(G5 and the “rolling distribution”

Gil Bor and Richard Montgomery
March 1, 2006

1 The problem

Consider two balls of different size, one rolling along the other, without slipping or spinning.
(It may help to think of them as covered by velcro.) The configuration space of this system
is a 5-dimensional space Q = SO3 x S? and the no-slip/no-spin condition defines on Q a
rank 2 distribution D C T'Q), the “rolling-distribution”.

Now D is a non-integrable distribution (unless the balls are of equal size), with an
“obvious” 6-dimensional symmetry group SOz x SOs. But for balls whose radiii are in
the ratio 3:1 something strange happens: the symmetry group increases to G, a 14-
dimensional Lie group; to be precise, the real non-compact “split form” version of Gsg,
containing SO3 x SO3 as a maximal compact subgroup, which is what we mean by “G5”
from now on.

We learned this surprising fact from Robert Bryant. Our purpose is to describe as
explicitly as possible how G4 acts on () so as to preserve D. In many regards we follow
the last section of Bryant’s lecture notes [3]. The basic idea is to identify @ with Gy/P
where P is a certain 9-dimensional subgroup of Gj.

Some literature and history. Killing uncovered the possible existence of g, as a
simple exceptional Lie algebra in 1884. Cartan established its existence in his thesis [5] in
1894. See the introduction to [5] and Cartan’s obituary [7] regarding this history. In 1910
in [4], Cartan discovered the realization of G5 as the symmetry group of a rolling-type
distribution. This paper is notoriously difficult. Bryant says “It was, by far, the most
elaborate application of his method of equivalence to be fully worked out in his lifetime...”
In 1914 Cartan [6] showed that G5 can be realized as the automorphism group of the octo-
nions. For our split G he used ‘split octonions’. Section 3.4 of the 1993 paper [2] describes
the rolling of two surfaces along each other in a very clean way and mentions some aspects
of G5 and P. The paper “The Oxford Commemorative Ball Challenge” by Hammersley
is a beautifully written paper, accessible at the undergraduate level, concerning rolling a
ball on a sphere. (Ref).

Work to do. G, is the automorphism group of the split octonions. It should be
possible to construct ), D and the action of G5 in terms of the algebra of these split
octonions.



2 The rolling distribution

Take one ball to be stationary, of radius R, with its center at the origin; roll on it a second
ball, of radius 1. The position of the second ball is denoted by a pair (¢,x) € Q = SOz x S?,
where x(1 + R) is the position of the center of the second ball (i.e. the pt of contact of
the two balls is Rx) and g € SOj is the rotation of the second ball relative to some initial
position.

% maybe put some picture here ***

Let (g¢,%;) € Q be a rolling motion, w; € R? = so3 the angular velocity of the rolling
ball relative to its center (i.e. the velocity of a fixed point P of the rolling ball, moving
relative to the center of the rolling ball according to p; = ¢;:P, is p = g¢~'p = w X p).
Then we have

Proposition 1 A curve (g, %) € Q is tangent to the rolling distribution D C TQ iff

(1) (R+ 1)x =w X x (no-slip condition),

(2) (w,x) = 0 (no-spin condition, i.e. w need to be tangent to the stationary
ball at Rx).

PROOF. (1) The contact pt between the two balls is p = Rx on the first ball, P = —g1x
on the second ball. For non-slip, their velocities must match: p = gP. Now p = Rx and
P =g x—g % =g""gg7"x — gk =g w x x = %],

hence the condition p = ¢gP is equivalent to Rx = w X x — X, from which (1) follows.

(2) Let P be a point fized on the second ball (P = 0). From the point of view of the first
ball (stationary), it is seen as p = gP + (R + 1)x, with velocity

p=¢P+R+1x=g9 ' p— (R+1x]+(R+1)x=wx[p—(R+1)x]+ (R+1)x.
Using the no-slip equation, (R + 1)%x = w x x, we get
p=wx[p—(R+1)x]+wxx=wx (p— Rx).

The equation p = w X (p — Rx) means that the motion of the second ball is given,
at any given instant during its motion, by a rotation with an axis of rotation (a line)
passing through the point of contact Rx, in the direction of w and with angular velocity
of magnitude ||w||. In particular, if we want no spinning of the second ball around the
point of contact of the two balls, w should have no component orthogonal to the common
tangent plane of the two balls, i.e. (w,x)=0. O

3 The “obvious” action

There is an action by K = SOz x SOgs, given by

(9,x) — (d'99" ", g'x), ¢,g" €90s.

One checks easily that K acts transitively on @) preserving the distribution D (and every-
thing else involved).



4 A group theoretic reformulation

Given a Lie group K with Lie algebra K, the data required for specifying a K-invariant
homog distribution (@, D) is

(1) a subgroup H C K with subalgebra h C & ;
(2) an H-invariant subspace W C K/b.

Given such data, one has a K action by left translations on the right H-coset space
Q = K/H and Dy := W C R/h = Tjo(K/H) extends uniquely by the K-action to a
K-invariant distribution D on K/H.

The group K acts by the adjoint action on the data (H,W) so that K-equivalent
pairs (H, W) ~ (H',W') correspond to isomorphic distributions. More generally, there is
an obvious notion of equivalence (K, H,W) ~ (K', H',W'), corresponding to isomorphic
homogeneous distributions.

If we work on the Lie algebra level then the data (8,h, W) determines (@, D) only
locally, i.e. up to some cover.

Let us determine now the data (K, H, W) corresponding to our rolling-without-spinning
distribution.

We have K = SO3 xSO3, dim H =1, dim W = 2. We identify as usual the Lie algebra
of K = SO3 x SOz with R? x R3, the set of pairs of angular velocities (w’, w”), with bracket
given by the cross product:

[(w/’w//), (T],777/,)] — (CU/ % 7],,(4)” < T]N).

Let us fix a “base point”, say (1,e3) € SO3 x S2. The isotropy is the subgroup H C K
consisting of elements of the form (h,h), where h is a rotation around the e3 axis, so
H = SO, and h = R(es,e3) C R? x R?. Using the Killing metric on & we can identify
A/ = bht, so the plane of the distribution at the base point is given by some 2-plane
W C bt. Let us determine explicitly this 2-plane.

Proposition 2 Under the above identification of SOz x S? with K/H, the rolling distri-
bution on SO3z x S? for radius ratio R is given at the base point (1,e3) € SO3 x S? by the
2-plane W C bt C R® x R? (the Lie algebra of K ) defined by the equations

(Wiez) = (W', e3) =0, R +w"=0.

PROOF. Since ) C R is generated by the vector (w',w”) = (es3, e3) and the Killing metric
on £ corresponds to some multiple of the standard metric on R? x R?, h* C R is given by
the equation (W' + w” e3) = 0.
From the formula for the K-action in §3 we get the infinitesimal action at the base
point
w=uw - x=uw xes.

Substituting these into the rolling-no-spinning conditions at the base point (§2),

(w,e3) =0, (R+1)x=w X e;,
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we obtain
(W —w"e3) =0, [RW +uw"]xe;=0.

Adding the condition of orthogonality to h, (v’ + w”,e;) = 0, we obtain the above
equations.[]

5 G

Now consider the root diagram of gs, the Lie algebra of G,.
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The root diagram of go.

A reminder of the meaning of the root diagram. The diagram is drawn in the dual
of some Cartan subalgebra of g,. A Cartan subalgebra of a semi-simple Lie algebra g is
a maximal abelian subalgebra t C g of semi-simple elements, i.e. each ad(T") € End(g),
T € t, is diagonalizable. In the case of g = go, t is 2-dimensional, hence the subscript 2
in G, the rank of the group. The root diagram of g encodes the adjoint action of t on g,
from which one can recover the whole structure of g.

Example of g = sl3(R). This is a useful example to keep in mind before we proceed with
this reminder.It is the set of 3 by 3 traceless real matrices (the Lie algebra of SL3(R),
the set of 3 by 3 real matrices with determinant=1). Like go, the Lie algebra sl3(R) is
a non-compact split form of its complexification (sl3(C)) and is of rank 2. We take as a
Cartan subalgebra the set t C sl3(R) of traceless diagonal matrices,

t; 0 0
fI:{ 0 tg 0 ’t1+t2+t320,tl€R}
0 0 ¢t

Roots and root spaces. The commutativity of the Cartan subalgebra t implies that the
diagonalizable endomorphisms ad(T) € End(g), T € t, are simultaneously diagonalizable,
resulting in a t-invariant decomposition

g:t@zgam
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where each g, C g is a 1-dimensional subspace of t-common eigenvectors called a root
space. The corresponding eigenvalue depends linearly on the acting element of t, so is
given by a linear functional @ € t*, called root. Thus

T, X]=a(T)X, Tet XE€g,.

The Killing metric. When we draw the root diagram in t* we use the Killing metric in
g to determine the size of the roots and the angles between them. The Killing metric in g
is the inner product (X,Y) = tr(ad(X)ad(Y)). It is non-degenerate (this is equivalent to
semi-simplicity) and its restriction to t is positive definite.

Example: the root diagram of sl3(R). There are 6 roots
Q5 1= tl—tj Et*, Z;éj, Z,j S {1,2,3},

with corresponding root spaces
Gaij = RE;

YR

where E;; is the matrix whose 75 entry is 1, the rest 0. The corresponding root space

decomposition
sl =t® Zgaij7
i#]
is just the decomposition of a matrix as a diagonal matrix plus its off diagonal terms.
The metric induced on t by the Killing metric is some multiple of the standard euclidean
metric, so that (T, T") = ¢, t;t; for some ¢ > 0.

13
o
Q12 Q23
S¥) (S5
— (g3 — Q12
O
— (13

The root diagram of sl3

In the case of gy there are twelve roots and root spaces, as seen in its diagram.

Reading the root diagram. One can read the whole structure of g off its root diagram,
and some aspects of the structure are very convenient to see in the diagram in a formula-
free manner. Here is the key observation. Let a, 3 be two roots with (non-zero) root
vectors F, € gq, Eg € gg. That is,

T, E,] =a(T)E,, T €t,

5



and similarly for 3. It then follows immediately from the Jacobi identity that
[T’ [Ea, Ep]] = (o + B)(T)[Ea, Ep].
This means that
(1) if &+ [ # 0 and is not a root then [E,, Es] = 0;
(2) if a+ [ # 0 and is a root then [E,, Es| € gats:
(3) if a+ (5 =0,1ie B=—a,then [E,, Eg] €t

This set of 3 conclusions permit us to see at a glance from the diagram a fair amount
of the structure of g. In the last two cases one can further show that [E,, Eg| is non-zero
and determine, with some calculations, the actual bracket, as will be illustrated later.

Example: reading the root diagram of sl3. Let us consider the subspace p C sl
spanned by t and the root spaces corresponding to the roots marked with dark dots.

The diagram shows that p is a 5-dimensional subalgebra, i.e. it is closed under the
Lie bracket (there are 4 dark dots, but remember that the thick dot at the origin stands
for the 2-dimensional Cartan subalgebra). Indeed, p is the subalgebra of upper triangular
matrices (including diagonal ones), with corresponding subgroup P C SLj, the subgroup
of upper triangular matrices with determinant=1. Consider the quotient space SL3(R)/P.
This can be identified with the space F' of flags in R3, consisting of pairs (I, ), where [ is
a line and 7 is a plane, such that | C # C R3. Now the tangent space to F' at some base
point with isotropy P is naturally identified with sl3/p, represented in the root diagram
by the remaining three light dots. Two of the light dots are markes with +. The diagram
shows that the root spaces corresponding to these roots span a p-invariant 2-dimensional
subspace of sl3/p which Lie generates the root space associated with the third light dot.
This means that we have on F' an SL3(R)-invariant rank 2 contact distribution, i.e. a
non-integrable distribution that Lie generates the tangent bundle. It is possible to identify
this distribution with the “tautological” contact distribution on F' (“the line [ moves inside
the plane 77).

Reading the g, diagram. Now let us draw conclusions in a similar fashion from the go
diagram. Consider the 9-dimensional subspace p C go spanned by t and the root spaces
associated with the roots marked by the dark dots in the diagram. Then the diagram
shows that

e pis closed under the Lie bracket, i.e. is a subalgebra (a so-called parabolic subalgebra,
a subalgebra containing a Cartan subalgebra).

e Let P C G5 be the corresponding subgroup. It follows that G5 has a 5-dim ho-
mogeneous space Go/ P, whose tangent space go/p at a point is represented by the
remaining 5 light dots.

e Two of the light dots are marked with +. The diagram shows that their root spaces
generate a 2-dim p-invariant subspace of go/p, hence a Go-invariant rank 2 distribu-
tion on Go/P.



e This distribution is not integrable, in fact, it is a distribution of type (2, 3,5), since
the diagram shows that bracketing once gives the light dot marked with o3 and
bracketing again gives the remaining two light dots.

Now we want to identify Gy/P with SO3 x S?, so that the G-invariant rank 2 distri-
bution on G/ P is identified with the rolling distribution on SO3 x S? for R = 3. The idea
is as follows. (G5 contains a maximal compact subgroup K with Lie algebra K isomorphic
to s03 X 503. When we restrict the Gy action on G5/ P to K we still get a transitive action,
so we get an identification Gy/P = K/H, where H = K N P. We define a Lie algebra
isomorphism £ ~ s03 x s03 so that h ~ R(es, e3) and the distribution plane W C bt is
mapped onto the rolling distribution plane of §4, with R = 3.

Maximal compact subgroup. How can we “see” a maximal compact subgroup of Go
in its root diagram? Let us look back again at the example of SL3(R). Here the maximal
compact subgroup is SOz, with Lie algebra sos, the set of 3 by 3 antisymmetric matrices.
These are spanned by the vectors E;; — Ej;, @ > j. So we see that corresponding to each
pair of “antipodal” roots =+ «a;; we have one generator of &, lying in the sum of the two
corresponding root spaces.

More generally, for the “split” real form of any semi-simple Lie algebra (such as our
g2), the situation is similar: we get the Lie algebra K of a maximal compact subgroup
K C G by taking the sum of 1-dimensional subspaces, one such subspace for each pair of
antipodal roots =+ «, a certain line (1-dimensional subspace) in g, @ g_. In fact, there
is a certain particulary “nice” choice of root vectors E, € g, (sometimes called a “Weyl
basis”), so that the sought-for line is given by R(E, — E_,), as in the sl3 case.

In the case of go we thus have that

e £ is the sum of six 1-dimensional subspaces s;, [;, 7« = 1,2, 3, where s; lies in the sum
of the root spaces corresponding to =+ o;, and [; lies in the sum of the root spaces
corresponding to =+ ;.

e The isotropy of the K-action, H = K N P C K, is given in the diagram by the
vertical segment, h = [3.

e The distribution plane W C &/b is generated by s1, 82 (mod b).
We have thus assembled the required ingredients for a “distribution data” (&, h, W).

6 Identifying K ~ so3 P so3

Our task here is to define an isomorphism K ~ so03 @ so03 that maps (K, h, W) to the data
of §4 with R = 3. This entails the decomposition of K into the direct sum of two ideals,
each of which isomorphic to so3. It would have been quite nice and simple if the sought-for
decomposition of & had been the decomposition into “long” ([;) and “short” (s;). But
this is not the case. For example, the diagram shows that although the [; generate an
s03 subalgebra of R, this subalgebra is not an ideal, so is not one of the summands in the
decomposition. The s; do not generate even a subalgebra. So we have to work harder, i.e.
write down the precise commutation relations.
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Proposition 3 One can pick a basis {S;, L;li = 1,2,3} of R, with S; € s; and L; € |,
such that

3
(L, Lj] = €ijli, [Li, S| = €juSe,  [Si, 5] = Eijk(ZLkz — k),

where €51, s the “totally antisymmetric tensor on 3 indices” (=1 if ijk is a cyclic permu-
tation of 123, -1 if anticyclic permutation, 0 otherwise).

The proof of this proposition consists of a simple but tedious calculation, which we
cannot “see” in the diagram (we tried). So we are reduced to picking up as nice as possible
basis for g, and calculating the corresponding structure constants. Reference: Serre’s book
on Lie algebras [1]. Details in the next §.

Now set
e, L BLZ + 251 e// L L,L — 25@
i 4 ) T T 4 )
These 6 vectors form a basis for 8 and satisfy the standard so3®so03 commutation relations

i=1,2,3.

[e;’ e;] = Eijke;c’ [efi/’ e;‘l] = Eijk’elklv [e;v e;‘/] =0,

thus establishing a Lie algebra isomorphism K ~ so3 @ so03.

Corollary 1 The map R — so03 @ so3 defined by €} — (e;,0), e/ — (0,e;),1=1,2,3, is a
Lie algebra isomorphism which maps h = RL3 to R(es, e3) and the 2-plane in K generated
by S1, Sy to the 2-plane in so03 X so3 defined in the Proposition of §4 for R = 3.

This is easily verified using the previous Proposition. We have thus defined a Gy-action
on (some finite cover) of the rolling distribution of two balls of radii ratio 3:1. QED

A note about how we came up with the formulae for e},e/. The first thing to
observe is that since L3 generates the isotropy H = P N K we should have L3 = €} + €f.
Since everything is symmetric in 1,2,3 we conclude that L; = e} + €, i = 1,2,3. Next
since S3 commutes with L3 we should have S3 = ae); + be for some constants a, b, and
again by symmetry S; = ae} + be!, i = 1,2,3. Now by using the commutations relations

1

for the €, e/ and the L;, S; we get that a, b are roots of the equation 2? +x — 3/4 = 0, i.e.

1) 1

a=1/2,b=—3/2. Hence,
Li=e,+e], Si=(e—3e/)/2, i=1,23.

/]
.. e

1) 7

Inverting these equations we obtain the above equations for e

A note about the “finite cover” ambiguity. The group SO3; x SOj is universally
covered 4:1 by S3 x S3. So there is not much of an ambiguity and it should be easy to pin
down.



7 Details of the proof of the proposition of the previ-
ous section

We are following Serre’s book [1], page VI-11. gy is Lie generated by the elements

x,y,h, X,Y, H, subject to the following relations, which one can read off the root dia-
gram.

[l‘, y] = h, [h>x] = 2z, [ha y] = —2y,

[X,Y]=H, [H, X] =2X, [H,Y] =-2Y;

[h, X] = -3X, [h,Y] = 3Y; [H,x] = —x, [H,y| =v;
[va] = [va] = [h’ H] = 0;

lad(x)]* X = 0; [ad(X)]* = = 0;

[ad(y)rlY =0; [ad(Y)]Qx 0

Taking Lie brackets of the vectors x, y, h, X, Y, H we generate a complete set {xz;, X;, y;, Yi|i =

1,2, 3} of root vectors for go, which, together with the basis h, H for the Cartan subalgebra
form a basis for g, as follows:

rs=x, X=X, $2:[$,X1], I1:[$7$2], X2:[$7l’1], XSI[XMXQ];
Ys =1y, YVI:Y, y2:_[y,Y1], yl:_[yay2]) 3/2:—[%%]; Y3:_[Y717Y2]

We label each root in the diagram with the corresponding root vector.

X3
®
X=X T Xo
Y=1Ys T3 =X
o o
Y, (7 Yy Y1 =Y
[ )
Y3

We end up with a “nice” basis wrt which the structure constants are particulary pleas-
ant; they are integers and have symmetry properties which facilitate greatly the work
involved in their determination; you can also apply some elementary sl, representation
theory that further facilitate the calculation; it helps to work with the root diagram nearby.

Symmetry properties of the structure constants. Suppose «a, 3 are two roots such
that o + 3 is also a root. Let E,, Eg be the corresponding root vectors, as chosen above.

Then [E,, Es] = capEa+p, for some non-zero constant ¢, 3 € Z. The nice feature of our
base is that the structure constants satisfy

C_CV»_ﬁ = _Ca’ﬂ'



This cuts in half the amount of work involved, since you need only consider say o > 0
(the positive roots are the dark dots in the last root diagram). Combining this with the
obvious ¢, g = —cg, (antisymmetry of Lie bracket) you obtain

Caviﬂ = cﬂvfa'
This cuts in half again the amount of work.

Proposition 4 The structure constants of go, with respect to the basis of root vectors
{z;, Xi,y3, Yili = 1,2,3} and the Cartan algebra elements {h, H} are given as follows. The
basis elements are grouped in three sets: positive (three x’s and three X ’s), negative (three
y’s and three Y’s), and Cartan subalgebra elements (h and H ).

e [Positive, positive|: other then the ones given above, and those which are zero for
obvious reasons from the root diagram (sum of roots which is not a root):

[{L‘h 1'2] = Xg.

e [Positive, negative]:

’Ca,BH 91‘92\3/3\3/1\}@\}3‘

o 4 1 —4] 0 | 1212
To | 4 1T | =3[ 1 [0 3
s | —4] =3[ 1 | 0 | =3] 0
X, [ 0 L]0 1 ]0 ] -1
X, || 12 10 | =3[0 1] 36
X; | —12] 3]0 | =1]36 | 1

The 1’s on the diagonal stand for the relations [x;,y;) = h;, [X;, Y] = H;, where, in
terms of our basis {h, H} for the Cartan subalgebra,

hy =8h+12H, hy=h+3H, hy=h,
Hy=H, Hy,=? Hy=".

e [Cartan,anything|: this is coded directly by the root diagram:

- ad(z) has eigenvalues and eigenvectors

eigenvalue H 3 ‘2‘ 1 ‘ 0 ‘ —1‘—2‘ -3
eigenvectors || Xo, Y1 | a5 | w1, y0 | X3, Y3, b H [ xo,1 | ys | X1, Y5

- ad(X) has eigenvalues and eigenvectors

eigenvalue H 2 ‘ 1 ‘ 0 ‘ -1 ‘ -2
eigenvectors || X1 | X3, w2, y3, Yo | 21,91, h, H | Xo,m3,42, Y3 | Y3
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Proor. This is elementary, using only the Jacobi identity, but takes time. We will give
as a typical example the calculation of [zq, zo):

[x1,20] = [z, [z, X]] (by definition of z5)
= |z, [xl, X+ [X, [x,21]]  (Jacobi identity)
(X, [z, 1] (since [x1, X]| =0)
= [X, Xo| = X3 (by definitions of X5, X3).

The rest of the relations are derived in a similar fashion. [
Now we are ready to define the generators of the Lie algebra of a maximal compact
subgroup K C G. Let
Xo— Yy X3 —Y3

Lo =
6 ) 3 6 ;

Li=X1-Y, Ly=

1 — U T2 — Y2 T3 — Y3
Sy = Sy = Sy = —==,
1 4 ) 2 9 ) 3 9
Using the commutation relations of the last Proposition one checks easily that
3

(L, Lj] = €ijuli, [Li,S;] = €jxSk,  [Si, ;] = €ijk(1

Lk — Sk)

Note: the strange-looking coefficients 2,4,6 in the definition of the L;, S; are chosen precisely
so that we get these pleasing commutation relations.

8 The dual fibration. Singular curves.

From the root diagram of g, we see that H, being generated by Ls, acts trivialy on Sj.
Write H* for the circle subgroup generated by S3. Then H and H* are commuting circle
subgroups of K. It follows that H* acts (on the right) on K/H defining a circle fibration
of the rolling state space, while H acts on K/H*. We thus have a K-equivariant double

fibration:

K/H K/H*

~,

K/(H % H)

where the bottom entry K/H x H*, is the product of two 2-spheres. XX: you wrote: ‘We
thus have a G-equiv double circle fibration... [this diagram]| — I see that G5 acts on K/H
and K/H*. 1 do not see that it acts on K. Does it? I have added in the bottom entry,
which you had convinced me that it does not act on.

We are curious about the geometry and group theory of the space K/H*. Go back to
the root diagram of Gy and notice that H* = K N P*, where P* C G, is the subgroup
whose algebra is generated by the black dots in the following drawing
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We see from the diagram that M* = K/H* = Go/P* has a G, invariant contact
distribution (given by the 4 dots marked with &®).

What is the rolling interpretation of M*, its contact structure, and its fibration over
S? x 52?7 We will show that points of M* correspond to “rolling geodesics” — integral curves
to the rolling distribution D formed by rolling one sphere along a great circle on the other
sphere. Then points of both spheres trace out great circles. An oriented great circle on a
sphere is uniquely determined by its “north” pole, so that the space of geodesics on a sphere
forms a “dual sphere” S?. The fibration M* — S? x S? sends a rolling geodesic to the
constituent pairs of geodesics, one for each sphere. The fiber of the fibration describes the
relative phase at which these two geodesics are traversed. This description of M* and its
fibration is manifestly K-equivariant. However, it does not indicate the contact structure
nor the Go-symmetry. The contact structure could be described as an embellishment
of Hitchin’s symplectic reduction description for the symplectic structure on the set of
geodesics on a rank 1 symmetric space ([?]). However, this viewpoint does not allow us
to understand the G5 symmetry of this contact distribution. We will use a more general
viewpoint for understanding M*, that of “singular curves” for a distribution.

For any (2, 3,5) distribution there is a distinguished family of horizontal curves called
“singular curves”. They correspond in our case to the rolling geodesics. See [3]. In order
to describe them we will begin with the situation of a general distribution.

Let D be a distribution on a manifold M. The endpoint map for D sends each D-
integral curve 7 : [0.1] — M, 4 € D its endpoints 7(0),(1). The space of all D-integral
curves has a Hilbert manifold structure in such a way that the endpoint map is a smooth
map from this path space to M x M. The critical points of this map are the singular
curves. The constant curves are singular, and we exclude them as trivial. See [8]. There
is an equivalent definition of nontrivial singular curves as follows. Let D+ C T*Q be
the bundle of one-forms annihilating D. Restrict the canonical two-form on T*Q to D*.
The resulting form may now have a kernel. An absolutely continuous integral curve in
D+ which is almost every tangent to this kernel and does not intersect the zero section
is called a “characteristic” (or “singular extremal”) Then every nontrivial singular curve
is the projection of some characteristic, and conversely, the projection of a characteristic
is a singular curve. Let Aut(D) be the group of diffeomorphisms of M which map D to
itself. It is clear from either of these descriptions of characteristics that Aut(D) maps
characteristics to characteristics.

Now specialize to the case of a (2,3,5) distribution D on a 5-manifold M. XX -; put
earlier ?? By definition, for such a distribution the sheaves D C D? C D? correspond to
vector bundles of rank 2,3,5. Here D? is the sheaf generated by D and by Lie brackets
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[X, Y] of vector fields X, Y tangent to D while D? is generated by D? and brackets [X, W],
X tangent to D, W to D?. Equivalently, if X,Y is any local frame for D, then by adding to
this frame the bracket Z = [X, Y] we get a local frame for D? and by adding to these three
the vector fields U = [X, Z],V = [V, Z] we get a local frame for D3. The (2,3,5) condition
is then that XY, Z U,V form a local frame for TM. The (2,3,5) condition implies that
D+ o D%t 5 D34 = 0 are subbundles of T*M of dimensions 3,2,0. One can shows that
any characteristic x : I — D= for D necessarily lies in D?** and is characteristic there, i.e.
is a characteristic curve for D2, viewed as a distribution in its own right. Conversely, any
characteristic for D? is automatically a characteristic for D. In other words:

Proposition 5 Fvery singular curves for D s the projection to M of a characteristic for
D?L. And the projection of any characteristic for D** is a singular curve.

In our situation of spheres we can understand the topology of D?* easily:

Proposition 6 In our 3 : 1 rolling, the 2-plane bundle D** — M is isomorphic, as

a 2-plane bundle with K-action, to the complex line bundle whose unit circle bundle is
K— M=K/H.

Proof. We only need to check that H acts on D** by the weight 1 representation. D is
spanned by the projection of the span of Si, .55 in K to T'M. Using the K-invariant metric,
we see that we can identify 2p with the span of [Sy, Z], [Sa, Z] where Z = [Sy, S3]. Now
within & we have that H acts on the plane spanned by S7, S5 by the weight 1 representation,
according to the commutation relations at the end of section 7. And it acts on Z trivially
since the determinant of any rotatin is 1. Consequently the H action on the span of
[S1, Z], [Se, Z] is identical to the H action on the span of Sp, S and so has weight 1. QED

Now, the set of rays through the origin of a vector space can be identified in a canonical
way with the unit sphere of that space, relative to any norm. By a ray in a vector bundle
we will mean a ray through the origin in any one of its fibers. It follows that we can
identify K with the rays in D*-. The proposition above now establishes that G acts on
K in such a way as to make K — K/H a Gy-equivariant circle bundle.

We now continue with the general (2,3,5) case so as to obtain the invariant contact
structure on the space of its singular curves. Let 6 denote the restriction to D*' of the
canonical one-form (Xp;dg’) on T*M. Then df is a 2-form on D?** whose rank is maximal
away from the zero section. Consequently on D*L \ 0 the kernel of df defines a line field.
The integral curves of this line field are the characteristics.

The characteristics satisfy a scaling symmetry. Let E be the ‘Euler field” on the vector
bundle DL, In terms of fiber coordinates A;, Ay for D** we have E = )\181)\1 + )\28%2. Then

the following relations hold on the 7-manifold Y = D%+ \ 0
Lp = 6,ipdf = 6,ix0 = 0 (1)

where Ly is the Lie derivative with respect to £/. As a consequence of the first relation we
also have that
Lgdf = 0.

It follows from these relations that the flow of F takes characteristics (being curves y with
i5df = 0) to characteristics, without changing their projection since E is vertical relative
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to the vector bundle fibration D?>* — M. Now the orbits of the flow of F are the rays
in D24, so that the quotient space Y/E is the unit circle bundle of D* which is in the
rolling case = K according to proposition 6. So the quotient space Y/FE also carries
characteristics.

Consider now the general situation of an odd-dimensional manifold Y = Y?"*! endowed
with a non-vanishing one-form 6 and vector field E satistying the above relations. Suppose,
as in our situation, that df has maximal rank. Then its kernels form a smooth line field
which we denote by Ker. In our example, the integral curves of Ker are the characteristics
XX. We can form the following sequence of (local) fibrations:

Y2n+1 _>E' QQn _>ker N2n71

@ is the quotient of Y by the flow of E. The kernel field pushes down to a line field ker
on (). N is the quotient of () by this line field. We will show that () inherits a quasi-
contact structure from the data (Y, 6, F') while N inherits a contact structure. Consider
the hyperplane field F' = ker(f) on Y. Then (Ker) C F as follows from (1): Lgf =
d(igf)+igdd = igdf = 0 from which it follows that if £ € (Ker) then 0 = d0(E, k) = 0(k).
(In particular F'is not a contact field.) These same equations (1) imply that Ker C F are
both invariant under the flow of E and so push down to the quotient () defining a line field
and hyperplane field ker = m,(Ker) C m.F on Q. (m.F is a hyperplane field since £ C F.)
Here 7 : Y — @ denotes the quotient map. The maximal rank condition on df implies that
T is a “quasi-contact” form — the odd-dimensional analogue of a contact distribution.
Specifically, let a be any locally defined one form on () whose vanishing defines 7, F. Any
such « can be expressed as s*0 = «a where s : U C () — Y is a smooth local section of the
projection 7 : Y — (). The rank of da restricted to 7, F' is independent of the choice of «
and is equal to 2n — 1, the rank of df restricted to F'. The kernel of da restricted to m, F is
ker = m,(Ker). In the (2,3,5) example the integral curves of this kernel are the projected
characteristics. Flowing in the direction of (ker) on any quasi-contact manifold preserves
the quasi-contact distribution: Lya = 0 mod a where k is any nonzero vector field tangent
to the reduced kernel. Consequently, the quasi-contact field on () pushes down to the
quotient N, of () by this kernel field. The result is a contact form on N. In our example,
every step of the construction is invariant under Aut(D) and hence the contact structure
on N is so invariant.

To complete our understanding, it remains to identify the H*-orbits in the Gs-action
with the rolling great circles. H* is generated by S3 which corresponds in K to the Lie
algebra element (1/2)(e3, —3e3) € & . This element lies in D, according to proposition
2. so it generates rolling curves. And the projection of the integral curve exp(Ss3) to
either sphere is..... is .. NO!! ARGGH. The vector (w',w") = (e3, —3e3) satisfies the first
condition of prop 2: 3w’ +w” = 0. But it fails the condition (w', e3) = 0 and (w”,e3) =0
II'It is ORTHOGONAL to rolling curves...

Above was a minor wrong term. RESOLUTION OF APPARENT PARADOX FOL-
LOWS:

notes to Gil:

Instead of the P* you marked, take the conjugate P* indicated below in the root
diagram.
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The associated H* = K N P* will now be S5, and back in the original rolling picture,
it will be (ea, —3e2)/2 the quotient by which yields the great circles.

&)

Another piece of the puzzle. Viewed in K, the subgroup H* (which I am proposing
is generated by (es, —3es) ) generating the rolling-along-great-circles and the subgroup H
whose quotient yields the rolling state space M°> DO NOT COMMUTE. Indeed — rolling-
along-great circles does not make sense as a circle action in M°®. Why? — through each
point of M?® pass a circle’s worth of these great circles, not a single one as would have to
be the case if the action of H and H* commuted.

Question. I know from the last thing I was writing, about realizing K as what I
called PD?*+, that K is itself a homogeneous space for Gy. It seems to me that it is the
homogeneous space Go/(P N P*) with P* my ‘rotated” P* above. At least the dimensions
match up, and it admits projections to Go/P and Gg/P*.

Answer: Because RNpNp* = 0, ,the map K — G/(PNP*) = N, defined by restricting
to K the G action on the homogeneous space N, is an immersion. By dimension count, it
is a local diffeomorphism, hence a covering map. So, up to finite cover, Gy/P N P*) = K

Remark. By rotating the roots selected to define P* (or P) around the root dia-
gram,we obtain a finite family of conjugate P*’s (or P’s) each of which defines a different
projection of N = K onto K/(KNP*), (onto K/KNP)). The existence of this finite set of
distinct circle bundle projections reminds me of the three projections in Arnol’ds “triality”
article in which he interprets the three quotients of S = Sp(1) by the three subgroups
generated by 4, by j, and by k in terms of various wavefronts and contact/symplectic
geometric constructions involving involutes and evolutes of curves on the sphere.
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