 −1 2
0 2 −1
0 0 3

]
;

(d) A =

[
2 + i 4 − i
3 − i 3 + i

]
, B =

[
2 − i 3 + i 3i
3 − i 4 + i 2

]
.

2.12 For any A, B ∈ L(X), the products AB and BA are also linear maps on X, as are A2 := AA and B2 := BB. Give
an example of A, B ∈ L(X) for which (A+B)2 does not equal A2 +2AB +B2. (Hint: keep it as simple as possible, by choosing
X to be IR2, hence both A and B are 2-by-2 matrices.)

2.13 Give an example of matrices A and B for which both AB = 0 and BA = 0, while neither A nor B is a zero matrix.

2.14 Prove: If A and B are matrices with r rows, and C and D are matrices with c columns, and AC and BD are defined,
then the product of the two partitioned matrices [A,B] and [C;D] is defined and equals AC + BD.

2.15 Prove that both C → IR : z 7→ Re z and C → IR : z 7→ Im z are linear maps when we consider C as a vector space

over the real scalar field.

The linear equation A? = y, and ranA and nullA

We are ready to recognize and use the fact that the general system

(2.13)

a11x1 + a12x2 + · · ·+ a1nxn = y1

a21x1 + a22x2 + · · ·+ a2nxn = y2

· · · = ·
am1x1 + am2x2 + · · ·+ amnxn = ym

of m linear equations in the n unknowns x1, . . . , xn is equivalent to the vector equation

Ax = y,

provided

x := (x1, . . . , xn), y := (y1, . . . , ym), A :=





a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



 .

Here, equivalence means that the entries x1, . . . , xn of the n-vector x solve the system of linear equations
(2.13) if and only if x solves the vector equationA? = y. This equivalence is not only a notational convenience.
Switching from (2.13) to A? = y is the conceptual shift that started Linear Algebra. It shifts the focus, from
the scalars x1, . . . , xn, to the vector x formed by them, and to the map A given by the coefficients in (2.13),
its range and nullspace (about to be defined), and this makes for simplicity, clarity, and generality.

To stress the generality, we now give a preliminary discussion of the equation

A? = y

in case A is a linear map, from the vector space X to the vector space Y say, with y some element of Y .

Existence of a solution for every y ∈ Y is equivalent to having A be onto, i.e., to having ranA = Y .
Now, the range of A is the linear image of a vector space, hence itself a vector space. Indeed, if v1, v2, . . . , vm
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are elements of ranA, then there must be a sequence w1, w2, . . . , wm in X with Awj = vj , all j. Since
X is a vector space, it contains Wa for arbitrary a ∈ IFm, therefore the corresponding linear combination
V a = [Aw1, Aw2, . . . , Awm]a = (AW )a = A(Wa) must be in ranA. In other words, if V ⊂ ranA, then
ranV ⊂ ranA.

Hence, if we wonder whether A is onto, and we happen to know an onto column map [v1, v2, . . . , vm] =
V ∈ L(IFm, Y ), then we only have to check that the finitely many columns, v1, v2, . . . , vm, of V are in
ranA. For, if some are not in ranA, then, surely, A is not onto. However, if they all are in ranA, then
Y = ranV ⊂ ranA ⊂ tarA = Y , hence ranA = Y and A is onto.

(2.14)Proposition: The range of a linear map A ∈ L(X,Y ) is a linear subspace, i.e., is nonempty
and closed under vector addition and multiplication by a scalar.

If Y is the range of the column map V , then A is onto if and only if the finitely many columns of
V are in ranA.

Uniqueness of a solution for every y ∈ Y is equivalent to having A be 1-1, i.e., to have Ax = Az imply
that x = z. For a linear map A : X → Y , we have Ax = Az if and only if A(x − z) = 0. In other words, if
y = Ax, then

(2.15) A−1{y} = x+ {z ∈ X : Az = 0}.

In particular, A is 1-1 if and only if {z ∈ X : Az = 0} = {0}. In other words, to check whether a linear map
is 1-1, we only have to check whether it is 1-1 ‘at’ one particular point, e.g., ‘at’ 0. For this reason, the set
A−1{0} = {z ∈ X : Az = 0} of all elements of X mapped by A to 0 is singled out.

Definition: The set
nullA := {z ∈ domA : Az = 0}

is called the nullspace or kernel of the linear map A.
The linear map is 1-1 if and only if its nullspace is trivial, i.e., contains only the zero vector.
The nullspace of a linear map is a linear subspace.

Almost all linear subspaces you’ll meet will be of the form ranA or nullA for some linear map A. These
two ways of specifying a linear subspace are very different in character.

If we are told that our linear subspace Z of X is of the form nullA, for a certain linear map A on X ,
then we know, offhand, exactly one element of Z for sure, namely the element 0 which lies in every linear
subspace. On the other hand, it is easy to test whether a given x ∈ X lies in Z = nullA: simply compute
Ax and check whether it is the zero vector.

If we are told that our linear subspace Z of X is of the form ranA for some linear map from some U
into X , then we can ‘write down’ explicitly every element of ranA: they are all of the form Au for some
u ∈ domA. On the other hand, it is much harder to test whether a given x ∈ X lies in Z = ranA: Now we
have to check whether the equation A? = x has a solution (in U).

As a simple example, the vector space Πk of all polynomials of degree ≤ k is usually specified as the
range of the column map

[()0, ()1, . . . , ()k] : IRk+1 → IRIR,

with
()j : IR→ IR : t 7→ tj

a convenient (though non-standard!) notation for the monomial of degree j, i.e., as the collection of all
real-valued functions that are of the form

t 7→ a0 + a1t+ · · ·+ akt
k
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for some coefficient-vector a. On the other hand, Πk can also be defined as nullDk+1, i.e., as the collection
of all real-valued functions that are k+1-times continuously differentiable and have their (k+1)st derivative
identically zero.

(2.16) Remark: The nullspace nullA of the linear map A : X → Y consists exactly of the solutions
to the homogeneous equation

A? = 0.

The linear equation A? = y is readily associated with a homogeneous linear equation, namely the equation

[A, y]? = 0,

with
[A, y] : X × IF : (z, α) 7→ Az + yα.

If Ax = y, then (x,−1) is a nontrivial element of null[A, y]. Conversely, if (z, α) ∈ null[A, y] and α 6= 0, then
z/(−α) is a solution to A? = y. Hence, for the construction of solutions to linear equations, it is sufficient
to know how to solve homogeneous linear equations, i.e., how to construct the nullspace of a linear map.

2.16 For each of the following systems of linear equations, determine A and y of the equivalent vector equation A? = y.

(a)
2x1 − 3x2 = 4
4x1 + 2x2 = −6

; (b)
2u1 − 3u2 = 4
4u1 + 2u2 = −6

; (c)
−4c = 16

2a + 3b = 9
.

2.17 For each of the following A and y, write out a system of linear equations equivalent to the vector equations A? = y.

(a) A =

[
2 3
6 4
e −2

]
, y = (9,−

√
3, 1); (b) A =

[
1 2 3 4
4 3 2 1

]
, y = (10, 10). (c) A = [] ∈ IR0×3, y = () ∈ IR0.

Inverses

We have agreed to think of the matrix A ∈ IFm×n as the column map [A(:, 1), . . . , A(:, n)], i.e., as the
linear map IFn → IFm : a 7→ Aa :=

∑
j A(:, j)aj . For this reason, it is also customary to refer to the range

ranA of a matrix A as the column space of that matrix, while the range ranAt of its transpose is known as
its row space. Further, we have found that, in these terms, the matrix product AB is also the composition

A ◦B, i.e.,

(A ◦B)a = A(B(a)) = (AB)a =
∑

j

(AB)(:, j)aj .

In these terms, the identity map idn on IFn corresponds to the identity matrix [e1, e2, . . . , en], hence the
name for the latter.

(2.17) Proposition: The inverse of a linear map is again a linear map.

Proof: Let A ∈ L(X,Y ) be invertible and y, z ∈ Y . By additivity of A, A(A−1y + A−1z) =
A(A−1y) +A(A−1z) = y + z. Hence, applying A−1 to both sides, we get A−1y + A−1z = A−1(y + z), thus
A−1 is additive. Also, from A(αA−1y) = αA(A−1y) = αy, we conclude that αA−1y = A−1(αy), hence A−1

is homogeneous.

Thus, if A ∈ IFn×n is invertible (as a linear map from IFn to IFn), then also its inverse is a linear map
(from IFn to IFn), hence a square matrix of order n. We call it the inverse matrix for A, and denote it by
A−1. Being the inverse for A, it is both a right and a left inverse for A, i.e., it satisfies

A−1A = idn = AA−1.

More generally, we would call A ∈ IFm×n invertible if there were B ∈ IFn×m so that

AB = idm and BA = idn.
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However, we will soon prove (cf. (3.17)) that this can only happen when m = n.

We will also soon prove (cf. (3.16)Theorem below) the pigeonhole principle for square matrices, i.e.,
that a linear map from IFn to IFn is 1-1 if and only if it is onto. In other words, if A,B ∈ IFn×n and, e.g.,
AB = idn, hence A is onto, then A must also be 1-1, hence invertible, and therefore its right inverse must
be its inverse, therefore we must also have BA = idn. In short:

(2.18) Amazing Fact: If A,B ∈ IFn×n and AB = idn, then also BA = idn.

To me, this continues to be one of the most remarkable results in basic Linear Algebra. Its proof
uses nothing more than the identification of matrices with linear maps (between coordinate spaces) and the
numerical process called elimination, for solving a homogeneous linear system A? = 0, i.e., for constructing
nullA.

In preparation, and as an exercise in invertible matrices, we verify the following useful fact about
elementary matrices.

(2.19) Proposition: For x, y ∈ IFn and α ∈ IF, the elementary matrix

Ey,z(α) = idn + αyzt

is invertible if and only if 1 + αzty 6= 0, and, in that case

(2.20) Ey,z(α)−1 = Ey,z(
−α

1 + αzty
).

Proof: We compute Ey,z(α)Ey,z(β) for arbitrary α and β. Since

αyzt βyzt = αβ (zty) yzt,

we conclude that

Ey,z(α)Ey,z(β) = ( idn + αyzt)( idn + βyzt) = idn + (α+ β + αβ(zty))yzt.

In particular, since the factor (α+ β + αβ(zty)) is symmetric in α and β, we conclude that

Ey,z(α)Ey,z(β) = Ey,z(β)Ey,z(α).

Further, if 1 + αzty 6= 0, then the choice

β =
−α

1 + αzty

will give α + β + αβ(zty) = 0, hence Ey,z(β)Ey,z(α) = Ey,z(α)Ey,z(β) = idn. This proves that Ey,z(α) is
invertible, with its inverse given by (2.20).

Conversely, assume that 1 + αzty = 0. Then y 6= 0, yet

Ey,z(α)y = y + α(zty)y = 0,

showing that Ey,z(α) is not 1-1 in this case, hence not invertible.
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2.18 Prove: If two matrices commute (i.e., AB = BA), then they are square matrices, of the same order.

2.19 Give a noninvertible 2-by-2 matrix without any zero entries.

2.20 Prove that the matrix A :=

[
1 2
4 −1

]
satisfies the equation A2 = 9 id2. Use this to show that A is invertible, and

to write down the matrix A−1.

2.21 Prove: The matrix A :=

[
a b
c d

]
is invertible if and only if ad 6= bc, in which case

[
d −b
−c a

]
/(ad − bc) is its

inverse.

2.22 Consider the map f : C → IR2×2 : z = a + ib 7→
[

a −b
b a

]
. Show that f is a 1-1 linear map when we think of C as

a vector space over the real scalar field.

2.23 Let A, B ∈ L(X). Show that (AB)2 = A2B2 can hold without necessarily having AB = BA. Show also that
(AB)2 = A2B2 implies that AB = BA in case both A and B are invertible.

2.24 Give an example of matrices A and B, for which both AB and BA are defined and for which AB = id, but neither
A nor B is invertible.

2.25 Prove: If A and C are invertible matrices, and B has as many rows as does A and as many columns as does C, then
also [A,B; 0, C] is invertible and

[A, B; 0, C]−1 =

[
A B
0 C

]−1

=

[
A−1 −A−1BC−1

0 C−1

]
.

2.26 A square matrix A is called diagonally dominant if |Aii| >
∑

j 6=i
|Aij | for all i. Prove: a diagonally dominant

matrix is invertible. (Hint: Prove the contrapositive: if 0 6= x ∈ null A, then, for some i, |Aii| ≤
∑

j 6=i
|Aij |.)

2.27 Use (2.19)Proposition to prove the Sherman-Morrison Formula: If A ∈ IFn×n is invertible and y, z ∈ IFn are
such that α := 1 + ztA−1y 6= 0, then A + yzt is invertible, and

(A + yzt)−1 = A−1 − α−1A−1yztA−1.

(Hint: A + yzt = A( id + (A−1y)zt).)

2.28 Prove the Woodbury generalization of the Sherman-Morrison Formula: if A and id + DtAC are invertible, then
so is A + CDt, and

(A + CDt)−1 = A−1 − A−1C( id + DtA−1C)−1DtA−1.

2.29 T/F

(a) If A, B ∈ L(X, Y ) are both invertible, then so is A + B.

(b) If AB = 0 for A, B ∈ IFn×n, then B = 0.

(c) If A and B are matrices with AB = idm and BA = idn, then B = A−1.

(d) If A =

[
B C
0 0

]
with both A and B square matrices and 0 standing for zero matrices of the appropriate size, then

An =

[
Bn Bn−1C
0 0

]
for all n.

(e) If A ∈ IRm×n and AtA = 0, then A = 0.

(f) If the matrix product AB is defined, then (AB)t = AtBt.

(g) If A is an invertible matrix, then so is At, and (At)−1 = (A−1)t.

(h)

[
1 0 0
0 1 1
0 0 1

]
is an elementary matrix.

(i) If Y is a subset of some vector space X, x, y, z are particular elements of X, and x and 2y − 3x are in Y , but 3y − 2x and
y are not, then Y cannot be a linear subspace.
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3. Elimination, or: The determination of nullA and ranA

Elimination and Backsubstitution

Elimination has as its goal an efficient description of the solution set for the homogeneous linear system
A? = 0, i.e., of the nullspace of the matrix A. It is based on the following observation:

(3.1) Lemma: If B is obtained from A by subtracting some multiple of some row of A from some
other row of A, then nullB = nullA.

Proof: Assume, more specifically, that B is obtained from A by subtracting α times row k from
row i, for some k 6= i. Then, by (2.10)Example,

B = Ei,k(−α)A,

with Ei,k(−α) = idm − αeiek
t. Consequently, nullB ⊃ nullA, and this holds even if i = k.

However, since i 6= k, we have ek
tei = 0, hence, for any α, 1 + α(ek

tei) = 1 6= 0. Therefore, by (2.19),
also

Ei,k(α)B = A,

hence also nullB ⊂ nullA.

One solves the homogeneous linear system A? = 0 by elimination. This is an inductive process, and it
results in a classification of the unknowns as free or bound. A bound unknown has associated with it a pivot
row or pivot equation which determines this unknown uniquely once all later unknowns are determined.
Any unknown without a pivot equation is a free unknown; its value can be chosen arbitrarily. We call the
jth column of A bound (free) if the jth unknown is bound (free). The classification proceeds inductively,
from the first to the last unknown or column, i.e., for k = 1, 2, . . ., with the kth step as follows.

At the beginning of the kth elimination step, we have in hand a matrix B, called the working-array,
which is equivalent to our initial matrix A in that nullB = nullA. Further, we have already classified the
first k − 1 unknowns as either bound or free, with each bound unknown associated with a particular row
of B, its pivot row, and this row having a nonzero entry at the position of its associated bound unknown
and zero entries for all previous unknowns. All other rows of B are nonpivot rows; they do not involve the
unknowns already classified, i.e., they have nonzero entries only for unknowns not yet classified. (Note that,
with the choice B := A, this description also fits the situation at the beginning of the first step.) We now
classify the kth unknown or column and, correspondingly, change B, as follows:

bound case: We call the kth unknown or column bound (some would say basic) in case we can find
some nonpivot row B(h, :) for which B(h, k) 6= 0. We pick one such row and call it the pivot row for the
kth unknown. Further, we use it to eliminate the kth unknown from all the remaining nonpivot rows B(i, :)
by the calculation

B(i, :)← B(i, :)− B(i, k)

B(h, k)
B(h, :).

free case: In the contrary case, we call the kth unknown or column free (some would say nonbasic).
No action is required in this case, since none of the nonpivot rows involves the kth unknown.

By (3.1)Lemma, the changes (if any) made in B will not change nullB. This finishes the kth elimination
step.

For future reference, here is a formal description of the entire algorithm. This description relies on a
sequence p to keep track of which row, if any, is used as pivot row for each of the unknowns. If row h is the
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pivot row for the kth unknown, then p(k) = h after the kth elimination step. Since p is initialized to have
all its entries equal to 0, this means that, at any time, the rows k not yet used as pivot rows are exactly
those for which p(k) = 0.

(3.2) Elimination Algorithm:

input: A ∈ IFm×n.
B ← A, p← (0, . . . , 0) ∈ IRn.
for k = 1:n, do:

for some h 6∈ ran p with B(h, k) 6= 0, do:
p(k)← h
for all i 6∈ ran p, do:

B(i, :)← B(i, :)− B(i, k)

B(h, k)
B(h, :)

enddo
enddo

enddo
output: B, p, and, possibly, free← find(p==0), bound← find(p>0).

Note that nothing is done at the kth step if there is no h 6∈ ran p with B(h, k) 6= 0, i.e., if B(h, k) = 0
for all h 6∈ ran p. In particular, p(k) will remain 0 in that case.

A numerical example: We start with

A :=





0 2 0 2 5 4 0 6
0 1 0 1 2 2 0 3
0 2 0 2 5 4 −1 7
0 1 0 1 3 2 −1 4



 , p = (0, 0, 0, 0, 0, 0, 0, 0).

The first unknown is free. We take the second row as pivot row for the second unknown and eliminate
it from the remaining rows, to get

B =





0 0 0 0 1 0 0 0
0 1 0 1 2 2 0 3
0 0 0 0 1 0 −1 1
0 0 0 0 1 0 −1 1



 , p = (0, 2, 0, 0, 0, 0, 0, 0).

Thus the third unknown is free as is the fourth, but the fifth is not, since there are nonzero entries in the
fifth column of some nonpivotal row, e.g., the first row. We choose the first row as pivot row for the fifth
unknown and use it to eliminate this unknown from the remaining nonpivot rows, i.e., from rows 3 and 4.
This gives

B =





0 0 0 0 1 0 0 0
0 1 0 1 2 2 0 3
0 0 0 0 0 0 −1 1
0 0 0 0 0 0 −1 1



 , p = (0, 2, 0, 0, 1, 0, 0, 0).

The sixth unknown is free, but there are nonzero entries in the seventh column of the remaining nonpivot
rows, so the seventh unknown is bound, with, e.g., the fourth row as its pivot row. We use that row to
eliminate the seventh unknown from the remaining nonpivot row. This gives

B =





0 0 0 0 1 0 0 0
0 1 0 1 2 2 0 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1



 , p = (0, 2, 0, 0, 1, 0, 4, 0).

With that, there are no nontrivial nonpivot rows left. In particular, the eighth unknown is free, hence we
have already in hand the final array.

Hence, altogether bound = (2, 5, 7) (= find(p>0)) and free = (1, 3, 4, 6, 8) (= find(p==0)).
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After the n steps of this elimination process (which started with B = A), we have in hand a matrix
B with nullB = nullA and with each unknown classified as bound or free. The two increasing sequences,
bound and free, containing the indices of the bound and free unknowns respectively, will be much used in
the sequel. Each bound unknown has associated with it a particular row of B, its pivot row. All nonpivot
rows of B (if any) are entirely zero.

Neat minds would reorder the rows of B, listing first the pivot rows in order, followed by the nonpivot
rows and, in this way, obtain a row echelon form for A. In any case, in determining x ∈ nullB, we
only have to pay attention to the pivot rows. This means that we can determine a particular element x of
nullB = nullA by backsubstitution, i.e., from its last entry to its first as follows:

For k = n:−1:1, if the kth unknown is bound, i.e., k ∈ bound, determine xk from its pivot equation
(since that equation only involves xk, · · · , xn); else, pick xk arbitrarily (as then the kth unknown is free, i.e.,
k ∈ free).

Here is a more formal description, for future reference.

(3.3) Backsubstitution Algorithm:

input: B ∈ IFm×n and p (both as output from (3.2)), z ∈ IFn.
x← z
for k = n:−1:1, do:

if p(k) 6= 0, then xk ← −
(∑

j>k B(p(k), j)xj

)
/B(p(k), k) endif

enddo
output: x, which is the unique solution of A? = 0 satisfying xi = zi for all i with p(i) = 0.

Notice that the value of every free unknown is arbitrary and that, once these are chosen somehow,
then the bound unknowns are uniquely determined by the requirement that we are seeking an element of
nullB = nullA. In other words, the general element of nullB has exactly as many degrees of freedom as
there are free unknowns. Since there are #free unknowns, nullB is said to be ‘of dimension #free’.

In particular, for any k, the kth entry, xk, of an x ∈ nullB can be nonzero only in one of two ways: (a)
the kth unknown is free, i.e., k ∈ free; (b) the kth unknown is bound, but xj 6= 0 for some j > k. It follows
that xk can be the rightmost nonzero entry of such an x only if the kth unknown is free. Conversely, if the
kth unknown is free, and x is the element of nullB = nullA computed by setting xk = 1 and setting all other
free entries equal to 0, then xk is necessarily the rightmost nonzero entry of x (since all free entries to the
right of it were chosen to be zero, thus preventing any bound entry to the right of it from being nonzero).

This proves

(3.4) Observation: There exists x ∈ nullA with rightmost nonzero entry xk if and only if the kth
unknown is free.

This simple observation gives a characterization of the sequence free entirely in terms of the nullspace of
the matrix A we started with. This implies that the classification into free and bound unknowns or columns
is independent of all the details of the elimination. More than that, since, for any 1-1 matrix M with m
columns, null(MA) = nullA, it implies that, for any such matrix MA, we get exactly the same sequences
free and bound as we would get for A. This is the major reason for the uniqueness of a more disciplined
echelon form, the ‘really reduced row echelon form’, to be discussed in the next section.

Since A(:, k) ∈ ranA(:, [1:k−1]) if and only if there is some x ∈ nullA whose rightmost nonzero entry is
its kth, we have the following reformulation of (3.4)Observation and consequences.
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(3.5) Corollary:

(i) The kth column of A is free if and only if it is a weighted sum of the columns strictly to the left
of it, i.e., A(:, k) ∈ ranA(:, 1:k − 1).

(ii) A(:, 1:k) is 1-1 if and only if all its columns are bound.

(iii) nullA is nontrivial if and only if there are free columns.

Perhaps the most widely used consequence of (iii) here is the following. If there are more unknowns than
equations, then there are not enough equations to go around, i.e., some unknowns must be free, therefore
there are nontrivial solutions to our homogeneous equation A? = 0. We remember this fundamental result
of elimination in the following form:

(3.6) Theorem: Any matrix with more columns than rows has a nontrivial nullspace.

3.1 Determine the bound and free columns for each of the following matrices A.

(a) 0 ∈ IRm×n; (b) [e1, . . . , en] ∈ IRn×n; (c) [e1, 0, e2, 0] ∈ IR6×4; (d)

[
2 2 5 6
1 1 −2 2

]
; (e)

[
0 2 1 4
0 0 2 6
1 0 −3 2

]
; (f) [x][y]t,

with x = (1, 2, 3, 4) = y.

3.2 (3.5)Corollary assures you that y ∈ ran A if and only if the last column of [A,y] is free. Use this fact to determine,
for each of the following y and A, whether or not y ∈ ran A.

(a) y = (π, 1 − π), A =

[
1 −2
−1 2

]
; (b) y = e2, A =

[
1 2 −1
2 3 −4
3 4 −8

]
; (c) y = e2, A =

[
1 2 −1
2 3 −4
3 4 −7

]
.

3.3 Prove (3.1)Lemma directly, i.e., without using (2.19)Proposition. (Hint: Prove that null B ⊃ null A. Then prove that
also A is obtainable from B by the same kind of step, hence also null A ⊃ null B.)

3.4 Prove: If M and A are matrices for which MA is defined and, furthermore, M is 1-1, then MA? = 0 has exactly the
same free and bound unknowns as does A? = 0.

3.5 Assuming the matrix A has exactly α bound columns and the matrix B has exactly β bound columns and both have

the same number of rows, how many bound columns does the matrix [A, B] have (a) at least? (b) at most? (c) How, if at all,

would your answers to (a), (b) change if I told you that A has m rows?

The really reduced row echelon form and other reduced forms

The construction of the really reduced row echelon form takes elimination four steps further, none of
which changes the nullspace:

(i) When the hth pivot row is found, and it is not the hth row, then it is exchanged with the current
hth row to make it the hth row. (This keeps things neat; all the rows not yet used as pivot rows lie below
all the rows already picked as pivot rows.)

(ii) Each pivot row is divided by its pivot element, i.e., by its left-most nonzero entry. (This helps with
the elimination of the corresponding unknown from other rows: if B(h, k) is the pivot element in question
(i.e., bound(h) = k, i.e., xk is the hth bound unknown), then, after this normalization, one merely subtracts
B(i, k) times B(h, :) from B(i, :) to eliminate the kth unknown from row i.)

(iii) One eliminates each bound unknown from all rows (other than its pivot row), i.e., also from pivot
rows belonging to earlier bound unknowns, and not just from the rows not yet used as pivot rows. For real
efficiency, though, this additional step should be carried out after elimination is completed; it starts with
the elimination of the last bound unknown, proceeds to the second-last bound unknown, etc., and ends with
the second bound unknown (the first bound unknown was eliminated from all other rows already).

The resulting matrix B is called the reduced row echelon form for A, and this is written:

B = rref(A).

However, it turns out to be very neat to add the following final step:
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(iv) Remove all rows that are entirely zero, thus getting the matrix

R := B(1:#bound, :) =: rrref(A)

called the really reduced row echelon form of A.

Here is a formal description (in which we talk about the rrref for A even though we prove its uniqueness

only later, in (3.12)):

(3.7) Definition: We say that R is the really reduced row echelon form for A ∈ IFm×n and

write R = rrref(A), in case R ∈ IFr×n for some r and there is a strictly increasing r-sequence bound

(provided by the MATLAB function rref along with rref(A)) so that the following is true:

1. R is a row echelon form for A: This means that (i) nullR = nullA; and (ii) for each
k = bound(i), R(i, :) is the pivot row for the kth unknown, i.e., R(i, :) is the unique row in R for which
R(i, k) is the first (or, leftmost) nonzero entry.

2. R is really reduced or normalized, in the sense that R(:, bound) is the identity matrix, i.e.,
for each i, the pivot element R(i, bound(i)) equals 1 and is the only nonzero entry in its column, and
R has only these r = #bound rows.

A numerical example, continued: For the earlier numerical example, the rref and the rrref would
look like this:

rref(A) =





0 1 0 1 0 2 0 3
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0



 , rrref(A) =




0 1 0 1 0 2 0 3
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 −1



 .

Recall (or observe directly) that, for this example, bound = (2, 5, 7) and free = (1, 3, 4, 6, 8).

Finally, for most purposes, it is sufficient to have a b-form for A, i.e., a matrix R that satisfies the
following two conditions:

(3.8)(i) nullR = nullA;

(3.8)(ii) R(:, b) = id for some sequence b.

Certainly, in these terms, the rrref(A) is a bound-form for A, but a matrix A may have a b-form for many
different b and, as we shall see, only the two conditions (3.8)(i-ii) really matter. Moreover, we have, in effect,
a b-form for A in hand well before we get to rrref(A). For, there is no need to reorder the rows of the working
array; we merely eliminate each bound unknown from all rows but its pivot row, being sure to divide each
pivot row by its pivot element, drop any non-pivot rows, and then have in hand the b-form for A, with b the
inverse of p(p>0).

3.6 For each of the matrices A in H.P. 3.1 , determine its rrref.

A complete description for nullA obtained from a b-form

If R is a b-form for A, then it is easy to determine all solutions of the homogeneous linear system A? = 0,
i.e., all the elements of nullA.

In recognition of the special case R = rrref(A), I’ll use f for a sequence complementary to b in the
sense that it contains all the indices in n but not in b.

In MATLAB, one would obtain f from n and b by the commands f = 1:n; f(b) = [];
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We now obtain from any b-form R for A a 1-1 matrix C with the property that nullA = ranC, thus
getting a description both as a range and as a nullspace. Since such a C is 1-1 onto nullA, this implies that
every x ∈ nullA can be written in exactly one way in the form x = Ca. We will soon agree to call such a C
a ‘basis’ for the vector space nullA.

In the discussion, we use the following notation introduced earlier: If x is an n-vector and p is a list of
length r with range in n, then xp is the r-vector

xp = (xp(i) : i = 1:r).

With this, by property (3.8)(i),

x ∈ nullA ⇐⇒ 0 = Rx =
∑

j

R(:, j)xj = R(:, b)xb + R(:, f)xf .

Since R(:, b) = id by property (3.8)(ii), we conclude that

x ∈ nullA ⇐⇒ xb = −R(:, f)xf.

We can write this even more succinctly in matrix form as follows:

nullA = ranC,

with C the (n×#f)-matrix whose ‘f-rows’ form an identity matrix, and whose ‘b-rows’ are formed by the
‘f-columns’ of −R:

(3.9) C(f, :) = id, C(b, :) = −R(:, f).

E.g., for the earlier numerical example and with R = rrref(A),

C =





1 0 0 0 0
0 0 −1 −2 −3
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1





=





1 0 0 0 0
0 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

0 0 0 1 0
0 0 0 0 0

0 0 0 0 1





+





0 0 0 0 0

−0 −0 −1 −2 −3
0 0 0 0 0

0 0 0 0 0

−0 −0 −0 −0 −0
0 0 0 0 0

−0 −0 −0 −0 1
0 0 0 0 0





.

Note that C is 1-1, since x := Ca = 0 implies that 0 = xf = C(f, :)a = a. Therefore, C is (or, the columns
of C form) a ‘basis’ for nullA, in the sense that C is a 1-1 onto column map to nullA.

Finally, when R = rrref(A), then the resulting C is ‘upper triangular’ in the sense that then

(3.10) i > free(j) =⇒ C(i, j) = 0.

3.7 Determine a ‘basis’ for the nullspace of A :=

[
1 1
2 2

]
and use it to describe the solution set of the system A? = (1, 2).

Draw a picture indicating both the solution set and null A.

3.8 For each of the matrices A in H.P. 3.1 , give a ‘basis’ for null A.
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38 3. Elimination, or: The determination of nullA and ranA

The factorization A = A(:, bound)rrref(A)

Continuing with our b-form R for A, we claim that

A(:, b)R = A.

For the proof, we compare A(:, b)R =: M and A column by column. First, M(:, b) = A(:, b)R(:, b) = A(:, b),
by property (3.8)(ii). As to M(:, f) = A(:, b)R(:, f), we observe that, for any c (of length #f), the vector x
with

xb := R(:, f)c, xf := −c,

is in nullR = nullA, hence

0 = Ax = A(:, b)xb +A(:, f)xf = A(:, b)R(:, f)c+A(:, f)(−c).

In other words,

M(: f)c = A(:, b)R(:, f)c = A(:, f)c, ∀c ∈ IF#f,

showing that also M(:, f) = A(:, f). This proves our claim that A(:, b)R = A, hence, in particular,

(3.11) A = A(:, bound) rrref(A).

3.9 Prove: If M is such that MA = rrref(A) =: R, and bound is the increasing sequence of indices of bound columns of
A, then M is a left inverse for A(:, bound).

A ‘basis’ for ranA

Here is a first consequence of the factorization A = A(:, b)R (with R satisfying (3.8)(i–ii)): The factor-
ization implies that ranA ⊂ ranA(:, b), while certainly ranA(:, b) ⊂ ranA. Hence

ranA = ranA(:, b).

Also, A(:, b) is 1-1: For, if A(:, b)a = 0, then the n-vector x with xb = a and with xf = 0 is in nullA = nullR,
hence a = xb = −R(:, f)xf = −R(:, f)0 = 0. Consequently, A(:, b) is (or, the columns of A(:, b) form) a
‘basis’ for ranA.

3.10 For each of the matrices A in H.P. 3.1 , give a ‘basis’ for ran A.

3.11 Let A be the n × n matrix [0, e1, . . . , en−1] (with ej denoting the jth unit vector, of the appropriate length). (a)
What is its rref? (b) In the equation A? = 0, which unknowns are bound, which are free? (c) Give a ‘basis’ for null A and a
‘basis’ for ran A.

3.12 Let M be the 6× 3-matrix [e3, e2, e1]. (a) What is its rref? (b) Use (a) to prove that M is 1-1. (c) Construct a left
inverse for M . (d) (off the wall:) Give a matrix P for which null P = ran M .

3.13 Let N := M t, with M the matrix in the previous problem. (a) What is its rref? (b) Use (a) to prove that N is onto.
(c) Construct a right inverse for N .

3.14 Use the rref to prove that ran U = ranV , with

U :=

[
1 2 3
2 4 6
−1 1 3

]
, V :=

[
1 2
2 4
−4 −5

]
.

(Hints: Proving two sets to be equal usually involves showing that each is a subset of the other. In this case, applying elimination

to [V, U ] as well as to [U, V ] should provide all the information you need.)
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Uniqueness of the rrref(A)

If R is a b-form for A, then, as we just proved, A = A(:, b)R and A(:, b) is 1-1. Hence, if also S is a
b-form for A, then we have A(:, b)R = A = A(:, b)S and, since A(:, b) is 1-1, this implies that R = S. In
other words, the matrix R is uniquely determined by the condition that A(:, b)R = A. In particular, rrref(A)
is uniquely determined, since we already observed that, by (3.4), the sequence bound only depends on nullA.

Further, since rref(A) differs from rrref(A) only by those additional m −#bound zero rows, it follows
that each A also has a unique rref.

This finishes the proof of the following summarizing theorem.

(3.12) Theorem: For given A ∈ IFm×n, there is exactly one matrix R having the properties 1. and 2.
(listed in (3.7)) of a rrref for A. Further, with bound and free the indices of bound and free unknowns,
A(:, bound) is 1-1 onto ranA, and C ∈ IFn×#free, given by C(free, :) = id, C(bound, :) = −R(:, free),
is 1-1 onto nullA, and C is ‘upper triangular’ in the sense that C(i, j) = 0 for i > free(j).

The rrref(A) and the solving of A? = y

(3.5)Corollary(i) is exactly what we need when considering the linear system

(3.13) A? = y

for given A ∈ IFm×n and given y ∈ IFm. For, here we are hoping to write y as a linear combination of the
columns of A, and (3.5) tells us that this is possible exactly when the last unknown in the homogeneous

system

(3.14) [A, y]? = 0

is free. Further, the factorization (3.11), applied to the augmented matrix [A, y], tells us how to write y
as a linear combination of the columns of A in case that can be done. For, with R = rrref([A, y]), it tells us
that

y = [A, y](:, bound)R(:, n+ 1),

and this gives us y in terms of the columns of A precisely when n + 1 6∈ bound, i.e., when the (n + 1)st
unknown is free.

(3.15) Proposition: For A ∈ IFm×n and y ∈ IFm, the equation

A? = y

has a solution if and only if the last column of [A, y] is free, in which case the last column of rrref([A, y])
provides the unique solution to

A(:, bound)? = y.

More generally, if R = rrref([A,B]) for some arbitrary matrix B ∈ IFm×s and all the unknowns corre-
sponding to columns of B are free, then, by (3.11), applied to [A,B] rather than A, we have

B = A(:, bound)R(:, n+ (1:s)).

3.15 Prove that rrref( idn) = idn.
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A numerical example, continued: Recall our earlier example in which we used elimination to
convert a given matrix to its rrref, as follows:





0 2 0 2 5 4 0 6
0 1 0 1 2 2 0 3
0 2 0 2 5 4 −1 7
0 1 0 1 3 2 −1 4



 →





0 0 0 0 1 0 0 0
0 1 0 1 2 2 0 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1



 →




0 1 0 1 0 2 0 3
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 −1



 ,

hence bound = (2, 5, 7), free = (1, 3, 4, 6, 8). Now, the elimination algorithm is entirely unaware of how we
got the initial matrix. In particular, we are free to interpret in various ways the array on the left as being
of the form [A,B]. As soon as we specify the number of columns, in A or B, we know A and B exactly.

First, choose B to be a one-column matrix. Then, since the last unknown is free, we conclude that

(6, 3, 7, 4) = A(:, bound)R(:, 8) =





2 5 0
1 2 0
2 5 −1
1 3 −1



 (3, 0,−1).

If we choose B to be a three-column matrix instead, then the linear system A? = B is unsolvable since
now one of the columns of B (the second one) corresponds to a bound unknown. What about the other two
columns of this B? The first one corresponds to a free unknown, hence is a weighted sum of the columns to
the left of it, hence is in ranA. But the last one fails to be in ranA since its unknown is free only because
of the presence of the seventh column, and this seventh column is not a weighted sum of the columns to
the left of it, hence neither is the eighth column. Indeed, the corresponding column of R has its last entry
nonzero, showing that A(:, bound(3)) is needed to write the last column of A as a weighted sum of columns
to the left of it.

3.16 Use elimination to show that

[
2 −1 0
1 2 1
0 2 −1

]
is 1-1 and onto.

3.17 Use elimination to settle the following assertions, concerning the linear system A? = y, with the (square) matrix A
and the right side y given by

[A, y] :=

[
1 −2 3 1
2 k 6 6
−1 3 k − 3 0

]
.

(a) If k = 0, then the system has an infinite number of solutions. (b) For another specific value of k, which you must find, the
system has no solutions. (c) For all other values of k, the system has a unique solution.

(To be sure, there probably is some preliminary work to do, after which it is straightforward to answer all three questions.)

3.18 Here are three questions that can be settled without doing any arithmetic. Please do so.

(i) Can both of the following equalities be right?

[
−5 2
3 −1

] [
1 2
3 5

]
= id2 =

[
1 2
3 5

] [
−4 2
3 5

]

(ii) How does one find the coordinates of e1 ∈ IR2 with respect to the vector sequence (1, 3), (2, 5) (i.e., numbers α, β for
which e1 = (1, 3)α + (2, 5)β), given that

AV :=

[
−5 2
3 −1

] [
1 2
3 5

]
= id2 ?

(iii) How does one conclude at a glance that the following equation must be wrong?

[−5 2
3 −1
0 1

][
1 2 1
3 5 0

]
= id3 ?
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The pigeonhole principle for square matrices

We are ready for a discussion of our basic problem, namely solving A? = y, in case A ∈ IFm×n, hence
y ∈ IFm. When is A 1-1, onto, invertible? We answer all these questions by applying elimination to the
augmented matrix [A, y].

If A is 1-1, then, by (3.5)Corollary, all its columns must be bound. In particular, there must be enough
rows to bind them, i.e., m ≥ n. Further, if m = n, then, by the time we reach the last column of [A, y],
there is no row left to bind it. Therefore, the last column must be free regardless of the choice of y, hence,
by (3.5)Corollary, y ∈ ranA for every y ∈ IFm = tarA, i.e., A is onto.

If A is onto, then, for i = 1:m, there is bi ∈ IFn so that Abi = ei ∈ IFm. Hence, with B := [b1, . . . , bm] ∈
IFn×m, we have AB = A[b1, . . . , bm] = [Ab1, . . . , Abm] = [e1, . . . , em] = idm. It follows that B is 1-1, hence
B has at least as many rows as columns, i.e., n ≥ m, and A is a left inverse for B. Further, if n = m, then,
by the previous paragraph, B is also onto, hence invertible, hence any left inverse must be its inverse. In
particular A = B−1 and therefore, in particular, A is 1-1.

Note that the argument just given provides the proof of the ‘Amazing Fact’ (2.18), since it concludes
from AB = id (with A, B square) that A must be the inverse of B, and this implies, in particular, that also
BA = id.

But we have proved much more, namely the following basic Theorem.

(3.16) Theorem (pigeonhole principle for square matrices): A square matrix is 1-1 if and only
if it is onto.

In other words, when dealing with a square matrix, 1-1 or onto is already enough to have 1-1 and onto,
i.e., to have invertibility.

We also now know that only square matrices are invertible.

(3.17) Proposition: An invertible matrix is necessarily square. More precisely, if A ∈ IFm×n, then
(i) A 1-1 implies that m ≥ n; and (ii) A onto implies that m ≤ n.

(3.18) Example: Constructing the inverse by elimination If A ∈ IFn×n is invertible, then the
first n columns of [A, idn] are necessarily bound and the remaining n columns are necessarily free. Therefore,
if R := rrref([A, idn]), then R = [ idn, ?] and, with (3.11), necessarily [A, idn] = AR = [A idn, A?], hence
? = A−1, i.e., R = [ idn, A

−1].

practical note: Although MATLAB provides the function inv(A) to generate the inverse of A,
there is usually no reason to compute the inverse of a matrix, nor would you solve the linear system
A? = y in practice by computing rref([A, y]) or by computing inv(A)*y. Rather, in MATLAB you
would compute the solution of A? =y as A\y. For this, MATLAB also uses elimination, but in a more
sophisticated form, to keep rounding error effects as small as possible. In effect, the choice of pivot
rows is more elaborate than we discussed above.
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3.19 For each of the following matrices A, use elimination (to the extent necessary) to (a) determine whether it is invertible
and, if it is, to (b) construct the inverse.

(a)

[
1 2 3
2 3 4

]
; (b)

[
1 2
2 3
3 4

]
; (c)

[
1 2 3
2 3 4
3 4 5

]
; (d)

[
1 2 3
2 3 4
3 4 4

]
; (e)

[
1 1 1
1 2 4
1 3 8

]
; (f) [e1 − e3, e2, e3 + e4, e4] ∈ IR4×4.

3.20 Prove that A is invertible iff rrref(A) = idn.

3.21 One way to solve Laplace’s equation, ∆f := Df
1 + D2

2f = y on some domain G in IR2 with f = g on the boundary,
∂G of G, numerically is to choose a regular grid T = {(ih, jh) : i ∈ I, j ∈ J} of points, with I and J chosen so that (ih, jh) is

either strictly inside G or else is next to one such, and then to try to compute u ∈ IRT so that u(t) = (u(t + (h, 0)) + u(t −
(h, 0)) + u(t + (0, h)) + u(t − (0, h)))/4 for all t strictly inside G, while, for the other points in T , u(t) is determined from the
given boundary values g in a linear manner.

Prove that the resulting linear system Au = b for the ‘vector’ u = (u(t) : t ∈ T ) has exactly one solution. (Hint: if
u(t) = max u(T ) for some t inside G, then, u(t) being the average of its four neighbors, those neighbors must have the same
value.)

3.22 Let L ∈ IRn×n be the lower triangular matrix with all diagonal entries equal to 1 and all the strictly lower triangular

entries equal to −1, and let n > 1. Prove that (L−1)n1 = 2n−2.

(3.19) Example: Triangular matrices There is essentially only one class of square matrices whose
invertibility can be settled by inspection, namely the class of triangular matrices.

Assume that the square matrix A is upper triangular, meaning that i > j =⇒ A(i, j) = 0. If all its
diagonal elements are nonzero, then each of its unknowns has a pivot row, hence is bound and, consequently,
A is 1-1, hence, by (3.16)Theorem, it is invertible. Conversely, if some of its diagonal elements are zero, then
there must be a first zero diagonal entry, say A(i, i) = 0 6= A(k, k) for k < i. Then, for k < i, row k is a
pivot row for xk, hence, when it comes time to decide whether xi is free or bound, all rows not yet used as
pivot rows do not involve xi explicitly, and so xi is free. Consequently, nullA is nontrivial and A fails to be
1-1.

Exactly the same argument can be made in caseA is lower triangular, meaning that i < j =⇒ A(i, j) = 0,
provided you are now willing to carry out the elimination process from right to left, i.e., in the order xn,
xn−1, etc., and, correspondingly, recognize a row as pivot row for xk in case xk is the last unknown that
appears explicitly (i.e., with a nonzero coefficient) in that row.

(3.20) Proposition: A square triangular matrix is invertible if and only if all its diagonal entries are
nonzero.

(3.21) Example: Interpolation If V ∈ L(IFn, X) and Q ∈ L(X, IFn), then QV is a linear map from
IFn to IFn, i.e., a square matrix, of order n. If QV is 1-1 or onto, then (3.16)Theorem tells us that QV is
invertible. In particular, V is 1-1 and Q is onto, and so, for every y ∈ IFn, there exists exactly one p ∈ ranV
for which Qp = y. This is the essence of interpolation.

For example, take X = IRIR, V = [()0, ()1, . . . , ()k−1], hence ranV equals Π<k, the collection of all
polynomials of degree < k. Further, take Q : X → IRk : f 7→ (f(τ1), . . . , f(τk)) for some fixed sequence
τ1 < · · · < τk of points. Then the equation

QV ? = Qf

asks for the (power) coefficients of a polynomial of degree < k that agrees with the function f at the k
distinct points τj .

We investigate whether QV is 1-1 or onto, hence invertible. For this, consider the matrix QW , with the
columns of W := [w1, . . . , wk] the so-called Newton polynomials

wj : t 7→
∏

h<j

(t− τh).
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Observe that (QW )(i, j) = (Qwj)(τi) =
∏

h<j(τi − τh) = 0 if and only if i < j. Therefore, QW is square
and lower triangular with nonzero diagonal entries, hence invertible by (3.20)Proposition, while wj is a
polynomial of exact degree j − 1 < k, hence wj = V cj for some k-vector cj . It follows that the invertible
matrix QW equals

QW = [Qw1, . . . , Qwk] = [QV c1, . . . , QV ck] = (QV )[c1, . . . , ck].

In particular, QV is onto, hence invertible, hence also V is 1-1, therefore invertible as a linear map from IRk

to its range, Π<k. We have proved:

(3.22) Proposition: For every f : IR→ IR and every k distinct points τ1, . . . , τk in IR, there is exactly
one choice of coefficient vector a for which the polynomial [()0, . . . , ()k−1]a of degree < k agrees with
f at these τj .

In particular, (i) the column map [()0, . . . , ()k−1] : IRk → Π<k is invertible, and (ii) any polynomial of
degree < k with more than k− 1 distinct zeros must be 0. (Do not confuse this simple result with the
Fundamental Theorem of Algebra which claims that every nonconstant polynomial with complex
cofficients has a zero.)

3.23 (a) Construct the unique element of ran[()0, ()2, ()4] that agrees with ()1 at the three points 0, 1, 2.

(b) Could (a) have been carried out if the pointset had been -1, 0, 1 (instead of 0, 1, 2)?

3.24 Let τ1 6= τ2. Prove that, for an arbitrary a ∈ IR4, there exists exactly one cubic polynomial p for which

(p(τ1), Dp(τ1), p(τ2), Dp(τ2)) = a.

(Hint: Try W := [()0, (· − τ1), (· − τ1)2, (· − τ1)2(· − τ2)].)

3.25 T/F

(a)

[
1 0 1
0 2 0
0 0 0

]
is in row echelon form.

(b) If all unknowns in the linear system A? = 0 are free, then A = 0;

(c) If all unknowns in the linear system A? = 0 are bound, then A is invertible.

(d) If some unknowns in the linear system A? = 0 are free, then A cannot be invertible.

(e) The inverse of an upper triangular matrix is lower triangular.

(f) A linear system of n equations in n + 1 unknowns always has solutions.

(g) Any square matrix in row echelon form is upper triangular.

(h) If A and B are square matrices of the same order, then AB? = 0 has the same number of bound unknowns as does
BA? = 0.

(i) If A and B are square matrices of the same order, and AB is invertible, then also BA is invertible.

(j) If null A = null B, then A? = 0 and B? = 0 have the same free and bound unknowns.

15jan03 c©2002 Carl de Boor



44 4. The dimension of a vector space

4. The dimension of a vector space

Bases

The only vector spaces in which we can carry out calculations are the coordinate spaces IFn. To calculate
with other vector spaces, we have to relate them first to some coordinate space. This is true even when X
is a proper subspace of IFn, e.g., the nullspace of some matrix.

For example, we do not really compute with polynomials, we usually compute with the coefficients of
the polynomial. Precisely (see (3.22)Proposition), one sets up the invertible linear map

IFn → Π<n : a 7→ a1 + a2t+ a3t
2 + · · ·+ ant

n−1

where I have, temporarily, followed the (ancient and sometimes confusing) custom of describing the mono-

mials by the list of symbols ( , t, t2, t3, . . .) rather than by the nonstandard symbols ()j , j = 0, 1, 2, 3, . . .
introduced earlier. One adds polynomials by adding their coefficients, or evaluates polynomials from their
coefficients, etc. You may be so used to that, that you haven’t even noticed until now that you do not work
with the polynomials themselves, but only with their coefficients.

It is therefore a practically important goal to provide ways of representing the elements of a given
vector space X by n-vectors. We do this by using linear maps from some IFn that have X as their range,
i.e., we look for sequences v1, v2, . . . , vn in X for which the linear map [v1, v2, . . . , vn] : IFn → X is onto. If
there is such a map for some n, then we call X finitely generated.

Among such onto maps V ∈ L(IFn, X), those that are also 1-1, hence invertible, are surely the most
desirable ones since, for such V , there is, for any x ∈ X , exactly one a ∈ IFn with x = V a. Any invertible

column map to X is, by definition, a basis for X .

Since idn ∈ L(IFn) is trivially invertible, it is a basis for IFn. It is called the natural basis for IFn.

The bound part, A(:, bound), of A ∈ IFm×n is a basis for ranA. You also know (from pages 36ff) how
to construct a basis for the nullspace of any A ∈ IFm×n from its rrref(A).

Here is a small difficulty with this (and any other) definition of dimension: What is the dimension of
the trivial space, i.e., the vector space that consists of the zero vector alone? It is a perfectly well-behaved
vector space (though a bit limited, – except as a challenge to textbook authors when it comes to discussing
its basis).

We deal with it here by considering V ∈ L(IFn, X) even when n = 0. Since IFn consists of lists of n
items (each item an element from IF), the peculiar space IF0 must consist of lists of no items, i.e., of empty

lists. There is only one empty list (of scalars), hence IF0 has just one element, the empty list, ( ), and this
element is necessarily the neutral element (or, zero vector) for this space. Correspondingly, there is exactly
one linear map from IF0 into X , namely the map IF0 → X : () = 0 7→ 0. Since this is a linear map from IF0,
we call it the column map into X with no columns, and denote it by [ ]. Thus,

(4.1) [ ] : IF0 → X : () = 0 7→ 0.

Note that [ ] is 1-1. Note also that the range of [ ] consists of the trivial subspace, {0}. In particular, the
column map [ ] is onto {0}, hence is invertible, as map from IF0 to {0}. It follows that [ ] is a basis for {0}.
Isn’t Mathematics wonderful! - As it turns out, the column map [ ] will also be very helpful below.

Here are some standard terms related to bases of a vector space:

Definition: The range of V := [v1, v2, . . . , vn] is called the span of the sequence v1, v2, . . . , vn:

span(v1, v2, . . . , vn) := ranV.

x ∈ X is said to be linearly dependent on v1, v2, . . . , vn in case x ∈ ranV , i.e., in case x is a linear
combination of the vj . Otherwise x is said to be linearly independent of v1, v2, . . . , vn.
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v1, v2, . . . , vn is said to be linearly independent in case V is 1-1, i.e., in case V a = 0 implies a = 0
(i.e., the only way to write the zero vector as a linear combination of the vj is to choose all the weights
equal to 0).

v1, v2, . . . , vn is said to be spanning for X in case V is onto, i.e., in case span(v1, v2, . . . , vn) = X .

v1, v2, . . . , vn is said to be a basis for X in case V is invertible, i.e., 1-1 and onto.

If V is invertible, then V −1x is an n-vector, called the coordinate vector for x with respect
to the basis v1, v2, . . . , vn.

You may wonder why there are all these terms in use for the sequence v1, v2, . . . , vn, particularly when
the corresponding terms for the map V are so much shorter and to the point. I don’t know the answer.
However, bear in mind that the terms commonly used are those for sequences. An even greater puzzle is the
fact that many textbooks present bases as sets rather than sequences. At least, that is what they say. But,
not surprisingly, whenever there is some action involving a basis, the basis is written {v1, . . . , vn}, i.e., as a
sequence in everything but in name. It is for you to ask such authors whether {3, 3} is a basis for IR1 = IR.
They will say that it is not even though it is since, after all, 3 = 3, hence {3, 3} = {3}.

A major use of the basis concept is the following which generalizes the way we earlier constructed
arbitrary linear maps from IFn.

(4.2) Proposition: Let V = [v1, v2, . . . , vn] be a basis for the vector space X , and let Y be an
arbitrary vector space. Any map f : {v1, . . . , vn} → Y has exactly one extension to a linear map A
from X to Y . In other words, we can choose the values of a linear map on the columns of a basis
arbitrarily and, once chosen, this pins down the linear map everywhere.

Proof: The map A := [f(v1), . . . , f(vn)]V −1 is linear, from X to Y , and carries vj to f(vj) since
V −1vj = ej , all j. This shows existence. Further, if also B ∈ L(X,Y ) with Bvj = f(vj), all j, then
BV = [f(v1), . . . , f(vn)] = AV , therefore B = A (since V is invertible).

4.1 Describe what the n × n-matrix A =





0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · ·
0 0 0 · · · 1 0
0 0 0 · · · 0 1
0 0 0 · · · 0 0



 does to all the vectors ej , i.e., give a simple formula

for Aej . Deduce from your formula that ran An = {0}, hence that An = 0.

4.2 Prove: A ∈ L(X) commutes with every B ∈ L(X) if and only if A = α idX , i.e., a scalar multiple of the identity.

4.3 Let X × Y be the product space of the vector spaces X and Y . The map f : X × Y → IF is bilinear if it is linear in
each slot, i.e., if f(·, y) ∈ L(X, IF) for all y ∈ Y , and f(x, ·) ∈ L(Y, IF) for every x ∈ X.

(i) Prove that, for every A ∈ IFm×n, the map fA : IFm × IFn : (x, y) 7→ ytAx is bilinear.

(ii) Prove that, for every bilinear f : IFm × IFn → IF, there exists exactly one A ∈ IFm×n with fA = f .

(iii) Prove that the map A 7→ fA is an invertible linear map on IFm×n to the vector space BL(IFm, IFn) of all bilinear maps
on IFm × IFn under pointwise vector operations.

4.4 MATLAB’s command yy = interp1(x,y,xx,’spline’) returns the value(s) at xx of a certain function f that matches
the data given by x, y, in the sense that f(x(i)) = y(i) for i=1:n, with n the length of both x and y (and assuming that the
entries of x are pairwise distinct). (If you wanted to look at f on the interval [a. .b], you might choose xx = linspace(a,b,N+1);
with N some suitably large number, and then plot(xx,yy).)

(a) Generate some numerical evidence for the claim that (up to roundoff) the map y7→ f provided by this command is linear.

(b) Assuming that the map is linear, deduce from the above description of the map that it must be 1-1, hence a basis for its
range.

(c) Still assuming that the map y 7→ f provided by that command is indeed linear, hence a column map, provide a plot of
each of its columns, as functions on the interval [0 . . 3], for the specific choice 0:3 for x.

(d) (quite open-ended) Determine as much as you can about the elements of the range of this column map.

(e) Is the map still linear if you replace ’spline’ by ’cubic’?
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Construction of a basis

Next, we consider the construction of a basis. This can be done either by extending a 1-1 column map

V to a basis, or by thinning an onto column map W to a basis. For this, remember that, for two column
maps V and W into some vector space X , we agreed to mean by V ⊂ W that V can be obtained from W
by thinning, i.e., by omitting zero or more columns from W , and W can be obtained from V by extending,
i.e., by inserting zero or more columns.

In the discussion to follow, it is convenient to classify the columns of a column map as bound or free,
using (3.5)Corollary as a guide. Specifically, we call a column free if it is a weighted sum of the columns to
its left; otherwise, we call it bound.

For example, if V ⊂W , then any free column of V is also free as a column of W , while a bound column
of V may possibly be free as a column of W unless W = [V, U ].

(4.3) Lemma: The kth column of the column map V is free if and only if nullV contains a vector
whose last nonzero entry is its kth.

Proof: The kth column of V = [v1, . . . , vn] ∈ L(IFn, X) is free iff vk ∈ ran[v1, . . . , vk−1]. In partic-
ular, the first column is free iff it is 0 (recall that ran [ ] = {0}).

If the kth column is free, then vk = [v1, . . . , vk−1]a for some a ∈ IFk−1, hence (a,−1, 0, . . . , 0) ∈ IFn is a
vector in nullV whose last nonzero entry is its kth. Conversely if x ∈ nullV with xk 6= 0 = xk+1 = · · · = xn,
then [v1, . . . , vk−1]x1:k−1 + vkxk = 0, therefore, as xk 6= 0, vk = [v1, . . . , vk−1](x1:k−1/(−xk)) showing that
the kth column is free.

(4.4) Corollary: A column map is 1-1 if and only if all of its columns are bound.

We are ready for the following algorithm which extracts from any column map W a basis for its range.

(4.5) Basis Selection Algorithm:
input: the column map W
V ← [ ];
for w ∈ W do:

if w 6∈ ranV , then V ← [V,w]; endif
enddo
output: the column map V

Proposition: The output of the Basis Selection Algorithm is a basis for the range of its input.

Proof: The resulting V has the same range as W (since the only columns of W not explicitly
columns of V are those that are already in the range of V ). In addition, by construction, every column of V
is bound, hence V is 1-1 by (4.4)Corollary, therefore a basis for its range.
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(4.6) Proposition: Any onto column map can be thinned to a basis.

Now note that the Basis Selection Algorithm will put any bound column of W into the resulting basis,
V . In particular, if W = [U,Z] with U 1-1, then, as already remarked just prior to (4.3)Lemma, all columns
of U will be bound also as columns of W , hence will end up in the resulting basis. This proves

(4.7) Proposition: Any 1-1 column map into a finitely generated vector space can be extended to a
basis for that space.

If V is a 1-1 column map into X then, by (4.4)Corollary, all its columns are bound. Hence if V is
maximally 1-1 into X , meaning that [V,w] fails to be 1-1 for every w ∈ X , then that additional column
must be free, i.e., w ∈ ranV for all w ∈ X , showing that then V is also onto, hence a basis. This proves

(4.8) Corollary: Any maximally 1-1 column map into a vector space is a basis for that space.

If W is a column map onto X , then, by (4.6), it can always be thinned to a basis. Hence, if W is
minimally onto, meaning that no V ⊂W (other than W ) is onto, then W itself must be that basis.

(4.9) Corollary: Any minimally onto column map into a vector space is a basis for that space.

4.5 How would you carry out the (4.5) Basis Selection Algorithm for the special case that W is a matrix? (Hint: (3.2)).

4.6 Try out your answer to the previous problem on the specific matrix W =

[
0 2 0 2 5 4 0 6
0 1 0 1 2 2 0 3
0 2 0 2 5 4 −1 7

]
.

Dimension

(4.10) Lemma: Any two bases for a vector space have the same number of columns.

This number of columns in any basis for X is denoted

dimX

and is called the dimension of X .

Proof: Let V ∈ L(IFn, X) and W ∈ L(IFm, X) be bases for X . Then, W−1V is an invertible linear
map from IFn to IFm, hence an invertible matrix and therefore, by (3.17)Proposition(i), necessarily a square
matrix, i.e., n = m.
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See H.P. 4.10 for the classical proof of this lemma.

Notice that we have actually proved the stronger statement

(4.11) Lemma: If V and W are column maps into X , and V is 1-1 and W is onto, then #V ≤ #W .

Again, also this stronger result is an immediate consequence of something proved in the previous chapter:
Since W is onto, each column vj of V can be written as vj = Wcj for some vector cj. Hence V = WC for
some matrix C and, since V is 1-1, so must C be. By (3.17)Proposition(i) or its antecedent, (3.6)Theorem,
this implies that C cannot have more columns than rows, i.e., #V = #C ≤ dim tarC = dim domW = #W .

Since idn is a basis for IFn and has n columns, we conclude that the n-dimensional coordinate space
has, indeed, dimension n. In effect, IFn is the prototypical vector space of dimension n. Any n-dimensional
vector space X is connected to IFn by invertible linear maps, the bases for X .

Note that the trivial vector space, {0}, has dimension 0 since its (unique) basis has no columns.

(4.12) Example: The dimension of Πk(IRd). The space Πk(IRd) of d-variate polynomials of
degree ≤ k is, by definition, the range of the column map V := [()α : |α| ≤ k], with

()α : IRd → IR : t 7→ tα := tα1

1 · · · tαd

d

a nonstandard notation for the α-power function, with α ∈ ZZd
+, i.e., α any d-vector with nonnegative integer

entries, and with |α| :=
∑

j αj . For d = 1, it is the space of univariate polynomials of degree ≤ k, and we
showed its dimension to be k + 1 by showing that, in that case, V is 1-1.

When d = 1, then V can be seen to be 1-1 also by considering the ‘data map’

Q : Πk → IRk+1 : p 7→ (p(0), Dp(0), D2p(0)/2, . . . , Dkp(0)/k!),

for which we have QV = id, hence V is 1-1.

An analogous argument, involving the ‘data map’

p 7→ (Dαp(0)/α! : α ∈ ZZd
+, |α| ≤ k),

with α! := α1! · · ·αd!, shows that

dim Πk(IRd) = #{α ∈ ZZd
+ : |α| ≤ k},

and the latter number can be shown to equal
(
k+d

d

)
.

4.7 Prove that the space Π2(IR2) of bivariate polynomials of total degree ≤ 2 has dimension 6.

4.8 Prove that a vector space of dimension n has subspaces of dimension j for each j = 0:n.

4.9 Prove (by induction on n) Steinitz Exchange: If V ∈ L(IFn, X) is 1-1 and W ∈ L(IFm, X) is onto, then, for some
U ⊂ W with #U = #W − #V , also [V, U ] is onto.

4.10 Use the previous homework to prove (4.11)Lemma.

Some uses of the dimension concept

Here is a major use of the dimension concept as it relates to vector spaces .

(4.13) Proposition: If X , Y are vector spaces with X ⊂ Y and dimY < ∞, then dimX ≤ dimY ,
with equality iff X = Y .

Proof: Since there is some 1-1 column map into X (e.g., the unique linear map from IF0 into
X), while dimY is an upper bound on the number of columns in any 1-1 column map into X ⊂ Y (by
(4.7)Proposition), there exists a maximally 1-1 column map V into X . By (4.8)Corollary, any such V is
necessarily a basis for X , hence X is finitely generated. By (4.7)Proposition, we can extend V to a basis
[V,W ] for Y . Hence, dimX ≤ dim Y with equality iff W = [ ], i.e., iff X = Y .
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Note the following important (nontrivial) part of (4.13)Proposition:

(4.14) Corollary: Any linear subspace of a finite-dimensional vector space is finite-dimensional.

The dimension concept is usually applied to linear maps by way of the following formula.

(4.15) Dimension Formula: For any linear map A with finite-dimensional domain,

dim domA = dim ranA+ dim nullA.

Proof: Since domA is finite-dimensional, so is nullA (by (4.14)Corollary), hence nullA has a basis,
V ∈ L(IFn, nullA) say. By (4.7)Proposition, we can extend this to a basis [V, U ] for domA. Let r := #U .
Then, [V, U ] is invertible and dim domA− dim nullA = (n+ r) − n = r.

It remains to prove that dim ranA = r. For this, we prove that AU : IFr → ranA is invertible.

Since A[V, U ] = [AV,AU ] maps onto ranA and AV = 0, already AU must map onto ranA, i.e., AU is
onto.

Moreover, AU is 1-1: For, if AUa = 0, then Ua ∈ nullA, hence, since V maps onto nullA, there is some
b so that Ua = V b. This implies that [V, U ](b,−a) = 0 and, since [V, U ] is 1-1, this shows that, in particular,
a = 0.

4.11 Prove: If the product AB of the two linear maps A and B is defined, then dim ran(AB) ≤ min{dim ranA, dim ran B}.
4.12 Prove: If the product AB of the two linear maps A and B is defined, then dim ran(AB) = dim ran B − dim(null A∩

ran B).

4.13 Give an example, of two square matrices A and B, that show that dim ran(AB) need not equal dim ran(BA) when

both AB and BA are defined.

(4.16) Corollary: Let A ∈ L(X,Y ).
(i) If dimX < dimY , then A cannot be onto.
(ii) If dimX > dimY , then A cannot be 1-1.
(iii) If dimX = dimY <∞, then A is onto if and only if A is 1-1. (This implies (2.18)!)

Proof: (i) dim ranA ≤ dim domA = dimX < dimY = dim tarA, hence ranA 6= tarA.

(ii) dim nullA = dim domA−dim ranA = dimX−dim ranA ≥ dimX−dimY > 0, hence nullA 6= {0}.
(iii) If dimX = dimY , then dim tarA = dim domA = dim ranA + dim nullA, hence A is onto (i.e.,

tarA = ranA) if and only if dim nullA = 0, i.e., A is 1-1.

(4.17) Lemma: Let X , Y be vector spaces, and assume that X is finite-dimensional. Then dimX =
dim Y if and only if there exists an invertible A ∈ L(X,Y ).

Proof: Let n := dimX . Since n <∞, there exists an invertible V ∈ L(IFn, X) (, a basis for X). If
now A ∈ L(X,Y ) is invertible, then AV is an invertible linear map from IFn to Y , hence dim Y = n = dimX .
Conversely, if dimY = dimX , then there exists an invertible W ∈ L(IFn, Y ); but then WV −1 is an invertible
linear map from X to Y .
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For the next general result concerning the dimension concept, recall that both the sum

Y + Z := {y + z : y ∈ Y, z ∈ Z}

and the intersection Y ∩ Z of two linear subspaces is again a linear subspace.

(4.18) Proposition: If Y and Z are linear subspaces of the finite-dimensional vector space X , then

(4.19) dim(Y + Z) = dimY + dimZ − dim(Y ∩ Z).

Proof 1: Y ∩ Z is a linear subspace of X , hence is finite-dimensional (by (4.14)Corollary), hence
Y ∩ Z has a basis, V say. Extend it, as we may (by (4.7)Proposition), to a basis [U, V ] of Y and to a basis
[V,W ] of Z, and consider the column map [U, V,W ].

We claim that [U, V,W ] is 1-1. Indeed, if [U, V,W ](a, b, c) = 0, then [U, V ](a, b) = −Wc, with the left
side in Y and the right side in Z, hence both are in Y ∩Z = ranV . Therefore, −Wc = V d for some d, hence
[V,W ](d, c) = 0, and as [V,W ] is 1-1, it follows, in particular, that c = 0. This leaves [U, V ](a, b) = 0 and,
since [U, V ] is 1-1 by construction, now also (a, b) = 0.

We conclude that [U, V,W ] is a basis for its range, and that range is ran[U, V,W ] = ran[U, V, V,W ] =
ran[U, V ] + ran[V,W ] = Y + Z. Therefore, dim(Y + Z) = #U + #V + #W = #[U, V ] + #[V,W ] −#V =
dimY + dimZ − dim(Y ∩ Z).

Proof 2: The following alternative proof shows (4.19) to be a special case of the (4.15)Dimension
Formula, and provides a way to construct a basis for Y ∩ Z from bases for Y and Z.

Consider the column map A := [U,W ] with U a basis for Y and W a basis for Z. Since dim domA =
#U + #W = dimY + dimZ and ranA = Y + Z, the formula (4.19) follows from the (4.15)Dimension
Formula, once we show that dim nullA = dimY ∩ Z. For this, let x ∈ Y ∩ Z. Then x = Ua = Wb for
some a and b, therefore A(a,−b) = [U,W ](a,−b) = Ua −Wb = x − x = 0, hence (a,−b) ∈ nullA. Hence,
(a,−b) = Cc for some c and with C =: [CU ;CW ] a basis for nullA. In particular, a = CU c, showing that
the column map UCU has all of Y ∩ Z in its range. On the other hand, 0 = AC = UCU + WCW , hence
UCU = −WCW and, in particular, UCU maps into Y ∩ Z, hence onto Y ∩ Z. Finally, UCU is 1-1: for,
if UCUa = 0, then CUa = 0 since U is 1-1, but then also WCWa = −UCUa = 0, hence also CW a = 0,
therefore Ca = 0 and so a = 0 since C is 1-1 by assumption. Altogether, this shows that UCU is a basis for
Y ∩ Z, hence dimY ∩ Z = #UCU = #C = dim nullA.

Here are three of several corollaries of this basic proposition to be used in the sequel.

(4.20) Corollary: If [V,W ] is 1-1, then ranV ∩ ranW is trivial.

(4.21) Corollary: If dimY + dimZ > dimX for some linear subspaces Y and Z of the finite-
dimensional vector space X , then Y ∩ Z is a nontrivial linear subspace, i.e., Y ∩ Z contains nonzero
elements.
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(4.22) Corollary: If Y and Z are linear subspaces of the finite-dimensional vector space X , and
Y ∩ Z = {0}, then

dimY + dimZ ≤ dimX,

with equality if and only if X = Y + Z, in which case dimZ = dimX − dimY =: codimY is called
the codimension of Y (in X).

4.14 Prove: if AB is defined, then dim ran(AB) ≤ min{dim ran A,dim ranB}. (Hint: ran(AB) = A(ran B).)

4.15 Make use of the dimension concept to shorten the solution of H.P. 3.14 .

4.16 For each of the following linear maps, determine its range and its nullspace. Make as much use of the Dimension
Formula as possible. (You may, if need be, use the fact that, by (3.22)Proposition, Vk := [()0, ()1, . . . , ()k ] is a basis for Πk.)

(a) D : Πk → Πk−1 : p 7→ Dp, with Dp the first derivative of p. (b) I : Πk−1 → Πk : p 7→
∫ ·

0
p(s)ds, i.e., Ip is the primitive or

antiderivative of p that vanishes at 0, i.e., (Ip)(t) =
∫ t

0
p(s)ds. (c) A : Πk → Πk : p 7→ Dp + p.

4.17 Prove that V := [()0, ()1, ()2 − 1, 4()3 − 3()1, 8()4 − 8()2 + 1] is a basis for Π4.

4.18 Prove: For any finite-dimensional linear subspace Y of the domain of a linear map A, dimA(Y ) ≤ dimY .

4.19 Prove: If V and W are 1-1 column maps into the vector space X, then ran V and ran W have a nontrivial intersection
if and only if [V, W ] is not 1-1.

4.20 Use the preceding homework and elimination to determine for each of the matrices given whether ranA and null A

have nontrivial intersection: (a) A :=

[
1 2
2 4

]
; (b) A :=

[
−2 −1
4 2

]
.

4.21 Call (Y0, . . . , Yr) a proper chain in the vector space X if each Yj is a subspace and Y0 ⊆
′

Y1 ⊆
′
· · · ⊆

′
Yr. Prove

that, for any such proper chain, r ≤ dimX, with equality if and only if dim Yj = j, j = 0: dimX.

4.22 Let d be any scalar-valued map, defined on the collection of all linear subspaces of a finite-dimensional vector space X,
that satisfies the following two conditions: (i) Y ∩Z = {0} =⇒ d(Y + Z) = d(Y )+ d(Z); (ii) dimY = 1 =⇒ d(Y ) = 1.

Prove that d(Y ) = dimY for every linear subspace Y of X.

4.23 Prove: for any A ∈ L(X, Y ) and any linear subspace Z of X, dimA(Z) = dim Z − dim(Z ∩ (null A)).

4.24 The defect of a linear map is the dimension of its nullspace: defect(A) := dimnull A. (a) Prove that defect(B) ≤
defect(AB) ≤ defect(A) + defect(B). (b) Prove: If dimdom B = dimdom A, then also defect(A) ≤ defect(AB). (c) Give an
example of linear maps A and B for which AB is defined and for which defect(A) > defect(AB).

4.25 Let A ∈ L(X, Y ), B ∈ L(X, Z), with Y finite-dimensional. There exists C ∈ L(Y, Z) with A = CB if and only if
null B ⊂ null A.

4.26 Prove: Assuming that the product ABC of three linear maps is defined, dim ran(AB)+dim ran(BC) ≤ dim ran B +
dim ran(ABC).

4.27 Factor space: Let Y be a linear subspace of the vector space X and consider the collection

X/Y := {x + Y : x ∈ X}

of subsets of X, with

x + Y := {x} + Y = {x + y : y ∈ Y }.

(i) Prove that the map

f : X → X/Y : x 7→ x + Y

is linear with respect to the addition

M + N := {m + n : m ∈ M, n ∈ N}

and the multiplication by a scalar

αM :=

{
{αm : m ∈ M}, if α 6= 0;
Y, if α = 0,

and has Y as its nullspace.

(ii) Prove that, with these vector operations, X/Y is a linear space. (X/Y is called a factor space.)

(iii) Prove that dimX/Y = codim Y .
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The dimension of IFT

Recall from (2.2) that IFT is the set of all scalar-valued maps on the set T , with the set T , offhand,
arbitrary.

The best known instance is n-dimensional coordinate space

IFn := IFn,

with T = n := {1, 2, . . . , n}. The vector space IFm×n of all (m × n)-matrices is another instance; here
T = m× n := {(i, j) : i = 1:m; j = 1:n}.

(4.23) Proposition: If T is a finite set, then dim IFT = #T .

Proof: Since T is finite, #T =: n say, we can order its elements, i.e., there is an invertible map
s : n→ T (in fact, there are n! = 1 · 2 · · ·n such). This induces the map

V : IFn → IFT : f 7→ f ◦ s−1

which is linear (since, in both spaces, the vector operations are pointwise), and is invertible since it has

IFT → IFn : g 7→ g ◦ s

as its inverse. Hence, V is a basis for IFT (the natural basis).

Note how we managed this without even exhibiting the columns of V . To be sure, the jth column V is
the function vj : T → IF : sk 7→ δkj that maps sj to 1 and maps any other t ∈ T to 0.

Corollary: dim IFm×n = mn.

Proof: In this case, IFm×n = IFT with T = m×n := {(i, j) : i = 1:m; j = 1:n}, hence #T = mn.

(4.24) Corollary: dimL(X,Y ) = dimX · dim Y .

Proof: Assuming that n := dimX and m := dimY are finite, we can represent every A ∈ L(X,Y )

as a matrix Â := W−1AV ∈ IFm×n, with V a basis for X and W a basis for Y . This sets up a map

R : L(X,Y )→ IFm×n : A 7→ Â = W−1AV,

and this map is linear and invertible (indeed, its inverse is the map IFm×n → L(X,Y ) : B 7→ WBV −1).
Consequently, by (4.17)Lemma, L(X,Y ) and IFm×n have the same dimension.
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Corollary: If #T 6<∞, then IFT is not finite-dimensional.

Proof: For every finite S ⊂ T , IFT contains the linear subspace

{f ∈ IFT : f(t) = 0, all t 6∈ S}
of dimension equal to dim IFS = #S. If #T 6< ∞, then T contains finite subsets S of arbitrarily large size,
hence IFT contains linear subspaces of arbitrarily large dimension, hence cannot itself be finite-dimensional,
by (4.13)Proposition.

4.28 Prove: The dimension of the vector space of all upper triangular matrices of order n is (n + 1)n/2.

Direct sums

A very useful coarsening of the basis concept concerns the sum of subspaces.

Let Y1, . . . , Yr be linear subspaces of the vector space X , let Vj be a column map onto Yj , all j, and
consider the column map

V := [V1, . . . , Vr].

To be sure, we could have also started with some arbitrary column map V into X , arbitrarily grouped its
columns to obtain V = [V1, . . . , Vr], and then defined Yj := ranVj , all j.

Either way, any a ∈ domV is of the form (a1, . . . , ar) with aj ∈ domVj , all j. Hence

ranV = {V1a1 + · · ·+ Vrar : aj ∈ domVj , j = 1:r} = {y1 + · · ·+ yr : yj ∈ Yj , j = 1:r} =: Y1 + · · ·+ Yr,

the sum of the subspaces Y1, . . . , Yr.

Think of this sum, as you may, as the range of the map

(4.25) A : Y1 × · · · × Yr → X : (y1, . . . , yr) 7→ y1 + · · ·+ yr.

Having this map A onto says that every x ∈ X can be written in the form y1 + · · ·+ yr with yj ∈ Yj ,
all j. In other words, X is the sum of the Yj . In symbols,

X = Y1 + · · ·+ Yr.

Having A also 1-1 says that there is exactly one way to write each x ∈ X as such a sum. In this case, we
write

X = Y1 +̇ · · · +̇Yr,

and say that X is the direct sum of the subspaces Yj . Note the dot atop the plus sign, to indicate the
special nature of this sum. Some books would use instead the encircled plus sign, ⊕, but we reserve that
sign for an even more special direct sum in which the summands Yj are ‘orthogonal’ to each other; see the
chapter on inner product spaces.

(4.26) Proposition: Let Vj be a basis for the linear subspace Yj of the vector space X , j = 1:r, and
set V := [V1, . . . , Vr]. Then, the following are equivalent.

(i) X = Y1 +̇ · · · +̇Yr.

(ii) V is a basis for X .

(iii) X = Y1 + · · ·+ Yr and dimX ≥ dimY1 + · · ·+ dim Yr.

(iv) For each j, Yj ∩ Y\j = {0}, with Y\j := Y1 + · · ·+ Yj−1 + Yj+1 + · · ·+ Yr, and dimX ≤ dimY1 +
· · ·+ dimYr.
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Proof: Since domV = domV1 × · · · × domVr, and Vj is a basis for Yj , all j, the linear map

C : domV → Y1 × · · · × Yr : a = (a1, . . . , ar) 7→ (V1a1, . . . , Vrar)

is invertible and V = AC, with A as given in (4.25). Hence, V is invertible if and only if A is invertible.
This proves that (i) and (ii) are equivalent.

Also, (ii) implies (iii). As to (iii) implying (ii), the first assumption of (iii) says that V is onto X , and
the second assumption says that dim domV = #V ≤ dimX , hence V is minimally onto and therefore a
basis for X .

As to (ii) implying (iv), the first claim of (iv) is a special case of (4.20)Corollary, and the second claim
is immediate.

Finally, as to (iv) implying (ii), assume that 0 = V a =
∑

j Vjaj . Then, for any j, y := Vjaj =
−∑i6=j Viai ∈ Yj ∩ Y\j , hence y = 0 by the first assumption and, since Vj is a basis for Yj , hence 1-1, this
implies that aj = 0. In other words, V is 1-1, while, by the second assumption, #V =

∑
j dimYj ≥ dimX ,

hence V is maximally 1-1, therefore a basis for X .

(4.27) Corollary: If V is a basis for X , then, for any grouping V =: [V1, . . . , Vr] of the columns of V ,
X is the direct sum of the linear subspaces ranVj , j = 1:r.

One particular grouping is, of course, Vj = [vj ], all j, in which case each Yj := ranVj is a one-dimensional
linear subspace, i.e., a straight line through the origin, and we see X = ranV as the direct sum of these
straight lines, each of which we are accustomed to think of as a coordinate axis.

This is illustrated in (4.28)Figure for the special case ranV = IR2, hence V has just two columns. We
see each x ∈ IR2 written as the sum x = y1 + y2, with yj = ajvj ∈ Yj = ran[vj ] the Yj -component of x
(and, of course, a = (a1, a2) the coordinate vector of x with respect to the basis V ).

v1

x

y1

y2

v2

ran[v1]

ran[v2]

(4.28) Figure. A basis provides a coordinate system.

The direct sum construct is set up in just the same way, except that the Yj may be planes or even
higher-dimensional subspaces rather than just straight lines.

4.29 When X is the direct sum of Y and Z, then Z is said to be a complement of Y . With Y and Z linear subspaces
of the finite-dimensional vector space X, prove the following assertions concerning complements.
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(i) Y has a complement.

(ii) If both Z and Z1 complement Y , then dimZ = dimZ1 = codim Y . In particular, codim Y = dim X − dimY .

(iii) codim(Y + Z) = codim Y + codim Z − codim(Y ∩ Z).

(iv) If Y has only one complement, then Y = {0} or Y = X.

(v) If codim Y > dim Z, then Y + Z 6= X.

(vi) If dimY > codim Z, then Y ∩ Z 6= {0}.
4.30 Let (d1, . . . , dr) be a sequence of natural numbers, and let X be an n-dimensional vector space. There exists a direct

sum decomposition
X = Y1 +̇ · · · +̇Yr

with dimYj = dj , all j, if and only if
∑

j
dj = n.

4.31 Let d be any scalar-valued map, defined on the collection of all linear subspaces of a finite-dimensional vector space X,
that satisfies the following two conditions: (i) Y ∩Z = {0} =⇒ d(Y + Z) = d(Y )+ d(Z); (ii) dimY = 1 =⇒ d(Y ) = 1.

Prove that d(Y ) = dim(Y ) for every linear subspace of X.

4.32 Prove that the cartesian product Y1 × · · · × Yr of vector spaces, all over the same scalar field IF, becomes a vector
space under pointwise or slotwise addition and multiplication by a scalar.

This vector space is called the product space with factors Y1, . . . , Yr.

Elimination in vector spaces

In the discussion of the (4.5)Basis Selection Algorithm, we left unanswered the unspoken question of
just how one would tell which columns of W ∈ L(IFm, X) are bound, hence end up in the resulting 1-1 map
V .

The answer is immediate in case X ⊂ IFr for some r, for then W is just an r×m-matrix, and elimination
does the trick since it is designed to determine the bound columns of a matrix. It works just as well when X
is, more generally, a subset of IFT for some set T , as long as T is finite, since we can then apply elimination
to the ‘matrix’

(4.29) W = (wj(t) : (t, j) ∈ T ×m)

whose rows are indexed by the (finitely many) elements of T .

Elimination even works when T is not finite, since looking for a pivot row in the matrix (4.29) with
infinitely many rows is only a practical difficulty. If τi is the row ‘index’ of the pivot row for the ith
bound column of W , i = 1:r, then we know that W has the same nullspace as the (finite-rowed) matrix
(wj(τi) : i = 1:r, j = 1:m). This proves, for arbitrary T , the following important

(4.30) Proposition: For any W ∈ L(IFm, IFT ), there exists a sequence (τ1, . . . , τr) in T , with r
equal to the number of bound columns in W , so that nullW is equal to the nullspace of the matrix
(wj(τi) : i = 1:r, j = 1:m).

In particular, W is 1-1 if and only if the matrix (wj(τi) : i, j = 1:m) is invertible for some sequence
(τ1, . . . , τm) in T .

If T is not finite, then we may not be able to determine in finite time whether or not a given column is
bound since we may have to look at infinitely many rows not yet used as pivot rows. The only efficient way
around this is to have W given to us in the form

W = UA,

with U some 1-1 column map, hence A a matrix. Under these circumstances, the kth column of W is free if
and only if the kth column of A is free, and the latter we can determine by elimination applied to A.

Indeed, if U is 1-1, then both W and A have the same nullspace, hence, by (4.3)Lemma, the kth column
of W is bound if and only if the kth column of A is bound.
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As an example, consider W = [w1, w2, w3, w4], with wj : IR→ IR : t 7→ sin(t− j), j = 1, 2, 3, 4. Hence,
by the addition formula,

W = UA, with U := [sin, cos], A :=

[
cos(−1) cos(−2) cos(−3) cos(−4)
sin(−1) sin(−2) sin(−3) sin(−4)

]
,

and we see at once that U is 1-1 ( e.g. from the fact that QU = id2, with Q : f 7→ (f(π/2), f(0))). We also
see at once that the first two columns of A are bound (e.g., since cos(1) cos(2) < 0 while sin(1) sin(2) > 0),
hence the remaining columns of A must be free (since there are no rows left to bind them). Consequently,
the first two columns of W are bound, while the last two columns are free.

Note that, necessarily, U is a basis for ranW since W = UA implies that ranW ⊂ ranU , hence having
two columns of W bound implies that 2 ≤ dim ranW ≤ dim ranU ≤ #U = 2, and so U is 1-1 onto ranW .

In general, it may be hard to find such a handy factorization W = UA for given W ∈ L(IFm, X). In
that case, we may have to discretize our problem by finding somehow some Q ∈ L(X, IFn) that is 1-1 on
ranW . With such a ‘data map’ Q in hand, we know that nullW equals the nullspace of the matrix QW .
In particular, the kth column of W is bound if and only if the kth column of the matrix QW is bound, and
elimination applied to QW will ferret out all those columns.

The need for suitable ‘data maps’ here in the general case is one of many reasons why we now turn to
the study of this second way of connecting our vector space X to some coordinate space, namely via linear
maps from X to IFn.

4.33 For each of the following column maps V = [v1, . . . , vr ] into the vector space Π4 of all real polynomials of degree
≤ 4, determine whether or not it is 1-1 and/or onto.

(a) [()3−()1+1, ()2+2()1+1, ()1−1]; (b) [()4−()1, ()3+2, ()2+()1−1, ()1+1]; (c) [1+()4, ()4+()3, ()3+()2, ()2+()1, ()1+1].

4.34 For each of the specific column maps V = [fj : j = 0:r] given below (with fj certain real-valued functions on the
real line), determine which columns are bound and which are free. Use this information to determine (i) a basis for ran V ; and
(ii) the smallest n so that fn ∈ ran[f0, f1, . . . , fn−1].

(a) r = 6, and fj : t 7→ (t − j)2, all j.

(b) r = 4 and fj : t 7→ sin(t − j), all j.

(c) r = 4 and fj : t 7→ exp(t− j), all j. (If you know enough about the exponential function, then you need not carry out any
calculation on this problem.)

4.35 Assume that τ1 < · · · < τ2k+1. Prove that W = [w0, . . . , wk] with wj : t 7→ (t − τj+1) · · · (t − τj+k) is a basis for
Πk. (Hint: Consider QW with Q : p 7→ (p(τk+1+i) : i = 0:k).)

4.36 Assume that (τ1, . . . , τ2k+1) is nondecreasing. Prove that W = [w0, . . . , wk] with wj : t 7→ (t − τj+1) · · · (t − τj+k)
is a basis for Πk if and only if τk < τk+1.

4.37 T/F

(a) If one of the columns of a column map is 0, then the map cannot be 1-1.

(b) If the column map V into IRn is 1-1, then V has at most n columns.

(c) If the column map V into IRn is onto, then V has at most n columns.

(d) If a column map fails to be 1-1, then it has a zero column.

(e) If a vector space has only one basis, then it must be the trivial space.

(f) If a column of a matrix A is free, then it cannot be part of a basis for ran A.
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5. The inverse of a basis, and interpolation

Data maps

There are two ways to connect a given vector space X with the coordinate space IFn in a linear way,
namely by a linear map from IFn to X , and by a linear map to IFn from X . By now, you are thoroughly
familiar with the first kind, the column maps. It is time to learn something about the other kind.

A very important example of such a map is the inverse of a basis V : IFn → X for the vector space X ,
also known as the coordinate map for that basis because it provides, for each x ∈ X , its coordinates with
respect to the basis, i.e., the n-vector a := V −1x for which x = V a. In effect, every invertible linear map
from X to IFn is a coordinate map, namely the coordinate map for its inverse. However, (nearly) every linear
map from X to IFn, invertible or not, is of interest, as a means of extracting numerical information from the
elements of X . For, we can, offhand, only compute with numbers, hence can ‘compute’ with elements of an
abstract vector space only in terms of numerical data about them.

Any linear map from the vector space X to IFn is necessarily of the form

f : X → IFn : x 7→ (fi(x) : i = 1:n),

with each fi = ei
t ◦ f a linear functional on X , i.e., a scalar-valued linear map on X .

5.1 For each of the following maps, determine whether or not it is a linear functional. (a) Πk → IR : p 7→ deg p; (b)

IR3 → IR : x 7→ 3x1 − 2x3; (c) C([a . . b]) → IR : f 7→ maxa≤t≤b f(t); (d) C([a . . b]) → IR : f 7→
∫ b

a
f(s)w(s) ds, with

w ∈ C([a . . b]); (e) C(2)(IR) → IR : f 7→ a(t)D2f(t) + b(t)Df(t) + c(t)f(t), for some functions a, b, c defined on [a . . b] and some

t ∈ [a . . b]. (f) C(2)(IR) → C(IR) : f 7→ aD2f + bDf + cf , for some a, b, c ∈ C(IR).

Here are some standard examples of linear functionals. Assume that X is a space of functions, hence
X is a linear subspace of IFT for some set T . Then, for each t ∈ T ,

δt : X → IF : x 7→ x(t)

is a linear functional on X , the linear functional of evaluation at t. For any n-sequence s = (s1, . . . , sn) in
T ,

X → IFn : f 7→ (f(s1), . . . , f(sn))

is a standard linear map from X to IFn.

If, more concretely, X is a linear subspace of C(n−1)[a . . b] and s ∈ [a . . b], then

X → IFn : f 7→ (f(s), Df(s), . . . , Dn−1f(s))

is another standard linear map from such X to IFn.

Finally, if X = IFm, then any linear map from X to IFn is necessarily a matrix. But it is convenient to
write this matrix in the form At for some A ∈ IFn×m, as such At acts on X via the rule

X 7→ IFn : x 7→ Atx = (A(:, j)tx : j = 1:n).

Because of this last example, we will call all linear maps from a vector space to a coordinate space row
maps, and use the notation

(5.1) Λt : X → IFn : x 7→ (λix : i = 1:n) =: [λ1, . . . , λn]tx,

calling the linear functional λi the ith row of this map. We will also call such maps data maps since they
extract numerical information from the elements of X . There is no hope of doing any practical work with
the vector space X unless we have a ready supply of such data maps on X . For, by and large, we can only
compute with numbers.

(5.2)Proposition: If Λt = [λ1, λ2, . . . , λn]t : X → IFn andB ∈ L(U,X), then ΛtB = [λ1B, . . . , λnB]t.
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A formula for the coordinate map

Let V ∈ L(IFn, X) be a basis for the vector space X . How do we find the coordinates

(5.3) a = V −1x

for given x ∈ X?

Offhand, we solve the (linear) equation V ? = x for a. Since V is a basis, we know that this equation
has exactly one solution. But that is not the same thing as having a concrete formula for a in terms of x.

If X = IFn, then V −1 is a matrix; in this case, (5.3) is an explicit formula. However, even if X ⊂ IFn

but X 6= IFn, then (5.3) is merely a formal expression.

(5.4) Example: If V is a basis for some linear subspace X of IFn, then we can obtain a formula for
V −1 via elimination as follows.

Act as if V were invertible, i.e., apply elimination to [V, idn]. Let r := #V . Since V is 1-1, the first
r columns in [V, idn] are bound, hence we are able to produce, via elimination, an equivalent matrix R for
which R(q, 1:r) = idr, for some r-sequence q. Since we obtain R from [V, idn] by (invertible) row operations,
we know that R = M [V, idn] = [MV,M ] for some invertible matrix M . In particular,

idr = R(q, 1:r) = (MV )(q, :) = M(q, :)V,

showing M(q, :) = R(q, r + (1:n)) to be a left inverse for V , hence equal to V −1 when restricted to ranV .

Suppose, in particular, that we carry elimination all the way through, to obtain R = rref([V, idn]).
Then, q = 1:r and, with r + b and r + f the bound and free columns of [V, idn] other than the columns of
V , we necessarily have M(q, b) = 0, hence, for this choice of M , we get

V −1x = M(q, :)x = M(q, f)x(f), x ∈ X := ranV.

In effect, we have replaced here the equation V ? = x by the equivalent equation

V (f, :)? = x(f)

whose coefficient matrix is invertible. In particular, #f = #V ; see H.P. 5.3 .

5.2 For each of the following bases V of the linear subspace ran V of IFn, give a matrix U for which Ux gives the
coordinates of x ∈ ran V with respect to the basis V . How would you check your answer?

(a) V =

[
1
1

]
; (b) V = [e2, e1, e3] ∈ IR3×3; (c) V =

[
1 2
2 4
0 6

]
; (d) V =




1 0
0 0
−1 1
2 −2



.

5.3 Prove the claim at the end of (5.4)Example.

The reduction in (5.4)Example, of the abstract linear equation V ? = x to a uniquely solvable square
linear system, also works in the general setting.

To obtain a concrete expression, we discretize the abstract equation V ? = x by considering instead
the numerical equation

ΛtV ? = Λtx

for some suitable data map Λt ∈ L(Y, IFn) defined on some vector space Y ⊃ X . Here, ‘suitable’ means that
the matrix ΛtV is invertible, for then the unique solution of this equation must be the sought-for coordinate
vector for x ∈ X with respect to the basis V , i.e.,

a = V −1x = (ΛtV )−1Λtx.

In (5.4)Example, we simply chose the linear map y 7→ y(f) as our Λt, i.e., Λt = idn(f, :) = [ej : j ∈ f]t,
with f chosen, in effect, to ensure that ΛtV = V (f, :) is invertible. We indeed obtained there V −1 as

x 7→ U(:, f)x(f) = V (f, :)−1x(f) = (ΛtV )−1Λtx.
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How would one find a ‘suitable’ data map in general? That depends on the particular circumstances.
For example, if V ∈ L(IFn, Y ) and Λt ∈ L(Y, IFn), and we somehow know that Λt maps X := ranV = V (IFn)
onto IFn, then we know that ΛtV maps IFn onto IFn, hence, being a square matrix, ΛtV must be invertible.
Conversely, if ΛtV is invertible, then V must be 1-1, hence provides a basis for its range, and Λt must map
ranV onto IFn.

(5.5) Proposition: If the linear map V : IFn → X ⊂ Y is onto, and Λt ∈ L(Y, IFn) is such that their
(square) Gramian matrix, ΛtV , is 1-1 or onto, hence invertible, then V is a basis for X , and its
inverse is

V −1 : X → IFn : x 7→ (ΛtV )−1Λtx.

Change of basis

To be sure, under the assumptions of (5.5)Proposition, we also know that Λt maps X onto IFn, hence,
since both X and IFn are of the same finite dimension, the restriction of Λt to X must be invertible as a
linear map to IFn. Consequently, there must be an invertible W ∈ L(IFn, X), i.e., a basis W for X , with
ΛtW = idn.

Hence, the right side in our numerical equation ΛtV ? = Λtx is the coordinate vector for x ∈ X with
respect to this basis W for X . In other words, our great scheme for computing the coordinates of x ∈ X
with respect to the basis V for X requires us to know the coordinates of x with respect to some basis for X .
In other words, the entire calculation is just a change of basis , with ΛtV = W−1V the socalled transition
matrix that carries the V -coordinates of x to the W -coordinates of x.

However, this in no way diminishes its importance. For, we really have no choice in this matter. We
cannot compute without having numbers to start with. Also, we often have ready access to the coordinate
vector Λtx without having in hand the corresponding basis W . At the same time, we may much prefer to
know the coordinates of x with respect to a different basis.

For example, we know from (3.22)Proposition that, with (τ1, . . . , τk) any sequence of pairwise distinct
real numbers, the linear map Λt : p 7→ (p(τ1), . . . , p(τk)) is 1-1 on the k-dimensional space Π<k, hence provides
the coordinates of p ∈ Π<k with respect to a certain basis W of Π<k, namely the socalled Lagrange basis
whose columns can be verified to be the so-called Lagrange fundamental polynomials

(5.6) ℓj : t 7→
∏

h 6=j

t− τh
τj − τh

, j = 1:k.

However, you can imagine that it is a challenge to differentiate or integrate a polynomial written in terms of
this basis. Much better for that to have the coordinates of the polynomial with respect to the power basis
V = [()0, . . . , ()k−1].

5.4 What are the coordinates of p ∈ Πk with respect to the Lagrange basis for Π<k for the points τ1, . . . , τk?

5.5 Find the value at 0 of the quadratic polynomial p, for which p(−1) = p(1) = 3 and Dp(1) = 6.

5.6 Find a formula for p(0) in terms of p(−1), p(1) and Dp(1), assuming that p is a quadratic polynomial.

5.7 Find the coordinates for the polynomial q(t) = 3−4t+2t2 with respect to the basis W := [()0, ()0 +()1, ()0 +()1 +()2]
of the space of quadratic polynomials. (Hint: you are given the coordinates for q wrto V := [()0, ()1, ()2] = W (W−1V ) and can
easily determine (W−1V )−1 = V −1W .)

5.8 Find the coordinates for the polynomial q(t) = 3−4t+2t2 with respect to the basis W := [()0, ()0 +()1, ()0 +()1 +()2]
of the space of quadratic polynomials. (Hint: you are given the coordinates for q wrto V := [()0, ()1, ()2] = W (W−1V ) and can
easily determine W−1V )−1 = V −1W .)

5.9 Let v1, . . . , vn be a sequence of (n − 1)-times continuously differentiable functions, all defined on the interval [a . . b].
For x ∈ [a . . b], the matrix

W (v1, . . . , vn; x) := (Di−1vj(x) : i, j = 1:n)

is called the Wronski matrix at x for the sequence (vj : j = 1:n).

Prove that V := [v1, . . . , vn] is 1-1 in case, for some x ∈ [a . . b], W (v1, . . . , vn;x) is invertible. (Hint: Consider the Gram

matrix ΛtV with Λtf := (f(x), f ′(x), . . . , Dn−1f(x)).)
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Interpolation and linear projectors

As (3.21)Example already intimates, our formula in (5.5) for the inverse of a basis V ∈ L(IFn, X) can
be much more than that. It is useful for interpolation in the following way. Assuming that ΛtV is invertible,
it follows that, for any y ∈ Y , x = V (ΛtV )−1Λty is the unique element in X that agrees with y at Λt in
the sense that

Λtx = Λty.

To recall the specifics of (3.21)Example, if X = Π<k and Λt : g 7→ (g(τi) : i = 1:k), with τ1 < · · · < τk,
then, by (3.22)Proposition, for arbitrary g : IR → IR, there is exactly one polynomial p of degree < k for
which p(τi) = g(τi), i = 1:k.

One can readily imagine other examples.

Example: In Hermite interpolation, one specifies not only values but also derivatives. For example,
in two-point Hermite interpolation from Π<k, one picks two points, t 6= u, and two nonnegative integers r
and s with r + 1 + s+ 1 = k, and defines

Λt : g 7→ (g(t), Dg(t), . . . , Drg(t), g(u), Dg(u), . . . , Dsg(u)).

Now the requirement that Λtp = Λtg amounts to looking for p ∈ Π<k that agrees with g in the sense that
p and g have the same derivative values of order 0, 1, . . . , r at t and the same derivative values of order
0, 1, . . . , s at u.

Example: Recall from Calculus the bivariate Taylor series

g(s, t) = g(0) +Dsg(0) s+Dtg(0) t+
(
Ds

2g(0)s2 +DsDtg(0)st+DtDsg(0)ts+Dt
2g(0)t2

)
/2 + h.o.t.

In particular, for any smooth function g, the quadratic polynomial

p : (s, t) 7→ g(0) +Dsg(0) s+Dtg(0) t+
(
Ds

2g(0)s2 + 2DsDtg(0)st+Dt
2g(0)t2

)
/2

is the unique quadratic polynomial that matches the information about g given by the data map

Λt : g 7→ (g(0), Dsg(0), Dtg(0), D2
sg(0), DsDtg(0), D2

t g(0)).

Example: When dealing with Fourier series, one uses the data map

Λt : g 7→ (

∫ 2π

0

g(t) cis(jt) dt : j = 0:N),

with cis standing for ‘sine and cosine’. One looks for a trigonometric polynomial

p = [cis(j·) : j = 0:N ]a

that satisfies Λtp = Λtg, and finds it in the truncated Fourier series for g.
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Directly from (5.5)Proposition, we obtain (under the assumptions of that proposition) the following
pretty formula

(5.7) x = Py := V (ΛtV )−1Λty

for the interpolant x ∈ X to given y ∈ Y with respect to the data map Λt. The linear map P := V (ΛtV )−1Λt

so defined on Y is very special:

(5.8) Proposition: Let the linear map V : IFn → Y be onto X ⊂ Y , and let Λt ∈ L(Y, IFn) be such
that their Gramian matrix, ΛtV , is invertible. Then P := V (ΛtV )−1Λt is a linear map on Y with the
following properties:

(i) P is the identity on X = ranV .

(ii) ranP = ranV = X .

(iii) P is a projector or idempotent, i.e., PP = P , hence P ( id − P ) = 0.

(iv) nullP = null Λt = ran( id − P ).

(v) Y is the direct sum of ranP and nullP , i.e., Y = ranP +̇ nullP .

Proof: (i) PV = V (ΛtV )−1Λt V = V id = V , hence P (V a) = V a for all a ∈ IFn.

(ii) Since P = V A for some A, we have that ranP ⊂ ranV , while PV = V implies that ranP ⊃ ranV .

(iii) By (i) and (ii), P is the identity on its range, hence, in particular, PP = P , or, equivalently,
P ( id − P ) = 0.

(iv) The fact that P = AΛt for some A implies that nullP ⊃ null Λt, while also

ΛtP = Λt V (ΛtV )−1Λt = idnΛt = Λt,

hence also nullP ⊂ null Λ. As to nullP = ran( id − P ), note that x ∈ nullP implies that x = x − Px =
( id − P )x ∈ ran( id − P ), while, conversely, nullP ⊃ ran( id − P ) since, by (iii), P ( id − P ) = 0.

(v) For any y ∈ Y , y = Py + ( id − P )y ∈ ranP + nullP , by (iv), hence Y = ranP + nullP . If also
y = x + z for some x ∈ ranP and some z ∈ nullP , then, by (i) and (iv), Py = P (x + z) = Px + Pz = x,
therefore also z = y − x = y − Py = ( id − P )y, showing such a decomposition to be unique.

5.10 Let P ∈ L(X). (i) Prove that P is a projector if and only if R := id − 2P is involutory or self-inverse (meaning
that RR = id). (ii) For the linear projector P of (5.9)Example, work out the corresponding map R, and add to (5.10)Figure
the point Ry.

5.11 Consider the linear map Q given on X = {f : IR → IR} by Qf(t) = (f(t) + f(−t))/2. Prove that Q is a linear
projector. Also, give a succinct description of its range and its nullspace. (Hint: consider the map F : X → X defined by
(Ff)(t) = −f(t).)

(5.9) Example: We specialize the general situation of (5.8)Proposition to the case V : IR1 → X ⊂ IR2,
so we can draw a figure like (5.10)Figure.

Take Y = IR2, and let v ∈ IR2 6= 0, hence X := ranV with V := [v] is 1-dimensional. The general linear
map Λt : IR2 → IR1 is of the form [w]t for some w ∈ IR2, and the requirement that ΛtV be invertible reduces
to the requirement that [w]t[v] = wtv 6= 0.

With V = [v] and Λt = [w]t so chosen, the linear projector P becomes

P :=
vwt

wtv
: y 7→ v

wty

wtv
.

We readily verify directly that

PP =
vwt

wtv

vwt

wtv
=

v wtv wt

(wtv) (wtv)
=
vwt

wtv
= P,
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62 5. The inverse of a basis, and interpolation

i.e., that P is a linear projector. Its range equals ran[v], i.e., the straight line through the origin in the
direction of v. Its nullspace equals null[w]t and this is necessarily also 1-dimensional, by (4.15)Dimension
Formula, hence is the straight line through the origin perpendicular to w. The two lines have only the origin
in common since y ∈ ranP ∩ nullP implies that y = vα for some scalar α, therefore 0 = wty = wtvα and
this implies that α = 0 since wtv 6= 0 by assumption.

v

y

Py

( id − P )y

w

ranP = ran[v]

nullP = w⊥ = null[w]t

(5.10) Figure. The direct sum decomposition provided by a certain linear
projector. Compare this to (4.28)Figure.

We can locate the two summands in the split

y = Py + ( id − P )y

graphically (see (5.10)Figure): To find Py, draw the line through y parallel to nullP ; its unique intersection
with ranP = ran[v] is Py. The process of locating ( id −P )y is the same, with the roles of ranP and nullP
reversed: Now draw the line through y parallel to ranP ; its unique intersection with nullP is the element
( id − P )y.

This shows graphically that, for each y, Py is the unique element of ranP for which wtPy = wty, i.e.,
the unique point in the intersection of ranP and y + null[w]t.

It is useful to note that, for any linear projector P , also ( id−P ) is a linear projector (since ( id−P )( id−
P ) = id−P −P +PP = id−P ), and that any direct sum decomposition Y = X +̇Z of a finite-dimensional
Y necessarily has X = ranP and Z = nullP for some linear projector P . The following is a more general
such claim, of use later.
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(5.11) Proposition: Let X1, . . . , Xr be linear subspaces of the finite-dimensional vector space Y .
Then the following are equivalent.

(i) Y is the direct sum of the Xj , i.e., Y = X1 +̇ · · · +̇Xr.

(ii) There exist Pj ∈ L(Y ) with ranPj = Xj so that

(5.12) idY = P1 + · · ·+ Pr

and

(5.13) PjPk =
{
Pj = Pk if j = k;
0 otherwise.

In particular, each Pj is a linear projector.

Also, the conditions in (ii) uniquely determine the Pj .

Proof: Let Vj be a basis for Xj, all j. By (4.26)Proposition, (i) is equivalent to having V :=
[V1, . . . , Vr] be a basis for Y .

‘(i) =⇒ (ii)’: By assumption, V is a basis for Y . Let V −1 =: Λt =: [Λ1, . . . ,Λr]t be its inverse, grouped
correspondingly. Then

iddim Y = ΛtV = [Λ1, . . . ,Λr]t[V1, . . . , Vr] = (Λi
tVj : i, j = 1:r),

i.e.,

Λi
tVj =

{
id if i = j;
0 otherwise.

Hence, the linear maps

Pj := VjΛj
t, j = 1:r,

satisfy (5.13), and ranPj = Xj, for all j. But also

idY = V Λt = [V1, . . . , Vr][Λ1, . . . ,Λr]t =
∑

j

VjΛj
t,

showing (5.12).

‘(ii) =⇒ (i)’: By assumption, ranPj = ranVj , all j. Therefore, by assumption (5.13),

(5.14) PjVi =
{
Vj if j = i;
0 otherwise.

Therefore, 0 = V a =
∑

i Viai implies, for any particular j, that 0 = Pj0 = PjV a =
∑

i PjViai = PjVjaj =
Vjaj , hence aj = 0 (since Vj is 1-1). It follows that V is 1-1. On the other hand, the assumption (5.12)
implies that V is onto. Hence, V is a basis for Y .

Finally, to prove the uniqueness of the Pj satisfying (ii), notice that (5.14) pins down Pj on all the
columns of V . Since (ii) implies that V is a basis for Y , this therefore determines Pj uniquely (by (4.2)Propo-
sition).
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Returning to the issue of interpolation, this gives the following

(5.15)Corollary: If V ∈ L(IFn, Y ) is 1-1, and Λt ∈ L(Y, IFn) is such that ranV ∩ null Λt = {0}, then
P := V (ΛtV )−1Λt is well-defined; it is the unique linear projector P with

(5.16) ranP = ranV, nullP = null Λt.

In particular, then Λt is onto, and

(5.17) Y = ranV +̇ null Λt.

For an arbitrary abstract vector space, it may be very hard to come up with suitable concrete data
maps. For that reason, we now consider a particular kind of vector space for which it is very easy to provide
suitable data maps, namely the inner product spaces.
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6. Inner product spaces

Definition and examples

Inner product spaces are vector spaces with an additional operation, the inner product . Here is the
definition.

(6.1) Definition: An inner product space is a vector space Y (over the field IF = IR or C) and an
inner product, meaning a map

〈, 〉 : Y × Y → IF : (x, y) 7→ 〈x, y〉

that is

(a) positive definite, i.e., ‖x‖2 := 〈x, x〉 ≥ 0, with equality iff x = 0;

(b) linear in its first argument, i.e., 〈·, y〉 ∈ L(Y, IF);

(c) hermitian, or skew-symmetric, i.e., 〈y, x〉 = 〈x, y〉.

You already know an inner product space, namely n-dimensional Euclidean space, i.e., the space of
n-vectors with the inner product

〈x, y〉 := ytx =
∑

j

xjyj =: ycx,

though you may know it under the name scalar product or dot product. In particular, (b) and (c) are
evident in this case. As to (a), observe that, for any complex number z = u+ iv,

zz = (u − iv)(u+ iv) = u2 + v2 = |z|2 ≥ 0,

with equality if and only if u = 0 = v, i.e., z = 0. Hence, for any x ∈ IFn,

〈x, x〉 = xtx = |x1|2 + · · ·+ |xn|2 ≥ 0,

with equality iff all the xj are zero, i.e., x = 0.

Of course, if the scalar field is IR, we can forget about taking complex conjugates since then x = x. But
if IF = C, then it is essential that we define 〈x, y〉 as ycx = ytx rather than as ytx since we would not get
positive definiteness otherwise. Indeed, if z is a complex number, then there is no reason to think that z2 is
nonnegative, and the following calculation

(1, i)t(1, i) = 12 + (i)2 = 1− 1 = 0

shows that, for a complex x, xtx can be zero without x being zero.

So, why not simply stick with IF = IR? Work on eigenvalues requires consideration of complex scalars
(since it relies on zeros of polynomials, and a polynomial may have complex zeros even if all its coefficients
are real). For this reason, we have taken the trouble all along to take into account the possibility that IF
might be C. It is a minor nuisance at this point, but will save time later.

Another example of an inner product space of great practical interest is the space Y =
◦

C of all continuous
2π-periodic functions, with the inner product

〈f, g〉 :=

∫ 2π

0

f(t)g(t) dt.
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Of course, we can also think of the space C([a . . b]) as an inner product space, with respect to the inner
product

〈f, g〉 :=

∫ b

a

f(t)g(t) dt.

Often, it is even useful to consider on C([a . . b]) the more general inner product

〈f, g〉 :=

∫ b

a

f(t)g(t)w(t) dt

with w some positive function on [a. .b], and there are analogous inner product spaces consisting of functions
of several variables.

In order to stress the fact that a general inner product space Y behaves just like IFn with the standard
inner product, I will use the notation

yc : Y → IF : x 7→ 〈x, y〉, ∀y ∈ Y,

for the linear functional provided, according to (6.1)(b), by the inner product, hence will feel free to write
ycx rather than 〈x, y〉 for the inner product of x with y. Correspondingly, you can read the rest of this
chapter as if we were just talking about the familiar space of n-vectors with the dot product, yet be certain
that, when the time comes, you will have in hand very useful facts about an arbitrary inner product space,

for example the space
◦

C.

The conjugate transpose

Here is the promised ready supply of data maps available for an inner product space.

Any column map W = [w1, . . . , wn] ∈ L(IFn, Y ) into an inner product space Y provides the correspond-
ing data map

W c : Y 7→ IFn : x 7→ (wj
cx : j = 1:n),

called its conjugate transpose or Hermitian.

The terminology comes from the special case Y = IFm. In that case, W ∈ IFm×n, and then W c is,
indeed, just the conjugate transpose of the matrix W since then wj = W (:, j), hence

wj
cx = W (:, j)cx =

∑

k

W (k, j)xk =
∑

k

(W c)(j, k)xk = (W cx)j .

Further, if W ∈ L(IFn, Y ) and A ∈ IFn×m, then, with WA = [uj :=
∑

k wkA(k, j) : j = 1:n], one verifies
that

((WA)cx)j = uj
cx =

∑

k

A(k, j)wk
cx =

∑

k

Ac(j, k)wk
cx = (Ac(W cx))j .

This proves

(6.2): If W ∈ L(IFn, Y ) and A ∈ IFn×m, then WA ∈ L(IFm, Y ) and (WA)c = AcW c.

This observation shows that the above definition of the conjugate transpose of a column map is a special
case of the abstract definition of the conjugate transpose of A ∈ L(X,Y ) as the unique map Ac : Y → X
(necessarily linear) for which

(6.3) 〈x,Acy〉 = 〈Ax, y〉, ∀(x, y) ∈ X × Y.
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Indeed, if also 〈x, z〉 = 〈Ax, y〉 for all x ∈ X , then 〈x, z − Acy〉 = 0 for all x ∈ X , including x = z − Acy,
hence, by the definiteness of the inner product, z − Acy = 0, showing that Acy is uniquely determined by
(6.3). With that, it is easy to see that Ac is a linear map, and that the conjugate transpose of an n-column
map into Y is, indeed, the conjugate transpose in the sense of (6.3) (with X = IFn), and that

(6.4) (BA)c = AcBc

in case BA makes sense, hence, in particular,

(6.5) A−c := (A−1)c = (Ac)−1.

The only fly in the ointment is the fact that, for some A ∈ L(X,Y ), there may not be any map
Ac : Y → X satisfying (6.3) unless X is ‘complete’, a condition that is beyond the scope of these notes.
However, if both X and Y are finite-dimensional inner-product spaces, then, with V and W bases for X and
Y , respectively, we can write any A ∈ L(X,Y ) as A = WÂV −1 (using the matrix Â := W−1AV ), hence,
with (6.4), have available the formula

Ac = (WÂV −1)c = V −cÂcW c

for the conjugate transpose of A, – another nice illustration of the power of the basis concept.

With that, we are ready for the essential fact about the conjugate transpose needed now.

(6.6) Lemma: If the range of the 1-1 column map V is contained in the range of some column map
W , then W cV is 1-1, i.e., W c is 1-1 on ranV .

Proof: Assume that W cV a = 0 and let b := V a. Then b ∈ ranV ⊂ ranW , hence we must have
b = Wc for some vector c. Therefore, using (6.2),

0 = cc0 = ccW cV a = (Wc)cV a = bcb.

By the definiteness of the inner product, this implies that b = 0, i.e., V a = 0, therefore that a = 0, since V
is assumed to be 1-1.

By taking now, in particular, W = V , it follows that, for any basis V of the linear subspace X of the
inner product space Y , the linear map (V cV )−1V c is well-defined, hence provides a formula for V −1.

In MATLAB, the conjugate transpose of a matrix A is obtained as A’, hence the corresponding
formula is inv(V’*V)*V’. It is, in effect, used there to carry out the operation V\ for a matrix V

that is merely 1-1.

Orthogonal projectors and closest points

We conclude that, with V a basis for the linear subspace X of the inner product space Y , the linear
projector

PV := V (V cV )−1V c

is well-defined. Moreover, by (5.8), nullPV = nullV c = {y ∈ Y : V cy = 0}. Since x ∈ ranPV = ranV is
necessarily of the form x = V a, it follows that, for any x ∈ ranPV and any y ∈ nullPV ,

xcy = (V a)cy = ac(V cy) = 0.
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In other words, ranPV and nullPV = ran( id − PV ) are perpendicular or orthogonal to each other, in the
sense of the following definition.

Definition: We say that the elements u, v of the inner product space Y are orthogonal or perpen-
dicular to each other, and write this

u ⊥ v,
in case 〈u, v〉 = 0.

More generally, for any F,G ⊂ Y , we write F ⊥ G to mean that, ∀f ∈ F, g ∈ G, f ⊥ g.

The orthogonal complement

F⊥ := {y ∈ Y : y ⊥ F}

of F is the largest set G perpendicular to F .

Note that u ⊥ v iff v ⊥ u since 〈v, u〉 = 〈u, v〉.

Because of the orthogonality

nullPV = ran( id − PV ) ⊥ ranPV

just proved, PV is called the orthogonal projector onto ranV . Correspondingly, we write

(6.7) Y = ranPV ⊕ nullPV

to stress the fact that, in this case, the summands in this direct sum are orthogonal to each other. Since
they sum to Y , it follows (see H.P. 6.10 below) that each is the orthogonal complement of the other.

This orthogonality, as we show in a moment, has the wonderful consequence that, for any y ∈ Y , PV y
is the unique element of ranPV = ranV that is closest to y in the sense of the (Euclidean) norm

(6.8) ‖ · ‖ : Y → IR : y 7→ √ycy.

Thus, whether or not y ∈ Y is in ranV , the coordinate vector a = (V cV )−1V cy supplied by our formula
gives the coordinates of the point in ranV closest to y. If y ∈ ranV , then this is, of course, y itself.

(6.9) Example: We continue with (5.9)Example. In that example, the choice Λt = V c amounts to
choosing w = v. Now P becomes P = vvc/vcv, and, correspondingly,

Py = v
vcy

vcv
,

which we recognize as the standard formula for the orthogonal projection of the vector y onto the line
spanned by the vector v.

Correspondingly, (5.10)Figure changes to the following.
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v

y

Py

( id − P )y

ranP = ran[v]

nullP = v⊥

x

(6.10) Figure. If y − Py is perpendicular to ranP , then Py is the closest
point to y from ranP since then, for any x ∈ ranP , ‖y−x‖2 = ‖y−Py‖2 +
‖x− Py‖2.

The proof that, for any y ∈ Y , PV y is the unique element of ranV closest to y in the sense of the norm
(6.8) is based on nothing more than the following little calculation.

(6.11) ‖u+ v‖2 = (u+ v)c(u + v) = ‖u‖2 + vcu+ ucv + ‖v‖2.

Since vcu = ucv, this proves

(6.12) Pythagoras: u ⊥ v =⇒ ‖u+ v‖2 = ‖u‖2 + ‖v‖2.

Since, for any x ∈ X , y−x = (y−PV y) + (PV y−x), while (y−PV y) ∈ nullPV ⊥ ranPV = X ∋ (PV y−x)
we conclude that

(6.13) ‖y − x‖2 = ‖y − PV y‖2 + ‖PV y − x‖2.

Here, the first term on the right is independent of x. This shows that ‖y − x‖ is uniquely minimized over
x ∈ X by the choice x = PV y, as we claimed.

Here is the formal statement.

(6.14) Theorem: For any basis V for the linear subspace X of the inner product space Y , the linear
map

PV = V (V cV )−1V c

equals PX , the orthogonal projector onto X , in the sense that, for all y ∈ Y , PV y ∈ X and
y − PV y ⊥ X .
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Therefore, Y is the orthogonal direct sum

Y = ranV ⊕ nullV c = ranPV ⊕ nullPV = X ⊕ ran( id − PV ),

and
∀{y ∈ Y, x ∈ X} ‖y − x‖ ≥ ‖y − PV y‖,

with equality if and only if x = PV y.

Incidentally, by choosing x = 0 in (6.13), – legitimate since ranV is a linear subspace, – we find the
following very useful fact.

(6.15) Proposition: For any 1-1 column map V into Y and any y ∈ Y ,

‖y‖ ≥ ‖PV y‖,

with equality if and only if y = PV y, i.e., if and only if y ∈ ranV .

This says that PV strictly reduces norms, except for those elements that it doesn’t change at all.

6.1 Construct the orthogonal projection of the vector (1, 1, 1) onto the line L = ran[1;−1; 1].

6.2 Construct the orthogonal projection of the vector x := (1, 1, 1) onto the straight line y + ran[v], with y = (2, 0, 1) and
v = (1,−1, 1). (Hint: you want to minimize ‖x − (y + αv)‖ over all α ∈ IR.)

6.3 Compute the distance between the two straight lines y + ran[v] and z + ran[w], with y = (2, 0, 1), v = (1, 1, 1),
z = (−1, 1,−1) and w = (0, 1, 1). (Hint: you want to minimize ‖y + αv − (z + βw)‖ over α, β.)

6.4 With v1 = (1, 2, 2), v2 = (−2, 2,−1), (a) construct the matrix that provides the orthogonal projection onto the
subspace ran[v1, v2] of IR3; (b) compute the orthogonal projection of the vector y = (1, 1, 1) onto ran[v1, v2].

6.5 Taking for granted that the space Y := C([−1 . . 1]) of real-valued continuous functions on the interval [−1 . . 1] is an
inner product space with respect to the inner product

〈f, g〉 :=

∫ 1

−1

f(t)g(t) dt,

do the following: (a) Construct (a formula for) the orthogonal projector onto X := Π1, using the power basis, V = [()0, ()1] for
X. (b) Use your formula to compute the orthogonal projection of ()2 onto Π1.

6.6 (a) Prove: If IF = IR, then u ⊥ v if and only if ‖u + v‖2 = ‖u‖2 + ‖v‖2. (b) What goes wrong with your argument
when IF = C?

6.7 For each of the following maps f : IFn × IFn → IF, determine whether or not it is an inner product.

(a) IF = IR, n = 3, and f(x, y) = x1y1 + x3y3; (b) IF = IR, n = 3, and f(x, y) = x1y1 − x2y2 + x3y3; (c) IF = IR,
n = 2, and f(x, y) = x2

1 + y2
1 + x2y2; (d) IF = C, n = 3, and f(x, y) = x1y1 + x2y2 + x3y3; (e) IF = IR, n = 3, and

f(x, y) = x1y2 + x2y3 + x3y1;

6.8 Prove that, for any invertible A ∈ IFn×n, 〈·, ·〉 : IFn × IFn → IF : (x, y) 7→ (Ay)cAx = yc(AcA)x is an inner product
on IFn.

6.9 Prove that, for any subset F of the inner product space Y , the orthogonal complement F⊥ is a linear subspace. (Hint:
F⊥ = ∩f∈F null fc.)

6.10 Prove that, whenever Y = X ⊕ Z, then X⊥ = Z and Z⊥ = X.

6.11 Prove that, for any linear subspace X of a finite-dimensional inner product space Y , ( id − PX) = PX⊥ .

6.12 Prove that, for any finite-dimensional linear subspace X of an inner product space Y , (X⊥)⊥ = X.

6.13 An isometry or rigid motion in an inner product space X is any map f : X → X that preserves distances, i.e., for

which ‖f(x) − f(y)‖ = ‖x − y‖ for all x, y ∈ X. Prove that any rigid motion of IR2 that maps the origin to itself is necessarily

a linear map. (Hint: you might prove first that, for any x 6= y and any α ∈ IR, the point (1 − α)x + αy is the unique point in

the plane whose distance from x is |α|‖y − x‖ and from y is |1 − α|‖y − x‖.)
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Least-squares

Note that PV y = V a, with the coefficient vector a the unique solution to the linear equation

V cV a = V cy.

This equation is also referred to as the normal equation since it requires that V c(y−V a) = 0, i.e., that the
residual, y− V a, be perpendicular or normal to every column of V , hence to all of ranV (see (6.10)Figure).
In effect, given that the equation V ? = y doesn’t have a solution for y ∈ Y \X , our particular V a = PV y
gives us the closest thing to a solution.

In particular, if y ∈ Y = IRn and V ∈ IRn×r is 1-1, then PV y minimizes ‖y − V a‖ over all a ∈ IRr.
For that reason, the coefficient vector a := V −1PV y is called the least-squares solution to the (usually
inconsistent or overdetermined) linear system V ? = y.

In MATLAB, the vector PV y is computed as V*(V\y), in line with the fact mentioned earlier that
the action of the matrix (V cV )−1V c is provided by the operator V\, i.e., (up to roundoff and for
any vector y) the three vectors

a1 = V\y, a2 = inv(V’*V)*V’*y, a3 = (V’*V)\(V’*y)

are all the same. However, the first way is preferable since it avoids actually forming the matrix
V’*V (or its inverse) and, therefore, is less prone to roundoff effects.

A practically very important special case of this occurs when X = ranV consists of functions on some
domain T and, for some finite subset S of T ,

QS : X → IRS : f 7→ (f(s) : s ∈ S)

is 1-1. Then

(6.16) 〈f, g〉S :=
∑

s∈S

f(s)g(s) =: (QSf)t(QSg)

is an inner product on X since it is evidently linear in the first argument and also hermitian and nonnegative,
and is definite since 〈f, f〉S = 0 implies QSf = 0, hence f = 0 since QS is 1-1. Then, for arbitrary g ∈ IRS ,
we can compute

V cg := (〈g, v〉S : v ∈ V ) = (QSV )tg,

hence can construct
PV,Sg := V (V cV )−1V cg

as the unique element V a of ranV closest to g in the sense that the sum of squares
∑

s∈S |g(s)− (V a)(s)|2
is as small as possible. For this reason, PV,Sg is also called the discrete least-squares approximation
from ranV to g, or, more explicitly, to the data ((s, g(s)) : s ∈ S). If #V = #S, then PV,Sg is the unique
interpolant to these data from ranV .

In any calculation of such a discrete least-squares approximation, we would, of course, have to list the
elements of S in some fashion, say as the entries sj of the sequence s := (s1, . . . , sn). Then we can think
of QS as the data map into IRn given by f 7→ (f(sj) : j = 1:n). Correspondingly, QSV becomes an n× r-
matrix, and this matrix is 1-1, by the assumption that QS is 1-1 on X = ranV . Further, the coefficient
vector a := (V cV )−1V cg for PV,Sg is the least-squares solution to the linear equation

QSV ? = g

which seeks a coefficient vector a so that V a interpolates to the data ((sj , g(sj)) : j = 1:n). Such an
interpolant exists if and only if the matrix QSV is invertible. Otherwise, one has to be content with a
least-squares solution, i.e., a discrete least-squares approximation to these data, from ranV .

6.14 Compute the discrete least squares approximation by straight lines (i.e., from Π1) to the data (j, j2), j = 1:10 using
(a) the basis [()0, ()1]; (b) the basis [()0, ()1 − 5.5()0]. (c) Why might one prefer (b) to (a)?
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Orthonormal column maps

The formula

PV = V (V cV )−1V c

for the orthogonal projector onto the range of the 1-1 column map V becomes particularly simple in case

(6.17) V cV = id;

it then reduces to

PV = V V c.

We call V orthonormal (or, o.n., for short) in this case since, written out entry by entry, (6.17) reads

〈vj , vk〉 =

{
1 if j = k;
0 otherwise,

}
=: δjk.

In other words, each column of V is normalized , meaning that it has norm 1, and different columns are
orthogonal to each other. Such bases are special in that they provide their own inverse, i.e.,

x = V (V cx), ∀x ∈ ranV.

The term ‘orthonormal’ can be confusing, given that earlier we mentioned the normal equation, V cV ? =
V cy, socalled because it expresses the condition that the residual, y − V a, be orthogonal or ‘normal’ to the
columns of V . In fact, norma is the Latin name for a mason’s tool for checking that a wall is at right angles
to the ground. In the same way, the normal to a surface at a point is a vector at right angles to the surface
at that point. Nevertheless, to normalize the vector y does not mean to change it into a vector that is
perpendicular to some subspace or set. Rather, it means to divide it by its norm, thereby obtaining the
vector y/‖y‖ that points in the same direction as y but has norm 1. To be sure, this can only be done for
y 6= 0 and then ‖ y/‖y‖ ‖ = 1 because the Euclidean norm is absolutely homogeneous, meaning that

(6.18) ‖αy‖ = |α|‖y‖, ∀(α, y) ∈ IF× Y.

We now show that every finite-dimensional linear subspace of an inner-product space Y has o.n. bases.

(6.19) Proposition: For every 1-1 V ∈ L(IFn, Y ), there exists an o.n. Q ∈ L(IFn, Y ) so that, for all
j, ran[q1, q2, . . . , qj ] = ran[v1, v2, . . . , vj ], hence V = QR with R (invertible and) upper triangular, a
QR factorization for V .

Proof: For j = 1:n, define uj := vj−PV<j
vj , with V<j := Vj−1 := [v1, . . . , vj−1]. By (6.14)Theorem,

uj ⊥ ranV<j , all j, hence uj ⊥ uk for j 6= k. Also, each uj is nonzero (since uj = Vj(a, 1) for some a ∈ IFj−1,
and Vj is 1-1), hence qj := uj/‖uj‖ is well-defined and, still, qj ⊥ qk for j 6= k.

It follows that Q := [q1, . . . , qn] is o.n., hence, in particular, 1-1. Finally, since qj = uj/‖uj‖ ∈ ranVj , it
follows that, for each j, the 1-1 map [qj , . . . , qj ] has its range in the j-dimensional space ranVj , hence must
be a basis for it.
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Since Q<j = [q1, . . . , qj−1] is an o.n. basis for ranV<j , it is of help in constructing qj since it gives

(6.20) uj = vj − PV<j
vj , with PV<j

vj = PQ<j
vj =

∑

k<j

qk〈vj , qk〉 =
∑

k<j

uk
〈vj , uk〉
〈uk, uk〉

.

For this reason, it is customary to construct the uj or the qj ’s one by one, from the first to the last, using
(6.20). This process is called Gram-Schmidt orthogonalization. To be sure, as (6.20) shows, there is no
real need (other than neatness) to compute the qj from the uj and, by skipping the calculation of qj , one
avoids taking square-roots.

Since any 1-1 column map into a finite-dimensional vector space can be extended to a basis for that
vector space, we have also proved the following.

(6.21) Corollary: Every o.n. column map Q into a finite-dimensional inner product space can be
extended to an o.n. basis for that space.

Given any 1-1 matrix V, the MATLAB command [q,r] = qr(V,0) provides an o.n. basis, q, for
ran V, along with the upper triangular matrix r for which q*r equals V. The (simpler) statement
[Q,R]=qr(V) provides a unitary, i.e., a square o.n., matrix Q and an upper triangular matrix R so
that Q*R equals V. If V is itself square, then q equals Q. In the contrary case, Q equals [q,U] for
some o.n. basis U of the orthogonal complement of ranV. Finally, the simplest possible statement, p
= qr(V), gives the most complicated result, namely a matrix p of the same size as V that contains
r in its upper triangular part and complete information about the various Householder matrices
used in its strictly lower triangular part.

While, for each j = 1:#V, ranV(:, [1:j]) = ranQ(:, [1:j]), the construction of q or Q does not
involve the Gram-Schmidt algorithm, as that algorithm is not reliable numerically when applied
to an arbitrary 1-1 matrix V. Rather, the matrix V is factored column by column with the aid of
certain elementary matrices, the so-called Householder reflections id − 2wwc/wcw.

As already observed, it is customary to call a square o.n. matrix unitary. It is also customary to call a
real unitary matrix orthogonal. However, the columns of such an ‘orthogonal matrix’ are not just orthogonal
to each other, they are also normalized. Thus it would be better to call such a matrix ‘orthonormal’, freeing
the term ‘orthogonal matrix’ to denote one whose columns are merely orthogonal to each other. But such
naming conventions are hard to change. I will simply not use the term ‘orthogonal matrix’, but use ‘real
unitary matrix’ instead.

An o.n. column map Q has many special properties, all of which derive from the defining property,
QcQ = id, by the observation that therefore, for any a, b ∈ IFn,

(6.22) 〈Qa,Qb〉 = 〈QcQa, b〉 = 〈a, b〉.

This says that Q is inner-product preserving. In particular, any o.n. Q ∈ L(IFn, X) is an isometry in
the sense that

(6.23) ∀a ∈ IFn ‖Qa‖ = ‖a‖.

More than that, any o.n. Q ∈ L(IFn, X) is angle-preserving since a standard definition of the angle
ϕ between two real nonzero n-vectors x and y is the following implicit one:

cos(ϕ) :=
〈x, y〉
‖x‖‖y‖ .
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To be sure, this definition makes sense only if we can be sure that the righthand side lies in the interval
[−1 . . 1]. But this is a consequence of the

Cauchy-Bunyakovski-Schwarz or CBS Inequality: For any u, v in the inner product space Y ,

(6.24) |〈u, v〉| = |vcu| ≤ ‖u‖‖v‖,

with equality if and only if [u, v] is not 1-1.

Be sure to remember not only the inequality, but also exactly when it is an equal ity.

Proof: If v = 0, then there is equality in (6.24) and [u, v] is not 1-1. Otherwise, v 6= 0 and, in that
case, by (6.15)Proposition, the orthogonal projection P[v]u = v(vcu)/‖v‖2 onto ran[v] of an arbitrary u ∈ Y
has norm smaller than ‖u‖ unless u = P[v]u. In other words, |vcu|/‖v‖ = ‖v(vcu)/‖v‖2‖ ≤ ‖u‖, showing
that (6.24) holds in this case, with equality if and only if u ∈ ran[v].

6.15 Prove (6.18).

6.16 Prove that V =

[
1 1 1
−1 1 −1
0 1 2

]
is a basis for IR3 and compute the coordinates of x := (1, 1, 1) with respect to V .

6.17 Verify that V =




1 −1 1
1 −1 −1
1 2 0
0 0 2



 is an orthogonal basis for its range, and extend it to an orthogonal basis for IR4.

6.18 (a) Use the calculations in H.P. 6.14 to construct an orthogonal basis for Π2 from the power basis V = [()0, ()1, ()2]
with respect to the (discrete) inner product in H.P. 6.14 .

(b) Use (a) to compute the discrete least-squares approximation from Π2 to the data (j, j3), j = 1:10.

6.19 Use the result of H.P. 6.5 to construct an o.n. basis for Π2 wrto the inner product 〈f, g〉 :=
∫ 1

−1
f(t)g(t) dt.

6.20 What is the angle between (1, 2, 2) and (3,−1,−2)?

6.21 Consider the Vandermonde matrix

A := [δz0
, . . . , δzk

]c[()0, . . . , ()k ] = (zj
i

: i, j = 0:k)

for some sequence z0, . . . , zk of complex numbers.

Prove that A is a scalar multiple of a unitary matrix if and only if, after some reordering and for some real α,

{z0, . . . , zk} = {exp(2πi(α + i/(k + 1))) : i = 0:k}.

ranA and nullAc form an orthogonal direct sum for tarA

The two basic linear subspaces associated with A ∈ L(X,Y ) are its range, ranA, and its kernel or
nullspace, nullA. However, when X and Y are inner product spaces, it is also very useful to consider the
range of A and the nullspace of the (conjugate) transpose Ac of A together. For, then, by the definiteness
of the inner product, Acy = 0 iff 〈x,Acy〉 = 0 for all x ∈ X , while, by (6.3), 〈x,Acy〉 = 〈Ax, y〉, hence

nullAc = {y ∈ Y : y ⊥ ranA}.

Recalling the notation
M⊥ := {y ∈ Y : y ⊥M}

for the it orthogonal complement of the subset M of Y , we get the following.

(6.25) Proposition: For any A ∈ L(X,Y ), (ranA)⊥ = nullAc.
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(6.26) Corollary: For any A ∈ L(X,Y ), Y is the orthogonal direct sum Y = ranA⊕ nullAc. Hence

dim tarA = dim ranA+ dim nullAc.

Proof: Let V be any basis for ranA. By (6.14)Theorem,

Y = ranV ⊕ nullV c,

while, by choice of V , ranV = ranA, and so, by (6.25), nullV c = (ranV )⊥ = (ranA)⊥ = nullAc.

In particular, A is onto if and only if Ac is 1-1. Further, since (Ac)c = A, we also have the following
complementary statement.

(6.27) Corollary: For any A ∈ L(X,Y ), X is the orthogonal direct sum X = ranAc⊕nullA. Hence,

dim domA = dim ranAc + dim nullA.

In particular, Ac is onto if and only if A is 1-1. Also, on comparing (6.27) with the Dimension Formula, we
see that dim ranA = dim ranAc.

The fact (see (6.26)Corollary) that tarA = ranA ⊕ nullAc is often used as a characterization of the
elements y ∈ tarA for which the equation A? = y has a solution. For, it says that y ∈ ranA if and only if
y ⊥ nullAc. Of course, since nullAc consists exactly of those vectors that are orthogonal to all the columns
of A, this is just a special case of the fact (see H.P. 6.12 ) that the orthogonal complement of the orthogonal
complement of a linear subspace is that linear subspace itself.

The inner product space IFm×n and the trace of a matrix

At the outset of these notes, we introduced the space IFm×n as a special case of the space IFT of all
scalar-valued functions on some set T , namely with

T = m× n.

This set being finite, there is a natural inner product on IFm×n, namely

〈A,B〉 :=
∑

i,j

B(i, j)A(i, j).

This inner product can also be written in the form

〈A,B〉 =
∑

i,j

Bc(j, i)A(i, j) =
∑

j

(BcA)(j, j) = trace(BcA).

Here, the trace of a square matrix C is, by definition, the sum of its diagonal entries,

traceC :=
∑

j

C(j, j).

The norm in this inner product space is called the Frobenius norm,

(6.28) ‖A‖F :=
√

traceAcA =
∑

i,j

|A(i, j)|2.
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The Frobenius norm is compatible with the Euclidean norm ‖ ‖ on IFn and IFm in the sense that

(6.29) ‖Ax‖ ≤ ‖A‖F ‖x‖, x ∈ IFn.

Not surprisingly, the map IFm×n → IFn×m : A 7→ At is unitary, i.e., inner-product preserving:

(6.30) 〈At, Bt〉 =
∑

i,j

Bt(i, j)At(i, j) =
∑

i,j

B(j, i)A(j, i) = 〈A,B〉.

In particular,

(6.31) trace(BcA) = trace(ABc), A,B ∈ IFm×n.

6.22 T/F

(a) (x, y) 7→ yc

[
1 1
1 1

]
x is an inner product on IR2.

(b) ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2;
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7. Norms, map norms, and the condition of a basis

Assume that V is a basis for the nontrivial linear subspace X of the inner product space Y . The
coordinate vector a for x ∈ X is the unique solution of the equation

V ? = x.

We may not be able to compute the solution exactly. Even if we know the entries of the solution exactly, as
common fractions say, we may not be able to use them exactly if we use some floating-point arithmetic, as
is common. It is for this reason that one is interested in gauging the effect of an erroneous coordinate vector
â on the accuracy of V â as a representation for x = V a.

How to judge the error by the residual

Since, presumably, we do not know a, we cannot compute the error

ε := a− â;

we can only compute the residual
r := x− V â.

Nevertheless, can we judge the error by the residual? Does a ‘small’ relative residual

‖r‖/‖x‖

imply a ‘small’ relative error
‖ε‖/‖a‖ ?

By definition, the condition (or, condition number) κ(V ) of the basis V is the greatest factor by
which the relative error, ‖ε‖/‖a‖, can exceed the relative residual, ‖r‖/‖x‖ = ‖V ε‖/‖V a‖; i.e.,

(7.1) κ(V ) := sup
a,ε

‖ε‖/‖a‖
‖V ε‖/‖V a‖ .

However, by interchanging here the roles of a and ε and then taking reciprocals, this also says that

1/κ(V ) = inf
ε,a

‖ε‖/‖a‖
‖V ε‖/‖V a‖ .

Hence, altogether,

(7.2)
1

κ(V )

‖r‖
‖x‖ ≤

‖ε‖
‖a‖ ≤ κ(V )

‖r‖
‖x‖ .

In other words, the larger the condition number, the less information about the size of the relative error is
provided by the size of the relative residual.

For a better feel for the condition number, note that we can also write the formula (7.1) for κ(V ) in the
following fashion:

κ(V ) = sup
ε

‖ε‖
‖V ε‖ sup

a

‖V a‖
‖a‖ .

Also,
‖V a‖/‖a‖ = ‖V (a/‖a‖)‖,

with a/‖a‖ normalized , i.e., of norm 1. Hence, altogether,

(7.3) κ(V ) =
sup{‖V a‖ : ‖a‖ = 1}
inf{‖V a‖ : ‖a‖ = 1} .
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This says that we can visualize the condition number κ(V ) in the following way; see (7.5)Figure. Consider
the image

(7.4) {V a : ‖a‖ = 1}

under V of the unit sphere

{a ∈ IFn : ‖a‖ = 1}

in IFn. It will be some kind of ellipsoid, symmetric with respect to the origin. In particular, there will be a
point amax with ‖amax‖ = 1 for which V amax will be as far from the origin as possible. There will also be a
point amin with ‖amin‖ = 1 for which V amin will be as close to the origin as possible. In other words,

κ(V ) = ‖V amax‖/‖V amin‖,

saying that the condition number gives the ratio of the largest to the smallest diameter of the ellipsoid (7.4).
The larger the condition number, the skinnier is the ellipsoid.

In particular, if a = amax while ε = amin, then the relative error is 1 while the relative residual is
‖V amin‖/‖V amax‖, and this is tiny to the extent that the ellipsoid is ‘skinny’.

On the other hand, if a = amin while ε = amax, then the relative error is still 1, but now the relative
residual is ‖V amax‖/‖V amin‖, and this is large to the extent that the ellipsoid is ‘skinny’.

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

V (amax + .2amin)

V (amin + .2amax)

(7.5) Figure. Extreme effects of a 20% relative error on the relative residual,

for V =

[
3 2
2 3

]
.

The worst-conditioned column maps V are those that fail to be 1-1 since, for them, V amin = 0, hence
κ(V ) =∞.

On the other extreme, it follows directly from (7.3) that κ(V ) ≥ 1, and this lower bound is reached by
any o.n. basis V since any o.n. basis is an isometry, by (6.23), i.e., ‖V a‖ = ‖a‖ for all a ∈ IFn. Thus o.n.
bases are best-conditioned, and rightfully prized for that. It was for this reason that we took the trouble
to prove that every finite-dimensional linear subspace of an inner product space has o.n. bases, and even
discussed just how to construct such bases.
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The map norm

As we now explain, the numbers ‖V amax‖ = max{‖V a‖ : ‖a‖ = 1} and 1/‖V amin‖ = 1/min{‖V a‖ :
‖a‖ = 1} both are examples of a map norm according to the following

(7.6) Definition: The map norm, ‖A‖, of A ∈ L(X,Y ) is the smallest nonnegative number c for which

‖Ax‖ ≤ c‖x‖, ∀x ∈ X.

If X is trivial, then ‖A‖ = 0 for the sole A ∈ L(X,Y ). Otherwise

(7.7) ‖A‖ = sup
x 6=0
‖Ax‖/‖x‖ = sup{‖Ax‖ : ‖x‖ = 1}.

Here, the last equality follows from the absolute homogeneity of the norm and the homogeneity of A which
combine to permit the conclusions that

‖Ax‖/‖x‖ = ‖A(x/‖x‖)‖ and ‖(x/‖x‖)‖ = 1.

In these notes, we are only interested in finite-dimensional X and, for such X ,

(7.8) ‖A‖ = max
x 6=0
‖Ax‖/‖x‖ = max{‖Ax‖ : ‖x‖ = 1}.

The reason for this is beyond the scope of these notes, but is now stated for the record: If X is finite-
dimensional, then

F : x 7→ ‖Ax‖
is continuous and the unit sphere

{x ∈ X : ‖x‖ = 1}
is compact, hence F achieves its maximum value on that sphere. (For the same reason, F also achieves its
minimum value on the unit sphere, and this justifies the existence of amax and amin in the preceding section.)

We conclude that determination of the map norm is a two-part process, as formalized in the following.

(7.9) Calculation of ‖A‖: The number c equals the norm ‖A‖ if and only if

(i) for all x, ‖Ax‖ ≤ c‖x‖; and

(ii) for some x 6= 0, ‖Ax‖ ≥ c‖x‖.

The first says that ‖A‖ ≤ c, while second says that ‖A‖ ≥ c, hence, together they say that ‖A‖ = c.

(7.10) Example: We compute ‖A‖ in case A ∈ IFm×n is of the simple form

A = [v][w]c = vwc

for some v ∈ IFm and some w ∈ IFn. Since

Ax = (vwc)x = v(wcx),

we have
‖(vwc)x‖ = ‖v‖|wcx| ≤ ‖v‖‖w‖‖x‖,

the equality by the absolute homogeneity of the norm, and the inequality by (6.24)Cauchy’s Inequality. This
shows that ‖vwc‖ ≤ ‖v‖‖w‖. On the other hand, for the specific choice x = w, we get (vwc)w = v(wcw) =
v‖w‖2, hence ‖(vwc)w‖ = ‖v‖‖w‖‖w‖. Assuming that w 6= 0, this shows that ‖vwc‖ ≥ ‖v‖‖w‖. However,
this inequality is trivially true in case w = 0 since then vwc = 0. So, altogether, we have that

‖vwc‖ = ‖v‖‖w‖.
Note that we have, incidentally, proved that, for any v ∈ IFn,

(7.11) ‖[v]‖ = ‖v‖ = ‖[v]c‖.
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As another example, note that, if also B ∈ L(Y, Z) for some inner product space Z, then BA is defined
and

‖(BA)x‖ = ‖B(Ax)‖ ≤ ‖B‖ ‖Ax‖ ≤ ‖B‖ ‖A‖‖x‖.

Therefore,

(7.12) ‖BA‖ ≤ ‖B‖ ‖A‖.

We are ready to discuss the condition (7.3) of a basis V in terms of map norms.

Directly from (7.8), max{‖V a‖ : ‖a‖ = 1} = ‖V ‖.

(7.13) Proposition: If A ∈ L(X,Y ) is invertible and X 6= {0} is finite-dimensional, then

‖A−1‖ = 1/min{‖Ax‖ : ‖x‖ = 1}.

Proof: Since A is invertible, y ∈ Y is nonzero if and only if y = Ax for some nonzero x ∈ X . Hence,

‖A−1‖ = max
y 6=0

‖A−1y‖
‖y‖ = max

x 6=0

‖A−1Ax‖
‖Ax‖ = 1/min

x 6=0

‖Ax‖
‖x‖ ,

and this equals 1/min{‖Ax‖ : ‖x‖ = 1} by the absolute homogeneity of the norm and the homogeneity of
A.

In particular, 1/‖A−1‖ is the largest number c for which

c‖x‖ ≤ ‖Ax‖, ∀x ∈ X.

We conclude that

(7.14) κ(V ) = ‖V ‖‖V −1‖.

7.1 Complement (7.13)Proposition by discussing the situation when X = {0}.
7.2 Prove that κ(V ) ≥ 1 for any basis V with at least one column.

7.3 Determine κ([ ]).

Vector norms and their associated map norms

MATLAB provides the map norm of the matrix A by the statement norm(A) (or by the statement
norm(A,2), indicating that there are other map norms available).

The norm command gives the Euclidean norm when its argument is a ‘vector’. Specifically,
norm(v) and norm(v,2) both give ‖v‖ =

√
vcv. However, since in (present-day) MATLAB, everything

is a matrix, there is room here for confusion since experimentation shows that MATLAB defines a
‘vector’ to be any 1-column matrix and any 1-row matrix. Fortunately, there is no problem with
this, since, by (7.11), the norm of the vector v equals the norm of the matrices v and vc.
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The best explicit expression available for ‖A‖ for an arbitrary A ∈ IFm×n is the following:

(7.15) ‖A‖ =
√
ρ(AcA) = σ1(A).

This formula cannot be evaluated in finitely many steps since the number ρ(AcA) is, by definition, the
‘spectral radius’ of AcA, i.e., the smallest possible radius of a disk centered at the origin that contains all the
eigenvalues of AcA. The 2-norm of A also equals σ1(A) which is, by definition, the largest ‘singular value’
of A. In general, one can only compute approximations to this number.

For this reason (and others), other vector norms are in common use, among them the max-norm

‖x‖∞ := max
j
|xj |, ∀x ∈ IFn,

for which the associated map norm is easily computable. It is

(7.16) ‖A‖∞ := max
x 6=0
‖Ax‖∞/‖x‖∞ = max

i

∑

j

|A(i, j)| = max
i
‖A(i, :)‖1,

with

(7.17) ‖v‖1 :=
∑

j

|vj |

yet another vector norm, the socalled 1-norm. The map norm associated with the 1-norm is also easily
computable. It is

(7.18) ‖A‖1 := max
x 6=0
‖Ax‖1/‖x‖1 = max

j

∑

i

|A(i, j)| = max
j
‖A(:, j)‖1 = ‖At‖∞ = ‖Ac‖∞.

In this connection, the Euclidean norm is also known as the 2-norm, since

‖x‖ =
√
xcx =

√∑

j

|xj |2 =: ‖x‖2.

Therefore, when it is important, one writes the corresponding map-norm with a subscript 2, too. For
example, compare (7.18) with

(7.19) ‖A‖ = ‖A‖2 = ‖Ac‖2 = ‖At‖2.

For the proof of these identities, recall from (6.24) that

(7.20) ‖x‖2 = max
y 6=0
|〈x, y〉|/‖y‖2, x ∈ IFn.

Hence,

(7.21) ‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

= max
x 6=0

max
y 6=0

|〈Ax, y〉|
‖x‖2‖y‖2

= max
y 6=0

max
x 6=0

|〈x,Acy〉|
‖x‖2‖y‖2

= max
y 6=0

‖Acy‖2
‖y‖2

= ‖Ac‖2.

The equality ‖At‖ = ‖Ac‖ holds in any of the map-norms discussed since they all depend only on the absolute
values of the entries of the matrix A.

The MATLAB statement norm(A,inf) provides the norm ‖A‖∞ in case A is a ‘matrix’, i.e., not
a ‘vector’. If A happens to equal [v] or [v]t for some vector v, then norm(A,inf) returns the max-
norm of that vector, i.e., the number ‖v‖∞. By (7.16), this is ok if A = [v], but gives, in general,
the wrong result if A = vt. This is an additional reason for sticking with the rule of using only
(n, 1)-matrices for representing n-vectors in MATLAB.

The 1-norm, ‖A‖1, is supplied by the statement norm(A,1).
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All three (vector-)norms mentioned so far are, indeed, norms in the sense of the following definition.

(7.22) Definition: The map ‖ ‖ : X → IR : x 7→ ‖x‖ is a vector norm, provided it is

(i) positive definite, i.e., ∀{x ∈ X} ‖x‖ ≥ 0 with equality if and only if x = 0;

(ii) absolutely homogeneous, i.e., ∀{α ∈ IF, x ∈ X} ‖αx‖ = |α|‖x‖;
(iii) subadditive, i.e., ∀{x, y ∈ X} ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

This last inequality is called the triangle inequality, and the vector space X supplied with a
vector norm is called a normed vector space.

The absolute value is a vector norm for the vector space IF = IF1. From this, it is immediate that both
the max-norm and the 1-norm are vector norms for IFn. As to the norm x 7→

√
xcx on an inner product

space and, in particular, the Euclidean or 2-norm on IFn, only the triangle inequality might still be in doubt,
but it is an immediate consequence of (6.24)Cauchy’s Inequality, which gives that

〈x, y〉+ 〈y, x〉 = 2 Re〈x, y〉 ≤ 2|〈x, y〉| ≤ 2‖x‖‖y‖,

and therefore:
‖x+ y‖2 = ‖x‖2 + 〈x, y〉+ 〈y, x〉+ ‖y‖2 ≤ (‖x‖+ ‖y‖)2.

Also, for X finite-dimensional, and both X and Y normed vector spaces, with norms ‖ ‖X and ‖ ‖Y
respectively, the vector space L(X,Y ) is a normed vector space with respect to the corresponding map norm

(7.23) ‖A‖ := ‖A‖X,Y := max
x 6=0

‖Ax‖Y
‖x‖X

.

All statements about the map norm ‖A‖ made in the preceding section hold for any of the map norms
‖A‖X,Y since their proofs there use only the fact that x 7→

√
xcx is a norm according to (7.22)Definition. In

particular, we will feel free to consider

κ(A)p := ‖A‖p‖A−1‖p, p = 1, 2,∞, A ∈ IFn.

Why all these different norms? Each norm associates with a vector just one number, and, as with bases,
any particular situation may best be handled by a particular norm.

For example, in considering the condition of the power basis V := [()j−1 : j = 1:k] for Π<k, we might
be more interested in measuring the size of the residual p− V â in terms of the max-norm

‖f‖[c..d] := max{|f(t)| : c ≤ t ≤ d}

over the interval [c . . d] of interest, rather than in the averaging way supplied by the corresponding 2-norm

(∫ b

a

|f(t)|2 dt

)1/2

.

In any case, any two norms on a finite-dimensional vector space are equivalent in the following sense.

(7.24) Proposition: For any two norms, ‖ ‖′ and ‖ ‖′′, on a finite-dimensional vector space X , there
exists a positive constant c so that

‖x‖′′ ≤ c‖x‖′, ∀x ∈ X.
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This is just the statement that the map norm

‖ idX‖ := max
x 6=0
‖x‖′′/‖x‖′

is finite.

For example, for any x ∈ IFn,

(7.25) ‖x‖1 ≤
√
n‖x‖2, and ‖x‖2 ≤

√
n‖x‖∞, while ‖x‖1 ≥ ‖x‖2 ≥ ‖x‖∞.

Finally, given that it is very easy to compute the max-norm ‖A‖∞ of A ∈ IFm×n and much harder to
compute the 2-norm ‖A‖ = ‖A‖2, why does one bother at all with the 2-norm? One very important reason
is the availability of a large variety of isometries , i.e., matrices A with

‖Ax‖ = ‖x‖, ∀x.

Each of these provides an o.n. basis for its range, and, by (6.19)Proposition, each finite-dimensional linear
subspace of an inner product space has o.n. bases.

In contrast, the only A ∈ IFn×n that are isometries in the max-norm, i.e., satisfy

‖Ax‖∞ = ‖x‖∞, ∀x ∈ IFn,

are of the form
diag(ε1, . . . , εn)P,

with P a permutation matrix and each εj a scalar of absolute value 1.

For this reason, we continue to rely on the 2-norm. In fact, any norm without a subscript or other
adornment is meant to be the 2-norm (or, more generally, the norm in the relevant inner product space).

7.4 Prove that, for any α ∈ IF, the linear map Mα : X → X : x 7→ αx on the normed vector space X 6= {0} has map
norm |α|.

7.5 Prove that, for any diagonal matrix D ∈ IFm×n and for p = 1, 2,∞, ‖D‖p = maxj |D(j, j)|.
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8. Factorization and rank

The need for factoring linear maps

In order to compute with a linear map A ∈ L(X,Y ), we have to factor it through a coordinate space.
This means that we have to write it as

A = V Λt, with V ∈ L(IFr, Y ), hence Λt ∈ L(X, IFr) .

The following picture might be helpful:

A
X −→ Y

ց րΛt
V

IFr

For example, recall how you apply the linear map D of differentiation to a polynomial p ∈ Πk: First you
get the polynomial coefficients of that polynomial, and then you write down Dp in terms of those coefficients.

To test my claim, carry out the following thought experiment: You know that there is exactly one
polynomial p of degree ≤ k that matches given ordinates at given k + 1 distinct abscissae, i.e., that satisfies

p(τi) = yi, i = 0:k

for given data (τi, yi), i = 0:k. Now, try, e.g., to compute the first derivative of the polynomial p of degree
≤ 3 that satisfies p(j) = (−1)j, j = 1, 2, 3, 4. Can you do it without factoring the linear map D : Π3 → Π3

through some coordinate space?

As another example, recall how we dealt with coordinate maps, i.e., the inverse of a basis. We saw
that, even though a basis V : IFn → IFm for some linear subspace X of IFm is a concrete matrix, its inverse,
V −1 is, offhand, just a formal expression. For actual work, we made use of any matrix Λt : IFm → IFn that
is 1-1 on X , thereby obtaining the factorization

V −1 = (ΛtV )−1Λt

in which ΛtV is a square matrix, hence (ΛtV )−1 is also a matrix.

The smaller one can make #V in a factorization A = V Λt of A ∈ L(X,Y ), the cheaper is the calculation
of A.

Definition: The smallest r for which A ∈ L(X,Y ) can be factored as A = V Λt with V ∈ L(IFr, Y )
(hence Λt ∈ L(X, IFr)) is called the rank of A. This is written

r = rankA.

Any factorization A = V Λt with #V = rankA is called minimal.

As an example,

A :=





1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5



 =





1
1
1
1



 [ 1 2 3 4 5 ] ,
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hence this A has rank 1 (since we can write it as A = V Λt with domV = IF1, but we couldn’t do it with
domV = IF0). To calculate Ax, we merely need to calculate the number α := (1, 2, 3, 4, 5)tx, and then obtain
Ax as the particular scalar multiple yα of the vector y := (1, 1, 1, 1). That is much cheaper than computing
the matrix product of the 4× 5-matrix A with the 1-column matrix [x].

As the example illustrates, any matrix

A := [v][w]t = vwt

with v ∈ IFm and w ∈ IFn has rank 1 unless it is trivial, i.e., unless either v or w is the zero vector. This
explains why an elementary matrix is also called a rank-one perturbation of the identity.

The only linear map of rank 0 is the zero map. If A is not the zero map, then its range contains some
nonzero vector, hence so must the range of any V for which A = V Λt with domV = IFr, therefore such r
must be > 0.

As another example, for any vector space X ,

dimX = rank idX .

Indeed, if n = dimX , then, for any basis V ∈ L(IFn, X) for X , idX = V V −1, therefore rank idX ≤ n, while,
for any factorization idX = V Λt for some V ∈ L(IFr, X), V must necessarily be onto, hence dimX ≤ r,
by (4.6)Proposition, and therefore dimX ≤ rank idX . In fact, it is possible to make the rank concept the
primary one and define dimX as the rank of idX .

When A is an m× n-matrix, then, trivially, A = A idn = idmA, hence rankA ≤ min{m,n}.
At times, particularly when A is a matrix, it is convenient to write the factorization A = V Λt more

explicitly as

(8.1) A =: [v1, v2, . . . , vr][λ1, λ2, . . . , λr]t =

r∑

j=1

[vj ]λj .

Since each of the maps
vjλj := [vj ]λj = [vj ] ◦ λj : x 7→ (λjx)vj

has rank ≤ 1, this shows that the rank of A gives the smallest number of terms necessary to write A as a
sum of rank-one maps.

(8.2) Proposition: A = V Λt is minimal if and only if V is a basis for ranA. In particular,

rankA = dim ranA.

Proof: Let A = V Λt. Then ranA ⊂ ranV , hence

dim ranA ≤ dim ranV ≤ #V,

with equality in the first ≤ iff ranA = ranV (by (4.13)Proposition), and in the second ≤ iff V is 1-1. Thus,
dim ranA ≤ #V , with equality iff V is a basis for ranA.

One can prove in a similar way that A = V Λt is minimal if and only if Λt is onto and nullA = null Λt.

(8.3) Corollary: The factorization A = A(:, bound)rrref(A) provided by elimination (see (3.11)) is
minimal.

(8.4) Corollary: If A = V Λt is minimal and A is invertible, then also V and Λt are invertible.

Proof: By (8.2)Proposition, V ∈ L(IFr, Y ) is a basis for ranA, while ranA = Y since A is invertible.
Hence, V is invertible. Therefore, also Λt = V −1A is invertible.
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But note that the matrix [ 1 ] = [ 1 0 ]

[
1
0

]
is invertible, even though neither of its two factors is.

8.1 Determine a minimal factorization for the matrix

A :=




1 2 0 3 4
2 4 0 6 8
1 1 0 1 1
8 7 0 6 5





8.2 With A the matrix of the previous problem, give a basis for ranA and a basis for ran At.

8.3 Give an example of a pair of matrices, A and B, of order 4, each of rank 2, yet ran A ∩ ran B = {0}.
8.4 Prove: For any two linear maps A and B for which AB is defined, rank(AB) ≤ min{rank A, rank B}. (Hint: If

A = VAΛA
t and B = VBΛB

t, then AB = VA(ΛA
tVBΛB

t) = (VAΛA
tVB)ΛB

t. Totally different hint: Use the Dimension
Formula together with the fact that rank C = dim ranC.)

8.5 Prove: If A = V Λt is a minimal factorization and A is a projector (i.e., A2 = A), then ΛtV = id. (Hint: H.P. 1.26
.)

The trace of a linear map

Each A ∈ L(X) can be factored in possibly many different ways as

A = V Λt = [v1, . . . , vn][λ1, . . . , λn]t

for some n (necessarily ≥ rankA). It may therefore be surprising that, nevertheless, the number

∑

j

λjvj

only depends on A. For the proof of this claim, we notice that

∑

j

λjvj = trace(ΛtV ).

Now, let W be a basis for X , with dual basis M := W−1. Then

Â := MtAW = MtV ΛtW,

while
ΛtWMtV = ΛtV.

Hence, by (6.31),
trace(Â) = trace(MtV ΛtW ) = trace(ΛtWMtV ) = trace(ΛtV ).

By holding our factorization A = V Λt fixed, this implies that trace(Â) does not depend on the particular
basis W for X we happen to use here, hence only depends on the linear map A. With that, holding now this
linear map A fixed, we see that also trace(ΛtV ) does not depend on the particular factorization A = V Λt

we picked, but only depends on A. This number is called the trace of A, written

trace(A).

The problems provide the basic properties of the trace of a linear map.

8.6 trace( idX) = dimX.

8.7 If P ∈ L(X) is a projector (i.e., P 2 = P ), then trace(P ) = dim ranP .

8.8 A 7→ trace(A) is the unique scalar-valued linear map on L(X) for which trace([x]λ) = λx for all x ∈ X and λ ∈ X′.

8.9 If A ∈ L(X, Y ) and B ∈ L(Y, X), then (both AB and BA are defined and) trace(AB) = trace(BA).

8.10 Prove that, for column maps V , W into X, and row maps Λt, Mt from X, V Λt = WMt implies that trace(ΛtV ) =

trace(MtW ) even if X is not finite-dimensional.
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The rank of a matrix and of its (conjugate) transpose

In this section, let A′ denote either the transpose or the conjugate transpose of the matrix A. Then,
either way, A = VW ′ iff A′ = WV ′. This trivial observation implies all kinds of things about the relationship
between a matrix and its (conjugate) transpose.

As a starter, it says that A = VW ′ is minimal if and only if A′ = WV ′ is minimal. Therefore:

Proposition: rankA = rankAc = rankAt.

(8.5) Corollary: If A is a matrix, then dim ranA = dim ranAc = dim ranAt.

(8.6) Corollary: For any matrix A, A′ is 1-1 (onto) if and only if A is onto (1-1).

Proof: If A ∈ IFm×n, then A is onto iff rankA = m iff rankA′ = m iff the natural factorization
A′ = A′ idm is minimal, i.e., iff A′ is 1-1.

The other equivalence follows from this since (A′)′ = A.

For a different proof of these results, see the comments that follow (6.26)Corollary and (6.27)Corollary.

Elimination as factorization

The description (3.2) of elimination does not rely on any particular ordering of the rows of the given
(m × n)-matrix A. At any stage, it only distinguishes between pivot rows and those rows not yet used as
pivot rows. We may therefore imagine that we initially place the rows of A into the workarray B in exactly
the order in which they are going to be used as pivot rows, followed, in any order whatsoever, by those rows
(if any) that are never going to be used as pivot rows.

In terms of the n-vector p provided by the (3.2)Elimination Algorithm, this means that we
start with B = A(q, :), with q obtained from p by

q = p(find(p>0)); 1:m; ans(q) = []; q = [q, ans];

Indeed, to recall, p(j) is positive if and only if the jth unknown is bound, in which case row p(j)

is the pivot row for that unknown. Thus the assignment q = p(find(p>0)) initializes q so that
A(q,:) contains the pivot rows in order of their use. With that, 1:m; ans(q) = []; leaves, in
ans, the indices of all rows not used as pivot rows.

Note that q is a permutation of order m. Hence B = QA, with Q the corresponding permu-
tation matrix, meaning the matrix obtained from the identity matrix by the very same reordering,
Q =eye(m)(q,:).

We prefer to write this as A = PB, with P the inverse of Q, hence obtainable from q by

P = eye(m); P(q,:) = P;
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With that done, we have, at the beginning of the algorithm,

B = P−1A

for some permutation matrix P , and all the work in the algorithm consists of repeatedly subtracting some
multiple α of some row h of B from some later row, i.e., some row i with i > h. In terms of matrices, this
means the repeated replacement

B ← Ei,h(−α)B

with i > h. Since, by (2.19), Ei,h(−α)−1 = Ei,h(α), this implies that

A = PLU,

with L the product of all those elementary matrices Ei,h(α) (in the appropriate order), and U the final state
of the workarray B. Specifically, U is in row-echelon form (as defined in (3.7)); in particular, U is upper
triangular.

Each Ei,h(α) is unit lower triangular, i.e., of the form id +N with N strictly lower triangular,
i.e.,

N(r, s) 6= 0 =⇒ r > s.

For, because of the initial ordering of the rows in B, only Ei,h(α) with i > h appear. This implies that L,
as the product of unit lower triangular matrices, is itself unit lower triangular.

If we apply the elimination algorithm to the matrix [A,C], with A ∈ IFm×m invertible, then the first
m columns are bound, hence the remaining columns are free. In particular, both P and L in the resulting
factorization depend only on A and not at all on C.

In particular, in solving A? = y, there is no need to subject all of [A, y] to the elimination algorithm. If
elimination just applied to A gives the factorization

(8.7) A = PLU

for an invertible A, then we can find the unique solution x to the equation A? = y by the two-step process:

c← L−1P−1y

x← U−1c

and these two steps are easily carried out. The first step amounts to subjecting the rows of the matrix [y] to all
the row operations (including reordering) used during elimination applied to A. The second step is handled
by the Backsubstitution Algorithm (3.3), with input B = [U, c], p = (1, 2, . . . ,m, 0), and z = (0, . . . , 0,−1).

Once it is understood that the purpose of elimination for solving A? = y is the factorization of A into
a product of “easily” invertible factors, then it is possible to seek factorizations that might serve the same
goal in a better way. The best-known alternative is the QR factorization, in which one obtains

A = QR,

with R upper triangular and Q o.n., i.e., QcQ = id. Such a factorization is obtained by doing elimination
a column at a time, usually with the aid of Householder matrices. These are elementary matrices of the
form

Hw := Ew,w(−2/wcw) = id − 2

wcw
wwc,

and are easily seen to be self-inverse or involutory (i.e., HwHw = id), hermitian (i.e., Hw
c = Hw),

hence unitary (i.e., Hw
cHw = id = HwHw

c).

While the computational cost of constructing the QR factorization is roughly double that needed for
the PLU factorization, the QR factorization has the advantage of being more impervious to the effects of
rounding errors. Precisely, the relative rounding error effects in both a PLU factorization A = PLU and in a
QR factorization A = QR can be shown to be proportional to the condition numbers of the factors. Since Q
is o.n., κ(Q) = 1 and κ(R) = κ(A), while, for a PLU factorization A = PLU , only the permutation matrix,
P , is o.n., and κ(L) and κ(U) can be quite large.

8.11 Prove: If L1D1U1 = A = L2D2U2, with Li unit lower triangular, Di invertible diagonal, and Ui unit upper triangular
matrices, then L1 = L2, D1 = D2, and U1 = U2.
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SVD

Let A = VW c be a minimal factorization for the m × n-matrix A of rank r. Then Ac = WV c is a
minimal factorization for Ac. By (8.2), this implies that V is a basis for ranA and W is a basis for ranAc.

Can we choose both these bases to be o.n.?

Well, if both V and W are o.n., then, for any x, ‖Ax‖ = ‖VW cx‖ = ‖W cx‖, while, for x ∈ ranAc,
x = WW cx, hence ‖x‖ = ‖W cx‖. Therefore, altogether, in such a case, A is an isometry on ranAc, a very
special situation.

Nevertheless and, perhaps, surprisingly, there is an o.n. basis W for ranAc for which the columns of
AW are orthogonal, i.e., AW = VΣ with V o.n. and Σ diagonal, hence A = V ΣW c with also V o.n.

(8.8) Theorem: For every A ∈ IFm×n, there exist o.n. bases V and W for ranA and ranAc, respec-
tively, and a diagonal matrix Σ with positive diagonal entries, so that

(8.9) A = V ΣW c.

Proof: For efficiency, the proof given here uses results, concerning the eigenstructure of hermitian
positive definite matrices, that are established only later in these notes. This may help to motivate the study
to come of the eigenstructure of matrices.

For motivation of the proof, assume for the moment that A = V ΣW c is a factorization of the kind we
claim to exist. Then, with Σ =: diag(σ1, . . . , σr), it follows that

AcA = WΣcV c V ΣW c = WΣcΣW c,

hence

(8.10) AcAW = WT, with T := diag(τ1, τ2, . . . , τr)

and W o.n., and the τj = σjσj = |σj |2 all positive.

Just such an o.n. W ∈ IFn×r and positive scalars τj do exist by (12.2)Corollary and (15.2)Proposition,
since the matrix AcA is hermitian (i.e., (AcA)c = AcA) and positive semidefinite (i.e., 〈AcAx, x〉 ≥ 0
for all x) and has rank r.

With W and the τj so chosen, it follows that W is an o.n. basis for ranAc, since (8.10) implies that
ranW ⊂ ranAc, and W is a 1-1 column map of order r = dim ranAc. Further, U := AW satisfies
U cU = W cAcAW = W cWT = T, hence

V := AWΣ−1, with Σ := T1/2 := diag(
√
τj : j = 1:r),

is o.n., and so VΣW c = A, because WW c = P := Pran Ac , hence ran( id − P ) = nullP = ranAc⊥ = nullA,
and so AWW c = AP = A(P + ( id − P )) = A.

It is customary to order the numbers

σj :=
√
τj , j = 1:r.

Specifically, one assumes that
σ1 ≥ σ2 ≥ · · · ≥ σr.

These numbers σj are called the (nonzero) singular values of A, and with this ordering, the factorization

A =

rank A∑

j=1

vjσjwj
c
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is called a (reduced) singular value decomposition or svd for A.

Offhand, a svd is not unique. E.g., any o.n. basis V for IFn provides the svd V idnV
c for idn.

Some prefer to have a factorization A = Ṽ Σ̃W̃ c in which both Ṽ and W̃ are o.n. bases for all of IFm

and IFn, respectively (rather than just for ranA and ranAc, respectively). This can always be achieved by
extending V and W from (8.9) in any manner whatsoever to o.n. bases Ṽ := [V, V1] and W̃ := [W,W1] and,
correspondingly, extending Σ to

Σ̃ := diag(Σ, 0) =

[
Σ 0
0 0

]
∈ IFm×n

by the adjunction of blocks of 0 of appropriate size. With this, we have

(8.11) A = Ṽ Σ̃W̃ c =

min{m,n}∑

j=1

vjσjwj
c,

and the diagonal entries
σ1 ≥ σ2 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σmin{m,n}

of Σ̃ are altogether referred to as the singular values of A. Note that this sequence is still ordered. We
will refer to (8.11) as a Singular Value Decomposition or SVD.

The MATLAB command svd(A) returns the SVD rather than the svd of A when issued in the
form [V,S,W] = svd(A). Specifically, A = V*S*W’, with V and W both unitary, of order m and
n, respectively, if A is an m × n-matrix. By itself, svd(A) returns, in a one-column matrix, the
(ordered) sequence of singular values of A.

The Pseudo-inverse

Here is a first of many uses to which the svd has been put. It concerns the solution of the equation

A? = y

in case A is not invertible (for whatever reason). In a previous chapter (see page 71), we looked in this case
for a solution of the ‘projected’ problem

(8.12) A? = Pran Ay =: ŷ

for the simple reason that any solution x of this equation makes the residual ‖Ax− y‖2 as small as it can
be made by any x. For this reason, any solution of (8.12) is called a least-squares solution for A? = y.

If now A is 1-1, then (8.12) has exactly one solution. The question is what to do in the contrary case.
One proposal is to get the best least-squares solution, i.e., the solution of minimal norm. The svd for A
makes it easy to find this particular solution.

If A = V ΣW c is a svd for A, then V is an o.n. basis for ranA, hence

b̂ = Pran Ab = V V cb.

Therefore, (8.12) is equivalent to the equation

V ΣW c? = V V cb.

Since V is o.n., hence 1-1, and Σ is invertible, this equation is, in turn, equivalent to

W c? = Σ−1V cb,
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hence to

(8.13) WW c? = WΣ−1V cb.

Since W is also o.n., WW c = PW is an o.n. projector, hence, by (6.15)Proposition, strictly reduces norms
unless it is applied to something in its range. Since the right-hand side of (8.13) is in ranW , it follows that
the solution of smallest norm of (8.13), i.e., the best least-squares solution of A? = y, is that right-hand side,
i.e., the vector

x̂ := A+y,

with the matrix
A+ := WΣ−1V c

the Moore-Penrose pseudo-inverse of A.

Note that
A+A = WΣ−1V cV ΣW c = WW c,

hence A+ is a left inverse for A in case W is square, i.e., in case rankA = #A. Similarly,

AA+ = VΣW cWΣ−1V c = V V c,

hence A+ is a right inverse for A in case V is square, i.e., in case rankA = #Ac. In any case,

A+A = Pran Ac , AA+ = Pran A,

therefore, in particular,
AA+A = A.

2-norm and 2-condition of a matrix

Recall from (6.23) that o.n. matrices are 2-norm-preserving, i.e.,

‖x‖2 = ‖Ux‖2, ∀x ∈ IFn, o.n. U ∈ IFm×n.

This implies that

‖TB‖2 = ‖B‖2 = ‖BU c‖2, ∀ o.n. T ∈ IFr×m, B ∈ IFm×n, o.n. U ∈ IFr×n.

Indeed,

‖TB‖2 = max
x 6=0

‖TBx‖2
‖x‖2

= max
x 6=0

‖Bx‖2
‖x‖2

= ‖B‖2.

By (7.21), this implies that also

‖BU c‖2 = ‖UBc‖2 = ‖Bc‖2 = ‖B‖2.

It follows that, with A = VΣW c ∈ IFm×n a svd for A,

(8.14) ‖A‖2 = ‖Σ‖2 = σ1,

the last equality because of the fact that Σ = diag(σ1, . . . , σr) with σ1 ≥ σ2 ≥ · · · ≥ 0.

Assume that, in addition, A is invertible, therefore r = rankA = n = m, making also V and W square,
hence A+ is both a left and a right inverse for A, therefore necessarily A−1 = A+ = V Σ−1W c. It follows
that ‖A−1‖2 = 1/σn. Hence, the 2-condition of A ∈ IFn×n is

κ2(A) = ‖A‖2‖A−1‖2 = σ1/σn,

and this is how this condition number is frequently defined.
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The effective rank of a noisy matrix

The problem to be addressed here is the following. If we construct a matrix in the computer, we have to
deal with the fact that the entries of the constructed matrix are not quite exact; rounding errors during the
calculations may have added some noise. This is even true for a matrix merely entered into the computer, in
case some of its entries cannot be represented exactly by the floating point arithmetic used (as is the case,
e.g., for the number .1 or the number 1/3 in any of the standard binary-based floatingpoint arithmetics).

This makes it impossible to use, e.g., the rref algorithm to determine the rank of the underlying matrix.
However, if one has some notion of the size of the noise involved, then one can use the svd to determine a
sharp lower bound on the rank of the underlying matrix, because of the following.

(8.15) Proposition: If A = V ΣW c is a svd for A and rank(A) > k, then min{‖A−B‖2 : rank(B) ≤
k} = σk+1 = ‖A−Ak‖2, with

Ak :=

k∑

j=1

vjσjwj
c.

Proof: If B ∈ IFm×n with rank(B) ≤ k, then dim null(B) > n− (k + 1) = dim IFn − dim ranWk+1,
with

Wk+1 := [w1, w2, . . . , wk+1].

Therefore, by (4.21)Corollary, the intersection null(B) ∩ ranWk+1 contains a vector z of norm 1. Then
Bz = 0, and W cz = Wk+1

cz, and ‖Wk+1
cz‖2 = ‖z‖2 = 1. Therefore, Az = V ΣW cz = Vk+1Σk+1Wk+1

cz,
hence

‖A−B‖2 ≥ ‖Az −Bz‖2 = ‖Az‖2 = ‖Σk+1Wk+1
cz‖2 ≥ σk+1‖Wk+1

cz‖2 = σk+1.

On the other hand, for the specific choice B = Ak, we get ‖A − Ak‖2 = σk+1 by (8.14), since A − Ak =∑
j>k vjσjwj

c is a svd for it, hence its largest singular value is σk+1.

In particular, if we have in hand a svd

A+ E = V diag(σ̂1, σ̂2, . . . , σ̂r̂)W c

for the perturbed matrix A + E, and know (or believe) that ‖E‖2 ≤ ε, then the best we can say about the
rank of A is that it must be at least

rε := max{j : σ̂j > ε}.

For example, the matrix

A =




2/3 1 1/3
4/3 2 2/3
1 1 1





is readily transformed by elimination into the matrix

B =




0 1/3 −1/3
0 0 0
1 1 1



 ,

hence has rank 2. However, on entering A into a computer correct to four decimal places after the decimal
point, we get (more or less) the matrix

Ac =




.6667 1 .3333
1.3333 2 .6667

1 1 1



 ,
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and for it, MATLAB correctly returns id3 as its rref. However, the singular values of Ac, as returned by svd,
are

(3.2340..., 0.5645..., 0.000054...)

indicating that there is a rank-2 matrix B with ‖Ac −B‖2 < .000055. Since entries of Ac are only accurate
to within 0.00005, the safe conclusion is that A has rank ≥ 2; it happens to have rank 2 in this particular
example.

The polar decomposition

The svd can also be very helpful in establishing results of a more theoretical flavor, as the following
discussion is intended to illustrate.

This discussion concerns a useful extension to square matrices of the polar form (see Backgrounder)

z = |z| exp(iϕ)

of a complex number z, i.e., a factorization of z into a nonnegative number |z| =
√
zz (its modulus or

absolute value) and a number whose absolute value is equal to 1, a socalled unimodular number.

There is, for any A ∈ Cn×n, a corresponding decomposition

(8.16) A =
√
AAcE,

called a polar decomposition, with
√
AAc ‘nonnegative’ in the sense that it is hermitian and positive

semidefinite, and E ‘unimodular’ in the sense that it is unitary, hence norm-preserving, i.e., an isometry.

The polar decomposition is almost immediate, given that we already have a SVD A = Ṽ Σ̃W̃ c for A (see
(8.11)) in hand. Indeed, from that,

A = Ṽ Σ̃Ṽ c Ṽ W̃ c,

with P := Ṽ Σ̃Ṽ c evidently hermitian, and also positive semidefinite since

〈Px, x〉 = xcṼ Σ̃Ṽ cx =
∑

j

σ̃j |(Ṽ cx)j |2

is nonnegative for all x, given that σ̃j ≥ 0 for all j; and

P 2 = Ṽ Σ̃Ṽ cṼ Σ̃Ṽ c = Ṽ Σ̃Σ̃cṼ c = Ṽ Σ̃W̃ cW̃ Σ̃cṼ c = AAc;

and, finally, E := Ṽ W̃ c unitary as the product of unitary maps.

Equivalence and similarity

The SVD provides a particularly useful example of equivalence. The linear maps A and Â are called
equivalent if there are invertible linear maps V and W so that

A = V ÂW−1.

Since both V and W are invertible, such equivalent linear maps share all essential properties, such as their
rank, being 1-1, or onto, or invertible.

Equivalence is particularly useful when the domains of V and W are coordinate spaces, i.e., when V
and W are bases, and, correspondingly, Â is a matrix, as in the following diagram:

A
X −→ Y

↑ ↑W V

IFn IFm−→
Â
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In this situation, Â = V −1AW is called a matrix representation for A.

For example, we noted earlier that the matrix

D̂k :=





0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · k





is the standard matrix representation used in Calculus for the linear map D : Πk → Πk−1 of differentiation
of polynomials of degree ≤ k.

In practice, one looks, for given A ∈ L(X,Y ), for matrix representations Â that are as simple as possible.
If that means a matrix with as many zero entries as possible and, moreover, all the nonzero entries the same,
say equal to 1, then a simplest such matrix representation is of the form

Â = diag( idrank A, 0) =

[
idrank A 0

0 0

]
,

with 0 indicating zero matrices of the appropriate size to make Â of size dim tarA× dim domA.

The situation becomes much more interesting and challenging when domA = tarA and, correspondingly,
we insist that also V = W . Linear maps A and Â for which there exists an invertible linear map V with

A = V ÂV −1

are called similar. Such similarity will drive much of the rest of these notes.

8.12 For the given linear maps A, B, C : IF2×3, find their matrix representation with respect to the basis V = [e1+e2, e2+

e3, e3 + e1] for IF3 and W :=

[
−1 1
1 1

]
for IF2: (a) Ax = (5x1 + 2x2 + 7x3, x1 + x2 − x3); (b) Bx = (x1 + x2 + x3, x2 − x3);

(c) Cx = (−x1 − x2 − x3, x3).

8.13 What is the matrix representation of the linear map C → C : x 7→ zx with respect to the basis [1, i] for C (as a
vector space with IF = IR) and with z =: a + ib a given complex number?

8.14 T/F

(a) If A, B, M are matrices such that rank AM = rank B, then M is invertible.

(b) If M is invertible and AM = B, then rank A = rank B.

(c) If M is invertible and MA = B, then rank A = rank B.
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9. Duality

This short chapter can be skipped without loss of continuity. Much of it can serve as a review of what
has been covered so far. It owes much to the intriguing book [ citGL ].

Complementary mathematical concepts

Duality concerns mathematical concepts that come in pairs, that complement one another. Examples
of interest in these notes include:

◦ ⊂ and ⊃;

◦ A subset S of T and its complement, \S := T \S;

◦ ∩ and ∪;

◦ ∀ and ∃;
◦ 1-1 and onto;

◦ right and left inverse;

◦ bound and free;

◦ nullspace and range of a linear map;

◦ an invertible map and its inverse;

◦ column map and row map;

◦ synthesis and analysis ;

◦ a basis and its inverse;

◦ columns and rows of a matrix;

◦ a matrix and its (conjugate) transpose;

◦ a linear subspace and one of its complements;

◦ dim and codim;

◦ the vector space X and its dual, X ′ := L(X, IF);

◦ the linear map A ∈ L(X,Y ) and its dual, A′ : Y ′ → X ′ : λ 7→ λA;

◦ a norm on the vector space X and the dual norm on X ′.

Each such pair expresses a kind of symmetry. Such symmetry provides, with each result, also its ‘dual’,
i.e., the result obtained by replacing one or more concepts appropriately by its complement. This leads to
efficiency, both in the proving and in the remembering of results.

A classical example is that of points and lines in a geometry, and results concerning lines through points.
E.g., through every two distinct points there goes exactly one line; its ‘dual’ statement is: any two distinct
lines have exactly one point in common.

Another classical example is DeMorgan’s Law, according to which any statement concerning the union,
intersection and containment of subsets is true if and only if its ‘dual’ statement is true, i.e., the statement
obtained by replacing each set by its complement and replacing (⊂,⊃,∩,∪) by (⊃,⊂,∪,∩), respectively. For
example, the two ‘distributive’ laws

(R ∩ S) ∪ T = (R ∪ T ) ∩ (S ∪ T ), (R ∪ S) ∩ T = (R ∩ T ) ∪ (S ∩ T )

are ‘dual’ to each other. Again, having verified that the intersection of a collection of sets is the largest
set contained in all of them, we have, by ‘duality’, also verified that the union of a collection of sets is the
smallest set containing all of them.

Here are some specific examples concerning the material covered in these notes so far.

Let V,W be column maps. If V ⊂ W and W is 1-1, then so is V . Its ‘dual’: if V ⊃W and W is onto,
then so is V . This makes maximally 1-1 maps and a minimally onto maps particularly interesting as, by
now, you know very well: A column map is maximally 1-1 if and only if it is minimally onto if and only if
it is a basis.
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Let A ∈ IFm×n. Then, A is 1-1(onto) if and only if At is onto(1-1). In terms of the rows and columns
of the matrix A and in more traditional terms, this says that the columns form a linearly independent
(spanning) sequence if and only if the rows form a spanning (linearly independent) sequence. This is a
special case of the result that nullA = (ranAt)⊥, hence that dim nullA = codim ranAt. By going from
A to At, and from a subspace to its orthogonal complement, we obtain from these the ‘dual’ result that
ranA = (nullAt)⊥, hence that dim ranA = codim nullAt.

Recall from (3.11) the factorization A = A(:, bound)rrref(A). It supplies the corresponding factorization
At = At(:, rbound)rrref(At) with rbound the index sequence of bound columns of At, i.e. of bound rows of
A. By combining these two factorizations, we get the more symmetric factorization

A = (rrref(At))tA(rbound, bound)rrref(A),

which is called the car-factorization in [ citGS ].

9.1 Prove that, for any A ∈ L(X, Y ), codim null A = dim ran A.

9.2 In the list of pairs of complementary concepts, given at the beginning of this chapter, many of the pairs have been
ordered so as to have the first term in each pair naturally correspond to the first term in any related pair.

For example, a right (left) inverse is necessarily 1-1 (onto).

Discover as many such correspondences as you can.

The dual of a vector space

The dual of the vector space X is, by definition, the vector space

X ′ := L(X, IF)

of all linear maps into the underlying scalar field. Each such map is called a linear functional on X . (The
term ‘functional’ is used to indicate a map, on a vector space, whose target is the underlying scalar field.
Some books use the term ‘form’ instead.)

We have made much use of linear functionals, namely as the rows λ1, . . . , λn of specific row maps (or
data maps)

Λt = [λ1, . . . , λn]t ∈ L(X, IFn)

from the vector space X to n-dimensional coordinate space.

Example: If X = IFn, then

X ′ = L(IFn, IF) = IF1×n ∼ IFn,

and it has become standard to identify (IFn)′ with IFn via

IFn → (IFn)′ : a 7→ at.

While this identification is often quite convenient, be aware that, strictly speaking, IFn and its dual are quite
different objects.

Here is a quick discussion of X ′ for an arbitrary finite-dimensional vector space, X . X being finite-
dimensional, it has a basis, V ∈ L(IFn, X) say. Let

V −1 =: Λt =: [λ1, . . . , λn]t

be its inverse. Each of its rows λi is a linear functional on X , hence

Λ := [λ1, . . . , λn]

is a column map into X ′.
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Λ is 1-1: Indeed, if Λa = 0, then
∑

i a(i)λi is the zero functional, hence, in particular,
∑

i a(i)λivj = 0
for all columns vj of V . This implies that 0 = (

∑
i a(i)λivj : j = 1:n) = at(ΛtV ) = at idn = at, hence a = 0.

It follows that dim ran Λ = dim dom Λ = n, hence we will know that Λ is also onto as soon as we know
that the dimension of its target is ≤ n, i.e.,

dimX ′ ≤ n.

For the proof of this inequality, observe that, for each λ ∈ X ′, the composition λV is a linear map from IFn

to IF, hence a 1-by-n matrix. Moreover, the resulting map

X ′ → IF1×n ∼ IFn : λ→ λV

is linear. It is also 1-1 since λV = 0 implies that λ = 0 since V is invertible. Hence, indeed, dimX ′ ≤ n.

(9.1) Proposition: For each basis V of the n-dimensional vector space X , the rows of its inverse,
V −1 =: Λt =: [λ1, . . . , λn]t, provide the columns for the basis Λ = [λ1, . . . , λn] for X ′. In particular,
dimX ′ = dimX .

The two bases, Λ and V , are said to be dual or bi-orthonormal to signify that

λivj = δij , i, j = 1:n.

Here is the ‘dual’ claim.

(9.2)Proposition: Let X be an n-dimensional linear subspace of the vector space Y . Then, for each
Λt ∈ L(Y, IFn) that is 1-1 on X , there exists exactly one basis, V , for X that is dual or bi-orthonormal
to Λ.

For every λ ∈ Y ′, there exists exactly one a ∈ IFn so that

(9.3) λ = Λa on X.

In particular, each λ ∈ X ′ has a unique such representation Λa in ran Λ.

Proof: Since dimX = dim tar Λt and the restriction of Λt =: [λ1, . . . , λn]t to X is 1-1, it must be
invertible, i.e., there exists exactly one basis V for X with ΛtV = idn, hence with Λ and V dual to each
other.

In particular, Λ := [λ1, . . . , λn] is a basis for its range. Let now λ ∈ Y ′ and consider the equation

Λ? = λ on X.

Since V is a basis for X , this equation is equivalent to the equation (Λ?)V = λV . Since

(Λa)V = (
∑

i

a(i)λivj : j = 1:n) = at(ΛtV ),

this equation, in turn, is equivalent to
?tΛtV = λV,

and, since ΛtV = idn, this has the unique solution ? = λV = (λvj : j = 1:n).
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If X is not finite-dimensional, it may be harder to provide a complete description of its dual. In fact, in
that case, one calls X ′ the algebraic dual and, for even some very common vector spaces, like C([a . . b]),
there is no constructive description for its algebraic dual. If X is a normed vector space, one focuses attention
instead on its topological dual. The topological dual consists of all a continuous linear functionals on X ,
and this goes beyond the level of these notes. Suffice it to say that, for any finite-dimensional normed vector
space, the algebraic dual coincides with the topological dual.

The very definition of 0 ∈ L(X, IF) ensures that λ ∈ X ′ is 0 if and only if λx = 0 for all x ∈ X . What
about its dual statement: x ∈ X is 0 if and only if λx = 0 for all λ ∈ X ′? For an arbitrary vector space, this
turns out to require the Axiom of Choice. However, if X is a linear subspace of IFT for some set T , then, in
particular,

δt : X → IF : x 7→ x(t)

is a linear functional on X , hence the vanishing at x of all linear functionals in X ′ implies that, in particular,
x(t) = 0 for all t ∈ T , hence x = 0.

(9.4) Fact: For any x in the vector space X , x = 0 if and only if λx = 0 for all λ ∈ X ′.

Proof: If X is finite-dimensional, then, by (9.1), the condition λx = 0 for all λ ∈ X ′ is equivalent,
for any particular basis V for X with dual basis Λ for X ′, to having btΛtV a = 0 for all b ∈ IFn and for
x =: V a. Since ΛtV = idn, it follows that a = ΛtV a must be zero, hence x = 0.

Finally, one often needs the following

(9.5) Fact: Every linear functional on some linear subspace of a vector space can be extended to a
linear functional on the whole vector space.

Proof: If X is a linear subspace of the finite-dimensional vector space Y , then there is a basis [V,W ]
for Y with V a basis for X . If now λ ∈ X ′, then there is a unique µ ∈ Y ′ with µ[V,W ] = [λV, 0], and it
extends λ to all of Y .

If Y is not finite-dimensional, then it is, once again a job for the Axiom of Choice to aid in the proof.

The dual of an inner product space

We introduced inner-product spaces as spaces with a ready supply of linear functionals. Specifically,
the very definition of an inner product 〈, 〉 on the vector space Y requires that, for each y ∈ Y , yc := 〈·, y〉
be a linear functional on Y . This sets up a map

c : Y → Y ′ : y 7→ yc

from the inner product space to its dual. This map is additive. It is also homogeneous in case IF = IR. If
IF = C, then the map is skew-homogeneous, meaning that

(αy)c = αyc, α ∈ IF, y ∈ Y.

Either way, this map is 1-1 if and only if its nullspace is trivial. But, since yc = 0 implies, in particular, that
ycy = 0, the positive definiteness required of the inner product guarantees that then y = 0, hence the map
y 7→ yc is 1-1.
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If now n := dimY < ∞, then, by (9.1)Proposition, dimY ′ = dimY = n, hence, by the Dimension
Formula, y 7→ yc must also be onto. This proves

(9.6) Proposition: If Y is a finite-dimensional inner product space, then every λ ∈ Y ′ can be written
in exactly one way as λ = yc for some y ∈ Y .

We say in this case that yc represents λ.

If Y is not finite-dimensional, then the conclusion of this proposition still holds, provided we consider
only the topological dual of Y and provided Y is ‘complete’, the very concept we declared beyond the scope
of these notes when, earlier, we discussed the Hermitian (aka conjugate transpose) of a linear map between
two inner product spaces.

The dual of a linear map

Any A ∈ L(X,Y ) induces in a natural way the linear map

A′ : Y ′ → X ′ : λ 7→ λA.

This map is called the dual to A.

If also B ∈ L(Y, Z), then BA ∈ L(X,Z) and, for every λ ∈ Z ′, λ(BA) = (λB)A = A′(B′(λ)), hence

(9.7) (BA)′ = A′B′, A ∈ L(X,Y ), B ∈ L(Y, Z).

If both X and Y are coordinate spaces, hence A is a matrix, then, with the identification of a coordinate
space with its dual, the dual of A coincides with its transpose i.e.,

A′ = At, A ∈ IFm×n = L(IFn, IFm).

If Y = IFm, hence A is a row map, A = Λt = [λ1, . . . , λm]t say, then, with the identification of (IFm)′

with IFm, (Λt)′ becomes the column map

(Λt)′ = [λ1, . . . , λm] = Λ.

In this way, we now recognize a row map on X as the pre-dual of a column map into X ′.

If X = IFn, hence A is a column map, A = V = [v1, . . . , vn] say, then, with the identification of (IFn)′

with IFn, V ′ becomes a row map on Y ′, namely the row map that associates λ ∈ Y ′ with the n-vector
(λvj : j = 1:n). Its rows are the linear functionals

Y ′ → IF : λ 7→ λvj

on Y ′ ‘induced’ by the columns of V . Each of these rows is therefore a linear functional on Y ′, i.e., an
element of (Y ′)′, the bidual of Y . Also if, in addition, V is 1-1, the V ′ is onto. Indeed, in that case, V is
a basis for its range, hence has an inverse, Λt say. Now, for arbitrary bt ∈ (IFn)′, bt = bt(ΛtV ) = (Λb)V ,
with Λb a linear functional on ranV . By (9.5)Fact, there is some λ ∈ Y ′ that agrees with Λb on ranV . In
particular, λV = (Λb)V = bt, showing that V ′ is, indeed onto.

Finally, if X and Y are arbitrary vector spaces but A is of finite rank, then, for any basis V for ranA
with dual basis M, we have

A = VMtA =: V Λt,

and, by (8.2)Proposition, this is a minimal factorization for A. It follows that

A′ = ΛV ′,

and, since V is 1-1, hence V ′ is onto, and also Λ is 1-1, we conclude that Λ is a basis for ranA′, hence ΛV ′

is a minimal factorization for ranA′.

In particular, rankA′ = rankA. Also, if A is onto, then A′ 1-1.
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10. The powers of a linear map and its spectrum

If tarA = domA, then we can form the powers

Ak := AA · · ·A︸ ︷︷ ︸
k factors

of A. Here are some examples that show the importance of understanding the powers of a linear map.

Examples

Fixed-point iteration: A standard method for solving a large linear system A? = y (with A ∈ IFn×n)
is to split the matrix A suitably as

A = M −N
with M ‘easily invertible’, and to generate the sequence x0, x1, x2, . . . of approximate solutions by the iter-
ation

(10.1) xk := M−1(Nxk−1 + y), k = 1, 2, . . . .

Assuming this iteration to converge, with x := limk→∞ xk its limit, it follows that

(10.2) x = M−1(Nx+ y),

hence that Mx = Nx + y, therefore finally that Ax = (M − N)x = y, i.e., the limit solves our original
problem A? = y.

Let εk := x − xk be the error in our kth approximate solution. Then on subtracting the iteration
equation (10.1) from the exact equation (10.2), we find that

εk = x− xk = M−1(Nx+ b − (Nxk−1 + y)) = M−1Nεk−1.

Therefore, by induction,
εk = Bkε0, with B := M−1N

the iteration map. Since we presumably don’t know the solution x, we have no way of choosing the initial
guess x0 in any special way. For convergence, we must therefore demand that

lim
k→∞

Bkz = 0 for all z ∈ IFn.

It turns out that this will happen if and only if all eigenvalues of B are less than 1 in absolute value.

random walk: Consider a random walk on a graph G. The specifics of such a random walk are given
by a stochastic matrix M of order n, with n the number of vertices in the graph. This means that all the
entries of M are nonnegative, and all the entries in each row add up to 1, i.e.,

M ≥ 0, Me = e,

with e the vector with all entries equal to 1,

e := (1, 1, 1, . . . , 1).

The entries of M are interpreted as probabilities: Mi,j gives the probability that, on finding ourselves at
vertex i, we would proceed to vertex j. Thus, the probability that, after two steps, we would have gone from
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vertex i to vertex j is the sum of the probabilities that we would have gone from i to some k in the first step
and thence to j in the second step, i.e., the number

∑

k

Mi,kMk,j = M2
i,j.

More generally, the probability that we have gone after m steps from vertex i to vertex j is the number Mm
i,j ,

i.e., the (i, j)-entry of the mth power of the matrix M .

A study of the powers of such a stochastic matrix reveals that, for large m, all the rows of Mm look
more and more alike. Precisely, for each row i,

lim
m→∞

Mm
i: = x∞

for a certain (i-independent) vector x∞ with nonnegative entries that sum to one; this is part of the so-called
Perron-Frobenius Theory. In terms of the random walk, this means that, for large m, the probability that
we will be at vertex j after m steps is more or less independent of the vertex we started off from. One can
find this limiting probability distribution x∞ as a properly scaled eigenvector of the transpose M t of M
belonging to the eigenvalue 1.

As the simple example M =

[
0 1
1 0

]
shows, the last paragraph isn’t quite correct. Look for the

discussion of the Perron-Frobenius theorem later in these notes (see pages 135ff).

polynomials in a map: Once we know the powers Ak of A, we can also construct polynomials in A,
in the following way. If p is the polynomial

p : t 7→ c0 + c1t+ c2t
2 + · · ·+ ckt

k,

then we define the linear map p(A) to be what we get when we substitute A for t:

p(A) := c0 id + c1A+ c2A
2 + · · ·+ ckA

k.

We can even consider power series. The most important example is the matrix exponential:

(10.3) exp(A) := id +A+A2/2 +A3/6 + · · ·+Ak/k! + · · · .

The matrix exponential is used in solving the first-order system

(10.4) Dy(t) = Ay(t) for t > 0, y(0) = b

of constant-coefficient ordinary differential equations. Here A is a square matrix, of order n say, and y(t) is
an n-vector that depends on t. Further,

Dy(t) := lim
h→0

(y(t+ h)− y(t))/h

is the first derivative at t of the vector-valued function y. One verifies that the particular function

y(t) := exp(tA)b, t ≥ 0,

solves the differential equation (10.4). Practical application does require efficient ways for evaluating the
power series

exp((tA)) := id + tA+ (tA)2/2 + (tA)3/6 + · · ·+ (tA)k/k! + · · · ,
hence for computing the powers of tA.
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Eigenvalues and eigenvectors

The calculation of Akx is simplest if A maps x to a scalar multiple of itself, i.e., if

Ax = µx = xµ

for some scalar µ. For, in that case, A2x = A(Ax) = A(xµ) = Axµ = xµ2 and, more generally,

(10.5) Ax = xµ =⇒ Akx = xµk, k = 0, 1, 2, . . . .

If x = 0, this will be so for any scalar µ. If x 6= 0, then this will be true for at most one scalar µ. That scalar
is called an eigenvalue for A with associated eigenvector x.

(10.6) Definition: Let A ∈ L(X). Any scalar µ for which there is a nontrivial vector x ∈ X so that
Ax = xµ is called an eigenvalue of A, with (µ, x) the corresponding eigenpair. The collection of all
eigenvalues of A is called the spectrum of A and is denoted spec(A).
Thus

spec(A) = {µ ∈ IF : A− µ id is not invertible}.
All the elements of null(A− µ id)\0 are called the eigenvectors of A associated with µ. The number

ρ(A) := max | spec(A)| = max{|µ| : µ ∈ spec(A)}

is called the spectral radius of A.

Since µ ∈ spec(A) exactly when (A − µ id) is not invertible, this puts a premium on knowing whether
or not a given linear map is invertible. We pointed out in Chapter 3 that the only matrices for which we
could tell this at a glance are the triangular matrices. To recall, by (3.20)Proposition, a triangular matrix is
invertible if and only if none of its diagonal entries is zero. Since (A − µ id) is triangular for any µ in case
A is triangular, this gives the important

(10.7) Proposition: For any triangular matrix of order n, spec(A) = {Ajj : n = 1:n}.

In the best of circumstances, there is an entire basis V = [v1, v2, . . . , vn] for X = domA consisting
of eigenvectors for A. In this case, it is very easy to compute Akx for any x ∈ X . For, in this situation,
Avj = vjµj , j = 1:n, hence

AV = [Av1, . . . , Avn] = [v1µ1, . . . , vnµn] = VM,

with M the diagonal matrix
M := diag(µ1, µ2, . . . , µn).

Therefore, for any k,
AkV = VMk = V diag(µk

1 , . . . , µ
k
n).

Also, since V is a basis for X , any x ∈ X can be written (uniquely) as x = V a for some n-vector a and thus

Akx = AkV a = VMka = v1µ
k
1a1 + v2µ

k
2a2 + · · ·+ vnµ

k
nan

for any k. For example, for such a matrix and for any t,

exp(tA) = V exp(tM)V −1 = V diag(. . . , exp(tµj), . . .)V −1.
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To be sure, if A is not 1-1, then at least one of the µj must be zero, but this doesn’t change the fact that M
is a diagonal matrix.

(10.8) Example: The matrix A :=

[
2 1
1 2

]
maps the 2-vector x := (1, 1) to 3x and the 2-vector

y := (1,−1) to itself. Hence, A[x, y] = [3x, y] = [x, y] diag(3, 1) or

A = V diag(3, 1)V −1, with V := [x, y] =

[
1 1
1 −1

]
.

Elimination gives

[V, id] =

[
1 1 1 0
1 −1 0 1

]
→
[
1 1 1 0
0 −2 −1 1

]
→
[

1 0 1/2 1/2
0 −2 −1 1

]
→
[

1 0 1/2 1/2
0 1 1/2 −1/2

]
,

hence

V −1 =

[
1 1
1 −1

]
/2.

It follows that, for any k,

Ak = V diag(3k, 1)V −1 =

[
3k 1
3k −1

] [
1 1
1 −1

]
/2 =

[
3k + 1 3k − 1
3k − 1 3k + 1

]
/2.

In particular,

A−1 =

[
1/3 + 1 1/3− 1
1/3− 1 1/3 + 1

]
/2 =

[
2 −1
−1 2

]
/3.

Also,

exp(tA) = V diag(e3t, et)V −1 =

[
e3t + et e3t − et

e3t − et e3t + et

]
.

10.1 Let A =

[
1 2
2 4

]
. (i) Find a basis V and a diagonal matrix M so that A = V MV −1. (ii) Determine the matrix

exp(A).

10.2 Let A =

[
4 1 −1
2 5 −2
1 1 2

]
.

Use elimination to determine all eigenvectors for this A belonging to the eigenvalue 3, and all eigenvectors belonging to
the eigenvalue 5. (It is sufficient to give a basis for null(A − 3 id) and for null(A − 5 id).)

10.3 If A is a triangular matrix, then one of its eigenvectors can be determined without any calculation. Which one?

10.4

(a) Prove that the matrix A =

[
4 1 −1
2 5 −2
1 1 2

]
maps the vector space Y := ran V with V :=

[
0 2
3 1
1 1

]
into itself, hence the

restriction of A to Y , i.e.,
A|Y := B : Y → Y : y 7→ Ay

is a well-defined linear map. (You will have to verify that ran AV ⊆ ran V ; looking at rref([V AV ]) should help.)

(b) Determine the matrix representation of B with respect to the basis V for dom B = Y , i.e., compute the matrix V −1BV .
(Hint: (5.4)Example tells you how to read off this matrix from the calculations in (a).)

(c) Determine the spectrum of the linear map B = A|Y defined in (a). (Your answer in (b) could be helpful here since similar

maps have the same spectrum.)

10.5 Prove that 0 is the only eigenvalue of the matrix A =

[
0 1 2
0 0 3
0 0 0

]
and that, up to scalar multiples, e1 is the only

eigenvector for A.

10.6 Let µ ∈ spec(A) (hence Ax = µx for some x 6= 0). Prove:

(i) For any scalar α, αµ ∈ spec(αA).

(ii) For any scalar α, µ + α ∈ spec(A + α id).

(iii) For any natural number k, µk ∈ spec(Ak).

(iv) If A is invertible, then µ 6= 0 and µ−1 ∈ spec(A−1).

(v) If A is a matrix, then µ ∈ spec(At) and µ ∈ spec(Ac).
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Diagona(liza)bility

Definition: A linear map A ∈ L(X) is called diagona(liza)ble if it has an eigenbasis, i.e., if there
is a basis for its domain X consisting entirely of eigenvectors for A.

(10.9) Lemma: If Vµ is a basis for null(A− µ id), then [Vµ : µ ∈ spec(A)] is 1-1.

Proof: Note that, for any µ ∈ spec(A) and any ν,

(A− ν id)Vµ = (µ− ν)Vµ,

and, in particular, (A − µ id)Vµ = 0. Hence, if
∑

µ Vµaµ = 0, then, for each µ ∈ spec(A), after applying
to both sides of this equation the product of all (A − ν id) with ν ∈ spec(A)\µ, we are left with the
equation (

∏
ν 6=µ(µ − ν))Vµaµ = 0, and this implies that aµ = 0 since Vµ is 1-1 by assumption. In short,

[Vµ : µ ∈ spec(A)]a = 0 implies a = 0.

(10.10) Corollary: #spec(A) ≤ dim domA, with equality only if A is diagonalizable.

(10.11) Proposition: A linear map A ∈ L(X) is diagonalizable if and only if

(10.12) dimX =
∑

µ∈spec(A)

dim null(A− µ id).

Proof: By (10.9)Lemma, (10.12) implies that domA has a basis consisting of eigenvectors for A.

Conversely, if V is a basis for X = domA consisting entirely of eigenvectors for A, then A = VMV −1

for some diagonal matrix M =: diag(µ1, . . . , µn), hence, for any scalar µ, (A − µ id) = V (M − µ id)V −1. In
particular, null(A − µ id) = ran[vj : µ = µj ], hence

∑
µ∈spec(A) dim null(A − µ id) =

∑
µ∈spec(A) #{j : µj =

µ} = n = #V = dimX .

(10.11)Proposition readily identifies a circumstance under which A is not diagonable, namely when
null(A−µ id)∩ran(A−µ id) 6= {0} for some µ. For, with Vν a basis for null(A−ν id) for any ν ∈ spec(A), we
compute AVν = νVν , hence (A−µ id)Vν = (ν−µ)Vν and therefore, for any ν 6= µ, Vν = (A−µ id)Vν/(ν−µ) ⊂
ran(A − µ id). This places all the columns of the 1-1 map V\µ := [Vν : ν 6= µ] in ran(A − µ id) while, by
(10.9)Lemma, ranVµ ∩ ranV\µ is trivial. Hence, if ranVµ = null(A − µ id) has nontrivial intersection with
ran(A− µ id), then ranV\µ cannot be all of ran(A− µ id), and therefore

∑

ν 6=µ

dim null(A− ν id) = #V\µ < dim ran(A− µ id) = dimX − dim null(A− µ id),
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hence, by (10.11)Proposition, such A is not diagonable.

This has motivated the following

Definition: The scalar µ is a defective eigenvalue of A if

null(A− µ id) ∩ ran(A− µ id) 6= {0}.

Any such µ certainly is an eigenvalue (since, in particular, null(A−µ id) 6= {0}), but I don’t care for such
negative labeling; if it were up to me, I would call such µ an interesting eigenvalue, since the existence of
such eigenvalues makes for a richer theory. Note that, by (4.18)Proposition, µ is a defective eigenvalue for
A iff, for some, hence for every, bases V and W for ran(A − µ id) and null(A − µ id) respectively, [V,W ] is
not 1-1.

(10.13) Corollary: If A has a defective eigenvalue, then A is not diagonable.

10.7 Prove: if A ∈ L(X) is diagonalizable and #spec(A) = 1, then A = µ idX for some µ ∈ IF.

10.8 What is a simplest matrix A with spec(A) = {1, 2, 3}?
10.9 For each of the following matrices A ∈ IF2×2, determine whether or not 0 is a defective eigenvalue (give a reason for

your answer). For a mechanical approach, see H.P. 4.20 . (a) A = 0. (b) A =

[
1 2
2 4

]
. (c) A =

[
−2 −1
4 2

]
. (d) A = id2.

10.10 Prove that, for every linear map A on the finite-dimensional vector space X, if A is diagonable, then so is p(A) for
every polynomial p.

10.11 Prove that any linear projector P on a finite-dimensional vector space X is diagonalizable. (Hint: Show that, for
any basis U for ran P and any basis W for null P , V := [U, W ] is a basis for X, and that all the columns of V are eigenvectors
for P . All of this should follow from the fact that P 2 = P .)

10.12 Prove that any linear involutory map R on a finite-dimensional vector space X is diagonalizable. (Hint: H.P. 5.10

.)

Are all square matrices diagonable?

By (10.13)Corollary, this will be so only if all square matrices have only nondefective eigenvalues.

(10.14) Example: The simplest example of a matrix with a defective eigenvalue is provided by the
matrix

N :=

[
0 1
0 0

]
= [0, e1].

By (10.7)Proposition, spec(N) = {0}. Yet nullN = ran[e1] = ranN , hence the only eigenvalue of N is
defective, and N fails to be diagonable, by (10.13)Corollary.

Of course, for this simple matrix, one can see directly that it cannot be diagonable, since, if it were,
then some basis V for IR2 would consist entirely of eigenvectors for the sole eigenvalue, 0, for N , hence, for
this basis, NV = 0, therefore N = 0, contrary to fact.

We will see shortly that, on a finite-dimensional vector space over the complex scalars, almost all linear
maps are diagonable, and all linear maps are almost diagonable.
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Does every square matrix have an eigenvalue?

Since an eigenvalue for A is any scalar µ for which null(A − µ id) is not trivial, the answer necessarily
depends on what we mean by a scalar.

If we only allow real scalars, i.e., if IF = IR, then not every matrix has eigenvalues. The simplest example
is a rotation of the plane, e.g., the matrix

A :=

[
0 −1
1 0

]
= [e2,−e1].

This linear map rotates every x ∈ IR2 90 degrees counter-clockwise, hence the only vector x mapped by it
to a scalar multiple of itself is the zero vector. In other words, this linear map has no eigenvectors, hence no
eigenvalues.

The situation is different when we also allow complex scalars, i.e., when IF = C, and this is the reason
why we considered complex scalars all along in these notes. Now every (square) matrix has eigenvalues, as
follows from the following simple argument.

(10.15) Theorem: Any linear map A on some nontrivial finite-dimensional vector space X over the
complex scalar field IF = C has eigenvalues.

Proof: Let n := dimX , pick any x ∈ X\0 and consider the column map

V := [x,Ax,A2x, . . . , Anx].

Since #V > dim tarV , V cannot be 1-1. This implies that some column of V is free. Let Adx be the first
free column, i.e., the first column that is in the range of the columns preceding it. Then nullV contains
exactly one vector of the form

a = (a0, a1, . . . , ad−1, 1, 0, · · · , 0),

and this is the vector we choose. Then, writing the equation V a = 0 out in full, we get

(10.16) a0x+ a1Ax+ · · ·+ ad−1A
d−1x+Adx = 0.

Now here comes the trick: Consider the polynomial

(10.17) p : t 7→ a0 + a1t+ · · ·+ ad−1t
d−1 + td.

Then, substituting for t our map A, we get the linear map

p(A) := a0 id + a1A+ · · ·+ ad−1A
d−1 +Ad.

With this, (10.16) can be written, very concisely,

p(A)x = 0.

This is not just notational convenience. Since ad = 1, p isn’t the zero polynomial, and since x 6= 0, d must be
greater than 0, i.e., p cannot be just a constant polynomial. Thus, by the Fundamental Theorem of Algebra,
p has zeros. More precisely,

p(t) = (t− z1)(t− z2) · · · (t− zd)

for certain (possibly complex) scalars z1, . . . , zd. This implies (see (10.19)Lemma below) that

p(A) = (A− z1 id)(A− z2 id) · · · (A− zd id).

Now, p(A) is not 1-1 since it maps the nonzero vector x to zero. Therefore, not all the maps (A − zj id),
j = 1:d, can be 1-1. In other words, for some j, (A − zj id) fails to be 1-1, i.e., has a nontrivial nullspace,
and that makes zj an eigenvalue for A.
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(10.18) Example: Let’s try this out on our earlier example, the rotation matrix

A := [e2,−e1].

Choosing x = e1, we have
[x,Ax,A2x] = [e1, e2,−e1],

hence the first free column is A2x = −e1, and, by inspection,

x+A2x = 0.

Thus the polynomial of interest is
p : t 7→ 1 + t2 = (t− i)(t+ i),

with
i :=
√
−1

the imaginary unit (see the Backgrounder on complex numbers). In fact, we conclude that, with y :=
(A + i id)x, (A − i id)y = p(A)x = 0, while y = Ae1 + ie1 = e2 + ie1 6= 0, showing that (i, e2 + ie1) is an
eigenpair for this A.

Polynomials in a linear map

The proof of (10.15)Theorem uses in an essential way the following fact.

(10.19) Lemma: If r is the product of the polynomials p and q, i.e., r(t) = p(t)q(t) for all t, then,
for any linear map A ∈ L(X),

r(A) = p(A)q(A) = q(A)p(A).

Proof: If you wanted to check that r(t) = p(t)q(t) for the polynomials r, p, q, then you would
multiply p and q term by term, collect like terms and then compare coefficients with those of r. For example,
if p(t) = t2 + t+ 1 and q(t) = t− 1, then

p(t)q(t) = (t2 + t+ 1)(t− 1) = t2(t− 1) + t(t− 1) + (t− 1) = t3 − t2 + t2 − t+ t− 1 = t3 − 1,

i.e., the product of these two polynomials is the polynomial r given by r(t) = t3 − 1. The only facts you use
are: (i) free reordering of terms (commutativity of addition), and (ii) things like tt = t2, i.e., the fact that

titj = ti+j .

Both of these facts hold if we replace t by A.

Here is a further use of this lemma. We now prove that the polynomial p constructed in the proof of
(10.15) has the property that every one of its roots is an eigenvalue for A. This is due to the fact that we
constructed it in the form (10.17) with d the smallest integer for which Adx ∈ ran[x,Ax, . . . , Ad−1x]. Thus,
with µ any zero of p, we can write

(10.20) p(t) = (t− µ)q(t)

for some polynomial q necessarily of the form

q(t) = b0 + b1t+ · · ·+ bd−2t
d−2 + td−1.

The crucial point here is that q is of degree < d. This implies that q(A)x 6= 0 since, otherwise, (b0, b1, . . . , 1)
would be a nontrivial vector in null[x,Ax, . . . , Ad−1x] and this would contradict the choice of d as the index
for which Adx is the first free column in [x,Ax,A2, . . .]. Since

0 = p(A)x = (A− µ id)q(A)x,
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it follows that µ is an eigenvalue for A with associated eigenvector q(A)x.

This is exactly how we got an eigenvector for the eigenvalue i in (10.18)Example.

(10.21) Example: As another example, consider again the matrix A =

[
2 1
1 2

]
from (10.8)Example.

We choose x = e1 and consider

[x,Ax, . . . , Anx] = [e1, Ae1, A(Ae1)] =

[
1 2 5
0 1 4

]
.

Since [e1, Ae1, A
2e1] is in row echelon form, we conclude that the first two columns are bound. Elimination

gives the rref
[

1 0 −3
0 1 4

]
,

hence (3,−4, 1) ∈ null[e1, Ae1, A
2e1]. Correspondingly, p(A)e1 = 0, with

p(t) = 3− 4t+ t2 = (t− 3)(t− 1).

Consequently, µ = 3 is an eigenvalue for A, with corresponding eigenvector

(A− id)e1 = (1, 1);

also, µ = 1 is an eigenvalue for A, with corresponding eigenvector

(A− 3 id)e1 = (−1, 1).

Note that the resulting basis

[
1 −1
1 1

]
for IF2 consisting of eigenvectors for A differs in some detail from

the one we found in (10.8)Example. After all, if v is an eigenvector, then so is αv for any scalar α.

Here is some standard language concerning the items in our discussion so far. One calls any nontrivial
polynomial r for which r(A)x = 0 an annihilating polynomial for A at x. We may assume without loss
of generality that this polynomial is monic, i.e., its highest nonzero coefficient is 1, since we can always
achieve this by dividing the polynomial by its highest nonzero coefficient without changing the fact that it
is an annihilating polynomial for A at x. If such a polynomial is of exact degree k, say, then it has the form

r(t) = b0 + b1t+ · · ·+ bk−1t
k−1 + tk.

Since r(A)x = 0, we conclude that

b0x+ b1Ax + · · ·+ bk−1A
k−1x+Akx = 0.

In particular, Akx is in ran[x,Ax, . . . , Ak−1x], i.e., the column Akx of [x,Ax,A2x, . . .] is free. This implies
that k ≥ d, with d the degree of the polynomial p constructed in the proof of (10.15)Theorem. For, there
we chose d as the smallest index for which Adx is a free column of [x,Ax,A2, . . .]. In particular, all prior
columns must be bound. This makes p the unique monic polynomial of smallest degree for which p(A)x = 0.
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Here, for the record, is a formal account of what we have proved.

(10.22) Proposition: For every A ∈ L(X) with dimX < ∞ and every x ∈ X\0, there is a unique
monic polynomial p of smallest degree for which p(A)x = 0. This polynomial is called the minimal
polynomial for A at x and is denoted

pA,x.

It can be constructed in the form

pA,x(t) = a0 + a1t+ · · ·+ ad−1t
d−1 + td,

with d the smallest index for which Adx is a free column of [x,Ax,A2x, . . .]. Moreover, (a0, a1, . . . , 1)
is the unique vector in null[x,Ax, . . . , Adx] with its last entry equal to 1.

Assuming that X is a vector space over IF = C, every zero µ of pA,x is an eigenvalue of A, with
associated eigenvector q(A)x, where pA,x(t) =: (t−µ)q(t). (See the Backgrounder on Horner’s method
for the standard way to compute q from pA,x and µ.)

For example, consider the permutation matrix P = [e2, e3, e1] and take x = e1. Then

[x, Px, P 2x, P 3x] = [e1, e2, e3, e1].

Hence, P 3x is the first free column here. The element in the nullspace corresponding to it is the vector
(−1, 0, 0, 1). Hence, the minimal polynomial for P at x = e1 is of degree 3; it is the polynomial p(t) = t3−1.
It has the zero µ = 1, which therefore is an eigenvalue of P . A corresponding eigenvector is obtainable in
the form q(P )e1 with q(t) := p(t)/(t− 1) = t2 + t+ 1, hence the eigenvector is e3 + e2 + e1.

10.13 Use Elimination as in (10.21) to determine all the eigenvalues and, for each eigenvalue, a corresponding eigenvector,

for each of the following matrices: (i)

[
7 −4
5 −2

]
; (b) [0, e1, e2] ∈ IR3×3 (try x = e3); (iii)

[−1 1 −3
20 5 10
2 −2 6

]
.

10.14

(a) Prove: If p is any nontrivial polynomial and A is any square matrix for which p(A) = 0, then spec(A) ⊆ {µ ∈ C : p(µ) = 0}.
(Hint: prove first that, for any eigenvector x for A with eigenvalue µ and any polynomial p, p(A)x = p(µ)x.)

(b) What can you conclude about spec(A) in case you know that A is idempotent, i.e., a linear projector, i.e., A2 = A?

(c) What can you conclude about spec(A) in case you know that A is nilpotent, i.e., Aq = 0 for some integer q?

(d) What can you conclude about spec(A) in case you know that A is involutory, i.e., A−1 = A?

(e) What is the spectrum of the linear map D : Πk → Πk of differentiation, as a map on polynomials of degree ≤ k?

10.15 The companion matrix for the monic polynomial p : t 7→ a1 + a2t + · · · + antn−1 + tn is, by definition, the
matrix Ap := [e2, . . . , en,−a] ∈ IFn×n. (a) Prove that p is the minimal polynomial for A at e1. (b) Use (a) and MATLAB’s eig
command to find all the zeros of the polynomial p : t 7→ 1 + t + t2 + · · · + t9. Check your answer.

10.16 Use the minimal polynomial at e1 to determine the spectrum of the following matrices: (i) [e2, 0]; (ii) [e2, e3, e1];
(iii) [e2, e2]; (iv) [e2, e1, 2e3].

10.17 Prove: (i) for any A, B ∈ L(X), null A ∩ null B ⊂ null(A + B). (ii) for any A, B ∈ L(X) with AB = BA,
null A + null B ⊂ null(AB). (iii) If g is the greatest common divisor of the nontrivial polynomials p1, . . . , pr and m is their
smallest common multiple, then, for any A ∈ L(X), null g(A) = ∩jpj(A) and null m(A) =

∑
j
null pj(A).

10.18 Let A be a matrix of order n, let b ∈ IFn\0, and let P be the orthogonal projector of IFn onto the space Y :=
ran[b, Ab, . . . , Ar−1b], the Krylov subspace of order r for A generated by b. Assume that Y is r-dimensional, and
let PArb =:

∑
j<r

ajAjb. (i) Prove that K := [x, PAx, (PA)2x, . . . , (PA)rx] = [x,Ax, . . . , Ar−1x, PArx]. (ii) Prove that

q(t) := tr −
∑

j<r
ajtj is the minimal polynomial at x for the linear map PA : Y → Y : y 7→ PAy. (iii) Conclude that q is the

unique monic polynomial of degree r for which ‖q(A)x‖2 is as small as possible.

It is enough to understand the eigenstructure of matrices

So far, we know how to find some eigenvalues and corresponding eigenvectors for a given A ∈ L(X),
making use of minimal polynomials found by elimination. But can we be sure to find all the eigenvalues that
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way? By (10.10)Corollary, we know that we have found them all if we have found n := dimX of them. But
if we find fewer than that, then we can’t be sure.

The standard approach to finding the entire spectrum of A is by searching for linear maps B that have the
same spectrum as A but carry that spectrum more openly, like triangular matrices (see (10.7)Proposition).
This search makes essential use of the notion of similarity.

Definition: We say that A ∈ L(X) and B ∈ L(Y ) are similar to each other and write

A ∼ B

in case there is an invertible V ∈ L(Y,X) so that

A = V BV −1.

In particular, a linear map is diagonable if and only if it is similar to a diagonal matrix.

In trying to decide whether or not a given linear map A is diagonable, it is sufficient to decide this
question for any convenient linear map B similar to A. For, if such a B is diagonable, i.e., similar to
a diagonal matrix, then A is similar to that very same diagonal matrix. This follows from the fact that
similarity is an equivalence relation:

(10.23) Proposition: Similarity is an equivalence relation. Specifically,

(i) A ∼ A (reflexive);

(ii) A ∼ B implies B ∼ A (symmetric);

(iii) A ∼ B and B ∼ C implies A ∼ C (transitive).

Proof: Certainly, A ∼ A, since A = idA id. Also, if A = V BV −1 for some invertible V , then also
W := V −1 is invertible, and B = V −1AV = WAW−1. Finally, if A = V BV −1 and B = WCW−1, then
U := VW is also invertible, and A = V (WCW−1)V −1 = UCU−1.

Now, any linear map A ∈ L(X) on a finite-dimensional vector space X is similar (in many ways if X

is not trivial) to a matrix. Indeed, for any basis V for X , Â := V −1AV is a matrix similar to A. The map

Â so defined is indeed a matrix since both its domain and its target is a coordinate space (the same one, in

fact; hence Â is a square matrix). We conclude that, in looking for ways to decide whether or not a linear
map is diagonable, it is sufficient to know how to do this for square matrices.

Every complex (square) matrix is similar to an upper triangular matrix

While having in hand a diagonal matrix similar to a given A ∈ L(X) is very nice indeed, for most
purposes it is sufficient to have in hand an upper triangular matrix similar to A. There are several reasons
for this.

One reason is that, as soon as we have an upper triangular matrix similar to A, then we can easily
manufacture from this a matrix similar to A and with off-diagonal elements as small as we please (except
that, in general, we can’t make them all zero).

A more fundamental reason is that, once we have an upper triangular matrix similar to A, then we
know the entire spectrum of A since, by (10.7)Proposition, the spectrum of a triangular matrix is the set of
its diagonal entries. Here are the various facts.

(10.24) Proposition: If A and Â are similar, then spec(A) = spec(Â).
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Proof: If Â = V −1AV for some invertible V , then, for any scalar µ, Â − µ id = V −1(A − µ id)V .

In particular, Â − µ id is not invertible (i.e., µ ∈ spec(Â)) if and only if A − µ id is not invertible (i.e.,
µ ∈ spec(A)).

(10.25) Corollary: If A ∈ L(X) is similar to a triangular matrix Â, then µ is an eigenvalue for A if

and only if µ = Âj,j for some j. In a formula,

spec(A) = {Âj,j : all j}.

More precisely, if Â = V −1AV is upper triangular and j is the smallest index for which µ = Âj,j , then
there is an eigenvector for A belonging to µ available in the form w = V a, with a the element in the
standard basis for null(Â−µ id) associated with the (free) jth column, i.e., a ∈ null(Â−µ id), aj = 1,
and all other entries corresponding to free columns are 0; cf. (3.9).

The now-standard algorithm for computing the eigenvalues of a given matrix A is the QR method. It
generates a sequence B1, B2, B3, . . . of matrices all similar to A that converges to an upper triangular matrix.
To the extent that the lower triangular entries of Bk are small (compared to ‖Bk‖, say), the diagonal entries
of Bk are close to eigenvalues of Bk, hence of A. The actual version of the QR method used in MATLAB is
quite sophisticated, as much care has gone into making the algorithm reliable in the presence of round-off as
well as fast.

The MATLAB command eig(A) gives you the list of eigenvalues of A. The more elaborate
command [V,M]=eig(A) gives you, in V, a list of corresponding ‘eigenvectors’, in the sense that,
approximately, AV(:, j) = V(:, j)M(j, j), all j.

(10.26) Theorem: Every complex (square) matrix is similar to an upper triangular matrix.

Proof: The proof is by induction on the order, n, of the given matrix A.

If n = 1, then A is a 1 × 1-matrix, hence trivially upper triangular. Assume that we have proved the
theorem for all matrices of order n− 1 and let A be of order n. Since the scalar field is C, we know that A
has an eigenvector, u1, say, with corresponding eigenvalue, µ1 say. Extend u1 to a basis U = [u1, u2, . . . , un]
for Cn. Then

AU = [Au1, · · · , Aun] = [u1µ1, Au2, · · · , Aun].

We want to compute U−1AU . For this, observe that U−1u1 = U−1Ue1 = e1. Therefore,

U−1AU = [e1µ1, U
−1Au2, · · · , U−1Aun].

Writing this out in detail, we have

U−1AU = Â :=





µ1 × · · · ×
0 × · · · ×
...

... · · ·
...

0 × · · · ×



 =:

[
µ1 C
0 A1

]
.

Here, C is some 1× (n− 1) matrix of no further interest, A1 is a matrix of order n− 1, hence, by induction

hypothesis, there is some invertible W so that Â1 := W−1A1W is upper triangular. We compute

diag(1,W−1)Â diag(1,W ) =

[
1 0
0 W−1

] [
µ1 C
0 A1

] [
1 0
0 W

]
=

[
µ1 CW
0 W−1A1W

]
.
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The computation uses the fact that multiplication from the left (right) by a block-diagonal matrix multi-
plies the corresponding rows (columns) from the left (right) by the corresponding diagonal blocks. Since

diag(1,W−1) diag(1,W ) = diag(1, idn−1) = idn, this shows that Â is similar to an upper triangular matrix.

Since A is similar to Â, this finishes the proof.

Various refinements in this proof are possible (as we will show later, in the discussion of the Schur
form), to give more precise information about possible upper triangular matrices similar to a given A. For
the present, though, this is sufficient for our needs since it allows us to prove the following:

(10.27) Corollary: Every complex (square) matrix is similar to an ‘almost diagonal’ matrix. Pre-
cisely, for every complex matrix A and every ε > 0, there exists an upper triangular matrix Bε similar
to A whose off-diagonal entries are all < ε in absolute value.

Proof: By (10.26)Theorem, we know that any such A is similar to an upper triangular matrix.
Since similarity is transitive (see (10.23)Proposition), it is therefore sufficient to prove this Corollary in case
A is upper triangular, of order n, say.

The proof in this case is a simple trick: Consider the matrix

B := W−1AW,

with
W := diag(δ1, δ2, . . . , δn),

and the scalar δ to be set in a moment. W is indeed invertible as long as δ 6= 0, since then

W−1 = diag(δ−1, δ−2, . . . , δ−n).

Now, multiplying a matrix by a diagonal matrix from the left (right) multiplies the rows (columns) of that
matrix by the diagonal entries of the diagonal matrix. Therefore,

Bi,j = (W−1AW )i,j = Ai,jδ
j−i, all i, j.

In particular, B is again upper triangular, and its diagonal entries are those of A. However, all its pos-
sibly nontrivial off-diagonal entries lie above the diagonal, i.e., are entries Bi,j with j > i, hence are the
corresponding entries of A multiplied with some positive power of the scalar δ. Thus, if

c := max
i<j
|Ai,j |

and we choose δ := min{ε/c, 1}, then, we can be certain that

|Bi,j | ≤ ε, all i 6= j,

regardless of how small we choose that positive ε.

10.19 T/F

(a) The only diagonalizable matrix A having just one factorization A = V MV −1 with M diagonal is the empty matrix.

(b) If A is the linear map of multiplication by a scalar, then any basis for its domain is an eigenbasis for A.

(c) A triangular matrix of order n is diagonalizable if and only if it has n different diagonal entries.

(d) Any (square) triangular matrix is diagonalizable.

(e) Any matrix of order 1 is diagonalizable.

(f) A matrix of order n has n eigenvalues.

(g) Similar linear maps have the same spectrum.

(h) The linear map of differentiation on Πk is nilpotent.

(i) The identity map is idempotent.

(j) If the matrix A has 3 eigenvalues, then it must have at least 3 columns.

(k) If null(A − µ id) is not trivial, then every one of its elements is an eigenvector for A belonging to the eigenvalue µ.
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11. Convergence of the power sequence

Convergence of sequences in a normed vector space

Our discussion of the power sequence A0, A1, A2, · · · of a linear map naturally involves the convergence

of such a sequence.

Convergence of a vector sequence or a map sequence is most conveniently described with the aid of a
norm, as introduced earlier, starting at page 80.

Suppose z1, z2, z3, · · · is an infinite sequence of n-vectors. In order to avoid confusion, I refer to the jth
entry of the kth term zk in such a vector sequence by zk(j). We say that this sequence converges to the
n-vector z∞ and write

z∞ = lim
k→∞

zk,

in case
lim

k→∞
‖z∞ − zk‖ = 0.

It is not hard to see that
z∞ = lim

k→∞
zk ⇐⇒ ∀{i} z∞(i) = lim

k→∞
zk(i).

Note that z∞ = limk→∞ zk if and only if, for every ε > 0, there is some k0 so that, for all k > k0,
‖z∞ − zk‖ < ε. This says that, for any given ε > 0 however small, all the terms in the sequence from a
certain point on lie in the “ball”

Bε(z∞) := {y ∈ IFn : ‖y − z∞‖ < ε}

whose center is z∞ and whose radius is ε.

(11.1) Lemma: A convergent sequence is necessarily bounded. More explicitly, if the sequence (xk)
of n-vectors converges, then supk ‖xk‖ <∞, i.e., there is some c so that, for all k, ‖xk‖ ≤ c.

The proof is a verbatim repeat of the proof of this assertion for scalar sequences, as given in the
Backgrounder on scalar sequences.

Analogously, we say that the sequence A1, A2, A3, · · · of matrices converges to the matrix B and write

lim
k→∞

Ak = B,

in case
lim

k→∞
‖B −Ak‖∞ = 0.

As in the case of vector sequences, a convergent sequence of matrices is necessarily bounded.

Here, for convenience, we have used the map norm associated with the max-norm since we have the
simple and explicit formula (7.16) for it. Yet we know from (7.24)Proposition that any two norms on any
finite-dimensional normed vector space are equivalent. In particular, if ‖ ‖′ is any norm on L(IFn) = IFn×n,
then there is a positive constant c so that

‖A‖∞/c ≤ ‖A‖′ ≤ c‖A‖∞, ∀A ∈ IFn×n.

This implies that limk→∞ ‖B −Ak‖∞ = 0 if and only if

lim
k→∞

‖B −Ak‖′ = 0,
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showing that our definition of what it means for Ak to converge to B is independent of the particular matrix
norm we use. We might even have chosen the matrix norm

‖A‖′ := max
i,j
|A(i, j)| = max

x 6=0

‖Ax‖∞
‖x‖1

,

and so explicitly confirmed that convergence of matrices is entry-wise, i.e., limk→∞ Ak = B if and only if

lim
k→∞

Ak(i, j) = B(i, j), ∀i, j.

Note that, in this chapter, I am using MATLAB’s way of writing matrix entries, writing Ak(i, j) instead of
(Ak)i,j for the (i, j)-entry of Ak, in order to keep the number of subscripts down.

11.1 For each of the following matrices A, work out Ak for arbitrary k ∈ IN and, from that, determine directly whether

or not the power sequence A0, A1, A2, . . . converges; if it does, also determine that limit. (i) A := α idX ; (ii) A :=

[
1/2 210

0 1/2

]
;

(iii) A := [−e1, e2]; (iv) A =

[
a b
0 c

]
.

Three interesting properties of the power sequence of a linear map

We have already most of the tools in hand needed to analyze the following three interesting properties
that the power sequence of A, i.e., the sequence

(11.2) A0, A1, A2, · · ·

may have.

Let A ∈ L(X) with dimX <∞. Then, for any basis V of X ,

Â := V −1AV

is a matrix similar to A, and, for any k,
Ak = V ÂkV −1.

Thus, if we understand the sequence (11.2) for any square matrix A, then we understand (11.2) for any
A ∈ L(X) with dimX <∞.

For this reason, we state here the three interesting properties only for a matrix A.

We call the matrix A power-bounded in case its power sequence is bounded, i.e., supk ‖Ak‖∞ < ∞,
i.e., there is a constant c so that, for all k, ‖Ak‖∞ ≤ c.

We call the matrix A convergent in case its power sequence converges, i.e., in case, for some matrix
B, B = limk→∞ Ak.

We call the matrix A convergent to 0 in case

lim
k→∞

Ak = 0.

See the Backgrounder on the convergence of scalar sequences and, in particular, on the scalar sequence
(ζ0, ζ1, ζ2, · · ·).

The first property is fundamental in the study of evolutionary (i.e., time-dependent) processes, such as
weather or fluid flow. In the simplest approximation, the state of the system (be it the weather or waves on
the ocean or whatever) at time t is described by some vector y(t), and the state y(t+ ∆t) at some slightly
later time t+ ∆t is computed as

y(t+ ∆t) = Ay(t),

with A some time-independent matrix. Such a process is called stable if ‖y(t)‖ remains bounded for all
time regardless of the initial state, y(0), of the system. Since y(k∆t) = Aky(0), the requirement of stability
is equivalent to the power boundedness of A.
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The third property is fundamental in the study of iterative processes, as discussed earlier.

The second property is in between the other two. In other words, we have listed the three properties
here in the order of increasing strength: if A is convergent to 0, then it is, in particular, convergent. Again,
if A is convergent, then it is, in particular, power-bounded.

Suppose now that x is an eigenvector for A, with corresponding eigenvalue µ. Then Ax = µx, hence
Akx = µkx for k = 1, 2, 3, . . .. Suppose A is powerbounded. Then, in particular, for some c, we should have
c‖x‖∞ ≥ ‖Ak‖∞‖x‖∞ ≥ ‖Akx‖∞ = ‖µkx‖∞ = |µ|k‖x‖∞. Since ‖x‖∞ 6= 0, this implies that the scalar
sequence (|µ|k : k = 1, 2, 3, . . .) must be bounded, hence |µ| ≤ 1. Since we took an arbitrary eigenvector, we
conclude that

(11.3) A powerbounded =⇒ ρ(A) ≤ 1.

Actually, more is true. Suppose that µ is a defective eigenvalue for A, which, to recall, means that

null(A− µ id) ∩ ran(A− µ id) 6= {0}.

In other words, there exists an eigenvector for A belonging to µ of the form x = (A − µ id)y. This implies
that

Ay = x+ µy.

Therefore
A2y = Ax + µAy = µx+ µ(x+ µy) = 2µx+ µ2y.

Therefore
A3y = 2µAx+ µ2Ay = 2µ2x+ µ2(x+ µy) = 3µ2x+ µ3y.

By now, the pattern is clear:
Aky = kµk−1x+ µky.

This also makes clear the difficulty: If |µ| = 1, then

‖Ak‖∞‖y‖∞ ≥ ‖Aky‖∞ ≥ k‖x‖∞ − ‖y‖∞.

This shows that A cannot be powerbounded.

We conclude:

(11.4) Proposition: If the matrix A is powerbounded, then, for all µ ∈ spec(A), |µ| ≤ 1, with
equality only if µ is a nondefective eigenvalue for A.

Now we consider the case that A is convergent (hence, in particular, powerbounded). If A is convergent,
then, for any eigenvector x with associated eigenvalue µ, the sequence (µkx : k = 0, 1, 2, . . .) must converge.
Since x stays fixed, this implies that the scalar sequence (µk : k = 0, 1, 2, . . .) must converge. This, to recall,
implies that |µ| ≤ 1 with equality only if µ = 1.

Finally, if A is convergent to 0, then, for any eigenvector x with associated eigenvalue µ, the sequence
(µkx) must converge to 0. Since x stays fixed (and is nonzero), this implies that the scalar sequence (µk)
must converge to 0. This, to recall, implies that |µ| < 1.

Remarkably, these simple necessary conditions just derived, for powerboundedness, convergence, and
convergence to 0, are also sufficient; see (11.10)Theorem.

For the proof, we need one more piece of information, namely a better understanding of the distinction
between defective and nondefective eigenvalues.

11.2 For each of the following four matrices, determine whether or not it is (a) powerbounded, (b) convergent, (c)
convergent to zero. (i) idn; (ii) [1, 1; 0, 1]; (iii) [8/9, 1010; 0, 8/9]; (iv) − idn.
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Splitting off the nondefective eigenvalues

Recall that the scalar µ is called a defective eigenvalue for A ∈ L(X) in case

null(A− µ id) ∩ ran(A− µ id) 6= {0}.

(11.5)Proposition: If M is a set of nondefective eigenvalues of A ∈ L(X), for some finite-dimensional
vector space X , then X has a basis U = [V,W ], with V consisting entirely of eigenvectors of A
belonging to these nondefective eigenvalues, and W any basis for the subspace Z := ran p(A), with
p(t) :=

∏
µ∈M (t− µ).

Further, Z is A-invariant, meaning that A(Z) ⊂ Z, hence A Z : Z → Z : z 7→ Az is a well-defined
map on Z, and spec(A Z) = spec(A)\M .

Proof: Since Ap(A) = p(A)A, we have AZ = A(ran p(A)) = ranAp(A) = p(A) ranA ⊂ ran p(A) =
Z, showing Z to be A-invariant. This implies that A Z : Z → Z : z 7→ Az is a well-defined linear map on Z.

We claim that X is the direct sum of null p(A) and ran p(A), i.e.,

(11.6) X = null p(A) +̇ ran p(A).

Since, by (4.15)Dimension Formula, dimX = dim null p(A) + dim ran p(A), it is, by (4.26)Proposition, suffi-
cient to prove that

(11.7) null p(A) ∩ ran p(A) = {0}.
For its proof, let

pµ : t 7→ p(t)/(t− µ), µ ∈M,

and recall from (5.6) that
(pµ/pµ(µ) : µ ∈M)

is a Lagrange basis for the polynomials of degree < #M . In particular,

1 =
∑

µ∈M

pµ/pµ(µ).

Hence, with (10.19)Lemma, id =
∑

µ∈M pµ(A)/pµ(µ) and so, for any x ∈ X ,

x =
∑

µ∈M

xµ,

with
xµ := pµ(A)x/pµ(µ)

in null(A− µ id) in case x ∈ null p(A) (since (A− µ id)xµ = p(A)x/pµ(µ)), but also in ran(A− µ id) in case
also x ∈ ran p(A) ⊂ ran(A − µ id), hence then xµ = 0 since we assumed that each µ ∈ M is not defective.
This shows (11.7), hence (11.6).

More than that, we just saw that x ∈ null p(A) implies that x =
∑

µ xµ with xµ ∈ null(A − µ id), all
µ ∈M , hence, null p(A) ⊂ ranV , with

V := [Vµ : µ ∈M ]

and Vµ a basis for null(A − µ id), all µ. On the other hand, each column of V is in null p(A), hence also
ranV ⊂ null p(A), therefore V is onto null p(A) and, since it is 1-1 by (10.9)Lemma, it is a basis for null p(A).
Therefore, by (11.6), U := [V,W ] is a basis for X for any basis W for Z = ran p(A).

Finally, let ν ∈ spec(A). If ν were in both M and spec(A Z), then Ax = νx for some x ∈ Z\0, yet also
p(A)x = 0, hence 0 6= x ∈ null p(A) ∩ ran p(A), contradicting (11.7). Thus, if ν ∈ M , then ν 6∈ spec(A Z).
If, on the other hand, ν 6∈M , then, with x any eigenvector for ν, we have p(A)x = αx with

α :=
∏

µ∈M

(ν − µ) 6= 0,

and so, x = α−1p(A)x ∈ ran p(A) = Z, hence ν ∈ spec(A Z). This proves that spec(A Z) = spec(A)\M .
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It follows that the matrix representation for A with respect to this basis U = [V,W ] has the simple form

U−1AU =

[
M 0
0 B̂

]
:= diag(µ1, . . . , µr, B̂),

with µ1, . . . , µr a sequence taken from M , and B̂ some square matrix, namely B̂ = W−1AW .

(11.8) Theorem: Let A ∈ L(X), with X a finite-dimensional vector space.

(i) If A is diagonable, then all its eigenvalues are nondefective.

(ii) If IF = C and all of A’s eigenvalues are nondefective, then A is diagonable.

Proof: (i) This is just a restatement of (10.13)Corollary.

(ii) If none of the eigenvalues of A is defective, then we can choose M = spec(A) in (11.5)Proposi-
tion, leaving A Z as a linear map with an empty spectrum. Hence, if also IF = C, then we know from
(10.15)Theorem that ranW = domA Z must be trivial, hence V is a basis for X .

Here is a simple example. Let A =

[
2 1
1 2

]
. Then A maps x := (1, 1) to (3, 3) = 3x. Hence, µ := 3 ∈

spec(A). We compute

ran(A− µ id) = ran

[
−1 1
1 −1

]
= ran

[
−1
1

]
,

since the first column of (A− µ id) is bound and the second is free. This also implies that null(A − µ id) is

one-dimensional, with V :=

[
1
1

]
a basis for it.

It follows, by inspection, that null(A − µ id) ∩ ran(A − µ id) = {0} since the only vector of the form

(1, 1)α and of the form (−1, 1)β is the zero vector. Equivalently, the matrix U :=

[
1 −1
1 1

]
is 1-1, hence a

basis for IR2. Consequently, 3 is a nondefective eigenvalue for A.

Now, what about A Z , with Z = ran(A − µ id)? In this case, things are very simple since Z is one-
dimensional. Since A(Z) ⊂ Z, A must map any z ∈ Z to a scalar multiple of itself! In particular, since
z = (−1, 1) ∈ ran(A− µ id), A must map this z into a scalar multiple of itself, and this is readily confirmed
by the calculation that A maps z to −(2, 1) + (1, 2) = z, i.e., to itself. This shows that z is an eigenvector
for A belonging to the eigenvalue 1.

Altogether therefore,
AU = [Ax,Az] = [3x, z] = U diag(3, 1),

showing that A is actually diagonable.

This simple example runs rather differently when we change A to A :=

[
2 1
0 2

]
. Since A is upper

triangular, its sole eigenvalue is µ = 2. But (A − µ id) =

[
0 1
0 0

]
, and we saw earlier that its range and

nullspace have the nontrivial vector e1 in common. Hence, 2 is a defective eigenvalue for this matrix A.

(11.9) Example: Let A := [x][y]t with x, y ∈ IRn\0. Then rankA = 1, hence ranA = ran[x] is
one-dimensional, therefore x is an eigenvector for A. Since Az = x (ytz), we have, in particular,

Ax = x (ytx),

hence x is an eigenvector for A belonging to the eigenvalue µ := ytx.
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Since A is of rank 1, dim nullA = n−1. Let V be a basis for nullA, i.e., V ∈ L(IRn−1, nullA) invertible.
Then U := [V, x] is 1-1 (hence a basis for IRn) if and only if x 6∈ ranV , i.e., if and only if x 6∈ nullA.

case x 6∈ ranV : Then U = [V, x] is a basis for IRn. Consider the representation Â = U−1AU for A with
respect to this basis: With V =: [v1, v2, . . . , vn−1], we have Auj = Avj = 0 for j = 1:n−1, therefore

Âej = 0, j = 1:n−1.

Further, we have Ax = x (ytx), therefore

Âen = U−1AUen = U−1Ax = (ytx)en,

(recall that, for any z ∈ IRn, U−1z provides the coordinates of z with respect to the basis U , i.e., U(U−1z) =
z). Hence, altogether,

Â = [0, . . . , 0, (ytx)en].

In particular, A is diagonable, with eigenvalues 0 and ytx.

case x ∈ ranV : Then U = [V, x] is not a basis for IRn. Worse than that, A is now not diagonable. This
is due to the fact that, in this case, the eigenvalue 0 for A is defective: For, x 6= 0 while Ax = 0, hence

{0} 6= ran(A− 0 id) = ranA = ran[x] ⊂ nullA = null(A− 0 id).

Therefore null(A− 0 id) ∩ ran(A− 0 id) 6= {0}.

It is hard to tell just by looking at a matrix whether or not it is diagonable. There is one exception: If
A is hermitian, i.e., equal to its conjugate transpose, then it is not only diagonable, but has an orthonormal
basis of eigenvectors, as is shown in the next chapter.

11.3 Prove: If A =

[
B C
0 D

]
, with B and D square matrices, then spec(A) = spec(B) ∪ spec(D). (Hint: Prove first that

such a matrix A is invertible if and only if both B and D are invertible.)

11.4 Use H.P. 11.3 to determine the spectrum of the matrix A :=




1 2 3 4
2 4 5 6
0 0 1 2
0 0 2 1



.

11.5 (a) Use H.P. 11.3 to determine the spectrum of the matrix A :=

[
1 2 a
2 1 b
0 0 3

]
. (b) For which choices of a and b is A

not diagonable?

Three interesting properties of the power sequence of a linear map: The sequel

(11.10) Theorem: Let A ∈ Cn×n. Then:

(i) A is powerbounded iff, for all µ ∈ spec(A), |µ| ≤ 1, with |µ| = 1 only if µ is not defective.

(ii) A is convergent iff, for all µ ∈ spec(A), |µ| ≤ 1, with |µ| = 1 only if µ is not defective and µ = 1.

(iii) A is convergent to 0 iff ρ(A) < 1.

Proof: We only have to prove the implications ‘⇐=’, since we proved all the implications ‘=⇒’ in
an earlier section (see pages 114ff).

We begin with (iii). Since A is a matrix over the complex scalars, we know from (10.27)Corollary that,
for any ε > 0, we can find an upper triangular matrix Bε similar to A and with all off-diagonal entries less
than ε in absolute value. This means, in particular, that A = V BεV

−1 for some (invertible) matrix V ,
hence, for any k, Ak = V (Bε)kV −1, therefore,

‖Ak‖∞ ≤ ‖V ‖∞‖Bε‖k∞‖V −1‖∞.
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We compute

‖Bε‖∞ = max
i

∑

j

|Bε(i, j)| ≤ max
i
|Bε(i, i)|+ (n− 1)ε,

since each of those sums involves n − 1 off-diagonal entries and each such entry is less than ε in absolute
value. Further, Bε is upper triangular and similar to A, hence

max
i
|Bε(i, i)| = max{|µ| : µ ∈ spec(A)} = ρ(A).

By assumption, ρ(A) < 1. This makes it possible to choose ε positive yet so small that ρ(A) + (n− 1)ε < 1.
With this choice, ‖Bε‖∞ < 1, hence limk→∞ ‖Bε‖k∞ = 0. Therefore, since ‖V ‖∞ and ‖V −1‖∞ stay fixed
throughout, also ‖Ak‖∞ → 0 as k →∞. In other words, A is convergent to 0.

With this, we are ready also to handle (i) and (ii). Both assume that all eigenvalues of A of modulus
1 are nondefective. By (11.5)Proposition, this implies the existence of a basis U = [V,W ] for Cn so that
V consists of eigenvectors of A belonging to eigenvalues of modulus 1, while Z := ranW is A-invariant
and A Z has only eigenvalues of modulus < 1. In particular, AV = VM for some diagonal matrix M with
all diagonal entries of modulus 1, and AW = WB for some matrix B with spec(B) = spec(A Z), hence
ρ(B) < 1. Consequently, for any k,

AkU = Ak[V,W ] = [AkV,AkW ] = [VMk,WBk] = U diag(Mk, Bk).

In other words,

Ak = U diag(Mk, Bk)U−1.

Therefore, ‖Ak‖∞ ≤ ‖U‖∞ max{‖M‖k∞, ‖Bk‖∞}‖U−1‖∞, and this last expression converges since ‖M‖∞ = 1
while ‖Bk‖∞ → 0, by (iii). Since any convergent sequence is bounded, this implies that also the sequence
(‖Ak‖∞) must be bounded, hence we have finished the proof of (i).

Assume now, in addition, as in (ii) that all eigenvalues of A of modulus 1 are actually equal to 1. Then
M = id, and so, limk→∞ Ak = C := U diag(M, 0)U−1 since Ak − C = U diag(0, Bk)U−1, hence

‖Ak − C‖∞ ≤ ‖U‖∞‖Bk‖∞‖U−1‖∞ ≤ const‖Bk‖∞ → 0

as k →∞.

(11.11) Example: Here is a concrete example, chosen for its simplicity.

Let A =

[
1 1
0 α

]
. Then spec(A) = {1, α}. In particular, A is diagonable if α 6= 1 (by (10.10)Corollary)

since then A has two eigenvalues. On the other hand, if α = 1, then A is not diagonable since it then looks
like id2 + N , with N := [0, e1] the simplest example of a non-diagonable matrix. Also, in the latter case,
the sole eigenvalue, 1, is certainly defective since e1 is both in null(A− id) and in ran(A− id).

Also,

Ak =

[
1 1 + α+ · · ·+ αk−1

0 αk

]
=






[
1 1−αk

1−α

0 αk

]
if α 6= 1;

[
1 k
0 1

]
otherwise.

We see that A is powerbounded whenever |α| ≤ 1 except when α = 1, i.e., except when there is a defective
absolutely largest eigenvalue.

Further, A is convergent iff |α| < 1, i.e., if, in addition, the sole eigenvalue of size 1 is equal to 1 and is
nondefective.
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The power method

The simple background for the success of the power method is the following corollary to (11.10)The-
orem (ii).

(11.12) Proposition: If A has just one eigenvalue µ of absolute value ρ(A) and µ is nondefective,
then, for almost any x and almost any y, the sequence

Akx/(ycAkx), k = 1, 2, . . .

converges to an eigenvector of A belonging to that absolutely maximal eigenvalue µ. In particular, for
almost any vector y, the ratio

ycAk+1x/ycAkx

converges to µ.

Proof: By assumption, there is (by (11.5)Proposition) a basis U := [V,W ], with V a basis for the
space null(A − µ id) of all eigenvectors of A belonging to that absolutely largest eigenvalue µ of A, and
B := A ran W having all its eigenvalues < |µ| in absolute value. This implies that ρ(B/µ) < 1. Therefore,
for any x =: [V,W ](a, b),

Akx = µkV a+BkWb = µk
(
V a+ (B/µ)kWb

)

and (B/µ)kWb→ 0 as k →∞. Consequently, for any y,

ycAk+1x

ycAkx
=
µk+1(ycV a+ yc(B/µ)k+1Wb)

µk(ycV a+ yc(B/µ)kWb)
= µ

ycV a+ yc(B/µ)k+1Wb

ycV a+ yc(B/µ)kWb
→ µ

provided ycV a 6= 0.

Note that the speed with which ycAk+1x/ycAkx converges to µ depends on the speed with which
(B/µ)kWb→ 0 as k →∞, hence, ultimately, on ρ(B/µ).

In the scaled power method, one would, instead, consider the sequence

xk+1 := A(xk/‖xk‖), k = 0, 1, . . . ,

or, more simply, the sequence
xk+1 := A(xk/y

txk), k = 0, 1, . . . .

The power method is at the heart of good algorithms for the calculation of eigenvalues. In particular,
the standard algorithm, i.e., the QR method, can be interpreted as a (very sophisticated) variant of the
power method.

11.6 Using MATLAB if really necessary, try out the Power method on the following matrices A, starting at the specified
vector x, and discuss success or failure. (Note: You can always use eig(A) to find out what the absolutely largest eigenvalue of
A is (as well as some eigenvector for it), hence can tell whether or not the power method is working for you. If it isn’t, identify

the source of failure.) (a) A =




0 .2 .2 .3
.2 0 .2 .3
.5 .4 0 .4
.3 .4 .6 0



 , x = (1, 1, 1, 1); (b) A =

[
0 1
−1 0

]
, x = (1,−1); (c) A =

[
1 0
1 1

]
, x = e1;

(d) A =

[
4 1 −1
2 5 −2
1 1 2

]
, x = (1,−2,−1).

11.7 T/F

(a) If the matrix A of order n has n eigenvalues, then none of its eigenvalues is defective.

(b) If, for some sequence (xn : n ∈ IN) of m-vectors, limn→∞ ‖xn‖2 = 0, then limn→∞ ‖xn‖ = 0 for any norm ‖ · ‖ on IFm.

(c) If all the eigenvalues of A are < 1, then limk→∞ Ak → 0.

(d) If all the eigenvalues of A are ≤ 1 in absolute value, then A is power-bounded.

(e) If p(A)x = 0 for some polynomial p, A ∈ L(X) and x ∈ X\{0}, then every eigenvalue of A is a zero of p.
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12. Canonical forms

Canonical forms exhibit essential aspects of a linear map. Of the three discussed in this chapter, only
the Schur form has practical significance. But the mathematics leading up to the other two is too beautiful
to be left out.

The only result from this chapter used later in these notes is the spectral theorem for hermitian matrices;
see (12.2/) Corollary.

The Schur form

The discussion of the powers Ak of A used crucially the fact that any square matrix is similar to an
upper triangular matrix. The argument we gave there for this fact is due to I. Schur, who used a refinement
of it to show that the basis V for which V −1AV is upper triangular can even be chosen to be unitary or
orthonormal, i.e., so that

V cV = id.

(12.1) Schur’s theorem: Every A ∈ L(Cn) is unitarily similar to an upper triangular matrix, i.e.,

there exists a unitary basis U for Cn so that Â := U−1AU = U cAU is upper triangular.

Proof: Simply repeat the proof of (10.26)Theorem, with the following modifications: Normalize
the eigenvector u1, i.e., make it have (Euclidean) length 1, then extend it to an o.n. basis for Cn (as can
always be done by applying Gram-Schmidt to an arbitrary basis [u1, . . .] for Cn). Also, observe that unitary
similarity is also an equivalence relation since the product of unitary matrices is again unitary. Finally, if
W is unitary, then so is diag(1,W ).

Here is one of the many consequences of Schur’s theorem. It concerns hermitian matrices, i.e., matrices
A for which Ac = A. By Schur’s theorem, such a matrix, like any other matrix, is unitarily similar to an
upper triangular matrix, i.e., for some unitary matrix U , Â := U cAU is upper triangular. On the other
hand, for any matrix A and any unitary matrix U ,

(U cAU)c = U c(Ac)U.

In other words: if Â is the matrix representation for A with respect to a unitary basis, then Âc is the
matrix representation for Ac with respect to the very same basis. For our hermitian matrix A with its
upper triangular matrix representation Â = U cAU with respect to the unitary basis U , this means that also
Âc = Â, i.e., that the upper triangular matrix Â is also lower triangular and that its diagonal entries are all
real. This proves the hard part of the following remarkable

(12.2) Corollary: A matrix A ∈ Cn is hermitian if and only it is unitarily similar to a real diagonal
matrix.

Proof: We still have to prove that if Â := U cAU is real and diagonal for some unitary U , then A is
necessarily hermitian. But that follows at once from the fact that then Âc = Â, therefore Ac = (UÂU c)c =

UÂcU c = UÂU c = A.

A slightly more involved argument makes it possible to characterize all those matrices that are unitarily
similar to a diagonal matrix (real or not). Such a matrix has enough eigenvectors to make up an entire
orthonormal basis from them. Here are the details.

Start with the observation that diagonal matrices commute with one another. Thus, if Â := U cAU is
diagonal, then

AcA = (UÂcU c)(UÂU c) = UÂcÂU c = UÂÂcU c = (UÂU c)(UÂcU c) = AAc,
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hence having AcA = AAc is a necessary condition for A to be unitarily similar to a diagonal matrix.
Remarkably, this condition is sufficient as well. Note that this condition can be directly tested by computing
the two products and comparing them. It constitutes the only criterion for the diagona(liza)bility of a matrix
available that can be tested for by finitely many calculations. Not surprisingly, matrices with this property
are very convenient and have, correspondingly, been given a very positive label. They are called normal.
(Another label might have been boring.)

One way to prove that normal matrices are unitarily similar to a diagonal matrix is by way of a
refinement of Schur’s theorem: It is possible to find a unitary basis that simultaneously upper-triangularizes
two matrices A and B provided A and B commute, i.e., provided AB = BA. This is due to the fact that
commuting matrices have some eigenvector in common.

Assuming this refinement of Schur’s theorem (cf. (12.5)Theorem below), one would obtain, for a given
normal matrix A, a unitary basis U so that both U cAU and U cAcU are upper triangular. Since one of these
is the conjugate transpose of the other, they must both be diagonal. This finishes the proof of

(12.3) Theorem: A matrix A ∈ Cn is unitarily similar to a diagonal matrix if and only if AAc = AcA.

Now for the proof of the refined Schur’s theorem. Since the proof of Schur’s theorem rests on eigenvectors,
it is not surprising that a proof of its refinement rests on the following

(12.4) Lemma: If A,B ∈ Cn commute, then there exists a vector that is eigenvector for both of
them.

Proof: Let x be an eigenvector for A, Ax = xµ say, and let p = pB,x be the minimal annihilating
polynomial for B at x. Since x 6= 0, p has zeros. Let ν be one such and set p =: (· − ν)q. Since IF = C,
we know that v := q(B)x is an eigenvector for B (for the eigenvalue ν). But then, since AB = BA, we also
have Aq(B) = q(B)A, therefore

Av = Aq(B)x = q(B)Ax = q(B)xµ = vµ,

showing that our eigenvector v for B is also an eigenvector for A.

(12.5) Schur’s refined theorem: For every A,B ∈ L(Cn) that commute, there exists a unitary
basis U for Cn so that both U cAU and U cBU are upper triangular.

Proof: This is a further refinement of the proof of (10.26)Theorem. The essential step in that proof
was to come up with some eigenvector for A which was then extended to a basis, well, to an o.n. basis U
for the proof of Schur’s Theorem. Therefore, to have U simultaneously upper-triangularize both A and B,
all that’s needed is (i) to observe that, by (12.4)Lemma, we may choose u1 to be a (normalized) eigenvector
of A and B since, by assumption, AB = BA; and (ii) verify that the submatrices A1 and B1 obtained in
the first step again commute (making it possible to apply the induction hypothesis to them). Here is the
verification of this latter fact:

Assuming the eigenvalue of B corresponding to the eigenvector u1 to be ν, we have

U cAU =

[
µ C
0 A1

]
U cBU =

[
ν D
0 B1

]
.
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Therefore

[
µν µD + CB1

0 A1B1

]
=

[
µ C
0 A1

] [
ν D
0 B1

]

= U cAUU cBU = U cABU = U cBAU = U cBU U cAU =

[
νµ νC +DA1

0 B1A1

]
,

hence also A1 and B1 commute.

The primary decomposition

The following analysis goes back to Frobenius and could be viewed as a first step toward a finest A-
invariant direct sum decomposition, aka the Jordan form, though the Jordan form is deduced in the next
section without any reference to this section. We give the analysis here in the more general situation when
the scalar field IF may not be algebraically closed.

The ‘primary decomposition’ refers to the following facts (taken for granted here). The ring Π of
(univariate) polynomials over the field IF is a unique factorization domain. This means that each monic
polynomial can be written in exactly one way (up to order of the factors) as a product of irreducible
polynomials, i.e., monic polynomials that have no proper factors. Here, p is called a proper factor of q if
(i) 0 < deg p < deg q, and (ii) q = hp for some polynomial h.

If IF = C (or any other algebraically closed field), then each such irreducible polynomial is a monic
linear polynomial, i.e., of the form (· −µ) for some scalar µ. Otherwise, irreducible polynomials may well be
of higher than first degree. In particular, if IF = IR, then an irreducible polynomial may be of second degree,
like the polynomial ()2 + 1, but no irreducible polynomial would be of higher degree than that.

The irreducible polynomials are the ‘primes’ in the ‘ring’ Π, hence the above-mentioned unique factor-
ization is one into powers of ‘primes’, or a prime factorization.

To obtain the ‘primary decomposition’ of the linear space X with respect to the linear map A ∈  L(X),
it is convenient to start with the set

NA := {p ∈ Π : null p(A) 6= {0}}

of all polynomials p for which p(A) fails to be invertible. This set is not trivial, meaning that it contains
more than just the zero polynomial, if, as we continue to assume, dimX <∞, since then

(12.6) pA,x ∈ NA, ∀x ∈ X,

with pA,x the minimal polynomial for A at x, which, to recall, is the monic polynomial p of smallest degree
for which p(A)x = 0.

Call an element of NA minimal if it is monic and none of its proper factors is in NA, and let

QA

be the collection of all minimal elements of NA.

The set QA is not empty since NA is not empty and is closed under multiplication by a scalar, hence
contains a monic polynomial of smallest degree. Any q ∈ QA is necessarily irreducible, since, otherwise, it
would be the product of certain polynomials p with p(A) 1-1, hence also q(A) would be 1-1.

For every q ∈ QA and every x ∈ null q(A)\0, necessarily pA,x = q, by the minimality of pA,x. This
implies that

(12.7) p, q ∈ QA and null p(A) ∩ null q(A) 6= {0} =⇒ p = q.
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(12.8) Lemma: Let p be a product of elements of QA,

p =:
∏

q∈Q′

A

q(A)dq

say, with dq ∈ IN and Q′
A a finite subset of QA. Then,

(12.9) Xp := null p(A) = +̇
q∈Q′

A

null q(A)dq ,

i.e., Xp = null p(A) is the direct sum of the spaces Yq := null q(A)dq . In other words (by (4.26)Propo-
sition), with Vq a basis for Yq,

Vp := [Vq : q ∈ Q′
A]

is a basis for Xp.

Proof: There is nothing to prove if Q′
A has just one element. So, assume that #Q′

A > 1, and
consider the set

I :=
∑

q∈Q′

A

(p/qdq)Π := {
∑

q∈Q′

A

(p/qdq )pq : pq ∈ Π}

of all polynomials writable as a weighted sum of the polynomials

p/qdq =
∏

g∈Q′

A
\q

gdg

for q ∈ Q′
A, with polynomial (rather than just scalar) weights. This set is a polynomial ideal, meaning that

it is closed under addition, as well as under multiplication by polynomials. More than that, let q∗ be the
monic polynomial of smallest degree in I. By Euclid’s algorithm, for every q ∈ I, there exist polynomials g
and h with q = hq∗ + g, hence g = q− hq∗ ∈ I, yet deg g < deg q∗, hence, by the minimality of q∗, g = 0. In
other words, the monic polynomial q∗ is a factor of every q ∈ I, in particular of every p/qdq with q ∈ Q′

A.
But these polynomials have no proper factor in common. Therefore, q∗ is necessarily the monic polynomial
of degree 0, i.e., q∗ = ()0.

It follows that
()0 =

∑

q∈Q′

A

(p/qdq)hq

for certain polynomials hq. This implies that, for the corresponding linear maps

Pq : Xp → Xp : y 7→ (p/qdq )(A)hq(A)y, q ∈ Q′
A,

we have

(12.10) idXp
=
∑

q

Pq.

Also, for q 6= g, PqPg = s(A)p(A) = 0 for some s ∈ Π. Therefore also

Pq = Pq idXp
= Pq(

∑

g

Pg) =
∑

g

PqPg = PqPq.

This shows that each Pq is a linear projector, and, by (5.11), that Xp is the direct sum of the ranges of the
Pq. It remains to show that

(12.11) ranPq = Yq = null q(A)dq .

It is immediate that ranPq ⊂ Yq ⊂ Xp. With that, Yq ⊂ nullPg for all g ∈ Q′
A\q, and this implies (12.11),

by (12.10).
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Now let p = pA be the minimal (annihilating) polynomial for A, meaning the monic polynomial p
of smallest degree for which p(A) = 0.

To be sure, there is such a polynomial since X is finite-dimensional, hence so is L(X) (by (4.24)Corol-
lary), therefore [Ar : r = 0: dimL(X)] must fail to be 1-1, i.e., there must be some a for which

p(A) :=
∑

j≤dim L(X)

ajA
j = 0,

yet aj 6= 0 for some j > 0, hence the set of all annihilating polynomials of positive degree is not empty,
therefore must have an element of minimal degree, and it will remain annihilating and of that degree if we
divide it by its leading coefficient.

By the minimality of pA, every proper factor of pA is necessarily in NA. Hence pA is of the form

pA =
∏

q∈Q′

A

qdq

for some Q′
A ⊂ QA. (In fact, it is immediate from (12.8)Lemma that necessarily Q′

A = QA, but we don’t
need that here.) This gives, with (12.8)Lemma, the primary decomposition for X wrto A:

(12.12) X = +̇
q

null q(A)dq .

Necessarily,
null q(A)dq = ∪r null q(A)r ,

with dq the smallest natural number for which this equality holds. Indeed, from (12.12), every x ∈ X is
uniquely writable as x =

∑
g xg with xg ∈ null g(A)dg , all g ∈ Q′

A, and, since each null g(A)dg is A-invariant,
we therefore have q(A)rx =

∑
g q(A)rxg = 0 if and only if q(A)rxg = 0 for all g ∈ Q′

A. However, as we saw

before, for each g ∈ QA\q, q(A) is 1-1 on null g(A)dg , hence q(A)rxg = 0 if and only if xg = 0. Therefore,
altogether, null q(A)dq ⊃ null q(A)r for any r. This proves that

null q(A)dq ⊃ ∪r null q(A)r ,

while the converse inclusion is trivial. If now null q(A)r = null q(A)dq for some r < dq, then already
p := pA/q

dq−r would annihilate X , contradicting pA’s minimality.

If IF = C, then each q is of the form · − µq for some scalar µq and, correspondingly,

X = +̇
q

null(A− µq id)dq .

In particular, A− µq id is nilpotent on

Yq := null(A− µq id)dq ,

with degree of nilpotency equal to dq. Since

A = µq id + (A− µq id),

it follows that

(12.13) exp(tA) = exp(tµq id) exp(t(A− µq id)) = exp(tµq)
∑

r<dq

tr(A− µq id)r/r! on Yq,

thus providing a very helpful detailed description of the solution y : t 7→ exp(tA)c to the first-order ODE
y′(t) = Ay(t), y(0) = c, introduced in (10.4).

12.1 A subset F of the vector space X := C(1)(IR) of continuously differentiable functions is called D-invariant if the
derivative Df of any f ∈ F is again in F .

Prove: Any finite-dimensional D-invariant linear subspace Y of C(1)(IR) is necessarily the nullspace of a constant-coefficient

ordinary differential operator.
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The Jordan form

The Jordan form is the result of the search for the ‘simplest’ matrix representation for A ∈ IFn×n. It
starts off from the following observation.

Suppose X := IFn is the direct sum

(12.14) X = Y1 +̇Y2 +̇ · · · +̇Yr

of r linear subspaces, each of which is A-invariant. Then spec(A) = ∪jspec(A Yj
). More than that, with

Vj a basis for Yj , we have AVj ⊂ ranVj , all j. This implies that the coordinate vector of any column of
AVj with respect to the basis V := [V1, . . . , Vr] for X has nonzero entries only corresponding to columns of
Vj , and these possibly nonzero entries can be found as the corresponding column in the matrix V −1

j AVj .

Consequently, the matrix representation Â = V −1AV for A with respect to the basis V is block-diagonal,
i.e., of the form

Â = diag(V −1
j AVj : j = 1:r) =




V −1

1 AV1

. . .

V −1
r AVr



 .

The smaller we can make the A-invariant summands Yj , the simpler and more helpful is our overall

description Â of the linear map A. Of course, the smallest possible A-invariant subspace of X is the trivial
subspace, but it would not contribute any columns to V , hence we will assume from now on that our
A-invariant direct sum decomposition (12.14) is proper, meaning that none of its summands Yj is trivial.

With that, each Yj has dimension ≥ 1, hence is as small as possible if it is 1-dimensional, Yj = ran[vj ]
say, for some nonzero vj . In this case, A-invariance says that Avj must be a scalar multiple of vj , hence vj

is an eigenvector for A, and the sole entry of the matrix [vj ]−1A[vj ] is the corresponding eigenvalue for A.

Thus, at best, each Yj is 1-dimensional, hence V consists entirely of eigenvectors for A, i.e., A is
diagonable. Since we know that not every matrix is diagonable, we know that this best situation cannot
always be attained. But we can try to make each Yj as small as possible, in the following way.

(12.15) Jordan Algorithm:
input: X = IFn, A ∈ L(X).
Y ← {X}
while ∃Z1 +̇Z2 ∈ Y with both Zj nontrivial and A-invariant, do:

replace Z1 +̇Z2 in Y by Z1 and Z2.
endwhile
output: the proper A-invariant direct sum decomposition X = +̇Y ∈Y Y .

At all times, the elements of Y form a proper direct sum decomposition for X . Hence

#Y ≤
∑

Y ∈Y

dim Y = dimX = n.

Since each pass through the while-loop increases #Y by 1, the algorithm must terminate after at most n−1
steps.

Now consider any particular Y in the collection Y output by the algorithm. It is a nontrivial A-invariant
subspace. Hence, with the assumption that IF = C, we know that Y → Y : y 7→ Ay is a linear map with
some eigenvalue, µ say. This implies that the linear map

N : Y → Y : y 7→ (A− µ id)y

is well-defined and has a nontrivial nullspace.

Claim 1: For some y ∈ Y and some q ∈ IN, N q−1y 6= 0 = N qy.

Proof: Indeed, since nullN 6= {0}, this holds, e.g., for q = 1 and y ∈ nullN\0.
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Claim 2: For any y and q as in Claim 1, there is λ ∈ Y ′ with λN q−1y 6= 0 and, for any such λ,
Y = null Λt ⊕ ranV , with Λ := [λN i−1 : i = 1:q] and V := [N q−jy : j = 1:q].

Proof: The Gramian matrix ΛtV = (λN i−1N q−jy : i, j = 1:q) is square and upper triangular, with
all diagonal entries equal to λN q−1y 6= 0, hence ΛtV is invertible. This implies, by (5.8), that Y is the direct
sum of null Λt and ranV .

Claim 3: There is a largest q satisfying Claim 1, and for that q, nullN q∩ranN q = {0}, hence N q = 0.

Proof: The V of Claim 2 is 1-1, hence q = #V ≤ dimY , therefore there is a largest q satisfying
Claim 1. For that q, nullN q ∩ ranN q is trivial: indeed, if x ∈ nullq ∩ ranN q, then x = N qu for some u ∈ Y ,
and also N2qu = N qx = 0, but if N qu 6= 0, then N r−1u 6= 0 = N ru for some r > q, which would contradict
the maximality of q. Hence x = N qu = 0. With this, Y = nullN q +̇ ranN q since, by the (4.15)Dimension
formula, their dimensions sum to dimY . Both subspaces are also evidently N -invariant, hence A-invariant,
therefore must provide a trivial A-invariant direct sum of Y , i.e., one of the summands must be trivial. Since
y ∈ nullN q\0, therefore Y = nullN q, hence N q = 0.

Claim 4: For the largest q, V of Claim 2 is a basis for Y , hence q = dimY and the matrix represen-
tation for A Y with respect to the basis VY := [N q−jy : j = 1:q] for Y has the simple form

(12.16) V −1
Y (A Y )VY =





µ 1 0 · · · 0 0
0 µ 1 · · · 0 0
0 0 µ · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · µ 1
0 0 0 · · · 0 µ




=: J(µ, q).

Proof: Since NV = V [0, e1, . . . , eq−1], ranV is N -invariant for any q, while null Λt is N -invariant
when q is maximal since then N q = 0 by Claim 3. Hence the direct sum decomposition of Claim 2 is
A-invariant and so, one of the summands must be trivial. Since y ∈ ranV \0, it follows that Y = ranV and,
since V is 1-1 by Claim 2, it is a basis for Y , and V −1(A− µ id) Y V = V −1NV = [0, e1, . . . , eq−1].

It follows that the matrix representation for A with respect to the basis

V := [VY : Y ∈ Y]

for X = IFn is block-diagonal, with each diagonal block a Jordan block, J(µ, q), i.e., of the form (12.16)
for some scalar µ and some natural number q. Any such matrix representation for A is called a Jordan
(canonical) form for A.

There is no reason to believe that such a Jordan form is unique. After all, it depends on the particular
order we choose for the elements of Y when we make up the basis V = [VY : Y ∈ Y]. More than that, there
is, in general, nothing unique about Y. For example, if A = 0 or, more generally A = α id, then any direct
sum decomposition for X is A-invariant, hence V can be any basis for X whatsoever for this particular A.

Nevertheless, the Jordan form is canonical in the following sense.
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(12.17) Proposition: Let Â =: diag(J(µY , dimY ) : Y ∈ Y) be a Jordan canonical form for A ∈
IFn×n. Then

(i) spec(A) = {Â(j, j) : j = 1:n} = ∪Y ∈Yspec(A Y ).

(ii) For each µ ∈ spec(A) and each q,

(12.18) nq := dim null(A− µ id)q =
∑

µY =µ

min(q, dim Y ),

hence ∆nq := nq+1−nq equals the number of blocks for µ of order > q, giving the decomposition-
independent number −∆2nq−1 for the number of Jordan blocks of order q for µ.

In particular, the Jordan form is unique up to an ordering of its blocks.

While the Jordan form is mathematically quite striking, it is of no practical relevance since it does not
depend continuously on the entries of A, hence cannot be determined reliably by numerical calculations.
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13. Localization of eigenvalues

In this short chapter, we discuss briefly the standard techniques for ‘localizing’ the spectrum of a given
linear map A. Such techniques specify regions in the complex plane that must contain parts or all of the
spectrum of A. To give a simple example, we proved (in (12.2)Corollary) that all the eigenvalues of a
hermitian matrix must be real, i.e., that spec(A) ⊂ IR in case Ac = A.

Since µ ∈ spec(A) iff (A − µ id) is not invertible, it is not surprising that many localization theorems
derive from a test for invertibility.

Gershgorin’s circles

Let µ be an eigenvalue for A with corresponding eigenvector x. Without loss of generality, we may
assume that ‖x‖ = 1 in whatever vector norm on X = domA we are interested in at the moment. Then

|µ| = |µ|‖x‖ = ‖µx‖ = ‖Ax‖ ≤ ‖A‖‖x‖ = ‖A‖,

with ‖A‖ the corresponding map norm for A. This proves that the spectrum of A must lie in the closed disk
B−

‖A‖ of radius ‖A‖ centered at the origin. In other words,

(13.1) ρ(A) ≤ ‖A‖

for any map norm ‖ · ‖.

For example, no eigenvalue of A =

[
1 2
−2 −1

]
can be bigger than 3 in absolute value since ‖A‖∞ = 3.

A more refined containment set is obtained by the following more refined analysis.

If E ∈ IFn×n has map-norm < 1, then A := idn − E is surely 1-1 since then

‖Ax‖ = ‖x− Ex‖ ≥ ‖x‖ − ‖Ex‖ ≥ ‖x‖ − ‖E‖‖x‖ = ‖x‖(1− ‖E‖)

with the factor (1− ‖E‖) positive, hence Ax = 0 implies that ‖x‖ = 0.

Now consider a diagonally dominant A, i.e., a matrix A with the property that

(13.2) ∀i |A(i, i)| >
∑

j 6=i

|A(i, j)|.

For example, of the three matrices

(13.3)

[
2 −1
2 3

]
,

[
−2 −1
3 3

]
,

[
−2 −1
4 3

]
,

only the first is diagonally dominant. Setting

D := diagA = diag(. . . , A(i, i), . . .),

we notice that (i) D is invertible (since all its diagonal entries are nonzero); and (ii) the matrix E defined
by D−1A =: id − E satisfies

E(i, j) =

{
−A(i, j)/A(i, i) if i 6= j;
0 otherwise,

hence has norm
‖E‖∞ = max

i

∑

j 6=i

|A(i, j)/A(i, i)| < 1,

by the assumed diagonal dominance of A. This implies that the matrix id − E = D−1A is invertible,
therefore also A is invertible. This proves
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(13.4) Proposition: Any diagonally dominant matrix is invertible.

In particular, the first of the three matrices in (13.3) we now know to be invertible. As it turns out, the
other two are also invertible; thus, diagonal dominance is only sufficient but not necessary for invertibility.
Equivalently, a noninvertible matrix cannot be diagonally dominant.

In particular, for (A− µ id) to be not invertible, it must fail to be diagonally dominant, i.e.,

(13.5) ∃i |A(i, i)− µ| ≤
∑

j 6=i

|A(i, j)|.

This gives the famous

(13.6) Gershgorin Circle Theorem: The spectrum of A ∈ Cn×n is contained in the union of the
disks

Bri
(A(i, i)) := {z ∈ C : |A(i, i)− z| ≤ ri :=

∑

j 6=i

|A(i, j)|}, i = 1:n.

For the three matrices in (13.3), this says that

spec(

[
2 −1
2 3

]
) ⊂ B1(2)∪B2(3) spec(

[
−2 −1
3 3

]
) ⊂ B1(−2)∪B3(3) spec(

[
−2 −1
4 3

]
) ⊂ B1(−2)∪B4(3).

More than that, according to a refinement of the Gershgorin Circle Theorem, the second matrix must have
one eigenvalue in the closed disk B−

1 (−2) and another one in the closed disk B−
3 (3), since these two balls

have an empty intersection. By the same refinement, if the third matrix disk only one eigenvalue, then it
would necessarily have to be the point −1, i.e., the sole point common to the two disks B−

1 (−2) and B−
4 (3).

13.1 Does each of the two Gershgorin disks of the matrix A :=

[
5 −1
6 0

]
contain an eigenvalue of A?

The trace of a linear map

Recall that the trace of a square matrix A is given by

trace(A) =
∑

j

A(j, j).

Further, as already observed in (6.31), if the product of the two matrices B and C is square, then

(13.7) trace(BC) =
∑

j

∑

k

B(j, k)C(k, j) =
∑

jk

B(j, k)C(k, j) = trace(CB).

Hence, if A = V ÂV −1, then

trace(A) = trace(V (ÂV −1)) = trace(ÂV −1V ) = trace Â.

This proves
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(13.8) Proposition: Any two similar matrices have the same trace.

This permits the definition of the trace of an arbitrary linear map A on an arbitrary finite-dimensional
vector space X as the trace of the matrices similar to it. In particular, trace(A) equals the sum of the
diagonal entries of any Schur form for A, i.e., trace(A) is the sum of the eigenvalues of A, however with some
of these eigenvalues possibly repeated.

For example, trace( idn) = n, while spec( idn) = {1}.
Offhand, such eigenvalue multiplicity seems to depend on the particular Schur form (or any other

triangular matrix representation) for A. But, since all of these matrices have the same trace, you will not
be surprised to learn that all these triangular matrix representations for A have each eigenvalue appear on
its diagonal with exactly the same multiplicity. This multiplicity of µ ∈ spec(A) is denoted

#aµ

and is called the algebraic multiplicity of the eigenvalue, and is readily identified as the dimension of
∪r null(A− µ id)r. Further, the polynomial

χ
A

:=
∏

µ∈spec(A)

(· − µ)#aµ

is the much-studied characteristic polynomial for A.

It would not take much work to validate all these claims directly. But I prefer to obtain them along
more traditional lines, namely via determinants.

Determinants

The determinant is, by definition, the unique multilinear alternating form

det : [a1, . . . , an]→ IF

for which

(13.9) det( idn) = 1.

Here, multilinear means that det is linear in each of its n arguments, i.e.,

(13.10) det[. . . , a+ αb, . . .] = det[. . . , a, . . .] + α det[. . . , b, . . .].

(Here and below, the various ellipses . . . indicate the other arguments, the ones that are kept fixed.) Further,
alternating means that the interchange of two arguments reverses the sign, i.e.,

det[. . . , a, . . . , b, . . .] = − det[. . . , b, . . . , a, . . .].

In particular, detA = 0 in case two columns of A are the same, i.e.,

det[. . . , b, . . . , b, . . .] = 0.

Combining this last with (13.10), we find that

det[. . . , a+ αb, . . . , b, . . .] = det[. . . , a, . . . , b, . . .],
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i.e., addition of a scalar multiple of one argument to a different argument does not change the determinant.

In particular, if A = [a1, a2, . . . , an] is not invertible, then detA = 0 since then there must be some
column aj of A writable as a linear combination of other columns, i.e.,

detA = det[. . . , aj , . . .] = det[. . . , 0, . . .] = 0,

the last equality by the multilinearity of the determinant.

Conversely, if A is invertible, then detA 6= 0, and this follows from the fundamental determinantal
identity

(13.11) det(AB) = det(A) det(B)

since, for an invertible A,
1 = det( idn) = det(AA−1) = det(A) det(A−1),

the first equality by (13.9).

(13.12) Theorem: For all A ∈ Cn×n, spec(A) = {µ ∈ C : det(A− µ id) = 0}.

Of course, this theorem is quite useless unless we have in hand an explicit formula for the determinant.
Here is the standard formula:

(13.13) det[a1, a2, . . . , an] =
∑

i∈SSn

(−)i
∏

j

aj(i(j))

in which the sum is over all permutations of order n, i.e., all 1-1 (hence invertible) maps i : {1, . . . , n} →
{1, . . . , n}, and the number (−)i is 1 or −1 depending on the parity of the number of interchanges it takes
to bring the sequence i back into increasing order.

For n = 1, we get the trivial fact that, for any scalar a, spec([a]) = {a}.
For n = 2, (13.12) implies that

spec(

[
a b
c d

]
) = {µ ∈ C : (a− µ)(d− µ) = bc}.

For n = 3, we get

spec(




a b c
d e f
g h i



) = {µ ∈ C : p(µ) = 0},

with
p(µ) := (a− µ)(e− µ)(i− µ) + bfg + chd− c(e− µ)g − (a− µ)fh− bd(i− µ).

For n = 4, (13.13) already involves 24 summands, and, for general n, we have n! = 1 · 2 · · ·n summands.
Thus, even with this formula in hand, the theorem is mostly only of theoretical interest since already for
modest n, the number of summands involved becomes too large for any practical computation.

In fact, the determinant detA of a given matrix A is usually computed with the aid of some factorization
of A, relying on the fundamental identity (13.11) and on the following

(13.14) Lemma: The determinant of any triangular matrix is just the product of its diagonal entries.

Proof: This observation follows at once from (13.13) since any permutation i other than the identity
(1, 2, . . . , n) must have i(k) < k for some k, hence the corresponding product

∏
j aj(i(j)) in (13.13) will be

zero for any lower triangular matrix. Since any such i must also have i(h) > h for some h, the corresponding
product will also vanish for any upper triangular matrix. Thus, in either case, only the product

∏
j aj(j) is

possibly nonzero.
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So, with A = PLU as constructed by Gauss-elimination, with L unit lower triangular and U upper
triangular, and P a permutation matrix, we have

detA = (−)P
∏

j

U(j, j),

with the number (−)P equal to 1 or −1 depending on the parity of the permutation carried out by P , i.e.,
whether the number of row interchanges made during Gauss elimination is even or odd.

Formula (13.13) is often taken as the definition of detA. It is a simple consequence of the fundamen-
tal identity (13.11), and the latter follows readily from the multilinearity and alternation property of the
determinant. For these and other details, see the chapter ‘More on determinants’.

Annihilating polynomials

The nontrivial polynomial p is called annihilating for A ∈ L(X) if p(A) = 0.

For example, A is nilpotent exactly when, for some k, the monomial ()k annihilates A, i.e., Ak = 0.
As another example, A is a linear projector (or, idempotent) exactly when the polynomial p : t 7→ t(t − 1)
annihilates A, i.e., A2 = A.

Annihilating polynomials are of interest because of the following version of the Spectral Mapping
Theorem:

(13.15) Theorem: For any polynomial p and any linear map A ∈ L(X) with IF = C,

spec(p(A)) = p(spec(A)) := {p(µ) : µ ∈ spec(A)}.

Proof: If µ ∈ spec(A), then, for some nonzero x, Ax = µx, therefore also p(A)x = p(µ)x, hence
p(µ) ∈ spec(p(A)). In other words, p(spec(A)) ⊂ spec(p(A)).

Conversely, if ν ∈ spec(p(A)), then p(A) − ν id fails to be 1-1. However, assuming without loss of
generality that p is a monic polynomial of degree r, we have p(t)− ν = (t− µ1) · · · (t− µr) for some scalars
µ1, . . . , µr, therefore

p(A)− ν id = (A− µ1 id) · · · (A− µr id),

and, since the left-hand side is not 1-1, at least one of the factors on the right must fail to be 1-1. This says
that some µj ∈ spec(A), while p(µj)− ν = 0. In other words, spec(p(A)) ⊂ p(spec(A)).

In particular, if p annihilates A, then p(A) = 0, hence spec(p(A)) = {0}, therefore spec(A) ⊂ {µ ∈ C :
p(µ) = 0}.

For example, 0 is the only eigenvalue of a nilpotent linear map. The only possible eigenvalues of an
idempotent map are the scalars 0 and 1.

The best-known annihilating polynomial for a given A ∈ IFn×n is its characteristic polynomial, i.e., the
polynomial

χ
A

: t 7→ det(t idn −A).

To be sure, by (10.26), we can write any such A as the product A = V ÂV −1 with Â upper triangular.
Correspondingly,

χ
A

(t) = detV det(t idn − Â)(det V )−1 = det(t idn − Â) = χ
Â

(t) =
∏

j

(t− Â(j, j)),

the last equation by (13.14)Lemma. Consequently, χ
A

(A) = V χ
A

(Â)V −1, with

χ
A

(Â) = (Â− µ1 id) · · · (Â− µn id), µj := Â(j, j), j = 1:n,
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and this, we claim, is necessarily the zero map, for the following reason: The factor (Â − µj id) is upper

triangular, with the jth diagonal entry equal to zero. This implies that, for each i, (Â− µj id) maps

Ti := ran[e1, . . . , ei]

into itself, but maps Tj into Tj−1. Therefore

ranχ
A

(Â) = χ
A

(Â)Tn = (Â− µ1 id) · · · (Â− µn id)Tn

⊂ (Â− µ1 id) · · · (Â− µn−1 id)Tn−1

⊂ (Â− µ1 id) · · · (Â− µn−2 id)Tn−2

. . .

⊂ (Â− µ1 id)T1 ⊂ T0 = {0},

or, χ
A

(Â) = 0, therefore also χ
A

(A) = 0. This is known as the Cayley-Hamilton Theorem.

Note that the collection IA := {p ∈ Π : p(A) = 0} of all polynomials that annihilate a given linear map
A is an ideal, meaning that it is a linear subspace that is also closed under multiplication by polynomials: if
p ∈ IA and ∈ Π, then their product qp : t 7→ q(t)p(t) is also in IA. Since IA is not empty, it contains a monic
polynomial of minimal degree. This polynomial is called the minimal polynomial for A and is denoted
by pA. Using the Euclidean algorithm (see Backgrounder), it is easy to see that pA must be a factor of every
p ∈ IA; in technical terms, IA is a principal ideal, more precisely the principal ideal generated by pA.

In exactly the same way, the collection IA,x := {p ∈ Π : p(A)x = 0} is seen to be a principal ideal, with
pA,x the unique monic polynomial of smallest degree in it. Since IA ⊂ IA,x, it follows that pA,x must be a
factor for any p ∈ IA and, in particular, for χ

A
.

13.2 (a) Prove: If the minimal annihilating polynomial p = pA,x of the linear map A ∈ L(X) at some x ∈ X\0 has
degree equal to dimX, then pA,x(A) = 0. (b) Prove that the spectrum of the companion matrix (see H.P. 10.15 ) of the monic
polynomial p equals the zero set of p.

13.3 make one about the coefs of char.pol. being symmetric functions of evs, and one about the ith coeff. being the sum

of the n − ith principal minors. all of these, including the trace, are invariant under similarity.

The multiplicities of an eigenvalue

Since χ
A

is of exact degree n in case A ∈ Cn, χ
A

has exactly n zeros counting multiplicities. This means
that

χ
A

(t) = (t− µ1) · · · (t− µn)

for a certain n-sequence µ. Further,
spec(A) = {µj : j = 1:n},

and this set may well contain only one number, as it does when A = 0 or A = id. However, it is customary to
associate with each eigenvalue, µ, its algebraic multiplicity, #aµ, which, by definition, is its multiplicity
as a zero of the characteristic polynomial, or, equivalently as we saw, as a diagonal entry of any triangular
matrix similar to A. For example, the matrix idn has only the eigenvalue 1, but it has algebraic multiplicity
n. In this way, each A ∈ Cn×n has n eigenvalues counting algebraic multiplicity.

I have been saying ‘algebraic multiplicity’ rather than just ‘multiplicity’, since there is a second way
of counting eigenvalues, and that is by geometric multiplicity. The geometric multiplicity, #gµ, of the
eigenvalue µ for A is, by definition, the dimension of the space of corresponding eigenvectors, i.e.,

#gµ := dim null(A− µ id).

For the sole eigenvalue, 1, of idn, algebraic and geometric multiplicity coincide. In contrast, the sole

eigenvalue, 0, of

[
0 1
0 0

]
has algebraic multiplicity 2 but its geometric multiplicity is only 1.
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An eigenvalue is (algebraically or geometrically) simple if it has (algebraic or geometric) multiplicity
1.

13.16 Proposition: For any eigenvalue, the algebraic multiplicity is no smaller than the geometric
multiplicity, with equality if and only if the eigenvalue is not defective.

13.4

(i) Prove that the multiplicity with which an eigenvalue µ of A appears as a diagonal entry of a triangular matrix T similar
to A is the same for all such triangular matrices. (Hint: Prove that it equals the multiplicity of µ as a zero of the
characteristic polynomial χ

A
: t 7→ det(t idn − A) of A; feel free to use what we proved about determinants, like:

det(AB) = det(A) det(B), and det(T ) =
∏

j
T (j, j).)

(ii) Determine the algebraic and geometric multiplicities for all the eigenvalues of the following matrix. (Read off the eigen-
values; use elimination to determine geometric multiplicities.)

A :=





1 0 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 3 0 1
0 0 0 0 3 1
0 0 0 0 0 3





Perron-Frobenius

We call the matrix A positive (nonnegative) and write A > 0 (A ≥ 0) in case all its entries are
positive (nonnegative). A positive (nonnegative) matrix A of order n maps the positive orthant

IRn
+ := {y ∈ IRn : y ≥ 0}

into its interior (into itself). Thus the (scaled) power method, started with a nonnegative vector, would
converge to a nonnegative vector if it converges. This suggests that the absolutely largest eigenvalue for
a nonnegative matrix is nonnegative, with a corresponding nonnegative eigenvector. The Perron-Frobenius
theorem makes this intuition precise.

Since A maps IRn
+ into itself, it makes sense to consider, for given y ∈ IRn

+\0, scalars α for which Ay ≥ αy
(in the sense that (Ay)j ≥ αyj , all j), i.e., for which Ay−αy ≥ 0. The largest such scalar is the nonnegative
number

r(y) := min{(Ay)j/yj : yj > 0}, y ∈ IRn
+\0.

The basic observation is that

(13.17) Ay − αy > 0 =⇒ r(y) > α.

The function r so defined is dilation-invariant, i.e., r(αy) = r(y) for all α > 0, hence r takes on all its values
already on the set S+ := {y ≥ 0 : ‖y‖ = 1}. At this point, we need, once again, a result that goes beyond
the scope of these notes, namely the fact that S+ is compact, while r is continuous at any y > 0 and upper
semicontinuous at any y ≥ 0, hence r takes on its supremum over IRn

+\0 at some point in S+. I.e., there
exists x ∈ S+ for which

µ := r(x) = sup r(S+) = sup r(IRn
+\0).

Assume now, in addition to A ≥ 0, that also p(A) > 0 for some polynomial p.

Claim: Ax = µx.

Proof: Assume that Ax 6= µx. Since µ = r(x), we have Ax−µx ≥ 0, therefore A(p(A)x)−µp(A)x =
p(A)(Ax − µx) > 0, hence, by (13.17), r(p(A)x) > µ = sup r(S+), a contradiction.
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Claim: x > 0.

Proof: Since 0 6= x ≥ 0 and p(A) > 0, we have p(µ)x = p(A)x > 0, hence x > 0.

Consequence: x is the unique maximizer for r.

Proof: If also r(y) = µ for some y ∈ S+, then by the same argument Ay = µy, therefore Az = µz
for all z = x+ α(y− x), and each of these z must be positive if it is nonnegative, and this is possible only if
y − x = 0.

Consequence: For any eigenvalue ν of any matrix B with eigenvector y, if |B| ≤ A, then |ν| ≤ µ, with
equality only if | y/‖y‖ | = x and |B| = A. (More precisely, equality implies that B = exp(iϕ)DAD−1, with
D := diag(. . . , yj/|yj|, . . .) and exp(iϕ) := ν/|ν|.)

Proof: Observe that

(13.18) |ν||y| = |By| ≤ |B| |y| ≤ A|y|,

hence |ν| ≤ r(|y|) ≤ µ. If now there is equality, then, by the uniqueness of the minimizer x (and assuming
without loss that ‖y‖ = 1), we must have |y| = x and equality throughout (13.18), and this implies |B| = A.
More precisely, D := diag(. . . , yj/|yj |, . . .) is then well defined and satisfies y = D|y|, hence C|y| = µ|y| =
A|y|, with C := exp(−iϕ)D−1BD ≤ A and ν =: µ exp(iϕ), therefore C = A.

Consequences. By choosing B = A, we get that µ = ρ(A) := max{|ν| : ν ∈ σ(A)}, and that µ has
geometric multiplicity 1 (as an eigenvalue of A).

We also get that ρ(A) is strictly monotone in the entries of A, i.e., that ρ(Â) > ρ(A) in case Â ≥ A 6= Â

(using the fact that p(A) > 0 and Â ≥ A implies that also q(Â) > 0 for some polynomial q; see below).

As a consequence, we find computable upper and lower bounds for the spectral radius of A:

Claim:
∀{y > 0} r(y) ≤ ρ(A) ≤ R(y) := max

j
(Ay)j/yj,

with equality in one or the other if and only if there is equality throughout if and only if y = αx (for some
positive α). In particular, ρ(A) is the only eigenvalue of A with positive eigenvector.

Proof: Assume without loss that ‖y‖ = 1. We already know that for any such y > 0, r(y) ≤ ρ(A)
with equality if and only if y = x. For the other inequality, observe that R(y) = ‖D−1ADe‖∞ with
D := diag(. . . , yj , . . .) and e := (1, . . . , 1). Since D−1AD ≥ 0, it takes on its max-norm at e, hence

R(y) = ‖D−1AD‖∞ ≥ ρ(D−1AD) = ρ(A).

Now assume that r(y) = R(y). Then Ay = r(y)y, hence r(y) ≤ r(x) = ρ(A) ≤ R(y) = r(y), therefore
equality must hold throughout and, in particular, y = x.

If, on the other hand, r(y) < R(y), then we can find Â 6= A ≤ Â so that Ây = R(y)y (indeed, then
z := R(y)y−Ay is nonnegative but not 0, hence Â := A+ y−1

1 [z]e1
t does the job) therefore r

Â
(y) = R(y) =

R
Â

(y), hence R(y) = ρ(Â) > ρ(A).

Claim: µ has simple algebraic multiplicity.

Proof: Since we already know that µ has simple geometric multiplicity, it suffices to show that µ is
not a defective eigenvalue, i.e., that null(A − µ id) ∩ ran(A − µ id) = {0}. So assume to the contrary that
Ay − µy is an eigenvector of A belonging to µ. Then, by the simple geometric multiplicity of µ, we may
assume without loss that Ay − µy = x, or Ay = µy + x, therefore, for all k, Aky = µky + kµk−1x, hence,
finally,

(A/µ)ky = y + k(x/µ).

Hence, for large enough k, z := (A/µ)ky has all its entries positive, and Az = Ay + kx = µy + (k + 1)x =
µ(z + x/µ) > µz, therefore r(z) > µ, a contradiction.
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The collection of these claims/consequences constitutes the Perron-Frobenius Theorem. Oskar
Perron proved all this under the assumption that A > 0 (i.e., p(t) = t). Frobenius extended it to all A ≥ 0
that are irreducible. While this term has some algebraic and geometric meaning (see below), its most
convenient definition for the present purpose is that p(A) > 0 for some polynomial p. In the contrary case, A
is called reducible, and not(iv) below best motivates such a definition. Here are some equivalent statements:

Claim: Let A ≥ 0. Then the following are equivalent:

(i) p(A) > 0 for some polynomial p.

(ii) For all (i, j), there exists k = k(i, j) so that Ak(i, j) > 0.

(iii) No proper A-invariant subspace is spanned by unit-vectors.

(iv) For no permutation matrix P is

(13.19) PAP−1 =

[
B C
0 D

]

with B,D square matrices of positive order.

(v) The directed graph for A is strongly connected.

Proof: (ii)=⇒(i) since then p(A) :=
∑

i,j A
k(i,j) > 0.

If (ii) does not hold, then there exists (i, j) so that Ak(i, j) = 0 for all k. But then also p(A)(i, j) = 0 for
all polynomials p; in other words, (i)=⇒(ii). Further, it says that the set J := J(j) := {r : ∃{k} Ak(r, j) 6= 0}
is a proper subset of {1, . . . , n} (since it doesn’t contain i), but neither is it empty ( since it contains j, as
A0(j, j) 6= 0). Since Ak+ℓ(r, j) =

∑
mAk(r,m)Aℓ(m, j), it follows that J(m) ⊂ J(j) for all m ∈ J(j).

This implies, in particular, that A(r,m) = 0 for all r 6∈ J(j),m ∈ J(j), hence that span(em)m∈J(j) is a
proper A-invariant subspace, thus implying not(iii). It also implies not(iv), since it shows that the columns
A(:,m),m ∈ J(j), have zero entries in rows r, r 6∈ J(j), i.e., that (13.19) holds for the permutation P =
[(em)m∈J(j), (er)r 6∈J(j)], with both B and D of order < n.

Conversely, if e.g., (iii) does not hold, and span(em)m∈J(j) is that proper A-invariant subspace, then it
is also invariant under any p(A), hence also p(A)(r,m) = 0 for every r 6∈ J(j), m ∈ J(j), i.e., (i) does not
hold.

The final characterization is explicitly that given by Frobenius, – except that he did not formulate it
in terms of graphs; that was done much later, by Rosenblatt (1957) and Varga (1962). Frobenius (???)
observed that, since

Ak(i, j) =
∑

j1

· · ·
∑

jk−1

A(i, j1) · · ·A(jk−1, j),

therefore, for i 6= j, Ak(i, j) 6= 0 if and only if there exists some sequence i =: i0, i1, . . . , ik−1, ik := j so that
A(ir, ir+1) 6= 0 for all r. Now, the directed graph of A is the graph with n vertices in which the directed
edge (i, j) is present iff A(i, j) 6= 0. Such a graph is called strongly connected in case it contains, for
each i 6= j, a path connecting vertex i with vertex j, and this, as we just observed, is equivalent to having
Ak(i, j) 6= 0 for some k > 0. In short, (ii) and (v) are equivalent.

There are various refinements of this last claim available. For example, in testing whether the directed
graph of A is strongly connected, we only need to check paths involving distinct vertices, and such paths
involve at most n vertices. Hence, in condition (ii), we need to check only for k < n. But, with that
restriction, (ii) is equivalent to having idn + A + · · · + An−1 > 0 and, given that A ≥ 0, this, in turn, is
equivalent to having ( idn +A)n−1 > 0, i.e., to having (i) hold for quite specific polynomials.

13.5 T/F

() If the sum A + B of two matrices is defined, then det(A + B) = det(A) + det(B).
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14. Some applications

3-space

In the vector space X = IR3, the standard inner product is also called the dot product, because of the
customary notation

ytx = 〈x, y〉 =: x · y, x, y ∈ IR3.

In this most familiar vector space, another vector ‘product’ is of great use, the so-called cross product
x× y. It is most efficiently defined implicitly, i.e., by

(14.1) (x× y) · z := det[x, y, z], ∀x, y, z ∈ IR3.

From (13.13) (see also page 164), we work out that

det[x, y, z] = (x2y3 − x3y2)z1 + (x3y1 − x1y3)z2 + (x1y2 − x2y1)z3,

hence

x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

Given what you already know about determinants, the definition (14.1), though implicit, makes all the
basic facts about the cross product immediate:

(i) The cross product x× y is linear in its two arguments, x and y.

(ii) The cross product x× y is alternating, meaning that y × x = −(x× y).

(iii) Perhaps most importantly, x× y is a vector perpendicular to both x and y.

(iv) x× y = 0 if and only if [x, y] is not 1-1.

Indeed, if [x, y] is 1-1, then we can always extend it to a basis [x, y, z] for IR3, and then (x × y)tz is
not zero, hence then x × y 6= 0. If [x, y] fails to be 1-1, then, for any z, [x, y, z] fails to be 1-1, hence then,
necessarily, x× y = 0.

So, assuming that [x, y] is 1-1, we can compute the unit vector

u := (x× y)/‖x× y‖,

and so conclude that

‖x× y‖22 = det[x, y, x× y] = ‖x× y‖ det[x, y, u].

In other words,

(v) the Euclidean length of x× y gives the (unsigned) area of the parallelepiped spanned by x and y.

This also holds when [x, y] fails to be 1-1 since then that area is zero.

When [x, y] is 1-1, then there are exactly two unit vectors (or, directions) perpendicular to the plane
ran[x, y] spanned by x and y, namely u := (x × y)/‖x × y‖ and (y × x)/‖y × x‖ = −u, with u the choice
that makes det(x, y, u) positive. If you imagine the thumb of your right hand to be x, and the pointer of
that hand to be y, then the middle finger, bent to be perpendicular to both thumb and pointer, would be
pointing in the direction of x × y. For that reason, any basis [x, y, z] for IR3 with det[x, y, z] > 0 is said to
be right-handed.

14.1 Relate the standard choice (x2,−x1) for a vector perpendicular to the 2-vector x to the above construction.

14.2 Give a formula for an n-vector x1 × · · · × xn−1 that is perpendicular to the n− 1 n-vectors x1, . . . , xn−1 and whose

Euclidean length equals the (unsigned) volume of the parallelepiped spanned by the vectors x1, . . . , xn−1.
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Rotation in 3-space

A particularly useful transformation of 3-space is counter-clockwise rotation by some angle θ around
some given axis-vector a. Let R = Rθ,a be this rotation. We are looking for a computationally efficient way
to represent this map.

This rotation leaves its axis, i.e., ran[a], pointwise fixed, and rotates any vector in the plane H := a⊥

counterclockwise θ radians. In other words, with

p = q + r, q := P[a]p, r := p− q,

we have
Rp = q +Rr,

by the linearity of the rotation. To compute Rr, let s be the vector in H obtained by rotating r counter-
clockwise π/2 radians. Then

Rr = cos(θ)r + sin(θ)s,

and that’s it.

a

r

p

Rp

P[a]p
s

‖r‖θ

(14.2) Figure. Rotation of the point p counterclockwise θ radians around
the axis spanned by the vector a. The orthogonal projection r of p into
the plane H with normal a, together with its rotation s counterclockwise
π/2 radians around that axis, serve as a convenient orthogonal coordinate
system in H .

It remains to construct s, and this is traditionally done with the aid of the cross product a× r since (see
(14.1)) it is a vector perpendicular to a and r. Hence, assuming without loss that a is normalized, we now
know that a× r is in the plane H and perpendicular to r and of the same length as r. Of the two vectors in
H that have this property, it also happens to be the one obtained from r by a (π/2)-rotation that appears
counterclockwise when looking down on H from the side that the vector a points into. (Just try it out.)

The calculations can be further simplified. The map

r 7→ a× r

is linear and, by inspection, a× a = 0. Since a is normalized by assumption, we compute

r = p− (atp)a,
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hence
a× r = a× p.

So, altogether

Rp = (atp)a+ cos(θ)(p − (atp)a) + sin(θ)(a × p) = cos(θ)p+ (1− cos(θ))(atp)a+ sin(θ)(a × p).

This is the formula that is most efficient for the calculation of Rp. However, if the matrix for R = R id3

(with respect to the natural basis) is wanted, we read it off as

R = cos(θ) id3 + (1− cos(θ))[a][a]t + sin(θ)(a×),

with

a× :=




0 −a3 a2

a3 0 −a1

−a2 a1 0





the matrix for the linear map r 7→ a× r.

Markov Chains

Recall from page 100 our example of a random walk on some graph. There we were interested in the
matrices Mk, k = 1, 2, 3, . . ., with the entries of the square matrix M all nonnegative and all entries in any
particular row adding up to 1. In other words, M ≥ 0 and Me = e, with

e := (1, 1, . . . , 1).

In particular, 1 ∈ spec(M). Further, since ‖M‖∞ = 1, we conclude from (13.1) that ρ(M) ≤ 1. Hence,
1 is an absolutely largest eigenvalue for M . Assume, in addition, that M is irreducible. This is certainly
guaranteed if M > 0. Then, by the Perron-Frobenius theory, 1 is a nondefective eigenvalue of M , and is the
unique absolutely largest eigenvalue. By (11.10)Theorem, this implies that M is convergent. In fact, since 1
is a nondefective simple eigenvalue of M with corresponding eigenvector e, there is a basis V = [e,W ], with
W a basis for ran(M − id), hence

MV = [e,MW ] = V diag(1, B)

for some B with ρ(B) < 1. Therefore,

MkV = V diag(1, Bk) k→∞−−−−−→ V diag(1, 0).

In other words,
lim

k→∞
Mk = eut,

with M tu = u, i.e., u is an eigenvector of M t belonging to the eigenvalue 1. In particular, all rows of Mk

converge to this particular nonnegative vector whose entries sum to 1.

An example from CAGD

In Computer-Aided Geometric Design, one uses repeated corner-cutting to refine a given polygon into a
smooth curve of approximately the same shape. The best-known example is the Chaikin algorithm. This
algorithm consists in applying repeatedly, until satisfied, the following step:

input: the vertices x1, x2, . . . , xn, xn+1 := x1 ∈ IR2 of a closed polygon.
for j = 1 : n, do: y2j−1 ← (3xj + xj+1)/4; y2j ← (xj + 3xj+1)/4; enddo

output: the vertices y1, y2, . . . , y2n, y2n+1 := y1 ∈ IR2 of a closed polygon that is inscribed into the
input polygon.
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In other words,
[y1, . . . , y2n] = [x1, . . . , xn]Cn,

with Cn the n× (2n)-matrix

Cn :=





3 1 0 0 0 0 · · · 1 3
1 3 3 1 0 0 · · · 0 0
0 0 1 3 3 1 · · · 0 0
0 0 0 0 1 3 · · · 0 0
...

...
...

...
...

... · · ·
...

...
0 0 0 0 0 0 · · · 0 0
0 0 0 0 0 0 · · · 3 1





/4.

It is possible to show that, as k →∞, the polygon with vertex sequence

[x
(k)
1 , . . . , x

(k)

2kn
] := [x1, . . . , xn]CnC2n · · ·C2kn

converges to a smooth curve, namely the curve

t 7→
∑

j

xjB2(t− j),

with B2 a certain smooth piecewise quadratic function, a so-called quadratic B-spline (whatever that may
be).

Here, we consider the following much simpler and more radical corner-cutting:

[y1, . . . , yn] = [x1, . . . , xn]A,

with

(14.3) A :=





1 0 0 · · · 0 1
1 1 0 · · · 0 0
0 1 1 · · · 0 0
0 0 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 1 0
0 0 0 · · · 1 1





/2.

In other words, the new polygon is obtained from the old by choosing as the new vertices the midpoints of
the edges of the old.

Simple examples, hand-drawn, quickly indicate that the sequence of polygons, with vertex sequence

[x
(k)
1 , . . . , x(k)

n ] := [x1, . . . , xn]Ak

seem to shrink eventually into a point. Here is the analysis that this is, in fact, the case, with that limiting
point equal to the average,

∑
j xj/n, of the original vertices.

(i) The matrix A, defined in (14.3), is a circulant, meaning that each row is obtainable from its
predecessor by shifting everything one to the right, with the right-most entry in the previous row becoming
the left-most entry of the current row. All such matrices have eigenvectors of the form

uλ := (λ1, λ2, . . . , λn),

with the scalar λ chosen so that λn = 1, hence λn+1 = λ. For our A, we compute

Auλ = (λn + λ1, λ1 + λ2, . . . , λn−1 + λn)/2.
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Hence, if λn = 1, then

Auλ =
1 + λ

2λ
uλ.

(ii) The equation λn = 1 has exactly n distinct solutions, namely the n roots of unity

λj := exp(2πij/n) = ωj , j = 1:n.

Here,
ω := ωn := exp(2πi/n)

is a primitive nth root of unity. Note that

ω = 1/ω.

Let
V = [v1, . . . , vn] := [uλ1

, . . . , uλn
]

be the column map whose jth column is the eigenvector

vj := (ωj , ω2j , . . . , ωnj)

of A, with corresponding eigenvalue

µj :=
1 + λj

2λj
= (ω−j + 1)/2, j = 1:n.

Since these eigenvalues are distinct, V is 1-1 (by (10.9)Lemma), hence V is a basis for Cn. In particular,

A = V diag(. . . , µj , . . .)V
−1.

(iii) It follows that

Ak = V diag(. . . , µk
j , . . .)V

−1
k→∞−−−−−→ V diag(0, . . . , 0, 1)V −1

since |µj | < 1 for j < n, while µn = 1. Hence

lim
k→∞

Ak = vnV
−1(n, :).

(iv) In order to compute V −1(n, :), we compute V cV (recalling that ωr = ω−1):

(V cV )(j, k) = vj
cvk =

n∑

r=1

ω−rj ωrk =
n∑

r=1

ω(k−j)r .

That last sum is a geometric series, of the form
∑n

r=1 ν
r with ν := ωk−j , hence equals n in case k = j, and

otherwise ν 6= 1 and the sum equals (νn+1− ν)/(ν− 1) = 0 since νn = 1, hence νn+1− ν = 0. It follows that

V cV = n idn,

i.e., V/
√
n is unitary, i.e., an o.n. basis for Cn. In particular, V −1 = V c/n, therefore

V −1(n, :) = vn
c/n.

(v) It follows that
lim

k→∞
Ak = (1/n)vnvn

c,

with
vn = (1, 1, . . . , 1).

Consequently,

lim
k→∞

[. . . , x
(k)
j , . . .] =

∑

j

xj/n vn
c = [. . . ,

∑

j

xj/n, . . .],

i.e., the rank-one matrix all of whose columns equal the average
∑

j xj/n of the vertices of the polygon we
started out with.
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Tridiagonal Toeplitz matrix

Circulants are a special case of Toeplitz matrices, i.e., of matrices that are constant along diagonals.
Precisely, the matrix A is Toeplitz if

A(i, j) = ai−j , ∀i, j,
for some sequence (. . . , a−2, a−1, a0, a1, a2, . . .) of appropriate domain. Circulants are special in that the
determining sequence a for them is periodic, i.e., ai+n = ai, all i, if A is of order n.

Consider now the case of a tridiagonal Toeplitz matrix A. For such a matrix, only the (main) diagonal
and the two next-to-main diagonals are (perhaps) nonzero; all other entries are zero. This means that only
a−1, a0, a1 are, perhaps, nonzero, while ai = 0 for |i| > 1. If also a−1 = a1 6= 0, then the circulant trick,
employed in the preceding section, still works, i.e., we can fashion some eigenvectors from vectors of the form
uλ = (λ1, . . . , λn). Indeed, now

(Auλ)j =






a0λ+ a1λ
2 for j = 1;

a1λ
j−1 + a0λ

j + a1λ
j+1 for j = 2:n−1;

a1λ
n−1 + a0λ

n for j = n.

Hence,
Auλ = (a1/λ+ a0 + a1λ)uλ − a1(e1 + λn+1en).

At first glance, this doesn’t look too hopeful since we are after eigenvectors. However, recall that, for a
unimodular λ, i.e., for λ = exp iϕ for some real ϕ, we have 1/λ = λ, hence

Auλ = (a1/λ+ a0 + a1λ)uλ − a1(e1 + λn+1en).

It follows that, by choosing λ as an (n+ 1)st root of unity, i.e.,

λ = λj := exp(2πij/(n+ 1)), j = 1:n,

and setting
vj := (uλ − uλ)/(2i) = (sin(2πkj/(n+ 1)) : k = 1:n),

we obtain
Avj = µjvj

with
µj := a0 + a1(λj + λj) = a0 + 2a1 cos(2πj/(n+ 1)).

Since we assumed that a1 6= 0, these n numbers µj are pairwise distinct, hence V =: [v1, . . . , vn] is 1-1 by
(10.9)Lemma, hence a basis for Cn. In fact, since V maps IRn to IRn, V is a basis for IRn. Hence if both a0

and a1 are real, then also each µj is real and then, A is diagonable even over IF = IR.

Linear Programming

In Linear Programming, one seeks a minimizer for a linear cost function

x 7→ ctx

on the set
F := {x ∈ IRn : Ax ≤ b}

of all n-vectors x that satisfy the m linear constraints

A(i, :)tx ≤ bi, i = 1:m,

with c ∈ IRn, A ∈ IFm×n, b ∈ IRm given. Here and below, for y, z ∈ IRm,

y ≤ z := z − y ∈ IRm
+ := {u ∈ IRm : 0 ≤ uj, j = 1:m}.
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The set F , also called the feasible set, is the intersection of m halfspaces, i.e., sets of the form

H(a, b) := {x ∈ IRn : atx ≤ b}.

Such a halfspace consists of all the points that lie on that side of the corresponding hyperplane

h(a, b) := {x ∈ IRn : atx = b}

that the normal a of the hyperplane points away from; see (2.4)Figure, or (14.4)Figure.

Here is a simple example: Minimize

2x1 + x2

over all x ∈ IR2 for which

x2 ≥ −2, 3x1 − x2 ≤ 5, x1 + x2 ≤ 3

x1 − x2 ≥ −3, 3x1 + x2 ≥ −5.

In matrix notation, and more uniformly written, this is the set of all x ∈ IR2 for which Ax ≤ b with

A :=





0 −1
3 −1
1 1
−1 1
−3 −1




, b :=





2
5
3
3
5




.

In this simple setting, you can visualize the set F by drawing each of the hyperplanes h(Ai:, bi) along with
a vector pointing in the same direction as its normal vector, Ai:; the set F lies on the side that the normal
vector points away from; see (14.4)Figure.

‖A3:

‖A2:

‖A1:

A5:‖

A4:‖

(14.4) Figure. The feasible set for five linear constraints in the plane, as
filled out by some level lines of the cost function. Since the gradient of the
cost function is shown as well, the location of the minimizer is clear.
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In order to provide a handier description for F , one introduces the so-called slack variables

y := b−Ax;

earlier, we called this the residual. With their aid, we can describe F as

F = {x ∈ IRn : ∃y ∈ IRm
+ s.t. (x, y,−1) ∈ null[A, idm, b]},

and use elimination to obtain a concise description of null[A, idm, b].

For this, assume that A is 1-1. Then, each column of A is bound, hence is also bound in [A, id, b].
Therefore, after n steps of the (3.2)Elimination Algorithm applied to [A, id, b], we will arrive at a matrix B,
with the same nullspace as [A, id, b], and an n-vector nbs (with nbs(k) the row used as pivot row for the
kth unknown or column, all k), for which

B(nbs, 1:n)

is upper triangular with nonzero diagonals while, with bs the rows not yet used as pivot rows,

B(bs, 1:n) = 0.

Further, since the next m columns of [A, idm, b] have nonzero entries in these pivot rows nbs only in columns
n+ nbs, the other columns, i.e., columns n+ bs, will remain entirely unchanged. It follows that

B(bs, n+ bs) = idm−n.

Therefore, after dividing each of the n pivot rows by their pivot element and then using each pivot row to
eliminate its unknown also from all other pivot rows, we will arrive at a matrix, still called B, for which now

B([nbs, bs], bound) = idm

with
bound := [1:n, n+ bs]

the bound columns of [A, id, b].

For our particular example, the matrix B will be reached after just two steps:

[A, id, b] =





0 −1 1 0 0 0 0 2
3 −1 0 1 0 0 0 5
1 1 0 0 1 0 0 3
−1 1 0 0 0 1 0 3
−3 −1 0 0 0 0 1 5




→





0 −1 1 0 0 0 0 2
0 −4 0 1 −3 0 0 −4
1 1 0 0 1 0 0 3
0 2 0 0 1 1 0 6
0 2 0 0 3 0 1 14





→





0 0 1 0 1/2 1/2 0 5
0 0 0 1 −1 2 0 8
1 0 0 0 1/2 −1/2 0 0
0 1 0 0 1/2 1/2 0 3
0 0 0 0 2 −1 1 8




=: B,

with nbs = [3, 4], and bs = [1, 2, 5].

It follows that
free := [n+ nbs, n+m+ 1]

gives the free columns of [A, id, b]. In particular, we can freely choose ynbs, i.e., the slack variables associated
with the n pivot rows, and, once they are chosen, then x as well as the bound slack variables, ybs, are uniquely
determined by the requirement that (x, y,−1) ∈ nullB.

This suggests eliminating x altogether, i.e., using the pivot rows B(nbs, :) to give

x = B(nbs, end)−B(nbs, n+ nbs)ynbs,
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(with end being MATLAB’s convenient notation for the final row or column index) and, with that, rewrite the
cost function in terms of ynbs:

ynbs 7→ ctB(nbs, end)− ctB(nbs, n+ nbs)ynbs.

Correspondingly, we simplify the working array B in the following two ways:

(i) We append the row B(m+ 1, :) := ctB(nbs, :).

(ii) Then, we drop entirely the n rows nbs (storing those rows perhaps in some other place against the
possibility that we need to compute x from ynbs at some later date), and also drop the first n columns.

In our example, this leaves us with the following, smaller, array B:

B =





1 0 1/2 1/2 0 5
0 1 −1 2 0 8
0 0 2 −1 1 8
0 0 3/2 −1/2 0 3



 , bs = [1, 2, 5], nbs = [3, 4].

This change of independent variables, from x to ynbs, turns the n hyperplanes h(Ak:, b(k)), k ∈ nbs,
into coordinate planes; see (14.5)Figure. In particular, the choice ynbs = 0 places us at the (unique) point of
intersection of these n hyperplanes. In our example, that point is x = (0, 3), and it is marked in (14.4)Figure,
and functions as the origin in (14.5)Figure(a).

y4 = 0

y1 = 0

y2 = 0

y3 = 0

y5 = 0

(a)

y4 = 0

y1 = 0

y2 = 0

y3 = 0

y5 = 0

(b)

(14.5) Figure. The feasible set for five linear constraints in the plane, as
filled out by some level lines of the cost function, viewed in terms of the
(nonbasic) variables (a) y3, y4; (b) y5, y4. From the latter, the minimizing
vertex will be reached in one step of the Simplex Method.

In terms of this B as just constructed, and with

m′ := m− n = #bs,

our minimization problem now reads: Minimize the cost function

(14.6) ynbs 7→ B(end, end)−B(end, nbs)tynbs

over all ynbs ∈ IRn
+ for which

B(bs, nbs) ynbs ≤ B(bs, end),
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i.e., for which

ybs := B(bs, end)−B(bs, nbs)ynbs ∈ IRm′

+ .

This is the form in which linear programming problems are usually stated, and from which most textbooks
start their discussion of such problems.

Note how easily accessible various relevant information now is.

(i) B(end, end) tells us the value of the cost function at the current point, ynbs = 0.

(ii) For any k ∈ nbs, the entry B(end, k) tells us how the cost function would change if we were to change
the value of the nonbasic variable yk in the only way permitted, i.e., from 0 to something positive. Such
a move would lower the cost function if and only if B(end, k) > 0.

(iii) Our current point, ynbs = 0, is feasible if and only if B(1:m′, end) ≥ 0.

(iv) If we were to change the nonbasic variable yk from zero to something positive, then the basic variable
ybs(i) would change, from B(i, end) to B(i, end) − B(i, k)yk. Hence, assuming B(i, end) > 0 and
B(i, k) > 0, we could change yk only to B(i, end)/B(i, k) before the bs(i)th constraint would be violated.

In our example (have a look at (14.5)Figure(a)), we already observed that our current point, ynbs = 0,
is, indeed, feasible. But we notice that, while B(end, 4) < 0, hence any feasible change of y4 would only
increase the cost function (14.6), B(end, 3) is positive, hence know that we can further decrease the cost
function (14.6) by increasing y3. Such a change is limited by concerns for the positivity of y1 and y5. As for
y1, we would reach y1 = 0 when y3 = 5/(1/2) = 10, while, for y5, we would reach y5 = 0 when y3 = 8/2 = 4.
We take the smaller change and thereby end up at a new vector y, with y4 = 0 = y5, i.e., are now at the
intersection of the constraints 4 and 5, with the cost further reduced by (3/2)4 = 6, to −3.

In other words, after this change, y4 and y5 are now the nonbasic variables. In order to have our B tell
us about this new situation, and since 5 = bs(3), we merely divide its 3rd row by B(3, 3), then use the row
to eliminate y3 from all other rows of B. This leads to

B =





1 0 0 3/4 −1/4 3
0 1 0 3/2 1/2 12
0 0 1 −1/2 1/2 4
0 0 0 1/2 −3/4 −3



 , bs = [1, 2, 3], nbs = [5, 4].

In particular, we readily see that the cost at y4 = 0 = y5 is, indeed, −3. We also see (see also (14.5)Figure(b))
that it is possible to reduce the cost further by changing y4, from 0 to something positive. Such a change
would reduce y1 = 3 by (3/4)y4 and would reduce y2 = 12 by (3/2)y4. Hence, this change is limited to the
smaller of 3/(3/4) = 4 and 12/(3/2) = 8, i.e., to the change y4 = 4 that makes y1 = 0.

We carry out this exchange, of y4 into bs and y1 into nbs, by dividing B(1, :) by B(1, 4) and then using
that row to eliminate y4 from all other rows, to get the following B:

B =





4/3 0 0 1 −1/3 4
−2 1 0 0 1 6
2/3 0 1 0 1/3 6
−1/3 0 0 0 −2/3 −4



 , bs = [4, 2, 3], nbs = [5, 1].

In particular, now B(end, nbs) ≤ 0, showing that no further improvement is possible, hence −4 is the
minimum of the cost function on the feasible set. At this point, y3:4 = (6, 4), hence, from the rows used as

pivot rows to eliminate x, we find that, in terms of x, our optimal point is x = (0, 3)−(1/2)

[
1 −1
1 1

]
(6, 4) =

−(1, 2), and, indeed, ctx = (2, 1)t(−1,−2) = −4.

The steps just carried out for our example are the standard steps of the Simplex Method. In this
method (as proposed by Dantzig), one examines the value of the cost function only at a vertex, i.e., at
the unique intersection of n of the constraint hyperplanes, i.e., at a point corresponding to ynbs = 0 for
some choice of nbs. Assuming that vertex feasible, one checks whether B(end, nbs) ≤ 0. If it is, then one
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knows that one is at the minimum. Otherwise, one moves to a neighboring vertex at which the cost is
less by exchanging some yk for which B(end, k) > 0 with some ybs(i) with i chosen as the minimizer for
B(i, end)/B(i, k) over all i with B(i, k) > 0. This exchange is carried out by just one full elimination step
applied to B, by dividing B(i, :) by B(i, k) and then using this row to eliminate yk from all other rows, and
then updating the sequences bs and nbs.

This update step is one full elimination step (sometimes called a (Gauss-)Jordan step in order to
distinguish it from the Gauss step, in which the unknown is eliminated only from the rows not yet used as
pivot rows).

Since all the information contained in the columns B(:, bs) is readily derivable from bs and nbs, one
usually doesn’t bother to carry these columns along. This makes the updating of the matrix B(:, nbs) a bit
more mysterious.

Finally, there are the following points to consider:

unbounded feasible set If, for some k ∈ nbs, B(end, k) is the only positive entry in its column, then
increasing yk will strictly decrease the cost and increase all basic variables. Hence, if ynbs = 0 is a feasible
point, then we can make the cost function on the feasible set as close to −∞ as we wish. In our example, this
would be the case if we dropped constraints 1 and 5. Without these constraints, in our very first Simplex
step, we could have increased y3 without bound and so driven the cost to −∞.

finding a feasible point In our example, we were fortunate in that the very first vertex we focused
on was feasible. However, if it is not, then one can use the very Simplex Method to obtain a feasible point,
simply by introducing an additional variable, y0, which is added to each infeasible row, and then using the
Simplex Method to minimize the cost function

y 7→ y0.

In this, the variable y0 starts off nonbasic, i.e., y0 = 0, and, then, as an extraordinary first step, we would
exchange y0 for the most negative basic variable, and then proceed until the minimum of this auxiliary
cost function is reached. If it is positive, then we now know that the feasible set is empty. Otherwise,
the minimum is zero (i.e., y0 is again a nonbasic variable) and can simply be dropped now since the point
corresponding to the remaining nonbasic variables being zero is feasible.

Note that, in this way, the Simplex Method can be used to solve any finite set of linear inequalities in
the sense of either providing a point satisfying them all or else proving that none exists.

convergence in finitely many steps If we can guarantee that, at each step, we strictly decrease the
cost, then we must reach the vertex with minimal cost in finitely many steps since, after all, there are only
finitely many vertices. A complete argument has to deal with the fact that the cost may not always strictly
decrease because the current point may lie on more than just n of the constraint hyperplanes.

Approximation by broken lines

Flats: points, vectors, barycentric coordinates, differentiation

In CAGD and Computer Graphics, Linear Algebra is mainly used to change one’s point of view, that
is, to change coordinate systems. In this, even the familiar 3-space, IR3, is often treated as an ‘affine space’
or ‘flat’ rather than a vector space, in order to deal simply with useful maps other than linear maps, namely
the affine maps.

For example, the translation

IR3 → IR3 : p 7→ p+ v

of IR3 by the vector v is not a linear map. Nevertheless, it can be represented by a matrix, using the following
trick. Embed IR3 into IR4 by the 1-1 map

IR3 → IR4 : x 7→ (x, 1).
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The image of IR3 under this map is the ‘flat’

F := IR3 × 1 = {(x, 1) : x ∈ IR3}.

Consider the linear map on IR4 given by

Tv :=

[
id3 v
0 1

]
.

Then, for any x ∈ IR3,

Tv(x, 1) = ( id3x + v, 0tx+ 1) = (x+ v, 1).

In other words, the linear map Tv carries F into itself in such a way that the point p = (x, 1) is carried to
its ‘translate’ (p+ v, 1) = p+ (v, 0).

Let, now, Â ∈ IR4×4 be an arbitrary linear map on IR4 subject only to the condition that it map F into
itself. Breaking up Â in the same way as we did Tv, i.e.,

Â =:

[
A0 v
[u]t t

]
,

we get

Â (x, 1) = (A0x + v, utx+ t),

hence want utx+ t = 1 for all x ∈ IR3, and this holds if and only if u = 0 and t = 1, i.e.,

Â =:

[
A0 v
0 1

]

is the most general such map.

Look at its action as concerns the general point p = (x, 1) in F : After subtracting p0 := (0, 1) from p,
we obtain a vector in the linear subspace

F−F = {p− q : p, q ∈ F} = ran[e1, e2, e3].

Since Â maps F into itself, it also maps this subspace into itself, hence Â(p− p0) = (A0τp−p0
, 0) is again in

this subspace and, after adding to it the element Âp0 = (v, 1) ∈ F , we finally obtain Âp as Â(p−p0) + Âp0.

Three-dimensional plots in MATLAB show, in fact, the orthogonal projection onto the (x,y)-plane
after an affine transformation of IR3 that makes the center of the plotting volume the origin and
a rotation that moves a line, specified by azimuth and elevation, to the z-axis. This affine map is
recorded in a matrix of order 4, obtainable by the command view, and also changeable by that
command, but, fortunately, in down-to-earth terms like azimuth and elevation, or viewing angle.

Consider now the question which weighted sums

r∑

j=0

pjαj

of pj ∈ F are again in F . Apparently, all that is required is that

r∑

j=0

αj = 1.
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Such a weighted sum is called an affine combination. Thus, as far as the set F is concerned, these
are the only linear combinations allowed. Note that such an affine sum can always be rewritten as

p0 +

r∑

j=1

(pj − p0)αj ,

where now the weights αj , j = 1:r, are arbitrary. In other words, an affine sum on F is obtained
by adding to some point in F an arbitrary weighted sum of elements in the vector space F−F .

An affine map on F is any map from F to F that preserves affine combinations, i.e., for which

A(p0 +
∑

j

(pj − p0)αj) = Ap0 +
∑

j

(Apj −Ap0)αj

for all pj ∈ F , αj ∈ IR. It follows that the map on F−F defined by

A0 : F−F → F−F : p− q 7→ Ap−Aq

must be well-defined and linear, hence A is necessarily the restriction to F of some linear map Â
on IR4 that carries F into itself and therefore also carries the linear subspace F−F into itself.

The main pay-off, in CAGD and in Computer Graphics, of these considerations is the fact that
one can represent the composition of affine maps by the product of the corresponding matrices.

This concrete example has led to the following abstract definition of a flat, whose notational
conventions strongly reflect the concrete example. It should be easy for you to verify that the
standard example is, indeed, a flat in the sense of this abstract definition.

(14.7) Definition: A flat or affine space or linear manifold is a nonempty set F of
points, a vector space T of translations, and a map

(14.8) ϕ : F × T→ F : (p, τ) 7→ τ(p) =: p+ τ

satisfying the following:

(a) ∀{(p, τ) ∈ F × T} p+ τ = p ⇐⇒ τ = 0.

(b) ∀{τ, σ ∈ T} (·+ τ) + σ = ·+ (τ + σ).

(c) ∃{p0 ∈ F} ϕ(p0, ·) is onto.

Translations are also called vectors since (like ‘vehicles’ or ‘conveyors’, words that have the
same Latin root as ‘vector’) they carry points to points.

Condition (a) ensures the uniqueness of the solution of the equation p+? = q whose existence
(see the proof of (3) below) is guaranteed by (c).

Condition (b) by itself is already satisfied, for arbitrary F and T, by, e.g., ϕ : (p, τ) 7→ p.

Condition (c) is needed to be certain that T is rich enough. (a) + (b) is already satisfied, e.g.,
by T = {0}, ϕ(·, 0) = id. As we will see in a moment, (a)+(b)+(c) together imply that ϕ(p, ·) is
onto for every p ∈ F . In other words, there is nothing special about the p0 that appears in (c). In
fact, the notion of a flat was developed explicitly as a set that, in contrast to a vector space which
has an origin, does not have a distinguished point.

Consequences

(1) ϕ(·, 0) = id (by (a)).
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(2) For any τ ∈ T, ϕ(·, τ) is invertible; its inverse is ϕ(·,−τ) (by (1) and (b)). The corresponding
abbreviation

p− τ := p+ (−τ)

is helpful and standard.

(3) ∀{p, q ∈ F} ∃!{τ ∈ T} p+ τ = q. This unique τ is correspondingly denoted

q − p.

Proof: If p+τ = q = p+σ, then, by (2) and (b), p = q+(−σ) = (p+τ)+(−σ) = p+(τ−σ),
therefore, by (1), τ − σ = 0, showing the uniqueness of the solution to p+? = q, regardless of p and
q. The existence of a solution is, offhand, only guaranteed, by (c), for p = p0. However, with the
invertibility of ϕ(p0, ·) : T→ F thus established, hence with p−p0 and q−p0 well-defined, we have
q = p0 + (q − p0) and p = p0 + (p− p0), hence p0 = p− (p− p0), therefore

q = p− (p− p0) + (q − p0),

showing that the equation p+? = q has a solution (namely the vector (q − p0)− (p− p0)).

(4) Note that (3) provides a 1-1 correspondence (in many different ways) between F and T.
Specifically, for any particular o ∈ F ,

F → T : p 7→ p− o

is an invertible map, as is its inverse,

T→ F : τ 7→ o+ τ.

However, the wish to avoid such an arbitrary choice of an ‘origin’ o in F provided the impetus
to define the concept of flat in the first place. The dimension of a flat is, by definition, the
dimension of the associated vector space of translations. Also, since the primary focus is usually
the flat, F , it is very convenient to write its vector space of translations as

F−F.

(5) The discussion so far has only made use of the additive structure of T. Multiplication
by scalars provides additional structure. Thus, for arbitrary Q ⊂ F , the affine hull of Q is, by
definition,

♭(Q) := q + span(Q− q),
with the right side certainly independent of the choice of q ∈ Q, by (4). The affine hull of Q is,
itself, a flat, with span(Q− q) the vector space of its translations.

(6) In particular, the affine hull of a finite subset Q of F is

♭(Q) = q0 + ran[q − q0 : q ∈ Q\q0], q0 ∈ Q.

Let
q0 +

∑

q 6=q0

(q − q0)αq

be one of its elements. In order to avoid singling out q0 ∈ Q, it is customary to write instead

∑

q

qαq, with αq0
:= 1−

∑

q 6=q0

αq.

15jan03 c©2002 Carl de Boor



152 14. Some applications

This makes ♭(Q) the set of all affine combinations

∑

q∈Q

qαq,
∑

q

αq = 1,

of the elements of Q. The affine hull ♭(q0, . . . , qr) of a sequence q0, . . . , qr in F is defined analogously.
But I prefer to work here with the set Q in order to stress the point of view that, in a flat, all points
are of equal importance.

A special case is the straight line through p 6= q, i.e.,

♭(p, q) = p+ IR(q − p) = q + IR(p− q) = {(1− α)p+ αq : α ∈ IR}.

(7) The finite set Q ⊂ F is called affinely independent in case, for some (hence for every)
o ∈ Q, [q − o : q ∈ Q\o] is 1-1. In that case, each p ∈ ♭(Q) can be written in exactly one way as an
affine combination

p =:
∑

q

qℓq(p),
∑

q

ℓq(p) = 1,

of the q ∈ Q. Indeed, in that case, for any particular o ∈ Q, Vo := [q − o : q ∈ Q\o] is a basis for
the vector space of translations on ♭(Q), hence, for all p ∈ ♭(Q),

p = o+ (p− o) = o+ VoV
−1
o (p− o) =

∑

q∈Q

qℓq(p),

with
(ℓq(p) : q ∈ Q\o) := V −1

o (p− o), ℓo(p) := 1−
∑

q 6=o

ℓq(p).

The ‘affine’ vector ℓ(p) = (ℓq(p) : q ∈ Q) ∈ IRQ constitutes the barycentric coordinates of p
with respect to Q.

It follows that, for arbitrary pi ∈ ♭(Q) and arbitrary αi ∈ IR with
∑

i αi = 1, we have

∑

i

αipi =
∑

i

αi

∑

q

λq(pi)q =
∑

q

(
∑

i

αiλq(pi))q,

with ∑

i

αi(
∑

q

λq(pi)) =
∑

i

αi = 1.

Hence, by the uniqueness of the barycentric coordinates, the map

λ : ♭(Q)→ IRQ : p 7→ (λq(p) : q ∈ Q)

is affine, meaning that

λ(
∑

i

αipi) =
∑

i

αiλ(pi).

It is also 1-1, of course, and so is, for our flat ♭(Q), what a coordinate map is for a vector space,
namely a convenient structure-preserving numerical representation of the flat.

It follows that, with f0 : Q→ G an arbitrary map on Q into some flat G, the map

f : ♭(Q)→ G :
∑

q∈Q

λq(p)q 7→
∑

q∈Q

λq(p)f0(q)

is affine. Hence, if A : f → G is an affine map that agrees with f0 on Q, then it must equal f .
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(8) Let the r + 1-subset Q of the r-dimensional flat F be affinely independent. Then, for any
o ∈ Q, [q − o : q ∈ Q\o] is a basis for F−F , and the scalar-valued map

ℓo : F → IR : p 7→ ℓo(p)

is a linear polynomial on F . Some people prefer to call it an affine polynomial since, after all,
it is not a linear map. However, the adjective ‘linear’ is used here in the sense of ‘degree ≤ 1’, in
distinction to quadratic, cubic, and higher-degree polynomials. A description for the latter can be
obtained directly from the ℓq, q ∈ Q, as follows. The column map

[ℓα :=
∏

q∈Q

(ℓq)α(q) : α ∈ ZZQ
+, |α| = k]

into IRF is a basis for the (scalar-valued) polynomials of degree ≤ k on F .

(9) An affine combination with nonnegative weights is called a convex combination. The
weights being affine, hence summing to 1, they must also be no bigger than 1. The set

[q . . q] := {(1− α)p+ αq : α ∈ [0 . . 1]}

of all convex combinations of the two points p, q is called the interval with endpoints p, q. The
set

σQ := {
∑

q∈Q

qαq : α ∈ [0 . . 1]Q,
∑

q

αq = 1}

of all convex combinations of points in the finite set Q is called the simplex with vertex set Q
in case Q is affinely independent.

(10) Flats are the proper setting for differentiation. Assume that the flat F is finite-dimensional.
Then there are many ways to introduce a vector norm on the corresponding vector space F−F of
translations, hence a notion of convergence, but which vector sequences converge and which don’t
is independent of the choice of that norm. This leads in a natural way to convergence on F : The
point sequence (pn : n ∈ IN) in F converges to p ∈ F exactly when limn→∞ ‖pn − p‖ = 0. Again,
this characterization of convergence does not depend on the particular vector norm on F−F chosen.

With this, the function f : F → G, on the finite-dimensional flat F to the finite-dimensional
flat G, is differentiable at p ∈ F in case the limit

Dτf(p) := lim
hց0

(f(p+ hτ) − f(p))/h

exists for every τ ∈ F−F . In that case, Dτf(p) is called the derivative of f at p in the direction
τ .

Notice that Dτf(p) is a vector , in G−G. It tells us the direction into which f(p) gets translated
as we translate p to p+ τ . Further, its magnitude gives an indication of the size of the change as a
function of the size of the change in p. Exactly,

f(p+ hτ) = f(p) + hDτf(p) + o(‖τ‖h), h ≥ 0.

In particular, if f is differentiable at p, then

Df(p) : F−F → G−G : τ 7→ Dτf(p)

is a well-defined map, from F−F to G−G. This map is positively homogeneous, i.e.,

Dhτf(p) = hDτf(p), h ≥ 0.
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If this map Df(p) is linear, it is called the derivative of f at p. Note that then

f(p+ τ) = f(p) +Df(p)τ + o(‖τ‖), τ ∈ F−F.

If V is any particular basis for F−F and W is any particular basis for G−G, then the matrix

Jf(p) := W−1Df(p)V

is the Jacobian of f at p. Its (i, j) entry tells us how much f(p + τ) moves in the direction
of wi because of a unit change in τ in the direction of vj . More precisely, if τ = V α, then
Df(p)τ = W Jf(p)α.

A practical high-point of these considerations is the chain rule, i.e., the observation that if
g : G→ H is a ‘uniformly’ differentiable map, then their composition gf , is differentiable, and

D(gf)(p) = Dg(f(p))Df(p).

grad, div, and curl
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15. Optimization and quadratic forms

Minimization

We are interested in minimizing a given function

f : dom f ⊂ IRn → IR,

i.e., we are looking for x ∈ dom f so that

∀y ∈ dom f f(x) ≤ f(y).

Any such x is called a minimizer for f ; in symbols:

x ∈ argminf.

The discussion applies, of course, also to finding some x ∈ argmaxf , i.e., finding a maximizer
for f , since x ∈ argmaxf iff x ∈ argmin(−f).

Finding minimizers is, in general, an impossible problem since one cannot tell whether or not
x ∈ argmin f except by checking every y ∈ dom f to make certain that, indeed, f(x) ≤ f(y).
However, if f is a ‘smooth’ function, then one can in principle check whether, at least, x is a local
minimizer, i.e., whether f(x) ≤ f(y) for all ‘nearby’ y, by checking whether the gradient

Df(x) = (Dif(x) : i = 1:n)

of f at x is zero. Here, Dif = ∂f/∂xi is the derivative of f with respect to its ith argument.

To be sure, the vanishing of the gradient of f at x is only a necessary condition for x to be a
minimizer for f , since the gradient of a (smooth) function must also vanish at any local maximum,
and may vanish at points that are neither local minima nor local maxima but are, perhaps, only
saddle points. By definition, any point x for which Df(x) = 0 is a critical point for f .

At a critical point, f is locally flat. This means that, in the Taylor expansion

f(x+ h) = f(x) + (Df(x))th+ ht(D2f(x)/2)h+ h.o.t.(h)

for f at x, the linear term, (Df(x))th, is zero. Thus, if the matrix

H := D2f(x) = (DiDjf(x) : i, j = 1:n)

of second derivatives of f is 1-1, then x is a local minimizer (maximizer) for f if and only if 0 is a
minimizer (maximizer) for the quadratic form

IRn → IR : h 7→ htHh

associated with the Hessian H = D2f(x) for f at x.

If all second derivatives of f are continuous, then also DiDjf = DjDif , hence the Hessian is
real symmetric, therefore

Ht = H.

However, in the contrary case, one simply defines H to be

H := (D2f(x) + (D2f(x))t)/2,

thus making it real symmetric while, still,

htHh = htD2f(x)h, ∀h ∈ IRn.

In any case, it follows that quadratic forms model the behavior of a smooth function ‘near’ a critical

point. The importance of minimization of real-valued functions is the prime motivation for the
study of quadratic forms, to which we now turn.
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Quadratic forms

Each A ∈ IRn×n gives rise to a quadratic form, via

qA : IRn → IR : x 7→ xtAx.

However, as we already observed, the quadratic form ‘sees’ only the symmetric part

(A+At)/2

of A, i.e.,
∀x ∈ IRn xtAx = xt(A+At)/2 x.

For this reason, in discussions of the quadratic form qA, we will always assume that A is real
symmetric.

The Taylor expansion for qA is very simple. One computes

qA(x + h) = (x + h)tA(x+ h) = xtAx+ xtAh+ htAx+ htAh = qA(x) + 2(Ax)th+ htAh,

using the fact that At = A, thus htAx = xtAh = (Ax)th, hence

DqA(x) = 2Ax, D2qA(x) = 2A.

It follows that, for any 1-1 A, 0 is the only critical point of qA. The sought-for classification of
critical points of smooth functions has led to the following classification of quadratic forms:

positive ∀x 6= 0 xtAx > 0 the unique minimizer
positive semi- ∀x xtAx ≥ 0 a minimizer

A is definite := ⇐⇒ 0 is for qA.
negative semi- ∀x xtAx ≤ 0 a maximizer

negative ∀x 6= 0 xtAx < 0 the unique maximizer

If none of these conditions obtains, i.e., if there exist x and y so that xtAx < 0 < ytAy, then qA is
called indefinite and, in this case, 0 is a saddle point for qA.

(15.1) Figure. Local behavior near a critical point.
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(15.1)Figure shows three quadratic forms near their unique critical point. One is a minimizer,
another is a saddle point, and the last one is a maximizer. Also shown is a quadratic form with a
whole straight line of critical points. The figure (generated by the MATLAB command meshc) also
shows some contour lines or level lines, i.e., lines in the domain IR2 along which the function
is constant. The contour plots are characteristic: Near an extreme point, be it a maximum or a
minimum, the level lines are ellipses, with the extreme point their center, while near a saddle point,
the level lines are hyperbolas, with the extreme point their center and with two level lines actually
crossing at the saddle point.

There is an intermediate case between these two, also shown in (15.1)Figure, in which the
level lines are parabolas and, correspondingly, there is a whole line of critical points. In this case,
the quadratic form is semidefinite. Note, however, that the definition of semidefiniteness does not
exclude the possibility that the quadratic form is actually definite.

Since, near any critical point x, a smooth f behaves like its quadratic term h 7→ ht(D2f(x)/2)h,
we can be sure that a contour plot for f near an extremum would approximately look like concentric
ellipses while, near a saddle point, it would look approximately like concentric hyperbolas.

These two patterns turn out to be the only two possible ones for definite quadratic forms on
IR2. On IRn, there are only ⌈(n+ 1)/2⌉ possible distinct patterns, as follows from the fact that, for

every quadratic form qA, there are o.n. coordinate systems U for which

qA(x) =

n∑

i=1

di (U cx)2i .

15.1 For each of the following three functions on IR2, compute the Hessian D2f(0) at 0 and use it to determine
whether 0 is a (local) maximum, minimum, or neither. (In an effort to make the derivation of the Hessians simple,
I have made the problems so simple that you could tell by inspection what kind of critical point 0 = (0, 0) ∈ IR2 is;
nevertheless, give your answer based on the spectrum of the Hessian.)

(a) f(x, y) = (x − y) sin(x + y)

(b) f(x, y) = (x + y) sin(x + y)

(b) f(x, y) = (x + y) cos(x + y).

Reduction of a quadratic form to a sum of squares

Consider the effects of a change of basis. Let V ∈ IRn be a basis for IRn and consider the map

f := qA ◦ V.
We have f(x) = (V x)tAV x = xt(V tAV )x, hence

qA ◦ V = qV tAV .

This makes it interesting to look for bases V for which V tAV is as simple as possible. Matrices
A and B for which B = V tAV are said to be congruent to each other. Note that congruent
matrices are not necessarily similar; in particular, their spectra can be different. However, by
Sylvester’s Law of Inertia (see (15.9) below), congruent hermitian matrices have the same number
of positive, of zero, and of negative, eigenvalues. This is not too surprising in view of the following
reduction to a sum of squares which is possible for any quadratic form.

(15.2) Proposition: Every quadratic form qA on IRn can be written in the form

qA(x) =

n∑

j=1

dj(uj
tx)2,

for some suitable o.n. basis U = [u1, u2, . . . , un] for which U tAU = diag(d1, . . . , dn) ∈ IRn.
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Proof: SinceA is hermitian, there exists, by (12.2)Corollary, some o.n. basis U = [u1, u2, . . . , un]
for IFn for which U tAU = diag(d1, d2, . . . , dn) ∈ IRn×n. Now use the facts that U tU = idn and
therefore qA(x) = qUtAU (U tx) to obtain for qA(x) the displayed expression.

What about the classification introduced earlier, into positive or negative (semidefinite)?
The proposition permits us to visualize qA(x) as a weighted sum of squares (with real weights
d1, d2, . . . , dn) and U tx an arbitrary n-vector (since U is a basis), hence permits us to conclude that
qA is definite if and only if all the dj are strictly of one sign, semidefinite if and only if all the dj are
of one sign (with zero possible), and indefinite if and only if there are both positive and negative
dj .

MATLAB readily provides these numbers dj by the command eig(A).

Consider specifically the case n = 2 for which we earlier provided some pictures. Assume
without loss that d1 ≤ d2. If 0 < d1, then A is positive definite and, correspondingly, the contour
line

cr := {x ∈ IR2 : qA(x) = r} = {x ∈ IR2 : d1(u1
tx)2 + d2(u2

tx)2 = r}
for r > 0 is an ellipse, with axes parallel to u1 and u2. If 0 = d1 < d2, then these ellipses turn into
parabolas and, in an extreme case, into straight lines. Similarly, if d2 < 0, then the contour line

cr := {x ∈ IR2 : qA(x) = r} = {x ∈ IR2 : d1(u1
tx)2 + d2(u2

tx)2 = r}
for r < 0 is an ellipse, with axes parallel to u1 and u2. Finally, if d1 < 0 < d2, then, for any r, the
contour line

cr := {x ∈ IR2 : qA(x) = r} = {x ∈ IR2 : d1(u1
tx)2 + d2(u2

tx)2 = r}
is a hyperbola, with axes parallel to u1 and u2.

Note that such an o.n. basis U is Cartesian, i.e., its columns are orthogonal to each other (and
are normalized). This means that we can visualize the change of basis, from the natural basis to
the o.n. basis U , as a rigid motion, involving nothing more than rotations and reflections.

Rayleigh quotient

This section is devoted to the proof and exploitation of the following remarkable

Fact: The eigenvectors of a hermitian matrix A are the critical points of the corresponding
Rayleigh quotient

RA(x) := 〈Ax, x〉/〈x, x〉,
and RA(x) = µ in case Ax = µx.

This fact has many important consequences concerning how the eigenvalues of a hermitian
matrix depend on that matrix, i.e., how the eigenvalues change when the entries of the matrix are
changed, by round-off or for other reasons.

This perhaps surprising connection has the following intuitive explanation: Suppose that Ax 6∈
ran[x]. Then the error h := Ax − RA(x)x in the least-squares approximation to Ax from ran[x]
is not zero, and is perpendicular to ran[x]. Consequently, 〈Ax, h〉 = 〈h, h〉 > 0, and therefore the
value

〈A(x + th), x+ th〉 = 〈Ax, x〉 + 2t〈Ax, h〉+ t2〈Ah, h〉
of the numerator of RA(x+ th) grows linearly for positive t, while its denominator

〈x+ th, x+ th〉 = 〈x, x〉 + t2〈h, h〉
grows only quadratically, i.e., much less fast for t near zero. It follows that, in this situation,
RA(x+ th) > RA(x) for all ‘small’ positive t, hence x cannot be a critical point for RA. – To put it
differently, for any critical point x for RA, we necessarily have Ax ∈ ran[x], therefore Ax = RA(x)x.
Of course, that makes any such x an eigenvector with corresponding eigenvalue RA(x).
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Next, recall from (12.2) that a hermitian matrix is unitarily similar to a real diagonal matrix.
This means that we may assume, after some reordering if necessary, that

A = UDU c

with U unitary and with M = diag(µ1, . . . , µn) where

µ1 ≤ µ2 ≤ · · · ≤ µn.

At times, we will write, more explicitly,
µj(A)

to denote the jth eigenvalue of the hermitian matrix A in this ordering. Note that there may be
coincidences here, i.e., µj(A) is the jth smallest eigenvalue of A counting multiplicities. Note also
that, in contrast to the singular values (and in contrast to most books), we have put here the
eigenvalues in increasing order.

Now recall that a unitary basis has the advantage that it preserves angles and lengths since
〈Ux,Uy〉 = 〈x, y〉 for any orthonormal U . Thus

〈Ax, x〉 = 〈UMU cx, x〉 = 〈M(U cx), U cx〉,
and 〈x, x〉 = 〈U cx, U cx〉. Therefore

RA(x) = 〈Ax, x〉/〈x, x〉 = 〈M(U cx), U cx〉/〈U cx, U cx〉 = RM(U cx).

This implies that
maxx

minx
RA(x) =

maxy

miny
RM(y).

On the other hand, since M is diagonal, 〈My, y〉 =
∑

j µj |yj |2, therefore

RM(y) =
∑

j

µj |yj |2/
∑

j

|yj |2,

and this shows that

min
x
RA(x) = min

y
RM(y) = µ1, max

x
RA(x) = max

y
RM(y) = µn.

This is Rayleigh’s Principle. It characterizes the extreme eigenvalues of a hermitian matrix. The
intermediate eigenvalues are the solution of more subtle extremum problems. This is the content
of the Courant-Fischer minimax Theorem and the ?.?. maximin Theorem. It seems most
efficient to combine both in the following

(15.3) MMM (or, maximinimaxi) Theorem: Let A be a hermitian matrix of order n,
hence A = UMU c for some unitary U and some real diagonal matrix M = diag(· · · , µj, . . .)
with µ1 ≤ · · · ≤ µn. Then, for j = 1:n,

max
dim G<j

min
x⊥G

RA(x) = µj = min
j≤dim H

max
x∈H

RA(x),

with G and H otherwise arbitrary linear subspaces.

Proof: If dimG < j ≤ dimH , then one can find y ∈ H\0 with y ⊥ G (since, with V
a basis for G and W a basis for H , this amounts to finding a nontrivial solution to the equation
V cW? = 0, and this system is homogeneous with more unknowns than equations). Therefore

min
x⊥G

RA(x) ≤ RA(y) ≤ max
x∈H

RA(x).

Hence,
max

dim G<j
min
x⊥G

RA(x) ≤ min
j≤dim H

max
x∈H

RA(x).

On the other hand, for G = ran[u1, . . . , uj−1] and H = ran[u1, . . . , uj ],

min
x⊥G

RA(x) = µj(A) = max
x∈H

RA(x).
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The MMM theorem has various useful (and immediate) corollaries.

(15.4) Interlacing Theorem: If the matrix B is obtained from the hermitian matrix A by
crossing out the kth row and column (i.e., B = A(I, I) with I := (1:k − 1, k + 1:n)), then

µj(A) ≤ µj(B) ≤ µj+1(A), j < n.

Proof: It is sufficient to consider the case k = n, since we can always achieve this situation
by interchanging rows k and n, and columns k and n, of A, and this will not change spec(A).
Let J : IFn−1 → IFn : x 7→ (x, 0). Then RB(x) = RA(Jx) and ranJ = ran[en]⊥, therefore also
J(G⊥) = (JG + ran[en])⊥ and {JG+ ran[en] : dimG < j,G ⊂ IFn−1} ⊂ {G̃ : dim G̃ < j + 1, G̃ ⊂
IFn}. Hence

µj(B) = max
dim G<j

min
x⊥G

RA(Jx) = max
dim G<j

min
y⊥JG+ran[en]

RA(y) ≤ max
dim G̃<j+1

min
y⊥G̃

RA(y) = µj+1(A).

Also, since {JH : j ≤ dimH,H ⊂ IFn−1} ⊂ {H̃ : j ≤ dim H̃, H̃ ⊂ IFn},

µj(B) = min
j≤dim H

max
x∈H

RA(Jx) = min
j≤dim H

max
y∈JH

RA(y) ≥ min
j≤dim H̃

max
y∈H̃

RA(y) = µj(A).

(15.5) Corollary: If A =

[
B C
D E

]
∈ IFn×n is hermitian, and B ∈ IFr×r, then at least

r eigenvalues of A must be ≤ max spec(B) and at least r eigenvalues of A must be ≥
min spec(B).

In particular, if the spectrum of B is negative and the spectrum of E is positive, then A
has exactly r negative, and n− r positive, eigenvalues.

A different, simpler, application of the MMM theorem is based on the following observation:
If

f(t) ≤ g(t) ∀t,

then this inequality persists if we take on both sides the maximum or minimum over the same set
T , i.e., then

max
t∈T

f(t) ≤ max
t∈T

g(t), min
t∈T

f(t) ≤ min
t∈T

g(t).

It even persists if we further take the minimum or maximum over the same family T of subsets T ,
e.g., then also

max
T∈T

min
t∈T

f(t) ≤ max
T∈T

min
t∈T

g(t).

Consequently,

(15.6) Corollary: If A, B are hermitian, and RA(x) ≤ RB(x) + c for some constant c and
all x, then

µj(A) ≤ µj(B) + c, ∀j.
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This gives

(15.7) Weyl’s inequalities: If A = B + C, with A,B,C hermitian, then

µj(B) + µ1(C) ≤ µj(A) ≤ µj(B) + µn(C), ∀j.

Proof: Since µ1(C) ≤ RC(x) ≤ µn(C) (by Rayleigh’s principle), while RB(x) + RC(x) =
RA(x), the preceding corollary provides the proof.

A typical application of Weyl’s Inequalities is the observation that, for A = BBc +C ∈ IFn×n

with B ∈ IFn×k and A hermitian (hence also C hermitian), µ1(C) ≤ µj(A) ≤ µn(C) for all
j < (n− k), since rankBBc ≤ rankB ≤ k, hence µj(BBc) must be zero for j < (n− k).

Since C = A−B, Weyl’s inequalities imply that

|µj(A)− µj(B)| ≤ max{|µ1(A−B)|, |µn(A−B)|} = ρ(A−B).

Therefore, with the substitutions A← A+ E, B ← A, we obtain

(15.8) max-norm Wielandt-Hoffman: If A and E are both hermitian, then

max
j
|µj(A+ E)− µj(A)| ≤ max

j
|µj(E)|.

A corresponding statement involving 2-norms is valid but much harder to prove.

Finally, a totally different application of the MMM Theorem is

(15.9) Sylvester’s Law of Inertia: Any two congruent hermitian matrices have the same
number of positive, zero, and negative eigenvalues.

Proof: It is sufficient to prove that if B = V cAV for some hermitian A and some invertible
V , then µj(A) > 0 implies µj(B) > 0. For this, we observe that, by the MMM Theorem, µj(A) > 0
implies that RA is positive somewhere on every j-dimensional subspace, while (also by the MMM
Theorem), for some j-dimensional subspace H ,

µj(B) = max
x∈H

RB(x) = max
x∈H

RA(V x)RV cV (x),

and this is necessarily positive, since dimV H = j and RV cV (x) = ‖V x‖2/‖x‖2 is positive for any
x 6= 0.

It follows that we don’t have to diagonalize the real symmetric matrix A (as we did in the
proof of (15.2)Proposition) in order to find out whether or not A or the corresponding quadratic
form qA is definite. Assuming that A is invertible, hence has no zero eigenvalue, it is sufficient to
use Gauss elimination without pivoting to obtain the factorization A = LDLc, with L unit lower
triangular. By Sylvester’s Law of Inertia, the number of positive (negative) eigenvalues of A equals
the number of positive (negative) diagonal entries of D.

This fact can be used to locate the eigenvalues of a real symmetric matrix by bisection. For,
the number of positive (negative) diagonal entries in the diagonal matrix Dµ obtained in the fac-
torization LµDµLµ

c for (A − µ id) tells us the number of eigenvalues of A to the right (left) of µ,
hence makes it easy to locate and refine intervals that contain just one eigenvalue of A.
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16. More on determinants

In this chapter only, n-vectors will be denoted by lower-case boldface roman letters; for example,

a = (a1, . . . , an) ∈ IFn.

Determinants are often brought into courses such as this quite unnecessarily. But when they
are useful, they are remarkably so. The use of determinants is a bit bewildering to the beginner,
particularly if confronted with the classical definition as a sum of signed products of matrix entries.

I find it more intuitive to follow Weierstrass and begin with a few important properties of
the determinant, from which all else follows, including that classical definition (which is practically
useless anyway).

As to the many determinant identities available, in the end I have almost always managed
with just one nontrivial one, viz. Sylvester’s determinant identity, and this is nothing but Gauss
elimination; see the end of this chapter. The only other one I have used at times is the Cauchy-Binet

formula.

Definition and basic properties

The determinant is a map,

det : IFn×n → IF : A 7→ detA,

with various properties. The first one in the following list is perhaps the most important one.

(i) det(AB) = det(A) det(B).

(ii) det( id) = 1.

Consequently, for any invertible A,

1 = det( id) = det(AA−1) = det(A) det(A−1).

Hence,

(iii) If A is invertible, then detA 6= 0 and, det(A−1) = 1/ det(A).

While the determinant is defined as a map on matrices, it is very useful to think of det(A) =
det[a1, . . . ,an] as a function of the columns a1, . . . ,an of A. The next two properties are in those
terms:

(iv) x 7→ det[. . . ,aj−1,x,aj+1, . . .] is linear, i.e., for any n-vectors x and y and any scalar α (and
arbitrary n-vectors ai),

det[. . . ,aj−1,x + αy,aj+1, . . .] = det[. . . ,aj−1,x,aj+1, . . .] + α det[. . . ,aj−1,y,aj+1, . . .].

(v) The determinant is an alternating form, i.e.,

det[. . . ,ai, . . . ,aj , . . .] = − det[. . . ,aj , . . . ,ai, . . .].

In words: Interchanging two columns changes the sign of the determinant (and nothing else).

It can be shown (see below) that (ii) + (iv) + (v) implies (i) (and anything else you may wish
to prove about determinants). Here are some basic consequences first.

(vi) Since 0 is the only scalar α with the property that α = −α, it follows from (v) that det(A) = 0
if two columns of A are the same.

(vii) Adding a multiple of one column of A to another column of A doesn’t change the determinant.
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Indeed, using first (iv) and then the consequence (vi) of (v), we compute

det[. . . ,ai, . . . ,aj + αai, . . .] = det[. . . ,ai, . . . ,aj , . . .] + α det[. . . ,ai, . . . ,ai, . . .] = det[. . . ,ai, . . . ,aj , . . .].

Here comes a very important use of (vii): Assume that b = Ax and consider det[. . . ,aj−1,b,aj+1, . . .].
Since b = x1a1 + · · · + xnan, subtraction of xi times column i from column j, i.e., subtraction of
xiai from b here, for each i 6= j is, by (vii), guaranteed not to change the determinant, yet changes
the jth column to xjaj ; then, pulling out that scalar factor xj (permitted by (iv)), leaves us finally
with xj detA. This proves

(viii) If b = Ax, then det[. . . ,aj−1,b,aj+1, . . .] = xj detA.

Hence, if detA 6= 0, then b = Ax implies

xj = det[. . . ,aj−1,b,aj+1, . . .]/ det(A), j = 1, . . . , n.

This is Cramer’s rule.

In particular, if det(A) 6= 0, then Ax = 0 implies that xj = 0 for all j, i.e., then A is 1-1, hence
invertible (since A is square). This gives the converse to (iii), i.e.,

(ix) If det(A) 6= 0, then A is invertible.

In old-fashioned mathematics, a matrix was called singular if its determinant is 0. So, (iii)
and (ix) combined say that a matrix is nonsingular iff it is invertible.

The suggestion that one actually construct the solution to A? = y by Cramer’s rule is ridiculous
under ordinary circumstances since, even for a linear system with just two unknowns, it is more
efficient to use Gauss elimination. On the other hand, if the solution is to be constructed symbolically

(in a symbol-manipulating system such as Maple or Mathematica), then Cramer’s rule is preferred
to Gauss elimination since it treats all unknowns equally. In particular, the number of operations
needed to obtain a particular unknown is the same for all unknowns.

We have proved all these facts (except (i)) about determinants from certain postulates (namely
(ii), (iv), (v)) without ever saying how to compute det(A). Now, it is the actual formulas for det(A)
that have given determinants such a bad name. Here is the standard one, which (see below) can
be derived from (ii), (iv), (v), in the process of proving (i):

(x) If A = (aij : i, j = 1, . . . , n), then

det(A) =
∑

σ∈SSn

(−1)σ
n∏

j=1

aσ(j),j .

Here, σ ∈ SSn is shorthand for: σ is a permutation of the first n integers, i.e.,

σ = (σ(1), σ(2), . . . , σ(n)),

where σ(j) ∈ {1, 2, . . . , n} for all j, and σ(i) 6= σ(j) if i 6= j. In other words, σ is a 1-1 and onto
map from {1, . . . , n} to {1, . . . , n}. This is bad enough, but I still have to explain the mysterious
(−1)σ. This number is 1 or −1 depending on whether the parity of σ is even or odd. Now, this
parity can be determined in at least two equivalent ways:

(a) keep making interchanges until you end up with the sequence (1, 2, . . . , n); the parity of
the number of steps it took is the parity of σ (note the implied assertion that this parity will not
depend on how you went about this, i.e., the number of steps taken may differ, but the parity never
will; if it takes me an even number of steps, it will take you an even number of steps.)

(b) count the number of pairs that are out of order; its parity is the parity of σ.
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Here is a simple example: σ = (3, 1, 4, 2) has the pairs (3, 1), (3, 2), and (4, 2) out of order, hence
(−1)σ = −1. Equivalently, the following sequence of 3 interchanges gets me from σ to (1, 2, 3, 4):

(3, 1, 4, 2)

(3, 1, 2, 4)

(1, 3, 2, 4)

(1, 2, 3, 4)

Therefore, again, (−1)σ = −1.

Now, fortunately, we don’t really ever have to use this stunning formula (x) in calculations,
nor is it physically possible to use it for n much larger than 8 or 10. For n = 1, 2, 3, one can derive
from it explicit rules for computing det(A):

det [ a ] = a, det

[
a b
c d

]
= ad− bc, det




a b c
d e f
g h i



 = aei+ bfg + cdh− (ceg + afh+ bdi);

the last one can be remembered easily by the following mnemonic:

a ab bc

d de ef

g gh hi

For n > 3, this mnemonic does not work , and one would not usually make use of (x), but use
instead (i) and the following immediate consequence of (x):

(xi) The determinant of a triangular matrix equals the product of its diagonal entries.

Indeed, when A is upper triangular, then aij = 0 whenever i > j. Now, if σ(j) > j for some j,
then the factor aσ(j),j in the corresponding summand (−1)σ

∏n
j=1 aσ(j),j is zero. This means that

the only possibly nonzero summands correspond to σ with σ(j) ≤ j for all j, and there is only one
permutation that manages that, the identity permutation (1, 2, . . . , n), and its parity is even
(since it takes no interchanges). Therefore, the formula in (x) gives detA = a11 · · ·ann in this case.
– The proof for a lower triangular matrix is analogous; else, use (xiii) below.

Consequently, if A = LU with L unit triangular and U upper triangular, then

detA = detU = u11 · · ·unn.

If, more generally, A = PLU , with P some permutation matrix, then

detA = det(P )u11 · · ·unn,

i.e.,

(xii) detA is the product of the pivots used in elimination, times (−1)i, with i the number of row
interchanges made.

Since, by elimination, any A ∈ IFn can be factored as A = PLU , with P a permutation
matrix, L unit lower triangular, and U upper triangular, (xii) provides the standard way to compute
determinants.

Note that, then, At = U tLtP t, with U t lower triangular, Lt unit upper triangular, and P t the
inverse of P , hence

(xiii) detAt = detA.

This can also be proved directly from (x). Note that this converts all our statements about
the determinant in terms of columns to the corresponding statements in terms of rows.
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(xiv) “expansion by minors”:

Since, by (iv), the determinant is slotwise linear, and x = x1e1 + x2e2 + · · ·+ xnen, we obtain

(16.1) det[. . . ,aj−1,x,aj+1, . . .] = x1C1j + x2C2j + · · ·+ xnCnj ,

with
Cij := det[. . . ,aj−1, ei,aj+1, . . .]

the socalled cofactor of aij . With the choice x = ak, this implies

a1kC1k + a2kC2k + · · ·+ ankCnk = det[. . . ,aj−1,ak,aj+1, . . .] =
{

detA if k = j;
0 otherwise.

The case k = j gives the expansion by minors for detA (and justifies the name ‘cofactor’ for
Cij). The case k 6= j is justified by (vi). In other words, with

adjA :=





C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

... · · ·
...

C1n C2n · · · Cnn





the socalled adjugate of A (note that the subscripts appear reversed), we have

adj(A)A = (detA) id.

For an invertible A, this implies that

A−1 = (adjA)/ detA.

The expansion by minors is useful since, as follows from (x), the cofactor Cij equals (−1)i+j

times the determinant of the matrix A(n\i|n\j) obtained from A by removing row i and column
j, i.e.,

Cij = (−1)i+j det





. . . . . . . . . . . .

. . . ai−1,j−1 ai−1,j+1 . . .

. . . ai+1,j−1 ai+1,j+1 . . .

. . . . . . . . . . . .



 ,

and this is a determinant of order n − 1, and so, if n − 1 > 1, can itself be expanded along some
column (or row).

As a practical matter, for [a,b, c] := A ∈ IR3, the formula adj(A)A = (detA) id implies that

(a× b)tc = det[a,b, c],

with
a× b := (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)

the cross product of a with b. In particular, a × b is perpendicular to both a and b. Also, if
[a,b] is o.n., then so is [a,b,a× b] but, in addition, det[a,b,a× b] = 1, i.e., [a,b,a × b] provides
a right-handed cartesian coordinate system for IR3.

(xv) detA is the n-dimensional (signed) volume of the parallelepiped

{Ax : 0 ≤ xi ≤ 1, all i}

spanned by the columns of A.
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For n > 3, this is a definition, while, for n ≤ 3, one works it out (see below). This is a very
useful geometric way of thinking about determinants. Also, it has made determinants indispensable
in the definition of multivariate integration and the handling therein of changes of variable.

Since det(AB) = det(A) det(B), it follows that the linear transformation T : IFn → IFn : x 7→
Ax changes volumes by a factor of det(A), meaning that, for any set M in the domain of T ,

vol n(T (M)) = det(A) vol n(M).

As an example, consider det[a,b], with a, b vectors in the plane linearly independent, and
assume, wlog, that a1 6= 0. By (iv), det[a,b] = det[a, b̃], with b̃ := b − (b1/a1)a having its first
component equal to zero, and so, again by (iv), det[a,b] = det[ã, b̃], with ã := a− (a2/b̃2)b̃ having
its second component equal to zero. Therefore, det[a,b] = ã1b̃2 = ±‖ã‖‖b̃‖ equals ± the area of
the rectangle spanned by ã and b̃. However, following the derivation of ã and b̃ graphically, we
see, by matching congruent triangles, that the rectangle spanned by ã and b̃ has the same area as
the parallelepiped spanned by a and b̃, and, therefore, as the parallelepiped spanned by a and b.
Thus, up to sign, det[a,b] is the area of the parallelepiped spanned by a and b.

b

a

b
b̃

a

b̃

a

ã

Here, finally, for the record, is a proof that (ii) + (iv) + (v) implies (i), hence everything else
we have been deriving so far. Let A and B be arbitrary matrices (of order n). Then the linearity
(iv) implies that

det(BA) = det[Ba1, Ba2, . . . , Ban] = det[. . . ,
∑

i

biaij , . . .] =
∑

σ∈{1,...,n}n

det[bσ(1), . . . ,bσ(n)]
∏

j

aσ(j),j .

By the consequence (vi) of the alternation property (v), most of these summands are zero. Only
those determinants det[bσ(1), . . . ,bσ(n)] for which all the entries of σ are different are not auto-
matically zero. But that are exactly all the σ ∈ SSn, i.e., the permutations of the first n integers.
Further, for such σ,

det[bσ(1), . . . ,bσ(n)] = (−)σ det(B)

by the alternation property (v), with (−)σ = ±1 depending on whether it takes an even or an odd
number of interchanges to change σ into a strictly increasing sequence. (We discussed this earlier;
the only tricky part remaining here is an argument that shows the parity of such number of needed
interchanges to be independent of how one goes about making the interchanges. The clue to the
proof is the simple observation that any one interchange is bound to change the number of sequence
entries out of order by an odd amount.) Thus

det(BA) = det(B)
∑

σ∈SSn

(−)σ
∏

j

aσ(j),j .

Since idA = A while, by the defining property (ii), det( id) = 1, the formula (x) follows and,
with that, det(BA) = det(B) det(A) for arbitrary B and A. On the other hand, starting with the
formula in (x) as a definition, one readily verifies that det so defined satisfies the three properties
(ii) (det( id) = 1), (iv) (multilinear), and (v) (alternating) claimed for it. In other words, there
actually is such a function (necessarily given by (x)).
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Sylvester

Here, for the record, is a proof and statement of Sylvester’s Determinant Identity. For it,
the following notation will be useful: If i = (i1, . . . , ir) and j = (j1, . . . , js) are suitable integer
sequences, then A(i, j) = A(i|j) is the r × s-matrix whose (p, q) entry is A(ip, jq), p = 1, . . . , r,
q = 1, . . . , s. This is just as in MATLAB except for the vertical bar used here at times, for emphasis
and in order to list, on either side of it, a sequence without having to encase it in parentheses. Also,
it will be handy to denote by : the entire sequence 1:n, and by \i the sequence obtained from 1:n
by removing from it the entries of i. Thus, as in MATLAB, A(: |j) = A(:, j) is the jth column of A.
Finally, A(i) := A(i|i).

With k := 1:k, consider the matrix B with entries

B(i, j) := detA(k, i|k, j).

On expanding (see property (xiv)) detA(k, i|k, j) by entries of the last row,

B(i, j) = A(i, j) detA(k) −
∑

r≤k

A(i, r)(−)k−r detA(k|(k\r), j).

This shows that
B(:, j) ∈ A(:, j) detA(k) + spanA(: |k),

while, directly, B(i, j) = 0 for i ∈ k since then detA(k, i|k, j) has two rows the same.

In the same way,
B(i, :) ∈ A(i, :) detA(k) + spanA(k| :),

while, directly, B(i, j) = 0 for j ∈ k. Thus, if detA(k) 6= 0, then, for i > k,

B(i, :)/ detA(k)

provides the ith row of the matrix obtained from A after k steps of Gauss elimination (without
pivoting). This provides the following useful

(16.2) Determinantal expressions for LU factors and Schur complement: The
matrix S := B/ detA(k) contains the Schur complement S(\k) in A of the pivot block
A(k). Further,

B(k + 1, k + 1) = detA(k + 1)/ detA(k)

is the pivot for the k + 1st elimination step, hence, for i > k,

L(i, k + 1) = B(i, k + 1)/B(k + 1, k + 1) = detA(k, i|k + 1)/ detA(k + 1)

is the (i, k+1) entry of the resulting unit lower triangular left factor of A and, correspondingly,

U(k + 1, i) = B(k + 1, i)/B(k + 1, k + 1) = detA(k + 1|k, i)/ detA(k + 1)

is the (k + 1, i) entry of the resulting unit upper triangular right factor of A.

Since such row elimination is done by elementary matrices with determinant equal to 1, it
follows that

detA = detA(k) detS(\k).

Since, for any #i = #j, B(i, j) depends only on the square matrix A(k, i|k, j), this implies
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Sylvester’s determinant identity. If

S(i, j) := detA(k, i|k, j)/ detA(k), ∀i, j,

then
detS(i|j) = detA(k, i|k, j)/ detA(k).

Cauchy-Binet

Cauchy-Binet formula. det(BA)(i|j) =
∑

#h=#i
detB(i|h) detA(h|j).

Even the special case #i = #A of this, i.e., the most important determinant property (i),

det(BA) = detB detA,

Binet and Cauchy were the first to prove. Not surprisingly, the proof of the formula follows our
earlier proof of that identity.

Proof: Since (BA)(i|j) = B(i|:)A(:|j), it is sufficient to consider the case B,At ∈ IFm×n

for some m and n. If m > n, then B cannot be onto, hence BA must fail to be invertible, while
the sum is empty, hence has value 0. It is therefore sufficient to consider the case m ≤ n.

For this, using the linearity of the determinant in each slot,

detBA = det[BA(:, 1), . . . , BA(:,m)]

=
∑

h1

· · ·
∑

hm

det[B(:, h1)A(h1, 1), . . . , B(:, hm)A(hm,m)]

=
∑

h1

· · ·
∑

hm

det[B(:, h1), . . . , B(:, hm)]A(h1, 1) · · ·A(hm,m)

=
∑

h1<...<hm

detB(:|h)
∑

σ∈SSm

(−1)σA(hσ(1), 1) · · ·A(hσ(m),m) =
∑

h1<...<hm

detB(:|h) detA(h|:).

16.1 Prove: For any A ∈ IFn×n+1, the vector ((−1)k det A(:, \k) : k = 1:n + 1) is in null A.

16.2 Let A ∈ ZZn×n, i.e., a matrix of order n with integer entries, and assume that A is invertible. Prove:
A−1 ∈ ZZn×n if and only if |det A| = 1. (Hint: Use Cramer’s Rule to prove that such A maps ZZn onto itself in case
det A = ±1.)

16.3 Let R be a ring (see Backgrounder). Prove the following claim, of use in ideal theory: If Ax = 0 for
A ∈ Rn×n and x ∈ Rn, then xi det(A) = 0 for all i.

16.4 Use the previous homework to prove the following (see the Backgrounder on rings for background): If
R is a commutative ring with identity, s1, . . . , sn ∈ R, F := [s1, . . . , sn](Rn) and H is an ideal in R for which
F ⊂ HF := {hf : h ∈ H, f ∈ F}, then, for some h ∈ H, (1 − h)F = 0.

16.5 Prove that the elementary matrix A := idn − qrt has a factorization A = LDU with L unit lower
triangular, D diagonal, and U unit upper triangular provided the numbers

pi := 1 −
∑

j≤i

qjrj

are non zero for i < n, and verify that then D = diag(pi/pi−1 : i = 1:n) and

L(i, j) = −qirj/pj = U(j, i), i > j.
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17. Background

A nonempty finite subset of IR contains a maximal element

Let m be an arbitrary element of the set M in question; there is at least one, by assumption.
Then the algorithm

for r ∈M do: if r > m, m← r, od

produces the maximal element, m, after finitely many steps.

Since a bounded subset of ZZ necessarily has only finitely many elements, it follows that a
nonempty bounded subset of ZZ contains a maximal element. This latter claim is used several times
in these notes.

Also, note the corollary that a bounded function into the integers takes on its maximal value:
its range then contains a maximal element and any preimage of that maximal element will do.

A nonempty bounded subset of IR has a least upper bound

Let M be a subset of IR. Then, as the example of the open interval (0 . . 1) readily shows, such
M need not have a maximal (or, rightmost) element. However, if the set

{r ∈ IR : m ≤ r, ∀m ∈M}

of upper bounds for M is not empty, then this set has a smallest (or, leftmost) element. This
smallest element is called the least upper bound, or the supremum, forM and is correspondingly
denoted

supM.

The existence of a least upper bound for any real set M that has an upper bound is part of our
understanding or definition of the set IR. What if M has no upper bound? Then some would say
that supM = ∞. What if M is empty? Then, offhand, supM is not defined. On the other hand,
since M ⊂ N =⇒ supM ≤ supN , some would, consistent with this, define sup{} = inf IR = −∞.

One also considers the set
{r ∈ IR : r ≤ m, ∀m ∈M}

of all lower bounds of the set M and understands that this set, if nonempty, has a largest (or,
right-most) element. This element is called the greatest lower bound, or infimum, of M , and
is denoted

inf M.

What if M has no lower bound? Then some would say that inf M = −∞.

Note that
− supM = inf(−M).

Complex numbers

A complex number is of the form
z = a+ ib,

with a and b real numbers, called, respectively, the real part of z and the imaginary part of z,
and i the imaginary unit, i.e.,

i :=
√
−1.

Actually, there are two complex numbers whose square is −1. We denote the other one by −i. Be
aware that, in parts of Engineering, the symbol j is used instead of i.

MATLAB works internally with (double precision) complex numbers. Both variables i
and j in MATLAB are initialized to the value i.
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One adds complex numbers by adding separately their real and imaginary parts. One multiplies
two complex numbers by multiplying out and rearranging, mindful of the fact that i2 = −1. Thus,

(a+ ib)(c+ id) = ac+ aid+ bic− bd = (ac− bd) + i(ad+ bc).

Note that both addition and multiplication of complex numbers is commutative. Further, the
product of z = a+ ib with its complex conjugate

z := a− ib

is the nonnegative number
zz = a2 + b2,

and its (nonnegative) squareroot is called the absolute value or modulus of z and denoted by

|z| :=
√
zz.

For z 6= 0, we have |z| 6= 0, hence z/|z|2 = a/|z|2 − ib/|z|2 is a well-defined complex number. It
is the reciprocal of z since zz/|z|2 = 1, of use for division by z. Note that, for any two complex
numbers z and ζ,

|zζ| = |z||ζ|.

It is very useful to visualize complex numbers as points in the so called complex plane, i.e.,
to identify the complex number a + ib with the point (a, b) in IR2. With this identification, its
absolute value corresponds to the (Euclidean) distance of the corresponding point from the origin.
The sum of two complex numbers corresponds to the vector sum of their corresponding points. The
product of two complex numbers is most easily visualized in terms of the polar form

z = a+ ib = r exp(iϕ),

with r ≥ 0, hence r = |z| its modulus, and ϕ ∈ IR is called its argument. Indeed, for any real ϕ,
exp(iϕ) = cos(ϕ) + i sin(ϕ) has absolute value 1, and ϕ is the angle (in radians) that the vector
(a, b) makes with the positive real axis. Note that, for z 6= 0, the argument, ϕ, is only defined up to
a multiple of 2π, while, for z = 0, the argument is arbitrary. If now also ζ = α + iβ = |ζ| exp(iψ),
then, by the law of exponents,

zζ = |z| exp(iϕ)|ζ| exp(iψ) = |z||ζ| exp(i(ϕ + ψ)).

Thus, as already noted, the absolute value of the product is the product of the absolute values of
the factors, while the argument of a product is the sum of the arguments of the factors.

For example, in as much as the argument of z is the negative of the argument of z, the argument
of the product zz is necessarily 0. As another example, if z = a + ib is of modulus 1, then z lies
on the unit circle in the complex plane, and so does any power zk of z. In fact, then z = exp(iϕ)
for some real number ϕ, and therefore zk = exp(i(kϕ)). Hence, the sequence z0, z1, z2, · · · appears
as a sequence of points on the unit circle, equally spaced around that circle, never accumulating
anywhere unless ϕ = 0, i.e., unless z = 1.

(17.1) Lemma: Let z be a complex number of modulus 1. Then the sequence z0, z1, z2, . . .
of powers of z lies on the unit circle, but fails to converge except when z = 1.
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Groups, rings, and fields

A semigroup (F, op) is a set F and an operation op on F , i.e., a map op : F × F → F :
(f, g) 7→ fg that is associative, meaning that

∀{f, g, h ∈ F} (fg)h = f(gh).

The semigroup is commutative if

∀{f, g ∈ F} fg = gf.

The prime example of a semigroup is the set (M → M) = MM of all maps on some set M , with
map composition as the operation, or any of its subsets H that are closed under the operation,
i.e., satisfy HH := {gh : g, h ∈ H} ⊂ H . MM is commutative only if #M = 1.

A group (G, op) is a semigroup (necessarily nonempty) whose operation is a group oper-
ation, meaning that, in addition to associativity, it has the following properties:

(g.1) there exists a left neutral element and a right neutral element, i.e., an el, er ∈ G
(necessarily el = er, hence unique, denoted by e and called the neutral element) such
that

∀{g ∈ G} elg = g = ger;

(g.2) every g ∈ G has a left inverse and a right inverse, i.e., f, h ∈ G so that fg = e = gh
(and, necessarily, these are unique and coincide, leading to the notation f = g−1 = h).

G is said to be ‘a group under the operation op’.

A group G is called Abelian if it is commutative.

If also H is a group, then a homomorphism from G to H is any map ϕ : G→ H that
‘respects the group structure’, i.e., for which

∀{f, g ∈ G} ϕ(fg) = ϕ(f)ϕ(g).

The prime example of a group is the collection of all invertible maps on some set, with map
composition the group operation. The most important special case of these is SSn, called the
symmetric group of order n and consisting of all permutations of order n, i.e., of all invertible
maps on n = {1, 2, . . . , n}. Any finite group G can be represented by a subgroup of SSn for some
n in the sense that there is a group monomorphism ϕ : G→ SSn, i.e., a 1-1 homomorphism from
G to SSn.

Here are some specific examples:

(i) (ZZ,+), i.e., the integers under addition; note that, for each n ∈ ZZ, the map n : ZZ→ ZZ : m 7→
m+ n is, indeed, invertible, with −n : ZZ→ ZZ : m 7→ m− n its inverse.

(ii) (QQ\0, ∗), i.e., the nonzero rationals under multiplication; note that, for each q ∈ QQ\0, the map
q : QQ\0→ QQ\0 : p 7→ pq is, indeed, invertible, with q−1 : QQ\0→ QQ\0 : p 7→ p/q its inverse.

(iii) The collection of all rigid motions that carry an equilateral triangle to itself. It can be thought
of as SS3 since each such motion, being rigid, must permute the vertices and is completely
determined once we know what it does to the vertices.
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17.1 Prove that, for M = {1, 2}, the semigroup MM is not commutative.

17.2 Verify all the parenthetical claims made in the above definition of a group.

17.3 Give an example of a nonabelian group.

A ring R = (R,+, ∗) is a set R (necessarily nonempty) with two operations, (f, g) 7→ f + g
and (f, g) 7→ f ∗ g =: fg, called addition and multiplication respectively, such that

(r.1) (R,+) is an Abelian group, with neutral element usually denoted 0;

(r.2) (R, ∗) is a semigroup;

(r.3) (distributive laws): for every f ∈ R, the maps R→ R : g 7→ fg and R→ R : g 7→ gf are
homomorphisms of the group (R,+), i.e., f(g + h) = fg + fh and (g + h)f = gf + hf .

A field is a ring (R,+, ∗) for which (R\0, ∗) is a group.

If multiplication in the ring R is commutative, i.e., fg = gf for all f, g ∈ R, then R is called
commutative.

If the ring R has a neutral element for multiplication, i.e., an element e so that eg = g = ge
for all g 6= 0, then it has exactly one such, and it is usually denoted by 1. In that case, R is called
a ring with identity. Any field is a ring with identity.

Both IR and C are commutative fields. The prime example of a ring is the set Π(IFd) of all
polynomials in d (real or complex) variables with (real or complex) coefficients, with pointwise
addition and multiplication the ring operations. It is a commutative ring with identity. It has given
the major impetus to the study of (two-sided) ideals, i.e., of nonempty subsets S of a ring R closed
under addition, and containing both SR and RS, i.e., closed also under left or right multiplication
by any element of the ring. This makes S a subring of R, i.e., a ring in its own right, but not all
subrings are ideals.

Let R be a commutative ring. Then the set [s1, . . . , sr](Rr) = {s1g1 + · · ·+srgr : (g1, . . . , gr) ∈
Rr)} is an ideal, the ideal generated by (s1, . . . , sr). Such an ideal is called finitely generated.
A ring R is called Noetherian if all its ideals are finitely generated. Hilbert’s Basis Theorem
famously states that Π(IFd) is Noetherian.

17.4 Verify that, for any s1, . . . , sn in the commutative ring R, [s1, . . . , sn](Rn) is an ideal.

The ring of univariate polynomials

Π = Π(IF) is, by definition, the set of univariate polynomials, i.e., the collection of all maps

p : IF→ IF : z 7→ p̂0 + p̂1z + p̂2z
2 + · · ·+ p̂dz

d,

with p̂0, . . . , p̂d ∈ IF and some d ∈ ZZ+. If p̂d 6= 0, then d is the degree of p, i.e.,

d = deg p := max{j : p̂j 6= 0}.

This leaves the degree of the zero polynomial, 0 : IF→ IF : z 7→ 0, undefined. It is customary to set

deg 0 := −1.

As already mentioned, Π is a ring under pointwise addition and multiplication. More than
that, Π is a principal ideal domain, meaning that any of its ideals is generated by just one
element. Indeed, if I is an ideal, then it contains an element p of smallest possible nonnegative
degree. If f is any element of Π, then, by the Euclidean algorithm (see below), we can find q, r ∈ Π
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so that f = qp + r and deg r < deg p. If now f ∈ I, then also r = f − qp ∈ I and deg r < deg p
hence, by the minimality of deg p, r must be 0. In other words,

I = Πp := {qp : q ∈ Π}.

To be sure, already Π(IF2) fails to be a principal ideal domain.

It is simple algebra (see, e.g., the discussion of Horner’s method below) that the set

Z(p) := {z ∈ IF : p(z) = 0}

of zeros of p ∈ Π contains at most deg p elements. It is the Fundamental Theorem of Algebra
that #Z(p) = deg p, counting multiplicities, in case IF = C. More explicitly, this theorem says
that, with d := deg p,

p = c(· − z1) · · · (· − zd)

for some nonzero constant c and some z ∈ Cd.

It is in this sense that C is said to be algebraically closed while IR is not. E.g., the real
polynomial ()2 + 1 has no real zeros. It is remarkable that, by adjoining one, hence the other, of
the ‘imaginary’ zeros of ()2 + 1, i.e., i =

√
−1, appropriately to IR, i.e., by forming C = IR + iIR,

we obtain enough additional scalars so that now, even if we consider polynomials with complex
coefficients, all nonconstant polynomials have a full complement of zeros (counting multiplicities).

Convergence of a scalar sequence

A subset Z of C is said to be bounded if it lies in some ball

Br := {z ∈ C : |z| < r}

of (finite) radius r. Equivalently, Z is bounded if, for some r, |ζ| < r for all ζ ∈ Z. In either case,
the number r is called a bound for Z.

In particular, we say that the scalar sequence (ζ1, ζ2, . . .) is bounded if the set {ζm : m ∈ IN}
is bounded. For example, the sequence (1, 2, 3, . . .) is not bounded.

(17.2) Lemma: The sequence (ζ1, ζ2, ζ3, · · ·) is bounded if and only if |ζ| ≤ 1. Here, ζk

denotes the kth power of the scalar ζ.

Proof: Assume that |ζ| > 1. I claim that, for all m,

(17.3) |ζm| − 1 > (|ζ| − 1)m.

This is certainly true for m = 1. Assume it correct for m = k. Then

|ζk+1| − 1 = (|ζk+1| − |ζk|) + (|ζk| − 1).

The first term on the right-hand side gives

|ζk+1| − |ζk| = (|ζ| − 1)|ζ|k−1 > |ζ| − 1,

since |ζ| > 1, while, for the second term, |ζk|−1 > (|ζ|−1)k by induction hypothesis. Consequently,

|ζk+1| − 1 > (|ζ| − 1) + (|ζ| − 1)k = (|ζ| − 1)(k + 1),
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showing that (17.3) also holds for m = k + 1.

In particular, for any given c, choosing m to be any natural number bigger than c/(|ζ| − 1),
we have |ζm| > c. We conclude that the sequence (ζ1, ζ2, ζ3, · · ·) is unbounded when |ζ| > 1.

Assume that |ζ| ≤ 1. Then, for any m, |ζm| = |ζ|m ≤ 1m = 1, hence the sequence
(ζ1, ζ2, ζ3, · · ·) is not only bounded, it lies entirely in the unit disk

B−
1 := {z ∈ C : |z| ≤ 1}.

A sequence (ζ1, ζ2, ζ3, · · ·) of (real or complex) scalars is said to converge to the scalar ζ, in
symbols:

lim
m→∞

ζm = ζ,

if, for all ε > 0, there is some mε so that, for all m > mε, |ζ − ζm| < ε.

Assuming without loss the scalars to be complex, we can profitably visualize this definition as
saying the following: Whatever small circle {z ∈ C : |z − ζ| = ε} of radius ε we draw around the
point ζ, all the terms of the sequence except the first few are inside that circle.

(17.4) Lemma: A convergent sequence is bounded.

Proof: If limm→∞ ζm = ζ, then there is some m0 so that, for all m > m0, |ζ − ζm| < 1.
Therefore, for all m,

|ζm| ≤ r := |ζ|+ 1 + max{|ζk| : k = 1:m0}.
Note that r is indeed a well-defined nonnegative number, since a finite set of real numbers always
has a largest element.

(17.5) Lemma: The sequence (ζ1, ζ2, ζ3, · · ·) is convergent if and only if either |ζ| < 1 or
else ζ = 1. In the former case, limm→∞ ζm = 0, while in the latter case limm→∞ ζm = 1.

Proof: Since the sequence is not even bounded when |ζ| > 1, it cannot be convergent in
that case. We already noted that it cannot be convergent when |ζ| = 1 unless ζ = 1, and in that
case ζm = 1 for all m, hence also limm→∞ ζm = 1.

This leaves the case |ζ| < 1. Then either |ζ| = 0, in which case ζm = 0 for all m, hence also
limm→∞ ζm = 0. Else, 0 < |ζ| < 1, therefore 1/ζ is a well-defined complex number of modulus
greater than one, hence, as we showed earlier, 1/|ζm| = |(1/ζ)m| grows monotonely to infinity as
m→∞. But this says that |ζm| decreases monotonely to 0. In other words, limm→∞ ζm = 0.

Horner, or: How to divide a polynomial by a linear factor

Recall that, given the polynomial p and one of its roots, µ, the polynomial q := p/(· − µ) can
be constructed by synthetic division. This process is also known as nested multiplication or
Horner’s scheme as it is used, more generally, to evaluate a polynomial efficiently. Here are the
details, for a polynomial of degree ≤ 3.

If p(t) = a0 + a1t+ a2t
2 + a3t

3, and z is any scalar, then

p(z) = a0 + z (a1 + z (a2 + z a3︸︷︷︸
=:b3

)

︸ ︷︷ ︸
=:b2

)

︸ ︷︷ ︸
=a1+zb2=:b1︸ ︷︷ ︸

a0+zb1=:b0

.
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In other words, we write such a polynomial in nested form and then evaluate from the inside out.
Each step is of the form

(17.6) bj := aj + zbj+1,

it involves one multiplication and one addition. The last number calculated is b0; it is the value
of p at z. There are 3 such steps for our cubic polynomial (the definition b3 := a3 requires no
calculation!). So, for a polynomial of degree n, we would use n multiplications and n additions.

Now, not only is b0 of interest, since it equals p(z); the other bj are also useful since

p(t) = b0 + (t− z)(b1 + b2t+ b3t
2).

We verify this by multiplying out and rearranging terms according to powers of t. This gives

b0 + (t− z)(b1 + b2t+ b3t
2) = b0 + b1t + b2t

2 + b3t
3

−zb1 − zb2t − zb3t
2

= b0 − zb1 + (b1 − zb2)t + (b2 − zb3)t2 + b3t
3

= a0 + a1t + a2t
2 + a3t

3

The last equality holds since, by (17.6),

bj − zbj+1 = aj

for j < 3 while b3 = a3 by definition.

(17.7) Nested Multiplication (aka Horner): To evaluate the polynomial p(t) = a0 +
a1t+ · · ·+ akt

k at the point z, compute the sequence (b0, b1, . . . , bk) by the prescription

bj :=

{
aj if j = k;
aj + zbj+1 if j < k.

Then p(t) = b0 + (t− z)q(t), with

q(t) := b1 + b2t+ · · ·+ bkt
k−1.

In particular, if z is a root of p (hence b0 = 0), then

q(t) = p(t)/(t− z).

Since p(t) = (t− z)q(t), it follows that deg q < deg p. This provides another proof (see (3.22))
for the easy part of the Fundamental Theorem of Algebra, namely that a polynomial of degree k
has at most k roots.

Euclid’s Algorithm

Horner’s method is a special case of Euclid’s Algorithm which constructs, for given polyno-
mials f and p 6= 0, (unique) polynomials q and r with deg r < deg p so that

f = pq + r.

For variety, here is a nonstandard discussion of this algorithm, in terms of elimination.
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Assume that
p(t) = p̂0 + p̂1t+ · · ·+ p̂dt

d, p̂d 6= 0,

and
f(t) = f̂0 + f̂1t+ · · ·+ f̂nt

n

for some n ≥ d, there being nothing to prove otherwise. Then we seek a polynomial

q(t) = q̂0 + q̂1t+ · · ·+ q̂n−dt
n−d

for which
r := f − pq

has degree < d. This amounts to the square upper triangular linear system

p̂dq̂0 + p̂d−1q̂1 + · · · = f̂d

p̂dq̂1 + p̂d−1q̂2 + · · · = f̂d+1

. . .
...

p̂dq̂n−d−1 + p̂d−1q̂n−d = f̂n−1

p̂dq̂n−d = f̂n

for the unknown coefficients q̂0, . . . , q̂n−d which can be uniquely solved by back substitution since
its diagonal entries all equal p̂d 6= 0.

A real continuous function on a compact set in IRn has a maximum

This basis result of Analysis is referred to in these notes several times. It goes beyond the
scope of these notes.

Here is the phrasing of this result that is most suited for these notes.

(17.8) Theorem: An upper semicontinuous real-valued function f on a closed and bounded
set M in X := IRn has a maximum, i.e.,

sup f(M) = f(m)

for some m ∈M .

In particular, sup f(M) <∞.

A subset M of X is closed if m = limn xn and xn ∈M , all n, implies that m ∈M .

A subset M of X is bounded if sup ‖M‖ <∞.

A function f : M ⊂ X → IR is continuous at m if limn xn = m implies that lim f(xn) = f(m).
The function is continuous if it is continuous at every point of its domain.

A function f : M ⊂ X → IR is upper semicontinuous at m if limn xn = m implies that
lim f(xµ(n)) ≥ f(m) for every convergent subsequence n 7→ f(xµ(n)) of n 7→ f(xn).

Let b := sup f(M). Then, for each r < b, the set

Mr := {m ∈M : f(m) ≥ r}

is not empty. Also, Mr is closed, by the upper semicontinuity of f and bounded. Also, Mr is
decreasing as r increases. This implies (by the Heine-Borel Theorem) that ∩rMr is not empty. But,
for anym ∈ ∩rMr, f(m) ≥ r for all r < b, hence f(m) ≥ b = sup f(M), therefore f(m) = sup f(M).

The theorem is also valid if X is any finite-dimensional normed vector space. For, with V
any basis for X , we can write f = gV −1 with g := FV upper semicontinuous on V −1M and
sup f(M) = sup g(V −1M) = g(h) for some h ∈ V −1M , and so m := V h does the job for f .
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Rough index for these notes

1-1: -5, 2, 8, 40
1-norm: 79
2-norm: 79
A-invariance: 125
A-invariant: 113
absolute value: 167
absolutely homogeneous: 70, 79
additive: 20
adjugate: 164
affine: 151
affine combination: 148, 150
affine hull: 150
affine map: 149
affine polynomial: 152
affine space: 149
affinely independent: 151
agrees with y at Λt: 59
algebraic dual: 95
algebraic multiplicity: 130, 133
alternating: 130, 137, 161
angle: 72
angle-preserving: 72
annihilating for A ∈ L(X): 132
annihilating polynomial: -8
annihilating polynomial for A at x: 107
argument: 167
array: 24
assignment: 1
assignment on I: 1
associative: 13, 18
augmented: 38
Axiom of Choice: 14
axis: 137
azimuth: 148
Background: -9
barycentric coordinates of p with respect to
Q: 151
basic: 32
basis: -6, 43
basis for X : 43
Basis Selection Algorithm: 45
belief: 14
best least-squares solution: 88
bi-orthonormal: 94
bidual: 97
bilinear: 44
bisection: 160
boldface: -5
boring: 120
bound: -6, 32, 40, 45, 54
bound for Z: 168
bounded: 168, 168
broken lines: 19
canonical: 127
car: 94
cardinality: 1, 8

cartesian product: 2
Cauchy(-Bunyakovski-Schwarz)

Inequality: 69
Cauchy-Binet formula: -9, 166
Cayley-Hamilton Theorem: 133
CBS Inequality: 69
Chaikin algorithm: 139
chain rule: 153
change of basis: -6
characteristic function: 7
characteristic polynomial: -8, 130, 132, 134
circulant: 140
codimension: 50, 53
coefficient vector: 21
cofactor: 163
column map: -6, 23
column space: 29
column vector: 2
commutative: 18
commutative group with respect to addi-
tion: 18
commute: 121
companion matrix: 119
compatible: 74
complement: 53, 93
complementary to: 36
complex: 2, 3
complex conjugate: 167
complex numbers: 1
complex plane: 167
component: 53
composition: 13
condition: 75
condition number: 75, 86, 89
congruent: 156
conjugate transpose: 3, 65
construction of a basis: 45
continuous function: 19
contour lines: 155
converge to the scalar ζ: 169
convergence: -7
convergence to 0: -7
convergent: 112
convergent to 0: 112
converges: 111, 152
converges to the n-vector z∞: 111
convex combination: 152
coordinate: 2
coordinate axis: 53
coordinate map: 56, 82
coordinate space: -6
coordinate vector for x with respect to the

basis v1, v2, . . . , vn: 43
coordinates: -6
coordinates with respect to the basis: 56
correction: -5
cost function: 142
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Courant-Fischer minimax Theorem: 158
Cramer’s rule: 162
critical point: -8, 154
cross product: 137, 138, 164
current guess: -5
cycle length: 16
D-invariant: 108
d-variate polynomials of degree ≤ k: 47
data map: 56
defect: 50
defective: -8, 113
defective eigenvalue: 102
definite: 155
DeMorgan’s Law: 93
derivative of f at p: 152
derivative of f at p in the direction τ : 152
determinant: -9, 130
diagona(liza)ble: 101
diagonal matrix: 3
diagonalizable: -8
diagonally dominant: 128
difference: 1
differentiable at p ∈ F : 152
dimension: -6
Dimension Formula: -6, 48
dimension of X : 46
dimension of Πk(IRd): 47
dimension of a flat: 150
direct sum: -6, 52
directed graph: 136
discretize: 55, 57
domain: -5, 1, 6
dot product: 64, 137
dual: 93, 94, 97
dual of the vector space: 94
eigenbasis: 101
eigenpair: 99
eigenstructure: -8
eigenvalue: -8, 99
eigenvector: -8, 99
elegance: -8
elementary: 26
elementary matrix: -7, 83
elementary row operation: 26
elevation: 148
elimination: -6, 32
elimination step: 32
empty assignment: 2
empty set: 1
end: 13
entry: 1
epimorph(ic): 8
equivalence: 27
equivalence relation: -8, 103
equivalent: 32, 91

equivalent equation: -7
error: 75, 98
Euclid’s Algorithm: 170
Euclidean norm: -6, 67
existence: -5, 8, 12
expansion by minors: 163
exponential: -7
extending a 1-1 column map: 45
factor: -6, 54
factor space: 50
family: 2
feasible set: 143
field-addition distributive: 18
finest A-invariant direct sum

decomposition: 122
finite-dimensional: 48, 77
finitely generated: 43
flat: 149
form: 94
Fourier series: 59
free: -6, 32, 45
Frobenius norm: 74
function: 7, 18
functional: 94
Fundamental Theorem of Algebra: 105, 170
Gauss: 147
Gauss-Jordan: 147
geometric multiplicity: 133
Gershgorin Circle Theorem: 129
Gershgorin’s circles: -8
gradient: -5, 154
Gram-Schmidt: -6
Gram-Schmidt orthogonalization: 72
Gramian matrix: 57
graph: 10
half-spaces: 21
halfspace: 143
Hermite interpolation: 59
Hermitian: 65
hermitian: -8, 64, 86, 87, 120
Hessian: -8, 154
homogeneous: -6, 20, 21, 28, 32
Horner’s scheme: 169
Householder matrices: 86
Householder reflection: -7, 73
hyperplane: 143
I-assignment: 1
ith row of A: 3
(i, j)-entry: 3
ideal: 123, 133
idempotent: -6, 15, 59
identity map: 12
identity matrix: 29
identity permutation: 163
image: 7
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image of Z under f : 6
imaginary part of z: 167
imaginary unit: 167
indefinite: 155
index set: 1
initial guess: 98
injective: 8
inner product: -6, 64
inner product space: -6, 64
inner-product preserving: 72
integers: 1
interesting eigenvalue: 103
interpolation: -6, 41, 59, 62
intersection: 1
interval with endpoints p, q: 152
inverse: -5, 18, 29
inverse of f : 12
inverse of its graph: 12
invertibility, of triangular matrix: 41
invertible: -5, 12, 40, 48
involutory: 86
irreducible: 122, 135
isometry: -6, 72, 80, 91
item: 1
iteration: -7, 98
iteration map: 98
jth column: 23
jth column of A: 3
jth unit vector: 24
Jacobian: -5, 153
Jordan (canonical) form: 126
Jordan block: 126
Jordan form: -8
kernel: 28
Krylov sequence: -8
Krylov subspace: 109
Lagrange basis: 58
Lagrange fundamental polynomials: 58
least-squares: -6
least-squares solution: 69, 88
left inverse: -5, 14
left shift: 9
level lines: 155
linear: -6, 20, 130
linear combination of the vj : 43
linear combination of the vectors v1, v2, . . . , vn

with weights a1, a2, . . . , an: 23
linear functional: -6, 56, 94
linear constraint: 143
linear in its first argument: 64
linear inequalities, system of: 147
linear manifold: 149
linear map: -6
linear operator: 20
linear polynomial: 152
linear programming: 142
linear projector: -6

linear space: -6, 18
linear spaces of functions: -6
linear subspace: -6, 19
linear subspace, specification of: 28
linear transformation: 20
linearity: -6
linearly dependent on v1, v2, . . . , vn: 43
linearly independent: 43
linearly independent of v1, v2, . . . , vn: 43
list: 2
local minimizer: 154
lower triangular: 3
m× n-matrix: 3
main diagonal of A: 3
map: -5, 6, 7
map composition: -5, 13
map into Y given by the assignment f : 7
map norm: -7, 76, 77
mapping: 7
matrix: 3
matrix exponential: 99
matrix polynomial: -7
matrix representation for A: 91
max-norm: 78
maximally 1-1: 46
maximin Theorem: 158
maximizer: 154
minimal: 82, 122
minimal (annihilating) polynomial for A:
123
minimal polynomial: -8
minimal polynomial for A: 133
minimal polynomial for A at x: 107
minimally onto: 46
minimization: -8
minimizer for f : 154
modulus: 91, 167
monic: -8, 107
monomial of degree j: 28
monomorph(ic): 8
Moore-Penrose pseudo-inverse: 89
morphism: 7
multilinear: 130
multiplication by a scalar: -6
multiplicity: 129
n-dimensional coordinate space IF n: 19
n-list: 2
n-vector: -5, 2
natural basis: 51
natural basis for IF n: 43
natural numbers: 1
negative (semi)definite: 155
negative labeling: 103
nested form: 170
nested multiplication: 169
neutral: 18
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Newton polynomial: 42
Newton’s method: -5
nilpotent: -7, 124, 125, 132
non-defective: -8
nonbasic: 32
nonnegative: 91, 134
norm: -6
norm of a map: 77
norm, of a vector: 79
normal: -8, 120, 143
normal equation!69
normalize: 70
normed vector space: 79
nullspace: -6, 28
o.n.: -6, 71
octahedron: 5
onto: -5, 8, 40
operator: 7
optimization: 142
order: 3
orthogonal: 66, 67, 71, 73
orthogonal complement: 71
orthogonal direct sum: 68
orthonormal: -6, 71, 120
parity: 131, 162
permutation: 85
permutation matrix: -7, 81, 85, 107
permutation of order n: 9
permutation of the first n integers: 162
perpendicular: 66
Perron-Frobenius Theorem: 135
perturbations: -8
pigeonhole principle for square matrices: 40
pivot block: 166
pivot element: 35
pivot equation: 32
pivot row: 32
PLU factorization: -7
point: 149
pointwise: -6, 18, 54
polar decomposition: 91
polar form: 91, 167
polyhedron: 5
polynomials of degree ≤ k: 19
positive: 134
positive (semi)definite: 155
positive definite: 64, 79
positive orthant: 134
positive semidefinite: 87, 91
power method: 118
power sequence: -7, 16
power sequence of A: 112
power-bounded: 112
power-boundedness: -7
pre-dual: 97

pre-image of U under f : 6
primary decomposition for X wrto A: 124
prime factorization: 122
primitive nth root of unity: 141
principal: 133
product: 18
product of matrices: 25
product space: 54
projected problem: 88
projector: 15, 59
proper: 125
proper chain: 50
proper factor of q: 122
proper subset: 1
pseudo-inverse: 89
QR factorization: -7, 72
QR method: 109
quadratic form: -8, 154
range: -5, -6, 1
range of f : 6
rank: -7, 82
rank-one perturbation of the identity: 83
rational numbers: 1
Rayleigh quotient: -8, 157
Rayleigh’s Principle: 158
real: 2, 3
real numbers: 1
real part of z: 167
really reduced: 36
really reduced row echelon form: -6
really reduced row echelon form for
A ∈ IFm×n: 36

reciprocal: 167
reduced: 87
reduced row echelon form for A: 35
reducible: 135
reduction to a sum of squares: 156
refinement of the Gershgorin Circle

Theorem: 129
reflexive: 103
relation: 3
relative error: 75
relative residual: 75
represent: 96
representation: 95
representing: 43
residual: 75, 88, 144
right inverse: -5, 14
right shift: 9
right side: 21
right triangular: -7
right-handed: 137
root of unity: 141, 142
row: 56
row echelon form: -6, 34
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row echelon form for A: 36
row map: -6, 56
row space: 29
row vector: 2
rrref: -6
saddle point: 155
scalar: -5, 18
scalar field: 18
scalar multiplication: 18
scalar product: -5, 64
scaled power method: 118
Schur complement: -9, 166
Schur form: -7, 120
second-order: -8
self-inverse: 86
semidefinite: 155
Sherman-Morrison Formula: 31
similar: -7
similar to each other: 103
similarities: -7
similarity: -8
simple: 133
Simplex Method: 146
simplex with vertex set Q: 152
singular: 162
singular value: 87, 88
Singular Value Decomposition: -7, 87, 88
skew-homogeneous: 96
skew-symmetric: 64
slack variables: 144
slotwise: 54
smooth: -5
span of the sequence v1, v2, . . . , vn: 43
spanning for X : 43
Spectral Mapping Theorem: 132
spectral radius of A: 99
spectrum: -8, 99
square matrix: 3
stable: 112
stochastic: 98
strictly lower triangular: 86
strongly connected: 136
subadditive: 79
subset: 1
sum: 18, 52
surjective: 8
svd: 87
SVD: -7, 88
Sylvester’s determinant identity: -9, 166
Sylvester’s Law of Inertia: -8

symmetric: 103
symmetric part: 154
symmetry: 93
synthetic division: 169
target: -5, 6
Taylor series: 59
term: 1
test for invertibility: 128
thinning an onto column map: 45
Toeplitz: 142
topological dual: 95
trace: 74, 129
transformation: 7
transition matrix: 58
transitive: 103
translation: 147, 149
transpose: 3
triangle inequality: 79
triangular matrix: 41
tridiagonal: 142
trigonometric polynomial: 59
trivial map: 21
trivial space: 19, 43
truncated Fourier series: 59
two-point: 59
unimodular: 91, 142
union: 1
unique factorization domain: 122
uniqueness: -5, 8, 12
unit disk: 168
unit lower triangular: -7, 86
unit sphere: 75, 77
unitarily similar: 120
unitary: -7, 18, 73, 86, 120
upper: -7
upper triangular: -7, 3
value: 1
value of f at x: 6
Vandermonde: 73
vector: 18, 149
vector addition: -6, 18
vector norm: -7, 79
vector operations: -6
vector space: 18
vector-addition distributive: 18
vertex: 146
viewing angle: 148
Woodbury: 31
working-array: 32
Wronski matrix at x: 58
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