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Preface

Apart from its own intrinsic interest a knowledge of differentiable manifolds is
useful, and even essential, in a number of areas of mathematics and its applications.
This is not too surprising, since differentiable manifolds are the underlying, if
unacknowledged, objects of study in much of advanced calculus and analysis.
Indeed, such topics as line and surface integrals, divergence and curl of vector
fields, and Stokes’s and Green’s theorems find their most natural setting in manifold
theory. But however natural the leap from calculus on domains of Euclidean space
to calculus on manifolds may be to those who have made it, it is not at all easy
for most students. It usually involves many weeks of concentrated work with very
general concepts (whose importance is not clear until later) during which the
relation to the already familiar ideas in calculus and linear algebra becomes lost—
not irretrievably, but for all too long. Simple but nontrivial examples that illustrate
the necessity for the high level of abstraction are not easy to present at this stage,
and a realization of the power and utility of the methods must often be postponed
for a dismayingly long time. This book was planned and written as a text for a
two-semester course designed to overcome, or at least to minimize, some of these
difficulties.

Although in overall content it necessarily overlaps various available excellent
textbooks on manifold theory, there are differences in presentation and emphasis
which make it particularly suitable as an introductory text. It is more elementary
and less encyclopedic than many books on this subject. Special care has been
taken to review and then to develop the connections with advanced calculus. In
Particular all of Chapter II is devoted to functions and mappings on open sub-
sets of Euclidean space, including a careful exposition and proof of the inverse
function theorem. Efforts are made throughout to introduce new ideas gradually
and with as much attention to intuition as possible. This has led to a longer but
Mmore readable presentation of inherently difficult material. When manifolds are
first defined an effort is made to have as many nontrivial examples as possible; for
this reason Lie groups, especially matrix groups, and certain quotient manifolds

xi



Xii PREFACE

are introduced early and used throughout as examples. Many problems (more than
400) are included to develop intuition and computational skills. Further. there has
been a conscious effort to avoid or at least to economize generality insofar as that
is possible. Concepts are often introduced in a rather ad hoc way with only the
generality needed and, if possible, only when they are actually needed for some
specific purpose. This is particularly noticeable in the treatment of tensors—which
is far from general-—and in the brief introduction to vector bundles (more precisely
to the tangent bundle).

Thus it is not claimed that this is a comprehensive book; the student will
emerge with gaps in his knowledge of various subjects treated (e.g., Lie groups or
Riemannian geometry). On the other hand it is expected that students will acquire
strong motivation, computational skills, and a feeling for the subject that will make
iteasy for them to proceed to more advanced work in any of a number of areas using
manifold theory: differential topology, Lie groups, symmetric and homogenoeus
spaces, harmonic analysis, dynamical systems, Morse theory, Riemann surfaces,
and so on.

In nearly every stage results are included that illustrate the power of the new
concepts. Chapter VI is especially noteworthy in this respect in that it includes
complete proofs of Brouwer’s fixed point theorem and of the nonexistence of
nowhere-vanishing continuous vector fields on even dimensional spheres. In a
similar vein the existence of a bi-invariant measure on compact Lie groups is
demonstrated and applied to prove the complete reducibility of their linear repre-
sentations. Then, in a later chapter, compact groups are used as simple examples
of symmetric spaces, and their corresponding geometry is used to prove that every
element lies on a one-parameter subgroup.

In the last two chapters, which deal with Riemannian geometry of abstract
n-dimensional manifolds, the relation to the more easily visualized geometry of
curves and surfaces in Euclidean space is carefully spelled out and is used to
develop the general ideas for which such applications as the Hopf-Rinow theorem
are given. Thus, by a selection of accessible but important applications, some
truly nontrivial, unexpected (to the student) results are obtained from the abstract
machinery so patiently constructed.

ORGANIZATION AND PREREQUISITES

Briefly, the organization of the book is as follows. Chapter I is a very intuitive
introduction and fixes some of the conventions and notations that are used. Chap-
ter II is largely advanced calculus and may very well be omitted or skimmed by
better prepared readers. In Chapter III, the basic concept of differentiable mani-
fold is introduced along with mappings of manifolds and their properties; a fairly
extensive discussion of examples is included. Chapter IV is particularly concerned
with vectors and vector fields and with a careful exposition of the existence the-
orem for solutions of systems of ordinary differential equations and the related
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one-parameter group action. In Chapter V covariant tensors and differential forms
are treated in some detail and then used to develop a theory of integration on
manifolds in Chapter VI. Numerous applications are given.

It would be possible to use Chapters II-VI as the basis of a one-semester course
for students who wish to learn the fundamentals of differentiable manifolds with-
out any Riemannian geometry. On the other hand, for students who already have
some experience with manifolds, Chapters VII and VIII could serve as a brief
introduction to Riemannian geometry. In these last two chapters, beginning from
curves and surfaces in Euclidean space, the concept of Riemannian connection
and covariant differentiation is carefully developed and used to give a fairly exten-
sive discussion of geodesics—including the Hopf-Rinow theorem—and a shorter
treatment of curvature. The natural (bi-invariant) geometry on compact Lie groups
and Riemannian manifolds of constant curvature are both discussed in some detail
as examples of the general theory. The discussion of the latter is based on a fairly
complete treatment of covering spaces, discontinuous group action, and of the
fundamental group given earlier in the book.

This text is appropriate for a two-semester course intended to lead the student
from a reasonable mastery of advanced (multivariable) calculus and a rudimentary
knowledge of general topology and linear algebra to a working knowledge of
differentiable manifolds, including some facility with the basic tools of manifold
theory: tensors, differential forms, Lie and covariant derivatives, multiple integrals,
and so on.

The prerequisites are minimal: some knowledge of advanced (multivariable)
calculus, a semester of linear algebra, and a some general topology. However, some
mathematical maturity, that is, the ability to follow proofs and formal reasoning,
is certainly needed.

ABOUT THIS EDITION

Although the second edition contained some substantial improvements over
the first edition, the revisions in this present edition are minor but worthwhile. I
was afforded a chance to rethink and rework several proofs, add new problems,
enlarge historical notes, and update references. I have also had the opportunity
to correct a number of errors; most of them are minor but nevertheless irritating
to the reader and sometimes misleading. I take this occasion to gratefully thank
the many students and colleagues who have taken the trouble to call errors and
improvements to my attention.

ACKNOWLEDGMENTS

This book, as do many of the books in this subject, owes much to the influence
of S. S. Chern. For many years his University of Chicago notes, still an important
reference (Chern [1]), were virtually the only systematic account of most of the
topics in this text. Even more importantly his courses, lectures, published works,
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to advancing in the task I had undertaken. I also wish to express once more my
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which I have worked on this book.
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son, Thomas Boothby, by students and colleagues at Washington University, es-
pecially Humberto Alagia and Eduardo Cattani, and by Mrs. Virginia Hundley for
her careful work preparing the manuscript. I am very appreciative of the detailed
comments and errata furnished by Chung-Shing Chen, H. V. Fagundes, J. F. C.
Velson, and A. H. Clifford. I am also profoundly grateful to the many students,
colleagues, and friends, encountered in many places, who have said kind and en-
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I INTRODUCTION TO MANIFOLDS

In this chapter, we establish some preliminary notations and give an intuitive, geometric discussion
of a number of examples of manifolds—the primary objects of study throughout the book. Most of
these examples are surfaces in Euclidean space; for these—together with curves on the plane and in
space—were the original objects of study in classical differential geometry and are the source of much
of the current theory.

The first two sections deal primarily with notational matters and the relation between Euclidean
space, its model R", and real vector spaces. In Section 3 a precise definition of topological manifolds
is given, and in the remaining sections this concept is illustrated.

1 Preliminary Comments on R"

Let R denote the real numbers and R” their n-fold Cartesian product

n

Rx . --- xR,
the sct of all ordered n-tuples (x ', . . ., x") of real numbers. Individual n-tuples may
be denoted at times by a single letter. Thus x = ' ™.a= (@@, .... a™,

and so on. We agree once and for all to use on R” its topology as a metric space

1



2 I INTRODUCTION TO MANIFOLDS

with the metric defined by

dix,y) =) (' —y)?
i=1
The neighborhoods are then open balls B! (x), or B.(x) or, equivalently, open
cubes C] (x), or C;(x) defined for any ¢ > 0 as

B:(x)={yeR"| dx,y) <e},
and

C:x)={yeR'||x' =¥ |<ei=1...n}

L}

acube of side length 2¢ and center x, respectively. Note that R' = R and we define
R° to be a single point.

Although we shall invariably consider R” with the topology defined by the
metric, this space R" is used in several senses and we must usually decide from
the context which one is intended. Sometimes R" means merely R" as topological
space, sometimes R" denotes an n-dimensional vector space, and sometimes it is
identified with Euclidean space. We will comment on this last identification in
Section 2 and examine here the other meanings of R”.

We assume that the definition and basic theorems of vector spaces over R are
known to the reader. Among these is the theorem which states that any two vector
spaces over R which have the same finite dimension  are isomorphic. It is impor-
tant to note that this isomorphism depends on choices of bases in the two spaces;
there is in general no natural or canonical isomorphism independent of these
choices. However, there does exist one important example of an n-dimensional
vector space over R which has a distinguished or canonical basis—a basis which
is somehow given by the nature of the space itself. We refer to the vector space of n-
tuples of real numbers with componentwise addition and scalar multiplication. This
is, as a set at least, just R"; should we wish on occasion to avoid confusion, then we
will denote it by V" (and use boldface for its elements (x instead of x, and so forth).
For this space the n-tuplese; = (1,0,...,0),...,e, = (0,0, ..., 0, 1) area basis,
known as the natural or canonical basis. We may at times suppose that the n-tuples
are written as rows, thatis, 1 x n matrices, and at other times as columns, thatis, n x 1
matrices. This only becomes important should we wish to use matrix notation to
simplify things abit; for example, to describe linear mappings, equations, and so on.

Thus R" may denote a vector space of dimension n over R. We sometimes
mean even more by R”. An abstract n-dimensional vector space over R is called
Euclidean if it has defined on it a positive definite inner product. In general there
is no natural way to choose such an inner product, but in the case of R” or V",
again we have the natural inner product

(x.y) = x'y.

i=l



1 PRELIMINARY COMMENTS ON R" 3

It is characterized by the fact that relative to this inner product the natural basis is
orthonormal, (e;, €;) = J;;.

Thus at times R" is a Euclidean vector space, but one which has a built-in
orthonormal basis and inner product. An abstract vector space, even if Euclidean,
does not have any such preferred basis. The metric in R” discussed at the beginning
can be defined using the inner product on R". We define ||x||, the norm of the vector
x, by [Ix]| = ((x, x))"/>. Then we have

dix,y)=|lx—yl.

This notation is frequently useful even when we are dealing with R” as a metric
space and not using its vector space structure. Note, in particular, that ||x|| =
d(x, 0), the distance from the point x to the origin. In this equality x is a vector
on the left-hand side, and x is the corresponding point on the right-hand side; an
illustration of the way various interpretations of R" can be mixed together.

Exercises

1. Show that if A is an m x n matrix, then the mapping from V" to V" (with
elements written as n x 1 and m x 1 matrices), which is defined by y =
Ax, is continuous. Identify the images of the canonical basis of V" as linear
combinations of the canonical basis of V.

2. Find conditions for the mapping of Exercise 1 to be onto; to be one-to-one.

3. Show that if W is an n-dimensional Euclidean vector space, then there exists
an isometry, that is, an isomorphism preserving the inner product, of W onto
R" interpreted as Euclidean vector space.

4. Show that if C", the space of n-tuples of complex numbers, may be placed
in one-to-one correspondence with R*". Can this correspondence be a vector
space isomorphism?

5. Exhibit an isomorphism between the vector space of m x n matrices over R
and the vector space R™". Show that the map X — AX, where A is a fixed
m x m matrix and X is an arbitrary m x n matrix (over R), is continuous in
the topology derived from R™.

6. Show that ||x|| has the following properties:

@ lIxxyll < Ixji+ Iyl

®) IxlI = lyll < lIx=yl;

(©) llax| = lallix|l, @ € R; and

(d) explain how (a) is related to the triangle inequality of d(x, y).

7. Prove that every Euclidean vector space V has an orthonormal basis. Construct
your proof in such a way that if W is a given subspace of V, dim W = r, then
the first  vectors of the basis of V are a basis of W.

8. Show that an isometry of a Euclidean vector space onto itself is represented
by an orthogonal matrix relative to any orthonormal basis.
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2 R" and Euclidean Space

Another role which R" plays is that of a model for n-dimensional Euclidean
space E”, in the sense of Euclidean geometry. In fact many texts simply refer to R"
with the metric d(x, y) as Euclidean space. This identification is misleading in the
same sense that it would be misleading to identify all n-dimensional vector spaces
with R"; moreover unless clearly understood, it is an identification that can hamper
clarification of the concept of manifold and the role of coordinates. Certainly Euclid
and the geometers before the seventeenth century did not think of the Euclidean
plane or three-dimensional space—which we denote by E* and E*—as pairs or
triples of real numbers. In fact they were defined axiomatically beginning with
undefined objects such as points and lines together with a list of their properties—
the axioms—from which the theorems of geometry were then deduced. This is the
path which we all follow in learning the basic ideas of Euclidean plane and solid
geometry, about which most of us know quite a bit before studying analytic or
coordinate geometry at all. The identification of R" and E" came about after the
invention of analytic geometry by Fermat and Descartes and was eagerly seized
upon since it is very tricky and difficult to give a suitable definition of Euclidean
space, of any dimension, in the spirit of Euclid, that is, by giving axioms for
(abstract) Euclidean space as one does for abstract vector spaces. This difficulty
was certainly recognized for a very long time, and has interested many great
mathematicians. It led in part to the discovery of non-Euclidean geometries and
thus to manifolds. A careful axiomatic definition of Euclidean space is given by
Hilbert [1]. Since our use of Euclidean geometry is mainly to aid our intuition, we
shall be content with assuming that the reader “knows” this geometry from high
school.

Consider the Euclidean plane E? as studied in high school geometry; definitions
are made, theorems proved, and so on, withour coordinates. One later introduces
coordinates using the notions of length and perpendicularity in choosing two mu-
tually perpendicular “number axes” which are used to define a one-to-one mapping
of E? onto R* by p — (x(p), y(p)), the coordinates of p € E?. This mapping is
(by design) an isometry, preserving distances of points of E? and their images in
R?. Finally one obtains further correspondences of essential geometric elements,
for example, lines of E* with subsets of R? consisting of the solutions of linear
equations. Thus we carry each geometric object to a corresponding one in R Tt
is the existence of such coordinate mappings which make the identification of E?
and R? possible. But caution! An arbitrary choice of coordinates is involved, there
is no natural, geometrically determined way to identify the two spaces. Thus, at
best, we can say that R? may be identified with E 2 plus a coordinate system. Even
then we need to define in R? the notions of line, angle of lines, and other attributes
of the Euclidean plane before thinking of it as Euclidean space. Thus, with qual-
ifications, we may identify E> and R? or E" and R", especially remembering that
they carry a choice of rectangular coordinates.
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We conclude with a brief indication of why we might not always wish to make
the identification, that is, to use the analytic geometry approach to the study of a
geometry. Whenever E" and R" are identified it involves the choice of a coordinate
system, as we have seen. It then becomes difficult at times to distinguish underlying
geometric properties from those which depend on the choice of coordinates. An
example: Having identified E * and R* and lines with the graphs of linear equations,
for instance,

L={(x,y)|y=mx+b},

we define the slope m and the y-intercept b. Neither has geometric meaning; they
depend on the choice of coordinates. However, given two such lines of slope i, 11,
the expression (m, — m )/ (1 + mm3) does have geometric meaning. This can be
demonstrated by directly checking independence of the choice of coordinates—a
tedious process—or determining that its value is the tangent of the angle between
the lines, a concept which is independent of coordinates! It should be clear that it
can be difficult to do geometry, even in the simplest case of Euclidean geometry,
working with coordinates alone, that is, with the model R”. We need to develop
both the coordinate method and the coordinate-free method of approach. Thus we
shall often seek ways of looking at manifolds and their geometry which do not
involve coordinates, but will use coordinates as a useful computational device (and
more) when necessary.

Being aware now of what is involved, we shall usually refer to R" as Euclidean
space and make the identification. This is especially true when we are interested
only in questions involving topology—as in the next section—or differentiability.

Exercises

1. Using standard equations for change of Cartesian coordinates, verify that
(my —m;)/(1 + mm-) is independent of the choice of coordinates.

2. Similarly, show that ((x; —x; Y4 (=¥ )2)1/2 is a function of points P; (x{, ¥|)
and P>(x2, ¥2) which does not depend on the choice of coordinates.

3. How do we describe the subset of R” which corresponds to a segment pg in
E"? to a line? to a 2-plane not through the origin?

If we wish to prove the theorems of Euclidean geometry by analytical geometry methods, we need
to define the notion of congruence. We say that two figures are congruent if there is a rigid motion of
the space, that is, an isometry or distance-preserving transformation, which carries one figure to the
other.

4. Identifying E* with R*, describe analytically the rigid motions of R*. Show
that they form a group.
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5. Using Exercise 4 prove that two triangles are congruent if and only if corre-
sponding sides are of equal length.

3 Topological Manifolds

Of all the spaces which one studies in topology the Euclidean spaces and their
subspaces are the most important. As we have just seen, the metric spaces R" serve
as aropological model for Euclidean space E”, for finite-dimensional vector spaces
over R or C, and for other basic mathematical systems which we shall encounter
later. It is natural enough that we are led to study those spaces which are locally
like R", more precisely those spaces for which each point p has a neighborhood U
which is homeomorphic to an open subset U’ of R”, n fixed. We say that a space
with this property is locally Euclidean of dimension n, and in order to stay as close
as possible to Euclidean spaces, we will consider spaces called manifolds, defined
as follows.

(3.1) Definition A manifold M of dimension n, or n-manifold, is a topological
space with the following properties:

(1) M is Hausdorff,
(i) M is locally Euclidean of dimension n, and
(111) M has a countable basis of open sets.

As a matter of notation dim M is used for the dimension of M; when
dim M = 0, then M is a countable space with the discrete topology. It follows
from the homeomorphism of U/ and U’ that locally Euclidean is equivalent to the
requirement that each point p have a neighborhood U homeomorphic to an n-ball
in R". Thus a manifold of dimension 1 is locally homeomorphic to an open inter-
val, a manifold of dimension 2 is locally homeomorphic to an open disk, and so
on. Our first examples will remove any lingering suspicion that an n-manifold is
necessarily globally equivalent, that is, homeomorphic, to E".

(3.2) Example LetM be an open subset of R” with the subspace topology; then
M is an n-manifold.

Indeed properties (i) and (iii) of Definition 3.1 are hereditary, holding for
any subspace of a space which possesses them; and we see that (i1) holds with
U = U’ = M and with the homeomorphism of U to U’ being the identity map. A
bit of imagination, assisted perhaps by Fig. L1, will show that even when n = 2
or 3 these examples can be rather complicated and certainly not equivalent to
Euclidean space in general, although they may be in special cases: a trivial such
caseis M = E".

(3.3) Example The simplest examples of manifolds not homeomorphic to open
subsets of Euclidean space are the circle S' and the 2-sphere $?, which may be
defined to be all points of E?, or of E°, respectively, which are at unit distance
from a fixed point 0.
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~

A\ ) U

(o} (b)

Figure 1.1
(a) The manifold is the open set M of R? between the curves C and C'. (b) The manifold is the open
subset of R* obtained by removing the knots.

These are to be taken with the subspace topology so that (i) and (iii) are
immediate. To see that they are locally Euclidean we introduce coordinate axes
with 0 as origin in the corresponding ambient Euclidean space. Thus in the case
of $? we identify R® and E°, and S? becomes the unit sphere centered at the
origin. At each point p of S? we have a tangent plane and a unit normal vector
N,. There will be a coordinate axis which is not perpendicular to N, and some
neighborhood U of p on §? will then project in a continuous and one-to-one
fashion onto an open set U’ of the coordinate plane perpendicular to that axis. In
Fig.1.2a, N, is not perpendicular to the x,-axis so forq € U, the projectionis given
quite explicitly by ¢(g) = (x'(g), 0, x*(g)), where (x'(g), x*(¢). x*(g)) are the
coordinates of ¢ in E>. Similar considerations show that S' is locally Euclidean.
Note that S and R? cannot be homeomorphic since one is compact while the other
18 not.

(3.4) Example Our final example is that of the surface of revolution obtained
by revolving a circle around an axis which does not intersect it. The figure we
obtain is the forus or “inner tube” (denoted T?) as shown in Fig. 1.2b. This figure
can be studied analytically; it is easy to write down an equation whose locus it
is if we introduce coordinates in E* as shown in the figure. In order to convince
ourselves that it is indeed locally Euclidean we consider once more the normal
vector N, at p € T?. There will be at least one coordinate axis to which it is
not perpendicular, say x*. Then some neighborhood U of p projects homeomor-
phically onto a neighborhood U’ in the x'x2-plane as illustrated. Since we use
the relative topology derived from E?, the space T? is necessarily Hausdorff and
has a countable basis of open sets. Thus conditions (i)-(iii) of Definition 3.1 are
satisfied.
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{a) (b}

Figure 1.2
(a) The spherical surface 2 as a manifold. (b) The torus as a manifold.

(3.5) Remark It should be clear from the last two examples that certain sub-
spaces M of E* are easily seen to be 2-manifolds; they are surfaces which are
“smooth,” that is, without corners or edges, so that they have at each p € M a
(unit) normal vector N, and tangent plane 7,,(M)—to introduce notation we use
later—which varies continuously as we move from point to point. (By this last
requirement we mean that the components of the unit normal vector depend con-
tinuously on the point p.) This smoothness allows us to prove the locally Euclidean
property by projection of a neighborhood of p onto a plane as in Examples 3.3
and 3.4. The other properties are immediate since we use the subspace topology.
Figure 1.3 shows some further examples of manifolds which can be obtained in
this way. Obviously this method will not always work: The surface of a cube is a
2-manifold, in fact it is homeomorphic to $?; but it has no tangent plane or normal
vector at the corners and edges.

Example 3.2 gives an inkling at least, of how nasty a space can be and still be
a manifold, even when it is connected—which we do not suppose in general. The
following theorem will offer some reassurance.

(3.6) Theorem A ropological manifold M is locally connected, locally com-
pact, and a union of a countable collection of compact subsets; furthermore,
it is normal and metrizable.

Proof These are all immediate consequences of the definition and standard
theorems of general topology. Let p be a point of M and U a neighborhood of p
homeomorphic to an open ball B, (x) of radius ¢ in R". We denote this homeo-
morphism by ¢, and we suppose @(p) = x. Then it is clear that interior to any
neighborhood V of p there is a neighborhood W whose closure W is in U and for
which ¢ (W) = Bj(x) with e > § > 0. It follows that M is locally connected at p
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Figure 1.3

since Bs(x) and hence W, to which it is homeomorphic by ¢~ ! is connected. Sim-

ilarly W is compact since Bj(x) is compact; thus M is locally compact. Because
M has a countable base of open sets, we may now suppose that it has a countable
base of relatively compact open sets { V;}; obviously M = | V;. Normality follows
from Lindel6f’s theorem and metrizability is then a consequence of the Urysohn
metrization theorem (see Kelley [1]).

There is one difficulty in our concept of manifold about which we can do
nothing at present. In fact it concerns Euclidean spaces and their topology, and
arises even before consideration of manifolds: it is the question of dimension.
Could it be that E" and E™ are homeomorphic, or locally homeomorphic—so that
an open set U of E" is homeomorphic to some open set U’ of E™ with m # n?
The answer is no, but the proof is difficult and requires algebraic topology. It
was proved in 1911 by L. E. J. Brouwer and is known as Brouwer‘s theorem on
invariance of domain. For a proof see Hurewicz and Wallman [1]. Later we shall
be able to give a differentiable version of this theorem which will be sufficient for
our needs; in this chapter we assume the theorem.

We make one final remark which connects this section with the preceding one.
The notion of coordinates plays an important role in manifold theory, just as it does
in the study of the geometry of E". In E", however, it is possible to find a single
system of coordinates for the entire space, that is, to establish a correspondence
between all of E” and R". Built into the definition of n-manifold M is a correspon-
dence of a neighborhood U of each p € M and an open subset U’ of R”. Letting
¢: U — U’ be this correspondence, we call the pair U, ¢ a coordinate neigh-
borhood and the numbers x'(g), ..., x"(q), given by ¢(q) = (x'(q), ..., x"(¢)),
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the coordinates of g € M. We have assumed that this ¢ is a homeomorphism:
it is one-to-one and ¢ and ¢! are continuous. Thus each g € U has n uniquely
determined coordinates, real numbers, which vary continuously with g. Of course
the function g — x‘(g), which gives the ith coordinate, 1 <i < n, is continuous;
it is called the ith coordinate function. There is obviously nothing unique about
our choice of coordinates; in Examples 3.3 and 3.4, we could equally well project
the neighborhood of p discussed there to other coordinate planes. Finally note that
even in the case of Euclidean space it is often useful to use local coordinates; the
domain of a polar coordinate system on E?, for example, must omit a ray if it is
to be one-to-one as is required by our definition of coordinate neighborhood.

Exercises

1. Consider the following subset of R* X = A, U A_ U B with
Ay ={C ) x=0,y=+1},
A-={x, ) x=0,y =-1},
B={(x,y)|x <0,y=0)}.

0, 1)

0,-1

Define a topology as follows: We use the subspace topology (open intervals
as a basis) on A — {(0, 1)}, A_ — {(0, —1)} and B; then for ¢ > 0 we let
Nf ={x, £ |0 <x < e}U{(x,0) | —e < x < 0} and use N and N
as a basis of neighborhoods of (0, 1) and (0, ~1), respectively. Show that the
space X is locally Euclidean but is not a manifold.

A Hausdorff space M is said to be paracompact if every covering {U,} of M by open sets has a
locally finite refinement; more precisely, there is a covering {Vz} which (i) refines (U, } in the sense
that each Vg C U, for some a, and which (ii) is locally finite, that is, each P € M has aneighborhood
W which intersects only a finite number of sets Vg.

2. Show that a manifold is paracompact. Show that a locally Euclidean, para-
compact, Hausdortf space need not have a countable basis.

3. Show that a connected manifold M is pathwise connected, that is, pP.geM
implies that there exists a continuous curve f(s),0<s <1, with £(0) = p,
fh=gq.

4. Show that the (connected) components of a manifold M are open sets and are
countable in number.



4 FURTHER EXAMPLES OF MANIFOLDS 1

4 Further Examples of Manifolds. Cutting and Pasting

A hemispherical cap (including the equator) or a right circular cylinder (includ-
ing the circles at the ends) are typical examples of manifolds with boundary. Except
for the equator, or the end-circles, they are 2-manifolds and these boundary sets
are themselves manifolds of dimension one less. In fact, they are homeomorphic to
S!orto S' U S! in these two cases. An even simpler example is the (closed) upper
half-plane H?, or more generally H", where we shall mean by H" the subspace®
of R" defined by

H'={&' ..., x")eR"|x" >0).

Every point p € H" has a neighborhood U which is homeomorphic to an open
subset U’ of R" except the set of points (x!, ..., x"~', 0), which obviously forms
a subspace homeomorphic to R"~', called the boundary of H" and denoted by
aH".

We shall define a manifold with boundary to be a Hausdorff space M with a
countable basis of open sets which has the property that each p € M is contained
in an open set U with a homeomorphism ¢ to either (a) anopenset U’ of H" —d H"
or (b) to an open set U’ of H" with ¢(p) € dH", that is, a boundary point of H".
It can be shown (as a consequence of invariance of domain) that p € M is in one
class or the other but not both; those p of the first type are called interior points
of M and those p mapped onto the boundary of H" by one, and hence by all,
homeomorphisms of their neighborhoods into H" are called boundary points. The
collection of boundary points is then denoted by M and is called the boundary of
M. It is a manifold of dimension n — 1. We make no attempt to prove these facts
here, but they will be discussed briefly in Chapter VL.

Our interest is in pointing out that new surfaces, that is, 2-manifolds, can be
formed by fastening together manifolds with boundary along their boundaries, that
is, by identifying points of various boundary components by a homeomorphism,
assuming of course the necessary condition that such components are homeomor-
phic. The simplest examples are S, which is obtained by pasting two disks (or
hemispheres) together so as to form the equator, and T?, formed by pasting the
two end-circles of a cylinder together. However, one can go much further and
paste any number of cylinders onto a sphere $? with “holes,” that is, with circular
disks removed. This gives various pretzel-like surfaces as illustrated in Fig. 1.4.
We leave as an exercise the proof that these are manifolds. Thus to generate new 2-
manifolds from old ones we may (1) cut out two disks, leaving amanifold M whose
boundary dM is the disjoint union of two circles, and (2) paste on a cylinder or
“handle” so that each end-circle is identified with one of the boundary circles of M.

The pasting on of handles is not the only way in which we can generate
examples of 2-manifolds. It is also possible to do so by identifying or pasting

* A subspace of a topological space is a subset with the relative topology.
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Figure 1.4
Some examples of pasting.

together the edges of certain polygons. For example, the sides of a square may be
identified in various ways in order to obtain surfaces. Figure L5 illustrates this:
we obtain a cylinder, Mobius band, torus, and Klein bottle. The latter cannot be
pictured as a surface in E® unless we allow it to cut itself as shown. Thus as a
subspace of E? it is nor a manifold: it is possible to identify the sides of the square,
as shown, and obtain a manifold—but it is not possible to put it inside E>.

For connected 2-manifolds M which lie smoothly inside E> so that there is
a tangent plane and normal line L, at each point p, we may ask whether it is
possible to choose a unit normal vector N, (on L) for every p € M which varies
continuously with M. It is easy to see that this is possible for §? and 7 but not for
the Mobius band (which is actually a manifold with boundary) or the Klein bottle
(Fig. 1.5d). We say that a manifold or manifold with boundary is orientable if such
achoice of N, is possible. The following is a fundamental theorem of 2-manifolds.

(4.1) Theorem Every compact, connected, orientable 2-manifold is homeo-
morphic to a sphere with handles added. Two such manifolds with the same number
of handles are homeomorphic and conversely, so that the number of handles (called
the genus) is the only topological invariant.
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Cylinder

oy TWisted {mobius)
band

(o) (b)

(c) (d)

Figure 1.5
Four ways to identify sides of a rectangle: (a) cylinder; (b) twisted (Mobius) band; (c) torus; (d) Klein
bottle.

This is a very satisfying theorem in that it shows that 2-manifolds of a certain
large class can be enumerated and completely described to within homeomorphism
(for a proof see Massey [1]). This can actually be carried further. Nonorientable as
well as noncompact 2-manifolds can be described equally completely—although
the noncompact case is more involved as might be expected. One can show also that
every connected, one-dimensional manifold is homeomorphic to §' or to R depend-
ing on whether it is compact or not. However, beginning with n = 3 everything is
far more complicated. In fact A. A. Markov has shown that forn = 4 no algorithm
classifying compact orientable manifolds is possible (see Massey [1, p. 144]).

Curves and surfaces, that is, one- and two-dimensional manifolds in E3, formed
the objects of study in classical differential geometry. We shall frequently refer to
them as sources of examples and new ideas.
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Exercises

1. Assuming invariance of domain, show that 8H" is a manifold of dimension
n — 1 and that no neighborhood in H" of a point of 3H" can be homeomorphic
to an open subset of R".

2. Prove that adding a handle to a 2-manifold in the fashion described above for
$? and 77 actually does give a 2-manifold.

3. Prove in detail that it is possible to obtain a 2-manifold by identifying sides of
the square as shown in Fig. [.5d (Klein bottle), an “immersion.” cf. IIL.4.

4. Provethatidentification of points at opposite ends of diameters on the boundary
of the circular disk D* defines a 2-manifold.

According to a theorem of topology, if a compact orientable 2-manifold is obtained by pasting
together triangles along their edges, then the number y = f — e + v (faces — edges + vertices) is the
same for two surfaces My and M, which are homeomorphic: y is independent of the way the surface
is cut up into triangles. (x is called the Euler characteristic of the surface.)

5. Let My = §* and M, be the surface obtained from M, by adding g handles.
Compute the relation between the genus g and the Euler characteristic .

5§ Abstract Manifolds. Some Examples

The manifolds of dimensions 1 and 2 considered above are pictured as sub-
spaces of E* except in the case of the Klein bottle. This is the way in which
manifolds are first and most easily visualized. However, the definition makes no
such requirement. Such visualization makes equivalent (homeomorphic) mani-
folds look different just because they are differently placed in Euclidean space;
and we might easily be led to think that they are different. Several examples
of equivalent manifolds are shown in Fig. L.6. In spite of appearances, they are
homeomorphic.

As we might expect from the definition, it is possible to give examples of mani-
folds which we do nor think of as lying in Euclidean space. Indeed, it is not clear
that any such example can be realized at all as a subspace of Euclidean space. This
can already be guessed from the construction of manifolds by pasting, which does
notreally use E* atall. The simplest, as well as one of the most important examples
of manifolds defined “abstractly”—not as a subspace of Euclidean space—is real
projective space P"(R), the space of (real) projective geometry. It may be defined
as follows. Let an equivalence relation ~ be defined on R™*' — {0} by

(xl"”’x!1+l) ~ (yl’ ""y!1+l)

if there is areal number rsuchthaty' = tx',i = 1,..., n+1;briefly y = rx. Then
we denote by [x] the equivalence class of x and by P"(R) the set of equivalence
classes. There is a natural map 7: R"t! — {0} — P (R) given by 7(x) = [x]
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Figure 1.6
Three equivalent manifolds.

and we shall topologize P"(R), as is usual in the case of such quotient spaces, by
saying that U C P"(R) is open if and only if 7 ~!(U) is open in R"*'. This gives
P"(R) the structure of an n-manifold (as shown in the exercises). We note that
there is an alternative description of P"(R) as the space of all lines through the
origin 0 of R"™';  takes each x # O to the line through 0 which contains it. Then
we define the topology as follows: a collection U of lines is open if it is the set of
all lines through O which meet a given open set U.

This example may be generalized as follows: Let M be the set of all r-planes
through the origin in R", where n and r are fixed; for example, the set of all planes
through the origin in R* or the set of all three-dimensional planes through the
origin of R®, and so on. This set has a natural topology which makes it a manifold.
Intuitively it consists of defining a neighborhood of a given plane p to be all planes
g which are “close’ to it in a more or less obvious sense: there exist corresponding
bases of both planes p and g (considered as r-dimensional subspaces of R”, as a
vector space) such that corresponding basis vectors are close, say, for example,
that their differences have norm less than some & > 0.

Further important and useful examples of manifolds force themselves upon
our attention when we begin to study the geometry of some of the manifolds we
already have discussed. For example, consider S2, the unit sphere in R?. We denote
by T(S?) the collection of all tangent vectors to points of 52, including the zero
vector at each point. Thus 7(S%) = U es T,(S*). This set has a natural topology:
two tangent vectors X ,, and Y, are “close” if their initial points p and ¢ and their ter-
minal points are close. Similarly, if M is any of the 2-manifolds we have considered
which lie “smoothly” in E?, so as to have a tangent plane at each point which turns
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Figure 1.7
The 2-sphere 52 and some of its tangent vectors—elements of 7(S2).

continuously as we move about on M, then T (M) = UpeM T,(M) is a manifold,
called the tangent bundle of M. The dimension of T (M) is 4 since, roughly speak-
ing, X, depends locally on four parameters: two being the local coordinates of D
relative to some coordinate neighborhood U and two more being the components
which determine X, relative to some basis {E1p, Eazp} of T,(M), a basis which
varies continuously over the neighborhood U. We later make these statements quite
precise and in so doing exhibit the locally Euclidean character of T (M). For the
moment we note that £y and E- can be visualized as vectors tangent to the coor-
dinate curves x' = constant and x> = constant in U. This is illustrated in Fig. 1.7.

We should note that such T' (M), having dimension 4, is not a subspace of E7,
even though M is and although the geometry of E* is used here to describe it. In
fact, one of our major tasks is to describe T,(M) and T (M) independently of any
way of placing M in Euclidean space, that is, to give a description valid for an
abstract manifold.

The manifolds mentioned above arose quite naturally from studies of the ge-
ometry of curves and surfaces in E*. In fact, Gauss used, in a very essential way,
a mapping which he introduced for orientable surfaces in E>. Let M be such a
surface and let N, be a unit normal vector at each p € M, so defined that N P
varies continuously with p on M. Translate N, to N » from a fixed origin 0 and let
G (p) be the endpoint of IV,, on S?, the unit sphere at 0. The mapping taking p to
G(p) is known as the Gauss mapping, and the Gaussian curvature is a measure
of the distortion of areas under this mapping: If M is sharply curved near p, then
the area of a small region around p would be greatly magnified in mapping to $°.
Even if M is not orientable, we still have a tangent plane T,(M) at each point p
and it is parallel to a uniquely determined plane G (p) through the point 0. Thus a
slight variant of the previous definition defines a mapping (as shown in Fi g.1.8) of
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Figure 1.8

M to the manifold of 2-planes through 0 introduced above. Or again, using normal
lines instead of tangent planes, we can obtain a mapping from M to the manifold
of lines through 0, which as we have remarked, is equivalent to P2(R).

Exercises

—

Show that P2(R) and the manifold of Exercise 4.4 are homeomorphic.

2. Show that P2(R) and the set of all planes through the origin of R® are in natural
one-to-one correspondence.

3. Show that the set of all pairs (x, y) of mutually orthogonal unit vectors x and
y of V?, with its natural inner product, is a manifold. What is its dimension?
Generalize if possible.

4. Prove that the manifold of orthonormal pairs of vectors in V* (Exercise 3) is

homeomorphic to Ty(S$?), the tangent sphere bundle of S2, which consists of

all unit vectors tangent to S2.



18 | INTRODUCTION TO MANIFOLDS

5. Let C be a one-dimensional manifold (curve) in R’ Show that the collection
of all vectors normal to C form a three-dimensional manifold. What sort of
manifold would the unit vectors normal to C give us?

6. Manifolds may be obtained as the locus of one or more algebraic equations.
for example. 7 = {(x,y.2) | x* 4 y? +z* = 1}. Show that the torus 7> may
be given as the locus of an equation in x, y, z.

Notes

Curves and surfaces in Euclidean space were studied since the earliest days of geometry and, after
they were invented, both analytic geometry and calculus were systematically used in these studies.
However, the discoveries of Gauss, announced in 1827, profoundly altered the course of differential
geometry and pointed the way to the concept of abstract differentiable manifolds—the underlying spaces
of every geometry and of other important mathematical theories as well. In his celebrated “Theorema
Egregium” Gauss showed that there is a measure of curvature of a surface (now called the Gaussian
curvature) which depends only on one’s ability to measure the lengths of curves on the surface. This
means that this curvature is unchanged by alterations of shape of the surface which leave arclength
unchanged. (It is easily seen that there are such alterations. For example, we may roll a plane surface
into a cylinder or cone, or we may gently squeeze a hemisphere in along its edge, the equator.) This
discovery of an “inner” geometry, independent of the shape of the surface in E°, led very naturally
toward the invention of abstract surfaces (2-manifolds) on which a measure of arclength is (somehow)
provided. The discovery by Bolyai and Lobachevskii (independently) about 1830 of non-Euclidean
geometry was another important step toward the concept of abstract spaces—spaces not conceived of
as subspaces of Euclidean space. (Non-Euclidean geometry satisfies all of Euclid’s postulates except
the one which affirms that through any point p not on a line L there is exactly one line parallel to L. As
in Euclidean geometry, lengths of curves and distances between points have meaning: see hyperbolic
space, Section VIIL.6.) The existence of such spaces was apparently already known to Gauss, who
kept his knowledge to himself—presumably for fear of the profoundly disturbing philosophical and
religious consequences such a discovery would bring about. It can only be compared with the discovery
of relativity in this century, for which it laid the foundation. The belief that we live in a Euclidean world
had been an article of faith for centuries and was not easily challenged.

A second great impetus to these new ideas was given by Riemann in his inaugural address at
Géttingen in 1854. He introduced the idea of a space or “manifold” having its existence outside of
Euclidean space but locally like it; he made clear what arc length would mean in this case (see Section
V.3)—separating metric and topological properties. Both Euclidean and non-Euclidean geometry and
spaces of arbitrary dimension were included within his ideas. Later he made extensive use of the notion
of abstract two-dimensional manifolds in analytic function theory by his systematic use of Riemann
surfaces.

In the remainder of the 19th century many further important developments in geometry took place.
The most important by far from the point of view of modern differential geometry and manifold theory
being the monumental work of Poincaré. He introduced concepts and raised questions which have dom-
inated much of the work in these fields in the 20th century. Among them the use of groups to measure
topological invariants of manifolds, the importance of manifolds in the study of dynamical systems,
the Poincaré conjecture—central to an understanding of three dimensional manifolds but still unre-
solved, and many others. A second great impetus coming at the end of the 19th century and early in
the 20th century was the work on Lie groups, especially in the hands of the great differential geometer
E. Cartan. In his famous Erlangen program of 1872 Felix Klein had shown the intimate relation of all
geometries with groups, and with the later development of Lie groups (themselves important differen-
tiable manifolds) it became clear that both Euclidean and non-Euclidean geometry could be thought of
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as branches of group theory. All of these applications gradually clarified the concepts themselves. as
did the emergence of topology. so that the ideas of manifold theory and differential geometry are now
highly developed and used across the entire mathematical spectrum. in relativity theory. analysis. Lie
groups. algebraic topology. algebraic geometry. and elsewhere. The reader will find historical sketches
in many of the references. In particular. Gauss's famous paper [1] is available in an annotated English
translation and Riemann’s Inaugural Address is translated in the book of Spivak [2]. which contains an
excellent and very readable analysis of this paper and is highly recommended for those interested in
a history of differential geometry. The reader will also find an elegant intuitive discussion of surfaces
given by Hilbert and Cohn-Vossen [1].



II FUNCTIONS OF SEVERAL VARIABLES AND MAPPINGS

In this chapter we review in some detail the differential calculus that we will need later. The
purpose is to build a bridge between the reader’s previous knowledge of multivariable calculus and the
somewhat specialized facts we need here, especially the inverse function theorem and the theorem on
rank. (Many readers can skim over or skip this chapter entirely.)

Briefly, the topics treated are the following: In Section 1 we define differentiability of real-valued
functions of many variables and its immediate consequences, in particular the mean value theorem. In
Section 2 this is extended to the case that concerns us most, a mapping F from an open subset U of R"
into R"™. Here the Jacobian is defined and the mean value theorem restated for mappings. Sections 3
and 4 deal with the concept of the space of tangent vectors 7, (R") at a point @ € R"; this will be most
important in studying manifolds, especially Section 4 in which T, (R") is defined in a way that admits
generalization. Section 5 reviews the notion of vector field in R". Section 6 gives a detailed proof of the
inverse function theorem. This theorem with its corollaries, especially the theorem on rank (Section 7),
is one of the basic theorems on which most of our theory is built.

1 Differentiability for Functions of Several Variables

In this section we review briefly some facts about partial derivatives from
advanced calculus. Few proofs are given, they may be worked out as problems
or found in advanced calculus texts, for example Apostol [1], Dieudonné [1], or

20
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Fleming [1]. We will consider real-valued functions of several variables, more
precisely functions whose domain is a subset A C R’ and whose range is R. If
f: A — R is such a function, then f(x) = Fx! ..., x") denotes its value at
= (b ") € A. We assume throughout this sectlon that f is a function on
an open set U C R". Ateach a € U, the partial derivative (3f/3x7), of f with
respect to x/ is, of course. the following limit, if it exists:

<8f) . f@'.....d’+h. .. .,a)— f@....,a,....a")
= lim .

ax/

h—0 h

If 3f/dx/ is defined, that is, the limit above exists ateach pointof U for 1 < j < n.
this defines n functions on U. Should these functions be continuous on U for
1 < j < n, f issaid tobe continuously differentiable on U, denoted by f € cl).

Mere existence of partial derivatives is too weak a property for most purposes.
For example, the function defined on R’ by

Fan=—""" ad  f0.00=0

X<+ y-

is not continuous at (0, 0), yet both partial derivatives are defined there. The natural
generalization of existence of the derivative for functions of one variable is as
follows. We shall say that f is differentiable at a € U if there is a (homogeneous)
linear expression Y ;_, b; (x" — a')y such that the (inhomogeneous) linear function
defined by f(a) + Y_"_, bi(x' — a') approximates f(x) near a in the following
sense:

f&x) = f@ = > bi(x' —a"

lim =0,
1—a lx —all
or equivalently, if there exist constants by, ..., b, and a function r(x, a) defined

on a neighborhood V of @ € U which satisfy the following two conditions:

f@ = f@+Y b —a)+|x —alrx.a)
on V, and

limr(x,a) =0.
If f is differentiable for every a € U, we say it is differentiable on U. [Warning:
This is a technical definition from advanced calculus. Beginning with Chapter I11
differentiable will be used rather loosely to mean differentiable of some order,
usually infinitely differentiable (C*).] Note that differentiability on U is a local
concept, that s, if f is differentiable on a neighborhood of each point of U, then f
is differentiable on U. By the mean value theorem, for a function of one variable
the existence of the derivative at a € U is equivalent to differentiability; but for
functions of several variables, as we have seen, this is not the case. The exercises
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at the end of this section and the following statements (1.1)—(1.3), whose proofs
we leave as exercises, will clarify these concepts.

(1.1) If f is differentiable at a, then it is continuous at a and all the partial
derivatives (3f/3x"), exist. Moreover the b; are uniquely determined for each a
at which fis differentiable; in fact b; = (3f/3x'),.

By virtue of (1.1) when f is differentiable at a we have
f(x)—f(a>=§”: ) i —dy+ Ix —alr @)
axi ), e

i=1

We denote by (df),, or simply df, the homogeneous linear expression on the
right:
) (xi — ai).

n af
1.2 df = .
12) =3 (5
It 1s called the differential of f at a.

(1.3) Ifaf/ax', ..., 8f/dx" are defined in a neighborhood of a and continuous
at a, then f is differentiable at a.

Thus existence and continuity of the partial derivatives of f on an open set
U C R" implies differentiability of f at every point of U. We define inductively
the notion of an r-fold continuously differentiable function on an open set U C R"
(function of class C"): f is of class C” on U if its first derivatives are of class C"~!.
Equivalently we may say that f has continuous derivatives of order 1,2, ..., r on
U.If f is of class C” for all r, then we say that f is smooth, or of class C*°. As in
the case of C!, we denote these classes of functions on U by C"(U) and C>*(U).

We now state the first version of the chain rule; a more general version will
be given in the next section. Define a differentiable (C”) curve in R" to be a
mapping of an open interval (a,b) = {x € R} a < x < b} of the real numbers
into R, f: (a,b) — R", with f(t) = {x'(¢), ..., x" (1)}, where the n coordinate
functions x' (1), ..., x"(t) are differentiable (resp. C") on the interval. (Recall: For
functions of one variable “differentiable” and “derivative exists” are equivalent.)
Now suppose that f is a differentiable curve and maps (a, b) into U, an open
subset of R". Let a < 1y < b and suppose that g is a function on U which is
differentiable at f(fo) € U. Then the composite function g o f is a real-valued
function on (a, b). We assert that g o f is differentiable at fo and that its derivative
at to 1s given by the chain rule

n

d dg dx’
1.4 e = b .
( ) df (g o f)f() Z(axl >f(fn) < dr )m

i=l
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Figure II.1

The proof is left as an exercise. Using it we may establish the mean value
theorem for functions of several variables. We shall say that a domain U is star-
shaped with respect to a € U provided that whenever x € U, then the segment ax
lies entirely in U (see Fig. I1.1). This is a somewhat weaker property than convexity
of U, a convex set being star-shaped with respect to every one of its points.

(1.5) Theorem (Mean value theorem) Let g be a differentiable function on
an open set U C R"; let a € U and suppose that U is star-shaped with respect to
a. Then given x € U there exists 8 € R,0 < 6 < 1, such that

n 9 . .
g(x) —gla) = Z( afi )(x’ —a'),

i=1

the derivatives 0g/0x',..., 0g/0x" all being evaluated at the same point
a + 6(x — a) on the segment ax.

Proof Set f(t) = a +t(x — a), thatis x'(r) = a’ + t(x’ — a’). Then the
corresponding curve is a line segment with f(0) = a and f (1) = x. This curve is
differentiable, in fact C™, so that g o f maps [0, 1] into U and is differentiable
on (0, 1). Applying the standard mean value theorem for functions of one variable
(as in elementary differential calculus) and using (1.4) to compute the derivatives
gives the formula.
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(1.6) Corollary Let U and g be as in Theorem 1.5. If |3g/3x'| < K on U,
i=1,2,....n, then for any x € U, we have

lg(x) — g(@)| < K/nllx —all.

Proof Taking absolute values in the formula of Theorem 1.5 and using the

Schwarz inequality gives
d 2
g i i\2
|G e

n 1/2
9 o
lg(x) — gla)| = E <~afi>(x’—a')

i=1

Therefore
lg(x) — g(a)] < K+/n|lx —al. |

The following corollary is an important consequence and should be proved as
an exercise.

(1.7) Ceorollary If f is of class C" on U, then at any point of U the values of
the derivatives of order k, 1 < k < r are independent of the order of differentia-
tion, that is, if (ji, ..., Jx) is a permutation of (i\, .. ., iy), then

akf _ akf

axil .. .axik - ax_il .. .axjk ’

Taylor’s theorem on polynomial approximation with its formula for the re-
mainder Ry, or error of the approximation of degree N, as well as the corollary
theorem on power series expansions are easily extended to functions of several
variables using the technique of Theorem 1.5 (see Apostol [1] and Dieudonné
[1]). As in the single variable case, a necessary but not a sufficient condition that
a function be (real) analytic, that is, can be expanded in a power series at each
a € U, an open set of R", is that it be in C*(U). [We write f € C*(U) if f is
real analytic on U.] Although knowledge of analytic functions is not needed in
this text, it is helpful—since C* implies C>*—to know that any linear function
f(x) = 3" a;x', or any polynomial P(x',...,x") of n variables, is an analytic
function on U = R"; the same is true for any quotient of polynomials (rational
function) if we exclude from the domain the points at which the denominator is
zero. Thus, for example, a determinant is an analytic function of its entries and,
if we exclude n x n matrices of determinant zero (which have no inverses), then
each entry in the inverse A~! of a matrix a is an analytic (and hence C™) tunctlon
of the entries in the matrix A.
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Exercises

Prove (1.1).

Prove (1.3) using the mean value theorem for functions of one variable.

Prove that all first partial derivatives of a differentiable function vanish at an

extremum.

4. Let U be an open subset of R" and let CY(U) and C'(U) denote the contin-

uous and continuously differentiable functions on U. Let D(U) denote the

functions which are differentiable on U. Show that Co%(U) > D(U) D

C'(U) and construct examples to show that in general the inclusions are

proper.

Show that the inclusions C'(U) D C*(U) D --- D C*(U) are proper.

6. Prove that C*° > C*®, and that the inclusion is proper. [Hint: Let f(0) = 0,
f(t) =exp(—=1/t>) fort # 0: f is C* on R. Is it C* on R?]

7. Prove (1.4), that is, prove that g o f is differentiable at + = 1y and that its
derivative is given by (1.4).

8. Prove Corollary 1.7.

W =

o

Sometimes it is important to extend the definitions of differentiability, C', and so on, to functions
defined on a subset A C R”, which is not assumed to be an open set, for example, a function f(r) of
one variable on the closed interval 0 < ¢ < 1. We say that f is differentiable, of class C”, of class C*°,
and so on, on A if f can be extended to a differentiable, C", C*° function, respectively, on an open
subset U of R" which contains A.

9. Showthatif A={x eR" |a' <x' <b.a <b.i=1,..., n}and f is
differentiable on A, then the value of 3f/3x" at any point of A is independent
of the extension chosen. Can you find any example to show that for some sets
A this is not the case? If so, does assuming C' help?

2 Differentiability of Mappings and Jacobians

In this section we generalize the ideas of the previous section to the case of
functions defined on subsets of R” but whose range is in R™ rather than R. We
will refer to them as mappings (or maps) and, insofar as possible, reserve the
term function for real-valued functions as in Section 1. If 7 R — R denotes
the projection to the ith coordinate, namely, w'(x!, ..., xt ™) = x' and if
F: A — R™ is a mapping defined on A C R", then F is determined by its
coordinate functions f' = n' o F:in fact for x € A,

Fx)=(f'(x). ..., Fm(x)).

Conversely, any set of m functions f!, ..., f on A with values in R determines
a mapping F: A — R™ with the coordinates of F(x) givenby f'(x),..., fM(x)
as above.
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We are interested in the case where U is an open set of R”. possibly all of R".
Since many authors identify R” and V™ (see Section L.1). these are sometimes
referred to as vector-valued functions on R", although we will not use that ter-
minology. From general topology we know that F is continuous if and only if its
coordinate functions are. We shall say that F is differentiable, ofclassC", C>, C»,
and soon, ata € U oron U if each of its coordinate functions has the correspond-
ing property. We may sometimes call a C> mapping F a smooth mapping; if F is
smooth, then each coordinate function f7 possesses continuous partial derivatives
of all orders and each such derivative is independent of the order of differentiation.

If ¥ is differentiable on U, we know that the m x n Jacobian matrix

of! af!
axt T xn
oft .. fm |
alxl, ..., xn) : ‘
afl" afl"

is defined at each point of U, its mn entries being functions on U. These functions
need not be continuous on U; they are so if and only if F is of class C'. Since
differentiability is needed in Section IL.6, it is useful to give another formulation
of this concept for mappings. We leave the proof to the exercises. [Note: Later
differentiable will be used to mean C™: see Section II1.3.]

(2.1) A mapping F: U— R™, Uan open subset of R", is differentiable ata € U
(respectively, on U) if and only if there exists an m x n matrix A of constants
(respectively, functions on U) and an m-tuple R(x, a) = (r'(x,a),....rm (x,a))
of functions defined on U (respectively, on U x U) such that [R(x,a)]| — O
as x — a and for each x € U we have

(*) F(x)=F(a) + A(x —a) + [|x —a||R(x, a).
If such R(x, a) and A exist, then A is unique and is the Jacobian matrix.

{In the expression (%), A(x — a) denotes a matrix product, so we must write
(x —a) asann x 1 (column) matrix and read this as an equation in m x 1 matrices.
The last term means that each component of the m-tuple R(x, a) is multiplied by
llx —all.]

Corollary 1.6 extends immediately to mappings in the following form. The
proof is left as an exercise.

(2.2) Theorem Let a € U be an open subset of R" which is starlike with
respect toa, andlet F: U — R™ be differentiable on U with |df' /ax/| < K, 1 <
i <m,1 < j < n, atevery point of U. Then the Jollowing inequality holds
forallx € U:

(%) IF(x) = F@)| < (nm)'*K||x — a.
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We will use D F to denote the Jacobian matrix of a differentiable mapping F
and D F(x) to denote its value at x. If F is differentiable on U, then fora € U
expression () becomes

F(x)=F(a)+ DF(a)(x —a) + ||x —a||R(x.a).

We remark that F € C'(U) if and only if D F (x) varies continuously with x,
thatis, x — DF(x) is a continuous map of U into the space .#,,,(R) of m x n
matrices, identified with R™" and given the corresponding topology.

Just as in the case of functions we wish to prove a chain rule for composition of
mappings. We suppose U C R" and V C R" areopensets and F: U — V C R"
and G: V — R’ so that H = G o F is defined on U, which it maps into R”. We
may write the coordinate functions of H using those of F and G:

Rx)=g o Fx)=g'(f'(x),.... f"x), i=1,...,p.

(2.3) Theorem (Chainrule) Let F, G, H be as above and suppose that F is
differentiable at a € U and G is differentiable at b = F(a). Then H = G o F is
differentiable at x = a and we have

DH(a) = DG(F(a)) - DF(a)

(where - indicates matrix multiplication). If F is differentiable on U and Gon V,
then this holds for everya € U.

Proof According to the characterization above it is enough to show that the
p-tuple Ry (x, a) defined by

H(x) — H(a) — DG(F(a)) - DF(a) - (x —a) = [lx —allRy(x,a)

approaches 0 as x approaches a. Using y = F(x), b = F(a), and the differentia-
bility of F and G at a and b, we may write

H(x)— H(a)=G() —G(b) = DG®) - (y —b) + |y — bR (y, b),
and
y—b=Fx)—F(a)=DF(a) (x —a)+ |lx —al|Rr(x, a).
Then, replacing y by F(x) and b by F(a),

H(x) — H(a) = DG(F(a)) - DF(a) - (x — a)
| F(x)— Fa)

+lx —all {DG(F(G)) ‘Re(x,a)+
lx —all

R (F(x), F(a))}
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Using the continuity of F', which is an immediate consequence of differentiability,
and the properties of Rr(x. a) and Rg(y. b), we see that as x — a the expression
in curly braces, which we may denote by Ry (x. a). goes to zero. This completes
the proof. i

(2.4) Corollary If Fand Gare ofclass C" (or smooth) on Uand V, respectively,
then H = G o F is of class C" (or smooth) on U.

Proof We prove only the statement for C', although we will use the general
case, whose proof is a problem in mathematical induction (see Dieudonné [1],
where it is also proved for analytic mappings). If F and G are C!, then they are
certainly differentiable, and DF and DG are continuous functions on U and V.
Since F is C!, it is continuous and so DG (F(x)) is continuous on U. Finally the
product of two matrices is a continuous, in fact C*, mapping of R™” x R"" since
the entries in the m x p product matrix are polynomials in the entries of the factors.
Thus the chain rule formula gives DH (x) as a composite of functions which are
at least continuous so that it must be continuous. This is equivalent to its entries
being continuous which means that the coordinate functions of H, and thus H
itself, are of class C'. |

Exercises

1. Prove (2.1).

2. Prove Theorem 2.2.

3. Prove Corollary 2.4 for the case r = 2 and try to construct a procedure which
would give the result for all r.

4. Prove that the rank of the product of two matrices is less than or equal to the
rank of either factor. Show that multiplying a matrix on the left or right by a
nonsingular matrix does not change its rank.

Just as in the case of functions. we can extend the notion of differentiability. C". C*. and so
on. to mappings into R™ whose domain of definition is an arbitrary subset A C R". We say that
F: A — R™ is differentiable. C". C*, or C* if and only if it has an extension to an openset U D A
which is. respectively. differentiable. C”, C>*. or C®. As we have mentioned in Section 1. there exist
examples to show that under these circumstances D F (x) may not be uniquely defined at each x € A,
that is. it may depend on the extension of F. the simplest example being that A is a single point.
Thus one must use some care in dealing with this case. The following two problems involve this
generalization.

5. Let U be an open subset of R” and F: U — R”,m < n.be a C' mapping.
Suppose that F is injective (one-to-one into) and that F~': A — U, where
A = F(U)isalsoofclass C'. Then show that m cannot be less than 7. (Thisis
a weak version of Brouwer’s theorem on invariance of domain: There exists
no homeomorphism of an open set U of R" into R”, m < n.)
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6. LetAbeaclosed cubein R and suppose F: A — R™ is amapping of class C".
Prove that the value of DF on A is independent of any extension. Generalize
this to other domains A and to class C™.

3 The Space of Tangent Vectors at a Point of R"

Although we shall presently restrict our attention to R", let us first consider E",
or E° at least, for the sake of intuition. Qur purpose is to attach to each point a of
R' an n-dimensional vector space T, (R"). We know how to do this in Euclidean
space: If a € E?, welet T, (E3) be the vector space whose elements are directed
line segments X, with ¢ as initial point. These are added by the parallelogram
law: — X, is the oppositely directed segment and 0 is the segment consisting of the
point a alone. We have supposed that a unit of length was chosen in E 3 and we may
denote by || X, | the length of the segment. Multiplication by positive (negative)
real numbers leaves the direction unchanged (reversed) and multiplies the length
by the absolute value of the number. To show that this does indeed give a vector
space of dimension 3 over R is an exercise in solid geometry. Thus we attach to
each point of E* a three-dimensional vector space called the tangent space at that
point.

We shall ultimately attach vector spaces at each point of more complicated
spaces, namely manifolds; this was briefly indicated in Section I.5. There is, how-
ever, a unique feature of the tangent spaces of Euclidean space which is not shared
by the tangent spaces at points of manifolds; the tangent spaces at any two points
of Euclidean space are naturally isomorphic, that is, there is an 1somorphism de-
termined in some unique fashion by the geometry of the space—not chosen by us.
(Without the restriction of naturality, the statement would be trivial since any two
vector spaces of the same dimension over the real numbers are isomorphic, but in
general there is no unique isomorphism singled out, rather we must choose one
arbitrarily from a very large collection.)

Indeed, if a, b are points of E>, then there is exactly one translation of the
space taking a to b; this translation moves each line segment issuing from a to
a line segment from b and thus carries 7, (E 10 T, (E%). Since parallelograms
£0 to congruent parallelograms and lengths are preserved, this correspondence is
an isomorphism; and it is uniquely determined by the geometry (Fig. I1.2). If we
choose a fixed point a as origin and choose at a three linearly independent vectors
E\., Ey, Es,, forexample, three mutually perpendicular unit vectors, then this will
automatically determine a basis not only of 7, (E*) but also (by parallel translation)
of T,(E*) forevery b € E*. All of this is intuitive geometry and we have not really
proved the statements we have made. Therefore we turn to R” where we are able
to be more precise and rigorous, but we keep in mind our geometric model.

Leta = (a', ..., a") be any point of R". We define T, (R"), the rangent (vec-
tor) space attached to a, as follows. First, as a set it consists of all pairs of points



30 Il FUNCTIONS OF SEVERAL VARIABLES AND MAPPINGS

Figure I1.2

(@, x),orax,a = (a',...,a")and x = ' ., corresponding, of course,
to initial and terminal points of a segment. We also denote such a pair by X,,,
using upper case letters for vectors. We next establish a one-to-one correspondence

@q: T,(R") — V" between the set just described and the vector space of n-tuples
of real numbers by the following simple device: If X, = ax, then ¢,(X,) =

(x'~a', ..., x"—a").Finally the vector space operations (addition and multipli-
cation by scalars) are defined in the one way possible so that ¢, is an isomorphism.
This requires that

Xo+ Y. =0, (@0a(X0) + 0a(Yo)),
aX, =g, (g, (X,)), a€R,

the right-hand side being used to define the operations on the left. Clearly we are
being guided by the fact that R" and E" may be identified if we choose rectangular
Cartesian coordinates in E". This is equivalent to choosing an origin 0 and n
mutually orthogonal unit vectors there, (E1)o, .. ., (E,)o. lying on each (positive)
coordinate axis—as doi, j, and k in the usual model for E*. Then vectors at any point
a are uniquely determined by their components relative to the basis E|, .. ., Ena,
which in turn are given by subtracting from the coordinates of the terminal point of
each vector, the coordinates of its initial point a. The geometry of E" has guided us
to a proper method for defining the tangent space at each point of R”. Please note
that V" has a canonical basise' = (1,0,...,0),...,e" = (0, ..., 1)and this gives
at each a € R” a natural or canonical basis E,, = (pa" e),....E,, = (pu’l (ey)
of 7,(R"). The canonical isomorphism given by translation in the case of E" is
now (ph_' 0@y T,(R") — T,(R"), and we have X, = ax corresponding to ¥, = by
ifandonly if x' —a’ = y' —b',i = 1,2, ..., n. However, we never identify the
tangent spaces into a single vector space as is often done in discussions of vectors
on Euclidean space, that is, we never equate vectors with different initial points; in
particular, we cannot add a vector in 7, (R") and one in T, (R") where a # b. The
reason for our insistence on this point will appear when we learn how to attach a
tangent space T),(M) to each point p of a manifold in general, for then we have
nothing corresponding to the natural isomorphisms of 7, (E*) and 7, (E?) given by
the translations of E>. For example, there is no natural isomorphism of the tangent
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X1 ={x" (1), x3(1)

(v,

a=x10) = y(0)
y2ur)

Figure 11.3
Equivalent curves: x(¢) and y(¢).

vectors to 2 at two distinct points p and g of $°. It follows that our method
of defining T, (R") at each a—which depended on such an isomorphism—is not
suitable for generalization in its present form. Therefore we shall give two further
methods for defining 7, (R"), one in this section with details left as exercises and a
second, which we use in the remainder of the text, in the section following this one.

We begin by a formal description of the first definition. Let x(¢), —& <t < g,
be a C' curve in R" passing through @ € R" when ¢ = 0, that is, assume
x(r) = (x'(r), ..., xX"(¢)), where x'(t) is C! and x'(0) = a',i = 1,...,n. Let
I. = {r € R | |t| < ¢&}. Then each such curve is a C' map of I, — R", where
¢ > 0 and may vary from curve to curve. Two curves are equivalent, x (t) ~ y(t),if
att = 0, x' = y' and the derivatives with respect to t of their coordinate functions
are equal: X' (0) = 3°(0),i =1, ..., n. Let [x(t)] denote the equivalence class of
x(r); to each [x (¢)] corresponds an n-tuple of numbers x (0) = (x Oy, ..., X" (0)),
that is, an element of V”. Using this map we obtain a vector space structure on
the collection of equivalence classes which we denote, predictably, by T, (R").
Details are left as exercises. Intuitively speaking, if we use the identification of
R" with E" plus a rectangular Cartesian coordinate system, we see that x'(0) is
the ith component of the velocity vector of the particle whose motion is given by
x(t) = (x'(r), ..., x"(1)) at the instant it passes through a (see Fig. I1.3). Two
curves are equivalent if they represent two motions with the same velocity at this
Instant.

Exercises

1. Show that the map [x(r)] — (x'(0),..., x"(0)) is one-to-one and onto V",
so that it can be used to define the structure of a vector space on the collection
T,(R") of equivalence classes.

2. Prove that this definition of 7, (R") is equivalent to the earlier one of the present
section.
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3. Using astandard method of definition of the tangent plane to § 2, the unit sphere
in R?, show that the vectors of T, (R*). a € S, which belong to equivalence
classes [x(t)] determined by curves lying on S-, determine a subspace of
T, (R*) and show that this subspace may be naturally identified with the tangent
plane to $” at a.

4. For each of the vectors E;,,a € R"andi = 1, ..., n, identify the equivalence
class of curves corresponding to it by defining a particularly simple curve in
the class. This gives an interpretation of the canonical basis of T,(R").

4 Another Definition of T,(R")

In this section we give a characterization of the space of tangent vectors at-
tached to a point a of R" which we shall later use in extending this concept to
manifolds. In spite of its formal and abstract nature it is relatively easy to work
with; it is hoped that some intuitive clarification has resulted from the earlier
definitions.

Let us denote by C*(a) the collection of all C* functions whose domain
includes a, identifying those functions which agree on an open set containing a—
since we are only interested in their derivatives ata. Let X, = Y 7 o' E;, be the
expression for a vector of T, (R") in the canonical basis; we define the directional
derivative Vf of f ata in the “direction of X,” by Vf = 3"_ a'3f/3x', where
3f/dx' are evaluated at a = (a', ..., a"). This is a slight extension of the usual
definition in that we do not require X, to be a unit vector. Since Vf depends on
f,a,and X, we shall write it as X* f. Thus

n
f of
X* = O([ D .
=),
We may take the directional derivative in the “direction of X,,” of any C*

function defined in a neighborhood of a. Hence f— X f defines a mapping
assigning to each f € C*(a) a real number

X! C*(a) > R.

It is reasonable to denote this mapping by X = 3" | &;(3/3x"), where we must
remember that the derivatives are to be evaluated at a. We remark that X*x' =
a' i = 1,...,n, so that the vector X, is completely determined if its value on
every C* function at a is known—or even on the functions f'(x) = x'.

We have agreed not to distinguish between C* functions f, g in C*(a) if they
agree on some open set containing a. Two functions of C>(a) may be added or
multiplied to give another element of C>(a), whose domain is the intersection
of their domains. If & € R, then af is a C* function with the same domain as



4 ANOTHER DEFINITION OF T,(R") 33

f, 0 f € C*(a) implies af € C*>(a); the same result would be obtained by
multiplying f by a C* function whose value is @ on some open set about a.
Thus C () is an algebra over R containing R as a subalgebra. Remembering the
fundamental properties of derivatives we see at once that if «, § are real numbers
and f. g are C* functions defined in open sets containing a, then we have

1) Xi(af +Bg) =a(X,f)+B(X,g) (linearity)
and
Gi)y X;(fg) =(X;Ngla)+ f(@)(X,;g) (Leibniz rule).

Let %(a) denote all mappings of C*(a) to R with these properties; we may
call the elements of Z(a) “derivations” on C*®(a) into R. We see that P(a) is a
vector space over R for if D|, D;: C®(a) — R and «, 8 € R, then we define
(@D + BDy) f = a(D, f)+ B(D,f), where the operations on the right are in R.
This defines in Z(a) both addition and multiplication by real numbers «, B. This
is the standard procedure for defining a vector space structure on maps of a set into
a field. One must check that the vector space axioms are indeed satisfied by these
operations. In particular, it must be verified that if D € Z(a), then aD € Y(a),
and if Dy, Dy € Y(a), then so also are D| + D5. This means checking the linearity
of aD: C*(a) — R and Dy + D;: C*(a) — R and checking that the Leibniz
rule is satisfied. We do this for y D only. Suppose then y, @, 8 € R, D € Z(a),
and f, g € C*(a). Then

(yD)(af + Bg) = y[D(af + Bg)] (by definition of ¥ D)
= yla(Df) + B(Dg)]  (by property (1))
= ya(Df) + yB(Dg) (by the distributive law of R)
=a(yD)f + B(yD)g (by our definition of y D).

It follows that the map y D: C*(a) — R is linear. That y D satisfies the Leibniz
rule for differentiation of products is equally easy:

(yD)(fg) = vID(f®)] (by definition of y D)
= y[(Df)gla) + f(a)(Dg)] (by property (i1))
=y(Df)g(a) + f(a)y(Dg) (these being real numbers)

= ((yD)f)g(a) + f(a)((y D)g) (by definition of y D).

As was remarked, a similar verification shows that D| + D> is a derivation into R;
1t is left as an exercise.
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The correspondence X, — X associates to each element X, of T,(R") an
element of Z(a), namely the mapping X}: C*(a) — R defined by taking the
directional derivative of f € C™(a) at a in the direction X,,. This mapping from
T,(R") — Z(a) is one-to-one since X, = Y, means that X f = Y* f for every
f € C>(a) which implies X, =Y. Indeed we have noted the ith component of
X, relative to the natural basis is just X*x' so that X, = 37 (Xx)E;, = Y,.
Finally, it is easy to see that this mapping is linear. If Z, = a X, + 8Y, € T,(R"),

then for the directional derivatives we have for any f € C*(a),
Zif =a(X; )+ B, 1)

If interpreted in terms of the operations in Z(a), this means exactly that the map-
ping T,(R") — Z(a) is linear. In summary then, X, — X, defines an isomor-
phism of the vector space T,(R") into the vector space P(a), which allows us to
identify T, (R") with a subspace of Z(a). However, more can be said; in fact this
isomorphism is onto, and we have the following theorem.

(4.1) Theorem The vector space T,(R") is isomorphic to the vector space P(a)
of all derivations of C*(a) into R. This isomorphism is given by making each X,
correspond to the directional derivative X in the direction of X,,.

To prove the theorem it only remains to show that every derivation of C*(a)
into R is a directional derivative, that is, that X, — X is amap onto P(a). This
will result from two lemmas.

(4.2) Lemma Let D be an arbitrary element of P(a). Then D is zero on any
function f € C*(a) which is constant in a neighborhood of a.

Proof Because the map D is linear, it is enough to show that if 1 denotes
the constant function of value 1, then D1 = 0. However, DI = D(l - 1) =
(DH14+1(D1) = D1+D1 =2Dl1,soD1 = 0. We must remember in interpreting
these equalitites that multiplying f € C*(a) by a real number « gives exactly
the same result as multiplying by the C*° function whose value is constant and
equal to o in some open set (possibly R") containing a, at least as far as the
algebra C™(a) is concerned: we have identified R with the subalgebra of such
functions. |

(4.3) Lemma Ler f(x',...,x") be defined and C*> on some open set U. If
a € U, then there is a spherical neighborhood B of a, B C U, and C*-functions
g'. ..., g" defined on B such that

oo (Of
(1) g(a)—<ax,.>x:u

and

(i) f&' o x = fla)+ 0 (o —ahg (x).
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Proof Let B C U be aspherical neighborhood of @ and note that for x € B.
fx)y= fla)+ f(i(a/ar)f(a + t(x — a))dt. Hence.

o S
f(.\')=f(a)+izzl(.\' —a)/0 {W} dr.

a+t(y—a)

. 'ra
g’(x):/ [—fl} dt, i=1.....m
0 0x a+r(x—a)

these are C*-functions and satisty the two conditions. |

Let

Proof of Theorem 4.1 Using these lemmas we may complete the proof of
Theorem 4.1. Suppose D is any derivation on C*(a). We wish to show that, given
D € P(a), there is a vector X,, € T,(R") such that for any f € C™(a), we have
X f = Df.If this be so, then X = D and we see that every derivation of C*(a)
into R is a directional derivative; thus the map X, — X7 of T,(R") to Z(a) is an
isomorphism onto.

Fori = 1,...,n define i € C®(a) by h'(x',...,x") = x' and &’ € R by
o' = Dh'. Consider X, = Y, a;E;,; as an operator on C*(a), it gives, for
each f,

. n i Bf
X =2“<W>a'

On the other hand, by Lemma 4.3, f(x) = f(a) + > i, (x' —a")g'(x) on
some B, (a) in the domain of f. Restricting to B,(«) and using the properties of
D, we may write

Df = D(f(@)+ »_((D(x' —a'))g' (@) +0- Dg'}.
i=l
By Lemma 4.2, D(f(a)) = 0and D(x' —a') = Dx' = o', andby Lemma 4.3,
g'(a) = (8f/8x"),. Therefore Df = > '_, &' (3f/dx'), = X f. Since f is an

arbitrary element of C*(a), we have D = X. This completes the proof. |

Theorem 4.1 allows us to identify the vector space T,(R") with the space D(a)
of linear operators on functions of C*(a) into R which satisfy the product rule of
Leibniz, that is, the “derivations into R.”

Note that under this identification the canonical basis vectors E\, ..., En, of
T,(R") are identified with8/9x". ..., 8/3x", the directional derivatives (evaluated
at x = g) in the directions of the coordinate axes:

Eiu - Eik

_ (2
mf - <axi>a'
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We will make this identification from now on for vectors in 7, (R") and for this
reason we will drop the asterisk * which distinguishes the vector X, as a segment
or point pair from the directional derivative: X} f will be written X,, f. In R" we
may use either E;, or 3/3x' to denote the unit vector parallel to the ith coordinate
axis. This characterization of T,(R") requires C> functions; although C’(a) is
an algebra, it is known to have other derivations than directional derivatives (see
Newns and Walker [1]). Our situation is then that we shall rely on Euclidean space
for our geometric intuition of the space of tangent vectors at a point, but in formal
definitions and proofs we will use the ideas above: a vector at a point is a linear
operator of a certain kind—satisfying the product rule for derivatives—on the C*
functions at the point.

Exercises

1. Leta € R" and f, g be two C* functions whose domains of definition both
contain a. We shall say f is equivalent to g ata, f ~ g, if and only if they
agree on some open set containing a. Show that this is an equivalence relation
and that the collection of equivalence classes, which we call germs of C™
functions at a, is an algebra over R. [It is precisely this algebra which is

2. Extend (4.3) to show that there are C functions "/ (x) = h/'(x) on some
B C U such that (i) Y (a) = (%)X:,, and

(i) f(x) = fl@)+35,(¢" —aDg' (@) + 53, ;(x' —a")(x/ — a/)h¥ (x).

3. Prove that the collection of all maps of a set X into a field F has a natural
vector space structure. Follow the definitions indicated for Z(a).

4. Show that if D and D, are in Z(a), then D + D, is also in Y(a).

5. Using the definition (Section 3) of equivalence of C' curves through a € R",
prove that the mapping of 7,,(R"), defined as “velocity vectors,” to Z(a), taking
the class [x(#)] to the operator D defined by

n a ]
pf=%" (af) (0,
-1 a

is independent of the choice of the curve x(¢) in [x(¢)] and determines an
1somorphism of 7, (R") onto Z(a).

5 Vector Fields on Open Subsets of R"

A vector field on an open subset U C R" is a function which assigns to each
point p € U a vector X, € T,(R"). A similar definition applies to Euclidean
space E". There are many examples in physics for n = 2 and n = 3. The best
known is the gravitational field: If an object of mass u is located at a point 0,
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Figure 11.4
First quadrant portion of gravitational field of point mass at origin.

then to each point p in U = E" — {0}, there is assigned a vector which denotes
the force of attraction on a particle of unit mass placed at the point. This vector is
represented by a line segment or arrow from p (as initial point) directed toward 0
and having length kg /r?, r denoting the distance d(0, p) and k a fixed constant
determined by the units chosen (see Fig. IL4). If we introduce Cartesian coordinates
with O as origin and u = 1, then for the point p with coordinates (x', x%, x*) the
components of X, in the canonical basis are

—kx' —kx? —kx?

3 T3

3 with r = ((_xl)2 + (x2)2 + (x3)2)l/2’
r r

r

that is,

—k 2 3 —k( , 8 , 0 3 0
X,,:r—3(x Eip+x"Ey +x E3p)=r—3 X @—l-x 8x3+x 7 )

We note that the components of X, are C* functions of the coordinates. We
shall say that a vector field on U is C™ or smooth if its components relative to the
canonical basis are C* functions on U. Unless otherwise stated, all vector fields
considered will be assumed to have this property, although it is quite possible
to define continuous, C', and so on, vector fields also. When dealing with vector
fields, as with functions, the independent variable will be omitted from the notation.
Thus we write X rather than X , just as we customarily use f rather than f(p) for
a function. Then X, is the value at p of X, that is, the vector of the field which is
attached to p—it lies in 7, (R").

Further examples of vector fields are given for each i = 1,....n by the
fields E; = 9/8x' which assign to every p € R" the naturally defined basis
vector E; at that point. The vector fields E,. ..., E, being independent, even
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Figure IL5

orthogonal unit vectors, at each point p form a basis there of T,(R"); such a set
of fields is called a field of frames. The vector fields X,, X, on U = R> — {0}
defined by X, = x'E| — x%E; and X» = —x2E| + x"E, also define a field of
frames; geometrically X, is a vector along a ray from 0 to p and X3, 1s a vector
perpendicular to it, that is, tangent to the circle through p with center at 0 (see
Fig. IL5). It is often convenient, as we know from elementary mechanics, to use
other frames (even in Euclidean space) than E| and E.

If X is a C™-vector field on U and f a C™ function on U, then Xf is the
C>-function on U defined by (Xf)(p) = X, f. Indeed, if the components of X
are the functions o' (p), . .., a’(p)sothat X = Z?:l a'E;, then

S 3
(Xf)(p) = Za'(p)(;ﬁ) .
i=1 14

We see from the right-hand side that X f is a C> function of p on U since o/ (p) €
C>*U) and 3f/dx" € C*(U). Thus f > Xf maps C*(U) — C>U).

We note also that C>(U) is an algebra over R with unit, where R is identified
with the constant functions and, in particular, the constant function 1 with the
unit. It is natural to ask whether X is a linear map of C>*(U) to C>*(U) and
more generally whether it is a derivation, that is, satisfies the Leibniz product rule.
In fact, this is so, for we may write

[X(O(f + /38)](17) = X[,(O(f =+ /38) = O((X[,f) =+ ﬂ(ng)
a(Xf)(p) + B(Xg)(p),

I
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and

(X(fOllp) =X, egp) + F(p)X,8)
=[(XH(PIegp) + fF(PLX)P)].

Since the functions on the right and left agree for each p € U, they are equal as
functions. Thus X: C*(U) — C*(U) is a derivation which maps C*°(U) into
itself, a slight variation from the previous case. (This, in fact, is the customary use
of the term “derivation” of an algebra. If A is an algebra over R, then a derivation
isamap D: A — A which is linear and satisfies the product rule of Leibniz. For
example, 8/3x is a derivation on the algebra of all polynomials in two variables x
and y.)

We conclude this section by proving an important property of C*°-functions
which, with the corollary given here, is used very often in discussions of vector
fields (see the exercises). It is a “separation theorem” and contrasts strongly the
behavior of C® and C® functions on R". (There exist stronger versions of this
theorem as we shall see later.)

(5.1) Theorem Let F C R" be a closed setand K C R" compact, FNK = QO
Then there is a C*™ function o (x) whose domain is all of R" and whose range of
values is the closed interval [0, 1] such thato(x) =1 on Kando(x) 