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Summary. In this paper ,  we extend recent  work  of one of  us [Br]  to in- 
vest igate an old  p rob lem of the other  one [B2].  Given  a connec ted  semi- 
s imple complex  Lie -group  G with Lie-a lgebra  g, we s tudy the represen ta t ion  
~x: U(g)-*D(X) of the enveloping  a lgebra  of  g by global  differential  oper-  
a tors  on a comple te  homogeneous  space X = G / P .  It turns  out  that  the 
kernel  I x of q)x is the ann ih i l a to r  of  a general ized Verma-module. O n  the 
o ther  hand,  we s tudy the associa ted  graded ideal gr Ix, and relate  it to the 
geomet ry  of  a general ized Springer-resolution, that  is a m a p  ~x: T*(X)--*g of  
the co tangen t -bund le  of  X on to  a n i lpotent  var ie ty  in g, as s tudied e.g. in 
[ B M 1 ] .  We prove,  for instance, that  gr l  x is pr ime if and  only if ~x is 

b i ra t iona l  with normal  image. In general ,  we show that  gl /gr /x is prime. 
Equivalent ly ,  the associa ted  variety of I x in g is i r reducible :  In fact, it is the 
closure of the Richardson-orbit de te rmined  by P. F o r  the h o m o g e n e o u s  
space Y=G/ (P ,P ) ,  we prove that  the ana logous  ideal Iv  has for assoc ia ted  
var ie ty  the closure of  the Dixmier-sheet de te rmined  by P. F r o m  this ma in  
result, we derive as a corol lary,  that  for any  modu le  induced from a finite- 
d imens iona l  Lie P - m o d u l e  the associa ted var ie ty  of the ann ih i l a to r  is irre- 
ducible,  p roving  an old conjecture  [B2],  2.5. Final ly ,  we give some appl i -  
ca t ions  to the s tudy of associa ted  variet ies of  pr imi t ive  ideals. 
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Remark. The present paper is designed to be the first - and introductory - 
one in a series of three. In part  two we intend to expose a theory of 
"relative enveloping algebras" associated with a principal homogeneous fib- 
re-bundle, and to apply this to induction of infinite-dimensional modules. In 
part  three we intend to deal with the classification of primitive ideals, using 
the notion of a characteristic variety of a primitive ideal in the cotangent- 
bundle of the flag-variety, which maps onto the associated variety under the 
Springer-resolution map. One of our purposes is to contribute to a better 
understanding of the classification of primitive ideals, as achieved by Joseph 
and Barbasch-Vogan in various recent papers. The classification, as carried 
out in [BaV1], [BaV2], is still somewhat tedious and mysterious, although 
the final result is most beautiful. Our intention is to pave the path for a 
direct, purely geometrical explanation. 

The subdivision of the material in three papers corresponds to three 
essentially different levels of difficulty and complexity of methods, each of 
which is - hopefully - interesting enough in its own right. On each level, we 
shall reobtain the main applications of the previous level as special cases. 

Introduction 

The homogeneous spaces considered in this paper are algebraic varieties X with 
a transitive action of some connected algebraic group G, such as the affine or 
projective complex n-space, or Grassmannians,  or flag varieties. The differential 
operators considered are linear with algebraic coefficients. Our first aim is to 
study the ring D(X) of all such operators which are globally defined on X. This 
is a class of noncommutat ive  Noetherian domains arising most naturally from 
geometry and analysis, and so should deserve some attention in algebra. For 
affine space with coordinates x l , . . . , x ,  for example, D(X) is the Weyl algebra 

8 8 
generated by all partial derivatives 8x~'""Sx~, and multiplications xl . . . .  ,x, ;  

moreover  the Heisenberg commutat ion relations are known to provide a set of 
defining relations. For projective n-space with homogeneous coordinates 
x 0 . . . .  ,x ,  for example, we shall see that D(X) is generated by the operators 

8 
x i -  for 0 < i, j < n, and we also know how to give a list of defining relations, 

8x~ - 8 
which includes the obvious Lie commuta tor  relations, as well as X o ~ + . . .  

ux o 
+ x , ~ = O ,  the Euler differential equation for homogeneous polynomials. 

Strangely enough, we could not even find this example in the literature, whereas 
the case of affine space, that is to say the Weyl algebra, has been subject to 
oxtensive research, of course (see e.g. [Bj]). 

For  a general homogeneous space X, we start from the observation that the 
Lie algebra t of our group G acts by vector fields on X which indeed are 
globally defined on all of X, and we are able to prove that they even generate 
D(X), whenever the variety X is complete (Theorem3.8). This extends recent 
work of Brylinski [Br], who treated the case of a flag variety (that is the 
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variety of all Borel subgroups in a semisimple group), which is basic for 
[Br Ka]. For the present generalization, we have to use a difficult theorem of 
Berline-Duflo [CD] on .q-finite endomorphisms of induced modules. However, 
for the subsequent main goals of this paper, we only need a much weaker 
result on D(X), which turns out to be an easy consequence of the completeness 
of X: We only need that D(X) is a module of finite type over the subalgebra 
generated by the vector fields arising from ,q. 

As to the problem of finding also defining relations for D(X), this is 
reduced to a question about certain primitive ideals in the universal enveloping 
algebra U(g), for which a highly developed theory is available by now. In fact, 
the representation of .q by vector fields on X extends to a homomorphism ~x 
of U(g ) to D(X), and we identify its kernel I x as being the annihilator of the g- 
module induced from a certain one-dimensional representation of an isotropy 
subalgebra (see 3.6). This result is even true if X is not complete, so if U(.q) 
might not surject onto D(X). It generalizes work of Kempf and Brylinski ]-Ke2], 
[Br] about the case of flag varieties, in which case the induced modules 
mentioned above are so called Verma modules, that is a certain class of infinite- 
dimensional representations of g, for which a highly developed theory is 
available (see e.g. [J], [Br Ka], [BeBe]). 

Another essential tool for our study of D(X) in terms of U(9) is the so- 
called momentum map ~x, as introduced by Souriau [So], and independently by 
Kostant [ Ko l ] ,  which has been extensively used by mathematical physicists 
since then lAMa] .  This is a canonical map ~x: T*(X)-~g* from the cotangent 
bundle of X into the dual space of g, which is closely related to our homo- 
morphism r U(g)--*D(X), as follows: Viewing the principal symbol of a differ- 
ential operator on X as a function on the cotangent bundle of X, as usual, the 
associated graded map of 6x becomes a homomorphism of the symmetric 
algebra S(9) into the global regular functions on T*(X), and hence gives rise to 
a map from T*(X) to g*. This map is ~x. 

Let us henceforth assume in this introduction that G is semisimple, and 
identify g* with 9 by the Killing form. Then the image of the moment map of 
the flag variety, for example, is the variety of all nilpotent elements of 9, and 
the map itself is nothing else but the well known Springer resolution of 
singularities, as studied extensively since long by algebraic group theorists (see 
e.g. IS1], [$2], [St], IBM l], IBM2] or 6.2). More generally, the map ~x is 
proper, whenever X is complete, and then the image of ;r x is the closure of a 
certain adjoint orbit of nilpotent elements, in fact, of the so called Richardson 
orbit determined by the parabolic subgroup P of G which is the isotropy group 
of X. We prove then that this orbit closure coincides with the associated variety ~)f 
the ideal I x of U(.q) (see 4.4). Here the associated variety of an ideal J in U(g) is 
defined as the set of zeros in .q* of the associated graded ideal g rJ  of S(g). In 

particular, the nilradical ]/gr I~ is a prime ideal. Furthermore, we prove that 
gr I x itself is prime if" and only !] ~x is birational with normal image (Theo- 
rem5.6), which is e.g. always satisfied if 6 is SL, (Kraft-Procesi [KPI] ) .  In 
general, ~x is frequently not birational, i.e. its mapping degree is bigger than 
one, and we show that this degree gives a measure for the deviation of g r l  x 
from being prime (Theorem 5.8). This number has many interesting alternative 
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interpretations, e.g. in terms of multiplicity functions as in [BK2] (7.2(c) and 
(d)), and its numerical value is explicitly known for all cases (see 2.6). 

So far, our first aim has been to use U(9 ) as a tool for the study of D(X). 
Let us now take a different point of view, interchanging the r61es of U(9) and 
D(X): We now study ideals of the enveloping algebra of our fixed complex 
semisimple Lie algebra 9, using rings of differential operators on various 
homogeneous G-spaces as a tool. Our main goal is to prove (see 4.7) the 
following old conjecture of Borho [B2], 2.5: Let I be an ideal of U(9) which is 
"induced" from a parabolic subalgebra p of 9, that is to say I is the annihilator 
of a 9-module induced from a finite dimensional p-module. Then the associated 
variety of I in 9 is irreducible. This implies that the variety coincides with the 
closure of the Richardson orbit determined by the parabolic subgroup P with 
Lie algebra p, (see [B1]). Previously, the conjecture had been proved by 
Joseph for the case G = S L ,  only, by completing investigations of Borho and 
Kraft-Procesi, see [Jo2]. The crucial ingredient for this old approach was the 
normality of closures of orbits [KP1] ,  plus the connectedness of centralizers of 
nilpotent elements. The former is a beautiful but difficult fact about SL,, and 
both are false in general. As the reader will realize, these difficulties will 
completely disappear in our present approach: Neither normality nor con- 
nectedness properties matter for our arguments. 

Let us next sketch the proof of the conjecture. Recall first our above result 
on the associated variety of the ideal Ix, the kernel of the representation of 
U(9) by differential operators on the complete homogeneous space X =G/P. 
This already proves our conjecture for the (very special) case of inducing a 
certain particular onedimensional p-module. The crucial step is to extend this to 
the case of inducing an arbitrary onedimensional p-module. Using the method 
of tensoring with finite-dimensional representations, the general case is finally 
reduced to this onedimensional case. 

To deal with this case, we first work on the homogeneous space Y 
=G/(P,P), which is never complete, unless it reduces to a point (P=G).  
Nevertheless, we are still able to prove the following result, which is our main 
theorem: 

Theorem (4.6). The associated variety of Ir is the image of the moment map ~y 
and hence irreducible; in fact, it is the closure of the Diximier sheet [B4] 
determined by P. 

In the easy case where P is a Borel subgroup, for example, (P,P) is a 
maximal unipotent subgroup, the image of ~y is all of 9, and ~v itself is 
essentially Grothendieck's simultaneous resolution. Our proof of the theorem 
depends on the observation that U(9 ) acts by differential operators which 
commute with the right action of P on Y, and that the subring D(Y) P of such 
operators is of finite type as a U(g)-module (while D(Y) is generally far from 
being so). The geometric fact granting this is that Y is a principal homo- 
geneous fibre bundle over the complete homogeneous space X = G/P. 

To finish our sketch of proof for the conjecture, we note that all ideals I in 
question (induced from any one-dimensional p-module) contain the ideal I v. 
We conclude that the associated variety of I is contained in the closure of the 
Dixmier sheet, and also in the cone of nilpotent elements. Since the in- 
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tersection of these two sets is just the closure of the Richardson orbit de- 
termined by P, we are done. (At least with the difficult inclusion claimed in the 
conjecture. But the other inclusion was known before.) 

Finally, we turn to the study of primitive ideals in U(g). Conjecturally, their 
associated varieties are always irreducible, and hence closures of nilpotent 
orbits (cf. [B2], 2.9). This was proved for G = S L ,  by Joseph [Jo2], and is in 
fact an easy corollary to the result on induced ideals (see 4.9). In the present 
paper, we prove this conjecture for all classical groups and all primitive ideals 
of integral central characters (Theorem 6.5). Unfortunately, we have no direct 
geometric approach to the associated variety of a primitive ideal, except for the 
case of induced ideals. So we employ the classification theory of primitive 
ideals, as achieved bv ,loseph and Barbasch-Vogan (of. (~.4 or [BaV2]), to 
deduce the result in the general case from the result in the induced case. 

Let us give a rough idea of the proof. This deduction is necessarily some- 
what involved, since the classification of primitive ideals (with trivial central 
character, say) is in terms of Springer's correspondence between nilpotent 
orbits and Weyl group representations. Moreover we need both Joseph's re- 
lation from a primitive ideal to a Weyl group representation as well as 
Barbasch-Vogan's relation from a primitive ideal to a nilpotent orbit, using 
"wave front sets". Barbasch and Vogan [BaV1], [BaV2] have verified that (1) 
this "triangle correspondence" commutes, that (2) the nilpotent orbit corre- 
sponding to a primitive ideal is contained in its associated variety, with 
equality of dimensions, and that (3) the orbits which occur are exactly the 
"special orbits" in the sense of Lusztig ILl,  (which include the Richardson 
orbits). It is left to prove that the associated variety is equal to the closure of 
the corresponding special orbit. If the special orbit is even Richardson, this 
equality follows from our theorem on induced ideals, using a lemma of Joseph 
(see 6.7). If not, then we use a representation of the closure of the special orbit 
as an intersection of closures of Richardson orbits, and we use primitive ideals 
contained in the given one, which correspond to these Richardson orbits, in 
order to derive the desired equality also for this special orbit (see 6.8). In order 
to make this method work in general, we have to know that (1) there are 
"enough" intersections of closures of Richardson orbits, and that (2) there are 
"enough" inclusions of primitive ideals. But these ingredients for the proof are 
fortunately provided by two results of Kempken [Kk] and Spaltenstein [Sp2] 
about special orbits in classical groups, one of which translates into (2) by a 
theorem of Vogan (6.10). (Let us note that (1) fails for exceptional groups.) We 
are grateful to Gisela Kempken, Nicolas Spaltenstein, and David Vogan for 
kindly explaining to us their results, which have not yet been published. Using 
[$3], [BM2],  these results admit most interesting geometrical reformulations 
in terms of the geometry of the moment map of a complete homogeneous 
space (see 6.12, 6.13), underlining their independent interest. For  more details, 
more back-ground, some examples, and an outlook the interested reader is 
refered to Chap. 6. 

We conclude with a few remarks concerning the exposition. In the first 
chapters, we have tried to convince the experts in enveloping algebras and 
representation theory that it is both natural and useful to study differential 
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operators on homogeneous spaces in connection with modules over (and ideals 
in) enveloping algebras. The rather little machinery needed to establish this 
connection is exposed in the first three chapters. In Chap. 1, we have collected 
some generalities about differential operators, while in Chap. 2, the group 
action is introduced, and the general notion of a moment map is explained. 
These two chapters contain essentially no original results, but they will hope- 
fully be useful in explaining various relations to (or in) the previous literature, 
and in preparing for the subsequent chapters. In Chap. 3, we explain the 
relation between D(X) and induced modules, extending ideas of Kempf [Ke 1], 
[Ke2].  The determination of the associated variety of an induced ideal is given 
in Chap. 4, while Chap. 5 is dedicated to the more delicate study of the associated 
graded ideal (of an induced ideal), which mainly amounts to a careful compari- 
son of the natural filtrations on D(X) and U(g). We hope that these two 
chapters are readable not only for group and ring theorists, but also for 
geometers and PDE-experts, who might be interested in these algebraic appli- 
cations. The long Chap. 6, however, heavily depends on many deep results in 
various connected fields, and is mainly written for experts in semisimple 
groups and enveloping algebras. However, we have spent some care on sum- 
marizing, or at least fully stating, most of the results which are used, and so we 
hope that e.g. readers mainly interested in Weyl group representations, or in 
nilpotent orbits might still manage to read this chapter with some benefit, 
provided that they are ready to believe the statements quoted from various 
places in the literature. 

w 1. Some Terminology on Differential Operators 

1.1. Our algebraic varieties and algebraic groups are defined over some fixed 
algebraically closed field k of characteristic O. Our varieties, morphisms, group 
actions, vector-bundles, sheaves are understood to be algebraic, and to refer to 
the Zariski-topology, if not otherwise stated. 

For  a vector-bundle E with base X we denote by E x the fibre at a point 
x~X, and by F(E) the sheaf of sections of E. For a sheaf F of groups, rings . . . .  
on X, we denote by F x the stalk at x~X, and by F(X,F) the group, ring .. . .  of 
global sections. For a nonsingular variety X, T(X) is the tangent - and T*(X) 
the cotangent - bundle of X, T(X)x is the tangent-space at a point x~X, and 
F(T(X)) is the sheaf of algebraic vector-fields on X. Moreover, 6 x resp. ~ x  is 
the sheaf of algebraic functions resp. of algebraic differential operators on X, 
E)x,x resp. ~x.~ is the local ring of functions resp. the ring of differential 
operators defined in a neighbourhood of x, and R(X):=F(X,(gx) resp. D(X): 
=F(X,~x) is the ring of global regular functions resp. global differential 
operators on X. For  example, if X is an affine space, then R(X) is a poly- 

ring k [x l , . . . , x , ] ,  and D(X) is a Weyl-algebra k lxl .... ,x,, nomial 
8 k 

, . . . ~  8x~ ~ ,  a non-commutative ring which is simple noetherian. In general, 

~ x  is a sheaf of simple noetherian rings: In fact, each stalk @x.~, is "essen- 
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tially" a localized Weyl-algebra. (It is a left module of finite rank over a 
subalgebra of this type.) For further details, we refer to [Bj]. If  x~ .. . .  ,x,, is a 
transcendence basis for the field K(X) of rational functions on X, then the ring 
of differential operators on X with rational coefficients 

~ . . . ,  D(X)K(X)=K(X) 8x~ ?x, 

8 
is generated by ...... , 8x 1 " ' " S x , '  and is a left and right module of finite rank over 

1 ~Xn 

a localized Weyl-algebra. 

1.2. The sheaf ~ x  is filtered by the subsheaves ~x(m) of differential operators 
of degree <m. For example, .~x(O) is 6:'x, and ~x(1)/~c_/x(0) is the sheaf of 
vector-fields F(T(X)). In general, ~x(m)/~C_Zx(m - 1) is the sheaf of sections of the 
m-th symmetric power of the tangent-bundle, F(Sm(T(X))), which we consider 
in an obvious way as consisting of functions on T*(X): in fact as the regular 
functions which are homogeneous polynomials of degree m on the fibres. 
Consequently, the associated graded sheql' gr ~x ,  defined as 

gr ~x.. = @ ~x(m)/gx(m- 1), 
mkO 

identifies with the direct image of the sheaf of functions on the cotangent- 
bundle p: T*(X) ~ X: 

gr &x ~ @ r(sm(r(x))) = p ,  ('r*~x). 
m>_O 

1.3. The non-commutat ive ring D(X)= F(X, CJx) of global differential operators 
on X is filtered by the subspaces Dm(X)=F(X,~x(m)) of global differential 
operators of degree <m. For example, Do(X ) is R(X), and DI(X)/Do(X ) is the 
R(X)-module of global vector-fields on X. In general, the image of an operator 
P of degree m in D,,(X)/D,, I(X), the so-called principal symbol of P, is a global 
function on T*(X) which is homogeneous of degree m on the fibres, in view of 
the identifications made in 1.2. Consequently, the associated graded ring 

g rD(X) :=  (~) D.,(X)/D,. ~(X) 
m>O 

is considered as a subring of the ring R(T*(X)) of global regular functions on 
the cotangent bundle. Are the two rings even equal? We give the following 
result on this question, which, however, will not be used for the proofs of our 
main results. 

1.4. Lemma. If  X is a complete homogelteous space, their 

grD(X)=R(T*(X)). 

Proof In this case, it follows from a result of R. Elkik [E 1], see also [BK2],  
Lemma A.2, that the cohomology groups Hi(T*(X),(~7.(.~) vanish in all dimen- 
sions i > 0. 
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Since p: T*(X)~ X is an affine morphism,  we have 

Hi(T*(X), (! r*(xl) = Hi( X, P. 6 r*~xt) = Hi( X, gr @x) 

(see 1.2). So the cohomology  groups H'(X, 2x(m)/~x(m-1)) vanish for all i>0 ,  
m > 0 .  An easy induct ion on m then shows that  Hi(X,~x(m))=O for i>0 .  It 
follows that  the m a p  from D,,(X)=F(X, 2x(m)) to F(X,~x(m)/2x(m-1)) is 
surjective, with kernel D m_ I(X). Since R(T*(X)) is the direct sum of the groups 
F(X,~x(m)/~x(m-1)), this gives the lemma.  Q.e.d. 

1.5. We fix a base point  x in our nonsingular  variety X of dimension dim X 
=n.  Consider  the highest cohomology  group  of X with coefficients in g)x and 
suppor t  in x [Ha] ,  which may  be defined as follows: 

HI(X, (5'x) : = l i m  E"*"Atex,x ttCX,x//l-i+ltx 1 ~)X,x)'  

i 

where m x is the maximal  ideal of 6'x, x. We want  to exhibit a natural  s tructure 
of  a D(X)-module  on this group. 

n () Let us first give a more  concrete  descript ion of Hx(X, dx). It follows from 
n A 

the definition of this group, that  it is i somorphic  to Hx(X x, CX~x), where )(x is 
the spect rum of the comple t ion  of the local ring ((x,x. Since X x is i somorphic  
to f'0, where Y = A "  is an affine space with origin O, we loose no generali ty if 
we assume that  X = A "  and x=O.  Choose coordinates  (z 1 . . . . .  z,) at x. Using 
the Cech-complex for the covering of  X\{x}  by the open subsets (zi#O), one 
may  derive the following identification of HI(X, C'x): 

H~(X, (Ox) ~- {germs of rational functions regular on (~ (z i 4: 0)} mod. 
i 

Z {those which are regular on (~ (z,=l=O)}. 
j i4-j 

1 
A basis for this k-vectorspace is given by the rat ional  functions - -  where z ~ 

=z~ ~. . .z .  ~" is a monomia l  with exponents  c q , . . . , a ,  all _>1. With this de- 
scription, the structure of Hi(X,(gx) as a D(X)-module  becomes obvious" For  

?~ 1 _ c~ 1 .  This makes  evident that  the module  is cyclic, generat-  instance, (~Zi Z a Zi Z c~ 

e d b y  1 [ ~  ( ? ]  - - ,  even as a module  over  the (commutat ive)  ring k z l  
ZI  " "  Zn n 

of differential opera tors  with constant  coefficients. If we call cq + ... + ~ , - n  the 

_'~ ] -module ,  the degree of , then Hi(X, 6~x) is a graded free cyclic k (?z~'"" gz,] 

1 
genera tor  being of degree 0. Let us denote  M,, the span of all - -  of  degree _<m, 

for m = 0 ,  1, 2 . . . . .  Then  M,, is an ( g x s s u b m o d u l e  of  M=H2(X,(gx), which is 
also character ized as the annihi la tor  of  "+~ m~ , and which coincides with the 
image of Ext~x,~((gx, jm~+~gJx,~) in H2(X,(gx) in terms of  the abstract  de- 
finition given above. Now it is obvious  that  D~(X)Mo=Mm, and that  the 
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subspaces O = M _ ~ c M o c M ~ c . . .  form a filtration of the D(X)-module M 
such that 

g rM:  = ,,>=0@Mm/Mm-l~k[ (??,zl ' """' (f~,T, ] ~@S(m>=o " T  (X)~)=R(T*(X)x), 

as a graded vector-space, 

1.6. Assume that the variety X is connected. 

Lemma. a) HI(X, Cx) is a faithful cyclic D(X)-module M. 
b) M is generated by a one-dimensional ()x,x-submodule Mo_~A'(T(X)x ) iso- 

morphic to the n-th exterior power of the tangent-space at x. 
c) M is filtered by finite-dimensional 6~xssubmodules 

Mm={q6MInt~'+lrl=O}=D,,(X)Mo (m=0,  1,2 . . . .  ). 

d) g r M  is isomorphic to the ring oJ" polynomial functions on the cotangent- 
space at x (as a graded vector-space). 

All statements of the lemma follow from the discussion in 1.5 in terms of 
local affine coordinates. That M has to be faithful as a D(X)-module is also a 
consequence of 1.1, since all stalks ~x,~ are simple, and D(X) injects into ~x,~. 
- However, let us give now an intrinsic description of the D(X)-action on M 
= HI(X, (gx), which exhibits the independence of the choice of coordinates. 

For this purpose, consider the sheaf f2 x of algebraic differential forms of 
order n on X. The stalk f2x, ~ is a right ~x.~-module in an obvious way. In 
terms of coordinates as in 1.5, the n-form dz~/x .../x dz, is a free generator for 

0 
f2x, x as an C X,x-module, and is annihilated by the derivatives 0z~' "" '  0z, '  Now 
there are canonical linear maps 

f~x.x| X, ~x) -"~ Hi (X ,~x)  ~es k. 

Their composition Res = res./~ gives a non-degenerate pairing, which induces a 
non-degenerate pairing 

~r~ - ~  11 m + l  x,~/~x,~ t~ |  

for each m>0.  Hence this identifies M m with the dual vectorspace 
m n ( x,Jf2x,~ntx + ~)* for each m, and M =Hx(X ,  (gx) itself with the topoligical dual 

of (2x, ~ with respect to the Krull-topology. Now the D(X)-action on M is 
intrinsically given by 

Res(co| = Res(coP| (.) 

for all forms co~Q x ~ operators P~D(X), and classes r/eM. 
Let us verify that this definition agrees with the previous one, which used a 

local coordinate system. An element q of Hx(X,g,x) is represented by some 
function f, regular outside z~z 2. . .z .=O. It suffices to prove (.) for the case 
when P = v  is a vector field. Recall that then e). v = -  0~(co), where 0 v denotes 
Lie-derivation of differential forms with respect to v. So we have to prove 

Res(co| + O,,(co)| =0, 
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which also means that 

Res (v(f).  ~o + f .  O,,(~o)) = O, 

where f is viewed as a meromorphic  function. We have v ( f ) . co+f .  Ov(u) ) 
=0, , (f .  co) since 0 v is a derivation and v(f)=O,,(f). So it suffices to prove that 
Res. 0,, annihilates sections of  Ox, which are regular outside z lz 2 ... z,=O. If i,, 
denotes interior product  with v, then 0,, = d .  i v + i v �9 d coincides on Qx with d-i,,. 
But it is clear that Res annihilates any form which is exact. This follows from 

= f , l  ..... 
d z  1 dz.~ 

and proves our claim. 

w 2. The Moment Map of a Homogeneous Space 

2.1. Let G be a connected linear algebraic group with Lie-algebra g. We shall 
always assume that  our non-singular  variety X is a G-space. This means that 
there is given a morphism G x X-- ,X  satisfying the axioms of  a group action. 
The space is called homogeneous resp. quasi-homogeneous if the action is tran- 
sitive resp. transitive on a dense subset. For  each point x e X  the morphism 
G --* X sending g~G to gx gives rise to a linear map g -~ T(X)x , the tangent-map 
at x, and to a dual map T*(X)~.q*, the cotangent-map at x. Clearly, for X to 
be quasi-homogeneous,  it is necessary and sufficient that the tangent map at a 
generic point  x is surjective (resp. the cotangent  map at x is injective). 

2.2. The isotropy-group of X at a point  x is the closed subgroup G x of  all g~G 
such that gx=x .  Its Lie-algebra, the isotropy-algebra of X at x, is denoted %. 
This is also the kernel of  the tangent  map  at x. The image of  the cotangent  
map at x is g~, the subspace in g* of  linear forms which vanish on gx- In the 
case where X is homogeneous ,  the isotropy-groups resp. -algebras of  X at its 
various points are all conjugate to a fixed one, H resp. l), say. The choice of  a 
base point x e X  is equivalent to the choice of an identification of  X with the 
coset space G/H. This implies an identification of g/t) with the tangent- and of  
b • with the cotangent-space of X at x. 

2.3. The collection of  tangent-maps g ~ T(X)x at the various points x of  our  G- 
space X gives rise to an algebraic map g x X---, T(X) into the tangent-bundle,  
and to a dual map  T*(X)--, g* x X, compatible with the projections to the base 
space X. We shall refer to these maps as the tangent- resp. cotangent-map of X. 
Compos ing  the co tangent -map  with the map forgetting the base point  in X, we 
obtain a canonical  map T * ( X ) ~  g* from the cotangent-bundle  into the dual of 
the Lie-algebra, denoted rc or ~r x. Fol lowing J.M. Souriau [So] ,  let us call it 
the moment(urn) map of the G-space X. - For  example, if G happens to be the 
group of translations in real 3-space X, then rc is the map  attaching to a mass 
point  moving within X its linear momentum. The same notion of  a momen t  
map has independently been introduced by Kos tan t  [ K o l ]  (without using the 
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word), and has since then been extensively used in theoretical mechanics, see 
e.g. [A Ma], [-KKS], [Ko2] .  

A very prominent example for this notion is provided by Springer's resolu- 
tion of singularities for the variety of nilpotent elements of a semisimple Lie- 
algebra [S1], [$2]. Here G is semisimple, and g* is understood to be identified 
with g by means of the Killing form whenever we find it convenient. With this 
convention, we may point out here the following fact, which will become clear 
in the sequel, and which will be discussed in more generality and more detail 
in 2.6: Springer's resolution is the moment map of the flag variety. 1 

2.4. Let us determine the image of the moment map n in general. Since the 
cotangent-map maps T*(X) onto the union of all fibres g~x{x} for the 
various points x aX ,  we observe that this image is just 

~(T*(x))= U g~ ~9". 
x ~ X  

This is clearly a union of G-orbits under the coadjoint action of G in ~*, 
because ggx=g.qx for all gaG. 

In particular, if X is homogeneous with isotropy-group H of Lie-algebra b, 
we find that the image of the moment  map is the union of all G-conjugates of 
b �9 which we simply denote Gb �9 Moreover, the tangent-map g x X ~ T ( X )  and 
the cotangent-map T*(X)--,g* x X in this case are homomorphisms of homo- 
geneous vector-bundles with base X. The kernel of the first one has fibre D and 
is called the isotropy-bundle, the image of the second one has fibre b • and is 
called the co-isotropy-bundle. This has an alternative description as an as- 
sociated fibre-bundle G x n b  • which may be defined as the quotient of G x b • 
by the free H-action (g, zb-*(gh-a,hz) for all gaG, zab • hal l  (cf. [BK2] ,  w 
With this description of the co-isotropy-bundle, the moment  map is just the 
canonical map G x n t ) •  • given by (g,z)~-~gz. This description puts in 
evidence that G acts also on the total space of T*(X)_~G x n b  • such that the 
moment  map is G-equivariant. We summarize our observations: 

Proposition. For a homogeneous G-space X with isotropy-group H of Lie-algebra 
b the moment map n: T*(X)-~g* has image Gb • and identifies with the canonical 
G-equivariant map G x n b• ~ G b • 

2.5. The moment -map determines an algebra-homomorphism S(.q)~R(T*(X)) 
of the symmetric algebra S(g)=R(g*) into the regular functions on the co- 
tangent-bundle. In particular, R(T*(X))  is viewed as an S(g)-module by means 
of the moment-map.  

Proposition. I f  the homogeneous space X is complete, then its moment map is 
proper, and its image is closed in ~*. Moreover R(T*(X))  is a finitely generated 
S (g)-module. 

1 Remark added in proof. In a recent preprint of Ginsburg [Gi], which we received after 
distribution of our first version of this paper, the same observation is made, and is taken as a basis 
for a discussion of fixed point varieties in flag varieties, repeating and clarifying work of Steinberg 
[St]. 
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In fact, T*(X) identifies with a closed subvariety of g*x X, since X is 
homogeneous. The projection-map g* x X-*g* forgetting the base point in X is 
proper, since X is complete. Since the moment-map n is the restriction of this 
map, n is also proper, and maps the closed subvariety T*(X) onto a closed 
subvariety of g*. The final statement of the proposition is a general property of 
proper morphisms, see [EGA] III, Th6or6me 3.2.1. 

Remark. In view of 2.4, this is essentially [BK 2], 7.9. 

2.6. Let us discuss now in more detail the case where G is semisimple and X is 
a generalized flag manifold. This means X is homogeneous and complete. In 
this case, the isotropy-group P and its Lie-algebra p are parabolic, and X 
identifies with the variety of conjugates of P. The moment map n is exactly the 
"generalized Springer resolution" in the terminology of [BM 1], w 7, which has 
been studied extensively in the literature - although in various disguises. The 
co-isotropyspace p• identifies with the nilradical of p (convention 2.3), and 
contains a dense P-orbit (Richardson [R]), generated by y, say. This gives rise 
to a dense G-orbit in G xP~o• which is mapped onto a dense G-orbit 
in Gp • the moment-map n: G x P p •  I being a covering of degree [Gy'Py], 
a finite number, on the dense orbit. This number is referred to as the degree 
degn=[Gy:Py]  of the moment map, and the nilpotent G-orbit of which Imn 
=Gt~ • is the closure is called the Richardson-orbit determined by P. These 
orbits and degrees are explicitly known in all cases (Hesselink [He], Elashvili- 
Panov [EP]). The degrees are powers of 2 for classical, and divisors of 120 for 
exceptional groups (Alekse'evski [AI], Mizuno [Mi], Shoji [Sh]). Quite fre- 
quently, the degree is 1, or equivalently, n is birational. In this case, the 
moment map is actually a resolution of singularities for the closure of the 
corresponding Richardson-orbit. For instance, this is always the case if p is a 
Borel-subgroup: Then Gp I is the set of all nilpotent elements and n is 
Springer's resolution (cf. 2.3). The fibres of this map are identical with the 
"fixed point varieties", extensively studied by Spaltenstein, Springer, and Stein- 
berg [Sp], IS 2], [St], and since then by many others. We shall come back to 
this topic in 6.2 and 6.13. 

2.'/. Example (notation 2.6). The group G = S L ,  enjoys three particularly nice 
properties, all of which fail in general: 

(1) Each nilpotent orbit of g is a Richardson-orbit for a suitable choice of P.. 

(2) The moment map n is always birational. 

(3) The image of n is always normal (Kraft-Procesi [KP  1]). 

2.8. We shall need the following generalization of Proposition 2.5 to certain 
homogeneous spaces which are not necessarily complete, but are homogeneous 
fibre-bundles with complete base. 

Proposition. Let X be a homogeneous G-space with isotropy-group H normalized 
by a parabolic subgroup P, H c P ~ G. Then 

a) X is a principal A-bundle for the group A = P / H  with complete base X /A  
= 6 / P .  

b) T*(X) is a principal A-bundle with base T*(X)/A,  say. 
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c) The map ~: T*(X)/A~g* induced from the moment map is proper. 
d) R(T*(X)/A)=R(T*(X)) A, the ring of A-invariant functions on T*(X), is a 

finitely generated S(g)-submodule of R (T* (X)). 

Proqs Since P normalizes H, we have a right P-action on G/H=X, which 
commutes with the left G-action, and is free as an action of P/H= A. Since P is 
parabolic, the variety G/P=X/A is complete. Let us view T*(X) as G xUI) • as 
in 2.4. Since P normalizes H, it stabilizes also b • and we may form the vector- 
bundle G xeb • The obvious map G xUb• • • is clearly a principal A- 
bundle. This exhibits a free A-action on T*(X), and the existence of a good 
quotient-variety T*(X)/A=G xeb  • Viewing the moment  map n: T * ( X ) ~ g *  as 
the canonical map G xnb• • as in 2.4, we see that the induced map 7~: 
T*(X)/A-+g* is the canonical map G x P b l ~ G b  I. Now c) and d) follow from 
the completeness of G/P by the same arguments as used in 2.5. Q.e.d. 

2.9. Example. Proposition 2.8 applies to the situation where X is the affine 
space A "+1 minus origin, considered as a principal homogeneous ~, ,-bundle 
over projective n-space. 

More generally, we consider any homogeneous space X with isotropy- 
group H=(RP), the commutator-subgroup of a parabolic P e G  with Lie- 
algebra p. In this case, the co-isotropy-space b a = [ p , p ]  • identifies with the 
solvable radical of p, and the image of the moment  map, G b • is the closure of 
a sheet S, in the sense of [B 4], that is to say a maximal irreducible subvariety 
of g consisting of G-orbits of a fixed dimension. In fact, S is the so-called 
Dixmier-sheet determined by P (see loc. cir.). Now 2.8 applies with A=P/(P,P), 
a torus, and the map if: T*(X)/A--+S in this case is the map known as the 
"'simultaneous resolution" for (the fibres of the adjoint quotient off S. - For 
instance, if P is a Borel-subgroup, then H is a maximal unipotent subgroup of 
G, b • is a Borel-subalgebra, Gb • is all of g, and ff is the well-known simul- 
taneous resolution for g, first introduced by Grothendieck (cf. e.g. [St]). 

Remark. As a subvectorbundle of the trivial bundle (X/A)x g* on X/A =G/P, 
T*(X)/A is the orthogonal of T*(G/P), viewed as a subvectorbundle of (G/P) 
x.q*, if we identify g* with its dual. In some recent unpublished work, 
Kashiwara proved that Fourier transformation maps Harish-Chandra 's  system 
of PD.E. for invariant eigendistributions on g to the holonomic ~ . - m o d u l e  
with regular singularities corresponding to the perverse sheaf ,4" studied in 
IBM1].  It seems clear that this could be rephrased more topologically, using 
the concept of "topological Fourier transform" in the sense of Sato-Kashiwara- 
Kawai-Malgrange: up to a shift, the Fourier transform of the constant sheaf 
on T*(X)/A, extended by zero to (X/'A) x g*, is the constant sheaf on T*(X/A), 
extended similarly; also this Fourier transformation on this pair of dual trivial 
vector bundles over the proper variety X/A =G/P does commute with the 
operation of projecting to the second factor. 

w Homogeneous Spaces and Induced Representations 

3.1. Let X be a nonsingular G-space. The G-action on X induces a group- 
homomorphism G~AutK(X) of G it~to the automorphisms of the field K(X) of 
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rational functions on X. It determines a unique Lie-homomorphism 
g--.DerK(X) of the Lie-algebra of G into the derivations of K(X). In fact, g 
acts even by global vector-fields on X. In other words, we have a repre- 
sentation of g by global differential operators of degree l on X. This extends 
uniquely to an algebra-homomorphism U(g)~D(X) of the universal enveloping 
algebra of g into the global differential operators of any degree on X. This 
homomorphism will be called the operator-representation of U(g) (or g) on X, 
denoted ~ or ~b x. - For instance, if X =G and G acts by left translation, then 
the operator-representation ~ provides the well-known isomorphism identify- 
ing fl with the Lie-algebra (DerK(G)) of right-invariant vector-fields on G, 
resp. U(fl) with the algebra D(G) of right-invariant differential operators on G. 

3.2. The operator-representation ~bx: U(g)~D(X) should be thought of as a 
"refined (non-commutative) version" of the "moment-representation" q~x: 
S(g)--,R(T*(X)) studied in the previous section (cf. 2.5). In fact, q5 x may be 
reobtained from ~x. Recall that D(X) is filtered by the D,,(X) and similarly 
U(g) is filtered by subspaces U,,(g). Of course, Ox sends Urn(g) to DIn(X); the 
associated map on the graded rings sends S(fl)=@U,,(g)/U,,_l(g ) to grD(X), 

m 

which is naturally a subring of R(T*(X)). The morphism from S(g) to 
R(T*(X)) obtained by composition is precisely ~b x. 

3.3. The image of the operator-representation, the subalgebra Ox(U(g)) of 
D(X), is equipped with two filtrations: Since both algebras U(g) and D(X) 
carry natural filtrations, by subspaces denoted U,,(g) resp. Dm(X ) for m= 
- 1 , 0 ,  1,2,..., we may filter tPx(U(g)) either by the subspaces Ox(Um(g)), or by 
~,x(U(g))~Dm(X). We shall refer to the first filtration as the natural one, or the 
G-filtration, while the second is called the operator-filtration (induced from 
D(X)), or the X-filtration. For example, if X=G then ~a maps U,,(g) iso- 
morphically onto D,,(G) for all m (notation as in 3.1), so both filtrations 
coincide in this case. In general, U,,(g) is of course represented by operators of 
degree <m on X. However, even if U(g)~D(X) is surjective, U~(g)-~D~(X) 
need not be, see 3.10 for an example. 

Consequently, it will be a crucial point in our analysis to make a careful 
distinction between the two filtrations. For a complete homogeneous space X, 
we shall prove later (5.6) that the two filtrations coincide if and only if the 
moment map is birational with normal image. In view of 2.6, this shows that 
the problem of identifying the two filtrations is closely related to the question: 
Which of the nilpotent orbits in g have normal closures? This is very delicate 
and has been answered so far only for the classical groups (Kraft-Procesi 
[K P  1], [KP2]) .  

3.4. Now let X be a nonsingular quasi-homogeneous G-space of dimension n 
with x e X  in the dense orbit. Then the tangent map g--+T(X)~ is surjective at 
x, and T(X)x becomes an n-dimensional g~-module isomorphic to g/g~ with 
respect to the adjoint action. Hence the n-th exterior power A"(T(X)~) is a one- 
dimensional g~-module, on which gx acts by some linear form, denoted by 
2~eg*. We may easily compute it: Using Dixmier's notation [Di], 5.2.1 we find 

2x(h)=trg/gxad~(h ) for all he q x, 
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or  

2x = 20~,.~x. 

If 2 is any linear form on a Lie-algebra, k z will denote the corresponding one- 
dimensional  module.  

3.5. Each D(X)-module  is also viewed as a g-module,  by means of the oper-  
a tor - representa t ion  of g on X. In particular,  the cohomology-g roup  H'~(X, Ox) 
discussed in 1.6 is a g-module. Let us identify this g-module  with an induced 
module :  

Proposition (Nota t ion  3.4). As a g-module, 

H i (X ,  (g x) ~- U(g) |  kz~- 

Proof. Recall the filtration of M =H"~(X, (Sx) by subspaces (cf. 1.6) 

Mi~-(OX,x/f2x,_Oni~+l) * for i =  - 1 , 0 ,  1 . . . .  

which are obviously 9x-submodules. For  instance, (M 1 = 0  and) 

M o _~ A"(T(X)x  ) ~- k~ .  

By the universal proper ty  of induced representations,  the gx -homomorph i sm 
k~ ~ M o c M  extends to a g - h o m o m o r p h i s m  of the induced module  N:  
=U(g)| x into M. To prove that  this is actually an isomorphism,  con- 
sider the filtration of N by the subspaces Ni :=  Ui(g)| ~. Since U,.(g) maps  
into Di(X) (3.3), we see that  N~ maps  into M~=D~(X)Mo, hence a h o m o m o r -  
phism g r N ~ g r M  of the associated graded modules.  In each degree i we have 
vector-spaces 

M i / V i  -1 -~ (~'~X.x '|ti /QX,x Ili/+ l)$ ~ (lnix/lnix+ 1), 

St(T(X)~) reap. Ni/N ,. _ ~ ~- S ~ (g/g~), 

and the m a p  g rN- -+grM comes from the tangent  m a p  9--+T(X)x at x. We 
conclude that  M ~ N  iff g r M ~ g r N  iff g /gx~ T(X)~ iff x generates a dense orbit  
in X. Q.e.d. 

3.6. The kernel of  the opera tor - representa t ion  ~x:  U(g)--+D(X) is a two-sided 
ideal, which we denote by Ix:=kergJ x. As an appl icat ion of 3.5, we can 
identify I x as the annihi la tor  of an induced module :  

Corollary.  I x :=  ker~p x = Ann U(g) | . 

In fact, since H~,(X, (~x) is faithful as a D(X)-module  by 1.6, it is also faithful 
as a U(g)/Ix-module.  Hence the i somorphism in 3.5 gives the result. 

3.7. For  example,  if G is semisimple and X a generalized .flag variety (cf. 2.6), 
then Propos i t ion  3.5 says that H~(X, ((x) is a generalized Verma module. 

In order  to discuss this case in more  detail, let us introduce some notations: 
P = G~ is the (parabolic)  isotropy-subgroup,  p = gx its Lie-algebra, b c p a Borel- 
subalgebra,  t c b a Car tan-subalgebra ,  R + the system of positive roots occuring 
in b, R~- the subsystem of positive roots occuring in b/p • and p reap. Pe is half  
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the sum of positive roots in R + resp. R~-. Furthermore, we denote by 

Me(2 ) = M~ (2): = U(g) | 

the "generalized Verma module" of highest weight 2et* (a basic reference for 
such modules is Jantzen [J]), and by le(2) or I~(2) its annihilator. With these 
notations, we find that 2 ~ = 2 p e - 2  p, and Proposition 3.5 gives: 

Corollary. HI~ (X, (~ x) ~ Me(2Pe - 2 p), 

I x = Ip(2 p c -  2 p). 

Remark. In particular, if X is the (ordinary) f lag variety, that is p=b ,  then 
H~(X, Cx) is an (ordinar39 Vermamodule, the one of highest weight - 2 p  
(denoted M ( - p )  in the conventions of [Di], 7.1). This result appears in the 
work of Kempf [Ke2] .  The second author has studied this particular situation 
in more detail in [Br]. There H~(X, Cx) appears actually as a "dual" of a 
Verma module, which is no contradiction, since this particular Verma module 
is "self-dual'. The following theorem extends the main result of [Br] to 
generalized flag varieties. 

3.8. Theorem. D ( X ) ~  U(g)/I x for any complete homogeneous space X. 

Proof The operator representation Ox has kernel I x by 3.6. It is left to prove 
surjectivity. A k-linear endomorphism of a generalized Verma module Me(2 ) 
(Notation 3.6) is called g-finite, if it generates a finite-dimensional linear 
subspace of EndkMe(2 ) closed under commutation with elements of g. Now let 
2 = 2 p e - 2 p .  Then D(X) acts on Me(2) (3.5) by endomorphisms which are 
obviously g-finite. From the work of N. Conze-Berline and M. Duflo [CD], 
(2.12, 4.7, 6.3, see also [Jo 1], Theorem 4.5), we can conclude that in the present 
case all g-finite endomorphisms of Me(2) are induced by an element of U(g). 
This implies now that U(g) surjects onto D(X). Q.e.d. 

3.9. Remark. As in [Br], this result may be extended to: 

D"(X) ~- U(g)/Ie(# + 2 p p -  2p), 

where Dr(X) denotes differential operators with "twisted" coefficients, i.e. with 
coefficients in the line-bundle associated with a character of the group P, of 
weight #. 

3.10. Example. a) Let X be projective n-space, and G the projective linear 
group. Let x o, . . . ,x ,  denote homogeneous coordinates. Then a matrix unit e u 

8 
in the Lie-algebra acts by the differential operator XiSxj on the functions on 

X. Now Theorem 3.8 gives that D(X) is the algebra generated by these oper- 
ators. Note that they satisfy the relation 

j ( xj 



Differential Operators on Homogeneous  Spaces 453 

by Euler's differential equation for homogeneous polynomials. It is not difficult 

to find generating relations for the x~7-- by computing generators of the ideal 
I x in U(g). cxj  

b) Now let X be the projective space of dimension n = 2 m - 1  as before, but 
consider it as the space of lines in a symplectic vector-space, that is to say: 
take G=SP2,,.  As we have seen in a), D(X) is generated by the 4m 2 inde- 

pendent operators x i ~  of degree __<1. But now only dimsp2 = 2 m 2 + m  of 
' j 

them represent an element of the Lie-algebra (a symplectic matrix). Since 0x: 
U(g)~D(X) is nevertheless surjective by Theorem 3.8, we see that the remain- 
ing global vector-fields are represented by elements of order > 1 from U(g). 
This shows that the operator-filtration on OxU(g)~U(g)/Ix differs from the 
natural filtration. (This example has been pointed out to us by R. Elkik.) 

3.11. We shall need another special case of 3.5: 

Corollary (Notation 3.7). The operator-representation of U(g) on the homo- 
geneous space Y= G/(P, P) has kernel 

I t = A n n  U (g) | k o = (~ l p(,~.) 

where A=[-p,p]Zc~t is the set of all characters (one-dimensional represen- 
tations) of p. 

Proof In the present case, the isotropy-algebra is [p,p],  which has no non- 
trivial characters at all. Hence 2~=0 in 3.5, and 3.6 gives our first equation. 
For the second equation, we refer to [BJ], Lemma 3.9a). Q.e.d. 

Remark. Let us mention that Gelfand-Kirillov [GKi]  and Sapovalov IS] have 
made a more detailed study of the representation of U(g) by differential 
operators on the "basic affine space", that is to say on Y=G/(B, B) for a Borel 
subgroup B. (In this case, I t = 0 ,  and so U(g) embeds into D(Y).) 

w 4. Associated Varieties of Induced Ideals 

4.1. If M is a g-module filtered by vector-spaces O = M _ l c M o C M l  c M  2... 
such that gMi~Mi+ 1 for all i, then the associated graded module grM 
= @ Mi/Mi-l is a graded S(g)-module. The filtration of M is called good, if 

i>0 
gr M is of finite type as a S(g)-module. A good filtration on M exists, if and 
only if M is of finite type as a U(g)-module. If such is the case, then the 
Bernstein-variety of M, denoted V(M) or 1/~(M), is defined as the support of the 
S(g)-module gr M in g*. In other words, we define V(M)= ;r gr M), where 
~( . . . )  denotes the set of zeros in g* for any set ... of polynomials on g*. This 
definition refers to a good filtration chosen on M, but is actually independent 
of the choice (Bernstein [Be], see also [Bj] for the material of this section). 

Lemma. V(E| M)= V(M) for any finite-dimensional g-module E. 
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Proof Given a good filtration on M by M i, we obtain a good filtration on 
E |  by E |  i. With these filtrations, g r (E |  as an S(g)-module is a sum 
of copies of gr M. Hence the lemma. Q.e.d. 

4.2. The associated variety of a left ideal I in U(g) is defined as the zero-set 
t J ' (g r l )<g*  of the associated graded ideal g r l  with respect to the natural 
filtration. Obviously, we have 

;~ "(gr I ) =  V(U(g)/I). 

If I is a two-sided ideal, then I and g r I  are invariant under the adjoint G- 
action. Consequently, the associated variety is then a union of G-orbits. 

Lemma. Let E be a finitely generated module .for a subalgebra b of g. Let M be 
the induced g-module. Let r: 9" ~l)* denote restriction. Then 

;~ '(gr Ann M) 2 Gr- 1(~(E)) 2 Gb • 

Proof Since this associated variety is G-stable as noted above, the lemma will 
follow from V(U(g)/AnnM)~V(M)=r-1(I/I ,(E))2b ~. Here the first inclusion 
comes from the fact that M is a finite sum of homomorphic  images of 
U(g)/Ann M (4.1), and the last one from the trivial fact that associated varieties 
are homogeneous, so I~(E) contains O, and r l(O)=b~. The equation in the 
middle is obtained by using a good filtration of type Ui(g)| i and observing 
that gr M~-S(fl)| has support r I(Vu(E)). Q.e.d. 

4.3. Recall that I x denotes the kernel of the operator-representation ~: 
U(g)~D(X)  for our G-space X. Let us now relate the associated variety of I x 
to the image of the moment  map n: T*(X)~f l* .  

Proposition. Let X be a homogeneous G-space. 7hen we have 

(*) "//(gr Ix) D n(T*(X)), 

and equality holds whenever D(X) induces a good.filtration on O(U(g)). 

Proof The ideal I x is the annihilator of some module induced from the 
isotropy-algebra b of x ,  by 3.5. Hence its associated variety contains Gb • by 
4.2. But Gb • is the image of the moment  map, by 2.4. This proves the inclusion 
(*). - Now consider m=~9(U(g))~-U(g)/Ix as a g-submodule of D(X), and 
assume that the operator-filtration on M is good. Then the associated graded 
module gr M with respect to this filtration has support V(M)='tJ(gr Ix) by 4.1, 
4.2. On the other hand, it is an S(,q)-submodule of grD(X), and hence of 
R(T*(X)) (1.3), the support of which i.~ n l* (X) )=Gb  ~. This gives the inclusion 
converse to (,). Q.e.d. 

4.4. Example: The proposition applies for instance to the computat ion of 
*"(gr Ix) for the case that X = G/P is complete. 

In fact, in this case we know that even R(T*(X)) itself is finitely generated 
as an S(g)-module by 2.5, so g r M  (as in the proof) is automatically finitely 
generated. Hence the operator-filtration is good in this case. (Note that we 
even have grM=grD(X)=R(T*(X) )  in this case by 3.8 and 1.4, but these are 
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deeper results which are not needed here.) - In conclusion, the proposition 
gives us the associated variety of Ip(fd = Ann Mp(2) for a particular weight 2 (cf. 
3.7). However, we want to prove the same result for an arbitrary L and this 
requires some additional effort. 

4.5. Lemma.  Let X be a homogeneous G-space with isotropy-group H normalized 
by a parabolic subgroup P of G. Then D(X) induces a good filtration on 
U(g)/Ix. 

Proof The left G-action on X = G/H commutes with the action of A: =P/H by 
right translations on X. So the vector-fields by which g acts on X must be 
invariant under this A-action. Consequently, M:=~(U(g ) )  must be contained 
in D(X) A, the ring of A-invariant differential operators, which is an U(g)- 
submodule in D(X). Now we have 

gr M = gr D ( X) a = R ( T* ( X)) A 

with respect to the operator-filtration, since this is preserved by A. Now 
Proposition2.Sd) gives that R(T*(X))  a and hence g rM are S(g)-modules of 
finite type. This proves the lemma. Q.e.d. 

4.6. We are ready to prove our main result on associated varieties. 

Theorem. Let p be a parabolic subalgebra of a semisimple Lie-algebra g. Let 

M = U(g) | 

be the g-module induced j)~om some finite-dimensional [p, p]-module E. Then the 
associated variety qf the annihilator of M is the closure of the Dixmier-sheet 
determined by p, 

lJ(gr  Ann M) = G [p, p] • 

In particular, this variety is irreducible. 

Proof a) Let us first consider the case where E = k 0 is the trivial representation 
of [p,p].  Then A n n M = I  x is the kernel of the operator-representation of U(g) 
on the homogeneous space X=G/(P,P), by 3.11. Here P is the parabolic 
subgroup with Lie-algebra p. Since it normalizes (RP), the operator-filtration 
on U(g)/l x is good, by 4.5. Hence "f~(grlx) equals the image of the moment  
map, by 4.3. But this is G[p ,p ]  • by 2.4, or also the closure of the Dixmier- 
sheet determined by p, see 2.9. 

b) Now let E be any finite-dimensional [~,~, p]-module. By devissage, we 
may first reduce to the case E irreducible. Then it occurs as a subquotient of 
some finite-dimensional g-module. 

So we may assume without restriction that E is a g-module, and even a 
simple one, of highest weight ~, say (Notation 3.7). Let M ,  denote our module 
U(g)| and let M o denote the corresponding module for /2=0.  It is not 
hard to see that M,  occurs as a subquotient in E |  o. This implies an 
inclusion of the annihilators, and hence for their associated varieties: 

U(g r  Ann M,) ~ ~'J (gr  AnnE | Mo) = ",~~ AnnMo): (.) 
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Here the last equation follows from Lemma 4.1 by means of the inclusion 

U (g)/Ann (E | Mo) ~--~(U (g)/Ann E) | (U (g)/Ann M 0): 

Now the right-hand side in (*) is an irreducible variety by a), so in order to 
prove equality, it is enough to prove equality of dimensions in (.), or equiva- 
lently, the equality of GK-dimensions 

d(U(g)/Ann M,) = d(U(g)/AnnMo). 

For this equality, see for example [BJ], 3.10 plus 3.9a). Q.e.d. 

4.7. Now we prove an old conjecture of the first author, as stated in [B2],  
conjecture 2.5 (cf. also [B 1]). 

Corollary. Let M=U(g)|  be the 9-module induced from a finite- 
dimensional p-module E. Then the associated variety of the annihilator of M is 
the closure of the Richardson-orbit determined by p, 

~J'(gr AnnM) = Gp • 

In particular, this variety is irreducible. 

Proof It is known that in this case f ' ( g r  AnnM) is contained in the set JF" of 
nilpotent elements in 9=g*.  Let us briefly recall the reason (cf. [BK 1], proof 
of 7.1): Since M has a central character, it is annihilated by a maximal ideal m 
of the center of U(g). So gr AnnM contains the symbols of all elements in m, 
which are easily seen to generate the G-invariant polynomials on 9, and so - 
by a theorem of Kostant - define .A~ as their variety of common zeros. We 
conclude that f ( g r  AnnM) c jff  

On the other hand, M=U(g)| is clearly a quotient of the module 
U(g)| and so the associated variety of its annihilator must be con- 
tained in G[p, p]z by Theorem 4.6. Now we conclude that 

(gr Ann M) c Jg" n [p, p] z = G pi  

(an argument from [BJ], 5.17) where Gp • is the closure of the Richardson- 
orbit determined by p (2.6). The converse inclusion was already known (4.2 or 
[B i]). Q.e.d. 

4.8. Let I be an ideal of U(g) induced from p. By definition, this means that I 
= AnnM is of the type considered in 4.7. Let P1 . . . .  , P~ denote the prime ideals 

containing I which are minimal over I, so /]1 c~. . .n  P~=I//. By a result of 
Joseph-Small [JoS], these ideals have all the same GK-dimension d(U(g)/Pi) 
=d(U(g)/I) for i=l , . . . , r .  Following Joseph [Jo3],  let us call these ideals 
"almost induced" from p. 

Lemma. I f  an ideal of U(g) is almost induced from p, then its associated variety 
is G p• 

Proof In the above notation, we have #(grPi)~C/~(grl)=Gp I by 4.7, with 
equality of dimensions by what has been stated before the lemma. Now the 
irreducibility of Gp• implies the lemma. Q.e.d. 
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4.9. Conjecture (g semisimple). The associated variety of a primitive ideal in 
U(g) is always irreducible. 

This goes back to [B 2], 2.9. We can prove it now for ideals with integral 
central character (w Let us note already at this point: 

Corollary (Joseph [Jo 2]). The conjecture is true fi)r g= d, .  

In fact, in this case all primitive ideals are almost induced (as noted e.g. in 
[Jo 3], 10.3), so 4.8 does always apply and gives the corollary. 

Comment. Joseph's proof [Jo 2] uses a method from [B 3], which depends on 
the nice properties of the d,-case listed in 2.7 (birationality of the moment 
map, and normality of its image). In particular, it depends on the Kraft-Procesi 
normality-theorem [KP1].  Note that our present method of proof is com- 
pletely independent of those properties. This makes it work more generally and 
even simpler (overcoming two of the three difficulties discussed in [Jo2], 3.4). 

{}5. Complementary Results on Associated Graded Ideals 

5.1. In this section, X is always a homogeneous G-space, and Ix=ker~b x resp. 
U=~x(U(g)) denote the kernel resp. image of the operator-representation ~'x: 
U(g)--+D(X). While the last section dealt with the study of the associated 

variety f ( g r l x ) ,  which is equivalent to the study of the radical ideal gl /~/x,  
we are now going to study more refined questions about the ideal grl x itself. 

With respect to the natural filtration on U ~-U(9)/I x we denote by degu the 
degree of u e U, by U, the subspace of elements of degree < n, and by cr(u)=a,(u) 
the symbol of an element of degree n (that is % is the canonical map from /5, 
to U,/U,_I); finally grU~S(g) /grl  x denotes the associated graded algebra and 
S(9)-module. With respect to the operator-filtration on U, the notations deg'u, 
U~, a'(u)=a',(u) and gr 'U have the analogous meaning. Recall (3.3) that U c U,~ 

> , for all n, and hence degu=deg  u for all ueU. 

Definition. The non-negative integer 15(u):=degu-deg'u is called the delay of 
u. If the numbers 6(u) are bounded for ueU, we say that U (or the operator 
filtration) has bounded delay. 

Lemma. We have (~(um)<=m6(u) Jbr all m>= 1, O:i:ueU, with equality if and only 
!f a(u)" :t: 0. 

Proof Since gr 'U is a subring of R(T*(X)) (1.3), it has no zero-divisors. In 
particular, C/(u)m+O, which implies a'(um)=a'(u) " and deg'(um)=mdeg'u. Com- 
bined with the general fact that deg(um)<mdegu, this gives already 
cY(u") < m 6(u). Now deg (u") = m deg u resp. deg (u') < m deg u holds according to 
whether C*(u)m+o resp. =0. This gives the last part of the lemma. 

5.2. Lemma. / f  the symbol c,(u) of an element O:l:ueU is nilpotent, then its 
delay is positive. 

Proof If (}(u)=0, then 6(u")=0 for all m>=l by the previous lemma. And this 
implies a(u)":4:0, again by that lemma. Hence a(u) would not be 
nilpotent. Q.e.d. 
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Remark. The converse of Lemma 5.2 is also true, i.e. positive delay implies 
nilpotent symbol, provided that the operator-filtration is good. This will be- 
come clear in the proof of 5.3. 

5.3. Proposition. The operator-filtration has bounded delay if and only if it is 
good. Moreover, if the delay is bounded by 6, then 

l~grI~x +1 ~ gr l x. 

Proof. In the terminology of Bernstein [Be], 1.3, our statement that the 
operator-filtration "has bounded delay" (in fact: U~,cUm§ ~ for all m) means 
that it is "equivalent to the standard-filtration". Now it is a well-known fact 
that any two good filtrations are equivalent in that sense (see e.g. [Bj], 1.3.5), 
and the converse is similar. - Now suppose r162 for all uEU. If or(u) is 
nilpotent, then 6 (u)> l  by 5.2, but m6(u)=(5(u")<6 as long as 6 (u) '+0 ,  by 5.l. 
Hence ~r(u)m=0 as soon as m>gJ/f(u). In particular a(u) ~+ 1 =0. This implies the 
proposition. Q.e.d. 

5.4. Proposition. I f  the operator-filtration on U~_U(g)/I x is good, then the 
Jollowing statements are equivalent: 

(i) g]/~/x = grlx.  
(ii) The operator-fihration coincides with the natural one. 

(iii) grI x is prime. 

Pro(~ (i) means that gr U has no nilpotent elements +0. Hence a (u ) "+0  for all 
re>l,  O+-u~U. Then u" has delay 6(u")=m6(u) by 5.1. This can only be 
bounded if J(u)=0. Hence the operator-filtration to be good implies that all 
elements of U have delay zero. But this means that the operator-filtration 
coincides with the natural one, or ( i ) ~  (ii). The implications ( i i )~  ( i i i )~ (i) are 
trivial: For instance, (ii) means that g r U = g r ' U .  Since we know that the 
annihilator of gr' U, a subalgebra of R(T*(X)), is prime, while the annihilator 
of gr U is grlx, we conclude that grl x is prime. Q.e.d. 

5.5. Let us recall (and rephrase) some results of H. Kraft and the first author 
[BK2].  Let G be semisimple, and Y a quasi-homogeneous G-space. Let ~2 
denote the set of (equivalence classes of) irreducible finite-dimensional repre- 
sentations of G. If G acts on A linearly, then m,,~(A) denotes the multiplicity of 
~o~12 in A. The numbers m~(Y):=m~,(R(Y)) are finite for all c,9~f2, in fact: 
mr They are called the G-multiplicities of Y. 

Theorem [BK2].  Let S ~ g  be the Dixmier sheet determined by the parabolic 
subgroup P with Lie-algebra t~. Then: 

a) The following two statements are equivalent: 

(i) All G-orbits in S have the same G-multiplicities. 

(ii) The moment-map nc,,/e is birational. 

b) The following two statements are equivalent: 

(i) All closures in g of G-orbits in S have the same G-multiplicities. 

(ii) The moment-map 7t~/e is birational with normal image. 
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Proof. a) If x~p I generates the dense orbit in Gp • then ~ ;p  birational is 
equivalent to [G~:P~]=I, cf. 2.6.  Now (ii)~(i) follows from [BK2], 
Theorem A2, while the converse is obvious from [BK2], Theorem 7.2. 

b) Let Z c S be an orbit. Then Z is non-singular in codimension 1. (ln fact: 
All orbit-dimensions are even, and 2 is a finite union of orbits, so ,~',,Z has 
codimension >2.) This implies that R(Z) is the integral closure of R(;~) 
([BK2], 3.7). So R(Z)=R(Z)  if and only if z~ is normal. But R(Z)=R(Z)  means 
that m~o(Z)=m,o(Z ) for all o)ef2. Now it is left to observe that normality of 
Gp • implies normality of Z for all orbits Z c S .  This follows from [BK2], 
Theorem 6.3. (Note that in the arguments used there, it suffices to replace the 
assumption "G:, connected" by the slightly weaker assumption "~G/P bi- 
rational".) Now it is clear that b) is a consequence of a). Q.e.d. 

5.6. Theorem. Let X be a complete homogeneous G-space with isotropy-algebra 
p. Then the .tollowing statements are equivale,t: 

(i) The operator- aJld the ilatural filtration o~ U(g)/l x coincide. 

(ii) grl x is prime. 
(iii) R(Gp l) and R(T*(X)) are isomorphic as G-modules. 

(iv) The momem map rr x is birational with normal image. 

(v) For all 1-dimensional p-modules E, 

gr Ann U(g) @ulplE = J ( G  p• 

is the prime-ideal ~1 ~ Jimctions on g which vanish on Gp I. 

Pro(?fi (i)<=>(ii) follows from 5.4, since the operator-filtration is good by 4.5. 
(ii) ~ (iii) If grI x is prime, then g r l x = J ( G p i ) = : p  by w Hence (ii) implies 

G-module-isomorphisms 

R ( G p• ~ S(g)/p = gr U (g)/I x 

gr' U (g)/l x = gr'D (X) = R(T* (X)) 

where the last two equations come from 3.8 resp. 1.4. 
(iii)~(iv) The moment-map ~Zx: T*(X)- ,Gp s defines an embedding 

R(GpZ)~-~R(T*(X)). In view of the finiteness of the G-multiplicities of GO • and 
T*(X) (cf. 5.5), (iii) implies that this embedding must be an isomorphism. In 
particular, rr x is birational, and since T*(X) is smooth, R(Go• is 
integrally closed, so GO • is normal. 

(iv) ~ (v )  The previous argument is easily reversed to give that (iv) implies 
(Notation 5.5): 

m~,(Gp• for all co~Q. (1) 

Now let I=AnnU(g) |  as considered in (v). It follows from the work of 
Conze-Berline and Duflo [CD] (cf. [B3], 3.4(l)), that 

m~,,(U(g)/I)<mo,(R(T*(X)) ) for all ~o~f2. (2) 

But since grl  c J ( G p  • by 4.7 (even by 4.2) we obtain 

m,~(G V • = m,~(S(.q)/J (G p• <= m,~ (S(g)/gr I) = m,,,(U (g)/l). (3) 
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Now (1) and (2) force equality in (3), and this implies the equality grl  
= J ( G  pi). _ Finally, ( v ) ~  (ii) since I x is one of the ideals considered in (% see 
w Q.e.d. 

5.7. Comments. Part ( i i )~  (v) of the theorem is essentially an old result of the 
first author, stated first (without proof) in [B2], Theorem 2.6. Out method of 
proof used above for this part is essentially the old one, as exposed eg. in 
[B3], Satz 3.4, and in [Jo2],  Theorem 3.2. 

In the special cases, where the irreducibility of the associated variety (Theo- 
rem 4.7) had been proved already before the present paper, the method of 
proof was actually this one, so it went via the - stronger - primality statement 
(5.6(ii)) for the associated graded ideal. It was a proori clear that this method 
could not work in general, since 5.6 (v) will not hold in general, as was 
observed already in [B1], 3.3: If, for example, g is of type B 2 resp. G2, and if 
the weights 40 of p/p• are long roots, then grI x is not prime, but is only 
primary with multiplicity 2 resp. 3. Let us now (define and) compute the 
multiplicity of grI x in general. 

5.8. For any prime ideal p of S(g), and any S(g)-module N, the p-multiplicity 
mtpp(N) of N is defined as the length of 

Mp = S (g)p @stg) M 

as an S(g)p-module. By abuse of language, the p-multiplicity of an ideal J in 
S(g) is the p-multiplicity of S(g)/J. This is a finite positive number if and only 

if l~ J=p .  For a p-primary ideal J for instance the p-multiplicity is a finite 
number; this number is 1 if and only if J is prime (i.e. J=p). 

We are going to prove: 

Theorem. Let X = G/P be a complete homogeneous space. Let I x be the kernel ~7[ 

the operator representation, and p = J ( G p •  as in 4.7. Then the p- 
multiplicity of grl x is equal to the degree of the moment-map ~x: 

mtpp(S(g)/grlx) = degTc x. 

5.9. If M is a U(g)- or an S(g)-module +0  with a good filtration by vector- 
spaces Mi(i> -1)  as in 4.1, then the dimensions dimMi are given by the well- 
known Hilbert-Samuel-polynomial qM(T), that is qM(i)=dimM~ at least for large 

e(M) TeIM ~ This defines i. The leading term of this polynomial has the form ~ . 

two positive integers d(M), e(M), called the (Gelfand-Kirillov-)dimension resp. 
the (Bernstein-)multiplicity of M (cf. [Be]). Both numbers d(M), e(M) turn out 
to be independent of the choice of a good filtration on M. While d(M) is 
already determined by the variety V(M) - as its dimension, e(M) is not, but 
contains additional information on M. - It is clear that we have 

d(M)=d(grM), and e(M)=e(grM). 
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5.10. I,emma. Let M be a finitely generated S(9)-module. Let P = f  A/-An-nnM be 
prime. Then the p-multiplicity of M is given by 

mtpp(M) = e(M): e(S(g)/p). 

Pro~![2 There exists a chain of submodules O = N o = N  1 c-_ ... c Nr=M and primes 
Pl .... ,p,. such that 

~ , = N i / N  i l~S(g)/p~ for i=l , . . . , r .  

It is obvious that mtpp(M) is the ]lumber of i such that p~=p. For such i, we 
have d(lVi)=d(S(g)/p)=d(M), while for the other i, we have Pimp and hence 
d(]~) = d(S(.q)/p~} < d(M). From the additivity properties of the Hilbert-Samuel- 
polynomial we conclude then that 

e(M)= ~ e(]~)= ~- {ilp~=p} e(S(g)/p) 
i,p,-- p 

=mtpp(M). e(S(g)/p). Q.e.d. 

5.11. Lemma. Let B an integral S(g)-algebra, which is finitely generated as an 
S(g)-module. Let A ~-S(g)/p be the image ~ S(9) in B, and let Q(B), Q(A) denote 
the quotientzfields. Then the degree of the field-extension is given by 

[Q(B): 0(A)] = mtpp(B) = e(B): e(A). 

Proqll Let b~ .. . . .  basB be a Q(A)-basis for Q(B). Then M = A b ~ + . . .  + A b  e is a 
free A-module of rank d, while B/M is an A-torsionmodule and has dimension 
d(B/M)<d(A).  We conclude that e(B)=e(M)=d,e(A) .  It is also clear that d 
=mtpp(B). Q.e,d, 

Proof of Theorem 5.8, The moment map ~ defines an embedding of A:=  S(g)/p 
into B:=R(T*(X)) ,  where p = . J ( G p  l) is the ideal of functions that vanish on 
G p L. From 5.11 we conclude that the degree of r~ is given by 

degzr= e(B): e(A). (1) 

On the other hand, we have 

e(U (.q)/lx)= e(D(X)) = e(gr D(X)) = e(R(T*(X))= e(B) (2) 

by 3.8 resp. 5,9 resp. 1.4. Again by 5,9, we have 

e(S(9)/gr I x) = e( U (g)/ l x). (3) 

Since p=l//gr~lx by 4.7~ we may compute the p-multiplicity of gr I  x by 
Lemma 5.10: 

mtpr(S(9)/gr Ix) = e(S(9)/gr Ix): e(S(g)/p). (4) 

In view of (2), (3) this number is e(B): e(A), or degrc by (1). Hence (4) gives the 
theorem. Q.e.d. 

5.12. Corollary (Notation 5.8). The following are equivalent: 
([) The ideal gr I x is reduced at all points of the dense orbit in G p• 
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(ii) The moment map is birational. 

(iii) All G-orbits in the Dixmier-sheet determined by P have the same G- 
multiplicities. 

Proof By the theorem, (ii) is equivalent to mtpp(S(g)/grlx)= 1, and this means 
that grI x is reduced at a generic point of Gp. But now S(g)/grl x is a scheme 
on which G acts by automorphism. Hence grl  x must be reduced at all points 
G-conjugate to a generic point, so (ii) and (iii) comes from [BK2],  as explained 
already in 5.5 a). Q.e.d. 

Problems. 1. Assume G p• is normal. Is it true then that gr I x is primary? 
2. Compute the maximal delay of a vector-field or any operator in D(X), 

for instance in Example 3.10, and give a geometric interpretation. 

w Applications to the Study of Primitive Ideals 

6.1. In this last chapter, 9 is always complex semisimple, and is identified with 
g* (convention 2.3). We consider primitive ideals J in the enveloping algebra of 
9. An old outstanding conjecture says that their associated varieties "f~(grJ) 
should be always irreducible, and consequently should be equal to the closure 
of some nilpotent orbit O x in 9, 

;r J ) = ( ~  (,) 

(see I-B2], 2.9). We have seen in Chap. 4, why this conjecture is true for g=~l ,  
(see 4.9, or [Jo2]). We are going to establish it now for the case where 9 is 
classical and J has integral central character (see 6.5). It will be essential for 
our proof that we first make the conjecture more precise by specifying a 
candidate f2(J) for the nilpotent orbit O~, in (.). The map f2 from primitive 
ideals to nilpotent orbits is obtained by composing Springer's correspondence 
from Weyl group representations to nilpotent orbits with Joseph's correspon- 
dence from primitive ideals to Weyl group representations. Let us begin with 
recalling these two basic notions in 6.2 resp. 6.4. 

6.2. Springer's Correspondence [$2], IBM 1], IBM2],  [AVE] 

In this chapter, the variety of all Borel subgroups of G is denoted ~.  Recall 
that its moment map rc=rc~,~ identifies with Springer's resolution of ,A/; the 
variety of all nilpotent elements in g = 9" (2.6). For any nilpotent orbit O x with 
base point x~...f~ we denote by C(x)=G~/G ~ the group of connected com- 
ponents of the centralizer of x, by ~x = { B e ~ l x e L i e B } ' ~  ~ -  1 x the "Springer 
fibre" at x, by d~ the dimension of 7r-ix, and by Vx=HZd~(Tz-lx, l~) the 
highest cohomology group of re-ix.  There is a II)-linear action of the Weyl 
group W on Vx, which commutes with the C(x)-action. We denote by p~=p(~.~) 
the representation of W on the C(x)-invariants V c~x) (which are +0,  since C(x) 
acts by a permutation representation). It turns out that Px is irreducible, and 
characterizes the orbit O~ (Springer). In other words, we have an injective map 
O~--,p x from the set ,Ar/G of nilpotent orbits into the set W ~ of (equivalence 
classes of) irreducible representations of W. Let us mention that the inverse 
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map p F--~O x extends to a surjection 

W ~ --+,.~/'/G, 

which maps any a e W  A to the (unique!) orbit O x such that a occurs in V x. 
This map is p~x,~--~Ox in the notation of the IBM l], to which we refer 
for more details and references. 

6.3. Some Comments on Special Orbits 

Let us mention at this point that Lusztig ILl  has defined a certain subset S w 
in W A, called the set of special representations, which turns out to be very 
important for our purposes. It consists entirely of representations of the form 
px=ptx, l), and so is in bijection with a certain set of nilpotent orbits, called the 
special orbits. For example, all Richardson orbits are special. Consequently, for 
G = S L ,  all nilpotent orbits are special, whereas e.g. G=SO13 has 35 nilpotent, 
26 special and 24 Richardson orbits. Unfortunately, the notions of special 
representations or orbits are not yet well understood in general. Lusztig's 
definition [L] is rather technical. One would prefer a characterization of 
special orbits in geometrical terms, but this is still an open problem. However, 
they have been explicitly listed for exceptional G, and they have been explicitly 
determined in terms of combinatorics for classical G, see ILl,  [AvL].  We shall 
suggest below (6.12) some nice geometrical properties of special orbits in terms 
of EBM2], which have been verified for G classical in purely combinatorial  
terms by G. Kempken [Kk].  In the present paper the proof of our main result 
on associated varieties will depend on this result from [Kk],  and Lusztig's 
definition of special orbits will be used only implicitly through this reference. 

6.4. Joseph's Correspondence 

We consider the set ~/o of primitive ideals with central character equal to that 
of the trivial representation. We have a surjective map W--+Yo, which is de- 
noted w~--,lw, and which results frorn well known theorems of Duflo [D]  and 
Harish Chandra as follows. Using the notations of 3.7, we denote by 

M,,= Mb(w(- -p ) - -p )  

the Verma module with highest weight w ( - p ) - p ,  and by L,,, its unique simple 
quotient. Then I w is defined as 

I,,, = Annvcql L w. 

To each primitive ideal I w, Joseph [Jo4]  attaches a polynomial function p~ on 
t*, homogeneous of degree 

aw:= dimb • - dim V(Lw), 

which gives the values of the Goldie ranks of primitive ideals obtained from I w 
by the "translation principle" (in the sense of [BJ]). Up to some nonzero 
scalar factor %, Joseph's Goldie rank polynomial Pw may be computed from 
the formal character of L~ as follows. In an appropriate Grothendieck group, 
we may write 
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L,~= ~ aw, wM w, 
w'~W 

with integer coefficients aw, w. Then 

pw(#)=cw ~ a,,, , , f(w'tl  ) ..... for all ll~t* 
w'ffW 

where f is a dominant regular element in t, considered as a linear form on t*. 
The significance of Joseph's polynomials p,. for our purposes is that they 
class~v the primitive ideals, i.e. 

I,,,=I .... iff kpw=kp,,., (forall  w,w'~W). 

Moreover, the cyclic W submodule generated by p,, turns out to be irreducible. 
This defines a map 2o-~W~, attaching to each primitive ideal I~ an irreduc- 
ible W representation denoted c~(I~)=cr(w), called its Joseph represe,tation (or 
Joseph's Goldie rank representation determined by I~). We refer to this map as 
Joseph's correspondence. Its fibres define a partition of ,~ into disjoint subsets 
corresponding to non equivalent representations. These subsets are called chins 
of primitive ideals ~. The cardinality of such a clan is given by the dimension of 
the corresponding representation: In fact, the Goldie rank polynomials p,,, of 
the various primitive ideals I~,, corresponding to a representation ~(~(w) form 
a basis for o-(w). After these basic results of Joseph, it is only left to determine 
the list of all representations a(w)(weW). It turns out that this subset of W '  
coincides with the set S w of "special representations", as defined by Lusztig (cf. 
6.3). This result was verified by Barbasch-Vogan for all cases (FBaV2], Theo- 
rem 2.29). It completes the classification of primitive ideals in :])~: The total 
number for instance is given by 

4f;]o = ~ dim~-. 
~'~Sw 

For G of type Es for example, this means that there are exactly 101796 
primitive ideals with trivial central character. 

6.5. Statement of the Main Theorem 

Let us now compose Joseph's correspondence : ] o ~ W  ~ with Springer's cor- 
respondence W ~ ~,/v~/G to obtain a map s from primitive ideals to nilpotent 
orbits. This map ~2 attaches to the primitive ideal I~(w~W) the orbit 

Q(lw)=Ox 

corresponding to the representation 

cr(w)=p~. 

This is our desired candidate for the associated variety of I~, (cf. [B2], [Jo3], 
7.4). 

1 This is suggested by terminology in abstract ring theory [Ja], [Mti]; detailed exphmations will 
be given else where, since it does not matter here logically 
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Conjecture. We have ~J'(grJ)= f2i) i /'O," all J~,7~. 

We are going to prove: 

Theorem. "/he co,jecture is true for G classical. 

Remarks. a) It tbllows from the work of Barbasch and Vogan, that the in- 

clusion i )grJ)~f2(J)  is always true, with equality of dimension. (See [BaV3],  
Theorern4.1, and [ B a V I ] ,  Theorems 2ft. and 17; for a summary see also 
[Ba V 2], Theorem 4.8.) 

b) Barbasch and Vogan use for this work the (non-algebraic) notion of 
"wave front sets", attached to certain representations by a procedure of Howe. 
This is used to define a G-inwtriant closed set r satisfying 

O(J) c lt~(J) ~ ;r176 J), 

with equality of dimensions. Moreover, for G classical they verify in all cases 
that the left inclusion is an equality. 

c) For the proof of our theorem, we shall use from this work of Barbasch- 
Vogan not the inclusion, but the equality of dimension stated in a). 

In fact, it will suffice to know the following inequality: 

Lemma. dim )' (gr J) < dim f2(J) ./or all J e 3' o. 

This can be proved independently of the work of Barbasch-Vogan as 
follows. Retaining the notation introduced above, let we  W such that J =I,,,, 
and let 

f2(J) = O x resp. a ( J )  = o-(w) = px 

be the corresponding nilpotent orbit resp. Weyl group representation. Any 
irreducible representation t! of W can be realized by homogeneous polynomials 
on the Cartan subalgebra t; hence we may attach to it as an important 
numerical invariant the smallest degree i for which r/ occurs with positive 
multiplicity in S(t)i. We call it the smallest poly,omial degree, spd01). The point 
of the proof is that the spd of a Springer representation relates to the dimen- 
sion of the corresponding nilpotent orbit, while the spd of a Joseph repre- 
sentation relates in a similar way to the GK-dimension of the corresponding 
primitive ideal. 

In more detail, we have as a general fact about the Springer correspon- 
dence that (Notation 6.2) 

spd (&x.,p~) > spd (p~) = d x = dim n-  1 x = l(dim, t '  - dim O~). (1) 

Here the first two relations follow from [BM 1], Corollaire 4, and the last one 
from Steinberg [St]. On the other hand, we have from the work of Joseph on 
his correspondence that 

spd(c,(w))=degp,,=aw=dimb • - d i m  V(Lw)=�89 t " -  dim "/(gr J)). (2) 

Here the first equation is contained in [ J o 4 ] ,  Theorem 5.5 of I, the next two 
were mentioned already in 6.4, and the last one is the well known fact about 
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GK-dimension that dimV(L,.)=�89 combined with the triviality 
d i m ~ C = 2 d i m b  ~-. Combination of (1) and (2) gives d imO x =dim ~(grJ),  that 
is the desired equality of dimensions. Moreover, even without assuming the 
information that the Joseph representation a(w) takes the form Px, i.e. the form 
Plx,m with ~0 = 1, we still conclude from (1) and (2) the inequality stated in the 
lemma. 

d) As pointed out to us by the reviewer, an alternative definition of the 
map f2, in terms of analysis, follows from Hotta's report [H] of recent work of 
Kashiwara. 

6.6. Example. Let P = G  be a parabolic subgroup, and R~ the corresponding 
subsystem of positive roots (notation as in 3.7). Let w e denote the longest 
element of the Weyl subgroup W(P) in W determined by P. Consider the 
primitive ideal Iwp. We claim that it is induced from p = L i e P  In fact, the 
induced module U(g)| o is simple, say by I-J], 1.17, or also by 
[CD], [W] (this is now also geometrically clear by [Br Ka], since the corre- 
sponding Schubert variety )(wp is smooth). Hence this induced module is 
= Lwp, and its annihilator is Iw.  

Now we know from [Jo3], Theorem 10.5, that Joseph's Goldie rank poly- 
nomial of lw, , is given up to a constant c + 0 by 

pw,=el-[o~, the product extended over c~R~,. 

This is a polynomial function on t, homogeneous of degree @R/,, which 
transforms under W(P) by the sign-character, denoted ew(v). The cyclic W- 
module generated by this module in S(t*) is irreducible by an easy argument of 
Macdonald [Md]. Hence the Joseph representation a(we) corresponding to Iwp 
is the "Macdonald representation" determined by P (or the representation 
obtained from ew(P) by "truncated induction", in the terminology of [BaV2]). 
By a result of Lusztig (see [HS], 1.4), this representation corresponds to the 
Richardson orbit determined by P under Springer's correspondence 

a(Wp)=py, where (Yy=Gp • 

In conclusion, we obtain that ~2(Iwp)=Oy is the Richardson orbit determined 
by P. On the other hand, since Iw, is induced form p, we know from 4.7 that 

f ' (g r  Iw~ ) = G p• = f2(I~,,) 
is in fact true. 

6.7. Recall that the fibres of ~2 (or of a) are called clans of primitive ideals (6.4). 
We shall use the result of Joseph [Jo2], Lemma 2.6, that 

"U(grJ )=~(grJ ' )  whenever (2(J)=Q(J'), 

or in other words, that the associated variety is constant on clans. 

Proposition. Conjecture 6.5 holds whenever f2(J) is Richardson. 

In fact, let (2(J)=Gp • be the closure of the Richardson orbit determined 

by P. We have seen in 6.6, that ~t/'(grJ')=Gpl=f2(J ') is true for a particular 
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primitive ideal J'=l+~ in the same clan as J. Hence the constancy on clans 

gives f~(grJ) = Gp• = (~(J). 

6.8. Proof of Theorem 6.5 (reduction to 6.9) 

Let Je+Y o be given. From Barbasch-Vogan (see 6.4), we know that (2(J)=O~ is 
special. Since we assume G classical, each special orbit is either Richardson, or 
is given by an intersection of two Richardson orbit (closure)s, that is to say 

(~x=(~.~ c~(~,~, with Or, Richardson ( i= 1,2). 

This fact was pointed out to us by N. Spaltenstein; for a proof see G. 
Kempken [Kk],  6.6. In the first case, we are done (6.7). In the second case, we 
chose (for i=1,2)  primitive ideals J~ and J[ such that ~(J~)=Ov,, Q(J[)=Ox, 
and JicJ~ '. We shall prove in 6.9-6.11 that this choice is possible. Using 6.7, we 
conclude that 

;~/(gr J) = ':t~+~(gr J]) c ~J(gr Ji) = ~(J~) = O~. 

for i=  1, 2, and hence that 

"~(gr J) c 0~.~ ~ (~y~ = (~:, = (2(J). 

Since (2(J) is irreducible, the desired equality (6.5) follows from the equality of 
dimensions (cf. Remark 6.5c)). 

Comments. This type of argument, which we shall refer to as the "inclusion 
method", was first applied by Barbasch and Vogan in some special situations 
in the course of their analogous considerations on "wave front sets" (see the 
proof  of Lemma 24 in [BaVI] ) .  However, Barbasch and Vogan had to use in 
addition a different type of argument, in both [BaV1],  [BaV2],  which we 
shall call the "induction method". This is based on their result that wave front 
sets behave well under induction of (even infinite dimensional) representations 
of Levi quotients of parabolic subalgebras. We are able to prove the analogous 
result on associated varieties (generalizing our Corollary 4.7 to infinite dimen- 
sional E). However, this needs more advanced methods than those developed 
here so far. We have to work with sheaves of "relative enveloping algebras". 
So we decided to treat this in a separate paper. However, let us mention 
already at this point that the induction method will suffice to prove conjecture 
6.5 for the exceptional groups, because - as was kindly pointed out to us by N. 
Spaltenstein - for these groups all special orbits except one in type E 8 turn out 
to be either induced from a special orbit in a proper Levi subalgebra, or else 
are comparable with all other orbits. (The single exception in type E 8 can be 
settled by the inclusion method.) 

6.9. Ordering ql" Clans 

Let us denote by ~,  the clan of primitive ideals corresponding to the nilpotent 
orbit Ox, that is put 

c~ = (2- t Ox = {j~.~,olfj(j  ) = O:,}. 
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Recall the main result of Barbasch-Vogan stated in 6.4, which says that ~x4:0 
iff 0 x is special. We are interested in the following question: Given two special 
orbits Ox, Oy such that (~xC(~y, do there exist Jxe~'x and jy~c~y such that 
Jx=Jy? Let us write ~x<__~y if the answer is positive. 

Conjecture. For 0~, Oy special, we have cg~ < c~y !ff O~ ~ (~y. 

In other words, the bijection between special orbits and clans of primitive 
ideals should be an order isomorphism. Of this conjecture, we can prove at 
least the following special case, which suffices to complete our argument in 6.8: 

Proposition. Let G classical with 0 x special and Oy Richardson. Then Ox~(~y 
implies cg~ <%. 

In fact, this is a corollary to the following results of D. Vogan and G. 
Kempken. 

6.10. Let P c G  be a parabolic subgroup. Then we denote by c,~.,,) the sign- 
character of the corresponding Weyl subgroup W(P) in 14/.. The induced repre- 
sentation of W is denoted w C'W(p)" 

Proposition. Let Oy be the Richardson orbit determined by P. Let O~cOy be a 
special orbit. Then 

a) (D. Vogan) cg <cgy !ff the Springer representation p~ occurs in Cw(e)'W with 
multiplicity mtp(p~, w ew (e)) + O. 

b) (G. Kempken) [Kk],  6.7) For G classical, mtp(px, w Cw(p) ) :# 0 does always 
hold. 

We are grateful to David Vogan for pointing out to us his unpublished 
result a), and for kindly explaining to us in a letter, how it may be derived from 
the work of Joseph [Jo4]. However, for 6.9 we need here only the "if '  part of 
a), and this follows also from the following more precise interpretation of the 
multiplicity w mtp(p~,ew(e) ) in terms of numbers of primitive ideals, which we 
shall derive directly from [BaV2].  We shall do this next, in Sect. 6.11, in order 
to complete our proof of Theorem 6.5. Afterwards, we are going to discuss in 
6.12 some reinterpretations in geometrical terms of these most interesting 
multiplicities. 

6.11. Conclusion of the Pro(( of Theorem 6.5 

We retain the notations of 6.10, and we recall from 6.6 that the clan ~y 
=~2- toy  contains the primitive ideal Iw,,, which is induced from p=LieP.  For 
the problem posed in 6.9, let us now make the particular choice Jy=Iw,, and 
let us count the number of choices for J~ in the clan cg~ which solve our 
problem, i.e. which contain Jy. We claim that this number of choices is given 
by 

Proposition. 
# {JlJ ccd~, J ~ lw,,} = mtp(/):,, ,w Cw (p))" (1) 

Proof Let us first rewrite formula (1) in the terminology of Barbasch and 
Vogan [BaV2],  following Joseph's work in [Jo5]. The left cell resp. left cone 
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of an element w e W is the subset of W defined by 

~={w'+Wl l~ ,=lw ,  } 
resp. 

- L  ~',,={w'+Wll,,,=lw}, 

see [Ba V2], Definition 2.10. Hence (1) may be rewritten 

mtp(p x, ewle)). (2) 

Next the hft cone representation resp. the l@ cell representation of an element 
wEW is defined to be the left W submodule of the group ring r  given by 

V~ = ( ~ r  2), the sum over w' ~ t  
w' 

resp. 
/ --L L VJ ~ = VJ'/@CL(w'2), the sum over ~, ~cg~,,\~Q. 

w' 

Here the group ring II2[W] is identified with the set of formal complex linear 
combinations of the various L(w'2) for w'~W (as in loc. cit., Definition 2.8). It 
follows from [BaV2],  Proposition 3.15b), that the left cone representation of w 
= w e is given by 

- L  ~ ~W 
V~' = ~:W(P), (3) 

since ~:w(el is the representation of W(P) corresponding to the zero orbit in a 
Levi subalgebra of p. 

On the other hand, the left cone representation 17~ is (up to isomorphism) 
the direct sum of all left cell representations V,~L,, the summation ranging over 
all left cells c6,,,, contained in the left cone c~L What we have to count is the 
number of those summands v~L,, such that I w, belongs to ~ ,  or equivalently, 
such that a(w')= p.,, because this is the number of left cells counted on the left 
hand side of (2). But from [BaV2],  Corollaries 2.15, 2.16 we see that each left 
cell representation V~ L contains the Joseph representation arid) with multip- 
licity 1, and contains no Joseph representations other than a(w'). In con- 
clusion, the desired number of left cells can be found just by counting how 
often p~ occurs in the left cone representation V L �9 "4'p ' 

4t: (% c~ ~L)  = mtp(px ' lyj]o)" (4) 

Combining (4) with (3) gives (2) and hence (1). This completes the proof of the 
proposition, and also the proof of Theorem 6.5. 

6.12. Reinterpretations in Terms of Geometry of Springer's Resolution 

Although we have finished now the proof of our main goal (Theorem 6.5), let 
us add here some geometrical background information from [$3], IBM2],  
which may throw some light onto the rather technical intermediate results 
which occured in the course of our proof. We denote by Y~ the variety of all 
conjugates of our fixed parabolic subgroup P, and we call 4': ~-- ' ,~  the map 
sending a Borel subgroup onto the unique conjugate of P containing it. A 
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subvariety of ~ is called of type P, if it is a union of fibres of q~. Recall the 
notat ions of 6.2. 

Proposition. Let 0 x be any nilpotent orbit. Then the number of C(x) orbits of 
type P components of the Springer fibre :~A x is given bv~ mtp(px, ~w(e)).'w 

Pro~  This is only a reformulat ion of Springer's result [$3] ,  Corollary 4.5, see 
also [BM2] ,  3.5. In fact, consider the moment  map n~ o f ; ~  In the terminology 
of IBM 2], its fibres are the Spaltenstein varieties 

~o  := {p ,~ lx~(L ieP , ) •  ~ ~j; 1 (x), 

and its image is (by 2.6) the closure of the Richardson orbit  Oy determined by 
P The dimension of ~o  is <d~-dy,  and its dx-dy-dimens ional  irreducible 
components  are exactly the images of the type P components  of ~ under the 
map ~b (which has fibres of dimension d x = d i m . ~ - d i m ~  ). Hence to count  
components  in .~)x (which is known to be equidimensional) of type P amounts  
to the same as to count components  in ~ o  of dimension d~-dy. A similar 
s tatement holds for C(x) orbits. Now the proposi t ion follows from 
Corol lary 3.5b) in IBM2] ,  which can be expressed by the following formula:  

dimH2ax-2d,(~o~o, Q)clx~=mtp(p~, w C,W(p)). 
6.13. Corollary. Let O~ be a special orbit, and Oy the Richardson orbit de- 
termined by P. Then the following statements are equivalent, and imply (~  c (~y: 

(i) ~ has a component of type P. 
(ii) ~o  has dimension equal to d~-d~.>= O. 

(iii) mtp(p~, w ew <v~) # O. 
(iv) ~ < cgy. 

Proof. The equivalence of (i), (ii) and (iii) is clear from 6.12, even without the 
assumption Ox special. The equivalence of (iii) and (iv) is Vogan's Proposi t ion 
6.10a). Finally, s tatement  (ii) includes ~o  is not empty, and this means that x 
belongs to the image of z%, which is {7~. (2.6). So (ii) implies x e O y ,  hence O~ 
C(~y. Q.e.d. 

Comments. Another  equivalent formulat ion for (ii) in the terminology of 
[-BM2] is that  

(v) (Y:, is relevant Jor the moment map of ~.  
Recall (6.9) that we conjecture that  the equivalent conditions, (i) to (v) are 

always satisfied for O~ a special orbit, and that G. Kempken  has proved this 
conjecture for classical G by verifying condi t ion (iii). This was verified also 
independent ly  by N. Spaltenstein (private communicat ion) .  2 It should be possi- 
ble to check it also for exceptional G using the tables of Alvis [All.  3 

2 According to Spaltenstein [Sp2], for classical G even the following converse is true: If (iii) 
holds for all parabolic subgroups P such that the (given) nilpotent orbit 0"~ is contained in the 
closure of the Richardson orbit determined by P, then 0"~ is necessarily special. In view of the 
equivalence of (iii) with (v), this gives a geometric characterization for special orbits of classical 
groups. 
3 Added in Proof. Meanwhile, this has also been done by Spaltenstein (private communication) 
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6.14. Some Additio~lal Remarks on the Classification of Primitive 1deals 

a) Joseph's main result on the classification of primitive ideals (cf. 6.4) is 
expressed by the equality ~ x = d i m p x ,  i.e. the number of primitive ideals 
corresponding to a given nilpotent orbit is given by the dimension of the 
corresponding Springer representation. For G=SL , ,  this was known for some 
time as "Jantzen's conjecture" cf. [B2], 5.9 and [Jo l ] ,  [Jo2]. 

Observe that this result is contained in 6.11 (1) as the special case where P 
w is the regular = B  is a Borel subgroup. In fact, in this case W(B) is l, so r.w(R) 

representation of W, and the regular representation contains Px with multip- 
licity dim Px. On the other hand, wB= 1, so lw, ~ is the minimal ideal in .Yo, or 
in other words, the left cone ~ is all of ~'0. So 6.11 (1) for P = B  reduces just 
to Joseph's result # ~ = d i m p ~ .  

b) Similarly, Proposition 6.12 reduces for P = B  to the well known fact that 
the same number dim Px does also give the number of C(x)-orbits of irreduc- 
ible components of ~ .  It is easy to check that this is also equal to the number 
of irreducible components of rc-aO~, the preimage of the nilpotent orbit O:, 
under Springer's resolution IBM2]. 

c) More generally, combining 6.11 (1) with 6.12 gives the following remark- 
able fact : 

Corollary. The number of primitive ideals J containing the induced ideal I~p, 
which correspond to a spec(fied special orbit 0~, is equal to the number of 
irreducible components ~?[" the preimage 7r;;10~ of this orbit under the moment 
map of .~. 

It was this remarkable coincidence of numbers, which suggested to us that 
there might be some direct relation between primitive ideals with orbit O~ on 
one hand, and the components of ~ - tO~  on the other hand. Meanwhile, we 
have found such a direct relation, which at least for G = SL, gives a satisfactory 
geometrical explanation for the striking coincidences of numbers stated above. 
In fact, we know how to define for a primitive ideal J~.~0 a characteristic 
variety in the cotangent bundle T*(d),  which maps onto the associated variety, 
and which establishes such a relation (at least for G=SL,,;  in general it seems 
that one has to consider rather "characteristic cycles" - with multiplicities). 
We intend to develop these new ideas, which should contribute to a geometri- 
cal explanation for the results on classification of primitive ideals, in a sub- 
sequent paper. 

6.15. Example SO13 

Let us conclude with illustrating the results of the present chapter by some 
example. We chose G =SO 13, of type B6, since it is the first example which is 
delicate enough to involve the type of problems considered in 6.9ff. 

The Lie algebra .q=~o~3 has 35 nilpotent orbits, of dimensions up to 72. 
Only 26 of them turn out to be special, and are listed in diagram 1, which 
shows their inclusion relations. Hence ~t o splits into 26 clans of primitive ideals 
J. Let us verify Theorem 6.5, the irreducibility of ~"(grJ), for this case ex- 
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plicitly, clan by clan. Since 24 of the 26 special orbits turn out to be even 
Richardson, the corresponding clans are easily settled, using 4.7 (see 6.6-6.7). 
The remaining two special orbits (encircled in the diagram) have dimensions 
50 resp. 36. 

Consider for instance the 36-dimensional special orbit O~ which is not 
Richardson, and let us make explicit how this case is settled by the inclusion 
method (as explained in 6.8). Let 1~ resp. P2 be parabolic subgroups with Levi 
groups of type A 5 resp. B 4 x A~. They determine Richardson orbits Oy, resp. 
Oy~ of dimension 42 resp. 38 such that O~=(~y m(Yy. Now the inclusion 
method (6.8) will work to give <(grJ)=(Y,  for J in cg~, as soon as we can 

2O 

22 

26 

28 

3O 

32 

0 

18 

28 

:30 

32/36 

38 

L0 

L2 

z,& 

46 

&8 

50 

< 
[ 
[ 

0 

22 

36 

&2/38 

50 

62 

6L 

66 

68 

70 

72 

G=SO 9 (type B~) O=SO~(type B 5) O=SO13(type B 6) 

Diagram l. Inclusion diagram .for the set of special orbits in some classical groups, or also the 
order-diagram for the set of clans of primitive ideals. The numbers on the right are the orbit 
dimensions (resp. GK-dimensions of primitive ideals). Most orbits shown are Richardson: the three 
exceptions are encircled 

verify ~x<~y,  for i =  1, 2. This is done in general by Kempken and Vogan 
(6.10); for the particular case at hand, one may also proceed as follows: Recall 
that there is an order-reversing involution 2to~--<T o, which is denoted by J~-~J', 
and which is given by l'w=lww ~, see [BaV2],  2.24. Then the clans ~'x, ~Y',., resp. 
cg'y 2 correspond to Richardson orbits of dimensions 68, 66 resp. 66, determined 
by parabolics of Levi types A 1 x A~ resp. AI x A~ x A~ resp. A 2. For these it is 
easy to verify ~>cgr for i =  1, 2, and the desired result follows by applying the 
order reversing involution. 

For the only special orbit which is left to be considered now, the 50- 
dimensional one, the inclusion method works similarly. Let us mention that in 
this case (but not in the preceding one), we may also apply the "induction 
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m e t h o d "  (cf. c o m m e n t s  to 6.8) as fo l lows:  Th is  pa r t i cu l a r  o rb i t  is i n d u c e d  f rom 
a 2 8 - d i m e n s i o n a l  one  in ~ o ~ .  S ince  all the  o the r  n i l po t en t  o rb i t s  in ~ o ~  are  

c o m p a r a b l e  wi th  this one,  the i r r educ ib i l i ty  T h e o r e m  (6.5) is t r ivial  for the 
c o r r e s p o n d i n g  c lan  in case ~ o ~ .  H e n c e  the des i red  resul t  in case ~o~3 will 
fo l low f rom the  genera l  resul t  (to be p r o v e d  e lsewhere)  tha t  i r r educ ib i l i ty  of  
a s soc i a t ed  var ie t ies  is p rese rved  unde r  p a r a b o l i c  induc t ion .  

P I L E  

Et maintenant notre noble navire s'~lance 
d toute vitesse sur les sombres lames de la 
met du Nord. 

PI~RE U B U  

Mer farouche et inhospitaliOre qui baigne 
le pays appeld Germanie, ainsi nommO parce 
que les habitants de ee pays sont tous cousins 
germains. 

M E R E  U B U  

Voih't ce que j'appelle de I'Orudition, On 
dit ce pays fort beau. 

PI~RE U B U  

Ah: messieurs: si beau qu'il soit il ne 
vaut pas la Pologne. S'il n'y avait pas de 
Pologne, il n'y aurait pas de Polonais! 

(Alfred Jar ry ,  Ubu Roi) 
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