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shown that the projection of the Lie point symmetries on M are
special subgroups of the conformal group of M . In particular, if the
scalar curvature of M vanishes, the projection on M of the Lie point
symmetry group of the Poisson equation with critical nonlinearity
is the conformal group of the manifold. We illustrate our results by
applying them to the Thurston geometries.
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1. Introduction

The study of differential equations on manifolds is the corner stone of the Geometric Analysis. For
this purpose various methods have been applied: fixed point theorems, continuity method, maximum
principles, a priori estimates, Schauder theory, etc. However it seems that it is little known how the
symmetries of the considered equation (or system) and the geometry of the manifold are related. (By
a ‘symmetry’ we understand a Lie point symmetry [9,10,27,35–37].)
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Let Mn be a (pseudo) Riemannian manifold of dimension n � 3 endowed with a (pseudo) Rieman-
nian metric g = (gij) given in local coordinates {x1, . . . , xn}. In this paper we shall study the Lie point
symmetries of the Poisson equation on Mn:

�g u + f (u) = 0, (1)

where

�g u = 1√
g

∂

∂xi

(√
g gij ∂u

∂x j

)
= gij∇i∇ ju = ∇ j∇ ju = ∇i∇ iu

is the Laplace–Beltrami operator, f is a smooth function, (gij) is the inverse matrix of (gij), ∇i is
the covariant derivative corresponding to the Levi-Civita connection and we have used the Einstein
summation convention, that is, summation from 1 to n over repeated indices is understood.

Eq. (1) can be equivalently written as

H ≡ gijui j − Γ iui + f (u) = 0, (2)

where Γ i := g pqΓ i
pq , Γ i

pq being the Christoffel symbols, ui = ∂u
∂xi , uij = ∂2u

∂xi∂x j .
We observe that Eq. (1) includes elliptic and hyperbolic equations, depending on whether (Mn, g)

is a Riemannian or a pseudo Riemannian manifold. Such equations appear in various geometric and
mathematical physics contexts which we shall not going into here. We merely mention the Poisson

equations in R
n , in particular those involving critical exponents, taking in (1) f (u) = u

n+2
n−2 and the

Euclidean metric; the Klein–Gordon equation, taking in (1) the metric ds2 = −dt2 + dx2 + dy2 + dz2

and f (u) = u; the semilinear wave equations in R
1+n , with f ′′(u) �= 0 and the metric ds2 =

−dt2 + δi j dxi dx j in (1); and the Klein–Gordon equation on the S
2 sphere. These particular equa-

tions have been studied in [27,35,6,7,24,43,5,22,25,39]. The interested reader may also consult the
book [27] of Ibragimov, where various aspects of symmetry analysis of differential equations on man-
ifolds are presented. We would also like to mention the paper by Ratto and Rigoli [38] in which these
authors obtain gradient bounds and Liouville type theorems for the Poisson equation (1) on complete
Riemannian manifolds.

The purpose of this paper is three-fold. First we shall obtain a complete group classification for
the semilinear Poisson equations (1) by applying the S. Lie symmetry theory. Then we shall study the
Noether symmetries of (1). (Noether symmetry = variational or divergence symmetry.) The latter will
be used to establish the corresponding conservation laws via the Noether’s theorem.

Since we suppose that the reader is familiar with the basic notions and methods of contemporary
group analysis [9,10,27,35–37], we shall not present preliminaries concerning Lie point symmetries of
differential equations. For a geometric viewpoint of Lie point symmetries, see [34,31]. We would just
like to recall that, following Olver [35, p. 182], to perform a group classification on a differential equa-
tion involving a generic function f consists of finding the Lie point symmetries of the given equation
with arbitrary f , and, then, to determine all possible particular forms of f for which the symmetry
group can be enlarged. Usually there exists a geometrical or physical motivation for considering such
specific cases.

Our first result is the following group classification theorem.

Theorem 1. 1.) The Lie point symmetry group of the Poisson equation (1) with an arbitrary f (u) coincides
with the isometry group of Mn. In this case the infinitesimal generator is given by

X = ξ = ξ i(x)
∂

∂xi
(3)

where
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Lξ gij = 0

and Lξ is the Lie derivative with respect to the vector filed ξ .
For some special choices of the function f (u) it can be extended in the cases listed below.
2.) If f (u) = 0 then the symmetries have the form

X = ξ i(x)
∂

∂xi
+

[(
2 − n

4
μ(x) + c

)
u + b(x)

]
∂

∂u
, (4)

where c is an arbitrary constant,

�gb = 0, (5)

�gμ = 0 (6)

and ξ = ξ i(x) ∂

∂xi is a conformal Killing vector field such that

Lξ gij = μgij . (7)

3.) In the case f (u) = k = const. �= 0 the symmetries are generated by

X = ξ i(x)
∂

∂xi
+

[
n − 2

n + 2

(
1

k
(�gb) − c

)
u + b(x)

]
∂

∂u
, (8)

where c is an arbitrary constant,

�2
gb = 0,

and ξ = ξ i(x) ∂

∂xi is a conformal Killing vector field such that

Lξ gij = 4

(n + 2)

(
c − 1

k
�gb

)
gij. (9)

4.) If the function f is a linear function: f (u) = u, then the symmetry generator is given by (4) with
ξ = ξ i(x) ∂

∂xi satisfying (7),

�gb + b = 0, (10)

2 − n

4
�gμ + μ = 0. (11)

5.) For exponential nonlinearity f (u) = eu we have the generator

X = ξ i(x)
∂

∂xi
− μ

∂

∂u
, (12)

where μ is a constant and ξ = ξ i(x) ∂

∂xi is a homothety such that

Lξ gij = μgij, μ = const. (13)
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6.) For power nonlinearity f (u) = up, p �= 0, p �= 1, the Lie point symmetry group is generated by

X = ξ i(x)
∂

∂xi
+ μ

1 − p
u

∂

∂u
, (14)

where μ is a constant and the vector field ξ = ξ i(x) ∂

∂xi is a homothety such that

Lξ gij = μgij, μ = const. (15)

6.1) If p = n+2
n−2 , n �= 6, the infinitesimal generator of the Lie point symmetries has the form

X = ξ i(x)
∂

∂xi
+ 2 − n

4
μu

∂

∂u
, (16)

where μ is a harmonic function on Mn:

�gμ = 0 (17)

and

Lξ gij = μgij. (18)

6.2) If p = 2 and n = 6, the symmetry group is determined by

X = ξ i(x)
∂

∂xi
+

(
−μ(x)u + 1

2
�gμ

)
∂

∂u
, (19)

where μ is a biharmonic function on Mn:

�2
gμ = 0 (20)

and ξ = ξ i(x) ∂

∂xi is a conformal Killing vector field such that

Lξ gij = μgij. (21)

It is clear that the projection of the Lie point symmetries listed in Theorem 1 on the space of inde-
pendent variables are, in fact, special conformal Killing vector fields generating some subgroups of the
conformal group of (Mn, g), which we shall call special conformal groups generated by symmetries.

Theorem 1 applied to the situations studied in [43,5,23,39] immediately gives the results on group
classification, obtained in these works, for semilinear Poisson and wave equations. In this way the
projection on the space of independent variables of the symmetry group of the critical Klein–Gordon
equation in R

1+n

utt − �u = u(n+3)/(n−1)

is the conformal group of R
1+n .

In [5] the wave equation on the sphere S
2

utt = uxx + (cot x)ux + 1
2

u yy

sin x
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has been studied using the standard Lie approach. In [22] one of us, using the results of the present
paper, generalized [5] for the semilinear wave equation on the sphere S

2:

utt = uxx + (cot x)ux + 1

sin2x
u yy + f (u).

Corollary 1. Let (Mn, g) be a compact manifold without boundary. Then the Lie point symmetry group of (1)
with an arbitrary f (u) coincides with the isometry group Isom(Mn, g).

If f (u) = 0 the symmetry group is generated by

X = ξ + (cu + b)
∂

∂u
,

where ξ is a Killing vector field (that is Lξ gij = 0), c and b—arbitrary constants.
If f (u) = u, then the symmetry generator has the form

X = ξ + (
cu + b(x)

) ∂

∂u
,

where ξ is a Killing vector field,
∫

M b(x)dV = 0, �gb + b = 0 and c is an arbitrary constant.

By the results in [48] one can easily obtain the following estimates on the dimension of the sym-
metry Lie algebras:

Corollary 2. Let S be a Lie algebra generated by the symmetries of the nonlinear Poisson equation on (Mn, g).
Then, the dimension of S with an arbitrary f (u) does not exceed n(n+1)

2 and the equality holds if and only if
the sectional curvature of (Mn, g) is constant.

For some special choices of the function f (u) the dimension of S can be enlarged.

1. If f (u) = k, k = const. or f (u) = u, then dim(S) = ∞ and all finite dimensional subalgebras possess
dimension less than (n+1)(n+2)

2 + 1 and the equality holds if and only if (Mn, g) is a flat manifold.

2. If f (u) = eu or f (u) = up, with p(p−1)(p− n+2
n−2 ) �= 0, then dim(S) � n(n+1)

2 +1 and the equality holds
if and only if (Mn, g) is Euclidean. In particular, if p and e denote the symmetry Lie algebras corresponding
to the cases of power and exponential nonlinearity, then p ≈ e, for any manifold (Mn, g).

3. If f (u) = u
n+2
n−2 , then dim(S) � (n+1)(n+2)

2 and the equality holds if and only if (Mn, g) is a flat manifold.

In order not to loose the generality we have not made specific assumptions on the manifold Mn

except n � 3. (The case n = 2 will be treated elsewhere. Some partial results can be found in [16].)
Rather we provide a scheme which can be followed and specialized for any concrete manifold, for
which one should extract further information using its geometrical properties.

Another related point to be emphasized concerns the integrability conditions for Lξ gij = μgij with
μ = 0 (isometry), μ = const. (homothety) or μ = μ(x) corresponding to a general conformal transfor-
mation (‘conformal motion’). These conditions are in terms of the Riemannian curvature tensor and
have been thoroughly studied in 1950s–1960s. See for instance [48,40] and the references therein.
Although we shall not explicitly state the integrability conditions corresponding to the cases of Theo-
rem 1, we shall suppose that such conditions hold. (Otherwise the symmetry determining equations
might define the set {0}. The latter, of course, may occur for certain manifolds. This simply means that
there are no nontrivial Lie point symmetries of the Poisson equation (1) on such manifolds.) Moreover,
the number of the integrability conditions is undetermined for a generic manifold. This would create
another considerable difficulty in treating the group classification problem in such a general setting.
For this reason we have presented in Theorem 1 just the relations determining the symmetry groups
as special conformal groups, without entering in differential-geometrical details regarding Mn like,
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e.g., positivity, negativity, vanishing or boundedness of its scalar, sectional or Ricci curvatures as well
as of the respective consequences. For a variety of such results see [49] and the references therein.

Our next purpose in this paper is to find out which of the above symmetries are variational or
divergence symmetries.

Theorem 2. 1.) For an arbitrary f (u) any symmetry of (1) is a variational symmetry, that is, the isometry
group of (Mn, g) and the variational symmetry group of (1) coincide.

2.) In the exponential case f (u) = eu the only variational symmetries are the isometries of (Mn, g).
3.) In the power case f (u) = up, p �= 0, p �= 1, the symmetry (14) is variational if and only if

p = n + 2

n − 2
, (22)

that is, p + 1 equals to the critical Sobolev exponent.

3.1) If p = n+2
n−2 , n �= 6, then the symmetry generated by (16) is a divergence symmetry.

3.2) If p = 2 and n = 6, then the symmetry generated by (19) is a divergence symmetry.

4.) In the linear cases we have:

4.1) If f (u) = 0, the symmetry (4) is a Noether symmetry if and only if c = 0.
4.2) If f (u) = k, k �= 0, the symmetry (8) is a Noether symmetry if and only if b = c = 0.
4.3) If f (u) = u, the symmetry (4) is a Noether symmetry if and only if c = 0.

From case 4.2) we conclude that the Noether symmetry group for the nonhomogeneous case
f (u) = k coincides with the isometry group of (Mn, g). Also from case 4.3), if c = 0 in (4), then,
except the term b ∂

∂u in (4), the Noether symmetry group of the homogeneous case coincides with the
symmetry group of the critical case (16).

We would also like to observe that in the critical cases 3.1) and 3.2) of Theorem 2 all Lie point
symmetries are Noether symmetries. The general property stating that a Lie point symmetry of an
equation (or system) is a Noether symmetry if and only if the equation parameters assume criti-
cal values has been established and discussed in [12]. Recall that, as it is well known, the so-called
critical exponent is found as the critical power for embedding theorems of Sobolev type. It is also
related to some numbers dividing the existence and nonexistence cases for the solutions of differen-
tial equations, in particular semilinear differential equations with power nonlinearities involving the
Laplace operator. The above mentioned property traces a connection between these two notions: the
Noether symmetries and the ‘criticality’ of the equation. It relates two important theorems, namely,
the Sobolev theorem and the Noether theorem. Theorem 2 shows that this property holds also in the
context of Riemannian manifolds. In fact, this is another motivation to write the present paper. In this
regard, we can see that the widest symmetry group admitted by the Poisson equation may be the full
conformal group of Mn . Namely:

Corollary 3. If the scalar curvature of (Mn, g), n � 3, vanishes, then the widest symmetry group admitted by
the Poisson equation (1) is achieved for the critical equation

�g u + u(n+2)/(n−2) = 0.

In this case it coincides with the conformal group of (Mn, g).

The latter equation and its invariant properties have been studied in [27].
We remark that if the manifold is flat, then the symmetry group of the nonlinear cases is maximal

in the critical case.
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Now we shall state the conservation laws corresponding to the found Noether symmetries. Before
doing this it is worth mentioning that there are powerful modern methods to obtain conservation
laws due to George Bluman et al. [2–4,1,28–30,33,47]. We believe that these methods can be very
useful in the study of various differential geometric problems. However, we have chosen here the
classical approach since we have at our disposal explicit formulae for the potentials ensured by the
Noether’s theorem (see Sections 8 and 9), whose determination is usually the major difficulty. Thus it
is immediate, simple and natural to apply the classical approach.

Corollary 4. The conservation laws corresponding to the Noether symmetries of Eq. (1) are classified as follows:

1. If f (u) is an arbitrary function, then the conservation law is Di Ai = 0, where

Ak = √
g

(
1

2
gijξk − gkjξ i

)
uiu j − √

gξk F (u), (23)

and X = ξ i ∂

∂xi is a Killing vector field on (Mn, g).

2. If f (u) = 0, then the conservation law is Di Ai = 0, where

Ak = √
g

(
1

2
gijξk − gkjξ i

)
uiu j + 2 − n

4

√
g gkj

(
μuu j − 1

2
μ ju

2
)

+ √
g g jk(bu j − b ju), (24)

and ξ , b μ satisfy (5), (6), (7).
3. If f (u) = k, k = const., then the conservation law is given by Eq. (24) with b = 0.
4. If f (u) = u, then the conservation law is Di Ai = 0, where

Ak = √
g

(
1

2
gijξk − gkjξ i

)
uiu j + 2 − n

4

√
g gkj

(
μuu j − 1

2
μ ju

2
)

+ √
g g jk(bu j − b ju) − 1

2
ξk√gu2 (25)

and ξ , b μ satisfy (7), (10), (11).

5. If n �= 6 and f (u) = u
n+2
n−2 , then the conservation law is Di Ai = 0, where

Ak = √
g

(
1

2
gijξk − gkjξ i

)
uiu j + 2 − n

2n

√
gξku

2n
n−2

+ 2 − n

4

√
g gkj

(
μuu j − 1

2
μ ju

2
)

, (26)

and ξ , μ satisfy (17), (18).
6. If n = 6 and f (u) = u2 , then the conservation law is Di Ai = 0, where

Ak = √
g

(
1

2
gijξk − gkjξ i

)
uiu j − 1

3

√
gξku3

+ √
g gkj

[
1

2

(
�gμu j + μ ju

2) − (
μuu j + (�gμ) ju

)]
(27)

and ξ , μ satisfy (20), (21).
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For some applications of symmetries and conservation laws see [10,13,15,27,22].
We observe that in [26,27] Ibragimov has established the fact that the projection of the Lie sym-

metry group on the space of independent variables is a sub-group of the conformal group of the
considered manifold. For this purpose he has obtained the symmetry determining Eqs. (50)–(52) (see
below and [27]). However, a complete group classification, up to the authors’ knowledge, as carried
out in Theorem 1 without restrictions on the curvature, is new. Moreover, the study of Noether’s
symmetries (Theorem 2) and corresponding to them conservation laws is also original. In this way
our results complement Ibragimov’s ones. We hope that they give useful insights. In fact, the results
on conformally invariant equations established in [27] are our main motivation to write the present
work.

This paper is organized as follows. Section 2 includes the geometric preliminaries and introduces
notations and conventions used in this paper. Further, the determining equations for the symme-
try coefficients are obtained in Section 3. The connections between isometry groups and symmetry
groups are established in Section 4. The group classification for the linear cases is obtained in Sec-
tion 5 and for the nonlinear cases in Sections 6 and 7. The proof of Corollary 1 concerning the Lie
point symmetries in the case of compact manifolds without boundary is presented in Section 8. The
Noether symmetries are found in Sections 9 and 10. In order to illustrate the main results, some
examples are presented in Section 11 in which we perform the group classification and establish
the Noether symmetries and their respective conservation laws for the nonlinear Poisson equations
in the Thurston geometries, namely: R

3, the three-dimensional hyperbolic space H
3, the sphere S

3,
the three-dimensional solvable group Sol, the product spaces S

2 × R, H
2 × R, the universal covering

of SL2(R) and the three-dimensional Heisenberg group.

2. Preliminaries

In this section we introduce notation. We also state some results which will be used later.
The Riemann tensor of (Mn, g) is given by

Ri
jks = Γ i

jk,s − Γ i
js,k + Γ i

lsΓ
l
jk − Γ i

lkΓ
l
js. (28)

The Ricci tensor

Ri
s = g jk Ri

jks (29)

and its trace R := Ri
i is the scalar curvature of M .

For any contravariant vector field T = (T i) the following commutation relation holds

(∇k∇l − ∇l∇k)T i = −Ri
skl T

s. (30)

See [21].
We observe that the Riemann and Ricci tensors used in this paper coincide with those in Yano’s

book [48] and in Dubrovin, Fomenko and Novikov’s book [21]; they are negatives of the respective
tensors used by Ibragimov in [27].

We shall need some auxiliary results which are presented in a sequence of lemmas.

Lemma 1. If ξ is a conformal Killing vector field satisfying

∇ iξ j + ∇ jξ i = μgij, (31)

then the covariant divergence

div(ξ) = ∇ jξ
j = n

2
μ. (32)
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Proof. Just take the trace in (31). �
Lemma 2. If ξ is a conformal Killing vector field (see Eq. (31)) then

�gξ
i + Ri

jξ
j = 2 − n

2
gijμ j. (33)

Proof. Applying the covariant derivative operator ∇ j to equality (31) and summing up we obtain

∇ j∇ iξ j + �gξ
i = gijμ j. (34)

On the other hand, from (30) it follows that

∇ j∇ iξ j − ∇ i∇ jξ
j = Ri

sξ
s

and hence

∇ j∇ iξ j = ∇ i div(ξ) + Ri
sξ

s. (35)

Then (32), (34) and (35) imply the relation (33). �
Lemma 3. (See Yano [48].) If ξ is a conformal vector field such that

Lξ gij = μgij, (36)

then

�gμ = − 1

n − 1
(Lξ R + μR). (37)

The next two lemmas concern the form of the semilinear Poisson equation (1) and its variational
structure.

Lemma 4. The Poisson equation (1) can be written in the equivalent form (2).

Proof. This can be seen by performing explicitly the partial differentiations in the Laplace–Beltrami
operator and using the formula

(√
g gik)

,k = −g pqΓ i
pq

√
g. � (38)

Lemma 5. The Poisson equation (1) has a variational structure and it is (formally) the Euler–Lagrange equation
of a functional

∫
M L dx, where the Lagrangian

L =
√

g

2
gijuiu j − F (u)

√
g, (39)

and F ′(u) = f (u).
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Proof. First we apply to L the Euler operator

E = ∂

∂u
− Dk

∂

∂uk
,

where

Dk = ∂

∂xk
+ uk

∂

∂u
+ uks

∂

∂us
+ · · ·

is the total derivative operator. Then, after simplifying, Eq. (1) is obtained. �
3. The determining equations

In this section we shall obtain the set of linear partial differential equations determining the Lie
point symmetries of the Poisson equation (1).

To begin with, let

X = ξ i(x, u)
∂

∂xi
+ η(x, u)

∂

∂u

be a partial differential operator on Mn × R which is infinitesimal generator of such a symmetry. Let
X (1) be the first-order prolongation of X . (See [9,10,27,35,37] for the corresponding definitions.) First
we shall simplify the form of X .

Proposition 1. If n � 2, then the infinitesimals of the symmetry X take the form

{
ξ i = ξ i(x),

η = a(x)u + b(x),
(40)

where a = a(x) and b = b(x) are smooth functions.

Proof. This proposition follows from two theorems of Bluman [8,10]. �
The following intermediate result, up to notation, is the same as in Ibragimov’s book [27, pp. 114–

115].

Proposition 2. (See Ibragimov [27].) The infinitesimals of the Lie point symmetries of Eq. (1) satisfy the rela-
tions:

ξk gi j
,k − gikξ j

,k − g jkξ i
,k + agij = λgij, (41)

2gija j − g jkξ i
, jk + Γ jξ i

, j − Γ i
, jξ

j − aΓ i = −λΓ i, (42)

(�ga)u + (au + b) f ′(u) + �gb = λ f (u), (43)

where λ = λ(x) and Γ i := g pqΓ i
pq .

Proof. This proposition follows from Proposition 1 and the definition of Lie point symmetry. �
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Proposition 3. Let ξ = ξ i ∂

∂xi . Then the determining equations can be written in the following equivalent form:

∇iξ j + ∇ jξi = Lξ gij = μgij, (44)

2gija j − (
�gξ

i + Ri
jξ

j) = 0, (45)

au f ′(u) + bf ′(u) − λ f (u) + (�ga)u + �gb = 0, (46)

where μ := a − λ and Ri
j is the Ricci tensor of g.

Corollary 5. The relation (45) is equivalent to

ai = 2 − n

4
μi (47)

which, itself, is equivalent to

λi = n + 2

n − 2
ai . (48)

Thus, the determining equations are (44), (47) and

au f ′(u) + bf ′(u) + (μ − a) f (u) + 2 − n

4
(�gμ)u + �gb = 0. (49)

Corollary 6. The determining equations are:

∇iξ j + ∇ jξi = Lξ gij = μgij, (50)

ai = 2 − n

4
μi, (51)

au f ′(u) + bf ′(u) + (μ − a) f (u) + n − 2

4(n − 1)

[
ξ i R,i + μR

]
u + �gb = 0. (52)

The statement of Corollary 6 is explicitly announced in [27, pp. 115–116], without a detailed proof.
For the sake of clearness and completeness we have decided to present here the corresponding proof,
dividing the procedure in three steps: Proposition 3, Corollary 5 and Corollary 6.

Proof of Proposition 3. The equivalence between (43) and (46) is obvious. The equivalence between
(41) and (44) is clear from the definitions of Lie derivative and conformal Killing vectors. Indeed,
from (41):

ξk gi j
,k − gisξ j

,s − g jsξ i
,s = −μgij.

The formula

gij
,k = −Γ i

ks gsj − Γ
j

ks gis,

substituted above, implies

∇ iξ j + ∇ jξ i = μgij.



Y. Bozhkov, I.L. Freire / J. Differential Equations 249 (2010) 872–913 883
Hence and by the definition of Lie derivative, it follows that (44) holds. And vice versa: (44) im-
plies (41).

Further, we shall prove the equivalence of (42) and (45). From (42) we have

2gija j − (
g jkξ i

, jk − Γ jξ i
, j + Γ i

, jξ
j + μΓ i) = 0. (53)

We denote

Ai := g jkξ i
, jk, Bi := Γ jξ i

, j, C i := Γ i
, jξ

j.

Then (53) reads

2gija j − (
Ai − Bi + C i + μΓ i) = 0.

We aim to express Ai , Bi and C i in the terms of covariant derivatives. From

∇ jξ
i = ξ i

, j + Γ i
jsξ

s (54)

and

∇ jΓ
i = Γ i

, j + Γ i
jsΓ

s (55)

we obtain

Bi = Γ j(∇ jξ
i − Γ i

jsξ
s) = Γ j∇ jξ

i − Γ jΓ i
jsξ

s (56)

and

C i = (∇ jΓ
i − Γ i

jsΓ
s)ξ j = (∇ jΓ

i)ξ j − Γ i
jsΓ

sξ j . (57)

Further:

∇kξ
i
, j = ξ i

, jk + Γ i
klξ

l
, j − Γ l

kjξ
i
,l,

ξ i
, jk = ∇k

(∇ jξ
i − Γ i

jsξ
s) − Γ i

kl

(∇ jξ
l − Γ l

jsξ
s) + Γ l

kj

(∇lξ
i − Γ i

lsξ
s)

= ∇k∇ jξ
i − (∇kΓ

i
js

)
ξ s − Γ i

js∇kξ
s − Γ i

kl∇ jξ
l

+ Γ i
klΓ

l
jsξ

s + Γ l
kj∇lξ

i − Γ i
lsξ

sΓ l
kj . (58)

From (53), (56), (57) and (58) it follows that

2gija j − �gξ
i + g jk(∇kΓ

i
js

)
ξ s + g jkΓ i

js∇kξ
s + Γ i

kl g
jk∇ jξ

l − g jkΓ i
klΓ

l
jsξ

s

− Γ l∇lξ
i + Γ lΓ i

lsξ
s − (∇ jΓ

i)ξ j + Γ sΓ i
jsξ

j + Γ j∇ jξ
i − Γ jΓ i

jsξ
s − μΓ i = 0. (59)

On the other hand, from (44)

∇kξ l = −∇lξk + μglk
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and hence

−Γ i
kl g

jk∇ jξ
l = Γ i

kl∇lξk − μglkΓ i
lk. (60)

Substituting (60) into (59) we obtain after renaming the indices and canceling some terms:

2gija j − (
�gξ

i + wi
sξ

s) = 0, (61)

where

wi
s = −g jk(∇kΓ

i
js

) + g jkΓ i
klΓ

l
js + ∇sΓ

i − Γ lΓ i
sl. (62)

Then we express the covariant derivatives in (62) in the terms of usual partial derivatives. In this way
we get that

wi
s = g jk(Γ i

jk,s − Γ i
js,k + Γ i

lsΓ
l
jk − Γ i

lkΓ
l
js

) = g jk Ri
jks = Ri

s, (63)

where Ri
jks and Ri

s are the components of the Riemann and Ricci tensors respectively. Thus (61), (62)
and (63) imply (45). �
Proof of Corollary 5. From (33) and (45) we obtain

2gija j − 2 − n

2
gijμ j = 0,

that is,

ai = 2 − n

4
μi .

The rest of the proof is straightforward. �
Proof of Corollary 6. The conclusion follows from Corollary 4 and Lemma 3 (see (37)). �
4. The isometry group and the Lie point symmetry group for arbitrary f (u)

In this section we prove the first part of Theorem 1.
Let X be a symmetry of (1). Then X has necessarily the form given in Proposition 1. From (46),

equating to zero the terms involving u, we obtain

a = b = λ = μ = 0.

Hence, η = 0 and X = ξ i ∂

∂xi . From (44) with μ = 0, it follows that X is an isometry.

Let X = ξ i ∂

∂xi be an infinitesimal isometry of Mn . Therefore L X gij = 0. Hence Eq. (44) holds with
μ = 0. By the form of X , η = 0 and thus a = b = 0. Hence the relation (49) is satisfied. Obviously (47)
is satisfied since a = μ = 0. Therefore X = ξ i ∂

∂xi is a Lie point symmetry.
In this way we have proved that

X = ξ i(x, u)
∂

i
+ η(x, u)

∂

∂x ∂u
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is a Lie point symmetry of (1) with arbitrary f (u) if and only if η = 0 and X = ξ i(x) ∂

∂xi = ξ is an
infinitesimal isometry of Mn . In other words, the isometry group of (Mn, g) is the invariance group
of its Laplace–Beltrami operator!

In this case, by (37) we have Lξ R = 0, an integrability condition for Lξ gij = 0, which we suppose
holds true. See [48] for details concerning the integrability conditions for Lξ gij = 0 or, more generally,
Lξ gij = μgij .

5. The Lie point symmetries in the linear cases

In this section we prove parts 2.), 3.) and 4.) of Theorem 1.
Let f (u) = 0. Then from (49) we conclude that �gb = 0 and �gμ = 0. Integrating (47) we ob-

tain a = 2−n
4 μ + c, where c is an arbitrary constant. This completes the proof of the second part of

Theorem 1.
Further, let f (u) = k = const. �= 0. From (49) we have

(μ − a)k + 2 − n

4
(�gμ)u + �gb = 0.

Hence, equating to zero the coefficient of u and the free term, we obtain

�gμ = 0 (64)

and

(μ − a)k + �gb = 0. (65)

Again from (47) we get a = 2−n
4 μ + c, where c is an arbitrary constant. Substituting this expression

for a in (65) we find

μ = 4

(n + 2)

(
c − 1

k
�gb

)
.

It remains to put the latter into (64) to conclude that �2
gb = 0.

Let now f (u) = u. From (49) we have

au + b + (μ − a)u + 2 − n

4
(�gμ)u + �gb = 0.

Hence, equating to zero the coefficient of u and the free term, we obtain �gb + b = 0 and 2−n
4 �gμ+

μ = 0. This completes the proof of Theorem 1 in the linear cases.

6. The Lie point symmetries in the case of exponential nonlinearity

Let f (u) = eu . From (49) we obtain

aueu + (b + μ − a)eu + 2 − n

4
(�gμ)u + �gb = 0.

Hence, equating to zero the coefficients of ueu , eu , u and the free term, we obtain a = 0, b = −μ and
�gb = �gμ = 0. From (47)
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2 − n

4
μi = 0

since a = 0. Thus μi = 0 because n � 3. Hence μ = const. This completes the proof.
We observe that this case, in fact, is a Liouville–Gelfand problem on Riemannian manifolds.

7. The Lie point symmetries in the case of power nonlinearity

In this section we shall prove parts 6.), 6.1) and 6.2) of Theorem 1.
Let f (u) = up . The cases p = 0 and p = 1 have already been considered and we may suppose that

p �= 0 and p �= 1.
From (49) we obtain

[
(p − 1)a + μ

]
up + pbup−1 + 2 − n

4
(�gμ)u + �gb = 0.

Let p �= 2. Then, equating to zero the coefficients of up , up−1, u and the free term, implies that

a = 1

1 − p
μ, (66)

pb = 0 and �gμ = 0. Since p �= 0 it follows that b = 0. From (47) and (66) it follows that

[
1

1 − p
+ n − 2

4

]
μi = 0. (67)

(i) If p �= n+2
n−2 , then (67) implies μi = 0 for all i and thus μ = const. and ξ is a homothety.

(ii) Let p = n+2
n−2 and n �= 6. (Otherwise p = 2.) From (66) it is clear that the symmetry has the form

announced in 6.1) of Theorem 1.
Let now p = 2. From (49) we have

(a + μ)u2 +
(

2b + 2 − n

4
(�gμ)

)
u + �gb = 0. (68)

Hence

a = −μ, (69)

2b + 2 − n

4
(�gμ) = 0 (70)

and

�gb = 0. (71)

From (47) and (69) it follows that

6 − n

4
μi = 0. (72)

Again we have to consider two cases.
I.) If n �= 6 then from (72) we obtain μi = 0 for all i and thus μ = const. Hence and from (70) it

follows that b = 0. We see that this case is included in case 6.) of Theorem 1.
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II.) Let n = 6. Now we cannot conclude from (72) that μ is a constant. From (70) we express b as
a function of μ:

b = n − 2

8
�gμ = 1

2
�gμ.

Substituting this expression for b into (71) we obtain �2
gμ = 0. This completes the proof of Theo-

rem 1.

Proof of Corollary 3. If R = 0 then by Lemma 3, (37) any conformal transformation (36) satisfies
�gμ = 0 and hence the conclusion follows immediately. �
8. The Lie point symmetries in the case of compact manifolds without boundary

In this section we prove Corollary 1.
1.) Let f (u) be an arbitrary function. By Theorem 1 the symmetry group coincides with the isom-

etry group of (Mn, g).
2.) If f (u) = 0 by Theorem 1 the symmetry is determined by (4), (5), (6), (7). Since μ and b are

harmonic, by the E. Hopf’s maximum principle it follows that μ = const. and b = const. But μ =
2 div(ξ)/n (see Lemma 1). Hence

μVol
(
Mn) =

∫
Mn

μdV = 2

n

∫
Mn

div(ξ)dV = 0

by the Green’s theorem. Thus μ = 0.
3.) Here we observe that the Poisson equation with f (u) = k on compact manifolds without

boundary makes sense only if k = 0. This follows directly from the Green’s theorem.
The proof of Corollary 1 in the rest of the cases in Theorem 1 is similar to the above presented.

For this reason we shall not present further details merely pointing out that the constancy of the
conformal factor μ, the harmonicity of μ or biharmonicity of μ imply that μ = 0 by the maximum
principle and the Green’s theorem.

9. The Noether symmetries in nonlinear cases

In this and the next sections we present the proof of Theorem 2 divided in several propositions
and lemmas.

In order to apply the infinitesimal criterion for invariance [35, p. 257], we need the following

Proposition 4. Let

X = ξ i(x)
∂

∂xi
+ [

a(x)u + b(x)
] ∂

∂u
, (73)

where a, b and ξ i are smooth functions, be a partial differential operator on Mn × R. Then

X (1)L + LDiξ
i = 1

2

[
gks div(ξ) + 2agks − ∇kξ s − ∇sξk]√gukus

− √
g div(ξ)F (u) − √

gau f (u) − √
gbf (u)

+ (aiu + bi)
√

g gisus, (74)

where X (1) is the first-order prolongation of X and the function L is given in (39).
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Proof. By a straightforward calculation we obtain the first-order prolongation

X (1) = X + (
aiu + bi + (

aδ
j
i − ξ j

,i
)
u j

) ∂

∂ui

where ‘,’ means partial derivative: ξ j
,i = ∂ξ j/∂xi and δ

j
i is the Kronecker symbol. We apply X (1) to L

given by (39) and then change some of the indices in the obtained expression. In this way we get
that

X (1)L + L
∂ξ i

∂xi
=

[
1

2
ξ i(gks√g

)
,i + (

aδk
i − ξk

,i
)

gis√g + 1

2
ξ i

,i gks√g

]
ukus

− au f (u)
√

g − bf (u)
√

g + (aiu + bi)us gis√g

− F (u)ξ i(
√

g)i − F (u)ξ i
,i
√

g. (75)

Further we shall make use of the formulae(
gks√g

)
,i = −gslΓ k

li − gklΓ s
li , (

√
g),i = Γ k

ik
√

g, (76)

where Γ ’s are the Christoffel symbols. Then by the definition of the covariant derivative operators ∇ i ,
corresponding to the Levi-Civita connection ∇ , and the second formula in (76), the last two terms
in (75) can be written as

−ξ i(
√

g),i F (u) − ξ i
,i
√

g F (u) = −div(ξ)F (u)
√

g. (77)

(We recall that div(ξ) = ∇iξ
i is the covariant divergence of ξ .)

Now we denote by A the expression in the right-hand side of the first line of (75) containing ukus .
Using (76) we obtain that

A =
{

1

2
ξ i√g

[−gslΓ k
li − gklΓ s

li + gksΓ l
il

] + agks√g

− 1

2
gis√gξk

,i − 1

2
gki√gξ s

,i + 1

2
gks√gξ i

,i

}
ukus

=
{
−1

2

(
gisξk

,i + gslΓ k
li ξ

i) − 1

2

(
gkiξ s

,i + gklΓ s
li ξ

i)

+ 1

2
gks(ξ i

,i + Γ l
ilξ

i) + agks
}√

gukus. (78)

From the definition of the covariant derivative we have that

∇sξk = gisξk
,i + gslΓ k

li ξ
i,

∇kξ s = gkiξ s
,i + gklΓ s

li ξ
i,

∇iξ
i = ξ i

,i + Γ l
ilξ

i .

We substitute these formulae into (78). Thus

A = 1

2

[−∇sξk − ∇kξ s + gks div(ξ) + 2agks]√gukus. (79)

From (75), (77) and (79) we obtain (74). �
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Now we shall prove the first part of Theorem 2, namely

Lemma 6. For an arbitrary f (u) any symmetry of (1) is a variational symmetry, that is, the isometry group
of Mn and the variational symmetry group of (1) coincide.

Proof. We have already seen in Section 4 that in this case a = b = μ = div(ξ) = 0. Substituting this
data into (74) we obtain X (1)L + LDiξ

i = 0. Thus X = ξ i(x) ∂

∂xi is a variational symmetry. And vice-
versa: from (74) it follows that any variational symmetry of (1) with arbitrary f (u) is an isometry. �
Lemma 7. In the exponential case f (u) = eu the only variational symmetries are the isometries of M.

Proof. Substituting a = 0, b = −μ = const., div(ξ) = nμ/2 and L = gksukus/2 − eu into (74) we obtain

X (1)L + LDiξ
i = (n − 2)μL/2. (80)

Hence it is clear that X is never a divergence symmetry. Again from (80), the symmetry X is varia-
tional if and only if n = 2 or μ = 0. Since n � 3 it follows that the only variational symmetries in the
exponential case are the isometries (μ = 0). �
Lemma 8. In the power case f (u) = up, p �= 0, p �= 1, the symmetry (14) is variational if and only if

p = n + 2

n − 2
,

that is, p + 1 equals to the critical Sobolev exponent.

Proof. We put a = μ/(1 − p), μ = const., b = 0, div(ξ) = nμ/2 and L = gksukus/2 − up+1/(p + 1)

into (74). We obtain

X (1)L + LDiξ
i =

(
−1 + n

2
+ 2

1 − p

)
μ

√
g gksukus −

(
n

2

1

p + 1
+ 1

1 − p

)
μ

√
gup+1. (81)

Hence X is a variational symmetry if and only if in (81) the coefficients of the terms containing u
and its derivatives vanish, which holds if and only if p = (n + 2)/(n − 2). �
Lemma 9. Let X be the Lie point symmetry (16). Then

X (1)L + LDiξ
i = 2 − n

4

√
g gijμiuu j. (82)

Proof. Substituting a = (2 − n)μ/4, b = 0, div(ξ) = nμ/2 and L = gksukus/2 − (n − 2)u2n/(n−2)/(2n)

into (74) we obtain (82). �
Lemma 10. If �gμ = 0, the following equality holds:

2 − n

4

√
g gijμ juui = Diϕ

i, (83)

where

ϕ i = ϕ i(x, u) = 2 − n

8

√
g gijμ ju

2.
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Proof. We calculate the total divergence of ϕ = (ϕ i):

Diϕ
i =

(
∂

∂xi
+ ui

∂

∂u
+ uik

∂

∂uk
+ · · ·

)(
2 − n

8

√
g gijμ ju

2
)

= 2 − n

8

(√
g gijμ j

)
iu

2 + 2 − n

4

√
g gijμ juui

= 2 − n

8

[∇i
(√

g gijμ j
) − Γ i

ki
√

g gkjμ j
]
u2 + 2 − n

4

√
g gijμ juui

= 2 − n

8

[∇i(
√

g)gijμ j + √
g∇i

(
gijμ j

) − Γ i
ki
√

g gkjμ j
]
u2 + 2 − n

4

√
g gijμ juui

= 2 − n

8

[(∇i(
√

g) − Γ i
ki
√

g
)

gijμ j + √
g�gμ

]
u2 + 2 − n

4

√
g gijμ juui

= 2 − n

4

√
g gijμ juui

since the metric is parallel with respect to the Levi-Civita connection, �gμ = 0 and Γ i
ki
√

g =
(ln

√
g)i

√
g = (

√
g)i = ∇i(

√
g). �

Then from (82) and (83) it follows that

X (1)L + LDiξ
i = Diϕ

i,

that is, X is a divergence symmetry. In this way we have proved the part 3.1) of Theorem 2.

Lemma 11. Let X be the Lie point symmetry (19). Then

X (1)L + LDiξ
i = −1

2

√
g�gμu2 − √

g gijμiuu j + 1

2

√
g gij(�gμ)iu j. (84)

Proof. Substituting a = −μ, b = �gμ/2, div(ξ) = 3μ and L = gksukus/2 − u3/3 into (74) we ob-
tain (84). �
Lemma 12. If �2

gμ = 0, the following equality holds:

−1

2

√
g�gμu2 − √

g gijμiuu j + 1

2

√
g gij(�gμ)iu j = Diφ

i, (85)

where

φi = φi(x, u) = −1

2

√
g gijμ ju

2 + √
g gij(�gμ) ju.

Proof. We calculate the total divergence of φ = (φ i):

Diφ
i =

(
∂

∂xi
+ ui

∂

∂u
+ uik

∂

∂uk
+ · · ·

)(
−1

2

√
g gijμ ju

2 + √
g gij(�gμ) ju

)

= −1 (√
g gijμ j

)
iu

2 − √
g gijμ juui + (√

g gij(�gμ) j
)

iu + √
g gij(�gμ) jui
2
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= −1

2

[∇i
(√

g gijμ j
) − Γ k

ik
√

g gijμ j
]
u2 − √

g gijμ juui

+ ∇i
(√

g gij(�gμ) j
)
u − Γ k

ik
√

g gij(�gμ) ju + √
g gij(�gμ) jui

= −1

2

[∇i(
√

g) − Γ k
ik
√

g
]

gijμ ju
2 − 1

2

√
g�gμu2 − √

g gijμ juui

+ [∇i(
√

g) − Γ k
ik
√

g
]

gij(�gμ) ju + √
g�2

gμu + √
g gij(�gμ)iu j

= −1

2

√
g�gμu2 − √

g gijμiuu j + 1

2

√
g gij(�gμ)iu j

since the metric is parallel with respect to the Levi-Civita connection, �2
gμ = 0 and Γ i

ki
√

g =
(ln

√
g)i

√
g = (

√
g)i = ∇i(

√
g). �

Then from (84) and (85) it follows that

X (1)L + LDiξ
i = Diφ

i,

that is, X is a divergence symmetry. In this way we have proved the part 3.2) of Theorem 2.

10. The Noether symmetries in linear cases

Here we shall prove the part 4.) of Theorem 2.

Lemma 13. Let X be the symmetry (4). Then

X (1)L + LDiξ
i = 2cL + 2 − n

4

√
g gijμiuu j + √

g gijbiu j. (86)

Proof. Substituting a = ( 2−n
4 μ(x) + c), div(ξ) = n

2 μ, F (u) = f (u) = 0 and L = √
g gksukus/2 into (74)

we obtain (86). �
Lemma 14. If �gμ = �gb = 0, the following equality holds:

2 − n

4

√
g gijμ juui + √

g gijbiu j = Diφ
i, (87)

where

φi = φi(x, u) = 2 − n

8

√
g gijμ ju

2 + √
g gijb ju. (88)

Proof. We have φi = ϕ i + ψ i , where ϕ i = 2−n
8

√
g gijμ ju2 and ψ i = √

g gijb ju. Since the divergence
of ϕ i was already calculated in Lemma 10 we have that

Diφ
i = Diϕ

i + Diψ
i = 2 − n

4

√
g gijμiuu j +

(
∂

∂xi
+ ui

∂

∂u
+ uik

∂

∂uk
+ · · ·

)(√
g gijb ju

)
= 2 − n

4

√
g gijμiuu j + (√

g gijb j
)

iu + √
g gijb jui

= 2 − n√
g gijμiuu j + √

g�gbu + √
g gijbiu j
4
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= 2 − n

4

√
g gijμiuu j + √

g gijbiu j

since �gb = 0. �
Lemma 15. Let X be the symmetry (4). Then X is a Noether symmetry if and only if c = 0.

Proof. From (86) and (87) it follows that

X (1)L + LDiξ
i = 2cL + Diφ

i . (89)

Then the conclusion of Lemma 15 follows from (89). This proves part 4.1) of Theorem 2. �
We observe that the symmetry (4) can be written as

X = ξ + 2 − n

4
μ(x)

∂

∂u
+ b(x)

∂

∂u
+ cu

∂

∂u
,

where ξ = ξ i(x) ∂

∂xi is a conformal Killing vector field satisfying (7), c = const., �gb = 0 and �gμ = 0.

The potentials ϕ i , ψ i are the potentials of the symmetries ξ + 2−n
4 μ(x) ∂

∂u and b(x) ∂
∂u , respectively.

The symmetry u ∂
∂u corresponds to a non-Noetherian symmetry and it reflects the linearity of the

equation.

Lemma 16. Let X be the symmetry (8). Then

X (1)L + LDiξ
i = 2cL + 2 − n

4

√
g gijμiuu j + √

g gijbiu j + √
g�gbu − √

gbk. (90)

Proof. Substituting

a =
(

2 − n

4
μ(x) + c

)
, div(ξ) = n

2
μ, F (u) = ku, f (u) = k,

L = √
g gksukus/2 − ku

√
g

into (74) and using �gb = ck − n+2
4 μk (see (9)) we obtain (90). �

Observe that by (9): μ = 4
(n+2)

(c − 1
k �gb). Hence �gμ = 0 since �2

gb = 0.

Lemma 17. Let φi be the potential (88) and �gμ = 0. Then

Diφ
i = 2 − n

4

√
g gijμiuu j + √

g gijbiu j + √
g�gbu. (91)

The proof of this lemma is similar to that of Lemma 10 and Lemma 14.

Lemma 18. Let X be the symmetry (8). Then X is a Noether symmetry if and only if c = b = 0.
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Proof. Substituting �gb = −n+2
4 kμ + kc and (91) into (90), we obtain

X (1)L + LDiξ
i = 2cL + Diφ

i − √
gbk (92)

which implies Lemma 18. This proves part 4.2) of Theorem 2. �
Now let X be the symmetry (4) of (1) with f (u) = u. We shall only sketch the proof of 4.3) of

Theorem 2.
Substituting a = (2 − n)μ/4 + c, div(ξ) = n/2, f (u) = u, F (u) = u2/2, L = √

g gijuiu j/2 − √
gu2/2

into (74), we obtain

X (1)L + LDiξ
i = 2cL + Diφ

i − √
gu2

(
2 − n

2
�gμ + μ

)/
2 − √

gu(�gb + b), (93)

where φi is given in (88). Then from (10), (11) and (93) we get

X (1)L + LDiξ
i = 2cL + Diφ

i .

Hence X is a Noether symmetry if and only if c = 0.
Thus, we have concluded the proof of Theorem 2.

11. Examples: Poisson equations on Thurston geometries

In this section we apply our results to Poisson equations on the Thurston geometries. The presen-
tation is very schematic in order not to increase the volume of the paper.

All examples presented here involve elliptic forms of Eq. (1). Examples of symmetry analysis in-
volving some particular hyperbolic cases of (1) can be found in [5,22,24].

Some of the results presented in this section were verified using the SYM package [19,20].
To the authors’ knowledge, the results in Sections 11.3, 11.4, 11.5, 11.6, 11.7, 11.8 and 11.9 are

original.

11.1. Thurston geometries

A manifold Mn is said to be homogeneous if, for every x, y ∈ M , there exists an isometry of Mn

such that it leaves x in y. Let X be the universal covering of Mn and G its isometry group.
A geometry consists of a pair (X, G) as above, where X is a connected manifold and G is a group

that acts effectively and transitively on X , and where all stabilizers Gx are compact. This is also
equivalent to the data of a connected Lie group G and a compact Lie subgroup H of G , if we associate
to this data the homogeneous space X = G/H endowed with the natural left action of G .

Two geometries (X, G) and (X ′, G ′) are identified if there is a diffeomorphism from X to X ′ which
sends the action of G to the action of G ′ . (X, G) is said to be maximal if there is no larger geometry
(X ′, G ′) with G ⊆ G ′ and G �= G ′ . For more details, see [11,41].

There are exactly 8 three-dimensional maximal geometries (X, G), the so-called Thurston geome-
tries.

Thurston [45] has classified the three-dimensional, simply-connected, homogeneous manifolds as
follows (see also [44,46,11,41]):

• the Euclidean space R
3 = {(x, y, z) | x, y, z ∈ R}, with canonical metric

ds2 = dx2 + dy2 + dz2;
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• the hyperbolic space H
3 = {(x, y, z) ∈ R

3 | z > 0}, with metric

ds2 = (
dx2 + dy2 + dz2)/z2;

• the sphere S
3 = {(x1, x2, x3, x4) ∈ R

4 | ∑4
i=1 x2

i = 1}, with induced metric from R
4;

• the solvable group Sol, which can be defined as the Lie group (R3,∗) where

(x, y, z) ∗ (
x′, y′, z′) = (

x + x′, y + e−x y′, z + exz′),
with left-invariant metric ds2 = dx2 + e2x dy2 + e−2x dz2;

• the space S
2 × R, with product metric;

• the space H
2 × R, with product metric. Here H

2 is the two-dimensional hyperbolic space;
• the universal covering of SL2(R), or R

3+ = {(x, y, z) ∈ R
3 | z > 0}, with metric

ds2 =
(

dx + dy

z

)2

+ (dy2 + dz2)

z2

and
• the Heisenberg group H1, whose group structure is given by

φ
(
(x, y, t),

(
x′, y′, t′)) = (

x + x′, y + y′, t + t′ + 2
(

yx′ − xy′))
and the left-invariant metric is ds2 = dx2 + dy2 + (dz + 2y dx − 2x dy)2.

Three of them are isotropic geometries: if the curvature is positive, then the isotropic geometry is
the 3-sphere S

3. If the curvature is negative, the isotropic geometry is the hyperbolic space H
3. If the

curvature vanishes, the isotropic geometry is the Euclidean space R
3.

Four of the Thurston geometries, the product spaces S
2 × R, H

2 × R and two Lie groups, S̃L2(R)

and H1, are known as the four Seifert type geometries.
Finally, we have the Sol group, which possesses this name because the group G of the pair (Sol, G)

is solvable and it is the only one of the Thurston geometries with this property.
For more details about the Thurston geometries, see [44–46,11,41].

11.2. The Euclidean space

The application presented in this subsection is well known. It corresponds to the group classifi-
cation, Noether symmetries and conservation laws of nonlinear Poisson equations in R

3. The group
classification of these equations can be found in [43] as a particular case. The Noether symmetries
and conservation laws are established in [13] in a more general context.

Here we shall consider the three-dimensional vector space R
3 with the Euclidean metric

ds2 = dx2 + dy2 + dz2

and the Poisson equation

uxx + u yy + uzz + f (u) = 0. (94)
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11.2.1. The group classification
1. For any arbitrary function f (u), the symmetry group of (94) coincides with the isometry group

of R
3. It is well known (see e.g. [27,21]) that the latter is generated by translations and rotations

given by

R1 = ∂

∂x
, R2 = ∂

∂ y
, R3 = ∂

∂z
,

R4 = y
∂

∂x
− x

∂

∂ y
, R5 = y

∂

∂z
− z

∂

∂ y
, R6 = z

∂

∂x
− x

∂

∂z
. (95)

Hence (95) determine the symmetry group of (94) for arbitrary function f (u).
2. If f (u) = 0 then the additional to (95) symmetries are

R7 = x
∂

∂x
+ y

∂

∂ y
+ z

∂

∂z
+ u

2

∂

∂u
,

R8 = xz
∂

∂x
+ yz

∂

∂ y
+ (z2 − x2 − y2)

2

∂

∂z
− zu

∂

∂u
,

R9 = xy
∂

∂x
+ y2 − x2 − z2

2

∂

∂ y
+ yz

∂

∂z
− yu

2

∂

∂u
,

R10 = x2 − y2 − z2

2

∂

∂x
+ xy

∂

∂ y
+ xz

∂

∂z
− xu

2

∂

∂u
, (96)

R11 = u
∂

∂u
, R∞ = b(x, y, z)

∂

∂u
, (97)

where �b = 0.
3. The case f (u) = k = const. �= 0 reduces to the homogeneous case under the change u → u −kx2/2.
4. If the function f is a linear function, f (u) = u, then the additional symmetry generators are given

by (97), with �b + b = 0.

5. For exponential nonlinearity f (u) = eu , the additional generator is

R13 = x
∂

∂x
+ y

∂

∂ y
+ z

∂

∂z
− 2

∂

∂u
.

6. For power nonlinearity f (u) = up , p �= 0, p �= 1, and p �= 5, the additional generator is

R14 = x
∂

∂x
+ y

∂

∂ y
+ z

∂

∂z
+ 2

1 − p
u

∂

∂u
.

7. If p = 5, then the additional infinitesimal generators of the Lie point symmetries are given in (96).

We observe that the critical Sobolev exponent n+2
n−2 in this case is exactly 5 and, if

p(p −1)(p −5) �= 0, then the symmetry group of (94), with f (u) = up , is isomorphic to the symmetry
group of (94) with f (u) = eu and the special conformal group generated by the symmetries is the
group of homothetic motions in R

3.
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11.2.2. The Noether symmetries
1. The isometry group is a variational symmetry group of the nonlinear Poisson equation in R

3. In
particular, it is the Noether symmetry group of the cases f (u) = eu and f (u) = up , with p �=
0,1,5.

2. The conformal group of R
3 and the symmetry R∞ generate a Noether symmetry group for

�u = 0.
3. The isometry group and the symmetry R∞ generate a Noether symmetry group for �u + u = 0.
4. The full conformal group of R

3 is a Noether symmetry group for �u + u5 = 0.

The corresponding conservation laws can be obtained as a particular case of those, more general,
established in [13] and for this reason they are not stated explicitly here.

11.3. The hyperbolic space

We consider the Klein’s model of the hyperbolic space H
3 represented by the set of (x, y, z) ∈ R

3,
with z > 0, and endowed with the metric

ds2 = dx2 + dy2 + dz2

z2
.

This metric has constant negative scalar curvature R = −6 and its sectional curvature is equal
to −1 (see [18, p. 160]). Thus one immediately concludes from [48, p. 57], that the isometry group
of H

3 possesses a six-dimensional Lie algebra.
It is easy to check that the following vector fields

H1 = ∂

∂x
, H2 = ∂

∂ y
, H3 = −y

∂

∂x
+ x

∂

∂ y
,

H4 = x
∂

∂x
+ y

∂

∂ y
+ z

∂

∂z
,

H5 = x2 − y2 − z2

2

∂

∂x
+ xy

∂

∂ y
+ xz

∂

∂z
,

H6 = xy
∂

∂x
+ −x2 + y2 − z2

2

∂

∂ y
+ yz

∂

∂z
(98)

are Killing fields on (H3, g) and, for maximality, they form a basis of generators of Isom(H3, g).
The nonlinear Poisson equation on (H3, g) is given by

z2�u − zuz + f (u) = 0, (99)

where � is the Laplace operator on R
3 and uz = ∂u

∂z .

11.3.1. The group classification
1. For any function f (u), the symmetry group coincides with Isom(H3, g).
2. If f (u) = 0 then the additional symmetries are

H∞ = b
∂

∂u
, (100)

with �gb = 0, and

H7 = u
∂

. (101)

∂u
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3. The case f (u) = k = const. �= 0 is equivalent to case f (u) = 0 under the change v = u + (k/2) ln z.
4. If the function f is a linear function, f (u) = u, then the additional symmetry generator is given

by (100), with �b + b = 0, and (101).

11.3.2. The Noether symmetries
1. The isometry group of (H3, g) is a variational symmetry group.
2. Symmetries (100), with �gb = 0 or �gb + b = 0, are the Noether symmetries to the cases

f (u) = 0 or f (u) = u, respectively.

11.3.3. The conservation laws
Here we present the conservation laws corresponding to the Noether symmetries of Eqs. (99) with

arbitrary f (u).

1. For the symmetry H1, the conservation law is Div(A) = 0, where A = (A1, A2, A3) and

A1 = y2 + z2 − x2

4z

(
u2

x − u2
y − u2

z

) − 1

z
(xyuxu y + xzuxuz) + y2 + z2 − x2

4z2
F (u),

A2 = xy

2z

(
u2

x − u2
y + u2

z

) + y2 + z2 − x2

2z
uxu y − xzu yuz − xy

2z2
F (u),

A3 = x

2

(
u2

x + u2
y − u2

z

) y2 + z2 − x2

2z
uxuz − xyu yuz − x

2z
F (u).

2. For the symmetry H2, the conservation law is Div(B) = 0, where B = (B1, B2, B3) and

B1 = xy

2z

(
u2

y + u2
z − u2

x

) + x2 − y2 + z2

2z
uxu y − yuxuz − xy

2z2
F (u),

B2 = x2 + y2 + z2

2z

(
u2

y − u2
x − u2

z

) − xy

z
uxu y − yu yuz − 1

4z2
F (u),

B3 = y

2

(
u2

x + u2
y − u2

z

) − xy

z
uxu y + x2 − y2 + z2

2z
u yuz − y

2z
F (u).

3. For the symmetry H3, the conservation law is Div(C) = 0, where C = (C1, C2, C3) and

C1 = x

2z

(
u2

y + u2
z − u2

x

) − y

z
uxu y − uxuz − x

2z2
F (u),

C2 = y

2z

(
u2

x − u2
y + u2

z

) − x

z
uxu y − u yuz − y

2z2
F (u),

C3 = 1

2

(
u2

x + u2
y − u2

z

) − x

z
uxuz − y

z
u yuz − 1

2z
F (u).

4. For the symmetry H4, the conservation law is Div(D) = 0, where D = (D1, D2, D3) and

D1 = y

2z

(
u2

y + u2
z − u2

x

) + x

z
uxu y − y

2z2
F (u),

D2 = x

2z

(
u2

y − u2
x − u2

z

) − y

z
uxu y + 1

2z2
F (u),

D3 = x

z
u yuz − y

z
uxuz.
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5. For the symmetry H5, the conservation law is Div(E) = 0, where E = (E1, E2, E3) and

E1 = 1

2z

(
u2

y + u2
z − u2

x

) − 1

2z2
F (u),

E2 = −1

z
uxu y,

E3 = −1

z
uxuz.

6. For the symmetry H6, the conservation law is Div(F ) = 0, where F = (F1, F2, F3) and

F1 = −1

z
uxu y,

F2 = 1

2z

(
u2

x − u2
y + u2

z

) − 1

2z2
F (u),

F3 = −1

z
u yuz.

7. For the symmetry H∞ , with �gb = 0, the conservation law is Div(G) = 0, where G = (G1, G2, G3)

and

G1 = bux − bxu

z
,

G2 = bu y − byu

z
,

G3 = buz − bzu

z
. (102)

8. For the symmetry H∞ , with �gb + b = 0, the conservation law is Div(G) = 0, where G is given
in (102).

11.4. The sphere

Let us now consider the 3-sphere S
3. Its metric is given by the restriction to S

3 of the canonical
metric of R

4. Or, more specifically

ds2 = 4

(1 + x2 + y2 + z2)2

(
dx2 + dy2 + dz2). (103)

This metric determines the following Poisson equation on S
3

�u − 2

1 + x2 + y2 + z2
(xux + yu y + zuz) + f (u) = 0, (104)

where � denotes the Laplacian in R
3.
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The Isom(S3, g) is generated by the following vector fields:

S1 = (
1 + x2 − y2 − z2) ∂

∂x
+ 2xy

∂

∂ y
+ 2xz

∂

∂z
,

S2 = 2xy
∂

∂x
+ (

1 − x2 + y2 − z2) ∂

∂ y
+ 2zy

∂

∂z
,

S3 = 2xz
∂

∂x
+ 2yz

∂

∂ y
+ (

1 − x2 − y2 + z2) ∂

∂z
,

S4 = y
∂

∂x
− x

∂

∂ y
,

S5 = z
∂

∂x
− x

∂

∂z
,

S6 = z
∂

∂ y
− y

∂

∂z
. (105)

The scalar curvature of (S3, g) is R = 6.

11.4.1. Group classification
1. Arbitrary f (u): It is immediate that the vector fields (105) are symmetries. (See Theorem 1 and

Corollary 1.)
2. Linear case: In addition to Isom(S3, g), we have the symmetries

S7 = u
∂

∂u
(106)

and

S∞ = b
∂

∂u
, (107)

where �gb + b = 0,
∫

Mn b dV = 0.
3. Homogeneous case: In this case, the symmetries are given by (105), (106) and

S8 = ∂

∂u
.

11.4.2. The Noether symmetries
1. For arbitrary f (u), the isometry group of (S3, g) is a variational symmetry group.
2. If f (u) = 0, in addition to the variational symmetries Isom(S3, g), we have the divergence sym-

metry ∂
∂u .

3. If f (u) = u, the additional divergence symmetry is (107), with �gb + b = 0.

11.4.3. The conservation laws
1. For the symmetry S1, with arbitrary f (u), the conservation law is Div(A) = 0, where A =

(A1, A2, A3) and

A1 = (1 + x2 − y2 − z2)(u2
y + u2

z − u2
x) − 4xyuxu y + 4xzuxuz

(1 + x2 + y2 + z2)2

− 4
1 + x2 − y2 − z2

2 2 2 3
F (u),
(1 + x + y + z )
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A2 = 2(xyu2
x − xyu2

y + xzu2
z ) − (1 + x2 − y2 − z2)uxu y

(1 + x2 + y2 + z2)2

− 4xy

(1 + x2 + y2 + z2)3
F (u),

A3 = 2((xzu2
x + xzu2

y − xzu2
z ) − (1 + x2 − y2 − z2)uxu y)

(1 + x2 + y2 + z2)2

− 8xy

(1 + x2 + y2 + z2)3
F (u).

2. For the symmetry S2, with arbitrary f (u), the conservation law is Div(B) = 0, where B =
(B1, B2, B3) and

B1 = 2(xy(u2
y + u2

z − u2
x) − 2yzuxuz − (1 − x2 − y2 + z2)uxu y)

(1 + x2 + y2 + z2)2

− 8xy

(1 + x2 + y2 + z2)3
F (u),

B2 = (1 − x2 + y2 − z2)(u2
x − u2

y + u2
z ) − 4xyuxu y − 4yzu yuz

(1 + x2 + y2 + z2)2

+ 4(1 − x2 + y2 − z2)

(1 + x2 + y2 + z2)3
F (u),

B3 = 2(yz(u2
x + u2

y − u2
z ) − 2xyuxuz − (1 − x2 + y2 − z2)uxuz)

(1 + x2 + y2 + z2)2

− 8yz

(1 + x2 + y2 + z2)3
F (u).

3. For the symmetry S3, with arbitrary f (u), the conservation law is Div(C) = 0, where C =
(C1, C2, C3) and

C1 = 2(xz(u2
y + u2

z − u2
x) − 2yzuxu y − (1 − x2 − y2 + z2)uxuz)

(1 + x2 + y2 + z2)2

− 8xz

(1 + x2 + y2 + z2)3
F (u),

C2 = 2(yz(u2
x − u2

y + u2
z ) − 2xzuxu y − (1 − x2 − y2 + z2)u yuz)

(1 + x2 + y2 + z2)2

− 8yz

(1 + x2 + y2 + z2)3
F (u),

C3 = (1 − x2 − y2 + z2)(u2
x + u2

y − u2
z ) − 4xzuxuz − 4yzu yuz

(1 + x2 + y2 + z2)2

− 4(1 − x2 − y2 + z2)

(1 + x2 + y2 + z2)3
F (u).
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4. For the symmetry S4, with arbitrary f (u), the conservation law is Div(D) = 0, where D =
(D1, D2, D3) and

D1 = 2y(u2
y + u2

z − u2
x) − 4xuxu y

(1 + x2 + y2 + z2)2
− 8y

(1 + x2 + y2 + z2)3
F (u),

D2 = −2x(u2
x − u2

y + u2
z ) − 4yuxu y

(1 + x2 + y2 + z2)2
+ 8x

(1 + x2 + y2 + z2)3
F (u),

D3 = 4xu yuz − 4yuxuz

(1 + x2 + y2 + z2)2
.

5. For the symmetry S5, with arbitrary f (u), the conservation law is Div(E) = 0, where E =
(E1, E2, E3) and

E1 = 2z(u2
y + u2

z − u2
x) + 4xuxuz

(1 + x2 + y2 + z2)2
− 8z

(1 + x2 + y2 + z2)3
F (u),

E2 = 4xu yuz − 4zuxu y

(1 + x2 + y2 + z2)2
,

E3 = 2x(u2
x + u2

y − u2
z ) + 4zuxuz − 4yuxuz

(1 + x2 + y2 + z2)2
− 8x

(1 + x2 + y2 + z2)3
F (u).

6. For the symmetry S6, with arbitrary f (u), the conservation law is Div(F ) = 0, where F =
(F1, F2, F3) and

F1 = 4yuxuz − 4zuxu y

(1 + x2 + y2 + z2)2
,

F2 = 2z(u2
x + u2

y − u2
z ) + 4yu yuz

(1 + x2 + y2 + z2)2
− 8z

(1 + x2 + y2 + z2)3
F (u),

F3 = 2y(u2
z − u2

x − u2
y) − 4zu yuz

(1 + x2 + y2 + z2)2
− 8y

(1 + x2 + y2 + z2)3
F (u).

7. For the symmetry S∞ , with �gb + b = 0 or �gb = 0, the conservation law is Div(G) = 0, where
G = (G1, G2, G3) and

G1 = bux − bxu

1 + x2 + y2 + z2
,

G2 = bu y − byu

1 + x2 + y2 + z2
,

G3 = buz − bzu

1 + x2 + y2 + z2
.

8. For the symmetry S8 = ∂
∂u , the conservation law is Div( J ) = 0, where J = ( J1, J2, J3) and

J 1 = ux
2 2 2

,

1 + x + y + z
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J 2 = u y

1 + x2 + y2 + z2
,

J 3 = uz

1 + x2 + y2 + z2
.

11.5. The Sol group

The solvable group Sol topologically is the real vector space R
3. Its Lie group structure is deter-

mined by the product

(x, y, z) ∗ (
x′, y′, z′) = (

x + x′, y + e−x y′, z + exz′),
where (x, y, t), (x′, y′, t′) ∈ R

3. See [17].
The left-invariant metric on Sol is

ds2 = dx2 + e2x dy2 + e−2x dz2 (108)

and it determines the semilinear Poisson equation

uxx + e−2xu yy + e2xuzz + f (u) = 0. (109)

The sectional curvature of (Sol, g) is nonconstant. See [11]. Its scalar curvature R = −2.
The dimension of Isom(Sol, g) is 3 (see [11,42]) and a basis of Killing vector fields on Sol is given

by

So1 = ∂

∂x
− y

∂

∂ y
+ z

∂

∂z
, So2 = ∂

∂ y
, So3 = ∂

∂z
. (110)

11.5.1. The group classification
1. Arbitrary case: The Lie point symmetry group of (109) is Isom(Sol, g) generated by (110).
2. Linear case: In addition to the isometry group, we have the symmetries

So4 = u
∂

∂u
,

So∞ = b(x)
∂

∂u
, (111)

where b is a function such that �gb + b = 0.

3. Homogeneous case: We have the same symmetries as in the linear case, but the function b
in (111) satisfies �gb = 0.

11.5.2. The Noether symmetries
1. The isometry group Isom(Sol, g) is a variational symmetry group of (109) for any function f (u).
2. If f (u) = 0 in (109), the additional divergence symmetry is (111), with �gb = 0.
3. In the remaining linear case, the Noether symmetries are Isom(Sol) and (111), where �gb +b = 0.
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11.5.3. The conservation laws
1. For the symmetry So1, with arbitrary f (u), the conservation law is Div(A) = 0, where A =

(A1, A2, A3) and

A1 = 1

2

(
e−2xu2

y + e2xu2
z − u2

x

) + yuxu y − zuxuz − F (u),

A2 = −1

2

(
yu2

x + ye2xu2
z − ye−2xu2

y

) − e−2xuxu y − e−2xzu yuz + yF (u),

A3 = z

2

(
u2

x + e−2xu2
y − e2xu2

z

) − e2xuxuz + e2x yu yuz + yF (u).

2. For the symmetry So2, with arbitrary f (u), the conservation law is Div(B) = 0, where B =
(B1, B2, B3) and

B1 = −uxu y,

B2 = 1

2

(
u2

x − e−2xu2
y + e2xu2

z

) − F (u),

B3 = −e2xu yuz.

3. For the symmetry So3, with arbitrary f (u), the conservation law is Div(C) = 0, where C =
(C1, C2, C3) and

C1 = −uxuz,

C2 = −e−2xu yuz,

C3 = 1

2

(
u2

x + e−2xu2
y − e2xu2

z

) − F (u).

4. For the symmetry So∞ , with �gb = 0, the conservation law is Div(S) = 0, where S = (S1, S2, S3)

and

S1 = bux − bxu,

S2 = e−2xbu y − e−2xbyu,

S3 = e2xbuz − e2xbzu. (112)

5. For the symmetry So∞ , with �gb + b = 0, the conservation law is Div(S) = 0, where S is given
in (112).

11.6. The product space S
2 × R

Let us now consider the set S
2 × R endowed with the product metric

ds2 = dx2 + dy2

(1 + x2 + y2)2
+ dz2. (113)

The product manifold (S2 × R, g) is a manifold with constant scalar curvature R = 2. The isometry
group Isom(S2 × R, g) has the following generators:
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S ′
1 = (

1 + x2 − y2) ∂

∂x
+ 2xy

∂

∂ y
,

S ′
2 = 2xy

∂

∂x
+ (

1 − x2 + y2) ∂

∂ y
,

S ′
3 = y

∂

∂x
− x

∂

∂ y
,

S ′
4 = ∂

∂z
. (114)

The nonlinear Poisson equation on (S2 × R, g) is given by

(
1 + x2 + y2)2

(uxx + u yy) + uzz + f (u) = 0. (115)

11.6.1. Group classification
1. Arbitrary case: For any function f (u), the symmetry group coincides with Isom(S2 × R).
2. Homogeneous case: If f (u) = 0, then the additional symmetries are

S ′∞ = b
∂

∂u
, (116)

where �gb = 0 and

S ′
5 = u

∂

∂u
. (117)

3. Constant case: The case f (u) = k is reduced to the earlier under the change u 
→ u − kz2/2.
4. Linear case: The isometry group and the symmetry S ′∞ , with �gb = 0 in (116), generate a basis

to the symmetry group generators.

11.6.2. The Noether symmetries
1. The isometry group of (S2 × R, g) is a variational symmetry group of Eq. (115).
2. Symmetries (116), with �gb = 0 or �gb + b = 0, are the Noether symmetries in the cases

f (u) = 0 or f (u) = u, respectively.

11.6.3. The conservation laws
1. For the symmetry S ′

1, with arbitrary f (u), the conservation law is Div(A) = 0, where A =
(A1, A2, A3) and

A1 = (1 + x2 − y2)

2

(
u2

y − u2
x

) − 2xyuxu y + 1 + x2 − y2

2(1 + x2 + y2)2
u2

z

− 1 + x2 − y2

(1 + x2 + y2)2
F (u),

A2 = xyu2
x − xyu2

y − (
1 + x2 − y2)uxu y + xy

(1 + x2 + y2)2
u2

z

− 2xy

(1 + x2 + y2)2
F (u),

A3 = − 1 + x2 + y2

(1 + x2 + y2)2
uxuz − 2xy

(1 + x2 + y2)2
u yuz.
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2. For the symmetry S ′
2, with arbitrary f (u), the conservation law is Div(B) = 0, where B =

(B1, B2, B3) and

B1 = xy
(
u2

y − u2
x

) + xy

(1 + x2 + y2)2
u2

z − (
1 − x2 + y2)uxu y − 2xy

(1 + x2 + y2)2
F (u),

B2 = 1 − x2 + y2

2

(
u2

x − u2
y

) + 1 − x2 + y2

2(1 + x2 + y2)
u2

z − 2xyuxu y

− (1 − x2 + y2)

(1 + x2 + y2)2
F (u),

B3 = 2xy

1 + x2 + y2
uxuz + 1 − x2 + y2

(1 + x2 + y2)2
u yuz.

3. For the symmetry S ′
3, with arbitrary f (u), the conservation law is Div(C) = 0, where C =

(C1, C2, C3) and

C1 = y

2

(
u2

y − u2
x

) + y

2(1 + x2 + y2)2
u2

z + xuxuz − y

(1 + x2 + y2)2
F (u),

C2 = x

2

(
u2

y − u2
x

) − x

(1 + x2 + y2)2
u2

z − yuxu y + x

(1 + x2 + y2)2
F (u),

C3 = −y

(1 + x2 + y2)2
uxu y + −x

(1 + x2 + y2)2
u yuz.

4. For the symmetry S ′
4, with arbitrary f (u), the conservation law is Div(D) = 0, where D =

(D1, D2, D3) and

D1 = −uxuz,

D2 = −u yuz,

D3 = 1

2

(
u2

x + u2
y

) − u2
z

2(1 + x2 + y2)2
− F (u)

(1 + x2 + y2)2
.

5. For the symmetry S ′∞ , with �gb = 0 or �gb + b = 0, the conservation law is Div(E) = 0, where
E = (E1, E2, E3) and

E1 = bux − bxu,

E2 = bu y − byu,

E3 = buz − bzu

(1 + x2 + y2)2
. (118)

11.7. The product space H
2 × R

Let H
2 = {(x, y) ∈ R

2: y > 0} endowed with metric

dx2 + dy2

2
y
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be the hyperbolic plane (Klein’s model) and consider the set (H2 × R, g) endowed with the product
metric

ds2 = dx2 + dy2

y2
+ dz2. (119)

The Lie algebra of the infinitesimal isometries of (H2 ×R, g), Isom(H2 ×R, g), is given by (see [32])

X1 = x2 − y2

2

∂

∂x
+ xy

∂

∂ y
, X2 = ∂

∂x
, X3 = x

∂

∂x
+ y

∂

∂ y
, X4 = ∂

∂z
. (120)

The scalar curvature of (H2 × R, g) is R = −2 and the nonlinear Poisson equation is given by

y2(uxx + u yy) + uzz + f (u) = 0. (121)

11.7.1. Group classification
1. Arbitrary case: For any function f (u), the symmetry group coincides with Isom(H2 × R, g).
2. Homogeneous case: If f (u) = 0, then the additional symmetries are

X∞ = b
∂

∂u
, (122)

where �gb = 0 and

X5 = u
∂

∂u
. (123)

3. Constant case: The case f (u) = k is reduced to the earlier under the change u 
→ u − kz2/2.
4. Linear case: The isometry group and the symmetry X∞ , with �gb = 0 in (122), generate a basis

to the symmetry group generators.

11.7.2. The Noether symmetries
1. The isometry group of Isom(H2 × R, g) is a variational symmetry group of Eq. (121).
2. Symmetries (122), with �gb = 0 or �gb + b = 0, are the Noether symmetries in the cases

f (u) = 0 or f (u) = u, respectively.

11.7.3. The conservation laws
1. For the symmetry X1, with arbitrary f (u), the conservation law is Div(A) = 0, where A =

(A1, A2, A3) and

A1 = x2 − y2

4

(
u2

y − u2
x

) + x2 − y2

4y2
u2

z − xyuxu y − x2 − y2

2y2
F (u),

A2 = xy

2

(
u2

x − u2
y

) + x

2y
u2

z − x2 − y2

2
uxu y − x

y
F (u),

A3 = − x2 − y2

2y2
uxuz − x

y
u yuz.
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2. For the symmetry X2, with arbitrary f (u), the conservation law is Div(B) = 0, where B =
(B1, B2, B3) and

B1 = u2
y − u2

x

2
+ u2

z

2y2
− F (u)

y2
,

B2 = −uxu y,

B3 = −uxuz.

3. For the symmetry X3, with arbitrary f (u), the conservation law is Div(C) = 0, where C =
(C1, C2, C3) and

C1 = x

2

(
u2

y − u2
x

) + x

2y2
u2

z − yuxu y − x

y2
F (u),

C2 = y

2

(
u2

x − u2
y

) + u2
z

2y
− xuxu y + F (u)

y
,

C3 = − x

y2
uxuz − u yuz

y
.

4. For the symmetry X4, with arbitrary f (u), the conservation law is Div(D) = 0, where D =
(D1, D2, D3) and

D1 = −uxuz,

D2 = −u yuz,

D3 = u2
x + u2

y

2
− u2

z

2y2
− F (u)

y2
.

5. For the symmetry X∞ , with �gb = 0 or �gb + b = 0, the conservation law is Div(E) = 0, where
E = (E1, E2, E3) and

E1 = bux − bxu,

E2 = bu y − byu,

E3 = buz − bzu

y2
. (124)

11.8. The universal covering of SL2(R)

The universal covering of the Lie group of 2 × 2 matrices with determinant equal to 1, denoted
by S̃L2(R), topologically is R

3+ := {(x, y, z) ∈ R
3: z > 0}, endowed with the Riemannian metric

ds2 =
(

dx + dy

z

)2

+ dy2 + dz2

z2
. (125)

(S̃L2(R), g) possesses scalar curvature R = −5/2.
The nonlinear Poisson equation induced by metric (125) is given by

2uxx − 2zuxy + z2(u yy + uzz) + f (u) = 0. (126)
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We have not found references giving the explicit form of Isom(S̃L2, g). (At least in the information
sources available to us.) However it is known that its dimension is 4. See [41]. Then we shall proceed
in a way opposite to that in Sections 11.2–11.7.

Since the scalar curvature of (S̃L2, g) is constant (R = −5/2), from the proof of Theorem 1 we
conclude that the symmetry group of (126), with f (u) �= λu, λ = const., is reduced to the symmetry
group of the arbitrary case. Then, using the package SYM [19,20] by Stelios Dimas et al., we obtain
that the symmetries of Eq. (126) are determined by

X1 = ∂

∂x
, X2 = ∂

∂ y
, X3 = y

∂

∂ y
+ z

∂

∂z
, X4 = z

∂

∂x
+ y2 − z2

2

∂

∂ y
+ yz

∂

∂z
. (127)

To see that (127) is the isometry group of (S̃L2, g) we have two alternatives. The first one is to
check whether the fields (127) are Killing vector fields. Indeed, a simple substitution of (127) into the
Killing equations confirms this claim. Then, from [41], dim(Isom(S̃L2, g)) = 4. Thus, (127) generate a
basis of the generators of the isometry group of (S̃L2, g).

The second one is as follows. From Theorem 1 is proved that the isometry group of (S̃L2, g) and the
symmetry group of (126) are the same. Since (127) generate a basis of the symmetry group of (126),
we conclude that (127) is a basis of the isometry group of (S̃L2, g).

This procedure suggests that the existing programs for symbolic calculation of symmetries of dif-
ferential equations may be used to calculate the isometry group of the considered manifold.

11.8.1. Group classification
1. Arbitrary case: For any function f (u), the symmetry group coincides with Isom(S̃L2(R), g).
2. Homogeneous case: If f (u) = 0, then the additional symmetries are

X∞ = b
∂

∂u
, (128)

where �gb = 0 and

X ′ = u
∂

∂u
. (129)

3. Constant case: The case f (u) = k is reduced to the preceding case by the change u 
→ u − kx2/2.
4. Linear case: The isometry group and the symmetry X∞ , with �gb + b = 0 in (128), generate a

basis of the symmetry algebra.

11.8.2. The Noether symmetries
1. The isometry group Isom(S̃L2(R), g) is a variational symmetry group of Eq. (127).
2. Symmetries (128), with �gb = 0 or �gb + b = 0, are the Noether symmetries to the cases

f (u) = 0 or f (u) = u, respectively.

11.8.3. The conservation laws
1. For the symmetry X1, with arbitrary f (u), the conservation law is Div(A) = 0, where A =

(A1, A2, A3) and

A1 = −u2
x

z2
+ u2

y

2
+ u2

y

2
− F (u)

z2
,

A2 = u2
x

z
− uxu y,

A3 = −uxuz.
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2. For the symmetry X2, with arbitrary f (u), the conservation law is Div(B) = 0, where B =
(B1, B2, B3) and

B1 = − 2

z2
uxu y + u2

y

z
,

B2 = u2
x

z2
− u2

y

2
+ u2

z

2
− F (u)

z2
,

B3 = −u yuz.

3. For the symmetry X3, with arbitrary f (u), the conservation law is Div(C) = 0, where C =
(C1, C2, C3) and

C1 = −2y

z
uxu y − 2

z
uxuz + y

z
u2

y + u yuz,

C2 = y

z2
u2

x + uxu y − y

2
u2

y − zu yuz + y

2
u2

z − y

z2
F (u),

C3 = u2
x

z
− uxu y + z

2
u2

y − yu yuz − z

2
u2

z − F (u)

z
.

4. For the symmetry X4, with arbitrary f (u), the conservation law is Div(D) = 0, where D =
(D1, D2, D3) and

D1 = −u2
x

z
+ z2 − y2

z2
uxu y − 2y

z
uxuz + y2

2z
u2

y + yu yuz + z

2
u2

z − F (u)

z
,

D2 = y2 + z2

2z2
u2

x − zuxu y + yuxuz − yzu yuz + y2 − z2

4
u2

z + z2 − y2

2z2
F (u),

D3 = y

z
u2

x − yuxu y − zuxuz + yz

2
u2

y + z2 − y2

2
u yuz − yz

2
u2

z − y

z
F (u).

5. For the symmetry X∞ , with �gb = or �gb + b = 0, the conservation law is Div(E) = 0, where
E = (E1, E2, E3) and

E1 = 2

z2
(bux − bxu) − 1

z
(bu y − byu),

E2 = −1

z
(bux − bxu) + (bu y − byu),

E3 = buz − bzu.

11.9. The Heisenberg group

The three-dimensional nilpotent Lie group, also called Heisenberg group H1, topologically is the
real three-dimensional vector space R

3 endowed with the group structure determined by the compo-
sition law φ : R

3 × R
3 −→ R

3 defined by

φ
(
(x, y, t),

(
x′, y′, t′)) := (

x + x′, y + y′, t + t′ + 2
(
x′ y − xy′)).
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This composition law determines the left invariant vector fields

T = ∂

∂t
, X = ∂

∂x
+ 2y

∂

∂t
, Y = ∂

∂ y
− 2x

∂

∂t
(130)

and the left invariant metric on H1

ds2 = dx2 + dy2 + (dz + 2y dx − 2x dy)2. (131)

The scalar curvature of (H1, g) is R = −8 and the operators (130) satisfy the following commuta-
tion relations:

[X, Y ] = −4T , [X, T ] = [Y , T ] = 0.

These formulae represent in an abstract form the commutation relations for the quantum-
mechanical position and momentum operators. This justifies the name Heisenberg group.

It is well known that the metric (131) determines the following generators of the isometry group
of H1, denoted by Isom(H1, g):

T = ∂

∂t
, X̃ = ∂

∂x
− 2y

∂

∂t
, Ỹ = ∂

∂ y
+ 2x

∂

∂t
, R = y

∂

∂x
− x

∂

∂ y
. (132)

Note that T corresponds to translations in t , R—to rotations in the (x, y) plane and X̃, Ỹ determine
the right multiplication.

For more details, see [14,15,32].
The nonlinear Poisson equation on H1 is given by

uxx + u yy + [
4
(
x2 + y2) + 1

]
utt + 4yuxt − 4xu yt + f (u) = 0. (133)

11.9.1. Group classification
1. Arbitrary case: For any function f (u), the symmetry group coincides with Isom(H1, g).
2. Homogeneous case: If f (u) = 0, then the additional symmetries are

H∞ = b
∂

∂u
, (134)

where �gb = 0 and

H1 = u
∂

∂u
. (135)

3. Constant case: The case f (u) = k is reduced to the earlier under the change u 
→ u − kx2.
4. Homogeneous case: The isometry group and the symmetry H∞ , with �gb = 0 in (134), generate

a basis of the symmetry group generators.

11.9.2. The Noether symmetries
1. The isometry group of (H1, g) is a variational symmetry group of Eq. (133).
2. Symmetries (134), with �gb = 0 or �gb + b = 0, are the Noether symmetries to the cases

f (u) = 0 or f (u) = u, respectively.
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11.9.3. The conservation laws
1. For the symmetry T , with arbitrary f (u), the conservation law is Div(A) = 0, where A =

(A1, A2, A3) and

A1 = −uxut − 2yu2
t ,

A2 = −u yut + 2xu2
t ,

A3 = u2
x + u2

y

2
− 4(x2 + y2) + 1

2
u2

t − F (u).

2. For the symmetry X̃ , with arbitrary f (u), the conservation law is Div(B) = 0, where B =
(B1, B2, B3) and

B1 = u2
y − u2

x

2
+ 2yuxut − 2xu yut + 4(x2 + 3y2) + 1

2
u2

t − F (u),

B2 = −uxu y − 2yu yut + 2xuxut − 4xyu2
t ,

B3 = −3yu2
x − yu2

y + 2xuxu y + y
[
4
(
x2 + y2) + 1

]
u2

t

− [
4
(
x2 + y2) + 1

]
uxut + 2yF (u).

3. For the symmetry Ỹ , with arbitrary f (u), the conservation law is Div(C) = 0, where C =
(C1, C2, C3) and

C1 = −uxu y − 2xuxut − 2yu yut − 4xyu2
t ,

C2 = u2
x − u2

y

2
+ 2yuxut − 2xu yut + 4(3x2 + y2) + 1

2
u2

t − F (u),

C3 = −xu2
x + 3xu2

y − x
[
4
(
x2 + y2) + 1

]
u2

t − 2yuxu y

− [
4
(
x2 + y2) + 1

]
u yut − 2xF (u).

4. For the symmetry R , with arbitrary f (u), the conservation law is Div(D) = 0, where D =
(D1, D2, D3) and

D1 = − y

2

(
u2

y − u2
x

) + y

2

[
4
(
x2 + y2) + 1

]
u2

t + xuxu y − yF (u),

D2 = − x

2

(
u2

y + u2
x

) − x

2

[
4
(
x2 + y2) + 1

]
u2

t − yuxu y + xF (u),

D3 = −2y2u2
x − 2x2u2

y + 4xyuxu y − y
[
4
(
x2 + y2) + 1

]
uxut

+ x
[
4
(
x2 + y2) + 1

]
u yut .

5. For the symmetry H∞ , with �gb = 0 or �gb + b = 0, the conservation law is Div(E) = 0, where
E = (E1, E2, E3) and

E1 = b(ux + 2yut) − u(bx + 2yut),

E2 = b(u y − 2xut) − u(by − 2xut),
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E3 = b
{

2yux − 2xu y + [
4
(
x2 + y2) + 1

]
ut

}
− u

{
2ybx − 2xby + [

4
(
x2 + y2) + 1

]
bt

}
. (136)
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